NASA Astrophysics Data System (ADS)
Dahiya, R. P.
1987-06-01
The present conference on the development status of hydrogen energy technologies considers electrolytic hydrogen production, photoelectrolytic hydrogen production, microorganic hydrogen production, OTEC hydrogen production, solid-state materials for hydrogen storage, and a thin-film hydrogen storage system. Also discussed are the cryogenic storage of hydrogen; liquid hydrogen fuel for ground, air, and naval vehicles; hydrogen-fuel internal combustion engines; the use of hydrogen for domestic, commercial, and industrial applications; hydrogen fuel-cell development; enzyme electrodes for the use of hydrogen-rich fuels in biochemical fuel cells; an analysis of H2-O2 MHD generators; and hydrogen energy technology characterization and evaluation on the basis of an input-output structure.
A Few Facts about Hydrogen [and] Hydrogen Bibliography.
ERIC Educational Resources Information Center
Hinds, H. Roger
Divided into two sections, this publication presents facts about and the characteristics of hydrogen and a bibliography on hydrogen. The first section lists nine facts on what hydrogen is, four on where hydrogen is found, nine on how hydrogen is used, nine on how hydrogen can be used, and 14 on how hydrogen is made. Also included are nine…
Container and method for absorbing and reducing hydrogen concentration
Wicks, George G.; Lee, Myung W.; Heung, Leung K.
2001-01-01
A method for absorbing hydrogen from an enclosed environment comprising providing a vessel; providing a hydrogen storage composition in communication with a vessel, the hydrogen storage composition further comprising a matrix defining a pore size which permits the passage of hydrogen gas while blocking the passage of gaseous poisons; placing a material within the vessel, the material evolving hydrogen gas; sealing the vessel; and absorbing the hydrogen gas released into the vessel by the hydrogen storage composition. A container for absorbing evolved hydrogen gas comprising: a vessel having an interior and adapted for receiving materials which release hydrogen gas; a hydrogen absorbing composition in communication with the interior, the composition defining a matrix surrounding a hydrogen absorber, the matrix permitting the passage of hydrogen gas while excluding gaseous poisons; wherein, when the vessel is sealed, hydrogen gas, which is released into the vessel interior, is absorbed by the hydrogen absorbing composition.
Hydrogen environment embrittlement
NASA Technical Reports Server (NTRS)
Gray, H. R.
1972-01-01
Hydrogen embrittlement is classified into three types: internal reversible hydrogen embrittlement, hydrogen reaction embrittlement, and hydrogen environment embrittlement. Characteristics of and materials embrittled by these types of hydrogen embrittlement are discussed. Hydrogen environment embrittlement is reviewed in detail. Factors involved in standardizing test methods for detecting the occurrence of and evaluating the severity of hydrogen environment embrittlement are considered. The effect of test technique, hydrogen pressure, purity, strain rate, stress concentration factor, and test temperature are discussed. Additional research is required to determine whether hydrogen environment embrittlement and internal reversible hydrogen embrittlement are similar or distinct types of embrittlement.
Method and System for Hydrogen Evolution and Storage
Thorn, David L.; Tumas, William; Hay, P. Jeffrey; Schwarz, Daniel E.; Cameron, Thomas M.
2008-10-21
A method and system for storing and evolving hydrogen employ chemical compounds that can be hydrogenated to store hydrogen and dehydrogenated to evolve hydrogen. A catalyst lowers the energy required for storing and evolving hydrogen. The method and system can provide hydrogen for devices that consume hydrogen as fuel.
Hydrogen embrittlement in nickel-hydrogen cells
NASA Technical Reports Server (NTRS)
Gross, Sidney
1989-01-01
It was long known that many strong metals can become weakened and brittle as the result of the accumulation of hydrogen within the metal. When the metal is stretched, it does not show normal ductile properties, but fractures prematurely. This problem can occur as the result of a hydrogen evolution reaction such as corrosion or electroplating, or due to hydrogen in the environment at the metal surface. High strength alloys such as steels are especially susceptible to hydrogen embrittlement. Nickel-hydrogen cells commonly use Inconel 718 alloy for the pressure container, and this also is susceptible to hydrogen embrittlement. Metals differ in their susceptibility to embrittlement. Hydrogen embrittlement in nickel-hydrogen cells is analyzed and the reasons why it may or may not occur are discussed. Although Inconel 718 can display hydrogen embrittlement, experience has not identified any problem with nickel-hydrogen cells. No hydrogen embrittlement problem is expected with the 718 alloy pressure container used in nickel-hydrogen cells.
Kato, Ryo; Yoshimasa, Keisuke; Egashira, Tatsuya; Oya, Takahiro; Oyaizu, Kenichi; Nishide, Hiroyuki
2016-01-01
Finding a safe and efficient carrier of hydrogen is a major challenge. Recently, hydrogenated organic compounds have been studied as hydrogen storage materials because of their ability to stably and reversibly store hydrogen by forming chemical bonds; however, these compounds often suffer from safety issues and are usually hydrogenated with hydrogen at high pressure and/or temperature. Here we present a ketone (fluorenone) polymer that can be moulded as a plastic sheet and fixes hydrogen via a simple electrolytic hydrogenation at −1.5 V (versus Ag/AgCl) in water at room temperature. The hydrogenated alcohol derivative (the fluorenol polymer) reversibly releases hydrogen by heating (80 °C) in the presence of an aqueous iridium catalyst. Both the use of a ketone polymer and the efficient hydrogen fixing with water as a proton source are completely different from other (de)hydrogenated compounds and hydrogenation processes. The easy handling and mouldable polymers could suggest a pocketable hydrogen carrier. PMID:27687772
Method and system for hydrogen evolution and storage
Thorn, David L.; Tumas, William; Hay, P. Jeffrey; Schwarz, Daniel E.; Cameron, Thomas M.
2012-12-11
A method and system for storing and evolving hydrogen (H.sub.2) employ chemical compounds that can be hydrogenated to store hydrogen and dehydrogenated to evolve hydrogen. A catalyst lowers the energy required for storing and evolving hydrogen. The method and system can provide hydrogen for devices that consume hydrogen as fuel.
Duan, Yixiang; Jia, Quanxi; Cao, Wenqing
2010-11-23
A hydrogen sensor for detecting/quantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites hydrogen from a gas sample and produces light emission from excited hydrogen. A power supply provides power to the microplasma generator, and a spectrometer generates an emission spectrum from the light emission. A programmable computer is adapted for determining whether or not the gas sample includes hydrogen, and for quantitating the amount of hydrogen and/or hydrogen isotopes are present in the gas sample.
Storing Renewable Energy in the Hydrogen Cycle.
Züttel, Andreas; Callini, Elsa; Kato, Shunsuke; Atakli, Züleyha Özlem Kocabas
2015-01-01
An energy economy based on renewable energy requires massive energy storage, approx. half of the annual energy consumption. Therefore, the production of a synthetic energy carrier, e.g. hydrogen, is necessary. The hydrogen cycle, i.e. production of hydrogen from water by renewable energy, storage and use of hydrogen in fuel cells, combustion engines or turbines is a closed cycle. Electrolysis splits water into hydrogen and oxygen and represents a mature technology in the power range up to 100 kW. However, the major technological challenge is to build electrolyzers in the power range of several MW producing high purity hydrogen with a high efficiency. After the production of hydrogen, large scale and safe hydrogen storage is required. Hydrogen is stored either as a molecule or as an atom in the case of hydrides. The maximum volumetric hydrogen density of a molecular hydrogen storage is limited to the density of liquid hydrogen. In a complex hydride the hydrogen density is limited to 20 mass% and 150 kg/m(3) which corresponds to twice the density of liquid hydrogen. Current research focuses on the investigation of new storage materials based on combinations of complex hydrides with amides and the understanding of the hydrogen sorption mechanism in order to better control the reaction for the hydrogen storage applications.
Hydrogen peroxide kinetics in water radiolysis
NASA Astrophysics Data System (ADS)
Iwamatsu, Kazuhiro; Sundin, Sara; LaVerne, Jay A.
2018-04-01
The kinetics of the formation and reaction of hydrogen peroxide in the long time γ- radiolysis of water is examined using a combination of experiment with model calculations. Escape yields of hydrogen peroxide on the microsecond time scale are easily measured with added radical scavengers even with substantial amounts of initial added hydrogen peroxide. The γ-radiolysis of aqueous hydrogen peroxide solutions without added radical scavengers reach a steady state limiting concentration of hydrogen peroxide with increasing dose, and that limit is directly proportional to the initial concentration of added hydrogen peroxide. The dose necessary to reach that limiting hydrogen peroxide concentration is also proportional to the initial concentration, but dose rate has a very small effect. The addition of molecular hydrogen to aqueous solutions of hydrogen peroxide leads to a decrease in the high dose limiting hydrogen peroxide concentration that is linear with the initial hydrogen concentration, but the amount of decrease is not stoichiometric. Proton irradiations of solutions with added hydrogen peroxide and hydrogen are more difficult to predict because of the decreased yields of radicals; however, with a substantial increase in dose rate there is a sufficient decrease in radical yields that hydrogen addition has little effect on hydrogen peroxide decay.
Carbon Dioxide-Free Hydrogen Production with Integrated Hydrogen Separation and Storage.
Dürr, Stefan; Müller, Michael; Jorschick, Holger; Helmin, Marta; Bösmann, Andreas; Palkovits, Regina; Wasserscheid, Peter
2017-01-10
An integration of CO 2 -free hydrogen generation through methane decomposition coupled with hydrogen/methane separation and chemical hydrogen storage through liquid organic hydrogen carrier (LOHC) systems is demonstrated. A potential, very interesting application is the upgrading of stranded gas, for example, gas from a remote gas field or associated gas from off-shore oil drilling. Stranded gas can be effectively converted in a catalytic process by methane decomposition into solid carbon and a hydrogen/methane mixture that can be directly fed to a hydrogenation unit to load a LOHC with hydrogen. This allows for a straight-forward separation of hydrogen from CH 4 and conversion of hydrogen to a hydrogen-rich LOHC material. Both, the hydrogen-rich LOHC material and the generated carbon on metal can easily be transported to destinations of further industrial use by established transport systems, like ships or trucks. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hydrogen molecules and hydrogen-related defects in crystalline silicon
NASA Astrophysics Data System (ADS)
Fukata, N.; Sasaki, S.; Murakami, K.; Ishioka, K.; Nakamura, K. G.; Kitajima, M.; Fujimura, S.; Kikuchi, J.; Haneda, H.
1997-09-01
We have found that hydrogen exists in molecular form in crystalline silicon treated with hydrogen atoms in the downstream of a hydrogen plasma. The vibrational Raman line of hydrogen molecules is observed at 4158 cm-1 for silicon samples hydrogenated between 180 and 500 °C. The assignment of the Raman line is confirmed by its isotope shift to 2990 cm-1 for silicon treated with deuterium atoms. The Raman intensity has a maximum for hydrogenation at 400 °C. The vibrational Raman line of the hydrogen molecules is broad and asymmetric. It consists of at least two components, possibly arising from hydrogen molecules in different occupation sites in crystalline silicon. The rotational Raman line of hydrogen molecules is observed at 590 cm-1. The Raman band of Si-H stretching is observed for hydrogenation temperatures between 100 and 500 °C and the intensity has a maximum for hydrogenation at 250 °C.
Lueking, Angela [State College, PA; Narayanan, Deepa [Redmond, WA
2011-03-08
A process for making a hydrogenated carbon material is provided which includes forming a mixture of a carbon source, particularly a carbonaceous material, and a hydrogen source. The mixture is reacted under reaction conditions such that hydrogen is generated and/or released from the hydrogen source, an amorphous diamond-like carbon is formed, and at least a portion of the generated and/or released hydrogen associates with the amorphous diamond-like carbon, thereby forming a hydrogenated carbon material. A hydrogenated carbon material including a hydrogen carbon clathrate is characterized by evolution of molecular hydrogen at room temperature at atmospheric pressure in particular embodiments of methods and compositions according to the present invention.
Dense, layered membranes for hydrogen separation
Roark, Shane E.; MacKay, Richard; Mundschau, Michael V.
2006-02-21
This invention provides hydrogen-permeable membranes for separation of hydrogen from hydrogen-containing gases. The membranes are multi-layer having a central hydrogen-permeable layer with one or more catalyst layers, barrier layers, and/or protective layers. The invention also relates to membrane reactors employing the hydrogen-permeable membranes of the invention and to methods for separation of hydrogen from a hydrogen-containing gas using the membranes and reactors. The reactors of this invention can be combined with additional reactor systems for direct use of the separated hydrogen.
ERDA's Chemical Energy Storage Program
NASA Technical Reports Server (NTRS)
Swisher, J. H.; Kelley, J. H.
1977-01-01
The Chemical Energy Storage Program is described with emphasis on hydrogen storage. Storage techniques considered include pressurized hydrogen gas storage, cryogenic liquid hydrogen storage, storage in hydride compounds, and aromatic-alicyclic hydrogen storage. Some uses of energy storage are suggested. Information on hydrogen production and hydrogen use is also presented. Applications of hydrogen energy systems include storage of hydrogen for utilities load leveling, industrial marketing of hydrogen both as a chemical and as a fuel, natural gas supplementation, vehicular applications, and direct substitution for natural gas.
Guide for Hydrogen Hazards Analysis on Components and Systems
NASA Technical Reports Server (NTRS)
Beeson, Harold; Woods, Stephen
2003-01-01
The physical and combustion properties of hydrogen give rise to hazards that must be considered when designing and operating a hydrogen system. One of the major concerns in the use of hydrogen is that of fire or detonation because of hydrogen's wide flammability range, low ignition energy, and flame speed. Other concerns include the contact and interaction of hydrogen with materials, such as the hydrogen embrittlement of materials and the formation of hydrogen hydrides. The low temperature of liquid and slush hydrogen bring other concerns related to material compatibility and pressure control; this is especially important when dissimilar, adjoining materials are involved. The potential hazards arising from these properties and design features necessitate a proper hydrogen hazards analysis before introducing a material, component, or system into hydrogen service. The objective of this guide is to describe the NASA Johnson Space Center White Sands Test Facility hydrogen hazards analysis method that should be performed before hydrogen is used in components and/or systems. The method is consistent with standard practices for analyzing hazards. It is recommended that this analysis be made before implementing a hydrogen component qualification procedure. A hydrogen hazards analysis is a useful tool for hydrogen-system designers, system and safety engineers, and facility managers. A hydrogen hazards analysis can identify problem areas before hydrogen is introduced into a system-preventing damage to hardware, delay or loss of mission or objective, and possible injury or loss of life.
Liquid Organic Hydrogen Carriers (LOHCs): Toward a Hydrogen-free Hydrogen Economy.
Preuster, Patrick; Papp, Christian; Wasserscheid, Peter
2017-01-17
The need to drastically reduce CO 2 emissions will lead to the transformation of our current, carbon-based energy system to a more sustainable, renewable-based one. In this process, hydrogen will gain increasing importance as secondary energy vector. Energy storage requirements on the TWh scale (to bridge extended times of low wind and sun harvest) and global logistics of renewable energy equivalents will create additional driving forces toward a future hydrogen economy. However, the nature of hydrogen requires dedicated infrastructures, and this has prevented so far the introduction of elemental hydrogen into the energy sector to a large extent. Recent scientific and technological progress in handling hydrogen in chemically bound form as liquid organic hydrogen carrier (LOHC) supports the technological vision that a future hydrogen economy may work without handling large amounts of elemental hydrogen. LOHC systems are composed of pairs of hydrogen-lean and hydrogen-rich organic compounds that store hydrogen by repeated catalytic hydrogenation and dehydrogenation cycles. While hydrogen handling in the form of LOHCs allows for using the existing infrastructure for fuels, it also builds on the existing public confidence in dealing with liquid energy carriers. In contrast to hydrogen storage by hydrogenation of gases, such as CO 2 or N 2 , hydrogen release from LOHC systems produces pure hydrogen after condensation of the high-boiling carrier compounds. This Account highlights the current state-of-the-art in hydrogen storage using LOHC systems. It first introduces fundamental aspects of a future hydrogen economy and derives therefrom requirements for suitable LOHC compounds. Molecular structures that have been successfully applied in the literature are presented, and their property profiles are discussed. Fundamental and applied aspects of the involved hydrogenation and dehydrogenation catalysis are discussed, characteristic differences for the catalytic conversion of pure hydrocarbon and nitrogen-containing LOHC compounds are derived from the literature, and attractive future research directions are highlighted. Finally, applications of the LOHC technology are presented. This part covers stationary energy storage (on-grid and off-grid), hydrogen logistics, and on-board hydrogen production for mobile applications. Technology readiness of these fields is very different. For stationary energy storage systems, the feasibility of the LOHC technology has been recently proven in commercial demonstrators, and cost aspects will decide on their further commercial success. For other highly attractive options, such as, hydrogen delivery to hydrogen filling stations or direct-LOHC-fuel cell applications, significant efforts in fundamental and applied research are still needed and, hopefully, encouraged by this Account.
Commissioning of cryogenic system for China Spallation Neutron Source
NASA Astrophysics Data System (ADS)
Ye, Bin; He, Chongchao; Li, Na; Ding, Meiying; Wang, Yaqiong; Yu, Zhang; He, Kun
2017-12-01
China Spallation Neutron Source(CSNS) cryogenic system provides supercritical cryogenic hydrogen to neutron moderators, including a helium refrigerator, hydrogen loop and hydrogen safety equipment. The helium refrigerator is provided by Linde with cooling capacity of 2200 W at 20 K. Hydrogen loop system mainly includes cryogenic hydrogen pipes, hydrogen circulator cold-box and accumulator cold-box. Cryogenic hydrogen pump, ortho-para convertor, helium-hydrogen heat-exchanger, hydrogen heater and accumulator are integrated in hydrogen circulation cold-box, and accumulator cold-box. Hydrogen safety equipment includes safety valves, rupture disk, hydrogen sensor, flame detector and other equipment to ensure that cryogenic system in dangerous situations will go down, vents, or takes other measures. The cryogenic system commissioning work includes four steps. First, in order to test the refrigerating capacity of refrigerator, when acceptance testing, refrigerator internal heater was used as thermal load. Second, using simulation load as heat load of moderator, hydrogen loop use helium instead of hydrogen, and cooled down to 20 K, then re-warming and test the leak detection of hydrogen loop system. Third, base on the step 2, using hydrogen as working medium, and optimized the control logic. Forth, cryogenic system with the moderators joint commissioning. Now, cryogenic system is connected with the moderators, and the forth step will be carried out in the near future.
NASA Astrophysics Data System (ADS)
Takakuwa, Osamu; Yamabe, Junichiro; Matsunaga, Hisao; Furuya, Yoshiyuki; Matsuoka, Saburo
2017-11-01
Hydrogen-induced ductility loss and related fracture morphologies are comprehensively discussed in consideration of the hydrogen distribution in a specimen with external and internal hydrogen by using 300-series austenitic stainless steels (Types 304, 316, 316L), high-strength austenitic stainless steels (HP160, XM-19), precipitation-hardened iron-based super alloy (A286), low-alloy Cr-Mo steel (JIS-SCM435), and low-carbon steel (JIS-SM490B). External hydrogen is realized by a non-charged specimen tested in high-pressure gaseous hydrogen, and internal hydrogen is realized by a hydrogen-charged specimen tested in air or inert gas. Fracture morphologies obtained by slow-strain-rate tensile tests (SSRT) of the materials with external or internal hydrogen could be comprehensively categorized into five types: hydrogen-induced successive crack growth, ordinary void formation, small-sized void formation related to the void sheet, large-sized void formation, and facet formation. The mechanisms of hydrogen embrittlement are broadly classified into hydrogen-enhanced decohesion (HEDE) and hydrogen-enhanced localized plasticity (HELP). In the HEDE model, hydrogen weakens interatomic bonds, whereas in the HELP model, hydrogen enhances localized slip deformations. Although various fracture morphologies are produced by external or internal hydrogen, these morphologies can be explained by the HELP model rather than by the HEDE model.
Hydrogen production from carbonaceous material
Lackner, Klaus S.; Ziock, Hans J.; Harrison, Douglas P.
2004-09-14
Hydrogen is produced from solid or liquid carbon-containing fuels in a two-step process. The fuel is gasified with hydrogen in a hydrogenation reaction to produce a methane-rich gaseous reaction product, which is then reacted with water and calcium oxide in a hydrogen production and carbonation reaction to produce hydrogen and calcium carbonate. The calcium carbonate may be continuously removed from the hydrogen production and carbonation reaction zone and calcined to regenerate calcium oxide, which may be reintroduced into the hydrogen production and carbonation reaction zone. Hydrogen produced in the hydrogen production and carbonation reaction is more than sufficient both to provide the energy necessary for the calcination reaction and also to sustain the hydrogenation of the coal in the gasification reaction. The excess hydrogen is available for energy production or other purposes. Substantially all of the carbon introduced as fuel ultimately emerges from the invention process in a stream of substantially pure carbon dioxide. The water necessary for the hydrogen production and carbonation reaction may be introduced into both the gasification and hydrogen production and carbonation reactions, and allocated so as transfer the exothermic heat of reaction of the gasification reaction to the endothermic hydrogen production and carbonation reaction.
Liu, Chi; Kurokawa, Ryosuke; Fujino, Masayuki; Hirano, Shinichi; Sato, Bunpei; Li, Xiao-Kang
2014-01-01
Hydrogen exerts beneficial effects in disease animal models of ischemia-reperfusion injury as well as inflammatory and neurological disease. Additionally, molecular hydrogen is useful for various novel medical and therapeutic applications in the clinical setting. In the present study, the hydrogen concentration in rat blood and tissue was estimated. Wistar rats were orally administered hydrogen super-rich water (HSRW), intraperitoneal and intravenous administration of hydrogen super-rich saline (HSRS), and inhalation of hydrogen gas. A new method for determining the hydrogen concentration was then applied using high-quality sensor gas chromatography, after which the specimen was prepared via tissue homogenization in airtight tubes. This method allowed for the sensitive and stable determination of the hydrogen concentration. The hydrogen concentration reached a peak at 5 minutes after oral and intraperitoneal administration, compared to 1 minute after intravenous administration. Following inhalation of hydrogen gas, the hydrogen concentration was found to be significantly increased at 30 minutes and maintained the same level thereafter. These results demonstrate that accurately determining the hydrogen concentration in rat blood and organ tissue is very useful and important for the application of various novel medical and therapeutic therapies using molecular hydrogen. PMID:24975958
First principles study of hydrogen behaviors in hexagonal tungsten carbide
NASA Astrophysics Data System (ADS)
Kong, Xiang-Shan; You, Yu-Wei; Liu, C. S.; Fang, Q. F.; Chen, Jun-Ling; Luo, G.-N.
2011-11-01
Understanding the behaviors of hydrogen in hexagonal tungsten carbide (WC) is of particular interest for fusion reactor design due to the presence of WC in the divertor of fusion reactors. Here, we have used first principles calculations to study the hydrogen behavior in WC. It is found that the most stable interstitial site for the hydrogen atom is the projection of the octahedral interstitial site on tungsten basal plane, followed by the site near the projection of the octahedral interstitial site on carbon basal plane. The binding energy between two interstitial hydrogen atoms is negative, suggesting that hydrogen itself is not capable of trapping another hydrogen atoms to form hydrogen molecule. The calculated results on the interaction between hydrogen and vacancy indicate that hydrogen atom is preferably trapped by vacancy defects and hydrogen molecule can not be formed in mono-vacancy. In addition, the hydrogen atom bound to carbon is only found in tungsten vacancy. We also study the migrations of hydrogen in WC and find that the interstitial hydrogen atom prefers to diffuse along the c-axis. Our studies provide some explanations for the results of the thermal desorption process of energetic hydrogen ion implanted into WC.
Fuel Cell and Hydrogen Technology Validation | Hydrogen and Fuel Cells |
NREL Fuel Cell and Hydrogen Technology Validation Fuel Cell and Hydrogen Technology Validation The NREL technology validation team works on validating hydrogen fuel cell electric vehicles; hydrogen fueling infrastructure; hydrogen system components; and fuel cell use in early market applications such as
Sofer, Zdeněk; Jankovský, Ondřej; Šimek, Petr; Soferová, Lýdie; Sedmidubský, David; Pumera, Martin
2014-02-21
Hydrogenated graphene and graphane are in the forefront of graphene research. Hydrogenated graphene is expected to exhibit ferromagnetism, tunable band gap, fluorescence, and high thermal and low electrical conductivity. Currently available techniques for fabrication of highly hydrogenated graphene use either a liquid ammonia (-33 °C) reduction pathway using alkali metals or plasma low pressure or ultra high pressure hydrogenation. These methods are either technically challenging or pose inherent risks. Here we wish to demonstrate that highly hydrogenated graphene can be prepared at room temperature in the aqueous phase by reduction of graphene oxide by nascent hydrogen generated by dissolution of metal in acid. Nascent hydrogen is known to be a strong reducing agent. We studied the influence of metal involved in nascent hydrogen generation and characterized the samples in detail. The resulting reduced graphenes and hydrogenated graphenes were characterized in detail. The resulting hydrogenated graphene had the chemical formula C1.16H1O0.66. Such simple hydrogenation of graphene is of high importance for large scale safe synthesis of hydrogenated graphene.
Measuring Hydrogen Concentrations in Metals
NASA Technical Reports Server (NTRS)
Danford, M. D.
1985-01-01
Commercial corrosion-measurement system adapted to electrochemical determination of hydrogen concentrations in metals. New technique based on diffusion of hydrogen through foil specimen of metal. In sample holder, hydrogen produced on one side of foil, either by corrosion reaction or by cathodic current. Hydrogen diffused through foil removed on other side by constant anode potential, which leads to oxidation of hydrogen to water. Anode current is measure of concentration of hydrogen diffusing through foil. System used to study hydrogen uptake, hydrogen elimination by baking, effect of heat treatment, and effect of electroplating on high-strength steels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheng, WC; Zhuang, ZB; Gao, MR
2015-01-08
The hydrogen oxidation/evolution reactions are two of the most fundamental reactions in distributed renewable electrochemical energy conversion and storage systems. The identification of the reaction descriptor is therefore of critical importance for the rational catalyst design and development. Here we report the correlation between hydrogen oxidation/evolution activity and experimentally measured hydrogen binding energy for polycrystalline platinum examined in several buffer solutions in a wide range of electrolyte pH from 0 to 13. The hydrogen oxidation/evolution activity obtained using the rotating disk electrode method is found to decrease with the pH, while the hydrogen binding energy, obtained from cyclic voltammograms, linearlymore » increases with the pH. Correlating the hydrogen oxidation/evolution activity to the hydrogen binding energy renders a monotonic decreasing hydrogen oxidation/evolution activity with the hydrogen binding energy, strongly supporting the hypothesis that hydrogen binding energy is the sole reaction descriptor for the hydrogen oxidation/evolution activity on monometallic platinum.« less
Analysis of hydrogen isotope mixtures
Villa-Aleman, Eliel
1994-01-01
An apparatus and method for determining the concentrations of hydrogen isotopes in a sample. Hydrogen in the sample is separated from other elements using a filter selectively permeable to hydrogen. Then the hydrogen is condensed onto a cold finger or cryopump. The cold finger is rotated as pulsed laser energy vaporizes a portion of the condensed hydrogen, forming a packet of molecular hydrogen. The desorbed hydrogen is ionized and admitted into a mass spectrometer for analysis.
Micro-machined thin film hydrogen gas sensor, and method of making and using the same
NASA Technical Reports Server (NTRS)
DiMeo, Jr., Frank (Inventor); Bhandari, Gautam (Inventor)
2001-01-01
A hydrogen sensor including a thin film sensor element formed, e.g., by metalorganic chemical vapor deposition (MOCVD) or physical vapor deposition (PVD), on a microhotplate structure. The thin film sensor element includes a film of a hydrogen-interactive metal film that reversibly interacts with hydrogen to provide a correspondingly altered response characteristic, such as optical transmissivity, electrical conductance, electrical resistance, electrical capacitance, magnetoresistance, photoconductivity, etc., relative to the response characteristic of the film in the absence of hydrogen. The hydrogen-interactive metal film may be overcoated with a thin film hydrogen-permeable barrier layer to protect the hydrogen-interactive film from deleterious interaction with non-hydrogen species. The hydrogen sensor of the invention may be usefully employed for the detection of hydrogen in an environment susceptible to the incursion or generation of hydrogen and may be conveniently configured as a hand-held apparatus.
Friedman, Joseph [Encino, CA; Oberg, Carl L [Canoga Park, CA; Russell, Larry H [Agoura, CA
1981-01-01
Hydrogenation reaction apparatus comprising a housing having walls which define a reaction zone and conduits for introducing streams of hydrogen and oxygen into the reaction zone, the oxygen being introduced into a central portion of the hydrogen stream to maintain a boundary layer of hydrogen along the walls of the reaction zone. A portion of the hydrogen and all of the oxygen react to produce a heated gas stream having a temperature within the range of from 1100.degree. to 1900.degree. C., while the boundary layer of hydrogen maintains the wall temperature at a substantially lower temperature. The heated gas stream is introduced into a hydrogenation reaction zone and provides the source of heat and hydrogen for a hydrogenation reaction. There also is provided means for quenching the products of the hydrogenation reaction. The present invention is particularly suitable for the hydrogenation of low-value solid carbonaceous materials to provide high yields of more valuable liquid and gaseous products.
Hydrogen purification systems for PEM fuel cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varma, Arvind; Hwang, Hyun Tae; Al-Kukhun, Ahmad
A system for generating and purifying hydrogen. To generate hydrogen, the system includes inlets configured to receive a hydrogen carrier and an inert insulator, a mixing chamber configured to combine the hydrogen carrier and the inert insulator, a heat exchanger configured to apply heat to the mixture of hydrogen carrier and the inert insulator, wherein the applied heat results in the generation of hydrogen from the hydrogen carrier, and an outlet configured to release the generated hydrogen. To purify hydrogen, the system includes a primary inlet to receive a starting material and an ammonia filtration subassembly, which may include anmore » absorption column configured to absorb the ammonia into water for providing purified hydrogen at a first purity level. The ammonia filtration subassembly may also include an adsorbent member configured to adsorb ammonia from the starting material into an adsorbent for providing purified hydrogen at a second purity level.« less
Friedman, J.; Oberg, C. L.; Russell, L. H.
1981-06-23
Hydrogenation reaction apparatus is described comprising a housing having walls which define a reaction zone and conduits for introducing streams of hydrogen and oxygen into the reaction zone, the oxygen being introduced into a central portion of the hydrogen stream to maintain a boundary layer of hydrogen along the walls of the reaction zone. A portion of the hydrogen and all of the oxygen react to produce a heated gas stream having a temperature within the range of from 1,100 to 1,900 C, while the boundary layer of hydrogen maintains the wall temperature at a substantially lower temperature. The heated gas stream is introduced into a hydrogenation reaction zone and provides the source of heat and hydrogen for a hydrogenation reaction. There also is provided means for quenching the products of the hydrogenation reaction. The present invention is particularly suitable for the hydrogenation of low-value solid carbonaceous materials to provide high yields of more valuable liquid and gaseous products. 2 figs.
Boron-Based Hydrogen Storage: Ternary Borides and Beyond
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vajo, John J.
DOE continues to seek reversible solid-state hydrogen materials with hydrogen densities of ≥11 wt% and ≥80 g/L that can deliver hydrogen and be recharged at moderate temperatures (≤100 °C) and pressures (≤100 bar) enabling incorporation into hydrogen storage systems suitable for transportation applications. Boron-based hydrogen storage materials have the potential to meet the density requirements given boron’s low atomic weight, high chemical valance, and versatile chemistry. However, the rates of hydrogen exchange in boron-based compounds are thus far much too slow for practical applications. Although contributing to the high hydrogen densities, the high valance of boron also leads to slowmore » rates of hydrogen exchange due to extensive boron-boron atom rearrangements during hydrogen cycling. This rearrangement often leads to multiple solid phases occurring over hydrogen release and recharge cycles. These phases must nucleate and react with each other across solid-solid phase boundaries leading to energy barriers that slow the rates of hydrogen exchange. This project sought to overcome the slow rates of hydrogen exchange in boron-based hydrogen storage materials by minimizing the number of solid phases and the boron atom rearrangement over a hydrogen release and recharge cycle. Two novel approaches were explored: 1) developing matched pairs of ternary borides and mixed-metal borohydrides that could exchange hydrogen with only one hydrogenated phase (the mixed-metal borohydride) and only one dehydrogenated phase (the ternary boride); and 2) developing boranes that could release hydrogen by being lithiated using lithium hydride with no boron-boron atom rearrangement.« less
Hydrogen Data | Geospatial Data Science | NREL
Hydrogen Data Hydrogen Data This hydrogen data estimates the potential for producing hydrogen from Coordinate System Name: GCS_North_American_1983 Coverage File Last Updated Metadata KMZ File Hydrogen Zip of hydrogen could be produced annually from wind, solar, and biomass resources in the United States
Sequential desorption energy of hydrogen from nickel clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deepika,; Kumar, Rakesh, E-mail: rakesh@iitrpr.ac.in; R, Kamal Raj.
2015-06-24
We report reversible Hydrogen adsorption on Nickel clusters, which act as a catalyst for solid state storage of Hydrogen on a substrate. First-principles technique is employed to investigate the maximum number of chemically adsorbed Hydrogen molecules on Nickel cluster. We observe a maximum of four Hydrogen molecules adsorbed per Nickel atom, but the average Hydrogen molecules adsorbed per Nickel atom decrease with cluster size. The dissociative chemisorption energy per Hydrogen molecule and sequential desorption energy per Hydrogen atom on Nickel cluster is found to decrease with number of adsorbed Hydrogen molecules, which on optimization may help in economical storage andmore » regeneration of Hydrogen as a clean energy carrier.« less
Membrane for hydrogen recovery from streams containing hydrogen sulfide
Agarwal, Pradeep K.
2007-01-16
A membrane for hydrogen recovery from streams containing hydrogen sulfide is provided. The membrane comprises a substrate, a hydrogen permeable first membrane layer deposited on the substrate, and a second membrane layer deposited on the first layer. The second layer contains sulfides of transition metals and positioned on the on a feed side of the hydrogen sulfide stream. The present invention also includes a method for the direct decomposition of hydrogen sulfide to hydrogen and sulfur.
Hydrogen-Induced Plastic Deformation in ZnO
NASA Astrophysics Data System (ADS)
Lukáč, F.; Čížek, J.; Vlček, M.; Procházka, I.; Anwand, W.; Brauer, G.; Traeger, F.; Rogalla, D.; Becker, H.-W.
In the present work hydrothermally grown ZnO single crystals covered with Pd over-layer were electrochemically loaded with hydrogen and the influence of hydrogen on ZnO micro structure was investigated by positron annihilation spectroscopy (PAS). Nuclear reaction analysis (NRA) was employed for determination of depth profile of hydrogen concentration in the sample. NRA measurements confirmed that a substantial amount of hydrogen was introduced into ZnO by electrochemical charging. The bulk hydrogen concentration in ZnO determined by NRA agrees well with the concentration estimated from the transported charge using the Faraday's law. Moreover, a subsurface region with enhanced hydrogen concentration was found in the loaded crystals. Slow positron implantation spectroscopy (SPIS) investigations of hydrogen-loaded crystal revealed enhanced concentration of defects in the subsurface region. This testifies hydrogen-induced plastic deformation of the loaded crystal. Absorbed hydrogen causes a significant lattice expansion. At low hydrogen concentrations this expansion is accommodated by elastic straining, but at higher concentrations hydrogen-induced stress exceeds the yield stress in ZnO and plastic deformation of the loaded crystal takes place. Enhanced hydrogen concentration detected in the subsurface region by NRA is, therefore, due to excess hydrogen trapped at open volume defects introduced by plastic deformation. Moreover, it was found that hydrogen-induced plastic deformation in the subsurface layer leads to typical surface modification: formation of hexagonal shape pyramids on the surface due to hydrogen-induced slip in the [0001] direction.
Composition and method for hydrogen storage
NASA Technical Reports Server (NTRS)
Mao, Wendy L. (Inventor); Mao, Ho-Kwang (Inventor)
2004-01-01
A method for hydrogen storage includes providing water and hydrogen gas to a containment volume, reducing the temperature of the water and hydrogen gas to form a hydrogen clathrate at a first cryogenic temperature and a first pressure and maintaining the hydrogen clathrate at second cryogenic temperature within a temperature range of up to 250 K to effect hydrogen storage. The low-pressure hydrogen hydrate includes H.sub.2 O molecules, H.sub.2 molecules and a unit cell including polyhedron cages of hydrogen-bonded frameworks of the H.sub.2 O molecules built around the H.sub.2 molecules.
Process for hydrogenating coal and coal solvents
Tarrer, Arthur R.; Shridharani, Ketan G.
1983-01-01
A novel process is described for the hydrogenation of coal by the hydrogenation of a solvent for the coal in which the hydrogenation of the coal solvent is conducted in the presence of a solvent hydrogenation catalyst of increased activity, wherein the hydrogenation catalyst is produced by reacting ferric oxide with hydrogen sulfide at a temperature range of 260.degree. C. to 315.degree. C. in an inert atmosphere to produce an iron sulfide hydrogenation catalyst for the solvent. Optimally, the reaction temperature is 275.degree. C. Alternately, the reaction can be conducted in a hydrogen atmosphere at 350.degree. C.
Study on Introduction of CO2 Free Energy to Japan with Liquid Hydrogen
NASA Astrophysics Data System (ADS)
Kamiya, Shoji; Nishimura, Motohiko; Harada, Eichi
In Japan, both CO2(Carbon dioxide) emission reduction and energy security are the very important social issues after Fukushima Daiichi accident. On the other hand, FCV (Fuel Cell Vehicle)using hydrogen will be on the market in 2015. Introducing large mass hydrogen energy is being expected as expanding hydrogen applications, or solution to energy issues of Japan.And then,the Japanese government announced the road map for introducing hydrogen energy supply chain in this June,2014. Under these circumstances, imported CO2 free hydrogen will be one of the solutions for energy security and CO2 reduction, if the hydrogen price is affordable. To achieve this, Kawasaki Heavy Industries, Ltd. (KHI) performed a feasibility studyon CO2-free hydrogen energy supply chainfrom Australian brown coal linked with CCS (Carbon dioxide Capture and Storage) to Japan. In the study, hydrogen production systems utilizing brown coal gasificationandLH2 (liquid hydrogen)systems as storing and transporting hydrogen are examined.This paper shows the possibilityof realizingthe CO2 free hydrogen supply chain, the cost breakdown of imported hydrogen cost, its cost competitiveness with conventionalfossil, andLH2systems as key technologies of the hydrogen energy chain.
Iridium-Catalyzed Hydrogen Transfer Reactions
NASA Astrophysics Data System (ADS)
Saidi, Ourida; Williams, Jonathan M. J.
This chapter describes the application of iridium complexes to catalytic hydrogen transfer reactions. Transfer hydrogenation reactions provide an alternative to direct hydrogenation for the reduction of a range of substrates. A hydrogen donor, typically an alcohol or formic acid, can be used as the source of hydrogen for the reduction of carbonyl compounds, imines, and alkenes. Heteroaromatic compounds and even carbon dioxide have also been reduced by transfer hydrogenation reactions. In the reverse process, the oxidation of alcohols to carbonyl compounds can be achieved by iridium-catalyzed hydrogen transfer reactions, where a ketone or alkene is used as a suitable hydrogen acceptor. The reversible nature of many hydrogen transfer processes has been exploited for the racemization of alcohols, where temporary removal of hydrogen generates an achiral ketone intermediate. In addition, there is a growing body of work where temporary removal of hydrogen provides an opportunity for using alcohols as alkylating agents. In this chemistry, an iridium catalyst "borrows" hydrogen from an alcohol to give an aldehyde or ketone intermediate, which can be transformed into either an imine or alkene under the reaction conditions. Return of the hydrogen from the catalyst provides methodology for the formation of amines or C-C bonds where the only by-product is typically water.
Production of hydrogen, liquid fuels, and chemicals from catalytic processing of bio-oils
Huber, George W; Vispute, Tushar P; Routray, Kamalakanta
2014-06-03
Disclosed herein is a method of generating hydrogen from a bio-oil, comprising hydrogenating a water-soluble fraction of the bio-oil with hydrogen in the presence of a hydrogenation catalyst, and reforming the water-soluble fraction by aqueous-phase reforming in the presence of a reforming catalyst, wherein hydrogen is generated by the reforming, and the amount of hydrogen generated is greater than that consumed by the hydrogenating. The method can further comprise hydrocracking or hydrotreating a lignin fraction of the bio-oil with hydrogen in the presence of a hydrocracking catalyst wherein the lignin fraction of bio-oil is obtained as a water-insoluble fraction from aqueous extraction of bio-oil. The hydrogen used in the hydrogenating and in the hydrocracking or hydrotreating can be generated by reforming the water-soluble fraction of bio-oil.
NASA Technical Reports Server (NTRS)
Simmonds, P. G. (Inventor)
1974-01-01
The development and characteristics of a hydrogenating apparatus are described. The device consists of a reaction chamber which is selectively permeable to atomic hydrogen and catalytically active to a hydrogenating reaction. In one device, hydrogen is pumped out of the reaction chamber while the reactant remains inside to remove molecular hydrogen so that more atomic hydrogen can pass through the walls. In another device, the reactant is pumped through the reaction chamber, and the hydrogen is removed from the material leaving the chamber. The reactant is then cycled through the chamber.
Hydrogen attack - Influence of hydrogen sulfide. [on carbon steel
NASA Technical Reports Server (NTRS)
Eliezer, D.; Nelson, H. G.
1978-01-01
An experimental study is conducted on 12.5-mm-thick SAE 1020 steel (plain carbon steel) plate to assess hydrogen attack at room temperature after specimen exposure at 525 C to hydrogen and a blend of hydrogen sulfide and hydrogen at a pressure of 3.5 MN/sq m for exposure times up to 240 hr. The results are discussed in terms of tensile properties, fissure formation, and surface scales. It is shown that hydrogen attack from a high-purity hydrogen environment is severe, with the formation of numerous methane fissures and bubbles along with a significant reduction in the room-temperature tensile yield and ultimate strengths. However, no hydrogen attack is observed in the hydrogen/hydrogen sulfide blend environment, i.e. no fissure or bubble formation occurred and the room-temperature tensile properties remained unchanged. It is suggested that the observed porous discontinuous scale of FeS acts as a barrier to hydrogen entry, thus reducing its effective equilibrium solubility in the iron lattice. Therefore, hydrogen attack should not occur in pressure-vessel steels used in many coal gasification processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oudriss, A.; Le Guernic, Solenne; Wang, Zhaoying
2016-02-15
To study anisotropic hydrogen segregation and diffusion in nickel polycrystalline, Secondary Ion Mass Spectrometry (SIMS) and Electron Back Scattered Diffraction (EBSD) are integrated to investigate hydrogen distribution around grain boundaries. Hydrogen distribution in pre-charged samples were correlated with grain boundary character by integrating high-resolution grain microstructure from EBSD inverse pole figure map and low-resolution hydrogen concentration profile map from SIMS. This multimodal imaging instrumentation shows that grain boundaries in nickel can be categorized into two families based on behavior of hydrogen distribution crossing grain boundary: the first one includes random grain boundaries with fast hydrogen diffusivity, showing a sharp gapmore » for hydrogen concentration profile cross the grain boundaries. The second family are special Σ3n grain boundaries with low hydrogen diffusivity, showing a smooth gradient of hydrogen concentration cross the grain boundary. Heterogeneous hydrogen distributions due to grain boundary family revealed by SIMS/EBSD on mesoscale further validate the recent hydrogen permeation data and anisotropic ab-initio calculations in nanoscale. The results highlight the fact that grain boundaries character impacts hydrogen distribution significantly.« less
Dehydrogenation of liquid fuel in microchannel catalytic reactor
Toseland, Bernard Allen; Pez, Guido Peter; Puri, Pushpinder Singh
2010-08-03
The present invention is an improved process for the storage and delivery of hydrogen by the reversible hydrogenation/dehydrogenation of an organic compound wherein the organic compound is initially in its hydrogenated state. The improvement in the route to generating hydrogen is in the dehydrogenation step and recovery of the dehydrogenated organic compound resides in the following steps: introducing a hydrogenated organic compound to a microchannel reactor incorporating a dehydrogenation catalyst; effecting dehydrogenation of said hydrogenated organic compound under conditions whereby said hydrogenated organic compound is present as a liquid phase; generating a reaction product comprised of a liquid phase dehydrogenated organic compound and gaseous hydrogen; separating the liquid phase dehydrogenated organic compound from gaseous hydrogen; and, recovering the hydrogen and liquid phase dehydrogenated organic compound.
Dehydrogenation of liquid fuel in microchannel catalytic reactor
Toseland, Bernard Allen [Allentown, PA; Pez, Guido Peter [Allentown, PA; Puri, Pushpinder Singh [Emmaus, PA
2009-02-03
The present invention is an improved process for the storage and delivery of hydrogen by the reversible hydrogenation/dehydrogenation of an organic compound wherein the organic compound is initially in its hydrogenated state. The improvement in the route to generating hydrogen is in the dehydrogenation step and recovery of the dehydrogenated organic compound resides in the following steps: introducing a hydrogenated organic compound to a microchannel reactor incorporating a dehydrogenation catalyst; effecting dehydrogenation of said hydrogenated organic compound under conditions whereby said hydrogenated organic compound is present as a liquid phase; generating a reaction product comprised of a liquid phase dehydrogenated organic compound and gaseous hydrogen; separating the liquid phase dehydrogenated organic compound from gaseous hydrogen; and, recovering the hydrogen and liquid phase dehydrogenated organic compound.
Hydrogen purifier module with membrane support
A hydrogen purifier utilizing a hydrogen-permeable membrane to purify hydrogen from mixed gases containing hydrogen is disclosed. Improved mechanical support for the permeable membrane is described, enabling forward or reverse differential pressurization of the membrane, which further stabilizes the membrane from wrinkling upon hydrogen uptake.
