Science.gov

Sample records for hydrogel encapsulated tumor

  1. Manipulation of a Single Circulating Tumor Cell Using Visualization of Hydrogel Encapsulation toward Single-Cell Whole-Genome Amplification.

    PubMed

    Yoshino, Tomoko; Tanaka, Tsuyoshi; Nakamura, Seita; Negishi, Ryo; Hosokawa, Masahito; Matsunaga, Tadashi

    2016-07-19

    Genetic characterization of circulating tumor cells (CTCs) could guide the choice of therapies for individual patients and also facilitate the development of new drugs. We previously developed a CTC recovery system using a microcavity array, which demonstrated highly efficient CTC recovery based on differences in cell size and deformability. However, the CTC recovery system lacked an efficient cell manipulation tool suitable for subsequent genetic analysis. Here, we resolve this issue and present a simple and rapid manipulation method for single CTCs using a photopolymerized hydrogel, polyethylene glycol diacrylate (PEGDA), which is useful for subsequent genetic analysis. First, PEGDA was introduced into the cells entrapped on the microcavity array. Then, excitation light was projected onto the target single cells for encapsulation of each CTC by confocal laser-scanning microscopy. The encapsulated single CTCs could be visualized by the naked eye and easily handled with tweezers. The single CTCs were only partially encapsulated on the PEGDA hydrogel, which allowed for sufficient whole-genome amplification and accurate genotyping. Our proposed methodology is a valuable tool for the rapid and simple manipulation of single CTCs and is expected to become widely utilized for analyses of mammalian cells and microorganisms in addition to CTCs. PMID:27299849

  2. Nanocellulose-alginate hydrogel for cell encapsulation.

    PubMed

    Park, Minsung; Lee, Dajung; Hyun, Jinho

    2015-02-13

    TEMPO-oxidized bacterial cellulose (TOBC)-sodium alginate (SA) composites were prepared to improve the properties of hydrogel for cell encapsulation. TOBC fibers were obtained using a TEMPO/NaBr/NaClO system at pH 10 and room temperature. The fibrillated TOBCs mixed with SA were cross-linked in the presence of Ca(2+) solution to form hydrogel composites. The compression strength and chemical stability of the TOBC/SA composites were increased compared with the SA hydrogel, which indicated that TOBC performed an important function in enhancing the structural, mechanical and chemical stability of the composites. Cells were successfully encapsulated in the TOBC/SA composites, and the viability of cells was investigated. TOBC/SA composites can be a potential candidate for cell encapsulation engineering. PMID:25458293

  3. Poly(ethylene glycol) hydrogel microstructures encapsulating living cells

    NASA Technical Reports Server (NTRS)

    Koh, Won-Gun; Revzin, Alexander; Pishko, Michael V.

    2002-01-01

    We present an easy and effective method for the encapsulation of cells inside PEG-based hydrogel microstructures fabricated using photolithography. High-density arrays of three-dimensional microstructures were created on substrates using this method. Mammalian cells were encapsulated in cylindrical hydrogel microstructures of 600 and 50 micrometers in diameter or in cubic hydrogel structures in microfluidic channels. Reducing lateral dimension of the individual hydrogel microstructure to 50 micrometers allowed us to isolate 1-3 cells per microstructure. Viability assays demonstrated that cells remained viable inside these hydrogels after encapsulation for up to 7 days.

  4. Tumor Growth Suppression Induced by Biomimetic Silk Fibroin Hydrogels

    PubMed Central

    Yan, Le-Ping; Silva-Correia, Joana; Ribeiro, Viviana P.; Miranda-Gonçalves, Vera; Correia, Cristina; da Silva Morais, Alain; Sousa, Rui A.; Reis, Rui M.; Oliveira, Ana L.; Oliveira, Joaquim M.; Reis, Rui L.

    2016-01-01

    Protein-based hydrogels with distinct conformations which enable encapsulation or differentiation of cells are of great interest in 3D cancer research models. Conformational changes may cause macroscopic shifts in the hydrogels, allowing for its use as biosensors and drug carriers. In depth knowledge on how 3D conformational changes in proteins may affect cell fate and tumor formation is required. Thus, this study reports an enzymatically crosslinked silk fibroin (SF) hydrogel system that can undergo intrinsic conformation changes from random coil to β-sheet conformation. In random coil status, the SF hydrogels are transparent, elastic, and present ionic strength and pH stimuli-responses. The random coil hydrogels become β-sheet conformation after 10 days in vitro incubation and 14 days in vivo subcutaneous implantation in rat. When encapsulated with ATDC-5 cells, the random coil SF hydrogel promotes cell survival up to 7 days, whereas the subsequent β-sheet transition induces cell apoptosis in vitro. HeLa cells are further incorporated in SF hydrogels and the constructs are investigated in vitro and in an in vivo chick chorioallantoic membrane model for tumor formation. In vivo, Angiogenesis and tumor formation are suppressed in SF hydrogels. Therefore, these hydrogels provide new insights for cancer research and uses of biomaterials. PMID:27485515

  5. Enhanced immunostimulatory effects of DNA-encapsulated peptide hydrogels.

    PubMed

    Medina, Scott H; Li, Sandra; Howard, O M Zack; Dunlap, Micah; Trivett, Anna; Schneider, Joel P; Oppenheim, Joost J

    2015-01-01

    DNA that encodes tumor-specific antigens represents potential immunostimulatory agents. However, rapid enzymatic degradation and fragmentation of DNA during administration can result in limited vector expression and, consequently, poor efficacy. These challenges have necessitated the use of novel strategies for DNA delivery. Herein, we study the ability of cationic self-assembling peptide hydrogels to encapsulate plasmid DNA, and enhance its immunostimulatory potential in vivo. The effect of network charge on the gel's ability to retain the DNA was assessed employing three gel-forming peptides that vary systematically in formal charge. The peptide HLT2, having a formal charge of +5 at neutral pH, was optimal in encapsulating microgram quantities of DNA with little effect on its rheological properties, allowing its effective syringe delivery in vivo. The plasmid, DNA(TA), encapsulated within these gels encodes for a melanoma-specific gp100 antigen fused to the alarmin protein adjuvant HMGN1. Implantation of DNA(TA)-loaded HLT2 gels into mice resulted in an acute inflammatory response with the presence of polymorphonuclear cells, which was followed by infiltrating macrophages. These cellular infiltrates aid in the processing of encapsulated DNA, promoting increased lymphoproliferation and producing an enhanced immune response mediated by CD4+/IFNγ+ expressing Th1 cells, and complemented by the formation of gp100-specific antibodies.

  6. Microscale Strategies for Generating Cell-Encapsulating Hydrogels

    PubMed Central

    Selimović, Šeila; Oh, Jonghyun; Bae, Hojae; Dokmeci, Mehmet; Khademhosseini, Ali

    2013-01-01

    Hydrogels in which cells are encapsulated are of great potential interest for tissue engineering applications. These gels provide a structure inside which cells can spread and proliferate. Such structures benefit from controlled microarchitectures that can affect the behavior of the enclosed cells. Microfabrication-based techniques are emerging as powerful approaches to generate such cell-encapsulating hydrogel structures. In this paper we introduce common hydrogels and their crosslinking methods and review the latest microscale approaches for generation of cell containing gel particles. We specifically focus on microfluidics-based methods and on techniques such as micromolding and electrospinning. PMID:23626908

  7. Encapsulation of 10-hydroxy camptothecin in supramolecular hydrogel as an injectable drug delivery system.

    PubMed

    Li, Ruixin; Shu, Chang; Wang, Wei; Wang, Xiaoliang; Li, Hui; Xu, Danke; Zhong, Wenying

    2015-07-01

    10-Hydroxy camptothecin (HCPT) has been proven to be a cell cycle-specific chemotherapeutic agent, which is a necessary choice to inhibit tumor residue growth and prevent tumor metastasis after surgery. But it suffers from light decomposition, poor solubility, relatively low bioavailability, and some side effects, which are the major obstacles toward its clinical use. Integration of hydrophobic HCPT with hydrophilic hydrogel is a facile approach to change the disadvantageous situation of HCPT. In this study, a novel supramolecular hydrogelator with improved synthetic strategy was triggered by chemical hydrolysis, and then self-assembled to hydrogel. Taking advantage of the high-equilibrium solubility of HCPT in hydrogelator solution, this hydrogel was utilized to load HCPT via encapsulation as an effective carrier. HCPT hydrogels were characterized by several techniques including transmission electronic microscopy, rheology, and UV spectroscopy. In vitro release experiment indicated HCPT hydrogel could maintain long term and sustained release of HCPT at high accumulated rate. 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay showed that HCPT hydrogel had an optimized anticancer efficacy. Besides, with prominent physical properties of carrier, HCPT hydrogel possessed satisfactory stability, syringeability, and recoverability, demonstrating itself as a potential localized injectable drug delivery system.

  8. Encapsulation optimization of lemon balm antioxidants in calcium alginate hydrogels.

    PubMed

    Najafi-Soulari, Samira; Shekarchizadeh, Hajar; Kadivar, Mahdi

    2016-11-01

    Calcium alginate hydrogel beads were used to encapsulate lemon balm extract. Chitosan layer was used to investigate the effect of hydrogel coating. To determine the interactions of antioxidant compounds of extract with encapsulation materials and its stability, microstructure of hydrogel beads was thoroughly monitored using scanning electron microscopy and Fourier transform infrared (FTIR). Total polyphenols content and antiradical activity of lemon balm extract were also evaluated before and after encapsulation. Three significant parameters (lemon balm extract, sodium alginate, and calcium chloride concentrations) were optimized by response surface methodology to obtain maximum encapsulation efficiency. The FTIR spectra showed no interactions between extract and polymers as there were no new band in spectra of alginate hydrogel after encapsulation of active compounds of lemon balm extract. The antioxidant activity of lemon balm extract did not change after encapsulation. Therefore, it was found that alginate is a suitable material for encapsulation of natural antioxidants. Sodium alginate solution concentration, 1.84%, lemon balm extract concentration, 0.4%, and calcium chloride concentration, 0.2% was determined to be the optimum condition to reach maximum encapsulation efficiency.

  9. Encapsulation optimization of lemon balm antioxidants in calcium alginate hydrogels.

    PubMed

    Najafi-Soulari, Samira; Shekarchizadeh, Hajar; Kadivar, Mahdi

    2016-11-01

    Calcium alginate hydrogel beads were used to encapsulate lemon balm extract. Chitosan layer was used to investigate the effect of hydrogel coating. To determine the interactions of antioxidant compounds of extract with encapsulation materials and its stability, microstructure of hydrogel beads was thoroughly monitored using scanning electron microscopy and Fourier transform infrared (FTIR). Total polyphenols content and antiradical activity of lemon balm extract were also evaluated before and after encapsulation. Three significant parameters (lemon balm extract, sodium alginate, and calcium chloride concentrations) were optimized by response surface methodology to obtain maximum encapsulation efficiency. The FTIR spectra showed no interactions between extract and polymers as there were no new band in spectra of alginate hydrogel after encapsulation of active compounds of lemon balm extract. The antioxidant activity of lemon balm extract did not change after encapsulation. Therefore, it was found that alginate is a suitable material for encapsulation of natural antioxidants. Sodium alginate solution concentration, 1.84%, lemon balm extract concentration, 0.4%, and calcium chloride concentration, 0.2% was determined to be the optimum condition to reach maximum encapsulation efficiency. PMID:27540886

  10. Peptide Hydrogelation and Cell Encapsulation for 3D Culture of MCF-7 Breast Cancer Cells

    PubMed Central

    Sun, Xiuzhi S.; Nguyen, Thu A.

    2013-01-01

    Three-dimensional (3D) cell culture plays an invaluable role in tumor biology by providing in vivo like microenviroment and responses to therapeutic agents. Among many established 3D scaffolds, hydrogels demonstrate a distinct property as matrics for 3D cell culture. Most of the existing pre-gel solutions are limited under physiological conditions such as undesirable pH or temperature. Here, we report a peptide hydrogel that shows superior physiological properties as an in vitro matrix for 3D cell culture. The 3D matrix can be accomplished by mixing a self-assembling peptide directly with a cell culture medium without any pH or temperature adjustment. Results of dynamic rheological studies showed that this hydrogel can be delivered multiple times via pipetting without permanently destroying the hydrogel architecture, indicating the deformability and remodeling ability of the hydrogel. Human epithelial cancer cells, MCF-7, are encapsulated homogeneously in the hydrogel matrix during hydrogelation. Compared with two-dimensional (2D) monolayer culture, cells residing in the hydrogel matrix grow as tumor-like clusters in 3D formation. Relevant parameters related to cell morphology, survival, proliferation, and apoptosis were analyzed using MCF-7 cells in 3D hydrogels. Interestingly, treatment of cisplatin, an anti-cancer drug, can cause a significant decrease of cell viability of MCF-7 clusters in hydrogels. The responses to cisplatin were dose- and time-dependent, indicating the potential usage of hydrogels for drug testing. Results of confocal microscopy and Western blotting showed that cells isolated from hydrogels are suitable for downstream proteomic analysis. The results provided evidence that this peptide hydrogel is a promising 3D cell culture material for drug testing. PMID:23527204

  11. Hydrogel-encapsulated 3D microwell array for neuronal differentiation.

    PubMed

    Bae, Jun Hyuk; Lee, Jong Min; Chung, Bong Geun

    2016-02-01

    We developed a photo-crosslinkable hydrogel-encapsulated three-dimensional (3D) microwell array for studying embryonic stem (ES) cell-derived neuronal differentiation. ES cells were cultured for 5 d in microwells and were subsequently encapsulated by photo-crosslinkable gelatin methacrylate (GelMA) and polyethylene glycol (PEG) hydrogels for an additional 7 d. We observed that ES cells cultured in PEG microwells became uniform-sized embryoid bodies (EBs) compared to those in GelMA microwells. Although ES cells were encapsulated by photo-crosslinkable GelMA and PEG hydrogels, they were highly viable. We demonstrated that uniform-sized EBs encapsulated by GelMA hydrogels in PEG microwells are largely differentiated into neuronal cells. It was revealed that neurites at the periphery of EBs in PEG microwells largely extended into the interface between GelMA hydrogels and PEG microwells for generating neuronal networks. Therefore, this photo-crosslinkable GelMA hydrogel-encapsulated PEG microwell array could be a potentially powerful tool for neurodegenerative disease applications.

  12. Cell Encapsulation in Biodegradable Hydrogels for Tissue Engineering Applications

    PubMed Central

    Nicodemus, Garret D.

    2008-01-01

    Abstract Encapsulating cells in biodegradable hydrogels offers numerous attractive features for tissue engineering, including ease of handling, a highly hydrated tissue-like environment for cell and tissue growth, and the ability to form in vivo. Many properties important to the design of a hydrogel scaffold, such as swelling, mechanical properties, degradation, and diffusion, are closely linked to the crosslinked structure of the hydrogel, which is controlled through a variety of different processing conditions. Degradation may be tuned by incorporating hydrolytically or enzymatically labile segments into the hydrogel or by using natural biopolymers that are susceptible to enzymatic degradation. Because cells are present during the gelation process, the number of suitable chemistries and formulations are limited. In this review, we describe important considerations for designing biodegradable hydrogels for cell encapsulation and highlight recent advances in material design and their applications in tissue engineering. PMID:18498217

  13. Cryopreservation effects on recombinant myoblasts encapsulated in adhesive alginate hydrogels.

    PubMed

    Ahmad, Hajira F; Sambanis, Athanassios

    2013-06-01

    Cell encapsulation in hydrogels is widely used in tissue engineering applications, including encapsulation of islets or other insulin-secreting cells in pancreatic substitutes. Use of adhesive, biofunctionalized hydrogels is receiving increasing attention as cell-matrix interactions in three-dimensional (3-D) environments can be important for various cell processes. With pancreatic substitutes, studies have indicated benefits of 3-D adhesion on the viability and/or function of insulin-secreting cells. As long-term storage of microencapsulated cells is critical for their clinical translation, cryopreservation of cells in hydrogels is being actively investigated. Previous studies have examined the cryopreservation response of cells encapsulated in non-adhesive hydrogels using conventional freezing and/or vitrification (ice-free cryopreservation); however, none have systematically compared the two cryopreservation methods with cells encapsulated within an adhesive 3-D environment. The latter would be significant, as evidence suggests adhesion influences the cellular response to cryopreservation. Thus, the objective of this study was to determine the response to conventional freezing and vitrification of insulin-secreting cells encapsulated in an adhesive biomimetic hydrogel. Recombinant insulin-secreting C2C12 myoblasts were encapsulated in oxidized RGD-alginate and cultured for 1 or 4days post-encapsulation, cryopreserved, and assessed up to 3days post-warming for metabolic activity and insulin secretion, and 1day post-warming for cell morphology. Besides certain transient differences in the vitrified group relative to the fresh control, both conventional freezing and vitrification maintained the metabolism, secretory activity, and morphology of the recombinant C2C12 cells. Thus, due to a simpler procedure and slightly superior results, conventional freezing is recommended over vitrification for the cryopreservation of C2C12 cells encapsulated in oxidized, RGD

  14. Encapsulation of fibroblasts causes accelerated alginate hydrogel degradation.

    PubMed

    Hunt, N C; Smith, A M; Gbureck, U; Shelton, R M; Grover, L M

    2010-09-01

    Calcium-alginate hydrogel has been widely studied as a material for cell encapsulation for tissue engineering. At present, the effect that cells have on the degradation of alginate hydrogel is largely unknown. We have shown that fibroblasts encapsulated at a density of 7.5 x 10(5) cells ml(-1) in both 2% and 5% w/v alginate remain viable for at least 60 days. Rheological analysis was used to study how the mechanical properties exhibited by alginate hydrogel changed during 28 days in vitro culture. Alginate degradation was shown to occur throughout the study but was greatest within the first 7 days of culture for all samples, which correlated with a sharp release of calcium ions from the construct. Fibroblasts were shown to increase the rate of degradation during the first 7 days when compared with acellular samples in both 2% and 5% w/v gels, but after 28 days both acellular and cell-encapsulating samples retained disc-shaped morphologies and gel-like spectra. The results demonstrate that although at an early stage cells influence the mechanical properties of encapsulating alginate, over a longer period of culture, the hydrogels retain sufficient mechanical integrity to exhibit gel-like properties. This allows sustained immobilization of the cells at the desired location in vivo where they can produce extracellular matrix and growth factors to expedite the healing process.

  15. Fibrous Hydrogels for Cell Encapsulation: A Modular and Supramolecular Approach

    PubMed Central

    Włodarczyk-Biegun, Małgorzata K.; Farbod, Kambiz; Werten, Marc W. T.; Slingerland, Cornelis J.; de Wolf, Frits A.; van den Beucken, Jeroen J. J. P.; Leeuwenburgh, Sander C. G.; Cohen Stuart, Martien A.; Kamperman, Marleen

    2016-01-01

    Artificial 3-dimensional (3D) cell culture systems, which mimic the extracellular matrix (ECM), hold great potential as models to study cellular processes under controlled conditions. The natural ECM is a 3D structure composed of a fibrous hydrogel that provides both mechanical and biochemical cues to instruct cell behavior. Here we present an ECM-mimicking genetically engineered protein-based hydrogel as a 3D cell culture system that combines several key features: (1) Mild and straightforward encapsulation meters (1) ease of ut I am not so sure.encapsulation of the cells, without the need of an external crosslinker. (2) Supramolecular assembly resulting in a fibrous architecture that recapitulates some of the unique mechanical characteristics of the ECM, i.e. strain-stiffening and self-healing behavior. (3) A modular approach allowing controlled incorporation of the biochemical cue density (integrin binding RGD domains). We tested the gels by encapsulating MG-63 osteoblastic cells and found that encapsulated cells not only respond to higher RGD density, but also to overall gel concentration. Cells in 1% and 2% (weight fraction) protein gels showed spreading and proliferation, provided a relative RGD density of at least 50%. In contrast, in 4% gels very little spreading and proliferation occurred, even for a relative RGD density of 100%. The independent control over both mechanical and biochemical cues obtained in this modular approach renders our hydrogels suitable to study cellular responses under highly defined conditions. PMID:27223105

  16. Antioxidant cerium oxide nanoparticle hydrogels for cellular encapsulation.

    PubMed

    Weaver, Jessica D; Stabler, Cherie L

    2015-04-01

    Oxidative stress and the resulting radical by-products cause significant toxicity and graft loss in cellular transplantation. Here, the engineering of an auto-catalytic, antioxidant, self-renewing cerium oxide nanoparticle (CONP)-composite hydrogel is reported. This enzyme-mimetic material ubiquitously scavenges ambient free radicals, with the potential to provide indefinite antioxidant protection. The potential of this system to enhance the protection of encapsulated beta cells was evaluated. Co-incubation of CONPs free in solution with beta cells demonstrated potent cytoprotection from superoxide exposure; however, phagocytosis of the CONPs by the beta cells resulted in cytotoxicity at concentrations as low as 1mM. When CONPs were embedded within alginate hydrogels, the composite hydrogel provided cytoprotection to encapsulated beta cells from free radical attack without cytotoxicity, even up to 10mM. This nanocomposite hydrogel has wide applicability in cellular transplantation, with the unique advantage of localization of these potent antioxidant CONPs and their capacity for sustained, long-term scavenging. PMID:25620795

  17. Antioxidant Cerium Oxide Nanoparticle Hydrogels for Cellular Encapsulation

    PubMed Central

    Weaver, Jessica D; Stabler, Cherie L

    2015-01-01

    Oxidative stress and the resulting radical by-products cause significant toxicity and graft loss in cellular transplantation. Here, the engineering of an auto-catalytic, antioxidant, self-renewing cerium oxide nanoparticle (CONP)-composite hydrogel is reported. This enzyme-mimetic material ubiquitously scavenges ambient free radicals, with the potential to provide indefinite antioxidant protection. Here, we evaluated the potential of this system to enhance the protection of encapsulated beta cells. Co-incubation of CONPs, free in solution with beta cells, demonstrated potent cytoprotection from superoxide exposure; however, phagocytosis of the CONPs by the beta cells resulted in cytotoxicity at concentrations as low as 1 mM. When CONPs were embedded within alginate hydrogels, the composite hydrogel provided cytoprotection to encapsulated beta cells from free radical attack without cytotoxicity, even up to 10 mM concentrations. This nanocomposite hydrogel has wide applicability in cellular transplantation, with the unique advantage of localization of these potent antioxidant CONPs and their capacity for sustained, long-term scavenging. PMID:25620795

  18. Cell-Responsive Hydrogel for Encapsulation of Vascular Cells

    PubMed Central

    Kraehenbuehl, Thomas P.; Ferreira, Lino S.; Zammaretti, Prisca; Hubbell, Jeffrey A.; Langer, Robert

    2014-01-01

    The in vitro potential of a synthetic matrix metalloproteinase (MMP)-responsive polyethylene glycol) (PEG)-based hydrogel as a bioactive co-encapsulation system for vascular cells and a small bioactive peptide, thymosin β4 (Tp4), was examined. We show that the physical incorporation of Tβ4 in this bioactive matrix creates a three-dimensional (3D) environment conducive for human umbilical vein endothelial cell (HUVEC) adhesion, survival, migration and organization. Gels with entrapped Tβ4 increased the survival of HUVEC compared to gels without Tp4, and significantly up-regulated the endothelial genes vascular endothelial-cadherin and angiopoietin-2, whereas von Willebrand factor was significantly down-regulated. Incorporation of Tβ4 significantly increased MMP-2 and MMP-9 secretion of encapsulated HUVEC. The gel acts as a controlled Tβ4-release system, as MMP-2 and MMP-9 enzymes trigger the release. In addition, Tβ4 facilitated HUVEC attachment and induced vascular-like network formation upon the PEG-hydrogels. These MMP-responsive PEG-hydrogels may thus serve as controlled co-encapsulation system of vascular cells and bioactive factors for in situ regeneration of ischemic tissues. PMID:19500842

  19. Biocompatible Hydrogels for Microarray Cell Printing and Encapsulation

    PubMed Central

    Datar, Akshata; Joshi, Pranav; Lee, Moo-Yeal

    2015-01-01

    Conventional drug screening processes are a time-consuming and expensive endeavor, but highly rewarding when they are successful. To identify promising lead compounds, millions of compounds are traditionally screened against therapeutic targets on human cells grown on the surface of 96-wells. These two-dimensional (2D) cell monolayers are physiologically irrelevant, thus, often providing false-positive or false-negative results, when compared to cells grown in three-dimensional (3D) structures such as hydrogel droplets. However, 3D cell culture systems are not easily amenable to high-throughput screening (HTS), thus inherently low throughput, and requiring relatively large volume for cell-based assays. In addition, it is difficult to control cellular microenvironments and hard to obtain reliable cell images due to focus position and transparency issues. To overcome these problems, miniaturized 3D cell cultures in hydrogels were developed via cell printing techniques where cell spots in hydrogels can be arrayed on the surface of glass slides or plastic chips by microarray spotters and cultured in growth media to form cells encapsulated 3D droplets for various cell-based assays. These approaches can dramatically reduce assay volume, provide accurate control over cellular microenvironments, and allow us to obtain clear 3D cell images for high-content imaging (HCI). In this review, several hydrogels that are compatible to microarray printing robots are discussed for miniaturized 3D cell cultures. PMID:26516921

  20. Biodegradable liposome-encapsulated hydrogels for biomedical applications: a marriage of convenience.

    PubMed

    Grijalvo, Santiago; Mayr, Judith; Eritja, Ramon; Díaz, David Díaz

    2016-04-01

    Hydrogels are hydrophilic three-dimensional networks with demonstrated potential for medical and pharmaceutical applications. Specifically, biopolymer-based hydrogels offer certain advantages over synthetic polymers in terms of biocompatibility and biodegradability. Because of their inherent properties, hydrogels are able to efficiently encapsulate and liberate in a controlled release manner, different hydrophobic and hydrophilic therapeutic molecules, including nucleic acids, proteins and antibodies. Several strategies have been reported in the literature to minimize the potential burst release of encapsulated drugs, thus preventing their local accumulation and consequent toxic responses. Within this context, liposomes embedded in hydrogels have emerged as an attractive strategy to reduce this undesirable effect. This tutorial review covers a selection of the most promising cationic, neutral and anionic biopolymer-based hydrogels containing liposomes, niosomes or vesicles for drug delivery or tissue engineering applications.

  1. Synthesis of Gold Nanoflowers Encapsulated with Poly(N-isopropylacrylamide-co-acrylic acid) Hydrogels.

    PubMed

    Bae, Saet-Byeol; Lee, Sang-Wha

    2015-10-01

    In this work, hydrogel-coated gold nanoflowers (AuNFs@hydrogel) were facilely prepared. First, gold nanoflowers (AuNFs) were synthesized by reducing gold acid with ascorbic acid in the presence of chitosan biopolymers, and the chitosan-mediated AuNFs were subsequently conjugated with oleic acid with carboxylate groups. Finally, the olefin-conjugated AuNFs were encapsulated with P(NIPAM-co-AAC) hydrogels via a radical polymerization reaction with co-monomer ratio of [NIPAM:AAc = 91:9 wt%]. The encapsulated hydrogels had a lower critical solution temperature (LCST) slightly above the physiological temperature and demonstrated a thermo-sensitive variation of particle size. The hydrogel-coated AuNFs can be utilized as a promising thermo-responsive drug delivery system with a unique optical property. As-prepared samples were characterized by DLS, SEM, TEM, UV-vis and Zeta potential meter. PMID:26726447

  2. Encapsulation of lactase (β-galactosidase) into κ-carrageenan-based hydrogel beads: Impact of environmental conditions on enzyme activity.

    PubMed

    Zhang, Zipei; Zhang, Ruojie; Chen, Long; McClements, David Julian

    2016-06-01

    Encapsulation of enzymes in hydrogel beads may improve their utilization and activity in foods. In this study, the potential of carrageenan hydrogel beads for encapsulating β-galactosidase was investigated. Hydrogel beads were fabricated by injecting an aqueous solution, containing β-galactosidase (26 U) and carrageenan (1 wt%), into a hardening solution (5% potassium chloride). Around 63% of the β-galactosidase was initially encapsulated in the hydrogel beads. Encapsulated β-galactosidase had a higher activity than that of the free enzyme over a range of pH and thermal conditions, which was attributed to the stabilization of the enzyme structure by K(+) ions within the carrageenan beads. Release of the enzyme from the beads was observed during storage in aqueous solutions, which was attributed to the relatively large pore size of the hydrogel matrix. Our results suggest that carrageenan hydrogel beads may be useful encapsulation systems, but further work is needed to inhibit enzyme leakage.

  3. Three-dimensional photopatterning of hydrogels using stereolithography for long-term cell encapsulation.

    PubMed

    Chan, Vincent; Zorlutuna, Pinar; Jeong, Jae Hyun; Kong, Hyunjoon; Bashir, Rashid

    2010-08-21

    Cell-encapsulated hydrogels with complex three-dimensional (3D) structures were fabricated from photopolymerizable poly(ethylene glycol) diacrylate (PEGDA) using modified 'top-down' and 'bottoms-up' versions of a commercially available stereolithography apparatus (SLA). Swelling and mechanical properties were measured for PEGDA hydrogels with molecular weights (M(w)) ranging from 700 to 10 000 Daltons (Da). Long-term viability of encapsulated NIH/3T3 cells was quantitatively evaluated using an MTS assay and shown to improve over 14 days by increasing the M(w) of the hydrogels. Addition of adhesive RGDS peptide sequences resulted in increased cell viability, proliferation, and spreading compared to pristine PEG hydrogels of the same M(w). Spatial 3D layer-by-layer cell patterning was successfully demonstrated, and the feasibility of depositing multiple cell types and material compositions into distinct layers was established.

  4. HAp granules encapsulated oxidized alginate-gelatin-biphasic calcium phosphate hydrogel for bone regeneration.

    PubMed

    Sarker, Avik; Amirian, Jhaleh; Min, Young Ki; Lee, Byong Taek

    2015-11-01

    Bone repair in the critical size defect zone using 3D hydrogel scaffold is still a challenge in tissue engineering field. A novel type of hydrogel scaffold combining ceramic and polymer materials, therefore, was fabricated to meet this challenge. In this study, oxidized alginate-gelatin-biphasic calcium phosphate (OxAlg-Gel-BCP) and spherical hydroxyapatite (HAp) granules encapsulated OxAlg-Gel-BCP hydrogel complex were fabricated using freeze-drying method. Detailed morphological and material characterizations of OxAlg-Gel-BCP hydrogel (OGB00), 25wt% and 35wt% granules encapsulated hydrogel (OGB25 and OGB35) were carried out for micro-structure, porosity, chemical constituents, and compressive stress analysis. Cell viability, cell attachment, proliferation and differentiation behavior of rat bone marrow-derived stem cell (BMSC) on OGB00, OGB25 and OGB35 scaffolds were confirmed by MTT assay, Live-Dead assay, and confocal imaging in vitro experiments. Finally, OGB00 and OGB25 hydrogel scaffolds were implanted in the critical size defect of rabbit femoral chondyle for 4 and 8 weeks. The micro-CT analysis and histological studies conducted by H&E and Masson's trichrome demonstrated that a significantly higher (***p<0.001) and earlier bone formation happened in case of 25% HAp granules encapsulated OxAlg-Gel-BCP hydrogel than in OxAlg-Gel-BCP complex alone. All results taken together, HAp granules encapsulated OxAlg-Gel-BCP system can be a promising 3D hydrogel scaffold for the healing of a critical bone defect.

  5. Camptothecine encapsulated composite drug delivery system for colorectal peritoneal carcinomatosis therapy: biodegradable microsphere in thermosensitive hydrogel.

    PubMed

    Liu, Lei; Wu, Qinjie; Ma, Xuelei; Xiong, Dake; Gong, Changyang; Qian, Zhiyong; Zhao, Xia; Wei, Yuquan

    2013-06-01

    In this work, we developed a biodegradable and injectable composite drug delivery system (DDS), camptothecine (CPT) loaded polymeric microsphere in thermosensitive hydrogel, for colorectal peritoneal carcinomatosis (CRPC) therapy. In our previous studies, we found that poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) (PCL-PEG-PCL, PCEC) copolymers with different molecular weight and PEG/PCL ratio could be administrated to form microsphere or thermosensitive hydrogel, respectively. Therefore, the composite DDS was composed of CPT loaded microsphere (CPT-MS) and thermosensitive hydrogel. CPT-MS was prepared by CPT and PCEC copolymer (Mn=31,600) using an oil-in-water emulsion solvent evaporation method. Besides, biodegradable and injectable thermosensitive PCEC hydrogel (Mn=3150) with lower sol-gel transition temperature at around body temperature was also prepared. The CPT-MS in thermosensitive hydrogel (CPT-MS/hydrogel) composite is a free-flowing sol at ambient temperature and instantly converts into a non-flowing gel at body temperature. Furthermore, cytotoxicity assay indicated that both microsphere and hydrogel were biocompatible with very low cytotoxicity. In vitro release profile demonstrated a significant difference between rapid release of free CPT and much slower and sustained release of CPT-MS/hydrogel. In addition, intraperitoneal administration of CPT-MS/hydrogel could effectively suppress growth and metastasis of CT26 peritoneal carcinomatosis in vivo, and prolonged the survival of tumor bearing mice. Compared with CPT-MS or free CPT, CPT-MS/hydrogel induced a stronger anti-tumor effect by increasing apoptosis of tumor cells and inhibiting microvessel density of tumor tissue. Besides, side effects of CPT were also alleviated in CPT-MS/hydrogel-treated mice. Thus, our results suggested that CPT-MS/hydrogel may have great potential applications in clinic.

  6. Injectable and Self-Healing Carbohydrate-Based Hydrogel for Cell Encapsulation.

    PubMed

    Lü, Shaoyu; Gao, Chunmei; Xu, Xiubin; Bai, Xiao; Duan, Haogang; Gao, Nannan; Feng, Chen; Xiong, Yun; Liu, Mingzhu

    2015-06-17

    With the fast development of cell therapy, there has been a shift toward the development of injectable hydrogels as cell carriers that can overcome current limitations in cell therapy. However, the hydrogels are prone to damage during use, inducing cell apoptosis. Therefore, this study was carried out to develop an injectable and self-healing hydrogel based on chondroitin sulfate multiple aldehyde (CSMA) and N-succinyl-chitosan (SC). By varying the CSMA to SC ratio, the hydrogel stiffness, water content, and kinetics of gelation could be controlled. Gelation readily occurred at physiological conditions, predominantly due to a Schiff base reaction between the aldehyde groups on CSMA and amino groups on SC. Meanwhile, because of the dynamic equilibrium of Schiff base linkage, the hydrogel was found to be self-healing. Cells encapsulated in the hydrogel remained viable and metabolically active. In addition, the hydrogel produced minimal inflammatory response when injected subcutaneously in a rat model and showed biodegradability in vivo. This work establishes an injectable and self-healing hydrogel derived from carbohydrates with potential applications as a cell carrier and in tissue engineering.

  7. Injectable and Self-Healing Carbohydrate-Based Hydrogel for Cell Encapsulation.

    PubMed

    Lü, Shaoyu; Gao, Chunmei; Xu, Xiubin; Bai, Xiao; Duan, Haogang; Gao, Nannan; Feng, Chen; Xiong, Yun; Liu, Mingzhu

    2015-06-17

    With the fast development of cell therapy, there has been a shift toward the development of injectable hydrogels as cell carriers that can overcome current limitations in cell therapy. However, the hydrogels are prone to damage during use, inducing cell apoptosis. Therefore, this study was carried out to develop an injectable and self-healing hydrogel based on chondroitin sulfate multiple aldehyde (CSMA) and N-succinyl-chitosan (SC). By varying the CSMA to SC ratio, the hydrogel stiffness, water content, and kinetics of gelation could be controlled. Gelation readily occurred at physiological conditions, predominantly due to a Schiff base reaction between the aldehyde groups on CSMA and amino groups on SC. Meanwhile, because of the dynamic equilibrium of Schiff base linkage, the hydrogel was found to be self-healing. Cells encapsulated in the hydrogel remained viable and metabolically active. In addition, the hydrogel produced minimal inflammatory response when injected subcutaneously in a rat model and showed biodegradability in vivo. This work establishes an injectable and self-healing hydrogel derived from carbohydrates with potential applications as a cell carrier and in tissue engineering. PMID:26016388

  8. Development of a hybrid dextrin hydrogel encapsulating dextrin nanogel as protein delivery system.

    PubMed

    Molinos, Maria; Carvalho, Vera; Silva, Dina M; Gama, Francisco M

    2012-02-13

    Dextrin, a glucose polymer with low molecular weight, was used to develop a fully resorbable hydrogel, without using chemical initiators. Dextrin was first oxidized (oDex) with sodium periodate and then cross-linked with adipic acid dihidrazide, a nontoxic cross-linking molecule. Furthermore, a new bidimensional composite hydrogel, made of oxidized dextrin incorporating dextrin nanogels (oDex-nanogel), was also developed. The oDex hydrogels showed good mechanical properties and biocompatibility, allowing the proliferation of mouse embryo fibroblasts 3T3 cultured on top of the gel. The gelation time may be controlled selecting the concentrations of the polymer and reticulating agent. Both the oDex and oDex-nanogel hydrogels are biodegradable and present a 3-D network with a continuous porous structure. The obtained hybrid hydrogel enables the release of the dextrin nanogel over an extended period of time, paralleling the mass loss curve due to the degradation of the material. The dextrin nanogel allowed the efficient incorporation of interleukin-10 and insulin in the oDex hydrogel, providing a sophisticated system of controlled release. The new hydrogels present promising properties as an injectable carrier of bioactive molecules. Both proteins and poorly water-soluble low-molecular-weight drugs are efficiently encapsulated in the nanogel, which performs as a controlled release system entrapped in the hydrogel matrix. PMID:22288730

  9. Mesenchymal Stem Cell and Gelatin Microparticle Encapsulation in Thermally and Chemically Gelling Injectable Hydrogels for Tissue Engineering

    PubMed Central

    Tzouanas, Stephanie N.; Ekenseair, Adam K.; Kasper, F. Kurtis; Mikos, Antonios G.

    2014-01-01

    In this work, we investigated the viability and osteogenic differentiation of mesenchymal stem cells encapsulated with gelatin microparticles (GMPs) in an injectable, chemically and thermally gelling hydrogel system combining poly(N-isopropylacrylamide)-based thermogelling macromers containing pendant epoxy rings with polyamidoamine-based hydrophilic and degradable diamine crosslinking macromers. Specifically, we studied how the parameters of GMP size and loading ratio affected the viability and differentiation of cells encapsulated within the hydrogel. We also examined the effects of cell and GMP co-encapsulation on hydrogel mineralization. Cells demonstrated long-term viability within the hydrogels, which was shown to depend on GMP size and loading ratio. In particular, increased interaction of cells and GMPs through greater available GMP surface area, use of an epoxy-based chemical gelation mechanism, and the tunable high water content of the thermogelled hydrogels led to favorable long-term cell viability. Compared to cellular hydrogels without GMPs, hydrogels co-encapsulating cells and GMPs demonstrated greater production of alkaline phosphatase by cells at all time-points and a transient early enhancement of hydrogel mineralization for larger GMPs at higher loading ratios. Such injectable, in situ forming hydrogels capable of delivering and maintaining populations of encapsulated mesenchymal stem cells and promoting mineralization in vitro offer promise as novel therapies for applications in tissue engineering and regenerative medicine. PMID:24458783

  10. Fabrication of hydrogel-encapsulated silica core bound with chitosan chains for efficient drug delivery

    NASA Astrophysics Data System (ADS)

    Byeol Bae, Saet; Lee, Sang Wha

    2016-06-01

    In this study, hydrogel-encapsulated silica nanoparticles were facilely prepared through the following three consecutive steps: i) silica nanoparticles (SNPs) were synthesized via a sol–gel reaction of tetraethyl orthosilicate (TEOS) with ammonium hydroxide, ii) the resulting SNPs were functionalized with 3-(trimethoxysilyl)-propylmethacrylate (TPM) ligand with an olefin group, and iii) the TPM-functionalized SNPs were encapsulated with poly(N-isopropylacrylamide-co-acrylic acid), NIPAM-co-AAc hydrogels by using a radical polymerization reaction of the co-monomers at the following ratio: \\text{NIPAM}:\\text{AAc} = 91:9 wt %. The lower critical solution temperature (LCST) of the encapsulated hydrogels with a moiety of carboxylic groups was slightly above physiological temperature and they demonstrated a thermo-sensitive variation of particle size. The hydrogel-encapsulated SNPs (SNPs@Hyd) were finally bound with chitosan chains, which are bio-friendly and non-toxic polymers. When compared to SNPs@Hyd, chitosan-coated SNPs@Hyd (SNPs@Hyd@Chi) exhibited prolonged drug (ibuprofen) release and stable structural integrity during the release test.

  11. Fabrication of hydrogel-encapsulated silica core bound with chitosan chains for efficient drug delivery

    NASA Astrophysics Data System (ADS)

    Byeol Bae, Saet; Lee, Sang Wha

    2016-06-01

    In this study, hydrogel-encapsulated silica nanoparticles were facilely prepared through the following three consecutive steps: i) silica nanoparticles (SNPs) were synthesized via a sol-gel reaction of tetraethyl orthosilicate (TEOS) with ammonium hydroxide, ii) the resulting SNPs were functionalized with 3-(trimethoxysilyl)-propylmethacrylate (TPM) ligand with an olefin group, and iii) the TPM-functionalized SNPs were encapsulated with poly(N-isopropylacrylamide-co-acrylic acid), NIPAM-co-AAc hydrogels by using a radical polymerization reaction of the co-monomers at the following ratio: \\text{NIPAM}:\\text{AAc} = 91:9 wt %. The lower critical solution temperature (LCST) of the encapsulated hydrogels with a moiety of carboxylic groups was slightly above physiological temperature and they demonstrated a thermo-sensitive variation of particle size. The hydrogel-encapsulated SNPs (SNPs@Hyd) were finally bound with chitosan chains, which are bio-friendly and non-toxic polymers. When compared to SNPs@Hyd, chitosan-coated SNPs@Hyd (SNPs@Hyd@Chi) exhibited prolonged drug (ibuprofen) release and stable structural integrity during the release test.

  12. Developing robust, hydrogel-based, nanofiber-enabled encapsulation devices (NEEDs) for cell therapies.

    PubMed

    An, Duo; Ji, Yewei; Chiu, Alan; Lu, Yen-Chun; Song, Wei; Zhai, Lei; Qi, Ling; Luo, Dan; Ma, Minglin

    2015-01-01

    Cell encapsulation holds enormous potential to treat a number of hormone deficient diseases and endocrine disorders. We report a simple and universal approach to fabricate robust, hydrogel-based, nanofiber-enabled encapsulation devices (NEEDs) with macroscopic dimensions. In this design, we take advantage of the well-known capillary action that holds wetting liquid in porous media. By impregnating the highly porous electrospun nanofiber membranes of pre-made tubular or planar devices with hydrogel precursor solutions and subsequent crosslinking, we obtained various nanofiber-enabled hydrogel devices. This approach is broadly applicable and does not alter the water content or the intrinsic chemistry of the hydrogels. The devices retained the properties of both the hydrogel (e.g. the biocompatibility) and the nanofibers (e.g. the mechanical robustness). The facile mass transfer was confirmed by encapsulation and culture of different types of cells. Additional compartmentalization of the devices enabled paracrine cell co-cultures in single implantable devices. Lastly, we provided a proof-of-concept study on potential therapeutic applications of the devices by encapsulating and delivering rat pancreatic islets into chemically-induced diabetic mice. The diabetes was corrected for the duration of the experiment (8 weeks) before the implants were retrieved. The retrieved devices showed minimal fibrosis and as expected, live and functional islets were observed within the devices. This study suggests that the design concept of NEEDs may potentially help to overcome some of the challenges in the cell encapsulation field and therefore contribute to the development of cell therapies in future. PMID:25453936

  13. Time-Dependent Effect of Encapsulating Alginate Hydrogel on Neurogenic Potential

    PubMed Central

    Razavi, Shahnaz; Khosravizadeh, Zahra; Bahramian, Hamid; Kazemi, Mohammad

    2015-01-01

    Objective Due to the restricted potential of neural stem cells for regeneration of central nervous system (CNS) after injury, providing an alternative source for neural stem cells is essential. Adipose derived stem cells (ADSCs) are multipotent cells with properties suitable for tissue engineering. In addition, alginate hydrogel is a biocompatible polysaccharide polymer that has been used to encapsulate many types of cells. The aim of this study was to assess the proliferation rate and level of expression of neural markers; NESTIN, glial fibrillary acidic protein (GFAP) and microtubule-associated protein 2 (MAP2) in encapsulated human ADSCs (hADSCs) 10 and14 days after neural induction. Materials and Methods In this experimental study, ADSCs isolated from human were cultured in neural induction media and seeded into alginate hydrogel. The rate of proliferation and differentiation of encapsulated cells were evaluated by 3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyl tetrazolium bromide (MTT) assay, immunocytoflourescent and realtime reverse transcriptase polymerase chain reaction (RT-PCR) analyzes 10 and 14 days after induction. Results The rate of proliferation of encapsulated cells was not significantly changed with time passage. The expression of NESTIN and GFAP significantly decreased on day 14 relative to day 10 (P<0.001) but MAP2 expression was increased. Conclusion Alginate hydrogel can promote the neural differentiation of encapsulated hADSCs with time passage. PMID:26199909

  14. Flexural characterization of cell encapsulated PEGDA hydrogels with applications for tissue engineered heart valves

    PubMed Central

    Durst, Christopher A.; Cuchiara, Michael P.; Mansfield, Elizabeth G.; West, Jennifer L.; Grande-Allen, K. Jane

    2015-01-01

    The limitations of the current clinical options for valve replacements have inspired the development of enabling technologies to create a tissue engineered heart valve (TEHV). Poly(ethylene glycol) diacrylate (PEGDA) hydrogel scaffolds permit greater biological and biomechanical customization than do non-woven mesh scaffold technologies. However, the material characterization of PEGDA hydrogels has been predominantly limited to compression and tension, as opposed to bending. Since large flexural deformations result in points of maximum stress in native valves as well as TEHVs, it is crucial to evaluate any potential scaffold material in this mode. The effect of formulation parameters on the bending mechanics of cell-seeded PEGDA hydrogels were investigated with a custom designed bending tester. Three molecular weights (3.4, 6, and 8 kDa) and three weight fractions (5%, 10%, and 15%, w/v) were subjected to three-point bending tests and the flexural stiffness was calculated. Manipulating the composition of the hydrogels resulted in flexural stiffnesses comparable with native tissues (15–220 kPa) with varied mesh sizes and swelling ratios. Hydrogels containing encapsulated valve cells, methacrylated heparin (Hep-MA), or both were substantially less stiff than acellular hydrogels. In conclusion, PEGDA hydrogels are an attractive potential scaffold system for TEHVs because they are not only cytocompatible and modifiable but can also withstand bending deformations. These studies are the first to explore the encapsulation of valvular interstitial cells in pure PEGDA hydrogels as well as to investigate the bending properties of PEGDA gels. PMID:21329770

  15. Cell-mediated remodeling of biomimetic encapsulating hydrogels triggered by adipogenic differentiation of adipose stem cells

    PubMed Central

    Clevenger, Tracy N; Luna, Gabriel; Boctor, Daniel; Fisher, Steven K; Clegg, Dennis O

    2016-01-01

    One of the most common regenerative therapies is autologous fat grafting, which frequently suffers from unexpected volume loss. One approach is to deliver adipose stem cells encapsulated in the engineered hydrogels supportive of cell survival, differentiation, and integration after transplant. We describe an encapsulating, biomimetic poly(ethylene)-glycol hydrogel, with embedded peptides for attachment and biodegradation. Poly(ethylene)-glycol hydrogels containing an Arg–Gly–Asp attachment sequence and a matrix metalloprotease 3/10 cleavage site supported adipose stem cell survival and showed remodeling initiated by adipogenic differentiation. Arg–Gly–Asp–matrix metalloprotease 3/10 cleavage site hydrogels showed an increased number and area of lacunae or holes after adipose stem cell differentiation. Image analysis of adipose stem cells in Arg–Gly–Asp–matrix metalloprotease 3/10 cleavage site hydrogels showed larger Voronoi domains, while cell density remained unchanged. The differentiated adipocytes residing within these newly remodeled spaces express proteins and messenger RNAs indicative of adipocytic differentiation. These engineered scaffolds may provide niches for stem cell differentiation and could prove useful in soft tissue regeneration. PMID:27733898

  16. The incorporation of extracellular matrix proteins in protein polymer hydrogels to improve encapsulated beta-cell function.

    PubMed

    Beenken-Rothkopf, Liese N; Karfeld-Sulzer, Lindsay S; Davis, Nicolynn E; Forster, Ryan; Barron, Annelise E; Fontaine, Magali J

    2013-01-01

    Biomaterial encapsulation of islets has been proposed to improve the long-term success of islet transplantation by recreating a suitable microenvironment and enhancing cell-matrix interactions that affect cellular function. Protein polymer hydrogels previously showed promise as a biocompatible scaffold by maintaining high cell viability. Here, enzymatically-crosslinked protein polymers were used to investigate the effects of varying scaffold properties and of introducing ECM proteins on the viability and function of encapsulated MIN6 β-cells. Chemical and mechanical properties of the hydrogel were modified by altering the protein concentrations while collagen IV, fibronectin, and laminin were incorporated to reestablish cell-matrix interactions lost during cell isolation. Rheology indicated all hydrogels formed quickly, resulting in robust, elastic hydrogels with Young's moduli similar to soft tissue. All hydrogels tested supported both high MIN6 β-cell viability and function and have the potential to serve as an encapsulation platform for islet cell delivery in vivo.

  17. In-situ formation of growth-factor-loaded coacervate microparticle-embedded hydrogels for directing encapsulated stem cell fate.

    PubMed

    Jeon, Oju; Wolfson, David W; Alsberg, Eben

    2015-04-01

    The spontaneous formation of coacervate microdroplet-laden photo-crosslinked hydrogels derived from the simple mixing of oxidized, methacrylated alginate (OMA) and methacrylated gelatin (GelMA) enables simultaneous creation of drug-laden microdroplets and encapsulation of stem cells in photopolymerized coacervate hydrogels under physiological conditions. This can be utilized as a novel platform for in situ formation of localized, sustained bioactive molecule delivery to encapsulate stem cells for therapeutic applications.

  18. Genipin-cross-linked poly(L-lysine)-based hydrogels: synthesis, characterization, and drug encapsulation.

    PubMed

    Wang, Steven S S; Hsieh, Ping-Lun; Chen, Pei-Shan; Chen, Yu-Tien; Jan, Jeng-Shiung

    2013-11-01

    Genipin-cross-linked hydrogels composed of biodegradable and pH-sensitive cationic poly(L-lysine) (PLL), poly(L-lysine)-block-poly(L-alanine) (PLL-b-PLAla), and poly(L-lysine)-block-polyglycine (PLL-b-PGly) polypeptides were synthesized, characterized, and used as carriers for drug delivery. These polypeptide hydrogels can respond to pH-stimulus and their gelling and mechanical properties, degradation rate, and drug release behavior can be tuned by varying polypeptide composition and cross-linking degree. Comparing with natural polymers, the synthetic polypeptides with well-defined chain length and composition can warrant the preparation of the hydrogels with tunable properties to meet the criteria for specific biomedical applications. These hydrogels composed of natural building blocks exhibited good cell compatibility and enzyme degradability and can support cell attachment/proliferation. The evaluation of these hydrogels for in vitro drug release revealed that the controlled release profile was a biphasic pattern with a mild burst release and a moderate release rate thereafter, suggesting the drug molecules were encapsulated inside the gel matrix. With the versatility of polymer chemistry and conjugation of functional moieties, it is expected these hydrogels can be useful for biomedical applications such as polymer therapeutics and tissue engineering.

  19. Cell compatible encapsulation of filaments into 3D hydrogels.

    PubMed

    Schirmer, Katharina S U; Gorkin, Robert; Beirne, Stephen; Stewart, Elise; Thompson, Brianna C; Quigley, Anita F; Kapsa, Robert M I; Wallace, Gordon G

    2016-06-01

    Tissue engineering scaffolds for nerve regeneration, or artificial nerve conduits, are particularly challenging due to the high level of complexity the structure of the nerve presents. The list of requirements for artificial nerve conduits is long and includes the ability to physically guide nerve growth using physical and chemical cues as well as electrical stimulation. Combining these characteristics into a conduit, while maintaining biocompatibility and biodegradability, has not been satisfactorily achieved by currently employed fabrication techniques. Here we present a method combining pultrusion and wet-spinning techniques facilitating incorporation of pre-formed filaments into ionically crosslinkable hydrogels. This new biofabrication technique allows the incorporation of conducting or drug-laden filaments, controlled guidance channels and living cells into hydrogels, creating new improved conduit designs. PMID:27213861

  20. The Influence of Hydrogel Modulus on the Proliferation and Differentiation of Encapsulated Neural Stem Cells

    PubMed Central

    Banerjee, Akhilesh; Arha, Manish; Choudhary, Soumitra; Ashton, Randolph S.; Bhatia, Surita R.; Schaffer, David V.; Kane, Ravi S.

    2009-01-01

    There has been an increasing interest in understanding how the mechanical properties of the microenvironment influence stem cell fate. We describe studies of the proliferation and differentiation of neural stem cells (NSCs) encapsulated within three-dimensional scaffolds – alginate hydrogels – whose elastic moduli were varied over two orders of magnitude. The rate of proliferation of neural stem cells decreased with increase in the modulus of the hydrogels. Moreover, we observed the greatest enhancement in expression of the neuronal marker β-tubulin III within the softest hydrogels, which had an elastic modulus comparable to that of brain tissues. To our knowledge, this work represents the first demonstration of the influence of modulus on NSC differentiation in three-dimensional scaffolds. Three-dimensional scaffolds that control stem cell fate would be broadly useful for applications in regenerative medicine and tissue engineering. PMID:19539367

  1. Combining submerged electrospray and UV photopolymerization for production of synthetic hydrogel microspheres for cell encapsulation.

    PubMed

    Young, Cara J; Poole-Warren, Laura A; Martens, Penny J

    2012-06-01

    Microencapsulation within hydrogel microspheres holds much promise for drug and cell delivery applications. Synthetic hydrogels have many advantages over more commonly used natural materials such as alginate, however their use has been limited due to a lack of appropriate methods for manufacturing these microspheres under conditions compatible with sensitive proteins or cells. This study investigated the effect of flow rate and voltage on size and uniformity of the hydrogel microspheres produced via submerged electrospray combined with UV photopolymerization. In addition, the mechanical properties and cell survival within microspheres was studied. A poly(vinyl alcohol) (PVA) macromer solution was sprayed in sunflower oil under flow rates between 1-100 µL/min and voltages 0-10 kV. The modes of spraying observed were similar to those previously reported for electrospraying in air. Spheres produced were smaller for lower flow rates and higher voltages and mean size could be tailored from 50 to 1,500 µm. The microspheres exhibited a smooth, spherical morphology, did not aggregate and the compressive modulus of the spheres (350 kPa) was equivalent to bulk PVA (312 kPa). Finally, L929 fibroblasts were encapsulated within PVA microspheres and showed viability >90% after 24 h. This process shows great promise for the production of synthetic hydrogel microspheres, and specifically supports encapsulation of cells.

  2. Photoclick Hydrogels Prepared from Functionalized Cyclodextrin and Poly(ethylene glycol) for Drug Delivery and in Situ Cell Encapsulation.

    PubMed

    Shih, Han; Lin, Chien-Chi

    2015-07-13

    Polymers or hydrogels containing modified cyclodextrin (CD) are highly useful in drug delivery applications, as CD is a cytocompatible amphiphilic molecule that can complex with a variety of hydrophobic drugs. Here, we designed modular photoclick thiol-ene hydrogels from derivatives of βCD and poly(ethylene glycol) (PEG), including βCD-allylether (βCD-AE), βCD-thiol (βCD-SH), PEG-thiol (PEGSH), and PEG-norbornene (PEGNB). Two types of CD-PEG hybrid hydrogels were prepared using radical-mediated thiol-ene photoclick reactions. Specifically, thiol-allylether hydrogels were formed by reacting multiarm PEGSH and βCD-AE, and thiol-norbornene hydrogels were formed by cross-linking βCD-SH and multiarm PEGNB. We characterized the properties of these two types of thiol-ene hydrogels, including gelation kinetics, gel fractions, hydrolytic stability, and cytocompatibility. Compared with thiol-allylether hydrogels, thiol-norbornene photoclick reaction formed hydrogels with faster gelation kinetics at equivalent macromer contents. Using curcumin, an anti-inflammatory and anticancer hydrophobic molecule, we demonstrated that CD-cross-linked PEG-based hydrogels, when compared with pure PEG-based hydrogels, afforded higher drug loading efficiency and prolonged delivery in vitro. Cytocompatibility of these CD-cross-linked hydrogels were evaluated by in situ encapsulation of radical sensitive pancreatic MIN6 β-cells. All formulations and cross-linking conditions tested were cytocompatible for cell encapsulation. Furthermore, hydrogels cross-linked by βCD-SH showed enhanced cell proliferation and insulin secretion as compared to gels cross-linked by either dithiothreitol (DTT) or βCD-AE, suggesting the profound impact of both macromer compositions and gelation chemistry on cell fate in chemically cross-linked hydrogels. PMID:25996903

  3. Impact of Nanotopography, Heparin Hydrogel Microstructures, and Encapsulated Fibroblasts on Phenotype of Primary Hepatocytes.

    PubMed

    You, Jungmok; Raghunathan, Vijay Krishna; Son, Kyung Jin; Patel, Dipali; Haque, Amranul; Murphy, Christopher J; Revzin, Alexander

    2015-06-17

    Hepatocytes, the main epithelial cell type in the liver, perform most of the biochemical functions of the liver. Thus, maintenance of a primary hepatocyte phenotype is crucial for investigations of in vitro drug metabolism, toxicity, and development of bioartificial liver constructs. Here, we report the impact of topographic cues alone and in combination with soluble signals provided by encapsulated feeder cells on maintenance of the primary hepatocyte phenotype. Topographic features were 300 nm deep with pitches of either 400, 1400, or 4000 nm. Hepatocyte cell attachment, morphology and function were markedly better on 400 nm pitch patterns compared with larger scale topographies or planar substrates. Interestingly, topographic features having biomimetic size scale dramatically increased cell adhesion whether or not substrates had been precoated with collagen I. Albumin production in primary hepatocytes cultured on 400 nm pitch substrates without collagen I was maintained over 10 days and was considerably higher compared to albumin synthesis on collagen-coated flat substrates. In order to investigate the potential interaction of soluble cytoactive factors supplied by feeder cells with topographic cues in determining cell phenotype, bioactive heparin-containing hydrogel microstructures were molded (100 μm spacing, 100 μm width) over the surface of the topographically patterned substrates. These hydrogel microstructures either carried encapsulated fibroblasts or were free of cells. Hepatocytes cultured on nanopatterned substrates next to fibroblast carrying hydrogel microstructures were significantly more functional than hepatocytes cultured on nanopatterned surfaces without hydrogels or stromal cells significantly elevated albumin expression and cell junction formation compared to cells provided with topographic cues only. The simultaneous presentation of topographic biomechanical cues along with soluble signaling molecules provided by encapsulated fibroblasts

  4. Impact of Nanotopography, Heparin Hydrogel Microstructures, and Encapsulated Fibroblasts on Phenotype of Primary Hepatocytes

    PubMed Central

    2015-01-01

    Hepatocytes, the main epithelial cell type in the liver, perform most of the biochemical functions of the liver. Thus, maintenance of a primary hepatocyte phenotype is crucial for investigations of in vitro drug metabolism, toxicity, and development of bioartificial liver constructs. Here, we report the impact of topographic cues alone and in combination with soluble signals provided by encapsulated feeder cells on maintenance of the primary hepatocyte phenotype. Topographic features were 300 nm deep with pitches of either 400, 1400, or 4000 nm. Hepatocyte cell attachment, morphology and function were markedly better on 400 nm pitch patterns compared with larger scale topographies or planar substrates. Interestingly, topographic features having biomimetic size scale dramatically increased cell adhesion whether or not substrates had been precoated with collagen I. Albumin production in primary hepatocytes cultured on 400 nm pitch substrates without collagen I was maintained over 10 days and was considerably higher compared to albumin synthesis on collagen-coated flat substrates. In order to investigate the potential interaction of soluble cytoactive factors supplied by feeder cells with topographic cues in determining cell phenotype, bioactive heparin-containing hydrogel microstructures were molded (100 μm spacing, 100 μm width) over the surface of the topographically patterned substrates. These hydrogel microstructures either carried encapsulated fibroblasts or were free of cells. Hepatocytes cultured on nanopatterned substrates next to fibroblast carrying hydrogel microstructures were significantly more functional than hepatocytes cultured on nanopatterned surfaces without hydrogels or stromal cells significantly elevated albumin expression and cell junction formation compared to cells provided with topographic cues only. The simultaneous presentation of topographic biomechanical cues along with soluble signaling molecules provided by encapsulated fibroblasts

  5. Thermoresponsive, in situ crosslinkable hydrogels based on N-isopropylacrylamide: Fabrication, characterization and mesenchymal stem cell encapsulation

    PubMed Central

    Klouda, Leda; Perkins, Kevin R.; Watson, Brendan M.; Hacker, Michael C.; Bryant, Stephanie J.; Raphael, Robert M.; Kasper, F. Kurtis; Mikos, Antonios G.

    2011-01-01

    Hydrogels that solidify in response to a dual, physical and chemical, mechanism upon temperature increase were fabricated and characterized. The hydrogels were based on N-isopropylacrylamide, which renders them thermoresponsive, and contained covalently crosslinkable moieties in the macromers. The effects of the macromer end group, namely acrylate or methacrylate, and the fabrication conditions were investigated on the degradative and swelling properties of the hydrogels. The hydrogels exhibited higher swelling below their lower critical solution temperature (LCST). When immersed in cell culture media at physiological temperature, which was above their LCST, hydrogels showed constant swelling and no degradation over eight weeks, with methacrylated hydrogels having higher swelling than their acrylated analogs. In addition, hydrogels immersed in cell culture media under the same conditions showed lower swelling as compared to phosphate buffered saline. The interplay between chemical crosslinking and thermally induced phase separation affected the swelling characteristics of hydrogels in different media. Mesenchymal stem cells encapsulated in the hydrogels in vitro were viable over three weeks and markers of osteogenic differentiation were detected when the cells were cultured with osteogenic supplements. Hydrogel mineralization in the absence of cells was observed in cell culture medium with the addition of fetal bovine serum and β-glycerol phosphate. The results suggest that these hydrogels may be suitable as carriers for cell delivery in tissue engineering. PMID:21187170

  6. Hydrogel Encapsulation of Cells in Core-Shell Microcapsules for Cell Delivery.

    PubMed

    Nguyen, Duy Khiem; Son, Young Min; Lee, Nae-Eung

    2015-07-15

    A newly designed 3D core-shell microcapsule structure composed of a cell-containing liquid core and an alginate hydrogel shell is fabricated using a coaxial dual-nozzle electrospinning system. Spherical alginate microcapsules are successfully generated with a core-shell structure and less than 300 μm in average diameter using this system. The thickness of the core and shell can be easily controlled by manipulating the core and shell flow rates. Cells encapsulated in core-shell microcapsules demonstrate better cell encapsulation and immune protection than those encapsulated in microbeads. The observation of a high percentage of live cells (≈80%) after encapsulation demonstrates that the voltage applied for generation of microcapsules does not significantly affect the viability of encapsulated cells. The viability of encapsulated cells does not change even after 3 d in culture, which suggests that the core-shell structure with culture medium in the core can maintain high cell survival by providing nutrients and oxygen to all cells. This newly designed core-shell structure can be extended to use in multifunctional platforms not only for delivery of cells but also for factor delivery, imaging, or diagnosis by loading other components in the core or shell.

  7. Preparation of hydrogel hollow particles for cell encapsulation by a method of polyester core degradation.

    PubMed

    Rabanel, J-M; Hildgen, P

    2004-06-01

    Implantation of encapsulated cells in particles of less than 1 mm (micro-encapsulation) has been proposed as a cell synthesized bio-molecule delivery system. Encapsulation provides immuno-isolation, protecting foreign cells from host immune system while nutrients, oxygen and therapeutic products can diffuse freely across capsule walls. A new method is described for the synthesis of a new family of hollow microparticles for cell encapsulation. Unlike other micro-encapsulation methods, encapsulation in those devices will take place after capsule synthesis, by micro-injection. The microcapsules were prepared by a three-steps original procedure: first, synthesis of a core particle, followed by coating with a layer of epichlorohydrin cross-linked amylo-pectin gel and, finally, selective degradation of the core particle to create the cavity. Initial experiments make use of amylo-pectin cross-linked with trimetaphosphate as core particle material. However, selective degradation was difficult to achieve. In further essays, polyesters were used successfully for the preparation of core particles. Optimizations were carried out and the permeability and morphology of the hollow particles were investigated. The preliminary results show that the new method has the potential to become a standard procedure to obtain hydrogel hollow particles. Moreover, the permeability study seems to be in accordance with specifications for immuno-isolation.

  8. Encapsulation of liver microsomes into a thermosensitive hydrogel for characterization of drug metabolism and toxicity.

    PubMed

    Yang, Huiying; Zheng, Yuanting; Zhao, Bei; Shao, Tengfei; Shi, Qingling; Zhou, Ning; Cai, Weimin

    2013-12-01

    This study reported the encapsulation of liver microsomes into a thermosensitive hydrogel to characterize drug metabolism and predict drug effects. Pluronic(®)F-127 (F127) and acrylamide-bisacrylamide (Acr-Bis) were utilized as the two precursors. After chemical crosslinking catalyzed by ammonium persulfate (APS) and N,N,N',N'-tetramethylethylenediamine (TEMED), the resulting Pluronic F127-acrylamide-bisacrylamide (FAB) hydrogel could encapsulate microsomes at 4 °C and facilitate metabolic reactions at 37 °C. The gel morphology at different Acr-Bis concentrations was characterized using field emission scanning electron microscopy (FE-SEM). Higher concentrations of Acr-Bis could lead to higher degrees of cross-linking of the gel. A fluorescent staining assay was subsequently used to demonstrate successful encapsulation of microsomes into the gel as well as the free diffusion process of micromolecular substrates. The thermosensitivity of the FAB gel was studied using swelling ratio and protein release assay to verify its ability to encapsulate microsomes. The metabolic activity of microsomes encapsulated in gels was investigated by detecting the metabolites of FDA-approved substrates, including dextromethorphan, chlorzoxazone and testosterone. Compared with the traditional method of microsomal incubation, the FAB gel maintained 60%-70% of microsome activity. Lastly, the classic anticancer prodrug cyclophosphamide (CTX) was chosen as a model drug for the study of drug metabolism and the prediction of drug effects. When the microsomes encapsulated in the FAB gel were used in the cell culture system, CTX induced a higher level of apoptosis in MCF-7 cells compared with traditional microsomes. PMID:24075480

  9. In vivo triarylmethyl radical stabilization through encapsulation in Pluronic F-127 hydrogel

    NASA Astrophysics Data System (ADS)

    Abbas, Kahina; Boutier-Pischon, Audrey; Auger, Florian; Françon, Dominique; Almario, Antonio; Frapart, Yves-Michel

    2016-09-01

    In vivo electron paramagnetic resonance (EPR) imaging and spectroscopy are non-invasive technologies used to specifically detect and quantify paramagnetic species. However, the relative instability of spin probes such as triarylmethyl radicals limits their application to conduct oxygen quantification and mapping. In this study we encapsulated tetrathiatriarylmethyl radical (TAM; known as "Finland" probe) in Pluronic F-127 hydrogel (PF-127) in order to limit its degradation and evaluate its in vitro and in vivo EPR properties as a function of oxygen. Our results show that the EPR signal of encapsulated TAM in PF-127 hydrogel is similar to the one in solution. Although it is less sensitive to oxygen, it is suitable for oximetry. We also demonstrated that the incorporation of TAM in PF-127 hydrogel leads to an improved in vivo EPR stability of the radical under anesthesia. This new formulation enables high quality EPR imaging and oximetry and paves the way for the application of TAM radical-based probes in various biomedical fields.

  10. In vivo triarylmethyl radical stabilization through encapsulation in Pluronic F-127 hydrogel.

    PubMed

    Abbas, Kahina; Boutier-Pischon, Audrey; Auger, Florian; Françon, Dominique; Almario, Antonio; Frapart, Yves-Michel

    2016-09-01

    In vivo electron paramagnetic resonance (EPR) imaging and spectroscopy are non-invasive technologies used to specifically detect and quantify paramagnetic species. However, the relative instability of spin probes such as triarylmethyl radicals limits their application to conduct oxygen quantification and mapping. In this study we encapsulated tetrathiatriarylmethyl radical (TAM; known as "Finland" probe) in Pluronic F-127 hydrogel (PF-127) in order to limit its degradation and evaluate its in vitro and in vivo EPR properties as a function of oxygen. Our results show that the EPR signal of encapsulated TAM in PF-127 hydrogel is similar to the one in solution. Although it is less sensitive to oxygen, it is suitable for oximetry. We also demonstrated that the incorporation of TAM in PF-127 hydrogel leads to an improved in vivo EPR stability of the radical under anesthesia. This new formulation enables high quality EPR imaging and oximetry and paves the way for the application of TAM radical-based probes in various biomedical fields.

  11. Behavior of encapsulated MG-63 cells in RGD and gelatine-modified alginate hydrogels.

    PubMed

    Grigore, Alexandra; Sarker, Bapi; Fabry, Ben; Boccaccini, Aldo R; Detsch, Rainer

    2014-08-01

    Achieving cell spreading and proliferation inside hydrogels that are compatible with microencapsulation technology represents a major challenge for tissue engineering scaffolding and for the development of three-dimensional cell culture models. In this study, microcapsules of 650-900 μm in diameter were fabricated from oxidized alginate covalently cross-linked with gelatine (AlGel). Schiff's base bond formed in AlGel, detected by Fourier transform infrared spectroscopy, which confirmed the cross-linking of oxidized alginate with gelatine. Biological properties of alginate based hydrogels were studied by comparing the viability and morphology of MG-63 osteosarcoma cells encapsulated in gelatine and RGD-modified alginate. We hypothesized that the presence of gelatine and RGD will support cell adhesion and spreading inside the microcapsules and finally, also vascular endothelial growth factor (VEGF) secretion. After 4 days of incubation, cells formed extensive cortical protrusions and after 2 weeks they proliferated, migrated, and formed cellular networks through the AlGel material. In contrast, cells encapsulated in pure alginate and in RGD-modified alginate formed spherical aggregates with limited cell mobility and VEGF secretion. Metabolic activity was doubled after 5 days of incubation, making AlGel a promising material for cell encapsulation.

  12. Nanofibrous Microposts and Microwells of Controlled Shapes and Their Hybridization with Hydrogels for Cell Encapsulation

    PubMed Central

    2015-01-01

    A simple, robust, and cost-effective method is developed to fabricate nanofibrous micropatterns particularly microposts and microwells of controlled shapes. The key to this method is the use of an easily micropatternable and intrinsically conductive metal alloy as a template to collect electrospun fibers. The micropatterned alloy allows conformal fiber deposition with high fidelity on its topographical features and in situ formation of diverse, free-standing micropatterned nanofibrous membranes. Interestingly, these membranes can serve as structural frames to form robust hydrogel micropatterns that may otherwise be fragile on their own. These hybrid micropatterns represent a new platform for cell encapsulation where the nanofiber frames enhance the mechanical integrity of hydrogel and the micropatterns provide additional surface area for mass transfer and cell loading. PMID:24806031

  13. Chondrogenic potential of injectable κ-carrageenan hydrogel with encapsulated adipose stem cells for cartilage tissue-engineering applications.

    PubMed

    Popa, Elena G; Caridade, Sofia G; Mano, João F; Reis, Rui L; Gomes, Manuela E

    2015-05-01

    Due to the limited self-repair capacity of cartilage, regenerative medicine therapies for the treatment of cartilage defects must use a significant amount of cells, preferably applied using a hydrogel system that can promise their delivery and functionality at the specific site. This paper discusses the potential use of κ-carrageenan hydrogels for the delivery of stem cells obtained from adipose tissue in the treatment of cartilage tissue defects. The developed hydrogels were produced by an ionotropic gelation method and human adipose stem cells (hASCs) were encapsulated in 1.5% w/v κ-carrageenan solution at a cell density of 5 × 10(6) cells/ml. The results from the analysis of the cell-encapsulating hydrogels, cultured for up to 21 days, indicated that κ-carrageenan hydrogels support the viability, proliferation and chondrogenic differentiation of hASCs. Additionally, the mechanical analysis demonstrated an increase in stiffness and viscoelastic properties of κ-carrageenan gels with their encapsulated cells with increasing time in culture with chondrogenic medium. These results allowed the conclusion that κ-carrageenan exhibits properties that enable the in vitro functionality of encapsulated hASCs and thus may provide the basis for new successful approaches for the treatment of cartilage defects.

  14. Injectable hydrogel as cell carriers: Mechanism of beta-hairpin peptide hydrogel shear thinning, immediate recovery and effects on encapsulated cell payload

    NASA Astrophysics Data System (ADS)

    Yan, Congqi

    To facilitate future biomedical treatment with localized delivery and higher therapy efficacy, much research effort has been devoted recently to the development of hydrogel biomaterials to transport a therapy to in vivo target sites via simple syringe or catheter injection. Most injectable hydrogel materials are free flowing precursor solutions ex vivo that become crosslinked into hydrogels once injected in vivo in response to exposure to environmental stimuli. However, properties of the final hydrogel formed in vivo are unpredictable due to possible leakage, dilution or change of injected gel precursor solution. As an alternate, more recent strategy for injectable hydrogel therapies, beta-hairpin peptide-based hydrogels are a class of injectable hydrogel solids with significant potential use in injectable therapies. These physical hydrogels can shear-thin and consequently flow as a low-viscosity material under a sufficient shear stress but immediately recover back into a solid upon removal of the stress, allowing them to be injected as preformed gel solids. The shear-thinning and immediate self-healing properties of self-assembled beta-hairpin peptide hydrogels enable a direct delivery of gel-encapsulated cells via benign injection to tissue defect sites with well-defined final gel properties in vivo. In this dissertation, mechanisms of gel shear-thinning and immediate recovery were elucidated by investigating gel behavior during and after flow via mechanical and structural characterizations. All studied beta-hairpin hydrogels shear-thin during flow (gel network fracture into large hydrogel domains) and instantly recover after cessation of flow (gel domains are percolated which immediately reforms the solid hydrogel). Importantly, hydrogel flow behavior was further studied in a capillary geometry that mimicked the actual situation of syringe injection. It was observed that all beta-hairpin peptide hydrogels investigated displayed a promising flow profile for

  15. Phospholipid fatty acids as physiological indicators of Paracoccus denitrificans encapsulated in silica sol-gel hydrogels.

    PubMed

    Trögl, Josef; Jirková, Ivana; Kuráň, Pavel; Akhmetshina, Elmira; Brovdyová, Taťjána; Sirotkin, Alexander; Kirilina, Tatiana

    2015-01-01

    The phospholipid fatty acid (PLFA) content was determined in samples of Paracoccus denitrificans encapsulated in silica hydrogel films prepared from prepolymerized tetramethoxysilane (TMOS). Immediately after encapsulation the total PLFA concentration was linearly proportional to the optical density (600 nm) of the input microbial suspension (R2 = 0.99). After 7 days this relationship remained linear, but with significantly decreased slope, indicating a higher extinction of bacteria in suspensions of input concentration 108 cells/mL and higher. trans-Fatty acids, indicators of cytoplasmatic membrane disturbances, were below the detection limit. The cy/pre ratio (i.e., ratio of cyclopropylated fatty acids (cy17:0 + cy19:0) to their metabolic precursors (16:1ω7 + 18:1ω7)), an indicator of the transition of the culture to a stationary growth-phase, decreased depending on co-immobilization of nutrients in the order phosphate buffer > mineral medium > Luria Broth rich medium. The ratio, too, was logarithmically proportional to cell concentration. These results confirm the applicability of total PLFA as an indicator for the determination of living biomass and cy/pre ratio for determination of nutrient limitation of microorganisms encapsulated in sol-gel matrices. This may be of interest for monitoring of sol-gel encapsulated bacteria proposed as optical recognition elements in biosensor construction, as well as other biotechnological applications. PMID:25690547

  16. Phospholipid Fatty Acids as Physiological Indicators of Paracoccus denitrificans Encapsulated in Silica Sol-Gel Hydrogels

    PubMed Central

    Trögl, Josef; Jirková, Ivana; Kuráň, Pavel; Akhmetshina, Elmira; Brovdyová, Tat′jána; Sirotkin, Alexander; Kirilina, Tatiana

    2015-01-01

    The phospholipid fatty acid (PLFA) content was determined in samples of Paracoccus denitrificans encapsulated in silica hydrogel films prepared from prepolymerized tetramethoxysilane (TMOS). Immediately after encapsulation the total PLFA concentration was linearly proportional to the optical density (600 nm) of the input microbial suspension (R2 = 0.99). After 7 days this relationship remained linear, but with significantly decreased slope, indicating a higher extinction of bacteria in suspensions of input concentration 108 cells/mL and higher. trans-Fatty acids, indicators of cytoplasmatic membrane disturbances, were below the detection limit. The cy/pre ratio (i.e., ratio of cyclopropylated fatty acids (cy17:0 + cy19:0) to their metabolic precursors (16:1ω7 + 18:1ω7)), an indicator of the transition of the culture to a stationary growth-phase, decreased depending on co-immobilization of nutrients in the order phosphate buffer > mineral medium > Luria Broth rich medium. The ratio, too, was logarithmically proportional to cell concentration. These results confirm the applicability of total PLFA as an indicator for the determination of living biomass and cy/pre ratio for determination of nutrient limitation of microorganisms encapsulated in sol-gel matrices. This may be of interest for monitoring of sol-gel encapsulated bacteria proposed as optical recognition elements in biosensor construction, as well as other biotechnological applications. PMID:25690547

  17. Mold-casted non-degradable, islet macro-encapsulating hydrogel devices for restoration of normoglycemia in diabetic mice.

    PubMed

    Rios, Peter Daniel; Zhang, Xiaomin; Luo, Xunrong; Shea, Lonnie D

    2016-11-01

    Islet transplantation is a potential cure for diabetic patients, however this procedure is not widely adopted due to the high rate of graft failure. Islet encapsulation within hydrogels is employed to provide a three-dimensional microenvironment conducive to survival of transplanted islets to extend graft function. Herein, we present a novel macroencapsulation device, composed of PEG hydrogel, that combines encapsulation with lithography techniques to generate polydimethylsiloxane (PDMS) molds. PEG solutions are mixed with islets, which are then cast into PDMS molds for subsequent crosslinking. The molds can also be employed to provide complex architectures, such as microchannels that may allow vascular ingrowth through pre-defined regions of the hydrogel. PDMS molds allowed for the formation of stable gels with encapsulation of islets, and in complex architectures. Hydrogel devices with a thickness of 600 μm containing 500 islets promoted normoglycemia within 12 days following transplantation into the epididymal fat pad, which was sustained over the two-month period of study until removal of the device. The inclusion of microchannels, which had a similar minimum distance between islets and the hydrogel surface, similarly promoted normoglycemia. A glucose challenge test indicated hydrogel devices achieved normoglycemia 90 min post-dextrose injections, similar to control mice with native pancreata. Histochemical staining revealed that transplanted islets, identified as insulin positive, were viable and isolated from host tissue at 8 weeks post-transplantation, yet devices with microchannels had tissue and vascular ingrowth within the channels. Taken together, these results demonstrate a system for creating non-degradable hydrogels with complex geometries for encapsulating islets capable of restoring normoglycemia, which may expand islet transplantation as a treatment option for diabetic patients. Biotechnol. Bioeng. 2016;113: 2485-2495. © 2016 Wiley

  18. Hydrogels of sodium alginate in cationic surfactants: Surfactant dependent modulation of encapsulation/release toward Ibuprofen.

    PubMed

    Jabeen, Suraya; Chat, Oyais Ahmad; Maswal, Masrat; Ashraf, Uzma; Rather, Ghulam Mohammad; Dar, Aijaz Ahmad

    2015-11-20

    The interaction of cetyltrimethylammoium bromide (CTAB) and its gemini homologue (butanediyl-1,4-bis (dimethylcetylammonium bromide), 16-4-16 with biocompatible polymer sodium alginate (SA) has been investigated in aqueous medium. Addition of K2CO3 influences viscoelastic properties of surfactant impregnated SA via competition between electrostatic and hydrophobic interactions. Viscosity of these polymer-surfactant systems increases with increase in concentration of K2CO3, and a cryogel is formed at about 0.5M K2CO3 concentration. The thermal stability of gel (5% SA+0.5M K2CO3) decreases with increase in surfactant concentration, a minimum is observed with increase in 16-4-16 concentration. The impact of surfactant addition on the alginate structure vis-à-vis its drug loading capability and release thereof was studied using Ibuprofen (IBU) as the model drug. The hydrogel with 16-4-16 exhibits higher IBU encapsulation and faster release in comparison to the one containing CTAB. This higher encapsulation-cum-faster release capability has been related to micelle mediated solubilization and greater porosity of the hydrogel with gemini surfactant.

  19. Hydrogel-encapsulated soil: A tool to measure contaminant attenuation in situ

    SciTech Connect

    Brooks, Scott C; Spalding, Brian Patrick; Watson, David B

    2010-01-01

    After intervals of groundwater immersion, polyacrylamide hydrogel-encapsulated solid specimens were retrieved, assayed non-destructively for uranium and other elements using x-ray fluorescence spectroscopy, and replaced in groundwater for continued reaction. Desorption dynamics of uranium from contaminated soils and other solids, when moved to uncontaminated groundwater, were fit to a general two-component kinetic retention model with slow-release and fast-release fractions of the total uranium. In a group of Oak Ridge soils with varying ambient uranium contamination (169-1360 mg/kg), the uranium fraction retained under long-term in situ kinetic behavior was strongly correlated (r2 = 0.89) with the residual uranium retained after laboratory sequential extraction of water-soluble and cation-exchangeable fractions of the same soils. To illustrate how potential remedial techniques can be compared to natural attenuation, thermal stabilization of one soil increased the size of its long-term retained fraction from 50 to 88% of the total uranium and increased the in situ retention half-life of the long-term retained fraction from 990 to 40,000 days. Hydrogel encapsulation presents a novel and powerful general method to observe many water-solids interactions in situ for a variety of aqueous media besides groundwater, with a variety of non-destructive analytical methods, and with a variety of solids besides contaminated soil.