2012-07-24
A hydrogen purifier utilizing a hydrogen-permeable membrane to purify hydrogen from mixed gases containing hydrogen is disclosed. Improved mechanical support for the permeable membrane is described, enabling forward or reverse differential pressurization of the membrane, which further stabilizes the membrane from wrinkling upon hydrogen uptake.
Hydrogen and Fuel Cells | NREL
Cells A hydrogen-powered fuel cell electric vehicle driving past NREL's hydrogen fueling station NREL's hydrogen and fuel cell research and development (R&D) focuses on developing, integrating, and demonstrating hydrogen production and delivery, hydrogen storage, and fuel cell technologies for transportation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varma, Arvind; Hwang, Hyun Tae; Al-Kukhun, Ahmad
A system for generating and purifying hydrogen. To generate hydrogen, the system includes inlets configured to receive a hydrogen carrier and an inert insulator, a mixing chamber configured to combine the hydrogen carrier and the inert insulator, a heat exchanger configured to apply heat to the mixture of hydrogen carrier and the inert insulator, wherein the applied heat results in the generation of hydrogen from the hydrogen carrier, and an outlet configured to release the generated hydrogen. To purify hydrogen, the system includes a primary inlet to receive a starting material and an ammonia filtration subassembly, which may include anmore » absorption column configured to absorb the ammonia into water for providing purified hydrogen at a first purity level. The ammonia filtration subassembly may also include an adsorbent member configured to adsorb ammonia from the starting material into an adsorbent for providing purified hydrogen at a second purity level.« less
Hu, Peng; Fogler, Eran; Diskin-Posner, Yael; Iron, Mark A.; Milstein, David
2015-01-01
Hydrogen is an efficient green fuel, but its low energy density when stored under high pressure or cryogenically, and safety issues, presents significant disadvantages; hence finding efficient and safe hydrogen carriers is a major challenge. Of special interest are liquid organic hydrogen carriers (LOHCs), which can be readily loaded and unloaded with considerable amounts of hydrogen. However, disadvantages include high hydrogen pressure requirements, high reaction temperatures for both hydrogenation and dehydrogenation steps, which require different catalysts, and high LOHC cost. Here we present a readily reversible LOHC system based on catalytic peptide formation and hydrogenation, using an inexpensive, safe and abundant organic compound with high potential capacity to store and release hydrogen, applying the same catalyst for loading and unloading hydrogen under relatively mild conditions. Mechanistic insight of the catalytic reaction is provided. We believe that these findings may lead to the development of an inexpensive, safe and clean liquid hydrogen carrier system. PMID:25882348
Hydrogen-based electrochemical energy storage
Simpson, Lin Jay
2013-08-06
An energy storage device (100) providing high storage densities via hydrogen storage. The device (100) includes a counter electrode (110), a storage electrode (130), and an ion conducting membrane (120) positioned between the counter electrode (110) and the storage electrode (130). The counter electrode (110) is formed of one or more materials with an affinity for hydrogen and includes an exchange matrix for elements/materials selected from the non-noble materials that have an affinity for hydrogen. The storage electrode (130) is loaded with hydrogen such as atomic or mono-hydrogen that is adsorbed by a hydrogen storage material such that the hydrogen (132, 134) may be stored with low chemical bonding. The hydrogen storage material is typically formed of a lightweight material such as carbon or boron with a network of passage-ways or intercalants for storing and conducting mono-hydrogen, protons, or the like. The hydrogen storage material may store at least ten percent by weight hydrogen (132, 134) at ambient temperature and pressure.
Determination of hydrogen abundance in selected lunar soils
NASA Technical Reports Server (NTRS)
Bustin, Roberta
1987-01-01
Hydrogen was implanted in lunar soil through solar wind activity. In order to determine the feasibility of utilizing this solar wind hydrogen, it is necessary to know not only hydrogen abundances in bulk soils from a variety of locations but also the distribution of hydrogen within a given soil. Hydrogen distribution in bulk soils, grain size separates, mineral types, and core samples was investigated. Hydrogen was found in all samples studied. The amount varied considerably, depending on soil maturity, mineral types present, grain size distribution, and depth. Hydrogen implantation is definitely a surface phenomenon. However, as constructional particles are formed, previously exposed surfaces become embedded within particles, causing an enrichment of hydrogen in these species. In view of possibly extracting the hydrogen for use on the lunar surface, it is encouraging to know that hydrogen is present to a considerable depth and not only in the upper few millimeters. Based on these preliminary studies, extraction of solar wind hydrogen from lunar soil appears feasible, particulary if some kind of grain size separation is possible.
Potential structural material problems in a hydrogen energy system
NASA Technical Reports Server (NTRS)
Gray, H. R.; Nelson, H. G.; Johnson, R. E.; Mcpherson, B.; Howard, F. S.; Swisher, J. H.
1975-01-01
Potential structural material problems that may be encountered in the three components of a hydrogen energy system - production, transmission/storage, and utilization - were identified. Hydrogen embrittlement, corrosion, oxidation, and erosion may occur during the production of hydrogen. Hydrogen embrittlement is of major concern during both transmission and utilization of hydrogen. Specific materials research and development programs necessary to support a hydrogen energy system are described.
Chromatographic Assessment of Hydrogen-Bond Donating Ability
1993-04-22
hydrogen-bond donors used in cocrystallizations . Hydrogen-bond donor solutes are chromatographed on a poly(vinylpyridine-divinylbenzene) column under...provides an a priori measure of the hydrogen- bond acidity of a potential cocrystal component. 20 DISTRIBUTION /AVAILABILITY OF ABSTRACT 21 ABSTRACT...general heuristic principle that has guided our cocrystallization studies is "the best hydrogen-bond donor hydrogen bonds to the best hydrogen-bond acceptor
Detection of hydrogen dissolved in acrylonitrile butadiene rubber by 1H nuclear magnetic resonance
NASA Astrophysics Data System (ADS)
Nishimura, Shin; Fujiwara, Hirotada
2012-01-01
Rubber materials, which are used for hydrogen gas seal, can dissolve hydrogen during exposure in high-pressure hydrogen gas. Dissolved hydrogen molecules were detected by solid state 1H NMR of the unfilled vulcanized acrylonitrile butadiene rubber. Two signals were observed at 4.5 ppm and 4.8 ppm, which were assignable to dissolved hydrogen, in the 1H NMR spectrum of NBR after being exposed 100 MPa hydrogen gas for 24 h at room temperature. These signals were shifted from that of gaseous hydrogen molecules. Assignment of the signals was confirmed by quantitative estimation of dissolved hydrogen and peak area of the signals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Xiaowang; Heo, Tae Wook; Wood, Brandon C.
Solid-state hydrogen storage materials undergo complex phase transformations whose kinetics is often limited by hydrogen diffusion. Among metal hydrides, palladium hydride undergoes a diffusional phase transformation upon hydrogen uptake, during which the hydrogen diffusivity varies with hydrogen composition and temperature. Here we perform robust statistically-averaged molecular dynamics simulations to obtain a well-converged analytical expression for hydrogen diffusivity in bulk palladium that is valid throughout all stages of the reaction. Our studies confirm significant dependence of the diffusivity on composition and temperature that elucidate key trends in the available experimental measurements. Whereas at low hydrogen compositions, a single process dominates, atmore » high hydrogen compositions, diffusion is found to exhibit behavior consistent with multiple hopping barriers. Further analysis, supported by nudged elastic band computations, suggests that the multi-barrier diffusion can be interpreted as two distinct mechanisms corresponding to hydrogen-rich and hydrogen-poor local environments.« less
Zhou, Xiaowang; Heo, Tae Wook; Wood, Brandon C.; ...
2018-03-09
Solid-state hydrogen storage materials undergo complex phase transformations whose kinetics is often limited by hydrogen diffusion. Among metal hydrides, palladium hydride undergoes a diffusional phase transformation upon hydrogen uptake, during which the hydrogen diffusivity varies with hydrogen composition and temperature. Here we perform robust statistically-averaged molecular dynamics simulations to obtain a well-converged analytical expression for hydrogen diffusivity in bulk palladium that is valid throughout all stages of the reaction. Our studies confirm significant dependence of the diffusivity on composition and temperature that elucidate key trends in the available experimental measurements. Whereas at low hydrogen compositions, a single process dominates, atmore » high hydrogen compositions, diffusion is found to exhibit behavior consistent with multiple hopping barriers. Further analysis, supported by nudged elastic band computations, suggests that the multi-barrier diffusion can be interpreted as two distinct mechanisms corresponding to hydrogen-rich and hydrogen-poor local environments.« less
NASA atomic hydrogen standards program: An update
NASA Technical Reports Server (NTRS)
Reinhardt, V. S.; Kaufmann, D. C.; Adams, W. A.; Deluca, J. J.; Soucy, J. L.
1976-01-01
Comparisons are made between the NP series and the NX series of hydrogen masers. A field operable hydrogen maser (NR series) is also described. Atomic hydrogen primary frequency standards are in development stages. Standards are being developed for a hydrogen beam frequency standard and for a concertina hydrogen maser.
Hydrogen Maps | Geospatial Data Science | NREL
Hydrogen Maps Hydrogen Maps This collection of U.S. hydrogen maps provides examples of how : Milestone Report, NREL Technical Report (2006) Hydrogen Potential from Renewable Energy Resources This study Technical Report (2007) Hydrogen Potential from Coal, Natural Gas, Nuclear, and Hydro Resources This study
Fuel Cell and Hydrogen Technologies Program | Hydrogen and Fuel Cells |
NREL Fuel Cell and Hydrogen Technologies Program Fuel Cell and Hydrogen Technologies Program Through its Fuel Cell and Hydrogen Technologies Program, NREL researches, develops, analyzes, and validates fuel cell and hydrogen production, delivery, and storage technologies for transportation
Cooling by Para-to-Ortho-Hydrogen Conversion
NASA Technical Reports Server (NTRS)
Sherman, A.; Nast, T.
1983-01-01
Catalyst speeds conversion, increasing capacity of solid hydrogen cooling system. In radial-flow catalytic converter, para-hydrogen is converted to equilibrium mixture of para-hydrogen and ortho-hydrogen as it passes through porous cylinder of catalyst. Addition of catalyst increases capacity of hydrogen sublimation cooling systems for radiation detectors.
Proceedings of the DOE chemical energy storage and hydrogen energy systems contracts review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Sessions were held on electrolysis-based hydrogen storage systems, hydrogen production, hydrogen storage systems, hydrogen storage materials, end-use applications and system studies, chemical heat pump/chemical energy storage systems, systems studies and assessment, thermochemical hydrogen production cycles, advanced production concepts, and containment materials. (LHK)
Assessment of potential future hydrogen markets in the U.S.
NASA Technical Reports Server (NTRS)
Kashani, A. K.
1980-01-01
Potential future hydrogen markets in the United States are assessed. Future hydrogen markets for various use sectors are projected, the probable range of hydrogen production costs from various alternatives is estimated, stimuli and barriers to the development of hydrogen markets are discussed, an overview of the status of technologies for the production and utilization of hydrogen is presented, and, finally, societal aspects of hydrogen production and utilization are discussed.
Influence of hydrogen oxidation kinetics on hydrogen environment embrittlement
NASA Technical Reports Server (NTRS)
Walter, R. J.; Kendig, M. W.; Meisels, A. P.
1992-01-01
Results are presented from experiments performed to determine the roles of hydrogen absorption and hydrogen electron transfer on the susceptibility of Fe- and Ni-base alloys to ambient-temperature hydroen embrittlement. An apparent independence is noted between hydrogen environment embrittlement and internal hydrogen embrittlement. The experiments were performed on Inconel 718, Incoloy 903, and A286. The electrochemical results obtained indicate that Inconel 718 either adsorbs hydrogen more rapidly and/or the electrochemical oxidation of the adsorbed hydrogen occurred more rapidly than in the other two materials.
Method for absorbing hydrogen using an oxidation resisant organic hydrogen getter
Shepodd, Timothy J [Livermore, CA; Buffleben, George M [Tracy, CA
2009-02-03
A composition for removing hydrogen from an atmosphere, comprising a mixture of a polyphenyl ether and a hydrogenation catalyst, preferably a precious metal catalyst, and most preferably platinum, is disclosed. This composition is stable in the presence of oxygen, will not polymerize or degrade upon exposure to temperatures in excess of 200.degree. C., or prolonged exposure to temperatures in the range of 100-300.degree. C. Moreover, these novel hydrogen getter materials can be used to efficiently remove hydrogen from mixtures of hydrogen/inert gas (e.g., He, Ar, N.sub.2), hydrogen/ammonia atmospheres, such as may be encountered in heat exchangers, and hydrogen/carbon dioxide atmospheres. Water vapor and common atmospheric gases have no adverse effect on the ability of these getter materials to absorb hydrogen.
Prospects for hydrogen storage in graphene.
Tozzini, Valentina; Pellegrini, Vittorio
2013-01-07
Hydrogen-based fuel cells are promising solutions for the efficient and clean delivery of electricity. Since hydrogen is an energy carrier, a key step for the development of a reliable hydrogen-based technology requires solving the issue of storage and transport of hydrogen. Several proposals based on the design of advanced materials such as metal hydrides and carbon structures have been made to overcome the limitations of the conventional solution of compressing or liquefying hydrogen in tanks. Nevertheless none of these systems are currently offering the required performances in terms of hydrogen storage capacity and control of adsorption/desorption processes. Therefore the problem of hydrogen storage remains so far unsolved and it continues to represent a significant bottleneck to the advancement and proliferation of fuel cell and hydrogen technologies. Recently, however, several studies on graphene, the one-atom-thick membrane of carbon atoms packed in a honeycomb lattice, have highlighted the potentialities of this material for hydrogen storage and raise new hopes for the development of an efficient solid-state hydrogen storage device. Here we review on-going efforts and studies on functionalized and nanostructured graphene for hydrogen storage and suggest possible developments for efficient storage/release of hydrogen under ambient conditions.
Liquid-phase chemical hydrogen storage: catalytic hydrogen generation under ambient conditions.
Jiang, Hai-Long; Singh, Sanjay Kumar; Yan, Jun-Min; Zhang, Xin-Bo; Xu, Qiang
2010-05-25
There is a demand for a sufficient and sustainable energy supply. Hence, the search for applicable hydrogen storage materials is extremely important owing to the diversified merits of hydrogen energy. Lithium and sodium borohydride, ammonia borane, hydrazine, and formic acid have been extensively investigated as promising hydrogen storage materials based on their relatively high hydrogen content. Significant advances, such as hydrogen generation temperatures and reaction kinetics, have been made in the catalytic hydrolysis of aqueous lithium and sodium borohydride and ammonia borane as well as in the catalytic decomposition of hydrous hydrazine and formic acid. In this Minireview we briefly survey the research progresses in catalytic hydrogen generation from these liquid-phase chemical hydrogen storage materials.
NASA Technical Reports Server (NTRS)
Sastry, S. M. L.; Yang, Charles C.; Ouyang, Shewang; Jerina, K. L.; Schwartz, D. S.
1994-01-01
The present study focuses on the investigation of the influence of hydrogen on the mechanical properties of three types of alloys at elevated temperatures. The reasons for the consideration of hydrogen effects are the potential use of hydrogen as a coolant in gas-cooled reactors and fuel in advanced hypersonic vehicles. The materials used in hydrogen atmosphere must not be embrittled by hydrogen at ambient temperature and should have good strength in hydrogen atmosphere at elevated temperature. The paucity of information concerning the mechanical performance in hydrogen atmosphere at elevated temperature has been a limiting factor in the selection and design of structural components for operation in hydrogen environment.
Enhancing hydrogen spillover and storage
Yang, Ralph T [Ann Arbor, MI; Li, Yingwel [Ann Arbor, MI; Lachawiec, Jr., Anthony J.
2011-05-31
Methods for enhancing hydrogen spillover and storage are disclosed. One embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the hydrogen receptor to ultrasonification as doping occurs. Another embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the doped hydrogen receptor to a plasma treatment.
Enhancing hydrogen spillover and storage
Yang, Ralph T; Li, Yingwei; Lachawiec, Jr., Anthony J
2013-02-12
Methods for enhancing hydrogen spillover and storage are disclosed. One embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the hydrogen receptor to ultrasonication as doping occurs. Another embodiment of the method includes doping a hydrogen receptor with metal particles, and exposing the doped hydrogen receptor to a plasma treatment.
Mechanochemical hydrogenation of coal
Yang, Ralph T.; Smol, Robert; Farber, Gerald; Naphtali, Leonard M.
1981-01-01
Hydrogenation of coal is improved through the use of a mechanical force to reduce the size of the particulate coal simultaneously with the introduction of gaseous hydrogen, or other hydrogen donor composition. Such hydrogen in the presence of elemental tin during this one-step size reduction-hydrogenation further improves the yield of the liquid hydrocarbon product.
DiMeo, Jr., Frank; Baum, Thomas H.
2003-07-22
The present invention provides a hydrogen sensor including a thin film sensor element formed by metal organic chemical vapor deposition (MOCVD) or physical vapor deposition (PVD), on a micro-hotplate structure. The thin film sensor element includes a film of a hydrogen-interactive metal film that reversibly interacts with hydrogen to provide a correspondingly altered response characteristic, such as optical transmissivity, electrical conductance, electrical resistance, electrical capacitance, magneto resistance, photoconductivity, etc., relative to the response characteristic of the film in the absence of hydrogen. The hydrogen-interactive metal film may be overcoated with a thin film hydrogen-permeable barrier layer to protect the hydrogen-interactive film from deleterious interaction with non-hydrogen species. The hydrogen permeable barrier may comprise species to scavenge oxygen and other like species. The hydrogen sensor of the invention may be usefully employed for the detection of hydrogen in an environment susceptible to the incursion or generation of hydrogen and may be conveniently configured as a hand-held apparatus.
Topics in atomic hydrogen standard research and applications
NASA Technical Reports Server (NTRS)
Peters, H. E.
1971-01-01
Hydrogen maser based frequency and time standards have been in continuous use at NASA tracking stations since February 1970, while laboratory work at Goddard has continued in the further development and improvement of hydrogen masers. Concurrently, experimental work has been in progress with a new frequency standard based upon the hydrogen atom using the molecular beam magnetic resonance method. Much of the hydrogen maser technology is directly applicable to the new hydrogen beam standard, and calculations based upon realistic data indicate that the accuracy potential of the hydrogen atomic beam exceeds that of either the cesium beam tube or the hydrogen maser, possibly by several orders of magnitude. In addition, with successful development, the hydrogen beam standard will have several other performance advantages over other devices, particularly exceptional stability and long continuous operating life. Experimental work with a new laboratory hydrogen beam device has recently resulted in the first resonance transition curves, measurements of relative state populations, beam intensities, etc. The most important aspects of both the hydrogen maser and the hydrogen beam work are covered.
Water in Earth's mantle: Hydrogen analysis of mantle olivine, pyroxenes and garnet using the SIMS
NASA Technical Reports Server (NTRS)
Kurosawa, Masanori; Yurimoto, Hisayoshi; Sueno, Shigeho
1993-01-01
Hydrogen (or water) in the Earth's interior plays a key role in the evolution and dynamics of the planet. However, the abundance and the existence form of the hydrogen have scarcely been clear in practice. Hydrogen in the mantle was incorporated in the interior during the formation of the Earth. The incorporated hydrogen was hardly possible to concentrate locally inside the Earth considering its high mobility and high reactivity. The hydrogen, preferably, could be distributed homogeneously over the mantle and the core by the subsequent physical and chemical processes. Therefore, hydrogen in the mantle could be present in the form of trace hydrogen in nominally anhydrous mantle minerals. The hydrogen and the other trace elements in mantle olivines, orthopyroxenes, clinopyroxenes, and garnets were determined using secondary ion mass spectrometry (SIMS) for elucidating (1) the exact hydrogen contents, (2) the correlation between the hydrogen and the other trace elements, (3) the dependence of the hydrogen contents on the depth, and (4) the dependence of the whole rock water contents on the depth.
NASA Technical Reports Server (NTRS)
Thibeault, Sheila A.; Fay, Catharine C.; Lowther, Sharon E.; Earle, Kevin D.; Sauti, Godfrey; Kang, Jin Ho; Park, Cheol; McMullen, Amelia M.
2012-01-01
The key objectives of this study are to investigate, both computationally and experimentally, which forms, compositions, and layerings of hydrogen, boron, and nitrogen containing materials will offer the greatest shielding in the most structurally robust combination against galactic cosmic radiation (GCR), secondary neutrons, and solar energetic particles (SEP). The objectives and expected significance of this research are to develop a space radiation shielding materials system that has high efficacy for shielding radiation and that also has high strength for load bearing primary structures. Such a materials system does not yet exist. The boron nitride nanotube (BNNT) can theoretically be processed into structural BNNT and used for load bearing structures. Furthermore, the BNNT can be incorporated into high hydrogen polymers and the combination used as matrix reinforcement for structural composites. BNNT's molecular structure is attractive for hydrogen storage and hydrogenation. There are two methods or techniques for introducing hydrogen into BNNT: (1) hydrogen storage in BNNT, and (2) hydrogenation of BNNT (hydrogenated BNNT). In the hydrogen storage method, nanotubes are favored to store hydrogen over particles and sheets because they have much larger surface areas and higher hydrogen binding energy. The carbon nanotube (CNT) and BNNT have been studied as potentially outstanding hydrogen storage materials since 1997. Our study of hydrogen storage in BNNT - as a function of temperature, pressure, and hydrogen gas concentration - will be performed with a hydrogen storage chamber equipped with a hydrogen generator. The second method of introducing hydrogen into BNNT is hydrogenation of BNNT, where hydrogen is covalently bonded onto boron, nitrogen, or both. Hydrogenation of BN and BNNT has been studied theoretically. Hyper-hydrogenated BNNT has been theoretically predicted with hydrogen coverage up to 100% of the individual atoms. This is a higher hydrogen content than possible with hydrogen storage; however, a systematic experimental hydrogenation study has not been reported. A combination of the two approaches may be explored to provide yet higher hydrogen content. The hydrogen containing BNNT produced in our study will be characterized for hydrogen content and thermal stability in simulated space service environments. These new materials systems will be tested for their radiation shielding effectiveness against high energy protons and high energy heavy ions at the HIMAC facility in Japan, or a comparable facility. These high energy particles simulate exposure to SEP and GCR environments. They will also be tested in the LaRC Neutron Exposure Laboratory for their neutron shielding effectiveness, an attribute that determines their capability to shield against the secondary neutrons found inside structures and on lunar and planetary surfaces. The potential significance is to produce a radiation protection enabling technology for future exploration missions. Crew on deep space human exploration missions greater than approximately 90 days cannot remain below current crew Permissible Exposure Limits without shielding and/or biological countermeasures. The intent of this research is to bring the Agency closer to extending space missions beyond the 90-day limit, with 1 year as a long-term goal. We are advocating a systems solution with a structural materials component. Our intent is to develop the best materials system for that materials component. In this Phase I study, we have shown, computationally, that hydrogen containing BNNT is effective for shielding against GCR, SEP, and neutrons over a wide range of energies. This is why we are focusing on hydrogen containing BNNT as an innovative advanced concept. In our future work, we plan to demonstrate, experimentally, that hydrogen, boron, and nitrogen based materials can provide mechanically strong, thermally stable, structural materials with effective radiation shielding against GCR, SEP, and neutrons.
Lessing, Paul A [Idaho Falls, ID
2008-07-22
An electrochemically active hydrogen diffusion barrier which comprises an anode layer, a cathode layer, and an intermediate electrolyte layer, which is conductive to protons and substantially impermeable to hydrogen. A catalytic metal present in or adjacent to the anode layer catalyzes an electrochemical reaction that converts any hydrogen that diffuses through the electrolyte layer to protons and electrons. The protons and electrons are transported to the cathode layer and reacted to form hydrogen. The hydrogen diffusion barrier is applied to a polymeric substrate used in a storage tank to store hydrogen under high pressure. A storage tank equipped with the electrochemically active hydrogen diffusion barrier, a method of fabricating the storage tank, and a method of preventing hydrogen from diffusing out of a storage tank are also disclosed.
Lessing, Paul A.
2004-09-07
An electrochemically active hydrogen diffusion barrier which comprises an anode layer, a cathode layer, and an intermediate electrolyte layer, which is conductive to protons and substantially impermeable to hydrogen. A catalytic metal present in or adjacent to the anode layer catalyzes an electrochemical reaction that converts any hydrogen that diffuses through the electrolyte layer to protons and electrons. The protons and electrons are transported to the cathode layer and reacted to form hydrogen. The hydrogen diffusion barrier is applied to a polymeric substrate used in a storage tank to store hydrogen under high pressure. A storage tank equipped with the electrochemically active hydrogen diffusion barrier, a method of fabricating the storage tank, and a method of preventing hydrogen from diffusing out of a storage tank are also disclosed.
An in situ tensile test apparatus for polymers in high pressure hydrogen
Alvine, Kyle J.; Kafentzis, Tyler A.; Pitman, Stan G.; ...
2014-10-31
Degradation of material properties by high-pressure hydrogen is an important factor in determining the safety and reliability of materials used in high-pressure hydrogen storage and delivery. Hydrogen damage mechanisms have a time dependence that is linked to hydrogen outgassing after exposure to the hydrogen atmosphere that makes ex situ measurements of mechanical properties problematic. Designing in situ measurement instruments for high-pressure hydrogen is challenging due to known hydrogen incompatibility with many metals and standard high-power motor materials like Nd. Here we detail the design and operation of a solenoid based in situ tensile tester under high-pressure hydrogen environments up tomore » 5,000 psi. Here, modulus data from high-density polyethylene (HDPE) samples tested under high-pressure hydrogen are also reported as compared to baseline measurements taken in air.« less
Hydrogen in the U.S. energy picture
NASA Technical Reports Server (NTRS)
Kelley, J. H.; Manvi, R.
1979-01-01
A study of hydrogen in the U.S. program performed by the Hydrogen Energy Systems Technology (HEST) investigation is reported. Historic production and use of hydrogen, hydrogen use projections, hydrogen supply, economics of hydrogen production and supply, and future research and development needs are discussed. The study found current U.S. hydrogen utilization to be dominated by chemical and petroleum industries, and to represent 3% of total energy consumption. Hydrogen uses are projected to grow by a factor of 5 to 20 during the remainder of this century, and new applications in synthetic fuel from coal manufacture and directly as energy storage or fuel are expected to develop. The study concluded that development of new methods of supplying hydrogen replacing natural gas and petroleum feedstocks with alternate sources such as coal and heavy oils, and electrolysis techniques is imperative.
NASA Astrophysics Data System (ADS)
Harmon, Kenneth M.; Cross, Joan E.; Toccalino, Patricia L.
1988-08-01
Hydroxytropenylium iodide and bromide contain normal electrostatic OH⋯X - hydrogen bonds. Hydroxytropenylium chloride, however, contains a hydrogen bond intermediate between the normal electrostatic type and the very strong covalent type, similar to the hydrogen bonds found in choline fluoride or the Type I C∞v hydrogen dihalide ions. Infrared comparisons with compounds previously studied demonstrate that the hydroxytropenylium ion is a stronger hydrogen bond donor than either choline cation or protonated betaine cation, and suggest that hydroxytropenylium fluoride, if it can be prepared, should contain a three-center covalent hydrogen bond.
Synthesis of Ni/Graphene Nanocomposite for Hydrogen Storage.
Zhou, Chunyu; Szpunar, Jerzy A; Cui, Xiaoyu
2016-06-22
We have designed a Ni-graphene composite for hydrogen storage with Ni nanoparticles of 10 nm in size, uniformly dispersed over a graphene substrate. This system exhibits attractive features like high gravimetric density, ambient conditions, and low activation temperature for hydrogen release. When charged at room temperature and an atmospheric hydrogen pressure of 1 bar, it could yield a hydrogen capacity of 0.14 wt %. When hydrogen pressure increased to 60 bar, the sorbent had a hydrogen gravimetric density of 1.18 wt %. The hydrogen release could occur at an operating temperature below 150 °C and completes at 250 °C.
Composition for absorbing hydrogen
Heung, L.K.; Wicks, G.G.; Enz, G.L.
1995-05-02
A hydrogen absorbing composition is described. The composition comprises a porous glass matrix, made by a sol-gel process, having a hydrogen-absorbing material dispersed throughout the matrix. A sol, made from tetraethyl orthosilicate, is mixed with a hydrogen-absorbing material and solidified to form a porous glass matrix with the hydrogen-absorbing material dispersed uniformly throughout the matrix. The glass matrix has pores large enough to allow gases having hydrogen to pass through the matrix, yet small enough to hold the particles dispersed within the matrix so that the hydrogen-absorbing particles are not released during repeated hydrogen absorption/desorption cycles.
Composition for absorbing hydrogen
Heung, Leung K.; Wicks, George G.; Enz, Glenn L.
1995-01-01
A hydrogen absorbing composition. The composition comprises a porous glass matrix, made by a sol-gel process, having a hydrogen-absorbing material dispersed throughout the matrix. A sol, made from tetraethyl orthosilicate, is mixed with a hydrogen-absorbing material and solidified to form a porous glass matrix with the hydrogen-absorbing material dispersed uniformly throughout the matrix. The glass matrix has pores large enough to allow gases having hydrogen to pass through the matrix, yet small enough to hold the particles dispersed within the matrix so that the hydrogen-absorbing particles are not released during repeated hydrogen absorption/desorption cycles.
NASA Astrophysics Data System (ADS)
Hattori, M.; Suzuki, H.; Seko, Y.; Takai, K.
2017-08-01
Studies to date have not completely determined the factors influencing hydrogen embrittlement of ferrite/bainite X80 pipeline steel. Hydrogen embrittlement susceptibility was evaluated based on fracture strain in tensile testing. We conducted a thermal desorption analysis to measure the amount of tracer hydrogen corresponding to that of lattice defects. Hydrogen embrittlement susceptibility and the amount of tracer hydrogen significantly increased with decreasing crosshead speed. Additionally, a significant increase in the formation of hydrogen-enhanced strain-induced lattice defects was observed immediately before the final fracture. In contrast to hydrogen-free specimens, the fracture surface of the hydrogen-charged specimens exhibited shallower dimples without nuclei, such as secondary phase particles. These findings indicate that the presence of hydrogen enhanced the formation of lattice defects, particularly just prior to the occurrence of final fracture. This in turn enhanced the formation of shallower dimples, thereby potentially causing premature fracture of X80 pipeline steel at lower crosshead speeds.
Method of CO and/or CO.sub.2 hydrogenation to higher hydrocarbons using doped mixed-metal oxides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shekhawat, Dushyant; Berry, David A.; Haynes, Daniel J.
2017-03-21
A method of hydrogenation utilizing a reactant gas mixture comprising a carbon oxide and a hydrogen agent, and a hydrogenation catalyst comprising a mixed-metal oxide containing metal sites supported and/or incorporated into the lattice. The mixed-metal oxide comprises a pyrochlore, a brownmillerite, or mixtures thereof doped at the A-site or the B-site. The metal site may comprise a deposited metal, where the deposited metal is a transition metal, an alkali metal, an alkaline earth metal, or mixtures thereof. Contact between the carbon oxide, hydrogen agent, and hydrogenation catalyst under appropriate conditions of temperature, pressure and gas flow rate generate amore » hydrogenation reaction and produce a hydrogenated product made up of carbon from the carbon oxide and some portion of the hydrogen agent. The carbon oxide may be CO, CO.sub.2, or mixtures thereof and the hydrogen agent may be H.sub.2. In a particular embodiment, the hydrogenated product comprises olefins, paraffins, or mixtures thereof.« less
Hydrogen interactions with metals
NASA Technical Reports Server (NTRS)
Mclellan, R. B.; Harkins, C. G.
1975-01-01
Review of the literature on the nature and extent of hydrogen interactions with metals and the role of hydrogen in metal failure. The classification of hydrogen-containing systems is discussed, including such categories as covalent hydrides, volatile hydrides, polymeric hydrides, and transition metal hydride complexes. The use of electronegativity as a correlating parameter in determining hydride type is evaluated. A detailed study is made of the thermodynamics of metal-hydrogen systems, touching upon such aspects as hydrogen solubility, the positions occupied by hydrogen atoms within the solvent metal lattice, the derivation of thermodynamic functions of solid solutions from solubility data, and the construction of statistical models for hydrogen-metal solutions. A number of theories of hydrogen-metal bonding are reviewed, including the rigid-band model, the screened-proton model, and an approach employing the augmented plane wave method to solve the one-electron energy band problem. Finally, the mechanism of hydrogen embrittlement is investigated on the basis of literature data concerning stress effects and the kinetics of hydrogen transport to critical sites.
The chemistry of sour taste and the strategy to reduce the sour taste of beer.
Li, Hong; Liu, Fang
2015-10-15
The contributions of free hydrogen ions, undissociated hydrogen ions in protonated acid species, and anionic acid species to sour taste were studied through sensory experiments. According to tasting results, it can be inferred that the basic substance producing a sour taste is the hydrogen ion, including free hydrogen ions and undissociated hydrogen ions. The intensity of a sour taste is determined by the total concentration of free hydrogen ions and undissociated hydrogen ions. The anionic acid species (without hydrogen ions) does not produce a sour taste but can intensify or weaken the intensity of a sour taste. It seems that hydroxyl or conjugated groups in anionic acid species can intensify the sour taste produced by hydrogen ions. The following strategy to reduce the sensory sourness is advanced: not only reduce free hydrogen ions, namely elevate pH value, but also reduce the undissociated hydrogen ions contained in protonated acid species. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Anderson, Tim; Balaban, Canan
2008-01-01
The activities presented are a broad based approach to advancing key hydrogen related technologies in areas such as fuel cells, hydrogen production, and distributed sensors for hydrogen-leak detection, laser instrumentation for hydrogen-leak detection, and cryogenic transport and storage. Presented are the results from research projects, education and outreach activities, system and trade studies. The work will aid in advancing the state-of-the-art for several critical technologies related to the implementation of a hydrogen infrastructure. Activities conducted are relevant to a number of propulsion and power systems for terrestrial, aeronautics and aerospace applications. Hydrogen storage and in-space hydrogen transport research focused on developing and verifying design concepts for efficient, safe, lightweight liquid hydrogen cryogenic storage systems. Research into hydrogen production had a specific goal of further advancing proton conducting membrane technology in the laboratory at a larger scale. System and process trade studies evaluated the proton conducting membrane technology, specifically, scale-up issues.
Solar hydrogen production: renewable hydrogen production by dry fuel reforming
NASA Astrophysics Data System (ADS)
Bakos, Jamie; Miyamoto, Henry K.
2006-09-01
SHEC LABS - Solar Hydrogen Energy Corporation constructed a pilot-plant to demonstrate a Dry Fuel Reforming (DFR) system that is heated primarily by sunlight focusing-mirrors. The pilot-plant consists of: 1) a solar mirror array and solar concentrator and shutter system; and 2) two thermo-catalytic reactors to convert Methane, Carbon Dioxide, and Water into Hydrogen. Results from the pilot study show that solar Hydrogen generation is feasible and cost-competitive with traditional Hydrogen production. More than 95% of Hydrogen commercially produced today is by the Steam Methane Reformation (SMR) of natural gas, a process that liberates Carbon Dioxide to the atmosphere. The SMR process provides a net energy loss of 30 to 35% when converting from Methane to Hydrogen. Solar Hydrogen production provides a 14% net energy gain when converting Methane into Hydrogen since the energy used to drive the process is from the sun. The environmental benefits of generating Hydrogen using renewable energy include significant greenhouse gas and criteria air contaminant reductions.
The effect of stress on hydrogen uptake and desorption by A-286
NASA Technical Reports Server (NTRS)
Danford, Merlin D.
1991-01-01
The uptake and desorption of hydrogen by A-286 as a function of stress was studied using electrochemical methods. It was found that the apparent surface hydrogen concentration, the mean hydrogen concentration, and the hydrogen distribution uniformity all increased up to a stress level 50 percent of yield and decreased thereafter. The value of the hydrogen diffusion coefficient was relatively unaffected by stress while the percent of trapped hydrogen appeared to decrease with increasing stress.
Eng, Alex Yong Sheng; Sofer, Zdenek; Šimek, Petr; Kosina, Jiri; Pumera, Martin
2013-11-11
Hydrogenated graphenes exhibit a variety of properties with potential applications in devices, ranging from a tunable band gap to fluorescence, ferromagnetism, and the storage of hydrogen. We utilize a one-step microwave-irradiation process in hydrogen plasma to create highly hydrogenated graphene from graphite oxides. The procedure serves the dual purposes of deoxygenation and concurrent hydrogenation of the carbon backbone. The effectiveness of the hydrogenation process is investigated on three different graphite oxides (GOs), which are synthesized by using the Staudenmaier, Hofmann, and Hummers methods. A systematic characterization of our hydrogenated graphenes is performed using UV/Vis spectroscopy, SEM, AFM, Raman spectroscopy, FTIR spectroscopy, X-ray photoelectron spectroscopy (XPS), combustible elemental analysis, and electrical conductivity measurements. The highest hydrogenation extent is observed in hydrogenated graphene produced from the Hummers-method GO, with a hydrogen content of 19 atomic % in the final product. In terms of the removal of oxygen groups, microwave exfoliation yields graphenes with very similar oxygen contents despite differences in their parent GOs. In addition, we examine the prospective application of hydrogenated graphenes as electrochemical transducers through a cyclic voltammetry (CV) study. The highly hydrogenated graphenes exhibit fast heterogeneous electron-transfer rates, suggestive of their suitability for electrochemical applications in electrodes, supercapacitors, batteries, and sensors. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Irokawa, Yoshihiro
2011-01-01
In this paper, I review my recent results in investigating hydrogen sensors using nitride-based semiconductor diodes, focusing on the interaction mechanism of hydrogen with the devices. Firstly, effects of interfacial modification in the devices on hydrogen detection sensitivity are discussed. Surface defects of GaN under Schottky electrodes do not play a critical role in hydrogen sensing characteristics. However, dielectric layers inserted in metal/semiconductor interfaces are found to cause dramatic changes in hydrogen sensing performance, implying that chemical selectivity to hydrogen could be realized. The capacitance-voltage (C–V) characteristics reveal that the work function change in the Schottky metal is not responsible mechanism for hydrogen sensitivity. The interface between the metal and the semiconductor plays a critical role in the interaction of hydrogen with semiconductor devises. Secondly, low-frequency C–V characterization is employed to investigate the interaction mechanism of hydrogen with diodes. As a result, it is suggested that the formation of a metal/semiconductor interfacial polarization could be attributed to hydrogen-related dipoles. In addition, using low-frequency C–V characterization leads to clear detection of 100 ppm hydrogen even at room temperature where it is hard to detect hydrogen by using conventional current-voltage (I–V) characterization, suggesting that low-frequency C–V method would be effective in detecting very low hydrogen concentrations. PMID:22346597
NASA Astrophysics Data System (ADS)
Soldatov, A. P.
2014-08-01
Studies on the creation of nanosized membrane reactors (NMRs) of a new generation with accumulated hydrogen and a regulated volume of reaction zone were continued at the next stage. Hydrogenation was performed in the pores of ceramic membranes with hydrogen preliminarily adsorbed in mono- and multilayered orientated carbon nanotubes with graphene walls (OCNTGs)—a new hybrid carbon nanostructure formed on the inner pore surface. Quantitative determination of hydrogen adsorption in OCNTGs was performed using TRUMEM ultrafiltration membranes with D av = 50 and 90 nm and showed that hydrogen adsorption was up to ˜1.5% of the mass of OCNTG. The instrumentation and procedure for noncatalytic hydrogenation of decene-1 at 250-350°C using hydrogen accumulated and stored in OCNTG were developed. The conversion of decene-1 into decane was ˜0.2-1.8% at hydrogenation temperatures of 250 and 350°C, respectively. The rate constants and activation energy of hydrogenation were determined. The latter was found to be 94.5 kJ/mol, which is much smaller than the values typical for noncatalytic hydrogenations and very close to the values characteristic for catalytic reactions. The quantitative distribution of the reacting compounds in each pore regarded as a nanosized membrane reactor was determined. The activity of hydrogen adsorbed in a 2D carbon nanostructure was evaluated. Possible mechanisms of noncatalytic hydrogenation were discussed.
40 CFR 415.410 - Applicability; description of the hydrogen production subcategory.
Code of Federal Regulations, 2011 CFR
2011-07-01
... hydrogen production subcategory. 415.410 Section 415.410 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Hydrogen Production Subcategory § 415.410 Applicability; description of the hydrogen production... hydrogen as a refinery by-product. ...
40 CFR 415.410 - Applicability; description of the hydrogen production subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... hydrogen production subcategory. 415.410 Section 415.410 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Hydrogen Production Subcategory § 415.410 Applicability; description of the hydrogen production... hydrogen as a refinery by-product. ...
40 CFR 415.410 - Applicability; description of the hydrogen production subcategory.
Code of Federal Regulations, 2012 CFR
2012-07-01
... hydrogen production subcategory. 415.410 Section 415.410 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Hydrogen Production Subcategory § 415.410 Applicability; description of the hydrogen production... hydrogen as a refinery by-product. ...
40 CFR 415.410 - Applicability; description of the hydrogen production subcategory.
Code of Federal Regulations, 2013 CFR
2013-07-01
... hydrogen production subcategory. 415.410 Section 415.410 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Hydrogen Production Subcategory § 415.410 Applicability; description of the hydrogen production... hydrogen as a refinery by-product. ...
40 CFR 415.410 - Applicability; description of the hydrogen production subcategory.
Code of Federal Regulations, 2014 CFR
2014-07-01
... hydrogen production subcategory. 415.410 Section 415.410 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Hydrogen Production Subcategory § 415.410 Applicability; description of the hydrogen production... hydrogen as a refinery by-product. ...
Combination moisture and hydrogen getter
Harrah, L.A.; Mead, K.E.; Smith, H.M.
1983-09-20
A combination moisture and hydrogen getter comprises (a) a moisture getter comprising a readily oxidizable metal; and (b) a hydrogen getter comprising (1) a solid acetylenic compound and (2) a hydrogenation catalyst. A method of scavenging moisture from a closed container uses the combination moisture and hydrogen getter to irreversibly chemically reduce the moisture and chemically bind the resultant hydrogen.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Cyclosilazanes, di-Me, Me hydrogen, polymers with di-Me, Me hydrogen silazanes, reaction products with 3-(triethoxysilyl)-1-propanamine. 721... Substances § 721.10325 Cyclosilazanes, di-Me, Me hydrogen, polymers with di-Me, Me hydrogen silazanes...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Cyclosilazanes, di-Me, Me hydrogen, polymers with di-Me, Me hydrogen silazanes, reaction products with 3-(triethoxysilyl)-1-propanamine. 721... Substances § 721.10325 Cyclosilazanes, di-Me, Me hydrogen, polymers with di-Me, Me hydrogen silazanes...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Cyclosilazanes, di-Me, Me hydrogen, polymers with di-Me, Me hydrogen silazanes, reaction products with 3-(triethoxysilyl)-1-propanamine. 721... Substances § 721.10325 Cyclosilazanes, di-Me, Me hydrogen, polymers with di-Me, Me hydrogen silazanes...
Combination moisture and hydrogen getter
Harrah, Larry A.; Mead, Keith E.; Smith, Henry M.
1983-01-01
A combination moisture and hydrogen getter comprises (a) a moisture getter comprising a readily oxidizable metal; and (b) a hydrogen getter comprising (i) a solid acetylenic compound and (ii) a hydrogenation catalyst. A method of scavenging moisture from a closed container uses the combination moisture and hydrogen getter to irreversibly chemically reduce the moisture and chemically bind the resultant hydrogen.
Metal salt catalysts for enhancing hydrogen spillover
Yang, Ralph T; Wang, Yuhe
2013-04-23
A composition for hydrogen storage includes a receptor, a hydrogen dissociating metal doped on the receptor, and a metal salt doped on the receptor. The hydrogen dissociating metal is configured to spill over hydrogen to the receptor, and the metal salt is configured to increase a rate of the spill over of the hydrogen to the receptor.
Combination moisture and hydrogen getter
Not Available
1982-04-29
A combination moisture and hydrogen getter comprises (a) a moisture getter comprising a readily oxidizable metal; and (b) a hydrogen getter comprising (i) a solid acetylenic compound and (ii) a hydrogenation catalyst. A method of scavenging moisture from a closed container uses the combination moisture and hydrogen getter to irreversibly chemically reduce the moisture and chemically bind the reusltant hydrogen.
Hydrogen and Fuel Cell Basics | Hydrogen and Fuel Cells | NREL
Hydrogen and Fuel Cell Basics Hydrogen and Fuel Cell Basics NREL researchers are working to unlock the potential of hydrogen as a fuel and to advance fuel cell technologies for automobiles, equipment basics of NREL's hydrogen and fuel cell research and development. Fuel cell electric vehicles (FCEVs
Hydrogen production by Cyanobacteria.
Dutta, Debajyoti; De, Debojyoti; Chaudhuri, Surabhi; Bhattacharya, Sanjoy K
2005-12-21
The limited fossil fuel prompts the prospecting of various unconventional energy sources to take over the traditional fossil fuel energy source. In this respect the use of hydrogen gas is an attractive alternate source. Attributed by its numerous advantages including those of environmentally clean, efficiency and renew ability, hydrogen gas is considered to be one of the most desired alternate. Cyanobacteria are highly promising microorganism for hydrogen production. In comparison to the traditional ways of hydrogen production (chemical, photoelectrical), Cyanobacterial hydrogen production is commercially viable. This review highlights the basic biology of cynobacterial hydrogen production, strains involved, large-scale hydrogen production and its future prospects. While integrating the existing knowledge and technology, much future improvement and progress is to be done before hydrogen is accepted as a commercial primary energy source.
Oxidation resistant organic hydrogen getters
Shepodd, Timothy J [Livermore, CA; Buffleben, George M [Tracy, CA
2008-09-09
A composition for removing hydrogen from an atmosphere, comprising a mixture of a polyphenyl ether and a hydrogenation catalyst, preferably a precious metal catalyst, and most preferably Pt. This composition is stable in the presence of oxygen, will not polymerize or degrade upon exposure to temperatures in excess of 200.degree. C., or prolonged exposure to temperatures in the range of 100-300.degree. C. Moreover, these novel hydrogen getter materials can be used to efficiently removing hydrogen from mixtures of hydrogen/inert gas (e.g., He, Ar, N.sub.2), hydrogen/ammonia atmospheres, such as may be encountered in heat exchangers, and hydrogen/carbon dioxide atmospheres. Water vapor and common atmospheric gases have no adverse effect on the ability of these getter materials to absorb hydrogen.
The presence of isolated hydrogen donors in heavily carbon-doped GaAs
NASA Astrophysics Data System (ADS)
Fushimi, Hiroshi; Wada, Kazumi
1994-12-01
The deactivation mechanism of carbon acceptors in GaAs has systematically been studied by measuring the annealing behavior and depth profiles of the carrier concentration. It is found that hydrogen impurities dominate carbon deactivation. Their deactivation undergoes two different ways: Hydrogen donors isolated from carbon acceptors compensate carbon and hydrogen impurities neutralize the carbon by forming neutral carbon-hydrogen complexes. The compensating hydrogen donors diffuse out extremely fast at relatively low temperatures. This is, to the best of our knowledge, the first report on the presence of isolated hydrogen donors in heavily carbon-doped GaAs. The dissociation of carbon-hydrogen complexes is much slower than reported. The mechanism is discussed in terms of a hydrogen retrapping effect by carbon.
Confinement of hydrogen at high pressure in carbon nanotubes
Lassila, David H [Aptos, CA; Bonner, Brian P [Livermore, CA
2011-12-13
A high pressure hydrogen confinement apparatus according to one embodiment includes carbon nanotubes capped at one or both ends thereof with a hydrogen-permeable membrane to enable the high pressure confinement of hydrogen and release of the hydrogen therethrough. A hydrogen confinement apparatus according to another embodiment includes an array of multi-walled carbon nanotubes each having first and second ends, the second ends being capped with palladium (Pd) to enable the high pressure confinement of hydrogen and release of the hydrogen therethrough as a function of palladium temperature, wherein the array of carbon nanotubes is capable of storing hydrogen gas at a pressure of at least 1 GPa for greater than 24 hours. Additional apparatuses and methods are also presented.
Hydrogen species motion in piezoelectrics: A quasi-elastic neutron scattering study
NASA Astrophysics Data System (ADS)
Alvine, K. J.; Tyagi, M.; Brown, C. M.; Udovic, T. J.; Jenkins, T.; Pitman, S. G.
2012-03-01
Hydrogen is known to damage or degrade piezoelectric materials, at low pressure for ferroelectric random access memory applications, and at high pressure for hydrogen-powered vehicle applications. The piezoelectric degradation is in part governed by the motion of hydrogen species within the piezoelectric materials. We present here quasi-elastic neutron scattering (QENS) measurements of the local hydrogen species motion within lead zirconate titanate (PZT) and barium titanate (BTO) on samples charged by exposure to high-pressure gaseous hydrogen (≈17 MPa). Neutron vibrational spectroscopy (NVS) studies of the hydrogen-enhanced vibrational modes are presented as well. Results are discussed in the context of theoretically predicted interstitial hydrogen lattice sites and compared to comparable bulk diffusion studies of hydrogen diffusion in lead zirconate titanate.
Züttel, Andreas
2004-04-01
Hydrogen exhibits the highest heating value per mass of all chemical fuels. Furthermore, hydrogen is regenerative and environmentally friendly. There are two reasons why hydrogen is not the major fuel of today's energy consumption. First of all, hydrogen is just an energy carrier. And, although it is the most abundant element in the universe, it has to be produced, since on earth it only occurs in the form of water and hydrocarbons. This implies that we have to pay for the energy, which results in a difficult economic dilemma because ever since the industrial revolution we have become used to consuming energy for free. The second difficulty with hydrogen as an energy carrier is its low critical temperature of 33 K (i.e. hydrogen is a gas at ambient temperature). For mobile and in many cases also for stationary applications the volumetric and gravimetric density of hydrogen in a storage material is crucial. Hydrogen can be stored using six different methods and phenomena: (1) high-pressure gas cylinders (up to 800 bar), (2) liquid hydrogen in cryogenic tanks (at 21 K), (3) adsorbed hydrogen on materials with a large specific surface area (at T<100 K), (4) absorbed on interstitial sites in a host metal (at ambient pressure and temperature), (5) chemically bonded in covalent and ionic compounds (at ambient pressure), or (6) through oxidation of reactive metals, e.g. Li, Na, Mg, Al, Zn with water. The most common storage systems are high-pressure gas cylinders with a maximum pressure of 20 MPa (200 bar). New lightweight composite cylinders have been developed which are able to withstand pressures up to 80 MPa (800 bar) and therefore the hydrogen gas can reach a volumetric density of 36 kg.m(-3), approximately half as much as in its liquid state. Liquid hydrogen is stored in cryogenic tanks at 21.2 K and ambient pressure. Due to the low critical temperature of hydrogen (33 K), liquid hydrogen can only be stored in open systems. The volumetric density of liquid hydrogen is 70.8 kg.m(-3), and large volumes, where the thermal losses are small, can cause hydrogen to reach a system mass ratio close to one. The highest volumetric densities of hydrogen are found in metal hydrides. Many metals and alloys are capable of reversibly absorbing large amounts of hydrogen. Charging can be done using molecular hydrogen gas or hydrogen atoms from an electrolyte. The group one, two and three light metals (e.g. Li, Mg, B, Al) can combine with hydrogen to form a large variety of metal-hydrogen complexes. These are especially interesting because of their light weight and because of the number of hydrogen atoms per metal atom, which is two in many cases. Hydrogen can also be stored indirectly in reactive metals such as Li, Na, Al or Zn. These metals easily react with water to the corresponding hydroxide and liberate the hydrogen from the water. Since water is the product of the combustion of hydrogen with either oxygen or air, it can be recycled in a closed loop and react with the metal. Finally, the metal hydroxides can be thermally reduced to metals in a solar furnace. This paper reviews the various storage methods for hydrogen and highlights their potential for improvement and their physical limitations.
NASA Astrophysics Data System (ADS)
Züttel, Andreas
Hydrogen exhibits the highest heating value per mass of all chemical fuels. Furthermore, hydrogen is regenerative and environmentally friendly. There are two reasons why hydrogen is not the major fuel of today's energy consumption. First of all, hydrogen is just an energy carrier. And, although it is the most abundant element in the universe, it has to be produced, since on earth it only occurs in the form of water and hydrocarbons. This implies that we have to pay for the energy, which results in a difficult economic dilemma because ever since the industrial revolution we have become used to consuming energy for free. The second difficulty with hydrogen as an energy carrier is its low critical temperature of 33 K (i.e. hydrogen is a gas at ambient temperature). For mobile and in many cases also for stationary applications the volumetric and gravimetric density of hydrogen in a storage material is crucial. Hydrogen can be stored using six different methods and phenomena: (1) high-pressure gas cylinders (up to 800 bar), (2) liquid hydrogen in cryogenic tanks (at 21 K), (3) adsorbed hydrogen on materials with a large specific surface area (at T<100 K), (4) absorbed on interstitial sites in a host metal (at ambient pressure and temperature), (5) chemically bonded in covalent and ionic compounds (at ambient pressure), or (6) through oxidation of reactive metals, e.g. Li, Na, Mg, Al, Zn with water. The most common storage systems are high-pressure gas cylinders with a maximum pressure of 20 MPa (200 bar). New lightweight composite cylinders have been developed which are able to withstand pressures up to 80 MPa (800 bar) and therefore the hydrogen gas can reach a volumetric density of 36 kg.m-3, approximately half as much as in its liquid state. Liquid hydrogen is stored in cryogenic tanks at 21.2 K and ambient pressure. Due to the low critical temperature of hydrogen (33 K), liquid hydrogen can only be stored in open systems. The volumetric density of liquid hydrogen is 70.8 kg.m-3, and large volumes, where the thermal losses are small, can cause hydrogen to reach a system mass ratio close to one. The highest volumetric densities of hydrogen are found in metal hydrides. Many metals and alloys are capable of reversibly absorbing large amounts of hydrogen. Charging can be done using molecular hydrogen gas or hydrogen atoms from an electrolyte. The group one, two and three light metals (e.g. Li, Mg, B, Al) can combine with hydrogen to form a large variety of metal-hydrogen complexes. These are especially interesting because of their light weight and because of the number of hydrogen atoms per metal atom, which is two in many cases. Hydrogen can also be stored indirectly in reactive metals such as Li, Na, Al or Zn. These metals easily react with water to the corresponding hydroxide and liberate the hydrogen from the water. Since water is the product of the combustion of hydrogen with either oxygen or air, it can be recycled in a closed loop and react with the metal. Finally, the metal hydroxides can be thermally reduced to metals in a solar furnace. This paper reviews the various storage methods for hydrogen and highlights their potential for improvement and their physical limitations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Ming; Kang, Zhan, E-mail: zhankang@dlut.edu.cn; Huang, Xiaobo
2015-08-28
Hydrogen is clean, sustainable, and renewable, thus is viewed as promising energy carrier. However, its industrial utilization is greatly hampered by the lack of effective hydrogen storage and release method. Carbon nanotubes (CNTs) were viewed as one of the potential hydrogen containers, but it has been proved that pure CNTs cannot attain the desired target capacity of hydrogen storage. In this paper, we present a numerical study on the material-driven and structure-driven hydrogen adsorption of 3D silicon networks and propose a deformation-driven hydrogen desorption approach based on molecular simulations. Two types of 3D nanostructures, silicon nanotube-network (Si-NN) and silicon film-networkmore » (Si-FN), are first investigated in terms of hydrogen adsorption and desorption capacity with grand canonical Monte Carlo simulations. It is revealed that the hydrogen storage capacity is determined by the lithium doping ratio and geometrical parameters, and the maximum hydrogen uptake can be achieved by a 3D nanostructure with optimal configuration and doping ratio obtained through design optimization technique. For hydrogen desorption, a mechanical-deformation-driven-hydrogen-release approach is proposed. Compared with temperature/pressure change-induced hydrogen desorption method, the proposed approach is so effective that nearly complete hydrogen desorption can be achieved by Si-FN nanostructures under sufficient compression but without structural failure observed. The approach is also reversible since the mechanical deformation in Si-FN nanostructures can be elastically recovered, which suggests a good reusability. This study may shed light on the mechanism of hydrogen adsorption and desorption and thus provide useful guidance toward engineering design of microstructural hydrogen (or other gas) adsorption materials.« less
NASA Astrophysics Data System (ADS)
Li, Ming; Huang, Xiaobo; Kang, Zhan
2015-08-01
Hydrogen is clean, sustainable, and renewable, thus is viewed as promising energy carrier. However, its industrial utilization is greatly hampered by the lack of effective hydrogen storage and release method. Carbon nanotubes (CNTs) were viewed as one of the potential hydrogen containers, but it has been proved that pure CNTs cannot attain the desired target capacity of hydrogen storage. In this paper, we present a numerical study on the material-driven and structure-driven hydrogen adsorption of 3D silicon networks and propose a deformation-driven hydrogen desorption approach based on molecular simulations. Two types of 3D nanostructures, silicon nanotube-network (Si-NN) and silicon film-network (Si-FN), are first investigated in terms of hydrogen adsorption and desorption capacity with grand canonical Monte Carlo simulations. It is revealed that the hydrogen storage capacity is determined by the lithium doping ratio and geometrical parameters, and the maximum hydrogen uptake can be achieved by a 3D nanostructure with optimal configuration and doping ratio obtained through design optimization technique. For hydrogen desorption, a mechanical-deformation-driven-hydrogen-release approach is proposed. Compared with temperature/pressure change-induced hydrogen desorption method, the proposed approach is so effective that nearly complete hydrogen desorption can be achieved by Si-FN nanostructures under sufficient compression but without structural failure observed. The approach is also reversible since the mechanical deformation in Si-FN nanostructures can be elastically recovered, which suggests a good reusability. This study may shed light on the mechanism of hydrogen adsorption and desorption and thus provide useful guidance toward engineering design of microstructural hydrogen (or other gas) adsorption materials.
Mundschau, Michael [Longmont, CO; Xie, Xiaobing [Foster City, CA; Evenson, IV, Carl; Grimmer, Paul [Longmont, CO; Wright, Harold [Longmont, CO
2011-05-24
A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to a hydrogen separation membrane system comprising a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to an integrated water gas shift/hydrogen separation membrane system wherein the hydrogen separation membrane system comprises a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for pretreating a membrane, comprising: heating the membrane to a desired operating temperature and desired feed pressure in a flow of inert gas for a sufficient time to cause the membrane to mechanically deform; decreasing the feed pressure to approximately ambient pressure; and optionally, flowing an oxidizing agent across the membrane before, during, or after deformation of the membrane. A method of supporting a hydrogen separation membrane system comprising selecting a hydrogen separation membrane system comprising one or more catalyst outer layers deposited on a hydrogen transport membrane layer and sealing the hydrogen separation membrane system to a porous support.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katamune, Yūki, E-mail: yuki-katamune@kyudai.jp; Takeichi, Satoshi; Ohmagari, Shinya
2015-11-15
Boron-doped ultrananocrystalline diamond/hydrogenated amorphous carbon composite (UNCD/a-C:H) films were deposited by coaxial arc plasma deposition with a boron-blended graphite target at a base pressure of <10{sup −3} Pa and at hydrogen pressures of ≤53.3 Pa. The hydrogenation effects on the electrical properties of the films were investigated in terms of chemical bonding. Hydrogen-scattering spectrometry showed that the maximum hydrogen content was 35 at. % for the film produced at 53.3-Pa hydrogen pressure. The Fourier-transform infrared spectra showed strong absorptions by sp{sup 3} C–H bonds, which were specific to the UNCD/a-C:H, and can be attributed to hydrogen atoms terminating the dangling bondsmore » at ultrananocrystalline diamond grain boundaries. Temperature-dependence of the electrical conductivity showed that the films changed from semimetallic to semiconducting with increasing hydrogen pressure, i.e., with enhanced hydrogenation, probably due to hydrogenation suppressing the formation of graphitic bonds, which are a source of carriers. Carrier transport in semiconducting hydrogenated films can be explained by a variable-range hopping model. The rectifying action of heterojunctions comprising the hydrogenated films and n-type Si substrates implies carrier transport in tunneling.« less
Photoelectrochemical water splitting in separate oxygen and hydrogen cells
NASA Astrophysics Data System (ADS)
Landman, Avigail; Dotan, Hen; Shter, Gennady E.; Wullenkord, Michael; Houaijia, Anis; Maljusch, Artjom; Grader, Gideon S.; Rothschild, Avner
2017-06-01
Solar water splitting provides a promising path for sustainable hydrogen production and solar energy storage. One of the greatest challenges towards large-scale utilization of this technology is reducing the hydrogen production cost. The conventional electrolyser architecture, where hydrogen and oxygen are co-produced in the same cell, gives rise to critical challenges in photoelectrochemical water splitting cells that directly convert solar energy and water to hydrogen. Here we overcome these challenges by separating the hydrogen and oxygen cells. The ion exchange in our cells is mediated by auxiliary electrodes, and the cells are connected to each other only by metal wires, enabling centralized hydrogen production. We demonstrate hydrogen generation in separate cells with solar-to-hydrogen conversion efficiency of 7.5%, which can readily surpass 10% using standard commercial components. A basic cost comparison shows that our approach is competitive with conventional photoelectrochemical systems, enabling safe and potentially affordable solar hydrogen production.
Repeatable hydrogen generation of 3D microporous nickel membrane using chemical milling
NASA Astrophysics Data System (ADS)
Seo, Keumyoung; Lim, Taekyung; Ju, Sanghyun
2018-05-01
In this study, we investigated a novel method of hydrogen generation through a chemical milling process. In the process of generating hydrogen with a thermochemical water-splitting method using a 3D microporous nickel membrane, the nickel surface is oxidized, leading to a decreased generation of hydrogen gas with time. To regenerate hydrogen from the oxidized catalysts, the oxidized metal surface was easily removed at room temperature, re-exposing a metal surface with abundant oxygen vacancies for continuous hydrogen generation. With this method, ~110 µmol · g‑1 of hydrogen gas was continuously produced per cycle. Since this method enabled us to create a fit state for hydrogen generation without extra heat, light, or electrical energy, it can solve the biggest commercialization challenge: inefficiency because the energy required for hydrogen generation is higher than the energy of the generated hydrogen.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brooks, Kriston P.; Alvine, Kyle J.; Johnson, Kenneth I.
The Hydrogen Storage Engineering Center of Excellence is a team of universities, industrial corporations, and federal laboratories with the mandate to develop lower-pressure, materials-based, hydrogen storage systems for hydrogen fuel cell light-duty vehicles. Although not engaged in the development of new hydrogen storage materials themselves, it is an engineering center that addresses engineering challenges associated with the currently available hydrogen storage materials. Three material-based approaches to hydrogen storage are being researched: 1) chemical hydrogen storage materials 2) cryo-adsorbents, and 3) metal hydrides. As a member of this Center, Pacific Northwest National Laboratory (PNNL) has been involved in the design andmore » evaluation of systems developed with each of these three hydrogen storage materials. This report is a compilation of the work performed by PNNL for this Center.« less
Diffusion Analysis Of Hydrogen-Desorption Measurements
NASA Technical Reports Server (NTRS)
Danford, Merlin D.
1988-01-01
Distribution of hydrogen in metal explains observed desorption rate. Report describes application of diffusion theory to anaylsis of experimental data on uptake and elimination of hydrogen in high-strength alloys of 25 degree C. Study part of program aimed at understanding embrittlement of metals by hydrogen. Two nickel-base alloys, Rene 41 and Waspaloy, and one ferrous alloy, 4340 steel, studied. Desorption of hydrogen explained by distribution of hydrogen in metal. "Fast" hydrogen apparently not due to formation of hydrides on and below surface as proposed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, Y.W.; Lee, Y.Y.
1997-03-01
Isothermal vapor-liquid equilibria for the three binary systems (1-chloro-1,1-difluoroethane + hydrogen fluoride, 1,1-dichloro-1-fluoroethane + hydrogen fluoride, and chlorodifluoromethane + hydrogen fluoride) have been measured. The experimental data for the binary systems are correlated with the NRTL equation with the vapor-phase association model for the mixtures containing hydrogen fluoride, and the relevant parameters are presented. All of the systems form minimum boiling heterogeneous azeotropes.
Steady-State Plant Model to Predict Hydroden Levels in Power Plant Components
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glatzmaier, Greg C.; Cable, Robert; Newmarker, Marc
The National Renewable Energy Laboratory (NREL) and Acciona Energy North America developed a full-plant steady-state computational model that estimates levels of hydrogen in parabolic trough power plant components. The model estimated dissolved hydrogen concentrations in the circulating heat transfer fluid (HTF), and corresponding partial pressures within each component. Additionally for collector field receivers, the model estimated hydrogen pressure in the receiver annuli. The model was developed to estimate long-term equilibrium hydrogen levels in power plant components, and to predict the benefit of hydrogen mitigation strategies for commercial power plants. Specifically, the model predicted reductions in hydrogen levels within the circulatingmore » HTF that result from purging hydrogen from the power plant expansion tanks at a specified target rate. Our model predicted hydrogen partial pressures from 8.3 mbar to 9.6 mbar in the power plant components when no mitigation treatment was employed at the expansion tanks. Hydrogen pressures in the receiver annuli were 8.3 to 8.4 mbar. When hydrogen partial pressure was reduced to 0.001 mbar in the expansion tanks, hydrogen pressures in the receiver annuli fell to a range of 0.001 mbar to 0.02 mbar. When hydrogen partial pressure was reduced to 0.3 mbar in the expansion tanks, hydrogen pressures in the receiver annuli fell to a range of 0.25 mbar to 0.28 mbar. Our results show that controlling hydrogen partial pressure in the expansion tanks allows us to reduce and maintain hydrogen pressures in the receiver annuli to any practical level.« less
Junicke, H; Feldman, H; van Loosdrecht, M C M; Kleerebezem, R
2015-04-01
In this study, the impact of the hydrogen partial pressure on lactate degradation was investigated in a coculture of Desulfovibrio sp. G11 and Methanobrevibacter arboriphilus DH1. To impose a change of the hydrogen partial pressure, formate was added to the reactor. Hydrogen results from the bioconversion of formate besides lactate in the liquid phase. In the presence of a hydrogen-consuming methanogen, this approach allows for a better estimation of low dissolved hydrogen concentrations than under conditions where hydrogen is supplied externally from the gas phase, resulting in a more accurate determination of kinetic parameters. A change of the hydrogen partial pressure from 1,200 to 250 ppm resulted in a threefold increase of the biomass-specific lactate consumption rate. The 50 % inhibition constant of hydrogen on lactate degradation was determined as 0.692 ± 0.064 μM dissolved hydrogen (831 ± 77 ppm hydrogen in the gas phase). Moreover, for the first time, the maximum biomass-specific lactate consumption rate of Desulfovibrio sp. G11 (0.083 ± 0.006 mol-Lac/mol-XG11/h) and the affinity constant for hydrogen uptake of Methanobrevibacter arboriphilus DH1 (0.601 ± 0.022 μM dissolved hydrogen) were determined. Contrary to the widely established view that the biomass-specific growth rate of a methanogenic coculture is determined by the hydrogen-utilizing partner; here, it was found that the hydrogen-producing bacterium determined the biomass-specific growth rate of the coculture grown on lactate and formate.
Nanostructured materials for hydrogen storage
Williamson, Andrew J.; Reboredo, Fernando A.
2007-12-04
A system for hydrogen storage comprising a porous nano-structured material with hydrogen absorbed on the surfaces of the porous nano-structured material. The system of hydrogen storage comprises absorbing hydrogen on the surfaces of a porous nano-structured semiconductor material.
Systems and methods for selective hydrogen transport and measurement
Glatzmaier, Gregory C
2013-10-29
Systems and methods for selectively removing hydrogen gas from a hydrogen-containing fluid volume are disclosed. An exemplary system includes a proton exchange membrane (PEM) selectively permeable to hydrogen by exclusively conducting hydrogen ions. The system also includes metal deposited as layers onto opposite sides or faces of the PEM to form a membrane-electrode assembly (MEA), each layer functioning as an electrode so that the MEA functions as an electrochemical cell in which the ionic conductors are hydrogen ions, and the MEA functioning as a hydrogen selective membrane (HSM) when located at the boundary between a hydrogen-containing fluid volume and a second fluid.
Method for charging a hydrogen getter
Tracy, C. Edwin; Keyser, Matthew A.; Benson, David K.
1998-01-01
A method for charging a sample of either a permanent or reversible getter material with a high concentration of hydrogen while maintaining a base pressure below 10.sup.-4 torr at room temperature involves placing the sample of hydrogen getter material in a chamber, activating the sample of hydrogen getter material, overcharging the sample of getter material through conventional charging techniques to a high concentration of hydrogen, and then subjecting the sample of getter material to a low temperature vacuum bake-out process. Application of the method results in a reversible hydrogen getter which is highly charged to maximum capacities of hydrogen and which concurrently exhibits minimum hydrogen vapor pressures at room temperatures.
Autothermal hydrogen storage and delivery systems
Pez, Guido Peter [Allentown, PA; Cooper, Alan Charles [Macungie, PA; Scott, Aaron Raymond [Allentown, PA
2011-08-23
Processes are provided for the storage and release of hydrogen by means of dehydrogenation of hydrogen carrier compositions where at least part of the heat of dehydrogenation is provided by a hydrogen-reversible selective oxidation of the carrier. Autothermal generation of hydrogen is achieved wherein sufficient heat is provided to sustain the at least partial endothermic dehydrogenation of the carrier at reaction temperature. The at least partially dehydrogenated and at least partially selectively oxidized liquid carrier is regenerated in a catalytic hydrogenation process where apart from an incidental employment of process heat, gaseous hydrogen is the primary source of reversibly contained hydrogen and the necessary reaction energy.
Polymer system for gettering hydrogen
Shepodd, Timothy Jon; Whinnery, LeRoy L.
2000-01-01
A novel composition comprising organic polymer molecules having carbon-carbon double bonds, for removing hydrogen from the atmosphere within enclosed spaces. Organic polymers molecules containing carbon-carbon double bonds throughout their structures, preferably polybutadiene, polyisoprene and derivatives thereof, intimately mixed with an insoluble catalyst composition, comprising a hydrogenation catalyst and a catalyst support, preferably Pd supported on carbon, provide a hydrogen getter composition useful for removing hydrogen from enclosed spaces even in the presence of contaminants such as common atmospheric gases, water vapor, carbon dioxide, ammonia, oil mists, and water. The hydrogen getter composition disclosed herein is particularly useful for removing hydrogen from enclosed spaces containing potentially explosive mixtures of hydrogen and oxygen.
Polymer formulations for gettering hydrogen
Shepodd, Timothy Jon; Whinnery, LeRoy L.
1998-11-17
A novel composition comprising organic polymer molecules having carbon-carbon double bonds, for removing hydrogen from the atmosphere within enclosed spaces. Organic polymers molecules containing carbon-carbon double bonds throughout their structures, preferably polybutadiene, polyisoprene and derivatives thereof, intimately mixed with an insoluble catalyst composition, comprising a hydrogenation catalyst and a catalyst support, preferably Pd supported on carbon, provide a hydrogen getter composition useful for removing hydrogen from enclosed spaces even in the presence of contaminants such as common atmospheric gases, water vapor, carbon dioxide, ammonia, oil mists, and water. The hydrogen getter composition disclosed herein is particularly useful for removing hydrogen from enclosed spaces containing potentially explosive mixtures of hydrogen and oxygen.
System for operating solid oxide fuel cell generator on diesel fuel
NASA Technical Reports Server (NTRS)
Singh, Prabhu (Inventor); George, Raymond A. (Inventor)
1997-01-01
A system is provided for operating a solid oxide fuel cell generator on diesel fuel. The system includes a hydrodesulfurizer which reduces the sulfur content of commercial and military grade diesel fuel to an acceptable level. Hydrogen which has been previously separated from the process stream is mixed with diesel fuel at low pressure. The diesel/hydrogen mixture is then pressurized and introduced into the hydrodesulfurizer. The hydrodesulfurizer comprises a metal oxide such as ZnO which reacts with hydrogen sulfide in the presence of a metal catalyst to form a metal sulfide and water. After desulfurization, the diesel fuel is reformed and delivered to a hydrogen separator which removes most of the hydrogen from the reformed fuel prior to introduction into a solid oxide fuel cell generator. The separated hydrogen is then selectively delivered to the diesel/hydrogen mixer or to a hydrogen storage unit. The hydrogen storage unit preferably comprises a metal hydride which stores hydrogen in solid form at low pressure. Hydrogen may be discharged from the metal hydride to the diesel/hydrogen mixture at low pressure upon demand, particularly during start-up and shut-down of the system.
Effect of hydrogen coverage on hydrogenation of o-cresol on Pt(111)
NASA Astrophysics Data System (ADS)
Li, Yaping; Liu, Zhimin; Crossley, Steven P.; Jentoft, Friederike C.; Wang, Sanwu
2018-06-01
The conversion of phenolics over metal catalysts is an important process for upgrading biofuels. With density functional calculations, hydrogenation of o-cresol on the hydrogen-covered Pt(111) surface was investigated. The results show that the coverage of hydrogen plays a significant role in the reaction rate while it does not affect the reaction selectivity. The reaction barriers of the hydrogenation process leading to the formation of both 2-methyl-cyclohexanone (the intermediate product) and 2-methyl-cyclohexanol (the final product) at high H coverages (∼1 ML) are found to be smaller by 0.14-0.69 eV than those at lower H coverages (∼1/25 ML). After both hydrogen and cresol are adsorbed on Pt(111) from their initial gas phase state, the reaction energy of each hydrogenation step on the surface is also dependent on the hydrogen coverage. On the H-covered Pt(111) surface, most steps of hydrogenation involve exothermic reactions when the hydrogen coverage is high while they are endothermic reactions at low hydrogen coverages. The differences in reaction rate and reaction energy between high and low H coverages can be understood with the coverage-dependent bonding strength and configurations.
NASA Astrophysics Data System (ADS)
Liu, Peng
High temperature hydrogen attack (HTHA) is a form of surface decarburization, internal decarburization, and/or intergranular cracking in steels exposed to high temperature (>400°F) and high hydrogen pressure. Hydrogen attack is an irreversible process which can cause permanent damage resulting in degradation of mechanical properties and failures such as leakage, bursting, fire, and/or explosion. The continuous progression of hydrogen attack in C-0.5Mo steel and weldments below the C-0.5Mo Nelson Curve has caused a significant concern for the integrity and serviceability of C-0.5Mo steel utilized for pressure vessels and piping in the petroleum refinery and petrochemical industries. A state-of-the-art literature review was implemented to provide a comprehensive overview of the published research efforts on hydrogen attack studies. The evolution of "Nelson Curves" for carbon steel, C-0.5Mo, and Cr-Mo steels was historically reviewed in regard to design applications and limitations. Testing techniques for hydrogen attack assessment were summarized under the categories of hydrogen exposure testing, mechanical evaluation, and dilatometric swelling testing. In accord with the demands of these industries, fundamental studies of hydrogen attack in C-0.5Mo steel and weldments were accomplished in terms of quantitative methodologies for hydrogen damage evaluation; hydrogen damage assessment of service exposed weldments and autoclave exposed materials; effects of carbon and alloying elements, heat treatments, hot and cold working, welding processes and postweld heat treatment (PWHT) on hydrogen attack susceptibility; development of continuous cooling transformation (CCT) diagrams for C-0.5Mo base metals and the coarse grained heat-affected zone (CGHAZ); carbide evaluation for the C-0.5Mo steel after service exposure and heat treatment; methane evolution by the reaction of hydrogen and carbides; hydrogen diffusion and methane pressure through the wall thickness of one-sided hydrogen exposure assembly; hydrogen attack mechanism and hydrogen attack limit modeling.
Hydrogen Storage Performance in Pd/Graphene Nanocomposites.
Zhou, Chunyu; Szpunar, Jerzy A
2016-10-05
We have developed a Pd-graphene nanocomposite for hydrogen storage. The spherically shaped Pd nanoparticles of 5-45 nm in size are homogeneously distributed over the graphene matrix. This new hydrogen storage system has favorable features like desirable hydrogen storage capacity, ambient conditions of hydrogen uptake, and low temperature of hydrogen release. At a hydrogen charging pressure of 50 bar, the material could yield a gravimetric density of 6.7 wt % in the 1% Pd/graphene nanocomposite. As we increased the applied pressure to 60 bar, the hydrogen uptake capacity reached 8.67 wt % in the 1% Pd/graphene nanocomposite and 7.16 wt % in the 5% Pd/graphene nanocomposite. This system allows storage of hydrogen in amounts that exceed the capacity of the gravimetric target announced by the U.S. Department of Energy (DOE).
A Summary of the Slush Hydrogen Technology Program for the National Aero-Space Plane
NASA Technical Reports Server (NTRS)
Mcnelis, Nancy B.; Hardy, Terry L.; Whalen, Margaret V.; Kudlac, Maureen T.; Moran, Matthew E.; Tomsik, Thomas M.; Haberbusch, Mark S.
1995-01-01
Slush hydrogen, a mixture of solid and liquid hydrogen, offers advantages of higher density (16 percent) and higher heat capacity (18 percent) than normal boiling point hydrogen. The combination of increased density and heat capacity of slush hydrogen provided a potential to decrease the gross takeoff weight of the National Aero-Space Plane (NASP) and therefore slush hydrogen was selected as the propellant. However, no large-scale data was available on the production, transfer and tank pressure control characteristics required to use slush hydrogen as a fuel. Extensive testing has been performed at the NASA Lewis Research Center K-Site and Small Scale Hydrogen Test Facility between 1990 and the present to provide a database for the use of slush hydrogen. This paper summarizes the results of this testing.
A Review of Fatigue Crack Growth for Pipeline Steels Exposed to Hydrogen
Nanninga, N.; Slifka, A.; Levy, Y.; White, C.
2010-01-01
Hydrogen pipeline systems offer an economical means of storing and transporting energy in the form of hydrogen gas. Pipelines can be used to transport hydrogen that has been generated at solar and wind farms to and from salt cavern storage locations. In addition, pipeline transportation systems will be essential before widespread hydrogen fuel cell vehicle technology becomes a reality. Since hydrogen pipeline use is expected to grow, the mechanical integrity of these pipelines will need to be validated under the presence of pressurized hydrogen. This paper focuses on a review of the fatigue crack growth response of pipeline steels when exposed to gaseous hydrogen environments. Because of defect-tolerant design principles in pipeline structures, it is essential that designers consider hydrogen-assisted fatigue crack growth behavior in these applications. PMID:27134796
Hydrogen production by Cyanobacteria
Dutta, Debajyoti; De, Debojyoti; Chaudhuri, Surabhi; Bhattacharya, Sanjoy K
2005-01-01
The limited fossil fuel prompts the prospecting of various unconventional energy sources to take over the traditional fossil fuel energy source. In this respect the use of hydrogen gas is an attractive alternate source. Attributed by its numerous advantages including those of environmentally clean, efficiency and renew ability, hydrogen gas is considered to be one of the most desired alternate. Cyanobacteria are highly promising microorganism for hydrogen production. In comparison to the traditional ways of hydrogen production (chemical, photoelectrical), Cyanobacterial hydrogen production is commercially viable. This review highlights the basic biology of cynobacterial hydrogen production, strains involved, large-scale hydrogen production and its future prospects. While integrating the existing knowledge and technology, much future improvement and progress is to be done before hydrogen is accepted as a commercial primary energy source. PMID:16371161
High speed hydrogen/graphite interaction
NASA Technical Reports Server (NTRS)
Kelly, A. J.; Hamman, R.; Sharma, O. P.; Harrje, D. T.
1974-01-01
Various aspects of a research program on high speed hydrogen/graphite interaction are presented. Major areas discussed are: (1) theoretical predictions of hydrogen/graphite erosion rates; (2) high temperature, nonequilibrium hydrogen flow in a nozzle; and (3) molecular beam studies of hydrogen/graphite erosion.
Process for exchanging hydrogen isotopes between gaseous hydrogen and water
Hindin, Saul G.; Roberts, George W.
1980-08-12
A process for exchanging isotopes of hydrogen, particularly tritium, between gaseous hydrogen and water is provided whereby gaseous hydrogen depeleted in tritium and liquid or gaseous water containing tritium are reacted in the presence of a metallic catalyst.
Chemical-clathrate hybrid hydrogen storage: storage in both guest and host.
Strobel, Timothy A; Kim, Yongkwan; Andrews, Gary S; Ferrell, Jack R; Koh, Carolyn A; Herring, Andrew M; Sloan, E Dendy
2008-11-12
Hydrogen storage from two independent sources of the same material represents a novel approach to the hydrogen storage problem, yielding storage capacities greater than either of the individual constituents. Here we report a novel hydrogen storage scheme in which recoverable hydrogen is stored molecularly within clathrate cavities as well as chemically in the clathrate host material. X-ray diffraction and Raman spectroscopic measurements confirm the formation of beta-hydroquinone (beta-HQ) clathrate with molecular hydrogen. Hydrogen within the beta-HQ clathrate vibrates at considerably lower frequency than hydrogen in the free gaseous phase and rotates nondegenerately with splitting comparable to the rotational constant. Compared with water-based clathrate hydrate phases, the beta-HQ+H2 clathrate shows remarkable stability over a range of p-T conditions. Subsequent to clathrate decomposition, the host HQ was used to directly power a PEM fuel cell. With one H2 molecule per cavity, 0.61 wt % hydrogen may be stored in the beta-HQ clathrate cavities. When this amount is combined with complete dehydrogenation of the host hydroxyl hydrogens, the maximum hydrogen storage capacity increases nearly 300% to 2.43 wt %.
Effect of hydrogen on void initiation in tensile test of carbon steel JIS-S25C
NASA Astrophysics Data System (ADS)
Sugawa, S.; Tsutsumi, N.; Oda, K.
2018-06-01
In order to investigate the effect of hydrogen on tensile fracture mechanism of a carbon steel, tensile tests were conducted. Pre-strain specimens (0%, 5% and 10%) were used to study the effect of hydrogen content, since saturated hydrogen content in specimens increases in increasing dislocation density. The tensile strength and the yield stress of hydrogen specimens were almost the same as uncharged. In contrast, the reduction of area of hydrogen charged specimens was smaller than that of uncharged. To reveal the reasons of decrease of the reduction of area, the fracture surface and longitudinal cross section near the fracture surface were observed. On the fracture surface of uncharged specimens, only dimples were observed. On the other hand, dimples and flat fracture surface were observed on the fracture surface of hydrogen charged. On the longitudinal cross section of hydrogen charged specimens, many voids were observed compared to uncharged. From these observations, it is showed that hydrogen gives a rise to the increase of voids and the hydrogen charged specimens break without sufficient necking, thus hydrogen makes the reduction of area smaller.
Ultrafine hydrogen storage powders
Anderson, Iver E.; Ellis, Timothy W.; Pecharsky, Vitalij K.; Ting, Jason; Terpstra, Robert; Bowman, Robert C.; Witham, Charles K.; Fultz, Brent T.; Bugga, Ratnakumar V.
2000-06-13
A method of making hydrogen storage powder resistant to fracture in service involves forming a melt having the appropriate composition for the hydrogen storage material, such, for example, LaNi.sub.5 and other AB.sub.5 type materials and AB.sub.5+x materials, where x is from about -2.5 to about +2.5, including x=0, and the melt is gas atomized under conditions of melt temperature and atomizing gas pressure to form generally spherical powder particles. The hydrogen storage powder exhibits improved chemcial homogeneity as a result of rapid solidfication from the melt and small particle size that is more resistant to microcracking during hydrogen absorption/desorption cycling. A hydrogen storage component, such as an electrode for a battery or electrochemical fuel cell, made from the gas atomized hydrogen storage material is resistant to hydrogen degradation upon hydrogen absorption/desorption that occurs for example, during charging/discharging of a battery. Such hydrogen storage components can be made by consolidating and optionally sintering the gas atomized hydrogen storage powder or alternately by shaping the gas atomized powder and a suitable binder to a desired configuration in a mold or die.
Hydrogen adsorption in metal-decorated silicon carbide nanotubes
NASA Astrophysics Data System (ADS)
Singh, Ram Sevak; Solanki, Ankit
2016-09-01
Hydrogen storage for fuel cell is an active area of research and appropriate materials with excellent hydrogen adsorption properties are highly demanded. Nanotubes, having high surface to volume ratio, are promising storage materials for hydrogen. Recently, silicon carbide nanotubes have been predicted as potential materials for future hydrogen storage application, and studies in this area are ongoing. Here, we report a systematic study on hydrogen adsorption properties in metal (Pt, Ni and Al) decorated silicon carbide nanotubes (SiCNTs) using first principles calculations based on density functional theory. The hydrogen adsorption properties are investigated by calculations of adsorption energy, electronic band structure, density of states (DOS) and Mulliken charge population analysis. Our findings show that hydrogen adsorptions on Pt, Ni and Al-decorated SiCNTs undergo spontaneous exothermic reactions with significant modulation of electronic structure of SiCNTs in all cases. Importantly, according to the Mulliken charge population analysis, dipole-dipole interaction causes chemisorptions of hydrogen in Pt, Ni and Al decorated SiCNTs with formation of chemical bonds. The study is a platform for the development of metal decorated SiCNTs for hydrogen adsorption or hydrogen storage application.
Method of CO and/or CO.sub.2 hydrogenation using doped mixed-metal oxides
Shekhawat, Dushyant; Berry, David A.; Haynes, Daniel J.; Abdelsayed, Victor; Smith, Mark W.; Spivey, James J.
2015-10-06
A method of hydrogenation utilizing a reactant gas mixture comprising a carbon oxide and a hydrogen agent, and a hydrogenation catalyst comprising a mixed-metal oxide containing metal sites supported and/or incorporated into the lattice. The mixed-metal oxide comprises a perovskite, a pyrochlore, a fluorite, a brownmillerite, or mixtures thereof doped at the A-site or the B-site. The metal site may comprise a deposited metal, where the deposited metal is a transition metal, an alkali metal, an alkaline earth metal, or mixtures thereof. Contact between the carbon oxide, hydrogen agent, and hydrogenation catalyst under appropriate conditions of temperature, pressure and gas flow rate generate a hydrogenation reaction and produce a hydrogenated product made up of carbon from the carbon oxide and some portion of the hydrogen agent. The carbon oxide may be CO, CO.sub.2, or mixtures thereof and the hydrogen agent may be H.sub.2. In a particular embodiment, the hydrogenated product comprises an alcohol, an olefin, an aldehyde, a ketone, an ester, an oxo-product, or mixtures thereof.
Activated aluminum hydride hydrogen storage compositions and uses thereof
Sandrock, Gary; Reilly, James; Graetz, Jason; Wegrzyn, James E.
2010-11-23
In one aspect, the invention relates to activated aluminum hydride hydrogen storage compositions containing aluminum hydride in the presence of, or absence of, hydrogen desorption stimulants. The invention particularly relates to such compositions having one or more hydrogen desorption stimulants selected from metal hydrides and metal aluminum hydrides. In another aspect, the invention relates to methods for generating hydrogen from such hydrogen storage compositions.
2010 Annual Progress Report DOE Hydrogen Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
This report summarizes the hydrogen and fuel cell R&D activities and accomplishments in FY2009 for the DOE Hydrogen Program, including the Hydrogen, Fuel Cells, and Infrastructure Technologies Program and hydrogen-related work in the Offices of Science; Fossil Energy; and Nuclear Energy, Science, and Technology. It includes reports on all of the research projects funded by the DOE Hydrogen Program between October 2009 and September 2010.
On the effect of hydrogen on the mechanical behavior of Beta-C titanium in aged condition
NASA Astrophysics Data System (ADS)
Alvarez, Anna-Maria
The effect of hydrogen in solid solution on the mechanical behavior of the metastable beta-titanium alloy Beta-C was studied. The samples were aged at 482°C for 28 h prior to hydrogen charging in order to obtain a microstructure of alpha-precipitates in a beta-phase matrix. The kinetics and thermodynamics of hydrogen uptake in the alloy were studied in order to determine the required parameters to gas charge the samples with hydrogen, without altering the microstructure. The mechanical samples were hydrogen charged at 350°C to hydrogen concentrations between 0.6 and 24 at%. The samples were thereafter tested under tensile and alternating loading in order to study the effect of hydrogen on the tensile properties, fatigue properties and crack propagation rate. The fracture surfaces were then studied by using SEM, TEM and X-ray diffraction techniques. The macroscopic mechanical properties were compared with the micromechanisms of deformation and fracture in order to obtain information about the operating hydrogen-enhanced fracture mechanism. It was found that the tensile behavior was sensitive to hydrogen. A sharp ductile-to-brittle transition (DBT) occurred when hydrogen in solid solution reached a concentration of about 3.5 at%. TEM and X-ray analysis showed that stress-induced hydrides form in areas of low stress intensities at hydrogen concentrations above the DBT, and it is therefore believed that this is the cause of the hydrogen embrittlement in this alloy. However, at higher stress intensities, slip localization and enhanced slip band fracture were observed. Since slip localization and hydrogen-induced slip band fracture have previously been connected with a large decrease in ductility it can not be excluded that these effects of hydrogen affects the DBT. The cyclic stress strain behavior was not affected by hydrogen; the non-linear elastic behavior and the cyclic softening did not change with introduction of hydrogen up to a level of 10.8 at%. The fatigue life was, however, reduced when hydrogen charged samples were tested at low frequency (0.00032 Hz).
Influence of Microstructure on the Fatigue Crack Growth of A516 in Hydrogen
NASA Technical Reports Server (NTRS)
Wachob, Harry F.; Nelson, Howard G.
1980-01-01
Some day hydrogen may be used as a viable energy storage and transport medium within the United States. Hydrogen gas may be used to dilute and extend our present methane supply as a blend or may even be used in its pure elemental form as a primary fuel. Independent of the methods of production, storage, and distribution, the interaction of hydrogen with its containment material will play an integral role in the success of a hydrogen energy program. Presently, the selection of hydrogen containment materials can be made such that the material will remain reasonably free from environmental degradation; however, costly alloying additions are required. Unfortunately, high alloy steels are economically prohibitive when large-scale hydrogen energy storage, transmission, and conversion systems are desired. Therefore, in order to implement such hydrogen energy systems in the future, existing low-cost materials must be improved via mechanical, thermal, or thermo-mechanical processing methods or new low-cost materials which are compatible with hydrogen must be developed. Originally, low strength, low alloy steels at room temperature were thought to be immune to hydrogen gas embrittlement, since no sustained load crack growth is observed. However, results of Clark in HY8O and Nelson in SAE 1020 have shown that the fatigue crack growth rate can be greatly accelerated in the presence of hydrogen gas. In recent results reported by Louthan and Mucci, the smooth bar fatigue life of an A1068 pipeline steel was reduced up to a factor of ten when the tests were performed in a 13.8 MPa hydrogen environment. These results suggest that the selection of material for structures designed to operate in hydrogen under cyclic loads must include consideration of hydrogen/metal fatigue interaction. Although the hydrogen/metal fatigue interaction can be severe in low strength low alloy steels, the degree of degradation may be altered by the underlying ferrous microstructure. At present, no correlation between microstructure and degree of hydrogen susceptibility exists for low strength steels. However, in high strength steels, susceptibility to hydrogen embrittlement has been shown to be strongly sensitive to the metallurgical microstructure. In addition, compositional effects and grain size can 703 Some day hydrogen may be used as a viable energy storage and transport medium within the United States. Hydrogen gas may be used to dilute and extend our present methane supply as a blend or may even be used in its pure elemental form as a primary fuel. Independent of the methods of production, storage, and distribution, the interaction of hydrogen with its containment material will play an integral role in the success of a hydrogen energy program. Presently, the selection of hydrogen containment materials can be made such that the material will remain reasonably free from environmental degradation; however, costly alloying additions are required. Unfortunately, high alloy steels are economically prohibitive when large-scale hydrogen energy storage, transmission, and conversion systems are desired. Therefore, in order to implement such hydrogen energy systems in the future, existing low-cost materials must be improved via mechanical, thermal, or thermo-mechanical processing methods or new low-cost materials which are compatible with hydrogen must be developed.