  20. Hydrogel-encapsulated soil: a tool to measure contaminant attenuation in situ.

    PubMed

    Spalding, Brian P; Brooks, Scott C; Watson, David B

    2010-04-15

    Hydrogel encapsulation presents a novel and powerful general method to observe many water-solid contaminant interactions in situ for a variety of aqueous media including groundwater, with a variety of nondestructive analytical methods, and with a variety of solids including contaminated soil. After intervals of groundwater immersion, polyacrylamide hydrogel-encapsulated solid specimens were retrieved, assayed nondestructively for uranium and other elements using X-ray fluorescence spectroscopy, and replaced in groundwater for continued reaction. Desorption dynamics of uranium from contaminated soils and other solids, when moved to uncontaminated groundwater, were fit to a general two-component kinetic retention model with slow-release and fast-release fractions for the total uranium. In a group of Oak Ridge soils with varying ambient uranium contamination (169-1360 mg/kg), the uranium fraction retained under long-term in situ kinetic behavior was strongly correlated (r(2) = 0.89) with residual uranium after laboratory sequential extraction of water-soluble and cation-exchangeable fractions of the soils. To illustrate how potential remedial techniques can be compared to natural attenuation, thermal stabilization of one soil increased the size of its long-term in situ retained fraction from 50% to 88% of the total uranium and increased the half-life of that long-term retained fraction from 990 to 40000 days.

  1. Hydrogel-encapsulated soil: a tool to measure contaminant attenuation in situ.

    PubMed

    Spalding, Brian P; Brooks, Scott C; Watson, David B

    2010-04-15

    Hydrogel encapsulation presents a novel and powerful general method to observe many water-solid contaminant interactions in situ for a variety of aqueous media including groundwater, with a variety of nondestructive analytical methods, and with a variety of solids including contaminated soil. After intervals of groundwater immersion, polyacrylamide hydrogel-encapsulated solid specimens were retrieved, assayed nondestructively for uranium and other elements using X-ray fluorescence spectroscopy, and replaced in groundwater for continued reaction. Desorption dynamics of uranium from contaminated soils and other solids, when moved to uncontaminated groundwater, were fit to a general two-component kinetic retention model with slow-release and fast-release fractions for the total uranium. In a group of Oak Ridge soils with varying ambient uranium contamination (169-1360 mg/kg), the uranium fraction retained under long-term in situ kinetic behavior was strongly correlated (r(2) = 0.89) with residual uranium after laboratory sequential extraction of water-soluble and cation-exchangeable fractions of the soils. To illustrate how potential remedial techniques can be compared to natural attenuation, thermal stabilization of one soil increased the size of its long-term in situ retained fraction from 50% to 88% of the total uranium and increased the half-life of that long-term retained fraction from 990 to 40000 days. PMID:20230051

  2. A biodegradable hydrogel system containing curcumin encapsulated in micelles for cutaneous wound healing.

    PubMed

    Gong, ChangYang; Wu, QinJie; Wang, YuJun; Zhang, DouDou; Luo, Feng; Zhao, Xia; Wei, YuQuan; Qian, ZhiYong

    2013-09-01

    A biodegradable in situ gel-forming controlled drug delivery system composed of curcumin loaded micelles and thermosensitive hydrogel was prepared and applied for cutaneous wound repair. Curcumin is believed to be a potent antioxidant and anti-inflammatory agent. Due to its high hydrophobicity, curcumin was encapsulated in polymeric micelles (Cur-M) with high drug loading and encapsulation efficiency. Cur-M loaded thermosensitive hydrogel (Cur-M-H) was prepared and applied as wound dressing to enhance the cutaneous wound healing. Cur-M-H was a free-flowing sol at ambient temperature and instantly converted into a non-flowing gel at body temperature. In vitro studies suggested that Cur-M-H exhibited well tissue adhesiveness and could release curcumin in an extended period. Furthermore, linear incision and full-thickness excision wound models were employed to evaluate the in vivo wound healing activity of Cur-M-H. In incision model, Cur-M-H-treated group showed higher tensile strength and thicker epidermis. In excision model, Cur-M-H group exhibited enhancement of wound closure. Besides, in both models, Cur-M-H-treated groups showed higher collagen content, better granulation, higher wound maturity, dramatic decrease in superoxide dismutase, and slight increase in catalase. Histopathologic examination also implied that Cur-M-H could enhance cutaneous wound repair. In conclusion, biodegradable Cur-M-H composite might have great application for wound healing. PMID:23726229

  3. Vibration Stimulates Vocal Mucosa-like Matrix Expression by Hydrogel-encapsulated Fibroblasts

    PubMed Central

    Kutty, Jaishankar K.; Webb, Ken

    2010-01-01

    The composition and organization of the vocal fold extracellular matrix (ECM) provide the viscoelastic mechanical properties that are required to sustain high frequency vibration during voice production. Although vocal injury and pathology are known to produce alterations in matrix physiology, the mechanisms responsible for the development and maintenance of vocal fold ECM are poorly understood. The objective of this study was to investigate the effect of physiologically-relevant vibratory stimulation on ECM gene expression and synthesis by fibroblasts encapsulated within hyaluronic acid hydrogels that approximate the viscoelastic properties of vocal mucosa. Relative to static controls, samples exposed to vibration exhibited significant increases in mRNA expression levels of HA synthase 2, decorin, fibromodulin, and MMP-1, while collagen and elastin expression were relatively unchanged. Expression levels exhibited a temporal response, with maximum increases observed after 3 and 5 days of vibratory stimulation and significant downregulation observed at 10 days. Quantitative assays of matrix accumulation confirmed significant increases in sulfated glycosaminoglycans and significant decreases in collagen after 5 and 10 days of vibratory culture relative to static controls. Cellular remodeling and hydrogel viscosity were affected by vibratory stimulation and were influenced by varying the encapsulated cell density. These results indicate that vibration is a critical epigenetic factor regulating vocal fold ECM and suggest that rapid restoration of the phonatory microenvironment may provide a basis for reducing vocal scarring, restoring native matrix composition, and improving vocal quality. PMID:19842110

  4. Process development for cell aggregate arrays encapsulated in a synthetic hydrogel using negative dielectrophoresis.

    PubMed

    Abdallat, Rula G; Ahmad Tajuddin, Aziela S; Gould, David H; Hughes, Michael P; Fatoyinbo, Henry O; Labeed, Fatima H

    2013-04-01

    Spatial patterning of cells is of great importance in tissue engineering and biotechnology, enabling, for example the creation of bottom-up histoarchitectures of heterogeneous cells, or cell aggregates for in vitro high-throughput toxicological and therapeutic studies within 3D microenvironments. In this paper, a single-step process for creating peelable and resilient hydrogels, encapsulating arrays of biological cell aggregates formed by negative DEP has been devised. The dielectrophoretic trapping within low-energy regions of the DEP-dot array reduces cell exposure to high field stresses while creating distinguishable, evenly spaced arrays of aggregates. In addition to using an optimal combination of PEG diacrylate pre-polymer solution concentration and a novel UV exposure mechanism, total processing time was reduced. With a continuous phase medium of PEG diacrylate at 15% v/v concentration, effective dielectrophoretic cell patterned arrays and photo-polymerisation of the mixture was achieved within a 4 min period. This unique single-step process was achieved using a 30 s UV exposure time frame within a dedicated, wide exposure area DEP light box system. To demonstrate the developed process, aggregates of yeast, human leukemic (K562) and HeLa cells were immobilised in an array format within the hydrogel. Relative cell viability for both cells within the hydrogels, after maintaining them in appropriate iso-osmotic media, over a week period was greater than 90%. PMID:23436271

  5. Alginate hydrogel protects encapsulated hepatic HuH-7 cells against hepatitis C virus and other viral infections.

    PubMed

    Tran, Nhu-Mai; Dufresne, Murielle; Helle, François; Hoffmann, Thomas Walter; François, Catherine; Brochot, Etienne; Paullier, Patrick; Legallais, Cécile; Duverlie, Gilles; Castelain, Sandrine

    2014-01-01

    Cell microencapsulation in alginate hydrogel has shown interesting applications in regenerative medicine and the biomedical field through implantation of encapsulated tissue or for bioartificial organ development. Although alginate solution is known to have low antiviral activity, the same property regarding alginate gel has not yet been studied. The aim of this work is to investigate the potential protective effect of alginate encapsulation against hepatitis C virus (HCV) infection for a hepatic cell line (HuH-7) normally permissive to the virus. Our results showed that alginate hydrogel protects HuH-7 cells against HCV when the supernatant was loaded with HCV. In addition, alginate hydrogel blocked HCV particle release out of the beads when the HuH-7 cells were previously infected and encapsulated. There was evidence of interaction between the molecules of alginate hydrogel and HCV, which was dose- and incubation time-dependent. The protective efficiency of alginate hydrogel towards HCV infection was confirmed against a variety of viruses, whether or not they were enveloped. This promising interaction between an alginate matrix and viruses, whose chemical mechanisms are discussed, is of great interest for further medical therapeutic applications based on tissue engineering.

  6. Alginate Hydrogel Protects Encapsulated Hepatic HuH-7 Cells against Hepatitis C Virus and Other Viral Infections

    PubMed Central

    Tran, Nhu-Mai; Dufresne, Murielle; Helle, François; Hoffmann, Thomas Walter; François, Catherine; Brochot, Etienne; Paullier, Patrick; Legallais, Cécile; Duverlie, Gilles; Castelain, Sandrine

    2014-01-01

    Cell microencapsulation in alginate hydrogel has shown interesting applications in regenerative medicine and the biomedical field through implantation of encapsulated tissue or for bioartificial organ development. Although alginate solution is known to have low antiviral activity, the same property regarding alginate gel has not yet been studied. The aim of this work is to investigate the potential protective effect of alginate encapsulation against hepatitis C virus (HCV) infection for a hepatic cell line (HuH-7) normally permissive to the virus. Our results showed that alginate hydrogel protects HuH-7 cells against HCV when the supernatant was loaded with HCV. In addition, alginate hydrogel blocked HCV particle release out of the beads when the HuH-7 cells were previously infected and encapsulated. There was evidence of interaction between the molecules of alginate hydrogel and HCV, which was dose- and incubation time-dependent. The protective efficiency of alginate hydrogel towards HCV infection was confirmed against a variety of viruses, whether or not they were enveloped. This promising interaction between an alginate matrix and viruses, whose chemical mechanisms are discussed, is of great interest for further medical therapeutic applications based on tissue engineering. PMID:25310111

  7. Encapsulation of yeast displaying glucose oxidase on their surface in graphene oxide hydrogel scaffolding and its bioactivation.

    PubMed

    Bahartan, Karnit; Gun, Jenny; Sladkevich, Sergey; Prikhodchenko, Petr V; Lev, Ovadia; Alfonta, Lital

    2012-12-21

    Yeast displaying glucose oxidase on their surface were encapsulated in a graphene oxide hydrogel. The ability of the modified yeast to reduce graphene oxide by glucose assimilation while maintaining viability was tested with time and deemed suitable for biofuel cell applications.

  8. Tumor Bioengineering Using a Transglutaminase Crosslinked Hydrogel

    PubMed Central

    Fang, Josephine Y.; Tan, Shih-Jye; Yang, Zhi; Tayag, Charisse; Han, Bo

    2014-01-01

    Development of a physiologically relevant 3D model system for cancer research and drug development is a current challenge. We have adopted a 3D culture system based on a transglutaminase-crosslinked gelatin gel (Col-Tgel) to mimic the tumor 3D microenvironment. The system has several unique advantages over other alternatives including presenting cell-matrix interaction sites from collagen-derived peptides, geometry-initiated multicellular tumor spheroids, and metabolic gradients in the tumor microenvironment. Also it provides a controllable wide spectrum of gel stiffness for mechanical signals, and technical compatibility with imaging based screening due to its transparent properties. In addition, the Col-Tgel provides a cure-in-situ delivery vehicle for tumor xenograft formation in animals enhancing tumor cell uptake rate. Overall, this distinctive 3D system could offer a platform to more accurately mimic in vivo situations to study tumor formation and progression both in vitro and in vivo. PMID:25133673

  9. Tumor homing indocyanine green encapsulated micelles for near infrared and photoacoustic imaging of tumors.

    PubMed

    Uthaman, Saji; Bom, Joon-suk; Kim, Hyeon Sik; John, Johnson V; Bom, Hee-Seung; Kim, Seon-Jong; Min, Jung-Joon; Kim, Il; Park, In-Kyu

    2016-05-01

    Photoacoustic imaging (PAI) is an emerging analytical modality that is under intense preclinical development for the early diagnosis of various medical conditions, including cancer. However, the lack of specific tumor targeting by various contrast agents used in PAI obstructs its clinical applications. In this study, we developed indocyanine green (ICG)-encapsulated micelles specific for the CD 44 receptor and used in near infrared and photoacoustic imaging of tumors. ICG was hydrophobically modified prior to loading into hyaluronic acid (HA)-based micelles utilized for CD 44 based-targeting. We investigated the physicochemical characteristics of prepared HA only and ICG-encapsulated HA micelles (HA-ICG micelles). After intravenous injection of tumor-bearing mice, the bio-distribution and in vivo photoacoustic images of ICG-encapsulated HA micelles accumulating in tumors were also investigated. Our study further encourages the application of this HA-ICG-based nano-platform as a tumor-specific contrast agent for PAI.

  10. Tubular Hydrogels of Circumferentially Aligned Nanofibers to Encapsulate and Orient Vascular Cells

    PubMed Central

    McClendon, Mark T.; Stupp, Samuel I.

    2012-01-01

    There is a great clinical need for tissue engineered blood vessels that could be used to replace or bypass damaged arteries. The success of such grafts will depend strongly on their ability to mimic the cellular and matrix organization found in native arteries, but currently available cell scaffolds such as electrospun fibers or hydrogels lack the ability to simultaneously encapsulate and align cells. Our laboratory has recently developed liquid crystalline solutions of peptide amphiphile nanofibers that form aligned domains at exceedingly low concentrations (<1wt%), and can be trapped as gels with macroscopic alignment using low shear rates and ionic crosslinking. We describe here the use of these systems to fabricate tubes with macroscopic circumferential alignment and demonstrate their potential as arterial cell scaffolds. The nanofibers in these tubes were circumferentially aligned by applying small amounts of shear in a custom built flow chamber prior to gelation. Small angle X-ray scattering confirmed that the direction of nanofiber alignment was the same as the direction of shear flow. We also show the encapsulation of smooth muscle cells during the fabrication process without compromising cell viability. After two days in culture the encapsulated cells oriented their long axis in the direction of nanofiber alignment thus mimicking the circumferential alignment seen in native arteries. Cell density roughly doubled after 12 days demonstrating the scaffold’s ability to facilitate necessary graft maturation. Since these nanofiber gels are composed of >99% water by weight, the cells have abundant room for proliferation and remodeling. In contrast to previously reported arterial cell scaffolds, this new material can encapsulate cells and direct cellular organization without the requirement of external stimuli or gel compaction. PMID:22591610

  11. Hydrogel-based encapsulation of biological, functional tissue: fundamentals, technologies and applications

    NASA Astrophysics Data System (ADS)

    Zimmermann, H.; Ehrhart, F.; Zimmermann, D.; Müller, K.; Katsen-Globa, A.; Behringer, M.; Feilen, P. J.; Gessner, P.; Zimmermann, G.; Shirley, S. G.; Weber, M. M.; Metze, J.; Zimmermann, U.

    2007-12-01

    Replacing dysfunctional endocrine cells or tissues (e.g. islets, parathyroid tissue) by functional, foreign material without using immunosuppressives could soon become reality. Immunological reactions are avoided by encapsulating cells/tissues in hydrogel (e.g. alginate) microcapsules, preventing interaction of the enclosed material with the host’s immune system while permitting the unhindered passage of nutrients, oxygen and secreted therapeutic factors. Detailed investigations of the physical, physico-chemical and immunological parameters of alginate-based microcapsules have led recently to the development of a novel class of cell-entrapping microcapsules that meet the demands of biocompatibility, long-term integrity and function. This together with the development of ‘good medical practice’ microfluidic chip technology and of advanced cryopreservation technology for generation and storage of immunoisolated transplants will bring cell-based therapy to clinics and the market.

  12. Techniques for the isolation of high-quality RNA from cells encapsulated in chitosan hydrogels.

    PubMed

    Yu, Claire; Young, Stuart; Russo, Valerio; Amsden, Brian G; Flynn, Lauren E

    2013-11-01

    Extracting high-quality RNA from hydrogels containing polysaccharide components is challenging, as traditional RNA isolation techniques designed for cells and tissues can have limited yields and purity due to physiochemical interactions between the nucleic acids and the biomaterials. In this study, a comparative analysis of several different RNA isolation methods was performed on human adipose-derived stem cells photo-encapsulated within methacrylated glycol chitosan hydrogels. The results demonstrated that RNA isolation methods with cetyl trimethylammonium bromide (CTAB) buffer followed by purification with an RNeasy® mini kit resulted in low yields of RNA, except when the samples were preminced directly within the buffer. In addition, genomic DNA contamination during reverse transcriptase-polymerase chain reaction (RT-PCR) analysis was observed in the hydrogels processed with the CTAB-based methods. Isolation methods using TRIzol® in combination with one of a Qiaex® gel extraction kit, an RNeasy® mini kit, or an extended solvent purification method extracted RNA suitable for gene amplification, with no evidence of genomic contamination. The latter two methods yielded the best results in terms of yield and amplification efficiency. Predigestion of the scaffolds with lysozyme was investigated as a possible means of enhancing RNA extraction from the polysaccharide gels, with no improvements observed in terms of the purity, yield, or amplification efficiency. Overall, this work highlights the application of a TRIzol®+extended solvent purification method for optimizing RNA extraction that can be applied to obtain reliable and accurate gene expression data in studies investigating cells seeded in chitosan-based scaffolds. PMID:23448167

  13. Techniques for the Isolation of High-Quality RNA from Cells Encapsulated in Chitosan Hydrogels

    PubMed Central

    Yu, Claire; Young, Stuart; Russo, Valerio; Amsden, Brian G.

    2013-01-01

    Extracting high-quality RNA from hydrogels containing polysaccharide components is challenging, as traditional RNA isolation techniques designed for cells and tissues can have limited yields and purity due to physiochemical interactions between the nucleic acids and the biomaterials. In this study, a comparative analysis of several different RNA isolation methods was performed on human adipose-derived stem cells photo-encapsulated within methacrylated glycol chitosan hydrogels. The results demonstrated that RNA isolation methods with cetyl trimethylammonium bromide (CTAB) buffer followed by purification with an RNeasy® mini kit resulted in low yields of RNA, except when the samples were preminced directly within the buffer. In addition, genomic DNA contamination during reverse transcriptase–polymerase chain reaction (RT-PCR) analysis was observed in the hydrogels processed with the CTAB-based methods. Isolation methods using TRIzol® in combination with one of a Qiaex® gel extraction kit, an RNeasy® mini kit, or an extended solvent purification method extracted RNA suitable for gene amplification, with no evidence of genomic contamination. The latter two methods yielded the best results in terms of yield and amplification efficiency. Predigestion of the scaffolds with lysozyme was investigated as a possible means of enhancing RNA extraction from the polysaccharide gels, with no improvements observed in terms of the purity, yield, or amplification efficiency. Overall, this work highlights the application of a TRIzol®+extended solvent purification method for optimizing RNA extraction that can be applied to obtain reliable and accurate gene expression data in studies investigating cells seeded in chitosan-based scaffolds. PMID:23448167

  14. Scalable Production of Glioblastoma Tumor-initiating Cells in 3 Dimension Thermoreversible Hydrogels

    NASA Astrophysics Data System (ADS)

    Li, Qiang; Lin, Haishuang; Wang, Ou; Qiu, Xuefeng; Kidambi, Srivatsan; Deleyrolle, Loic P.; Reynolds, Brent A.; Lei, Yuguo

    2016-08-01

    There is growing interest in developing drugs that specifically target glioblastoma tumor-initiating cells (TICs). Current cell culture methods, however, cannot cost-effectively produce the large numbers of glioblastoma TICs required for drug discovery and development. In this paper we report a new method that encapsulates patient-derived primary glioblastoma TICs and grows them in 3 dimension thermoreversible hydrogels. Our method allows long-term culture (~50 days, 10 passages tested, accumulative ~>1010-fold expansion) with both high growth rate (~20-fold expansion/7 days) and high volumetric yield (~2.0 × 107 cells/ml) without the loss of stemness. The scalable method can be used to produce sufficient, affordable glioblastoma TICs for drug discovery.

  15. Scalable Production of Glioblastoma Tumor-initiating Cells in 3 Dimension Thermoreversible Hydrogels

    PubMed Central

    Li, Qiang; Lin, Haishuang; Wang, Ou; Qiu, Xuefeng; Kidambi, Srivatsan; Deleyrolle, Loic P.; Reynolds, Brent A.; Lei, Yuguo

    2016-01-01

    There is growing interest in developing drugs that specifically target glioblastoma tumor-initiating cells (TICs). Current cell culture methods, however, cannot cost-effectively produce the large numbers of glioblastoma TICs required for drug discovery and development. In this paper we report a new method that encapsulates patient-derived primary glioblastoma TICs and grows them in 3 dimension thermoreversible hydrogels. Our method allows long-term culture (~50 days, 10 passages tested, accumulative ~>1010-fold expansion) with both high growth rate (~20-fold expansion/7 days) and high volumetric yield (~2.0 × 107 cells/ml) without the loss of stemness. The scalable method can be used to produce sufficient, affordable glioblastoma TICs for drug discovery. PMID:27549983

  16. Scalable Production of Glioblastoma Tumor-initiating Cells in 3 Dimension Thermoreversible Hydrogels.

    PubMed

    Li, Qiang; Lin, Haishuang; Wang, Ou; Qiu, Xuefeng; Kidambi, Srivatsan; Deleyrolle, Loic P; Reynolds, Brent A; Lei, Yuguo

    2016-01-01

    There is growing interest in developing drugs that specifically target glioblastoma tumor-initiating cells (TICs). Current cell culture methods, however, cannot cost-effectively produce the large numbers of glioblastoma TICs required for drug discovery and development. In this paper we report a new method that encapsulates patient-derived primary glioblastoma TICs and grows them in 3 dimension thermoreversible hydrogels. Our method allows long-term culture (~50 days, 10 passages tested, accumulative ~>10(10)-fold expansion) with both high growth rate (~20-fold expansion/7 days) and high volumetric yield (~2.0 × 10(7) cells/ml) without the loss of stemness. The scalable method can be used to produce sufficient, affordable glioblastoma TICs for drug discovery. PMID:27549983

  17. The collagen I mimetic peptide DGEA enhances an osteogenic phenotype in mesenchymal stem cells when presented from cell-encapsulating hydrogels.

    PubMed

    Mehta, Manav; Madl, Christopher M; Lee, Shimwoo; Duda, Georg N; Mooney, David J

    2015-11-01

    Interactions between cells and the extracellular matrix (ECM) are known to play critical roles in regulating cell phenotype. The identity of ECM ligands presented to mesenchymal stem cells (MSCs) has previously been shown to direct the cell fate commitment of these cells. To enhance osteogenic differentiation of MSCs, alginate hydrogels were prepared that present the DGEA ligand derived from collagen I. When presented from hydrogel surfaces in 2D, the DGEA ligand did not facilitate cell adhesion, while hydrogels presenting the RGD ligand derived from fibronectin did encourage cell adhesion and spreading. However, the osteogenic differentiation of MSCs encapsulated within alginate hydrogels presenting the DGEA ligand was enhanced when compared with unmodified alginate hydrogels and hydrogels presenting the RGD ligand. MSCs cultured in DGEA-presenting gels exhibited increased levels of osteocalcin production and mineral deposition. These data suggest that the presentation of the collagen I-derived DGEA ligand is a feasible approach for selectively inducing an osteogenic phenotype in encapsulated MSCs.

  18. The Co-axial Flow of Injectable Solid Hydrogels with Encapsulated Cells

    NASA Astrophysics Data System (ADS)

    Stewart, Brandon; Pochan, Darrin; Sathaye, Sameer

    2013-03-01

    Hydrogels are quickly becoming an important biomaterial that can be used for the safe, localized injection of cancer drugs, the injection of stem cells into areas of interest or other biological applications. Our peptides can be self-assembled in a syringe where they form a gel, sheared by injection and, once in the body, immediately reform a localized pocket of stiff gel. My project has been designed around looking at the possibility of having a co-axial strand, in which one gel can surround another. This co-axial flow can be used to change the physical properties of our gel during injection, such as stiffening our gel using hyaluronic acid or encapsulating cells in the gel and surrounding the gel with growth medium or other biological factors. Rheology on hyaluron stiffened gels and cells encapsulated in gels was performed for comparison to the results from co-axial flow. Confocal microscopy was used to examine the coaxial gels after flow and to determine how the co-axial nature of the gels is affected by the concentration of peptide.

  19. Micropatterned cell-cell interactions enable functional encapsulation of primary hepatocytes in hydrogel microtissues.

    PubMed

    Li, Cheri Y; Stevens, Kelly R; Schwartz, Robert E; Alejandro, Brian S; Huang, Joanne H; Bhatia, Sangeeta N

    2014-08-01

    Drug-induced liver injury is a major cause of drug development failures and postmarket withdrawals. In vitro models that incorporate primary hepatocytes have been shown to be more predictive than model systems which rely on liver microsomes or hepatocellular carcinoma cell lines. Methods to phenotypically stabilize primary hepatocytes ex vivo often rely on mimicry of hepatic microenvironmental cues such as cell-cell interactions and cell-matrix interactions. In this work, we sought to incorporate phenotypically stable hepatocytes into three-dimensional (3D) microtissues, which, in turn, could be deployed in drug-screening platforms such as multiwell plates and diverse organ-on-a-chip devices. We first utilize micropatterning on collagen I to specify cell-cell interactions in two-dimensions, followed by collagenase digestion to produce well-controlled aggregates for 3D encapsulation in polyethylene glycol (PEG) diacrylate. Using this approach, we examined the influence of homotypic hepatocyte interactions and composition of the encapsulating hydrogel, and achieved the maintenance of liver-specific function for over 50 days. Optimally preaggregated structures were subsequently encapsulated using a microfluidic droplet-generator to produce 3D microtissues. Interactions of engineered hepatic microtissues with drugs was characterized by flow cytometry, and yielded both induction of P450 enzymes in response to prototypic small molecules and drug-drug interactions that give rise to hepatotoxicity. Collectively, this study establishes a pipeline for the manufacturing of 3D hepatic microtissues that exhibit stabilized liver-specific functions and can be incorporated into a wide array of emerging drug development platforms.

  20. Core-shell hydrogel beads with extracellular matrix for tumor spheroid formation

    PubMed Central

    Yu, L.; Grist, S. M.; Nasseri, S. S.; Ni, C.; Cheung, K. C.

    2015-01-01

    Creating multicellular tumor spheroids is critical for characterizing anticancer treatments since they may provide a better model of the tumor than conventional monolayer culture. Moreover, tumor cell interaction with the extracellular matrix can determine cell organization and behavior. In this work, a microfluidic system was used to form cell-laden core-shell beads which incorporate elements of the extracellular matrix and support the formation of multicellular spheroids. The bead core (comprising a mixture of alginate, collagen, and reconstituted basement membrane, with gelation by temperature control) and shell (comprising alginate hydrogel, with gelation by ionic crosslinking) were simultaneously formed through flow focusing using a cooled flow path into the microfluidic chip. During droplet gelation, the alginate acts as a fast-gelling shell which aids in preventing droplet coalescence and in maintaining spherical droplet geometry during the slower gelation of the collagen and reconstituted basement membrane components as the beads warm up. After droplet gelation, the encapsulated MCF-7 cells proliferated to form uniform spheroids when the beads contained all three components: alginate, collagen, and reconstituted basement membrane. The dose-dependent response of the MCF-7 cell tumor spheroids to two anticancer drugs, docetaxel and tamoxifen, was compared to conventional monolayer culture. PMID:25945144

  1. Self-Assembled DNA Hydrogel Based on Enzymatically Polymerized DNA for Protein Encapsulation and Enzyme/DNAzyme Hybrid Cascade Reaction.

    PubMed

    Xiang, Binbin; He, Kaiyu; Zhu, Rong; Liu, Zhuoliang; Zeng, Shu; Huang, Yan; Nie, Zhou; Yao, Shouzhuo

    2016-09-01

    DNA hydrogel is a promising biomaterial for biological and medical applications due to its native biocompatibility and biodegradability. Herein, we provide a novel, versatile, and cost-effective approach for self-assembly of DNA hydrogel using the enzymatically polymerized DNA building blocks. The X-shaped DNA motif was elongated by terminal deoxynucleotidyl transferase (TdT) to form the building blocks, and hybridization between dual building blocks via their complementary TdT-polymerized DNA tails led to gel formation. TdT polymerization dramatically reduced the required amount of original DNA motifs, and the hybridization-mediated cross-linking of building blocks endows the gel with high mechanical strength. The DNA hydrogel can be applied for encapsulation and controllable release of protein cargos (for instance, green fluorescent protein) due to its enzymatic responsive properties. Moreover, this versatile strategy was extended to construct a functional DNAzyme hydrogel by integrating the peroxidase-mimicking DNAzyme into DNA motifs. Furthermore, a hybrid cascade enzymatic reaction system was constructed by coencapsulating glucose oxidase and β-galactosidase into DNAzyme hydrogel. This efficient cascade reaction provides not only a potential method for glucose/lactose detection by naked eye but also a promising modular platform for constructing a multiple enzyme or enzyme/DNAzyme hybrid system. PMID:27526861

  2. The Assembly of Cell-Encapsulating Microscale Hydrogels Using Acoustic Waves

    PubMed Central

    Xu, Feng; Finley, Thomas Dylan; Turkaydin, Muge; Sung, Yuree; Gurkan, Umut Atakan; Yavuz, Ahmet Sinan; Guldiken, Rasim; Demirci, Utkan

    2011-01-01

    Microscale hydrogels find widespread applications in medicine and biology, e.g., as building blocks for tissue engineering and regenerative medicine. In these applications, these microgels are assembled to fabricate large complex 3D constructs. The success of this approach requires non-destructive and high throughput assembly of the microgels. Although various assembly methods have been developed based on modifying interfaces, and using microfluidics, so far, none of the available assembly technologies have shown the ability to assembly microgels using non-invasive fields rapidly within seconds in an efficient way. Acoustics has been widely used in biomedical area to manipulatedroplets, cells and biomolecules. In this study, we developed a simple, non-invasiveacoustic assembler for cell-encapsulating microgels with maintained cell viability (>93%). We assessed the assembler for both microbeads (with diameter of 50 µm and 100 µm) and microgels of different sizes and shapes (e.g., cubes, lock-and-key shapes, tetris, saw) in microdroplets (with volume of 10 µL, 20 µL, 40 µL, 80 µL). The microgels were assembled in second sin a non-invasive manner. These results indicate that the developed acoustic approach could become an enabling biotechnology tool for tissue engineering, regenerative medicine, pharmacology studies and high throughput screening applications. PMID:21820734

  3. Phenotypic Stability, Matrix Elaboration, and Functional Maturation of Nucleus Pulposus Cells Encapsulated in Photocrosslinkable Hyaluronic Acid Hydrogels

    PubMed Central

    Kim, Dong Hwa; Martin, John T.; Elliott, Dawn M.; Smith, Lachlan J.; Mauck, Robert L.

    2014-01-01

    Degradation of the nucleus pulposus (NP) is an early hallmark of intervertebral disc degeneration. The capacity for endogenous regeneration in the NP is limited due to the low cellularity and poor nutrient supply of this avascular tissue. Towards restoring the NP, a number of biomaterials have been explored for cell delivery. These materials must support the NP cell phenotype while promoting the elaboration of an NP-like extracellular matrix in the shortest possible time. Our previous work with chondrocytes and mesenchymal stem cells demonstrated that hydrogels based on hyaluronic acid (HA) are effective at promoting matrix production and the development of functional material properties. However, this material has not been evaluated in the context of NP cells. Therefore, to test this material for NP regeneration, bovine NP cells were encapsulated in 1% w/vol HA hydrogels at either a low seeding density (20 × 106 cells/ml) or a high seeding density (60 × 106 cells/ml), and constructs were cultured over an 8 week period. These engineered NP cell-laden HA hydrogels showed functional matrix accumulation, with increasing matrix content and mechanical properties with time in culture at both seeding densities. Furthermore, encapsulated cells showed NP-specific gene expression profiles that were significantly higher than expanded NP cells prior to encapsulation, suggesting a restoration of phenotype. Interestingly, these levels were higher at the lower seeding density compared to the higher seeding density. These findings support the use of HA-based hydrogels for NP tissue engineering and cellular therapies directed at restoration or replacement of the endogenous NP. PMID:25448344

  4. Tumor homing indocyanine green encapsulated micelles for near infrared and photoacoustic imaging of tumors.

    PubMed

    Uthaman, Saji; Bom, Joon-suk; Kim, Hyeon Sik; John, Johnson V; Bom, Hee-Seung; Kim, Seon-Jong; Min, Jung-Joon; Kim, Il; Park, In-Kyu

    2016-05-01

    Photoacoustic imaging (PAI) is an emerging analytical modality that is under intense preclinical development for the early diagnosis of various medical conditions, including cancer. However, the lack of specific tumor targeting by various contrast agents used in PAI obstructs its clinical applications. In this study, we developed indocyanine green (ICG)-encapsulated micelles specific for the CD 44 receptor and used in near infrared and photoacoustic imaging of tumors. ICG was hydrophobically modified prior to loading into hyaluronic acid (HA)-based micelles utilized for CD 44 based-targeting. We investigated the physicochemical characteristics of prepared HA only and ICG-encapsulated HA micelles (HA-ICG micelles). After intravenous injection of tumor-bearing mice, the bio-distribution and in vivo photoacoustic images of ICG-encapsulated HA micelles accumulating in tumors were also investigated. Our study further encourages the application of this HA-ICG-based nano-platform as a tumor-specific contrast agent for PAI. PMID:26743660

  5. Injectable and responsively degradable hydrogel for personalized photothermal therapy.

    PubMed

    Wang, Changping; Wang, Xinyu; Dong, Kunyu; Luo, Jian; Zhang, Qiang; Cheng, Yiyun

    2016-10-01

    Near infrared-absorbing hydrogels are used for the repeated photothermal treatments of cancer. However, a long-term retention of hydrogel in the body leads to increased risk of toxicity. Here we developed an injectable and on-demand degradable hydrogel to conduct the repeated photothermal therapies (PTTs). Alginate-calcium hydrogel immobilized dendrimer-encapsulated platinum nanoparticles (DEPts) in its matrix represented excellent biocompatibility, and was degraded upon injecting chelates. Results from the in vivo studies reveal that the hydrogel/DEPts-mediated repeated PTTs suppressed tumor growth efficiently, and the hydrogel was degraded on-demand to allow renal secretion of DEPts out of the body. Furthermore, coating hydrogel/DEPts on the tumor instead of intratumoral injection could still ablate tumor efficiently. Our investigation provides a smart and safe hydrogel for photothermal cancer therapy.

  6. Injectable and responsively degradable hydrogel for personalized photothermal therapy.

    PubMed

    Wang, Changping; Wang, Xinyu; Dong, Kunyu; Luo, Jian; Zhang, Qiang; Cheng, Yiyun

    2016-10-01

    Near infrared-absorbing hydrogels are used for the repeated photothermal treatments of cancer. However, a long-term retention of hydrogel in the body leads to increased risk of toxicity. Here we developed an injectable and on-demand degradable hydrogel to conduct the repeated photothermal therapies (PTTs). Alginate-calcium hydrogel immobilized dendrimer-encapsulated platinum nanoparticles (DEPts) in its matrix represented excellent biocompatibility, and was degraded upon injecting chelates. Results from the in vivo studies reveal that the hydrogel/DEPts-mediated repeated PTTs suppressed tumor growth efficiently, and the hydrogel was degraded on-demand to allow renal secretion of DEPts out of the body. Furthermore, coating hydrogel/DEPts on the tumor instead of intratumoral injection could still ablate tumor efficiently. Our investigation provides a smart and safe hydrogel for photothermal cancer therapy. PMID:27449949

  7. Oxidative stability of n-3 fatty acids encapsulated in filled hydrogel particles and of pork meat systems containing them.

    PubMed

    Salcedo-Sandoval, Lorena; Cofrades, Susana; Ruiz-Capillas, Claudia; Matalanis, Alison; McClements, D Julian; Decker, Eric A; Jiménez-Colmenero, Francisco

    2015-10-01

    The effect of storage time (2°C, 19 days) and heating (70°C, 30 min) on physical characteristics and oxidative stability of fish oil encapsulated in filled hydrogel particles was determined and compared with a conventional oil-in-water (O/W) emulsion with the same oil content (8.5%). Subsequently they were used to enrich meat systems with n-3 LCPUFAs, and their lipid oxidation was evaluated and compared with two other meat systems: one containing all animal fat and another with fish oil added directly. Filled hydrogel particles were more effective in lowering the oxidation rate than O/W emulsion, even when thermal treatment was applied. Oxidative stability over the storage time was best in the n-3 LCPUFA-enriched meat system containing filled hydrogel particles, in which TBARS levels were up to 62% lower than other systems containing fish oil. Hydrogel particles offer a promising means of controlling lipid oxidation in n-3 LCPUFA-enriched meat products.

  8. Oxidative stability of n-3 fatty acids encapsulated in filled hydrogel particles and of pork meat systems containing them.

    PubMed

    Salcedo-Sandoval, Lorena; Cofrades, Susana; Ruiz-Capillas, Claudia; Matalanis, Alison; McClements, D Julian; Decker, Eric A; Jiménez-Colmenero, Francisco

    2015-10-01

    The effect of storage time (2°C, 19 days) and heating (70°C, 30 min) on physical characteristics and oxidative stability of fish oil encapsulated in filled hydrogel particles was determined and compared with a conventional oil-in-water (O/W) emulsion with the same oil content (8.5%). Subsequently they were used to enrich meat systems with n-3 LCPUFAs, and their lipid oxidation was evaluated and compared with two other meat systems: one containing all animal fat and another with fish oil added directly. Filled hydrogel particles were more effective in lowering the oxidation rate than O/W emulsion, even when thermal treatment was applied. Oxidative stability over the storage time was best in the n-3 LCPUFA-enriched meat system containing filled hydrogel particles, in which TBARS levels were up to 62% lower than other systems containing fish oil. Hydrogel particles offer a promising means of controlling lipid oxidation in n-3 LCPUFA-enriched meat products. PMID:25872446

  9. Self-healable hydrogel on tumor cell as drug delivery system for localized and effective therapy.

    PubMed

    Chang, Guanru; Chen, Yan; Li, Yanjie; Li, Shikuo; Huang, Fangzhi; Shen, Yuhua; Xie, Anjian

    2015-05-20

    A self-healable chitosan(CS)/polyvinyl alcohol (PVA) hydrogel as an injectable drug carrier was first prepared in situ on tumor cells for effective and localized therapy. PVA molecules have a synergistic effect on the formation and maintenance of 3D network conformation of hydrogel. The hydrogel shows good biocompatibility and could be easily and rapidly formed. When loaded with fluorouracil (5-FU), the hydrogel possessed good drug retention ability at pH 7.4, which can prevent the loss of drug to normal cells and reduce the side effect. As well, the hydrogel shows continuous and controllable drug release, with the final cumulative releasing amount of 84.8% at pH 5.0. Therefore, the hydrogel not only could maintain a higher 5-FU concentration around tumor cells to enhance the antitumor effect, but also can achieve pH sensitive controllable drug release at the lesion site. Meantime, the attractive self-healing ability of the CS/PVA hydrogel is first revealed in this study, which contributes to the regeneration of its integral network from the broken fragments. The CS/PVA hydrogel may hold promise for better applications in anti-tumor therapy.

  10. Biocompatible fluorescent supramolecular nanofibrous hydrogel for long-term cell tracking and tumor imaging applications

    NASA Astrophysics Data System (ADS)

    Wang, Huaimin; Mao, Duo; Wang, Youzhi; Wang, Kai; Yi, Xiaoyong; Kong, Deling; Yang, Zhimou; Liu, Qian; Ding, Dan

    2015-11-01

    Biocompatible peptide-based supramolecular hydrogel has recently emerged as a new and promising system for biomedical applications. In this work, Rhodamine B is employed as a new capping group of self-assembling peptide, which not only provides the driving force for supramolecular nanofibrous hydrogel formation, but also endows the hydrogel with intrinsic fluroescence signal, allowing for various bioimaging applications. The fluorescent peptide nanofibrous hydrogel can be formed via disulfide bond reduction. After dilution of the hydrogel with aqueous solution, the fluorescent nanofiber suspension can be obtained. The resultant nanofibers are able to be internalized by the cancer cells and effectively track the HeLa cells for as long as 7 passages. Using a tumor-bearing mouse model, it is also demonstrated that the fluorescent supramolecular nanofibers can serve as an efficient probe for tumor imaging in a high-contrast manner.

  11. Biocompatible fluorescent supramolecular nanofibrous hydrogel for long-term cell tracking and tumor imaging applications

    PubMed Central

    Wang, Huaimin; Mao, Duo; Wang, Youzhi; Wang, Kai; Yi, Xiaoyong; Kong, Deling; Yang, Zhimou; Liu, Qian; Ding, Dan

    2015-01-01

    Biocompatible peptide-based supramolecular hydrogel has recently emerged as a new and promising system for biomedical applications. In this work, Rhodamine B is employed as a new capping group of self-assembling peptide, which not only provides the driving force for supramolecular nanofibrous hydrogel formation, but also endows the hydrogel with intrinsic fluroescence signal, allowing for various bioimaging applications. The fluorescent peptide nanofibrous hydrogel can be formed via disulfide bond reduction. After dilution of the hydrogel with aqueous solution, the fluorescent nanofiber suspension can be obtained. The resultant nanofibers are able to be internalized by the cancer cells and effectively track the HeLa cells for as long as 7 passages. Using a tumor-bearing mouse model, it is also demonstrated that the fluorescent supramolecular nanofibers can serve as an efficient probe for tumor imaging in a high-contrast manner. PMID:26573372

  12. Biodegradable polymeric micelle-encapsulated doxorubicin suppresses tumor metastasis by killing circulating tumor cells

    NASA Astrophysics Data System (ADS)

    Deng, Senyi; Wu, Qinjie; Zhao, Yuwei; Zheng, Xin; Wu, Ni; Pang, Jing; Li, Xuejing; Bi, Cheng; Liu, Xinyu; Yang, Li; Liu, Lei; Su, Weijun; Wei, Yuquan; Gong, Changyang

    2015-03-01

    Circulating tumor cells (CTCs) play a crucial role in tumor metastasis, but it is rare for any chemotherapy regimen to focus on killing CTCs. Herein, we describe doxorubicin (Dox) micelles that showed anti-metastatic activity by killing CTCs. Dox micelles with a small particle size and high encapsulation efficiency were obtained using a pH-induced self-assembly method. Compared with free Dox, Dox micelles exhibited improved cytotoxicity, apoptosis induction, and cellular uptake. In addition, Dox micelles showed a sustained release behavior in vitro, and in a transgenic zebrafish model, Dox micelles exhibited a longer circulation time and lower extravasation from blood vessels into surrounding tissues. Anti-tumor and anti-metastatic activities of Dox micelles were investigated in transgenic zebrafish and mouse models. In transgenic zebrafish, Dox micelles inhibited tumor growth and prolonged the survival of tumor-bearing zebrafish. Furthermore, Dox micelles suppressed tumor metastasis by killing CTCs. In addition, improved anti-tumor and anti-metastatic activities were also confirmed in mouse tumor models, where immunofluorescent staining of tumors indicated that Dox micelles induced more apoptosis and showed fewer proliferation-positive cells. There were decreased side effects in transgenic zebrafish and mice after administration of Dox micelles. In conclusion, Dox micelles showed stronger anti-tumor and anti-metastatic activities and decreased side effects both in vitro and in vivo, which may have potential applications in cancer therapy.

  13. Injectable in situ forming xylitol-PEG-based hydrogels for cell encapsulation and delivery.

    PubMed

    Selvam, Shivaram; Pithapuram, Madhav V; Victor, Sunita P; Muthu, Jayabalan

    2015-02-01

    Injectable in situ crosslinking hydrogels offer unique advantages over conventional prefabricated hydrogel methodologies. Herein, we synthesize poly(xylitol-co-maleate-co-PEG) (pXMP) macromers and evaluate their performance as injectable cell carriers for tissue engineering applications. The designed pXMP elastomers were non-toxic and water-soluble with viscosity values permissible for subcutaneous injectable systems. pXMP-based hydrogels prepared via free radical polymerization with acrylic acid as crosslinker possessed high crosslink density and exhibited a broad range of compressive moduli that could match the natural mechanical environment of various native tissues. The hydrogels displayed controlled degradability and exhibited gradual increase in matrix porosity upon degradation. The hydrophobic hydrogel surfaces preferentially adsorbed albumin and promoted cell adhesion and growth in vitro. Actin staining on cells cultured on thin hydrogel films revealed subconfluent cell monolayers composed of strong, adherent cells. Furthermore, fabricated 3D pXMP cell-hydrogel constructs promoted cell survival and proliferation in vitro. Cumulatively, our results demonstrate that injectable xylitol-PEG-based hydrogels possess excellent physical characteristics and exhibit exceptional cytocompatibility in vitro. Consequently, they show great promise as injectable hydrogel systems for in situ tissue repair and regeneration.

  14. Long-circulating gadolinium-encapsulated liposomes for potential application in tumor neutron capture therapy.

    PubMed

    Le, Uyen M; Cui, Zhengrong

    2006-04-01

    Gadolinium neutron capture therapy (Gd-NCT) is a promising cancer therapy modality. One of the key factors for a successful Gd-NCT is to deliver and maintain a sufficient amount of Gd in tumor tissues during neutron irradiation. We proposed to prepare a Gd delivery system by complexing a Gd-containing compound, diethylenetriaminepentaacetic acid (Gd-DTPA), with a polycationic peptide, poly-L-lysine (pLL), and then encapsulate the complexed Gd-DTPA into PEGylated liposomes. Complexation of Gd-DTPA with pLL not only enhanced the encapsulation efficiency of Gd-DTPA in liposomes, but also significantly limited the release of Gd-DTPA from the liposomes. A Gd-DTPA-encapsulated liposome formulation that contained 6.8+/-0.3 mg/mL of pure encapsulated Gd was prepared. The blood half-life of the Gd encapsulated into the liposome formulation was estimated to be about 24 h in healthy tumor-free mice. About 12 h after the Gd-encapsulated liposomes were intravenously injected into mice with pre-established model tumors, the Gd content in the tumors reached an average of 159 microg/g of wet tumor tissue. This Gd-DTPA encapsulated liposome may be used to deliver Gd into solid tumors for NCT and tumor imaging. PMID:16457973

  15. Modified chitosan thermosensitive hydrogel enables sustained and efficient anti-tumor therapy via intratumoral injection.

    PubMed

    Jiang, Yingchun; Meng, Xuanyu; Wu, Zhenghong; Qi, Xiaole

    2016-06-25

    Thermosensitive in situ hydrogels are potential candidates to achieve intratumoral administration, nevertheless their weak mechanical strength always lead to serious drug leakage and burst. Herein, we developed a chitosan based thermosensitive hydrogel of high mechanical strength, which was modified by glutaraldehyde (GA) and polyvinyl alcohol (PVA), for intratumoral delivery of paclitaxel (PTX). The modified hydrogel system could achieve sol-gel transition at 35.79±0.4°C and exhibit a 7.03-fold greater mechanical strength compared with simple chitosan hydrogel. Moreover, the drug release of PTX loaded modified hydrogel in PBS (pH 7.4) was found to be extended to 13 days. After intratumoral administration in mice bearing H22 tumors, PTX-loaded modified hydrogels exhibited a 3.72-fold greater antitumor activity compared with Taxol(®). Overall, these modified hydrogel systems demonstrated to be a promising way to achieve efficient sustained release and enhanced anti-tumor therapy efficiency of anticancer drugs through in situ tumor injectable administration. PMID:27083815

  16. Transport Properties of Ibuprofen Encapsulated in Cyclodextrin Nanosponge Hydrogels: A Proton HR-MAS NMR Spectroscopy Study.

    PubMed

    Ferro, Monica; Castiglione, Franca; Punta, Carlo; Melone, Lucio; Panzeri, Walter; Rossi, Barbara; Trotta, Francesco; Mele, Andrea

    2016-01-01

    The chemical cross-linking of β-cyclodextrin (β-CD) with ethylenediaminetetraacetic dianhydride (EDTA) led to branched polymers referred to as cyclodextrin nanosponges (CDNSEDTA). Two different preparations are described with 1:4 and 1:8 CD-EDTA molar ratios. The corresponding cross-linked polymers were contacted with 0.27 M aqueous solution of ibuprofen sodium salt (IP) leading to homogeneous, colorless, drug loaded hydrogels. The systems were characterized by high resolution magic angle spinning (HR-MAS) NMR spectroscopy. Pulsed field gradient spin echo (PGSE) NMR spectroscopy was used to determine the mean square displacement (MSD) of IP inside the polymeric gel at different observation times td. The data were further processed in order to study the time dependence of MSD: MSD = f(td). The proposed methodology is useful to characterize the different diffusion regimes that, in principle, the solute may experience inside the hydrogel, namely normal or anomalous diffusion. The full protocols including the polymer preparation and purification, the obtainment of drug-loaded hydrogels, the NMR sample preparation, the measurement of MSD by HR-MAS NMR spectroscopy and the final data processing to achieve the time dependence of MSD are here reported and discussed. The presented experiments represent a paradigmatic case and the data are discussed in terms of innovative approach to the characterization of the transport properties of an encapsulated guest within a polymeric host of potential application for drug delivery. PMID:27585291

  17. Rapid purification of cell encapsulated hydrogel beads from oil phase to aqueous phase in a microfluidic device.

    PubMed

    Deng, Yuliang; Zhang, Nangang; Zhao, Libo; Yu, Xiaolei; Ji, Xinghu; Liu, Wei; Guo, Shishang; Liu, Kan; Zhao, Xing-Zhong

    2011-12-01

    In this paper, we demonstrate a new type of microfluidic chip that can realize continuous-flow purification of hydrogel beads from a carrier oil into aqueous solution by using a laminar-like oil/water interface. The microfluidic chip is composed by two functional components: (1) a flow-focusing bead generation module that can control size and shape of beads, (2) a bead extraction module capable of purifying hydrogel beads from oil into aqueous solution. This module is featured with large branch channels on one side and small ones on the opposite side. Water is continuously infused into the bead extraction module through the large branch channels, resulting in a laminar-like oil/water interface between the branch junctions. Simulation and experimental data show that the efficiency of oil depletion is determined by the relative flow rates between infused water and carrier oil. By using such a microfluidic device, viable cells (HCT116, colon cancer cell line) can be encapsulated in the hydrogel beads and purified into a cell culture media. Significantly improved cell viability was achieved compared to that observed by conventional bead purification approaches. This facile microfluidic chip could be a promising candidate for sample treatment in lab-on-a-chip applications.

  18. Injectable calcium phosphate with hydrogel fibers encapsulating induced pluripotent, dental pulp and bone marrow stem cells for bone repair.

    PubMed

    Wang, Lin; Zhang, Chi; Li, Chunyan; Weir, Michael D; Wang, Ping; Reynolds, Mark A; Zhao, Liang; Xu, Hockin H K

    2016-12-01

    Human induced pluripotent stem cell-derived mesenchymal stem cells (hiPSC-MSCs), dental pulp stem cells (hDPSCs) and bone marrow MSCs (hBMSCs) are exciting cell sources in regenerative medicine. However, there has been no report comparing hDPSCs, hBMSCs and hiPSC-MSCs for bone engineering in an injectable calcium phosphate cement (CPC) scaffold. The objectives of this study were to: (1) develop a novel injectable CPC containing hydrogel fibers encapsulating stem cells for bone engineering, and (2) compare cell viability, proliferation and osteogenic differentiation of hDPSCs, hiPSC-MSCs from bone marrow (BM-hiPSC-MSCs) and from foreskin (FS-hiPSC-MSCs), and hBMSCs in CPC for the first time. The results showed that the injection did not harm cell viability. The porosity of injectable CPC was 62%. All four types of cells proliferated and differentiated down the osteogenic lineage inside hydrogel fibers in CPC. hDPSCs, BM-hiPSC-MSCs, and hBMSCs exhibited high alkaline phosphatase, runt-related transcription factor, collagen I, and osteocalcin gene expressions. Cell-synthesized minerals increased with time (p<0.05), with no significant difference among hDPSCs, BM-hiPSC-MSCs and hBMSCs (p>0.1). Mineralization by hDPSCs, BM-hiPSC-MSCs, and hBMSCs inside CPC at 14d was 14-fold that at 1d. FS-hiPSC-MSCs were inferior in osteogenic differentiation compared to the other cells. In conclusion, hDPSCs, BM-hiPSC-MSCs and hBMSCs are similarly and highly promising for bone tissue engineering; however, FS-hiPSC-MSCs were relatively inferior in osteogenesis. The novel injectable CPC with cell-encapsulating hydrogel fibers may enhance bone regeneration in dental, craniofacial and orthopedic applications. PMID:27612810

  19. Injectable calcium phosphate with hydrogel fibers encapsulating induced pluripotent, dental pulp and bone marrow stem cells for bone repair.

    PubMed

    Wang, Lin; Zhang, Chi; Li, Chunyan; Weir, Michael D; Wang, Ping; Reynolds, Mark A; Zhao, Liang; Xu, Hockin H K

    2016-12-01

    Human induced pluripotent stem cell-derived mesenchymal stem cells (hiPSC-MSCs), dental pulp stem cells (hDPSCs) and bone marrow MSCs (hBMSCs) are exciting cell sources in regenerative medicine. However, there has been no report comparing hDPSCs, hBMSCs and hiPSC-MSCs for bone engineering in an injectable calcium phosphate cement (CPC) scaffold. The objectives of this study were to: (1) develop a novel injectable CPC containing hydrogel fibers encapsulating stem cells for bone engineering, and (2) compare cell viability, proliferation and osteogenic differentiation of hDPSCs, hiPSC-MSCs from bone marrow (BM-hiPSC-MSCs) and from foreskin (FS-hiPSC-MSCs), and hBMSCs in CPC for the first time. The results showed that the injection did not harm cell viability. The porosity of injectable CPC was 62%. All four types of cells proliferated and differentiated down the osteogenic lineage inside hydrogel fibers in CPC. hDPSCs, BM-hiPSC-MSCs, and hBMSCs exhibited high alkaline phosphatase, runt-related transcription factor, collagen I, and osteocalcin gene expressions. Cell-synthesized minerals increased with time (p<0.05), with no significant difference among hDPSCs, BM-hiPSC-MSCs and hBMSCs (p>0.1). Mineralization by hDPSCs, BM-hiPSC-MSCs, and hBMSCs inside CPC at 14d was 14-fold that at 1d. FS-hiPSC-MSCs were inferior in osteogenic differentiation compared to the other cells. In conclusion, hDPSCs, BM-hiPSC-MSCs and hBMSCs are similarly and highly promising for bone tissue engineering; however, FS-hiPSC-MSCs were relatively inferior in osteogenesis. The novel injectable CPC with cell-encapsulating hydrogel fibers may enhance bone regeneration in dental, craniofacial and orthopedic applications.

  20. Bioengineered 3D brain tumor model to elucidate the effects of matrix stiffness on glioblastoma cell behavior using PEG-based hydrogels.

    PubMed

    Wang, Christine; Tong, Xinming; Yang, Fan

    2014-07-01

    Glioblastoma (GBM) is the most common and aggressive form of primary brain tumor with a median survival of 12-15 months, and the mechanisms underlying GBM tumor progression remain largely elusive. Given the importance of tumor niche signaling in driving GBM progression, there is a strong need to develop in vitro models to facilitate analysis of brain tumor cell-niche interactions in a physiologically relevant and controllable manner. Here we report the development of a bioengineered 3D brain tumor model to help elucidate the effects of matrix stiffness on GBM cell fate using poly(ethylene-glycol) (PEG)-based hydrogels with brain-mimicking biochemical and mechanical properties. We have chosen PEG given its bioinert nature and tunable physical property, and the resulting hydrogels allow tunable matrix stiffness without changing the biochemical contents. To facilitate cell proliferation and migration, CRGDS and a MMP-cleavable peptide were chemically incorporated. Hyaluronic acid (HA) was also incorporated to mimic the concentration in the brain extracellular matrix. Using U87 cells as a model GBM cell line, we demonstrate that such biomimetic hydrogels support U87 cell growth, spreading, and migration in 3D over the course of 3 weeks in culture. Gene expression analyses showed U87 cells actively deposited extracellular matrix and continued to upregulate matrix remodeling genes. To examine the effects of matrix stiffness on GBM cell fate in 3D, we encapsulated U87 cells in soft (1 kPa) or stiff (26 kPa) hydrogels, which respectively mimics the matrix stiffness of normal brain or GBM tumor tissues. Our results suggest that changes in matrix stiffness induce differential GBM cell proliferation, morphology, and migration modes in 3D. Increasing matrix stiffness led to delayed U87 cell proliferation inside hydrogels, but cells formed denser spheroids with extended cell protrusions. Cells cultured in stiff hydrogels also showed upregulation of HA synthase 1 and matrix

  1. Double-Network Hydrogel with Tunable Mechanical Performance and Biocompatibility for the Fabrication of Stem Cells-Encapsulated Fibers and 3D Assemble.

    PubMed

    Liang, Zhe; Liu, Chenguang; Li, Lili; Xu, Peidi; Luo, Guoan; Ding, Mingyu; Liang, Qionglin

    2016-01-01

    Fabrication of cell-encapsulated fibers could greatly contribute to tissue engineering and regenerative medicine. However, existing methods suffered from not only unavoidability of cell damaging conditions and/or sophisticated equipment, but also unavailability of proper materials to satisfy both mechanical and biological expectations. In this work, a simple method is proposed to prepare cell-encapsulated fibers with tunable mechanical strength and stretching behavior as well as diameter and microstructure. The hydrogel fibers are made from optimal combination of alginate and poly(N-iso-propylacrylamide)-poly(ethylene glycol), characteristics of double-network hydrogel, with enough stiffness and flexibility to create a variety of three dimensional structures like parallel helical and different knots without crack. Furthermore, such hydrogel fibers exhibit better compatibility as indicated by the viability, proliferation and expression of pluripotency markers of embryonic stem cells encapsulated after 4-day culture. The double-network hydrogel possesses specific quick responses to either of alginate lyase, EDTA or lower environmental temperature which facilitate the optional degradation of fibers or fibrous assemblies to release the cells encapsulated for subsequent assay or treatment. PMID:27628933

  2. Double-Network Hydrogel with Tunable Mechanical Performance and Biocompatibility for the Fabrication of Stem Cells-Encapsulated Fibers and 3D Assemble

    PubMed Central

    Liang, Zhe; Liu, Chenguang; Li, Lili; Xu, Peidi; Luo, Guoan; Ding, Mingyu; Liang, Qionglin

    2016-01-01

    Fabrication of cell-encapsulated fibers could greatly contribute to tissue engineering and regenerative medicine. However, existing methods suffered from not only unavoidability of cell damaging conditions and/or sophisticated equipment, but also unavailability of proper materials to satisfy both mechanical and biological expectations. In this work, a simple method is proposed to prepare cell-encapsulated fibers with tunable mechanical strength and stretching behavior as well as diameter and microstructure. The hydrogel fibers are made from optimal combination of alginate and poly(N-iso-propylacrylamide)-poly(ethylene glycol), characteristics of double-network hydrogel, with enough stiffness and flexibility to create a variety of three dimensional structures like parallel helical and different knots without crack. Furthermore, such hydrogel fibers exhibit better compatibility as indicated by the viability, proliferation and expression of pluripotency markers of embryonic stem cells encapsulated after 4-day culture. The double-network hydrogel possesses specific quick responses to either of alginate lyase, EDTA or lower environmental temperature which facilitate the optional degradation of fibers or fibrous assemblies to release the cells encapsulated for subsequent assay or treatment. PMID:27628933

  3. Intratumoral delivery of paclitaxel using a thermosensitive hydrogel in human tumor xenografts.

    PubMed

    Kim, Jung Ho; Lee, Joo-Ho; Kim, Kwang-Suck; Na, Kun; Song, Soo-Chang; Lee, Jaehwi; Kuh, Hyo-Jeong

    2013-01-01

    Poly(organophosphazene), a novel thermosensitive hydrogel, is an injectable drug delivery system (DDS) that transforms from sol to gel at body temperature. Paclitaxel (PTX) is a mitotic inhibitor used in the treatment of various solid tumors. Due to its poor solubility in water and efflux systems in the gastrointestinal tract, PTX is a good candidate for local DDS. Here, we evaluated the penetration kinetics of PTX released from the PTX-poly(organophosphazene) hydrogel mixture in multicellular layers (MCLs) of human cancer cells. We also investigated the tumor pharmacokinetics of PTX (60 mg/kg) when administered as an intratumoral injection using poly(organophosphazene) in mice with human tumor xenografts. When PTX was formulated at 0.6 % w/w into a 10 % w/w hydrogel, the in vitro and in vivo release were found to be 40 and 90 % of the dose, respectively, in a sustained manner over 4 weeks. Exposure of MCLs to PTX-hydrogel showed time-dependent drug penetration and accumulation. In mice, the hydrogel mass was well retained over 6 weeks, and the PTX concentration in the tumor tissue was maximal at 14 days, which rapidly decreased and coincided with rebound tumor growth after 14 days of suppression. These data indicate that PTX-hydrogel should be intratumorally injected every 14 days, or drug release duration should be prolonged in order to achieve a long-term antitumor effect. Overall, poly(organophosphazene) represents a novel thermosensitive DDS for intratumoral delivery of PTX, which can accommodate a large dose of the drug in addition to reducing its systemic exposure by restricting biodistribution to tumor tissue alone. PMID:23371803

  4. In vivo bioengineered ovarian tumors based on collagen, matrigel, alginate and agarose hydrogels: a comparative study.

    PubMed

    Zheng, Li; Hu, Xuefeng; Huang, Yuanjie; Xu, Guojie; Yang, Jinsong; Li, Li

    2015-01-29

    Scaffold-based tumor engineering is rapidly evolving the study of cancer progression. However, the effects of scaffolds and environment on tumor formation have seldom been investigated. In this study, four types of injectable hydrogels, namely, collagen type I, Matrigel, alginate and agarose gels, were loaded with human ovarian cancer SKOV3 cells and then injected into nude mice subcutaneously. The growth of the tumors in vitro was also investigated. After four weeks, the specimens were harvested and analyzed. We found that tumor formation by SKOV3 cells was best supported by collagen, followed by Matrigel, alginate, control (without scaffold) and agarose in vivo. The collagen I group exhibited a larger tumor volume with increased neovascularization and increased necrosis compared with the other materials. Further, increased MMP activity, upregulated expression of laminin and fibronectin and higher levels of HIF-1α and VEGF-A in the collagen group revealed that the engineered tumor is closer to human ovarian carcinoma. In order, collagen, Matrigel, alginate, control (without scaffold) and agarose exhibited decreases in tumor formation. All evidence indicated that the in vivo engineered tumor is scaffold-dependent. Bioactive hydrogels are superior to inert hydrogels at promoting tumor regeneration. In particular, biomimetic hydrogels are advantageous because they provide a microenvironment that mimics the ECM of natural tumors. On the other hand, typical features of cancer cells and the expression of genes related to cancer malignancy were far less similar to the natural tumor in vitro, which indicated the importance of culture environment in vivo. Superior to the in vitro culture, nude mice can be considered satisfactory in vivo 'bioreactors' for the screening of favorable cell vehicles for tumor engineering in vitro.

  5. Coaxial electrospray of liquid core-hydrogel shell microcapsules for encapsulation and miniaturized 3D culture of pluripotent stem cells

    PubMed Central

    Zhao, Shuting; Agarwal, Pranay; Rao, Wei; Huang, Haishui; Zhang, Renliang; Liu, Zhenguo; Yu, Jianhua; Weisleder, Noah; Zhang, Wujie; He, Xiaoming

    2014-01-01

    A novel coaxial electrospray technology is developed to generate microcapsules with a hydrogel shell of alginate and an aqueous liquid core of living cells using two aqueous fluids in one step. Approximately 50 murine embryonic stem (ES) cells encapsulated in the core with high viability (92.3 ± 2.9%) can proliferate to form a single ES cell aggregate of 128.9 ± 17.4 μm in each microcapsule within 7 days. Quantitative analyses of gene and protein expression indicate that ES cells cultured in the miniaturized 3D liquid core of the core-shell microcapsules have significantly higher pluripotency on average than the cells cultured on 2D substrate or in the conventional 3D alginate hydrogel microbeads without a core-shell architecture. The higher pluripotency is further suggested by their significantly higher capability of differentiation into beating cardiomyocytes and higher expression of cardiomyocyte specific gene markers on average after directed differentiation under the same conditions. Considering its wide availability, easiness to set up and operate, reusability, and high production rate, the novel coaxial electrospray technology together with the microcapsule system is of importance for mass production of ES cells with high pluripotency to facilitate translation of the emerging pluripotent stem cell-based regenerative medicine into the clinic. PMID:25036382

  6. Promoting extracellular matrix remodeling via ascorbic acid enhances the survival of primary ovarian follicles encapsulated in alginate hydrogels.

    PubMed

    Tagler, David; Makanji, Yogeshwar; Tu, Tao; Bernabé, Beatriz Peñalver; Lee, Raymond; Zhu, Jie; Kniazeva, Ekaterina; Hornick, Jessica E; Woodruff, Teresa K; Shea, Lonnie D

    2014-07-01

    The in vitro growth of ovarian follicles is an emerging technology for fertility preservation. Various strategies support the culture of secondary and multilayer follicles from various species including mice, non-human primate, and human; however, the culture of early stage (primary and primordial) follicles, which are more abundant in the ovary and survive cryopreservation, has been limited. Hydrogel-encapsulating follicle culture systems that employed feeder cells, such as mouse embryonic fibroblasts (MEFs), stimulated the growth of primary follicles (70-80 µm); yet, survival was low and smaller follicles (<70 µm) rapidly lost structure and degenerated. These morphologic changes were associated with a breakdown of the follicular basement membrane; hence, this study investigated ascorbic acid based on its role in extracellular matrix (ECM) deposition/remodeling for other applications. The selection of ascorbic acid was further supported by a microarray analysis that suggested a decrease in mRNA levels of enzymes within the ascorbate pathway between primordial, primary, and secondary follicles. The supplementation of ascorbic acid (50 µg/mL) significantly enhanced the survival of primary follicles (<80 µm) cultured in alginate hydrogels, which coincided with improved structural integrity. Follicles developed antral cavities and increased to diameters exceeding 250 µm. Consistent with improved structural integrity, the gene/protein expression of ECM and cell adhesion molecules was significantly changed. This research supports the notion that modifying the culture environment (medium components) can substantially enhance the survival and growth of early stage follicles.

  7. Polyacrylamide hydrogel encapsulated E. coli expressing metal-sensing green fluorescent protein as a potential tool for copper ion determination

    PubMed Central

    Tantimongcolwat, Tanawut; Isarankura-Na-Ayudhya, Chartchalerm; Srisarin, Apapan; Galla, Hans-Joachim; Prachayasittikul, Virapong

    2014-01-01

    A simple, inexpensive and field applicable metal determination system would be a powerful tool for the efficient control of metal ion contamination in various sources e.g. drinking-water, water reservoir and waste discharges. In this study, we developed a cell-based metal sensor for specific and real-time detection of copper ions. E. coli expressing metal-sensing green fluorescent protein (designated as TG1/(CG)6GFP and TG1/H6CdBP4GFP) were constructed and served as a metal analytical system. Copper ions were found to exert a fluorescence quenching effect, while zinc and cadmium ions caused minor fluorescence enhancement in the engineered bacterial suspension. To construct a user-friendly and reagentless metal detection system, TG1/H6CdBP4GFP and TG1/(CG)6GFP were encapsulated in polyacrylamide hydrogels that were subsequently immobilized on an optical fiber equipped with a fluorescence detection module. The sensor could be applied to measure metal ions by simply dipping the encapsulated bacteria into a metal solution and monitoring fluorescence changes in real time as a function of the metal concentration in solution. The sensor system demonstrated high specificity toward copper ions. The fluorescence intensities of the encapsulated TG1/(CG)6GFP and TG1/H6CdBP4GFP were quenched by approximately 70 % and 80 % by a high-dose of copper ions (50 mM), respectively. The level of fluorescence quenching exhibited a direct correlation with the copper concentration, with a linear correlation coefficient (r) of 0.99. The cell-based metal sensor was able to efficiently monitor copper concentrations ranging between 5 M and 50 mM, encompassing the maximum allowed copper contamination in drinking water (31.15 M) established by the WHO. Furthermore, the cell-based metal sensor could undergo prolonged storage for at least 2 weeks without significantly influencing the copper sensitivity. PMID:26417267

  8. Polyacrylamide hydrogel encapsulated E. coli expressing metal-sensing green fluorescent protein as a potential tool for copper ion determination.

    PubMed

    Tantimongcolwat, Tanawut; Isarankura-Na-Ayudhya, Chartchalerm; Srisarin, Apapan; Galla, Hans-Joachim; Prachayasittikul, Virapong

    2014-01-01

    A simple, inexpensive and field applicable metal determination system would be a powerful tool for the efficient control of metal ion contamination in various sources e.g. drinking-water, water reservoir and waste discharges. In this study, we developed a cell-based metal sensor for specific and real-time detection of copper ions. E. coli expressing metal-sensing green fluorescent protein (designated as TG1/(CG)6GFP and TG1/H6CdBP4GFP) were constructed and served as a metal analytical system. Copper ions were found to exert a fluorescence quenching effect, while zinc and cadmium ions caused minor fluorescence enhancement in the engineered bacterial suspension. To construct a user-friendly and reagentless metal detection system, TG1/H6CdBP4GFP and TG1/(CG)6GFP were encapsulated in polyacrylamide hydrogels that were subsequently immobilized on an optical fiber equipped with a fluorescence detection module. The sensor could be applied to measure metal ions by simply dipping the encapsulated bacteria into a metal solution and monitoring fluorescence changes in real time as a function of the metal concentration in solution. The sensor system demonstrated high specificity toward copper ions. The fluorescence intensities of the encapsulated TG1/(CG)6GFP and TG1/H6CdBP4GFP were quenched by approximately 70 % and 80 % by a high-dose of copper ions (50 mM), respectively. The level of fluorescence quenching exhibited a direct correlation with the copper concentration, with a linear correlation coefficient (r) of 0.99. The cell-based metal sensor was able to efficiently monitor copper concentrations ranging between 5 M and 50 mM, encompassing the maximum allowed copper contamination in drinking water (31.15 M) established by the WHO. Furthermore, the cell-based metal sensor could undergo prolonged storage for at least 2 weeks without significantly influencing the copper sensitivity. PMID:26417267

  9. Facile synthesis of magnetic-/pH-responsive hydrogel beads based on Fe3O4 nanoparticles and chitosan hydrogel as MTX carriers for controlled drug release.

    PubMed

    Wu, Juan; Jiang, Wei; Tian, Renbing; Shen, Yewen; Jiang, Wei

    2016-10-01

    In the present study, methotrexate (MTX)-encapsulated magnetic-/pH-responsive hydrogel beads based on Fe3O4 nanoparticles and chitosan were successfully prepared through a one-step gelation process, which is a very facile, economic and environmentally friendly route. The developed hydrogel beads exhibited homogeneous porous structure and super-paramagnetic responsibility. MTX can be successfully encapsulated into magnetic chitosan hydrogel beads, and the drug encapsulation efficiency (%) and encapsulation content (%) were 93.8 and 6.28%, respectively. In addition, the drug release studies in vitro indicated that the MTX-encapsulated magnetic chitosan hydrogel beads had excellent pH-sensitivity, 90.6% MTX was released from the magnetic chitosan hydrogel beads within 48 h at pH 4.0. WST-1 assays in human liver hepatocellular carcinoma cells (HepG2) demonstrated that the MTX-encapsulated magnetic chitosan hydrogel beads had good cytocompatibility and high anti-tumor activity. Therefore, our results revealed that the MTX-encapsulated magnetic chitosan hydrogel beads would be a competitive candidate for controlled drug release in the area of targeted cancer therapy in the near future.

  10. Facile synthesis of magnetic-/pH-responsive hydrogel beads based on Fe3O4 nanoparticles and chitosan hydrogel as MTX carriers for controlled drug release.

    PubMed

    Wu, Juan; Jiang, Wei; Tian, Renbing; Shen, Yewen; Jiang, Wei

    2016-10-01

    In the present study, methotrexate (MTX)-encapsulated magnetic-/pH-responsive hydrogel beads based on Fe3O4 nanoparticles and chitosan were successfully prepared through a one-step gelation process, which is a very facile, economic and environmentally friendly route. The developed hydrogel beads exhibited homogeneous porous structure and super-paramagnetic responsibility. MTX can be successfully encapsulated into magnetic chitosan hydrogel beads, and the drug encapsulation efficiency (%) and encapsulation content (%) were 93.8 and 6.28%, respectively. In addition, the drug release studies in vitro indicated that the MTX-encapsulated magnetic chitosan hydrogel beads had excellent pH-sensitivity, 90.6% MTX was released from the magnetic chitosan hydrogel beads within 48 h at pH 4.0. WST-1 assays in human liver hepatocellular carcinoma cells (HepG2) demonstrated that the MTX-encapsulated magnetic chitosan hydrogel beads had good cytocompatibility and high anti-tumor activity. Therefore, our results revealed that the MTX-encapsulated magnetic chitosan hydrogel beads would be a competitive candidate for controlled drug release in the area of targeted cancer therapy in the near future. PMID:27464586

  11. Inhibiting tumor growth by targeting liposomally encapsulated CDC20siRNA to tumor vasculature: therapeutic RNA interference.

    PubMed

    Majumder, Poulami; Bhunia, Sukanya; Bhattacharyya, Jayanta; Chaudhuri, Arabinda

    2014-04-28

    Many cancer cells over express CDC20 (Cell Division Cycle homologue 20), a key cell cycle regulator required for the completion of mitosis in organisms from yeast to human. A recent in vitro study showed that specific knockdown of CDC20 expression using CDC20siRNA can significantly inhibit growth of human pancreatic carcinoma cells. However, preclinical study aimed at demonstrating therapeutic potential of CDC20siRNA in inhibiting tumor growth has just begun. Using a syngeneic C57BL/6J mouse tumor model, herein we show that intravenous administration of a 19bp synthetic CDC20siRNA encapsulated within α5β1 integrin receptor selective liposomes of pegylated RGDK-lipopeptide inhibits melanoma tumor growth. Liposomally encapsulated CDC20siRNA was found to be efficient in silencing the expression of CDC20 in tumor and endothelial cells at both mRNA and protein levels under in vitro settings. Findings in the flow cytometric studies confirmed the presence of significantly enhanced populations of the G2/M phase in cells treated with liposomally encapsulated CDC20siRNA. Immunohistochemical staining of tumor cryosections from mice treated with liposomally encapsulated fluorescently labeled siRNAs revealed tumor vasculatures targeting capabilities of the present liposomal formulations. The colocalizations of the TUNEL and VE-cadherin positive cells in tumor cryosections are consistent with tumor growth inhibition being mediated via apoptosis of the tumor endothelial cells. In summary, the presently disclosed liposomal formulation of CDC20siRNA is a promising RNA interference tool for use in anti-angiogenic cancer therapy. PMID:24556418

  12. A photocurable hydrogel/elastomer composite scaffold with bi-continuous morphology for cell encapsulation.

    PubMed

    Hayami, James W S; Waldman, Stephen D; Amsden, Brian G

    2011-12-01

    A photocurable two-phase scaffold with a bi-continuous morphology was designed and characterized for the repair of load bearing soft tissues. An N-methacrylate glycol chitosan (MGC) hydrogel phase was used to distribute the cells and enable cell growth once crosslinked. The second phase, an elastomerprepared from a star-poly(ε-caprolactone-co-D,L-lactide) triacrylate, was used to enhance the mechanical properties. Chondrocytes were photocrosslinked within the bi-continuous scaffolds and proliferated, increased metabolic activity and accumulated extracellular matrix over a 14 d culture period. Also during this time no significant material degradation was observed. PMID:22012746

  13. Hydrogels to Model 3D in vitro Microenvironment of Tumor Vascularization

    PubMed Central

    Song, Hyun-Ho Greco; Park, Kyung Min; Gerecht, Sharon

    2014-01-01

    A growing number of failing clinical trials for cancer therapy is substantiating the need to upgrade the current practice in culturing tumor cells and modeling tumor angiogenesis in vitro. Many attempts have been made to engineer vasculature in vitro by utilizing hydrogels, but the application of these tools in simulating in vivo tumor angiogenesis is still very new. In this review, we explore current use of hydrogels and their design parameters to engineer vasculogenesis and angiogenesis and to evaluate the angiogenic capability of cancerous cells and tissues. When coupled with other technologies such as lithography and three-dimensional printing, one can even create an advanced microvessel model as microfluidic channels to more accurately capture the native angiogenesis process. PMID:24969477

  14. EGF and curcumin co-encapsulated nanoparticle/hydrogel system as potent skin regeneration agent.

    PubMed

    Li, Xiaoling; Ye, Xianlong; Qi, Jianying; Fan, Rangrang; Gao, Xiang; Wu, Yunzhou; Zhou, Liangxue; Tong, Aiping; Guo, Gang

    2016-01-01

    Wound healing is a complex multifactorial process that relies on coordinated signaling molecules to succeed. Epidermal growth factor (EGF) is a mitogenic polypeptide that stimulates wound repair; however, precise control over its application is necessary to reduce the side effects and achieve desired therapeutic benefits. Moreover, the extensive oxidative stress during the wound healing process generally inhibits repair of the injured tissues. Topical applications of antioxidants like curcumin (Cur) could protect tissues from oxidative damage and significantly improve tissue remodeling. To achieve much accelerated wound healing effects, we designed a novel dual drug co-loaded in situ gel-forming nanoparticle/hydrogel system (EGF-Cur-NP/H) which acted not only as a supportive matrix for the regenerative tissue, but also as a sustained drug depot for EGF and Cur. In the established excisional full-thickness wound model, EGF-Cur-NP/H treatment significantly enhanced wound closure through increasing granulation tissue formation, collagen deposition, and angiogenesis, relative to normal saline, nanoparticle/hydrogel (NP/H), Cur-NP/H, and EGF-NP/H treated groups. In conclusion, this study provides a biocompatible in situ gel-forming system for efficient topical application of EGF and Cur in the landscape of tissue repair. PMID:27574428

  15. EGF and curcumin co-encapsulated nanoparticle/hydrogel system as potent skin regeneration agent

    PubMed Central

    Li, Xiaoling; Ye, Xianlong; Qi, Jianying; Fan, Rangrang; Gao, Xiang; Wu, Yunzhou; Zhou, Liangxue; Tong, Aiping; Guo, Gang

    2016-01-01

    Wound healing is a complex multifactorial process that relies on coordinated signaling molecules to succeed. Epidermal growth factor (EGF) is a mitogenic polypeptide that stimulates wound repair; however, precise control over its application is necessary to reduce the side effects and achieve desired therapeutic benefits. Moreover, the extensive oxidative stress during the wound healing process generally inhibits repair of the injured tissues. Topical applications of antioxidants like curcumin (Cur) could protect tissues from oxidative damage and significantly improve tissue remodeling. To achieve much accelerated wound healing effects, we designed a novel dual drug co-loaded in situ gel-forming nanoparticle/hydrogel system (EGF-Cur-NP/H) which acted not only as a supportive matrix for the regenerative tissue, but also as a sustained drug depot for EGF and Cur. In the established excisional full-thickness wound model, EGF-Cur-NP/H treatment significantly enhanced wound closure through increasing granulation tissue formation, collagen deposition, and angiogenesis, relative to normal saline, nanoparticle/hydrogel (NP/H), Cur-NP/H, and EGF-NP/H treated groups. In conclusion, this study provides a biocompatible in situ gel-forming system for efficient topical application of EGF and Cur in the landscape of tissue repair. PMID:27574428

  16. 3D in vitro bioengineered tumors based on collagen I hydrogels

    PubMed Central

    Szot, Christopher S.; Buchanan, Cara F.; Freeman, Joseph W.; Rylander, Marissa N.

    2011-01-01

    Cells cultured within a three-dimensional (3D) in vitro environment have the ability to acquire phenotypes and respond to stimuli analogous to in vivo biological systems. This approach has been utilized in tissue engineering and can also be applied to the development of a physiologically relevant in vitro tumor model. In this study, collagen I hydrogels cultured with MDA-MB-231 human breast cancer cells were bioengineered as a platform for in vitro solid tumor development. The cell–cell and cell-matrix interactions present during in vivo tissue progression were encouraged within the 3D hydrogel architecture, and the biocompatibility of collagen I supported unconfined cellular proliferation. The development of necrosis beyond a depth of ~150–200 μm and the expression of hypoxia-inducible factor (HIF)-1α were demonstrated in the in vitro bioengineered tumors. Oxygen and nutrient diffusion limitations through the collagen I matrix as well as competition for available nutrients resulted in growing levels of intra-cellular hypoxia, quantified by a statistically significant (p < 0.01) upregulation of HIF-1α gene expression. The bioengineered tumors also demonstrated promising angiogenic potential with a statistically significant (p < 0.001) upregulation of vascular endothelial growth factor (VEGF)-A gene expression. In addition, comparable gene expression analysis demonstrated a statistically significant increase of HIF-1α (p < 0.05) and VEGF-A (p < 0.001) by MDA-MB-231 cells cultured in the 3D collagen I hydrogels compared to cells cultured in a monolayer on two-dimensional tissue culture polystyrene. The results presented in this study demonstrate the capacity of collagen I hydrogels to facilitate the development of 3D in vitro bioengineered tumors that are representative of the pre-vascularized stages of in vivo solid tumor progression. PMID:21782234

  17. Calcium-Alginate Hydrogel-Encapsulated Fibroblasts Provide Sustained Release of Vascular Endothelial Growth Factor

    PubMed Central

    Hunt, Nicola C.; Shelton, Richard M.; Henderson, Deborah J.