The development of a solid-state hydrogen sensor for rocket engine leakage detection
NASA Technical Reports Server (NTRS)
Liu, Chung-Chiun
1994-01-01
Hydrogen propellant leakage poses significant operational problems in the rocket propulsion industry as well as for space exploratory applications. Vigorous efforts have been devoted to minimizing hydrogen leakage in assembly, test, and launch operations related to hydrogen propellant. The objective has been to reduce the operational cost of assembling and maintaining hydrogen delivery systems. Specifically, efforts have been made to develop a hydrogen leak detection system for point-contact measurement. Under the auspices of Lewis Research Center, the Electronics Design Center at Case Western Reserve University, Cleveland, Ohio, has undertaken the development of a point-contact hydrogen gas sensor with potential applications to the hydrogen propellant industry. We envision a sensor array consisting of numbers of discrete hydrogen sensors that can be located in potential leak sites. Silicon-based microfabrication and micromachining techniques are used in the fabrication of these sensor prototypes. Evaluations of the sensor are carried out in-house at Case Western Reserve University as well as at Lewis Research Center and GenCorp Aerojet, Sacramento, California. The hydrogen gas sensor is not only applicable in a hydrogen propulsion system, but also usable in many other civilian and industrial settings. This includes vehicles or facility use, or in the production of hydrogen gas. Dual space and commercial uses of these point-contacted hydrogen sensors are feasible and will directly meet the needs and objectives of NASA as well as various industrial segments.
Cui, Jin; Chen, Xiao; Zhai, Xiao; Shi, Dongchen; Zhang, Rongjia; Zhi, Xin; Li, Xiaoqun; Gu, Zhengrong; Cao, Liehu; Weng, Weizong; Zhang, Jun; Wang, Liping; Sun, Xuejun; Ji, Fang; Hou, Jiong; Su, Jiacan
2016-10-29
Hydrogen is a kind of noble gas with the character to selectively neutralize reactive oxygen species. Former researches proved that low-concentration of hydrogen can be used to ameliorating cerebral ischemia/reperfusion injury. Hydrogen electrolyzed from water has a hydrogen concentration of 66.7%, which is much higher than that used in previous studies. And water electrolysis is a potential new hydrogen resource for regular clinical use. This study was designed and carried out for the determination of safety and neuroprotective effects of water electrolysis-derived hydrogen. Sprague-Dawley rats were used as experimental animals, and middle cerebral artery occlusion was used to make cerebral ischemia/reperfusion model. Pathologically, tissues from rats in hydrogen inhalation group showed no significant difference compared with the control group in HE staining pictures. The blood biochemical findings matched the HE staining result. TTC, Nissl, and TUNEL staining showed the significant improvement of infarction volume, neuron morphology, and neuron apoptosis in rat with hydrogen treatment. Biochemically, hydrogen inhalation decreased brain caspase-3, 3-nitrotyrosine and 8-hydroxy-2-deoxyguanosine-positive cells and inflammation factors concentration. Water electrolysis-derived hydrogen inhalation had neuroprotective effects on cerebral ischemia/reperfusion injury in rats with the effect of suppressing oxidative stress and inflammation, and it is a possible new hydrogen resource to electrolyze water at the bedside clinically. Copyright © 2016. Published by Elsevier Ltd.
Room temperature micro-hydrogen-generator
NASA Astrophysics Data System (ADS)
Gervasio, Don; Tasic, Sonja; Zenhausern, Frederic
A new compact and cost-effective hydrogen-gas generator has been made that is well suited for supplying hydrogen to a fuel-cell for providing base electrical power to hand-carried appliances. This hydrogen-generator operates at room temperature, ambient pressure and is orientation-independent. The hydrogen-gas is generated by the heterogeneous catalytic hydrolysis of aqueous alkaline borohydride solution as it flows into a micro-reactor. This reactor has a membrane as one wall. Using the membrane keeps the liquid in the reactor, but allows the hydrogen-gas to pass out of the reactor to a fuel-cell anode. Aqueous alkaline 30 wt% borohydride solution is safe and promotes long application life, because this solution is non-toxic, non-flammable, and is a high energy-density (≥2200 W-h per liter or per kilogram) hydrogen-storage solution. The hydrogen is released from this storage-solution only when it passes over the solid catalyst surface in the reactor, so controlling the flow of the solution over the catalyst controls the rate of hydrogen-gas generation. This allows hydrogen generation to be matched to hydrogen consumption in the fuel-cell, so there is virtually no free hydrogen-gas during power generation. A hydrogen-generator scaled for a system to provide about 10 W electrical power is described here. However, the technology is expected to be scalable for systems providing power spanning from 1 W to kW levels.
Development of Press Hardening Steel with High Resistance to Hydrogen Embrittlement
NASA Astrophysics Data System (ADS)
Bian, Jian; Mohrbacher, Hardy; Lu, Hongzhou; Wang, Wenjun
Press hardening has become the state-of-art technology in the car body manufacturing to enhance safety standard and to reduce CO2 emission of new vehicles. However the delayed cracking due to hydrogen embrittlement remains to be a critical issue. Generally press hardening steel is susceptible to hydrogen embrittlement due to ultra-high strength and martensitic microstructure. The hydrogen charging tests clearly demonstrate that only a few ppm of diffusible hydrogen is sufficient to cause such embrittlement. Currently the hydrogen embrittlement cannot be detected in the press hardened components and the embitteled components could collapse in the crash situation with fatal consequences arisen through dramatic loss in both strength and ductility. This paper introduces a new metallurgical solution to increase the resistance to hydrogen embrittlement of conventional press hardening steel based on 22MnB5 by Nb microalloying. In the hydrogen embrittlement and permeation tests the impact of Nb microalloying on the hydrogen embrittlement behavior was investigated under different hydrogen charging conditions and constant load. The test results revealed that Nb addition increases the resistance to hydrogen embrittlement due to reduced hydrogen diffusivity. The focus of this paper is to investigate the precipitation behavior of microalloying elements by using TEM and STEM and to find out the mechanisms leading to higher performance against hydrogen embrittlement of Nb alloyed steels.
The development of a solid-state hydrogen sensor for rocket engine leakage detection
NASA Astrophysics Data System (ADS)
Liu, Chung-Chiun
Hydrogen propellant leakage poses significant operational problems in the rocket propulsion industry as well as for space exploratory applications. Vigorous efforts have been devoted to minimizing hydrogen leakage in assembly, test, and launch operations related to hydrogen propellant. The objective has been to reduce the operational cost of assembling and maintaining hydrogen delivery systems. Specifically, efforts have been made to develop a hydrogen leak detection system for point-contact measurement. Under the auspices of Lewis Research Center, the Electronics Design Center at Case Western Reserve University, Cleveland, Ohio, has undertaken the development of a point-contact hydrogen gas sensor with potential applications to the hydrogen propellant industry. We envision a sensor array consisting of numbers of discrete hydrogen sensors that can be located in potential leak sites. Silicon-based microfabrication and micromachining techniques are used in the fabrication of these sensor prototypes. Evaluations of the sensor are carried out in-house at Case Western Reserve University as well as at Lewis Research Center and GenCorp Aerojet, Sacramento, California. The hydrogen gas sensor is not only applicable in a hydrogen propulsion system, but also usable in many other civilian and industrial settings. This includes vehicles or facility use, or in the production of hydrogen gas. Dual space and commercial uses of these point-contacted hydrogen sensors are feasible and will directly meet the needs and objectives of NASA as well as various industrial segments.
40 CFR 62.15390 - What equations must I use?
Code of Federal Regulations, 2011 CFR
2011-07-01
... reduction in potential hydrogen chloride emissions. Calculate the percent reduction in potential hydrogen... of the potential hydrogen chloride emissions Ei = hydrogen chloride emission concentration as measured at the air pollution control device inlet, corrected to 7 percent oxygen, dry basis Eo = hydrogen...
40 CFR 62.15390 - What equations must I use?
Code of Federal Regulations, 2010 CFR
2010-07-01
... reduction in potential hydrogen chloride emissions. Calculate the percent reduction in potential hydrogen... of the potential hydrogen chloride emissions Ei = hydrogen chloride emission concentration as measured at the air pollution control device inlet, corrected to 7 percent oxygen, dry basis Eo = hydrogen...
Hydrogen-permeable composite metal membrane and uses thereof
Edlund, D.J.; Friesen, D.T.
1993-06-08
Various hydrogen production and hydrogen sulfide decomposition processes are disclosed that utilize composite metal membranes that contain an intermetallic diffusion barrier separating a hydrogen-permeable base metal and a hydrogen-permeable coating metal. The barrier is a thermally stable inorganic proton conductor.
Control method for high-pressure hydrogen vehicle fueling station dispensers
Kountz, Kenneth John; Kriha, Kenneth Robert; Liss, William E.
2006-06-13
A method for quick filling a vehicle hydrogen storage vessel with hydrogen, the key component of which is an algorithm used to control the fill process, which interacts with the hydrogen dispensing apparatus to determine the vehicle hydrogen storage vessel capacity.
The solubility of hydrogen and deuterium in alloyed, unalloyed and impure plutonium metal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richmond, Scott; Bridgewater, Jon S; Ward, John W
2010-01-01
Hydrogen is exothermically absorbed in many transition metals, all rare earths and the actinides. The hydrogen gas adsorbs, dissociates and diffuses into these metals as atomic hydrogen. Absorbed hydrogen is generally detrimental to Pu, altering its properties and greatly enhancing corrosion. Measuring the heat of solution of hydrogen in Pu and its alloys provides significant insight into the thermodynamics driving these changes. Hydrogen is present in all Pu metal unless great care is taken to avoid it. Heats of solution and formation are provided along with evidence for spinodal decomposition.
Hydrogen production from microbial strains
Harwood, Caroline S; Rey, Federico E
2012-09-18
The present invention is directed to a method of screening microbe strains capable of generating hydrogen. This method involves inoculating one or more microbes in a sample containing cell culture medium to form an inoculated culture medium. The inoculated culture medium is then incubated under hydrogen producing conditions. Once incubating causes the inoculated culture medium to produce hydrogen, microbes in the culture medium are identified as candidate microbe strains capable of generating hydrogen. Methods of producing hydrogen using one or more of the microbial strains identified as well as the hydrogen producing strains themselves are also disclosed.
Method for low temperature catalytic production of hydrogen
Mahajan, Devinder
2003-07-22
The invention provides a process for the catalytic production of a hydrogen feed by exposing a hydrogen feed to a catalyst which promotes a base-catalyzed water-gas-shift reaction in a liquid phase. The hydrogen feed can be provided by any process known in the art of making hydrogen gas. It is preferably provided by a process that can produce a hydrogen feed for use in proton exchange membrane fuel cells. The step of exposing the hydrogen feed takes place preferably from about 80.degree. C. to about 150.degree. C.
Hydrogen and sulfur recovery from hydrogen sulfide wastes
Harkness, J.B.L.; Gorski, A.J.; Daniels, E.J.
1993-05-18
A process is described for generating hydrogen and elemental sulfur from hydrogen sulfide waste in which the hydrogen sulfide is [dis]associated under plasma conditions and a portion of the hydrogen output is used in a catalytic reduction unit to convert sulfur-containing impurities to hydrogen sulfide for recycle, the process also including the addition of an ionizing gas such as argon to initiate the plasma reaction at lower energy, a preheater for the input to the reactor and an internal adjustable choke in the reactor for enhanced coupling with the microwave energy input.
Hydrogen and sulfur recovery from hydrogen sulfide wastes
Harkness, John B. L.; Gorski, Anthony J.; Daniels, Edward J.
1993-01-01
A process for generating hydrogen and elemental sulfur from hydrogen sulfide waste in which the hydrogen sulfide is associated under plasma conditions and a portion of the hydrogen output is used in a catalytic reduction unit to convert sulfur-containing impurities to hydrogen sulfide for recycle, the process also including the addition of an ionizing gas such as argon to initiate the plasma reaction at lower energy, a preheater for the input to the reactor and an internal adjustable choke in the reactor for enhanced coupling with the microwave energy input.
Hydrogen Learning for Local Leaders – H2L3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Serfass, Patrick
The Hydrogen Learning for Local Leaders program, H2L3, elevates the knowledge about hydrogen by local government officials across the United States. The program reaches local leaders directly through “Hydrogen 101” workshops and webinar sessions; the creation and dissemination of a unique report on the hydrogen and fuel cell market in the US, covering 57 different sectors; and support of the Hydrogen Student Design Contest, a competition for interdisciplinary teams of university students to design hydrogen and fuel cell systems based on technology that’s currently commercially available.
Connolly, Timothy; Wang, Zhongyu; Walker, Michael A; McDonald, Ivar M; Peese, Kevin M
2014-09-05
An operationally simple chemoselective transfer hydrogenation of alkenes using ruthenium metathesis catalysts is presented. Of great practicality, the transfer hydrogenation reagents can be added directly to a metathesis reaction and effect hydrogenation of the product alkene in a single pot at ambient temperature without the need to seal the vessel to prevent hydrogen gas escape. The reduction is applicable to a range of alkenes and can be performed in the presence of aryl halides and benzyl groups, a notable weakness of Pd-catalyzed hydrogenations. Scope and mechanistic considerations are presented.
Internal hydrogen-induced subcritical crack growth in austenitic stainless steels
NASA Astrophysics Data System (ADS)
Huang, J. H.; Altstetter, C. J.
1991-11-01
The effects of small amounts of dissolved hydrogen on crack propagation were determined for two austenitic stainless steel alloys, AISI 301 and 310S. In order to have a uniform distribution of hydrogen in the alloys, they were cathodically charged at high temperature in a molten salt electrolyte. Sustained load tests were performed on fatigue precracked specimens in air at 0 ‡C, 25 ‡C, and 50 ‡C with hydrogen contents up to 41 wt ppm. The electrical potential drop method with optical calibration was used to continuously monitor the crack position. Log crack velocity vs stress intensity curves had definite thresholds for subcritical crack growth (SCG), but stage II was not always clearly delineated. In the unstable austenitic steel, AISI 301, the threshold stress intensity decreased with increasing hydrogen content or increasing temperature, but beyond about 10 wt ppm, it became insensitive to hydrogen concentration. At higher concentrations, stage II became less distinct. In the stable stainless steel, subcritical crack growth was observed only for a specimen containing 41 wt ppm hydrogen. Fractographic features were correlated with stress intensity, hydrogen content, and temperature. The fracture mode changed with temperature and hydrogen content. For unstable austenitic steel, low temperature and high hydrogen content favored intergranular fracture while microvoid coalescence dominated at a low hydrogen content. The interpretation of these phenomena is based on the tendency for stress-induced phase transformation, the different hydrogen diffusivity and solubility in ferrite and austenite, and outgassing from the crack tip. After comparing the embrittlement due to internal hydrogen with that in external hydrogen, it is concluded that the critical hydrogen distribution for the onset of subcritical crack growth is reached at a location that is very near the crack tip.
Microstructural characterization of hydrogen induced cracking in TRIP-assisted steel by EBSD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laureys, A., E-mail: Aurelie.Laureys@UGent.be; Depover, T.; Petrov, R.
2016-02-15
The present work evaluates hydrogen induced cracking by performing an elaborate EBSD (Electron BackScatter Diffraction) study in a steel with transformation induced plasticity (TRIP-assisted steel). This type of steel exhibits a multiphase microstructure which undergoes a deformation induced phase transformation. Additionally, each microstructural constituent displays a different behavior in the presence of hydrogen. The aim of this study is to obtain a better understanding on the mechanisms governing hydrogen induced crack initiation and propagation in the hydrogen saturated multiphase structure. Tensile tests on notched samples combined with in-situ electrochemical hydrogen charging were conducted. The tests were interrupted at stresses justmore » after reaching the tensile strength, i.e. before macroscopic failure of the material. This allowed to study hydrogen induced crack initiation and propagation by SEM (Scanning Electron Microscopy) and EBSD. A correlation was found between the presence of martensite, which is known to be very susceptible to hydrogen embrittlement, and the initiation of hydrogen induced cracks. Initiation seems to occur mostly by martensite decohesion. High strain regions surrounding the hydrogen induced crack tips indicate that further crack propagation may have occurred by the HELP (hydrogen-enhanced localized plasticity) mechanism. Small hydrogen induced cracks located nearby the notch are typically S-shaped and crack propagation was dominantly transgranularly. The second stage of crack propagation consists of stepwise cracking by coalescence of small hydrogen induced cracks. - Highlights: • Hydrogen induced cracking in TRIP-assisted steel is evaluated by EBSD. • Tensile tests were conducted on notched hydrogen saturated samples. • Crack initiation occurs by a H-Enhanced Interface DEcohesion (HEIDE) mechanism. • Crack propagation involves growth and coalescence of small cracks. • Propagation is governed by the characteristics of phases on the crack path.« less
Polymer formulations for gettering hydrogen
Shepodd, T.J.; Whinnery, L.L.
1998-11-17
A novel composition is described comprising organic polymer molecules having carbon-carbon double bonds, for removing hydrogen from the atmosphere within enclosed spaces. Organic polymers molecules containing carbon-carbon double bonds throughout their structures, preferably polybutadiene, polyisoprene and derivatives thereof, intimately mixed with an insoluble catalyst composition, comprising a hydrogenation catalyst and a catalyst support, preferably Pd supported on carbon, provide a hydrogen getter composition useful for removing hydrogen from enclosed spaces even in the presence of contaminants such as common atmospheric gases, water vapor, carbon dioxide, ammonia, oil mists, and water. The hydrogen getter composition disclosed herein is particularly useful for removing hydrogen from enclosed spaces containing potentially explosive mixtures of hydrogen and oxygen. 1 fig.
Method for charging a hydrogen getter
Tracy, C.E.; Keyser, M.A.; Benson, D.K.
1998-09-15
A method for charging a sample of either a permanent or reversible getter material with a high concentration of hydrogen while maintaining a base pressure below 10{sup {minus}4} torr at room temperature involves placing the sample of hydrogen getter material in a chamber, activating the sample of hydrogen getter material, overcharging the sample of getter material through conventional charging techniques to a high concentration of hydrogen, and then subjecting the sample of getter material to a low temperature vacuum bake-out process. Application of the method results in a reversible hydrogen getter which is highly charged to maximum capacities of hydrogen and which concurrently exhibits minimum hydrogen vapor pressures at room temperatures. 9 figs.
The NASA Hydrogen Energy Systems Technology study - A summary
NASA Technical Reports Server (NTRS)
Laumann, E. A.
1976-01-01
This study is concerned with: hydrogen use, alternatives and comparisons, hydrogen production, factors affecting application, and technology requirements. Two scenarios for future use are explained. One is called the reference hydrogen use scenario and assumes continued historic uses of hydrogen along with additional use for coal gasification and liquefaction, consistent with the Ford technical fix baseline (1974) projection. The expanded scenario relies on the nuclear electric economy (1973) energy projection and assumes the addition of limited new uses such as experimental hydrogen-fueled aircraft, some mixing with natural gas, and energy storage by utilities. Current uses and supply of hydrogen are described, and the technological requirements for developing new methods of hydrogen production are discussed.
Composition and method for polymer moderated catalytic water formation
Shepodd, Timothy Jon
1999-01-01
A composition suitable for safely removing hydrogen from gaseous mixtures containing hydrogen and oxygen, particularly those mixtures wherein the hydrogen concentration is within the explosive range. The composition comprises a hydrogenation catalyst, preferably Pd dispersed on carbon, wherein the concentration of Pd is from about 1-10 wt %, dispersed in a polymeric material matrix. As well as serving as a matrix to contain the hydrogenation catalyst, the polymeric material, which is substantially unreactive to hydrogen, provides both a diffusion restriction to hydrogen and oxygen, thereby limiting the rate at which the reactants (hydrogen and oxygen) can diffuse to the catalyst surface and thus, the production of heat from the recombination reaction and as a heat sink.
Thermodynamics and vibrational study of hydrogenated carbon nanotubes: A DFT study
NASA Astrophysics Data System (ADS)
Khalil, Rana M. Arif; Hussain, Fayyaz; Rana, Anwar Manzoor; Imran, Muhammad
2018-02-01
Thermodynamic stability of the hydrogenated carbon nanotubes has been explored in the chemisorption limit. Statistical physics and density functional theory calculations have been used to predict hydrogen release temperatures at standard pressure in zigzag and armchair carbon nanotubes. It is found that hydrogen release temperatures decrease with increase in diameters of hydrogenated zigzag carbon nanotubes (CNTs) but opposite trend is noted in armchair CNTs at standard pressure of 1 bar. The smaller diameter hydrogenated zigzag CNTs have large values of hydrogen release temperature due to the stability of Csbnd H bonds. The vibrational density of states for hydrogenated carbon nanotubes have been calculated to confirm the Csbnd H stretching mode caused by sp3 hybridization.
Li, Guangqin; Kobayashi, Hirokazu; Dekura, Shun; Ikeda, Ryuichi; Kubota, Yoshiki; Kato, Kenichi; Takata, Masaki; Yamamoto, Tomokazu; Matsumura, Syo; Kitagawa, Hiroshi
2014-07-23
Pd octahedrons and cubes enclosed by {111} and {100} facets, respectively, have been synthesized for investigation of the shape effect on hydrogen-absorption properties. Hydrogen-storage properties were investigated using in situ powder X-ray diffraction, in situ solid-state (2)H NMR and hydrogen pressure-composition isotherm measurements. With these measurements, it was found that the exposed facets do not affect hydrogen-storage capacity; however, they significantly affect the absorption speed, with octahedral nanocrystals showing the faster response. The heat of adsorption of hydrogen and the hydrogen diffusion pathway were suggested to be dominant factors for hydrogen-absorption speed. Furthermore, in situ solid-state (2)H NMR detected for the first time the state of (2)H in a solid-solution (Pd + H) phase of Pd nanocrystals at rt.
Wagner, Shawn
2014-06-01
To determine the storability of para-hydrogen before reestablishment of the room temperature thermal equilibrium mixture. Para-hydrogen was produced at near 100% purity and mixed with different oxygen quantities to determine the rate of conversion to the thermal equilibrium mixture of 75: 25% (ortho: para) by detecting the ortho-hydrogen (1)H nuclear magnetic resonance using a 9.4 T imager. The para-hydrogen to ortho-hydrogen velocity constant, k, near room temperature (292 K) was determined to be 8.27 ± 1.30 L/mol · min(-1). This value was calculated utilizing four different oxygen fractions. Para-hydrogen conversion to ortho-hydrogen by oxygen can be minimized for long term storage with judicious removal of oxygen contamination. Prior calculated velocity rates were confirmed demonstrating a dependence on only the oxygen concentration.
Mundschau, Michael V.
2005-05-31
Composite hydrogen transport membranes, which are used for extraction of hydrogen from gas mixtures are provided. Methods are described for supporting metals and metal alloys which have high hydrogen permeability, but which are either too thin to be self supporting, too weak to resist differential pressures across the membrane, or which become embrittled by hydrogen. Support materials are chosen to be lattice matched to the metals and metal alloys. Preferred metals with high permeability for hydrogen include vanadium, niobium, tantalum, zirconium, palladium, and alloys thereof. Hydrogen-permeable membranes include those in which the pores of a porous support matrix are blocked by hydrogen-permeable metals and metal alloys, those in which the pores of a porous metal matrix are blocked with materials which make the membrane impervious to gases other than hydrogen, and cermets fabricated by sintering powders of metals with powders of lattice-matched ceramic.
Systems and methods for generation of hydrogen peroxide vapor
Love, Adam H; Eckels, Joel Del; Vu, Alexander K; Alcaraz, Armando; Reynolds, John G
2014-12-02
A system according to one embodiment includes a moisture trap for drying air; at least one of a first container and a second container; and a mechanism for at least one of: bubbling dried air from the moisture trap through a hydrogen peroxide solution in the first container for producing a hydrogen peroxide vapor, and passing dried air from the moisture trap into a headspace above a hydrogen peroxide solution in the second container for producing a hydrogen peroxide vapor. A method according one embodiment includes at least one of bubbling dried air through a hydrogen peroxide solution in a container for producing a first hydrogen peroxide vapor, and passing dried air from the moisture trap into a headspace above the hydrogen peroxide solution in a container for producing a second hydrogen peroxide vapor. Additional systems and methods are also presented.
A mini-type hydrogen generator from aluminum for proton exchange membrane fuel cells
NASA Astrophysics Data System (ADS)
Wang, Er-Dong; Shi, Peng-Fei; Du, Chun-Yu; Wang, Xiao-Rui
A safe and simple hydrogen generator, which produced hydrogen by chemical reaction of aluminum and sodium hydroxide solution, was proposed for proton exchange membrane fuel cells. The effects of concentration, dropping rate and initial temperature of sodium hydroxide solution on hydrogen generation rate were investigated. The results showed that about 38 ml min -1 of hydrogen generation rate was obtained with 25 wt.% concentration and 0.01 ml s -1 dropping rate of sodium hydroxide solution. The cell fueled by hydrogen from the generator exhibited performance improvement at low current densities, which was mainly due to the humidified hydrogen reduced the protonic resistivity of the proton exchange membrane. The hydrogen generator could stably operate a single cell under 500 mA for nearly 5 h with about 77% hydrogen utilization ratio.
Ligand iron catalysts for selective hydrogenation
Casey, Charles P.; Guan, Hairong
2010-11-16
Disclosed are iron ligand catalysts for selective hydrogenation of aldehydes, ketones and imines. A catalyst such as dicarbonyl iron hydride hydroxycyclopentadiene) complex uses the OH on the five member ring and hydrogen linked to the iron to facilitate hydrogenation reactions, particularly in the presence of hydrogen gas.
Facilities | Hydrogen and Fuel Cells | NREL
integration research. Photo of the Hydrogen Infrastructure Testing and Research Facility building, with hydrogen fueling station and fuel cell vehicles. Hydrogen Infrastructure Testing and Research Facility The Hydrogen Infrastructure Testing and Research Facility (HITRF) at the ESIF combines electrolyzers, a
Apparatus and process for separating hydrogen isotopes
Heung, Leung K; Sessions, Henry T; Xiao, Xin
2013-06-25
The apparatus and process for separating hydrogen isotopes is provided using dual columns, each column having an opposite hydrogen isotopic effect such that when a hydrogen isotope mixture feedstock is cycled between the two respective columns, two different hydrogen isotopes are separated from the feedstock.
Study to minimize hydrogen embrittlement of ultrahigh-strength steels
NASA Technical Reports Server (NTRS)
Elsea, S. T.; Fletcher, E. E.; Groeneveld, T. P.
1967-01-01
Hydrogen-stress cracking in high-strength steels is influenced by hydrogen content of the material and its hydrogen absorption tendency. Non-embrittling cleaning, pickling, and electroplating processes are being studied. Protection from this hydrogen embrittlement is important to the aerospace and aircraft industries.
NASA Astrophysics Data System (ADS)
Liu, Xiaochun; Yin, Hang; Li, Hui; Shi, Ying
2017-04-01
DFT and TDDFT methods were carried out to investigate the influences of intramolecular and intermolecular hydrogen bonding on excited state charge transfer for coumarin 343 (C343). Intramolecular hydrogen bonding is formed between carboxylic acid group and carbonyl group in C343 monomer. However, in dimethylsulfoxide (DMSO) solution, DMSO 'opens up' the intramolecular hydrogen bonding and forms solute-solvent intermolecular hydrogen bonded C343-DMSO complex. Analysis of frontier molecular orbitals reveals that intramolecular charge transfer (ICT) occurs in the first excited state both for C343 monomer and complex. The results of optimized geometric structures indicate that the intramolecular hydrogen bonding interaction is strengthened while the intermolecular hydrogen bonding is weakened in excited state, which is confirmed again by monitoring the shifts of characteristic peaks of infrared spectra. We demonstrated that DMSO solvent can not only break the intramolecular hydrogen bonding to form intermolecular hydrogen bonding with C343 but also alter the mechanism of excited state hydrogen bonding strengthening.
Comparison of hydrogen gas embrittlement of austenitic and ferritic stainless steels
NASA Astrophysics Data System (ADS)
Perng, T. P.; Altstetter, C. J.
1987-01-01
Hydrogen-induced slow crack growth (SCG) was compared in austenitic and ferritic stainless steels at 0 to 125 °Cand 11 to 216 kPa of hydrogen gas. No SCG was observed for AISI 310, while AISI 301 was more susceptible to hydrogen embrittlement and had higher cracking velocity than AL 29-4-2 under the same test conditions. The kinetics of crack propagation was modeled in terms of the hydrogen transport in these alloys. This is a function of temperature, microstructure, and stress state in the embrittlement region. The relatively high cracking velocity of AISI 301 was shown to be controlled by the fast transport of hydrogen through the stress-induced α' martensite at the crack tip and low escape rate of hydrogen through the γ phase in the surrounding region. Faster accumulation rates of hydrogen in the embrittlement region were expected for AISI 301, which led to higher cracking velocities. The mechanism of hydrogen-induced SCG was discussed based upon the concept of hydrogen-enhanced plasticity.
Mechanical Behavior and Fractography of 304 Stainless Steel with High Hydrogen Concentration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Au, M.
2003-02-05
Hydrogen embrittlement of 304 stainless steel with different hydrogen concentrations has been investigated. An electrochemical technique was used to effectively charge the high level of hydrogen into 304 stainless steel in a short period of time. At 25 ppm of hydrogen, 304 stainless steel loses 10 percent of its original mechanical strength and 20 percent plasticity. Although the ductile feature dominates the fractography, the brittle crown area near the outer surface shows the intergranular rupture effected by hydrogen. At 60 ppm of hydrogen, 304 stainless steel loses 23 percent of its strength and 38 percent plasticity, where the brittle modemore » dominates the fracture of the materials. Experimental results show that hydrogen damage to the performance of 304 stainless steel is significant even at very low levels. The fractograph analysis indicates the high penetration ability of hydrogen in 304 stainless steel. This work also demonstrates the advantages of the electrochemical charging technique in the study of hydrogen embrittlement.« less
Detectability of Noble Gases in Jovian Atmospheres Utilizing Dimer Spectral Structures
NASA Astrophysics Data System (ADS)
Kim, S. J.; Min, Y.; Kim, Y.; Lee, Y.; Trafton, L.; Miller, S.; McKellar, A. R. W.
1997-07-01
The detection of jovian hydrogen-hydrogen dimers through the clear telluric 2-micron window (Kim et al. 1995; Trafton et al. 1997) suggests possibility to detect noble gases in the form of dimer with hydrogen in jovian atmospheres. Since noble gases do not have spectral structures in the infrared, it has been difficult to derive their abundances in the atmospheres of jovian planets. If there is a significant component of noble gases other than helium in the jovian atmospheres, it might be detected through its dimer spectrum with hydrogen molecule. The relatively sharp spectral structures of hydrogen-argon and hydrogen-neon dimers compared with those of hydrogen-hydrogen dimers are useful for the detection, if adequate S/N is obtained. However, these dimer structures should be much weaker than the nearby hydrogen-hydrogen features because noble gases are expected to be minor constituents of these atmospheres. We will discuss the detectability of these dimers based on laboratory measurements (McKellar, 1994; 1996), and current technology of infrared observations.
NASA Technical Reports Server (NTRS)
Nelson, H. G.
1973-01-01
The physical characteristics of stress corrosion cracking of titanium in an aqueous chloride environment are compared with those of embrittlement of titanium by a gaseous hydrogen environment in an effort to help contribute to the understanding of the possible role of hydrogen in the complex stress corrosion cracking process. Based on previous studies, the two forms of embrittlement are shown to be similar at low hydrogen pressures (100 N/sqm) but dissimilar at higher hydrogen pressures. In an effort to quantify this comparison, tests were conducted in an aqueous chloride solution using the same material and test techniques as had previously been employed in a gaseous hydrogen environment. The results of these tests strongly support models based on hydrogen as the embrittling species in an aqueous chloride environment. Further, it is shown that if hydrogen is the causal species, the effective hydrogen fugacity at the surface of titanium exposed to an aqueous chloride environment is equivalent to a molecular hydrogen pressure of approximately 10 N/sqm.
Methods of Forming Visual Hydrogen Detector with Variable Reversibility
NASA Technical Reports Server (NTRS)
Muradov, Nazim Z. (Inventor)
2014-01-01
Methods, processes and compositions are provided for a visual or chemochromic hydrogen-detector with variable or tunable reversible color change. The working temperature range for the hydrogen detector is from minus 100 C to plus 500 C. A hydrogen-sensitive pigment, including, but not limited to, oxides, hydroxides and polyoxo-compounds of tungsten, molybdenum, vanadium, chromium and combinations thereof, is combined with nano-sized metal activator particles and preferably, coated on a porous or woven substrate. In the presence of hydrogen, the composition rapidly changes its color from white or light-gray or light-tan to dark gray, navy-blue or black depending on the exposure time and hydrogen concentration in the medium. After hydrogen exposure ceases, the original color of the hydrogen-sensitive pigment is restored, and the visual hydrogen detector can be used repeatedly. By changing the composition of the hydrogen-sensitive pigment, the time required for its complete regeneration is varied from a few seconds to several days.
Visual hydrogen detector with variable reversibility
NASA Technical Reports Server (NTRS)
Muradov, Nazim (Inventor)
2011-01-01
Methods, processes and compositions are provided for a visual or chemochromic hydrogen-detector with variable or tunable reversible color change. The working temperature range for the hydrogen detector is from minus 100.degree. C. to plus 500.degree. C. A hydrogen-sensitive pigment, including, but not limited to, oxides, hydroxides and polyoxo-compounds of tungsten, molybdenum, vanadium, chromium and combinations thereof, is combined with nano-sized metal activator particles and preferably, coated on a porous or woven substrate. In the presence of hydrogen, the composition rapidly changes its color from white or light-gray or light-tan to dark gray, navy-blue or black depending on the exposure time and hydrogen concentration in the medium. After hydrogen exposure ceases, the original color of the hydrogen-sensitive pigment is restored, and the visual hydrogen detector can be used repeatedly. By changing the composition of the hydrogen-sensitive pigment, the time required for its complete regeneration is varied from a few seconds to several days.
Visual hydrogen detector with variable reversibilty
NASA Technical Reports Server (NTRS)
Muradov, Nazim Z. (Inventor)
2012-01-01
Methods, processes and compositions are provided for a visual or chemochromic hydrogen-detector with variable or tunable reversible color change. The working temperature range for the hydrogen detector is from minus 100.degree. C. to plus 500.degree. C. A hydrogen-sensitive pigment, including, but not limited to, oxides, hydroxides and polyoxo-compounds of tungsten, molybdenum, vanadium, chromium and combinations thereof, is combined with nano-sized metal activator particles and preferably, coated on a porous or woven substrate. In the presence of hydrogen, the composition rapidly changes its color from white or light-gray or light-tan to dark gray, navy-blue or black depending on the exposure time and hydrogen concentration in the medium. After hydrogen exposure ceases, the original color of the hydrogen-sensitive pigment is restored, and the visual hydrogen detector can be used repeatedly. By changing the composition of the hydrogen-sensitive pigment, the time required for its complete regeneration is varied from a few seconds to several days.
NASA Astrophysics Data System (ADS)
Chen, Xingyang; Zhou, Chengshuang; Cai, Xiao; Zheng, Jinyang; Zhang, Lin
2017-10-01
The effects of external hydrogen on hydrogen transportation and distribution around the fatigue crack tip in type 304 stainless steel were investigated by using hydrogen microprint technique (HMT) and thermal desorption spectrometry. HMT results show that some silver particles induced by hydrogen release are located near the fatigue crack and more silver particles are concentrated around the crack tip, which indicates that hydrogen accumulates in the vicinity of the crack tip during the crack growth in hydrogen gas environment. Along with the crack propagation, strain-induced α' martensite forms around the crack tip and promotes hydrogen invasion into the matrix, which will cause the crack initiation and propagation at the austenite/ α' martensite interface. In addition, the hydrogen content in the vicinity of the crack tip is higher than that at the crack edge far away from the crack tip, which is related to the stress state and strain-induced α' martensite.
Matrix isolation studies of hydrogen bonding - An historical perspective
NASA Astrophysics Data System (ADS)
Barnes, Austin J.
2018-07-01
An historical introduction sets matrix isolation in perspective with other spectroscopic techniques for studying hydrogen-bonded complexes. This is followed by detailed accounts of various aspects of hydrogen-bonded complexes that have been studied using matrix isolation spectroscopy: Matrix effects: stabilisation of complexes. Strongly hydrogen-bonded molecular complexes: the vibrational correlation diagram. Anomalous spectra: the Ratajczak-Yaremko model. Metastable complexes. Csbnd H hydrogen bonding and blue shifting hydrogen bonds.
Clean energy and the hydrogen economy.
Brandon, N P; Kurban, Z
2017-07-28
In recent years, new-found interest in the hydrogen economy from both industry and academia has helped to shed light on its potential. Hydrogen can enable an energy revolution by providing much needed flexibility in renewable energy systems. As a clean energy carrier, hydrogen offers a range of benefits for simultaneously decarbonizing the transport, residential, commercial and industrial sectors. Hydrogen is shown here to have synergies with other low-carbon alternatives, and can enable a more cost-effective transition to de-carbonized and cleaner energy systems. This paper presents the opportunities for the use of hydrogen in key sectors of the economy and identifies the benefits and challenges within the hydrogen supply chain for power-to-gas, power-to-power and gas-to-gas supply pathways. While industry players have already started the market introduction of hydrogen fuel cell systems, including fuel cell electric vehicles and micro-combined heat and power devices, the use of hydrogen at grid scale requires the challenges of clean hydrogen production, bulk storage and distribution to be resolved. Ultimately, greater government support, in partnership with industry and academia, is still needed to realize hydrogen's potential across all economic sectors.This article is part of the themed issue 'The challenges of hydrogen and metals'. © 2017 The Author(s).
Effect of voids on Arrhenius relationship between H-solubility and temperature in nickel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Q.Y.; Sun, X.K.; Hu, Z.Q.
1997-01-15
Many investigations about the states of hydrogen in voids within metals have been carried out over the past years. These probable states of hydrogen in the voids are directly relevant to hydrogen embrittlement mechanisms. Therefore, a knowledge of the states of hydrogen in the voids is important to an understanding of hydrogen-related degradation of material properties. Some results show that hydrogen exists as a molecule in the voids, while others suggest it is in the chemisorbed state on the internal surface of the voids. The results of Sung-Man lee et al. suggested that hydrogen in the voids in nickel existsmore » both in the gaseous and chemisorbed stats, and most of the hydrogen trapped in the voids seems to be present as a chemisorbed state in 1 atm. hydrogen pressure in the temperature range of 350--582 C. But there is no quantitative description concerning the effects of the voids on the solubility of hydrogen in materials. The purpose of this work is to describe quantitatively the effects of the voids on hydrogen solubility in nickel, considering hydrogen exists as gaseous and chemisorbed states in the voids, and the very weak physical adsorption above room temperature is neglected.« less
Hydrogen sulfide production from cysteine and homocysteine by periodontal and oral bacteria.
Yoshida, Akihiro; Yoshimura, Mamiko; Ohara, Naoya; Yoshimura, Shigeru; Nagashima, Shiori; Takehara, Tadamichi; Nakayama, Koji
2009-11-01
Hydrogen sulfide is one of the predominant volatile sulfur compounds (VSCs) produced by oral bacteria. This study developed and evaluated a system for detecting hydrogen sulfide production by oral bacteria. L-methionine-alpha-deamino-gamma-mercaptomethane-lyase (METase) and beta carbon-sulfur (beta C-S) lyase were used to degrade homocysteine and cysteine, respectively, to produce hydrogen sulfide. Enzymatic reactions resulting in hydrogen sulfide production were assayed by reaction with bismuth trichloride, which forms a black precipitate when mixed with hydrogen sulfide. The enzymatic activities of various oral bacteria that result in hydrogen sulfide production and the capacity of bacteria from periodontal sites to form hydrogen sulfide in reaction mixtures containing L-cysteine or DL-homocysteine were assayed. With L-cysteine as the substrate, Streptococcus anginosus FW73 produced the most hydrogen sulfide, whereas Porphyromonas gingivalis American Type Culture Collection (ATCC) 33277 and W83 and Fusobacterium nucleatum ATCC 10953 produced approximately 35% of the amount produced by the P. gingivalis strains. Finally, the hydrogen sulfide found in subgingival plaque was analyzed. Using bismuth trichloride, the hydrogen sulfide produced by oral bacteria was visually detectable as a black precipitate. Hydrogen sulfide production by oral bacteria was easily analyzed using bismuth trichloride. However, further innovation is required for practical use.
Design progress of cryogenic hydrogen system for China Spallation Neutron Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, G. P.; Zhang, Y.; Xiao, J.
2014-01-29
China Spallation Neutron Source (CSNS) is a large proton accelerator research facility with 100 kW beam power. Construction started in October 2011 and is expected to last 6.5 years. The cryogenic hydrogen circulation is cooled by a helium refrigerator with cooling capacity of 2200 W at 20 K and provides supercritical hydrogen to neutron moderating system. Important progresses of CSNS cryogenic system were concluded as follows. Firstly, process design of cryogenic system has been completed including helium refrigerator, hydrogen loop, gas distribution, and safety interlock. Secondly, an accumulator prototype was designed to mitigate pressure fluctuation caused by dynamic heat loadmore » from neutron moderation. Performance test of the accumulator has been carried out at room and liquid nitrogen temperature. Results show the accumulator with welding bellows regulates hydrogen pressure well. Parameters of key equipment have been identified. The contract for the helium refrigerator has been signed. Mechanical design of the hydrogen cold box has been completed, and the hydrogen pump, ortho-para hydrogen convertor, helium-hydrogen heat exchanger, hydrogen heater, and cryogenic valves are in procurement. Finally, Hydrogen safety interlock has been finished as well, including the logic of gas distribution, vacuum, hydrogen leakage and ventilation. Generally, design and construction of CSNS cryogenic system is conducted as expected.« less
NASA Astrophysics Data System (ADS)
Zeng, Y. K.; Zhao, T. S.; Zhou, X. L.; Zou, J.; Ren, Y. X.
2017-06-01
To eliminate the adverse impacts of hydrogen evolution on the capacity of iron-chromium redox flow batteries (ICRFBs) during the long-term operation and ensure the safe operation of the battery, a rebalance cell that reduces the excessive Fe(III) ions at the positive electrolyte by using the hydrogen evolved from the negative electrolyte is designed, fabricated and tested. The effects of the flow field, hydrogen concentration and H2/N2 mixture gas flow rate on the performance of the hydrogen-ferric ion rebalance cell have been investigated. Results show that: i) an interdigitated flow field based rebalance cell delivers higher limiting current densities than serpentine flow field based one does; ii) the hydrogen utilization can approach 100% at low hydrogen concentrations (≤5%); iii) the apparent exchange current density of hydrogen oxidation reaction in the rebalance cell is proportional to the square root of the hydrogen concentration at the hydrogen concentration from 1.3% to 50%; iv) a continuous rebalance process is demonstrated at the current density of 60 mA cm-2 and hydrogen concentration of 2.5%. Moreover, the cost analysis shows that the rebalance cell is just approximately 1% of an ICRFB system cost.
NASA Astrophysics Data System (ADS)
Tabtimsai, Chanukorn; Ruangpornvisuti, Vithaya; Tontapha, Sarawut; Wanno, Banchob
2018-05-01
The binding of group 8B transition metal (TMs) on silicon carbide nanotubes (SiCNT) hydrogenated edges and the adsorption of hydrogen molecule on the pristine and TM-doped SiCNTs were investigated using the density functional theory method. The B3LYP/LanL2DZ method was employed in all calculations for the considered structural, adsorption, and electronic properties. The Os atom doping on the SiCNT is found to be the strongest binding. The hydrogen molecule displays a weak interaction with pristine SiCNT, whereas it has a strong interaction with TM-doped SiCNTs in which the Os-doped SiCNT shows the strongest interaction with the hydrogen molecule. The improvement in the adsorption abilities of hydrogen molecule onto TM-doped SiCNTs is due to the protruding structure and the induced charge transfer between TM-doped SiCNT and hydrogen molecule. These observations point out that TM-doped SiCNTs are highly sensitive toward hydrogen molecule. Moreover, the adsorptions of 2-5 hydrogen molecules on TM-doped SiCNT were also investigated. The maximum storage number of hydrogen molecules adsorbed on the first layer of TM-doped SiCNTs is 3 hydrogen molecules. Therefore, TM-doped SiCNTs are suitable to be sensing and storage materials for hydrogen gas.
Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water
NASA Astrophysics Data System (ADS)
Cortright, R. D.; Davda, R. R.; Dumesic, J. A.
2002-08-01
Concerns about the depletion of fossil fuel reserves and the pollution caused by continuously increasing energy demands make hydrogen an attractive alternative energy source. Hydrogen is currently derived from nonrenewable natural gas and petroleum, but could in principle be generated from renewable resources such as biomass or water. However, efficient hydrogen production from water remains difficult and technologies for generating hydrogen from biomass, such as enzymatic decomposition of sugars, steam-reforming of bio-oils and gasification, suffer from low hydrogen production rates and/or complex processing requirements. Here we demonstrate that hydrogen can be produced from sugars and alcohols at temperatures near 500K in a single-reactor aqueous-phase reforming process using a platinum-based catalyst. We are able to convert glucose-which makes up the major energy reserves in plants and animals-to hydrogen and gaseous alkanes, with hydrogen constituting 50% of the products. We find that the selectivity for hydrogen production increases when we use molecules that are more reduced than sugars, with ethylene glycol and methanol being almost completely converted into hydrogen and carbon dioxide. These findings suggest that catalytic aqueous-phase reforming might prove useful for the generation of hydrogen-rich fuel gas from carbohydrates extracted from renewable biomass and biomass waste streams.
Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water.
Cortright, R D; Davda, R R; Dumesic, J A
2002-08-29
Concerns about the depletion of fossil fuel reserves and the pollution caused by continuously increasing energy demands make hydrogen an attractive alternative energy source. Hydrogen is currently derived from nonrenewable natural gas and petroleum, but could in principle be generated from renewable resources such as biomass or water. However, efficient hydrogen production from water remains difficult and technologies for generating hydrogen from biomass, such as enzymatic decomposition of sugars, steam-reforming of bio-oils and gasification, suffer from low hydrogen production rates and/or complex processing requirements. Here we demonstrate that hydrogen can be produced from sugars and alcohols at temperatures near 500 K in a single-reactor aqueous-phase reforming process using a platinum-based catalyst. We are able to convert glucose -- which makes up the major energy reserves in plants and animals -- to hydrogen and gaseous alkanes, with hydrogen constituting 50% of the products. We find that the selectivity for hydrogen production increases when we use molecules that are more reduced than sugars, with ethylene glycol and methanol being almost completely converted into hydrogen and carbon dioxide. These findings suggest that catalytic aqueous-phase reforming might prove useful for the generation of hydrogen-rich fuel gas from carbohydrates extracted from renewable biomass and biomass waste streams.
Simultaneous hydrogen utilization and in situ biogas upgrading in an anaerobic reactor.
Luo, Gang; Johansson, Sara; Boe, Kanokwan; Xie, Li; Zhou, Qi; Angelidaki, Irini
2012-04-01
The possibility of converting hydrogen to methane and simultaneous upgrading of biogas was investigated in both batch tests and fully mixed biogas reactor, simultaneously fed with manure and hydrogen. Batch experiments showed that hydrogen could be converted to methane by hydrogenotrophic methanogenesis with conversion of more than 90% of the consumed hydrogen to methane. The hydrogen consumption rates were affected by both P(H₂) (hydrogen partial pressure) and mixing intensity. Inhibition of propionate and butyrate degradation by hydrogen (1 atm) was only observed under high mixing intensity (shaking speed 300 rpm). Continuous addition of hydrogen (flow rate of 28.6 mL/(L/h)) to an anaerobic reactor fed with manure, showed that more than 80% of the hydrogen was utilized. The propionate and butyrate level in the reactor was not significantly affected by the hydrogen addition. The methane production rate of the reactor with H₂ addition was 22% higher, compared to the control reactor only fed with manure. The CO₂ content in the produced biogas was only 15%, while it was 38% in the control reactor. However, the addition of hydrogen resulted in increase of pH (from 8.0 to 8.3) due to the consumption of bicarbonate, which subsequently caused slight inhibition of methanogenesis. Copyright © 2011 Wiley Periodicals, Inc.
U.S. Geographic Analysis of the Cost of Hydrogen from Electrolysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saur, G.; Ainscough, C.
2011-12-01
This report summarizes U.S. geographic analysis of the cost of hydrogen from electrolysis. Wind-based water electrolysis represents a viable path to renewably-produced hydrogen production. It might be used for hydrogen-based transportation fuels, energy storage to augment electricity grid services, or as a supplement for other industrial hydrogen uses. This analysis focuses on the levelized production, costs of producing green hydrogen, rather than market prices which would require more extensive knowledge of an hourly or daily hydrogen market. However, the costs of hydrogen presented here do include a small profit from an internal rate of return on the system. The costmore » of renewable wind-based hydrogen production is very sensitive to the cost of the wind electricity. Using differently priced grid electricity to supplement the system had only a small effect on the cost of hydrogen; because wind electricity was always used either directly or indirectly to fully generate the hydrogen. Wind classes 3-6 across the U.S. were examined and the costs of hydrogen ranged from $3.74kg to $5.86/kg. These costs do not quite meet the 2015 DOE targets for central or distributed hydrogen production ($3.10/kg and $3.70/kg, respectively), so more work is needed on reducing the cost of wind electricity and the electrolyzers. If the PTC and ITC are claimed, however, many of the sites will meet both targets. For a subset of distributed refueling stations where there is also inexpensive, open space nearby this could be an alternative to central hydrogen production and distribution.« less
Resistivity behavior of hydrogen and liquid silane at high shock compression
NASA Astrophysics Data System (ADS)
Wang, Yi-Gao; Liu, Fu-Sheng; Liu, Qi-Jun
2018-07-01
To study the electrical properties of hydrogen rich compounds under extreme conditions, the electrical resistivity of density hydrogen and silane fluid was measured, respectively. The hydrogen sample was prepared by compressing pure hydrogen gas to 10 MPa in a coolant target system at the temperature of 77 K. The silane sample can be obtained with the same method. High-pressure and high-temperature experiments were performed using a two-stage light-gas gun. The electrical resistivity of the sample decreased with increasing pressure and temperature as expected. A minimum electrical resistivity value of 0.3 × 10-3 Ω cm at 138 GPa and 4100 K was obtained for silane. The minimum resistivity of hydrogen in the state of 102 GPa and 4300 K was 0.35 Ω cm. It showed that the measured electrical resistivity of the shock-compressed hydrogen was an order of magnitude higher than fluid silane at 50-90 GPa. However, beyond 100 GPa, the resistivity difference between silane and hydrogen was very minor. The carriers in the sample were hydrogen, and the concentration of hydrogen atoms in these two substances was close to each other. These results supported the theoretical prediction that silane was interpreted simply in terms of chemical decomposition into silicon nanoparticles and fluid hydrogen, and electrical conduction flows predominately dominated by the fluid hydrogen. In addition, the results also supported the theory of "chemical precompression", the existence of Sisbnd H bond helped to reduce the pressure of hydrogen metallization. These findings could lead the way for further metallic phases of hydrogen-rich materials and experimental studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guterl, Jerome, E-mail: jguterl@ucsd.edu; Smirnov, R. D.; Krasheninnikov, S. I.
Desorption phase of thermal desorption spectroscopy (TDS) experiments performed on tungsten samples exposed to flux of hydrogen isotopes in fusion relevant conditions is analyzed using a reaction-diffusion model describing hydrogen retention in material bulk. Two regimes of hydrogen desorption are identified depending on whether hydrogen trapping rate is faster than hydrogen diffusion rate in material during TDS experiments. In both regimes, a majority of hydrogen released from material defects is immediately outgassed instead of diffusing deeply in material bulk when the evolution of hydrogen concentration in material is quasi-static, which is the case during TDS experiments performed with tungsten samplesmore » exposed to flux of hydrogen isotopes in fusion related conditions. In this context, analytical expressions of the hydrogen outgassing flux as a function of the material temperature are obtained with sufficient accuracy to describe main features of thermal desorption spectra (TDSP). These expressions are then used to highlight how characteristic temperatures of TDSP depend on hydrogen retention parameters, such as trap concentration or activation energy of detrapping processes. The use of Arrhenius plots to characterize retention processes is then revisited when hydrogen trapping takes place during TDS experiments. Retention processes are also characterized using the shape of desorption peaks in TDSP, and it is shown that diffusion of hydrogen in material during TDS experiment can induce long desorption tails visible aside desorption peaks at high temperature in TDSP. These desorption tails can be used to estimate activation energy of diffusion of hydrogen in material.« less
Jurado-Oller, Jose Luis; Dubini, Alexandra; Galván, Aurora; Fernández, Emilio; González-Ballester, David
2015-01-01
Currently, hydrogen fuel is derived mainly from fossil fuels, but there is an increasing interest in clean and sustainable technologies for hydrogen production. In this context, the ability of some photosynthetic microorganisms, particularly cyanobacteria and microalgae, to produce hydrogen is a promising alternative for renewable, clean-energy production. Among a diverse array of photosynthetic microorganisms able to produce hydrogen, the green algae Chlamydomonas reinhardtii is the model organism widely used to study hydrogen production. Despite the well-known fact that acetate-containing medium enhances hydrogen production in this algae, little is known about the precise role of acetate during this process. We have examined several physiological aspects related to acetate assimilation in the context of hydrogen production metabolism. Measurements of oxygen and CO2 levels, acetate uptake, and cell growth were performed under different light conditions, and oxygenic regimes. We show that oxygen and light intensity levels control acetate assimilation and modulate hydrogen production. We also demonstrate that the determination of the contribution of the PSII-dependent hydrogen production pathway in mixotrophic cultures, using the photosynthetic inhibitor DCMU, can lead to dissimilar results when used under various oxygenic regimes. The level of inhibition of DCMU in hydrogen production under low light seems to be linked to the acetate uptake rates. Moreover, we highlight the importance of releasing the hydrogen partial pressure to avoid an inherent inhibitory factor on the hydrogen production. Low levels of oxygen allow for low acetate uptake rates, and paradoxically, lead to efficient and sustained production of hydrogen. Our data suggest that acetate plays an important role in the hydrogen production process, during non-stressed conditions, other than establishing anaerobiosis, and independent of starch accumulation. Potential metabolic pathways involved in hydrogen production in mixotrophic cultures are discussed. Mixotrophic nutrient-replete cultures under low light are shown to be an alternative for the simultaneous production of hydrogen and biomass.
Study on Flake Formation Behavior and Its Influence Factors in Cr5 Steel
Chen, Huitao; Zhao, Wu; Yan, Liang
2018-01-01
A flake is a crack that is induced by trapped hydrogen within steel. To study its formation mechanism, previous studies mostly focused on the formation process and magnitude of hydrogen pressure in hydrogen traps such as cavities and cracks. However, according to recent studies, the hydrogen leads to the decline of the mechanical properties of steel, which is known as hydrogen embrittlement, is another reason for flake formation. In addition, the phenomenon of stress induced hydrogen uphill diffusion should not be neglected. All of the three behaviors are at work simultaneously. In order to further explore the formation mechanism of flakes in steel, the process of flake initiation and growth were studied with the following three coupling factors: trap hydrogen pressure, hydrogen embrittlement, and stress induced hydrogen re-distribution. The analysis model was established using the finite element method, and a crack whose radius is 0.5 mm was set in its center. The cohesive method and Bilinear Traction Separate Law (BTSL) were used to address the coupling effect. The results show that trap hydrogen pressure is the main driving force for flake formation. After the high hydrogen pressure was generated around the trap, a stress field formed. In addition, the trap is the center of stress concentration. Then, hydrogen is concentrated in a distribution around this trap, and most of the steel mechanical properties are reduced. The trap size is a key factor for defining the critical hydrogen content for flake formation and propagation. However, when the trap size exceeds the specified value, the critical hydrogen content does not change any more. As for the crack whose radius is 0.5 mm, the critical hydrogen content of Cr5VMo steel is 2.2 ppm, which is much closer to the maximum safe hydrogen concentration of 2.0 ppm used in China. The work presented in this article increases our understanding of flake formation and propagation mechanisms in steel. PMID:29702610
Environmental and Health Benefits and Risks of a Global Hydrogen Economy
NASA Astrophysics Data System (ADS)
Dubey, M.; Horowitz, L. W.; Rahn, T. A.; Kinnison, D. E.
2003-12-01
Rapid development in hydrogen fuel-cell technologies will create a strong impetus for a massive hydrogen supply and distribution infrastructure in the coming decades. Hydrogen provides an efficient energy carrier that promises to enhance urban and regional air quality that will benefit human health. It could also reduce risks of climate change if large-scale hydrogen production by renewable or nuclear energy sources becomes viable. While it is well known that the byproduct of energy produced from hydrogen is water vapor, it is not well known that the storage and transfer of hydrogen is inevitably accompanied by measurable leakage of hydrogen. Unintended consequences of hydrogen leakage include reduction in global oxidative capacity, changes in tropospheric ozone, and increase in stratospheric water that would exacerbate halogen induced ozone losses as well as impact the earth's radiation budget and climate. Stratospheric ozone depletion would increase exposure to harmful ultraviolet radiation and increased risk to melanoma. We construct plausible global hydrogen energy use and leak scenarios and assess their impacts using global 3-D simulations by the Model for Ozone And Related Trace species (MOZART). The hydrogen fluxes and photochemistry in our model successfully reproduce the contemporary hydrogen cycle as observed by a network of remote global stations. Our intent is to determine environmentally tolerable leak rates and also facilitate a gradual phasing in of a hydrogen economy over the next several decades as the elimination of the use of halocarbons gradually reduces halogen induced stratospheric ozone loss rates. We stress that the future evolution of microbial soil sink of hydrogen that determines its current lifetime (about 2 years) is the principal source of uncertainty in our assessment. We propose global monitoring of hydrogen and its deuterium content to define a baseline and track its budget to responsibly prepare for a global hydrogen economy.
Study of Hydrogen Recovery Systems for Gas Vented While Refueling Liquid-Hydrogen Fueled Aircraft
NASA Technical Reports Server (NTRS)
Baker, C. R.
1979-01-01
Methods of capturing and reliquefying the cold hydrogen vapor produced during the fueling of aircraft designed to utilize liquid hydrogen fuel were investigated. An assessment of the most practical, economic, and energy efficient of the hydrogen recovery methods is provided.
49 CFR 173.163 - Hydrogen fluoride.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 2 2013-10-01 2013-10-01 false Hydrogen fluoride. 173.163 Section 173.163... Hydrogen fluoride. (a) Hydrogen fluoride (hydrofluoric acid, anhydrous) must be packaged as follows: (1) In... filling ratio of 0.84. (b) A cylinder removed from hydrogen fluoride service must be condemned in...
49 CFR 173.163 - Hydrogen fluoride.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 2 2012-10-01 2012-10-01 false Hydrogen fluoride. 173.163 Section 173.163... Hydrogen fluoride. (a) Hydrogen fluoride (hydrofluoric acid, anhydrous) must be packaged as follows: (1) In... filling ratio of 0.84. (b) A cylinder removed from hydrogen fluoride service must be condemned in...
49 CFR 173.163 - Hydrogen fluoride.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 2 2014-10-01 2014-10-01 false Hydrogen fluoride. 173.163 Section 173.163... Hydrogen fluoride. (a) Hydrogen fluoride (hydrofluoric acid, anhydrous) must be packaged as follows: (1) In... filling ratio of 0.84. (b) A cylinder removed from hydrogen fluoride service must be condemned in...
49 CFR 173.163 - Hydrogen fluoride.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 2 2010-10-01 2010-10-01 false Hydrogen fluoride. 173.163 Section 173.163... Hydrogen fluoride. (a) Hydrogen fluoride (hydrofluoric acid, anhydrous) must be packaged as follows: (1) In... filling ratio of 0.84. (b) A cylinder removed from hydrogen fluoride service must be condemned in...
49 CFR 173.163 - Hydrogen fluoride.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 2 2011-10-01 2011-10-01 false Hydrogen fluoride. 173.163 Section 173.163... Hydrogen fluoride. (a) Hydrogen fluoride (hydrofluoric acid, anhydrous) must be packaged as follows: (1) In... filling ratio of 0.84. (b) A cylinder removed from hydrogen fluoride service must be condemned in...
Nickel-hydrogen cell reversal characteristics
NASA Technical Reports Server (NTRS)
Lurie, Charles
1994-01-01
Nickel-hydrogen cell reversal characteristics are being studied as part of a TRW program directed towards development of a high current battery cell bypass switch. The following are discussed: cell bypass switch; nickel-hydrogen cell reversal characteristics; and nickel-hydrogen cell chemistry: discharge/reversal and overdischarge (reversal) with nickel and hydrogen precharge.
Hydrogen and Fuel Cell Technology | Transportation Research | NREL
Outlines Safety Considerations for Hydrogen Technologies While safety requirements for industrial uses of vehicles have created the need for additional safety requirements. The new Hydrogen Technologies Safety hydrogen safety in context. For example, code officials reviewing permit applications for hydrogen projects
21 CFR 178.1005 - Hydrogen peroxide solution.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Hydrogen peroxide solution. 178.1005 Section 178... Growth of Microorganisms § 178.1005 Hydrogen peroxide solution. Hydrogen peroxide solution identified in...)(1) of this section. (a) Identity. For the purpose of this section, hydrogen peroxide solution is an...
Selective purge for hydrogenation reactor recycle loop
Baker, Richard W.; Lokhandwala, Kaaeid A.
2001-01-01
Processes and apparatus for providing improved contaminant removal and hydrogen recovery in hydrogenation reactors, particularly in refineries and petrochemical plants. The improved contaminant removal is achieved by selective purging, by passing gases in the hydrogenation reactor recycle loop or purge stream across membranes selective in favor of the contaminant over hydrogen.
Hydrogen System Component Validation | Hydrogen and Fuel Cells | NREL
Meeting (June 2017) Hydrogen Component Validation: 2016 Annual Progress Report, Danny Terlip, Excerpt from the 2016 DOE Annual Progress Report (February 2017) Hydrogen Component Validation: 2016 Annual Merit Transportation Decisions, NREL Fact Sheet (June 2016) Hydrogen Component Validation: 2015 Annual Progress Report
21 CFR 186.1551 - Hydrogenated fish oil.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Hydrogenated fish oil. 186.1551 Section 186.1551... Listing of Specific Substances Affirmed as GRAS § 186.1551 Hydrogenated fish oil. (a) Hydrogenated fish... from fish, primarily menhaden, and secondarily herring or tuna. Hydrogenation of fish oils uses...
21 CFR 186.1551 - Hydrogenated fish oil.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Hydrogenated fish oil. 186.1551 Section 186.1551... Listing of Specific Substances Affirmed as GRAS § 186.1551 Hydrogenated fish oil. (a) Hydrogenated fish... from fish, primarily menhaden, and secondarily herring or tuna. Hydrogenation of fish oils uses...
Alternative Fuels Data Center: Hydrogen Fueling Station Locations
Hydrogen Printable Version Share this resource Send a link to Alternative Fuels Data Center : Hydrogen Fueling Station Locations to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fuels Data Center: Hydrogen Fueling Station Locations on Digg Find More places to share Alternative
Hydrogen Storage | Hydrogen and Fuel Cells | NREL
research. An International Multi-Laboratory Investigation of Carbon-Based Hydrogen Sorbent Materials Carbon Nanotube Anions, Journal of Materials Research (2012) Manipulation of Hydrogen Binding Energy and Spectroscopy, Journal of Physical Chemistry C (2012) Reactions and Reversible Hydrogenation of Single-Walled
Rewiring Algae's Catalytic Circuits - Continuum Magazine | NREL
with labels depicting the engineering of hydrogen-producing enzyme to create a hydrogen production circuit to increase hydrogen during photosynthesis. Engineering of the hydrogen-producing enzyme to create circuits, or pathways. To do so, they would replace the normal hydrogen-producing enzyme, hydrogenase
Fuel cell using a hydrogen generation system
Dentinger, Paul M.; Crowell, Jeffrey A. W.
2010-10-19
A system is described for storing and generating hydrogen and, in particular, a system for storing and generating hydrogen for use in an H.sub.2/O.sub.2 fuel cell. The hydrogen storage system uses beta particles from a beta particle emitting material to degrade an organic polymer material to release substantially pure hydrogen. In a preferred embodiment of the invention, beta particles from .sup.63Ni are used to release hydrogen from linear polyethylene.
Hydrogen storage and generation system
Dentinger, Paul M.; Crowell, Jeffrey A. W.
2010-08-24
A system for storing and generating hydrogen generally and, in particular, a system for storing and generating hydrogen for use in an H.sub.2/O.sub.2 fuel cell. The hydrogen storage system uses the beta particles from a beta particle emitting material to degrade an organic polymer material to release substantially pure hydrogen. In a preferred embodiment of the invention, beta particles from .sup.63Ni are used to release hydrogen from linear polyethylene.
Hydrogenation of carbonyl compounds of relevance to hydrogen storage in alcohols
NASA Astrophysics Data System (ADS)
Suárez, Andrés
2018-02-01
Alcohols are a promising source for the sustainable production of hydrogen that may also serve as rechargeable liquid organic hydrogen carriers (LOHCs). Metal-catalyzed acceptorless dehydrogenation of alcohols produces carbonyl derivatives as H2-depleted by-products, which by means of a hydrogenation reaction can be reconverted to the initial alcohols. Hence, reversible H2-storage systems based on pairs of secondary alcohols/ketones and primary alcohols/carboxylic acid derivatives may be envisaged. In this contribution, the hydrogenation of carbonyl derivatives, including ketones, esters, amides and carboxylic acids, is reviewed from the perspective of the hydrogen storage in alcohols.
NASA Astrophysics Data System (ADS)
Toyoda, H.; Sugai, H.; Kato, K.; Yoshida, A.; Okuda, T.
1986-06-01
The composition of particle flux to deposit hydrogenated amorphous silicon films in a glow discharge is controlled by a combined electrostatic-magnetic deflection technique. As a result, the films are formed firstly without hydrogen ion flux, secondly by neutral flux only, and thirdly by all species fluxes. Comparison of these films reveals the significant role of hydrogen in the surface reactions. Hydrogen breaks the Si-Si bond, decreases the sticking probability of the Si atom, and replaces the SiH bond by a SiH2 bond to increase the hydrogen content of the films.
The development of hydrogen sensor technology at NASA Lewis Research Center
NASA Technical Reports Server (NTRS)
Hunter, Gary W.; Neudeck, Philip G.; Jefferson, G. D.; Madzsar, G. C.; Liu, C. C.; Wu, Q. H.
1993-01-01
The detection of hydrogen leaks in aerospace applications, especially those involving hydrogen fuel propulsion systems, is of extreme importance for reasons of reliability, safety, and economy. Motivated by leaks occurring in liquid hydrogen lines supplying the main engine of the Space Shuttle, NASA Lewis has initiated a program to develop point-contact hydrogen sensors which address the needs of aerospace applications. Several different approaches are being explored. They include the fabrication of PdAg Schottky diode structures, the characterization of PdCr as a hydrogen sensitive alloy, and the use of SiC as a semiconductor for hydrogen sensors. This paper discusses the motivation behind and present status of each of the major components of the NASA LeRC hydrogen sensor program.
The interaction of hydrogen with metal alloys
NASA Technical Reports Server (NTRS)
Danford, M. D.; Montano, J. W.
1991-01-01
Hydrogen diffusion coefficients were measured for several alloys, and these were determined to be about the same at 25 C for all alloys investigated. The relation of structure, both metallurgical and crystallographic, to the observed hydrogen distribution on charging was investigated, as well as the role of hydride formation in the hydrogen resistance of metal alloys. An attempt was made to correlate the structures and compositions of metal alloys as well as other parameters with the ratios of their notched tensile strengths in hydrogen to that in helium, R(H2/He), which are believed to represent a measure of their hydrogen resistance. Evidence supports the belief that hydrogen permeability and hydrogen resistance are increased by smaller grain sizes for a given alloy composition.
Catalytic dehydrogenation of amine borane complexes
NASA Technical Reports Server (NTRS)
Mohajeri, Nahid (Inventor); Tabatabaie-Raissi, Ali (Inventor)
2007-01-01
A method of generating hydrogen includes the steps of providing an amine borane (AB) complex, at least one hydrogen generation catalyst, and a solvent, and mixing these components. Hydrogen is generated. The hydrogen produced is high purity hydrogen suitable for PEM fuel cells. A hydrolytic in-situ hydrogen generator includes a first compartment that contains an amine borane (AB) complex, a second container including at least one hydrogen generation catalyst, wherein the first or second compartment includes water or other hydroxyl group containing solvent. A connecting network permits mixing contents in the first compartment with contents in the second compartment, wherein high purity hydrogen is generated upon mixing. At least one flow controller is provided for controlling a flow rate of the catalyst or AB complex.
Catalytic dehydrogenation of amine borane complexes
NASA Technical Reports Server (NTRS)
Tabatabaie-Raissi, Ali (Inventor); Mohajeri, Nahid (Inventor); Bokerman, Gary (Inventor)
2009-01-01
A method of generating hydrogen includes the steps of providing an amine borane (AB) complex, at least one hydrogen generation catalyst, and a solvent, and mixing these components Hydrogen is generated. The hydrogen produced is high purity hydrogen suitable for PEM fuel cells. A hydrolytic in-situ hydrogen generator includes a first compartment that contains an amine borane (AB) complex, a second container including at least one hydrogen generation catalyst, wherein the first or second compartment includes water or other hydroxyl group containing solvent. A connecting network permits mixing contents in the first compartment with contents in the second compartment, wherein high purity hydrogen is generated upon mixing. At least one flow controller is provided for controlling a flow rate of the catalyst or AB complex.
Hydrogen storage and integrated fuel cell assembly
Gross, Karl J.
2010-08-24
Hydrogen is stored in materials that absorb and desorb hydrogen with temperature dependent rates. A housing is provided that allows for the storage of one or more types of hydrogen-storage materials in close thermal proximity to a fuel cell stack. This arrangement, which includes alternating fuel cell stack and hydrogen-storage units, allows for close thermal matching of the hydrogen storage material and the fuel cell stack. Also, the present invention allows for tailoring of the hydrogen delivery by mixing different materials in one unit. Thermal insulation alternatively allows for a highly efficient unit. Individual power modules including one fuel cell stack surrounded by a pair of hydrogen-storage units allows for distribution of power throughout a vehicle or other electric power consuming devices.
Safety Issues with Hydrogen as a Vehicle Fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cadwallader, Lee Charles; Herring, James Stephen
1999-10-01
This report is an initial effort to identify and evaluate safety issues associated with the use of hydrogen as a vehicle fuel in automobiles. Several forms of hydrogen have been considered: gas, liquid, slush, and hydrides. The safety issues have been discussed, beginning with properties of hydrogen and the phenomenology of hydrogen combustion. Safety-related operating experiences with hydrogen vehicles have been summarized to identify concerns that must be addressed in future design activities and to support probabilistic risk assessment. Also, applicable codes, standards, and regulations pertaining to hydrogen usage and refueling have been identified and are briefly discussed. This reportmore » serves as a safety foundation for any future hydrogen safety work, such as a safety analysis or a probabilistic risk assessment.« less
Safety Issues with Hydrogen as a Vehicle Fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
L. C. Cadwallader; J. S. Herring
1999-09-01
This report is an initial effort to identify and evaluate safety issues associated with the use of hydrogen as a vehicle fuel in automobiles. Several forms of hydrogen have been considered: gas, liquid, slush, and hydrides. The safety issues have been discussed, beginning with properties of hydrogen and the phenomenology of hydrogen combustion. Safety-related operating experiences with hydrogen vehicles have been summarized to identify concerns that must be addressed in future design activities and to support probabilistic risk assessment. Also, applicable codes, standards, and regulations pertaining to hydrogen usage and refueling have been identified and are briefly discussed. This reportmore » serves as a safety foundation for any future hydrogen safety work, such as a safety analysis or a probabilistic risk assessment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawrence, Samantha K.; Somerday, Brian P.; Ingraham, Mathew Duffy
Hydrogen effects on small-volume plasticity and elastic stiffness constants are investigated with nanoindentation of Ni-201 and sonic velocity measurements of bulk Ni single crystals. Elastic modulus of Ni-201, calculated from indentation data, decreases ~22% after hydrogen charging. This substantial decrease is independently confirmed by sonic velocity measurements of Ni single crystals; c 44 decreases ~20% after hydrogen exposure. Furthermore, clear hydrogen-deformation interactions are observed. The maximum shear stress required to nucleate dislocations in hydrogen-charged Ni-201 is markedly lower than in as-annealed material, driven by hydrogen-reduced shear modulus. Additionally, a larger number of depth excursions are detected prior to general yieldingmore » in hydrogen-charged material, suggesting cross-slip restriction. Together, these data reveal direct correlation between hydrogen-affected elastic properties and plastic deformation in Ni alloys.« less
Hydrogen production from salt water by Marine blue green algae and solar radiation
NASA Technical Reports Server (NTRS)
Mitsui, A.; Rosner, D.; Kumazawa, S.; Barciela, S.; Phlips, E.
1985-01-01
Two marine bluegreen algae, Oscillatoria sp. Miami BG 7 and Synechococcus sp Miami 041511 have been selected as the result of over 10 years continuous and intensive effort of isolation, growth examination, and the screening of hydrogen photoproduction capability in this laboratory. Both strains photoproduced hydrogen for several days at high rates and a quantity of hydrogen was accumulated in a closed vessel. Overall hydrogen donor substance of the hydrogen photoproduction was found to be salt water. Using strain Miami BG 7, a two step method of hydrogen photoproduction from salt water was successfully developed and this was recycled several times over a one month period using both free cells and immobilized cells in both indoor and outdoor under natural sunlight. According to these experiments, a prototype floating hydrogen production system was designed for further development of the biosolar hydrogen production system.
Xu, Dan; Sun, Lei; Li, Gang; Shang, Jin; Yang, Rui-Xia; Deng, Wei-Qiao
2016-06-01
Hydrogen storage is a primary challenge for using hydrogen as a fuel. With ideal hydrogen storage kinetics, the weak binding strength of hydrogen to sorbents is the key barrier to obtain decent hydrogen storage performance. Here, we reported the rational synthesis of a methyllithium-doped naphthyl-containing conjugated microporous polymer with exceptional binding strength of hydrogen to the polymer guided by theoretical simulations. Meanwhile, the experimental results showed that isosteric heat can reach up to 8.4 kJ mol(-1) and the methyllithium-doped naphthyl-containing conjugated microporous polymer exhibited an enhanced hydrogen storage performance with 150 % enhancement compared with its counterpart naphthyl-containing conjugated microporous polymer. These results indicate that this strategy provides a direction for design and synthesis of new materials that meet the US Department of Energy (DOE) hydrogen storage target. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lawrence, Samantha K.; Somerday, Brian P.; Ingraham, Mathew Duffy; ...
2018-04-11
Hydrogen effects on small-volume plasticity and elastic stiffness constants are investigated with nanoindentation of Ni-201 and sonic velocity measurements of bulk Ni single crystals. Elastic modulus of Ni-201, calculated from indentation data, decreases ~22% after hydrogen charging. This substantial decrease is independently confirmed by sonic velocity measurements of Ni single crystals; c 44 decreases ~20% after hydrogen exposure. Furthermore, clear hydrogen-deformation interactions are observed. The maximum shear stress required to nucleate dislocations in hydrogen-charged Ni-201 is markedly lower than in as-annealed material, driven by hydrogen-reduced shear modulus. Additionally, a larger number of depth excursions are detected prior to general yieldingmore » in hydrogen-charged material, suggesting cross-slip restriction. Together, these data reveal direct correlation between hydrogen-affected elastic properties and plastic deformation in Ni alloys.« less
Dedicated nuclear facilities for electrolytic hydrogen production
NASA Technical Reports Server (NTRS)
Foh, S. E.; Escher, W. J. D.; Donakowski, T. D.
1979-01-01
An advanced technology, fully dedicated nuclear-electrolytic hydrogen production facility is presented. This plant will produce hydrogen and oxygen only and no electrical power will be generated for off-plant use. The conceptual design was based on hydrogen production to fill a pipeline at 1000 psi and a 3000 MW nuclear base, and the base-line facility nuclear-to-shaftpower and shaftpower-to-electricity subsystems, the water treatment subsystem, electricity-to-hydrogen subsystem, hydrogen compression, efficiency, and hydrogen production cost are discussed. The final conceptual design integrates a 3000 MWth high-temperature gas-cooled reactor operating at 980 C helium reactor-out temperature, direct dc electricity generation via acyclic generators, and high-current density, high-pressure electrolyzers based on the solid polymer electrolyte approach. All subsystems are close-coupled and optimally interfaced and pipeline hydrogen is produced at 1000 psi. Hydrogen costs were about half of the conventional nuclear electrolysis process.
Promising novel therapy with hydrogen gas for emergency and critical care medicine.
Sano, Motoaki; Suzuki, Masaru; Homma, Koichiro; Hayashida, Kei; Tamura, Tomoyoshi; Matsuoka, Tadashi; Katsumata, Yoshinori; Onuki, Shuko; Sasaki, Junichi
2018-04-01
It has been reported that hydrogen gas exerts a therapeutic effect in a wide range of disease conditions, from acute illness such as ischemia-reperfusion injury, shock, and damage healing to chronic illness such as metabolic syndrome, rheumatoid arthritis, and neurodegenerative diseases. Antioxidant and anti-inflammatory properties of hydrogen gas have been proposed, but the molecular target of hydrogen gas has not been identified. We established the Center for Molecular Hydrogen Medicine to promote non-clinical and clinical research on the medical use of hydrogen gas through industry-university collaboration and to obtain regulatory approval of hydrogen gas and hydrogen medical devices (http://www.karc.keio.ac.jp/center/center-55.html). Studies undertaken by the Center have suggested possible therapeutic effects of hydrogen gas in relation to various aspects of emergency and critical care medicine, including acute myocardial infarction, cardiopulmonary arrest syndrome, contrast-induced acute kidney injury, and hemorrhagic shock.
Hydrogen Safety Issues Compared to Safety Issues with Methane and Propane
NASA Astrophysics Data System (ADS)
Green, M. A.
2006-04-01
The hydrogen economy is not possible if the safety standards currently applied to liquid hydrogen and hydrogen gas by many laboratories are applied to devices that use either liquid or gaseous hydrogen. Methane and propane are commonly used by ordinary people without the special training. This report asks, "How is hydrogen different from flammable gasses that are commonly being used all over the world?" This report compares the properties of hydrogen, methane and propane and how these properties may relate to safety when they are used in both the liquid and gaseous state. Through such an analysis, sensible safety standards for the large-scale (or even small-scale) use of liquid and gaseous hydrogen systems can be developed. This paper is meant to promote discussion of issues related to hydrogen safety so that engineers designing equipment can factor sensible safety standards into their designs.
NASA Astrophysics Data System (ADS)
Zhao, Tianliang; Liu, Zhiyong; Hu, Shanshan; Du, Cuiwei; Li, Xiaogang
2017-05-01
The effect of hydrogen charging on the stress corrosion cracking (SCC) behavior of 2205 duplex stainless steel (DSS) under 3.5 wt.% NaCl thin electrolyte layer was investigated on precharged samples through hydrogen determination, electrochemical measurement, and slow strain rate tensile test. Results show that hydrogen charging weakens the passive film without inducing any obvious trace of localized anodic dissolution. Therefore, hydrogen charging increases the SCC susceptibility of 2205 DSS mainly through mechanism of hydrogen embrittlement rather than mechanism of localized anodic dissolution. 2205 DSS shows a more susceptibility to hydrogen under the TEL when hydrogen charging current density (HCCD) is between 20 and 50 mA cm-2. The increasing trend is remarkable when hydrogen charging current density increases from 20 to 50 mA cm-2 and fades after 50 mA cm-2.
Hydrogen Safety Issues Compared to Safety Issues with Methane andPropane
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, Michael A.
The hydrogen economy is not possible if the safety standards currently applied to liquid hydrogen and hydrogen gas by many laboratories are applied to devices that use either liquid or gaseous hydrogen. Methane and propane are commonly used by ordinary people without the special training. This report asks, 'How is hydrogen different from flammable gasses that are commonly being used all over the world?' This report compares the properties of hydrogen, methane and propane and how these properties may relate to safety when they are used in both the liquid and gaseous state. Through such an analysis, sensible safety standardsmore » for the large-scale (or even small-scale) use of liquid and gaseous hydrogen systems can be developed. This paper is meant to promote discussion of issues related to hydrogen safety so that engineers designing equipment can factor sensible safety standards into their designs.« less
High Resolution Neutron Radiography and Tomography of Hydrided Zircaloy-4 Cladding Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Tyler S; Bilheux, Hassina Z; Ray, Holly B
2015-01-01
Neutron radiography for hydrogen analysis was performed with several Zircaloy-4 cladding samples with controlled hydrogen concentrations up to 1100 ppm. Hydrogen charging was performed in a process tube that was heated to facilitate hydrogen absorption by the metal. A correlation between the hydrogen concentration in the hydrided tubes and the neutron intensity was established, by which hydrogen content can be determined precisely in a small area (55 m x 55 m). Radiography analysis was also performed to evaluate the heating rate and its correlation with the hydrogen distribution through hydrided materials. In addition to radiography analysis, tomography experiments were performedmore » on Zircaloy-4 tube samples to study the local hydrogen distribution. Through tomography analysis a 3D reconstruction of the tube was evaluated in which an uneven hydrogen distribution in the circumferential direction can be observed.« less
Onboard hydrogen generation for automobiles
NASA Technical Reports Server (NTRS)
Houseman, J.; Cerini, D. J.
1976-01-01
Problems concerning the use of hydrogen as a fuel for motor vehicles are related to the storage of the hydrogen onboard a vehicle. The feasibility is investigated to use an approach based on onboard hydrogen generation as a means to avoid these storage difficulties. Two major chemical processes can be used to produce hydrogen from liquid hydrocarbons and methanol. In steam reforming, the fuel reacts with water on a catalytic surface to produce a mixture of hydrogen and carbon monoxide. In partial oxidation, the fuel reacts with air, either on a catalytic surface or in a flame front, to yield a mixture of hydrogen and carbon monoxide. There are many trade-offs in onboard hydrogen generation, both in the choice of fuels as well as in the choice of a chemical process. Attention is given to these alternatives, the results of some experimental work in this area, and the combustion of various hydrogen-rich gases in an internal combustion engine.
Bioengineering of the Enterobacter aerogenes strain for biohydrogen production.
Zhang, Chong; Lv, Feng-Xiang; Xing, Xin-Hui
2011-09-01
Enterobacter aerogenes is one of the most widely-studied model strains for fermentative hydrogen production. To improve the hydrogen yield of E. aerogenes, the bioengineering on a biomolecular level and metabolic network level is of importance. In this review, the fermentative technology of E. aerogenes for hydrogen production will be first briefly summarized. And then the bioengineering of E. aerogenes for the improvement of hydrogen yield will be thoroughly reviewed, including the anaerobic metabolic networks for hydrogen evolution in E. aerogenes, metabolic engineering for improving hydrogen production in E. aerogenes and mixed culture of E. aerogenes with other hydrogen-producing bacteria to enhance the overall yield in anaerobic cultivation. Finally, a perspective on E. aerogenes as a hydrogen producer including systems bioengineering approach for improving the hydrogen yield and application of the engineered E. aerogenes in mixed culture will be presented. Copyright © 2011 Elsevier Ltd. All rights reserved.
New vistas in the determination of hydrogen in aerospace engine metal alloys
NASA Technical Reports Server (NTRS)
Danford, M. D.
1986-01-01
The application of diffusion theory to the analysis of hydrogen desorption data has been studied. From these analyses, important information concerning hydrogen solubilities and the nature of the hydrogen distributions in the metal has been obtained. Two nickel base alloys, Rene' 41 and Waspaloy, and one ferrous alloy, 4340 steel, were studied in this work. For the nickel base alloys, it was found that the hydrogen distributions after electrolytic charging conformed closely to those which would be predicted by diffusion theory. The hydrogen distributions in electrolytically charged 4340 steel, on the other hand, were essentially uniform in nature, which would not be predicted by diffusion theory. Finally, it has been found that the hydrogen desorption is completely explained by the nature of the hydrogen distribution in the metal, and that the 'fast' hydrogen is not due to surface and subsurface hydride formation, as was originally proposed.
Hydrogen storage in Pd nanocrystals covered with a metal-organic framework
NASA Astrophysics Data System (ADS)
Li, Guangqin; Kobayashi, Hirokazu; Taylor, Jared M.; Ikeda, Ryuichi; Kubota, Yoshiki; Kato, Kenichi; Takata, Masaki; Yamamoto, Tomokazu; Toh, Shoichi; Matsumura, Syo; Kitagawa, Hiroshi
2014-08-01
Hydrogen is an essential component in many industrial processes. As a result of the recent increase in the development of shale gas, steam reforming of shale gas has received considerable attention as a major source of H2, and the more efficient use of hydrogen is strongly demanded. Palladium is well known as a hydrogen-storage metal and an effective catalyst for reactions related to hydrogen in a variety of industrial processes. Here, we present remarkably enhanced capacity and speed of hydrogen storage in Pd nanocrystals covered with the metal-organic framework (MOF) HKUST-1 (copper(II) 1,3,5-benzenetricarboxylate). The Pd nanocrystals covered with the MOF have twice the storage capacity of the bare Pd nanocrystals. The significantly enhanced hydrogen storage capacity was confirmed by hydrogen pressure-composition isotherms and solid-state deuterium nuclear magnetic resonance measurements. The speed of hydrogen absorption in the Pd nanocrystals is also enhanced by the MOF coating.
NASA Astrophysics Data System (ADS)
Lawrence, S. K.; Somerday, B. P.; Ingraham, M. D.; Bahr, D. F.
2018-04-01
Hydrogen effects on small-volume plasticity and elastic stiffness constants are investigated with nanoindentation of Ni-201 and sonic velocity measurements of bulk Ni single crystals. Elastic modulus of Ni-201, calculated from indentation data, decreases 22% after hydrogen charging. This substantial decrease is independently confirmed by sonic velocity measurements of Ni single crystals; c 44 decreases 20% after hydrogen exposure. Furthermore, clear hydrogen-deformation interactions are observed. The maximum shear stress required to nucleate dislocations in hydrogen-charged Ni-201 is markedly lower than in as-annealed material, driven by hydrogen-reduced shear modulus. Additionally, a larger number of depth excursions are detected prior to general yielding in hydrogen-charged material, suggesting cross-slip restriction. Together, these data reveal a direct correlation between hydrogen-affected elastic properties and plastic deformation in Ni alloys.
Hydrogen mobility in the lightest reversible metal hydride, LiBeH 3
Mamontov, Eugene; Kolesnikov, Alexander I.; Sampath, Sujatha; ...
2017-11-24
Lithium-beryllium metal hydrides, which are structurally related to their parent compound, BeH 2, offer the highest hydrogen storage capacity by weight among the metal hydrides (15.93 wt. % of hydrogen for LiBeH 3). Challenging synthesis protocols have precluded conclusive determination of their crystallographic structure to date, but here we analyze directly the hydrogen hopping mechanisms in BeH 2 and LiBeH 3 using quasielastic neutron scattering, which is especially sensitive to single-particle dynamics of hydrogen. We find that, unlike its parent compound BeH 2, lithium-beryllium hydride LiBeH 3 exhibits a sharp increase in hydrogen mobility above 265 K, so dramatic thatmore » it can be viewed as melting of hydrogen sublattice. We perform comparative analysis of hydrogen jump mechanisms observed in BeH 2 and LiBeH 3 over a broad temperature range. As microscopic diffusivity of hydrogen is directly related to its macroscopic kinetics, a transition in LiBeH 3 so close to ambient temperature may offer a straightforward and effective mechanism to influence hydrogen uptake and release in this very lightweight hydrogen storage compound.« less
Bielen, Abraham A. M.; Verhaart, Marcel R. A.; van der Oost, John; Kengen, Servé W. M.
2013-01-01
Caldicellulosiruptor saccharolyticus is one of the most thermophilic cellulolytic organisms known to date. This Gram-positive anaerobic bacterium ferments a broad spectrum of mono-, di- and polysaccharides to mainly acetate, CO2 and hydrogen. With hydrogen yields approaching the theoretical limit for dark fermentation of 4 mol hydrogen per mol hexose, this organism has proven itself to be an excellent candidate for biological hydrogen production. This review provides an overview of the research on C. saccharolyticus with respect to the hydrolytic capability, sugar metabolism, hydrogen formation, mechanisms involved in hydrogen inhibition, and the regulation of the redox and carbon metabolism. Analysis of currently available fermentation data reveal decreased hydrogen yields under non-ideal cultivation conditions, which are mainly associated with the accumulation of hydrogen in the liquid phase. Thermodynamic considerations concerning the reactions involved in hydrogen formation are discussed with respect to the dissolved hydrogen concentration. Novel cultivation data demonstrate the sensitivity of C. saccharolyticus to increased hydrogen levels regarding substrate load and nitrogen limitation. In addition, special attention is given to the rhamnose metabolism, which represents an unusual type of redox balancing. Finally, several approaches are suggested to improve biohydrogen production by C. saccharolyticus. PMID:25371332
Sharma, Hom N.; Sangalang, Elizabeth A.; Saw, Cheng K.; ...
2017-11-15
Measurements of equilibrium vapor pressures by effusion thermogravimetry and melting points by differential scanning calorimetry reveal that the melting temperature and equilibrium vapor pressures of 1,4-bis(phenylethynyl)benzene (DEB) do not vary monotonically with the hydrogenation extent. Contrary to intuition which suggests increasing volatility with hydrogenation, results indicate decreasing volatility for the first two hydrogenation steps before a non-monotonic upward trend, in which trans-isomers are less volatile. Insights on structural packing and functional groups were obtained from x-ray diffraction and infrared studies to shed light on the observed variation in the volatility of DEB with hydrogenation. Density functional theory calculations were performedmore » to obtain molecular level information and to establish the thermodynamics of DEB hydrogenation reactions. A major factor influencing the observed melting points and volatility of the hydrogenated intermediate species is identified as the local attractive or repulsive carbon-hydrogen (CH) dipole interactions among the getter molecules in their respective crystal structures. As a result, such collective CH dipole interactions can be used to predict the trends in the volatilities of catalytic hydrogenation processes.« less
Nature of hydrogen embrittlement of steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Archakov, Yu. I.; Grebeshkova, I.D.