    2013-01-01

    Vascularization of engineered or damaged tissues is essential to maintain cell viability and proper tissue function. Revascularization of the left ventricle (LV) of the heart after myocardial infarction is particularly important, since hypoxia can give rise to chronic heart failure due to inappropriate remodeling of the LV after death of cardiomyocytes (CMs). Fibroblasts can express vascular endothelial growth factor (VEGF), which plays a major role in angiogenesis and also acts as a chemoattractant and survival factor for CMs and cardiac progenitors. In this in vitro model study, mouse NIH 3T3 fibroblasts encapsulated in 2% w/v Ca-alginate were shown to remain viable for 150 days. Semiquantitative reverse transcription–polymerase chain reaction and immunohistochemistry demonstrated that over 21 days of encapsulation, fibroblasts continued to express VEGF, while enzyme-linked immunosorbent assay showed that there was sustained release of VEGF from the Ca-alginate during this period. The scaffold degraded gradually over the 21 days, without reduction in volume. Cells released from the Ca-alginate at 7 and 21 days as a result of scaffold degradation were shown to retain viability, to adhere to fibronectin in a normal manner, and continue to express VEGF, demonstrating their potential to further contribute to maintenance of cardiac function after scaffold degradation. This model in vitro study therefore demonstrates that fibroblasts encapsulated in Ca-alginate provide sustained release of VEGF. PMID:23082964

  18. Development of a Biomimetic Chondroitin Sulfate-modified Hydrogel to Enhance the Metastasis of Tumor Cells

    PubMed Central

    Liu, Yang; Wang, Shujun; Sun, Dongsheng; Liu, Yongdong; Liu, Yang; Wang, Yang; Liu, Chang; Wu, Hao; Lv, Yan; Ren, Ying; Guo, Xin; Sun, Guangwei; Ma, Xiaojun

    2016-01-01

    Tumor metastasis with resistance to anticancer therapies is the main cause of death in cancer patients. It is necessary to develop reliable tumor metastasis models that can closely recapitulate the pathophysiological features of the native tumor tissue. In this study, chondroitin sulfate (CS)-modified alginate hydrogel beads (ALG-CS) are developed to mimic the in vivo tumor microenvironment with an abnormally increased expression of CS for the promotion of tumor cell metastasis. The modification mechanism of CS on alginate hydrogel is due to the cross-linking between CS and alginate molecules via coordination of calcium ions, which enables ALG-CS to possess significantly different physical characteristics than the traditional alginate beads (ALG). And quantum chemistry calculations show that in addition to the traditional egg-box structure, novel asymmetric egg-box-like structures based on the interaction between these two kinds of polymers are also formed within ALG-CS. Moreover, tumor cell metastasis is significantly enhanced in ALG-CS compared with that in ALG, as confirmed by the increased expression of MMP genes and proteins and greater in vitro invasion ability. Therefore, ALG-CS could be a convenient and effective 3D biomimetic scaffold that would be used to construct standardized tumor metastasis models for tumor research and anticancer drug screening. PMID:27432752

  19. Using chondroitin sulfate to improve the viability and biosynthesis of chondrocytes encapsulated in interpenetrating network (IPN) hydrogels of agarose and poly(ethylene glycol) diacrylate.

    PubMed

    Ingavle, Ganesh C; Dormer, Nathan H; Gehrke, Stevin H; Detamore, Michael S

    2012-01-01

    We recently introduced agarose-poly(ethylene glycol) diacrylate (PEGDA) interpenetrating network (IPN) hydrogels to cartilage tissue engineering that were able to encapsulate viable cells and provide a significant improvement in mechanical performance relative to its two constituent hydrogels. The goal of the current study was to develop a novel synthesis protocol to incorporate methacrylated chondroitin sulfate (MCS) into the IPN design hypothesized to improve cell viability and biosynthesis. The IPN was formed by encapsulating porcine chondrocytes in agarose, soaking the construct in a solution of 1:10 MCS:PEGDA, which was then photopolymerized to form a copolymer network as the second network. The IPN with incorporated CS (CS-IPN) (~0.5 wt%) resulted in a 4- to 5-fold increase in the compressive elastic modulus relative to either the PEGDA or agarose gels. After 6 weeks of in vitro culture, more than 50% of the encapsulated chondrocytes remained viable within the CS-modified IPN, in contrast to 35% viability observed in the unmodified. At week 6, the CS-IPN had significantly higher normalized GAG contents (347 ± 34 μg/μg) than unmodified IPNs (158 ± 27 μg/μg, P < 0.05). Overall, the approach of incorporating biopolymers such as CS from native tissue may provide favorable micro-environment and beneficial signals to cells to enhance their overall performance in IPNs. PMID:22116661

  20. Using chondroitin sulfate to improve the viability and biosynthesis of chondrocytes encapsulated in interpenetrating network (IPN) hydrogels of agarose and poly(ethylene glycol) diacrylate

    PubMed Central

    Ingavle, Ganesh C.; Dormer, Nathan H.; Gehrke, Stevin H.

    2013-01-01

    We recently introduced agarose-poly(ethylene glycol) diacrylate (PEGDA) interpenetrating network (IPN) hydrogels to cartilage tissue engineering that were able to encapsulate viable cells and provide a significant improvement in mechanical performance relative to its two constituent hydrogels. The goal of the current study was to develop a novel synthesis protocol to incorporate methacrylated chondroitin sulfate (MCS) into the IPN design hypothesized to improve cell viability and biosynthesis. The IPN was formed by encapsulating porcine chondrocytes in agarose, soaking the construct in a solution of 1:10 MCS:PEGDA, which was then photopolymerized to form a copolymer network as the second network. The IPN with incorporated CS (CS-IPN) (~0.5 wt%) resulted in a 4- to 5-fold increase in the compressive elastic modulus relative to either the PEGDA or agarose gels. After 6 weeks of in vitro culture, more than 50% of the encapsulated chondrocytes remained viable within the CS-modified IPN, in contrast to 35% viability observed in the unmodified. At week 6, the CS-IPN had significantly higher normalized GAG contents (347 ± 34 µg/µg) than unmodified IPNs (158 ± 27 µg/µg, P < 0.05). Overall, the approach of incorporating biopolymers such as CS from native tissue may provide favorable micro-environment and beneficial signals to cells to enhance their overall performance in IPNs. PMID:22116661

  1. Photothermal tumor ablation in mice with repeated therapy sessions using NIR-absorbing micellar hydrogels formed in situ.

    PubMed

    Hsiao, Chun-Wen; Chuang, Er-Yuan; Chen, Hsin-Lung; Wan, Dehui; Korupalli, Chiranjeevi; Liao, Zi-Xian; Chiu, Ya-Ling; Chia, Wei-Tso; Lin, Kun-Ju; Sung, Hsing-Wen

    2015-07-01

    Repeated cancer treatments are common, owing to the aggressive and resistant nature of tumors. This work presents a chitosan (CS) derivative that contains self-doped polyaniline (PANI) side chains, capable of self-assembling to form micelles and then transforming into hydrogels driven by a local change in pH. Analysis results of small-angle X-ray scattering indicate that the sol-gel transition of this CS derivative may provide the mechanical integrity to maintain its spatial stability in the microenvironment of solid tumors. The micelles formed in the CS hydrogel function as nanoscaled heating sources upon exposure to near-infrared light, thereby enabling the selective killing of cancer cells in a light-treated area. Additionally, photothermal efficacy of the micellar hydrogel is evaluated using a tumor-bearing mouse model; hollow gold nanospheres (HGNs) are used for comparison. Given the ability of the micellar hydrogel to provide spatial stability within a solid tumor, which prevents its leakage from the injection site, the therapeutic efficacy of this hydrogel, as a photothermal therapeutic agent for repeated treatments, exceeds that of nanosized HGNs. Results of this study demonstrate that this in situ-formed micellar hydrogel is a highly promising modality for repeated cancer treatments, providing a clinically viable, minimally invasive phototherapeutic option for therapeutic treatment.

  2. Transforming growth factor-beta 3 stimulates cartilage matrix elaboration by human marrow-derived stromal cells encapsulated in photocrosslinked carboxymethylcellulose hydrogels: potential for nucleus pulposus replacement.

    PubMed

    Gupta, Michelle S; Cooper, Elana S; Nicoll, Steven B

    2011-12-01

    Degeneration of the nucleus pulposus (NP) has been implicated as a major cause of low back pain. Tissue engineering strategies using marrow-derived stromal cells (MSCs) have been used to develop cartilaginous tissue constructs, which may serve as viable NP replacements. Supplementation with growth factors, such as transforming growth factor-beta 3 (TGF-β3), has been shown to enhance the differentiation of MSCs and promote functional tissue development of such constructs. A potential candidate material that may be useful as a scaffold for NP tissue engineering is carboxymethylcellulose (CMC), a biocompatible, cost-effective derivative of cellulose. Photocrosslinked CMC hydrogels have been shown to support NP cell viability and promote phenotypic matrix deposition capable of maintaining mechanical properties when cultured in serum-free, chemically defined medium (CDM) supplemented with TGF-β3. However, MSCs have not been characterized using this hydrogel system. In this study, human MSCs (hMSCs) were encapsulated in photocrosslinked CMC hydrogels and cultured in CDM with and without TGF-β3 to determine the effect of the growth factor on the differentiation of hMSCs toward an NP-like phenotype. Constructs were evaluated for matrix elaboration and functional properties consistent with native NP tissue. CDM supplemented with TGF-β3 resulted in significantly higher glycosaminoglycan content (762.69±220.79 ng/mg wet weight) and type II collagen (COL II) content (6.25±1.64 ng/mg wet weight) at day 21 compared with untreated samples. Immunohistochemical analyses revealed uniform, pericellular, and interterritorial staining for chondroitin sulfate proteoglycan and COL II in growth factor-supplemented constructs compared with faint, strictly pericellular staining in untreated constructs at 21 days. Consistent with matrix deposition, mechanical properties of hydrogels treated with TGF-β3 increased over time and exhibited the highest peak stress in stress-relaxation (

  3. A hydrogel-based tumor model for the evaluation of nanoparticle-based cancer therapeutics.

    PubMed

    Xu, Xian; Sabanayagam, Chandran R; Harrington, Daniel A; Farach-Carson, Mary C; Jia, Xinqiao

    2014-03-01

    Three-dimensional (3D) tissue-engineered tumor models have the potential to bridge the gap between monolayer cultures and patient-derived xenografts for the testing of nanoparticle (NP)-based cancer therapeutics. In this study, a hydrogel-derived prostate cancer (PCa) model was developed for the in vitro evaluation of doxorubicin (Dox)-loaded polymer NPs (Dox-NPs). The hydrogels were synthesized using chemically modified hyaluronic acid (HA) carrying acrylate groups (HA-AC) or reactive thiols (HA-SH). The crosslinked hydrogel networks exhibited an estimated pore size of 70-100 nm, similar to the spacing of the extracellular matrices (ECM) surrounding tumor tissues. LNCaP PCa cells entrapped in the HA matrices formed distinct tumor-like multicellular aggregates with an average diameter of 50 μm after 7 days of culture. Compared to cells grown on two-dimensional (2D) tissue culture plates, cells from the engineered tumoroids expressed significantly higher levels of multidrug resistance (MDR) proteins, including multidrug resistance protein 1 (MRP1) and lung resistance-related protein (LRP), both at the mRNA and the protein levels. Separately, Dox-NPs with an average diameter of 54 ± 1 nm were prepared from amphiphilic block copolymers based on poly(ethylene glycol) (PEG) and poly(ε-caprolactone) (PCL) bearing pendant cyclic ketals. Dox-NPs were able to diffuse through the hydrogel matrices, penetrate into the tumoroid and be internalized by LNCaP PCa cells through caveolae-mediated endocytosis and macropinocytosis pathways. Compared to 2D cultures, LNCaP PCa cells cultured as multicellular aggregates in HA hydrogel were more resistant to Dox and Dox-NPs treatments. Moreover, the NP-based Dox formulation could bypass the drug efflux function of MRP1, thereby partially reversing the resistance to free Dox in 3D cultures. Overall, the engineered tumor model has the potential to provide predictable results on the efficacy of NP-based cancer therapeutics.

  4. A Hydrogel-Based Tumor Model for the Evaluation of Nanoparticle-Based Cancer Therapeutics

    PubMed Central

    Xu, Xian; Sabanayagam, Chandran R.; Harrington, Daniel A.; Farach-Carson, Mary C.; Jia, Xinqiao

    2014-01-01

    Three-dimensional (3D) tissue-engineered tumor models have the potential to bridge the gap between monolayer cultures and patient-derived xenografts for the testing of nanoparticle (NP)-based cancer therapeutics. In this study, a hydrogel-derived prostate cancer (PCa) model was developed for the in vitro evaluation of doxorubicin (Dox)-loaded polymer NPs (Dox-NPs). The hydrogels were synthesized using chemically modified hyaluronic acid (HA) carrying acrylate groups (HA-AC) or reactive thiols (HA-SH). The crosslinked hydrogel networks exhibited an estimated pore size of 70-100 nm, similar to the spacing of the extracellular matrices (ECM) surrounding tumor tissues. LNCaP PCa cells entrapped in the HA matrices formed distinct tumor-like multicellular aggregates with an average diameter of 50 μm after 7 days of culture. Compared to cells grown on two-dimensional (2D) tissue culture plates, cells from the engineered tumoroids expressed significantly higher levels of multidrug resistance (MDR) proteins, including multidrug resistance protein 1 (MRP1) and lung resistance-related protein (LRP), both at the mRNA and the protein levels. Separately, Dox-NPs with an average diameter of 54 ± 1 nm were prepared from amphiphilic block copolymers based on poly(ethylene glycol) (PEG) and poly(ε-caprolactone) (PCL) bearing pendant cyclic ketals. Dox-NPs were able to diffuse through the hydrogel matrices, penetrate into the tumoroid and be internalized by LNCaP PCa cells through caveolae-mediated endocytosis and macropinocytosis pathways. Compared to 2D cultures, LNCaP PCa cells cultured as multicellular aggregates in HA hydrogel were more resistant to Dox and Dox-NPs treatments. Moreover, the NP-based Dox formulation could bypass the drug efflux function of MRP1, thereby partially reversing the resistance to free Dox in 3D cultures. Overall, the engineered tumor model has the potential to provide predictable results on the efficacy of NP-based cancer therapeutics. PMID:24447463

  5. Modulation of hydrogel nanoparticle intracellular trafficking by multivalent surface engineering with tumor targeting peptide.

    PubMed

    Karamchand, Leshern; Kim, Gwangseong; Wang, Shouyan; Hah, Hoe Jin; Ray, Aniruddha; Jiddou, Ruba; Koo Lee, Yong-Eun; Philbert, Martin A; Kopelman, Raoul

    2013-11-01

    Surface engineering of a hydrogel nanoparticle (NP) with the tumor-targeting ligand, F3 peptide, enhances both the NP's binding affinity for, and internalization by, nucleolin overexpressing tumor cells. Remarkably, the F3-functionalized NPs consistently exhibited significantly lower trafficking to the degradative lysosomes than the non-functionalized NPs, in the tumor cells, after internalization. This is attributed to the non-functionalized NPs, but not the F3-functionalized NPs, being co-internalized with Lysosome-associated Membrane Protein-1 (LAMP1) from the surface of the tumor cells. Furthermore, it is shown that the intracellular trafficking of the F3-functionalized NPs differs significantly from that of the molecular F3 peptides (untethered to NPs). This has important implications for designing effective, chemically-responsive, controlled-release and multifunctional nanodrugs for multi-drug-resistant cancers.

  6. Self-assembled sorbitol-derived supramolecular hydrogels for the controlled encapsulation and release of active pharmaceutical ingredients.

    PubMed

    Howe, Edward J; Okesola, Babatunde O; Smith, David K

    2015-05-01

    A simple supramolecular hydrogel based on 1,3:2,4-di(4-acylhydrazide)benzylidene sorbitol (DBS-CONHNH2), is able to extract acid-functionalised anti-inflammatory drugs via directed interactions with the self-assembled gel nanofibres. Two-component hydrogel-drug hybrid materials can be easily formed by mixing and exhibit pH-controlled drug release.

  7. Modulation of hydrogel nanoparticle intracellular trafficking by multivalent surface engineering with tumor targeting peptide

    NASA Astrophysics Data System (ADS)

    Karamchand, Leshern; Kim, Gwangseong; Wang, Shouyan; Hah, Hoe Jin; Ray, Aniruddha; Jiddou, Ruba; Koo Lee, Yong-Eun; Philbert, Martin A.; Kopelman, Raoul

    2013-10-01

    Surface engineering of a hydrogel nanoparticle (NP) with the tumor-targeting ligand, F3 peptide, enhances both the NP's binding affinity for, and internalization by, nucleolin overexpressing tumor cells. Remarkably, the F3-functionalized NPs consistently exhibited significantly lower trafficking to the degradative lysosomes than the non-functionalized NPs, in the tumor cells, after internalization. This is attributed to the non-functionalized NPs, but not the F3-functionalized NPs, being co-internalized with Lysosome-associated Membrane Protein-1 (LAMP1) from the surface of the tumor cells. Furthermore, it is shown that the intracellular trafficking of the F3-functionalized NPs differs significantly from that of the molecular F3 peptides (untethered to NPs). This has important implications for designing effective, chemically-responsive, controlled-release and multifunctional nanodrugs for multi-drug-resistant cancers.Surface engineering of a hydrogel nanoparticle (NP) with the tumor-targeting ligand, F3 peptide, enhances both the NP's binding affinity for, and internalization by, nucleolin overexpressing tumor cells. Remarkably, the F3-functionalized NPs consistently exhibited significantly lower trafficking to the degradative lysosomes than the non-functionalized NPs, in the tumor cells, after internalization. This is attributed to the non-functionalized NPs, but not the F3-functionalized NPs, being co-internalized with Lysosome-associated Membrane Protein-1 (LAMP1) from the surface of the tumor cells. Furthermore, it is shown that the intracellular trafficking of the F3-functionalized NPs differs significantly from that of the molecular F3 peptides (untethered to NPs). This has important implications for designing effective, chemically-responsive, controlled-release and multifunctional nanodrugs for multi-drug-resistant cancers. Electronic supplementary information (ESI) available: Effect of Potassium depletion on F3 peptide subcellular localization, MTT

  8. Encapsulation of magnetotactic bacteria for targeted and controlled delivery of anticancer agents for tumor therapy.

    PubMed

    Afkhami, Fatemeh; Taherkhani, Samira; Mohammadi, Mahmood; Martel, Sylvain

    2011-01-01

    We showed that magnetotactic bacteria (MTB) have great potentials to be used as microcarriers for targeted delivery of therapeutic agents. Indeed, magnetotaxis inherent in MTB can be exploited to direct them towards a tumor while being propelled by their own flagellated molecular motors. Nonetheless, although the thrust propelling force above 4 pN of the MC-1 MTB showed to be superior compared to other technologies for displacement in the microvasculature, MTB becomes much less efficient when travelling in larger blood vessels due to higher blood flow. In the latter case, a new technique developed by our group and referred to as Magnetic Resonance Navigation (MRN), has been successfully applied in larger vessels using synthetic microcarriers nut proved to be less efficient in the microvasculature due mainly to technological constraints. These findings called for the need to integrate both approaches by encapsulating MTB in special MRN-compatible microcarriers to be release in the vicinity of microvascular networks where they becomes more effective for targeting purposes in tumoral lesions. In this study Magnetococcus strain MC-1 were encapsulated in giant vesicles. The survival of the encapsulated bacteria was monitored. The release of bacteria from giant vesicles was also studied in different time intervals and conditions.

  9. Intra-articular delivery of sinomenium encapsulated by chitosan microspheres and photo-crosslinked GelMA hydrogel ameliorates osteoarthritis by effectively regulating autophagy.

    PubMed

    Chen, Pengfei; Xia, Chen; Mei, Sheng; Wang, Jiying; Shan, Zhi; Lin, Xianfeng; Fan, Shunwu

    2016-03-01

    Reduced expression of autophagy regulators has been observed in pathological cartilage in humans and mice. The present study aimed to investigate the synergistic therapeutic effect of promotion of chondrocyte autophagy via exposure to sinomenium (SIN) encapsulated by chitosan microspheres (CM-SIN) and photo-crosslinked gelatin methacrylate (GelMA) hydrogel, with the goal of evaluating CM-SIN as a treatment for patients with osteoarthritis. First, we fabricated and characterized GelMA hydrogels and chitosan microspheres. Next, we measured the effect of SIN on cartilage matrix degradation induced by IL1-β in chondrocytes and an ex vivo model. SIN ameliorated the pathological changes induced by IL1-β at least partially through activation of autophagy. Moreover, we surgically induced osteoarthritis in mice, which were injected intra-articularly with CM-SIN and GelMA. Cartilage matrix degradation and chondrocyte autophagy were evaluated 4 and 8 weeks after surgery. Treatment with the combination of CM-SIN and GelMA retarded the progression of surgically induced OA. SIN ameliorated cartilage matrix degradation at least partially by inducing autophagy in vivo. Our results demonstrate that injection of the combination of GelMA hydrogel and CM-SIN could be a promising strategy for treating patients with osteoarthritis.

  10. Antioxidant N-Acetylcysteine and Glutathione Increase the Viability and Proliferation of MG63 Cells Encapsulated in the Gelatin Methacrylate/VA-086/Blue Light Hydrogel System.

    PubMed

    Lin, Chih-Hsin; Lin, Kai-Fung; Mar, Kwei; Lee, Shyh-Yuan; Lin, Yuan-Min

    2016-08-01

    Photoencapsulation of cells inside a hydrogel system can provide a suitable path to establish a gel in situ for soft tissue regeneration applications. However, the presence of photoinitiators and blue or UV light irradiation can result in cell damage and an increase of reactive oxygen species. We here evaluate the benefits of an antioxidant pretreatment on the photoencapsulated cells. We study this by evaluating proliferation and viability of MG63 cells, which we combined with a gelatin methacrylate (GelMA) hydrogel system, using the photoinitiator, VA-086, cured with 440 nm blue light. We found that blue light irradiation as well as the presence of 1% VA-086 reduced MG63 cell proliferation rates. Adding a short pretreatment step to the MG63 cells, consisting of the antioxidant molecules N-acetylcysteine (NAC) and reduced glutathione (GSH), and optimizing the GelMA encapsulation steps, we found that both NAC and GSH pretreatments of MG63 cells significantly increased both proliferation and viability of the cells, when using a 15% GelMA hydrogel, 1% VA-086, and 1-min blue light exposure. These findings suggest that the use of antioxidant pretreatment can counteract the negative presence of the photoinitiators and blue light exposure and result in a suitable environment for photoencapsulating cells in situ for tissue engineering and soft tissue applications.

  11. Functionalized graphene oxide-based thermosensitive hydrogel for magnetic hyperthermia therapy on tumors

    NASA Astrophysics Data System (ADS)

    Zhu, Xiali; Zhang, Huijuan; Huang, Heqing; Zhang, Yingjie; Hou, Lin; Zhang, Zhenzhong

    2015-09-01

    A novel locally injectable, biodegradable, and thermo-sensitive hydrogel made from chitosan and β-glycerophosphate salt was prepared. It incorporated polyethylenimine (PEI)-modified super-paramagnetic graphene oxide (GO/IONP/PEI) as a form of minimally invasive treatment of cancer lesions by magnetically induced local hyperthermia. Doxorubicin (DOX) was mixed into the hydrogel which was pre-loaded on GO/IONP/PEI to create a drug delivery system DOX-GO/IONP/PEI-gel. In addition to the evaluation of in vitro and in vivo antitumor activities, the physicochemical properties, magnetic properties and DOX release profile of the DOX-GO/IONP/PEI-gel were determined. The aqueous solution of the hydrogel showed a sol-gel transition behavior depending on temperature changes. Magnetization loops indicated the super-paramagnetic properties of GO/IONP/PEI. Compared with free DOX, DOX-GO/IONP/PEI could efficiently pass through cell membranes, leading to more apoptosis and demonstrating higher antitumor efficacy on MCF-7 cells in vitro. Furthermore, DOX-GO/IONP/PEI-gel intratumorally injected (i.t.) showed high antitumor efficacy on tumor-bearing mice in vivo, with no obvious toxicity. The antitumor efficacy was higher when combined with an alternating magnetic field (AMF), showing that DOX-GO/IONP/PEI-gel under AMF has great potential for cancer magnetic hyperthermia therapy.

  12. Functionalized graphene oxide-based thermosensitive hydrogel for magnetic hyperthermia therapy on tumors.

    PubMed

    Zhu, Xiali; Zhang, Huijuan; Huang, Heqing; Zhang, Yingjie; Hou, Lin; Zhang, Zhenzhong

    2015-09-11

    A novel locally injectable, biodegradable, and thermo-sensitive hydrogel made from chitosan and β-glycerophosphate salt was prepared. It incorporated polyethylenimine (PEI)-modified super-paramagnetic graphene oxide (GO/IONP/PEI) as a form of minimally invasive treatment of cancer lesions by magnetically induced local hyperthermia. Doxorubicin (DOX) was mixed into the hydrogel which was pre-loaded on GO/IONP/PEI to create a drug delivery system DOX-GO/IONP/PEI-gel. In addition to the evaluation of in vitro and in vivo antitumor activities, the physicochemical properties, magnetic properties and DOX release profile of the DOX-GO/IONP/PEI-gel were determined. The aqueous solution of the hydrogel showed a sol-gel transition behavior depending on temperature changes. Magnetization loops indicated the super-paramagnetic properties of GO/IONP/PEI. Compared with free DOX, DOX-GO/IONP/PEI could efficiently pass through cell membranes, leading to more apoptosis and demonstrating higher antitumor efficacy on MCF-7 cells in vitro. Furthermore, DOX-GO/IONP/PEI-gel intratumorally injected (i.t.) showed high antitumor efficacy on tumor-bearing mice in vivo, with no obvious toxicity. The antitumor efficacy was higher when combined with an alternating magnetic field (AMF), showing that DOX-GO/IONP/PEI-gel under AMF has great potential for cancer magnetic hyperthermia therapy.

  13. Encapsulation of bone morphogenic protein-2 with Cbfa1-overexpressing osteogenic cells derived from human embryonic stem cells in hydrogel accelerates bone tissue regeneration.

    PubMed

    Kim, Min Jung; Park, Ji Sun; Kim, Sinae; Moon, Sung-Hwan; Yang, Han Na; Park, Keun-Hong; Chung, Hyung-Min

    2011-08-01

    Bone tissue defects caused by trauma and disease are significant problems in orthopedic surgery. Human embryonic stem cells (hESCs) hold great promise for the treatment of bone tissue disease in regenerative medicine. In this study, we have established an effective method for the differentiation of osteogenic cells derived from hESCs using a lentiviral vector containing the transcription factor Cbfa1. Differentiation was initiated in embryoid body formation of Cbfa1-expressing hESCs, resulting in a highly purified population of osteogenic cells based on flow cytometric analysis. These cells also showed characteristics of osteogenic cells in vitro, as determined by reverse-transcription (RT)-polymerase chain reaction and immunocytochemistry using osteoblast-specific markers. We also evaluated the regenerative potential of Cbfa1-expressing cells derived from hESCs (hESC-CECs) compared with hESCs and the osteogenic effects of bone morphogenic protein-2 (BMP2) encapsulated in thermoreversible hydrogel in vivo. hESC-CECs were embedded in hydrogel constructs enriched with BMP2 to promote bone regeneration. We observed prominent mineralization and the formation of nodule-like structures using von Kossa and alizarin red S staining. In addition, the expression patterns of osteoblast-specific genes were verified by RT-polymerase chain reaction, and immunohistochemical analysis revealed that collagen type 1 and Cbfa1 were highly expressed in hESC-CECs compared with other cell types. Taken together, our results suggest that encapsulation of hESC-CECs with BMP2 in hydrogel constructs appears to be a promising method to enhance the in vitro osteoblastic differentiation and in vivo osteogenic activity of hESC-CECs.

  14. Supplemented αMEM/F12-based medium enables the survival and growth of primary ovarian follicles encapsulated in alginate hydrogels

    PubMed Central

    Tagler, David; Makanji, Yogeshwar; Anderson, Nicholas R.; Woodruff, Teresa K.; Shea, Lonnie D.

    2013-01-01

    Hydrogel-encapsulating culture systems for ovarian follicles support the in vitro growth of secondary follicles from various species including mouse, non-primate human, and human; however, the growth of early stage follicles (primary and primordial) has been limited. While encapsulation maintains the structure of early stage follicles, feeder cell populations, such as mouse embryonic fibroblasts (MEFs), are required to stimulate growth and development. Hence, in this report, we investigated feeder-free culture environments for early stage follicle development. Mouse ovarian follicles were encapsulated within alginate hydrogels and cultured in various growth medium formulations. Initial studies employed embryonic stem cell medium formulations as a tool to identify factors that influence the survival, growth, and meiotic competence of early stage follicles. The medium formulation that maximized survival and growth was identified as αMEM/F12 supplemented with fetuin, insulin, transferrin, selenium, and follicle stimulating hormone (FSH). This medium stimulated the growth of late primary (average initial diameter of 80 µm) and early secondary (average initial diameter of 90 µm) follicles, which developed antral cavities and increased to terminal diameters exceeding 300 µm in 14 days. Survival ranged from 18% for 80 µm follicles to 36% for 90 µm follicles. Furthermore, 80% of the oocytes from surviving follicles with an initial diameter of 90–100 µm underwent germinal vesicle breakdown (GVBD), and the percentage of metaphase II (MII) eggs was 50%. Follicle/oocyte growth and GVBD/MII rates were not significantly different from MEF co-culture. Survival was reduced relative to MEF co-culture, yet substantially increased relative to the control medium that had been previously used for secondary follicles. Continued development of culture medium could enable mechanistic studies of early stage folliculogenesis and emerging strategies for fertility preservation. PMID

  15. Light-Induced Hydrogel Based on Tumor-Targeting Mesoporous Silica Nanoparticles as a Theranostic Platform for Sustained Cancer Treatment.

    PubMed

    Chen, Xin; Liu, Zhongning; Parker, Stephen G; Zhang, Xiaojin; Gooding, J Justin; Ru, Yanyan; Liu, Yuhong; Zhou, Yongsheng

    2016-06-29

    Herein, we report a facile fabrication of a polymer (azobenzene and α-cyclodextrin-functionalized hyaluronic acid) and gold nanobipyramids (AuNBs) conjugated mesoporous silica nanoparticles (MSNs) to be used as an injectable drug delivery system for sustained cancer treatment. Because of the specific affinity between the hyaluronic acid (HA) on MSNs and the CD44 antigen overexpressed on tumor cells, the MSNs can selectively attach to tumor cells. The nanocomposite material then exploits thermoresponsive interactions between α-cyclodextrin and azobenzene, and the photothermal properties of gold nanobipyramids, to in situ self-assemble into a hydrogel under near-infrared (NIR) radiation. Upon gelation, the drug (doxorubicin)-loaded MSNs carriers were enclosed in the HA network of the hydrogel, whereas further degradation of the HA in the hydrogel due to the upregulation of hyaluronidase (HAase) around the tumor tissue will result in the release of MSNs from the hydrogel, which can then be taken by tumor cells and deliver their drug to the cell nuclei. This design is able to provide a microenvironment with rich anticancer drugs in, and around, the tumor tissue for time periods long enough to prevent the recrudescence of the disease. The extra efficacy that this strategy affords builds upon the capabilities of conventional therapies. PMID:27265514

  16. Biodegradable polymeric micelles encapsulated JK184 suppress tumor growth through inhibiting Hedgehog signaling pathway

    NASA Astrophysics Data System (ADS)

    Zhang, Nannan; Liu, Shichang; Wang, Ning; Deng, Senyi; Song, Linjiang; Wu, Qinjie; Liu, Lei; Su, Weijun; Wei, Yuquan; Xie, Yongmei; Gong, Changyang

    2015-01-01

    JK184 can specially inhibit Gli in the Hedgehog (Hh) pathway, which showed great promise for cancer therapeutics. For developing aqueous formulation and improving anti-tumor activity of JK184, we prepared JK184 encapsulated MPEG-PCL micelles by the solid dispersion method without using surfactants or toxic organic solvents. The cytotoxicity and cellular uptake of JK184 micelles were both increased compared with the free drug. JK184 micelles induced more apoptosis and blocked proliferation of Panc-1 and BxPC-3 tumor cells. In addition, JK184 micelles exerted a sustained in vitro release behavior and had a stronger inhibitory effect on proliferation, migration and invasion of HUVECs than free JK184. Furthermore, JK184 micelles had stronger tumor growth inhibiting effects in subcutaneous Panc-1 and BxPC-3 tumor models. Histological analysis showed that JK184 micelles improved anti-tumor activity by inducing more apoptosis, decreasing microvessel density and reducing expression of CD31, Ki67, and VEGF in tumor tissues. JK184 micelles showed a stronger inhibition of Gli expression in Hh signaling, which played an important role in pancreatic carcinoma. Furthermore, circulation time of JK184 in blood was prolonged after entrapment in polymeric micelles. Our results suggested that JK184 micelles are a promising drug candidate for treating pancreatic tumors with a highly inhibitory effect on Hh activity.JK184 can specially inhibit Gli in the Hedgehog (Hh) pathway, which showed great promise for cancer therapeutics. For developing aqueous formulation and improving anti-tumor activity of JK184, we prepared JK184 encapsulated MPEG-PCL micelles by the solid dispersion method without using surfactants or toxic organic solvents. The cytotoxicity and cellular uptake of JK184 micelles were both increased compared with the free drug. JK184 micelles induced more apoptosis and blocked proliferation of Panc-1 and BxPC-3 tumor cells. In addition, JK184 micelles exerted a sustained in

  17. Preclinical Evaluation of Poly(HEMA-co-acrylamide) Hydrogels Encapsulating Glucose Oxidase and Palladium Benzoporphyrin as Fully Implantable Glucose Sensors

    PubMed Central

    Unruh, Rachel M.; Roberts, Jason R.; Nichols, Scott P.; Gamsey, Soya; Wisniewski, Natalie A.; McShane, Michael J.

    2015-01-01

    Background: Continuous glucose monitors (CGMs) require percutaneous wire probes to monitor glucose. Sensors based on luminescent hydrogels are being explored as fully implantable alternatives to traditional CGMs. Our previous work investigated hydrogel matrices functionalized with enzymes and oxygen-quenched phosphors, demonstrating sensitivity to glucose, range of response, and biofouling strongly depend on the matrix material. Here, we further investigate the effect of matrix composition on overall performance in vitro and in vivo. Methods: Sensors based on three hydrogels, a poly(2-hydroxyethyl methacrylate) (pHEMA) homopolymer and 2 poly(2-hydroxyethyl methacrylate-co-acrylamide) (pHEMA-co-AAm) copolymers, were compared. These were used to entrap glucose oxidase (GOx), catalase, and an oxygen-sensitive benzoporphyrin phosphor. All sensor formulations were evaluated for glucose response and stability at physiological temperatures. Selected sensors were then evaluated as implanted sensors in a porcine model challenged with glucose and insulin. The animal protocol used in this study was approved by an IACUC committee at Texas A&M University. Results: PHEMA-co-AAm copolymer hydrogels (75:25 HEMA:AAm) yielded the most even GOx and dye dispersion throughout the hydrogel matrix and best preserved GOx apparent activity. In response to in vitro glucose challenges, this formulation exhibited a dynamic range of 12-167 mg/dL, a sensitivity of 1.44 ± 0.46 µs/(mg/dL), and tracked closely with reference capillary blood glucose values in vivo. Conclusions: The hydrogel-based sensors exhibited excellent sensitivity and sufficiently rapid response to the glucose levels achieved in vivo, proving feasibility of these materials for use in real-time glucose tracking. Extending the dynamic range and assessing long-term effects in vivo are ongoing efforts. PMID:26085565

  18. Microbes encapsulated within crosslinkable polymers

    DOEpatents

    Chidambaram, Devicharan; Liu, Ying; Rafailovich, Miriam H

    2013-02-05

    The invention relates to porous films comprising crosslinked electrospun hydrogel fibers. Viable microbes are encapsulated within the crosslinked electrospun hydrogel fibers. The crosslinked electrospun hydrogel fibers are water insoluble and permeable. The invention also relates to methods of making and using such porous films.

  19. Application of a New Dynamic Model to Predict the In Vitro Intrinsic Clearance of Tolbutamide Using Rat Microsomes Encapsulated in a Fab Hydrogel.

    PubMed

    Zhou, Ning; Zheng, Yuanting; Xing, Junfen; Yang, Huiying; Chen, Hanmei; Xiang, Xiaoqiang; Liu, Jing; Tong, Shanshan; Zhu, Bin; Cai, Weimin

    2016-01-01

    Currently used in vitro models for estimating liver metabolism do not take into account the physiologic structure and blood circulation process of liver tissue. The Bio-PK metabolic system was established as an alternative approach to determine the in vitro intrinsic clearance of the model drug tolbutamide. The system contained a peristaltic pump, recirculating pipeline, reaction chamber, and rat liver microsomes (RLMs) encapsulated in pluronic F127-acrylamide-bisacrylamide (FAB) hydrogel. The metabolism of tolbutamide at initial concentrations of 100, 150, and 200 μM was measured in both the FAB hydrogel and the circular medium. The data from the FAB hydrogel and the circular medium were fitted to a mathematical model to obtain the predicted intrinsic clearance of tolbutamide after different periods of preincubation. The in vitro clearance value for tolbutamide was incorporated into Simcyp software and used to predict both the in vivo clearance value and the dynamic process of elimination. The predicted in vivo clearance of tolbutamide was 0.107, 0.087, and 0.095 L/h/kg for i.v. injection and 0.113, 0.095, and 0.107 L/h/kg for oral administration. Compared with the reported in vivo clearance of 0.09 L/h/kg (i.v.) and 0.10 L/h/kg (oral), all the predicted values differed by less than twofold. Thus, the Bio-PK metabolic system is a reliable and general in vitro model, characterized by three-dimensional structured RLM and circulation and perfusion processes for predicting the in vivo intrinsic clearance of low-extraction compounds, making the system more analogous with the rat in terms of both morphology and physiology.

  20. Au@Pt nanoparticle encapsulated target-responsive hydrogel with volumetric bar-chart chip readout for quantitative point-of-care testing.

    PubMed

    Zhu, Zhi; Guan, Zhichao; Jia, Shasha; Lei, Zhichao; Lin, Shuichao; Zhang, Huimin; Ma, Yanli; Tian, Zhong-Qun; Yang, Chaoyong James

    2014-11-10

    Point-of-care testing (POCT) with the advantages of speed, simplicity, portability, and low cost is critical for the measurement of analytes in a variety of environments where access to laboratory infrastructure is lacking. While qualitative POCTs are widely available, quantitative POCTs present significant challenges. Here we describe a novel method that integrates an Au core/Pt shell nanoparticle (Au@PtNP) encapsulated target-responsive hydrogel with a volumetric bar-chart chip (V-Chip) for quantitative POCT. Upon target introduction, the hydrogel immediately dissolves and releases Au@PtNPs, which can efficiently catalyze the decomposition of H2 O2 to generate a large volume of O2 to move of an ink bar in the V-Chip. The concentration of the target introduced can be visually quantified by reading the traveling distance of the ink bar. This method has the potential to be used for portable and quantitative detection of a wide range of targets without any external instrument.

  1. Enhanced adsorption of cesium on PVA-alginate encapsulated Prussian blue-graphene oxide hydrogel beads in a fixed-bed column system.

    PubMed

    Jang, Jiseon; Lee, Dae Sung

    2016-10-01

    A continuous fixed-bed column study was performed using PVA-alginate encapsulated Prussian blue-graphene oxide (PB-GO) hydrogel beads as a novel adsorbent for the removal of cesium from aqueous solutions. The effects of different operating parameters, such as initial cesium concentration, pH, bed height, flow rate, and bead size, were investigated. The maximum adsorption capacity of the PB-GO hydrogel beads was 164.5mg/g at an initial cesium concentration of 5mM, bed height of 20cm, and flow rate of 0.83mL/min at pH 7. The Thomas, Adams-Bohart, and Yoon-Nelson models were applied to the experimental data to predict the breakthrough curves using non-linear regression. Although both the Thomas and Yoon-Nelson models showed good agreement with the experimental data, the Yoon-Nelson model was found to provide the best representation for cesium adsorption on the adsorbent, based on the χ(2) analysis. PMID:27372009

  2. Chitosan-Based Thermoreversible Hydrogel as an in Vitro Tumor Microenvironment for Testing Breast Cancer Therapies

    PubMed Central

    2015-01-01

    Breast cancer is a major health problem for women worldwide. Although in vitro culture of established breast cancer cell lines is the most widely used model for preclinical assessment, it poorly represents the behavior of breast cancers in vivo. Acceleration of the development of effective therapeutic strategies requires a cost-efficient in vitro model that can more accurately resemble the in vivo tumor microenvironment. Here, we report the use of a thermoreversible poly(ethylene glycol)-g-chitosan hydrogel (PCgel) as an in vitro breast cancer model. We hypothesized that PCgel could provide a tumor microenvironment that promotes cultured cancer cells to a more malignant phenotype with drug and immune resistance. Traditional tissue culture plates and Matrigel were applied as controls in our studies. In vitro cellular proliferation and morphology, the secretion of angiogenesis-related growth factors and cytokines, and drug and immune resistance were assessed. Our results show that PCgel cultures promoted tumor aggregate formation, increased secretion of various angiogenesis- and metastasis-related growth factors and cytokines, and increased tumor cell resistance to chemotherapeutic drugs and immunotherapeutic T cells. This PCgel platform may offer a valuable strategy to bridge the gap between standard in vitro and costly animal studies for a wide variety of experimental designs. PMID:24779767

  3. Encapsulated Stem Cells Loaded With Hyaluronidase-expressing Oncolytic Virus for Brain Tumor Therapy

    PubMed Central

    Martinez-Quintanilla, Jordi; He, Derek; Wakimoto, Hiroaki; Alemany, Ramon; Shah, Khalid

    2015-01-01

    Despite the proven safety of oncolytic viruses (OV) in clinical trials for glioblastoma (GBM), their efficacy has been hindered by suboptimal spreading within the tumor. We show that hyaluronan or hyaluronic acid (HA), an important component of extracellular matrix (ECM), is highly expressed in a majority of tumor xenografts established from patient-derived GBM lines that present both invasive and nodular phenotypes. Intratumoral injection of a conditionally replicating adenovirus expressing soluble hyaluronidase (ICOVIR17) into nodular GBM, mediated HA degradation and enhanced viral spread, resulting in a significant antitumor effect and mice survival. In an effort to translate OV-based therapeutics into clinical settings, we encapsulated human adipose-derived mesenchymal stem cells (MSC) loaded with ICOVIR17 in biocompatible synthetic extracellular matrix (sECM) and tested their efficacy in a clinically relevant mouse model of GBM resection. Compared with direct injection of ICOVIR17, sECM-MSC loaded with ICOVIR17 resulted in a significant decrease in tumor regrowth and increased mice survival. This is the first report of its kind revealing the expression of HA in GBM and the role of OV-mediated HA targeting in clinically relevant mouse model of GBM resection and thus has clinical implications. PMID:25352242

  4. Hyaluronic acid-based hydrogel for regional delivery of paclitaxel to intraperitoneal tumors

    PubMed Central

    Bajaj, Gaurav; Kim, Mi Ran; Mohammed, Sulma I.; Yeo, Yoon

    2012-01-01

    Intraperitoneal (IP) chemotherapy is an effective way of treating local and regional malignancies confined in the peritoneal cavity such as ovarian cancer. However, a persistent major challenge in IP chemotherapy is the need to provide effective drug concentrations in the peritoneal cavity for an extended period of time. We hypothesized that hyaluronic acid (HA)-based in-situ crosslinkable hydrogel would serve as a carrier of paclitaxel (PTX) particles to improve their IP retention and therapeutic effects. In-vitro gel degradation and release kinetics studies demonstrated that HA gels could entrap microparticulate PTX (>100 μm) and release the drug over 10 days, gradually degraded by hyaluronidase, but had limited effect on retention of Taxol, a 14-nm micelle form of PTX. When administered IP to tumor-bearing nude mice, PTX was best retained in the peritoneal cavity as PTX-gel (microparticulate PTX entrapped in the HA gel), whereas Taxol-gel and other Taxol-based formulations left negligible amount of PTX in the cavity after 14 days. Despite the increase in IP retention of PTX, PTX-gel did not further decrease the tumor burdens than Taxol-based formulations, presumably due to the limited dissolution of PTX. This result indicates that spatial availability of a drug does not necessarily translate to the enhanced anti-tumor effect unless it is accompanied by the temporal availability. PMID:22178261

  5. Dynamic loading stimulates chondrocyte biosynthesis when encapsulated in charged hydrogels prepared from poly(ethylene glycol) and chondroitin sulfate.

    PubMed

    Villanueva, Idalis; Gladem, Sara K; Kessler, Jeff; Bryant, Stephanie J

    2010-01-01

    This study aimed to elucidate the role of charge in mediating chondrocyte response to loading by employing synthetic 3D hydrogels. Specifically, neutral poly(ethylene glycol) (PEG) hydrogels were employed where negatively charged chondroitin sulfate (ChS), one of the main extracellular matrix components of cartilage, was systematically incorporated into the PEG network at 0%, 20% or 40% to control the fixed charge density. PEG hydrogels were employed as a control environment for extracellular events which occur as a result of loading, but which are not associated with a charged matrix (e.g., cell deformation and fluid flow). Freshly isolated bovine articular chondrocytes were embedded in the hydrogels and subject to dynamic mechanical stimulation (0.3Hz, 15% amplitude strains, 6h) and assayed for nitric oxide production, cell proliferation, proteoglycan synthesis, and collagen deposition. In the absence of loading, incorporation of charge inhibited cell proliferation by approximately 75%, proteoglycan synthesis by approximately 22-50% depending on ChS content, but had no affect on collagen deposition. Dynamic loading had no effect on cellular responses in PEG hydrogels. However, dynamically loading 20% ChS gels inhibited nitrite production by 50%, cell proliferation by 40%, but stimulated proteoglycan and collagen deposition by 162% and 565%, respectively. Dynamic loading of 40% ChS hydrogels stimulated nitrite production by 62% and proteoglycan synthesis by 123%, but inhibited cell proliferation by 54% and collagen deposition by 52%. Upon removing the load and culturing under free-swelling conditions for 36h, the enhanced matrix synthesis observed in the 20% ChS gels was not maintained suggesting that loading is necessary to stimulate matrix production. In conclusion, extracellular events associated with a charged matrix have a dramatic affect on how chondrocytes respond to mechanical stimulation within these artificial 3D matrices suggesting that streaming

  6. Recreating the Tumor Microenvironment in a Bilayer, Hyaluronic Acid Hydrogel Construct for the Growth of Prostate Cancer Spheroids

    PubMed Central

    Xu, Xian; Gurski, Lisa A.; Zhang, Chu; Harrington, Daniel A.; Farach-Carson, Mary C.; Jia, Xinqiao

    2012-01-01

    Cancer cells cultured in physiologically relevant, three-dimensional (3D) matrices can recapture many essential features of native tumor tissues. In this study, a hyaluronic acid (HA)-based bilayer hydrogel system that not only supports the tumoroid formation from LNCaP prostate cancer (PCa) cells, but also simulates their reciprocal interactions with the tumor-associated stroma was developed and characterized. HA hydrogels were prepared by mixing solutions of HA precursors functionalized with acrylate groups (HA-AC) and reactive thiols (HA-SH) under physiological conditions. The resultant viscoelastic gels have an average elastic modulus of 234 ± 30 Pa and can be degraded readily by hyaluronidase. The orthogonal and cytocompatible nature of the crosslinking chemistry permits facile incorporation of cytokine-releasing particles and PCa cells. In our bilayer hydrogel construct, the top layer contains heparin (HP)-decorated, HA-based hydrogel particles (HGPs) capable of releasing heparin-binding epidermal growth factor-like growth factor (HB-EGF) in a sustained manner at a rate of 2.5wt%/day cumulatively. LNCaP cells embedded in the bottom layer receive the growth factor signals from the top, and in response form enlarging tumoroids with an average diameter of 85 μm by day 7. Cells in 3D hydrogels assemble into spherical tumoroids, form close cellular contacts through E-cadherin, and show cortical organization of F-actin, whereas those plated as 2D monolayers adopt a spread-out morphology. Compared to cells cultured on 2D, the engineered tumoroids significantly increased the expression of two pro-angiogenic factors, vascular endothelial growth factor-165 (VEGF165) and interleukin-8 (IL-8), both at mRNA and protein levels. Overall, the HA model system provides a useful platform for the study of tumor cell responses to growth factors and for screening of anticancer drugs targeting these pathways. PMID:22999468

  7. Afatinib and its encapsulated polymeric micelles inhibits HER2-overexpressed colorectal tumor cell growth in vitro and in vivo.

    PubMed

    Guan, Siao-Syun; Chang, Jungshan; Cheng, Chun-Chia; Luo, Tsai-Yueh; Ho, Ai-Sheng; Wang, Chia-Chi; Wu, Cheng-Tien; Liu, Shing-Hwa

    2014-07-15

    Colorectal cancer (CRC) is known as a common malignant neoplasm worldwide. The role of EGFR/HER2 in CRC is unclear. Afatinib is an irreversible EGFR/HER2 inhibitor. There were few studies of afatinib on CRC. Here, we investigated the protein levels/expressions of HER2 in sera and tumors from CRC patients and the therapeutic effect of afatinib on HER2-overexpressed CRC in vitro and in vivo. The increased HER2 levels were detected in the collected sera and tumors of patients with CRC. The serological HER2 levels were correlated with the tumor HER2 expressions in patients. Afatinib also inhibited the HER2-positive tumor cell growth and caused apoptosis in HER2-overexpressed human colorectal cancer HCT-15 cells but not in low HER2 expressed human gastric cancer MKN45 cells. In vivo study showed that afatinib reduced tumor growth in HER2-overexpressed xenografts. Moreover, afatinib-encapsulated micelles displayed higher cytotoxic activity in HCT-15 cells and were more effective for tumor growth suppression in HCT-15-induced tumor xenografts than afatinib performance alone. Taken together, these findings suggest that higher serum HER2 levels reflect the higher HER2 contents in tumors of CRC patients, and the improved afatinib-encapsulated micelles possess high therapeutic efficacy in HER2-overexpressed CRC in vitro and in vivo. PMID:24947902

  8. Immunomodulation by mesenchymal stem cells combats the foreign body response to cell-laden synthetic hydrogels.

    PubMed

    Swartzlander, Mark D; Blakney, Anna K; Amer, Luke D; Hankenson, Kurt D; Kyriakides, Themis R; Bryant, Stephanie J

    2015-02-01

    The implantation of non-biological materials, including scaffolds for tissue engineering, ubiquitously leads to a foreign body response (FBR). We recently reported that this response negatively impacts fibroblasts encapsulated within a synthetic hydrogel and in turn leads to a more severe FBR, suggesting a cross-talk between encapsulated cells and inflammatory cells. Given the promise of mesenchymal stem cells (MSCs) in tissue engineering and recent evidence of their immunomodulatory properties, we hypothesized that MSCs encapsulated within poly(ethylene glycol) (PEG) hydrogels will attenuate the FBR. In vitro, murine MSCs encapsulated within PEG hydrogels attenuated classically activated primary murine macrophages by reducing gene expression and protein secretion of pro-inflammatory cytokines, most notably tumor necrosis factor-α. Using a COX2 inhibitor, prostaglandin E2 (PGE2) was identified as a mediator of MSC immunomodulation of macrophages. In vivo, hydrogels laden with MSCs, osteogenically differentiating MSCs, or no cells were implanted subcutaneously into C57BL/6 mice for 28 days to assess the impact of MSCs on the fibrotic response of the FBR. The presence of encapsulated MSCs reduced fibrous capsule thickness compared to acellular hydrogels, but this effect diminished with osteogenic differentiation. The use of MSCs prior to differentiation in tissue engineering may therefore serve as a dynamic approach, through continuous cross-talk between MSCs and the inflammatory cells, to modulate macrophage activation and attenuate the FBR to implanted synthetic scaffolds thus improving the long-term tissue engineering outcome.

  9. Efficacy of liposome-encapsulated indomethacin in response against metastatic 3LL and B16F1 tumor cells.

    PubMed

    Aliño, S F; Unda, F J; Iruarrizaga, A; Alfaro, J; Hilario, E; Pérez-Yarza, G; Bobadilla, M; Lejarreta, M

    1992-06-01

    The ability of large liposomes to be taken up by tissue phagocytic cells, e.g., macrophages, has made it possible to increase the efficacy of several drugs as immunomodulating agents. In the present work, we have evaluated the effect of indomethacin, a prostaglandin synthesis inhibitor, both free and encapsulated in liposomes, on the spontaneous metastatic potential of 3LL and B16F1 tumor cells. Liposomes containing either carboxyfluorescein, indomethacin, or carboxyfluorescein plus indomethacin, were made in order to evaluate their in vitro plasma stability and in vivo clearance from the blood. The liposomes showed a high stability after 6 hours of plasma incubation and they were rapidly cleared in vivo. Liposomes encapsulating propidium iodide, a fluorescent DNA binding dye, were mainly taken up in vivo by hepatic and spleen macrophages 1 hour after intravenous injection, but not by lung macrophages. When C57BL/6 mice were intravenously inoculated with 10(5) 3LL or B16F1 tumor cells previously incubated with indomethacin (10(-7) M) for 48 hours, the number of experimental lung metastatic foci was increased with respect to their respective control groups. Also, in 3LL or B16F1 tumor-bearing mice, treatment with indomethacin (0.5 mg/kg weight/day) for 10 days enhanced the number of lung metastases, but not significantly. However, when mice received indomethacin encapsulated in liposomes, the number of metastases was significantly reduced. In addition, encapsulated indomethacin (0.5 mg/kg weight/day) inhibits prostaglandin E2 production by peritoneal and spleen macrophages, whereas no significant inhibitory effect was observed with control-liposomes or equivalent doses of free indomethacin. We conclude that intravenous administration of liposome-encapsulated indomethacin has an antimetastatic effect on tumor-bearing mice. Use of indomethacin in liposomes may avoid the stimulation of metastases observed when the drug is administered alone.

  10. Enhanced antitumor immunity of nanoliposome-encapsulated heat shock protein 70 peptide complex derived from dendritic tumor fusion cells.

    PubMed

    Zhang, Yunfei; Luo, Wen; Wang, Yucai; Chen, Jun; Liu, Yunyan; Zhang, Yong

    2015-06-01

    Tumor-derived heat shock proteins peptide complex (HSP.PC-Tu) has been regarded as a promising antitumor agent. However, inadequate immunogenicity and low bioavailability limit the clinical uses of this agent. In a previous study, we first produced an improved HSP70.PC-based vaccine purified from dendritic cell (DC)-tumor fusion cells (HSP70.PC-Fc) which had increased immunogenicity due to enhanced antigenic tumor peptides compared to HSP70.PC-Tu. In order to increase the bioavailability of HSP70.PC-Fc, the peptide complex was encapsulated with nanoliposomes (NL-HSP70.PC-Fc) in this study. After encapsulation, the tumor immunogenicity was observed using various assays. It was demonstrated that the NL-HSP70.PC-Fc has acceptable stability. The in vivo antitumor immune response was increased with regard to T-cell activation, CTL response and tumor therapy efficiency compared to that of HSP70.PC-Fc. In addition, it was shown that DC maturation was improved by NL-HSP70.PC-Fc, which added to the antitumor immunity. The results obtained for NL-HSP70.PC-Fc, which improved immunogenicity and increases the bioavailability of HSP70.PC, may represent superior heat shock proteins (HSPs)-based tumor vaccines. Such vaccines deserve further investigation and may provide a preclinical rationale to translate findings into early phase trials for patients with breast tumors.

  11. Targeted PRINT Hydrogels: The Role of Nanoparticle Size and Ligand Density on Cell Association, Biodistribution, and Tumor Accumulation.

    PubMed

    Reuter, Kevin G; Perry, Jillian L; Kim, Dongwook; Luft, J Christopher; Liu, Rihe; DeSimone, Joseph M

    2015-10-14

    In this Letter, we varied targeting ligand density of an EGFR binding affibody on the surface of two different hydrogel PRINT nanoparticles (80 nm × 320 and 55 nm × 60 nm) and monitored effects on target-cell association, off-target phagocytic uptake, biodistribution, and tumor accumulation. Interestingly, variations in ligand density only significantly altered in vitro internalization rates for the 80 nm × 320 nm particle. However, in vivo, both particle sizes experienced significant changes in biodistribution and pharmacokinetics as a function of ligand density. Overall, nanoparticle size and passive accumulation were the dominant factors eliciting tumor sequestration. PMID:26389971

  12. Encapsulation of simvastatin in PLGA microspheres loaded into hydrogel loaded BCP porous spongy scaffold as a controlled drug delivery system for bone tissue regeneration.

    PubMed

    Nath, Subrata D; Linh, Nguyen T B; Sadiasa, Alexander; Lee, Byong T

    2014-04-01

    The main objective of this study was to fabricate a controlled drug delivery which is simultaneously effective for bone regeneration. We have encapsulated simvastatin, which enhances osteoblastic activity, in the poly (lactic-co-glycolic acid) microspheres. Loading of these microspheres inside the spongy scaffold of biphasic calcium phosphate with the help of Gelatin (Gel) hydrogel controls the delivery of the drug, and ensures a more favorable drug release profile. As a result, some significant benefits have been achieved, such as higher mechanical strength, excellent biocompatibility in in vitro experiments. For determining the characteristics of the composite scaffold, several analysis, such as scanning electron microscope, EDX, X-ray diffraction, FT-IR, and porosity were carried out. The in vitro drug release profile clearly indicates that simvastatin release from the microsphere was more controlled and prolonged after loading in the scaffold. Biocompatibility was certainly higher for the final composite scaffold compared to drug unloaded scaffold, as assessed through MTT assay and Confocal imaging with MC3T3-E1 pre-osteoblast cells. Cell attachment and proliferation were certainly higher in the presence of drug loaded microspheres. Bone remodeling gene and protein expression were observed by real-time polymerase chain reaction and Western blot respectively. Simvastatin loaded scaffold exhibited the best results in every determination which was carried out.

  13. Biodegradable polymeric micelle-encapsulated quercetin suppresses tumor growth and metastasis in both transgenic zebrafish and mouse models

    NASA Astrophysics Data System (ADS)

    Wu, Qinjie; Deng, Senyi; Li, Ling; Sun, Lu; Yang, Xi; Liu, Xinyu; Liu, Lei; Qian, Zhiyong; Wei, Yuquan; Gong, Changyang

    2013-11-01

    Quercetin (Que) loaded polymeric micelles were prepared to obtain an aqueous formulation of Que with enhanced anti-tumor and anti-metastasis activities. A simple solid dispersion method was used, and the obtained Que micelles had a small particle size (about 31 nm), high drug loading, and high encapsulation efficiency. Que micelles showed improved cellular uptake, an enhanced apoptosis induction effect, and stronger inhibitory effects on proliferation, migration, and invasion of 4T1 cells than free Que. The enhanced in vitro antiangiogenesis effects of Que micelles were proved by the results that Que micelles significantly suppressed proliferation, migration, invasion, and tube formation of human umbilical vein endothelial cells (HUVECs). Subsequently, transgenic zebrafish models were employed to investigate anti-tumor and anti-metastasis effects of Que micelles, in which stronger inhibitory effects of Que micelles were observed on embryonic angiogenesis, tumor-induced angiogenesis, tumor growth, and tumor metastasis. Furthermore, in a subcutaneous 4T1 tumor model, Que micelles were more effective in suppressing tumor growth and spontaneous pulmonary metastasis, and prolonging the survival of tumor-bearing mice. Besides, immunohistochemical and immunofluorescent assays suggested that tumors in the Que micelle-treated group showed more apoptosis, fewer microvessels, and fewer proliferation-positive cells. In conclusion, Que micelles, which are synthesized as an aqueous formulation of Que, possess enhanced anti-tumor and anti-metastasis activity, which can serve as potential candidates for cancer therapy.

  14. Encapsulation and 3D culture of human adipose-derived stem cells in an in-situ crosslinked hybrid hydrogel composed of PEG-based hyperbranched copolymer and hyaluronic acid

    PubMed Central

    2013-01-01

    Introduction Cell therapy using adipose-derived stem cells has been reported to improve chronic wounds via differentiation and paracrine effects. One such strategy is to deliver stem cells in hydrogels, which are studied increasingly as cell delivery vehicles for therapeutic healing and inducing tissue regeneration. This study aimed to determine the behaviour of encapsulated adipose-derived stem cells and identify the secretion profile of suitable growth factors for wound healing in a newly developed thermoresponsive PEG–hyaluronic acid (HA) hybrid hydrogel to provide a novel living dressing system. Methods In this study, human adipose-derived stem cells (hADSCs) were encapsulated in situ in a water-soluble, thermoresponsive hyperbranched PEG-based copolymer (PEGMEMA–MEO2MA–PEGDA) with multiple acrylate functional groups in combination with thiolated HA, which was developed via deactivated enhanced atom transfer radical polymerisation of poly(ethylene glycol) methyl ether methacrylate (PEGMEMA, Mn = 475), 2-(2-methoxyethoxy) ethyl methacrylate (MEO2MA) and poly(ethylene glycol) diacrylate PEGDA (Mn = 258). hADSCs embedded in the PEGMEMA–MEO2MA–PEGDA and HA hybrid hydrogel system (P-SH-HA) were monitored and analysed for their cell viability, cell proliferation and secretion of growth factors (vascular endothelial growth factor, transforming growth factor beta and placental-derived growth factor) and cytokines (IFNγ, IL-2 and IL-10) under three-dimensional culture conditions via the ATP activity assay, alamarBlue® assay, LIVE/DEAD® assay and multiplex ELISA, respectively. Results hADSCs were successfully encapsulated in situ with high cell viability for up to 7 days in hydrogels. Although cellular proliferation was inhibited, cellular secretion of growth factors such as vascular endothelial growth factor and placental-derived growth factor production increased over 7 days, whereas IL-2 and IFNγ release were unaffected. Conclusion This study indicates

  15. Liposomes Encapsulating 10-Hydroxycamptothecin-Cyclodextrin Complexes and Their In Vitro Anti-Tumor Activities.

    PubMed

    Chen, Yang; Chen, Cheng; Xiao, Yiyun; Zhang, Xiuzhen; Chen, Yuxiang

    2015-05-01

    Manufacturing and characterizing hydroxycamptothecin inclusion liposomes, establishing their quality standard and testing their in vitro anti-tumor activity is of significance for potential application. The neutralization agitation method was used to prepare hydroxycamptothecin inclusion and film evaporation method was utilized to manufacture hydroxycamptothecin inclusion liposomes. The phase solubility method, differential scanning calorimetry and infrared spectroscopy were used to identify the prepared inclusion complex. The hydroxycamptothecin inclusion liposomes were characterized for particle morphology, size, in vitro release and stability. The hepatoma (HepG-2), lung cancer (A549), and gastric cancer (SGC-7901) cell lines were used as models for preliminary evaluation of anti-cancer effect from the hydroxycamptothecin inclusion liposomes, done by MTT colorimetry, cytometer experiments, and apoptosis staining. The anti-cancer evaluation was compared with commercially available hydroxycamptothecin. The results showed the hydroxycamptothecin inclusion was successfully prepared by neutralization agitation method. Phase solubility method, differential scanning calorimetry and infrared spectroscopy proved the formation of the hydroxycamptothecin inclusion. The hydroxycamptothecin inclusion liposomes were successfully prepared by film evaporation method. (2) The inclusions were found to be spherical, with average particle size of 119.7 nm, zeta potential of - 45.6 mV, average inclusion rate of 70.55%, and drug-loading was 14.60%. The inclusions were also found to have a sustained release effect, when compared to the commercially available hydroxyccamptothecine. The hydroxyccamptothecine inclusion liposomes had better stability at 4 degrees. (3) The hydroxycamptothecin inclusion liposomes also exhibited better inhibition effect for the three kinds of cancer cell lines above, when compared to the commercially available hydroxycamptothecin the anti-cancer effect being

  16. Targeted Mesoporous Iron Oxide Nanoparticles-Encapsulated Perfluorohexane and a Hydrophobic Drug for Deep Tumor Penetration and Therapy

    PubMed Central

    Su, Yu-Lin; Fang, Jen-Hung; Liao, Chia-Ying; Lin, Chein-Ting; Li, Yun-Ting; Hu, Shang-Hsiu

    2015-01-01

    A magneto-responsive energy/drug carrier that enhances deep tumor penetration with a porous nano-composite is constructed by using a tumor-targeted lactoferrin (Lf) bio-gate as a cap on mesoporous iron oxide nanoparticles (MIONs). With a large payload of a gas-generated molecule, perfluorohexane (PFH), and a hydrophobic anti-cancer drug, paclitaxel (PTX), Lf-MIONs can simultaneously perform bursting gas generation and on-demand drug release upon high-frequency magnetic field (MF) exposure. Biocompatible PFH was chosen and encapsulated in MIONs due to its favorable phase transition temperature (56 °C) and its hydrophobicity. After a short-duration MF treatment induces heat generation, the local pressure increase via the gasifying of the PFH embedded in MION can substantially rupture the three-dimensional tumor spheroids in vitro as well as enhance drug and carrier penetration. As the MF treatment duration increases, Lf-MIONs entering the tumor spheroids provide an intense heat and burst-like drug release, leading to superior drug delivery and deep tumor thermo-chemo-therapy. With their high efficiency for targeting tumors, Lf-MIONs/PTX-PFH suppressed subcutaneous tumors in 16 days after a single MF exposure. This work presents the first study of using MF-induced PFH gasification as a deep tumor-penetrating agent for drug delivery. PMID:26379789

  17. Encapsulated paclitaxel nanoparticles exhibit enhanced anti-tumor efficacy in A549 non-small lung cancer cells.

    PubMed

    Huang, Guojin; Zang, Bao; Wang, Xiaowei; Liu, Gang; Zhao, Jianqiang

    2015-12-01

    In the present study, paclitaxel (PTX) were encapsulated with polyethylene glycol (PEG)-polylactide (PLA)/D-α tocopheryl polyethylene glycol 1000 succinate (TPGS) (PEG-PLA/TPGS) and the enhanced anti-tumor activity of this PTX mixed micelles (PTX-MM) was evaluated in lung cancer cells. The PTX-MM prepared by a solvent evaporation method was demonstrated to have high drug-loading efficiency (23.2%), high encapsulation efficiency (76.4%), and small size (59 nm). In vitro release assay showed the slow release behavior of PTX-MM, suggesting the good stability of the PTX-MM essential for long circulation time. In vitro kinetics assay demonstrated that PTX-MM could promote absorption and increase relative bioavailability. The anti-cancer efficiency of PTX-MM was also examined by both in vitro and in vivo studies. PTX-MM exhibits obvious cytotoxicity against lung cancer cells with much lower IC50 value when compared with commercial formulated PTX or PTX + TPGS. The xenograft tumor model studies on nude mice indicated that PTX-MM inhibits tumor growth more effectively than other formulations. It was also found that most of mixed micelles were integral in tumor site to exhibit anti-cancer activity. Our results suggested that the use of PTX-MM as an anti-cancer drug may be an effective approach to treat lung cancer. PMID:26525950

  18. Static and dynamic compressive strains influence nitric oxide production and chondrocyte bioactivity when encapsulated in PEG hydrogels of different crosslinking densities

    PubMed Central

    Villanueva, I; Hauschulz, DS; Mejic, D; Bryant, SJ

    2012-01-01

    Summary Objective Mechanical loading is an important regulator of chondrocytes; however, many of the mechanisms involved in chondrocyte mechanotransduction still remain unclear. Here, poly(ethylene glycol) (PEG) hydrogels are proposed as a model system to elucidate chondrocyte response due to cell deformation, which is controlled by gel crosslinking (ρx). Methods Bovine articular chondrocytes (50×106cells/ml) were encapsulated in gels with three ρx’s and subjected to static (15% strain) or dynamic (0.3Hz or 1Hz, 15% amplitude strain) loading for 48 hours. Cell deformation was examined by confocal microscopy. Cell response was assessed by total nitric oxide production (NO), proteoglycan (PG) synthesis (35SO42−-incorporation) and cell proliferation ([3H]-thymidine incorporation) (CP). Oxygen consumption was assessed using an oxygen biosensor. Results An increase in ρx led to lower water contents, higher compressive moduli, and higher cell deformations. Chondrocyte response was dependent on both loading regime and ρx. For example, under a static strain, NO was not affected, while CP and PG synthesis were inhibited in low ρx and stimulated in high ρx. Dynamic loading resulted in either no effect or an inhibitory effect on NO, CP, and PG synthesis. Overall, our results showed correlations between NO and CP and/or PG synthesis under static and dynamic (0.3 Hz) loading. This finding was attributed to the hypoxic environment that resulted from the high cell-seeding density. Conclusion This study demonstrates gel ρx and loading condition influence NO, CP, and PG synthesis. Under a hypoxic environment and certain loading conditions, NO appears to have a positive effect on chondrocyte bioactivity. PMID:18203631

  19. Dental mesenchymal stem cells encapsulated in an alginate hydrogel co-delivery microencapsulation system for cartilage regeneration.

    PubMed

    Moshaverinia, Alireza; Xu, Xingtian; Chen, Chider; Akiyama, Kentaro; Snead, Malcolm L; Shi, Songtao

    2013-12-01

    Dental-derived mesenchymal stem cells (MSCs) are promising candidates for cartilage regeneration, with a high capacity for chondrogenic differentiation. This property helps make dental MSCs an advantageous therapeutic option compared to current treatment modalities. The MSC delivery vehicle is the principal determinant for the success of MSC-mediated cartilage regeneration therapies. The objectives of this study were to: (1) develop a novel co-delivery system based on TGF-β1 loaded RGD-coupled alginate microspheres encapsulating periodontal ligament stem cells (PDLSCs) or gingival mesenchymal stem cells (GMSCs); and (2) investigate dental MSC viability and chondrogenic differentiation in alginate microspheres. The results revealed the sustained release of TGF-β1 from the alginate microspheres. After 4 weeks of chondrogenic differentiation in vitro, PDLSCs and GMSCs as well as human bone marrow mesenchymal stem cells (hBMMSCs) (as positive control) revealed chondrogenic gene expression markers (Col II and Sox-9) via qPCR, as well as matrix positively stained by Toluidine Blue and Safranin-O. In animal studies, ectopic cartilage tissue regeneration was observed inside and around the transplanted microspheres, confirmed by histochemical and immunofluorescent staining. Interestingly, PDLSCs showed more chondrogenesis than GMSCs and hBMMSCs (p<0.05). Taken together, these results suggest that RGD-modified alginate microencapsulating dental MSCs make a promising candidate for cartilage regeneration. Our results highlight the vital role played by the microenvironment, as well as value of presenting inductive signals for viability and differentiation of MSCs. PMID:23891740

  20. Spatiotemporal release of BMP-2 and VEGF enhances osteogenic and vasculogenic differentiation of human mesenchymal stem cells and endothelial colony-forming cells co-encapsulated in a patterned hydrogel.

    PubMed

    Barati, Danial; Shariati, Seyed Ramin Pajoum; Moeinzadeh, Seyedsina; Melero-Martin, Juan M; Khademhosseini, Ali; Jabbari, Esmaiel

    2016-02-10

    Reconstruction of large bone defects is limited by insufficient vascularization and slow bone regeneration. The objective of this work was to investigate the effect of spatial and temporal release of recombinant human bone morphogenetic protein-2 (BMP2) and vascular endothelial growth factor (VEGF) on the extent of osteogenic and vasculogenic differentiation of human mesenchymal stem cells (hMSCs) and endothelial colony-forming cells (ECFCs) encapsulated in a patterned hydrogel. Nanogels (NGs) based on polyethylene glycol (PEG) macromers chain-extended with short lactide (L) and glycolide (G) segments were used for grafting and timed-release of BMP2 and VEGF. NGs with 12kDa PEG molecular weight (MW), 24 LG segment length, and 60/40L/G ratio (P12-II, NG(10)) released the grafted VEGF in 10days. NGs with 8kDa PEG MW, 26 LG segment length, and 60/40L/G ratio (P8-I, NG(21)) released the grafted BMP2 in 21days. hMSCs and NG-BMP2 were encapsulated in a patterned matrix based on acrylate-functionalized lactide-chain-extended star polyethylene glycol (SPELA) hydrogel and microchannel patterns filled with a suspension of hMSCs+ECFCs and NG-VEGF in a crosslinked gelatin methacryloyl (GelMA) hydrogel. Groups included patterned constructs without BMP2/VEGF (None), with directly added BMP2/VEGF, and NG-BMP2/NG-VEGF. Based on the results, timed-release of VEGF in the microchannels in 10days from NG(10) and BMP2 in the matrix in 21days from NG(21) resulted in highest extent of osteogenic and vasculogenic differentiation of the encapsulated hMSCs and ECFCs compared to direct addition of VEGF and BMP2. Further, timed-release of VEGF from NG(10) in hMSC+ECFC encapsulating microchannels and BMP2 from NG(21) in hMSC encapsulating matrix sharply increased bFGF expression in the patterned constructs. The results suggest that mineralization and vascularization are coupled by localized secretion of paracrine signaling factors by the differentiating hMSCs and ECFCs.

  1. High molecular weight chitosan derivative polymeric micelles encapsulating superparamagnetic iron oxide for tumor-targeted magnetic resonance imaging

    PubMed Central

    Xiao, Yunbin; Lin, Zuan Tao; Chen, Yanmei; Wang, He; Deng, Ya Li; Le, D Elizabeth; Bin, Jianguo; Li, Meiyu; Liao, Yulin; Liu, Yili; Jiang, Gangbiao; Bin, Jianping

    2015-01-01

    Magnetic resonance imaging (MRI) contrast agents based on chitosan derivatives have great potential for diagnosing diseases. However, stable tumor-targeted MRI contrast agents using micelles prepared from high molecular weight chitosan derivatives are seldom reported. In this study, we developed a novel tumor-targeted MRI vehicle via superparamagnetic iron oxide nanoparticles (SPIONs) encapsulated in self-aggregating polymeric folate-conjugated N-palmitoyl chitosan (FAPLCS) micelles. The tumor-targeting ability of FAPLCS/SPIONs was demonstrated in vitro and in vivo. The results of dynamic light scattering experiments showed that the micelles had a relatively narrow size distribution (136.60±3.90 nm) and excellent stability. FAPLCS/SPIONs showed low cytotoxicity and excellent biocompatibility in cellular toxicity tests. Both in vitro and in vivo studies demonstrated that FAPLCS/SPIONs bound specifically to folate receptor-positive HeLa cells, and that FAPLCS/SPIONs accumulated predominantly in established HeLa-derived tumors in mice. The signal intensities of T2-weighted images in established HeLa-derived tumors were reduced dramatically after intravenous micelle administration. Our study indicates that FAPLCS/SPION micelles can potentially serve as safe and effective MRI contrast agents for detecting tumors that overexpress folate receptors. PMID:25709439

  2. Anti-tumor effect via passive anti-angiogenesis of PEGylated liposomes encapsulating doxorubicin in drug resistant tumors.

    PubMed

    Kibria, Golam; Hatakeyama, Hiroto; Sato, Yusuke; Harashima, Hideyoshi

    2016-07-25

    The PEGylated liposomal (PEG-LP) Doxorubicin, PEG-LP (DOX), with a diameter of around 100nm, accumulates in tumors via the enhanced permeability and retention (EPR) effect, and is used clinically for the treatment of several types of cancer. However, there are a number of tumor types that are resistant to DOX. We report herein on a unique anti-tumor effect of PEG-LP (DOX) in a DOX-resistant tumor xenograft model. PEG-LP (DOX) failed to suppress the growth of the DOX-resistant tumors (ex. non-small cell lung cancer, H69AR; renal cell carcinoma, OSRC-2) as observed in the xenograft model. Unexpectedly, tumor growth was suppressed in a DOX-resistant breast cancer (MDA-MB-231) xenograft model. We investigated the mechanism by which PEG-LP (DOX) responses differ in different drug resistant tumors. In hyperpermeable OSRC-2 tumors, PEG-LP was distributed to deep tumor tissues, where it delivers DOX to drug-resistant tumor cells. In contrast, extracellular matrix (ECM) molecules such as collagen, pericytes, cancer-associated fibroblasts render MDA-MB-231 tumors hypopermeable, which limits the extent of the penetration and distribution of PEG-LP, thereby enhancing the delivery of DOX to the vicinity of the tumor vasculature. Therefore, a remarkable anti-angiogenic effect with a preferential suppression in tumor growth is achieved. Based on the above findings, it appears that the response of PEG-LP (DOX) to drug-resistant tumors results from differences in the tumor microenvironment.

  3. Improved Mechanical Properties and Sustained Release Behavior of Cationic Cellulose Nanocrystals Reinforeced Cationic Cellulose Injectable Hydrogels.

    PubMed

    You, Jun; Cao, Jinfeng; Zhao, Yanteng; Zhang, Lina; Zhou, Jinping; Chen, Yun

    2016-09-12

    Polysaccharide-based injectable hydrogels have several advantages in the context of biomedical use. However, the main obstruction associated with the utilization of these hydrogels in clinical application is their poor mechanical properties. Herein, we describe in situ gelling of nanocomposite hydrogels based on quaternized cellulose (QC) and rigid rod-like cationic cellulose nanocrystals (CCNCs), which can overcome this challenge. In all cases, gelation immediately occurred with an increase of temperature, and the CCNCs were evenly distributed throughout the hydrogels. The nanocomposite hydrogels exhibited increasing orders-of-magnitude in the mechanical strength, high extension in degradation and the sustained release time, because of the strong interaction between CCNCs and QC chains mediated by the cross-linking agent (β-glycerophosphate, β-GP). The results of the in vitro toxicity and in vivo biocompatibility tests revealed that the hydrogels did not show obvious cytotoxicity and inflammatory reaction to cells and tissue. Moreover, DOX-encapsulated hydrogels were injected beside the tumors of mice bearing liver cancer xenografts to assess the potential utility as localized and sustained drug delivery depot systems for anticancer therapy. The results suggested that the QC/CCNC/β-GP nanocomposite hydrogels had great potential for application in subcutaneous and sustained delivery of anticancer drug to increase therapeutic efficacy and improve patient compliance. PMID:27519472

  4. Improved Mechanical Properties and Sustained Release Behavior of Cationic Cellulose Nanocrystals Reinforeced Cationic Cellulose Injectable Hydrogels.

    PubMed

    You, Jun; Cao, Jinfeng; Zhao, Yanteng; Zhang, Lina; Zhou, Jinping; Chen, Yun

    2016-09-12

    Polysaccharide-based injectable hydrogels have several advantages in the context of biomedical use. However, the main obstruction associated with the utilization of these hydrogels in clinical application is their poor mechanical properties. Herein, we describe in situ gelling of nanocomposite hydrogels based on quaternized cellulose (QC) and rigid rod-like cationic cellulose nanocrystals (CCNCs), which can overcome this challenge. In all cases, gelation immediately occurred with an increase of temperature, and the CCNCs were evenly distributed throughout the hydrogels. The nanocomposite hydrogels exhibited increasing orders-of-magnitude in the mechanical strength, high extension in degradation and the sustained release time, because of the strong interaction between CCNCs and QC chains mediated by the cross-linking agent (β-glycerophosphate, β-GP). The results of the in vitro toxicity and in vivo biocompatibility tests revealed that the hydrogels did not show obvious cytotoxicity and inflammatory reaction to cells and tissue. Moreover, DOX-encapsulated hydrogels were injected beside the tumors of mice bearing liver cancer xenografts to assess the potential utility as localized and sustained drug delivery depot systems for anticancer therapy. The results suggested that the QC/CCNC/β-GP nanocomposite hydrogels had great potential for application in subcutaneous and sustained delivery of anticancer drug to increase therapeutic efficacy and improve patient compliance.

  5. A pH-Responsive Hydrogel Based on a Tumor-Targeting Mesoporous Silica Nanocomposite for Sustained Cancer Labeling and Therapy.

    PubMed

    Chen, Xin; Liu, Zhongning

    2016-09-01

    A facile strategy is presented to synthesize hyaluronic acid (HA) and a fluorescein isothiocyanate (FITC)-conjugated mesoporous silica nanocomposite (MSN) with multiple functions of fluorescence, tumor-cell targeting, pH-triggered gelation, and enzyme-responsive drug release. This injectable nanocomposite is able to indicate the entire tumor location and provides a microenvironment with rich anticancer drugs in and around tumor tissue for a long time, to avoid recrudescence. In this design, the mesoporous silica serves as the drug container, the FITC serves as a fluorescent probe, and the anchored HA plays multiple roles as drug-release cap, tumor-targeting points, and responsive gel matrix. Owing to the specific affinity between the HA on MSNs and the CD44 antigen over-expressed on tumor cells, the MSNs can selectively attach to tumor cells. The nanocomposites then exploit the pH-responsive interactions (hydrogen bonds) among the HA to self-assemble in situ into a hydrogel around the tumor tissue. The resulting hydrogel gradually releases its payload (doxorubicin, anticancer drugs)-loaded MSNs upon HA degradation in the presence of hyaluronidase-1 (Hyal-1), followed by endocytosis and intracellular drug release. All these properties have distinct benefits for tumor treatment, demonstrating that this device is a promising candidate for oncotherapy applications. PMID:27448182

  6. A thermo-sensitive polymeric gel containing a gadolinium (Gd) compound encapsulated into liposomes significantly extended the retention of the Gd in tumors.

    PubMed

    Le, Uyen Minh; Shaker, Dalia S; Sloat, Brian R; Cui, Zhengrong

    2008-04-01

    Gadolinium neutron capture therapy (Gd-NCT) is a promising approach to fight cancer. One key factor for the success of Gd-NCT is to deliver and maintain a sufficient amount of Gd inside tumors. A large amount of Gd can be readily introduced into tumors by direct intratumor injection. However, an innovative approach is needed to maintain the Gd in the tumors. We encapsulated a Gd compound into a liposome formulation and then dispersed the liposomes into a thermo-sensitive polymeric gel. In murine tumor models, we showed that this liposome-in-thermo-sensitive gel system significantly extended the retention of the Gd compound in tumors. This similar concept may be applied to prolong the retention of other cytotoxic chemicals in tumors, and thus, improve their anti-tumor efficacy. PMID:18401783

  7. Temperature responsive hydrogels enable transient three-dimensional tumor cultures via rapid cell recovery.

    PubMed

    Heffernan, John M; Overstreet, Derek J; Srinivasan, Sanjay; Le, Long D; Vernon, Brent L; Sirianni, Rachael W

    2016-01-01

    Recovery of live cells from three-dimensional (3D) culture would improve analysis of cell behaviors in tissue engineered microenvironments. In this work, we developed a temperature responsive hydrogel to enable transient 3D culture of human glioblastoma (GBM) cells. N-isopropylacrylamide was copolymerized with hydrophilic grafts and functionalized with the cell adhesion peptide RGD to yield the novel copolymer poly(N-isopropylacrylamide-co-Jeffamine(®) M-1000 acrylamide-co-hydroxyethylmethacrylate-RGD), or PNJ-RGD. This copolymer reversibly gels in aqueous solutions when heated under normal cell culture conditions (37°C). Moreover, these gels redissolve within 70 s when cooled to room temperature without the addition of any agents to degrade the synthetic scaffold, thereby enabling rapid recollection of viable cells after 3D culture. We tested the efficiency of cell recovery following extended 3D culture and were able to recover more than 50% of viable GBM cells after up to 7 days in culture. These data demonstrate the utility of physically crosslinked PNJ-RGD hydrogels as a platform for culture and recollection of cells in 3D.