1986-01-01
The hydrogen embrittlement of metals is the result of the origin and development of microcracks, which are formed as the result of the occurence of internal stresses. The specific feature of the appearance of hydrogen embrittlement are the result of the physical properties of the metals and the character of their interaction with hydrogen. The tendency of metals toward hydrogen embrittlement is determined by the following characteristics: their capacity to dissolve hydrogen and its maximum solubility; the chemical activity of the metals and other phases in relation to hydrogen, that is, the capacity toward hydride formation and failure of themore » carbided sand oxides, and the tendency of the metal toward the occurence and propagation of cracks. The authors cite and discuss two general forms of action of hydrogen on metals, the physical action of hydrogen on metals and the physicochemical action when chemical interaction of hydrogen with the different phases and the individual components of the alloy on the surface and in the volume occurs. The tendency toward hydrogen embrittlement is shown to increase with an increase in the strength of the steel. In addition to the strength, this characteristic also depends upon the chemical composition and structural condition of the steel.« less
Hydrogen-enhanced clusterization of intrinsic defects and impurities in silicon
NASA Astrophysics Data System (ADS)
Mukashev, B. N.; Abdullin, Kh. A.; Gorelkinskii, Yu. V.; Tamendarov, M. F.; Tokmoldin, S. Zh
2001-01-01
Formation of intrinsic and impurity defect complexes in hydrogenated monocrystalline silicon is studied. Hydrogen was incorporated into samples by different ways: either by proton implantation at 80 and 300 K, or by annealing at 1250°C for 30-60 min in a sealed quartz ampoule containing ∼10 -3 ml of distilled water, or by treatment in hydrogen plasma. Radiation defects were incorporated either during the hydrogen implantation or by additional irradiation with protons or α-particles. The measurements were performed by electron paramagnetic resonance (EPR), deep level transient spectroscopy (DLTS) and infrared absorption (IR) methods. Essential differences of defect formation processes in hydrogenated samples as compared with reference samples were detected. The main reasons responsible for the differences are (i) hydrogen precipitation in a supersaturated solution during thermal treatment; (ii) interaction of hydrogen with defects and impurities and hydrogen-induced formation of defects; (iii) ability of hydrogen to play the role of accelerator of impurities precipitation. These factors result in the formation of vacancy-related, interstitial-related and impurity clusters which are observed only in the presence of hydrogen. The nature of the clusters and possible models of their structure are discussed.
Hydrogen mobility in the lightest reversible metal hydride, LiBeH 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mamontov, Eugene; Kolesnikov, Alexander I.; Sampath, Sujatha
Lithium-beryllium metal hydrides, which are structurally related to their parent compound, BeH 2, offer the highest hydrogen storage capacity by weight among the metal hydrides (15.93 wt. % of hydrogen for LiBeH 3). Challenging synthesis protocols have precluded conclusive determination of their crystallographic structure to date, but here we analyze directly the hydrogen hopping mechanisms in BeH 2 and LiBeH 3 using quasielastic neutron scattering, which is especially sensitive to single-particle dynamics of hydrogen. We find that, unlike its parent compound BeH 2, lithium-beryllium hydride LiBeH 3 exhibits a sharp increase in hydrogen mobility above 265 K, so dramatic thatmore » it can be viewed as melting of hydrogen sublattice. We perform comparative analysis of hydrogen jump mechanisms observed in BeH 2 and LiBeH 3 over a broad temperature range. As microscopic diffusivity of hydrogen is directly related to its macroscopic kinetics, a transition in LiBeH 3 so close to ambient temperature may offer a straightforward and effective mechanism to influence hydrogen uptake and release in this very lightweight hydrogen storage compound.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Hom N.; Sangalang, Elizabeth A.; Saw, Cheng K.
Measurements of equilibrium vapor pressures by effusion thermogravimetry and melting points by differential scanning calorimetry reveal that the melting temperature and equilibrium vapor pressures of 1,4-bis(phenylethynyl)benzene (DEB) do not vary monotonically with the hydrogenation extent. Contrary to intuition which suggests increasing volatility with hydrogenation, results indicate decreasing volatility for the first two hydrogenation steps before a non-monotonic upward trend, in which trans-isomers are less volatile. Insights on structural packing and functional groups were obtained from x-ray diffraction and infrared studies to shed light on the observed variation in the volatility of DEB with hydrogenation. Density functional theory calculations were performedmore » to obtain molecular level information and to establish the thermodynamics of DEB hydrogenation reactions. A major factor influencing the observed melting points and volatility of the hydrogenated intermediate species is identified as the local attractive or repulsive carbon-hydrogen (CH) dipole interactions among the getter molecules in their respective crystal structures. As a result, such collective CH dipole interactions can be used to predict the trends in the volatilities of catalytic hydrogenation processes.« less
Li, Yinfeng; Liu, Silin; Datta, Dibakar; Li, Zhonghua
2015-11-12
Wrinkles as intrinsic topological feature have been expected to affect the electrical and mechanical properties of atomically thin graphene. Molecular dynamics simulations are adopted to investigate the wrinkling characteristics in hydrogenated graphene annulus under circular shearing at the inner edge. The amplitude of wrinkles induced by in-plane rotation around the inner edge is sensitive to hydrogenation, and increases quadratically with hydrogen coverage. The effect of hydrogenation on mechanical properties is investigated by calculating the torque capability of annular graphene with varying hydrogen coverage and inner radius. Hydrogenation-enhanced wrinkles cause the aggregation of carbon atoms towards the inner edge and contribute to the critical torque strength of annulus. Based on detailed stress distribution contours, a shear-to-tension conversion mechanism is proposed for the contribution of wrinkles on torque capacity. As a result, the graphane annulus anomalously has similar torque capacity to pristine graphene annulus. The competition between hydrogenation caused bond strength deterioration and wrinkling induced local stress state conversion leads to a U-shaped evolution of torque strength relative to the increase of hydrogen coverage from 0 to 100%. Such hydrogenation tailored topological and mechanical characteristics provides an innovative mean to develop novel graphene-based devices.
H NMR studies of substrate hydrogen exchange reactions catalyzed by L-methionine gamma-lyase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Esaki, N.; Nakayama, T.; Sawada, S.
Hydrogen exchange reactions of various L-amino acids catalyzed by L-methionine gamma-lyase (EC 4.4.1.11) have been studied. The enzyme catalyzes the rapid exchange of the alpha- and beta-hydrogens of L-methionine and S-methyl-L-cysteine with deuterium from the solvent. The rate of alpha-hydrogen exchange was about 40 times faster than that of the enzymatic elimination reaction of the sulfur-containing amino acids. The enzyme also catalyzes the exchange reaction of alpha- and beta-hydrogens of the straight-chain L-amino acids which are not susceptible to elimination. The exchange rates of the alpha-hydrogen and the total beta-hydrogens of L-alanine and L-alpha-aminobutyrate with deuterium followed first-order kinetics. Formore » L-norvaline, L-norleucine, S-methyl-L-cysteine, and L-methionine, the rate of alpha-hydrogen exchange followed first-order kinetics, but the rate of total beta-hydrogen exchange decreased due to a primary isotope effect at the alpha-position. L-Phenylalanine and L-tryptophan slowly underwent alpha-hydrogen exchange. The pro-R hydrogen of glycine was deuterated stereospecifically.« less
Hydrogen bonding in a mixture of protic ionic liquids: a molecular dynamics simulation study.
Paschek, Dietmar; Golub, Benjamin; Ludwig, Ralf
2015-04-07
We report results of molecular dynamics (MD) simulations characterising the hydrogen bonding in mixtures of two different protic ionic liquids sharing the same cation: triethylammonium-methylsulfonate (TEAMS) and triethylammonium-triflate (TEATF). The triethylammonium-cation acts as a hydrogen-bond donor, being able to donate a single hydrogen-bond. Both, the methylsulfonate- and the triflate-anions can act as hydrogen-bond acceptors, which can accept multiple hydrogen bonds via their respective SO3-groups. In addition, replacing a methyl-group in the methylsulfonate by a trifluoromethyl-group in the triflate significantly weakens the strength of a hydrogen bond from an adjacent triethylammonium cation to the oxygen-site in the SO3-group of the anion. Our MD simulations show that these subtle differences in hydrogen bond strength significantly affect the formation of differently-sized hydrogen-bonded aggregates in these mixtures as a function of the mixture-composition. Moreover, the reported hydrogen-bonded cluster sizes can be predicted and explained by a simple combinatorial lattice model, based on the approximate coordination number of the ions, and using statistical weights that mostly account for the fact that each anion can only accept three hydrogen bonds.
NASA Astrophysics Data System (ADS)
Kashkarov, E. B.; Nikitenkov, N. N.; Sutygina, A. N.; Bezmaternykh, A. O.; Kudiiarov, V. N.; Syrtanov, M. S.; Pryamushko, T. S.
2018-02-01
More than 60 years of operation of water-cooled reactors have shown that local or general critical hydrogen concentration is one of the basic limiting criteria of zirconium-based fuel element claddings. During the coolant radiolysis, released hydrogen penetrates and accumulates in zirconium alloys. Hydrogenation of zirconium alloys leads to degradation of their mechanical properties, hydride cracking and stress corrosion cracking. In this research the effect of titanium nitride (TiN) deposition on hydrogenation behavior of Ti-implanted Zr-1Nb alloy was described. Ti-implanted interlayer was fabricated by plasma immersion ion implantation (PIII) at the pulsed bias voltage of 1500 V to improve the adhesion of TiN and reduce hydrogen penetration into Zr-1Nb alloy. We conducted the comparative analysis on hydrogenation behavior of the Ti-implanted alloy with sputtered and evaporated TiN films by reactive dc magnetron sputtering (dcMS) and filtered cathodic vacuum arc deposition (FVAD), respectively. The crystalline structure and surface morphology were investigated using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The elemental distribution was analyzed using glow-discharge optical emission spectroscopy (GD-OES). Hydrogenation was performed from gas atmosphere at 350 °C and 2 atm hydrogen pressure. The results revealed that TiN films as well as Ti implantation significantly reduce hydrogen absorption rate of Zr-1Nb alloy. The best performance to reduce the rate of hydrogen absorption is Ti-implanted layer with evaporated TiN film. Morphology of the films impacted hydrogen permeation through TiN films: the denser film the lower hydrogen permeation. The Ti-implanted interface plays an important role of hydrogen accumulation layer for trapping the penetrated hydrogen. No deterioration of adhesive properties of TiN films on Zr-1Nb alloy with Ti-implanted interface occurs under high-temperature hydrogen exposure. Thus, the fabrication of Ti-implanted layer with dense TiN films can be an effective way to protect Zr-1Nb alloy from hydrogen embrittlement.
NASA Technical Reports Server (NTRS)
Woods, Stephen; Lee, Jonathan A.
2016-01-01
Hydrogen embrittlement (HE) is a process resulting in a decrease in the fracture toughness or ductility of a metal due to the presence of atomic hydrogen. In addition to pure hydrogen gas as a direct source for the absorption of atomic hydrogen, the damaging effect can manifest itself from other hydrogen-containing gas species such as hydrogen sulfide (H2S), hydrogen chloride (HCl), and hydrogen bromide (HBr) environments. It has been known that H2S environment may result in a much more severe condition of embrittlement than pure hydrogen gas (H2) for certain types of alloys at similar conditions of stress and gas pressure. The reduction of fracture loads can occur at levels well below the yield strength of the material. Hydrogen embrittlement is usually manifest in terms of singular sharp cracks, in contrast to the extensive branching observed for stress corrosion cracking. The initial crack openings and the local deformation associated with crack propagation may be so small that they are difficult to detect except in special nondestructive examinations. Cracks due to HE can grow rapidly with little macroscopic evidence of mechanical deformation in materials that are normally quite ductile. This Technical Memorandum presents a comprehensive review of experimental data for the effects of gaseous Hydrogen Environment Embrittlement (HEE) for several types of metallic materials. Common material screening methods are used to rate the hydrogen degradation of mechanical properties that occur while the material is under an applied stress and exposed to gaseous hydrogen as compared to air or helium, under slow strain rates (SSR) testing. Due to the simplicity and accelerated nature of these tests, the results expressed in terms of HEE index are not intended to necessarily represent true hydrogen service environment for long-term exposure, but rather to provide a practical approach for material screening, which is a useful concept to qualitatively evaluate the severity of hydrogen embrittlement. The effects of hydrogen gas on mechanical properties such as tensile strength, ductility, fracture, low and high cycle fatigue, crack growth rate, and creep rupture are analyzed with respect to the general trends established from the HEE index values. It is observed that the severity of HE effects is also influenced by environmental factors such as pressure, temperature, and hydrogen gas purity. The severity of HE effects is also influenced by material factors such as surface finish, heat treatment, and product forms, compositions, grain direction, and crystal orientations.
Exergetic life cycle assessment of hydrogen production from renewables
NASA Astrophysics Data System (ADS)
Granovskii, Mikhail; Dincer, Ibrahim; Rosen, Marc A.
Life cycle assessment is extended to exergetic life cycle assessment and used to evaluate the exergy efficiency, economic effectiveness and environmental impact of producing hydrogen using wind and solar energy in place of fossil fuels. The product hydrogen is considered a fuel for fuel cell vehicles and a substitute for gasoline. Fossil fuel technologies for producing hydrogen from natural gas and gasoline from crude oil are contrasted with options using renewable energy. Exergy efficiencies and greenhouse gas and air pollution emissions are evaluated for all process steps, including crude oil and natural gas pipeline transportation, crude oil distillation and natural gas reforming, wind and solar electricity generation, hydrogen production through water electrolysis, and gasoline and hydrogen distribution and utilization. The use of wind power to produce hydrogen via electrolysis, and its application in a fuel cell vehicle, exhibits the lowest fossil and mineral resource consumption rate. However, the economic attractiveness, as measured by a "capital investment effectiveness factor," of renewable technologies depends significantly on the ratio of costs for hydrogen and natural gas. At the present cost ratio of about 2 (per unit of lower heating value or exergy), capital investments are about five times lower to produce hydrogen via natural gas rather than wind energy. As a consequence, the cost of wind- and solar-based electricity and hydrogen is substantially higher than that of natural gas. The implementation of a hydrogen fuel cell instead of an internal combustion engine permits, theoretically, an increase in a vehicle's engine efficiency of about of two times. Depending on the ratio in engine efficiencies, the substitution of gasoline with "renewable" hydrogen leads to (a) greenhouse gas (GHG) emissions reductions of 12-23 times for hydrogen from wind and 5-8 times for hydrogen from solar energy, and (b) air pollution (AP) emissions reductions of 38-76 times for hydrogen from wind and 16-32 times for hydrogen from solar energy. By comparison, substitution of gasoline with hydrogen from natural gas allows reductions in GHG emissions only as a result of the increased efficiency of a fuel cell engine, and a reduction of AP emissions of 2.5-5 times. These data suggest that "renewable" hydrogen represents a potential long-term solution to many environmental problems.
Integrated Temperature and Hydrogen Sensors with MEMS Technology
Jiang, Hongchuan; Huang, Min; Yu, Yibing; Tian, Xiaoyu; Zhang, Wanli; Zhang, Jianfeng; Huang, Yifan; Yu, Kun
2017-01-01
In this work, a PdNi thin film hydrogen gas sensor with integrated Pt thin film temperature sensor was designed and fabricated using the micro-electro-mechanical system (MEMS) process. The integrated sensors consist of two resistors: the former, based on Pt film, is used as a temperature sensor, while the latter had the function of hydrogen sensing and is based on PdNi alloy film. The temperature coefficient of resistance (TCR) in both devices was measured and the output response of the PdNi film hydrogen sensor was calibrated based on the temperature acquired by the Pt temperature sensor. The SiN layer was deposited on top of Pt film to inhibit the hydrogen diffusion and reduce consequent disturbance on temperature measurement. The TCR of the PdNi film and the Pt film was about 0.00122/K and 0.00217/K, respectively. The performances of the PdNi film hydrogen sensor were investigated with hydrogen concentrations from 0.3% to 3% on different temperatures from 294.7 to 302.2 K. With the measured temperature of the Pt resistor and the TCR of the PdNi film, the impact of the temperature on the performances of the PdNi film hydrogen sensor was reduced. The output response, response time and recovery time of the PdNi film hydrogen sensors under the hydrogen concentration of 0.5%, 1.0%, 1.5% and 2.0% were measured at 313 K. The output response of the PdNi thin film hydrogen sensors increased with increasing hydrogen concentration while the response time and recovery time decreased. A cycling test between pure nitrogen and 3% hydrogen concentration was performed at 313 K and PdNi thin film hydrogen sensor demonstrated great repeatability in the cycling test. PMID:29301220
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiang, S.H.; Klinzing, G.E.; Cheng, Y.S.
1984-12-01
An in-situ technique for measuring hydrogen concentration (partial pressure) had been previously used to measure static properties (hydrogen solubilities, vapor pressures of hydrocarbons, etc.). Because of its good precision (2% relative error) and relatively short respond time (9.7 to 2.0 seconds at 589 to 728K), the technique was successfully applied to a dynamic study of hydrogenation reactions in this work. Furthermore, the technique is to be tested for industrial uses. Hydrogen/1-methylnaphthalene system was experimentally investigated in a one-liter autoclave equipped with a magnetically driven stirrer and temperature controlling devices. Catalytic hydrogenation of 1-methylnaphthalene was studied in the presence of sulfidedmore » Co-Mo-Al2O3 catalyst. In addition, the vapor/liquid equilibrium relationship was determined by using this technique. Hydrogenation reaction runs were performed at temperatures of 644.1, 658.0 and 672.0K and pressures up to 9.0 MPa. The ring hydrogenation, resulting in 1- and 5-methyltetralin, was found to be the dominant reaction. This is in agreement with cited literature. Effects of hydrogen partial pressure, operating temperature, as well as presulfided catalyst are also investigated and discussed in this work. The vapor pressure of 1-methylnaphthalene was measured over a temperature range of 555.2 to 672.0K. The results are in good agreement with literature data. Measurements for hydrogen solubility in 1-methylnaphthalene were conducted over temperature and pressure range of 598 to 670K and 5.2 to 8.8 MPa, respectively. Similar to previously reported results, the hydrogen solubility increases with increasing temperature when total pressure is held constant. A linear relation is found between the hydrogen solubility and hydrogen partial pressure. 21 refs., 13 figs., 10 tabs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shibata, Ayano; Tanabe, Eriko; Inoue, Serina
2013-04-12
Highlights: •Hydrogen peroxide stimulates cell motility of WB-F344 cells. •LPA{sub 3} is induced by hydrogen peroxide in WB-F344 cells. •Cell motility by hydrogen peroxide is inhibited in LPA{sub 3} knockdown cells. •LPA signaling is involved in cell migration by hydrogen peroxide. -- Abstract: Hydrogen peroxide which is one of reactive oxygen species (ROS) mediates a variety of biological responses, including cell proliferation and migration. In the present study, we investigated whether lysophosphatidic acid (LPA) signaling is involved in cell motile activity stimulated by hydrogen peroxide. The rat liver epithelial WB-F344 cells were treated with hydrogen peroxide at 0.1 or 1more » μM for 48 h. In cell motility assays, hydrogen peroxide treated cells showed significantly high cell motile activity, compared with untreated cells. To measure the expression levels of LPA receptor genes, quantitative real time RT-PCR analysis was performed. The expressions of LPA receptor-3 (Lpar3) in hydrogen peroxide treated cells were significantly higher than those in control cells, but not Lpar1 and Lpar2 genes. Next, to assess the effect of LPA{sub 3} on cell motile activity, the Lpar3 knockdown cells from WB-F344 cells were also treated with hydrogen peroxide. The cell motile activity of the knockdown cells was not stimulated by hydrogen peroxide. Moreover, in liver cancer cells, hydrogen peroxide significantly activated cell motility of Lpar3-expressing cells, but not Lpar3-unexpressing cells. These results suggest that LPA signaling via LPA{sub 3} may be mainly involved in cell motile activity of WB-F344 cells stimulated by hydrogen peroxide.« less
Immersing lungs in hydrogen-rich saline attenuates lung ischaemia-reperfusion injury.
Takahashi, Mamoru; Chen-Yoshikawa, Toyofumi F; Saito, Masao; Tanaka, Satona; Miyamoto, Ei; Ohata, Keiji; Kondo, Takeshi; Motoyama, Hideki; Hijiya, Kyoko; Aoyama, Akihiro; Date, Hiroshi
2017-03-01
Anti-oxidant effects of hydrogen have been reported in studies examining ischaemia-reperfusion injury (IRI). In this study, we evaluated the therapeutic efficacy of immersing lungs in hydrogen-rich saline on lung IRI. Lewis rats were divided into three groups: (i) sham, (ii) normal saline and (iii) hydrogen-rich saline. In the first experiment, the left thoracic cavity was filled with either normal saline or hydrogen-rich saline for 1 h. Then, we measured the hydrogen concentration in the left lung using a sensor gas chromatograph ( N = 3 per group). In the second experiment, lung IRI was induced by occlusion of the left pulmonary hilum for 1 h, followed by reperfusion for 3 h. During the ischaemic period, the left thoracic cavity was filled with either normal saline or hydrogen-rich saline. After reperfusion, we assessed lung function, histological changes and cytokine production ( N = 5-7 per group). Immersing lungs in hydrogen-rich saline resulted in an elevated hydrogen concentration in the lung (6.9 ± 2.9 μmol/1 g lung). After IRI, pulmonary function (pulmonary compliance and oxygenation levels) was significantly higher in the hydrogen-rich saline group than in the normal saline group ( P < 0.05). Similarly, pro-inflammatory cytokine levels (interleukin-1β and interleukin-6) in the left lung were significantly lower in the hydrogen-rich saline group than in the normal saline group ( P < 0.05). Immersing lungs in hydrogen-rich saline delivered hydrogen into the lung and consequently attenuated lung IRI. Hydrogen-rich solution appears to be a promising approach to managing lung IRI. © The Author 2016. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.
Hirshfeld atom refinement for modelling strong hydrogen bonds.
Woińska, Magdalena; Jayatilaka, Dylan; Spackman, Mark A; Edwards, Alison J; Dominiak, Paulina M; Woźniak, Krzysztof; Nishibori, Eiji; Sugimoto, Kunihisa; Grabowsky, Simon
2014-09-01
High-resolution low-temperature synchrotron X-ray diffraction data of the salt L-phenylalaninium hydrogen maleate are used to test the new automated iterative Hirshfeld atom refinement (HAR) procedure for the modelling of strong hydrogen bonds. The HAR models used present the first examples of Z' > 1 treatments in the framework of wavefunction-based refinement methods. L-Phenylalaninium hydrogen maleate exhibits several hydrogen bonds in its crystal structure, of which the shortest and the most challenging to model is the O-H...O intramolecular hydrogen bond present in the hydrogen maleate anion (O...O distance is about 2.41 Å). In particular, the reconstruction of the electron density in the hydrogen maleate moiety and the determination of hydrogen-atom properties [positions, bond distances and anisotropic displacement parameters (ADPs)] are the focus of the study. For comparison to the HAR results, different spherical (independent atom model, IAM) and aspherical (free multipole model, MM; transferable aspherical atom model, TAAM) X-ray refinement techniques as well as results from a low-temperature neutron-diffraction experiment are employed. Hydrogen-atom ADPs are furthermore compared to those derived from a TLS/rigid-body (SHADE) treatment of the X-ray structures. The reference neutron-diffraction experiment reveals a truly symmetric hydrogen bond in the hydrogen maleate anion. Only with HAR is it possible to freely refine hydrogen-atom positions and ADPs from the X-ray data, which leads to the best electron-density model and the closest agreement with the structural parameters derived from the neutron-diffraction experiment, e.g. the symmetric hydrogen position can be reproduced. The multipole-based refinement techniques (MM and TAAM) yield slightly asymmetric positions, whereas the IAM yields a significantly asymmetric position.
NASA Astrophysics Data System (ADS)
Buchanan, D. A.; Marwick, A. D.; Dimaria, D. J.; Dori, L.
1994-09-01
Redistribution of hydrogen caused by hot-electron injection has been studied by hydrogen depth profiling with N-15 nuclear reaction analysis and electrical methods. Internal photoemission and Fowler-Nordheim injection were used for electron injection into large Al-gate and polysilicon-gate capacitors, respectively. A hydrogen-rich layer (about 10(exp 15) atoms/sq cm) observed at the Al/SiO2 interface was found to serve as the source of hydrogen during the hot-electron stress. A small fraction of the hydrogen released from this layer was found to be retrapped near the Si/SiO2 interface for large electron fluences in the Al-gate samples. Within the limit of detectability, about 10(exp 14)/sq cm, no hydrogen was measured using nuclear reaction analysis in the polysilicon-gate samples. The buildup of hydrogen at the Si/SiO2 interface exhibits a threshold at about 1 MV/cm, consistent with the threshold for electron heating in SiO2. In the 'wet' SiO2 films with purposely introduced excess hydrogen, the rate of hydrogen buildup at the Si/SiO2 interface is found to be significantly greater than that found in the 'dry' films. During electron injection, hydrogen redistribution was also confirmed via the deactivation of boron dopant in the silicon substrate. The generation rates of interface states, neutral electron traps, and anomalous positive charge are found to increase with increasing hydrogen buildup in the substrate and the initial hydrogen concentration in the film. It is concluded that the generation of defects is preceded by the hot-electron-induced release and transport of atomic hydrogen and it is the chemical reaction of this species within the metal-oxide-semiconductor structure that generates the electrically active defects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karner, D.; Francfort, J.E.
2003-01-16
Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy's Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle, a Dodge Ram Wagon Van, operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline enginesmore » that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service's Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents results of 22,816 miles of testing for the Dodge Ram Wagon Van, operating on CNG fuel, and a blended fuel of 15% hydrogen-85% CNG.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karner, D.; Francfort, James Edward
2003-01-01
Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy’s Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to runmore » CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service’s Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents results of 16,942 miles of testing for one of the blended fuel vehicles, a Ford F-150 pickup truck, operating on up to 30% hydrogen/70% CNG fuel.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karner, D.; Francfort, J.E.
2003-01-22
Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy's Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to runmore » CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service's Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents results of 16,942 miles of testing for one of the blended fuel vehicles, a Ford F-150 pickup truck, operating on up to 30% hydrogen/70% CNG fuel.« less
Long-Term Heating to Improve Receiver Performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glatzmaier, Greg C.; Cable, Robert; Newmarker, Marc
The buildup of hydrogen in the heat transfer fluid (HTF) that circulates through components of parabolic trough power plants decreases receiver thermal efficiency, and ultimately, it decreases plant performance and electricity output. The generation and occurrence of hydrogen in the HTF provides the driving force for hydrogen to permeate from the HTF through the absorber tube wall and into the receiver annulus. Getters adsorb hydrogen from the annulus volume until they saturate and are no longer able to maintain low hydrogen pressure. The increase in hydrogen pressure within the annulus significantly degrades thermal performance of the receiver and decreases overallmore » power-plant efficiency. NREL and Acciona Energy North America (Acciona) are developing a method to control the levels of dissolved hydrogen in the circulating HTF. The basic approach is to remove hydrogen from the expansion tanks of the HTF subsystem at a rate that maintains hydrogen in the circulating HTF to a target level. Full-plant steady-state models developed by the National Renewable Energy Laboratory (NREL) predict that if hydrogen is removed from the HTF within the expansion tanks, the HTF that circulates through the collector field remains essentially free of hydrogen until the HTF returns to the power block in the hot headers. One of the key findings of our modeling is the prediction that hydrogen will reverse-permeate out of the receiver annulus if dissolved hydrogen in the HTF is kept sufficiently low. To test this prediction, we performed extended heating of an in-service receiver that initially had high levels of hydrogen in its annulus. The heating was performed using NREL's receiver test stand. Results of our testing showed that receiver heat loss steadily decreased with daily heating, resulting in a corresponding improvement in receiver thermal efficiency.« less
Reaping Environmental Benefits of a Global Hydrogen Economy: How Large, Fow Soon, and at What Risks?
NASA Astrophysics Data System (ADS)
Dubey, M. K.; Horowitz, L. W.; Rahn, T. A.; Kinnison, D. E.
2004-12-01
The Western world has taken an aggressive posture to transition to a global hydrogen economy. While numerous technical challenges need to be addressed to achieve this it is timely to examine the environmental benefits and risks of this transition. Hydrogen provides an efficient energy carrier that promises to enhance urban and regional air quality that will benefit human health. It could also reduce risks of climate change if large-scale hydrogen production by renewable or nuclear energy sources becomes viable. While it is well known that the byproduct of energy produced from hydrogen is water vapor, it is not well known that the storage and transfer of hydrogen is inevitably accompanied by measurable leakage of hydrogen. Unintended consequences of hydrogen leakage include reduction in global oxidative capacity, changes in tropospheric ozone, and increase in stratospheric water that would exacerbate halogen induced ozone losses as well as impact the earth's radiation budget and climate. We construct plausible global hydrogen energy use and leak scenarios and assess their impacts using global 3-D simulations by the Model for Ozone And Related Trace species (MOZART). The hydrogen fluxes and photochemistry in our model successfully reproduce the contemporary hydrogen cycle as observed by a network of remote global stations. Our intent is to determine environmentally tolerable leak rates and also facilitate a gradual phasing in of a hydrogen economy over the next several decades as the elimination of the use of halocarbons gradually reduces halogen induced stratospheric ozone loss rates. We stress that the leak rates in global hydrogen infrastructure and the future evolution of microbial soil sink of hydrogen that determines its current lifetime (about 2 years) are principal sources of uncertainty in our assessment.
An Optical Study of Processes in Hydrogen Flame in a Tube
2002-07-01
growth of the hydrogen- flame length with the hydrogen flow rate was observed, whereas for a turbulent hydrogen jet (Reynolds number Re > 104 [5]), the... flame length remained almost constant and varied only weakly with the flow rate of hydrogen. For a subsonic jet flow, flame images display an...There are some data in the literature which show how the diffusive- flame length varies with the rate of hydrogen flow [4, 7]. The length of a
Equilibrium and diffusion studies of metal-hydrogen systems
NASA Astrophysics Data System (ADS)
Maroevic, Petar
Several new methods and models have been developed pertaining to equilibrium properties of hydrogen in random binary substitutional alloys at room and lower temperatures, describing both statistics and kinetics of hydrogen in them. They represent a solution to the problem of the complete Fermi-Dirac description which is physically appropriate for these systems. Hydrogen diffusion which proceeds via lattice assisted quantum tunneling at room and lower temperatures requires a new and different description from the one based on the thermal hopping picture, which pertains only to relatively high temperatures. It is also shown that the analogs of the solution to the Fermi-Dirac problem of hydrogen can be successfully applied to the description of vacancies in a hydrogenated system, a phenomena known to occur due to high hydrogen-vacancy binding energies and the creation of hydrogen-vacancy clusters. The solution based on this model applies to much lower temperatures and higher concentrations than the tradition alone. This methodology has also been applied to the surface problem where very large vacancy and hydrogen concentrations occur. This is of special importance since mechanical properties are known to be greatly affected by the surface. As another consequence of hydrogen induced vacancies, hydrogen induced lattice migration (HILM) occurs. This has been demonstrated in our electrical resistivity study of palladium wires where recrystallization and annealing effects were observed upon hydrogen-heat-treatment (HHT).
Laikhtman, Alex; Makrinich, Gennady; Sezen, Meltem; Yildizhan, Melike Mercan; Martinez, Jose I.; Dinescu, Doru; Prodana, Mariana; Enachescu, Marius; Alonso, Julio A.; Zak, Alla
2017-01-01
The chemical configuration and interaction mechanism of hydrogen adsorbed in inorganic nanoparticles of WS2 are investigated. Our recent approaches of using hydrogen activated by either microwave or radiofrequency plasma dramatically increased the efficiency of its adsorption on the nanoparticles surface. In the current work we make an emphasis on elucidation of the chemical configuration of the adsorbed hydrogen. This configuration is of primary importance as it affects its adsorption stability and possibility of release. To get insight on the chemical configuration, we combined the experimental analysis methods with theoretical modeling based on the density functional theory (DFT). Micro-Raman spectroscopy was used as a primary tool to elucidate chemical bonding of hydrogen and to distinguish between chemi- and physisorption. Hydrogen adsorbed in molecular form (H2) was clearly identified in all the plasma-hydrogenated WS2 nanoparticles samples. It was shown that the adsorbed hydrogen is generally stable under high vacuum conditions at room temperature, which implies its stability at the ambient atmosphere. A DFT model was developed to simulate the adsorption of hydrogen in the WS2 nanoparticles. This model considers various adsorption sites and identifies the preferential locations of the adsorbed hydrogen in several WS2 structures, demonstrating good concordance between theory and experiment and providing tools for optimizing of hydrogen exposure conditions and the type of substrate materials. PMID:28596812
Fukuzumi, Shunichi; Yamada, Yusuke; Karlin, Kenneth D
2012-11-01
This review describes homogeneous and heterogeneous catalytic reduction of dioxygen with metal complexes focusing on the catalytic two-electron reduction of dioxygen to produce hydrogen peroxide. Whether two-electron reduction of dioxygen to produce hydrogen peroxide or four-electron O 2 -reduction to produce water occurs depends on the types of metals and ligands that are utilized. Those factors controlling the two processes are discussed in terms of metal-oxygen intermediates involved in the catalysis. Metal complexes acting as catalysts for selective two-electron reduction of oxygen can be utilized as metal complex-modified electrodes in the electrocatalytic reduction to produce hydrogen peroxide. Hydrogen peroxide thus produced can be used as a fuel in a hydrogen peroxide fuel cell. A hydrogen peroxide fuel cell can be operated with a one-compartment structure without a membrane, which is certainly more promising for the development of low-cost fuel cells as compared with two compartment hydrogen fuel cells that require membranes. Hydrogen peroxide is regarded as an environmentally benign energy carrier because it can be produced by the electrocatalytic two-electron reduction of O 2 , which is abundant in air, using solar cells; the hydrogen peroxide thus produced could then be readily stored and then used as needed to generate electricity through the use of hydrogen peroxide fuel cells.
Desulfurizing Coal By Chlorinolysis and Hydrogenation
NASA Technical Reports Server (NTRS)
Kalvinskas, J. J.; Rohatgi, N. K.
1983-01-01
85 percent of organic and pyritic sulfur in coal removed by combination of chlorinolysis and hydrogeneration. Coal is fed to hydrogenator after chlorination. Coal flows against hydrogen current increasing mixing and reducing hydrogen consumption. Excess hydrogen is recovered from gaseous reaction products. Product coal contained 62.5 percent less total sulfur than same coal after chlorination.
Hydrogen Infrastructure Testing and Research Facility Animation | Hydrogen
at full pressure. This system provides hydrogen to fill fuel cell forklifts and feeds the high pressure compressor. View Photos High Pressure Storage The high pressure hydrogen storage system consists full pressure. This system provides hydrogen to high pressure research projects and for fuel cell
Hydrogen Infrastructure Testing and Research Facility | Energy Systems
hydrogen production through renewable electrolysis, fuel cell manufacturing and testing, high-pressure system provides hydrogen to fill fuel cell forklifts and feeds the high pressure compressor. View Photos High Pressure Storage The high pressure hydrogen storage system consists of four Type II hydrogen tanks
A Technical and Economic Review of Solar Hydrogen Production Technologies
ERIC Educational Resources Information Center
Wilhelm, Erik; Fowler, Michael
2006-01-01
Hydrogen energy systems are being developed to replace fossil fuels-based systems for transportation and stationary application. One of the challenges facing the widespread adoption of hydrogen as an energy vector is the lack of an efficient, economical, and sustainable method of hydrogen production. In the short term, hydrogen produced from…
Hydrogen Production Cost Analysis | Hydrogen and Fuel Cells | NREL
Analysis Hydrogen Production Cost Analysis This interactive map displays the results of a 2011 NREL analysis on the cost of hydrogen from electrolysis at potential sites across the United States. NREL analyzed the cost of hydrogen production via wind-based water electrolysis at 42 potential sites in 11
21 CFR 868.1170 - Indwelling blood hydrogen ion concentration (pH) analyzer.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Indwelling blood hydrogen ion concentration (pH... Indwelling blood hydrogen ion concentration (pH) analyzer. (a) Identification. An indwelling blood hydrogen... used to measure, in vivo, the hydrogen ion concentration (pH) in blood to aid in determining the...
21 CFR 868.1170 - Indwelling blood hydrogen ion concentration (pH) analyzer.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Indwelling blood hydrogen ion concentration (pH... Indwelling blood hydrogen ion concentration (pH) analyzer. (a) Identification. An indwelling blood hydrogen... used to measure, in vivo, the hydrogen ion concentration (pH) in blood to aid in determining the...
21 CFR 868.1170 - Indwelling blood hydrogen ion concentration (pH) analyzer.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Indwelling blood hydrogen ion concentration (pH... Indwelling blood hydrogen ion concentration (pH) analyzer. (a) Identification. An indwelling blood hydrogen... used to measure, in vivo, the hydrogen ion concentration (pH) in blood to aid in determining the...
21 CFR 868.1170 - Indwelling blood hydrogen ion concentration (pH) analyzer.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Indwelling blood hydrogen ion concentration (pH... Indwelling blood hydrogen ion concentration (pH) analyzer. (a) Identification. An indwelling blood hydrogen... used to measure, in vivo, the hydrogen ion concentration (pH) in blood to aid in determining the...
76 FR 81477 - National Conference on Weights and Measures 97th Interim Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-28
... Regulation Item 237-9, Requirements for Hydrogen, and Item 237-10, Definition for Hydrogen Fuel for Internal... national quality standard for commercial hydrogen fuel and to adopt hydrogen related definitions. Both proposals would apply to hydrogen fuel when it is sold through dispensing equipment for use in fuel cell and...
21 CFR 868.1170 - Indwelling blood hydrogen ion concentration (pH) analyzer.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Indwelling blood hydrogen ion concentration (pH... Indwelling blood hydrogen ion concentration (pH) analyzer. (a) Identification. An indwelling blood hydrogen... used to measure, in vivo, the hydrogen ion concentration (pH) in blood to aid in determining the...
Hydrogen in the Methanol Production Process
ERIC Educational Resources Information Center
Kralj, Anita Kovac; Glavic, Peter
2006-01-01
Hydrogen is a very important industrial gas in chemical processes. It is very volatile; therefore, it can escape from the process units and its mass balance is not always correct. In many industrial processes where hydrogen is reacted, kinetics are often related to hydrogen pressure. The right thermodynamic properties of hydrogen can be found for…
Incomplete Combustion of Hydrogen: Trapping a Reaction Intermediate
ERIC Educational Resources Information Center
Mattson, Bruce; Hoette, Trisha
2007-01-01
The combustion of hydrogen in air is quite complex with at least 28 mechanistic steps and twelve reaction species. Most of the species involved are radicals (having unpaired electrons) in nature. Among the various species generated, a few are stable, including hydrogen peroxide. In a normal hydrogen flame, the hydrogen peroxide goes on to further…
21 CFR 186.1551 - Hydrogenated fish oil.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Hydrogenated fish oil. 186.1551 Section 186.1551... as GRAS § 186.1551 Hydrogenated fish oil. (a) Hydrogenated fish oil (CAS Reg. No. 91078-95-4) is a class of oils produced by partial hydrogenation of oils expressed from fish, primarily menhaden, and...
2015 Annual Progress Report: DOE Hydrogen and Fuel Cells Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
The 2015 Annual Progress Report summarizes fiscal year 2015 activities and accomplishments by projects funded by the DOE Hydrogen and Fuel Cells Program. It covers the program areas of hydrogen production; hydrogen delivery; hydrogen storage; fuel cells; manufacturing R&D; technology validation; safety, codes and standards; systems analysis; and market transformation.
Ice method for production of hydrogen clathrate hydrates
Lokshin, Konstantin [Santa Fe, NM; Zhao, Yusheng [Los Alamos, NM
2008-05-13
The present invention includes a method for hydrogen clathrate hydrate synthesis. First, ice and hydrogen gas are supplied to a containment volume at a first temperature and a first pressure. Next, the containment volume is pressurized with hydrogen gas to a second higher pressure, where hydrogen clathrate hydrates are formed in the process.
Alternative Fuels Data Center: Hydrogen Laws and Incentives
Hydrogen Printable Version Share this resource Send a link to Alternative Fuels Data Center : Hydrogen Laws and Incentives to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Laws and Laws and Incentives on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Laws and
NASA Astrophysics Data System (ADS)
Späth, F.; Gebhardt, J.; Düll, F.; Bauer, U.; Bachmann, P.; Gleichweit, C.; Görling, A.; Steinrück, H.-P.; Papp, C.
2017-09-01
We investigate the reactivity of hexagonal boron nitride (h-BN) on a Ni(1 1 1) single crystal towards atomic hydrogen over a wide exposure range. Near edge x-ray absorption fine structure and x-ray photoelectron spectroscopy (XPS) show that for low hydrogen exposures hydrogenation of the h-BN sheet is found. In contrast, intercalation of hydrogen between h-BN and the Ni(1 1 1) substrate occurs for high exposures. For intermediate regimes, a mixture of intercalation and hydrogenation is observed. From temperature-programmed desorption and temperature-programmed XPS experiments, we conclude that the hydrogen covalently bound to h-BN is rather stable with a desorption temperature of 600 K, while intercalated hydrogen is desorbing already at 390 K. Further insight into the structural arrangements and the thermodynamics of the system is obtained by comparing our experimental results with extensive density-functional theory calculations. Together with ultraviolet photoelectron spectroscopy measurements, the calculations provide detailed insight into the influence of hydrogenation on the electronic structure of h-BN.
New perspectives on potential hydrogen storage materials using high pressure.
Song, Yang
2013-09-21
In addressing the global demand for clean and renewable energy, hydrogen stands out as the most suitable candidate for many fuel applications that require practical and efficient storage of hydrogen. Supplementary to the traditional hydrogen storage methods and materials, the high-pressure technique has emerged as a novel and unique approach to developing new potential hydrogen storage materials. Static compression of materials may result in significant changes in the structures, properties and performance that are important for hydrogen storage applications, and often lead to the formation of unprecedented phases or complexes that have profound implications for hydrogen storage. In this perspective article, 22 types of representative potential hydrogen storage materials that belong to four major classes--simple hydride, complex hydride, chemical hydride and hydrogen containing materials--were reviewed. In particular, their structures, stabilities, and pressure-induced transformations, which were reported in recent experimental works together with supporting theoretical studies, were provided. The important contextual aspects pertinent to hydrogen storage associated with novel structures and transitions were discussed. Finally, the summary of the recent advances reviewed and the insight into the future research in this direction were given.
Hydrogen anion and subgap states in amorphous In-Ga-Zn-O thin films for TFT applications
NASA Astrophysics Data System (ADS)
Bang, Joonho; Matsuishi, Satoru; Hosono, Hideo
2017-06-01
Hydrogen is an impurity species having an important role in the physical properties of semiconductors. Despite numerous studies, the role of hydrogen in oxide semiconductors remains an unsolved puzzle. This situation arises from insufficient information about the chemical state of the impurity hydrogen. Here, we report direct evidence for anionic hydrogens bonding to metal cations in amorphous In-Ga-Zn-O (a-IGZO) thin films for thin-film transistors (TFT) applications and discuss how the hydrogen impurities affect the electronic structure of a-IGZO. Infrared absorption spectra of self-standing a-IGZO thin films prepared by sputtering reveal the presence of hydrogen anions as a main hydrogen species (concentration is ˜1020 cm-3) along with the hydrogens in the form of the hydroxyl groups (˜1020 cm-3). Density functional theory calculations show that bonds between these hydride ions with metal centers give rise to subgap states above the top of the valence band, implying a crucial role of anionic hydrogen in the negative bias illumination stress instability commonly observed in a-IGZO TFTs.
Design of hydrogen vent line for the cryogenic hydrogen system in J-PARC
NASA Astrophysics Data System (ADS)
Tatsumoto, Hideki; Aso, Tomokazu; Kato, Takashi; Ohtsu, Kiichi; Hasegawa, Shoichi; Maekawa, Fujio; Futakawa, Masatoshi
2009-02-01
As one of the main experimental facilities in J-PARC, an intense spallation neutron source (JSNS) driven by a 1-MW proton beam selected supercritical hydrogen at a temperature of 20 K and a pressure of 1.5 MPa as a moderator material. Moderators are controlled by a cryogenic hydrogen system that has a hydrogen relief system, which consists of high and low pressure stage of manifolds, a hydrogen vent line and a stack, in order to release hydrogen to the outside safely. The design of the hydrogen vent line should be considered to prevent purge nitrogen gas in the vent line from freezing when releasing the cryogenic hydrogen, to prevent moisture in the stack placed in an outdoor location from freezing, and to inhibit large piping temperature reduction at a building wall penetration. In this work, temperature change behaviors in the hydrogen vent line were analyzed by using a CFD code, STAR-CD. We determined required sizes of the vent line based on the analytical results and its layout in the building.
Hydrogen Treatment Protects against Cell Death and Senescence Induced by Oxidative Damage.
Han, A Lum; Park, Seong-Hoon; Park, Mi Sung
2017-02-28
Hydrogen has potential for preventive and therapeutic applications as an antioxidant. However, micro- and macroparticles of hydrogen in water disappear easily over time. In order to eliminate reactive oxygen species (ROS) related with the aging process, we used functional water containing nanoparticle hydrogen. Nanoparticle hydrogen does not disappear easily and collapse under water after long periods of time. We used murine embryonic fibroblasts that were isolated from 12.5-day embryos of C57BL/6 mice. We investigated the ability of nanoparticle hydrogen in water to suppress hydroxyurea-induced ROS production, cytotoxicity, and the accumulation of β-galactosidase (an indicator of aging), and promote cell proliferation. The accumulation of β-galactosidase in the cytoplasm and the appearance of abnormal nuclei were inhibited by daily treatment of cells with hydrogen water. When the aging process was accelerated by hydroxyurea-induced oxidative stress, the effect of hydrogen water was even more remarkable. Thus, this study showed the antioxidant and anti-senescence effects of hydrogen water. Nanoparticle hydrogen water is potentially a potent anti-aging agent.