  8. T1-Weighted MR imaging of liver tumor by gadolinium-encapsulated glycol chitosan nanoparticles without non-specific toxicity in normal tissues

    NASA Astrophysics Data System (ADS)

    Na, Jin Hee; Lee, Sangmin; Koo, Heebeom; Han, Hyounkoo; Lee, Kyung Eun; Han, Seung Jin; Choi, Seung Hong; Kim, Hyuncheol; Lee, Seulki; Kwon, Ick Chan; Choi, Kuiwon; Kim, Kwangmeyung

    2016-05-01

    Herein, we have synthesized Gd(iii)-encapsulated glycol chitosan nanoparticles (Gd(iii)-CNPs) for tumor-targeted T1-weighted magnetic resonance (MR) imaging. The T1 contrast agent, Gd(iii), was successfully encapsulated into 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-modified CNPs to form stable Gd(iii)-encapsulated CNPs (Gd(iii)-CNPs) with an average particle size of approximately 280 nm. The stable nanoparticle structure of Gd(iii)-CNPs is beneficial for liver tumor accumulation by the enhanced permeation and retention (EPR) effect. Moreover, the amine groups on the surface of Gd(iii)-CNPs could be protonated and could induce fast cellular uptake at acidic pH in tumor tissue. To assay the tumor-targeting ability of Cy5.5-labeled Gd(iii)-CNPs, near-infrared fluorescence (NIRF) imaging and MR imaging were used in a liver tumor model as well as a subcutaneous tumor model. Cy5.5-labeled Gd(iii)-CNPs generated highly intense fluorescence and T1 MR signals in tumor tissues after intravenous injection, while DOTAREM®, the commercialized control MR contrast agent, showed very low tumor-targeting efficiency on MR images. Furthermore, damaged tissues were found in the livers and kidneys of mice injected with DOTAREM®, but there were no obvious adverse effects with Gd(iii)-CNPs. Taken together, these results demonstrate the superiority of Gd(iii)-CNPs as a tumor-targeting T1 MR agent.Herein, we have synthesized Gd(iii)-encapsulated glycol chitosan nanoparticles (Gd(iii)-CNPs) for tumor-targeted T1-weighted magnetic resonance (MR) imaging. The T1 contrast agent, Gd(iii), was successfully encapsulated into 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-modified CNPs to form stable Gd(iii)-encapsulated CNPs (Gd(iii)-CNPs) with an average particle size of approximately 280 nm. The stable nanoparticle structure of Gd(iii)-CNPs is beneficial for liver tumor accumulation by the enhanced permeation and retention (EPR) effect. Moreover, the

  9. Tumor regression achieved by encapsulating a moderately soluble drug into a polymeric thermogel

    NASA Astrophysics Data System (ADS)

    Ci, Tianyuan; Chen, Liang; Yu, Lin; Ding, Jiandong

    2014-07-01

    For cancer chemotherapy, a tumor regression without any surgical resection and severe side effects is greatly preferred to merely slowing down the growth of tumors. Here, we report a formulation composed of irinotecan (IRN) and poly(D,L-lactide-co-glycolide)-b-poly(ethylene glycol)-b-poly(D,L-lactide-co-glycolide) (PLGA-PEG-PLGA). IRN is a clinically used antitumor drug with active and inactive chemical forms in equilibrium, and the major form at physiological conditions is inactive but still has side effects. The aqueous solution of the PLGA-PEG-PLGA is a sol at room temperature and physically gels at body temperature, forming a thermogel. We successfully mixed this moderately soluble drug into the amphiphilic copolymer aqueous solution for the first time. The mixture was subcutaneously injected into nude mice with xenografted SW620 human colon tumors. Excellent in vivo antitumor efficacy was observed in the group that received the IRN-loaded thermogel. The tumor was significantly regressed after being treated with the IRN/thermogel, and the side effects (blood toxicity and body weight decrease) were very mild. These results might be attributed to the ideal sustained release profile and period of release of the drug from the thermogel and to the significant enhancement of the fraction of the active form of the drug by the thermogel.

  10. Tumor regression achieved by encapsulating a moderately soluble drug into a polymeric thermogel

    PubMed Central

    Ci, Tianyuan; Chen, Liang; Yu, Lin; Ding, Jiandong

    2014-01-01

    For cancer chemotherapy, a tumor regression without any surgical resection and severe side effects is greatly preferred to merely slowing down the growth of tumors. Here, we report a formulation composed of irinotecan (IRN) and poly(D,L-lactide-co-glycolide)-b-poly(ethylene glycol)-b-poly(D,L-lactide-co-glycolide) (PLGA-PEG-PLGA). IRN is a clinically used antitumor drug with active and inactive chemical forms in equilibrium, and the major form at physiological conditions is inactive but still has side effects. The aqueous solution of the PLGA-PEG-PLGA is a sol at room temperature and physically gels at body temperature, forming a thermogel. We successfully mixed this moderately soluble drug into the amphiphilic copolymer aqueous solution for the first time. The mixture was subcutaneously injected into nude mice with xenografted SW620 human colon tumors. Excellent in vivo antitumor efficacy was observed in the group that received the IRN-loaded thermogel. The tumor was significantly regressed after being treated with the IRN/thermogel, and the side effects (blood toxicity and body weight decrease) were very mild. These results might be attributed to the ideal sustained release profile and period of release of the drug from the thermogel and to the significant enhancement of the fraction of the active form of the drug by the thermogel. PMID:24980734

  11. T1-Weighted MR imaging of liver tumor by gadolinium-encapsulated glycol chitosan nanoparticles without non-specific toxicity in normal tissues.

    PubMed

    Na, Jin Hee; Lee, Sangmin; Koo, Heebeom; Han, Hyounkoo; Lee, Kyung Eun; Han, Seung Jin; Choi, Seung Hong; Kim, Hyuncheol; Lee, Seulki; Kwon, Ick Chan; Choi, Kuiwon; Kim, Kwangmeyung

    2016-05-01

    Herein, we have synthesized Gd(iii)-encapsulated glycol chitosan nanoparticles (Gd(iii)-CNPs) for tumor-targeted T1-weighted magnetic resonance (MR) imaging. The T1 contrast agent, Gd(iii), was successfully encapsulated into 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-modified CNPs to form stable Gd(iii)-encapsulated CNPs (Gd(iii)-CNPs) with an average particle size of approximately 280 nm. The stable nanoparticle structure of Gd(iii)-CNPs is beneficial for liver tumor accumulation by the enhanced permeation and retention (EPR) effect. Moreover, the amine groups on the surface of Gd(iii)-CNPs could be protonated and could induce fast cellular uptake at acidic pH in tumor tissue. To assay the tumor-targeting ability of Cy5.5-labeled Gd(iii)-CNPs, near-infrared fluorescence (NIRF) imaging and MR imaging were used in a liver tumor model as well as a subcutaneous tumor model. Cy5.5-labeled Gd(iii)-CNPs generated highly intense fluorescence and T1 MR signals in tumor tissues after intravenous injection, while DOTAREM®, the commercialized control MR contrast agent, showed very low tumor-targeting efficiency on MR images. Furthermore, damaged tissues were found in the livers and kidneys of mice injected with DOTAREM®, but there were no obvious adverse effects with Gd(iii)-CNPs. Taken together, these results demonstrate the superiority of Gd(iii)-CNPs as a tumor-targeting T1 MR agent. PMID:27113247

  12. Folic acid-targeted disulfide-based cross-linking micelle for enhanced drug encapsulation stability and site-specific drug delivery against tumors

    PubMed Central

    Zhang, Yumin; Zhou, Junhui; Yang, Cuihong; Wang, Weiwei; Chu, Liping; Huang, Fan; Liu, Qiang; Deng, Liandong; Kong, Deling; Liu, Jianfeng; Liu, Jinjian

    2016-01-01

    Although the shortcomings of small molecular antitumor drugs were efficiently improved by being entrapped into nanosized vehicles, premature drug release and insufficient tumor targeting demand innovative approaches that boost the stability and tumor responsiveness of drug-loaded nanocarriers. Here, we show the use of the core cross-linking method to generate a micelle with enhanced drug encapsulation ability and sensitivity of drug release in tumor. This kind of micelle could increase curcumin (Cur) delivery to HeLa cells in vitro and improve tumor accumulation in vivo. We designed and synthesized the core cross-linked micelle (CCM) with polyethylene glycol and folic acid-polyethylene glycol as the hydrophilic units, pyridyldisulfide as the cross-linkable and hydrophobic unit, and disulfide bond as the cross-linker. CCM showed spherical shape with a diameter of 91.2 nm by the characterization of dynamic light scattering and transmission electron microscope. Attributed to the core cross-linking, drug-loaded CCM displayed higher Nile Red or Cur-encapsulated stability and better sensitivity to glutathione than noncross-linked micelle (NCM). Cellular uptake and in vitro antitumor studies proved the enhanced endocytosis and better cytotoxicity of CCM-Cur against HeLa cells, which had a high level of glutathione. Meanwhile, the folate receptor-mediated drug delivery (FA-CCM-Cur) further enhanced the endocytosis and cytotoxicity. Ex vivo imaging studies showed that CCM-Cur and FA-CCM-Cur possessed higher tumor accumulation until 24 hours after injection. Concretely, FA-CCM-Cur exhibited the highest tumor accumulation with 1.7-fold of noncross-linked micelle Cur and 2.8-fold of free Cur. By combining cross-linking of the core with active tumor targeting of FA, we demonstrated a new and effective way to design nanocarriers for enhanced drug encapsulation, smart tumor responsiveness, and elevated tumor accumulation. PMID:27051287

  13. Polypyrrole-encapsulated iron tungstate nanocomposites: a versatile platform for multimodal tumor imaging and photothermal therapy

    NASA Astrophysics Data System (ADS)

    Xiao, Zhiyin; Peng, Chen; Jiang, Xiaohong; Peng, Yuxuan; Huang, Xiaojuan; Guan, Guoqiang; Zhang, Wenlong; Liu, Xiaoming; Qin, Zongyi; Hu, Junqing

    2016-06-01

    A versatile nanoplatform of FeWO4@Polypyrrole (PPy) core/shell nanocomposites, which was facilely fabricated by first hydrothermal synthesis of FeWO4 nanoparticles and subsequent surface-coating of polypyrrole shell, was developed as an effective nanotheranostic agent of cancer. The as-prepared nanocomposites demonstrated excellent dispersion in saline, long-term colloidal storage, outstanding photo-stability and high photothermal efficiency in solution. In particular, FeWO4@PPy exhibited efficient performance for hyperthermia-killing of cancer cells under the irradiation of an 808 nm laser, accompanied with multimodal contrast capabilities for magnetic resonance imaging, X-ray computed tomography and infrared thermal imaging in vitro and in vivo. Furthermore, the nanocomposites presented impactful tumor growth inhibition and good biocompability in animal experiments. Blood circulation and biodistribution of the nanocomposites were also investigated to understand their in vivo behaviours. Our results verified the platform of FeWO4@PPy nanocomposites as a promising photothermal agent for imaging-guided cancer theranostics.A versatile nanoplatform of FeWO4@Polypyrrole (PPy) core/shell nanocomposites, which was facilely fabricated by first hydrothermal synthesis of FeWO4 nanoparticles and subsequent surface-coating of polypyrrole shell, was developed as an effective nanotheranostic agent of cancer. The as-prepared nanocomposites demonstrated excellent dispersion in saline, long-term colloidal storage, outstanding photo-stability and high photothermal efficiency in solution. In particular, FeWO4@PPy exhibited efficient performance for hyperthermia-killing of cancer cells under the irradiation of an 808 nm laser, accompanied with multimodal contrast capabilities for magnetic resonance imaging, X-ray computed tomography and infrared thermal imaging in vitro and in vivo. Furthermore, the nanocomposites presented impactful tumor growth inhibition and good biocompability in

  14. Polypyrrole-encapsulated iron tungstate nanocomposites: a versatile platform for multimodal tumor imaging and photothermal therapy.

    PubMed

    Xiao, Zhiyin; Peng, Chen; Jiang, Xiaohong; Peng, Yuxuan; Huang, Xiaojuan; Guan, Guoqiang; Zhang, Wenlong; Liu, Xiaoming; Qin, Zongyi; Hu, Junqing

    2016-07-14

    A versatile nanoplatform of FeWO4@Polypyrrole (PPy) core/shell nanocomposites, which was facilely fabricated by first hydrothermal synthesis of FeWO4 nanoparticles and subsequent surface-coating of polypyrrole shell, was developed as an effective nanotheranostic agent of cancer. The as-prepared nanocomposites demonstrated excellent dispersion in saline, long-term colloidal storage, outstanding photo-stability and high photothermal efficiency in solution. In particular, FeWO4@PPy exhibited efficient performance for hyperthermia-killing of cancer cells under the irradiation of an 808 nm laser, accompanied with multimodal contrast capabilities for magnetic resonance imaging, X-ray computed tomography and infrared thermal imaging in vitro and in vivo. Furthermore, the nanocomposites presented impactful tumor growth inhibition and good biocompability in animal experiments. Blood circulation and biodistribution of the nanocomposites were also investigated to understand their in vivo behaviours. Our results verified the platform of FeWO4@PPy nanocomposites as a promising photothermal agent for imaging-guided cancer theranostics. PMID:27303912

  15. Novel Injectable Pentablock Copolymer Based Thermoresponsive Hydrogels for Sustained Release Vaccines.

    PubMed

    Bobbala, Sharan; Tamboli, Viral; McDowell, Arlene; Mitra, Ashim K; Hook, Sarah

    2016-01-01

    The need for multiple vaccinations to enhance the immunogenicity of subunit vaccines may be reduced by delivering the vaccine over an extended period of time. Here, we report two novel injectable pentablock copolymer based thermoresponsive hydrogels made of polyethyleneglycol-polycaprolactone-polylactide-polycaprolactone-polyethyleneglycol (PEG-PCL-PLA-PCL-PEG) with varying ratios of polycaprolactone (PCL) and polylactide (PLA), as single shot sustained release vaccines. Pentablock copolymer hydrogels were loaded with vaccine-encapsulated poly lactic-co-glycolic acid nanoparticles (PLGA-NP) or with the soluble vaccine components. Incorporation of PLGA-NP into the thermoresponsive hydrogels increased the complex viscosity of the gels, lowered the gelation temperature, and minimized the burst release of antigen and adjuvants. The two pentablock hydrogels stimulated both cellular and humoral responses. The addition of PLGA-NP to the hydrogels sustained immune responses for up to 49 days. The polymer with a higher ratio of PCL to PLA formed a more rigid gel, induced stronger immune responses, and stimulated effective anti-tumor responses in a prophylactic melanoma tumor model.

  16. A 3D Poly(ethylene glycol)-based Tumor Angiogenesis Model to Study the Influence of Vascular Cells on Lung Tumor Cell Behavior

    PubMed Central

    Roudsari, Laila C.; Jeffs, Sydney E.; Witt, Amber S.; Gill, Bartley J.; West, Jennifer L.

    2016-01-01

    Tumor angiogenesis is critical to tumor growth and metastasis, yet much is unknown about the role vascular cells play in the tumor microenvironment. In vitro models that mimic in vivo tumor neovascularization facilitate exploration of this role. Here we investigated lung adenocarcinoma cancer cells (344SQ) and endothelial and pericyte vascular cells encapsulated in cell-adhesive, proteolytically-degradable poly(ethylene) glycol-based hydrogels. 344SQ in hydrogels formed spheroids and secreted proangiogenic growth factors that significantly increased with exposure to transforming growth factor beta 1 (TGF-β1), a potent tumor progression-promoting factor. Vascular cells in hydrogels formed tubule networks with localized activated TGF-β1. To study cancer cell-vascular cell interactions, we engineered a 2-layer hydrogel with 344SQ and vascular cell layers. Large, invasive 344SQ clusters (area > 5,000 μm2, circularity < 0.25) developed at the interface between the layers, and were not evident further from the interface or in control hydrogels without vascular cells. A modified model with spatially restricted 344SQ and vascular cell layers confirmed that observed cluster morphological changes required close proximity to vascular cells. Additionally, TGF-β1 inhibition blocked endothelial cell-driven 344SQ migration. Our findings suggest vascular cells contribute to tumor progression and establish this culture system as a platform for studying tumor vascularization. PMID:27596933

  17. A 3D Poly(ethylene glycol)-based Tumor Angiogenesis Model to Study the Influence of Vascular Cells on Lung Tumor Cell Behavior

    NASA Astrophysics Data System (ADS)

    Roudsari, Laila C.; Jeffs, Sydney E.; Witt, Amber S.; Gill, Bartley J.; West, Jennifer L.

    2016-09-01

    Tumor angiogenesis is critical to tumor growth and metastasis, yet much is unknown about the role vascular cells play in the tumor microenvironment. In vitro models that mimic in vivo tumor neovascularization facilitate exploration of this role. Here we investigated lung adenocarcinoma cancer cells (344SQ) and endothelial and pericyte vascular cells encapsulated in cell-adhesive, proteolytically-degradable poly(ethylene) glycol-based hydrogels. 344SQ in hydrogels formed spheroids and secreted proangiogenic growth factors that significantly increased with exposure to transforming growth factor beta 1 (TGF-β1), a potent tumor progression-promoting factor. Vascular cells in hydrogels formed tubule networks with localized activated TGF-β1. To study cancer cell-vascular cell interactions, we engineered a 2-layer hydrogel with 344SQ and vascular cell layers. Large, invasive 344SQ clusters (area > 5,000 μm2, circularity < 0.25) developed at the interface between the layers, and were not evident further from the interface or in control hydrogels without vascular cells. A modified model with spatially restricted 344SQ and vascular cell layers confirmed that observed cluster morphological changes required close proximity to vascular cells. Additionally, TGF-β1 inhibition blocked endothelial cell-driven 344SQ migration. Our findings suggest vascular cells contribute to tumor progression and establish this culture system as a platform for studying tumor vascularization.

  18. A 3D Poly(ethylene glycol)-based Tumor Angiogenesis Model to Study the Influence of Vascular Cells on Lung Tumor Cell Behavior.

    PubMed

    Roudsari, Laila C; Jeffs, Sydney E; Witt, Amber S; Gill, Bartley J; West, Jennifer L

    2016-01-01

    Tumor angiogenesis is critical to tumor growth and metastasis, yet much is unknown about the role vascular cells play in the tumor microenvironment. In vitro models that mimic in vivo tumor neovascularization facilitate exploration of this role. Here we investigated lung adenocarcinoma cancer cells (344SQ) and endothelial and pericyte vascular cells encapsulated in cell-adhesive, proteolytically-degradable poly(ethylene) glycol-based hydrogels. 344SQ in hydrogels formed spheroids and secreted proangiogenic growth factors that significantly increased with exposure to transforming growth factor beta 1 (TGF-β1), a potent tumor progression-promoting factor. Vascular cells in hydrogels formed tubule networks with localized activated TGF-β1. To study cancer cell-vascular cell interactions, we engineered a 2-layer hydrogel with 344SQ and vascular cell layers. Large, invasive 344SQ clusters (area > 5,000 μm(2), circularity < 0.25) developed at the interface between the layers, and were not evident further from the interface or in control hydrogels without vascular cells. A modified model with spatially restricted 344SQ and vascular cell layers confirmed that observed cluster morphological changes required close proximity to vascular cells. Additionally, TGF-β1 inhibition blocked endothelial cell-driven 344SQ migration. Our findings suggest vascular cells contribute to tumor progression and establish this culture system as a platform for studying tumor vascularization. PMID:27596933

  19. A Controlled Release Codelivery System of MSCs Encapsulated in Dextran/Gelatin Hydrogel with TGF-β3-Loaded Nanoparticles for Nucleus Pulposus Regeneration

    PubMed Central

    Xu, Yuan; Luo, Xiangdong

    2016-01-01

    Mesenchymal stem cell- (MSC-) based therapy is regarded as a potential tissue engineering strategy to achieve nucleus pulposus (NP) regeneration for the treatment of intervertebral disc degeneration (IDD). However, it is still a challenge to induce MSC differentiation in NP-like cells when MSCs are implanted into the NP. The purpose of this study was to construct poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles as carriers for TGF-β3 controlled release and establish a codelivery system of a dextran/gelatin hydrogel with the nanoparticles for long-term processing of discogenesis differentiation. TGF-β3-loaded PLGA nanoparticles were prepared by the double-emulsion solvent evaporation method and seeded uniformly into the hydrogel. Morphological observations, an assessment of the release kinetics of TGF-β3, a cytotoxic assay, a cell proliferation test, a biochemical content assay, qRT-PCR, and immunohistological analyses of the codelivery system were conducted in the study. The results showed that the TGF-β3-loaded nanoparticles could release TGF-β3 gradually. The codelivery system exhibited favorable cytocompatibility, and the TGF-β3 that was released could induce MSCs to NP-like cells while promoting ECM-related biosynthesis. These results suggest this codelivery system may be employed as a promising carrier for discogenesis of MSCs in situ. PMID:27774108

  20. Reduced Graphene Oxide/Amaranth Extract/AuNPs Composite Hydrogel on Tumor Cells as Integrated Platform for Localized and Multiple Synergistic Therapy.

    PubMed

    Chang, Guanru; Wang, Yunlong; Gong, Baoyou; Xiao, Yazhong; Chen, Yan; Wang, Shaohua; Li, Shikuo; Huang, Fangzhi; Shen, Yuhua; Xie, Anjian

    2015-06-01

    Integration of multimodal treatment strategies combined with localized therapy to enhance antitumor efficacy and reduce side effects is still a challenge. Herein, a novel composite hydrogel containing rGO, amaranth extract (AE) and gold nanoparticles (AuNPs) was prepared by using AE as both reductant and cross-linking agent. The chlorophyll derivatives in AE were also employed as a photodynamic therapy drug. Meanwhile, AuNPs and rGO both have obvious photothermal effects and can accelerate the generation of cytotoxic singlet oxygen (1O2). The temperature increase of rGO/AE/AuNPs precursor is up to 6.3 °C under 808 nm laser irradiation at a power density of 200 mW·cm(-2). The hydrogel shell on in situ tumor cells was easily formed and regulated by near-infrared irradiation within 10 min, which could both retain a high concentration of drugs on the lesion site and prevent them from migrating to normal tissue, thus reducing the side effects. Compared with rGO/AE and AE, rGO/AE/AuNPs showed a remarkably improved and synergistic antitumor effect. The hydrogel possesses good biocompatibility and high hydrophilicity and could be used for loading chemotherapeutics, which provides a new approach for located and multiple antitumor therapies. PMID:25978657

  1. Ex vivo cultures of glioblastoma in three-dimensional hydrogel maintain the original tumor growth behavior and are suitable for preclinical drug and radiation sensitivity screening

    SciTech Connect

    Jiguet Jiglaire, Carine; Baeza-Kallee, Nathalie; Denicolaï, Emilie; Barets, Doriane; Metellus, Philippe; and others

    2014-02-15

    Identification of new drugs and predicting drug response are major challenges in oncology, especially for brain tumors, because total surgical resection is difficult and radiation therapy or chemotherapy is often ineffective. With the aim of developing a culture system close to in vivo conditions for testing new drugs, we characterized an ex vivo three-dimensional culture system based on a hyaluronic acid-rich hydrogel and compared it with classical two-dimensional culture conditions. U87-MG glioblastoma cells and seven primary cell cultures of human glioblastomas were subjected to radiation therapy and chemotherapy drugs. It appears that 3D hydrogel preserves the original cancer growth behavior and enables assessment of the sensitivity of malignant gliomas to radiation and drugs with regard to inter-tumoral heterogeneity of therapeutic response. It could be used for preclinical assessment of new therapies. - Highlights: • We have compared primary glioblastoma cell culture in a 2D versus 3D-matrix system. • In 3D morphology, organization and markers better recapitulate the original tumor. • 3D-matrix culture might represent a relevant system for more accurate drug screening.

  2. Enabling Surgical Placement of Hydrogels through Achieving Paste-Like Rheological Behavior in Hydrogel Precursor Solutions

    PubMed Central

    Beck, Emily C.; Lohman, Brooke L.; Tabakh, Daniel B.; Kieweg, Sarah L.; Gehrke, Stevin H.; Berkland, Cory J.; Detamore, Michael S.

    2015-01-01

    Hydrogels are a promising class of materials for tissue regeneration, but they lack the ability to be molded into a defect site by a surgeon because hydrogel precursors are liquid solutions that are prone to leaking during placement. Therefore, although the main focus of hydrogel technology and developments are on hydrogels in their crosslinked form, our primary focus is on improving the fluid behavior of hydrogel precursor solutions. In this work, we introduce a method to achieve paste-like hydrogel precursor solutions by combining hyaluronic acid nanoparticles with traditional crosslinked hyaluronic acid hydrogels. Prior to crosslinking, the samples underwent rheological testing to assess yield stress and recovery using linear hyaluronic acid as a control. The experimental groups containing nanoparticles were the only solutions that exhibited a yield stress, demonstrating that the nanoparticulate rather than the linear form of hyaluronic acid was necessary to achieve paste-like behavior. The gels were also photocrosslinked and further characterized as solids, where it was demonstrated that the inclusion of nanoparticles did not adversely affect the compressive modulus and that encapsulated bone marrow-derived mesenchymal stem cells remained viable. Overall, this nanoparticle-based approach provides a platform hydrogel system that exhibits a yield stress prior to crosslinking, and can then be crosslinked into a hydrogel that is capable of encapsulating cells that remain viable. This behavior may hold significant impact for hydrogel applications where a paste-like behavior is desired in the hydrogel precursor solution. PMID:25691398

  3. Perfluorinated alginate for cellular encapsulation.

    PubMed

    Gattás-Asfura, Kerim M; Fraker, Christopher A; Stabler, Cherie L

    2012-08-01

    Molecules of pentadecafluorooctanoyl chloride (PFC) were grafted onto alginate (Alg) using a linear poly(ethylene glycol) linker and amide bonds. The resulting Alg-PFC material was characterized by proton nuclear magnetic resonance and infrared spectroscopies. The degree of PFC functionalization significantly influenced the physical and chemical properties of Alg-PFC, particularly when the resulting polymer was ionically crosslinked into hydrogels. Alg-PFC hydrogel beads fabricated via Ba(2+) crosslinking were found to match the permeability properties of control alginate beads, except upon swelling over time in culture media. When used to encapsulate MIN6 cells, a beta cell line, Alg-PFC beads demonstrated enhanced cell proliferation over alginate control beads. These results indicate that Alg-PFC hydrogels retain some of the PFC's biological-relevant benefits, such as enhancement of mass transport and bioinertness, to enhance cellular viability within alginate three-dimensional hydrogel environments. We envision these functionalized hydrogels to be particularly useful in the encapsulation of cells with a high metabolic demand, such as pancreatic islets.

  4. Hyaluronic acid hydrogel stiffness and oxygen tension affect cancer cell fate and endothelial sprouting

    PubMed Central

    Shen, Yu-I; Abaci, Hasan E.; Krupsi, Yoni; Weng, Lien-Chun; Burdick, Jason A.; Gerecht, Sharon

    2014-01-01

    Three-dimensional (3D) tissue culture models may recapitulate aspects of the tumorigenic microenvironment in vivo, enabling the study of cancer progression in vitro. Both hypoxia and matrix stiffness are known to regulate tumor growth. Using a modular culture system employing an acrylated hyaluronic acid (AHA) hydrogel, three hydrogel matrices with distinctive degrees of viscoelasticity — soft (78±16 Pa), medium (309± 57 Pa), and stiff (596± 73 Pa) — were generated using the same concentration of adhesion ligands. Oxygen levels within the hydrogel in atmospheric (21 %), hypoxic (5 %), and severely hypoxic (1 %) conditions were assessed with a mathematical model. HT1080 fibrosarcoma cells, encapsulated within the AHA hydrogels in high densities, generated nonuniform oxygen distributions, while lower cell densities resulted in more uniform oxygen distributions in the atmospheric and hypoxic environments. When we examined how varying viscoelasticity in atmospheric and hypoxic environments affects cell cycles and the expression of BNIP3 and BNIP3L (autophagy and apoptosis genes), and GLUT-1 (a glucose transport gene), we observed that HT1080 cells in 3D hydrogel adapted better to hypoxic conditions than those in a Petri dish, with no obvious correlation to matrix viscoelasticity, by recovering rapidly from possible autophagy/apoptotic events and alternating metabolism mechanisms. Further, we examined how HT1080 cells cultured in varying viscoelasticity and oxygen tension conditions affected endothelial sprouting and invasion. We observed that increased matrix stiffness reduced endothelial sprouting and invasion in atmospheric conditions; however, we observed increased endothelial sprouting and invasion under hypoxia at all levels of matrix stiffness with the upregulation of vascular endothelial growth factor (VEGF) and angiopoeitin-1 (ANG-1). Overall, HT1080 cells encapsulated in the AHA hydrogels under hypoxic stress recovered better from apoptosis and

  5. Zoledronic acid-encapsulating self-assembling nanoparticles and doxorubicin: a combinatorial approach to overcome simultaneously chemoresistance and immunoresistance in breast tumors

    PubMed Central

    Kopecka, Joanna; Porto, Stefania; Lusa, Sara; Gazzano, Elena; Salzano, Giuseppina; Pinzòn-Daza, Martha Leonor; Giordano, Antonio; Desiderio, Vincenzo; Ghigo, Dario; De Rosa, Giuseppe; Caraglia, Michele; Riganti, Chiara

    2016-01-01

    The resistance to chemotherapy and the tumor escape from host immunosurveillance are the main causes of the failure of anthracycline-based regimens in breast cancer, where an effective chemo-immunosensitizing strategy is lacking. The clinically used aminobisphosphonate zoledronic acid (ZA) reverses chemoresistance and immunoresistance in vitro. Previously we developed a nanoparticle-based zoledronic acid-containing formulation (NZ) that allowed a higher intratumor delivery of the drug compared with free ZA in vivo. We tested its efficacy in combination with doxorubicin in breast tumors refractory to chemotherapy and immune system recognition as a new combinatorial approach to produce chemo- and immunosensitization. NZ reduced the IC50 of doxorubicin in human and murine chemoresistant breast cancer cells and restored the doxorubicin efficacy against chemo-immunoresistant tumors implanted in immunocompetent mice. By reducing the metabolic flux through the mevalonate pathway, NZ lowered the activity of Ras/ERK1/2/HIF-1α axis and the expression of P-glycoprotein, decreased the glycolysis and the mitochondrial respiratory chain, induced a cytochrome c/caspase 9/caspase 3-dependent apoptosis, thus restoring the direct cytotoxic effects of doxorubicin on tumor cell. Moreover, NZ restored the doxorubicin-induced immunogenic cell death and reversed the tumor-induced immunosuppression due to the production of kynurenine, by inhibiting the STAT3/indoleamine 2,3 dioxygenase axis. These events increased the number of dendritic cells and decreased the number of immunosuppressive T-regulatory cells infiltrating the tumors. Our work proposes the use of nanoparticle encapsulating zoledronic acid as an effective tool overcoming at the same time chemoresistance and immunoresistance in breast tumors, thanks to the effects exerted on tumor cell and tumor-infiltrating immune cells. PMID:26980746

  6. Zoledronic acid-encapsulating self-assembling nanoparticles and doxorubicin: a combinatorial approach to overcome simultaneously chemoresistance and immunoresistance in breast tumors.

    PubMed

    Kopecka, Joanna; Porto, Stefania; Lusa, Sara; Gazzano, Elena; Salzano, Giuseppina; Pinzòn-Daza, Martha Leonor; Giordano, Antonio; Desiderio, Vincenzo; Ghigo, Dario; De Rosa, Giuseppe; Caraglia, Michele; Riganti, Chiara

    2016-04-12

    The resistance to chemotherapy and the tumor escape from host immunosurveillance are the main causes of the failure of anthracycline-based regimens in breast cancer, where an effective chemo-immunosensitizing strategy is lacking.The clinically used aminobisphosphonate zoledronic acid (ZA) reverses chemoresistance and immunoresistance in vitro. Previously we developed a nanoparticle-based zoledronic acid-containing formulation (NZ) that allowed a higher intratumor delivery of the drug compared with free ZA in vivo. We tested its efficacy in combination with doxorubicin in breast tumors refractory to chemotherapy and immune system recognition as a new combinatorial approach to produce chemo- and immunosensitization.NZ reduced the IC50 of doxorubicin in human and murine chemoresistant breast cancer cells and restored the doxorubicin efficacy against chemo-immunoresistant tumors implanted in immunocompetent mice. By reducing the metabolic flux through the mevalonate pathway, NZ lowered the activity of Ras/ERK1/2/HIF-1α axis and the expression of P-glycoprotein, decreased the glycolysis and the mitochondrial respiratory chain, induced a cytochrome c/caspase 9/caspase 3-dependent apoptosis, thus restoring the direct cytotoxic effects of doxorubicin on tumor cell. Moreover, NZ restored the doxorubicin-induced immunogenic cell death and reversed the tumor-induced immunosuppression due to the production of kynurenine, by inhibiting the STAT3/indoleamine 2,3 dioxygenase axis. These events increased the number of dendritic cells and decreased the number of immunosuppressive T-regulatory cells infiltrating the tumors.Our work proposes the use of nanoparticle encapsulating zoledronic acid as an effective tool overcoming at the same time chemoresistance and immunoresistance in breast tumors, thanks to the effects exerted on tumor cell and tumor-infiltrating immune cells. PMID:26980746

  7. Hydrogels for Engineering of Perfusable Vascular Networks

    PubMed Central

    Liu, Juan; Zheng, Huaiyuan; Poh, Patrina S. P.; Machens, Hans-Günther; Schilling, Arndt F.

    2015-01-01

    Hydrogels are commonly used biomaterials for tissue engineering. With their high-water content, good biocompatibility and biodegradability they resemble the natural extracellular environment and have been widely used as scaffolds for 3D cell culture and studies of cell biology. The possible size of such hydrogel constructs with embedded cells is limited by the cellular demand for oxygen and nutrients. For the fabrication of large and complex tissue constructs, vascular structures become necessary within the hydrogels to supply the encapsulated cells. In this review, we discuss the types of hydrogels that are currently used for the fabrication of constructs with embedded vascular networks, the key properties of hydrogels needed for this purpose and current techniques to engineer perfusable vascular structures into these hydrogels. We then discuss directions for future research aimed at engineering of vascularized tissue for implantation. PMID:26184185

  8. Hydrogels for Engineering of Perfusable Vascular Networks.

    PubMed

    Liu, Juan; Zheng, Huaiyuan; Poh, Patrina S P; Machens, Hans-Günther; Schilling, Arndt F

    2015-07-14

    Hydrogels are commonly used biomaterials for tissue engineering. With their high-water content, good biocompatibility and biodegradability they resemble the natural extracellular environment and have been widely used as scaffolds for 3D cell culture and studies of cell biology. The possible size of such hydrogel constructs with embedded cells is limited by the cellular demand for oxygen and nutrients. For the fabrication of large and complex tissue constructs, vascular structures become necessary within the hydrogels to supply the encapsulated cells. In this review, we discuss the types of hydrogels that are currently used for the fabrication of constructs with embedded vascular networks, the key properties of hydrogels needed for this purpose and current techniques to engineer perfusable vascular structures into these hydrogels. We then discuss directions for future research aimed at engineering of vascularized tissue for implantation.

  9. Functional surface engineering of quantum dot hydrogels for selective fluorescence imaging of extracellular lactate release.

    PubMed

    Zhang, Xiaomeng; Ding, Shushu; Cao, Sumei; Zhu, Anwei; Shi, Guoyue

    2016-06-15

    Selective and sensitive detection of extracellular lactate is of fundamental significance for studying the metabolic alterations in tumor progression. Here we report the rational design and synthesis of a quantum-dot-hydrogel-based fluorescent probe for biosensing and bioimaging the extracellular lactate. By surface engineering the destabilized quantum dot sol with Nile Blue, the destabilized Nile-Blue-functionalized quantum dot sol cannot only self-assemble forming quantum dot hydrogel but also monitor lactate in the presence of nicotinamide adenine dinucleotide cofactor and lactate dehydrogenase through fluorescence resonance energy transfer. Notably, the surface engineered quantum dot hydrogel show high selectivity toward lactate over common metal ions, amino acids and other small molecules that widely coexist in biological system. Moreover, the destabilized Nile-Blue-functionalized quantum dots can encapsulate isolated cancer cells when self-assembled into a hydrogel and thus specifically detect and image the extracellular lactate metabolism. By virtue of these properties, the functionalized quantum dot hydrogel was further successfully applied to monitor the effect of metabolic agents.

  10. Monitoring Tumor Targeting and Treatment Effects of IRDye 800CW and GX1-Conjugated Polylactic Acid Nanoparticles Encapsulating Endostar on Glioma by Optical Molecular Imaging.

    PubMed

    Li, Yaqian; Du, Yang; Liu, Xia; Zhang, Qian; Jing, Lijia; Liang, Xiaolong; Chi, Chongwei; Dai, Zhifei; Tian, Jie

    2015-01-01

    Molecular imaging used in cancer diagnosis and therapeutic response monitoring is important for glioblastoma (GBM) research. Antiangiogenic therapy currently is one of the emerging approaches for GBM treatment. In this study, a multifunctional nanoparticle was fabricated that can facilitate the fluorescence imaging of tumor and deliver a therapeutic agent to the tumor region in vivo and therefore possesses broad application in cancer diagnosis and treatment. This particle was polylactic acid (PLA) nanoparticles encapsulating Endostar, which was further conjugated with GX1 peptide and the near-infrared (NIR) dye IRDye 800CW (IGPNE). We demonstrated noninvasive angiogenesis targeting and therapy of IGPNE on U87MG xenografts in vivo using dual-modality optical molecular imaging including NIR fluorescence molecular imaging (FMI) and bioluminescence imaging (BLI). The NIR FMI results demonstrated that IGPNE had more accumulation to the tumor site compared to free IRDye 800CW. To further evaluate the antitumor treatment efficacy of IGPNE, BLI and immunohistochemistry analysis were performed on tumor-bearing mice. With the aid of molecular imaging, the results confirmed that IGPNE enhanced antitumor treatment efficacy compared to free Endostar. In conclusion, IGPNE realizes real-time imaging of U87MG tumors and improves the antiangiogenic therapeutic efficacy in vivo.

  11. Photo activation of HPPH encapsulated in “Pocket” liposomes triggers multiple drug release and tumor cell killing in mouse breast cancer xenografts

    PubMed Central

    Sine, Jessica; Urban, Cordula; Thayer, Derek; Charron, Heather; Valim, Niksa; Tata, Darrell B; Schiff, Rachel; Blumenthal, Robert; Joshi, Amit; Puri, Anu

    2015-01-01

    We recently reported laser-triggered release of photosensitive compounds from liposomes containing dipalmitoylphosphatidylcholine (DPPC) and 1,2 bis(tricosa-10,12-diynoyl)-sn-glycero-3-phosphocholine (DC8,9PC). We hypothesized that the permeation of photoactivated compounds occurs through domains of enhanced fluidity in the liposome membrane and have thus called them “Pocket” liposomes. In this study we have encapsulated the red light activatable anticancer photodynamic therapy drug 2-(1-Hexyloxyethyl)-2-devinyl pyropheophorbide-a (HPPH) (Ex/Em410/670 nm) together with calcein (Ex/Em490/517 nm) as a marker for drug release in Pocket liposomes. A mole ratio of 7.6:1 lipid:HPPH was found to be optimal, with >80% of HPPH being included in the liposomes. Exposure of liposomes with a cw-diode 660 nm laser (90 mW, 0–5 minutes) resulted in calcein release only when HPPH was included in the liposomes. Further analysis of the quenching ratios of liposome-entrapped calcein in the laser treated samples indicated that the laser-triggered release occurred via the graded mechanism. In vitro studies with MDA-MB-231-LM2 breast cancer cell line showed significant cell killing upon treatment of cell-liposome suspensions with the laser. To assess in vivo efficacy, we implanted MDA-MB-231-LM2 cells containing the luciferase gene along the mammary fat pads on the ribcage of mice. For biodistribution experiments, trace amounts of a near infrared lipid probe DiR (Ex/Em745/840 nm) were included in the liposomes. Liposomes were injected intravenously and laser treatments (90 mW, 0.9 cm diameter, for an exposure duration ranging from 5–8 minutes) were done 4 hours postinjection (only one tumor per mouse was treated, keeping the second flank tumor as control). Calcein release occurred as indicated by an increase in calcein fluorescence from laser treated tumors only. The animals were observed for up to 15 days postinjection and tumor volume and luciferase expression was measured. A

  12. Indocyanine green encapsulated nanogels for hyaluronidase activatable and selective near infrared imaging of tumors and lymph nodes.

    PubMed

    Mok, Hyejung; Jeong, Hyunkyung; Kim, Sun-Jung; Chung, Bong Hyun

    2012-09-01

    Indocyanine green (ICG) encapsulated hyaluronic acid (HA) nanogels were first studied for highly selective detection of specific cancers and lymph nodes via hyaluronidase sensitive switch-on of near infrared fluorescence as a long-lasting and stimuli-responsive imaging probe.

  13. Targeted delivery of let-7a microRNA encapsulated ephrin-A1 conjugated liposomal nanoparticles inhibit tumor growth in lung cancer

    PubMed Central

    Lee, Hung-Yen; Mohammed, Kamal A; Kaye, Fredric; Sharma, Parvesh; Moudgil, Brij M; Clapp, William L; Nasreen, Najmunnisa

    2013-01-01

    MicroRNAs (miRs) are small noncoding RNA sequences that negatively regulate the expression of target genes by posttranscriptional repression. miRs are dysregulated in various diseases, including cancer. let-7a miR, an antioncogenic miR, is downregulated in lung cancers. Our earlier studies demonstrated that let-7a miR inhibits tumor growth in malignant pleural mesothelioma (MPM) and could be a potential therapeutic against lung cancer. EphA2 (ephrin type-A receptor 2) tyrosine kinase is overexpressed in most cancer cells, including MPM and non-small-cell lung cancer (NSCLC) cells. Ephrin-A1, a specific ligand of the EphA2 receptor, inhibits cell proliferation and migration. In this study, to enhance the delivery of miR, the miRs were encapsulated in the DOTAP (N-[1-(2.3-dioleoyloxy)propyl]-N,N,N-trimethyl ammonium)/Cholesterol/DSPE (1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[cyanur(polyethylene glycol)-2000])-PEG (polyethylene glycol)-cyanur liposomal nanoparticles (LNP) and ephrin-A1 was conjugated on the surface of LNP to target receptor EphA2 on lung cancer cells. The LNP with an average diameter of 100 nm showed high stability, low cytotoxicity, and high loading efficiency of precursor let-7a miR and ephrin-A1. The ephrin-A1 conjugated LNP (ephrin-A1–LNP) and let-7a miR encapsulated LNP (miR–LNP) showed improved transfection efficiency against MPM and NSCLC. The effectiveness of targeted delivery of let-7a miR encapsulated ephrin-A1 conjugated LNP (miR–ephrin-A1–LNP) was determined on MPM and NSCLC tumor growth in vitro. miR–ephrin-A1–LNP significantly increased the delivery of let-7a miR in lung cancer cells when compared with free let-7a miR. In addition, the expression of target gene Ras was significantly repressed following miR–ephrin-A1–LNP treatment. Furthermore, the miR–ephrin-A1–LNP complex significantly inhibited MPM and NSCLC proliferation, migration, and tumor growth. Our results demonstrate that the engineered mi

  14. 3D Printing: 3D Printing of Highly Stretchable and Tough Hydrogels into Complex, Cellularized Structures.

    PubMed

    Hong, Sungmin; Sycks, Dalton; Chan, Hon Fai; Lin, Shaoting; Lopez, Gabriel P; Guilak, Farshid; Leong, Kam W; Zhao, Xuanhe

    2015-07-15

    X. Zhao and co-workers develop on page 4035 a new biocompatible hydrogel system that is extremely tough and stretchable and can be 3D printed into complex structures, such as the multilayer mesh shown. Cells encapsulated in the tough and printable hydrogel maintain high viability. 3D-printed structures of the tough hydrogel can sustain high mechanical loads and deformations.

  15. Enhanced antitumor effects by docetaxel/LL37-loaded thermosensitive hydrogel nanoparticles in peritoneal carcinomatosis of colorectal cancer.

    PubMed

    Fan, Rangrang; Tong, Aiping; Li, Xiaoling; Gao, Xiang; Mei, Lan; Zhou, Liangxue; Zhang, Xiaoning; You, Chao; Guo, Gang

    2015-01-01

    Intraperitoneal chemotherapy was explored in clinical trials as a promising strategy to improve the therapeutic effects of chemotherapy. In this work, we developed a biodegradable and injectable drug-delivery system by coencapsulation of docetaxel (Doc) and LL37 peptide polymeric nanoparticles (Doc+LL37 NPs) in a thermosensitive hydrogel system for colorectal peritoneal carcinoma therapy. Firstly, polylactic acid (PLA)-Pluronic L35-PLA (PLA-L35-PLA) was explored to prepare the biodegradable Doc+LL37 NPs using a water-in-oil-in-water double-emulsion solvent-evaporation method. Then, biodegradable and injectable thermosensitive PLA-L64-PLA hydrogel with lower sol-gel transition temperature at around body temperature was also prepared. Transmission electron microscopy revealed that the Doc+LL37 NPs formed with the PLA-L35-PLA copolymer were spherical. Fourier-transform infrared spectra certified that Doc and LL37 were encapsulated successfully. X-ray diffraction diagrams indicated that Doc was encapsulated amorphously. Intraperitoneal administration of Doc+LL37 NPs-hydrogel significantly suppressed the growth of HCT116 peritoneal carcinomatosis in vivo and prolonged the survival of tumor-bearing mice. Our results suggested that Doc+LL37 NPs-hydrogel may have potential clinical applications. PMID:26664119

  16. Enhanced antitumor effects by docetaxel/LL37-loaded thermosensitive hydrogel nanoparticles in peritoneal carcinomatosis of colorectal cancer

    PubMed Central

    Fan, Rangrang; Tong, Aiping; Li, Xiaoling; Gao, Xiang; Mei, Lan; Zhou, Liangxue; Zhang, Xiaoning; You, Chao; Guo, Gang

    2015-01-01

    Intraperitoneal chemotherapy was explored in clinical trials as a promising strategy to improve the therapeutic effects of chemotherapy. In this work, we developed a biodegradable and injectable drug-delivery system by coencapsulation of docetaxel (Doc) and LL37 peptide polymeric nanoparticles (Doc+LL37 NPs) in a thermosensitive hydrogel system for colorectal peritoneal carcinoma therapy. Firstly, polylactic acid (PLA)-Pluronic L35-PLA (PLA-L35-PLA) was explored to prepare the biodegradable Doc+LL37 NPs using a water-in-oil-in-water double-emulsion solvent-evaporation method. Then, biodegradable and injectable thermosensitive PLA-L64-PLA hydrogel with lower sol–gel transition temperature at around body temperature was also prepared. Transmission electron microscopy revealed that the Doc+LL37 NPs formed with the PLA-L35-PLA copolymer were spherical. Fourier-transform infrared spectra certified that Doc and LL37 were encapsulated successfully. X-ray diffraction diagrams indicated that Doc was encapsulated amorphously. Intraperitoneal administration of Doc+LL37 NPs–hydrogel significantly suppressed the growth of HCT116 peritoneal carcinomatosis in vivo and prolonged the survival of tumor-bearing mice. Our results suggested that Doc+LL37 NPs–hydrogel may have potential clinical applications. PMID:26664119

  17. Release of Magnetic Nanoparticles from Cell-Encapsulating Biodegradable Nanobiomaterials

    PubMed Central

    Xu, Feng; Inci, Fatih; Mullick, Omer; Gurkan, Umut Atakan; Sung, Yuree; Kavaz, Doga; Li, Baoqiang; Denkbas, Emir Baki; Demirci, Utkan

    2013-01-01

    The future of tissue engineering requires development of intelligent biomaterials using nanoparticles. Magnetic nanoparticles (MNPs) have several applications in biology and medicine; one example is Food and Drug Administration (FDA)-approved contrast agents in magnetic resonance imaging. Recently, MNPs have been encapsulated within cell-encapsulating hydrogels to create novel nanobiomaterials (i.e., M-gels), which can be manipulated and assembled in magnetic fields. The M-gels can be used as building blocks for bottom-up tissue engineering to create 3D tissue constructs. For tissue engineering applications of M-gels, it is essential to study the release of encapsulated MNPs from the hydrogel polymer network and the effect of MNPs on hydrogel properties, including mechanical characteristics, porosity, swelling behavior, and cellular response (e.g., viability, growth). Therefore, we evaluated the release of MNPs from photocrosslinkable gelatin methacrylate hydrogels as the polymer network undergoes biodegradation using inductively coupled plasma atomic emission spectroscopy. MNP release correlated linearly with hydrogel biodegradation rate with correlation factors (Pearson product moment correlation coefficient) of 0.96 ± 0.03 and 0.99 ± 0.01 for MNP concentrations of 1% and 5%, respectively. We also evaluated the effect of MNPs on hydrogel mechanical properties, porosity, and swelling behavior, as well as cell viability and growth in MNP-encapsulating hydrogels. Fibroblasts encapsulated with MNPs in hydrogels remained viable (>80% at t = 144 h) and formed microtissue constructs in culture (t = 144 h). These results indicated that MNP-encapsulating hydrogels show promise as intelligent nanobiomaterials, with great potential to impact broad areas of bioengineering, including tissue engineering, regenerative medicine, and pharmaceutical applications. PMID:22680777

  18. Release of magnetic nanoparticles from cell-encapsulating biodegradable nanobiomaterials.

    PubMed

    Xu, Feng; Inci, Fatih; Mullick, Omer; Gurkan, Umut Atakan; Sung, Yuree; Kavaz, Doga; Li, Baoqiang; Denkbas, Emir Baki; Demirci, Utkan

    2012-08-28

    The future of tissue engineering requires development of intelligent biomaterials using nanoparticles. Magnetic nanoparticles (MNPs) have several applications in biology and medicine; one example is Food and Drug Administration (FDA)-approved contrast agents in magnetic resonance imaging. Recently, MNPs have been encapsulated within cell-encapsulating hydrogels to create novel nanobiomaterials (i.e., M-gels), which can be manipulated and assembled in magnetic fields. The M-gels can be used as building blocks for bottom-up tissue engineering to create 3D tissue constructs. For tissue engineering applications of M-gels, it is essential to study the release of encapsulated MNPs from the hydrogel polymer network and the effect of MNPs on hydrogel properties, including mechanical characteristics, porosity, swelling behavior, and cellular response (e.g., viability, growth). Therefore, we evaluated the release of MNPs from photocrosslinkable gelatin methacrylate hydrogels as the polymer network undergoes biodegradation using inductively coupled plasma atomic emission spectroscopy. MNP release correlated linearly with hydrogel biodegradation rate with correlation factors (Pearson product moment correlation coefficient) of 0.96 ± 0.03 and 0.99 ± 0.01 for MNP concentrations of 1% and 5%, respectively. We also evaluated the effect of MNPs on hydrogel mechanical properties, porosity, and swelling behavior, as well as cell viability and growth in MNP-encapsulating hydrogels. Fibroblasts encapsulated with MNPs in hydrogels remained viable (>80% at t = 144 h) and formed microtissue constructs in culture (t = 144 h). These results indicated that MNP-encapsulating hydrogels show promise as intelligent nanobiomaterials, with great potential to impact broad areas of bioengineering, including tissue engineering, regenerative medicine, and pharmaceutical applications.

  19. Enhanced fluorescence diffuse optical tomography with indocyanine green-encapsulating liposomes targeted to receptors for vascular endothelial growth factor in tumor vasculature

    NASA Astrophysics Data System (ADS)

    Zanganeh, Saeid; Xu, Yan; Hamby, Carl V.; Backer, Marina V.; Backer, Joseph M.; Zhu, Quing

    2013-12-01

    To develop an indocyanine green (ICG) tracer with slower clearance kinetics, we explored ICG-encapsulating liposomes (Lip) in three different formulations: untargeted (Lip/ICG), targeted to vascular endothelial growth factor (VEGF) receptors (scVEGF-Lip/ICG) by the receptor-binding moiety single-chain VEGF (scVEGF), or decorated with inactivated scVEGF (inactive-Lip/ICG) that does not bind to VEGF receptors. Experiments were conducted with tumor-bearing mice that were placed in a scattering medium with tumors located at imaging depths of either 1.5 or 2.0 cm. Near-infrared fluorescence diffuse optical tomography that provides depth-resolved spatial distributions of fluorescence in tumor was used for the detection of postinjection fluorescent signals. All liposome-based tracers, as well as free ICG, were injected intravenously into mice in the amounts corresponding to 5 nmol of ICG/mouse, and the kinetics of increase and decrease of fluorescent signals in tumors were monitored. A signal from free ICG reached maximum at 15-min postinjection and then rapidly declined with t of ˜20 min. The signals from untargeted Lip/ICG and inactive-Lip/ICG also reached maximum at 15-min postinjection, however, declined somewhat slower than free ICG with t of ˜30 min. By contrast, a signal from targeted scVEGF-Lip/ICG grew slower than that of all other tracers, reaching maximum at 30-min postinjection and declined much slower than that of other tracers with t of ˜90 min, providing a more extended observation window. Higher scVEGF-Lip/ICG tumor accumulation was further confirmed by the analysis of fluorescence on cryosections of tumors that were harvested from animals at 400 min after injection with different tracers.

  20. Enhanced fluorescence diffuse optical tomography with indocyanine green-encapsulating liposomes targeted to receptors for vascular endothelial growth factor in tumor vasculature.

    PubMed

    Zanganeh, Saeid; Xu, Yan; Hamby, Carl V; Backer, Marina V; Backer, Joseph M; Zhu, Quing

    2013-12-01

    To develop an indocyanine green (ICG) tracer with slower clearance kinetics, we explored ICG-encapsulating liposomes (Lip) in three different formulations: untargeted (Lip/ICG), targeted to vascular endothelial growth factor (VEGF) receptors (scVEGF-Lip/ICG) by the receptor-binding moiety single-chain VEGF (scVEGF), or decorated with inactivated scVEGF (inactive-Lip/ICG) that does not bind to VEGF receptors. Experiments were conducted with tumor-bearing mice that were placed in a scattering medium with tumors located at imaging depths of either 1.5 or 2.0 cm. Near-infrared fluorescence diffuse optical tomography that provides depth-resolved spatial distributions of fluorescence in tumor was used for the detection of postinjection fluorescent signals. All liposome-based tracers, as well as free ICG, were injected intravenously into mice in the amounts corresponding to 5 nmol of ICG/mouse, and the kinetics of increase and decrease of fluorescent signals in tumors were monitored. A signal from free ICG reached maximum at 15-min postinjection and then rapidly declined with t1/2 of ~20 min. The signals from untargeted Lip/ICG and inactive-Lip/ICG also reached maximum at 15-min postinjection, however, declined somewhat slower than free ICG with t1/2 of ~30 min. By contrast, a signal from targeted scVEGF-Lip/ICG grew slower than that of all other tracers, reaching maximum at 30-min postinjection and declined much slower than that of other tracers with t1/2 of ~90 min, providing a more extended observation window. Higher scVEGF-Lip/ICG tumor accumulation was further confirmed by the analysis of fluorescence on cryosections of tumors that were harvested from animals at 400 min after injection with different tracers.

  1. Liposome-encapsulated actinomycin for cancer chemotherapy

    DOEpatents

    Rahman, Yueh-Erh; Cerny, Elizabeth A.

    1976-01-01

    An improved method is provided for chemotherapy of malignant tumors by injection of antitumor drugs. The antitumor drug is encapsulated within liposomes and the liposomes containing the encapsulated drug are injected into the body. The encapsulated drug penetrates into the tumor cells where the drug is slowly released and induces degeneration and death of the tumor cells, while any toxicity to the host body is reduced. Liposome encapsulation of actinomycin D has been found to be particularly effective in treating cancerous abdominal tumors, while drastically reducing the toxicity of actinomycin D to the host.

  2. Facile synthesis of soybean phospholipid-encapsulated MoS2 nanosheets for efficient in vitro and in vivo photothermal regression of breast tumor.

    PubMed

    Li, Xiang; Gong, Yun; Zhou, Xiaoqian; Jin, Hui; Yan, Huanhuan; Wang, Shige; Liu, Jun

    2016-01-01

    Two-dimensional MoS2 nanosheet has been extensively explored as a photothermal agent for tumor regression; however, its surface modification remains a great challenge. Herein, as an alternative to surface polyethylene glycol modification (PEGylation), a facile approach based on "thin-film" strategy has been proposed for the first time to produce soybean phospholipid-encapsulated MoS2 (SP-MoS2) nanosheets. By simply vacuum-treating MoS2 nanosheets/soybean phospholipid/chloroform dispersion in a rotary evaporator, SP-MoS2 nanosheet was successfully constructed. Owing to the steric hindrance of polymer chains, the surface-coated soybean phospholipid endowed MoS2 nanosheets with excellent colloidal stability. Without showing detectable in vitro and in vivo hemolysis, coagulation, and cyto-/histotoxicity, the constructed SP-MoS2 nanosheets showed good photothermal conversion performance and photothermal stability. SP-MoS2 nanosheet was shown to be a promising platform for in vitro and in vivo breast tumor photothermal therapy. The produced SP-MoS2 nanosheets featured low cost, simple fabrication, and good in vivo hemo-/histocompatibility and hold promising potential for future clinical tumor therapy.

  3. Facile synthesis of soybean phospholipid-encapsulated MoS2 nanosheets for efficient in vitro and in vivo photothermal regression of breast tumor

    PubMed Central

    Li, Xiang; Gong, Yun; Zhou, Xiaoqian; Jin, Hui; Yan, Huanhuan; Wang, Shige; Liu, Jun

    2016-01-01

    Two-dimensional MoS2 nanosheet has been extensively explored as a photothermal agent for tumor regression; however, its surface modification remains a great challenge. Herein, as an alternative to surface polyethylene glycol modification (PEGylation), a facile approach based on “thin-film” strategy has been proposed for the first time to produce soybean phospholipid-encapsulated MoS2 (SP-MoS2) nanosheets. By simply vacuum-treating MoS2 nanosheets/soybean phospholipid/chloroform dispersion in a rotary evaporator, SP-MoS2 nanosheet was successfully constructed. Owing to the steric hindrance of polymer chains, the surface-coated soybean phospholipid endowed MoS2 nanosheets with excellent colloidal stability. Without showing detectable in vitro and in vivo hemolysis, coagulation, and cyto-/histotoxicity, the constructed SP-MoS2 nanosheets showed good photothermal conversion performance and photothermal stability. SP-MoS2 nanosheet was shown to be a promising platform for in vitro and in vivo breast tumor photothermal therapy. The produced SP-MoS2 nanosheets featured low cost, simple fabrication, and good in vivo hemo-/histocompatibility and hold promising potential for future clinical tumor therapy. PMID:27199557

  4. Enzyme-catalysed assembly of DNA hydrogel

    NASA Astrophysics Data System (ADS)

    Um, Soong Ho; Lee, Jong Bum; Park, Nokyoung; Kwon, Sang Yeon; Umbach, Christopher C.; Luo, Dan

    2006-10-01

    DNA is a remarkable polymer that can be manipulated by a large number of molecular tools including enzymes. A variety of geometric objects, periodic arrays and nanoscale devices have been constructed. Previously we synthesized dendrimer-like DNA and DNA nanobarcodes from branched DNA via ligases. Here we report the construction of a hydrogel entirely from branched DNA that are three-dimensional and can be crosslinked in nature. These DNA hydrogels were biocompatible, biodegradable, inexpensive to fabricate and easily moulded into desired shapes and sizes. The distinct difference of the DNA hydrogel to other bio-inspired hydrogels (including peptide-based, alginate-based and DNA (linear)-polyacrylamide hydrogels) is that the crosslinking is realized via efficient, ligase-mediated reactions. The advantage is that the gelling processes are achieved under physiological conditions and the encapsulations are accomplished in situ-drugs including proteins and even live mammalian cells can be encapsulated in the liquid phase eliminating the drug-loading step and also avoiding denaturing conditions. Fine tuning of these hydrogels is easily accomplished by adjusting the initial concentrations and types of branched DNA monomers, thus allowing the hydrogels to be tailored for specific applications such as controlled drug delivery, tissue engineering, 3D cell culture, cell transplant therapy and other biomedical applications.

  5. 3D Printing of Highly Stretchable and Tough Hydrogels into Complex, Cellularized Structures.

    PubMed

    Hong, Sungmin; Sycks, Dalton; Chan, Hon Fai; Lin, Shaoting; Lopez, Gabriel P; Guilak, Farshid; Leong, Kam W; Zhao, Xuanhe

    2015-07-15

    A 3D printable and highly stretchable tough hydrogel is developed by combining poly(ethylene glycol) and sodium alginate, which synergize to form a hydrogel tougher than natural cartilage. Encapsulated cells maintain high viability over a 7 d culture period and are highly deformed together with the hydrogel. By adding biocompatible nanoclay, the tough hydrogel is 3D printed in various shapes without requiring support material. PMID:26033288

  6. 3D Printing of Highly Stretchable and Tough Hydrogels into Complex, Cellularized Structures.

    PubMed

    Hong, Sungmin; Sycks, Dalton; Chan, Hon Fai; Lin, Shaoting; Lopez, Gabriel P; Guilak, Farshid; Leong, Kam W; Zhao, Xuanhe

    2015-07-15

    A 3D printable and highly stretchable tough hydrogel is developed by combining poly(ethylene glycol) and sodium alginate, which synergize to form a hydrogel tougher than natural cartilage. Encapsulated cells maintain high viability over a 7 d culture period and are highly deformed together with the hydrogel. By adding biocompatible nanoclay, the tough hydrogel is 3D printed in various shapes without requiring support material.

  7. Functional hydrogel contact lens for drug delivery in the application of oculopathy therapy.

    PubMed

    Hu, Xiaohong; Tan, Huaping; Hao, Lingyun

    2016-12-01

    Although hydrogel contact lens has attracted increasingly concerns as delivery carriers in the field of oculopathy therapy, traditional hydrogel does not show excellent drug encapsulated and controlled properties due to simple hydrophilic polymer chain lacking extra interaction with drug molecule. Herein, functional hydrogels were synthesized in this research to delivery ophthalmic drug for oculopathy therapy. Functional monomer of mono-GMA-β-CD and functional crosslinker of MA-β-CD were incorporated into hydrogel by copolymerization. For hydrogels, equilibrium swelling ratio and contact angle was influenced by mono-GMA-β-CD ratio and MA-β-CD ratio, respectively. All hydrogels exhibited similar water loss behavior and good transparency. Hydrogels had rheological characteristic of typical elastomer. Viscoelasticity and surface morphology of hydrogel were also affected by mono-GMA-β-CD ratio and MA-β-CD ratio. In the aspect of properties, functional hydrogel containing β-CD domain exhibited better protein resistance capacity and significantly higher equilibrium encapsulated drug amount than traditional hydrogel. Besides the performance, drug release behavior of drug encapsulated hydrogel was adjusted by both mono-GMA-β-CD ratio and MA-β-CD ratio. Preliminary in vivo evaluation revealed that functional hydrogel contact lens had better effect and efficacy on lowering intraocular tension than commercial eye drop. It is inferred from all results that functional contact lens has a bright prospect in the application of oculopathy therapy. PMID:27479893

  8. Cell-friendly inverse opal-like hydrogels for a spatially separated co-culture system.

    PubMed

    Kim, Jaeyun; Bencherif, Sidi A; Li, Weiwei Aileen; Mooney, David J

    2014-09-01

    Three-dimensional macroporous scaffolds have extensively been studied for cell-based tissue engineering but their use is mostly limited to mechanical support for cell adhesion and growth on the surface of macropores. Here, a templated fabrication method is described to prepare cell-friendly inverse opal-like hydrogels (IOHs) allowing both cell encapsulation within the hydrogel matrix and cell seeding on the surface of macropores. Ionically crosslinked alginate microbeads and photocrosslinkable biocompatible polymers are used as a sacrificial template and as a matrix, respectively. The alginate microbeads are easily removed by a chelating agent, with minimal toxicity for the encapsulated cells during template removal. The outer surface of macropores in IOHs can also provide a space for cell adherence. The cells encapsulated or attached in IOHs are able to remain viable and to proliferate over time. The elastic modulus and cell-adhesion properties of IOHs can be easily controlled and tuned. Finally, it is demonstrated that IOH can be used to co-culture two distinct cell populations in different spatial positions. This cell-friendly IOH system provides a 3D scaffold for organizing different cell types in a controllable microenvironment to investigate biological processes such as stem cell niches or tumor microenvironments. PMID:25113941

  9. Cell-friendly inverse opal-like hydrogels for a spatially separated co-culture system.

    PubMed

    Kim, Jaeyun; Bencherif, Sidi A; Li, Weiwei Aileen; Mooney, David J

    2014-09-01

    Three-dimensional macroporous scaffolds have extensively been studied for cell-based tissue engineering but their use is mostly limited to mechanical support for cell adhesion and growth on the surface of macropores. Here, a templated fabrication method is described to prepare cell-friendly inverse opal-like hydrogels (IOHs) allowing both cell encapsulation within the hydrogel matrix and cell seeding on the surface of macropores. Ionically crosslinked alginate microbeads and photocrosslinkable biocompatible polymers are used as a sacrificial template and as a matrix, respectively. The alginate microbeads are easily removed by a chelating agent, with minimal toxicity for the encapsulated cells during template removal. The outer surface of macropores in IOHs can also provide a space for cell adherence. The cells encapsulated or attached in IOHs are able to remain viable and to proliferate over time. The elastic modulus and cell-adhesion properties of IOHs can be easily controlled and tuned. Finally, it is demonstrated that IOH can be used to co-culture two distinct cell populations in different spatial positions. This cell-friendly IOH system provides a 3D scaffold for organizing different cell types in a controllable microenvironment to investigate biological processes such as stem cell niches or tumor microenvironments.

  10. Combination between Taxol-Encapsulated Liposomes and Eruca sativa Seed Extract Suppresses Mammary Tumors in Female Rats Induced by 7,12 Dimethylbenz(α)anthracene.

    PubMed

    Shaban, Nadia; Abdel-Rahman, Salah; Haggag, Amany; Awad, Doaa; Bassiouny, Ahmad; Talaat, Iman

    2016-01-01

    Taxol (paclitaxel) is a powerful anti-cancer drug widely used against several types of malignant tumors. Because Taxol may exert several side effects, a variety of formulations have been developed. One of these features liposomes, regarded as one of the most promising drug carriers, biocompatible and best able to reduce drug toxicity without changing efficacy against tumor cells. Eruca sativa seed extract (SE) is considered a promising natural product from cruciferous vegetables against breast cancer, increasing chemotherapeutic and eliminating harmful side effects. The effects of Taxol-encapsulated liposomes (T) alone and in combination between Eruca sativa seed extract on nuclear factor kappa B (NF-κB), cyclooxygenase-2 (COX-2) and B-cell lymphoma-2 (Bcl-2) gene expression levels were investigated in rat mammary gland carcinogenesis induced by 7,12 dimethylbenz(α) anthracene (DMBA) using qRT-PCR. The results showed that DMBA increased NF-κB, COX-2 and Bcl-2 gene expression levels and lipid peroxidation (LP), while decreasing glutathione-S-transferase (GST) and superoxide dismutase (SOD) activities and total antioxidant concentration (TAC) compared to the control group. T and T-SE treatment reduced NF-κB, COX-2 and Bcl-2 gene expression levels and LP. Hence, T and T-SE treatment appeared to reduce inflammation and cell proliferation, while increasing apoptosis, GST and SOD activities and TAC. PMID:26838195

  11. Highly stable microwave susceptible agents via encapsulation of Ti-mineral superfine powders in urea-formaldehyde resin microcapsules for tumor hyperthermia therapy

    NASA Astrophysics Data System (ADS)

    Long, Dan; Mao, Jingsong; Liu, Tianlong; Fu, Changhui; Tan, Longfei; Ren, Xiangling; Shi, Haitang; Su, Hongying; Ren, Jun; Meng, Xianwei

    2016-05-01

    In this study, Ti-mineral superfine powders (Ti-MSP) encapsulated in urea-formaldehyde resin microcapsules (Ti-MSP@UF-MC) were successfully prepared via a one-step microemulsion method for the first time. Because of the strong confinement effects, the Ti-MSP@UF-MC possessed perfect microwave heating effects. The temperature was 9.3 °C higher than that of the saline solution, superior to UF-MC (no significant microwave heating effect, 0 °C) and Ti-MSP (5.1 °C). The Ti-MSP@UF-MC showed low toxicity and good biocompatibility via a series of studies, including a hemolysis study and the MTT assay in vitro and in vivo. When the concentration was below 1000 μg mL-1, the hemolysis rate was lower than 5% (hemolysis study). When the concentration was below 400 μg mL-1, the cell activity was higher than 80% (MTT assay). Moreover, the Ti-MSP@UF-MC exhibited an ideal CT imaging effect in vivo owing to the large molecular weight of Ti-MSP. The Ti-MSP@UF-MC showed a favorable microwave therapy effect in vivo. Using mice bearing H22 tumor cells as an animal model, the tumor suppression rate could reach 100%.

  12. Highly stable microwave susceptible agents via encapsulation of Ti-mineral superfine powders in urea-formaldehyde resin microcapsules for tumor hyperthermia therapy.

    PubMed

    Long, Dan; Mao, Jingsong; Liu, Tianlong; Fu, Changhui; Tan, Longfei; Ren, Xiangling; Shi, Haitang; Su, Hongying; Ren, Jun; Meng, Xianwei

    2016-06-01

    In this study, Ti-mineral superfine powders (Ti-MSP) encapsulated in urea-formaldehyde resin microcapsules (Ti-MSP@UF-MC) were successfully prepared via a one-step microemulsion method for the first time. Because of the strong confinement effects, the Ti-MSP@UF-MC possessed perfect microwave heating effects. The temperature was 9.3 °C higher than that of the saline solution, superior to UF-MC (no significant microwave heating effect, 0 °C) and Ti-MSP (5.1 °C). The Ti-MSP@UF-MC showed low toxicity and good biocompatibility via a series of studies, including a hemolysis study and the MTT assay in vitro and in vivo. When the concentration was below 1000 μg mL(-1), the hemolysis rate was lower than 5% (hemolysis study). When the concentration was below 400 μg mL(-1), the cell activity was higher than 80% (MTT assay). Moreover, the Ti-MSP@UF-MC exhibited an ideal CT imaging effect in vivo owing to the large molecular weight of Ti-MSP. The Ti-MSP@UF-MC showed a favorable microwave therapy effect in vivo. Using mice bearing H22 tumor cells as an animal model, the tumor suppression rate could reach 100%. PMID:27174624

  13. Highly stable microwave susceptible agents via encapsulation of Ti-mineral superfine powders in urea-formaldehyde resin microcapsules for tumor hyperthermia therapy.

    PubMed

    Long, Dan; Mao, Jingsong; Liu, Tianlong; Fu, Changhui; Tan, Longfei; Ren, Xiangling; Shi, Haitang; Su, Hongying; Ren, Jun; Meng, Xianwei

    2016-06-01

    In this study, Ti-mineral superfine powders (Ti-MSP) encapsulated in urea-formaldehyde resin microcapsules (Ti-MSP@UF-MC) were successfully prepared via a one-step microemulsion method for the first time. Because of the strong confinement effects, the Ti-MSP@UF-MC possessed perfect microwave heating effects. The temperature was 9.3 °C higher than that of the saline solution, superior to UF-MC (no significant microwave heating effect, 0 °C) and Ti-MSP (5.1 °C). The Ti-MSP@UF-MC showed low toxicity and good biocompatibility via a series of studies, including a hemolysis study and the MTT assay in vitro and in vivo. When the concentration was below 1000 μg mL(-1), the hemolysis rate was lower than 5% (hemolysis study). When the concentration was below 400 μg mL(-1), the cell activity was higher than 80% (MTT assay). Moreover, the Ti-MSP@UF-MC exhibited an ideal CT imaging effect in vivo owing to the large molecular weight of Ti-MSP. The Ti-MSP@UF-MC showed a favorable microwave therapy effect in vivo. Using mice bearing H22 tumor cells as an animal model, the tumor suppression rate could reach 100%.

  14. Adaptable Hydrogel Networks with Reversible Linkages for Tissue Engineering

    PubMed Central

    Wang, Huiyuan

    2015-01-01

    Adaptable hydrogels have recently emerged as a promising platform for three-dimensional (3D) cell encapsulation and culture. In conventional, covalently crosslinked hydrogels, degradation is typically required to allow complex cellular functions to occur, leading to bulk material degradation. In contrast, adaptable hydrogels are formed by reversible crosslinks. Through breaking and re-forming of the reversible linkages, adaptable hydrogels can be locally modified to permit complex cellular functions while maintaining their long-term integrity. In addition, these adaptable materials can have biomimetic viscoelastic properties that make them well suited for several biotechnology and medical applications. In this review, adaptable hydrogel design considerations and linkage selections are overviewed, with a focus on various cell compatible crosslinking mechanisms that can be exploited to form adaptable hydrogels for tissue engineering. PMID:25989348

  15. Cellular Encapsulation Enhances Cardiac Repair

    PubMed Central

    Levit, Rebecca D.; Landázuri, Natalia; Phelps, Edward A.; Brown, Milton E.; García, Andrés J.; Davis, Michael E.; Joseph, Giji; Long, Robert; Safley, Susan A.; Suever, Jonathan D.; Lyle, Alicia N.; Weber, Collin J.; Taylor, W. Robert

    2013-01-01

    Background Stem cells for cardiac repair have shown promise in preclinical trials, but lower than expected retention, viability, and efficacy. Encapsulation is one potential strategy to increase viable cell retention while facilitating paracrine effects. Methods and Results Human mesenchymal stem cells (hMSC) were encapsulated in alginate and attached to the heart with a hydrogel patch in a rat myocardial infarction (MI) model. Cells were tracked using bioluminescence (BLI) and cardiac function measured by transthoracic echocardiography (TTE) and cardiac magnetic resonance imaging (CMR). Microvasculature was quantified using von Willebrand factor staining and scar measured by Masson's Trichrome. Post‐MI ejection fraction by CMR was greatly improved in encapsulated hMSC‐treated animals (MI: 34±3%, MI+Gel: 35±3%, MI+Gel+hMSC: 39±2%, MI+Gel+encapsulated hMSC: 56±1%; n=4 per group; P<0.01). Data represent mean±SEM. By TTE, encapsulated hMSC‐treated animals had improved fractional shortening. Longitudinal BLI showed greatest hMSC retention when the cells were encapsulated (P<0.05). Scar size at 28 days was significantly reduced in encapsulated hMSC‐treated animals (MI: 12±1%, n=8; MI+Gel: 14±2%, n=7; MI+Gel+hMSC: 14±1%, n=7; MI+Gel+encapsulated hMSC: 7±1%, n=6; P<0.05). There was a large increase in microvascular density in the peri‐infarct area (MI: 121±10, n=7; MI+Gel: 153±26, n=5; MI+Gel+hMSC: 198±18, n=7; MI+Gel+encapsulated hMSC: 828±56 vessels/mm2, n=6; P<0.01). Conclusions Alginate encapsulation improved retention of hMSCs and facilitated paracrine effects such as increased peri‐infarct microvasculature and decreased scar. Encapsulation of MSCs improved cardiac function post‐MI and represents a new, translatable strategy for optimization of regenerative therapies for cardiovascular diseases. PMID:24113327

  16. An injectable hyaluronic acid-tyramine hydrogel system for protein delivery.

    PubMed

    Lee, Fan; Chung, Joo Eun; Kurisawa, Motoichi

    2009-03-19

    Previously, we reported the independent tuning of mechanical strength (crosslinking density) and gelation rate of an injectable hydrogel system composed of hyaluronic acid-tyramine (HA-Tyr) conjugates. The hydrogels were formed through the oxidative coupling of tyramines which was catalyzed by hydrogen peroxide (H(2)O(2)) and horseradish peroxidase (HRP). Herein, we studied the encapsulation and release of model proteins using the HA-Tyr hydrogel. It was shown that the rapid gelation achieved by an optimal concentration of HRP could effectively encapsulate the proteins within the hydrogel network and thus prevented the undesired leakage of proteins into the surrounding tissues after injection. Hydrogels with different mechanical strengths were formed by changing the concentration of H(2)O(2) while maintaining the rapid gelation rate. The mechanical strength of the hydrogel controlled the release rate of proteins: stiff hydrogels released proteins slower compared to weak hydrogels. In phosphate buffer saline, alpha-amylase (negatively charged) was released sustainably from the hydrogel. Conversely, the release of lysozyme (positively charged) discontinued after the fourth hour due to electrostatic interactions with HA. In the presence of hyaluronidase, lysozymes were released continuously and completely from the hydrogel due to degradation of the hydrogel network. The activities of the released proteins were mostly retained which suggested that the HA-Tyr hydrogel is a suitable injectable and biodegradable system for the delivery of therapeutic proteins. PMID:19121348

  17. Encapsulation of new active ingredients.

    PubMed

    Onwulata, C I

    2012-01-01

    The organic construct consumed as food comes packaged in units that carry the active components and protect the entrapped active materials until delivered to targeted human organs. The packaging and delivery role is mimicked in the microencapsulation tools used to deliver active ingredients in processed foods. Microencapsulation efficiency is balanced against the need to access the entrapped nutrients in bioavailable forms. Encapsulated ingredients boosted with bioactive nutrients are intended for improved health and well-being and to prevent future health problems. Presently, active ingredients are delivered using new techniques, such as hydrogels, nanoemulsions, and nanoparticles. In the future, nutraceuticals and functional foods may be tailored to individual metabolic needs and tied to each person's genetic makeup. Bioactive ingredients provide health-enhancing nutrients and are protected through encapsulation processes that shield the active ingredients from deleterious environments.

  18. Hydrogel formulation determines cell fate of fetal and adult neural progenitor cells.

    PubMed

    Aurand, Emily R; Wagner, Jennifer L; Shandas, Robin; Bjugstad, Kimberly B

    2014-01-01

    Hydrogels provide a unique tool for neural tissue engineering. These materials can be customized for certain functions, i.e. to provide cell/drug delivery or act as a physical scaffold. Unfortunately, hydrogel complexities can negatively impact their biocompatibility, resulting in unintended consequences. These adverse effects may be combated with a better understanding of hydrogel chemical, physical, and mechanical properties, and how these properties affect encapsulated neural cells. We defined the polymerization and degradation rates and compressive moduli of 25 hydrogels formulated from different concentrations of hyaluronic acid (HA) and poly(ethylene glycol) (PEG). Changes in compressive modulus were driven primarily by the HA concentration. The in vitro biocompatibility of fetal-derived (fNPC) and adult-derived (aNPC) neural progenitor cells was dependent on hydrogel formulation. Acute survival of fNPC benefited from hydrogel encapsulation. NPC differentiation was divergent: fNPC differentiated into mostly glial cells, compared with neuronal differentiation of aNPC. Differentiation was influenced in part by the hydrogel mechanical properties. This study indicates that there can be a wide range of HA and PEG hydrogels compatible with NPC. Additionally, this is the first study comparing hydrogel encapsulation of NPC derived from different aged sources, with data suggesting that fNPC and aNPC respond dissimilarly within the same hydrogel formulation.

  19. Poly(ethylene glycol) hydrogels with cell cleavable groups for autonomous cell delivery.

    PubMed

    Kar, Mrityunjoy; Vernon Shih, Yu-Ru; Velez, Daniel Ortiz; Cabrales, Pedro; Varghese, Shyni

    2016-01-01

    Cell-responsive hydrogels hold tremendous potential as cell delivery devices in regenerative medicine. In this study, we developed a hydrogel-based cell delivery vehicle, in which the encapsulated cell cargo control its own release from the vehicle in a protease-independent manner. Specifically, we have synthesized a modified poly(ethylene glycol) (PEG) hydrogel that undergoes degradation responding to cell-secreted molecules by incorporating disulfide moieties onto the backbone of the hydrogel precursor. Our results show the disulfide-modified PEG hydrogels disintegrate seamlessly into solution in presence of cells without any external stimuli. The rate of hydrogel degradation, which ranges from hours to months, is found to be dependent upon the type of encapsulated cells, cell number, and fraction of disulfide moieties present in the hydrogel backbone. The differentiation potential of human mesenchymal stem cells released from the hydrogels is maintained in vitro. The in vivo analysis of these cell-laden hydrogels, through a dorsal window chamber and intramuscular implantation, demonstrated autonomous release of cells to the host environment. The hydrogel-mediated implantation of cells resulted in higher cell retention within the host tissue when compared to that without a biomaterial support. Biomaterials that function as a shield to protect cell cargos and assist their delivery in response to signals from the encapsulated cells could have a wide utility in cell transplantation and could improve the therapeutic outcomes of cell-based therapies. PMID:26606444

  20. Efficient antitumor effect of co-drug-loaded nanoparticles with gelatin hydrogel by local implantation

    PubMed Central

    Zhang, Hao; Tian, Yong; Zhu, Zhenshu; Xu, Huae; Li, Xiaolin; Zheng, Donghui; Sun, Weihao

    2016-01-01

    Tetrandrine (Tet) could enhance the antitumor effect of Paclitaxel (Ptx) by increasing intracellular Reactive Oxygen Species (ROS) levels, which leads to the possibility of co-delivery of both drugs for synergistic antitumor effect. In the current study, we reported an efficient, local therapeutic strategy employing effective Tet and Ptx delivery with a nanoparticle-loaded gelatin system. Tet- and Ptx co-loaded mPEG-PCL nanoparticles (P/T-NPs) were encapsulated into the physically cross-linked gelatin hydrogel and then implanted on the tumor site for continuous drug release. The drug-loaded gelatin hydrogel underwent a phase change when the temperature slowly increased. In vitro study showed that Tet/Ptx-loaded PEG-b-PCL nanoparticles encapsulated within a gelatin hydrogel (P/T-NPs-Gelatin) inhibited the growth and invasive ability of BGC-823 cells more effectively than the combination of free drugs or P/T-NPs. In vivo study validated the therapeutic potential of P/T-NPs-Gelatin. P/T-NPs-Gelatin significantly inhibited the activation of p-Akt and the downstream anti-apoptotic Bcl-2 protein and also inducing the activation of pro-apoptotic Bax protein. Moreover, the molecular-modulating effect of P/T-NPs-Gelatin on related proteins varied slightly under the influence of NAC, which was supported by the observations of the tumor volumes and weights. Based on these findings, local implantation of P/T-NPs-Gelatin may be a promising therapeutic strategy for the treatment of gastric cancer. PMID:27226240

  1. Efficient antitumor effect of co-drug-loaded nanoparticles with gelatin hydrogel by local implantation.

    PubMed

    Zhang, Hao; Tian, Yong; Zhu, Zhenshu; Xu, Huae; Li, Xiaolin; Zheng, Donghui; Sun, Weihao

    2016-01-01

    Tetrandrine (Tet) could enhance the antitumor effect of Paclitaxel (Ptx) by increasing intracellular Reactive Oxygen Species (ROS) levels, which leads to the possibility of co-delivery of both drugs for synergistic antitumor effect. In the current study, we reported an efficient, local therapeutic strategy employing effective Tet and Ptx delivery with a nanoparticle-loaded gelatin system. Tet- and Ptx co-loaded mPEG-PCL nanoparticles (P/T-NPs) were encapsulated into the physically cross-linked gelatin hydrogel and then implanted on the tumor site for continuous drug release. The drug-loaded gelatin hydrogel underwent a phase change when the temperature slowly increased. In vitro study showed that Tet/Ptx-loaded PEG-b-PCL nanoparticles encapsulated within a gelatin hydrogel (P/T-NPs-Gelatin) inhibited the growth and invasive ability of BGC-823 cells more effectively than the combination of free drugs or P/T-NPs. In vivo study validated the therapeutic potential of P/T-NPs-Gelatin. P/T-NPs-Gelatin significantly inhibited the activation of p-Akt and the downstream anti-apoptotic Bcl-2 protein and also inducing the activation of pro-apoptotic Bax protein. Moreover, the molecular-modulating effect of P/T-NPs-Gelatin on related proteins varied slightly under the influence of NAC, which was supported by the observations of the tumor volumes and weights. Based on these findings, local implantation of P/T-NPs-Gelatin may be a promising therapeutic strategy for the treatment of gastric cancer. PMID:27226240

  2. Designing degradable hydrogels for orthogonal control of cell microenvironments

    PubMed Central

    Kharkar, Prathamesh M.

    2013-01-01

    Degradable and cell-compatible hydrogels can be designed to mimic the physical and biochemical characteristics of native extracellular matrices and provide tunability of degradation rates and related properties under physiological conditions. Hence, such hydrogels are finding widespread application in many bioengineering fields, including controlled bioactive molecule delivery, cell encapsulation for controlled three-dimensional culture, and tissue engineering. Cellular processes, such as adhesion, proliferation, spreading, migration, and differentiation, can be controlled within degradable, cell-compatible hydrogels with temporal tuning of biochemical or biophysical cues, such as growth factor presentation or hydrogel stiffness. However, thoughtful selection of hydrogel base materials, formation chemistries, and degradable moieties is necessary to achieve the appropriate level of property control and desired cellular response. In this review, hydrogel design considerations and materials for hydrogel preparation, ranging from natural polymers to synthetic polymers, are overviewed. Recent advances in chemical and physical methods to crosslink hydrogels are highlighted, as well as recent developments in controlling hydrogel degradation rates and modes of degradation. Special attention is given to spatial or temporal presentation of various biochemical and biophysical cues to modulate cell response in static (i.e., non-degradable) or dynamic (i.e., degradable) microenvironments. This review provides insight into the design of new cell-compatible, degradable hydrogels to understand and modulate cellular processes for various biomedical applications. PMID:23609001

  3. Injectable micellar supramolecular hydrogel for delivery of hydrophobic anticancer drugs.

    PubMed

    Fu, CuiXiang; Lin, XiaoXiao; Wang, Jun; Zheng, XiaoQun; Li, XingYi; Lin, ZhengFeng; Lin, GuangYong

    2016-04-01

    In this paper, an injectable micellar supramolecular hydrogel composed of α-cyclodextrin (α-CD) and monomethoxy poly(ethylene glycol)-b-poly(ε-caplactone) (MPEG5000-PCL5000) micelles was developed by a simple method for hydrophobic anticancer drug delivery. By mixing α-CD aqueous solution and MPEG5000-PCL5000 micelles, an injectable micellar supramolecular hydrogel could be formed under mild condition due to the inclusion complexation between α-CD and MPEG segment of MPEG5000-PCL5000 micelles. The resultant supramolecular hydrogel was thereafter characterized by X-ray diffraction (XRD) and Scanning electron microscopy (SEM). The effect of α-CD amount on the gelation time, mechanical strength and thixotropic property was studied by a rheometer. Payload of hydrophobic paclitaxel (PTX) to supramolecular hydrogel was achieved by encapsulation of PTX into MPEG5000-PCL5000 micelles prior mixing with α-CD aqueous solution. In vitro release study showed that the release behavior of PTX from hydrogel could be modulated by change the α-CD amount in hydrogel. Furthermore, such supramolecular hydrogel could enhance the biological activity of encapsulated PTX compared to free PTX, as indicated by in vitro cytotoxicity assay. All these results indicated that the developed micellar supramolecular hydrogel might be a promising injectable drug delivery system for anticancer therapy. PMID:26886821

  4. Temperature responsive hydroxypropyl cellulose for encapsulation

    SciTech Connect

    Heitfeld, Kevin A.; Guo, Tingtai; Yang, George; Schaefer, Dale W.

    2009-08-26

    This work focuses on the use of temperature responsive gels (TRGs) (polymeric hydrogels with a large temperature-dependent change in volume) for flavor retention at cooking temperatures. Specifically, we have studied a gel with a lower critical solution temperature (LCST) that swells at low temperatures and collapses at high temperatures. In the collapsed state, the polymer acts as a transport barrier, keeping the volatile flavors inside. We have successfully synthesized a cellulose gel that exhibits this volume change and have encapsulated an oil phase inside the gel. The flavor-loaded encapsulated oil exhibited an increased release time when compared to similar gelatin capsules.

  5. Pharmacokinetics and pharmacodynamics evaluation of a thermosensitive chitosan based hydrogel containing liposomal doxorubicin.

    PubMed

    Ren, Shuangxia; Dai, Yu; Li, Cuiyun; Qiu, Zhixia; Wang, Xin; Tian, Fengjie; Zhou, Sufeng; Liu, Qi; Xing, Han; Lu, Yang; Chen, Xijing; Li, Ning

    2016-09-20

    In situ gelling thermosensitive hydrogel formulation has been reported to effectively sustain the release of macromolecules for a long time. However, the low-molecular-weight hydrophilic drugs, such as doxorubicin (DOX), are not suitable for intratumoral injection because the release will complete within one day. In this study, liposomal doxorubicin (LipDOX) was added into the hydrogel to form a novel thermosensitive formulation which prolonged the sustained release of DOX. DOX+C/GP (doxorubicin in chitosan/β-glycerophosphate) was prepared to compare with LipDOX+C/GP (liposomal doxorubicin in chitosan/β-glycerophosphate hydrogel). The particle size of DOX-loaded liposome was 94.2nm and the encapsulation efficiency of DOX was near 98%. In vitro release experiments, the release of DOX in both DOX+C/GP group and LipDOX+C/GP group increased along with the increasing pH of buffers. However, the LipDOX+C/GP group with lower initial burst release had a much longer releasing duration than DOX+C/GP group (21days vs. 24h). In vitro and in vivo antitumor experiments demonstrated that LipDOX+C/GP group had better antineoplastic effect and less toxicity than DOX+C/GP group. Pharmacokinetics study showed LipDOX+C/GP exhibited a higher AUC0-t and longer MRT than DOX+C/GP in blood and tumor, which indicated that LipDOX+C/GP obtained an enhanced antitumor activity compared with DOX+C/GP. In addition, the lower distribution index (the ratio of AUC of normal tissue/AUC of tumor tissue) of the LipDOX+C/GP implied it had lower toxicity to normal tissues than DOX+C/GP. Therefore, the novel thermosensitive hydrogel formulation was potential for clinical application in cancer treatment. PMID:27388491

  6. 3D Printing: 3D Printing of Highly Stretchable and Tough Hydrogels into Complex, Cellularized Structures.

    PubMed

    Hong, Sungmin; Sycks, Dalton; Chan, Hon Fai; Lin, Shaoting; Lopez, Gabriel P; Guilak, Farshid; Leong, Kam W; Zhao, Xuanhe

    2015-07-15

    X. Zhao and co-workers develop on page 4035 a new biocompatible hydrogel system that is extremely tough and stretchable and can be 3D printed into complex structures, such as the multilayer mesh shown. Cells encapsulated in the tough and printable hydrogel maintain high viability. 3D-printed structures of the tough hydrogel can sustain high mechanical loads and deformations. PMID:26172844

  7. Near infrared light-responsive and injectable supramolecular hydrogels for on-demand drug delivery.

    PubMed

    Wang, Xinyu; Wang, Changping; Zhang, Qiang; Cheng, Yiyun

    2016-01-18

    A near infrared (NIR) light-responsive supramolecular hydrogel consisting of α-cyclodextrin and poly(ethylene glycol)-modified dendrimer-encapsulated platinum nanoparticles was developed. Upon NIR irradiation, this hydrogel underwent a photothermo-sensitive degradation to release the entrapped therapeutic agents in an on-demand and dose-tunable fashion. PMID:26588349

  8. Stiffness and Adhesivity Control Aortic Valve Interstitial Cell Behavior within Hyaluronic Acid Based Hydrogels

    PubMed Central

    Duan, Bin; Hockaday, Laura A.; Kapetanovic, Edi; Kang, Kevin H.; Butcher, Jonathan T.

    2013-01-01

    Bioactive and biodegradable hydrogels that mimic the extracellular matrix and regulate valve interstitial cells (VIC) behavior are of great interest as three dimensional (3D) model systems for understanding mechanisms of valvular heart disease pathogenesis in vitro and the basis for regenerative templates for tissue engineering. However, the role of stiffness and adhesivity of hydrogels in VIC behavior remains poorly understood. This study reports synthesis of oxidized and methacrylated hyaluronic acid (Me-HA and MOHA) and subsequent development of hybrid hydrogels based on modified HA and methacrylated gelatin (Me-Gel) for VIC encapsulation. The mechanical stiffness and swelling ratio of the hydrogels were tunable with molecular weight of HA and concentration/composition of precursor solution. The encapsulated VIC in pure HA hydrogels with lower mechanical stiffness showed more spreading morphology comparing to stiffer counterparts and dramatically upregulated alpha smooth muscle actin expression indicating more activated myofibroblast properties. The addition of Me-Gel in Me-HA facilitated cell spreading, proliferation and VIC migration from encapsulated spheroids and better maintained VIC fibroblastic phenotype. The VIC phenotype transition during migration from encapsulated spheroids in both Me-HA and Me-HA/Me-Gel hydrogel matrix was also observed. These findings are important for the rational design of hydrogels for controlling VIC morphology, and for regulating VIC phenotype and function. The Me-HA/Me-Gel hybrid hydrogels accommodated with VIC are promising as valve tissue engineering scaffolds and 3D model for understanding valvular pathobiology. PMID:23648571

  9. Enhanced antitumor activity and mechanism of biodegradable polymeric micelles-encapsulated chetomin in both transgenic zebrafish and mouse models

    NASA Astrophysics Data System (ADS)

    Wu, Qinjie; Li, Guoyou; Deng, Senyi; Ouyang, Liang; Li, Ling; Liu, Lei; Luo, Na; Song, Xiangrong; He, Gu; Gong, Changyang; Wei, Yuquan

    2014-09-01

    Chetomin is a promising molecule with anti-tumor activities in the epipolythiodioxopiperazine family of fungal secondary metabolites; however, strong hydrophobicity has limited its further applications. In this work, chetomin was encapsulated into polymeric micelles to obtain an aqueous formulation, and the chetomin loaded micelles (Che-M) exhibited small particle size and high encapsulation efficiency. When the concentration of copolymer was higher than the critical gelation concentration, the Che-M could form a thermosensitive hydrogel (Che-H), which was free-flowing sol at ambient temperature and converted into a non-flowing gel at body temperature. The molecular modeling study has indicated that chetomin interacted with PCL as a core, which was embraced by PEG as a shell. Che-M showed equal cytotoxicity with free chetomin, but the apoptosis inducing effects of Che-M were more significant. Besides, Che-M could increase the GSSG level, decrease the GSH level, and increase the ROS in CT26 cells. Furthermore, stronger inhibitory effects of Che-M were observed on embryonic angiogenesis, tumor-induced angiogenesis and tumor growth in transgenic zebrafish models. In addition, Che-M was effective in inhibiting tumor growth and prolonging survival in a subcutaneous CT26 tumor model. In a colorectal peritoneal carcinomatosis model, both Che-M and Che-H showed excellent therapeutic effects, but Che-H was more effective. In conclusion, Che-M and Che-H may serve as candidates for cancer therapy.

  10. Cell-laden microengineered gelatin methacrylate hydrogels

    PubMed Central

    Nichol, Jason W.; Koshy, Sandeep; Bae, Hojae; Hwang, Chang Mo; Yamanlar, Seda; Khademhosseini, Ali

    2010-01-01

    The cellular microenvironment plays an integral role in improving the function of microengineered tissues. Control of the microarchitecture in engineered tissues can be achieved through photopatterning of cell-laden hydrogels. However, despite high pattern fidelity of photopolymerizable hydrogels, many such materials are not cell-responsive and have limited biodegradability. Here we demonstrate gelatin methacrylate (GelMA) as an inexpensive, cell-responsive hydrogel platform for creating cell-laden microtissues and microfluidic devices. Cells readily bound to, proliferated, elongated and migrated both when seeded on micropatterned GelMA substrates as well as when encapsulated in microfabricated GelMA hydrogels. The hydration and mechanical properties of GelMA were demonstrated to be tunable for various applications through modification to the methacrylation degree and gel concentration. Pattern fidelity and resolution of GelMA was high and it could be patterned to create perfusable microfluidic channels. Furthermore, GelMA micropatterns could be used to create cellular micropatterns for in vitro cell studies or 3D microtissue fabrication. These data suggest that GelMA hydrogels could be useful for creating complex, cell-responsive microtissues, such as endothelialized microvasculature, or for other applications that requires cell-responsive microengineered hydrogels. PMID:20417964

  11. BIOMIMETIC GRADIENT HYDROGELS FOR TISSUE ENGINEERING

    PubMed Central

    Sant, Shilpa; Hancock, Matthew J.; Donnelly, Joseph P.; Iyer, Dharini; Khademhosseini, Ali

    2011-01-01

    During tissue morphogenesis and homeostasis, cells experience various signals in their environments, including gradients of physical and chemical cues. Spatial and temporal gradients regulate various cell behaviours such as proliferation, migration, and differentiation during development, inflammation, wound healing, and cancer. One of the goals of functional tissue engineering is to create microenvironments that mimic the cellular and tissue complexity found in vivo by incorporating physical, chemical, temporal, and spatial gradients within engineered three-dimensional (3D) scaffolds. Hydrogels are ideal materials for 3D tissue scaffolds that mimic the extracellular matrix (ECM). Various techniques from material science, microscale engineering, and microfluidics are used to synthesise biomimetic hydrogels with encapsulated cells and tailored microenvironments. In particular, a host of methods exist to incorporate micrometer to centimetre scale chemical and physical gradients within hydrogels to mimic the cellular cues found in vivo. In this review, we draw on specific biological examples to motivate hydrogel gradients as tools for studying cell–material interactions. We provide a brief overview of techniques to generate gradient hydrogels and showcase their use to study particular cell behaviours in two-dimensional (2D) and 3D environments. We conclude by summarizing the current and future trends in gradient hydrogels and cell–material interactions in context with the long-term goals of tissue engineering. PMID:21874065

  12. Cell-laden microengineered gelatin methacrylate hydrogels.

    PubMed

    Nichol, Jason W; Koshy, Sandeep T; Bae, Hojae; Hwang, Chang M; Yamanlar, Seda; Khademhosseini, Ali

    2010-07-01

    The cellular microenvironment plays an integral role in improving the function of microengineered tissues. Control of the microarchitecture in engineered tissues can be achieved through photopatterning of cell-laden hydrogels. However, despite high pattern fidelity of photopolymerizable hydrogels, many such materials are not cell-responsive and have limited biodegradability. Here, we demonstrate gelatin methacrylate (GelMA) as an inexpensive, cell-responsive hydrogel platform for creating cell-laden microtissues and microfluidic devices. Cells readily bound to, proliferated, elongated, and migrated both when seeded on micropatterned GelMA substrates as well as when encapsulated in microfabricated GelMA hydrogels. The hydration and mechanical properties of GelMA were demonstrated to be tunable for various applications through modification of the methacrylation degree and gel concentration. The pattern fidelity and resolution of GelMA were high and it could be patterned to create perfusable microfluidic channels. Furthermore, GelMA micropatterns could be used to create cellular micropatterns for in vitro cell studies or 3D microtissue fabrication. These data suggest that GelMA hydrogels could be useful for creating complex, cell-responsive microtissues, such as endothelialized microvasculature, or for other applications that require cell-responsive microengineered hydrogels.

  13. Enzymatically crosslinked gelatin hydrogel promotes the proliferation of adipose tissue-derived stromal cells

    PubMed Central

    Ren, Xiaomei; Long, Haiyan; Qian, Hong; Ma, Kunlong

    2016-01-01

    Gelatin hydrogel crosslinked by microbial transglutaminase (mTG) exhibits excellent performance in cell adhesion, proliferation, and differentiation. We examined the gelation time and gel strength of gelatin/mTG hydrogels in various proportions to investigate their physical properties and tested their degradation performances in vitro. Cell morphology and viability of adipose tissue-derived stromal cells (ADSCs) cultured on the 2D gel surface or in 3D hydrogel encapsulation were evaluated by immunofluorescence staining. Cell proliferation was tested via Alamar Blue assay. To investigate the hydrogel effect on cell differentiation, the cardiac-specific gene expression levelsof Nkx2.5, Myh6, Gja1, and Mef2c in encapsulated ADSCs with or without cardiac induction medium were detected by real-time RT-PCR. Cell release from the encapsulated status and cell migration in a 3D hydrogel model were assessed in vitro. Results show that the gelatin/mTG hydrogels are not cytotoxic and that their mechanical properties are adjustable. Hydrogel degradation is related to gel concentration and the resident cells. Cell growth morphology and proliferative capability in both 2D and 3D cultures were mainly affected by gel concentration. PCR result shows that hydrogel modulus together with induction medium affects the cardiac differentiation of ADSCs. The cell migration experiment and subcutaneous implantation show that the hydrogels are suitable for cell delivery. PMID:27703850

  14. Palisaded Encapsulated Neuroma of the Trunk: A Case Report and Review of Palisaded Encapsulated Neuroma

    PubMed Central

    Cohen, Philip R

    2016-01-01

    Palisaded encapsulated neuroma is a rare, benign cutaneous tumor. It most commonly presents as a solitary, flesh-colored, dome-shaped nodule affecting the face. However, albeit rarely, palisaded encapsulated neuroma may also appear on the trunk, genitals, or extremities. We describe the clinical and pathologic findings of a male patient who presented with a palisaded encapsulated neuroma on his left flank. In addition, we review the characteristics of patients with truncal palisaded encapsulated neuromas and summarize the clinical and histologic differential diagnosis of this tumor.

  15. Palisaded Encapsulated Neuroma of the Trunk: A Case Report and Review of Palisaded Encapsulated Neuroma

    PubMed Central

    Cohen, Philip R

    2016-01-01

    Palisaded encapsulated neuroma is a rare, benign cutaneous tumor. It most commonly presents as a solitary, flesh-colored, dome-shaped nodule affecting the face. However, albeit rarely, palisaded encapsulated neuroma may also appear on the trunk, genitals, or extremities. We describe the clinical and pathologic findings of a male patient who presented with a palisaded encapsulated neuroma on his left flank. In addition, we review the characteristics of patients with truncal palisaded encapsulated neuromas and summarize the clinical and histologic differential diagnosis of this tumor. PMID:27630799

  16. Palisaded Encapsulated Neuroma of the Trunk: A Case Report and Review of Palisaded Encapsulated Neuroma.

    PubMed

    Beutler, Bryce; Cohen, Philip R

    2016-01-01

    Palisaded encapsulated neuroma is a rare, benign cutaneous tumor. It most commonly presents as a solitary, flesh-colored, dome-shaped nodule affecting the face. However, albeit rarely, palisaded encapsulated neuroma may also appear on the trunk, genitals, or extremities. We describe the clinical and pathologic findings of a male patient who presented with a palisaded encapsulated neuroma on his left flank. In addition, we review the characteristics of patients with truncal palisaded encapsulated neuromas and summarize the clinical and histologic differential diagnosis of this tumor. PMID:27630799

  17. Controlling the Porosity and Microarchitecture of Hydrogels for Tissue Engineering

    PubMed Central

    Annabi, Nasim; Nichol, Jason W.; Zhong, Xia; Ji, Chengdong; Koshy, Sandeep; Khademhosseini, Ali

    2010-01-01

    Tissue engineering holds great promise for regeneration and repair of diseased tissues, making the development of tissue engineering scaffolds a topic of great interest in biomedical research. Because of their biocompatibility and similarities to native extracellular matrix, hydrogels have emerged as leading candidates for engineered tissue scaffolds. However, precise control of hydrogel properties, such as porosity, remains a challenge. Traditional techniques for creating bulk porosity in polymers have demonstrated success in hydrogels for tissue engineering; however, often the conditions are incompatible with direct cell encapsulation. Emerging technologies have demonstrated the ability to control porosity and the microarchitectural features in hydrogels, creating engineered tissues with structure and function similar to native tissues. In this review, we explore the various technologies for controlling the porosity and microarchitecture within hydrogels, and demonstrate successful applications of combining these techniques. PMID:20121414

  18. Injectable shear-thinning nanoengineered hydrogels for stem cell delivery.

    PubMed

    Thakur, Ashish; Jaiswal, Manish K; Peak, Charles W; Carrow, James K; Gentry, James; Dolatshahi-Pirouz, Alireza; Gaharwar, Akhilesh K

    2016-06-16

    Injectable hydrogels are investigated for cell encapsulation and delivery as they can shield cells from high shear forces. One of the approaches to obtain injectable hydrogels is to reinforce polymeric networks with high aspect ratio nanoparticles such as two-dimensional (2D) nanomaterials. 2D nanomaterials are an emerging class of ultrathin materials with a high degree of anisotropy and they strongly interact with polymers resulting in the formation of shear-thinning hydrogels. Here, we present 2D nanosilicate reinforced kappa-carrageenan (κCA) hydrogels for cellular delivery. κCA is a natural polysaccharide that resembles native glycosaminoglycans and can form brittle hydrogels via ionic crosslinking. The chemical modification of κCA with photocrosslinkable methacrylate groups renders the formation of a covalently crosslinked network (MκCA). Reinforcing the MκCA with 2D nanosilicates results in shear-thinning characteristics, and enhanced mechanical stiffness, elastomeric properties, and physiological stability. The shear-thinning characteristics of nanocomposite hydrogels are investigated for human mesenchymal stem cell (hMSC) delivery. The hMSCs showed high cell viability after injection and encapsulated cells showed a circular morphology. The proposed shear-thinning nanoengineered hydrogels can be used for cell delivery for cartilage tissue regeneration and 3D bioprinting.

  19. Injectable shear-thinning nanoengineered hydrogels for stem cell delivery

    NASA Astrophysics Data System (ADS)

    Thakur, Ashish; Jaiswal, Manish K.; Peak, Charles W.; Carrow, James K.; Gentry, James; Dolatshahi-Pirouz, Alireza; Gaharwar, Akhilesh K.

    2016-06-01

    Injectable hydrogels are investigated for cell encapsulation and delivery as they can shield cells from high shear forces. One of the approaches to obtain injectable hydrogels is to reinforce polymeric networks with high aspect ratio nanoparticles such as two-dimensional (2D) nanomaterials. 2D nanomaterials are an emerging class of ultrathin materials with a high degree of anisotropy and they strongly interact with polymers resulting in the formation of shear-thinning hydrogels. Here, we present 2D nanosilicate reinforced kappa-carrageenan (κCA) hydrogels for cellular delivery. κCA is a natural polysaccharide that resembles native glycosaminoglycans and can form brittle hydrogels via ionic crosslinking. The chemical modification of κCA with photocrosslinkable methacrylate groups renders the formation of a covalently crosslinked network (MκCA). Reinforcing the MκCA with 2D nanosilicates results in shear-thinning characteristics, and enhanced mechanical stiffness, elastomeric properties, and physiological stability. The shear-thinning characteristics of nanocomposite hydrogels are investigated for human mesenchymal stem cell (hMSC) delivery. The hMSCs showed high cell viability after injection and encapsulated cells showed a circular morphology. The proposed shear-thinning nanoengineered hydrogels can be used for cell delivery for cartilage tissue regeneration and 3D bioprinting.

  20. Injectable and Glucose-Responsive Hydrogels Based on Boronic Acid-Glucose Complexation.

    PubMed

    Dong, Yizhou; Wang, Weiheng; Veiseh, Omid; Appel, Eric A; Xue, Kun; Webber, Matthew J; Tang, Benjamin C; Yang, Xi-Wen; Weir, Gordon C; Langer, Robert; Anderson, Daniel G

    2016-08-30

    Injectable hydrogels have been widely used for a number of biomedical applications. Here, we report a new strategy to form an injectable and glucose-responsive hydrogel using the boronic acid-glucose complexation. The ratio of boronic acid and glucose functional groups is critical for hydrogel formation. In our system, polymers with 10-60% boronic acid, with the balance being glucose-modified, are favorable to form hydrogels. These hydrogels are shear-thinning and self-healing, recovering from shear-induced flow to a gel state within seconds. More importantly, these polymers displayed glucose-responsive release of an encapsulated model drug. The hydrogel reported here is an injectable and glucose-responsive hydrogel constructed from the complexation of boronic acid and glucose within a single component polymeric material.

  1. Antimicrobial hydrogels for the treatment of infection

    PubMed Central

    Veiga, Ana Salomé; Schneider, Joel P.

    2014-01-01

    The increasing prevalence of microbial infections, especially those associated with impaired wound healing and biomedical implant failure has spurred the development of new materials having antimicrobial activity. Hydrogels are a class of highly hydrated material finding use in diverse medical applications such as drug delivery, tissue engineering, as wound fillers and as implant coatings, to name a few. The biocompatible nature of many gels make them a convenient starting platform to develop selectively active antimicrobial materials. Hydrogels with antimicrobial properties can be obtained through the encapsulation or covalent immobilization of known antimicrobial agents, or the material itself can be designed to possess inherent antimicrobial activity. In this review we present an overview of antimicrobial hydrogels that have recently been developed and when possible provide a discussion relevant to their mechanism of action. PMID:24122459

  2. Antimicrobial hydrogels for the treatment of infection.

    PubMed

    Veiga, Ana Salomé; Schneider, Joel P

    2013-11-01

    The increasing prevalence of microbial infections, especially those associated with impaired wound healing and biomedical implant failure has spurred the development of new materials having antimicrobial activity. Hydrogels are a class of highly hydrated material finding use in diverse medical applications such as drug delivery, tissue engineering, as wound fillers, and as implant coatings, to name a few. The biocompatible nature of many gels make them a convenient starting platform to develop selectively active antimicrobial materials. Hydrogels with antimicrobial properties can be obtained through the encapsulation or covalent immobilization of known antimicrobial agents, or the material itself can be designed to possess inherent antimicrobial activity. In this review we present an overview of antimicrobial hydrogels that have recently been developed and when possible provide a discussion relevant to their mechanism of action.

  3. Modulation of Dental Pulp Stem Cell Odontogenesis in a Tunable PEG-Fibrinogen Hydrogel System.

    PubMed

    Lu, Qiqi; Pandya, Mirali; Rufaihah, Abdul Jalil; Rosa, Vinicius; Tong, Huei Jinn; Seliktar, Dror; Toh, Wei Seong

    2015-01-01

    Injectable hydrogels have the great potential for clinical translation of dental pulp regeneration. A recently developed PEG-fibrinogen (PF) hydrogel, which comprises a bioactive fibrinogen backbone conjugated to polyethylene glycol (PEG) side chains, can be cross-linked after injection by photopolymerization. The objective of this study was to investigate the use of this hydrogel, which allows tuning of its mechanical properties, as a scaffold for dental pulp tissue engineering. The cross-linking degree of PF hydrogels could be controlled by varying the amounts of PEG-diacrylate (PEG-DA) cross-linker. PF hydrogels are generally cytocompatible with the encapsulated dental pulp stem cells (DPSCs), yielding >85% cell viability in all hydrogels. It was found that the cell morphology of encapsulated DPSCs, odontogenic gene expression, and mineralization were strongly modulated by the hydrogel cross-linking degree and matrix stiffness. Notably, DPSCs cultured within the highest cross-linked hydrogel remained mostly rounded in aggregates and demonstrated the greatest enhancement in odontogenic gene expression. Consistently, the highest degree of mineralization was observed in the highest cross-linked hydrogel. Collectively, our results indicate that PF hydrogels can be used as a scaffold for DPSCs and offers the possibility of influencing DPSCs in ways that may be beneficial for applications in regenerative endodontics.

  4. Structural Reinforcement of Cell-Laden Hydrogels with Microfabricated Three Dimensional Scaffolds

    PubMed Central

    Cha, Chaenyung; Soman, Pranav; Zhu, Wei; Nikkhah, Mehdi; Camci-Unal, Gulden

    2013-01-01

    Hydrogels commonly used in tissue engineering are mechanically soft, thus often display structural weakness. Herein, we introduce a strategy for enhancing the structural integrity and fracture toughness of cell-laden hydrogels by incorporating a three-dimensional (3D) microfabricated scaffold as a structural element. A digital micromirror device projection printing (DMD-PP) system, a rapid prototyping technology which employs a layer-by-layer stereolithographic approach, was utilized to efficiently fabricate 3D scaffolds made from photocrosslinkable poly(ethylene glycol) diacrylate (PEGDA). The scaffold was incorporated into a photocrosslinkable gelatin hydrogel by placing it in a pre-gel solution, and inducing in situ hydrogel formation. The resulting scaffold-reinforced hydrogels demonstrated significant increase in ultimate stress and provided structural support for weak hydrogels. In addition, the scaffold did not affect the rigidity of hydrogels, as it was not involved in the crosslinking reaction to form the hydrogel. Therefore, the presented approach could avoid inadvertent and undesired changes in the hydrogel rigidity which is a known regulator of cellular activities. Furthermore, the biocompatibility of scaffold-reinforced hydrogels was confirmed by evaluating the viability and proliferation of encapsulated fibroblasts. Overall, the strategy of incorporating 3D scaffolds into hydrogels as structural reinforcements presented in this study will be highly useful for enhancing the mechanical toughness of hydrogels for various tissue engineering applications. PMID:24778793

  5. Soft nanotube hydrogels functioning as artificial chaperones.

    PubMed

    Kameta, Naohiro; Masuda, Mitsutoshi; Shimizu, Toshimi

    2012-06-26

    Self-assembly of rationally designed asymmetric amphiphilic monomers in water produced nanotube hydrogels in the presence of chemically denatured proteins (green fluorescent protein, carbonic anhydrase, and citrate synthase) at room temperature, which were able to encapsulate the proteins in the one-dimensional channel of the nanotube consisting of a monolayer membrane. Decreasing the concentrations of the denaturants induced refolding of part of the encapsulated proteins in the nanotube channel. Changing the pH dramatically reduced electrostatic attraction between the inner surface mainly covered with amino groups of the nanotube channel and the encapsulated proteins. As a result, the refolded proteins were smoothly released into the bulk solution without specific additive agents. This recovery procedure also transformed the encapsulated proteins from an intermediately refolding state to a completely refolded state. Thus, the nanotube hydrogels assisted the refolding of the denatured proteins and acted as artificial chaperones. Introduction of hydrophobic sites such as a benzyloxycarbony group and a tert-butoxycarbonyl group onto the inner surface of the nanotube channels remarkably enhanced the encapsulation and refolding efficiencies based on the hydrophobic interactions between the groups and the surface-exposed hydrophobic amino acid residues of the intermediates in the refolding process. Refolding was strongly dependent on the inner diameters of the nanotube channels. Supramolecular nanotechnology allowed us to not only precisely control the diameters of the nanotube channels but also functionalize their surfaces, enabling us to fine-tune the biocompatibility. Hence, these nanotube hydrogel systems should be widely applicable to various target proteins of different molecular weights, charges, and conformations.

  6. Gelatin-Hyaluronic Acid Hydrogels with Tuned Stiffness to Counterbalance Cellular Forces and Promote Cell Differentiation.

    PubMed

    Poveda-Reyes, Sara; Moulisova, Vladimira; Sanmartín-Masiá, Esther; Quintanilla-Sierra, Luis; Salmerón-Sánchez, Manuel; Ferrer, Gloria Gallego

    2016-09-01

    Cells interact mechanically with their environment, exerting mechanical forces that probe the extracellular matrix (ECM). The mechanical properties of the ECM determine cell behavior and control cell differentiation both in 2D and 3D environments. Gelatin (Gel) is a soft hydrogel into which cells can be embedded. This study shows significant 3D Gel shrinking due to the high traction cellular forces exerted by the cells on the matrix, which prevents cell differentiation. To modulate this process, Gel with hyaluronic acid (HA) has been combined in an injectable crosslinked hydrogel with controlled Gel-HA ratio. HA increases matrix stiffness. The addition of small amounts of HA leads to a significant reduction in hydrogel shrinking after cell encapsulation (C2C12 myoblasts). We show that hydrogel stiffness counterbalanced traction forces of cells and this was decisive in promoting cell differentiation and myotube formation of C2C12 encapsulated in the hybrid hydrogels.

  7. Smart Hydrogels with Inhomogeneous Structures Assembled Using Nanoclay-Cross-Linked Hydrogel Subunits as Building Blocks.

    PubMed

    Yao, Chen; Liu, Zhuang; Yang, Chao; Wang, Wei; Ju, Xiao-Jie; Xie, Rui; Chu, Liang-Yin

    2016-08-24

    A novel and facile assembly strategy has been successfully developed to construct smart nanocomposite (NC) hydrogels with inhomogeneous structures using nanoclay-cross-linked stimuli-responsive hydrogel subunits as building blocks via rearranged hydrogen bonding between polymers and clay nanosheets. The assembled thermoresponsive poly(N-isopropylacrylamide-co-acrylamide) (poly(NIPAM-co-AM)) hydrogels with various inhomogeneous structures exhibit excellent mechanical properties due to plenty of new hydrogen bonding interactions created at the interface for locking the NC hydrogel subunits, which are strong enough to tolerate external forces such as high levels of elongations and multicycles of swelling/deswelling operations. The proposed approach is featured with flexibility and designability to build assembled hydrogels with diverse architectures for achieving various responsive deformations, which are highly promising for stimuli-responsive manipulation such as actuation, encapsulation, and cargo transportation. Our assembly strategy creates new opportunities for further developing mechanically strong hydrogel systems with complex architectures that composed of diverse internal structures, multistimuli-responsive properties, and controllable shape deformation behaviors in the soft robots and actuators fields. PMID:27490585

  8. Fabrication of three-dimensional porous cell-laden hydrogel for tissue engineering

    PubMed Central

    Hwang, Chang Mo; Sant, Shilpa; Masaeli, Mahdokht; Kachouie, Nezamoddin N; Zamanian, Behnam; Lee, Sang-Hoon; Khademhosseini, Ali

    2012-01-01

    For tissue engineering applications, scaffolds should be porous to enable rapid nutrient and oxygen transfer while providing a three-dimensional (3D) microenvironment for the encapsulated cells. This dual characteristic can be achieved by fabrication of porous hydrogels that contain encapsulated cells. In this work, we developed a simple method that allows cell encapsulation and pore generation inside alginate hydrogels simultaneously. Gelatin beads of 150–300 μm diameter were used as a sacrificial porogen for generating pores within cell-laden hydrogels. Gelation of gelatin at low temperature (4 °C) was used to form beads without chemical crosslinking and their subsequent dissolution after cell encapsulation led to generation of pores within cell-laden hydrogels. The pore size and porosity of the scaffolds were controlled by the gelatin bead size and their volume ratio, respectively. Fabricated hydrogels were characterized for their internal microarchitecture, mechanical properties and permeability. Hydrogels exhibited a high degree of porosity with increasing gelatin bead content in contrast to nonporous alginate hydrogel. Furthermore, permeability increased by two to three orders while compressive modulus decreased with increasing porosity of the scaffolds. Application of these scaffolds for tissue engineering was tested by encapsulation of hepatocarcinoma cell line (HepG2). All the scaffolds showed similar cell viability; however, cell proliferation was enhanced under porous conditions. Furthermore, porous alginate hydrogels resulted in formation of larger spheroids and higher albumin secretion compared to nonporous conditions. These data suggest that porous alginate hydrogels may have provided a better environment for cell proliferation and albumin production. This may be due to the enhanced mass transfer of nutrients, oxygen and waste removal, which is potentially beneficial for tissue engineering and regenerative medicine applications. PMID:20823504

  9. MWNT-hybrided supramolecular hydrogel for hydrophobic camptothecin delivery.

    PubMed

    Mu, Shansong; Liang, Yuanyuan; Chen, Shuaijun; Zhang, Liming; Liu, Tao

    2015-05-01

    To encapsulate the hydrophobic camptothecin (CPT) into hydrogel matrix with a high loading amount, a supramolecular hydrogel hybrided with multi-walled carbon nanotubes (MWNTs) was developed by the host-guest interactions and used for loading and delivering CPT. Firstly, carboxylated MWNTs were modified by polyethylene glycol monomethyl ether (MPEG), which resulted in the water-dispersed MPEG-MWNTs. Then α-cyclodextrin (α-CD) was mixed with MPEG-MWNTs and the hybrid supramolecular hydrogel was fabricated by the inclusion interactions between α-CD and MPEG. The used MPEG not only dispersed MWNTs in aqueous solution, but also functioned as hydrogel matrix by interacting with α-CD. The gelation time for the sol-gel transition and rheological properties of the resultant hydrogels were studied. Due to the excellent application of MWNTs in drug delivery, hydrophobic CPT could be loaded into the hydrogel matrix by a higher amount compared with micelles. By in vitro release and cell viability tests, it was found that the encapsulated CPT could exhibit a controlled and sustained release behavior as well as sustained antitumor efficacy.

  10. Thiol-ene hydrogels as desmoplasia-mimetic matrices for modeling pancreatic cancer cell growth, invasion, and drug resistance

    PubMed Central

    Ki, Chang Seok; Lin, Tsai-Yu; Korc, Murray; Lin, Chien-Chi

    2014-01-01

    The development of pancreatic ductal adenocarcinoma (PDAC) is heavily influenced by local stromal tissues, or desmoplasia. Biomimetic hydrogels capable of mimicking tumor niches are particularly useful for discovering the role of independent matrix cues on cancer cell development. Here, we report a photo-curable and bio-orthogonal thiol-ene (i.e., cross-linked by mutually reactive norbornene and thiol groups via photoinitiation) hydrogel platform for studying the growth, morphogenesis, drug resistance, and cancer stem cell marker expression in PDAC cells cultured in 3D. The hydrogels were prepared from multi-arm poly(ethylene glycol)-norbornene cross-linked with protease sensitive peptide to permit cell-mediated matrix remodeling. Collagen 1 fibrils were incorporated into the covalent network while cytokines (e.g., EGF and TGF-β1) were supplemented in the culture media for controlling cell fate. We found that the presence of collagen 1 enhanced cell proliferation and Yes-associated protein (YAP) translocation to cell nuclei. Cytokines and collagen 1 synergistically up-regulated MT1-MMP expression and induced cell spreading, suggestive of epithelial-mesenchymal transition (EMT) in the encapsulated cells. Furthermore, PDAC cells cultured in 3D developed chemo-resistance even in the absence of collagen 1 and cytokines. This phenotype is likely a consequence of the enrichment of pancreatic cancer stem cells that expressed high levels of CD24, sonic hedgehog (SHH), and vascular endothelial growth factor (VEGF). PMID:25176061

  11. Controlling Mechanical Properties of Cell-Laden Hydrogels by Covalent Incorporation of Graphene Oxide

    PubMed Central

    Cha, Chaenyung; Shin, Su Ryon; Gao, Xiguang; Annabi, Nasim; Dokmeci, Mehmet R.; Tang, Xiaowu (Shirley); Khademhosseini, Ali

    2013-01-01

    Graphene-based materials are useful reinforcing agents to modify the mechanical properties of hydrogels. Here, we present an approach to covalently incorporate graphene oxide (GO) into hydrogels via radical copolymerization to enhance the dispersion and conjugation of GO sheets within the hydrogels. GO is chemically modified to present surface-grafted methacrylate groups (MeGO). In comparison to GO, higher concentrations of MeGO can be stably dispersed in a pre-gel solution containing methacrylated gelatin (GelMA) without aggregation or significant increase in viscosity. In addition, the resulting MeGO-GelMA hydrogels demonstrate a significant increase in fracture strength with increasing MeGO concentration. Interestingly, the rigidity of the hydrogels is not significantly affected by the covalently incorporated GO. Therefore, our approach can be used to enhance the structural integrity and resistance to fracture of the hydrogels without inadvertently affecting their rigidity, which is known to affect the behavior of encapsulated cells. The biocompatibility of MeGO-GelMA hydrogels is confirmed by measuring the viability and proliferation of the encapsulated fibroblasts. Overall, this study highlights the advantage of covalently incorporating GO into a hydrogel system, and improves the quality of cell-laden hydrogels. PMID:24127350

  12. Controlling mechanical properties of cell-laden hydrogels by covalent incorporation of graphene oxide.

    PubMed

    Cha, Chaenyung; Shin, Su Ryon; Gao, Xiguang; Annabi, Nasim; Dokmeci, Mehmet R; Tang, Xiaowu Shirley; Khademhosseini, Ali

    2014-02-12

    Graphene-based materials are useful reinforcing agents to modify the mechanical properties of hydrogels. Here, an approach is presented to covalently incorporate graphene oxide (GO) into hydrogels via radical copolymerization to enhance the dispersion and conjugation of GO sheets within the hydrogels. GO is chemically modified to present surface-grafted methacrylate groups (MeGO). In comparison to GO, higher concentrations of MeGO can be stably dispersed in a pre-gel solution containing methacrylated gelatin (GelMA) without aggregation or significant increase in viscosity. In addition, the resulting MeGO-GelMA hydrogels demonstrate a significant increase in fracture strength with increasing MeGO concentration. Interestingly, the rigidity of the hydrogels is not significantly affected by the covalently incorporated GO. Therefore, this approach can be used to enhance the structural integrity and resistance to fracture of the hydrogels without inadvertently affecting their rigidity, which is known to affect the behavior of encapsulated cells. The biocompatibility of MeGO-GelMA hydrogels is confirmed by measuring the viability and proliferation of the encapsulated fibroblasts. Overall, this study highlights the advantage of covalently incorporating GO into a hydrogel system, and improves the quality of cell-laden hydrogels.

  13. Thermosensitive hydrogel containing dexamethasone micelles for preventing postsurgical adhesion in a repeated-injury model.

    PubMed

    Wu, Qinjie; Wang, Ning; He, Tao; Shang, Jinfeng; Li, Ling; Song, Linjiang; Yang, Xi; Li, Xia; Luo, Na; Zhang, Wenli; Gong, Changyang

    2015-09-01

    Tissue adhesion is a common complication after surgery. In this work, a dexamethasone loaded polymeric micelles in thermosensitive hydrogel composite (Dex hydrogel) was prepared, which combined the anti-adhesion barrier with controlled release of anti-adhesion drug. Dexamethasone (Dex) was encapsulated in polymeric micelles (Dex micelles), and then the Dex micelles were loaded into biodegradable and thermosensitive hydrogel. The obtained Dex hydrogel showed a temperature-dependent sol-gel-sol phase transition behavior. The Dex hydrogel could form a non-flowing gel in situ upon subcutaneous injection and gradually degrade in about 20 days. In addition, Dex hydrogel was assigned for anti-adhesion studies in a more rigorous recurrent adhesion animal model. Compared with normal saline (NS) and Dex micelles group, tissue adhesions in hydrogel and Dex hydrogel group were significantly alleviated. In Dex hydrogel group, the media adhesion score is 0, which was dramatically lower than that in blank hydrogel group (2.50, P < 0.001). In histopathological examination and scanning electron microscopy (SEM) analysis, an integral neo-mesothelial cell layer with microvilli on their surface was observed, which revealed that the injured parietal and visceral peritoneum were fully recovered without the concerns of adhesion formation. Our results suggested that Dex hydrogel may serve as a potential anti-adhesion candidate.

  14. Thermosensitive hydrogel containing dexamethasone micelles for preventing postsurgical adhesion in a repeated-injury model

    PubMed Central

    Wu, Qinjie; Wang, Ning; He, Tao; Shang, Jinfeng; Li, Ling; Song, Linjiang; Yang, Xi; Li, Xia; Luo, Na; Zhang, Wenli; Gong, Changyang

    2015-01-01

    Tissue adhesion is a common complication after surgery. In this work, a dexamethasone loaded polymeric micelles in thermosensitive hydrogel composite (Dex hydrogel) was prepared, which combined the anti-adhesion barrier with controlled release of anti-adhesion drug. Dexamethasone (Dex) was encapsulated in polymeric micelles (Dex micelles), and then the Dex micelles were loaded into biodegradable and thermosensitive hydrogel. The obtained Dex hydrogel showed a temperature-dependent sol-gel-sol phase transition behavior. The Dex hydrogel could form a non-flowing gel in situ upon subcutaneous injection and gradually degrade in about 20 days. In addition, Dex hydrogel was assigned for anti-adhesion studies in a more rigorous recurrent adhesion animal model. Compared with normal saline (NS) and Dex micelles group, tissue adhesions in hydrogel and Dex hydrogel group were significantly alleviated. In Dex hydrogel group, the media adhesion score is 0, which was dramatically lower than that in blank hydrogel group (2.50, P < 0.001). In histopathological examination and scanning electron microscopy (SEM) analysis, an integral neo-mesothelial cell layer with microvilli on their surface was observed, which revealed that the injured parietal and visceral peritoneum were fully recovered without the concerns of adhesion formation. Our results suggested that Dex hydrogel may serve as a potential anti-adhesion candidate. PMID:26324090

  15. Hyaluronic acid and fibrin hydrogels with concentrated DNA/PEI polyplexes for local gene delivery.

    PubMed

    Lei, Yuguo; Rahim, Maha; Ng, Quinn; Segura, Tatiana

    2011-08-10

    Local delivery of DNA through a hydrogel scaffold would increase the applicability of gene therapy in tissue regeneration and cancer therapy. However, the delivery of DNA/cationic polymer nanoparticles (polyplexes) using hydrogels is challenging due to the aggregation and inactivation of polyplexes during their incorporation into hydrogel scaffolds. We developed a novel process (termed caged nanoparticle encapsulation or CnE) to load concentrated and unaggregated non-viral gene delivery nanoparticles into various hydrogels. Previously, we showed that PEG hydrogels loaded with DNA/PEI polyplexes through this process were able to deliver genes both in vitro and in vivo. In this study, we found that hyaluronic acid and fibrin hydrogels with concentrated and unaggregated polyplexes loaded through CnE were able to deliver genes in vivo as well, demonstrating the universality of the process.

  16. Photo-crosslinkable hydrogel-based 3D microfluidic culture device.

    PubMed

    Lee, Youlee; Lee, Jong Min; Bae, Pan-Kee; Chung, Il Yup; Chung, Bong Hyun; Chung, Bong Geun

    2015-04-01

    We developed the photo-crosslinkable hydrogel-based 3D microfluidic device to culture neural stem cells (NSCs) and tumors. The photo-crosslinkable gelatin methacrylate (GelMA) polymer was used as a physical barrier in the microfluidic device and collagen type I gel was employed to culture NSCs in a 3D manner. We demonstrated that the pore size was inversely proportional to concentrations of GelMA hydrogels, showing the pore sizes of 5 and 25 w/v% GelMA hydrogels were 34 and 4 μm, respectively. It also revealed that the morphology of pores in 5 w/v% GelMA hydrogels was elliptical shape, whereas we observed circular-shaped pores in 25 w/v% GelMA hydrogels. To culture NSCs and tumors in the 3D microfluidic device, we investigated the molecular diffusion properties across GelMA hydrogels, indicating that 25 w/v% GelMA hydrogels inhibited the molecular diffusion for 6 days in the 3D microfluidic device. In contrast, the chemicals were diffused in 5 w/v% GelMA hydrogels. Finally, we cultured NSCs and tumors in the hydrogel-based 3D microfluidic device, showing that 53-75% NSCs differentiated into neurons, while tumors were cultured in the collagen gels. Therefore, this photo-crosslinkable hydrogel-based 3D microfluidic culture device could be a potentially powerful tool for regenerative tissue engineering applications.

  17. Enhanced loading efficiency and sustained release of doxorubicin from hyaluronic acid/graphene oxide composite hydrogels by a mussel-inspired catecholamine.

    PubMed

    Byun, Eunkyoung; Lee, Haeshin

    2014-10-01

    Hydrogels have been widely investigated as depots and carriers for drug delivery. For example, hydrogels have been successfully used to encapsulate a variety of pharmaceuticals, such as peptides and proteins. Recently, carbon material/hydrogel hybrid systems have been of interest as new hydrogel systems because of the attractiveness of structural reinforcement for biomedical applications. In particular, graphene and graphene oxide (GO) have been recognized as novel biomaterials with unique physical, electrical, and thermal properties. Among the various applications of these materials, many research groups are intensively exploring the biomedical applications of graphene and GO. In this study, we propose a new role for GO in hybrid hydrogels, with the inclusion of GO in the gel network resulting in a nearly 90% enhancement in the loading of small, hydrophobic drugs (e.g., doxorubicin, Dox) compared to the hydrogel without encapsulated GO. The hydrogels were prepared from hyaluronic acid (HA), with a mussel-inspired crosslinking chemistry used to prepare the HA hydrogels. Dox was then loaded into the hydrogels. The HA/GO composite hydrogel not only enhanced the loading amount but also exhibited long-lasting anticancer activity over 10 days. We believe that these graphene oxide-containing composite hydrogels can solve one of the challenges in the application of hydrogels by improving the loading efficiency of small-molecule drugs. PMID:25942800

  18. Fiber-reinforced hydrogel scaffolds for heart valve tissue engineering.

    PubMed

    Eslami, Maryam; Vrana, Nihal Engin; Zorlutuna, Pinar; Sant, Shilpa; Jung, Sungmi; Masoumi, Nafiseh; Khavari-Nejad, Ramazan Ali; Javadi, Gholamreza; Khademhosseini, Ali

    2014-09-01

    Heart valve-related disorders are among the major causes of death worldwide. Although prosthetic valves are widely used to treat this pathology, current prosthetic grafts cannot grow with the patient while maintaining normal valve mechanical and hemodynamic properties. Tissue engineering may provide a possible solution to this issue through using biodegradable scaffolds and patients' own cells. Despite their similarity to heart valve tissue, most hydrogel scaffolds are not mechanically suitable for the dynamic stresses of the heart valve microenvironment. In this study, we integrated electrospun poly(glycerol sebacate) (PGS)-poly(ɛ-caprolactone) (PCL) microfiber scaffolds, which possess enhanced mechanical properties for heart valve engineering, within a hybrid hydrogel made from methacrylated hyaluronic acid and methacrylated gelatin. Sheep mitral valvular interstitial cells were encapsulated in the hydrogel and evaluated in hydrogel-only, PGS-PCL scaffold-only, and composite scaffold conditions. Although the cellular viability and metabolic activity were similar among all scaffold types, the presence of the hydrogel improved the three-dimensional distribution of mitral valvular interstitial cells. As seen by similar values in both the Young's modulus and the ultimate tensile strength between the PGS-PCL scaffolds and the composites, microfibrous scaffolds preserved their mechanical properties in the presence of the hydrogels. Compared to electrospun or hydrogel scaffolds alone, this combined system may provide a more suitable three-dimensional structure for generating scaffolds for heart valve tissue engineering.

  19. Injectable, rapid gelling and highly flexible hydrogel composites as growth factor and cell carriers.

    PubMed

    Wang, Feng; Li, Zhenqing; Khan, Mahmood; Tamama, Kenichi; Kuppusamy, Periannan; Wagner, William R; Sen, Chandan K; Guan, Jianjun

    2010-06-01

    A family of injectable, rapid gelling and highly flexible hydrogel composites capable of releasing insulin-like growth factor (IGF-1) and delivering mesenchymal stromal cell (MSC) were developed. Hydrogel composites were fabricated from Type I collagen, chondroitin sulfate (CS) and a thermosensitive and degradable hydrogel copolymer based on N-isopropylacrylamide, acrylic acid, N-acryloxysuccinimide and a macromer poly(trimethylene carbonate)-hydroxyethyl methacrylate. The hydrogel copolymer was gellable at body temperature before degradation and soluble at body temperature after degradation. Hydrogel composites exhibited LCSTs around room temperature. They could easily be injected through a 26-gauge needle at 4 degrees C, and were capable of gelling within 6s at 37 degrees C to form highly flexible gels with moduli matching those of the rat and human myocardium. The hydrogel composites showed good oxygen permeability; the oxygen pressure within the hydrogel composites was similar to that in the air. The effects of collagen and CS contents on LCST, gelation time, injectability, mechanical properties and degradation properties were investigated. IGF-1 was loaded into the hydrogel composites for enhanced cell survival/growth. The released IGF-1 remained bioactive during a 2-week release period. Small fraction of CS in the hydrogel composites significantly decreased IGF-1 release rate. The release kinetics appeared to be controlled mainly by hydrogel composite water content, degradation and interaction with IGF-1. Human MSC adhesion on the hydrogel composites was comparable to that on the tissue culture plate. MSCs were encapsulated in the hydrogel composites and were found to grow inside during a 7-day culture period. IGF-1 loading significantly accelerated MSC growth. RT-PCR analysis demonstrated that MSCs maintained their multipotent differentiation potential in hydrogel composites with and without IGF-1. These injectable and rapid gelling hydrogel composites

  20. Vaccination with OVA-bound nanoparticles encapsulating IL-7 inhibits the growth of OVA-expressing E.G7 tumor cells in vivo.

    PubMed

    Toyota, Hiroko; Yanase, Noriko; Yoshimoto, Takayuki; Harada, Mitsunori; Kato, Yasuki; Mizuguchi, Junichiro

    2015-01-01

    Immunotherapy has gained special attention due to its specific effects on tumor cells and systemic action to block metastasis. We recently demonstrated that ovalbumin (OVA) conjugated to the surface of nanoparticles (NPs) (OVA‑NPs) can manipulate humoral immune responses. In the present study, we aimed to ascertain whether vaccination with OVA-NPs entrapping IL-7 (OVA-NPs-IL-7) are able to induce antitumor immune responses in vivo. Pretreatment with a subcutaneous inoculation of OVA-NPs delayed the growth of thymic lymphoma cells expressing a model tumor antigen OVA (E.G7-OVA), and OVA-NPs-IL-7 substantially blocked the growth of E.G7-OVA tumor cells, although NPs-IL-7 alone had a meager effect, as assessed by the mean tumor size and the percentage of tumor-free mice. However, pretreatment with OVA-NPs-IL-7 failed to reduce the growth of parental thymic tumor cells, suggesting that the antitumor effect was antigen-specific. A tetramer assay revealed that vaccination with OVA-NPs-IL-7 tended to enhance the proportion of cytotoxic T cells (CTLs) specific for OVA. When the tumor-free mice inoculated with OVA-NPs-IL-7 plus EG.7 cells were rechallenged with E.G7-OVA cells, they demonstrated reduced growth compared with that in the control mice. Thus, a single subcutaneous injection of OVA-NPs-IL-7 into mice induced tumor-specific and also memory-like immune responses, resulting in regression of tumor cells. Antigens on NPs entrapping IL-7 would be a promising carrier to develop and enhance immune responses, including humoral and cellular immunity as well as a method of drug delivery to a specific target of interest.

  1. Poly(N-isopropylacrylamide) hydrogels with interpenetrating multiwalled carbon nanotubes for cell sheet engineering.

    PubMed

    Chen, Yu-Shuan; Tsou, Pei-Chun; Lo, Jem-Mau; Tsai, Hsieh-Chih; Wang, Yan-Zhen; Hsiue, Ging-Ho

    2013-10-01

    Hydrogels have been developed as artificial extracellular matrixes (ECMs) to mimic native tissue microenvironments for various applications. Unfortunately, poly(N-isopropylacrylamide) (PNIPAAM)-based hydrogels are not suitable for cell culturing and cell sheet preparation. Carbon nanotubes (CNTs), with their mechanical strength and electrical conductivity, have been considered as additives to increase the applicability of hydrogels to cell encapsulation and advance cardiac electrophysiological functions. A simple method for fabrication of PNIPAAM hydrogels interpenetrated with multiwalled CNTs (MWCNTs) as substrates for cell sheet preparation is reported. The results demonstrate that PNIPAAM hydrogels with interpenetrating MWCNTs still exhibit thermosensitive behavior. It is also found that epithelial Madin-Darby canine kidney (MDCK) cells can only attach and proliferate on MWCNT-interpenetrated PNIPAAM hydrogels. Furthermore, the PNIPAAM hydrogels with MWCNTs possess higher elastic moduli and hydrophobicities than those without MWCNTs, suggesting these two characteristics are necessary for the cells to attach to the hydrogel surfaces. Moreover, cell sheets can only be harvested from PNIPAAM hydrogels with MWCNTs because of their high ratio of cell attachment. Thus, this simple method provides sufficient mechanical strength to PNIPAAM hydrogels so that anchorage-dependent cells can be cultivated and provides a superior system for preparing cell sheets.

  2. Diffusion and transfer of antibody proteins from a sugar-based hydrogel.

    PubMed

    Markowitz, M A; Turner, D C; Martin, B D; Gaber, B P

    1997-01-01

    Diffusion of antibody protein from hydrogel films and hydrogel encapsulated in a microcapillary was studied. Thin hydrogel films were formed by crosslinking 6-acryloyl-B-O-methylgalactoside with N,N'-methylene-bis-acrylamide and the diffusive transport of monoclonal antimouse IgG-FITC into and out of the hydrate films was measured. Diffusion coefficients in 2 and 4% crosslinked hydrogel films were measured. The measured diffusion constants determined for IgG in both the 2 and 4% hydrogel films were comparable to the free diffusion of IgG in bulk water (Dmean approximately 10(-7) cm2/s). In addition, 2% crosslinked hydrogels were prepared in a capillary tube and the transport of antimouse IgG-FITC into and out of the hydrated hydrogel was measured. Kinetic analysis indicated that the protein transport through the capillary hydrogel was faster than would be expected for a simple diffusion process. Finally, by utilizing the diffusion of antibody from the capillary hydrogel, transfer of antibody to a silica surface was demonstrated. A capillary hydrogel loaded with antimouse IgG-FITC was used to transfer the protein to a silica surface forming a 30-micron spot of antibody, which was imaged using fluorescence microscopy. These results may lead to the development of a nonlithographic method of patterning antibodies on surfaces for use in integrated microimmunosensors.

  3. Synthesis and characterization of tunable poly(ethylene glycol): gelatin methacrylate composite hydrogels.

    PubMed

    Hutson, Che B; Nichol, Jason W; Aubin, Hug; Bae, Hojae; Yamanlar, Seda; Al-Haque, Shahed; Koshy, Sandeep T; Khademhosseini, Ali

    2011-07-01

    Poly(ethylene glycol) (PEG) hydrogels are popular for cell culture and tissue-engineering applications because they are nontoxic and exhibit favorable hydration and nutrient transport properties. However, cells cannot adhere to, remodel, proliferate within, or degrade PEG hydrogels. Methacrylated gelatin (GelMA), derived from denatured collagen, yields an enzymatically degradable, photocrosslinkable hydrogel that cells can degrade, adhere to and spread within. To combine the desirable features of each of these materials we synthesized PEG-GelMA composite hydrogels, hypothesizing that copolymerization would enable adjustable cell binding, mechanical, and degradation properties. The addition of GelMA to PEG resulted in a composite hydrogel that exhibited tunable mechanical and biological profiles. Adding GelMA (5%-15% w/v) to PEG (5% and 10% w/v) proportionally increased fibroblast surface binding and spreading as compared to PEG hydrogels (p<0.05). Encapsulated fibroblasts were also able to form 3D cellular networks 7 days after photoencapsulation only within composite hydrogels as compared to PEG alone. Additionally, PEG-GelMA hydrogels displayed tunable enzymatic degradation and stiffness profiles. PEG-GelMA composite hydrogels show great promise as tunable, cell-responsive hydrogels for 3D cell culture and regenerative medicine applications.

  4. Non-cytotoxic, In Situ Gelable Hydrogels Composed of N-carboxyethyl Chitosan and Oxidized Dextran

    PubMed Central

    Weng, Lihui; Romanov, Alexander; Rooney, Jean; Chen, Weiliam

    2008-01-01

    A series of in situ gelable hydrogels were prepared from oxidized dextran (Odex) and N-carboxyethyl chitosan (CEC) without any extraneous crosslinking agent. The gelation readily took place at physiological pH and body temperature. The gelation process was monitored rheologically, and the effect of the oxidation degree of dextran on the gelation process was investigated. The higher the oxidation degree of Odex, the faster the gelation. A highly porous hydrogel structure was revealed under scanning electron microscopy (SEM). Swelling and degradation of the Odex/CEC hydrogels in PBS showed that both swelling and degradation were related to the crosslinking density of the hydrogels. In particular, the hydrogels underwent fast mass loss in the first 2 weeks, followed by a more moderate degradation. The results of long-term cell viability tests revealed that the hydrogels were non-cytotoxic. Mouse fibroblasts were encapsulated in the hydrogels and cell viability was at least 95% within 3 days following encapsulation. Furthermore, cells entrapped inside the hydrogel assumed round shape initially but they gradually adapted to the new environment and spread out to assume more spiny shapes. Additionally, the results from applying the Odex/CEC system to mice full-thickness transcutaneous wound models suggested that it was capable of enhancing wound healing. PMID:18639926

  5. Subcutaneously Administered Self-Cleaving Hydrogel-Octreotide Conjugates Provide Very Long-Acting Octreotide.

    PubMed

    Schneider, Eric L; Henise, Jeff; Reid, Ralph; Ashley, Gary W; Santi, Daniel V

    2016-07-20

    We developed a long-acting drug-delivery system that supports subcutaneous administration of the peptidic somatostatin agonist octreotide-a blockbuster drug used to treat acromegaly and neuroendocrine tumors. The current once-a-month polymer-encapsulated octreotide, Sandostatin LAR, requires a painful intragluteal injection through a large needle by a health-care professional. To overcome such shortcomings, Tetra-PEG hydrogel microspheres were covalently attached to the α-amine of d-Phe(1) or the ε-amine of Lys(5) of octreotide by a self-cleaving β-eliminative linker; upon subcutaneous injection in the rat using a small-bore needle, octreotide was slowly released. The released drug from the ε-octreotide conjugate showed a remarkably long serum half-life that exceeded two months. The α-octreotide conjugate had a half-life of ∼2 weeks, and showed an excellent correlation of in vitro and in vivo drug release. Pharmacokinetic models indicate these microspheres should support once-weekly to once-monthly self-administered subcutaneous dosing in humans. The hydrogel-octreotide conjugate shows the favorable pharmacokinetics of Sandostatin LAR without its drawbacks. PMID:27253622

  6. Efficient anti-tumor effect of photodynamic treatment with polymeric nanoparticles composed of polyethylene glycol and polylactic acid block copolymer encapsulating hydrophobic porphyrin derivative.

    PubMed

    Ogawara, Ken-ichi; Shiraishi, Taro; Araki, Tomoya; Watanabe, Taka-ichi; Ono, Tsutomu; Higaki, Kazutaka

    2016-01-20

    To develop potent and safer formulation of photosensitizer for cancer photodynamic therapy (PDT), we tried to formulate hydrophobic porphyrin derivative, photoprotoporphyrin IX dimethyl ester (PppIX-DME), into polymeric nanoparticles composed of polyethylene glycol and polylactic acid block copolymer (PN-Por). The mean particle size of PN-Por prepared was around 80nm and the zeta potential was determined to be weakly negative. In vitro phototoxicity study for PN-Por clearly indicated the significant phototoxicity of PN-Por for three types of tumor cells tested (Colon-26 carcinoma (C26), B16BL6 melanoma and Lewis lung cancer cells) in the PppIX-DME concentration-dependent fashion. Furthermore, it was suggested that the release of PppIX-DME from PN-Por would gradually occur to provide the sustained release of PppIX-DME. In vivo pharmacokinetics of PN-Por after intravenous administration was evaluated in C26 tumor-bearing mice, and PN-Por exhibited low affinity to the liver and spleen and was therefore retained in the blood circulation for a long time, leading to the efficient tumor disposition of PN-Por. Furthermore, significant and highly effective anti-tumor effect was confirmed in C26 tumor-bearing mice with the local light irradiation onto C26 tumor tissues after PN-Por injection. These findings indicate the potency of PN-Por for the development of more efficient PDT-based cancer treatments.

  7. Thermoreversible Poly(ethylene glycol)-g-Chitosan Hydrogel as a Therapeutic T Lymphocyte Depot for Localized Glioblastoma Immunotherapy

    PubMed Central

    2015-01-01

    The outcome for glioblastoma patients remains dismal for its invariably recrudesces within 2 cm of the resection cavity. Local immunotherapy has the potential to eradicate the residual infiltrative component of these tumors. Here, we report the development of a biodegradable hydrogel containing therapeutic T lymphocytes for localized delivery to glioblastoma cells for brain tumor immunotherapy. Thermoreversible poly(ethylene glycol)-g-chitosan hydrogels (PCgels) were optimized for steady T lymphocyte release. Nuclear magnetic resonance spectroscopy confirmed the chemical structure of poly(ethylene glycol)-g-chitosan, and rheological studies revealed that the sol-to-gel transition of the PCgel occurred around ≥32 °C. T lymphocyte invasion through the PCgel and subsequent cytotoxicity to glioblastoma were assessed in vitro. The PCgel was shown to be cellular compatible with T lymphocytes, and the T lymphocytes retain their anti-glioblastoma activity after being encapsulated in the PCgel. T lymphocytes in the PCgel were shown to be more effective in killing glioblastoma than those in the Matrigel control. This may be attributed to the optimal pore size of the PCgel allowing better invasion of T lymphocytes. Our study suggests that this unique PCgel depot may offer a viable approach for localized immunotherapy for glioblastoma. PMID:24890220

  8. Controlled release of simvastatin from in situ forming hydrogel triggers bone formation in MC3T3-E1 cells.

    PubMed

    Park, Yoon Shin; David, Allan E; Park, Kyung Min; Lin, Chia-Ying; Than, Khoi D; Lee, Kyuri; Park, Jun Beom; Jo, Inho; Park, Ki Dong; Yang, Victor C

    2013-04-01

    Simvastatin (SIM), a drug commonly administered for the treatment of hypercholesterolemia, has been recently reported to induce bone regeneration/formation. In this study, we investigated the properties of hydrogel composed of gelatin-poly(ethylene glycol)-tyramine (GPT) as an efficient SIM delivery vehicle that can trigger osteogenic differentiation. Sustained delivery of SIM was achieved through its encapsulation in an injectable, biodegradable GPT-hydrogel. Cross-linking of the gelatin-based GPT-hydrogel was induced by the reaction of horse radish peroxidase and H(2)O(2). GPT-hydrogels of three different matrix stiffness, 1,800 (GPT-hydrogel1), 5,800 (GPT-hydrogel2), and 8,400 Pa (GPT-hydrogel3) were used. The gelation/degradation time and SIM release profiles of hydrogels loaded with two different concentrations of SIM, 1 and 3 mg/ml, were also evaluated. Maximum swelling times of GPT-hydrogel1, GPT-hydrogel2, and GPT-hydrogel3 were observed to be 6, 12, and 20 days, respectively. All GPT-hydrogels showed complete degradation within 55 days. The in vitro SIM release profiles, investigated in PBS buffer (pH 7.4) at 37°C, exhibited typical biphasic release patterns with the initial burst being more rapid with GPT-hydrogel1 compared with GPT-hydrogel3. Substantial increase in matrix metalloproteinase-13, osteocalcin expression levels, and mineralization were seen in osteogenic differentiation system using MC3T3-E1 cells cultured with GPT-hydrogels loaded with SIM in a dose-dependent manner. This study demonstrated that controlled release of SIM from a biodegradable, injectable GPT-hydrogel had a promising role for long-term treatment of chronic degenerative diseases such as disc degenerative disease. PMID:23250670

  9. Protein functionalized micro hydrogel features for cell-surface interaction.

    PubMed

    Bhatnagar, Parijat; Nixon, Alan J; Kim, Il; Kameoka, Jun

    2008-08-01

    Cross-linked hydrogel features have been patterned using subtractive lift-off of polymerized hydrogel film. Projection lithography and oxygen plasma etch was used to pattern parylene C polymer film. Molecular self-assembly of polymerizable monolayer was obtained in solution-phase and acrylamide based hydrogel was polymerized using free-radical polymerization on this substrate. Parylene C film was mechanically lifted-off to remove the blanket hydrogel film and micro hydrogel features (muhf) were obtained attached to the predefined patterns in the range from 1 to 60 mum. The muhf were functionalized with aldehyde functional groups, and proteins were coupled to them using Schiff base chemistry followed by reductive amination. Interaction of mesenchymal stem cells with transforming growth factor-beta 1 (TGF-beta1) functionalized muhf was studied, and TGF-beta1 was found to retain its tumor suppression activity. PMID:18259869

  10. Optical cell separation from three-dimensional environment in photodegradable hydrogels for pure culture techniques

    PubMed Central

    Tamura, Masato; Yanagawa, Fumiki; Sugiura, Shinji; Takagi, Toshiyuki; Sumaru, Kimio; Matsui, Hirofumi; Kanamori, Toshiyuki

    2014-01-01

    Cell sorting is an essential and efficient experimental tool for the isolation and characterization of target cells. A three-dimensional environment is crucial in determining cell behavior and cell fate in biological analysis. Herein, we have applied photodegradable hydrogels to optical cell separation from a 3D environment using a computer-controlled light irradiation system. The hydrogel is composed of photocleavable tetra-arm polyethylene glycol and gelatin, which optimized cytocompatibility to adjust a composition of crosslinker and gelatin. Local light irradiation could degrade the hydrogel corresponding to the micropattern image designed on a laptop; minimum resolution of photodegradation was estimated at 20 µm. Light irradiation separated an encapsulated fluorescent microbead without any contamination of neighbor beads, even at multiple targets. Upon selective separation of target cells in the hydrogels, the separated cells have grown on another dish, resulting in pure culture. Cell encapsulation, light irradiation and degradation products exhibited negligible cytotoxicity in overall process. PMID:24810563

  11. Fabrication of Cell-Laden Macroporous Biodegradable Hydrogels with Tunable Porosities and Pore Sizes

    PubMed Central

    Wang, Limin; Lu, Steven; Lam, Johnny; Kasper, F. Kurtis

    2015-01-01

    In this work, we investigated a cytocompatible particulate leaching method for the fabrication of cell-laden macroporous hydrogels. We used dehydrated and uncrosslinked gelatin microspheres as leachable porogens to create macroporous oligo(poly(ethylene glycol) fumarate) hydrogels. Varying gelatin content and size resulted in a wide range of porosities and pore sizes, respectively. Encapsulated mesenchymal stem cells (MSCs) exhibited high viability immediately following the fabrication process, and culture of cell-laden hydrogels revealed improved cell viability with increasing porosity. Additionally, the osteogenic potential of the encapsulated MSCs was evaluated over 16 days. Overall, this study presents a robust method for the preparation of cell-laden macroporous hydrogels with desired porosity and pore size for tissue engineering applications. PMID:25156274

  12. Optical cell separation from three-dimensional environment in photodegradable hydrogels for pure culture techniques.

    PubMed

    Tamura, Masato; Yanagawa, Fumiki; Sugiura, Shinji; Takagi, Toshiyuki; Sumaru, Kimio; Matsui, Hirofumi; Kanamori, Toshiyuki

    2014-01-01

    Cell sorting is an essential and efficient experimental tool for the isolation and characterization of target cells. A three-dimensional environment is crucial in determining cell behavior and cell fate in biological analysis. Herein, we have applied photodegradable hydrogels to optical cell separation from a 3D environment using a computer-controlled light irradiation system. The hydrogel is composed of photocleavable tetra-arm polyethylene glycol and gelatin, which optimized cytocompatibility to adjust a composition of crosslinker and gelatin. Local light irradiation could degrade the hydrogel corresponding to the micropattern image designed on a laptop; minimum resolution of photodegradation was estimated at 20 µm. Light irradiation separated an encapsulated fluorescent microbead without any contamination of neighbor beads, even at multiple targets. Upon selective separation of target cells in the hydrogels, the separated cells have grown on another dish, resulting in pure culture. Cell encapsulation, light irradiation and degradation products exhibited negligible cytotoxicity in overall process. PMID:24810563

  13. Module encapsulation technology

    NASA Technical Reports Server (NTRS)

    Willis, P.

    1986-01-01

    The identification and development techniques for low-cost module encapsulation materials were reviewed. Test results were displayed for a variety of materials. The improved prospects for modeling encapsulation systems for life prediction were reported.

  14. 25th anniversary article: Engineering hydrogels for biofabrication.

    PubMed

    Malda, Jos; Visser, Jetze; Melchels, Ferry P; Jüngst, Tomasz; Hennink, Wim E; Dhert, Wouter J A; Groll, Jürgen; Hutmacher, Dietmar W

    2013-09-25

    With advances in tissue engineering, the possibility of regenerating injured tissue or failing organs has become a realistic prospect for the first time in medical history. Tissue engineering - the combination of bioactive materials with cells to generate engineered constructs that functionally replace lost and/or damaged tissue - is a major strategy to achieve this goal. One facet of tissue engineering is biofabrication, where three-dimensional tissue-like structures composed of biomaterials and cells in a single manufacturing procedure are generated. Cell-laden hydrogels are commonly used in biofabrication and are termed "bioinks". Hydrogels are particularly attractive for biofabrication as they recapitulate several features of the natural extracellular matrix and allow cell encapsulation in a highly hydrated mechanically supportive three-dimensional environment. Additionally, they allow for efficient and homogeneous cell seeding, can provide biologically-relevant chemical and physical signals, and can be formed in various shapes and biomechanical characteristics. However, despite the progress made in modifying hydrogels for enhanced bioactivation, cell survival and tissue formation, little attention has so far been paid to optimize hydrogels for the physico-chemical demands of the biofabrication process. The resulting lack of hydrogel bioinks have been identified as one major hurdle for a more rapid progress of the field. In this review we summarize and focus on the deposition process, the parameters and demands of hydrogels in biofabrication, with special attention to robotic dispensing as an approach that generates constructs of clinically relevant dimensions. We aim to highlight this current lack of effectual hydrogels within biofabrication and initiate new ideas and developments in the design and tailoring of hydrogels. The successful development of a "printable" hydrogel that supports cell adhesion, migration, and differentiation will significantly advance

  15. Encapsulation-free controlled release: Electrostatic adsorption eliminates the need for protein encapsulation in PLGA nanoparticles

    PubMed Central

    Pakulska, Malgosia M.; Elliott Donaghue, Irja; Obermeyer, Jaclyn M.; Tuladhar, Anup; McLaughlin, Christopher K.; Shendruk, Tyler N.; Shoichet, Molly S.

    2016-01-01

    Encapsulation of therapeutic molecules within polymer particles is a well-established method for achieving controlled release, yet challenges such as low loading, poor encapsulation efficiency, and loss of protein activity limit clinical translation. Despite this, the paradigm for the use of polymer particles in drug delivery has remained essentially unchanged for several decades. By taking advantage of the adsorption of protein therapeutics to poly(lactic-co-glycolic acid) (PLGA) nanoparticles, we demonstrate controlled release without encapsulation. In fact, we obtain identical, burst-free, extended-release profiles for three different protein therapeutics with and without encapsulation in PLGA nanoparticles embedded within a hydrogel. Using both positively and negatively charged proteins, we show that short-range electrostatic interactions between the proteins and the PLGA nanoparticles are the underlying mechanism for controlled release. Moreover, we demonstrate tunable release by modifying nanoparticle concentration, nanoparticle size, or environmental pH. These new insights obviate the need for encapsulation and offer promising, translatable strategies for a more effective delivery of therapeutic biomolecules. PMID:27386554

  16. Crosslinkable Hydrogels Derived from Cartilage, Meniscus, and Tendon Tissue

    PubMed Central

    Visser, Jetze; Levett, Peter A.; te Moller, Nikae C.R.; Besems, Jeremy; Boere, Kristel W.M.; van Rijen, Mattie H.P.; de Grauw, Janny C.; Dhert, Wouter J.A.; van Weeren, P. René

    2015-01-01

    Decellularized tissues have proven to be versatile matrices for the engineering of tissues and organs. These matrices usually consist of collagens, matrix-specific proteins, and a set of largely undefined growth factors and signaling molecules. Although several decellularized tissues have found their way to clinical applications, their use in the engineering of cartilage tissue has only been explored to a limited extent. We set out to generate hydrogels from several tissue-derived matrices, as hydrogels are the current preferred cell carriers for cartilage repair. Equine cartilage, meniscus, and tendon tissue was harvested, decellularized, enzymatically digested, and functionalized with methacrylamide groups. After photo-cross-linking, these tissue digests were mechanically characterized. Next, gelatin methacrylamide (GelMA) hydrogel was functionalized with these methacrylated tissue digests. Equine chondrocytes and mesenchymal stromal cells (MSCs) (both from three donors) were encapsulated and cultured in vitro up to 6 weeks. Gene expression (COL1A1, COL2A1, ACAN, MMP-3, MMP-13, and MMP-14), cartilage-specific matrix formation, and hydrogel stiffness were analyzed after culture. The cartilage, meniscus, and tendon digests were successfully photo-cross-linked into hydrogels. The addition of the tissue-derived matrices to GelMA affected chondrogenic differentiation of MSCs, although no consequent improvement was demonstrated. For chondrocytes, the tissue-derived matrix gels performed worse compared to GelMA alone. This work demonstrates for the first time that native tissues can be processed into crosslinkable hydrogels for the engineering of tissues. Moreover, the differentiation of encapsulated cells can be influenced in these stable, decellularized matrix hydrogels. PMID:25557049

  17. Crosslinkable hydrogels derived from cartilage, meniscus, and tendon tissue.

    PubMed

    Visser, Jetze; Levett, Peter A; te Moller, Nikae C R; Besems, Jeremy; Boere, Kristel W M; van Rijen, Mattie H P; de Grauw, Janny C; Dhert, Wouter J A; van Weeren, P René; Malda, Jos

    2015-04-01

    Decellularized tissues have proven to be versatile matrices for the engineering of tissues and organs. These matrices usually consist of collagens, matrix-specific proteins, and a set of largely undefined growth factors and signaling molecules. Although several decellularized tissues have found their way to clinical applications, their use in the engineering of cartilage tissue has only been explored to a limited extent. We set out to generate hydrogels from several tissue-derived matrices, as hydrogels are the current preferred cell carriers for cartilage repair. Equine cartilage, meniscus, and tendon tissue was harvested, decellularized, enzymatically digested, and functionalized with methacrylamide groups. After photo-cross-linking, these tissue digests were mechanically characterized. Next, gelatin methacrylamide (GelMA) hydrogel was functionalized with these methacrylated tissue digests. Equine chondrocytes and mesenchymal stromal cells (MSCs) (both from three donors) were encapsulated and cultured in vitro up to 6 weeks. Gene expression (COL1A1, COL2A1, ACAN, MMP-3, MMP-13, and MMP-14), cartilage-specific matrix formation, and hydrogel stiffness were analyzed after culture. The cartilage, meniscus, and tendon digests were successfully photo-cross-linked into hydrogels. The addition of the tissue-derived matrices to GelMA affected chondrogenic differentiation of MSCs, although no consequent improvement was demonstrated. For chondrocytes, the tissue-derived matrix gels performed worse compared to GelMA alone. This work demonstrates for the first time that native tissues can be processed into crosslinkable hydrogels for the engineering of tissues. Moreover, the differentiation of encapsulated cells can be influenced in these stable, decellularized matrix hydrogels.

  18. Biomimetic spinning of silk fibers and in situ cell encapsulation.

    PubMed

    Cheng, Jie; Park, DoYeun; Jun, Yesl; Lee, JaeSeo; Hyun, Jinho; Lee, Sang-Hoon

    2016-07-01

    In situ embedding of sensitive materials (e.g., cells and proteins) in silk fibers without damage presents a significant challenge due to the lack of mild and efficient methods. Here, we report the development of a microfluidic chip-based method for preparation of meter-long silk fibroin (SF) hydrogel fibers by mimicking the silkworm-spinning process. For the spinning of SF fibers, alginate was used as a sericin-like material to induce SF phase separation and entrap liquid SFs, making it possible to shape the outline of SF-based fibers under mild physicochemical conditions. L929 fibroblasts were encapsulated in the fibric hydrogel and displayed excellent viability. Cell-laden SF fibric hydrogels prepared using our method offer a new type of SF-based biomedical device with potential utility in biomedicine.

  19. Tumor

    MedlinePlus

    ... plants (aflatoxins) Excessive sunlight exposure Genetic problems Obesity Radiation exposure Viruses Types of tumors known to be caused by viruses are: Cervical cancer (human papillomavirus) Hepatocellular carcinoma (hepatitis B and hepatitis C ...

  20. Repairable, nanostructured biomimetic hydrogels

    NASA Astrophysics Data System (ADS)

    Firestone, M.; Brombosz, S.; Grubjesic, S.