NASA Astrophysics Data System (ADS)
Phuoc, Tran X.; Chen, Ruey-Hung
2007-08-01
Ignition and unburned hydrogen escaping from hydrogen jet diffusion flames diluted with nitrogen up to 70% were experimentally studied. The successful ignition locations were about 2/3 of the flame length above the jet exit for undiluted flames and moved much closer to the exit for diluted flames. For higher levels of dilution or higher flow rates, there existed a region within which a diluted hydrogen diffusion flame can be ignited and burns with a stable liftoff height. This is contrary to previous findings that pure and diluted hydrogen jet diffusion cannot achieve a stable lifted flame configuration. With liftoff, the flame is noisy and short with significant amount of unburned hydrogen escaping into the product gases. If ignition is initiated below this region, the flame propagates upstream quickly and attaches to the burner rim. Results from measurements of unburned hydrogen in the combustion products showed that the amount of unburned hydrogen increased as the nitrogen dilution level was increased. Thus, hydrogen diffusion flame diluted with nitrogen cannot burn completely.
Investigation of hydrogen bubbles behavior in tungsten by high-flux hydrogen implantation
NASA Astrophysics Data System (ADS)
Zhao, Jiangtao; Meng, Xuan; Guan, Xingcai; Wang, Qiang; Fang, Kaihong; Xu, Xiaohui; Lu, Yongkai; Gao, Jun; Liu, Zhenlin; Wang, Tieshan
2018-05-01
Hydrogen isotopes retention and bubbles formation are critical issues for tungsten as plasma-facing material in future fusion reactors. In this work, the formation and growing up behavior of hydrogen bubbles in tungsten were investigated experimentally. The planar TEM samples were implanted by 6.0keV hydrogens to a fluence of 3.38 ×1018 H ṡ cm-2 at room temperature, and well-defined hydrogen bubbles were observed by TEM. It was demonstrated that hydrogen bubbles formed when exposed to a fluence of 1.5 ×1018 H ṡ cm-2 , and the hydrogen bubbles grew up with the implantation fluence. In addition, the bubbles' size appeared larger with higher beam flux until saturated at a certain flux, even though the total fluence was kept the same. Finally, in order to understand the thermal annealing effect on the bubbles behavior, hydrogen-implanted samples were annealed at 400, 600, 800, and 1000 °C for 3 h. It was obvious that hydrogen bubbles' morphology changed at temperatures higher than 800 °C.
Cao, Teng Fei; Huang, Liang Feng; Zheng, Xiao Hong; Zhou, Wang Huai; Zeng, Zhi
2013-11-21
By density functional theory calculations, the scanning tunneling microscopy (STM) images of various hydrogen clusters adsorbed on bilayer-graphene are systematically simulated. The hydrogen configurations of the STM images observed in the experiments have been thoroughly figured out. In particular, two kinds of hydrogen dimers (ortho-dimer, para-dimer) and two kinds of tetramers (tetramer-A, -B) are determined to be the hydrogen configurations corresponding to the ellipsoidal-like STM images with different structures and sizes. One particular hexamer (hexamer-B) is the hydrogen configuration generating the star-like STM images. For each hydrogen cluster, the simulated STM images show unique voltage-dependent features, which provides a feasible way to determine hydrogen adsorption states on graphene or graphite surface in the experiments by varying-voltage measurements. Stability analysis proves that the above determined hydrogen configurations are quite stable on graphene, hence they are likely to be detected in the STM experiments. Consequently, through systematic analysis of the STM images and the stability of hydrogen clusters on bilayer graphene, many experimental observations have been consistently explained.
Low cost hydrogen/novel membrane technology for hydrogen separation from synthesis gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1986-02-01
To make the coal-to-hydrogen route economically attractive, improvements are being sought in each step of the process: coal gasification, water-carbon monoxide shift reaction, and hydrogen separation. This report addresses the use of membranes in the hydrogen separation step. The separation of hydrogen from synthesis gas is a major cost element in the manufacture of hydrogen from coal. Separation by membranes is an attractive, new, and still largely unexplored approach to the problem. Membrane processes are inherently simple and efficient and often have lower capital and operating costs than conventional processes. In this report current ad future trends in hydrogen productionmore » and use are first summarized. Methods of producing hydrogen from coal are then discussed, with particular emphasis on the Texaco entrained flow gasifier and on current methods of separating hydrogen from this gas stream. The potential for membrane separations in the process is then examined. In particular, the use of membranes for H{sub 2}/CO{sub 2}, H{sub 2}/CO, and H{sub 2}/N{sub 2} separations is discussed. 43 refs., 14 figs., 6 tabs.« less
NASA Astrophysics Data System (ADS)
1992-07-01
A summary report is given on the results of hydrogen energy research and development achieved during 1991 under the Sunshine Project. In hydrogen manufacturing, regenerative cells that can also generate power as fuel cells were discussed by using solid macromolecular electrolytic films for the case where no electrolysis is carried out with water electrolysis. Yttria stabilized zirconia (YSZ), an oxide solid electrolyte was used for the basic research on high-temperature steam electrolysis. Compositions of hydrogen storage alloys and their deterioration mechanisms were investigated to develop hydrogen transportation and storage technologies. High-density hydrides were searched, and fluidization due to paraffin was discussed. Electrode materials and forming technologies were discussed to develop a hydrogen to power conversion system using hydrogen storage alloys as reversible electrodes. Hydrogen-oxygen combustion was studied in terms of reactive theories, and so was the control of ignition and combustion using ultraviolet ray ignition plasma. Studies were made on hydrogen brittlement in welds on materials in hydrogen utilization and its preventive measures. Surveys were given on technical movements and development problems in high-efficiency, pollution-free hydrogen combustion turbines.
NASA Astrophysics Data System (ADS)
Muthu, R. Naresh; Rajashabala, S.; Kannan, R.
2018-04-01
Even though hydrogen is considered as green and clean energy sources of future, the blooming of hydrogen economy mainly relies on the development of safe and efficient hydrogen storage medium. The present work is aimed at the synthesis and characterization of polyetherimide/acid treated halloysite nanotubes (PEI/A-HNTs) nanocomposite membranes for solid state hydrogen storage medium, where phase inversion technique was adopted for the synthesis of nanocomposite membrane. The synthesized PEI/A-HNTs nanocomposite membranes were characterized by XRD, FTIR, SEM, EDX, CHNS elemental analysis and TGA. Hydrogenation studies were performed using a Sievert's-like hydrogenation setup. The important conclusions arrived from the present work are the PEI/A-HNTs nanocomposite membranes have better performance with a maximum hydrogen storage capacity of 3.6 wt% at 100 °C than pristine PEI. The adsorbed hydrogen possesses the average binding energy of 0.31 eV which lies in the recommended range of US- DOE 2020 targets. Hence it is expected that the PEI/A-HNTs nanocomposite membranes may have bright extent in the scenario of hydrogen fuel cell applications.
Hydrogen peroxide as a new defensive compound in "benzoyl cyanide" producing polydesmid millipedes
NASA Astrophysics Data System (ADS)
Kuwahara, Yasumasa; Yamaguchi, Takuya; Ichiki, Yayoi; Tanabe, Tsutomu; Asano, Yasuhisa
2017-04-01
Hydrogen peroxide was newly and simultaneously demonstrated with well-known hydrogen cyanide as a component of defensive secretions of "benzoyl cyanide" producing polydesmid millipedes. Presence of hydrogen peroxide was successively evidenced by Trinder reagent's spray with colorless as well as oily smears of defensive secretions containing benzoyl cyanide and hydrogen cyanide by alkaline picrate paper treatment. Linear correlation was demonstrated between quantities of hydrogen peroxide and benzoyl cyanide. By qualitative assay, seven benzoyl cyanide containing polydesmidans (six species of adults and one species of a nymph at stadium I) tested positive to Trinder reagent, indicative of the presence of hydrogen peroxide (together with hydrogen cyanide), while two cyanogenic species without benzoyl cyanide exhibited negative responses to the reagent. Two types of millipedes were elucidated as species of cyanogenic Polydesmida.
Hydrogen peroxide as a new defensive compound in "benzoyl cyanide" producing polydesmid millipedes.
Kuwahara, Yasumasa; Yamaguchi, Takuya; Ichiki, Yayoi; Tanabe, Tsutomu; Asano, Yasuhisa
2017-04-01
Hydrogen peroxide was newly and simultaneously demonstrated with well-known hydrogen cyanide as a component of defensive secretions of "benzoyl cyanide" producing polydesmid millipedes. Presence of hydrogen peroxide was successively evidenced by Trinder reagent's spray with colorless as well as oily smears of defensive secretions containing benzoyl cyanide and hydrogen cyanide by alkaline picrate paper treatment. Linear correlation was demonstrated between quantities of hydrogen peroxide and benzoyl cyanide. By qualitative assay, seven benzoyl cyanide containing polydesmidans (six species of adults and one species of a nymph at stadium I) tested positive to Trinder reagent, indicative of the presence of hydrogen peroxide (together with hydrogen cyanide), while two cyanogenic species without benzoyl cyanide exhibited negative responses to the reagent. Two types of millipedes were elucidated as species of cyanogenic Polydesmida.
NASA Astrophysics Data System (ADS)
Dissanayake, A.; AlFaify, S.; Garratt, E.; Nandasiri, M. I.; Taibu, R.; Tecos, G.; Hamdan, N. M.; Kayani, A.
2011-06-01
Thin, hydrogenated aluminum hydride films were deposited on silicon substrates using unbalanced magnetron (UBM) sputtering of a high purity aluminum target under electrically grounded conditions. Argon was used as sputtering gas and hydrogenation was carried out by diluting the growth plasma with hydrogen. The effect of hydrogen partial pressure on the final concentration of trapped elements including hydrogen has been studied using ion beam analysis (IBA) techniques. Moreover, in-situ thermal stability of trapped hydrogen in the film was carried out using Rutherford Backscattering Spectrometry (RBS), Non-Rutherford Backscattering Spectrometry (NRBS) and Elastic Recoil Detection Analysis (ERDA). Microstructure of the film was investigated by SEM analysis. Hydrogen content in the thin films was found decreasing as the films were heated above 110 °C in vacuum.
Fliermans,; Carl, B [Augusta, GA
2012-08-07
Some or all of the needs above can be addressed by embodiments of the invention. According to embodiments of the invention, systems and methods for facilitating hydrogen storage using naturally occurring nanostructure assemblies can be implemented. In one embodiment, a method for storing hydrogen can be provided. The method can include providing diatoms comprising diatomaceous earth or diatoms from a predefined culture. In addition, the method can include heating the diatoms in a sealed environment in the presence of at least one of titanium, a transition metal, or a noble metal to provide a porous hydrogen storage medium. Furthermore, the method can include exposing the porous hydrogen storage medium to hydrogen. In addition, the method can include storing at least a portion of the hydrogen in the porous hydrogen storage medium.
The role of hydrogen in hot-salt stress corrosion cracking of titanium-aluminum alloys
NASA Technical Reports Server (NTRS)
Ondrejcin, R. S.
1971-01-01
Additional support is presented for the previously proposed role of hydrogen as an embrittling agent in hot-salt stress corrosion cracking of titanium-aluminum alloys. The main source of hydrogen formed during the reactions of titanium alloys with hot salt was identified as water associated with the salt. Hydrogen is produced by the reaction of an intermediate (hydrogen halide) with the alloy rather than from metal-water reactions. The fracture mode of precracked tensile specimens was ductile when the specimens were tested in air, and brittle when tests were made in high-pressure hydrogen. Stressed titanium-aluminum alloys also were cracked by bombardment with hydrogen ions produced in a proton accelerator. The approximate concentrations of the hydrogen ions in the alloys were calculated.
Alloying of steel and graphite by hydrogen in nuclear reactor
NASA Astrophysics Data System (ADS)
Krasikov, E.
2017-02-01
In traditional power engineering hydrogen may be one of the first primary source of equipment damage. This problem has high actuality for both nuclear and thermonuclear power engineering. Study of radiation-hydrogen embrittlement of the steel raises the question concerning the unknown source of hydrogen in reactors. Later unexpectedly high hydrogen concentrations were detected in irradiated graphite. It is necessary to look for this source of hydrogen especially because hydrogen flakes were detected in reactor vessels of Belgian NPPs. As a possible initial hypothesis about the enigmatical source of hydrogen one can propose protons generation during beta-decay of free neutrons поскольку inasmuch as protons detected by researches at nuclear reactors as witness of beta-decay of free neutrons.
Jing, Linhong; Nash, John J.
2009-01-01
The factors that control the reactivities of aryl radicals toward hydrogen-atom donors were studied by using a dual-cell Fourier-transform ion cyclotron resonance mass spectrometer (FT – ICR). Hydrogen-atom abstraction reaction efficiencies for two substrates, cyclohexane and isopropanol, were measured for twenty-three structurally different, positively-charged aryl radicals, which included dehydrobenzenes, dehydronaphthalenes, dehydropyridines, and dehydro(iso)quinolines. A logarithmic correlation was found between the hydrogen-atom abstraction reaction efficiencies and the (calculated) vertical electron affinities (EA) of the aryl radicals. Transition state energies calculated for three of the aryl radicals with isopropanol were found to correlate linearly with their (calculated) EAs. No correlation was found between the hydrogen-atom abstraction reaction efficiencies and the (calculated) enthalpy changes for the reactions. Measurement of the reaction efficiencies for the reactions of several different hydrogen-atom donors with a few selected aryl radicals revealed a logarithmic correlation between the hydrogen-atom abstraction reaction efficiencies and the vertical ionization energies (IE) of the hydrogen-atom donors, but not the lowest homolytic X – H (X = heavy atom) bond dissociation energies of the hydrogen-atom donors. Examination of the hydrogen-atom abstraction reactions of twenty-nine different aryl radicals and eighteen different hydrogen-atom donors showed that the reaction efficiency increases (logarithmically) as the difference between the IE of the hydrogen-atom donor and the EA of the aryl radical decreases. This dependence is likely to result from the increasing polarization, and concomitant stabilization, of the transition state as the energy difference between the neutral and ionic reactants decreases. Thus, the hydrogen-atom abstraction reaction efficiency for an aryl radical can be “tuned” by structural changes that influence either the vertical EA of the aryl radical or the vertical IE of the hydrogen atom donor. PMID:19061320
The Real Difference between Biotic and Abiotic Methane
NASA Astrophysics Data System (ADS)
Cao, X.; Bao, H.; Peng, Y.
2017-12-01
Methane has both biotic and abiotic origins, and the identification of these two origins has important implications not only in understanding terrestrial processes but also in searching for extraterrestrial life. Carbon and hydrogen isotopes in methane have been used to identify certain biosignatures, but such efforts often suffer from ambiguity. Recent advancement in our capability in measuring multiply substituted isotopologues of methane (i.e. 13CDH3 and 12CD2H2) has found large 12CD2H2 depletion in abiotic methane. Quantum tunneling has been proposed to account for the apparent abiotic signature. However, quantum tunneling is neither unique to abiotic processes nor consistent with the observed not-so-depleted hydrogen isotope composition. Here we constructed a general kinetic model for methane formation from CO2, and validated it by fitting its parameters to observed 13CDH3, 12CD2H2, and 12CDH3. Our model revealed that the fundamental difference between biotic and abiotic methane isotopic signatures is in the source of hydrogens during methane formation. Hydrogens in biotic methane originate from the stronger carbon-hydrogen and sulfur-hydrogen bonds, while hydrogens in abiotic methane originate from the much weaker metal-hydrogen adsorption bond. This hydrogen source difference results in abiotic methane being more depleted in 12CD2H2 than the biotic one. Our model also shows that the primary kinetic hydrogen isotope effect is at approximately 0.6 for both abiotic and biotic pathways, a normal value further nullifying the role of quantum tunneling. The active and exclusive shuttling of reduced hydrogen via strong chemical bonds like carbon-hydrogen and sulfur-hydrogen in coenzymes is proposed here to be a unique signature of life. In an ironic sense, it is the equilibrated hydrogen isotope composition in the hydrogen donors that distinguishes the living from the non-living.
Fujita, Ken-Ichi; Wada, Tomokatsu; Shiraishi, Takumi
2017-08-28
A new hydrogen storage system based on the hydrogenation and dehydrogenation of nitrogen heterocyclic compounds, employing a single iridium catalyst, has been developed. Efficient hydrogen storage using relatively small amounts of solvent compared with previous systems was achieved by this new system. Reversible transformations between 2,5-dimethylpyrazine and 2,5-dimethylpiperazine, accompanied by the uptake and release of three equivalents of hydrogen, could be repeated almost quantitatively at least four times without any loss of efficiency. Furthermore, hydrogen storage under solvent-free conditions was also accomplished. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
High-pressure torsion for new hydrogen storage materials.
Edalati, Kaveh; Akiba, Etsuo; Horita, Zenji
2018-01-01
High-pressure torsion (HPT) is widely used as a severe plastic deformation technique to create ultrafine-grained structures with promising mechanical and functional properties. Since 2007, the method has been employed to enhance the hydrogenation kinetics in different Mg-based hydrogen storage materials. Recent studies showed that the method is effective not only for increasing the hydrogenation kinetics but also for improving the hydrogenation activity, for enhancing the air resistivity and more importantly for synthesizing new nanostructured hydrogen storage materials with high densities of lattice defects. This manuscript reviews some major findings on the impact of HPT process on the hydrogen storage performance of different titanium-based and magnesium-based materials.
Hydrogen environment embrittlement of metals
NASA Technical Reports Server (NTRS)
Jewett, R. P.; Walter, R. J.; Chandler, W. T.; Frohmberg, R. P.
1973-01-01
Hydrogen environment embrittlement refers to metals stressed while exposed to a hydrogen atmosphere. Tested in air, even after exposure to hydrogen under pressure, this effect is not observed on similar specimens. Much high purity hydrogen is prepared by evaporation of liquid hydrogen, and thus has low levels for potential impurities which could otherwise inhibit or poison the absorbent reactions that are involved. High strength steels and nickel-base allows are rated as showing extreme embrittlement; aluminum alloys and the austenitic stainless steels, as well as copper, have negligible susceptibility to this phenomenon. The cracking that occurs appears to be a surface phenomenon, is unlike that of internal hydrogen embrittlement.
Hydrogen diffusion in liquid aluminum from ab initio molecular dynamics
NASA Astrophysics Data System (ADS)
Jakse, N.; Pasturel, A.
2014-05-01
Ab initio molecular dynamics simulations are used to describe the diffusion of hydrogen in liquid aluminum at different temperatures. Quasi-instantaneous jumps separating periods of localized vibrations around a mean position are found to characterize the hydrogen motion at the microscopic scale. The hydrogen motion is furthermore analyzed using the van Hove function. We highlight a non-Fickian behavior for the hydrogen diffusion due to a large spatial distribution of hydrogen jumps. We show that a generalized continuous time random walk (CTRW) model describes the experimental diffusion coefficients in a satisfactory manner. Finally, the impact of impurities and alloying elements on hydrogen diffusion in aluminum is discussed.
Process for the thermochemical production of hydrogen
Norman, John H.; Russell, Jr., John L.; Porter, II, John T.; McCorkle, Kenneth H.; Roemer, Thomas S.; Sharp, Robert
1978-01-01
Hydrogen is thermochemically produced from water in a cycle wherein a first reaction produces hydrogen iodide and H.sub.2 SO.sub.4 by the reaction of iodine, sulfur dioxide and water under conditions which cause two distinct aqueous phases to be formed, i.e., a lighter sulfuric acid-bearing phase and a heavier hydrogen iodide-bearing phase. After separation of the two phases, the heavier phase containing most of the hydrogen iodide is treated, e.g., at a high temperature, to decompose the hydrogen iodide and recover hydrogen and iodine. The H.sub.2 SO.sub.4 is pyrolyzed to recover sulfur dioxide and produce oxygen.
Survey of hydrogen production and utilization methods. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
Gregory, D. P.; Pangborn, J. B.; Gillis, J. C.
1975-01-01
The use of hydrogen as a synthetic fuel is considered. Processes for the production of hydrogen are described along with the present and future industrial uses of hydrogen as a fuel and as a chemical feedstock. Novel and unconventional hydrogen-production techniques are evaluated, with emphasis placed on thermochemical and electrolytic processes. Potential uses for hydrogen as a fuel in industrial and residential applications are identified and reviewed in the context of anticipated U.S. energy supplies and demands. A detailed plan for the period from 1975 to 1980 prepared for research on and development of hydrogen as an energy carrier is included.
NASA Astrophysics Data System (ADS)
Nakano, Sumiaki; Ohtsu, Naofumi; Nagata, Shinji; Yamaura, Shin-ichi; Uchinashi, Sakae; Kimura, Hisamichi; Shikama, Tatsuo; Inoue, Akihisa
2005-02-01
A Ni 60Nb 20Zr 20 amorphous alloy was prepared by the single-roller melt-spinning technique. The change in the electrical resistance of the alloy after electrochemical hydrogen charging in 6 N KOH solution was investigated. The change in the hydrogen depth distribution in the alloy was also investigated by elastic recoil detection. As a result, we found that the electrical resistance of the alloy increases with increasing the hydrogen content in the alloy and that a large number of hydrogen atoms are remained in the surface area of the hydrogen-charged alloy.
Metallic Hydrogen - Potentially a High Energy Rocket Propellant
NASA Technical Reports Server (NTRS)
Cole, John; Silvera, Ike
2007-01-01
Pure metallic hydrogen is predicted to have a specific impulse (Isp) of 1700 seconds, but the reaction temperature is too high for current engine materials. Diluting metallic hydrogen with liquid hydrogen can reduce the reaction temperature to levels compatible with current material limits and still provide an Isp greater than 900 s. Metallic hydrogen has not yet been produced on earth, but experimental techniques exist that may change this situation. This paper will provide a brief description of metallic hydrogen and the status of experiments that may soon produce detectable quantities of this material in the lab. Also provided are some characteristics for diluted metallic hydrogen engines and launch vehicles.
Charge induced enhancement of adsorption for hydrogen storage materials
NASA Astrophysics Data System (ADS)
Sun, Xiang
2009-12-01
The rising concerns about environmental pollution and global warming have facilitated research interest in hydrogen energy as an alternative energy source. To apply hydrogen for transportations, several issues have to be solved, within which hydrogen storage is the most critical problem. Lots of materials and devices have been developed; however, none is able to meet the DOE storage target. The primary issue for hydrogen physisorption is a weak interaction between hydrogen and the surface of solid materials, resulting negligible adsorption at room temperature. To solve this issue, there is a need to increase the interaction between the hydrogen molecules and adsorbent surface. In this study, intrinsic electric dipole is investigated to enhance the adsorption energy. The results from the computer simulation of single ionic compounds with hydrogen molecules to form hydrogen clusters showed that electrical charge of substances plays an important role in generation of attractive interaction with hydrogen molecules. In order to further examine the effects of static interaction on hydrogen adsorption, activated carbon with a large surface area was impregnated with various ionic salts including LiCl, NaCl, KCl, KBr, and NiCl2 and their performance for hydrogen storage was evaluated by using a volumetric method. Corresponding computer simulations have been carried out by using DFT (Density Functional Theory) method combined with point charge arrays. Both experimental and computational results prove that the adsorption capacity of hydrogen and its interaction with the solid materials increased with electrical dipole moment. Besides the intrinsic dipole, an externally applied electric field could be another means to enhance hydrogen adsorption. Hydrogen adsorption under an applied electric field was examined by using porous nickel foil as electrodes. Electrical signals showed that adsorption capacity increased with the increasing of gas pressure and external electric voltage. Direct measurement of the amount of hydrogen adsorption was also carried out with porous nickel oxides and magnesium oxides using the piezoelectric material PMN-PT as the charge supplier due to the pressure. The adsorption enhancement from the PMN-PT generated charges is obvious at hydrogen pressure between 0 and 60 bars, where the hydrogen uptake is increased at about 35% for nickel oxide and 25% for magnesium oxide. Computer simulation reveals that under the external electric field, the electron cloud of hydrogen molecules is pulled over to the adsorbent site and can overlap with the adsorbent electrons, which in turn enhances the adsorption energy. Experiments were also carried out to examine the effects of hydrogen spillover with charge induced enhancement. The results show that the overall storage capacity in nickel oxide increased remarkably by a factor of 4.
Sensor for measuring hydrogen partial pressure in parabolic trough power plant expansion tanks
NASA Astrophysics Data System (ADS)
Glatzmaier, Greg C.; Cooney, Daniel A.
2017-06-01
The National Renewable Energy Laboratory and Acciona Energy North America are working together to design and implement a process system that provides a permanent solution to the issue of hydrogen buildup at parabolic trough power plants. We are pursuing a method that selectively removes hydrogen from the expansion tanks that serve as reservoirs for the heat transfer fluid (HTF) that circulates in the collector field and power block components. Our modeling shows that removing hydrogen from the expansion tanks at a design rate reduces and maintains dissolved hydrogen in the circulating HTF to a selected target level. Our collaborative work consists of several tasks that are needed to advance this process concept to a development stage, where it is ready for implementation at a commercial power plant. Our main effort is to design and evaluate likely process-unit operations that remove hydrogen from the expansion tanks at a specified rate. Additionally, we designed and demonstrated a method and instrumentation to measure hydrogen partial pressure and concentration in the expansion-tank headspace gas. We measured hydrogen partial pressure in the headspace gas mixture using a palladium-alloy membrane, which is permeable exclusively to hydrogen. The membrane establishes a pure hydrogen gas phase that is in equilibrium with the hydrogen in the gas mixture. We designed and fabricated instrumentation, and demonstrated its effectiveness in measuring hydrogen partial pressures over a range of three orders of magnitude. Our goal is to install this instrument at the Nevada Solar One power plant and to demonstrate its effectiveness in measuring hydrogen levels in the expansion tanks under normal plant operating conditions.
Osborne, Catherine A.; Peoples, Mark B.; Janssen, Peter H.
2010-01-01
Soil is exposed to hydrogen when symbiotic rhizobia in legume root nodules cannot recycle the hydrogen that is generated during nitrogen fixation. The hydrogen emitted is most likely taken up by free-living soil bacteria that use hydrogen as an energy source, though the bacteria that do this in situ remain unclear. In this study, we investigated the effect of hydrogen exposure on the bacteria of two different soils in a microcosm setup designed to simulate hydrogen-emitting root nodules. Although the size and overall composition of the soil bacterial community did not significantly alter after hydrogen exposure, one ribotype increased in relative abundance within each soil. This single-ribotype shift was identified by generating multiple terminal restriction fragment length polymorphism (T-RFLP) profiles of 16S rRNA genes from each soil sample, with gene sequence confirmation to identify terminal restriction fragments. The increased abundance of a single ribotype after hydrogen exposure, within an otherwise similar community, was found in replicate samples taken from each microcosm and was reproducible across replicate experiments. Similarly, only one member of the soil bacterial community increased in abundance in response to hydrogen exposure in soil surrounding the root nodules of field-grown soybean (Glycine max). The ribotypes that increased after hydrogen exposure in each soil system tested were all from known hydrogen-oxidizing lineages within the order Actinomycetales. We suggest that soil actinomycetes are important utilizers of hydrogen at relevant concentrations in soil and could be key contributors to soil's function as a sink in the global hydrogen cycle. PMID:20061453
Anti-inflammatory and cytoprotective properties of hydrogen sulfide.
Gemici, Burcu; Wallace, John L
2015-01-01
Hydrogen sulfide is an endogenous gaseous mediator that plays important roles in many physiological processes in microbes, plants, and animals. This chapter focuses on the important roles of hydrogen sulfide in protecting tissues against injury, promoting the repair of damage, and downregulating the inflammatory responses. The chapter focuses largely, but not exclusively, on these roles of hydrogen sulfide in the gastrointestinal tract. Hydrogen sulfide is produced throughout the gastrointestinal tract, and it contributes to maintenance of mucosal integrity. Suppression of hydrogen sulfide synthesis renders the tissue more susceptible to injury and it impairs repair. In contrast, administration of hydrogen sulfide donors can increase resistance to injury and accelerate repair. Hydrogen sulfide synthesis is rapidly and dramatically enhanced in the gastrointestinal tract after injury is induced. These increases occur specifically at the site of tissue injury. Hydrogen sulfide also plays an important role in promoting resolution of inflammation, and restoration of normal tissue function. In recent years, these beneficial actions of hydrogen sulfide have provided the basis for development of novel hydrogen sulfide-releasing drugs. Nonsteroidal anti-inflammatory drugs that release small amounts of hydrogen sulfide are among the most advanced of the hydrogen sulfide-based drugs. Unlike the parent drugs, these modified drugs do not cause injury in the gastrointestinal tract, and do not interfere with healing of preexisting damage. Because of the increased safety profile of these drugs, they can be used in circumstances in which the toxicity of the parent drug would normally limit their use, such as in chemoprevention of cancer. © 2015 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, U.K.; Sysak, M.N.; Vannice, M.A.
2000-04-01
Liquid-phase hydrogenation of the four principal reaction intermediates formed during citral hydrogenation, i.e., nerol, geraniol, citronellal, and citronellol, was studied at 298 and 373 K under 20 atm H{sub 2} at concentrations of 0.5 to 1.0 M in hexane. A decrease in the initial reaction rate as temperature increased from 298 to 373 K was exhibited during the hydrogenation of all four compounds, just as reported earlier for citral; however, the decrease in rate at 373 K was only one-half for citronellal whereas it was orders of magnitude greater for nerol and geraniol. Furthermore, simultaneous hydrogenation of citronellal and geraniolmore » at 298 K resulted in a continuous decrease in the rate of citronellal disappearance in contrast to the nearly constant rate of disappearance observed during hydrogenation of citronellal alone. Competitive hydrogenation of citral with either geraniol or citronellal showed that geraniol hydrogenation to citronellol is kinetically insignificant during citral hydrogenation at 373 K. The initial activity for hydrogenation of the intermediates at 298 K follows the following trend: geraniol > nerol < citronellol < E-citral, citronellal > Z-citral. Based on the relative hydrogenation rates of the intermediate alone versus its hydrogenation in the presence of other reactants, the relative size of the adsorption equilibrium constants for the various organic compounds appears to be as follows: citral > citronellal > geraniol, nerol > citronellol > 3,7-dimethyloctanol. This study indicates that activation of the C{double_bond}O bond should be performed at higher reaction temperatures to maximize selectivity to the unsaturated alcohols.« less
Hydrogen Sensors Boost Hybrids; Today's Models Losing Gas?
NASA Technical Reports Server (NTRS)
2005-01-01
Advanced chemical sensors are used in aeronautic and space applications to provide safety monitoring, emission monitoring, and fire detection. In order to fully do their jobs, these sensors must be able to operate in a range of environments. NASA has developed sensor technologies addressing these needs with the intent of improving safety, optimizing combustion efficiencies, and controlling emissions. On the ground, the chemical sensors were developed by NASA engineers to detect potential hydrogen leaks during Space Shuttle launch operations. The Space Shuttle uses a combination of hydrogen and oxygen as fuel for its main engines. Liquid hydrogen is pumped to the external tank from a storage tank located several hundred feet away. Any hydrogen leak could potentially result in a hydrogen fire, which is invisible to the naked eye. It is important to detect the presence of a hydrogen fire in order to prevent a major accident. In the air, the same hydrogen-leak dangers are present. Stress and temperature changes can cause tiny cracks or holes to form in the tubes that line the Space Shuttle s main engine nozzle. Such defects could allow the hydrogen that is pumped through the nozzle during firing to escape. Responding to the challenges associated with pinpointing hydrogen leaks, NASA endeavored to improve propellant leak-detection capabilities during assembly, pre-launch operations, and flight. The objective was to reduce the operational cost of assembling and maintaining hydrogen delivery systems with automated detection systems. In particular, efforts have been focused on developing an automated hydrogen leak-detection system using multiple, networked hydrogen sensors that are operable in harsh conditions.
Water cavities of sH clathrate hydrate stabilized by molecular hydrogen.
Strobel, Timothy A; Koh, Carolyn A; Sloan, E Dendy
2008-02-21
X-ray diffraction and Raman spectroscopic measurements confirm that molecular hydrogen can be contained within the small water cavities of a binary sH clathrate hydrate using large guest molecules that stabilize the large cavity. The potential increase in hydrogen storage could be more than 40% when compared with binary sII hydrates. This work demonstrates the stabilization of hydrogen in a hydrate structure previously unknown for encapsulating molecular hydrogen, indicating the potential for other inclusion compound materials with even greater hydrogen storage capabilities.
Studies of the use of heat from high temperature nuclear sources for hydrogen production processes
NASA Technical Reports Server (NTRS)
Farbman, G. H.
1976-01-01
Future uses of hydrogen and hydrogen production processes that can meet the demand for hydrogen in the coming decades were considered. To do this, a projection was made of the market for hydrogen through the year 2000. Four hydrogen production processes were selected, from among water electrolysis, fossil based and thermochemical water decomposition systems, and evaluated, using a consistent set of ground rules, in terms of relative performance, economics, resource requirements, and technology status.
Tetraalkylammonium Salts as Hydrogen-Bonding Catalysts.
Shirakawa, Seiji; Liu, Shiyao; Kaneko, Shiho; Kumatabara, Yusuke; Fukuda, Airi; Omagari, Yumi; Maruoka, Keiji
2015-12-21
Although the hydrogen-bonding ability of the α hydrogen atoms on tetraalkylammonium salts is often discussed with respect to phase-transfer catalysts, catalysis that utilizes the hydrogen-bond-donor properties of tetraalkylammonium salts remains unknown. Herein, we demonstrate hydrogen-bonding catalysis with newly designed tetraalkylammonium salt catalysts in Mannich-type reactions. The structure and the hydrogen-bonding ability of the new ammonium salts were investigated by X-ray diffraction analysis and NMR titration studies. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hydrogen-Resistant Fe/Ni/Cr-Base Superalloy
NASA Technical Reports Server (NTRS)
Bhat, Biliyar N.; Chen, Po-Shou; Panda, Binayak
1994-01-01
Strong Fe/Ni/Cr-base hydrogen- and corrosion-resistant alloy developed. Superalloy exhibits high strength and exceptional resistance to embrittlement by hydrogen. Contains two-phase microstructure consisting of conductivity precipitated phase in conductivity matrix phase. Produced in wrought, weldable form and as castings, alloy maintains high ductility and strength in air and hydrogen. Strength exceeds previously known Fe/Cr/Ni hydrogen-, oxidation-, and corrosion-resistant alloys. Provides higher strength-to-weight ratios for lower weight in applications as storage vessels and pipes that must contain hydrogen.
Hydrogen gas sensor and method of manufacture
McKee, John M.
1991-01-01
A sensor for measuring the pressure of hydrogen gas in a nuclear reactor, and method of manufacturing the same. The sensor comprises an elongated tube of hydrogen permeable material which is connected to a pressure transducer through a feedthrough tube which passes through a wall at the boundary of the region in which hydrogen is present. The tube is pressurized and flushed with hydrogen gas at an elevated temperature during the manufacture of the sensor in order to remove all gasses other than hydrogen from the device.
Method of production of pure hydrogen near room temperature from aluminum-based hydride materials
Pecharsky, Vitalij K.; Balema, Viktor P.
2004-08-10
The present invention provides a cost-effective method of producing pure hydrogen gas from hydride-based solid materials. The hydride-based solid material is mechanically processed in the presence of a catalyst to obtain pure gaseous hydrogen. Unlike previous methods, hydrogen may be obtained from the solid material without heating, and without the addition of a solvent during processing. The described method of hydrogen production is useful for energy conversion and production technologies that consume pure gaseous hydrogen as a fuel.
Ultraviolet Source For Testing Hydrogen-Fire Detectors
NASA Technical Reports Server (NTRS)
Hall, Gregory A.; Larson, William E.; Youngquist, Robert C.; Moerk, John S.; Haskell, William D.; Cox, Robert B.; Polk, Jimmy D.; Stout, Stephen J.; Strobel, James P.
1995-01-01
Hand-held portable unit emits ultraviolet light similar to that emitted by hydrogen burning in air. Developed for use in testing optoelectronic hydrogen-fire detectors, which respond to ultraviolet light at wavelengths from 180 to 240 nanometers. Wavelength range unique in that within it, hydrogen fires emit small but detectable amounts of radiation, light from incandescent lamps and Sun almost completely absent, and air sufficiently transmissive to enable detection of hydrogen fire from distance. Consequently, this spectral region favorable for detecting hydrogen fires while minimizing false alarms.
Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stottler, Gary
General Motors, LLC and energy partner Shell Hydrogen, LLC, deployed a system of hydrogen fuel cell electric vehicles integrated with a hydrogen fueling station infrastructure to operate under real world conditions as part of the U.S. Department of Energy's Controlled Hydrogen Fleet and Infrastructure Validation and Demonstration Project. This technical report documents the performance and describes the learnings from progressive generations of vehicle fuel cell system technology and multiple approaches to hydrogen generation and delivery for vehicle fueling.
Gas distribution equipment in hydrogen service - Phase II
NASA Technical Reports Server (NTRS)
Jasionowski, W. J.; Huang, H. D.
1980-01-01
The hydrogen permeability of three different types of commercially available natural gas polyethylene pipes was determined. Ring tensile tests were conducted on permeability-exposed and as-received samples. Hydrogen-methane leakage experiments were also performed. The results show no selective leakage of hydrogen via Poiseuille, turbulent, or orifice flow (through leaks) on the distribution of blends of hydrogen and methane. The data collected show that the polyethylene pipe is 4 to 6 times more permeable to hydrogen than to methane.
A ’Hydrogen Partitioning’ Model for Hydrogen Assisted Crack Growth.
1984-09-01
the change in Stage II crack growth rate from Region A to Region C in the 18NI maraging steels . It cannot, however, explain the sudden drop off in...Neither partitioning of hydrogen nor adsorption equilibrium can account for the observed "high" temperature response of l8Ni maraging steel in hydrogen...ment and Stress Corrosion Cracking, American Society for Metals, Metals Park, OH, 1984, p. 103 (in press). 11. R. P. Wei: in Hydrogen Effects in
Modelling of hydrogen transport in silicon solar cell structures under equilibrium conditions
NASA Astrophysics Data System (ADS)
Hamer, P.; Hallam, B.; Bonilla, R. S.; Altermatt, P. P.; Wilshaw, P.; Wenham, S.
2018-01-01
This paper presents a model for the introduction and redistribution of hydrogen in silicon solar cells at temperatures between 300 and 700 °C based on a second order backwards difference formula evaluated using a single Newton-Raphson iteration. It includes the transport of hydrogen and interactions with impurities such as ionised dopants. The simulations lead to three primary conclusions: (1) hydrogen transport across an n-type emitter is heavily temperature dependent; (2) under equilibrium conditions, hydrogen is largely driven by its charged species, with the switch from a dominance of negatively charged hydrogen (H-) to positively charged hydrogen (H+) within the emitter region critical to significant transport across the junction; and (3) hydrogen transport across n-type emitters is critically dependent upon the doping profile within the emitter, and, in particular, the peak doping concentration. It is also observed that during thermal processes after an initial high temperature step, hydrogen preferentially migrates to the surface of a phosphorous doped emitter, drawing hydrogen out of the p-type bulk. This may play a role in several effects observed during post-firing anneals in relation to the passivation of recombination active defects and even the elimination of hydrogen-related defects in the bulk of silicon solar cells.
Development of an Mg-Based Alloy with a Hydrogen-Storage Capacity over 6 wt% by Adding Graphene
NASA Astrophysics Data System (ADS)
Choi, Eunho; Kwak, Young Jun; Song, Myoung Youp
2018-06-01
Graphene (multilayer graphene) was chosen as an additive to improve the hydrogen uptake and release properties of magnesium (Mg). Five weight percent of graphene was added to pre-milled Mg by milling in hydrogen (reaction-involving milling). The hydrogen uptake and release properties of the graphene-added Mg were investigated. The activation of Mg-5graphene, which was prepared by adding 5 wt% graphene to Mg pre-milled for 24 h, was completed after the second cycle (cycle number, CN = 2). Mg-5graphene had a high effective hydrogen-storage capacity (the quantity of hydrogen absorbed for 60 min) of 6.21 wt% at CN = 3 at 593 K in 12 bar H2. At CN = 1, Mg-5graphene released 0.46 wt% hydrogen for 10 min and 4.99 wt% hydrogen for 60 min. Milling in hydrogen is believed to create defects (leading to facilitation of nucleation), produce cracks and clean surfaces (leading to increase in reactivity), and decrease particle size (leading to diminution of diffusion distances or increasing the flux of diffusing hydrogen atoms). The added graphene is believed to have helped the sample have higher hydrogen uptake and release rates, weakly but partly, by dispersing heat rapidly.
Hydrogen peroxide stabilization in one-dimensional flow columns.
Schmidt, Jeremy T; Ahmad, Mushtaque; Teel, Amy L; Watts, Richard J
2011-09-25
Rapid hydrogen peroxide decomposition is the primary limitation of catalyzed H(2)O(2) propagations in situ chemical oxidation (CHP ISCO) remediation of the subsurface. Two stabilizers of hydrogen peroxide, citrate and phytate, were investigated for their effectiveness in one-dimensional columns of iron oxide-coated and manganese oxide-coated sand. Hydrogen peroxide (5%) with and without 25 mM citrate or phytate was applied to the columns and samples were collected at 8 ports spaced 13 cm apart. Citrate was not an effective stabilizer for hydrogen peroxide in iron-coated sand; however, phytate was highly effective, increasing hydrogen peroxide residuals two orders of magnitude over unstabilized hydrogen peroxide. Both citrate and phytate were effective stabilizers for manganese-coated sand, increasing hydrogen peroxide residuals by four-fold over unstabilized hydrogen peroxide. Phytate and citrate did not degrade and were not retarded in the sand columns; furthermore, the addition of the stabilizers increased column flow rates relative to unstabilized columns. These results demonstrate that citrate and phytate are effective stabilizers of hydrogen peroxide under the dynamic conditions of one-dimensional columns, and suggest that citrate and phytate can be added to hydrogen peroxide before injection to the subsurface as an effective means for increasing the radius of influence of CHP ISCO. Copyright © 2011. Published by Elsevier B.V.
Hydrogen peroxide stabilization in one-dimensional flow columns
NASA Astrophysics Data System (ADS)
Schmidt, Jeremy T.; Ahmad, Mushtaque; Teel, Amy L.; Watts, Richard J.
2011-09-01
Rapid hydrogen peroxide decomposition is the primary limitation of catalyzed H 2O 2 propagations in situ chemical oxidation (CHP ISCO) remediation of the subsurface. Two stabilizers of hydrogen peroxide, citrate and phytate, were investigated for their effectiveness in one-dimensional columns of iron oxide-coated and manganese oxide-coated sand. Hydrogen peroxide (5%) with and without 25 mM citrate or phytate was applied to the columns and samples were collected at 8 ports spaced 13 cm apart. Citrate was not an effective stabilizer for hydrogen peroxide in iron-coated sand; however, phytate was highly effective, increasing hydrogen peroxide residuals two orders of magnitude over unstabilized hydrogen peroxide. Both citrate and phytate were effective stabilizers for manganese-coated sand, increasing hydrogen peroxide residuals by four-fold over unstabilized hydrogen peroxide. Phytate and citrate did not degrade and were not retarded in the sand columns; furthermore, the addition of the stabilizers increased column flow rates relative to unstabilized columns. These results demonstrate that citrate and phytate are effective stabilizers of hydrogen peroxide under the dynamic conditions of one-dimensional columns, and suggest that citrate and phytate can be added to hydrogen peroxide before injection to the subsurface as an effective means for increasing the radius of influence of CHP ISCO.
Molecular hydrogen alleviates motor deficits and muscle degeneration in mdx mice.
Hasegawa, Satoru; Ito, Mikako; Fukami, Mayu; Hashimoto, Miki; Hirayama, Masaaki; Ohno, Kinji
2017-01-01
Duchenne muscular dystrophy (DMD) is a devastating muscle disease caused by a mutation in DMD encoding dystrophin. Oxidative stress accounts for dystrophic muscle pathologies in DMD. We examined the effects of molecular hydrogen in mdx mice, a model animal for DMD. The pregnant mother started to take supersaturated hydrogen water (>5 ppm) ad libitum from E15.5 up to weaning of the offspring. The mdx mice took supersaturated hydrogen water from weaning until age 10 or 24 weeks when they were sacrificed. Hydrogen water prevented abnormal body mass gain that is commonly observed in mdx mice. Hydrogen improved the spontaneous running distance that was estimated by a counter-equipped running-wheel, and extended the duration on the rota-rod. Plasma creatine kinase activities were decreased by hydrogen at ages 10 and 24 weeks. Hydrogen also decreased the number of central nuclei of muscle fibers at ages 10 and 24 weeks, and immunostaining for nitrotyrosine in gastrocnemius muscle at age 24 weeks. Additionally, hydrogen tended to increase protein expressions of antioxidant glutathione peroxidase 1, as well as anti-apoptotic Bcl-2, in skeletal muscle at age 10 weeks. Although molecular mechanisms of the diverse effects of hydrogen remain to be elucidated, hydrogen potentially improves muscular dystrophy in DMD patients.
An electrochemical study of hydrogen uptake and elimination by bare and gold-plated waspaloy
NASA Technical Reports Server (NTRS)
Danford, M. D.; Deramus, G. E., Jr.; Lowery, J. R.
1984-01-01
Two electrochemical methods for the determination of hydrogen concentrations in metals are discussed and evaluated. The take-up of hydrogen at a pressure of 5000 psi by Waspaloy metal was determined experimentally at 24 C. It was found that the metal becomes saturated with hydrogen after an exposure time of about 1 hr. For samples charged with hydrogen at high pressure, most of the hydrogen is contained in the interstitial solid solution of the metal. For electrolytically charged samples, most of the hydrogen is contained as surface and subsurface hydrides. Hydrogen elimination rates were determined for these two cases, with the rate for electrolytically charged samples being greater by over a factor of two. Theoretical effects of high temperature and pressure on hydrogen take-up and elimination by bare and gold plated Waspaloy metal was considered. The breakthrough point for hydrogen at 5000 psi, determined experimentally, lies between a gold thickness of 0.0127 mm (0.0005 in.) and 0.0254 mm (0.001 in.) at 24 C. Electropolishing was found to greatly reduce the uptake of hydrogen at high pressure by Waspaloy metal at 24 C. Possible implications of the results obtained, as they apply to the turbine disk of the space shuttle main engine, are discussed.