    2013-03-01

    Proteins facilitate many key cellular processes, including signal recognition and energy transduction. The ability to harness this evolutionarily-optimized functionality could lead to the development of protein-based systems useful for advancing alternative energy storage and conversion. The future of protein-based, however, requires the development of materials that will stabilize, order and control the activity of the proteins. Recently we have developed a synthetic approach for the preparation of a durable biomimetic chemical hydrogel that can be reversibly swollen in water. The matrix has proven ideal for the stable encapsulation of both water- and membrane-soluble proteins. The material is composed of an aqueous dispersion of a diacrylate end-derivatized PEO-PPO-PEO macromer, a saturated phospholipid and a zwitterionic co-surfactant that self-assembles into a nanostructured physical gel at room temperature as determined by X-ray scattering. The addition of a water soluble PEGDA co-monomer and photoinitator does not alter the self-assembled structure and UV irradiation serves to crosslink the acrylate end groups on the macromer with the PEGDA forming a network within the aqueous domains as determined by FT-IR. More recently we have begun to incorporate reversible crosslinks employing Diels-Alder chemistry, allowing for the extraction and replacement of inactive proteins. The ability to replenish the materials with active, non-denatured forms of protein is an important step in advancing these materials for use in nanostructured devices This work was supported by the Office of Basic Energy Sciences, Division of Materials Sciences, USDoE under Contract No. DE-AC02-06CH11357.

  1. Hybrid elastin-like polypeptide-polyethylene glycol (ELP-PEG) hydrogels with improved transparency and independent control of matrix mechanics and cell ligand density.

    PubMed

    Wang, Huiyuan; Cai, Lei; Paul, Alexandra; Enejder, Annika; Heilshorn, Sarah C

    2014-09-01

    Hydrogels have been developed as extracellular matrix (ECM) mimics both for therapeutic applications and basic biological studies. In particular, elastin-like polypeptide (ELP) hydrogels, which can be tuned to mimic several biochemical and physical characteristics of native ECM, have been constructed to encapsulate various types of cells to create in vitro mimics of in vivo tissues. However, ELP hydrogels become opaque at body temperature because of ELP's lower critical solution temperature behavior. This opacity obstructs light-based observation of the morphology and behavior of encapsulated cells. In order to improve the transparency of ELP hydrogels for better imaging, we have designed a hybrid ELP-polyethylene glycol (PEG) hydrogel system that rapidly cross-links with tris(hydroxymethyl) phosphine (THP) in aqueous solution via Mannich-type condensation. As expected, addition of the hydrophilic PEG component significantly improves the light transmittance. Coherent anti-Stokes Raman scattering (CARS) microscopy reveals that the hybrid ELP-PEG hydrogels have smaller hydrophobic ELP aggregates at 37 °C. Importantly, this hydrogel platform enables independent tuning of adhesion ligand density and matrix stiffness, which is desirable for studies of cell-matrix interactions. Human fibroblasts encapsulated in these hydrogels show high viability (>98%) after 7 days of culture. High-resolution confocal microscopy of encapsulated fibroblasts reveals that the cells adopt a more spread morphology in response to higher RGD ligand concentrations and softer gel mechanics.

  2. Hybrid Elastin-like Polypeptide–Polyethylene Glycol (ELP-PEG) Hydrogels with Improved Transparency and Independent Control of Matrix Mechanics and Cell Ligand Density

    PubMed Central

    2015-01-01

    Hydrogels have been developed as extracellular matrix (ECM) mimics both for therapeutic applications and basic biological studies. In particular, elastin-like polypeptide (ELP) hydrogels, which can be tuned to mimic several biochemical and physical characteristics of native ECM, have been constructed to encapsulate various types of cells to create in vitro mimics of in vivo tissues. However, ELP hydrogels become opaque at body temperature because of ELP’s lower critical solution temperature behavior. This opacity obstructs light-based observation of the morphology and behavior of encapsulated cells. In order to improve the transparency of ELP hydrogels for better imaging, we have designed a hybrid ELP-polyethylene glycol (PEG) hydrogel system that rapidly cross-links with tris(hydroxymethyl) phosphine (THP) in aqueous solution via Mannich-type condensation. As expected, addition of the hydrophilic PEG component significantly improves the light transmittance. Coherent anti-Stokes Raman scattering (CARS) microscopy reveals that the hybrid ELP-PEG hydrogels have smaller hydrophobic ELP aggregates at 37 °C. Importantly, this hydrogel platform enables independent tuning of adhesion ligand density and matrix stiffness, which is desirable for studies of cell–matrix interactions. Human fibroblasts encapsulated in these hydrogels show high viability (>98%) after 7 days of culture. High-resolution confocal microscopy of encapsulated fibroblasts reveals that the cells adopt a more spread morphology in response to higher RGD ligand concentrations and softer gel mechanics. PMID:25111283

  3. Rheological behavior and Ibuprofen delivery applications of pH responsive composite alginate hydrogels.

    PubMed

    Jabeen, Suraya; Maswal, Masrat; Chat, Oyais Ahmad; Rather, Ghulam Mohammad; Dar, Aijaz Ahmad

    2016-03-01

    Synthesis and structural characterization of hydrogels composed of sodium alginate, polyethylene oxide and acrylic acid with cyclodextrin as the hydrocolloid prepared at different pH values is presented. The hydrogels synthesized show significant variations in rheological properties, drug encapsulation capability and release kinetics. The hydrogels prepared at lower pH (pH 1) are more elastic, have high tensile strength and remain almost unaffected by varying temperature or frequency. Further, their Ibuprofen encapsulation capacity is low and releases it slowly. The hydrogel prepared at neutral pH (pH 7) is viscoelastic, thermo-reversible and also exhibits sol-gel transition on applying frequency and changing temperature. It shows highest Ibuprofen encapsulation capacity and also optimum drug release kinetics. The hydrogel prepared at higher pH (pH 12) is more viscous, has low tensile strength, is unstable to change in temperature and has fast drug release rate. The study highlights the pH responsiveness of three composite alginate hydrogels prepared under different conditions to be employed in drug delivery applications. PMID:26717508

  4. Disulfide bond reduction-triggered molecular hydrogels of folic acid-Taxol conjugates.

    PubMed

    Yang, Chengbiao; Li, Dongxia; Fengzhao, Qianqi; Wang, Lianyong; Wang, Ling; Yang, Zhimou

    2013-09-25

    Molecular hydrogels of therapeutic agents are a novel kind of self-delivery system that can sustain release of drugs or pro-drugs. We have previously developed a molecular hydrogelator of folic acid (FA)-Taxol conjugate triggered by phosphatase. In this paper, we report a novel molecular hydrogelator system of FA-Taxol conjugates with improved synthetic strategy. The hydrogels are formed by the reduction of disulfide bond by glutathione (GSH). These hydrogels could sustain release of Taxol through ester bond hydrolysis. Compared with intravenous (i.v.) injection of clinically used Taxol® with four times the dosage, our hydrogel could inhibit tumor growth more efficiently by a single dose of intra-tumor (i.t.) administration. These observations suggested the big potential of this novel gelation system of Taxol for cancer therapy.

  5. 3D Bioprinting of Heterogeneous Aortic Valve Conduits with Alginate/Gelatin Hydrogels

    PubMed Central

    Duan, Bin; Hockaday, Laura A.; Kang, Kevin H.; Butcher, Jonathan T.

    2013-01-01

    Heart valve disease is a serious and growing public health problem for which prosthetic replacement is most commonly indicated. Current prosthetic devices are inadequate for younger adults and growing children. Tissue engineered living aortic valve conduits have potential for remodeling, regeneration, and growth, but fabricating natural anatomical complexity with cellular heterogeneity remain challenging. In the current study, we implement 3D bioprinting to fabricate living alginate/gelatin hydrogel valve conduits with anatomical architecture and direct incorporation of dual cell types in a regionally constrained manner. Encapsulated aortic root sinus smooth muscle cells (SMC) and aortic valve leaflet interstitial cells (VIC) were viable within alginate/gelatin hydrogel discs over 7 days in culture. Acellular 3D printed hydrogels exhibited reduced modulus, ultimate strength, and peak strain reducing slightly over 7-day culture, while the tensile biomechanics of cell-laden hydrogels were maintained. Aortic valve conduits were successfully bioprinted with direct encapsulation of SMC in the valve root and VIC in the leaflets. Both cell types were viable (81.4±3.4% for SMC and 83.2±4.0% for VIC) within 3D printed tissues. Encapsulated SMC expressed elevated alpha-smooth muscle actin when printed in stiff matrix, while VIC expressed elevated vimentin in soft matrix. These results demonstrate that anatomically complex, heterogeneously encapsulated aortic valve hydrogel conduits can be fabricated with 3D bioprinting. PMID:23015540

  6. Hydrogels for the Repair of Articular Cartilage Defects

    PubMed Central

    Maher, Suzanne A.; Lowman, Anthony M.

    2011-01-01

    The repair of articular cartilage defects remains a significant challenge in orthopedic medicine. Hydrogels, three-dimensional polymer networks swollen in water, offer a unique opportunity to generate a functional cartilage substitute. Hydrogels can exhibit similar mechanical, swelling, and lubricating behavior to articular cartilage, and promote the chondrogenic phenotype by encapsulated cells. Hydrogels have been prepared from naturally derived and synthetic polymers, as cell-free implants and as tissue engineering scaffolds, and with controlled degradation profiles and release of stimulatory growth factors. Using hydrogels, cartilage tissue has been engineered in vitro that has similar mechanical properties to native cartilage. This review summarizes the advancements that have been made in determining the potential of hydrogels to replace damaged cartilage or support new tissue formation as a function of specific design parameters, such as the type of polymer, degradation profile, mechanical properties and loading regimen, source of cells, cell-seeding density, controlled release of growth factors, and strategies to cause integration with surrounding tissue. Some key challenges for clinical translation remain, including limited information on the mechanical properties of hydrogel implants or engineered tissue that are necessary to restore joint function, and the lack of emphasis on the ability of an implant to integrate in a stable way with the surrounding tissue. Future studies should address the factors that affect these issues, while using clinically relevant cell sources and rigorous models of repair. PMID:21510824

  7. Engineering Protein Hydrogels Using SpyCatcher-SpyTag Chemistry.

    PubMed

    Gao, Xiaoye; Fang, Jie; Xue, Bin; Fu, Linglan; Li, Hongbin

    2016-09-12

    Constructing hydrogels from engineered proteins has attracted significant attention within the material sciences, owing to their myriad potential applications in biomedical engineering. Developing efficient methods to cross-link tailored protein building blocks into hydrogels with desirable mechanical, physical, and functional properties is of paramount importance. By making use of the recently developed SpyCatcher-SpyTag chemistry, we successfully engineered protein hydrogels on the basis of engineered tandem modular elastomeric proteins. Our resultant protein hydrogels are soft but stable, and show excellent biocompatibility. As the first step, we tested the use of these hydrogels as a drug carrier, as well as in encapsulating human lung fibroblast cells. Our results demonstrate the robustness of the SpyCatcher-SpyTag chemistry, even when the SpyTag (or SpyCatcher) is flanked by folded globular domains. These results demonstrate that SpyCatcher-SpyTag chemistry can be used to engineer protein hydrogels from tandem modular elastomeric proteins that can find applications in tissue engineering, in fundamental mechano-biological studies, and as a controlled drug release vehicle. PMID:27477779

  8. Automation of 3D cell culture using chemically defined hydrogels.

    PubMed

    Rimann, Markus; Angres, Brigitte; Patocchi-Tenzer, Isabel; Braum, Susanne; Graf-Hausner, Ursula

    2014-04-01

    Drug development relies on high-throughput screening involving cell-based assays. Most of the assays are still based on cells grown in monolayer rather than in three-dimensional (3D) formats, although cells behave more in vivo-like in 3D. To exemplify the adoption of 3D techniques in drug development, this project investigated the automation of a hydrogel-based 3D cell culture system using a liquid-handling robot. The hydrogel technology used offers high flexibility of gel design due to a modular composition of a polymer network and bioactive components. The cell inert degradation of the gel at the end of the culture period guaranteed the harmless isolation of live cells for further downstream processing. Human colon carcinoma cells HCT-116 were encapsulated and grown in these dextran-based hydrogels, thereby forming 3D multicellular spheroids. Viability and DNA content of the cells were shown to be similar in automated and manually produced hydrogels. Furthermore, cell treatment with toxic Taxol concentrations (100 nM) had the same effect on HCT-116 cell viability in manually and automated hydrogel preparations. Finally, a fully automated dose-response curve with the reference compound Taxol showed the potential of this hydrogel-based 3D cell culture system in advanced drug development.

  9. Interfacial thiol-ene photoclick reactions for forming multilayer hydrogels.

    PubMed

    Shih, Han; Fraser, Andrew K; Lin, Chien-Chi

    2013-03-13

    Interfacial visible light-mediated thiol-ene photoclick reactions were developed for preparing step-growth hydrogels with multilayer structures. The effect of a noncleavage type photoinitiator eosin-Y on visible-light-mediated thiol-ene photopolymerization was first characterized using in situ photorheometry, gel fraction, and equilibrium swelling ratio. Next, spectrophotometric properties of eosin-Y in the presence of various relevant macromer species were evaluated using ultraviolet-visible light (UV-vis) spectrometry. It was determined that eosin-Y was able to reinitiate the thiol-ene photoclick reaction, even after light exposure. Because of its small molecular weight, most eosin-Y molecules readily leached out from the hydrogels. The diffusion of residual eosin-Y from preformed hydrogels was exploited for fabricating multilayer step-growth hydrogels. Interfacial hydrogel coating was formed via the same visible-light-mediated gelation mechanism without adding fresh initiator. The thickness of the thiol-ene gel coating could be easily controlled by adjusting visible light exposure time, eosin-Y concentration initially loaded in the core gel, or macromer concentration in the coating solution. The major benefits of this interfacial thiol-ene coating system include its simplicity and cytocompatibility. The formation of thiol-ene hydrogels and coatings neither requires nor generates any cytotoxic components. This new gelation chemistry may have great utilities in controlled release of multiple sensitive growth factors and encapsulation of multiple cell types for tissue regeneration. PMID:23384151

  10. Engineering Protein Hydrogels Using SpyCatcher-SpyTag Chemistry.

    PubMed

    Gao, Xiaoye; Fang, Jie; Xue, Bin; Fu, Linglan; Li, Hongbin

    2016-09-12

    Constructing hydrogels from engineered proteins has attracted significant attention within the material sciences, owing to their myriad potential applications in biomedical engineering. Developing efficient methods to cross-link tailored protein building blocks into hydrogels with desirable mechanical, physical, and functional properties is of paramount importance. By making use of the recently developed SpyCatcher-SpyTag chemistry, we successfully engineered protein hydrogels on the basis of engineered tandem modular elastomeric proteins. Our resultant protein hydrogels are soft but stable, and show excellent biocompatibility. As the first step, we tested the use of these hydrogels as a drug carrier, as well as in encapsulating human lung fibroblast cells. Our results demonstrate the robustness of the SpyCatcher-SpyTag chemistry, even when the SpyTag (or SpyCatcher) is flanked by folded globular domains. These results demonstrate that SpyCatcher-SpyTag chemistry can be used to engineer protein hydrogels from tandem modular elastomeric proteins that can find applications in tissue engineering, in fundamental mechano-biological studies, and as a controlled drug release vehicle.

  11. Interfacial thiol-ene photoclick reactions for forming multilayer hydrogels.

    PubMed

    Shih, Han; Fraser, Andrew K; Lin, Chien-Chi

    2013-03-13

    Interfacial visible light-mediated thiol-ene photoclick reactions were developed for preparing step-growth hydrogels with multilayer structures. The effect of a noncleavage type photoinitiator eosin-Y on visible-light-mediated thiol-ene photopolymerization was first characterized using in situ photorheometry, gel fraction, and equilibrium swelling ratio. Next, spectrophotometric properties of eosin-Y in the presence of various relevant macromer species were evaluated using ultraviolet-visible light (UV-vis) spectrometry. It was determined that eosin-Y was able to reinitiate the thiol-ene photoclick reaction, even after light exposure. Because of its small molecular weight, most eosin-Y molecules readily leached out from the hydrogels. The diffusion of residual eosin-Y from preformed hydrogels was exploited for fabricating multilayer step-growth hydrogels. Interfacial hydrogel coating was formed via the same visible-light-mediated gelation mechanism without adding fresh initiator. The thickness of the thiol-ene gel coating could be easily controlled by adjusting visible light exposure time, eosin-Y concentration initially loaded in the core gel, or macromer concentration in the coating solution. The major benefits of this interfacial thiol-ene coating system include its simplicity and cytocompatibility. The formation of thiol-ene hydrogels and coatings neither requires nor generates any cytotoxic components. This new gelation chemistry may have great utilities in controlled release of multiple sensitive growth factors and encapsulation of multiple cell types for tissue regeneration.

  12. Biomimetic Hydrogel Materials

    DOEpatents

    Bertozzi, Carolyn , Mukkamala, Ravindranath , Chen, Oing , Hu, Hopin , Baude, Dominique

    2003-04-22

    Novel biomimetic hydrogel materials and methods for their preparation. Hydrogels containing acrylamide-functionalized carbohydrate, sulfoxide, sulfide or sulfone copolymerized with a hydrophilic or hydrophobic copolymerizing material selected from the group consisting of an acrylamide, methacrylamide, acrylate, methacrylate, vinyl and a derivative thereof present in concentration from about 1 to about 99 wt %. and methods for their preparation. The method of use of the new hydrogels for fabrication of soft contact lenses and biomedical implants.

  13. Biomimetic hydrogel materials

    DOEpatents

    Bertozzi, Carolyn; Mukkamala, Ravindranath; Chen, Qing; Hu, Hopin; Baude, Dominique

    2000-01-01

    Novel biomimetic hydrogel materials and methods for their preparation. Hydrogels containing acrylamide-functionalized carbohydrate, sulfoxide, sulfide or sulfone copolymerized with a hydrophilic or hydrophobic copolymerizing material selected from the group consisting of an acrylamide, methacrylamide, acrylate, methacrylate, vinyl and a derivative thereof present in concentration from about 1 to about 99 wt %. and methods for their preparation. The method of use of the new hydrogels for fabrication of soft contact lenses and biomedical implants.

  14. An enzyme-sensitive PEG hydrogel based on aggrecan catabolism for cartilage tissue engineering.

    PubMed

    Skaalure, Stacey C; Chu, Stanley; Bryant, Stephanie J

    2015-02-18

    A new cartilage-specific degradable hydrogel based on photoclickable thiol-ene poly(ethylene glycol) (PEG) hydrogels is presented. The hydrogel crosslinks are composed of the peptide, CRDTEGE-ARGSVIDRC, derived from the aggrecanase-cleavable site in aggrecan. This new hydrogel is evaluated for use in cartilage tissue engineering by encapsulating bovine chondrocytes from different cell sources (skeletally immature (juvenile) and mature (adult) donors and adult cells stimulated with proinflammatory lipopolysaccharide (LPS)) and culturing for 12 weeks. Regardless of cell source, a twofold decrease in compressive modulus is observed by 12 weeks, but without significant hydrogel swelling indicating limited bulk degradation. For juvenile cells, a connected matrix rich in aggrecan and collagen II, but minimal collagens I and X is observed. For adult cells, less matrix, but similar quality, is deposited. Aggrecanase activity is elevated, although without accelerating bulk hydrogel degradation. LPS further decreases matrix production, but does not affect aggrecanase activity. In contrast, matrix deposition in the nondegradable hydrogels consists of aggrecan and collagens I, II, and X, indicative of hypertrophic cartilage. Lastly, no inflammatory response in chondrocytes is observed by the aggrecanase-sensitive hydrogels. Overall, it is demonstrated that this new aggrecanase-sensitive hydrogel, which is degradable by chondrocytes and promotes a hyaline-like engineered cartilage, is promising for cartilage regeneration.

  15. An Enzyme-sensitive PEG Hydrogel Based on Aggrecan Catabolism for Cartilage Tissue Engineering

    PubMed Central

    Skaalure, Stacey C.; Chu, Stanley

    2015-01-01

    A new cartilage-specific degradable hydrogel based on photoclickable thiol-ene PEG hydrogels is presented. The hydrogel crosslinks are composed of the peptide, CRDTEGE-ARGSVIDRC, derived from the aggrecanase-cleavable site in aggrecan. This new hydrogel is evaluated for use in cartilage tissue engineering by encapsulating bovine chondrocytes from different cell sources (skeletally immature (juvenile) and mature (adult) donors and adult cells stimulated with pro-inflammatory lipopolysaccharide (LPS)) and culturing for 12 weeks. Regardless of cell source, a two-fold decrease in compressive modulus is observed by 12 weeks, but without significant hydrogel swelling indicating limited bulk degradation. For juvenile cells, a connected matrix rich in aggrecan and collagen II, but minimal collagens I and X is observed. For adult cells, less matrix, but similar quality, is deposited. Aggrecanase activity is elevated, although without accelerating bulk hydrogel degradation. LPS further decreased matrix production, but did not affect aggrecanase activity. In contrast, matrix deposition in the non-degradable hydrogels consisted of aggrecan and collagens I, II and X, indicative of hypertrophic cartilage. Lastly, no inflammatory response in chondrocytes is observed by the aggrecanase-sensitive hydrogels. Overall, we demonstrate that this new aggrecanase-sensitive hydrogel, which is degradable by chondrocytes and promotes a hyaline-like engineered cartilage, is promising for cartilage regeneration. PMID:25296398

  16. Periodontal Tissue Regeneration Using Enzymatically Solidified Chitosan Hydrogels With or Without Cell Loading

    PubMed Central

    Yan, Xiang-Zhen; van den Beucken, Jeroen J.J.P.; Cai, Xinjie; Yu, Na; Jansen, John A.

    2015-01-01

    This study is aimed to evaluate the in vivo biocompatibility and periodontal regenerative potential of enzymatically solidified chitosan hydrogels with or without incorporated periodontal ligament cells (PDLCs). To this end, chitosan hydrogels, with (n=8; CHIT+CELL) or without (n=8; CHIT) fluorescently labeled PDLCs, were prepared and transplanted into rat intrabony periodontal defects; untreated defects were used as empty controls (n=8; EMPTY). After 4 weeks, maxillae were harvested, decalcified, and used for histological, histomorphometrical, and immunohistochemical assessments. The results showed that PDLCs remained viable upon encapsulation within chitosan hydrogels before transplantation. Histological analysis demonstrated that the chitosan hydrogels were largely degraded after 4 weeks of implantation, without any adverse reaction in the surrounding tissue. In terms of periodontal regeneration, alveolar bone height, alveolar bone area, and epithelial downgrowth were comparable for CHIT, CHIT+CELL, as well as EMPTY groups. In contrast, both CHIT and CHIT+CELL showed a significant increase in functional ligament length compared with EMPTY. From a cellular perspective, the contribution of chitosan hydrogel-incorporated cells to the periodontal regeneration could not be ascertained, as no signal from transplanted PDLCs could be detected at 4 weeks posttransplantation. The results demonstrated that enzymatically solidified chitosan hydrogels are highly biocompatible and biodegradable. Moreover, chitosan hydrogels without cell loading can improve periodontal regeneration in terms of functional ligament length, indicating the great potential of this hydrogel in clinical applications. Further work on the use of chitosan hydrogels as cell carriers is required. PMID:25345525

  17. Diffusion and Controlled Localized Drug Release from an Injectable Solid Self-Assembling Peptide Hydrogel

    NASA Astrophysics Data System (ADS)

    Sun, Jessie E. P.; Stewart, Brandon; Langhans, Sigrid; Stewart, Joel P.; Pochan, Darrin J.

    2014-03-01

    We use an injectable solid peptide hydrogel (first assembled into a solid hydrogel, can shear-thin flow and immediately reheal on cessation of shear) as a drug delivery vehicle for sustained and active drug release. The triggered intramolecular peptide folding into a beta-hairpin leads to intermolecular assmebly of the peptides into the entangled and branched nanofibrillar hydrogel network responsible for its advantageous rheological properties. The hydrogel is used to encapsulate a highly effective chemotherapeutic, vincristine, with hydrophobic behavior. We show that we are able to constantly maintain drug release in low but still potent concentrations after the shear-thinning injection process. Similarly, the mechanical and morphoogical properties of the gels remains identical after injection. Characterization of the hydrogel construct is through tritiated vincristine release, TEM, confocal microscopy, and in vitro methods.

  18. A modified emulsion gelation technique to improve buoyancy of hydrogel tablets for floating drug delivery systems.

    PubMed

    Yom-Tov, Ortal; Seliktar, Dror; Bianco-Peled, Havazelet

    2015-10-01

    The use of buoyant or floating hydrogel tablets is of particular interest in the sustained release of drugs to the stomach. They have an ability to slow the release rates of drugs by prolonging their absorption window in the upper part of the gastrointestinal (GI) tract. In this study we synthesized bioactive hydrogels that have sustainable release rates for drugs in the stomach based on a hydrogel preparation technique that employs emulsifying surfactants. The emulsion gelation technique, which encapsulates oil droplets within the hydrogels during crosslinking, was used to decrease their specific gravity in aqueous environments, resulting in floating drug release depots. Properties such as swelling, buoyancy, density and drug release were manipulated by changing the polymer concentrations, surfactant percentages and the oil:polymer ratios. The relationship between these properties and the hydrogel's floating lag time was documented. The potential for this material to be used as a floating drug delivery system was demonstrated.

  19. Fabrication of triple-layered magnetite-hydrogel-gold nanocomposites for biomedical applications.

    PubMed

    Lim, Sera; Lee, Sang-Wha

    2012-02-01

    Magnetite-hydrogel-gold nanocomposites with optical-active, thermo-responsive, and magnetism have been prepared by the following consecutive steps. Hydrogel-encapsulated magnetites were first synthesized by the combination of sol-gel reaction and radical polymerization process, and the resulting magnetic hydrogels were subsequently bound with nano-sized Au (1-3 nm) via a molecular linkage of diamine ligand which was covalently bonded to the carboxylic groups on the hydrogel surface. Au seeds anchored on the magnetic hydrogels were further reduced into nano-scale Au layer which induced the distinct red-shift of absorption band into NIR region. The optical properties and surface morphology of the nanocomposites were characterized by UV-vis spectroscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). PMID:22629930

  20. Microstructured dextran hydrogels for burst-free sustained release of PEGylated protein drugs.

    PubMed

    Bae, Ki Hyun; Lee, Fan; Xu, Keming; Keng, Choong Tat; Tan, Sue Yee; Tan, Yee Joo; Chen, Qingfeng; Kurisawa, Motoichi

    2015-09-01

    Hydrogels have gained significant attention as ideal delivery vehicles for protein drugs. However, the use of hydrogels for protein delivery has been restricted because their porous structures inevitably cause a premature leakage of encapsulated proteins. Here, we report a simple yet effective approach to regulate the protein release kinetics of hydrogels through the creation of microstructures, which serve as a reservoir, releasing their payloads in a controlled manner. Microstructured dextran hydrogels enable burst-free sustained release of PEGylated interferon over 3 months without compromising its bioactivity. These hydrogels substantially extend the circulation half-life of PEGylated interferon, allowing for less frequent dosing in a humanized mouse model of hepatitis C. The present approach opens up possibilities for the development of sustained protein delivery systems for a broad range of pharmaceutical and biomedical applications.

  1. Nitrile Oxide-Norbornene Cycloaddition as a Bioorthogonal Crosslinking Reaction for the Preparation of Hydrogels.

    PubMed

    Truong, Vinh X; Zhou, Kun; Simon, George P; Forsythe, John S

    2015-10-01

    This communication describes the first application of cycloaddition between an in situ generated nitrile oxide with norbornene leading to a polymer crosslinking reaction for the preparation of poly(ethylene glycol) hydrogels under physiological conditions. Hydrogels with high water content and robust physical strength are readily formed within 2-5 min by a simple two-solution mixing method which allows 3D encapsulation of neuronal cells. This bioorthogonal crosslinking reaction provides a simple yet highly effective method for preparation of hydrogels to be used in bioengineering.

  2. Purification of high quality RNA from synthetic, polyethylene glycol based hydrogels

    PubMed Central

    Gasparian, Alexander; Daneshian, Leily; Ji, Hao; Jabbari, Esmaiel; Shtutman, Michael

    2015-01-01

    Polyethylene glycol (PEG)-based hydrogels, with variable stiffness, are widely used in tissue engineering to investigate substrate stiffness effects on cell properties. Transcriptome analysis is a critical method for understanding cell physiology. However, significant RNA degradation was observed in the process of isolating and purifying RNA from cells encapsulated in the PEG hydrogel, thus precluding purification of high quality RNA. Here, we describe a simple protocol that prevents RNA degradation and improves the quality and yield of RNA isolated from cells cultured in PEG hydrogels. This modification produces high quality total RNA suitable for RNA sequencing and microarray analysis. PMID:25963891

  3. Photonic hydrogel sensors.

    PubMed

    Yetisen, Ali K; Butt, Haider; Volpatti, Lisa R; Pavlichenko, Ida; Humar, Matjaž; Kwok, Sheldon J J; Koo, Heebeom; Kim, Ki Su; Naydenova, Izabela; Khademhosseini, Ali; Hahn, Sei Kwang; Yun, Seok Hyun

    2016-01-01

    Analyte-sensitive hydrogels that incorporate optical structures have emerged as sensing platforms for point-of-care diagnostics. The optical properties of the hydrogel sensors can be rationally designed and fabricated through self-assembly, microfabrication or laser writing. The advantages of photonic hydrogel sensors over conventional assay formats include label-free, quantitative, reusable, and continuous measurement capability that can be integrated with equipment-free text or image display. This Review explains the operation principles of photonic hydrogel sensors, presents syntheses of stimuli-responsive polymers, and provides an overview of qualitative and quantitative readout technologies. Applications in clinical samples are discussed, and potential future directions are identified. PMID:26485407

  4. Antifouling properties of hydrogels

    NASA Astrophysics Data System (ADS)

    Murosaki, Takayuki; Ahmed, Nafees; Gong, Jian Ping

    2011-12-01

    Marine sessile organisms easily adhere to submerged solids such as rocks, metals and plastics, but not to seaweeds and fishes, which are covered with soft and wet 'hydrogel'. Inspired by this fact, we have studied long-term antifouling properties of hydrogels against marine sessile organisms. Hydrogels, especially those containing hydroxy group and sulfonic group, show excellent antifouling activity against barnacles both in laboratory assays and in the marine environment. The extreme low settlement on hydrogels in vitro and in vivo is mainly caused by antifouling properties against the barnacle cypris.

  5. Photonic hydrogel sensors.

    PubMed

    Yetisen, Ali K; Butt, Haider; Volpatti, Lisa R; Pavlichenko, Ida; Humar, Matjaž; Kwok, Sheldon J J; Koo, Heebeom; Kim, Ki Su; Naydenova, Izabela; Khademhosseini, Ali; Hahn, Sei Kwang; Yun, Seok Hyun

    2016-01-01

    Analyte-sensitive hydrogels that incorporate optical structures have emerged as sensing platforms for point-of-care diagnostics. The optical properties of the hydrogel sensors can be rationally designed and fabricated through self-assembly, microfabrication or laser writing. The advantages of photonic hydrogel sensors over conventional assay formats include label-free, quantitative, reusable, and continuous measurement capability that can be integrated with equipment-free text or image display. This Review explains the operation principles of photonic hydrogel sensors, presents syntheses of stimuli-responsive polymers, and provides an overview of qualitative and quantitative readout technologies. Applications in clinical samples are discussed, and potential future directions are identified.

  6. Tumor-Homing Cell-Penetrating Peptide Linked to Colloidal Mesoporous Silica Encapsulated (-)-Epigallocatechin-3-gallate as Drug Delivery System for Breast Cancer Therapy in Vivo.

    PubMed

    Ding, Jie; Yao, Jing; Xue, Jingjing; Li, Rong; Bao, Bo; Jiang, Liping; Zhu, Jun-jie; He, Zhiwei

    2015-08-19

    Chemotherapy is the use of chemical drugs to prevent cancer cell proliferation, invasion, and metastasis, but a serious obstacle is that chemotherapeutics strikes not only on cancerous cells, but also on normal cells. Thus, anticancer drugs without side effects should be developed and extracted. (-)-Epigallocatechin-3-gallate (EGCG), a major ingredient of green tea, possesses excellent medicinal values, such as anticancer effects, DNA-protective effects, etc. However, EGCG will be mostly metabolized if it is directly orally ingested. Here, we report a drug delivery system (DDS) for loading EGCG to enhance its stability, promising target and anticancer effects in vitro and in vivo. The designed DDS is composed of three main moieties: anticancer drug, EGCG; drug vector, colloidal mesoporous silica (CMS); target ligand, breast tumor-homing cell-penetrating peptide (PEGA-pVEC peptide). Based on the results of CCK-8 assay, confocal imaging, cell cycle analysis, and Western blot, the anticancer effect of EGCG was increased by loading of EGCG into CMS and CMS@peptide. In vivo treatment displayed that CMS had a not obvious influence on breast tumor bearing mice, but CMS@peptide@EGCG showed the greatest tumor inhibition rate, with about 89.66%. H&E staining of organs showed no tissue injury in all experimental groups. All the above results prove that EGCG is an excellent anticancer drug without side effects and CMS@peptide could greatly promote the efficacy of EGCG on breast tumors by targeted accumulation and release, which provide much evidence for the CMS@peptide as a promising and targeting vector for DDS. PMID:26225796

  7. Performance of an in situ formed bioactive hydrogel dressing from a PEG-based hyperbranched multifunctional copolymer.

    PubMed

    Dong, Yixiao; Hassan, Waqar U; Kennedy, Robert; Greiser, Udo; Pandit, Abhay; Garcia, Yolanda; Wang, Wenxin

    2014-05-01

    Hydrogel dressings have been widely used for wound management due to their ability to maintain a hydrated wound environment, restore the skin's physical barrier and facilitate regular dressing replacement. However, the therapeutic functions of standard hydrogel dressings are restricted. In this study, an injectable hybrid hydrogel dressing system was prepared from a polyethylene glycol (PEG)-based thermoresponsive hyperbranched multiacrylate functional copolymer and thiol-modified hyaluronic acid in combination with adipose-derived stem cells (ADSCs). The cell viability, proliferation and metabolic activity of the encapsulated ADSCs were studied in vitro, and a rat dorsal full-thickness wound model was used to evaluate this bioactive hydrogel dressing in vivo. It was found that long-term cell viability could be achieved for both in vitro (21days) and in vivo (14days) studies. With ADSCs, this hydrogel system prevented wound contraction and enhanced angiogenesis, showing the potential of this system as a bioactive hydrogel dressing for wound healing.

  8. Performance of an in situ formed bioactive hydrogel dressing from a PEG-based hyperbranched multifunctional copolymer.

    PubMed

    Dong, Yixiao; Hassan, Waqar U; Kennedy, Robert; Greiser, Udo; Pandit, Abhay; Garcia, Yolanda; Wang, Wenxin

    2014-05-01

    Hydrogel dressings have been widely used for wound management due to their ability to maintain a hydrated wound environment, restore the skin's physical barrier and facilitate regular dressing replacement. However, the therapeutic functions of standard hydrogel dressings are restricted. In this study, an injectable hybrid hydrogel dressing system was prepared from a polyethylene glycol (PEG)-based thermoresponsive hyperbranched multiacrylate functional copolymer and thiol-modified hyaluronic acid in combination with adipose-derived stem cells (ADSCs). The cell viability, proliferation and metabolic activity of the encapsulated ADSCs were studied in vitro, and a rat dorsal full-thickness wound model was used to evaluate this bioactive hydrogel dressing in vivo. It was found that long-term cell viability could be achieved for both in vitro (21days) and in vivo (14days) studies. With ADSCs, this hydrogel system prevented wound contraction and enhanced angiogenesis, showing the potential of this system as a bioactive hydrogel dressing for wound healing. PMID:24389319

  9. Click-crosslinkable and photodegradable gelatin hydrogels for cytocompatible optical cell manipulation in natural environment.

    PubMed

    Tamura, Masato; Yanagawa, Fumiki; Sugiura, Shinji; Takagi, Toshiyuki; Sumaru, Kimio; Kanamori, Toshiyuki

    2015-10-09

    This paper describes the generation of "click-crosslinkable" and "photodegaradable" gelatin hydrogels from the reaction between dibenzocycloctyl-terminated photoclevable tetra-arm polyethylene glycol and azide-modified gelatin. The hydrogels were formed in 30 min through the click-crosslinking reaction. The micropatterned features in the hydrogels were created by micropatterned light irradiation; the minimum resolution of micropatterning was 10-μm widths for line patterns and 20-μm diameters for circle patterns. Cells were successfully encapsulated in the hydrogels without any loss of viability across a wide concentration range of crosslinker. In contrast, an activated-ester-type photocleavable crosslinker, which we previously used to prepare photodegradable gelatin hydrogels, induced a decrease in cell viability at crosslinker concentrations greater than 1.8 mM. We also observed morphology alteration and better growth of cancer cells in the click-crosslinked photodegradable gelatin hydrogels that included matrigel than in the absence of matrigel. We also demonstrated micropatterning of the hydrogels encapsulating cells and optical cell separation. Both of the cells that remained in the non-irradiated area and the cells collected from the irradiated area maintained their viability.

  10. 3D cell entrapment in crosslinked thiolated gelatin-poly(ethylene glycol) diacrylate hydrogels.

    PubMed

    Fu, Yao; Xu, Kedi; Zheng, Xiaoxiang; Giacomin, Alan J; Mix, Adam W; Kao, Weiyuan J

    2012-01-01

    The combined use of natural ECM components and synthetic materials offers an attractive alternative to fabricate hydrogel-based tissue engineering scaffolds to study cell-matrix interactions in three-dimensions (3D). A facile method was developed to modify gelatin with cysteine via a bifunctional PEG linker, thus introducing free thiol groups to gelatin chains. A covalently crosslinked gelatin hydrogel was fabricated using thiolated gelatin and poly(ethylene glycol) diacrylate (PEGdA) via thiol-ene reaction. Unmodified gelatin was physically incorporated in a PEGdA-only matrix for comparison. We sought to understand the effect of crosslinking modality on hydrogel physicochemical properties and the impact on 3D cell entrapment. Compared to physically incorporated gelatin hydrogels, covalently crosslinked gelatin hydrogels displayed higher maximum weight swelling ratio (Q(max)), higher water content, significantly lower cumulative gelatin dissolution up to 7 days, and lower gel stiffness. Furthermore, fibroblasts encapsulated within covalently crosslinked gelatin hydrogels showed extensive cytoplasmic spreading and the formation of cellular networks over 28 days. In contrast, fibroblasts encapsulated in the physically incorporated gelatin hydrogels remained spheroidal. Hence, crosslinking ECM protein with synthetic matrix creates a stable scaffold with tunable mechanical properties and with long-term cell anchorage points, thus supporting cell attachment and growth in the 3D environment.

  11. Click-crosslinkable and photodegradable gelatin hydrogels for cytocompatible optical cell manipulation in natural environment

    PubMed Central

    Tamura, Masato; Yanagawa, Fumiki; Sugiura, Shinji; Takagi, Toshiyuki; Sumaru, Kimio; Kanamori, Toshiyuki

    2015-01-01

    This paper describes the generation of “click-crosslinkable“ and “photodegaradable“ gelatin hydrogels from the reaction between dibenzocycloctyl-terminated photoclevable tetra-arm polyethylene glycol and azide-modified gelatin. The hydrogels were formed in 30 min through the click-crosslinking reaction. The micropatterned features in the hydrogels were created by micropatterned light irradiation; the minimum resolution of micropatterning was 10-μm widths for line patterns and 20-μm diameters for circle patterns. Cells were successfully encapsulated in the hydrogels without any loss of viability across a wide concentration range of crosslinker. In contrast, an activated-ester-type photocleavable crosslinker, which we previously used to prepare photodegradable gelatin hydrogels, induced a decrease in cell viability at crosslinker concentrations greater than 1.8 mM. We also observed morphology alteration and better growth of cancer cells in the click-crosslinked photodegradable gelatin hydrogels that included matrigel than in the absence of matrigel. We also demonstrated micropatterning of the hydrogels encapsulating cells and optical cell separation. Both of the cells that remained in the non-irradiated area and the cells collected from the irradiated area maintained their viability. PMID:26450015

  12. Efficient inhibition of colorectal peritoneal carcinomatosis by drug loaded micelles in thermosensitive hydrogel composites

    NASA Astrophysics Data System (ADS)

    Gong, Changyang; Wang, Cheng; Wang, Yujun; Wu, Qinjie; Zhang, Doudou; Luo, Feng; Qian, Zhiyong

    2012-05-01

    In this work, we aim to develop a dual drug delivery system (DDDS) of self-assembled micelles in thermosensitive hydrogel composite to deliver hydrophilic and hydrophobic drugs simultaneously for colorectal peritoneal carcinomatosis (CRPC) therapy. In our previous studies, we found that poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) (PCEC) copolymers with different molecular weight and PEG/PCL ratio could be administered to form micelles or thermosensitive hydrogels, respectively. Therefore, the DDDS was constructed from paclitaxel (PTX) encapsulated PCEC micelles (PTX-micelles) and a fluorouracil (Fu) loaded thermosensitive PCEC hydrogel (Fu-hydrogel). PTX-micelles were prepared by self-assembly of biodegradable PCEC copolymer (Mn = 3700) and PTX without using any surfactants or excipients. Meanwhile, biodegradable and injectable thermosensitive Fu-hydrogel (Mn = 3000) with a lower sol-gel transition temperature at around physiological temperature was also prepared. The obtained PTX-micelles in thermosensitive Fu-hydrogel (PTX-micelles-Fu-hydrogel) composite is a free-flowing sol at ambient temperature and rapidly turned into a non-flowing gel at physiological temperature. In addition, the results of cytotoxicity, hemolytic study, and acute toxicity evaluation suggested that the PTX-micelles-Fu-hydrogel was non-toxic and biocompatible. In vitro release behaviors of PTX-micelles-Fu-hydrogel indicated that both PTX and Fu have a sustained release behavior. Furthermore, intraperitoneal application of PTX-micelles-Fu-hydrogel effectively inhibited growth and metastasis of CT26 peritoneal carcinomatosis in vivo (p < 0.001), and induced a stronger antitumor effect than that of Taxol® plus Fu (p < 0.001). The pharmacokinetic study indicated that PTX-micelles-Fu-hydrogel significantly increased PTX and Fu concentration and residence time in peritoneal fluids compared with Taxol® plus Fu group. Thus, the results suggested the micelles-hydrogel DDDS may

  13. CNT Reinforced Hybrid Microgels as Scaffold Materials for Cell Encapsulation

    PubMed Central

    Shin, Su Ryon; Bae, Hojae; Cha, Jae Min; Mun, Ji Young; Chen, Ying-Chieh; Tekin, Halil; Shin, Hyeongho; Farshchi, Saeed; Dokmeci, Mehmet R.; Tang, Shirley

    2012-01-01

    Hydrogels that mimic biological extracellular matrix (ECM) can provide cells with mechanical support and signaling cues to regulate their behavior. However, despite the ability of hydrogels to generate artificial ECM that can modulate cellular behavior, they often lack the mechanical strength needed for many tissue constructs. Here, we present reinforced CNT-gelatin methacrylate (GelMA) hybrid as a biocompatible, cell-responsive hydrogel platform for creating cell-laden three dimensional (3D) constructs. The addition of CNTs successfully reinforced GelMA hydrogels without decreasing their porosity or inhibiting cell growth. The CNT-GelMA hybrids were also photopatternable allowing for easy fabrication of microscale structures without harsh processes. NIH-3T3 cells and human mesenchymal stem cells (hMSCs) readily spread and proliferated after encapsulation in CNT-GelMA hybrid microgels. By controlling the amount of CNTs incorporated into the GelMA hydrogel system, we demonstrated that the mechanical properties of the hybrid material can be tuned making it suitable for various tissue engineering applications. Furthermore, due to the high pattern fidelity and resolution of CNT incorporated GelMA, it can be used for in vitro cell studies or fabricating complex 3D biomimetic tissue-like structures. PMID:22117858

  14. Effects of permeability and living space on cell fate and neo-tissue development in hydrogel-based scaffolds: a study with cartilaginous model.

    PubMed

    Fan, Changjiang; Wang, Dong-An

    2015-04-01

    One bottleneck in tissue regeneration with hydrogel scaffolds is the limited understanding of the crucial factors for controlling hydrogel's physical microenvironments to regulate cell fate. Here, the effects of permeability and living space of hydrogels on encapsulated cells' behavior were evaluated, respectively. Three model hydrogel-based constructs are fabricated by using photo-crosslinkable hyaluronic acid as precursor and chondrocytes as model cell type. The better permeable hydrogels facilitate better cell viability and rapid proliferation, which lead to increased production of extracellular matrix (ECM), e.g. collagen, glycosaminoglycan. By prolonged culture, nano-sized hydrogel networks inhibit neo-tissue development, and the presence of macro-porous living spaces significantly enhance ECM deposition via forming larger cell clusters and eventually induce formation of scaffold-free neo-tissue islets. The results of this work demonstrate that the manipulation and optimization of hydrogel microenvironments, namely permeability and living space, are crucial to direct cell fate and neo-tissue formation.

  15. Cell-laden microengineered and mechanically tunable hybrid hydrogels of gelatin and graphene oxide.

    PubMed

    Shin, Su Ryon; Aghaei-Ghareh-Bolagh, Behnaz; Dang, Tram T; Topkaya, Seda Nur; Gao, Xiguang; Yang, Seung Yun; Jung, Sung Mi; Oh, Jong Hyun; Dokmeci, Mehmet R; Tang, Xiaowu Shirley; Khademhosseini, Ali

    2013-11-26

    Incorporating graphene oxide inside GelMA hydrogels enhances their mechanical properties and reduces UV-induced cell damage while preserving their favorable characteristics for 3D cell encapsulation. NIH-3T3 fibroblasts encapsulated in GO-GelMA microgels demonstrate excellent cellular viability, proliferation, spreading, and alignment. GO reinforcement combined with a multi-stacking approach offers a facile engineering strategy for the construction of complex artificial tissues.

  16. Hydrogels Constructed from Engineered Proteins.

    PubMed

    Li, Hongbin; Kong, Na; Laver, Bryce; Liu, Junqiu

    2016-02-24

    Due to their various potential biomedical applications, hydrogels based on engineered proteins have attracted considerable interest. Benefitting from significant progress in recombinant DNA technology and protein engineering/design techniques, the field of protein hydrogels has made amazing progress. The latest progress of hydrogels constructed from engineered recombinant proteins are presented, mainly focused on biorecognition-driven physical hydrogels as well as chemically crosslinked hydrogels. The various bio-recognition based physical crosslinking strategies are discussed, as well as chemical crosslinking chemistries used to engineer protein hydrogels, and protein hydrogels' various biomedical applications. The future perspectives of this fast evolving field of biomaterials are also discussed. PMID:26707834

  17. Hydrogels Constructed from Engineered Proteins.

    PubMed

    Li, Hongbin; Kong, Na; Laver, Bryce; Liu, Junqiu

    2016-02-24

    Due to their various potential biomedical applications, hydrogels based on engineered proteins have attracted considerable interest. Benefitting from significant progress in recombinant DNA technology and protein engineering/design techniques, the field of protein hydrogels has made amazing progress. The latest progress of hydrogels constructed from engineered recombinant proteins are presented, mainly focused on biorecognition-driven physical hydrogels as well as chemically crosslinked hydrogels. The various bio-recognition based physical crosslinking strategies are discussed, as well as chemical crosslinking chemistries used to engineer protein hydrogels, and protein hydrogels' various biomedical applications. The future perspectives of this fast evolving field of biomaterials are also discussed.

  18. Hydrogel microparticles for biosensing

    PubMed Central

    Le Goff, Gaelle C.; Srinivas, Rathi L.; Hill, W. Adam; Doyle, Patrick S.

    2015-01-01

    Due to their hydrophilic, biocompatible, and highly tunable nature, hydrogel materials have attracted strong interest in the recent years for numerous biotechnological applications. In particular, their solution-like environment and non-fouling nature in complex biological samples render hydrogels as ideal substrates for biosensing applications. Hydrogel coatings, and later, gel dot surface microarrays, were successfully used in sensitive nucleic acid assays and immunoassays. More recently, new microfabrication techniques for synthesizing encoded particles from hydrogel materials have enabled the development of hydrogel-based suspension arrays. Lithography processes and droplet-based microfluidic techniques enable generation of libraries of particles with unique spectral or graphical codes, for multiplexed sensing in biological samples. In this review, we discuss the key questions arising when designing hydrogel particles dedicated to biosensing. How can the hydrogel material be engineered in order to tune its properties and immobilize bioprobes inside? What are the strategies to fabricate and encode gel particles, and how can particles be processed and decoded after the assay? Finally, we review the bioassays reported so far in the literature that have used hydrogel particle arrays and give an outlook of further developments of the field. PMID:26594056

  19. Germanium detector vacuum encapsulation

    NASA Technical Reports Server (NTRS)

    Madden, N. W.; Malone, D. F.; Pehl, R. H.; Cork, C. P.; Luke, P. N.; Landis, D. A.; Pollard, M. J.

    1991-01-01

    This paper describes an encapsulation technology that should significantly improve the viability of germanium gamma-ray detectors for a number of important applications. A specialized vacuum chamber has been constructed in which the detector and the encapsulating module are processed in high vacuum. Very high vacuum conductance is achieved within the valveless encapsulating module. The detector module is then sealed without breaking the chamber vacuum. The details of the vacuum chamber, valveless module, processing, and sealing method are presented.

  20. Solar cell encapsulation

    NASA Technical Reports Server (NTRS)

    Gupta, Amitava (Inventor); Ingham, John D. (Inventor); Yavrouian, Andre H. (Inventor)

    1983-01-01

    A polymer syrup for encapsulating solar cell assemblies. The syrup includes uncrosslinked poly(n-butyl)acrylate dissolved in n-butyl acrylate monomer. Preparation of the poly(n-butyl)acrylate and preparation of the polymer syrup is disclosed. Methods for applying the polymer syrup to solar cell assemblies as an encapsulating pottant are described. Also included is a method for solar cell construction utilizing the polymer syrup as a dual purpose adhesive and encapsulating material.

  1. Preserving viability of Lactobacillus rhamnosus GG in vitro and in vivo by a new encapsulation system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Probiotics have shown beneficial effects on human health. To increase the efficacy of probiotic applications, we used Lactobacillus rhamnosus GG (LGG) as a probiotic model to investigate approaches to enhance the bioavailability of probiotics. LGG was encapsulated in hydrogel beads containing pectin...

  2. The effect of acoustic radiation force on osteoblasts in cell/hydrogel constructs for bone repair

    PubMed Central

    Veronick, James; Assanah, Fayekah; Nair, Lakshmi S; Vyas, Varun; Huey, Bryan

    2016-01-01

    Ultrasound, or the application of acoustic energy, is a minimally invasive technique that has been used in diagnostic, surgical, imaging, and therapeutic applications. Low-intensity pulsed ultrasound (LIPUS) has been used to accelerate bone fracture repair and to heal non-union defects. While shown to be effective the precise mechanism behind its utility is still poorly understood. In this study, we considered the possibility that LIPUS may be providing a physical stimulus to cells within bony defects. We have also evaluated ultrasound as a means of producing a transdermal physical force that could stimulate osteoblasts that had been encapsulated within collagen hydrogels and delivered to bony defects. Here we show that ultrasound does indeed produce a measurable physical force and when applied to hydrogels causes their deformation, more so as ultrasound intensity was increased or hydrogel stiffness decreased. MC3T3 mouse osteoblast cells were then encapsulated within hydrogels to measure the response to this force. Statistically significant elevated gene expression for alkaline phosphatase and osteocalcin, both well-established markers of osteoblast differentiation, was noted in encapsulated osteoblasts (p < 0.05), suggesting that the physical force provided by ultrasound may induce bone formation in part through physically stimulating cells. We have also shown that this osteoblastic response is dependent in part on the stiffness of the encapsulating hydrogel, as stiffer hydrogels resulted in reducing or reversing this response. Taken together this approach, encapsulating cells for implantation into a bony defect that can potentially be transdermally loaded using ultrasound presents a novel regenerative engineering approach to enhanced fracture repair. PMID:27229906

  3. The effect of photopolymerization on stem cells embedded in hydrogels.

    PubMed

    Fedorovich, Natalja E; Oudshoorn, Marion H; van Geemen, Daphne; Hennink, Wim E; Alblas, Jacqueline; Dhert, Wouter J A

    2009-01-01

    Photopolymerizable hydrogels, formed by UV-exposure of photosensitive polymers in the presence of photoinitiators, are widely used materials in tissue engineering research employed for cellular entrapment and patterning. During photopolymerization, the entrapped cells are directly exposed to polymer and photoinitiator molecules. To develop strategies that prevent potential photoexposure-damage to osteoprogenitor cells, it is important to further characterize the effects of photopolymerization on the exposed cells. In this study we analyzed the viability, proliferation and osteogenic differentiation of multipotent stromal cell (MSC) monolayers after exposure to UV-light in the presence of Irgacure 2959, a frequently used photoinitiator in tissue engineering research. Cell cycle progression, apoptosis and osteogenic differentiation of encapsulated goat MSCs were studied in photopolymerized methacrylate-derivatized hyaluronic acid hydrogel and methacrylated hyperbranched polyglycerol gel. We demonstrate adverse effects of photopolymerization on viability, proliferation and reentry into the cell cycle of the exposed cells in monolayers, whereas the MSCs retain the ability to differentiate towards the osteogenic lineage. We further show that upon encapsulation in photopolymerizable hydrogels the viability of the embedded cells is unaffected by the photopolymerization conditions, while osteogenic differentiation depends on the type of hydrogel used.

  4. Injectable and biodegradable hydrogels: gelation, biodegradation and biomedical applications.

    PubMed

    Li, Yulin; Rodrigues, João; Tomás, Helena

    2012-03-21

    Injectable hydrogels with biodegradability have in situ formability which in vitro/in vivo allows an effective and homogeneous encapsulation of drugs/cells, and convenient in vivo surgical operation in a minimally invasive way, causing smaller scar size and less pain for patients. Therefore, they have found a variety of biomedical applications, such as drug delivery, cell encapsulation, and tissue engineering. This critical review systematically summarizes the recent progresses on biodegradable and injectable hydrogels fabricated from natural polymers (chitosan, hyaluronic acid, alginates, gelatin, heparin, chondroitin sulfate, etc.) and biodegradable synthetic polymers (polypeptides, polyesters, polyphosphazenes, etc.). The review includes the novel naturally based hydrogels with high potential for biomedical applications developed in the past five years which integrate the excellent biocompatibility of natural polymers/synthetic polypeptides with structural controllability via chemical modification. The gelation and biodegradation which are two key factors to affect the cell fate or drug delivery are highlighted. A brief outlook on the future of injectable and biodegradable hydrogels is also presented (326 references). PMID:22116474

  5. A hybrid actuated microrobot using an electromagnetic field and flagellated bacteria for tumor-targeting therapy.

    PubMed

    Li, Donghai; Choi, Hyunchul; Cho, Sunghoon; Jeong, Semi; Jin, Zhen; Lee, Cheong; Ko, Seong Young; Park, Jong-Oh; Park, Sukho

    2015-08-01

    In this paper, we propose a new concept for a hybrid actuated microrobot for tumor-targeting therapy. For drug delivery in tumor therapy, various electromagnetic actuated microrobot systems have been studied. In addition, bacteria-based microrobot (so-called bacteriobot), which use tumor targeting and the therapeutic function of the bacteria, has also been proposed for solid tumor therapy. Compared with bacteriobot, electromagnetic actuated microrobot has larger driving force and locomotive controllability due to their position recognition and magnetic field control. However, because electromagnetic actuated microrobot does not have self-tumor targeting, they need to be controlled by an external magnetic field. In contrast, the bacteriobot uses tumor targeting and the bacteria's own motility, and can exhibit self-targeting performance at solid tumors. However, because the propulsion forces of the bacteria are too small, it is very difficult for bacteriobot to track a tumor in a vessel with a large bloodstream. Therefore, we propose a hybrid actuated microrobot combined with electromagnetic actuation in large blood vessels with a macro range and bacterial actuation in small vessels with a micro range. In addition, the proposed microrobot consists of biodegradable and biocompatible microbeads in which the drugs and magnetic particles can be encapsulated; the bacteria can be attached to the surface of the microbeads and propel the microrobot. We carried out macro-manipulation of the hybrid actuated microrobot along a desired path through electromagnetic field control and the micro-manipulation of the hybrid actuated microrobot toward a chemical attractant through the chemotaxis of the bacteria. For the validation of the hybrid actuation of the microrobot, we fabricated a hydrogel microfluidic channel that can generate a chemical gradient. Finally, we evaluated the motility performance of the hybrid actuated microrobot in the hydrogel microfluidic channel. We expect

  6. A hybrid actuated microrobot using an electromagnetic field and flagellated bacteria for tumor-targeting therapy.

    PubMed

    Li, Donghai; Choi, Hyunchul; Cho, Sunghoon; Jeong, Semi; Jin, Zhen; Lee, Cheong; Ko, Seong Young; Park, Jong-Oh; Park, Sukho

    2015-08-01

    In this paper, we propose a new concept for a hybrid actuated microrobot for tumor-targeting therapy. For drug delivery in tumor therapy, various electromagnetic actuated microrobot systems have been studied. In addition, bacteria-based microrobot (so-called bacteriobot), which use tumor targeting and the therapeutic function of the bacteria, has also been proposed for solid tumor therapy. Compared with bacteriobot, electromagnetic actuated microrobot has larger driving force and locomotive controllability due to their position recognition and magnetic field control. However, because electromagnetic actuated microrobot does not have self-tumor targeting, they need to be controlled by an external magnetic field. In contrast, the bacteriobot uses tumor targeting and the bacteria's own motility, and can exhibit self-targeting performance at solid tumors. However, because the propulsion forces of the bacteria are too small, it is very difficult for bacteriobot to track a tumor in a vessel with a large bloodstream. Therefore, we propose a hybrid actuated microrobot combined with electromagnetic actuation in large blood vessels with a macro range and bacterial actuation in small vessels with a micro range. In addition, the proposed microrobot consists of biodegradable and biocompatible microbeads in which the drugs and magnetic particles can be encapsulated; the bacteria can be attached to the surface of the microbeads and propel the microrobot. We carried out macro-manipulation of the hybrid actuated microrobot along a desired path through electromagnetic field control and the micro-manipulation of the hybrid actuated microrobot toward a chemical attractant through the chemotaxis of the bacteria. For the validation of the hybrid actuation of the microrobot, we fabricated a hydrogel microfluidic channel that can generate a chemical gradient. Finally, we evaluated the motility performance of the hybrid actuated microrobot in the hydrogel microfluidic channel. We expect

  7. Action of the anti-tumoral zinc(II)phthalocyanine in solution or encapsulated into nanoparticles of poly-ε-caprolactone internalized by peritoneal macrophages

    NASA Astrophysics Data System (ADS)

    da Silva Abe, Amanda Santos Franco; Ricci-Júnior, Eduardo; Teixeira Lima Castelo Branco, Morgana; de Brito Gitirana, Lycia

    2016-09-01

    Nanoparticles (NPs) have been used as drug delivery systems (DDS) exhibiting high cell penetration power. As an antitumor photosensitizer, zinc(II) phthalocyanine (ZnPc) was applied in photodynamic therapy (PDT) since its phototoxic activity promotes death of tumor cells in the presence of laser light. Since drugs do not interact only with tumor cells in living organisms, this study aimed to analyze the action of ZnPc-loaded in nanoparticles (ZnPc-NPs) and in solution (free ZnPc) using peritoneal macrophages as a model of non-neoplastic cells that inhabit the tumoral stroma. NPs were produced by emulsion and evaporation of solvent and characterized by dynamic light scattering and transmission electron microscopy. Assays as 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, light microscopy and laser scanning confocal microscopy were performed to evaluate the drug effects in the presence or absence of laser light applied in PDT. NPs exhibited dimensions between 290 and 350 nm and rounded shape. Empty NP did not affect cell viability, showing that these nanocarriers are biocompatible DDS. Free ZnPc was randomly distributed in the cytoplasm, while ZnPc-NP was preferably located near the nucleus. At 5 μg ml‑1, free ZnPc caused greater loss of cell viability in the absence of laser when compared to ZnPc-NPs, in the presence or absence of irradiation. In contrast, free ZnPc and ZnPc-NPs (0.5 μg ml‑1) promoted cell death to the same extent in cells treated with laser light or not. This demonstrates that the performance of this drug is dose dependent in its free form, but not in its nanoencapsulated form. Cells irradiated with laser (100 mW) and treated with free ZnPc or with ZnPc-NPs showed morphological changes. These observations show that both free ZnPc and ZnPc-NPs irradiated with laser light cause cell damage in peritoneal macrophages.

  8. Action of the anti-tumoral zinc(II)phthalocyanine in solution or encapsulated into nanoparticles of poly-ɛ-caprolactone internalized by peritoneal macrophages

    NASA Astrophysics Data System (ADS)

    da Silva Abe, Amanda Santos Franco; Ricci-Júnior, Eduardo; Teixeira Lima Castelo Branco, Morgana; de Brito Gitirana, Lycia

    2016-09-01

    Nanoparticles (NPs) have been used as drug delivery systems (DDS) exhibiting high cell penetration power. As an antitumor photosensitizer, zinc(II) phthalocyanine (ZnPc) was applied in photodynamic therapy (PDT) since its phototoxic activity promotes death of tumor cells in the presence of laser light. Since drugs do not interact only with tumor cells in living organisms, this study aimed to analyze the action of ZnPc-loaded in nanoparticles (ZnPc-NPs) and in solution (free ZnPc) using peritoneal macrophages as a model of non-neoplastic cells that inhabit the tumoral stroma. NPs were produced by emulsion and evaporation of solvent and characterized by dynamic light scattering and transmission electron microscopy. Assays as 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, light microscopy and laser scanning confocal microscopy were performed to evaluate the drug effects in the presence or absence of laser light applied in PDT. NPs exhibited dimensions between 290 and 350 nm and rounded shape. Empty NP did not affect cell viability, showing that these nanocarriers are biocompatible DDS. Free ZnPc was randomly distributed in the cytoplasm, while ZnPc-NP was preferably located near the nucleus. At 5 μg ml-1, free ZnPc caused greater loss of cell viability in the absence of laser when compared to ZnPc-NPs, in the presence or absence of irradiation. In contrast, free ZnPc and ZnPc-NPs (0.5 μg ml-1) promoted cell death to the same extent in cells treated with laser light or not. This demonstrates that the performance of this drug is dose dependent in its free form, but not in its nanoencapsulated form. Cells irradiated with laser (100 mW) and treated with free ZnPc or with ZnPc-NPs showed morphological changes. These observations show that both free ZnPc and ZnPc-NPs irradiated with laser light cause cell damage in peritoneal macrophages.

  9. In situ forming hydrogels composed of oxidized high molecular weight hyaluronic acid and gelatin for nucleus pulposus regeneration.

    PubMed

    Chen, Yu-Chun; Su, Wen-Yu; Yang, Shu-Hua; Gefen, Amit; Lin, Feng-Huei

    2013-02-01

    Encapsulation of nucleus pulposus (NP) cells within in situ forming hydrogels is a novel biological treatment for early stage intervertebral disc degeneration. The procedure aims to prolong the life of the degenerating discs and to regenerate damaged tissue. In this study we developed an injectable oxidized hyaluronic acid-gelatin-adipic acid dihydrazide (oxi-HAG-ADH) hydrogel. High molecular weight (1900 kDa) hyaluronic acid was crosslinked with various concentrations of gelatin to synthesize the hydrogels and their viscoelastic properties were analyzed. Interactions between the hydrogels, NP cells, and the extracellular matrix (ECM) were also evaluated, as were the effects of the hydrogels on NP cell gene expression. The hydrogels possess several clinical advantages, including sterilizability, low viscosity for injection, and ease of use. The viscoelastic properties of the hydrogels were similar to native tissue, as reflected in the complex shear modulus (∼11-14 kPa for hydrogels, 11.3 kPa for native NP). Cultured NP cells not only attached to the hydrogels but also survived, proliferated, and maintained their round morphology. Importantly, we found that hydrogels increased NP cell expression of several crucial ECM-related genes, such as COL2A1, AGN, SOX-9, and HIF-1A. PMID:23041783

  10. Injectable chitosan-based hydrogel for implantable drug delivery: body response and induced variations of structure and composition.

    PubMed

    Sun, Jiali; Jiang, Guoqiang; Qiu, Tingting; Wang, Yujie; Zhang, Kuo; Ding, Fuxin

    2010-12-15

    Thermosensitive hydrogel composed of chitosan and glycerophosphate (CS/GP) is proposed to be the potential candidate of in situ gel-forming implant for long-term drug delivery. The present study was focused on the body response and induced structural and componential variations of the hydrogel, which were considered to impact on the drug delivery significantly but were scarcely reported. The body response was investigated by histological examination. It showed that the hydrogel caused an inflammatory response immediately after being implanted into Sprague-Dawley (SD) rats. The inflammatory response was mainly exhibited as inflammatory cell surrounding and infiltrating, tissue encapsulating, and vascularization in tissue. The effects of the inflammatory response on the structure and component of the CS/GP hydrogel were extensively explored through analyzing the hydrogel samples taken by surgery. The tissue encapsulation and osmotic pressure caused the water loss of the hydrogel and the compaction of the hydrogel network, and resulted in the porosity decreasing. The cell surrounding and infiltrating spawned big pores in the network and generated the subdivision of the network. All these structural and componential variations of the hydrogel in vivo were quite different from those in vitro and were supposed to exert significantly effects on drug release kinetics.

  11. Connections Matter: Channeled Hydrogels to Improve Vascularization

    PubMed Central

    Muehleder, Severin; Ovsianikov, Aleksandr; Zipperle, Johannes; Redl, Heinz; Holnthoner, Wolfgang

    2014-01-01

    The use of cell-laden hydrogels to engineer soft tissue has been emerging within the past years. Despite, several newly developed and sophisticated techniques to encapsulate different cell types the importance of vascularization of the engineered constructs is often underestimated. As a result, cell death within a construct leads to impaired function and inclusion of the implant. Here, we discuss the fabrication of hollow channels within hydrogels as a promising strategy to facilitate vascularization. Furthermore, we present an overview on the feasible use of removable spacers, 3D laser-, and planar processing strategies to create channels within hydrogels. The implementation of these structures promotes control over cell distribution and increases oxygen transport and nutrient supply in vitro. However, many studies lack the use of endothelial cells in their approaches leaving out an important factor to enhance vessel ingrowth and anastomosis formation upon implantation. In addition, the adequate endothelial cell type needs to be considered to make these approaches bridge the gap to in vivo applications. PMID:25453032

  12. Hyaluronic Acid Hydrogels for Biomedical Applications

    PubMed Central

    Burdick, Jason A.; Prestwich, Glenn D.

    2013-01-01

    Hyaluronic acid (HA), an immunoneutral polysaccharide that is ubiquitous in the human body, is crucial for many cellular and tissue functions and has been in clinical use for over thirty years. When chemically modified, HA can be transformed into many physical forms -- viscoelastic solutions, soft or stiff hydrogels, electrospun fibers, non-woven meshes, macroporous and fibrillar sponges, flexible sheets, and nanoparticulate fluids -- for use in a range of preclinical and clinical settings. Many of these forms are derived from the chemical crosslinking of pendant reactive groups by addition/condensation chemistry or by radical polymerization. Clinical products for cell therapy and regenerative medicine require crosslinking chemistry that is compatible with the encapsulation of cells and injection into tissues. Moreover, an injectable clinical biomaterial must meet marketing, regulatory, and financial constraints to provide affordable products that can be approved, deployed to the clinic, and used by physicians. Many HA-derived hydrogels meet these criteria, and can deliver cells and therapeutic agents for tissue repair and regeneration. This progress report covers both basic concepts and recent advances in the development of HA-based hydrogels for biomedical applications. PMID:21394792

  13. Engineering hydrogels as extracellular matrix mimics

    PubMed Central

    Geckil, Hikmet; Xu, Feng; Zhang, Xiaohui; Moon, SangJun

    2010-01-01

    Extracellular matrix (ECM) is a complex cellular environment consisting of proteins, proteoglycans, and other soluble molecules. ECM provides structural support to mammalian cells and a regulatory milieu with a variety of important cell functions, including assembling cells into various tissues and organs, regulating growth and cell–cell communication. Developing a tailored in vitro cell culture environment that mimics the intricate and organized nanoscale meshwork of native ECM is desirable. Recent studies have shown the potential of hydrogels to mimic native ECM. Such an engineered native-like ECM is more likely to provide cells with rational cues for diagnostic and therapeutic studies. The research for novel biomaterials has led to an extension of the scope and techniques used to fabricate biomimetic hydrogel scaffolds for tissue engineering and regenerative medicine applications. In this article, we detail the progress of the current state-of-the-art engineering methods to create cell-encapsulating hydrogel tissue constructs as well as their applications in in vitro models in biomedicine. PMID:20394538

  14. Hierarchically Designed Agarose and Poly(Ethylene Glycol) Interpenetrating Network Hydrogels for Cartilage Tissue Engineering

    PubMed Central

    DeKosky, Brandon J.; Dormer, Nathan H.; Ingavle, Ganesh C.; Roatch, Christopher H.; Lomakin, Joseph; Detamore, Michael S.

    2010-01-01

    A new method for encapsulating cells in interpenetrating network (IPN) hydrogels of superior mechanical integrity was developed. In this study, two biocompatible materials—agarose and poly(ethylene glycol) (PEG) diacrylate—were combined to create a new IPN hydrogel with greatly enhanced mechanical performance. Unconfined compression of hydrogel samples revealed that the IPN displayed a fourfold increase in shear modulus relative to a pure PEG-diacrylate network (39.9 vs. 9.9 kPa) and a 4.9-fold increase relative to a pure agarose network (8.2 kPa). PEG and IPN compressive failure strains were found to be 71% ± 17% and 74% ± 17%, respectively, while pure agarose gels failed around 15% strain. Similar mechanical property improvements were seen when IPNs-encapsulated chondrocytes, and LIVE/DEAD cell viability assays demonstrated that cells survived the IPN encapsulation process. The majority of IPN-encapsulated chondrocytes remained viable 1 week postencapsulation, and chondrocytes exhibited glycosaminoglycan synthesis comparable to that of agarose-encapsulated chondrocytes at 3 weeks postencapsulation. The introduction of a new method for encapsulating cells in a hydrogel with enhanced mechanical performance is a promising step toward cartilage defect repair. This method can be applied to fabricate a broad variety of cell-based IPNs by varying monomers and polymers in type and concentration and by adding functional groups such as degradable sequences or cell adhesion groups. Further, this technology may be applicable in other cell-based applications where mechanical integrity of cell-containing hydrogels is of great importance. PMID:20626274

  15. Characterization Methods of Encapsulates

    NASA Astrophysics Data System (ADS)

    Zhang, Zhibing; Law, Daniel; Lian, Guoping

    Food active ingredients can be encapsulated by different processes, including spray drying, spray cooling, spray chilling, spinning disc and centrifugal co-extrusion, extrusion, fluidized bed coating and coacervation (see Chap. 2 of this book). The purpose of encapsulation is often to stabilize an active ingredient, control its release rate and/or convert a liquid formulation into a solid which is easier to handle. A range of edible materials can be used as shell materials of encapsulates, including polysaccharides, fats, waxes and proteins (see Chap. 3 of this book). Encapsulates for typical industrial applications can vary from several microns to several millimetres in diameter although there is an increasing interest in preparing nano-encapsulates. Encapsulates are basically particles with a core-shell structure, but some of them can have a more complex structure, e.g. in a form of multiple cores embedded in a matrix. Particles have physical, mechanical and structural properties, including particle size, size distribution, morphology, surface charge, wall thickness, mechanical strength, glass transition temperature, degree of crystallinity, flowability and permeability. Information about the properties of encapsulates is very important to understanding their behaviours in different environments, including their manufacturing processes and end-user applications. E.g. encapsulates for most industrial applications should have desirable mechanical strength, which should be strong enough to withstand various mechanical forces generated in manufacturing processes, such as mixing, pumping, extrusion, etc., and may be required to be weak enough in order to release the encapsulated active ingredients by mechanical forces at their end-user applications, such as release rate of flavour by chewing. The mechanical strength of encapsulates and release rate of their food actives are related to their size, morphology, wall thickness, chemical composition, structure etc. Hence

  16. Cytocompatible Poly(ethylene glycol)-co-polycarbonate Hydrogels Crosslinked by Copper-free, Strain-promoted “Click” Chemistry

    PubMed Central

    Xu, Jianwen; Filion, Tera M.; Prifti, Fioleda

    2013-01-01

    Strategies to encapsulate cells in cytocompatible 3-dimensional hydrogels with tunable mechanical properties and degradability without harmful gelling conditions are highly desired for regenerative medicine applications. Here we reported a method for preparing poly(ethylene glycol)-co-polycarbonate hydrogels through copper-free, strain-promoted azide-alkyne cycloaddition (SPAAC) “Click” chemistry. Hydrogels with varying mechanical properties were formed by “clicking” azido-functionalized poly(ethylene glycol)-co-polycarbonate macromers with dibenzocyclooctyne functionalized poly(ethylene glycol) under physiological conditions within minutes. Bone marrow stromal cells encapsulated in these gels exhibited higher cellular viability than those encapsulated in photo-crosslinked poly(ethylene glycol) dimethacrylate. The precise control over the macromer compositions, the cytocompatible SPAAC crosslinking, and the degradability of the polycarbonate segments combined make these hydrogels promising candidates for scaffold- and stem cell-assisted tissue repair and regeneration. PMID:21954076

  17. Biodegradable DNA-enabled poly(ethylene glycol) hydrogels prepared by copper-free click chemistry.

    PubMed

    Barker, Karolyn; Rastogi, Shiva K; Dominguez, Jose; Cantu, Travis; Brittain, William; Irvin, Jennifer; Betancourt, Tania

    2016-01-01

    Significant research has focused on investigating the potential of hydrogels in various applications and, in particular, in medicine. Specifically, hydrogels that are biodegradable lend promise to many therapeutic and biosensing applications. Endonucleases are critical for mechanisms of DNA repair. However, they are also known to be overexpressed in cancer and to be present in wounds with bacterial contamination. In this work, we set out to demonstrate the preparation of DNA-enabled hydrogels that could be degraded by nucleases. Specifically, hydrogels were prepared through the reaction of dibenzocyclooctyne-functionalized multi-arm poly(ethylene glycol) with azide-functionalized single-stranded DNA in aqueous solutions via copper-free click chemistry. Through the use of this method, biodegradable hydrogels were formed at room temperature in buffered saline solutions that mimic physiological conditions, avoiding possible harmful effects associated with other polymerization techniques that can be detrimental to cells or other bioactive molecules. The degradation of these DNA-cross-linked hydrogels upon exposure to the model endonucleases Benzonase(®) and DNase I was studied. In addition, the ability of the hydrogels to act as depots for encapsulation and nuclease-controlled release of a model protein was demonstrated. This model has the potential to be tailored and expanded upon for use in a variety of applications where mild hydrogel preparation techniques and controlled material degradation are necessary including in drug delivery and wound healing systems. PMID:26541212

  18. Resilin-PEG Hybrid Hydrogels Yield Degradable Elastomeric Scaffolds with Heterogeneous Microstructure.

    PubMed

    McGann, Christopher L; Akins, Robert E; Kiick, Kristi L

    2016-01-11

    Hydrogels derived from resilin-like polypeptides (RLPs) have shown outstanding mechanical resilience and cytocompatibility; expanding the versatility of RLP-based materials via conjugation with other polypeptides and polymers would offer great promise in the design of a range of materials. Here, we present an investigation of the biochemical and mechanical properties of hybrid hydrogels composed of a recombinant RLP and a multiarm PEG macromer. These hybrid hydrogels can be rapidly cross-linked through a Michael-type addition reaction between the thiols of cysteine residues on the RLP and vinyl sulfone groups on the multiarm PEG. Oscillatory rheology and tensile testing confirmed the formation of elastomeric hydrogels with mechanical resilience comparable to aortic elastin; hydrogel stiffness was easily modulated through the cross-linking ratio. Macromolecular phase separation of the RLP-PEG hydrogels offers the unique advantage of imparting a heterogeneous microstructure, which can be used to localize cells, through simple mixing and cross-linking. Assessment of degradation of the RLP by matrix metalloproteinases (MMPs) illustrated the specific proteolysis of the polypeptide in both its soluble form and when cross-linked into hydrogels. Finally, the successful encapsulation and viable three-dimensional culture of human mesenchymal stem cells (hMSCs) demonstrated the cytocompatibility of the RLP-PEG gels. Overall, the cytocompatibility, elastomeric mechanical properties, microheterogeneity, and degradability of the RLP-PEG hybrid hydrogels offer a suite of promising properties for the development of cell-instructive, structured tissue engineering scaffolds.

  19. Biodegradable DNA-enabled poly(ethylene glycol) hydrogels prepared by copper-free click chemistry.

    PubMed

    Barker, Karolyn; Rastogi, Shiva K; Dominguez, Jose; Cantu, Travis; Brittain, William; Irvin, Jennifer; Betancourt, Tania

    2016-01-01

    Significant research has focused on investigating the potential of hydrogels in various applications and, in particular, in medicine. Specifically, hydrogels that are biodegradable lend promise to many therapeutic and biosensing applications. Endonucleases are critical for mechanisms of DNA repair. However, they are also known to be overexpressed in cancer and to be present in wounds with bacterial contamination. In this work, we set out to demonstrate the preparation of DNA-enabled hydrogels that could be degraded by nucleases. Specifically, hydrogels were prepared through the reaction of dibenzocyclooctyne-functionalized multi-arm poly(ethylene glycol) with azide-functionalized single-stranded DNA in aqueous solutions via copper-free click chemistry. Through the use of this method, biodegradable hydrogels were formed at room temperature in buffered saline solutions that mimic physiological conditions, avoiding possible harmful effects associated with other polymerization techniques that can be detrimental to cells or other bioactive molecules. The degradation of these DNA-cross-linked hydrogels upon exposure to the model endonucleases Benzonase(®) and DNase I was studied. In addition, the ability of the hydrogels to act as depots for encapsulation and nuclease-controlled release of a model protein was demonstrated. This model has the potential to be tailored and expanded upon for use in a variety of applications where mild hydrogel preparation techniques and controlled material degradation are necessary including in drug delivery and wound healing systems.

  20. An Injectable Enzymatically Crosslinked Carboxymethylated Pullulan/Chondroitin Sulfate Hydrogel for Cartilage Tissue Engineering.

    PubMed

    Chen, Feng; Yu, Songrui; Liu, Bing; Ni, Yunzhou; Yu, Chunyang; Su, Yue; Zhu, Xinyuan; Yu, Xiaowei; Zhou, Yongfeng; Yan, Deyue

    2016-01-01

    In this study, an enzymatically cross-linked injectable and biodegradable hydrogel system comprising carboxymethyl pullulan-tyramine (CMP-TA) and chondroitin sulfate-tyramine (CS-TA) conjugates was successfully developed under physiological conditions in the presence of both horseradish peroxidase (HRP) and hydrogen peroxide (H2O2) for cartilage tissue engineering (CTTE). The HRP crosslinking method makes this injectable system feasible, minimally invasive and easily translatable for regenerative medicine applications. The physicochemical properties of the mechanically stable hydrogel system can be modulated by varying the weight ratio and concentration of polymer as well as the concentrations of crosslinking reagents. Additionally, the cellular behaviour of porcine auricular chondrocytes encapsulated into CMP-TA/CS-TA hydrogels demonstrates that the hydrogel system has a good cyto-compatibility. Specifically, compared to the CMP-TA hydrogel, these CMP-TA/CS-TA composite hydrogels have enhanced cell proliferation and increased cartilaginous ECM deposition, which significantly facilitate chondrogenesis. Furthermore, histological analysis indicates that the hydrogel system exhibits acceptable tissue compatibility by using a mouse subcutaneous implantation model. Overall, the novel injectable pullulan/chondroitin sulfate composite hydrogels presented here are expected to be useful biomaterial scaffold for regenerating cartilage tissue. PMID:26817622

  1. An Injectable Enzymatically Crosslinked Carboxymethylated Pullulan/Chondroitin Sulfate Hydrogel for Cartilage Tissue Engineering

    NASA Astrophysics Data System (ADS)

    Chen, Feng; Yu, Songrui; Liu, Bing; Ni, Yunzhou; Yu, Chunyang; Su, Yue; Zhu, Xinyuan; Yu, Xiaowei; Zhou, Yongfeng; Yan, Deyue

    2016-01-01

    In this study, an enzymatically cross-linked injectable and biodegradable hydrogel system comprising carboxymethyl pullulan-tyramine (CMP-TA) and chondroitin sulfate-tyramine (CS-TA) conjugates was successfully developed under physiological conditions in the presence of both horseradish peroxidase (HRP) and hydrogen peroxide (H2O2) for cartilage tissue engineering (CTTE). The HRP crosslinking method makes this injectable system feasible, minimally invasive and easily translatable for regenerative medicine applications. The physicochemical properties of the mechanically stable hydrogel system can be modulated by varying the weight ratio and concentration of polymer as well as the concentrations of crosslinking reagents. Additionally, the cellular behaviour of porcine auricular chondrocytes encapsulated into CMP-TA/CS-TA hydrogels demonstrates that the hydrogel system has a good cyto-compatibility. Specifically, compared to the CMP-TA hydrogel, these CMP-TA/CS-TA composite hydrogels have enhanced cell proliferation and increased cartilaginous ECM deposition, which significantly facilitate chondrogenesis. Furthermore, histological analysis indicates that the hydrogel system exhibits acceptable tissue compatibility by using a mouse subcutaneous implantation model. Overall, the novel injectable pullulan/chondroitin sulfate composite hydrogels presented here are expected to be useful biomaterial scaffold for regenerating cartilage tissue.

  2. An Injectable Enzymatically Crosslinked Carboxymethylated Pullulan/Chondroitin Sulfate Hydrogel for Cartilage Tissue Engineering

    PubMed Central

    Chen, Feng; Yu, Songrui; Liu, Bing; Ni, Yunzhou; Yu, Chunyang; Su, Yue; Zhu, Xinyuan; Yu, Xiaowei; Zhou, Yongfeng; Yan, Deyue

    2016-01-01

    In this study, an enzymatically cross-linked injectable and biodegradable hydrogel system comprising carboxymethyl pullulan-tyramine (CMP-TA) and chondroitin sulfate-tyramine (CS-TA) conjugates was successfully developed under physiological conditions in the presence of both horseradish peroxidase (HRP) and hydrogen peroxide (H2O2) for cartilage tissue engineering (CTTE). The HRP crosslinking method makes this injectable system feasible, minimally invasive and easily translatable for regenerative medicine applications. The physicochemical properties of the mechanically stable hydrogel system can be modulated by varying the weight ratio and concentration of polymer as well as the concentrations of crosslinking reagents. Additionally, the cellular behaviour of porcine auricular chondrocytes encapsulated into CMP-TA/CS-TA hydrogels demonstrates that the hydrogel system has a good cyto-compatibility. Specifically, compared to the CMP-TA hydrogel, these CMP-TA/CS-TA composite hydrogels have enhanced cell proliferation and increased cartilaginous ECM deposition, which significantly facilitate chondrogenesis. Furthermore, histological analysis indicates that the hydrogel system exhibits acceptable tissue compatibility by using a mouse subcutaneous implantation model. Overall, the novel injectable pullulan/chondroitin sulfate composite hydrogels presented here are expected to be useful biomaterial scaffold for regenerating cartilage tissue. PMID:26817622

  3. Resilin-PEG Hybrid Hydrogels Yield Degradable Elastomeric Scaffolds with Heterogeneous Microstructure.

    PubMed

    McGann, Christopher L; Akins, Robert E; Kiick, Kristi L

    2016-01-11

    Hydrogels derived from resilin-like polypeptides (RLPs) have shown outstanding mechanical resilience and cytocompatibility; expanding the versatility of RLP-based materials via conjugation with other polypeptides and polymers would offer great promise in the design of a range of materials. Here, we present an investigation of the biochemical and mechanical properties of hybrid hydrogels composed of a recombinant RLP and a multiarm PEG macromer. These hybrid hydrogels can be rapidly cross-linked through a Michael-type addition reaction between the thiols of cysteine residues on the RLP and vinyl sulfone groups on the multiarm PEG. Oscillatory rheology and tensile testing confirmed the formation of elastomeric hydrogels with mechanical resilience comparable to aortic elastin; hydrogel stiffness was easily modulated through the cross-linking ratio. Macromolecular phase separation of the RLP-PEG hydrogels offers the unique advantage of imparting a heterogeneous microstructure, which can be used to localize cells, through simple mixing and cross-linking. Assessment of degradation of the RLP by matrix metalloproteinases (MMPs) illustrated the specific proteolysis of the polypeptide in both its soluble form and when cross-linked into hydrogels. Finally, the successful encapsulation and viable three-dimensional culture of human mesenchymal stem cells (hMSCs) demonstrated the cytocompatibility of the RLP-PEG gels. Overall, the cytocompatibility, elastomeric mechanical properties, microheterogeneity, and degradability of the RLP-PEG hybrid hydrogels offer a suite of promising properties for the development of cell-instructive, structured tissue engineering scaffolds. PMID:26646060

  4. Derivation of epithelial-like cells from eyelid fat-derived stem cells in thermosensitive hydrogel.

    PubMed

    Heidari Keshel, Saeed; Rostampour, Maryam; Khosropour, Golbahar; Bandbon B, Atefehsadat; Baradaran-Rafii, Alireza; Biazar, Esmaeil

    2016-01-01

    Injectable hydrogel is one of the great interests for tissue engineering and cell encapsulation. In the study, the thermosensitive chitosan/gelatin/β-glycerol phosphate (C/G/GP) disodium salt hydrogels were designed and investigated by different analyses. The eye fat-derived stem cells were used to evaluate the biocompatibility of hydrogels based on their phenotypic profile, viability, proliferation, and attachment ability. The results show that the sol/gel transition temperature of the C/G/GP hydrogel was in the range of 31.1-33.8 °C at neutral pH value, the gelation time was shortened, and the gel strength also improved at body temperature when compared with the C/GP hydrogel. In vitro cell culture experiments with eyelid fat-derived stem cells in hydrogel showed beneficial effects on the cell phenotypic morphology, proliferation, and differentiation. Microscopic figures showed that the eyelid fat stem cell were firmly anchored to the substrates and were able to retain a normal stem cell phenotype. Immunocytochemistry (ICC) and real-time-PCR results revealed change in the expression profile of eyelid fat stem cells grown with hydrogels when compared to those grown on control in epithelial induction condition. This study indicates that using chitosan/gelatin/β-glycerol phosphate hydrogel for cell culture is feasible and may apply in minimal invasive surgery in the future.

  5. In situ electroactive and antioxidant supramolecular hydrogel based on cyclodextrin/copolymer inclusion for tissue engineering repair.

    PubMed

    Cui, Haitao; Cui, Liguo; Zhang, Peibiao; Huang, Yubin; Wei, Yen; Chen, Xuesi

    2014-03-01

    The injectable electroactive and antioxidant hydrogels are prepared from mixing the tetraaniline functional copolymers and α-cyclodextrin (α-CD) aqueous solution. UV-vis and CV of the copolymer solution showed good electroactive properties. The antioxidant ability of the copolymer is also proved. The gelation mechanism and properties of the system are studied by WAXD, DSC, and rheometer. The encapsulated cells are highly viable in the hydrogels, suggesting that the hydrogels have excellent cytocompatibility. After subcutaneous injection, H&E staining study suggests acceptable biocompatibility of the materials in vivo. Moreover, data shows the injectable electroactive material can effectively accelerate the proliferation of encapsulated cells with electrical stimuli, and the mechanism is also elaborated. Such an injectable electroactive hydrogel would more closely mimic the native extracellular matrix, thereby combining a biomimetic environment of long-term cell survival and electrical signal to support the generation of functional tissue.

  6. Injectable hyaluronic acid-tyramine hydrogels incorporating interferon-α2a for liver cancer therapy.

    PubMed

    Xu, Keming; Lee, Fan; Gao, Shu Jun; Chung, Joo Eun; Yano, Hirohisa; Kurisawa, Motoichi

    2013-03-28

    We report an injectable hydrogel system that incorporates interferon-α2a (IFN-α2a) for liver cancer therapy. IFN-α2a was incorporated in hydrogels composed of hyaluronic acid-tyramine (HA-Tyr) conjugates through the oxidative coupling of Tyr moieties with hydrogen peroxide (H2O2) and horseradish peroxidase (HRP). IFN-α2a-incorporated HA-Tyr hydrogels of varying stiffness were formed by changing the H2O2 concentration. The incorporation of IFN-α2a did not affect the rheological properties of the hydrogels. The activity of IFN-α2a was furthermore well-maintained in the hydrogels with lower stiffness. Through the caspase-3/7 pathway in vitro, IFN-α2a released from HA-Tyr hydrogels inhibited the proliferation of liver cancer cells and induced apoptosis. In the study of the pharmacokinetics, a higher concentration of IFN-α2a was shown in the plasma of mice treated with IFN-α2a-incorporated hydrogels after 4h post injection, with a much higher amount of IFN-α2a delivered at the tumor tissue comparing to that of injecting an IFN-α2a solution. The tumor regression study revealed that IFN-α2a-incorporated HA-Tyr hydrogels effectively inhibited tumor growth, while the injection of an IFN-α2a solution did not demonstrate antitumor efficacy. Histological studies confirmed that tumor tissues in mice treated with IFN-α2a-incorporated HA-Tyr hydrogels showed lower cell density, with more apoptotic and less proliferating cells compared with tissues treated with an IFN-α2a solution. In addition, the IFN-α2a-incorporated hydrogel treatment greatly inhibited the angiogenesis of tumor tissues. PMID:23328125

  7. Stereolithography of three-dimensional bioactive poly(ethylene glycol) constructs with encapsulated cells.

    PubMed

    Arcaute, Karina; Mann, Brenda K; Wicker, Ryan B

    2006-09-01

    Stereolithography (SL) was used to fabricate complex 3-D poly(ethylene glycol) (PEG) hydrogels. Photopolymerization experiments were performed to characterize the solutions for use in SL, where the crosslinked depth (or hydrogel thickness) was measured at different laser energies and photoinitiator (PI) concentrations for two concentrations of PEG-dimethacrylate in solution (20% and 30% (w/v)). Hydrogel thickness was a strong function of PEG concentration, PI type and concentration, and energy dosage, and these results were utilized to successfully fabricate complex hydrogel structures using SL, including structures with internal channels of various orientations and multi-material structures. Additionally, human dermal fibroblasts were encapsulated in bioactive PEG photocrosslinked in SL. Cell viability was at least 87% at 2 and 24 h following fabrication. The results presented here indicate that the use of SL and photocrosslinkable biomaterials, such as photocrosslinkable PEG, appears feasible for fabricating complex bioactive scaffolds with living cells for a variety of important tissue engineering applications.

  8. Chitosan thermogels for local expansion and delivery of tumor-specific T lymphocytes towards enhanced cancer immunotherapies.

    PubMed

    Monette, Anne; Ceccaldi, Caroline; Assaad, Elias; Lerouge, Sophie; Lapointe, Réjean

    2016-01-01

    The success of promising anti-cancer adoptive cell therapies relies on the abilities of the perfused CD8(+) T lymphocytes to gain access to and persist within the tumor microenvironment to carry out their cytotoxic functions. We propose a new method for their local delivery as a living concentrate, which may not only reduce the numbers of cells required for treatment but also enhance their site-specific mobilization. Using combinations of sodium hydrogen carbonate and phosphate buffer as gelling agents, novel injectable chitosan-based biocompatible thermogels (CTGels) having excellent mechanical properties and cytocompatibility have been developed. Three thermogel formulations with acceptable physicochemical properties, such as physiological pH and osmolality, macroporosity, and gelation rates were compared. The CTGel2 formulation outperformed the others by providing an environment suitable for the encapsulation of viable CD8(+) T lymphocytes, supporting their proliferation and gradual release. In addition, the encapsulated T cell phenotypes were influenced by surrounding conditions and by tumor cells, while maintaining their capacity to kill tumor cells. This strongly suggests that cells encapsulated in this formulation retain their anti-cancer functions, and that this locally injectable hydrogel may be further developed to complement a wide variety of existing immunotherapies.

  9. Chitosan thermogels for local expansion and delivery of tumor-specific T lymphocytes towards enhanced cancer immunotherapies.

    PubMed

    Monette, Anne; Ceccaldi, Caroline; Assaad, Elias; Lerouge, Sophie; Lapointe, Réjean

    2016-01-01

    The success of promising anti-cancer adoptive cell therapies relies on the abilities of the perfused CD8(+) T lymphocytes to gain access to and persist within the tumor microenvironment to carry out their cytotoxic functions. We propose a new method for their local delivery as a living concentrate, which may not only reduce the numbers of cells required for treatment but also enhance their site-specific mobilization. Using combinations of sodium hydrogen carbonate and phosphate buffer as gelling agents, novel injectable chitosan-based biocompatible thermogels (CTGels) having excellent mechanical properties and cytocompatibility have been developed. Three thermogel formulations with acceptable physicochemical properties, such as physiological pH and osmolality, macroporosity, and gelation rates were compared. The CTGel2 formulation outperformed the others by providing an environment suitable for the encapsulation of viable CD8(+) T lymphocytes, supporting their proliferation and gradual release. In addition, the encapsulated T cell phenotypes were influenced by surrounding conditions and by tumor cells, while maintaining their capacity to kill tumor cells. This strongly suggests that cells encapsulated in this formulation retain their anti-cancer functions, and that this locally injectable hydrogel may be further developed to complement a wide variety of existing immunotherapies. PMID:26513416

  10. Degradation of polysaccharide hydrogels seeded with bone marrow stromal cells.

    PubMed

    Jahromi, Shiva H; Grover, Liam M; Paxton, Jennifer Z; Smith, Alan M

    2011-10-01

    In order to produce hydrogel cell culture substrates that are fit for the purpose, it is important that the mechanical properties are well understood not only at the point of cell seeding but throughout the culture period. In this study the change in the mechanical properties of three biopolymer hydrogels alginate, low methoxy pectin and gellan gum have been assessed in cell culture conditions. Samples of the gels were prepared encapsulating rat bone marrow stromal cells which were then cultured in osteogenic media. Acellular samples were also prepared and incubated in standard cell culture media. The rheological properties of the gels were measured over a culture period of 28 days and it was found that the gels degraded at very different rates. The degradation occurred most rapidly in the order alginate > Low methoxy pectin > gellan gum. The ability of each hydrogel to support differentiation of bone marrow stromal cells to osteoblasts was also verified by evidence of mineral deposits in all three of the materials. These results highlight that the mechanical properties of biopolymer hydrogels can vary greatly during in vitro culture, and provide the potential of selecting hydrogel cell culture substrates with mechanical properties that are tissue specific.

  11. A hydrogel-based enzyme-loaded polymersome reactor

    NASA Astrophysics Data System (ADS)

    de Hoog, Hans-Peter M.; Arends, Isabel W. C. E.; Rowan, Alan E.; Cornelissen, Jeroen J. L. M.; Nolte, Roeland J. M.

    2010-05-01

    In this study we report the immobilization of enzyme-containing polymersomes into a macromolecular hydrogel. Whereas free enzyme shows progressive leakage from the hydrogel in a period of days, leakage of the polymersome-protected enzyme is virtually absent. The preparation of the hydrogel occurs under mild conditions and does not inhibit the activity of the encapsulated enzymes nor does it affect the structure of the polymersomes. The stability of the polymersome hydrogel architecture is demonstrated by the facile recycling of the polymersomes and their use in repeated reaction cycles. A `continuous-flow polymersome reactor' is constructed in which substrate is added to the top of the reactor and product is collected at the bottom. This set-up allows the use of different enzymes and the processing of multiple substrates, as is demonstrated by the conversion of 2-methoxyphenyl acetate to tetraguaiacol in a reactor loaded with polymersome hydrogels containing the enzymes Candida antarctica lipase B (CALB) and glucose oxidase (GOx).

  12. Sequential assembly of 3D perfusable microfluidic hydrogels.

    PubMed

    He, Jiankang; Zhu, Lin; Liu, Yaxiong; Li, Dichen; Jin, Zhongmin

    2014-11-01

    Bottom-up tissue engineering provides a promising way to recreate complex structural organizations of native organs in artificial constructs by assembling functional repeating modules. However, it is challenging for current bottom-up strategies to simultaneously produce a controllable and immediately perfusable microfluidic network in modularly assembled 3D constructs. Here we presented a bottom-up strategy to produce perfusable microchannels in 3D hydrogels by sequentially assembling microfluidic modules. The effects of agarose-collagen composition on microchannel replication and 3D assembly of hydrogel modules were investigated. The unique property of predefined microchannels in transporting fluids within 3D assemblies was evaluated. Endothelial cells were incorporated into the microfluidic network of 3D hydrogels for dynamic culture in a house-made bioreactor system. The results indicated that the sequential assembly method could produce interconnected 3D predefined microfluidic networks in optimized agarose-collagen hydrogels, which were fully perfusable and successfully functioned as fluid pathways to facilitate the spreading of endothelial cells. We envision that the presented method could be potentially used to engineer 3D vascularized parenchymal constructs by encapsulating primary cells in bulk hydrogels and incorporating endothelial cells in predefined microchannels. PMID:25027302

  13. Nano-Fibrous Biopolymer Hydrogels via Biological Conjugation for Osteogenesis.

    PubMed

    Chen, Huinan; Xing, Xiaodong; Jia, Yang; Mao, Jiahui; Zhang, Ziwei; Tan, Huaping

    2016-06-01

    Nanostructured biopolymer hydrogels have great potential in the field of drug delivery and regenerative medicine. In this work, a nano-fibrous (NF) biopolymer hydrogel was developed for cell growth factors (GFs) delivery and in vitro osteogenesis. The nano-fibrous hydrogel was produced via biological conjugation of streptavidin functionalized hyaluronic acid (HA-Streptavidin) and biotin terminated star-shaped poly(ethylene glycol) (PEG-Biotin). In the present work, in vitro gelation, mechanical properties, degradation and equilibrium swelling of the NF hydrogel were examined. The potential application of this NF gel scaffold in bone tissue engineering was confirmed by encapsulation behavior of osteoblasts. Osteoblasts seeded directly in NF gel scaffold containing cell growth factor, e.g. bone morphogenetic protein 2 (BMP-2), was to mimic the in vivo microenvironment in which cells interface biomaterials and interact with BMP-2. In combination with BMP-2, the NF hydrogel exhibited beneficial effects on osteoblast activity and differentiation, which suggested a promising future for local treatment of pathologies involving bone loss. PMID:27427597

  14. Multiplexed Dosing Assays by Digitally Definable Hydrogel Volumes.

    PubMed

    Faralli, Adele; Melander, Fredrik; Larsen, Esben Kjaer Unmack; Chernyy, Sergey; Andresen, Thomas L; Larsen, Niels B

    2016-01-21

    Stable and low-cost multiplexed drug sensitivity assays using small volumes of cells or tissue are in demand for personalized medicine, including patient-specific combination chemotherapy. Spatially defined projected light photopolymerization of hydrogels with embedded active compounds is introduced as a flexible and cost-efficient method for producing multiplexed dosing assays. The high spatial resolution of light projector technology defines multiple compound doses by the volume of individual compound-embedded hydrogel segments. Quantitative dosing of multiple proteins with a dynamic range of 1-2 orders of magnitude is demonstrated using fluorescently labeled albumins. The hydrogel matrix results from photopolymerization of low-cost poly(ethylene glycol) diacrylates (PEGDA), and tuning of the PEGDA composition enables fast complete dosing of all tested species. Dosing of hydrophilic and hydrophobic compounds is demonstrated using two first-line chemotherapy regimens combining oxaliplatin, SN-38, 5-fluorouracil, and folinic acid, with each compound being dosed from a separate light-defined hydrogel segment. Cytotoxicity studies using a colorectal cancer cell line show equivalent effects of dissolved and released compounds. Further control of the dosing process is demonstrated by liposomal encapsulation of oxaliplatin, stable embedding of the liposomes in hydrogels for more than 3 months, and heat-triggered complete release of the loaded oxaliplatin. PMID:26619161

  15. Development of an arginine-based cationic hydrogel platform: Synthesis, characterization and biomedical applications.

    PubMed

    Pang, Xuan; Wu, Jun; Chu, Chih-Chang; Chen, Xuesi

    2014-07-01

    A series of biodegradable and biocompatible cationic hybrid hydrogels was developed from water-soluble arginine-based unsaturated polymer (Arg-AG) and poly(ethylene glycol) diacrylate (PEG-DA) by a photocrosslinking method. The physicochemical, mechanical and biological properties of these hydrogels were intensively examined. The hydrogels were characterized in terms of equilibrium swelling ratio (Qeq), compression modulus and interior morphology. The effects of the chemical structure of the two Arg-AG precursors and the feed ratio of these precursors on the properties of resulting hybrid hydrogels were investigated. The crosslinking density and mechanical strength of the hybrid hydrogels increased with an increase in allylglycine (AG) content in the Arg-AG precursor, as the gelation efficiency (Gf) increased from 80% to 90%, but the swelling and pore size of the hybrid hydrogels decreased as the equilibrium swelling weight (Qeq) decreased from 1890% to 1330% and the pore size from 28 to 22 μm. The short-term in vitro biodegradation properties of hydrogels were investigated as a function of Arg-AG chemical structures and enzymes. Hybrid hydrogels showed faster biodegradation in an enzyme solution than in a phosphate-buffered saline solution. Bovine serum albumin and insulin release profiles indicated that this cationic hydrogel system could significantly improve the sustained release of the negatively charged proteins. The cellular response of the hybrid hydrogels was preliminarily evaluated by cell attachment, encapsulation and proliferation tests using live-dead and MTT assay. The results showed that the hybrid hydrogels supported cell attachment well and were nontoxic to the cells.

  16. Subconjunctivally Implanted Hydrogels for Sustained Insulin Release to Reduce Retinal Cell Apoptosis in Diabetic Rats

    PubMed Central

    Imai, Hisanori; Misra, Gauri P.; Wu, Linfeng; Janagam, Dileep R.; Gardner, Thomas W.; Lowe, Tao L.

    2015-01-01

    Purpose Diabetic retinopathy (DR) is a leading cause of blindness in diabetic patients that involves early-onset retinal cell loss. Here, we report our recent work using subconjunctivally implantable hydrogels for sustained insulin release to the retina to prevent retinal degeneration. Methods The hydrogels are synthesized by UV photopolymerization of N-isopropylacrylamide and a dextran macromer containing oligolactate-(2-hydroxyetheyl methacrylate) units. Insulin was loaded into the hydrogels during the synthesis. The ex vivo bioactivity of insulin released from the hydrogels was tested on fresh rat retinas using immunoprecipitation and immunoblotting to measure insulin receptor tyrosine and Akt phosphorylation. The biosafety and the effect on the blood glucose of the hydrogels were evaluated in rats 2 months after subconjunctival implantation. The release of insulin from the hydrogels was studied both in vitro in PBS (pH 7.4), and in vivo using confocal microscopy and RIA kit. The in vivo bioactivity of the released insulin was investigated in diabetic rats using DNA fragmentation method. Results The hydrogels could load insulin with approximately 98% encapsulation efficiency and continuously release FITC-insulin in PBS (pH = 7.4) at 37°C for at least 5 months depending on their composition. Insulin lispro released from the hydrogels was biologically active by increasing insulin receptor tyrosine and Akt serine phosphorylation of ex vivo retinas. In vivo studies showed normal retinal histology 2 months post subconjunctival implantation. Insulin released from subconjunctivally implanted hydrogels could be detected in the retina by using confocal microscopy and RIA kit for 1 week. The implanted hydrogels with insulin lispro did not change the blood glucose level of normal and diabetic rats, but significantly reduced the DNA fragmentation of diabetic retinas for 1 week. Conclusions The developed hydrogels have great potential to sustain release of insulin to the

  17. Contemporary issues in hydrogels research

    SciTech Connect

    Peppas, N.A.

    1993-12-31

    The last ten years has seen an explosion in hydrogels research, the result of improved understanding of the structure and behavior of these water-swollen, crosslinked polymers. After the early developments of Flory And Katchalsky in the 1940s, the great Czechoslovakian researchers of the 1960s and Andrade, Hoffman, Ratner and Merrill of the early 1970s, hydrogels have again attracted significant research interest, especially through the imaginative research of Tanaka in the 1980s and others. Eight general areas of contemporary research in hydrogels are identified: (i) kinetic analysis of the copolymerization/crosslinking reactions used in hydrogel preparation; (ii) gelation and percolation theories; (iii) novel methods for tailor-made copolymers with desirable functional groups, or biodegradable chains; (iv) biomimetic hydrogels; (V) hydrogels of controlled porous structure; (vi) ultrapure hydrogels devoid of crosslinking agents, emulsifiers, etc.; (vii) critical phenomena in hydrogels; and (viii) behavior of anionic, cationic and amphiphilic hydrogels.

  18. Pectin and charge modified pectin hydrogel beads as a colon-targeted drug delivery carrier.

    PubMed

    Jung, Jiyoung; Arnold, Robert D; Wicker, Louise

    2013-04-01

    The physical and chemical properties of commercial low methoxyl citrus pectins, CP 28 and CP 55, and a pectinmethylesterase (PME) charge modified citrus pectin (MP 38) were compared, and the differences in ability to encapsulate indomethacin in hydrogel beads was determined at 0.5 or 1.0% (w/v) indomethacin ratio, and 100, 200 or 300 mM CaCl(2) solution. In order to investigate the drug release characteristics, indomethacin loaded dried hydrogel beads were immersed in simulated gastric fluids (pH 1.2) for 2h, followed by immersing in simulated intestinal fluids (pH 7.4) for 3h. Pectin type was highly significant (p<0.0001) for encapsulation efficiency and in vitro release assay. Encapsulation efficiency was also highly affected (p<0.0001) by indomethacin ratio and CaCl(2) concentration. The accumulative release rate of indomethacin from pectin hydrogel bead was less than 15% in simulated gastro-intestinal fluids. MP 38 beads showed significantly higher entrapment efficiency and lower release rate than beads formed from CP 28 or CP 55. MP 38 hydrogel formulated with 300 mM CaCl(2) and 0.5% indomethacin ratio showed the highest entrapment efficiency. These studies suggest that charge modification of pectin improves encapsulation efficiency of drugs for colon targeted drug delivery system through oral administration.

  19. Photoresponsive self-healing supramolecular hydrogels for light-induced release of DNA and doxorubicin.

    PubMed

    Pianowski, Zbigniew L; Karcher, Johannes; Schneider, Knut

    2016-02-21

    An azobenzene-containing cyclic dipeptide PAP-DKP-Lys is a photoresponsive low-MW hydrogelator. The gelation process can be triggered with temperature, pH, light, and ionic strength. The resulting self-healing gels can encapsulate dsDNA or an anticancer drug doxorubicin, and release them in a light-dependent manner. PMID:26804160

  20. Myocardial Matrix-Polyethylene Glycol Hybrid Hydrogels for Tissue Engineering

    PubMed Central

    Grover, Gregory N.; Rao, Nikhil

    2014-01-01

    Similar to other protein-based hydrogels, extracellular matrix (ECM) based hydrogels, derived from decellularized tissues, have a narrow range of mechanical properties and are rapidly degraded. These hydrogels contain natural cellular adhesion sites, form nanofibrous networks similar to native ECM, and are biodegradable. In this study, we expand the properties of these types of materials by incorporating poly(ethylene glycol) (PEG) into the ECM network. We use decellularized myocardial matrix as an example of a tissue specific ECM derived hydrogel. Myocardial matrix-PEG hybrids were synthesized by two different methods, cross-linking the proteins with an amine-reactive PEG-star and photo-induced radical polymerization of two different multi-armed PEG-acrylates. We show that both methods allow for conjugation of PEG to the myocardial matrix by gel electrophoresis and infrared spectroscopy. Scanning electron microscopy demonstrated that the hybrid materials still contain a nanofibrous network similar to unmodified myocardial matrix and that the fiber diameter is changed by the method of PEG incorporation and PEG molecular weight. PEG conjugation also decreased the rate of enzymatic degradation in vitro, and increased material stiffness. Hybrids synthesized with amine-reactive PEG had gelation rates of thirty minutes, similar to the unmodified myocardial matrix, and incorporation of PEG did not prevent cell adhesion and migration through the hydrogels, thus offering the possibility to have an injectable ECM hydrogel that degrades more slowly in vivo. The photo-polymerized radical systems gelled in four minutes upon irradiation allowing for 3D encapsulation and culture of cells, unlike the soft unmodified myocardial matrix. This work demonstrates PEG incorporation into ECM-based hydrogels can expand material properties, thereby opening up new possibilities for in vitro and in vivo applications. PMID:24334615

  1. Myocardial matrix-polyethylene glycol hybrid hydrogels for tissue engineering

    NASA Astrophysics Data System (ADS)

    Grover, Gregory N.; Rao, Nikhil; Christman, Karen L.

    2014-01-01

    Similar to other protein-based hydrogels, extracellular matrix (ECM) based hydrogels, derived from decellularized tissues, have a narrow range of mechanical properties and are rapidly degraded. These hydrogels contain natural cellular adhesion sites, form nanofibrous networks similar to native ECM, and are biodegradable. In this study, we expand the properties of these types of materials by incorporating poly(ethylene glycol) (PEG) into the ECM network. We use decellularized myocardial matrix as an example of a tissue specific ECM derived hydrogel. Myocardial matrix-PEG hybrids were synthesized by two different methods, cross-linking the proteins with an amine-reactive PEG-star and photo-induced radical polymerization of two different multi-armed PEG-acrylates. We show that both methods allow for conjugation of PEG to the myocardial matrix by gel electrophoresis and infrared spectroscopy. Scanning electron microscopy demonstrated that the hybrid materials still contain a nanofibrous network similar to unmodified myocardial matrix and that the fiber diameter is changed by the method of PEG incorporation and PEG molecular weight. PEG conjugation also decreased the rate of enzymatic degradation in vitro, and increased material stiffness. Hybrids synthesized with amine-reactive PEG had gelation rates of 30 min, similar to the unmodified myocardial matrix, and incorporation of PEG did not prevent cell adhesion and migration through the hydrogels, thus offering the possibility to have an injectable ECM hydrogel that degrades more slowly in vivo. The photo-polymerized radical systems gelled in 4 min upon irradiation, allowing 3D encapsulation and culture of cells, unlike the soft unmodified myocardial matrix. This work demonstrates that PEG incorporation into ECM-based hydrogels can expand material properties, thereby opening up new possibilities for in vitro and in vivo applications.

  2. Thermosensitive injectable hyaluronic acid hydrogel for adipose tissue engineering.

    PubMed

    Tan, Huaping; Ramirez, Christina M; Miljkovic, Natasa; Li, Han; Rubin, J Peter; Marra, Kacey G

    2009-12-01

    A series of thermosensitive copolymer hydrogels, aminated hyaluronic acid-g-poly(N-isopropylacrylamide) (AHA-g-PNIPAAm), were synthesized by coupling carboxylic end-capped PNIPAAm (PNIPAAm-COOH) to AHA through amide bond linkages. AHA was prepared by grafting adipic dihydrazide to the HA backbone and PNIPAAm-COOH copolymer was synthesized via a facile thermo-radical polymerization technique by polymerization of NIPAAm using 4,4'-azobis(4-cyanovaleric acid) as an initiator, respectively. The structure of AHA and AHA-g-PNIPAAm copolymer was determined by (1)H NMR. Two AHA-g-PNIPAAm copolymers with different weight ratios of PNIPAAm on the applicability of injectable hydrogels were characterized. The lower critical solution temperature (LCST) of AHA-g-PNIPAAm copolymers in PBS were measured as approximately 30 degrees C by rheological analysis, regardless of the grafting degrees. Enzymatic resistance of AHA-g-PNIPAAm hydrogels with 28% and 53% of PNIPAAm in 100U/mL hyaluronidase/PBS at 37 degrees C was 12.3% and 37.6% over 28 days, respectively. Equilibrium swelling ratios of AHA-g-PNIPAAm hydrogels with 28% of PNIPAAm were 21.5, and significantly decreased to 13.3 with 53% of PNIPAAm in PBS at 37 degrees C. Results from SEM observations confirm a porous 3D AHA-g-PNIPAAm hydrogel structure with interconnected pores after freeze-drying and the pore diameter depends on the weight ratios of PNIPAAm. Encapsulation of human adipose-derived stem cells (ASCs) within hydrogels showed the AHA-g-PNIPAAm copolymers were noncytotoxic and preserved the viability of the entrapped cells. A preliminary in vivo study demonstrated the usefulness of the AHA-g-PNIPAAm copolymer as an injectable hydrogel for adipose tissue engineering. This newly described thermoresponsive AHA-g-PNIPAAm copolymer demonstrated attractive properties to serve as cell or pharmaceutical delivery vehicles for a variety of tissue engineering applications. PMID:19783043

  3. Thermosensitive injectable hyaluronic acid hydrogel for adipose tissue engineering

    PubMed Central

    Tan, Huaping; Ramirez, Christina M.; Miljkovic, Natasa; Li, Han; Rubin, J. Peter; Marra, Kacey G.

    2009-01-01

    A series of thermosensitive copolymer hydrogels, aminated hyaluronic acid-g-poly(N-isopropylacrylamide) (AHA-g-PNIPAAm), were synthesized by coupling carboxylic end-capped PNIPAAm (PNIPAAm-COOH) to AHA through amide bond linkages. AHA was prepared by grafting adipic dihydrazide to the HA backbone and PNIPAAm-COOH copolymer was synthesized via a facile thermo-radical polymerization technique by polymerization of NIPAAm using 4,4′-azobis(4-cyanovaleric acid) as an initiator, respectively. The structure of AHA and AHA-g-PNIPAAm copolymer was determined by 1H NMR. Two AHA-g-PNIPAAm copolymers with different weight ratios of PNIPAAm on the applicability of injectable hydrogels were characterized. The lower critical solution temperature (LCST) of AHA-g-PNIPAAm copolymers in PBS were measured as ~30°C by rheological analysis, regardless of the grafting degrees. Enzymatic resistance of AHA-g-PNIPAAm hydrogels with 28% and 53% of PNIPAAm in 100U/mL hyaluronidase/PBS at 37°C was 12.3% and 37.6% over 28 days, respectively. Equilibrium swelling ratios of AHA-g-PNIPAAm hydrogels with 28% of PNIPAAm were 21.5, and significantly decreased to 13.3 with 53% of PNIPAAm in PBS at 37°C. Results from SEM observations confirm a porous 3D AHA-g-PNIPAAm hydrogel structure with interconnected pores after freeze-drying and the pore diameter depends on the weight ratios of PNIPAAm. Encapsulation of human adipose-derived stem cells (ASCs) within hydrogels showed the AHA-g-PNIPAAm copolymers were noncytotoxic and preserved the viability of the entrapped cells. A preliminary in vivo study demonstrated the usefulness of the AHA-g-PNIPAAm copolymer as an injectable hydrogel for adipose tissue engineering. This newly described thermoresponsive AHA-g-PNIPAAm copolymer demonstrated attractive properties to serve as cell or pharmaceutical delivery vehicles for a variety of tissue engineering applications. PMID:19783043

  4. Directing valvular interstitial cell myofibroblast-like differentiation in a hybrid hydrogel platform

    PubMed Central

    Hjortnaes, Jesper; Camci-Unal, Gulden; Hutcheson, Joshua D.; Jung, Sung Mi; Schoen, Frederick J.; Kluin, Jolanda; Aikawa, Elena; Khademhosseini, Ali

    2014-01-01

    Three dimensional (3D) hydrogel platforms are powerful tools, providing controllable, physiologically relevant microenvironments that could aid in understanding the role of various environmental factors in directing valvular interstitial cell (VIC) phenotype. Continuous activation of VICs and their transformation from quiescent fibroblast to activated myofibroblast phenotype is considered to be an initiating event in the onset of valve disease. However, relative contribution of changes in VIC phenotype are poorly understood since most 2-dimensional (2D) culture systems lead to spontaneous VIC myofibroblastic activation. Here, a hydrogel platform composed of photocrosslinkable versions of native valvular extracellular matrix components –methacrylated hyaluronic acid (HAMA) and methacrylated gelatin (GelMA) – is proposed as a 3D culture system to study VIC phenotypic changes. Our results showed that VIC myofibroblast-like differentiation, determined by α-SMA, MMP-9, and Collagen type I expression, occurs spontaneously in mechanically soft GelMA hydrogels. In contrast, VICs encapsulated in HAMA-GelMA hybrid hydrogels, does not occur spontaneously and require exogenous delivery of TGFβ1, indicating that hybrid hydrogels can be used to study cytokine-dependent transition of encapsulated VICs. This study demonstrated that a hybrid hydrogel platform can be used to maintain a quiescent VIC phenotype and study the effect of pathological environmental cues on VIC activation, which will aid in understanding pathobiology of valvular disease. PMID:24958085

  5. Photo-cross-linkable methacrylated gelatin and hydroxyapatite hybrid hydrogel for modularly engineering biomimetic osteon.

    PubMed

    Zuo, Yicong; Liu, Xiaolu; Wei, Dan; Sun, Jing; Xiao, Wenqian; Zhao, Huan; Guo, Likun; Wei, Qingrong; Fan, Hongsong; Zhang, Xingdong

    2015-05-20

    Modular tissue engineering holds great potential in regenerating natural complex tissues by engineering three-dimensional modular scaffolds with predefined geometry and biological characters. In modular tissue-like construction, a scaffold with an appropriate mechanical rigidity for assembling fabrication and high biocompatibility for cell survival is the key to the successful bioconstruction. In this work, a series of composite hydrogels (GH0, GH1, GH2, and GH3) based on a combination of methacrylated gelatin (GelMA) and hydroxyapatite (HA) was exploited to enhance hydrogel mechanical rigidity and promote cell functional expression for osteon biofabrication. These composite hydrogels presented a lower swelling ratio, higher mechanical moduli, and better biocompatibility when compared to the pure GelMA hydrogel. Furthermore, on the basis of the composite hydrogel and photolithograph technology, we successfully constructed an osteon-like concentric double-ring structure in which the inner ring encapsulating human umbilical vascular endothelial cells (HUVECs) was designed to imitate blood vessel tubule while the outer ring encapsulating human osteoblast-like cells (MG63s) acts as part of bone. During the coculture period, MG63s and HUVECs exhibited not only satisfying growth status but also the enhanced genic expression of osteogenesis-related and angiogenesis-related differentiations. These results demonstrate this GelMA-HA composite hydrogel system is promising for modular tissue engineering.

  6. Hydrogel Biomaterials: A Smart Future?

    PubMed Central

    Kopeček, Jindřich

    2007-01-01

    Hydrogels were the first biomaterials developed for human use. The state-of-the-art and potential for the future are discussed. Recently, new designs have produced mechanically strong synthetic hydrogels. Protein based hydrogels and hybrid hydrogels containing protein domains present a novel advance; such biomaterials may self-assemble from block or graft copolymers containing biorecognition domains. One of the domains, the coiled-coil, ubiquitously found in nature, has been used as an example to demonstrate the developments in the design of smart hydrogels. The application potential of synthetic, protein-based, DNA-based, and hybrid hydrogels bodes well for the future of this class of biomaterials. PMID:17697712

  7. Polymer hydrogels: Chaperoning vaccines

    NASA Astrophysics Data System (ADS)

    Staats, Herman F.; Leong, Kam W.

    2010-07-01

    A cationic nanosized hydrogel (nanogel) shows controlled antigen delivery in vivo following intranasal administration and hence holds promise for a clinically effective adjuvant-free and needle-free vaccine system.

  8. Liquid encapsulated crystal growth

    NASA Technical Reports Server (NTRS)

    Morrison, Andrew D. (Inventor)

    1987-01-01

    Low-defect crystals are grown in a closed ampoule under a layer of encapsulant. After crystal growth, the crystal is separated from the melt and moved into the layer of encapsulant and cooled to a first temperature at which crystal growth stops. The crystal is then moved into the inert gas ambient in the ampoule and further cooled. The crystal can be separated from the melt by decanting the melt into and adjacent reservoir or by rotating the ampoule to rotate the crystal into the encapsulant layer.

  9. Liquid encapsulated crystal growth

    NASA Technical Reports Server (NTRS)

    Morrison, Andrew D. (Inventor)

    1989-01-01

    Low-defect crystals are grown in a closed ampoule under a layer of encapsulant. After crystal growth, the crystal is separated from the melt and moved into the layer of encapsulant and cooled to a first temperature at which crystal growth stops. The crystal is then moved into the inert gas ambient in the ampoule and further cooled. The crystal can be separated from the melt by decanting the melt into an adjacent reservoir or by rotating the ampoule to rotate the crystal into the encapsulant layer.

  10. Extended release of ketotifen from silica shell nanoparticle-laden hydrogel contact lenses: in vitro and in vivo evaluation.

    PubMed

    Maulvi, Furqan A; Mangukiya, Mayurkumar A; Patel, Prachi A; Vaidya, Rutvi J; Koli, Akshay R; Ranch, Ketan M; Shah, Dinesh O

    2016-06-01

    Ketotifen an anti-allergic drug delivered via eye drops has major limitations, including poor ocular bioavailability and poor patient compliance. The objective of the research work was to fabricate ketotifen loaded microemulsion laden hydrogels and silica shell nanoparticle-laden (prepared from microemulsion using octyltrimethoxysilane) hydrogels to achieve extended ocular drug delivery. The porous silica shell membrane was synthesized at the liquid interface of microemulsion, which facilitates the prolongation of drug release duration from hydrogels. Drug encapsulated microemulsion and silica shell nanoparticles were dispersed separately in pre-monomer mixture, and fabricated to hydrogel. For comparison, hydrogel with direct drug entrapment was also fabricated. Significant loss in transmittance and physical properties was observed in hydrogels with direct drug entrapment. While, microemulsion and silica shell nanoparticle-laden hydrogels did not show significant effect on transmittance and physical properties. The in vitro drug release data showed extended release of ketotifen from hydrogels in following order: direct loadinghydrogels. The in vivo pharmacokinetic study showed extended ketotifen release for more than 10 days. The results demonstrated the translational potential of silica shell nanoparticles for extended drug delivery without compromising the critical lens properties. PMID:27178036

  11. Calcium-Ion-Triggered Co-assembly of Peptide and Polysaccharide into a Hybrid Hydrogel for Drug Delivery

    NASA Astrophysics Data System (ADS)

    Xie, Yanyan; Zhao, Jun; Huang, Renliang; Qi, Wei; Wang, Yuefei; Su, Rongxin; He, Zhimin

    2016-04-01

    We report a new approach to constructing a peptide-polysaccharide hybrid hydrogel via the calcium-ion-triggered co-assembly of fluorenylmethyloxycarbonyl-diphenylalanine (Fmoc-FF) peptide and alginate. Calcium ions triggered the self-assembly of Fmoc-FF peptide into nanofibers with diameter of about 30 nm. Meanwhile, alginate was rapidly crosslinked by the calcium ions, leading to the formation of stable hybrid hydrogel beads. Compared to alginate or Fmoc-FF hydrogel alone, the hybrid Fmoc-FF/alginate hydrogel had much better stability in both water and a phosphate-buffered solution (PBS), probably because of the synergistic effect of noncovalent and ionic interactions. Furthermore, docetaxel was chosen as a drug model, and it was encapsulated by hydrogel beads to study the in vitro release behavior. The sustained and controlled docetaxel release was obtained by varying the concentration ratio between Fmoc-FF peptide and alginate.

  12. Calcium-Ion-Triggered Co-assembly of Peptide and Polysaccharide into a Hybrid Hydrogel for Drug Delivery.

    PubMed

    Xie, Yanyan; Zhao, Jun; Huang, Renliang; Qi, Wei; Wang, Yuefei; Su, Rongxin; He, Zhimin

    2016-12-01

    We report a new approach to constructing a peptide-polysaccharide hybrid hydrogel via the calcium-ion-triggered co-assembly of fluorenylmethyloxycarbonyl-diphenylalanine (Fmoc-FF) peptide and alginate. Calcium ions triggered the self-assembly of Fmoc-FF peptide into nanofibers with diameter of about 30 nm. Meanwhile, alginate was rapidly crosslinked by the calcium ions, leading to the formation of stable hybrid hydrogel beads. Compared to alginate or Fmoc-FF hydrogel alone, the hybrid Fmoc-FF/alginate hydrogel had much better stability in both water and a phosphate-buffered solution (PBS), probably because of the synergistic effect of noncovalent and ionic interactions. Furthermore, docetaxel was chosen as a drug model, and it was encapsulated by hydrogel beads to study the in vitro release behavior. The sustained and controlled docetaxel release was obtained by varying the concentration ratio between Fmoc-FF peptide and alginate.

  13. Calcium-Ion-Triggered Co-assembly of Peptide and Polysaccharide into a Hybrid Hydrogel for Drug Delivery.

    PubMed

    Xie, Yanyan; Zhao, Jun; Huang, Renliang; Qi, Wei; Wang, Yuefei; Su, Rongxin; He, Zhimin

    2016-12-01

    We report a new approach to constructing a peptide-polysaccharide hybrid hydrogel via the calcium-ion-triggered co-assembly of fluorenylmethyloxycarbonyl-diphenylalanine (Fmoc-FF) peptide and alginate. Calcium ions triggered the self-assembly of Fmoc-FF peptide into nanofibers with diameter of about 30 nm. Meanwhile, alginate was rapidly crosslinked by the calcium ions, leading to the formation of stable hybrid hydrogel beads. Compared to alginate or Fmoc-FF hydrogel alone, the hybrid Fmoc-FF/alginate hydrogel had much better stability in both water and a phosphate-buffered solution (PBS), probably because of the synergistic effect of noncovalent and ionic interactions. Furthermore, docetaxel was chosen as a drug model, and it was encapsulated by hydrogel beads to study the in vitro release behavior. The sustained and controlled docetaxel release was obtained by varying the concentration ratio between Fmoc-FF peptide and alginate. PMID:27067732

  14. A Periosteum-Inspired 3D Hydrogel-Bioceramic Composite for Enhanced Bone Regeneration .

    PubMed

    Chun, Yong Yao; Wang, Jun Kit; Tan, Nguan Soon; Chan, Peggy Puk Yik; Tan, Timothy Thatt Yang; Choong, Cleo

    2016-02-01

    A 3D injectable hydrogel-bioceramic composite consisting of gelatin-3-(4-hydroxyphenyl) propionic acid (Gtn-HPA) and carboxymethyl cellulose-tyramine (CMC-Tyr), incorporated with fish scale-derived calcium phosphate (CaP), is developed for bone applications. The hydrogel-bioceramic composite has significantly improved the elastic modulus compared to the non-filled hydrogel, of which the addition of 10 w/v% CaP showed zero order fluorescein isothiocyanate (FITC)-dextran release profile and a significantly higher proliferation rate of encapsulated cells. All the samples promote the nucleation and growth of CaP minerals when exposed to 1× SBF. Overall, the hydrogel-bioceramic composite with 10 w/v% CaP can potentially be used as a periosteum-mimicking membrane to facilitate bone regeneration.

  15. Encapsulation with structured triglycerides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lipids provide excellent materials to encapsulate bioactive compounds for food and pharmaceutical applications. Lipids are renewable, biodegradable, and easily modified to provide additional chemical functionality. The use of structured lipids that have been modified with photoactive properties are ...

  16. Nanocomposite hydrogels for biomedical applications

    PubMed Central

    Gaharwar, Akhilesh K.

    2014-01-01

    Hydrogels mimic native tissue microenvironment due to their porous and hydrated molecular structure. An emerging approach to reinforce polymeric hydrogels and to include multiple functionalities focuses on incorporating nanoparticles within the hydrogel network. A wide range of nanoparticles, such as carbon-based, polymeric, ceramic, and metallic nanomaterials can be integrated within the hydrogel networks to obtain nanocomposites with superior properties and tailored functionality. Nanocomposite hydrogels can be engineered to possess superior physical, chemical, electrical, and biological properties. This review focuses on the most recent developments in the field of nanocomposite hydrogels with emphasis on biomedical and pharmaceutical applications. In particular, we discuss synthesis and fabrication of nanocomposite hydrogels, examine their current limitations and conclude with future directions in designing more advanced nanocomposite hydrogels for biomedical and biotechnological applications. PMID:24264728

  17. Patterned three-dimensional encapsulation of embryonic stem cells using dielectrophoresis and stereolithography.

    PubMed

    Bajaj, Piyush; Marchwiany, Daniel; Duarte, Carlos; Bashir, Rashid

    2013-03-01

    Controlling the assembly of cells in three dimensions is very important for engineering functional tissues, drug screening, probing cell-cell/cell-matrix interactions, and studying the emergent behavior of cellular systems. Although the current methods of cell encapsulation in hydrogels can distribute them in three dimensions, these methods typically lack spatial control of multi-cellular organization and do not allow for the possibility of cell-cell contacts as seen for the native tissue. Here, we report the integration of dielectrophoresis (DEP) with stereolithography (SL) apparatus for the spatial patterning of cells on custom made gold micro-electrodes. Afterwards, they are encapsulated in poly (ethylene glycol) diacrylate (PEGDA) hydrogels of different stiffnesses. This technique can mimic the in vivo microscale tissue architecture, where the cells have a high degree of three dimensional (3D) spatial control. As a proof of concept, we show the patterning and encapsulation of mouse embryonic stem cells (mESCs) and C2C12 skeletal muscle myoblasts. mESCs show high viability in both the DEP (91.79% ± 1.4%) and the no DEP (94.27% ± 0.5%) hydrogel samples. Furthermore, we also show the patterning of mouse embryoid bodies (mEBs) and C2C12 spheroids in the hydrogels, and verify their viability. This robust and flexible in vitro platform can enable various applications in stem cell differentiation and tissue engineering by mimicking elements of the native 3D in vivo cellular micro-environment.

  18. Development of Injectable Hyaluronic Acid/Cellulose Nanocrystals Bionanocomposite Hydrogels for Tissue Engineering Applications.

    PubMed

    Domingues, Rui M A; Silva, Marta; Gershovich, Pavel; Betta, Sefano; Babo, Pedro; Caridade, Sofia G; Mano, João F; Motta, Antonella; Reis, Rui L; Gomes, Manuela E

    2015-08-19

    Injectable hyaluronic acid (HA)-based hydrogels compose a promising class of materials for tissue engineering and regenerative medicine applications. However, their limited mechanical properties restrict the potential range of application. In this study, cellulose nanocrystals (CNCs) were employed as nanofillers in a fully biobased strategy for the production of reinforced HA nanocomposite hydrogels. Herein we report the development of a new class of injectable hydrogels composed of adipic acid dihydrazide-modified HA (ADH-HA) and aldehyde-modified HA (a-HA) reinforced with varying contents of aldehyde-modified CNCs (a-CNCs). The obtained hydrogels were characterized in terms of internal morphology, mechanical properties, swelling, and degradation behavior in the presence of hyaluronidase. Our findings suggest that the incorporation of a-CNCs in the hydrogel resulted in a more organized and compact network structure and led to stiffer hydrogels (maximum storage modulus, E', of 152.4 kPa for 0.25 wt % a-CNCs content) with improvements of E' up to 135% in comparison to unfilled hydrogels. In general, increased amounts of a-CNCs led to lower equilibrium swelling ratios and higher resistance to degradation. The biological performance of the developed nanocomposites was assessed toward human adipose derived stem cells (hASCs). HA-CNCs nanocomposite hydrogels exhibited preferential cell supportive properties in in vitro culture conditions due to higher structural integrity and potential interaction of microenvironmental cues with CNC's sulfate groups. hASCs encapsulated in HA-CNCs hydrogels demonstrated the ability to spread within the volume of gels and exhibited pronounced proliferative activity. Together, these results demonstrate that the proposed strategy is a valuable toolbox for fine-tuning the structural, biomechanical, and biochemical properties of injectable HA hydrogels, expanding their potential range of application in the biomedical field.

  19. Development of Injectable Hyaluronic Acid/Cellulose Nanocrystals Bionanocomposite Hydrogels for Tissue Engineering Applications.

    PubMed

    Domingues, Rui M A; Silva, Marta; Gershovich, Pavel; Betta, Sefano; Babo, Pedro; Caridade, Sofia G; Mano, João F; Motta, Antonella; Reis, Rui L; Gomes, Manuela E

    2015-08-19

    Injectable hyaluronic acid (HA)-based hydrogels compose a promising class of materials for tissue engineering and regenerative medicine applications. However, their limited mechanical properties restrict the potential range of application. In this study, cellulose nanocrystals (CNCs) were employed as nanofillers in a fully biobased strategy for the production of reinforced HA nanocomposite hydrogels. Herein we report the development of a new class of injectable hydrogels composed of adipic acid dihydrazide-modified HA (ADH-HA) and aldehyde-modified HA (a-HA) reinforced with varying contents of aldehyde-modified CNCs (a-CNCs). The obtained hydrogels were characterized in terms of internal morphology, mechanical properties, swelling, and degradation behavior in the presence of hyaluronidase. Our findings suggest that the incorporation of a-CNCs in the hydrogel resulted in a more organized and compact network structure and led to stiffer hydrogels (maximum storage modulus, E', of 152.4 kPa for 0.25 wt % a-CNCs content) with improvements of E' up to 135% in comparison to unfilled hydrogels. In general, increased amounts of a-CNCs led to lower equilibrium swelling ratios and higher resistance to degradation. The biological performance of the developed nanocomposites was assessed toward human adipose derived stem cells (hASCs). HA-CNCs nanocomposite hydrogels exhibited preferential cell supportive properties in in vitro culture conditions due to higher structural integrity and potential interaction of microenvironmental cues with CNC's sulfate groups. hASCs encapsulated in HA-CNCs hydrogels demonstrated the ability to spread within the volume of gels and exhibited pronounced proliferative activity. Together, these results demonstrate that the proposed strategy is a valuable toolbox for fine-tuning the structural, biomechanical, and biochemical properties of injectable HA hydrogels, expanding their potential range of application in the biomedical field. PMID:26106949

  20. Microencapsulation of probiotics in hydrogel particles: enhancing Lactococcus lactis subsp. cremoris LM0230 viability using calcium alginate beads.

    PubMed

    Yeung, Timothy W; Arroyo-Maya, Izlia J; McClements, David J; Sela, David A

    2016-04-01

    Probiotics are beneficial microbes often added to food products to enhance the health and wellness of consumers. A major limitation to producing efficacious functional foods containing probiotic cells is their tendency to lose viability during storage and gastrointestinal transit. In this study, the impact of encapsulating probiotics within food-grade hydrogel particles to mitigate sensitivity to environmental stresses was examined. Confocal fluorescence microscopy confirmed that Lactococcus lactis were trapped within calcium alginate beads formed by dripping a probiotic-alginate mixture into a calcium solution. Encapsulation improved the viability of the probiotics during aerobic storage: after seven days, less than a two-log reduction was observed in encapsulated cells stored at room temperature, demonstrating that a high concentration of cells survived relative to non-encapsulated bacteria. These hydrogel beads may have applications for improving the stability and efficacy of probiotics in functional foods.

  1. Tuning tissue growth with scaffold degradation in enzyme-sensitive hydrogels: a mathematical model.

    PubMed

    Akalp, Umut; Bryant, Stephanie J; Vernerey, Franck J

    2016-09-28

    Despite tremendous advances in the field of tissue engineering, a number of obstacles remain that hinder its successful translation to the clinic. One challenge that relates to the use of cells encapsulated in a hydrogel is identifying a hydrogel design that can provide an appropriate environment for cells to successfully synthesize and deposit new matrix molecules while providing a mechanical support that can resist physiological loads at the early stage of implementation. A solution to this problem has been to balance tissue growth and hydrogel degradation. However, identifying this balance is difficult due to the complexity of coupling diffusion, deposition, and degradation mechanisms. Very little is known about the complex behavior of these mechanisms, emphasizing the need for a rigorous mathematical approach that can assist and guide experimental advances. To address this issue, this paper discusses a model for interstitial growth based on mixture theory, that can capture the coupling between cell-mediated hydrogel degradation (i.e., hydrogels containing enzyme-sensitive crosslinks) and the transport of extracellular matrix (ECM) molecules released by encapsulated cells within a hydrogel. Taking cartilage tissue engineering as an example, the model investigates the role of enzymatic degradation on ECM diffusion and its impact on two important outcomes: the extent of ECM transport (and deposition) and the evolution of the hydrogel's mechanical integrity. Numerical results based on finite element analysis show that if properly tuned, enzymatic degradation yields the appearance of a highly localized degradation front propagating away from the cell, which can be immediately followed by a front of growing neotissue. We show that this situation is key to maintaining mechanical properties (e.g., stiffness) while allowing for deposition of new ECM molecules. Overall, our study suggests a hydrogel design that could enable successful tissue engineering (e.g., of

  2. Tuning tissue growth with scaffold degradation in enzyme-sensitive hydrogels: a mathematical model.

    PubMed

    Akalp, Umut; Bryant, Stephanie J; Vernerey, Franck J

    2016-09-28

    Despite tremendous advances in the field of tissue engineering, a number of obstacles remain that hinder its successful translation to the clinic. One challenge that relates to the use of cells encapsulated in a hydrogel is identifying a hydrogel design that can provide an appropriate environment for cells to successfully synthesize and deposit new matrix molecules while providing a mechanical support that can resist physiological loads at the early stage of implementation. A solution to this problem has been to balance tissue growth and hydrogel degradation. However, identifying this balance is difficult due to the complexity of coupling diffusion, deposition, and degradation mechanisms. Very little is known about the complex behavior of these mechanisms, emphasizing the need for a rigorous mathematical approach that can assist and guide experimental advances. To address this issue, this paper discusses a model for interstitial growth based on mixture theory, that can capture the coupling between cell-mediated hydrogel degradation (i.e., hydrogels containing enzyme-sensitive crosslinks) and the transport of extracellular matrix (ECM) molecules released by encapsulated cells within a hydrogel. Taking cartilage tissue engineering as an example, the model investigates the role of enzymatic degradation on ECM diffusion and its impact on two important outcomes: the extent of ECM transport (and deposition) and the evolution of the hydrogel's mechanical integrity. Numerical results based on finite element analysis show that if properly tuned, enzymatic degradation yields the appearance of a highly localized degradation front propagating away from the cell, which can be immediately followed by a front of growing neotissue. We show that this situation is key to maintaining mechanical properties (e.g., stiffness) while allowing for deposition of new ECM molecules. Overall, our study suggests a hydrogel design that could enable successful tissue engineering (e.g., of

  3. Development of Poly(Ethylene Glycol) Hydrogels for Salivary Gland Tissue Engineering Applications

    PubMed Central

    Shubin, Andrew D.; Felong, Timothy J.; Graunke, Dean; Ovitt, Catherine E.

    2015-01-01

    More than 40,000 patients are diagnosed with head and neck cancers annually in the United States with the vast majority receiving radiation therapy. Salivary glands are irreparably damaged by radiation therapy resulting in xerostomia, which severely affects patient quality of life. Cell-based therapies have shown some promise in mouse models of radiation-induced xerostomia, but they suffer from insufficient and inconsistent gland regeneration and accompanying secretory function. To aid in the development of regenerative therapies, poly(ethylene glycol) hydrogels were investigated for the encapsulation of primary submandibular gland (SMG) cells for tissue engineering applications. Different methods of hydrogel formation and cell preparation were examined to identify cytocompatible encapsulation conditions for SMG cells. Cell viability was much higher after thiol-ene polymerizations compared with conventional methacrylate polymerizations due to reduced membrane peroxidation and intracellular reactive oxygen species formation. In addition, the formation of multicellular microspheres before encapsulation maximized cell–cell contacts and increased viability of SMG cells over 14-day culture periods. Thiol-ene hydrogel-encapsulated microspheres also promoted SMG proliferation. Lineage tracing was employed to determine the cellular composition of hydrogel-encapsulated microspheres using markers for acinar (Mist1) and duct (Keratin5) cells. Our findings indicate that both acinar and duct cell phenotypes are present throughout the 14 day culture period. However, the acinar:duct cell ratios are reduced over time, likely due to duct cell proliferation. Altogether, permissive encapsulation methods for primary SMG cells have been identified that promote cell viability, proliferation, and maintenance of differentiated salivary gland cell phenotypes, which allows for translation of this approach for salivary gland tissue engineering applications. PMID:25762214

  4. Development of poly(ethylene glycol) hydrogels for salivary gland tissue engineering applications.

    PubMed

    Shubin, Andrew D; Felong, Timothy J; Graunke, Dean; Ovitt, Catherine E; Benoit, Danielle S W

    2015-06-01

    More than 40,000 patients are diagnosed with head and neck cancers annually in the United States with the vast majority receiving radiation therapy. Salivary glands are irreparably damaged by radiation therapy resulting in xerostomia, which severely affects patient quality of life. Cell-based therapies have shown some promise in mouse models of radiation-induced xerostomia, but they suffer from insufficient and inconsistent gland regeneration and accompanying secretory function. To aid in the development of regenerative therapies, poly(ethylene glycol) hydrogels were investigated for the encapsulation of primary submandibular gland (SMG) cells for tissue engineering applications. Different methods of hydrogel formation and cell preparation were examined to identify cytocompatible encapsulation conditions for SMG cells. Cell viability was much higher after thiol-ene polymerizations compared with conventional methacrylate polymerizations due to reduced membrane peroxidation and intracellular reactive oxygen species formation. In addition, the formation of multicellular microspheres before encapsulation maximized cell-cell contacts and increased viability of SMG cells over 14-day culture periods. Thiol-ene hydrogel-encapsulated microspheres also promoted SMG proliferation. Lineage tracing was employed to determine the cellular composition of hydrogel-encapsulated microspheres using markers for acinar (Mist1) and duct (Keratin5) cells. Our findings indicate that both acinar and duct cell phenotypes are present throughout the 14 day culture period. However, the acinar:duct cell ratios are reduced over time, likely due to duct cell proliferation. Altogether, permissive encapsulation methods for primary SMG cells have been identified that promote cell viability, proliferation, and maintenance of differentiated salivary gland cell phenotypes, which allows for translation of this approach for salivary gland tissue engineering applications.

  5. Smart nanocomposite hydrogels based on azo crosslinked graphene oxide for oral colon-specific drug delivery

    NASA Astrophysics Data System (ADS)

    Hou, Lin; Shi, Yuyang; Jiang, Guixiang; Liu, Wei; Han, Huili; Feng, Qianhua; Ren, Junxiao; Yuan, Yujie; Wang, Yongchao; Shi, Jinjin; Zhang, Zhenzhong

    2016-08-01

    A safe and efficient nanocomposite hydrogel for colon cancer drug delivery was synthesized using pH-sensitive and biocompatible graphene oxide (GO) containing azoaromatic crosslinks as well as poly (vinyl alcohol) (PVA) (GO–N=N–GO/PVA composite hydrogels). Curcumin (CUR), an anti-cancer drug, was encapsulated successfully into the hydrogel through a freezing and thawing process. Fourier transform infrared spectroscopy, scanning electron microscopy and Raman spectroscopy were performed to confirm the formation and morphological properties of the nanocomposite hydrogel. The hydrogels exhibited good swelling properties in a pH-sensitive manner. Drug release studies under conditions mimicking stomach to colon transit have shown that the drug was protected from being released completely into the physiological environment of the stomach and small intestine. In vivo imaging analysis, pharmacokinetics and a distribution of the gastrointestinal tract experiment were systematically studied and evaluated as colon-specific drug delivery systems. All the results demonstrated that GO–N=N–GO/PVA composite hydrogels could protect CUR well while passing through the stomach and small intestine to the proximal colon, and enhance the colon-targeting ability and residence time in the colon site. Therefore, CUR loaded GO–N=N–GO/PVA composite hydrogels might potentially provide a theoretical basis for the treatment of colon cancer with high efficiency and low toxicity.

  6. Smart nanocomposite hydrogels based on azo crosslinked graphene oxide for oral colon-specific drug delivery

    NASA Astrophysics Data System (ADS)

    Hou, Lin; Shi, Yuyang; Jiang, Guixiang; Liu, Wei; Han, Huili; Feng, Qianhua; Ren, Junxiao; Yuan, Yujie; Wang, Yongchao; Shi, Jinjin; Zhang, Zhenzhong

    2016-08-01

    A safe and efficient nanocomposite hydrogel for colon cancer drug delivery was synthesized using pH-sensitive and biocompatible graphene oxide (GO) containing azoaromatic crosslinks as well as poly (vinyl alcohol) (PVA) (GO-N=N-GO/PVA composite hydrogels). Curcumin (CUR), an anti-cancer drug, was encapsulated successfully into the hydrogel through a freezing and thawing process. Fourier transform infrared spectroscopy, scanning electron microscopy and Raman spectroscopy were performed to confirm the formation and morphological properties of the nanocomposite hydrogel. The hydrogels exhibited good swelling properties in a pH-sensitive manner. Drug release studies under conditions mimicking stomach to colon transit have shown that the drug was protected from being released completely into the physiological environment of the stomach and small intestine. In vivo imaging analysis, pharmacokinetics and a distribution of the gastrointestinal tract experiment were systematically studied and evaluated as colon-specific drug delivery systems. All the results demonstrated that GO-N=N-GO/PVA composite hydrogels could protect CUR well while passing through the stomach and small intestine to the proximal colon, and enhance the colon-targeting ability and residence time in the colon site. Therefore, CUR loaded GO-N=N-GO/PVA composite hydrogels might potentially provide a theoretical basis for the treatment of colon cancer with high efficiency and low toxicity.

  7. Tough and elastic hydrogel of hyaluronic acid and chondroitin sulfate as potential cell scaffold materials.

    PubMed

    Ni, Yilu; Tang, Zhurong; Cao, Wanxu; Lin, Hai; Fan, Yujiang; Guo, Likun; Zhang, Xingdong

    2015-03-01

    Natural polysaccharides are extensively investigated as cell scaffold materials for cellular adhesion, proliferation, and differentiation due to their excellent biocompatibility, biodegradability, and biofunctions. However, their application is often severely limited by their mechanical behavior. In this study, a tough and elastic hydrogel scaffold was prepared with hyaluronic acid (HA) and chondroitin sulfate (CS). HA and CS were conjugated with tyramine (TA) and the degree of substitution (DS) was 10.7% and 11.3%, respectively, as calculated by (1)H NMR spectra. The hydrogel was prepared by mixing HA-TA and CS-TA in presence of H2O2 and HRP. The sectional morphology of hydrogels was observed by SEM, static and dynamic mechanical properties were analyzed by Shimadzu electromechanical testing machine and dynamic mechanical thermal analyzer Q800. All samples showed good ability to recover their appearances after deformation, the storage modulus (E') of hydrogels became higher as the testing frequency went up. Hydrogels also showed fatigue resistance to cyclic compression. Mesenchymal stem cells encapsulated in hydrogels showed good cell viability as detected by CLSM. This study suggests that the hydrogels have both good mechanical properties and biocompatibility, and may serve as model systems to explore mechanisms of deformation and energy dissipation or find some applications in tissue engineering. PMID:25445680

  8. Recent advances in crosslinking chemistry of biomimetic poly(ethylene glycol) hydrogels

    PubMed Central

    Lin, Chien-Chi

    2015-01-01

    The design and application of biomimetic hydrogels have become an important and integral part of modern tissue engineering and regenerative medicine. Many of these hydrogels are prepared from synthetic macromers (e.g., poly(ethylene glycol) or PEG) as they provide high degrees of tunability for matrix crosslinking, degradation, and modification. For a hydrogel to be considered biomimetic, it has to recapitulate key features that are found in the native extracellular matrix, such as the appropriate matrix mechanics and permeability, the ability to sequester and deliver drugs, proteins, and or nucleic acids, as well as the ability to provide receptor-mediated cell-matrix interactions and protease-mediated matrix cleavage. A variety of chemistries have been employed to impart these biomimetic features into hydrogel crosslinking. These chemistries, such as radical-mediated polymerizations, enzyme-mediated crosslinking, bio-orthogonal click reactions, and supramolecular assembly, may be different in their crosslinking mechanisms but are required to be efficient for gel crosslinking and ligand bioconjugation under aqueous reaction conditions. The prepared biomimetic hydrogels should display a diverse array of functionalities and should also be cytocompatible for in vitro cell culture and/or in situ cell encapsulation. The focus of this article is to review recent progress in the crosslinking chemistries of biomimetic hydrogels with a special emphasis on hydrogels crosslinked from poly(ethylene glycol)-based macromers. PMID:26029357

  9. Xylan-based temperature/pH sensitive hydrogels for drug controlled release.

    PubMed

    Gao, Cundian; Ren, Junli; Zhao, Cui; Kong, Weiqing; Dai, Qingqing; Chen, Qifeng; Liu, Chuanfu; Sun, Runcang

    2016-10-20

    Xylan-based temperature/pH sensitive hydrogels were prepared by the crosslinking copolymerization of xylan with N-isopropylacrylamide (NIPAm) and acrylic acid (AA) using N,Ń-methylenebis-acrylamide (MBA) as a cross-linker and 2,2-dimethoxy-2-phenylacetophenone as a photoinitiator via ultraviolet irradiation. The influence of the NIPAm, AA and MBA amount on properties of xylan-based hydrogels was discussed. The morphology and interactions of hydrogels were characterized by SEM and FTIR. The lower critical solution temperature (LCST) of hydrogels was investigated by DSC. The results indicated that the LCST of hydrogels emerged at around 34°C and increased with increasing the AA content. The drug encapsulation efficiency of as-prepared hydrogels reached to 97.60% and the cumulative release rate of acetylsalicylic acid was 90.12% and 26.35% in the intestinal and gastric fluid, respectively. Xylan-based hydrogels were proved to be biocompatible with NIH3T3 cell by MTT assay and showed the promising application as drug carriers for the intestinal-targeted oral drug delivery. PMID:27474557

  10. Cyclodextrin/poly(ethylene glycol) polypseudorotaxane hydrogels as a promising sustained-release system for lysozyme.

    PubMed

    Higashi, Taishi; Tajima, Anna; Motoyama, Keiichi; Arima, Hidetoshi

    2012-08-01

    In this study, to clarify the utility of polypseudorotaxane (PPRX) hydrogels composed of poly(ethylene glycol) (PEG) and α- or γ-cyclodextrin (α- or γ-CyD) as a sustained-release system for protein drugs, we prepared CyD PPRX hydrogels including lysozyme, and then the release profiles of lysozyme from these hydrogels and the release mechanisms were investigated. The α- and γ-CyD formed PPRX hydrogels by threading onto one PEG chain and two PEG chains, respectively. The formation of α- and γ-CyD PPRX hydrogels including lysozyme was based on physical cross-linking arisen from their columnar structures. The in vitro release rates of lysozyme were markedly decreased by the encapsulation into CyD PPRX hydrogels. In addition, when release data were plotted according to Korsmeyer-Peppas model, the exponent values (n) in the α- and γ-CyD systems had no statistically significant difference, suggesting that these release mechanisms were almost same. In conclusion, these results suggest that α- and γ-CyD PPRX hydrogels possess the potential as a sustained-release system for lysozyme.

  11. Hydrolytically degradable poly(ethylene glycol) hydrogel scaffolds with tunable degradation and mechanical properties

    PubMed Central

    Zustiak, Silviya P.

    2011-01-01

    The objective of this work was to create three-dimensional (3D) hydrogel matrices with defined mechanical properties, as well as tunable degradability for use in applications involving protein delivery and cell encapsulation. Thus, we report the synthesis and characterization of a novel hydrolytically degradable poly(ethylene glycol) (PEG) hydrogel composed of PEG vinyl sulfone (PEG-VS) cross-linked with PEG-diester-dithiol. Unlike previously reported degradable PEG-based hydrogels, these materials are homogeneous in structure, fully hydrophilic and have highly specific cross-linking chemistry. We characterized hydrogel degradation and associated trends in mechanical properties, i.e., storage modulus (G′), swelling ratio (QM), and mesh size (ξ). Degradation time and the monitored mechanical properties of the hydrogel correlated with cross-linker molecular weight, cross-linker functionality, and total polymer density; these properties changed predictably as degradation proceeded (G′ decreased, whereas QM and ξ increased) until the gels reached complete degradation. Balb/3T3 fibroblast adhesion and proliferation within the 3D hydrogel matrices were also verified. In sum, these unique properties indicate that the reported degradable PEG hydrogels are well poised for specific applications in protein and cell delivery to repair soft tissue. PMID:20355705

  12. Review of Collagen I Hydrogels for Bioengineered Tissue Microenvironments: Characterization of Mechanics, Structure, and Transport

    PubMed Central

    Vlachos, Pavlos P.; Rylander, Marissa Nichole

    2014-01-01

    Type I collagen hydrogels have been used successfully as three-dimensional substrates for cell culture and have shown promise as scaffolds for engineered tissues and tumors. A critical step in the development of collagen hydrogels as viable tissue mimics is quantitative characterization of hydrogel properties and their correlation with fabrication parameters, which enables hydrogels to be tuned to match specific tissues or fulfill engineering requirements. A significant body of work has been devoted to characterization of collagen I hydrogels; however, due to the breadth of materials and techniques used for characterization, published data are often disjoint and hence their utility to the community is reduced. This review aims to determine the parameter space covered by existing data and identify key gaps in the literature so that future characterization and use of collagen I hydrogels for research can be most efficiently conducted. This review is divided into three sections: (1) relevant fabrication parameters are introduced and several of the most popular methods of controlling and regulating them are described, (2) hydrogel properties most relevant for tissue engineering are presented and discussed along with their characterization techniques, (3) the state of collagen I hydrogel characterization is recapitulated and future directions are proposed. Ultimately, this review can serve as a resource for selection of fabrication parameters and material characterization methodologies in order to increase the usefulness of future collagen-hydrogel-based characterization studies and tissue engineering experiments. PMID:24923709

  13. Review of collagen I hydrogels for bioengineered tissue microenvironments: characterization of mechanics, structure, and transport.

    PubMed

    Antoine, Elizabeth E; Vlachos, Pavlos P; Rylander, Marissa Nichole

    2014-12-01

    Type I collagen hydrogels have been used successfully as three-dimensional substrates for cell culture and have shown promise as scaffolds for engineered tissues and tumors. A critical step in the development of collagen hydrogels as viable tissue mimics is quantitative characterization of hydrogel properties and their correlation with fabrication parameters, which enables hydrogels to be tuned to match specific tissues or fulfill engineering requirements. A significant body of work has been devoted to characterization of collagen I hydrogels; however, due to the breadth of materials and techniques used for characterization, published data are often disjoint and hence their utility to the community is reduced. This review aims to determine the parameter space covered by existing data and identify key gaps in the literature so that future characterization and use of collagen I hydrogels for research can be most efficiently conducted. This review is divided into three sections: (1) relevant fabrication parameters are introduced and several of the most popular methods of controlling and regulating them are described, (2) hydrogel properties most relevant for tissue engineering are presented and discussed along with their characterization techniques, (3) the state of collagen I hydrogel characterization is recapitulated and future directions are proposed. Ultimately, this review can serve as a resource for selection of fabrication parameters and material characterization methodologies in order to increase the usefulness of future collagen-hydrogel-based characterization studies and tissue engineering experiments.

  14. Sustained-release hydrogels of topotecan for retinoblastoma.

    PubMed

    Taich, Paula; Moretton, Marcela A; Del Sole, María Jose; Winter, Ursula; Bernabeu, Ezequiel; Croxatto, Juan O; Oppezzo, Javier; Williams, Gustavo; Chantada, Guillermo L; Chiappetta, Diego A; Schaiquevich, Paula

    2016-10-01

    Treatment of retinoblastoma, the most common primary ocular malignancy in children, has greatly improved over the last decade. Still, new devices for chemotherapy are needed to achieve better tumor control. The aim of this project was to develop an ocular drug delivery system for topotecan (TPT) loaded in biocompatible hydrogels of poly(ε-caprolactone)-poly(ethyleneglycol)-poly(ε-caprolactone) block copolymers (PCL-PEG-PCL) for sustained TPT release in the vitreous humor. Hydrogels were prepared from TPT and synthesized PCL-PEG-PCL copolymers. Rheological properties and in vitro and in vivo TPT release were studied. Hydrogel cytotoxicity was evaluated in retinoblastoma cells as a surrogate for efficacy and TPT vitreous pharmacokinetics and systemic as well as ocular toxicity were evaluated in rabbits. The pseudoplastic behavior of the hydrogels makes them suitable for intraocular administration. In vitro release profiles showed a sustained release of TPT from PCL-PEG-PCL up to 7days and drug loading did not affect the release pattern. Blank hydrogels did not affect retinoblastoma cell viability but 0.4% (w/w) TPT-loaded hydrogel was highly cytotoxic for at least 7days. After intravitreal injection, TPT vitreous concentrations were sustained above the pharmacologically active concentration. One month after injection, animals with blank or TPT-loaded hydrogels showed no systemic toxicity or retinal impairment on fundus examination, electroretinographic, and histopathological assessments. These novel TPT-hydrogels can deliver sustained concentrations of active drug into the vitreous with excellent biocompatibility in vivo and pronounced cytotoxic activity in retinoblastoma cells and may become an additional strategy for intraocular retinoblastoma treatment. PMID:27429296

  15. Sustained-release hydrogels of topotecan for retinoblastoma.

    PubMed

    Taich, Paula; Moretton, Marcela A; Del Sole, María Jose; Winter, Ursula; Bernabeu, Ezequiel; Croxatto, Juan O; Oppezzo, Javier; Williams, Gustavo; Chantada, Guillermo L; Chiappetta, Diego A; Schaiquevich, Paula

    2016-10-01

    Treatment of retinoblastoma, the most common primary ocular malignancy in children, has greatly improved over the last decade. Still, new devices for chemotherapy are needed to achieve better tumor control. The aim of this project was to develop an ocular drug delivery system for topotecan (TPT) loaded in biocompatible hydrogels of poly(ε-caprolactone)-poly(ethyleneglycol)-poly(ε-caprolactone) block copolymers (PCL-PEG-PCL) for sustained TPT release in the vitreous humor. Hydrogels were prepared from TPT and synthesized PCL-PEG-PCL copolymers. Rheological properties and in vitro and in vivo TPT release were studied. Hydrogel cytotoxicity was evaluated in retinoblastoma cells as a surrogate for efficacy and TPT vitreous pharmacokinetics and systemic as well as ocular toxicity were evaluated in rabbits. The pseudoplastic behavior of the hydrogels makes them suitable for intraocular administration. In vitro release profiles showed a sustained release of TPT from PCL-PEG-PCL up to 7days and drug loading did not affect the release pattern. Blank hydrogels did not affect retinoblastoma cell viability but 0.4% (w/w) TPT-loaded hydrogel was highly cytotoxic for at least 7days. After intravitreal injection, TPT vitreous concentrations were sustained above the pharmacologically active concentration. One month after injection, animals with blank or TPT-loaded hydrogels showed no systemic toxicity or retinal impairment on fundus examination, electroretinographic, and histopathological assessments. These novel TPT-hydrogels can deliver sustained concentrations of active drug into the vitreous with excellent biocompatibility in vivo and pronounced cytotoxic activity in retinoblastoma cells and may become an additional strategy for intraocular retinoblastoma treatment.

  16. pH-responsive and enzymatically-responsive hydrogel microparticles for the oral delivery of therapeutic proteins: Effects of protein size, crosslinking density, and hydrogel degradation on protein delivery.

    PubMed

    Koetting, Michael Clinton; Guido, Joseph Frank; Gupta, Malvika; Zhang, Annie; Peppas, Nicholas A

    2016-01-10

    Two potential platform technologies for the oral delivery of protein therapeutics were synthesized and tested. pH-responsive poly(itaconic acid-co-N-vinyl-2-pyrrolidone) (P(IA-co-NVP)) hydrogel microparticles were tested in vitro with model proteins salmon calcitonin, urokinase, and rituximab to determine the effects of particle size, protein size, and crosslinking density on oral delivery capability. Particle size showed no significant effect on overall delivery potential but did improve percent release of encapsulated protein over the micro-scale particle size range studied. Protein size was shown to have a significant impact on the delivery capability of the P(IA-co-NVP) hydrogel. We show that when using P(IA-co-NVP) hydrogel microparticles with 3 mol% tetra(ethylene glycol) dimethacrylate crosslinker, a small polypeptide (salmon calcitonin) loads and releases up to 45 μg/mg hydrogel while the mid-sized protein urokinase and large monoclonal antibody rituximab load and release only 19 and 24 μg/mg hydrogel, respectively. We further demonstrate that crosslinking density offers a simple method for tuning hydrogel properties to variously sized proteins. Using 5 mol% TEGDMA crosslinker offers optimal performance for the small peptide, salmon calcitonin, whereas lower crosslinking density of 1 mol% offers optimal performance for the much larger protein rituximab. Finally, an enzymatically-degradable hydrogels of P(MAA-co-NVP) crosslinked with the peptide sequence MMRRRKK were synthesized and tested in simulated gastric and intestinal conditions. These hydrogels offer ideal loading and release behavior, showing no degradative release of encapsulated salmon calcitonin in gastric conditions while yielding rapid and complete release of encapsulated protein within 1h in intestinal conditions.

  17. Design of Responsive Peptide-based Hydrogels as Therapeutics

    NASA Astrophysics Data System (ADS)

    Schneider, Joel

    2008-03-01

    Hydrogels composed of self-assembled peptides have been designed to allow minimally invasive delivery of cells in-vivo. These peptides undergo sol-gel phase transitions in response to biological media enabling the three-dimensional encapsulation of cells. Peptides are designed such that when dissolved in aqueous solution, exist in an ensemble of random coil conformations rendering them fully soluble. The addition of an exogenous stimulus results in peptide folding into beta-hairpin conformation. This folded structure undergoes rapid self-assembly into a highly crosslinked hydrogel network whose nanostructure is defined and controllable. This mechanism, which links intramolecular peptide folding to self-assembly, allows temporally resolved material formation. In general, peptides can be designed to fold and assemble affording hydrogel in response to changes in pH or ionic strength, the addition of heat or even light. In addition to these stimuli, DMEM cell culture media is able to initiate folding and consequent self-assembly. DMEM-induced gels are cytocompatible towards NIH 3T3 murine fibroblasts, mesenchymal stem cells, hepatocytes, osteoblasts and chondrocytes. As an added bonus, many of these hydrogels possess broad spectrum antibacterial activity suggesting that adventitious bacterial infections that may occur during surgical manipulations and after implantation can be greatly reduced. Lastly, when hydrogelation is triggered in the presence of cells, gels become impregnated and can serve as a delivery vehicle. A unique characteristic of these gels is that when an appropriate shear stress is applied, the gel will shear-thin, becoming an injectable low viscosity gel. However, after the application of shear has stopped, the material quickly self-heals producing a gel with mechanical rigidity nearly identical to the original hydrogel. This attribute allows cell-impregnated gels to be delivered to target tissues via syringe where they quickly recover complementing

  18. Injectable hydrogels derived from phosphorylated alginic acid calcium complexes.

    PubMed

    Kim, Han-Sem; Song, Minsoo; Lee, Eun-Jung; Shin, Ueon Sang

    2015-06-01

    Phosphorylation of sodium alginate salt (NaAlg) was carried out using H3PO4/P2O5/Et3PO4 followed by acid-base reaction with Ca(OAc)2 to give phosphorylated alginic acid calcium complexes (CaPAlg), as a water dispersible alginic acid derivative. The modified alginate derivatives including phosphorylated alginic acid (PAlg) and CaPAlg were characterized by nuclear magnetic resonance spectroscopy for (1)H, and (31)P nuclei, high resolution inductively coupled plasma optical emission spectroscopy, Fourier transform infrared spectroscopy, and thermogravimetric analysis. CaPAlg hydrogels were prepared simply by mixing CaPAlg solution (2w/v%) with NaAlg solution (2w/v%) in various ratios (2:8, 4:6, 6:4, 8:2) of volume. No additional calcium salts such as CaSO4 or CaCl2 were added externally. The gelation was completed within about 3-40min indicating a high potential of hydrogel delivery by injection in vivo. Their mechanical properties were tested to be ≤6.7kPa for compressive strength at break and about 8.4kPa/mm for elastic modulus. SEM analysis of the CaPAlg hydrogels showed highly porous morphology with interconnected pores of width in the range of 100-800μm. Cell culture results showed that the injectable hydrogels exhibited comparable properties to the pure alginate hydrogel in terms of cytotoxicity and 3D encapsulation of cells for a short time period. The developed injectable hydrogels showed suitable physicochemical and mechanical properties for injection in vivo, and could therefore be beneficial for the field of soft tissue engineering. PMID:25842118

  19. Multilayer microfluidic PEGDA hydrogels.

    PubMed

    Cuchiara, Michael P; Allen, Alicia C B; Chen, Theodore M; Miller, Jordan S; West, Jennifer L

    2010-07-01

    Development of robust 3D tissue analogs in vitro is limited by passive, diffusional mass transport. Perfused microfluidic tissue engineering scaffolds hold the promise to improve mass transport limitations and promote the development of complex, metabolically dense, and clinically relevant tissues. We report a simple and robust multilayer replica molding technique in which poly(dimethylsiloxane) (PDMS) and poly(ethylene glycol) diacrylate (PEGDA) are serially replica molded to develop microfluidic PEGDA hydrogel networks embedded within independently fabricated PDMS housings. We demonstrate the ability to control solute-scaffold effective diffusivity as a function of solute molecular weight and hydrogel concentration. Within cell laden microfluidic hydrogels, we demonstrate increased cellular viability in perfused hydrogel systems compared to static controls. We observed a significant increase in cell viability at all time points greater than zero at distances up to 1 mm from the perfused channel. Knowledge of spatiotemporal mass transport and cell viability gradients provides useful engineering design parameters necessary to maximize overall scaffold viability and metabolic density. This work has applications in the development of hydrogels as in vitro diagnostics and ultimately as regenerative medicine based therapeutics.

  20. The mechanical properties and cytotoxicity of cell-laden double-network hydrogels based on photocrosslinkable gelatin and gellan gum biomacromolecules.

    PubMed

    Shin, Hyeongho; Olsen, Bradley D; Khademhosseini, Ali

    2012-04-01

    A major goal in the application of hydrogels for tissue engineering scaffolds, especially for load-bearing tissues such as cartilage, is to develop hydrogels with high mechanical strength. In this study, a double-network (DN) strategy was used to engineer strong hydrogels that can encapsulate cells. We improved upon previously studied double-network (DN) hydrogels by using a processing condition compatible with cell survival. The DN hydrogels were created by a two-step photocrosslinking using gellan gum methacrylate (GGMA) for the rigid and brittle first network, and gelatin methacrylamide (GelMA) for the soft and ductile second network. We controlled the degree of methacrylation of each polymer so that they obtain relevant mechanical properties as each network. The DN was formed by photocrosslinking the GGMA, diffusing GelMA into the first network, and photocrosslinking the GelMA to form the second network. The formation of the DN was examined by diffusion tests of the large GelMA molecules into the GGMA network, the resulting enhancement in the mechanical properties, and the difference in mechanical properties between GGMA/GelMA single networks (SN) and DNs. The resulting DN hydrogels exhibited the compressive failure stress of up to 6.9 MPa, which approaches the strength of cartilage. It was found that there is an optimal range of the crosslink density of the second network for high strength of DN hydrogels. DN hydrogels with a higher mass ratio of GelMA to GGMA exhibited higher strength, which shows promise in developing even stronger DN hydrogels in the future. Three dimensional (3D) encapsulation of NIH-3T3 fibroblasts and the following viability test showed the cell-compatibility of the DN formation process. Given the high strength and the ability to encapsulate cells, the DN hydrogels made from photocrosslinkable macromolecules could be useful for the regeneration of load-bearing tissues.

  1. Mechanically resilient, injectable, and bioadhesive supramolecular gelatin hydrogels crosslinked by weak host-guest interactions assist cell infiltration and in situ tissue regeneration.

    PubMed

    Feng, Qian; Wei, Kongchang; Lin, Sien; Xu, Zhen; Sun, Yuxin; Shi, Peng; Li, Gang; Bian, Liming

    2016-09-01

    Although considered promising materials for assisting organ regeneration, few hydrogels meet the stringent requirements of clinical translation on the preparation, application, mechanical property, bioadhesion, and biocompatibility of the hydrogels. Herein, we describe a facile supramolecular approach for preparing gelatin hydrogels with a wide array of desirable properties. Briefly, we first prepare a supramolecular gelatin macromer via the efficient host-guest complexation between the aromatic residues of gelatin and free diffusing photo-crosslinkable acrylated β-cyclodextrin (β-CD) monomers. The subsequent crosslinking of the macromers produces highly resilient supramolecular gelatin hydrogels that are solely crosslinked by the weak host-guest interactions between the gelatinous aromatic residues and β-cyclodextrin (β-CD). The obtained hydrogels are capable of sustaining excessive compressive and tensile strain, and they are capable of quick self healing after mechanical disruption. These hydrogels can be injected in the gelation state through surgical needles and re-molded to the targeted geometries while protecting the encapsulated cells. Moreover, the weak host-guest crosslinking likely facilitate the infiltration and migration of cells into the hydrogels. The excess β-CDs in the hydrogels enable the hydrogel-tissue adhesion and enhance the loading and sustained delivery of hydrophobic drugs. The cell and animal studies show that such hydrogels support cell recruitment, differentiation, and bone regeneration, making them promising carrier biomaterials of therapeutic cells and drugs via minimally invasive procedures. PMID:27294539

  2. A three dimensional micropatterned tumor model for breast cancer cell migration studies.

    PubMed

    Peela, Nitish; Sam, Feba S; Christenson, Wayne; Truong, Danh; Watson, Adam W; Mouneimne, Ghassan; Ros, Robert; Nikkhah, Mehdi

    2016-03-01

    Breast cancer cell invasion is a highly orchestrated process driven by a myriad of complex microenvironmental stimuli, making it difficult to isolate and assess the effects of biochemical or biophysical cues (i.e. tumor architecture, matrix stiffness) on disease progression. In this regard, physiologically relevant tumor models are becoming instrumental to perform studies of cancer cell invasion within well-controlled conditions. Herein, we explored the use of photocrosslinkable hydrogels and a novel, two-step photolithography technique to microengineer a 3D breast tumor model. The microfabrication process enabled precise localization of cell-encapsulated circular constructs adjacent to a low stiffness matrix. To validate the model, breast cancer cell lines (MDA-MB-231, MCF7) and non-tumorigenic mammary epithelial cells (MCF10A) were embedded separately within the tumor model, all of which maintained high viability throughout the experiments. MDA-MB-231 cells exhibited extensive migratory behavior and invaded the surrounding matrix, whereas MCF7 or MCF10A cells formed clusters that stayed confined within the circular tumor regions. Additionally, real-time cell tracking indicated that the speed and persistence of MDA-MB-231 cells were substantially higher within the surrounding matrix compared to the circular constructs. Z-stack imaging of F-actin/α-tubulin cytoskeletal organization revealed unique 3D protrusions in MDA-MB-231 cells and an abundance of 3D clusters formed by MCF7 and MCF10A cells. Our results indicate that gelatin methacrylate (GelMA) hydrogel, integrated with the two-step photolithography technique, has great promise in the development of 3D tumor models with well-defined architecture and tunable stiffness.

  3. Controlled delivery of antibodies from injectable hydrogels.

    PubMed

    Fletcher, Nathan A; Babcock, Lyndsey R; Murray, Ellen A; Krebs, Melissa D

    2016-02-01

    Therapeutic antibodies are currently used for the treatment of various diseases, but large doses delivered systemically are typically required. Localized controlled delivery techniques would afford major benefits such as decreasing side effects and required doses. Injectable biopolymer systems are an attractive solution due to their minimally invasive potential for controlled release in a localized area. Here, alginate-chitosan hydrogels are demonstrated to provide controlled delivery of IgG model antibodies and also of Fab antibody fragments. Also, an alternate delivery system comprised of poly(lactic-co-glycolic acid) (PLGA) microspheres loaded with antibodies and encapsulated in alginate was shown to successfully provide another level of control over release. These biopolymer systems that offer controlled delivery for antibodies and antibody fragments will be promising for many applications in drug delivery and regenerative medicine.

  4. Hyaluronic Acid-Based Hydrogels as 3D Matrices for in Vitro Evaluation of Chemotherapeutic Drugs Using Poorly Adherent Prostate Cancer Cells

    PubMed Central

    Gurski, Lisa A.; Jha, Amit K.; Zhang, Chu; Jia, Xinqiao; Farach-Carson, Mary C.

    2009-01-01

    The current investigation aimed to develop a biomimetic, three-dimensional (3D) culture system for poorly adherent bone metastatic prostate cancer cells (C4-2B) for use as an in vitro platform for anti-cancer drug screening. To this end, hyaluronic acid (HA) derivatives carrying complementary aldehyde (HAALD) and hydrazide (HAADH) groups were synthesized and characterized. In situ encapsulation of C4-2B cells was achieved by simple mixing of HAALD and HAADH in the presence of the cells. Unlike two-dimensional (2D) monolayer culture in which cells adopt an atypical spread morphology, cells residing in the HA matrix formed distinct clustered structures which grew and merged, reminiscent of real tumors. Anti-cancer drugs added to the media surrounding the cell/gel construct diffused into the gel and killed the embedded cells. The HA hydrogel system was used successfully to test the efficacy of anti-cancer drugs including camptothecin, docetaxel, and rapamycin, alone and in combination, including specificity, dose and time responses. Responses of cells to anti-neoplastics differed between the 3D HA hydrogel and 2D monolayer systems. We suggest that the data obtained from 3D HA systems is superior to that from conventional 2D monolayers as the 3D system better reflects the bone metastatic microenvironment of the cancer cells. PMID:19695694

  5. 3D Printed Trileaflet Valve Conduits Using Biological Hydrogels and Human Valve Interstitial Cells

    PubMed Central

    Duan, Bin; Kapetanovic, Edi; Hockaday, Laura A.; Butcher, Jonathan T.

    2014-01-01

    Tissue engineering has great potential to provide a functional de novo living valve replacement capable of integration with host tissue and growth. Among various valve conduit fabrication techniques, 3D bioprinting enables deposition of cells and hydrogels into 3D constructs with anatomical geometry and heterogeneous mechanical properties. Successful translation of this approach is however constrained by the dearth of printable and biocompatible hydrogel materials. Furthermore, it is not known how human valve cells respond to these printed environments. In this study, we develop 3D printable formulations of hybrid hydrogels based on methacrylated hyaluronic acid (Me-HA) and methacrylated gelatin (Me-Gel), and utilize them to bioprint heart valve conduits containing encapsulated human aortic valvular interstitial cells (HAVIC). Increasing Me-Gel concentration resulted in lower stiffness and higher viscosity, facilitated cell spreading, and better maintained HAVIC fibroblastic phenotype. Bioprinting accuracy was dependent upon the relative concentrations of Me-Gel and Me-HA, but when optimized enabled the fabrication of a trileaflet valve shape accurate to the original design. HAVIC encapsulated within bioprinted heart valves maintained high viability, and remodeled the initial matrix by depositing collagen and glyosaminoglycans. These findings represent the first rational design of bioprinted trileaflet valve hydrogels that regulate encapsulated human VIC behavior. The use of anatomically accurate living valve scaffolds through bioprinting may accelerate our understanding of physiological valve cell interactions and our progress towards de novo living valve replacements. PMID:24334142

  6. Hydrogels in Regenerative Medicine

    PubMed Central

    Slaughter, Brandon V.; Khurshid, Shahana S.; Fisher, Omar Z.; Khademhosseini, Ali

    2015-01-01

    Hydrogels, due to their unique biocompatibility, flexible methods of synthesis, range of constituents, and desirable physical characteristics, have been the material of choice for many applications in regenerative medicine. They can serve as scaffolds that provide structural integrity to tissue constructs, control drug and protein delivery to tissues and cultures, and serve as adhesives or barriers between tissue and material surfaces. In this work, the properties of hydrogels that are important for tissue engineering applications and the inherent material design constraints and challenges are discussed. Recent research involving several different hydrogels polymerized from a variety of synthetic and natural monomers using typical and novel synthetic methods are highlighted. Finally, special attention is given to the microfabrication techniques that are currently resulting in important advances in the field. PMID:20882499

  7. Multifunctional hydrogel nano-probes for atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Lee, Jae Seol; Song, Jungki; Kim, Seong Oh; Kim, Seokbeom; Lee, Wooju; Jackman, Joshua A.; Kim, Dongchoul; Cho, Nam-Joon; Lee, Jungchul

    2016-05-01

    Since the invention of the atomic force microscope (AFM) three decades ago, there have been numerous advances in its measurement capabilities. Curiously, throughout these developments, the fundamental nature of the force-sensing probe--the key actuating element--has remained largely unchanged. It is produced by long-established microfabrication etching strategies and typically composed of silicon-based materials. Here, we report a new class of photopolymerizable hydrogel nano-probes that are produced by bottom-up fabrication with compressible replica moulding. The hydrogel probes demonstrate excellent capabilities for AFM imaging and force measurement applications while enabling programmable, multifunctional capabilities based on compositionally adjustable mechanical properties and facile encapsulation of various nanomaterials. Taken together, the simple, fast and affordable manufacturing route and multifunctional capabilities of hydrogel AFM nano-probes highlight the potential of soft matter mechanical transducers in nanotechnology applications. The fabrication scheme can also be readily utilized to prepare hydrogel cantilevers, including in parallel arrays, for nanomechanical sensor devices.

  8. Multifunctional hydrogel nano-probes for atomic force microscopy

    PubMed Central

    Lee, Jae Seol; Song, Jungki; Kim, Seong Oh; Kim, Seokbeom; Lee, Wooju; Jackman, Joshua A.; Kim, Dongchoul; Cho, Nam-Joon; Lee, Jungchul

    2016-01-01

    Since the invention of the atomic force microscope (AFM) three decades ago, there have been numerous advances in its measurement capabilities. Curiously, throughout these developments, the fundamental nature of the force-sensing probe—the key actuating element—has remained largely unchanged. It is produced by long-established microfabrication etching strategies and typically composed of silicon-based materials. Here, we report a new class of photopolymerizable hydrogel nano-probes that are produced by bottom-up fabrication with compressible replica moulding. The hydrogel probes demonstrate excellent capabilities for AFM imaging and force measurement applications while enabling programmable, multifunctional capabilities based on compositionally adjustable mechanical properties and facile encapsulation of various nanomaterials. Taken together, the simple, fast and affordable manufacturing route and multifunctional capabilities of hydrogel AFM nano-probes highlight the potential of soft matter mechanical transducers in nanotechnology applications. The fabrication scheme can also be readily utilized to prepare hydrogel cantilevers, including in parallel arrays, for nanomechanical sensor devices. PMID:27199165

  9. Multifunctional hydrogel nano-probes for atomic force microscopy.

    PubMed

    Lee, Jae Seol; Song, Jungki; Kim, Seong Oh; Kim, Seokbeom; Lee, Wooju; Jackman, Joshua A; Kim, Dongchoul; Cho, Nam-Joon; Lee, Jungchul

    2016-05-20

    Since the invention of the atomic force microscope (AFM) three decades ago, there have been numerous advances in its measurement capabilities. Curiously, throughout these developments, the fundamental nature of the force-sensing probe-the key actuating element-has remained largely unchanged. It is produced by long-established microfabrication etching strategies and typically composed of silicon-based materials. Here, we report a new class of photopolymerizable hydrogel nano-probes that are produced by bottom-up fabrication with compressible replica moulding. The hydrogel probes demonstrate excellent capabilities for AFM imaging and force measurement applications while enabling programmable, multifunctional capabilities based on compositionally adjustable mechanical properties and facile encapsulation of various nanomaterials. Taken together, the simple, fast and affordable manufacturing route and multifunctional capabilities of hydrogel AFM nano-probes highlight the potential of soft matter mechanical transducers in nanotechnology applications. The fabrication scheme can also be readily utilized to prepare hydrogel cantilevers, including in parallel arrays, for nanomechanical sensor devices.

  10. Polymersomes containing a hydrogel network for high stability and controlled release.

    PubMed

    Kim, Shin-Hyun; Kim, Jin Woong; Kim, Do-Hoon; Han, Sang-Hoon; Weitz, David A

    2013-01-14

    Capillary microfluidic devices are used to prepare monodisperse polymersomes consisting of a hydrogel core and a bilayer membrane of amphiphilic diblock-copolymers. To make polymersomes, water-in-oil-in-water double-emulsion drops are prepared as templates through single-step emulsification in a capillary microfluidic device. The amphiphile-laden middle oil phase of the double-emulsion drop dewets from the surface of the innermost water drop, which contains hydrogel prepolymers; this dewetting leads to the formation of a bilayer membrane. Subsequently, the oil phase completely separates from the innermost water drop, leaving a polymersome. Upon UV illumination of the polymersome, the prepolymers encapsulated within the interior are crosslinked, forming a hydrogel core. The hydrogel network within the polymersomes facilitates sustained release of the encapsulated materials and increases the stability of the polymersomes through the formation of a scaffold to support the bilayer. In addition, this approach provides a facile method to make monodisperse hydrogel particles directly dispersed in water.

  11. Cell-laden microengineered pullulan methacrylate hydrogels promote cell proliferation and 3D cluster formation.

    PubMed

    Bae, Hojae; Ahari, Amir F; Shin, Hyeongho; Nichol, Jason W; Hutson, Che B; Masaeli, Mahdokht; Kim, Su-Hwan; Aubin, Hug; Yamanlar, Seda; Khademhosseini, Ali

    2011-01-01

    The ability to encapsulate cells in three-dimensional (3D) environments is potentially of benefit for tissue engineering and regenerative medicine. In this paper, we introduce pullulan methacrylate (PulMA) as a promising hydrogel platform for creating cell-laden microscale tissues. The hydration and mechanical properties of PulMA were demonstrated to be tunable through modulation of the degree of methacrylation and gel concentration. Cells encapsulated in PulMA exhibited excellent viability. Interestingly, while cells did not elongate in PulMA hydrogels, cells proliferated and organized into clusters, the size of which could be controlled by the hydrogel composition. By mixing with gelatin methacrylate (GelMA), the biological properties of PulMA could be enhanced as demonstrated by cells readily attaching to, proliferating, and elongating within the PulMA/GelMA composite hydrogels. These data suggest that PulMA hydrogels could be useful for creating complex, cell-responsive microtissues, especially for applications that require controlled cell clustering and proliferation.

  12. Generation and Recovery of β-cell Spheroids From Step-growth PEG-peptide Hydrogels

    PubMed Central

    Raza, Asad; Lin, Chien-Chi

    2012-01-01

    Hydrogels are hydrophilic crosslinked polymers that provide a three-dimensional microenvironment with tissue-like elasticity and high permeability for culturing therapeutically relevant cells or tissues. Hydrogels prepared from poly(ethylene glycol) (PEG) derivatives are increasingly used for a variety of tissue engineering applications, in part due to their tunable and cytocompatible properties. In this protocol, we utilized thiol-ene step-growth photopolymerizations to fabricate PEG-peptide hydrogels for encapsulating pancreatic MIN6 b-cells. The gels were formed by 4-arm PEG-norbornene (PEG4NB) macromer and a chymotrypsin-sensitive peptide crosslinker (CGGYC). The hydrophilic and non-fouling nature of PEG offers a cytocompatible microenvironment for cell survival and proliferation in 3D, while the use of chymotrypsin-sensitive peptide sequence (CGGY↓C, arrow indicates enzyme cleavage site, while terminal cysteine residues were added for thiol-ene crosslinking) permits rapid recovery of cell constructs forming within the hydrogel. The following protocol elaborates techniques for: (1) Encapsulation of MIN6 β-cells in thiol-ene hydrogels; (2) Qualitative and quantitative cell viability assays to determine cell survival and proliferation; (3) Recovery of cell spheroids using chymotrypsin-mediated gel erosion; and (4) Structural and functional analysis of the recovered spheroids. PMID:23241531

  13. Nano-in-Micro Self-Reporting Hydrogel Constructs.

    PubMed

    Tirella, Annalisa; La Marca, Margherita; Brace, Leigh-Anne; Mattei, Giorgio; Aylott, Jonathan W; Ahluwalia, Arti

    2015-08-01

    Highly reproducible Nano-in-Micro constructs are fabricated to provide a well-defined and self-reporting biomimetic environment for hepatocytes. Based on a protein/hydrogel formulation with controlled shape, size and composition, the constructs enable efficient nutrient exchange and provide an adhesive 3D framework to cells. Co-encapsulation of hepatocytes and ratiometric optical nanosensors with pH sensitivity in the physiological range allows continuous monitoring of the microenvironment. The lobule-sized microbeads are fabricated using an automated droplet generator, Sphyga (Spherical Hydrogel Generator) combining alginate, collagen, decellularized hepatic tissue, pH-nanosensors and hepatocytes. The pH inside the Nano-in-Micro constructs is monitored during culture, while assaying media for hepatic function and vitality markers. Although the local pH changes by several units during bead fabrication, when encapsulated cells are most likely to undergo stress, it is stable and buffered by cell culture media thereafter. Albumin secretion and urea production are significantly higher in the microbeads compared with controls, indicating that the encapsulated Nano-in-Micro environment is conducive to enhanced hepatic function.

  14. 3D Cell Culture in Alginate Hydrogels

    PubMed Central

    Andersen, Therese; Auk-Emblem, Pia; Dornish, Michael

    2015-01-01

    This review compiles information regarding the use of alginate, and in particular alginate hydrogels, in culturing cells in 3D. Knowledge of alginate chemical structure and functionality are shown to be important parameters in design of alginate-based matrices for cell culture. Gel elasticity as well as hydrogel stability can be impacted by the type of alginate used, its concentration, the choice of gelation technique (ionic or covalent), and divalent cation chosen as the gel inducing ion. The use of peptide-coupled alginate can control cell–matrix interactions. Gelation of alginate with concomitant immobilization of cells can take various forms. Droplets or beads have been utilized since the 1980s for immobilizing cells. Newer matrices such as macroporous scaffolds are now entering the 3D cell culture product market. Finally, delayed gelling, injectable, alginate systems show utility in the translation of in vitro cell culture to in vivo tissue engineering applications. Alginate has a history and a future in 3D cell culture. Historically, cells were encapsulated in alginate droplets cross-linked with calcium for the development of artificial organs. Now, several commercial products based on alginate are being used as 3D cell culture systems that also demonstrate the possibility of replacing or regenerating tissue. PMID:27600217

  15. 3D Cell Culture in Alginate Hydrogels

    PubMed Central

    Andersen, Therese; Auk-Emblem, Pia; Dornish, Michael

    2015-01-01

    This review compiles information regarding the use of alginate, and in particular alginate hydrogels, in culturing cells in 3D. Knowledge of alginate chemical structure and functionality are shown to be important parameters in design of alginate-based matrices for cell culture. Gel elasticity as well as hydrogel stability can be impacted by the type of alginate used, its concentration, the choice of gelation technique (ionic or covalent), and divalent cation chosen as the gel inducing ion. The use of peptide-coupled alginate can control cell–matrix interactions. Gelation of alginate with concomitant immobilization of cells can take various forms. Droplets or beads have been utilized since the 1980s for immobilizing cells. Newer matrices such as macroporous scaffolds are now entering the 3D cell culture product market. Finally, delayed gelling, injectable, alginate systems show utility in the translation of in vitro cell culture to in vivo tissue engineering applications. Alginate has a history and a future in 3D cell culture. Historically, cells were encapsulated in alginate droplets cross-linked with calcium for the development of artificial organs. Now, several commercial products based on alginate are being used as 3D cell culture systems that also demonstrate the possibility of replacing or regenerating tissue.

  16. Emerging Technologies for Assembly of Microscale Hydrogels

    PubMed Central

    Kavaz, Doga; Demirel, Melik C.; Demirci, Utkan

    2013-01-01

    Assembly of cell encapsulating building blocks (i.e., microscale hydrogels) has significant applications in areas including regenerative medicine, tissue engineering, and cell-based in vitro assays for pharmaceutical research and drug discovery. Inspired by the repeating functional units observed in native tissues and biological systems (e.g., the lobule in liver, the nephron in kidney), assembly technologies aim to generate complex tissue structures by organizing microscale building blocks. Novel assembly technologies enable fabrication of engineered tissue constructs with controlled properties including tunable microarchitectural and predefined compositional features. Recent advances in micro- and nano-scale technologies have enabled engineering of microgel based three dimensional (3D) constructs. There is a need for high-throughput and scalable methods to assemble microscale units with a complex 3D micro-architecture. Emerging assembly methods include novel technologies based on microfluidics, acoustic and magnetic fields, nanotextured surfaces, and surface tension. In this review, we survey emerging microscale hydrogel assembly methods offering rapid, scalable microgel assembly in 3D, and provide future perspectives and discuss potential applications. PMID:23184717

  17. 3D Cell Culture in Alginate Hydrogels.

    PubMed

    Andersen, Therese; Auk-Emblem, Pia; Dornish, Michael

    2015-03-24

    This review compiles information regarding the use of alginate, and in particular alginate hydrogels, in culturing cells in 3D. Knowledge of alginate chemical structure and functionality are shown to be important parameters in design of alginate-based matrices for cell culture. Gel elasticity as well as hydrogel stability can be impacted by the type of alginate used, its concentration, the choice of gelation technique (ionic or covalent), and divalent cation chosen as the gel inducing ion. The use of peptide-coupled alginate can control cell-matrix interactions. Gelation of alginate with concomitant immobilization of cells can take various forms. Droplets or beads have been utilized since the 1980s for immobilizing cells. Newer matrices such as macroporous scaffolds are now entering the 3D cell culture product market. Finally, delayed gelling, injectable, alginate systems show utility in the translation of in vitro cell culture to in vivo tissue engineering applications. Alginate has a history and a future in 3D cell culture. Historically, cells were encapsulated in alginate droplets cross-linked with calcium for the development of artificial organs. Now, several commercial products based on alginate are being used as 3D cell culture systems that also demonstrate the possibility of replacing or regenerating tissue.

  18. Review of encapsulation technologies

    SciTech Connect

    Shaulis, L.

    1996-09-01

    The use of encapsulation technology to produce a compliant waste form is an outgrowth from existing polymer industry technology and applications. During the past 12 years, the Department of Energy (DOE) has been researching the use of this technology to treat mixed wastes (i.e., containing hazardous and radioactive wastes). The two primary encapsulation techniques are microencapsulation and macroencapsulation. Microencapsulation is the thorough mixing of a binding agent with a powdered waste, such as incinerator ash. Macroencapsulation coats the surface of bulk wastes, such as lead debris. Cement, modified cement, and polyethylene are the binding agents which have been researched the most. Cement and modified cement have been the most commonly used binding agents to date. However, recent research conducted by DOE laboratories have shown that polyethylene is more durable and cost effective than cements. The compressive strength, leachability, resistance to chemical degradation, etc., of polyethylene is significantly greater than that of cement and modified cement. Because higher waste loads can be used with polyethylene encapsulant, the total cost of polyethylene encapsulation is significantly less costly than cement treatment. The only research lacking in the assessment of polyethylene encapsulation treatment for mixed wastes is pilot and full-scale testing with actual waste materials. To date, only simulated wastes have been tested. The Rocky Flats Environmental Technology Site had planned to conduct pilot studies using actual wastes during 1996. This experiment should provide similar results to the previous tests that used simulated wastes. If this hypothesis is validated as anticipated, it will be clear that polyethylene encapsulation should be pursued by DOE to produce compliant waste forms.

  19. Adhesion in hydrogel contacts

    NASA Astrophysics Data System (ADS)

    Torres, J. R.; Jay, G. D.; Kim, K.-S.; Bothun, G. D.

    2016-05-01

    A generalized thermomechanical model for adhesion was developed to elucidate the mechanisms of dissipation within the viscoelastic bulk of a hyperelastic hydrogel. Results show that in addition to the expected energy release rate of interface formation, as well as the viscous flow dissipation, the bulk composition exhibits dissipation due to phase inhomogeneity morphological changes. The mixing thermodynamics of the matrix and solvent determines the dynamics of the phase inhomogeneities, which can enhance or disrupt adhesion. The model also accounts for the time-dependent behaviour. A parameter is proposed to discern the dominant dissipation mechanism in hydrogel contact detachment.

  20. Silk fibroin/copolymer composite hydrogels for the controlled and sustained release of hydrophobic/hydrophilic drugs.

    PubMed

    Zhong, Tianyi; Jiang, Zhijuan; Wang, Peng; Bie, Shiyu; Zhang, Feng; Zuo, Baoqi

    2015-10-15

    In the present study, a composite system for the controlled and sustained release of hydrophobic/hydrophilic drugs is described. Composite hydrogels were prepared by blending silk fibroin (SF) with PLA-PEG-PLA copolymer under mild aqueous condition. Aspirin and indomethacin were incorporated into SF/Copolymer hydrogels as two model drugs with different water-solubility. The degradation of composite hydrogels during the drug release was mainly caused by the hydrolysis of copolymers. SF with stable β-sheet-rich structure was not easily degraded which maintained the mechanical integrity of composite hydrogel. The hydrophobic/hydrophilic interactions of copolymers with model drugs would significantly alter the morphological features of composite hydrogels. Various parameters such as drug load, concentration ratio, and composition of copolymer were considered in vitro drug release. Aspirin as a hydrophilic drug could be controlled release from composite hydrogel at a constant rate for 5 days. Its release was mainly driven by diffusion-based mechanism. Hydrophobic indomethacin could be encapsulated in copolymer nanoparticles distributing in the composite hydrogel. Its sustained release was mainly degradation controlled which could last up to two weeks. SF/Copolymer hydrogel has potential as a useful composite system widely applying for controlled and sustained release of various drugs.

  1. Removable foam encapsulants

    SciTech Connect

    Wischmann, K.B.

    1982-01-01

    This paper describes the use of two different expandable bead foams as solvent removable encapsulants; specifically they are polystyrene (STYROPOR BF-414, BASF Wyandotte) and a styrenemaleic anhydride copolymer (DYTHERM X214, ARCO/Polymers). These expandable bead foams are commercially available and normally used in insulating applications. However, they have been adapted to the unusual task of encapsulating sophisticated and expensive electronic hardware which requires a rework capability. The respective foams processing, resultant properties and removal methods are discussed in detail in this paper.

  2. Encapsulation materials research

    NASA Technical Reports Server (NTRS)

    Willis, P. B.

    1984-01-01

    Encapsulation materials for solar cells were investigated. The different phases consisted of: (1) identification and development of low cost module encapsulation materials; (2) materials reliability examination; and (3) process sensitivity and process development. It is found that outdoor photothermal aging devices (OPT) are the best accelerated aging methods, simulate worst case field conditions, evaluate formulation and module performance and have a possibility for life assessment. Outdoor metallic copper exposure should be avoided, self priming formulations have good storage stability, stabilizers enhance performance, and soil resistance treatment is still effective.

  3. Stretchability of encapsulated electronics

    NASA Astrophysics Data System (ADS)

    Wu, J.; Liu, Z. J.; Song, J.; Huang, Y.; Hwang, K.-C.; Zhang, Y. W.; Rogers, J. A.

    2011-08-01

    Stretchable and flexible electronics offer the performance of conventional wafer-based systems but can be stretched like a rubber band, twisted like a rope, and bent over a pencil. Such a technology offers new application opportunities, in areas of surgical and diagnostic implements that naturally integrate with the human body to provide advanced capabilities, to curvilinear devices such as hemispherical "eyeball" cameras. In practice, stretchable and flexible electronic systems require encapsulation layers to provide mechanical and environmental protection. This paper establishes a simple, analytical model for the optimal design of encapsulation.

  4. Encapsulation of liquid smoke flavoring in ca-alginate and ca-alginate-chitosan beads.

    PubMed

    Petzold, Guillermo; Gianelli, María Pia; Bugueño, Graciela; Celan, Raymond; Pavez, Constanza; Orellana, Patricio

    2014-01-01

    Encapsulation is a technique used in foods that may protect some compounds with sensory impact, in particular flavoring as liquid smoke. We used the dripping method, obtaining two different layers for encapsulation of liquid smoke: calcium alginate and calcium alginate-chitosan. The results show that the load capacity of liquid smoke encapsulation reached values above 96 %. The beads exhibit syneresis at room temperature, but in opposite side, refrigeration temperature stabilizes the hydrogel of beads, allowing the samples loss weight less than 3 % after 72 h. Heated capsules with liquid smoke released several volatile compounds in the headspace and may identify 66 compounds. Among these volatile compounds, phenols derivatives can be considered sensory descriptors to contribute to the specific flavor of smoke. We conclude that the dripping method is highly efficient to encapsulate liquid smoke and released several volatile compounds, although it is necessary to minimize syneresis at room temperature.

  5. Development of functionalized multi-walled carbon-nanotube-based alginate hydrogels for enabling biomimetic technologies

    NASA Astrophysics Data System (ADS)

    Joddar, Binata; Garcia, Eduardo; Casas, Atzimba; Stewart, Calvin M.

    2016-08-01

    Alginate is a hydrogel commonly used for cell culture by ionically crosslinking in the presence of divalent Ca2+ ions. However these alginate gels are mechanically unstable, not permitting their use as scaffolds to engineer robust biological bone, breast, cardiac or tumor tissues. This issue can be addressed via encapsulation of multi-walled carbon nanotubes (MWCNT) serving as a reinforcing phase while being dispersed in a continuous phase of alginate. We hypothesized that adding functionalized MWCNT to alginate, would yield composite gels with distinctively different mechanical, physical and biological characteristics in comparison to alginate alone. Resultant MWCNT-alginate gels were porous, and showed significantly less degradation after 14 days compared to alginate alone. In vitro cell-studies showed enhanced HeLa cell adhesion and proliferation on the MWCNT-alginate compared to alginate. The extent of cell proliferation was greater when cultured atop 1 and 3 mg/ml MWCNT-alginate; although all MWCNT-alginates lead to enhanced cell cluster formation compared to alginate alone. Among all the MWCNT-alginates, the 1 mg/ml gels showed significantly greater stiffness compared to all other cases. These results provide an important basis for the development of the MWCNT-alginates as novel substrates for cell culture applications, cell therapy and tissue engineering.

  6. Development of functionalized multi-walled carbon-nanotube-based alginate hydrogels for enabling biomimetic technologies

    PubMed Central

    Joddar, Binata; Garcia, Eduardo; Casas, Atzimba; Stewart, Calvin M.

    2016-01-01

    Alginate is a hydrogel commonly used for cell culture by ionically crosslinking in the presence of divalent Ca2+ ions. However these alginate gels are mechanically unstable, not permitting their use as scaffolds to engineer robust biological bone, breast, cardiac or tumor tissues. This issue can be addressed via encapsulation of multi-walled carbon nanotubes (MWCNT) serving as a reinforcing phase while being dispersed in a continuous phase of alginate. We hypothesized that adding functionalized MWCNT to alginate, would yield composite gels with distinctively different mechanical, physical and biological characteristics in comparison to alginate alone. Resultant MWCNT-alginate gels were porous, and showed significantly less degradation after 14 days compared to alginate alone. In vitro cell-studies showed enhanced HeLa cell adhesion and proliferation on the MWCNT-alginate compared to alginate. The extent of cell proliferation was greater when cultured atop 1 and 3 mg/ml MWCNT-alginate; although all MWCNT-alginates lead to enhanced cell cluster formation compared to alginate alone. Among all the MWCNT-alginates, the 1 mg/ml gels showed significantly greater stiffness compared to all other cases. These results provide an important basis for the development of the MWCNT-alginates as novel substrates for cell culture applications, cell therapy and tissue engineering. PMID:27578567

  7. Development of functionalized multi-walled carbon-nanotube-based alginate hydrogels for enabling biomimetic technologies.

    PubMed

    Joddar, Binata; Garcia, Eduardo; Casas, Atzimba; Stewart, Calvin M

    2016-01-01

    Alginate is a hydrogel commonly used for cell culture by ionically crosslinking in the presence of divalent Ca(2+) ions. However these alginate gels are mechanically unstable, not permitting their use as scaffolds to engineer robust biological bone, breast, cardiac or tumor tissues. This issue can be addressed via encapsulation of multi-walled carbon nanotubes (MWCNT) serving as a reinforcing phase while being dispersed in a continuous phase of alginate. We hypothesized that adding functionalized MWCNT to alginate, would yield composite gels with distinctively different mechanical, physical and biological characteristics in comparison to alginate alone. Resultant MWCNT-alginate gels were porous, and showed significantly less degradation after 14 days compared to alginate alone. In vitro cell-studies showed enhanced HeLa cell adhesion and proliferation on the MWCNT-alginate compared to alginate. The extent of cell proliferation was greater when cultured atop 1 and 3 mg/ml MWCNT-alginate; although all MWCNT-alginates lead to enhanced cell cluster formation compared to alginate alone. Among all the MWCNT-alginates, the 1 mg/ml gels showed significantly greater stiffness compared to all other cases. These results provide an important basis for the development of the MWCNT-alginates as novel substrates for cell culture applications, cell therapy and tissue engineering. PMID:27578567

  8. Selectively crosslinked hyaluronic acid hydrogels for sustained release formulation of erythropoietin.

    PubMed

    Motokawa, Keiko; Hahn, Sei Kwang; Nakamura, Teruo; Miyamoto, Hajime; Shimoboji, Tsuyoshi

    2006-09-01

    A novel sustained release formulation of erythropoietin (EPO) was developed using hyaluronic acid (HA) hydrogels. For the preparation of HA hydrogels, adipic acid dihydrazide grafted HA (HA-ADH) was synthesized and analyzed with (1)H NMR. The degree of HA-ADH modification was about 69%. EPO was in situ encapsulated into HA-ADH hydrogels through a selective cross-linking reaction of bis(sulfosuccinimidyl) suberate (BS(3)) to hydrazide group (pK(a) = 3.0) of HA-ADH rather than to amine group (pK(a) > 9) of EPO. The denaturation of EPO during HA-ADH hydrogel synthesis was drastically reduced with decreasing pH from 7.4 to 4.8. The specific reactivity of BS(3) to hydrazide at pH = 4.8 might be due to its low pK(a) compared with that of amine. In vitro release of EPO in phosphate buffered saline at 37 degrees C showed that EPO was released rapidly for 2 days and then slowly up to 4 days from HA-ADH hydrogels. When the hydrogels were dried at 37 degrees C for a day, however, longer release of EPO up to 3 weeks could be demonstrated. According to in vivo release test of EPO from HA-ADH hydrogels in SD rats, elevated EPO concentration higher than 0.1 ng/mL could be maintained from 7 days up to 18 days depending on the preparation methods of HA-ADH hydrogels. There was no adverse effect during and after HA-ADH hydrogel implantation. PMID:16721757

  9. Self-Healing Conductive Injectable Hydrogels with Antibacterial Activity as Cell Delivery Carrier for Cardiac Cell Therapy.

    PubMed

    Dong, Ruonan; Zhao, Xin; Guo, Baolin; Ma, Peter X

    2016-07-13

    Cell therapy is a promising strategy to regenerate cardiac tissue for myocardial infarction. Injectable hydrogels with conductivity and self-healing ability are highly desirable as cell delivery vehicles for cardiac regeneration. Here, we developed self-healable conductive injectable hydrogels based on chitosan-graft-aniline tetramer (CS-AT) and dibenzaldehyde-terminated poly(ethylene glycol) (PEG-DA) as cell delivery vehicles for myocardial infarction. Self-healed electroactive hydrogels were obtained after mixing CS-AT and PEG-DA solutions at physiological conditions. Rapid self-healing behavior was investigated by rheometer. Swelling behavior, morphology, mechanical strength, electrochemistry, conductivity, adhesiveness to host tissue and antibacterial property of the injectable hydrogels were fully studied. Conductivity of the hydrogels is ∼10(-3) S·cm(-1), which is quite close to native cardiac tissue. Proliferation of C2C12 myoblasts in the hydrogel showed its good biocompatibility. After injection, viability of C2C12 cells in the hydrogels showed no significant difference with that before injection. Two different cell types were successfully encapsulated in the hydrogels by self-healing effect. Cell delivery profile of C2C12 myoblasts and H9c2 cardiac cells showed a tunable release rate, and in vivo cell retention in the conductive hydrogels was also studied. Subcutaneous injection and in vivo degradation of the hydrogels demonstrated their injectability and biodegradability. Together, these self-healing conductive biodegradable injectable hydrogels are excellent candidates as cell delivery vehicle for cardiac repair. PMID:27311127

  10. Application of modified-alginate encapsulated carbonate producing bacteria in concrete: a promising strategy for crack self-healing

    PubMed Central

    Wang, Jianyun; Mignon, Arn; Snoeck, Didier; Wiktor, Virginie; Van Vliergerghe, Sandra; Boon, Nico; De Belie, Nele

    2015-01-01

    Self-healing concrete holds promising benefits to reduce the cost for concrete maintenance and repair as cracks are autonomously repaired without any human intervention. In this study, the application of a carbonate precipitating bacterium Bacillus sphaericus was explored. Regarding the harsh condition in concrete, B. sphaericus spores were first encapsulated into a modified-alginate based hydrogel (AM-H) which was proven to have a good compatibility with the bacteria and concrete regarding the influence on bacterial viability and concrete strength. Experimental results show that the spores were still viable after encapsulation. Encapsulated spores can precipitate a large amount of CaCO3 in/on the hydrogel matrix (around 70% by weight). Encapsulated B. sphaericus spores were added into mortar specimens and bacterial in situ activity was demonstrated by the oxygen consumption on the mimicked crack surface. While specimens with free spores added showed no oxygen consumption. This indicates the efficient protection of the hydrogel for spores in concrete. To conclude, the AM-H encapsulated carbonate precipitating bacteria have great potential to be used for crack self-healing in concrete applications. PMID:26528254

  11. Application of modified-alginate encapsulated carbonate producing bacteria in concrete: a promising strategy for crack self-healing.

    PubMed

    Wang, Jianyun; Mignon, Arn; Snoeck, Didier; Wiktor, Virginie; Van Vliergerghe, Sandra; Boon, Nico; De Belie, Nele

    2015-01-01

    Self-healing concrete holds promising benefits to reduce the cost for concrete maintenance and repair as cracks are autonomously repaired without any human intervention. In this study, the application of a carbonate precipitating bacterium Bacillus sphaericus was explored. Regarding the harsh condition in concrete, B. sphaericus spores were first encapsulated into a modified-alginate based hydrogel (AM-H) which was proven to have a good compatibility with the bacteria and concrete regarding the influence on bacterial viability and concrete strength. Experimental results show that the spores were still viable after encapsulation. Encapsulated spores can precipitate a large amount of CaCO3 in/on the hydrogel matrix (around 70% by weight). Encapsulated B. sphaericus spores were added into mortar specimens and bacterial in situ activity was demonstrated by the oxygen consumption on the mimicked crack surface. While specimens with free spores added showed no oxygen consumption. This indicates the efficient protection of the hydrogel for spores in concrete. To conclude, the AM-H encapsulated carbonate precipitating bacteria have great potential to be used for crack self-healing in concrete applications.

  12. Three-dimensional direct cell patterning in collagen hydrogels with near-infrared femtosecond laser

    PubMed Central

    Hribar, Kolin C.; Meggs, Kyle; Liu, Justin; Zhu, Wei; Qu, Xin; Chen, Shaochen

    2015-01-01

    We report a methodology for three-dimensional (3D) cell patterning in a hydrogel in situ. Gold nanorods within a cell-encapsulating collagen hydrogel absorb a focused near-infrared femtosecond laser beam, locally denaturing the collagen and forming channels, into which cells migrate, proliferate, and align in 3D. Importantly, pattern resolution is tunable based on writing speed and laser power, and high cell viability (>90%) is achieved using higher writing speeds and lower laser intensities. Overall, this patterning technique presents a flexible direct-write method that is applicable in tissue engineering systems where 3D alignment is critical (such as vascular, neural, cardiac, and muscle tissue). PMID:26603915

  13. Three-dimensional direct cell patterning in collagen hydrogels with near-infrared femtosecond laser

    NASA Astrophysics Data System (ADS)

    Hribar, Kolin C.; Meggs, Kyle; Liu, Justin; Zhu, Wei; Qu, Xin; Chen, Shaochen

    2015-11-01

    We report a methodology for three-dimensional (3D) cell patterning in a hydrogel in situ. Gold nanorods within a cell-encapsulating collagen hydrogel absorb a focused near-infrared femtosecond laser beam, locally denaturing the collagen and forming channels, into which cells migrate, proliferate, and align in 3D. Importantly, pattern resolution is tunable based on writing speed and laser power, and high cell viability (>90%) is achieved using higher writing speeds and lower laser intensities. Overall, this patterning technique presents a flexible direct-write method that is applicable in tissue engineering systems where 3D alignment is critical (such as vascular, neural, cardiac, and muscle tissue).

  14. Anthelmintic activity of Eucalyptus staigeriana encapsulated oil on sheep gastrointestinal nematodes.

    PubMed

    de Aquino Mesquita, Mayara; E Silva Júnior, João Batista; Panassol, Andressa Machado; de Oliveira, Erick Falcão; Vasconcelos, Ana Lourdes Camurça Fernandes; de Paula, Haroldo Cesar Beserra; Bevilaqua, Claudia Maria Leal

    2013-09-01

    The anthelmintic activity of Eucalyptus staigeriana essential oil has previously been inferred through both in vitro and in vivo tests. Thus, the encapsulation process generally improves oil stability, promotes controlled release in target organs, reduces dosage, and increases efficacy. The aims of this study were to analyze and encapsulate E. staigeriana essential oil and to verify its anthelmintic activity in sheep. The encapsulation process was accomplished through emulsion using a 4% chitosan solution as the matrix. Anthelmintic activity was established through controlled testing using 18 sheep that were separated into three groups: group 1 was treated with a single dose of 365 mg/kg of E. staigeriana encapsulated oil, group 2 was treated with 200 μg/kg of ivermectin, and group 3 was treated with a 4% chitosan solution as a negative control. The sheep were euthanized and necropsied 13 days posttreatment to evaluate worm burden. Limonene was the major oil component (72.91%). The final product was a hydrogel with 36.5% (m/m) E. staigeriana essential oil per gram. Its efficacy on gastrointestinal nematodes was 60.79%. The highest efficacy was against abomasal nematodes, with 83.75% efficacy. Further studies are necessary to explore the possibility of increasing the hydrogel efficacy; nevertheless, we can state that E. staigeriana encapsulated oil had anthelmintic activity and can be used in gastrointestinal nematode control.

  15. Subcutaneous encapsulated fat necrosis.

    PubMed

    Aydin, Dogu; Berg, Jais O

    2016-04-01

    We have described subcutaneous encapsulated fat necrosis, which is benign, usually asymptomatic and underreported. Images have only been published on two earlier occasions, in which the necrotic nodules appear "pearly" than the cloudy yellow surface in present case. The presented image may help future surgeons to establish the diagnosis peroperatively. PMID:27099753

  16. Encapsulation materials research

    NASA Technical Reports Server (NTRS)

    Willis, P.

    1985-01-01

    The successful use of outdoor mounting racks as an accelerated aging technique (these devices are called optal reactors); a beginning list of candidate pottant materials for thin-film encapsulation, which process at temperatures well below 100 C; and description of a preliminary flame retardant formulation for ethylene vinyl acetate which could function to increase module flammability ratings are presented.

  17. Maintenance of Normoglycemia in Diabetic Mice by Subcutaneous Xenografts of Encapsulated Islets

    NASA Astrophysics Data System (ADS)

    Lacy, Paul E.; Hegre, Orion D.; Gerasimidi-Vazeou, Andriani; Gentile, Frank T.; Dionne, Keith E.

    1991-12-01

    The goal of islet transplantation in human diabetes is to maintain the islet grafts in the recipients without the use of immunosuppression. One approach is to encapsulate the donor islets in permselective membranes. Hollow fibers fabricated from an acrylic copolymer were used to encapsulate small numbers of rat islets that were immobilized in an alginate hydrogel for transplantation in diabetic mice. The fibers were biocompatible, prevented rejection, and maintained normoglycemia when transplanted intraperitoneally; hyperglycemia returned when the fibers were removed at 60 days. Normoglycemia was also maintained by subcutaneous implants that had an appropriately constructed outer surface on the fibers.

  18. Long-term three-dimensional neural tissue cultures in functionalized self-assembling peptide hydrogels, matrigel and collagen I.

    PubMed

    Koutsopoulos, Sotirios; Zhang, Shuguang

    2013-02-01

    Designer peptides with self-assembling properties form nanofibers which are further organized to form a hydrogel consisting of up to 99.5% water. We present here the encapsulation of neural stem cells into peptide nanofiber hydrogel scaffolds. This results in three-dimensional (3-D) neural tissue cultures in which neural stem cells differentiate into progenitor neural cells, neurons, astrocytes and oligodendrocytes when cultured in serum-free medium. Cell survival studies showed that neural cells in peptide hydrogels thrive for at least 5 months. In contrast, neural stem cells encapsulated in Collagen I were poorly differentiated and did not migrate significantly, thus forming clusters. We show that for culture periods of 1-2 weeks, neural stem cells proliferate and differentiate better in Matrigel. However, in long-term studies, the population of cells in Matrigel decreases whereas better cell survival rates are observed in neural tissue cultures in peptide hydrogels. Peptide functionalization with cell adhesion and cell differentiation motifs show superior cell survival and differentiation properties compared to those observed upon culturing neural cells in non-modified peptide hydrogels. These designed 3-D engineered tissue culturing systems have a potential use as tissue surrogates for tissue regeneration. The well-defined chemical and physical properties of the peptide nanofiber hydrogels and the use of serum-free medium allow for more realistic biological studies of neural cells in a biomimetic 3-D environment.

  19. Wet Winding Improves Coil Encapsulation

    NASA Technical Reports Server (NTRS)

    Hill, A. J.

    1987-01-01

    Wet-winding process encapsulates electrical coils more uniformily than conventional processes. Process requires no vacuum pump and adapts easily to existing winding machines. Encapsulant applied to each layer of wire as soon as added to coil. Wet-winding process eliminates voids, giving more uniformly encapsulated coil.

  20. Co-delivery of doxorubicin and (131)I by thermosensitive micellar-hydrogel for enhanced in situ synergetic chemoradiotherapy.

    PubMed

    Huang, Pingsheng; Zhang, Yumin; Wang, Weiwei; Zhou, Junhui; Sun, Yu; Liu, Jinjian; Kong, Deling; Liu, Jianfeng; Dong, Anjie

    2015-12-28

    Combined chemoradiotherapy is potent to defeat malignant tumor. Concurrent delivery of radioisotope with chemotherapeutic drugs, which also act as the radiosensitizer, to tumor tissues by a single vehicle is essential to achieve this objective. To this end, a macroscale injectable and thermosensitive micellar-hydrogel (MHg) depot was constructed by thermo-induced self-aggregation of poly(ε-caprolactone-co-1,4,8-trioxa[4.6]spiro-9-undecanone)-poly(ethyleneglycol)-poly(ε-caprolactone-co-1,4,8-trioxa[4.6]spiro-9-undecanone) (PECT) triblock copolymer micelles (Ms), which could not only serve as a micellar drug reservoir to locally deliver concentrated nano chemotherapeutic drugs, but also immobilize radioisotopes at the internal irradiation hot focus. Doxorubicin (DOX) and iodine-131 labeled hyaluronic acid ((131)I-HA) were used as the model therapeutic agents. The aqueous mixture of drug-loaded PECT micelles and (131)I-HA exhibited sol-to-gel transition around body temperature. In vitro drug release study indicated that PECT/DOX Ms were sustainedly shed from the native PECT/DOX MHg formulation, which could be internalized by tumor cells with rapid intracellular DOX release. This hydrogel formulation demonstrated considerable in vitro antitumor effect as well as remarkable radiosensitization. In vivo subcutaneous injection of PECT MHg demonstrated that (131)I isotope was immobilized stably at the injection location and no obvious indication of damage to major organs were observed as indicated by the histopathological analysis. Furthermore, the peritumoral injection of chemo-radiation therapeutic agents-encapsulated MHg formulation on tumor-bearing nude mice resulted in the desired combined treatment effect, which significantly improved the tumor growth inhibition efficiency with minimized drug-associated side effects to major organs. Consequently, such a thermosensitive MHg formulation, which enabled the precise control over the dosage and ratio of combination

  1. Hyaluronidase-incorporated hyaluronic acid-tyramine hydrogels for the sustained release of trastuzumab.

    PubMed

    Xu, Keming; Lee, Fan; Gao, Shujun; Tan, Min-Han; Kurisawa, Motoichi

    2015-10-28

    We developed an injectable hydrogel system for the sustained release of protein drugs that incorporated both protein drugs and hyaluronidase. Trastuzumab and hyaluronidase were incorporated in hydrogels composed of hyaluronic acid-tyramine (HA-Tyr) conjugates through the enzymatic crosslinking utilizing hydrogen peroxide (H2O2) and horseradish peroxidase (HRP). Through electrostatic interactions with the HA, trastuzumab was retained in the hydrogel to minimize its burst release. Hyaluronidase was incorporated in the hydrogel to release trastuzumab from the hydrogels. The hydrogels were degraded and showed sustained release of trastuzumab in phosphate buffer over four weeks in vitro. Both the rates of drug release and gel degradation were controlled by the concentration of hyaluronidase. Trastuzumab released from the hydrogels inhibited the proliferation of BT-474 cells in vitro. In an animal model, the single subcutaneous injection of a mixture solution of HA-Tyr conjugates, H2O2, HRP, trastuzumab and hyaluronidase inhibited tumor growth significantly, whereas injection of trastuzumab alone at the same dose failed to do so. Compared to trastuzumab alone, the hyaluronidase-incorporated HA-Tyr hydrogels improved the pharmacokinetic profile of trastuzumab in the plasma of mice. Furthermore, they were fully degraded over two weeks, and the formation of fibrous capsules was not observed in mice. PMID:26260452

  2. Hyaluronidase-incorporated hyaluronic acid-tyramine hydrogels for the sustained release of trastuzumab.

    PubMed

    Xu, Keming; Lee, Fan; Gao, Shujun; Tan, Min-Han; Kurisawa, Motoichi

    2015-10-28

    We developed an injectable hydrogel system for the sustained release of protein drugs that incorporated both protein drugs and hyaluronidase. Trastuzumab and hyaluronidase were incorporated in hydrogels composed of hyaluronic acid-tyramine (HA-Tyr) conjugates through the enzymatic crosslinking utilizing hydrogen peroxide (H2O2) and horseradish peroxidase (HRP). Through electrostatic interactions with the HA, trastuzumab was retained in the hydrogel to minimize its burst release. Hyaluronidase was incorporated in the hydrogel to release trastuzumab from the hydrogels. The hydrogels were degraded and showed sustained release of trastuzumab in phosphate buffer over four weeks in vitro. Both the rates of drug release and gel degradation were controlled by the concentration of hyaluronidase. Trastuzumab released from the hydrogels inhibited the proliferation of BT-474 cells in vitro. In an animal model, the single subcutaneous injection of a mixture solution of HA-Tyr conjugates, H2O2, HRP, trastuzumab and hyaluronidase inhibited tumor growth significantly, whereas injection of trastuzumab alone at the same dose failed to do so. Compared to trastuzumab alone, the hyaluronidase-incorporated HA-Tyr hydrogels improved the pharmacokinetic profile of trastuzumab in the plasma of mice. Furthermore, they were fully degraded over two weeks, and the formation of fibrous capsules was not observed in mice.

  3. Rejection of intradermally injected syngeneic tumor cells from mice by specific elimination of tumor-associated macrophages with liposome-encapsulated dichloromethylene diphosphonate, followed by induction of CD11b(+)/CCR3(-)/Gr-1(-) cells cytotoxic against the tumor cells.

    PubMed

    Takahashi, Takeshi; Ibata, Minenori; Yu, Zhiqian; Shikama, Yosuke; Endo, Yasuo; Miyauchi, Yasunori; Nakamura, Masanori; Tashiro-Yamaji, Junko; Miura-Takeda, Sayako; Shimizu, Tetsunosuke; Okada, Masashi; Ueda, Koichi; Kubota, Takahiro; Yoshida, Ryotaro

    2009-12-01

    Tumor cell expansion relies on nutrient supply, and oxygen limitation is central in controlling neovascularization and tumor spread. Monocytes infiltrate into tumors from the circulation along defined chemotactic gradients, differentiate into tumor-associated macrophages (TAMs), and then accumulate in the hypoxic areas. Elevated TAM density in some regions or overall TAM numbers are correlated with increased tumor angiogenesis and a reduced host survival in the case of various types of tumors. To evaluate the role of TAMs in tumor growth, we here specifically eliminated TAMs by in vivo application of dichloromethylene diphosphonate (DMDP)-containing liposomes to mice bearing various types of tumors (e.g., B16 melanoma, KLN205 squamous cell carcinoma, and 3LL Lewis lung cancer), all of which grew in the dermis of syngeneic mouse skin. When DMDP-liposomes were injected into four spots to surround the tumor on day 0 or 5 after tumor injection and every third day thereafter, both the induction of TAMs and the tumor growth were suppressed in a dose-dependent and injection number-dependent manner; and unexpectedly, the tumor cells were rejected by 12 injections of three times-diluted DMDP-liposomes. The absence of TAMs in turn induced the invasion of inflammatory cells into or around the tumors; and the major population of effector cells cytotoxic against the target tumor cells were CD11b(+) monocytic macrophages, but not CCR3(+) eosinophils or Gr-1(+) neutrophils. These results indicate that both the absence of TAMs and invasion of CD11b(+) monocytic macrophages resulted in the tumor rejection.

  4. Cyclodextrin Inclusion Polymers Forming Hydrogels

    NASA Astrophysics Data System (ADS)

    Li, Jun

    This chapter reviews the advances in the developments of supramolecular hydrogels based on the polypseudorotaxanes and polyrotaxanes formed by inclusion complexes of cyclodextrins threading onto polymer chains. Both physical and chemical supramolecular hydrogels of many different types are discussed with respect to their preparation, structure, property, and gelation mechanism. A large number of physical supramolecular hydrogels were formed induced by self-assembly of densely packed cyclodextrin rings threaded on polymer or copolymer chains acting as physical crosslinking points. The thermo-reversible and thixotropic properties of these physical supramolecular hydrogels have inspired their applications as injectable drug delivery systems. Chemical supramolecular hydrogels synthesized from polypseudorotaxanes and polyrotaxanes were based on the chemical crosslinking of either the cyclodextrin molecules or the included polymer chains. The chemical supramolecular hydrogels were often made biodegradable through incorporation of hydrolyzable threading polymers, end caps, or crosslinkers, for their potential applications as biomaterials.

  5. Degradable hydrogels derived from PEG‐diacrylamide for hepatic tissue engineering

    PubMed Central

    Stevens, Kelly R.; Miller, Jordan S.; Blakely, Brandon L.; Chen, Christopher S.

    2015-01-01

    Abstract Engineered tissue constructs have the potential to augment or replace whole organ transplantation for the treatment of liver failure. Poly(ethylene glycol) (PEG)‐based systems are particularly promising for the construction of engineered liver tissue due to their biocompatibility and amenability to modular addition of bioactive factors. To date, primary hepatocytes have been successfully encapsulated in non‐degradable hydrogels based on PEG‐diacrylate (PEGDA). In this study, we describe a hydrogel system based on PEG‐diacrylamide (PEGDAAm) containing matrix‐metalloproteinase sensitive (MMP‐sensitive) peptide in the hydrogel backbone that is suitable for hepatocyte culture both in vitro and after implantation. By replacing hydrolytically unstable esters in PEGDA with amides in PEGDAAm, resultant hydrogels resisted non‐specific hydrolysis, while still allowing for MMP‐mediated hydrogel degradation. Optimization of polymerization conditions, hepatocellular density, and multicellular tissue composition modulated both the magnitude and longevity of hepatic function in vitro. Importantly, hepatic PEGDAAm‐based tissues survived and functioned for over 3 weeks after implantation ectopically in the intraperitoneal (IP) space of nude mice. Together, these studies suggest that MMP‐sensitive PEGDAAm‐based hydrogels may be a useful material system for applications in tissue engineering and regenerative medicine. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 103A: 3331–3338, 2015. PMID:25851120

  6. Immobilization of Cell-Adhesive Laminin Peptides in Degradable PEGDA Hydrogels Influences Endothelial Cell Tubulogenesis

    PubMed Central

    Ali, Saniya; Saik, Jennifer E.; Gould, Dan J.; Dickinson, Mary E.

    2013-01-01

    Abstract Attachment, spreading, and organization of endothelial cells into tubule networks are mediated by interactions between cells in the extracellular microenvironment. Laminins are key extracellular matrix components and regulators of cell adhesion, migration, and proliferation. In this study, laminin-derived peptides were conjugated to poly(ethylene glycol) (PEG) monoacrylate and covalently incorporated into degradable PEG diacrylate (PEGDA) hydrogels to investigate the influence of these peptides on endothelial cellular adhesion and function in organizing into tubule networks. Degradable PEGDA hydrogels were synthesized by incorporating a matrix metalloproteinase (MMP)–sensitive peptide, GGGPQGIWGQGK (abbreviated PQ), into the polymer backbone. The secretion of MMP-2 and MMP-9 by endothelial cells promotes polymer degradation and consequently cell migration. We demonstrate the formation of extensive networks of tubule-like structures by encapsulated human umbilical vein endothelial cells in hydrogels with immobilized synthetic peptides. The resulting structures were stabilized by pericyte precursor cells (10T1/2s) in vitro. During tubule formation and stabilization, extracellular matrix proteins such as collagen IV and laminin were deposited. Tubules formed in the matrix of metalloproteinase sensitive hydrogels were visualized from 7 days to 4 weeks in response to different combination of peptides. Moreover, hydrogels functionalized with laminin peptides and transplanted in a mouse cornea supported the ingrowth and attachment of endothelial cells to the hydrogel during angiogenesis. Results of this study illustrate the use of laminin-derived peptides as potential candidates for modification of biomaterials to support angiogenesis. PMID:23914330

  7. Mesenchymal stem cell-laden anti-inflammatory hydrogel enhances diabetic wound healing.

    PubMed

    Chen, Shixuan; Shi, Junbin; Zhang, Min; Chen, Yinghua; Wang, Xueer; Zhang, Lei; Tian, Zhihui; Yan, Yuan; Li, Qinglin; Zhong, Wen; Xing, Malcolm; Zhang, Lu; Zhang, Lin

    2015-12-08

    The purpose of this study was to permit bone marrow mesenchymal stem cells (BMSCs) to reach their full potential in the treatment of chronic wounds. A biocompatible multifunctional crosslinker based temperature sensitive hydrogel was developed to deliver BMSCs, which improve the chronic inflammation microenvironments of wounds. A detailed in vitro investigation found that the hydrogel is suitable for BMSC encapsulation and can promote BMSC secretion of TGF-β1 and bFGF. In vivo, full-thickness skin defects were made on the backs of db/db mice to mimic diabetic ulcers. It was revealed that the hydrogel can inhibit pro-inflammatory M1 macrophage expression. After hydrogel association with BMSCs treated the wound, significantly greater wound contraction was observed in the hydrogel + BMSCs group. Histology and immunohistochemistry results confirmed that this treatment contributed to the rapid healing of diabetic skin wounds by promoting granulation tissue formation, angiogenesis, extracellular matrix secretion, wound contraction, and re-epithelialization. These results show that a hydrogel laden with BMSCs may be a promising therapeutic strategy for the management of diabetic ulcers.

  8. In situ floating hydrogel for intravesical delivery of adriamycin without blocking urinary tract.

    PubMed

    Lin, Tingsheng; Wu, Jinhui; Zhao, Xiaozhi; Lian, Huibo; Yuan, Ahu; Tang, Xiaolei; Zhao, Sai; Guo, Hongqian; Hu, Yiqiao

    2014-03-01

    Drug solution is commonly used in conventional intravesical instillation. However, most of them would be easily eliminated by voiding, which significantly limit their efficacy. Recent advances in intravesical drug delivery are to use hydrogels as drug reservoir to extend the drug residence time in bladder. However, because of the high viscosity of hydrogel, urinary obstruction is usually existed during the intravesical instillation. To overcome these, we developed a floating hydrogel for the delivery of Adriamycin (ADR). The floating hydrogel was made of ADR, thermosensitive polymer (Poloxamer 407) and NaHCO₃, which was liquid at low temperature, whereas formed gel at high temperature. In the presence of H⁺, NaHCO₃ decomposed and produced CO₂ that attached on the surface of hydrogel and helped the hydrogel float on the urine. Hence, the urinary tract will not be blocked. Meanwhile, the encapsulated ADR released in a controlled manner. These results suggest that the floating gel may have promising applications in intravesical therapy for bladder cancer. PMID:24449076

  9. An injectable extracellular matrix derived hydrogel for meniscus repair and regeneration.

    PubMed

    Wu, Jinglei; Ding, Qing; Dutta, Ahana; Wang, Yezhou; Huang, Yi-Hui; Weng, Hong; Tang, Liping; Hong, Yi

    2015-04-01

    Tissue-derived extracellular matrix (ECM) biomaterials to regenerate the meniscus have gained increasing attention in treating meniscus injuries and diseases, particularly for aged persons and athletes. However, ECM scaffold has poor cell infiltration and can only be implanted using surgical procedures. To overcome these limitations, we developed an injectable ECM hydrogel material from porcine meniscus via modified decellularization and enzymatic digestion. This meniscus-derived ECM hydrogel exhibited a fibrous morphology with tunable compression and initial modulus. It had a good injectability evidenced by syringe injection into mouse subcutaneous tissue. The hydrogel showed good cellular compatibility by promoting the growth of both bovine chondrocytes and mouse 3T3 fibroblasts encapsulated in the hydrogel for 2 weeks. It also promoted cell infiltration as shown in both in vitro cell culture and in vivo mouse subcutaneous implantation. The in vivo study revealed that the ECM hydrogel possessed good tissue compatibility after 7 days of implantation. The results support the great potential of the newly produced injectable meniscus-derived ECM hydrogel specifically for meniscus repair and regeneration.

  10. Porous hyaluronic acid hydrogels for localized nonviral DNA delivery in a diabetic wound healing model.

    PubMed

    Tokatlian, Talar; Cam, Cynthia; Segura, Tatiana

    2015-05-01

    The treatment of impaired wounds requires the use of biomaterials that can provide mechanical and biological queues to the surrounding environment to promote angiogenesis, granulation tissue formation, and wound closure. Porous hydrogels show promotion of angiogenesis, even in the absence of proangiogenic factors. It is hypothesized that the added delivery of nonviral DNA encoding for proangiogenic growth factors can further enhance this effect. Here, 100 and 60 μm porous and nonporous (n-pore) hyaluronic acid-MMP hydrogels with encapsulated reporter (pGFPluc) or proangiogenic (pVEGF) plasmids are used to investigate scaffold-mediated gene delivery for local gene therapy in a diabetic wound healing mouse model. Porous hydrogels allow for significantly faster wound closure compared with n-pore hydrogels, which do not degrade and essentially provide a mechanical barrier to closure. Interestingly, the delivery of pDNA/PEI polyplexes positively promotes granulation tissue formation even when the DNA does not encode for an angiogenic protein. And although transfected cells are present throughout the granulation tissue surrounding, all hydrogels at 2 weeks, pVEGF delivery does not further enhance the angiogenic response. Despite this, the presence of transfected cells shows promise for the use of polyplex-loaded porous hydrogels for local gene delivery in the treatment of diabetic wounds.

  11. Extracellular-matrix-based and Arg-Gly-Asp-modified photopolymerizing hydrogels for cartilage tissue engineering.

    PubMed

    Kim, Hwan D; Heo, Jiseung; Hwang, Yongsung; Kwak, Seon-Yeong; Park, Ok Kyu; Kim, Hyunbum; Varghese, Shyni; Hwang, Nathaniel S

    2015-02-01

    Articular cartilage damage is a persistent and increasing problem with the aging population. Strategies to achieve complete repair or functional restoration remain a challenge. Photopolymerizing-based hydrogels have long received an attention in the cartilage tissue engineering, due to their unique bioactivities, flexible method of synthesis, range of constituents, and desirable physical characteristics. In the present study, we have introduced unique bioactivity within the photopolymerizing-based hydrogels by copolymerizing polyethylene glycol (PEG) macromers with methacrylated extracellular matrix (ECM) molecules (hyaluronic acid and chondroitin sulfate [CS]) and integrin binding peptides (RGD peptide). Results indicate that cellular morphology, as observed by the actin cytoskeleton structures, was strongly dependent on the type of ECM component as well as the presence of integrin binding moieties. Further, CS-based hydrogel with integrin binding RGD moieties increased the lubricin (or known as superficial zone protein [SZP]) gene expression of the encapsulated chondrocytes. Additionally, CS-based hydrogel displayed cell-responsive degradation and resulted in increased DNA, GAG, and collagen accumulation compared with other hydrogels. This study demonstrates that integrin-mediated interactions within CS microenvironment provide an optimal hydrogel scaffold for cartilage tissue engineering application.

  12. Degradable hydrogels derived from PEG-diacrylamide for hepatic tissue engineering.

    PubMed

    Stevens, Kelly R; Miller, Jordan S; Blakely, Brandon L; Chen, Christopher S; Bhatia, Sangeeta N

    2015-10-01

    Engineered tissue constructs have the potential to augment or replace whole organ transplantation for the treatment of liver failure. Poly(ethylene glycol) (PEG)-based systems are particularly promising for the construction of engineered liver tissue due to their biocompatibility and amenability to modular addition of bioactive factors. To date, primary hepatocytes have been successfully encapsulated in non-degradable hydrogels based on PEG-diacrylate (PEGDA). In this study, we describe a hydrogel system based on PEG-diacrylamide (PEGDAAm) containing matrix-metalloproteinase sensitive (MMP-sensitive) peptide in the hydrogel backbone that is suitable for hepatocyte culture both in vitro and after implantation. By replacing hydrolytically unstable esters in PEGDA with amides in PEGDAAm, resultant hydrogels resisted non-specific hydrolysis, while still allowing for MMP-mediated hydrogel degradation. Optimization of polymerization conditions, hepatocellular density, and multicellular tissue composition modulated both the magnitude and longevity of hepatic function in vitro. Importantly, hepatic PEGDAAm-based tissues survived and functioned for over 3 weeks after implantation ectopically in the intraperitoneal (IP) space of nude mice. Together, these studies suggest that MMP-sensitive PEGDAAm-based hydrogels may be a useful material system for applications in tissue engineering and regenerative medicine. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 103A: 3331-3338, 2015.

  13. Directing valvular interstitial cell myofibroblast-like differentiation in a hybrid hydrogel platform.

    PubMed

    Hjortnaes, Jesper; Camci-Unal, Gulden; Hutcheson, Joshua D; Jung, Sung Mi; Schoen, Frederick J; Kluin, Jolanda; Aikawa, Elena; Khademhosseini, Ali

    2015-01-01

    Three dimensional (3D) hydrogel platforms are powerful tools, providing controllable, physiologically relevant microenvironments that could aid in understanding how various environmental factors direct valvular interstitial cell (VIC) phenotype. Continuous activation of VICs and their transformation from quiescent fibroblast to activated myofibroblast phenotype is considered to be an initiating event in the onset of valve disease. However, the relative contribution VIC phenotypes is poorly understood since most 2D culture systems lead to spontaneous VIC myofibroblastic activation. Here, a hydrogel platform composed of photocrosslinkable versions of native valvular extracellular matrix components-methacrylated hyaluronic acid (HAMA) and methacrylated gelatin (GelMA)-is proposed as a 3D culture system to study VIC phenotypic changes. These results show that VIC myofibroblast-like differentiation occurs spontaneously in mechanically soft GelMA hydrogels. Conversely, differentiation of VICs encapsulated in HAMA-GelMA hybrid hydrogels, does not occur spontaneously and requires exogenous delivery of TGFβ1, indicating that hybrid hydrogels can be used to study cytokine-dependent transition of VICs. This study demonstrates that a hybrid hydrogel platform can be used to maintain a quiescent VIC phenotype and study the effect of environmental cues on VIC activation, which will aid in understanding pathobiology of valvular disease.

  14. Degradable hydrogels derived from PEG-diacrylamide for hepatic tissue engineering

    PubMed Central

    Stevens, Kelly R.; Miller, Jordan S.; Blakely, Brandon L.; Chen, Christopher S.; Bhatia, Sangeeta N.

    2016-01-01

    Engineered tissue constructs have the potential to augment or replace whole organ transplantation for the treatment of liver failure. Poly(ethylene glycol) (PEG)-based systems are particularly promising for the construction of engineered liver tissue due to their biocompatibility and amenability to modular addition of bioactive factors. To date, primary hepatocytes have been successfully encapsulated in non-degradable hydrogels based on PEG-diacrylate (PEGDA). In this study, we describe a hydrogel system based on PEG-diacrylamide (PEGDAAm) containing matrix-metalloproteinase sensitive (MMP-sensitive) peptide in the hydrogel backbone that is suitable for hepatocyte culture both in vitro and after implantation. By replacing hydrolytically unstable esters in PEGDA with amides in PEGDAAm, resultant hydrogels resisted non-specific hydrolysis, while still allowing for MMP-mediated hydrogel degradation. Optimization of polymerization conditions, hepatocellular density, and multicellular tissue composition modulated both the magnitude and longevity of hepatic function in vitro. Importantly, hepatic PEGDAAm-based tissues survived and functioned for over three weeks after implantation ectopically in the intraperitoneal (IP) space of nude mice. Together, these studies suggest that MMP-sensitive PEGDAAm-based hydrogels may be a useful material system for applications in tissue engineering and regenerative medicine. PMID:25851120

  15. Interfacial thiol-ene photo-click reactions for forming multilayer hydrogels

    PubMed Central

    Shih, Han; Fraser, Andrew K.; Lin, Chien-Chi

    2014-01-01

    Interfacial visible light-mediated thiol-ene photo-click reactions were developed for preparing step-growth hydrogels with multilayer structures. The effect of a non-cleavage type photoinitiator eosin-Y on visible light-mediated thiol-ene photopolymerization was first characterized using in situ photo-rheometry, gel fraction, and equilibrium swelling ratio. Next, spectrophotometric properties of eosin-Y in the presence of various relevant macromer species were evaluated using UV/Vis spectrometry. It was determined that eosin-Y was able to re-initiate thiol-ene photo-click reaction even after light exposure. Due to its small molecular weight, most eosin-Y molecules readily leached out from the hydrogels. The diffusion of residual eosin-Y from pre-formed hydrogels was exploited for fabricating multilayer step-growth hydrogels. Interfacial hydrogel coating was formed via the same visible light-mediated gelation mechanism without adding fresh initiator. The thickness of the thiol-ene gel coating could be easily controlled by adjusting visible light exposure time, eosin-Y concentration initially loaded in the core gel, or macromer concentration in the coating solution. The major benefits of this interfacial thiol-ene coating system include its simplicity and cytocompatibility. The formation of thiol-ene hydrogels and coatings neither requires nor generates any cytotoxic components. This new gelation chemistry may have great utilities in controlled release of multiple sensitive growth factors and encapsulation of multiple cell types for tissue regeneration. PMID:23384151

  16. Extracellular-matrix-based and Arg-Gly-Asp-modified photopolymerizing hydrogels for cartilage tissue engineering.

    PubMed

    Kim, Hwan D; Heo, Jiseung; Hwang, Yongsung; Kwak, Seon-Yeong; Park, Ok Kyu; Kim, Hyunbum; Varghese, Shyni; Hwang, Nathaniel S

    2015-02-01

    Articular cartilage damage is a persistent and increasing problem with the aging population. Strategies to achieve complete repair or functional restoration remain a challenge. Photopolymerizing-based hydrogels have long received an attention in the cartilage tissue engineering, due to their unique bioactivities, flexible method of synthesis, range of constituents, and desirable physical characteristics. In the present study, we have introduced unique bioactivity within the photopolymerizing-based hydrogels by copolymerizing polyethylene glycol (PEG) macromers with methacrylated extracellular matrix (ECM) molecules (hyaluronic acid and chondroitin sulfate [CS]) and integrin binding peptides (RGD peptide). Results indicate that cellular morphology, as observed by the actin cytoskeleton structures, was strongly dependent on the type of ECM component as well as the presence of integrin binding moieties. Further, CS-based hydrogel with integrin binding RGD moieties increased the lubricin (or known as superficial zone protein [SZP]) gene expression of the encapsulated chondrocytes. Additionally, CS-based hydrogel displayed cell-responsive degradation and resulted in increased DNA, GAG, and collagen accumulation compared with other hydrogels. This study demonstrates that integrin-mediated interactions within CS microenvironment provide an optimal hydrogel scaffold for cartilage tissue engineering application. PMID:25266634

  17. Thiol–Ene Photopolymerizations Provide a Facile Method To Encapsulate Proteins and Maintain Their Bioactivity

    PubMed Central

    2012-01-01

    Photoinitiated polymerization remains a robust method for fabrication of hydrogels, as these reactions allow facile spatial and temporal control of gelation and high compatibility for encapsulation of cells and biologics. The chain-growth reaction of macromolecular monomers, such as acrylated PEG and hyaluronan, is commonly used to form hydrogels, but there is growing interest in step-growth photopolymerizations, such as the thiol–ene “click” reaction, as an alternative. Thiol–ene reactions are not susceptible to oxygen inhibition and rapidly form hydrogels using low initiator concentrations. In this work, we characterize the differences in recovery of bioactive proteins when exposed to similar photoinitiation conditions during thiol–ene versus acrylate polymerizations. Following exposure to chain polymerization of acrylates, lysozyme bioactivity was approximately 50%; after step-growth thiol–ene reaction, lysozyme retained nearly 100% of its prereaction activity. Bioactive protein recovery was enhanced 1000-fold in the presence of a thiol–ene reaction, relative to recovery from solutions containing identical primary radical concentrations, but without the thiol–ene components. When the cytokine TGFβ was encapsulated in PEG hydrogels formed via the thiol–ene reaction, full protein bioactivity was preserved. PMID:22741550

  18. A cisplatin slow-release hydrogel drug delivery system based on a formulation of the macrocycle cucurbit[7]uril, gelatin and polyvinyl alcohol.

    PubMed

    Oun, Rabbab; Plumb, Jane A; Wheate, Nial J

    2014-05-01

    The anticancer drug cisplatin was encapsulated within the cucurbit[7]uril macrocycle to form the host-guest complex: cisplatin@CB[7]. This was then incorporated into gelatin and 0-4% w/v polyvinyl alcohol (PVA)-based hydrogels as slow release drug delivery vehicles. The hydrogels demonstrated predicable swelling and disintegration dependent on the PVA concentration. The hydrogel with the highest PVA content was slower to swell and release drug compared with lower concentrations of PVA. The effect of the hydrogel PVA concentration on in vitro cytotoxicity was examined using A2780/CP70 ovarian cancer cells. Over the 24h drug exposure time used, hydrogels containing 4% PVA showed a 20% decrease in viable cells compared to the control, whereas hydrogels containing 0% and 2% PVA induced an 80% and 45% inhibition of cell growth, respectively. There was no measurable difference in the in vitro cytotoxicity of free cisplatin and cisplatin@CB[7] containing hydrogels. Finally, the in vivo effectiveness of a 2%-PVA hydrogel implanted under the skin of nude mice bearing A2780/CP70 xenografts showed that low dose hydrogels containing cisplatin@CB[7] (30 μg equivalent of drug) was just as effective as an intraperitoneal high dose administration of free cisplatin (150 μg) at inhibiting tumour growth.

  19. In situ injectable nano-composite hydrogel composed of curcumin, N,O-carboxymethyl chitosan and oxidized alginate for wound healing application.

    PubMed

    Li, Xingyi; Chen, Shuo; Zhang, Binjun; Li, Mei; Diao, Kai; Zhang, Zhaoliang; Li, Jie; Xu, Yu; Wang, Xianhuo; Chen, Hao

    2012-11-01

    In this paper, an in situ injectable nano-composite hydrogel composed of curcumin, N,O-carboxymethyl chitosan and oxidized alginate as a novel wound dressing was successfully developed for the dermal wound repair application. Nano-curcumin with improved stability and similar antioxidant efficiency compared with that of unmodified curcumin was developed by using methoxy poly(ethylene glycol)-b-poly(ε-caprolactone) copolymer (MPEG-PCL) as carrier followed by incorporating into the N,O-carboxymethyl chitosan/oxidized alginate hydrogel (CCS-OA hydrogel). In vitro release study revealed that the encapsulated nano-curcumin was slowly released from CCS-OA hydrogel with the diffusion-controllable manner at initial phase followed by the corrosion manner of hydrogel at terminal phase. In vivo wound healing study was performed by injecting hydrogels on rat dorsal wounds. Histological study revealed that application of nano-curcumin/CCS-OA hydrogel could significantly enhance the re-epithelialization of epidermis and collagen deposition in the wound tissue. DNA, protein and hydroxyproline content in wound tissue from each group were measured on 7th day of post wounding and the results also indicated that combined using nano-curcumin and CCS-OA hydrogel could significantly accelerate the process of wound healing. Therefore, all these results suggested that the developed nano-curcumin/CCS-OA hydrogel as a promising wound dressing might have potential application in the wound healing. PMID:22903048

  20. Microfluidics assisted generation of innovative polysaccharide hydrogel microparticles.

    PubMed

    Marquis, M; Davy, J; Cathala, B; Fang, A; Renard, D

    2015-02-13

    Capillary flow-based approach such as microfluidic devices offer a number of advantages over conventional flow control technology because they ensure highly versatile geometry and can be used to produce monodisperse spherical and non-spherical polymeric microparticles. Based on the principle of a flow-focusing device to emulsify the coflow of aqueous solutions in an organic phase, we were able to produce the following innovative polysaccharide hydrogel microparticles: - Janus hydrogel microparticles made of pectin–pectin (homo Janus) and pectin–alginate (hetero Janus) were produced. The efficiency of separation of the two hemispheres was investigated by confocal scanning laser microscopy (CSLM) of previously labelled biopolymers. The Janus structure was confirmed by subjecting each microparticle hemisphere to specific enzymatic degradation. As a proof of concept, free BSA or BSA grafted with dextran, were encapsulated in each hemisphere of the hetero Janus hydrogel microparticles. While BSA, free or grafted with dextran, was always confined in the alginate hemisphere, a fraction of BSA diffused from the pectin to the alginate hemisphere. Methoxy groups along the pectin chain will be responsible of the decrease of the number of attractive electrostatic interactions occurring between amino groups of BSA and carboxylic groups of pectin. - Pectin hydrogel microparticles of complex shapes were successfully produced by combining on-chip the phenomenon of gelation and water diffusion induced self-assembly, using dimethyl carbonate as continuous phase, or by deformation of the pre-gelled droplets off-chip at a fluid–fluid interface. Sphere, oblate ellipsoid, torus or mushroom-type morphologies were thus obtained. Moreover, it was established that after crossing the interface during their collect, mushroom-type microparticles did not migrate in the calcium or DMC phase but stayed at the liquid–liquid interface. These new and original hydrogel microparticles will

  1. Microfluidics assisted generation of innovative polysaccharide hydrogel microparticles.

    PubMed

    Marquis, M; Davy, J; Cathala, B; Fang, A; Renard, D

    2015-02-13

    Capillary flow-based approach such as microfluidic devices offer a number of advantages over conventional flow control technology because they ensure highly versatile geometry and can be used to produce monodisperse spherical and non-spherical polymeric microparticles. Based on the principle of a flow-focusing device to emulsify the coflow of aqueous solutions in an organic phase, we were able to produce the