Hydrogen transport and hydrogen embrittlement in stainless steels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perng, T.P.
1985-01-01
In order to understand the kinetics of gaseous hydrogen-induced slow crack growth (SCG) in metastable austenitic stainless steels, hydrogen permeation and/or cracking velocity were measured and compared for three types of stainless steels. These included austenitic, ferritic, and duplex (..gamma../..cap alpha..) alloys. Deformation in AISI 301 resulted in various amounts of ..cap alpha..' martensite, which enhanced the effective hydrogen diffusivity and permeability. No phase transformation was observed in deformed AISI 310. The effective hydrogen diffusivity in this alloy was slightly reduced after plastic deformation, presumably by dislocation trapping. In either the dynamic or static tensile test, AISI 301 exhibited themore » greatest hydrogen embrittlement and therefore the highest SCG velocity among all the alloys tested in this work. The SCG velocity was believed to be controlled by the rate of accumulation of hydrogen in the embrittlement region ahead of the crack tip and therefore could be explained with the hydrogen transport parameters measured from the permeation experiments. The relatively high SCG velocity in AISI 301 was probably due to the fast transport of hydrogen through the primarily stress-induced ..cap alpha..' phase around the crack. No SCG was observed in AISI 310. The presence of H/sub 2/O vapor was found to reduce both the hydrogen permeation and SCG velocity.« less
Maeda, Toshinari; Vardar, Gönül; Self, William T; Wood, Thomas K
2007-01-01
Background Molecular hydrogen is an environmentally-clean fuel and the reversible (bi-directional) hydrogenase of the cyanobacterium Synechocystis sp. PCC 6803 as well as the native Escherichia coli hydrogenase 3 hold great promise for hydrogen generation. These enzymes perform the simple reaction 2H+ + 2e- ↔ H2 (g). Results Hydrogen yields were enhanced up to 41-fold by cloning the bidirectional hydrogenase (encoded by hoxEFUYH) from the cyanobacterium into E. coli. Using an optimized medium, E. coli cells expressing hoxEFUYH also produced twice as much hydrogen as the well-studied Enterobacter aerogenes HU-101, and hydrogen gas bubbles are clearly visible from the cultures. Overexpression of HoxU alone (small diaphorase subunit) accounts for 43% of the additional hydrogen produced by HoxEFUYH. In addition, hydrogen production in E. coli mutants with defects in the native formate hydrogenlyase system show that the cyanobacterial hydrogenase depends on both the native E. coli hydrogenase 3 as well as on its maturation proteins. Hydrogen absorption by cells expressing hoxEFUYH was up to 10 times lower than cells which lack the cloned cyanobacterial hydrogenase; hence, the enhanced hydrogen production in the presence of hoxEFUYH is due to inhibition of hydrogen uptake activity in E. coli. Hydrogen uptake by cells expressing hoxEFUYH was suppressed in three wild-type strains and in two hycE mutants but not in a double mutant defective in hydrogenase 1 and hydrogenase 2; hence, the active cyanobacterial locus suppresses hydrogen uptake by hydrogenase 1 and hydrogenase 2 but not by hydrogenase 3. Differential gene expression indicated that overexpression of HoxEFUYH does not alter expression of the native E. coli hydrogenase system; instead, biofilm-related genes are differentially regulated by expression of the cyanobacterial enzymes which resulted in 2-fold elevated biofilm formation. This appears to be the first enhanced hydrogen production by cloning a cyanobacterial enzyme into a heterologous host. Conclusion Enhanced hydrogen production in E. coli cells expressing the cyanobacterial HoxEFUYH is by inhibiting hydrogen uptake of both hydrogenase 1 and hydrogenase 2. PMID:17521447
2016 Annual Progress Report: DOE Hydrogen and Fuel Cells Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
The 2016 Annual Progress Report summarizes fiscal year 2016 activities and accomplishments by projects funded by the DOE Hydrogen and Fuel Cells Program. It covers the program areas of hydrogen production; hydrogen delivery; hydrogen storage; fuel cells; manufacturing R&D; technology validation; safety, codes and standards; systems analysis; market transformation; and Small Business Innovation Research projects.
NASA Technical Reports Server (NTRS)
1983-01-01
A unit for producing hydrogen on site is used by a New Jersey Electric Company. The hydrogen is used as a coolant for the station's large generator; on-site production eliminates the need for weekly hydrogen deliveries. High purity hydrogen is generated by water electrolysis. The electrolyte is solid plastic and the control system is electronic. The technology was originally developed for the Gemini spacecraft.
21 CFR 184.1366 - Hydrogen peroxide.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Hydrogen peroxide. 184.1366 Section 184.1366 Food... Specific Substances Affirmed as GRAS § 184.1366 Hydrogen peroxide. (a) Hydrogen peroxide (H2O2, CAS Reg. No. 7722-84-1) is also referred to as hydrogen dioxide. It is made by the electrolytic oxidation of...
21 CFR 184.1366 - Hydrogen peroxide.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Hydrogen peroxide. 184.1366 Section 184.1366 Food... Specific Substances Affirmed as GRAS § 184.1366 Hydrogen peroxide. (a) Hydrogen peroxide (H2O2, CAS Reg. No. 7722-84-1) is also referred to as hydrogen dioxide. It is made by the electrolytic oxidation of...
21 CFR 184.1366 - Hydrogen peroxide.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Hydrogen peroxide. 184.1366 Section 184.1366 Food... Specific Substances Affirmed as GRAS § 184.1366 Hydrogen peroxide. (a) Hydrogen peroxide (H2O2, CAS Reg. No. 7722-84-1) is also referred to as hydrogen dioxide. It is made by the electrolytic oxidation of...
21 CFR 184.1366 - Hydrogen peroxide.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Hydrogen peroxide. 184.1366 Section 184.1366 Food... GRAS § 184.1366 Hydrogen peroxide. (a) Hydrogen peroxide (H2O2, CAS Reg. No. 7722-84-1) is also referred to as hydrogen dioxide. It is made by the electrolytic oxidation of sulfuric acid or a sulfate to...
Costs of Storing and Transporting Hydrogen
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amos, W. A.
An analysis was performed to estimate the costs associated with storing and transporting hydrogen. These costs can be added to a hydrogen production cost to determine the total delivered cost of hydrogen. Storage methods analyzed included compressed gas, liquid hydrogen, metal hydride, and underground storage. Major capital and operating costs were considered over a range of production rates and storage times.
A hydrogen energy carrier. Volume 1: Summary. [for meeting energy requirements
NASA Technical Reports Server (NTRS)
Savage, R. L. (Editor); Blank, L. (Editor); Cady, T. (Editor); Cox, K. E. (Editor); Murray, R. (Editor); Williams, R. D. (Editor)
1973-01-01
The production, technology, transportation, and implementation of hydrogen into the energy system are discussed along with the fossil fuel cycle, hydrogen fuel cycle, and the demands for energy. The cost of hydrogen production by coal gasification; electrolysis by nuclear energy, and solar energy are presented. The legal aspects of a hydrogen economy are also discussed.
Acid-catalyzed hydrogenation during kerosene hydrodewaxing over H/ZSM-5
DOE Office of Scientific and Technical Information (OSTI.GOV)
Longstaff, D.C.; Hanson, F.V.
1996-11-01
Hydrogen addition to the products derived from cracking kerosene over H/ZSM-5 was observed at hydrogen pressures between 4.1-8.7 MPa and at 373-390{degrees}C. At low pressures, kerosene cracking over H/ZSM-5 yielded typical cracked products: aromatics, as well as low molecular weight saturates and olefins. Endothermic reactor temperature profiles were also observed, indicative of cracking reactions. At high hydrogen partial pressures product selectivity was altered in that kerosene cracking gave high yields of low molecular weight paraffins and low yields of olefins and aromatics. Reactor temperature profiles were exothermic, indicative of hydrocracking reactions. A mechanism for acid catalyzed hydrogenation is suggested. Althoughmore » hydrogenation was not observed at lower hydrogen pressures, hydrogen proved beneficial in maintaining catalyst activity at a stable level. Lost catalyst activity was restored by maintaining the catalyst under static hydrogen at 1.4 MPa and 370{degrees}C for 16h. 36 refs., 14 figs., 3 tabs.« less
NASA Astrophysics Data System (ADS)
Sugitate, Toshihiro; Fukatsu, Makoto; Ishimi, Katsuhiro; Kohno, Hideki; Wakayama, Tatsuki; Nakamura, Yoshihiro; Miyake, Jun; Asada, Yasuo
In order to establish the sequential hydrogen production from waste starch using a hyperthermophile, Pyrococcus furiosus, and a photosynthetic bacterium, basic studies were done. P. furiosus produced hydrogen and acetate by anaerobic fermentation at 90°C. A photosynthetic bacterium, Rhodobacter sphaeroides RV, was able to produce hydrogen from acetate under anaerobic and light conditions at 30°C. However, Rb. sphaeroides RV was not able to produce hydrogen from acetate in the presence of sodium chloride that was essential for the growth and hydrogen production of P. furiosus although it produced hydrogen from lactate at a reduced rate with 1% sodium chloride. A newly isolated strain, CST-8, from natural environment was, however, able to produce hydrogen from acetate, especially with 3 mM L-alanine and in the presence of 1% sodium chloride. The sequential hydrogen production with P. furiosus and salt-tolerant photosynthetic bacteria could be probable at least in the laboratory experiment scale.
Back-side hydrogenation technique for defect passivation in silicon solar cells
Sopori, Bhushan L.
1994-01-01
A two-step back-side hydrogenation process includes the steps of first bombarding the back side of the silicon substrate with hydrogen ions with intensities and for a time sufficient to implant enough hydrogen atoms into the silicon substrate to potentially passivate substantially all of the defects and impurities in the silicon substrate, and then illuminating the silicon substrate with electromagnetic radiation to activate the implanted hydrogen, so that it can passivate the defects and impurities in the substrate. The illumination step also annihilates the hydrogen-induced defects. The illumination step is carried out according to a two-stage illumination schedule, the first or low-power stage of which subjects the substrate to electromagnetic radiation that has sufficient intensity to activate the implanted hydrogen, yet not drive the hydrogen from the substrate. The second or high-power illumination stage subjects the substrate to higher intensity electromagnetic radiation, which is sufficient to annihilate the hydrogen-induced defects and sinter/alloy the metal contacts.
Back-side hydrogenation technique for defect passivation in silicon solar cells
Sopori, B.L.
1994-04-19
A two-step back-side hydrogenation process includes the steps of first bombarding the back side of the silicon substrate with hydrogen ions with intensities and for a time sufficient to implant enough hydrogen atoms into the silicon substrate to potentially passivate substantially all of the defects and impurities in the silicon substrate, and then illuminating the silicon substrate with electromagnetic radiation to activate the implanted hydrogen, so that it can passivate the defects and impurities in the substrate. The illumination step also annihilates the hydrogen-induced defects. The illumination step is carried out according to a two-stage illumination schedule, the first or low-power stage of which subjects the substrate to electromagnetic radiation that has sufficient intensity to activate the implanted hydrogen, yet not drive the hydrogen from the substrate. The second or high-power illumination stage subjects the substrate to higher intensity electromagnetic radiation, which is sufficient to annihilate the hydrogen-induced defects and sinter/alloy the metal contacts. 3 figures.
Achieving ethanol-type fermentation for hydrogen production in a granular sludge system by aeration.
Zhang, Song; Liu, Min; Chen, Ying; Pan, Yu-Ting
2017-01-01
To investigate the effects of aeration on hydrogen-producing granular system, experiments were performed in two laboratory-scale anaerobic internal circulation hydrogen production (AICHP) reactors. The preliminary experiment of Reactor 1 showed that direct aeration was beneficial to enhancing hydrogen production. After the direct aeration was implied in Reactor 2, hydrogen production rate (HPR) and hydrogen content were increased by 100% and 60%, respectively. In addition, mixed-acid fermentation was transformed into typical ethanol-type fermentation (ETF). Illumina MiSeq sequencing shows that the direct aeration did not change the species of hydrogen-producing bacteria but altered their abundance. Hydrogen-producing bacteria and ethanol-type fermentative bacteria were increased by 24.5% and 146.3%, respectively. Ethanoligenens sp. sharply increased by 162.2% and turned into predominant bacteria in the system. These findings indicated that appropriate direct aeration might be a novel and promising way to obtain ETF and enhance hydrogen production in practical use. Copyright © 2016 Elsevier Ltd. All rights reserved.
Effect of urea deproteinization on catalytic hydrogenation of natural rubber latex
NASA Astrophysics Data System (ADS)
Cifriadi, A.; Chalid, M.; Puspitasari, S.
2017-07-01
Natural rubber is unsaturated biopolymer which has low resistance to heat, oxygen, and ozone. Chemical modification of natural rubber by catalytic hydrogenation can improve its oxidative property. In this study, the catalytic hydrogenation of natural rubber was investigated in latex phase after reduction of protein content with urea. Hydrogenation of deproteinized natural rubber latex was performed by using diimide which generated insitu from hydrazine hydrate/hydrogen peroxide and catalyst (boric acid, cupric sulfate and cupric acetate) at 70°C for 5 h. The hydrogenation system was stabilized with sodium dodecyl sulphate. The hydrogenation of deproteinized natural rubber (HDPNR) was confirmed by FTIR analysis. The result indicated that cupric sulphate was extremely active catalyst which was showed by the elimination of C=C transmittance bands at 1660 cm-1 on HDPNR spectra and highest degree of hydrogenation. Furthermore, urea deproteinization increased possibility of side reactions during catalytic hydrogenation as seen on the reduction of gel content compared to undeproteinized natural rubber.
A hydrogen energy carrier. Volume 2: Systems analysis
NASA Technical Reports Server (NTRS)
Savage, R. L. (Editor); Blank, L. (Editor); Cady, T. (Editor); Cox, K. (Editor); Murray, R. (Editor); Williams, R. D. (Editor)
1973-01-01
A systems analysis of hydrogen as an energy carrier in the United States indicated that it is feasible to use hydrogen in all energy use areas, except some types of transportation. These use areas are industrial, residential and commercial, and electric power generation. Saturation concept and conservation concept forecasts of future total energy demands were made. Projected costs of producing hydrogen from coal or from nuclear heat combined with thermochemical decomposition of water are in the range $1.00 to $1.50 per million Btu of hydrogen produced. Other methods are estimated to be more costly. The use of hydrogen as a fuel will require the development of large-scale transmission and storage systems. A pipeline system similar to the existing natural gas pipeline system appears practical, if design factors are included to avoid hydrogen environment embrittlement of pipeline metals. Conclusions from the examination of the safety, legal, environmental, economic, political and societal aspects of hydrogen fuel are that a hydrogen energy carrier system would be compatible with American values and the existing energy system.
Use of low energy hydrogen ion implants in high efficiency crystalline silicon solar cells
NASA Technical Reports Server (NTRS)
Fonash, S. J.; Singh, R.
1985-01-01
This program is a study of the use of low energy hydrogen ion implantation for high efficiency crystalline silicon solar cells. The first quarterly report focuses on two tasks of this program: (1) an examination of the effects of low energy hydrogen implants on surface recombination speed; and (2) an examination of the effects of hydrogen on silicon regrowth and diffusion in silicon. The first part of the project focussed on the measurement of surface properties of hydrogen implanted silicon. Low energy hydrogen ions when bombarded on the silicon surface will create structural damage at the surface, deactivate dopants and introduce recombination centers. At the same time the electrically active centers such as dangling bonds will be passivated by these hydrogen ions. Thus hydrogen is expected to alter properties such as the surface recombination velocity, dopant profiles on the emitter, etc. In this report the surface recombination velocity of a hydrogen emplanted emitter was measured.
Fluidic hydrogen detector production prototype development
NASA Technical Reports Server (NTRS)
Roe, G. W.; Wright, R. E.
1976-01-01
A hydrogen gas sensor that can replace catalytic combustion sensors used to detect leaks in the liquid hydrogen transfer systems at Kennedy Space Center was developed. A fluidic sensor concept, based on the principle that the frequency of a fluidic oscillator is proportional to the square root of the molecular weight of its operating fluid, was utilized. To minimize sensitivity to pressure and temperature fluctuations, and to make the sensor specific for hydrogen, two oscillators are used. One oscillator operates on sample gas containing hydrogen, while the other operates on sample gas with the hydrogen converted to steam. The conversion is accomplished with a small catalytic converter. The frequency difference is taken, and the hydrogen concentration computed with a simple digital processing circuit. The output from the sensor is an analog signal proportional to hydrogen content. The sensor is shown to be accurate and insensitive to severe environmental disturbances. It is also specific for hydrogen, even with large helium concentrations in the sample gas.
Modelling of flame propagation in the gasoline fuelled Wankel rotary engine with hydrogen additives
NASA Astrophysics Data System (ADS)
Fedyanov, E. A.; Zakharov, E. A.; Prikhodkov, K. V.; Levin, Y. V.
2017-02-01
Recently, hydrogen has been considered as an alternative fuel for a vehicles power unit. The Wankel engine is the most suitable to be adapted to hydrogen feeding. A hydrogen additive helps to decrease incompleteness of combustion in the volumes near the apex of the rotor. Results of theoretical researches of the hydrogen additives influence on the flame propagation in the combustion chamber of the Wankel rotary engine are presented. The theoretical research shows that the blend of 70% gasoline with 30% hydrogen could accomplish combustion near the T-apex in the stoichiometric mixture and in lean one. Maps of the flame front location versus the angle of rotor rotation and hydrogen fraction are obtained. Relations of a minimum required amount of hydrogen addition versus the engine speed are shown on the engine modes close to the average city driving cycle. The amount of hydrogen addition that could be injected by the nozzle with different flow sections is calculated in order to analyze the capacity of the feed system.
Highly porous non-precious bimetallic electrocatalysts for efficient hydrogen evolution
Lu, Qi; Hutchings, Gregory S.; Yu, Weiting; ...
2015-03-16
One of the key components of carbon dioxide-free hydrogen production is a robust and efficient non-precious metal catalyst for the hydrogen evolution reaction. We report that a hierarchical nanoporous copper-titanium bimetallic electrocatalyst is able to produce hydrogen from water under a mild overpotential at more than twice the rate of state-of-the- art carbon-supported platinum catalyst. Although both copper and titanium are known to be poor hydrogen evolution catalysts, the combination of these two elements creates unique copper-copper-titanium hollow sites, which have a hydrogen-binding energy very similar to that of platinum, resulting in an exceptional hydrogen evolution activity. Moreover, the hierarchicalmore » porosity of the nanoporous-copper titanium catalyst also contributes to its high hydrogen evolution activity, because it provides a large-surface area for electrocatalytic hydrogen evolution, and improves the mass transport properties. Moreover, the catalyst is self-supported, eliminating the overpotential associated with the catalyst/support interface.« less
NASA Astrophysics Data System (ADS)
Romanelli, Giovanni; Rudić, Svemir; Zanetti, Matteo; Andreani, Carla; Fernandez-Alonso, Felix; Gorini, Giuseppe; Krzystyniak, Maciej; Škoro, Goran
2018-04-01
We present an experimental study to determine the para-hydrogen concentration in the hydrogen moderators at the ISIS pulsed neutron and muon source. The experimental characterisation is based on neutron transmission experiments performed on the VESUVIO spectrometer, and thermal conductivity measurements using the TOSCA para-hydrogen rig. A reliable estimation of the level of para-hydrogen concentration in the hydrogen moderators is of crucial importance in the framework of a current project to completely refurbish the first target station at ISIS. Moreover, we report a new measurement of the total neutron cross section for normal hydrogen at 15 K on the broad energy range 3 meV -10 eV suggesting a revision of the most recent nuclear libraries for incident neutron energies lower than 10 meV. Finally, we characterise systematic errors affecting the para-hydrogen level estimation due to conversion from para to ortho hydrogen, as a function of the time a batch of gas spends in every component of our gas panel and apparatus.
How Do Organic Chemistry Students Understand and Apply Hydrogen Bonding?
NASA Astrophysics Data System (ADS)
Henderleiter, J.; Smart, R.; Anderson, J.; Elian, O.
2001-08-01
Students completing a year-long organic chemistry sequence were interviewed to assess how they understood, explained, and applied knowledge of hydrogen bonding to the physical behavior of molecules. Students were asked to define hydrogen bonding and explain situations in which hydrogen bonding could occur. They were asked to predict and explain how hydrogen bonding influences boiling point, the solubility of molecules, and NMR and IR spectra. Results suggest that although students may be able to give appropriate definitions of hydrogen bonding and may recognize when this phenomenon can occur, significant numbers cannot apply their knowledge of hydrogen bonding to physical properties of molecules or to the interpretation of spectral data. Some possess misconceptions concerning boiling points and the ability of molecules to induce hydrogen bonding. Instructional strategies must be adjusted to address these issues.
Hydrogen gettering packing material, and process for making same
LeMay, James D.; Thompson, Lisa M.; Smith, Henry Michael; Schicker, James R.
2001-01-01
A hydrogen gettering system for a sealed container is disclosed comprising packing material for use within the sealed container, and a coating film containing hydrogen gettering material on at least a portion of the surface of such packing material. The coating film containing the hydrogen gettering material comprises a mixture of one or more organic materials capable of reacting with hydrogen and one or more catalysts capable of catalyzing the reaction of hydrogen with such one or more organic materials. The mixture of one or more organic materials capable of reacting with hydrogen and the one or more catalysts is dispersed in a suitable carrier which preferably is a curable film-forming material. In a preferred embodiment, the packing material comprises a foam material which is compatible with the coating film containing hydrogen gettering material thereon.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mikhailenko, S.D.; Khodareva, T.A.; Leongardt, E.V.
The effect on Raney nickel catalyst of annealing in hydrogen, and of mild oxidation and subsequent reduction have been studied. The properties investigated are the structure, hydrogen adsorption, and activity for nitrobenzene and potassium maleate liquid-phase hydrogenation. Characterization involved X-ray line broadening, adsorption, and capillary condensation of Ar, XPS, and thermoprogrammed reduction. Thermodesorption studies indicate two forms of adsorbed hydrogen, one of which is a weakly bound molecular form and does not depend on treatment, while the other is strongly bound atomic hydrogen whose amount decreases with increase in the annealing temperature. Annealing hydrogen at T [ge] 200[degrees]C in hydrogen,more » after which the activity for hydrogenation is on par with that of newly prepared catalyst. 33 refs., 10 figs., 5 tabs.« less
NASA Astrophysics Data System (ADS)
Hamuro, Yoshitomo
2017-05-01
Protein backbone amide hydrogen/deuterium exchange mass spectrometry (HDX-MS) typically utilizes enzymatic digestion after the exchange reaction and before MS analysis to improve data resolution. Gas-phase fragmentation of a peptic fragment prior to MS analysis is a promising technique to further increase the resolution. The biggest technical challenge for this method is elimination of intramolecular hydrogen/deuterium exchange (scrambling) in the gas phase. The scrambling obscures the location of deuterium. Jørgensen's group pioneered a method to minimize the scrambling in gas-phase electron capture/transfer dissociation. Despite active investigation, the mechanism of hydrogen scrambling is not well-understood. The difficulty stems from the fact that the degree of hydrogen scrambling depends on instruments, various parameters of mass analysis, and peptide analyzed. In most hydrogen scrambling investigations, the hydrogen scrambling is measured by the percentage of scrambling in a whole molecule. This paper demonstrates that the degree of intramolecular hydrogen/deuterium exchange depends on the nature of exchangeable hydrogen sites. The deuterium on Tyr amide of neurotensin (9-13), Arg-Pro-Tyr-Ile-Leu, migrated significantly faster than that on Ile or Leu amides, indicating the loss of deuterium from the original sites is not mere randomization of hydrogen and deuterium but more site-specific phenomena. This more precise approach may help understand the mechanism of intramolecular hydrogen exchange and provide higher confidence for the parameter optimization to eliminate intramolecular hydrogen/deuterium exchange during gas-phase fragmentation.
Hamuro, Yoshitomo
2017-05-01
Protein backbone amide hydrogen/deuterium exchange mass spectrometry (HDX-MS) typically utilizes enzymatic digestion after the exchange reaction and before MS analysis to improve data resolution. Gas-phase fragmentation of a peptic fragment prior to MS analysis is a promising technique to further increase the resolution. The biggest technical challenge for this method is elimination of intramolecular hydrogen/deuterium exchange (scrambling) in the gas phase. The scrambling obscures the location of deuterium. Jørgensen's group pioneered a method to minimize the scrambling in gas-phase electron capture/transfer dissociation. Despite active investigation, the mechanism of hydrogen scrambling is not well-understood. The difficulty stems from the fact that the degree of hydrogen scrambling depends on instruments, various parameters of mass analysis, and peptide analyzed. In most hydrogen scrambling investigations, the hydrogen scrambling is measured by the percentage of scrambling in a whole molecule. This paper demonstrates that the degree of intramolecular hydrogen/deuterium exchange depends on the nature of exchangeable hydrogen sites. The deuterium on Tyr amide of neurotensin (9-13), Arg-Pro-Tyr-Ile-Leu, migrated significantly faster than that on Ile or Leu amides, indicating the loss of deuterium from the original sites is not mere randomization of hydrogen and deuterium but more site-specific phenomena. This more precise approach may help understand the mechanism of intramolecular hydrogen exchange and provide higher confidence for the parameter optimization to eliminate intramolecular hydrogen/deuterium exchange during gas-phase fragmentation. Graphical Abstract ᅟ.
Oxidation of Molecular Hydrogen by a Chemolithoautotrophic Beggiatoa Strain
2016-01-01
ABSTRACT A chemolithoautotrophic strain of the family Beggiatoaceae, Beggiatoa sp. strain 35Flor, was found to oxidize molecular hydrogen when grown in a medium with diffusional gradients of oxygen, sulfide, and hydrogen. Microsensor profiles and rate measurements suggested that the strain oxidized hydrogen aerobically when oxygen was available, while hydrogen consumption under anoxic conditions was presumably driven by sulfur respiration. Beggiatoa sp. 35Flor reached significantly higher biomass in hydrogen-supplemented oxygen-sulfide gradient media, but hydrogen did not support growth of the strain in the absence of reduced sulfur compounds. Nevertheless, hydrogen oxidation can provide Beggiatoa sp. 35Flor with energy for maintenance and assimilatory purposes and may support the disposal of internally stored sulfur to prevent physical damage resulting from excessive sulfur accumulation. Our knowledge about the exposure of natural populations of Beggiatoaceae to hydrogen is very limited, but significant amounts of hydrogen could be provided by nitrogen fixation, fermentation, and geochemical processes in several of their typical habitats such as photosynthetic microbial mats and submarine sites of hydrothermal fluid flow. IMPORTANCE Reduced sulfur compounds are certainly the main electron donors for chemolithoautotrophic Beggiatoaceae, but the traditional focus on this topic has left other possible inorganic electron donors largely unexplored. In this paper, we provide evidence that hydrogen oxidation has the potential to strengthen the ecophysiological plasticity of Beggiatoaceae in several ways. Moreover, we show that hydrogen oxidation by members of this family can significantly influence biogeochemical gradients and therefore should be considered in environmental studies. PMID:26896131
Song, Yan; Chai, Mengyu; Wu, Weijie; Liu, Yilun; Qin, Mu; Cheng, Guangxu
2018-01-01
Hydrogen embrittlement (HE) is a critical issue that hinders the reliability of hydrogenation reactors. Hence, it is of great significance to investigate the effect of hydrogen on fracture toughness of 2.25Cr-1Mo-0.25V steel and weld. In this work, the fracture behavior of 2.25Cr-1Mo-0.25V steel and welds was studied by three-point bending tests under hydrogen-free and hydrogen-charged conditions. The immersion charging method was employed to pre-charge hydrogen inside specimen and the fracture toughness of these joints was evaluated quantitatively. The microstructure and grain size of the specimens were observed by scanning electron microscopy (SEM) and by metallurgical microscopy to investigate the HE mechanisms. It was found that fracture toughness for both the base metal (BM) and the weld zone (WZ) significantly decreased under hydrogen-charged conditions due to the coexistence of the hydrogen-enhanced decohesion (HEDE) and hydrogen-enhanced localized plasticity (HELP) mechanisms. Moreover, the formation and growth of primary voids were observed in the BM, leading to a superior fracture toughness. In addition, the BM compared to the WZ shows superior resistance to HE because the finer grain size in the BM leads to a larger grain boundary area, thus distributing more of the diffusive hydrogen trapped in the grain boundary and reducing the hydrogen content. PMID:29584678
High-Yield Hydrogen Production from Starch and Water by a Synthetic Enzymatic Pathway
Zhang, Y.-H. Percival; Evans, Barbara R.; Mielenz, Jonathan R.; Hopkins, Robert C.; Adams, Michael W.W.
2007-01-01
Background The future hydrogen economy offers a compelling energy vision, but there are four main obstacles: hydrogen production, storage, and distribution, as well as fuel cells. Hydrogen production from inexpensive abundant renewable biomass can produce cheaper hydrogen, decrease reliance on fossil fuels, and achieve zero net greenhouse gas emissions, but current chemical and biological means suffer from low hydrogen yields and/or severe reaction conditions. Methodology/Principal Findings Here we demonstrate a synthetic enzymatic pathway consisting of 13 enzymes for producing hydrogen from starch and water. The stoichiometric reaction is C6H10O5 (l)+7 H2O (l)→12 H2 (g)+6 CO2 (g). The overall process is spontaneous and unidirectional because of a negative Gibbs free energy and separation of the gaseous products with the aqueous reactants. Conclusions Enzymatic hydrogen production from starch and water mediated by 13 enzymes occurred at 30°C as expected, and the hydrogen yields were much higher than the theoretical limit (4 H2/glucose) of anaerobic fermentations. Significance The unique features, such as mild reaction conditions (30°C and atmospheric pressure), high hydrogen yields, likely low production costs ($∼2/kg H2), and a high energy-density carrier starch (14.8 H2-based mass%), provide great potential for mobile applications. With technology improvements and integration with fuel cells, this technology also solves the challenges associated with hydrogen storage, distribution, and infrastructure in the hydrogen economy. PMID:17520015
Survey of selected seaweeds for simultaneous photoproduction of hydrogen and oxygen
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greenbaum, E.; Ramus, J.
1983-03-01
Then seaweed species were surveyed for simultaneous photoevolution of hydrogen and oxygen. In an attempt to induce hydrogenase activity (as measured by hydrogen photoproduction) the seaweeds were maintained under anaerobiosis in CO/sub 2/-free seawater for varying lengths of time. Although oxygen evolution was observed in every alga studied, hydrogen evolution was not observed. One conclusion of this research is that, in contrast to the microscopic algae, there is not a single example of a macroscopic alga for which the photoevolution of hydrogen has been observed, in spite of the fact that there are now at least nine macroscopic algal speciesmore » known for which hydrogenase activity has been reported (either by dark hydrogen evolution or light-activated hydrogen uptake). These results are in conflict with the conventional view that algal hydrogenase can catalyze a multiplicity of reactions, one of which is the photoproduction of molecular hydrogen. Two possible explanations for the lack of hydrogen photoproduction in macroscopic algae are presented. It is postulated that electron acceptors other than carbon dioxide can take up reducing equivalents from Photosystem I to the measurable exclusion of hydrogen photoproduction. Alternatively, the hydrogenase system in macroscopic algae may be primarily a hydrogen-uptake system with respect to light-activated reactions. A simple kinetic argument based on recent measurements of the photosynthetic turnover times of simultaneous light-activated hydrogen and oxygen production is presented that supports the second explanation. 25 references, 3 figures, 1 table.« less
NASA Technical Reports Server (NTRS)
Gray, H. R.; Joyce, J. P.
1975-01-01
The sensitivity to hydrogen environment embrittlement of three superalloys was determined. Astroloy forgings were resistant to embrittlement during smooth tensile, notched tensile, and creep testing in 3.5-MN/sq m hydrogen over the range 23 to 760 C. The notched tensile strength of Udimet 700 bar stock in hydrogen at 23 C was only 50 percent of the baseline value in helium. Forgings of V-57 were not significantly embrittled by hydrogen during smooth tensile testing over the range 23 to 675 C; creep and rupture lives of V-57 were degraded by hydrogen. Postcreep tensile ductility of V-57 was reduced by 40 percent after creep exposure in hydrogen.
NASA Technical Reports Server (NTRS)
1978-01-01
Another spinoff from spacecraft fuel cell technology is the portable hydrogen generator shown. Developed by General Electric Company, it is an aid to safer operation of systems that use hydrogen-for example, gas chromatographs, used in laboratory analysis of gases. or flame ionization detectors used as $ollution monitors. The generator eliminates the need for high-pressure hydrogen storage bottles, which can be a safety hazard, in laboratories, hospitals and industrial plants. The unit supplies high-purity hydrogen by means of an electrochemical process which separates the hydrogen and oxygen in distilled water. The oxygen is vented away and the hydrogen gas is stored within the unit for use as needed. GE's Aircraft Equipment Division is producing about 1,000 of the generators annually.
Three-dimensional hydrogen microscopy using a high-energy proton probe
NASA Astrophysics Data System (ADS)
Dollinger, G.; Reichart, P.; Datzmann, G.; Hauptner, A.; Körner, H.-J.
2003-01-01
It is a challenge to measure two-dimensional or three-dimensional (3D) hydrogen profiles on a micrometer scale. Quantitative hydrogen analyses of micrometer resolution are demonstrated utilizing proton-proton scattering at a high-energy proton microprobe. It has more than an-order-of-magnitude better position resolution and in addition higher sensitivity than any other technique for 3D hydrogen analyses. This type of hydrogen imaging opens plenty room to characterize microstructured materials, and semiconductor devices or objects in microbiology. The first hydrogen image obtained with a 10 MeV proton microprobe shows the hydrogen distribution of the microcapillary system being present in the wing of a mayfly and demonstrates the potential of the method.
Production of carbon monoxide-free hydrogen and helium from a high-purity source
Golden, Timothy Christopher [Allentown, PA; Farris, Thomas Stephen [Bethlehem, PA
2008-11-18
The invention provides vacuum swing adsorption processes that produce an essentially carbon monoxide-free hydrogen or helium gas stream from, respectively, a high-purity (e.g., pipeline grade) hydrogen or helium gas stream using one or two adsorber beds. By using physical adsorbents with high heats of nitrogen adsorption, intermediate heats of carbon monoxide adsorption, and low heats of hydrogen and helium adsorption, and by using vacuum purging and high feed stream pressures (e.g., pressures of as high as around 1,000 bar), pipeline grade hydrogen or helium can purified to produce essentially carbon monoxide -free hydrogen and helium, or carbon monoxide, nitrogen, and methane-free hydrogen and helium.
Supercomputer modeling of hydrogen combustion in rocket engines
NASA Astrophysics Data System (ADS)
Betelin, V. B.; Nikitin, V. F.; Altukhov, D. I.; Dushin, V. R.; Koo, Jaye
2013-08-01
Hydrogen being an ecological fuel is very attractive now for rocket engines designers. However, peculiarities of hydrogen combustion kinetics, the presence of zones of inverse dependence of reaction rate on pressure, etc. prevents from using hydrogen engines in all stages not being supported by other types of engines, which often brings the ecological gains back to zero from using hydrogen. Computer aided design of new effective and clean hydrogen engines needs mathematical tools for supercomputer modeling of hydrogen-oxygen components mixing and combustion in rocket engines. The paper presents the results of developing verification and validation of mathematical model making it possible to simulate unsteady processes of ignition and combustion in rocket engines.
Development of a microwave-type densimeter for slush hydrogen
NASA Astrophysics Data System (ADS)
Ohira, K.; Nakamichi, K.; Kihara, Y.
2003-10-01
Slush hydrogen is a two-phase solid-liquid cryogenic fluid consisting of solid hydrogen particles in liquid hydrogen, various applications for which are anticipated, including fuel for reusable space shuttles. The authors of the current study have measured the density of slush hydrogen by using the phase shift that takes place when microwaves are propagated through slush hydrogen, i.e., using the change in the specific dielectric constant. This new technique, unlike the conventional method using a waveguide and horn antenna, features a coaxial cable and patch antenna that can be used at cryogenic temperatures, leading to the development of a slush hydrogen densimeter with a high accuracy of within ±0.5%.
Micro-structured femtosecond laser assisted FBG hydrogen sensor.
Karanja, Joseph Muna; Dai, Yutang; Zhou, Xian; Liu, Bin; Yang, Minghong
2015-11-30
We discuss hydrogen sensors based on fiber Bragg gratings (FBGs) micro-machined by femtosecond laser to form microgrooves and sputtered with Pd/Ag composite film. The atomic ratio of the two metals is controlled at Pd:Ag = 3:1. At room temperature, the hydrogen sensitivity of the sensor probe micro-machined by 75 mW laser power and sputtered with 520 nm of Pd/Ag film is 16.5 pm/%H. Comparably, the standard FBG hydrogen sensitivity becomes 2.5 pm/%H towards the same 4% hydrogen concentration. At an ambient temperature of 35°C, the processed sensor head has a dramatic rise in hydrogen sensitivity. Besides, the sensor shows good response and repeatability during hydrogen concentration test.
Porous Materials for Hydrolytic Dehydrogenation of Ammonia Borane
Umegaki, Tetsuo; Xu, Qiang; Kojima, Yoshiyuki
2015-01-01
Hydrogen storage is still one of the most significant issues hindering the development of a “hydrogen energy economy”. Ammonia borane is notable for its high hydrogen densities. For the material, one of the main challenges is to release efficiently the maximum amount of the stored hydrogen. Hydrolysis reaction is a promising process by which hydrogen can be easily generated from this compound. High purity hydrogen from this compound can be evolved in the presence of solid acid or metal based catalyst. The reaction performance depends on the morphology and/or structure of these materials. In this review, we survey the research on nanostructured materials, especially porous materials for hydrogen generation from hydrolysis of ammonia borane. PMID:28793453
Coating for components requiring hydrogen peroxide compatibility
NASA Technical Reports Server (NTRS)
Yousefiani, Ali (Inventor)
2010-01-01
The present invention provides a heretofore-unknown use for zirconium nitride as a hydrogen peroxide compatible protective coating that was discovered to be useful to protect components that catalyze the decomposition of hydrogen peroxide or corrode when exposed to hydrogen peroxide. A zirconium nitride coating of the invention may be applied to a variety of substrates (e.g., metals) using art-recognized techniques, such as plasma vapor deposition. The present invention further provides components and articles of manufacture having hydrogen peroxide compatibility, particularly components for use in aerospace and industrial manufacturing applications. The zirconium nitride barrier coating of the invention provides protection from corrosion by reaction with hydrogen peroxide, as well as prevention of hydrogen peroxide decomposition.
High-pressure torsion for new hydrogen storage materials
Edalati, Kaveh; Akiba, Etsuo; Horita, Zenji
2018-01-01
Abstract High-pressure torsion (HPT) is widely used as a severe plastic deformation technique to create ultrafine-grained structures with promising mechanical and functional properties. Since 2007, the method has been employed to enhance the hydrogenation kinetics in different Mg-based hydrogen storage materials. Recent studies showed that the method is effective not only for increasing the hydrogenation kinetics but also for improving the hydrogenation activity, for enhancing the air resistivity and more importantly for synthesizing new nanostructured hydrogen storage materials with high densities of lattice defects. This manuscript reviews some major findings on the impact of HPT process on the hydrogen storage performance of different titanium-based and magnesium-based materials. PMID:29511396
Hydrogen production from formic acid in pH-stat fed-batch operation for direct supply to fuel cell.
Shin, Jong-Hwan; Yoon, Jong Hyun; Lee, Seung Hoon; Park, Tai Hyun
2010-01-01
Enterobacter asburiae SNU-1 harvested after cultivation was used as a whole cell biocatalyst, for the production of hydrogen. Formic acid was efficiently converted to hydrogen using the harvested cells with an initial hydrogen production rate and total hydrogen production of 491 ml/l/h and 6668 ml/l, respectively, when 1 g/l of whole cell enzyme was used. Moreover, new pH-stat fed-batch operation was conducted, and total hydrogen production was 1.4 times higher than that of batch operation. For practical application, bio-hydrogen produced from formic acid using harvested cells was directly applied to PEMFC for power generation.
ERIC Educational Resources Information Center
Zachariah-Wolff, J. Leslie; Hemmes, Kas
2006-01-01
Interest in a hydrogen economy has grown significantly in the past decade. However, the success of old technologies that are being re-engineered to work on hydrogen, as well as the creation of new hydrogen-based technologies, hinges upon public interest in and demand for such technologies. With increasing investments in the research and…
Composition for absorbing hydrogen from gas mixtures
Heung, Leung K.; Wicks, George G.; Lee, Myung W.
1999-01-01
A hydrogen storage composition is provided which defines a physical sol-gel matrix having an average pore size of less than 3.5 angstroms which effectively excludes gaseous metal hydride poisons while permitting hydrogen gas to enter. The composition is useful for separating hydrogen gas from diverse gas streams which may have contaminants that would otherwise render the hydrogen absorbing material inactive.
NREL's Hydrogen Fueling Infrastructure Research: Year in Review | News |
) joins others across the United States to celebrate National Hydrogen and Fuel Cell Day on Oct. 8-10.08-a NREL joined the Colorado hydrogen community for a National Hydrogen and Fuel Cell Day event at the governor proclaiming Oct. 8, 2016, as Hydrogen and Fuel Cell Day in Colorado, and the adoption of a new
Effects of hydrogen atom spin exchange collisions on atomic hydrogen maser oscillation frequency
NASA Technical Reports Server (NTRS)
Crampton, S. B.
1979-01-01
Frequency shifts due to collisions between hydrogen atoms in an atomic hydrogen maser frequency standard are studied. Investigations of frequency shifts proportional to the spin exchange frequency shift cross section and those proportional to the duration of exchange collisions are discussed. The feasibility of operating a hydrogen frequency standard at liquid helium temperatures is examined.
Performance Improvement of V-Fe-Cr-Ti Solid State Hydrogen Storage Materials in Impure Hydrogen Gas.
Ulmer, Ulrich; Oertel, Daria; Diemant, Thomas; Bonatto Minella, Christian; Bergfeldt, Thomas; Dittmeyer, Roland; Behm, R Jürgen; Fichtner, Maximilian
2018-01-17
Two approaches of engineering surface structures of V-Ti-based solid solution hydrogen storage alloys are presented, which enable improved tolerance toward gaseous oxygen (O 2 ) impurities in hydrogen (H 2 ) gas. Surface modification is achieved through engineering lanthanum (La)- or nickel (Ni)-rich surface layers with enhanced cyclic stability in an H 2 /O 2 mixture. The formation of a Ni-rich surface layer does not improve the cycling stability in H 2 /O 2 mixtures. Mischmetal (Mm, a mixture of La and Ce) agglomerates are observed within the bulk and surface of the alloy when small amounts of this material are added during arc melting synthesis. These agglomerates provide hydrogen-transparent diffusion pathways into the bulk of the V-Ti-Cr-Fe hydrogen storage alloy when the remaining oxidized surface is already nontransparent for hydrogen. Thus, the cycling stability of the alloy is improved in an O 2 -containing hydrogen environment as compared to the same alloy without addition of Mm. The obtained surface-engineered storage material still absorbs hydrogen after 20 cycles in a hydrogen-oxygen mixture, while the original material is already deactivated after 4 cycles.
Lai, Lin; Barnard, Amanda S
2012-02-21
Carbon-based hydrogen storage materials are one of hottest research topics in materials science. Although the majority of studies focus on highly porous loosely bound systems, these systems have various limitations including use at elevated temperature. Here we propose, based on computer simulations, that diamond nanoparticles may provide a new promising high temperature candidate with a moderate storage capacity, but good potential for recyclability. The hydrogenation of nanodiamonds is found to be easily achieved, in agreement with experiments, though we find the stability of hydrogenation is dependent on the morphology of nanodiamonds and surrounding environment. Hydrogenation is thermodynamically favourable even at high temperature in pure hydrogen, ammonia, and methane gas reservoirs, whereas water vapour can help to reduce the energy barrier for desorption. The greatest challenge in using this material is the breaking of the strong covalent C-H bonds, and we have identified that the spontaneous release of atomic hydrogen may be achieved through charging of hydrogenated nanodiamonds. If the degree of induced charge is properly controlled, the integrity of the host nanodiamond is maintained, which indicates that an efficient and recyclable approach for hydrogen release may be possible. This journal is © The Royal Society of Chemistry 2012
Chemical hydrogen storage material property guidelines for automotive applications
NASA Astrophysics Data System (ADS)
Semelsberger, Troy A.; Brooks, Kriston P.
2015-04-01
Chemical hydrogen storage is the sought after hydrogen storage media for automotive applications because of the expected low pressure operation (<20 atm), moderate temperature operation (<200 °C), system gravimetric capacities (>0.05 kg H2/kgsystem), and system volumetric capacities (>0.05 kg H2/Lsystem). Currently, the primary shortcomings of chemical hydrogen storage are regeneration efficiency, fuel cost and fuel phase (i.e., solid or slurry phase). Understanding the required material properties to meet the DOE Technical Targets for Onboard Hydrogen Storage Systems is a critical knowledge gap in the hydrogen storage research community. This study presents a set of fluid-phase chemical hydrogen storage material property guidelines for automotive applications meeting the 2017 DOE technical targets. Viable material properties were determined using a boiler-plate automotive system design. The fluid-phase chemical hydrogen storage media considered in this study were neat liquids, solutions, and non-settling homogeneous slurries. Material properties examined include kinetics, heats of reaction, fuel-cell impurities, gravimetric and volumetric hydrogen storage capacities, and regeneration efficiency. The material properties, although not exhaustive, are an essential first step in identifying viable chemical hydrogen storage material properties-and most important, their implications on system mass, system volume and system performance.
The application of diffusion theory to the analysis of hydrogen desorption data at 25 deg C
NASA Technical Reports Server (NTRS)
Danford, M. D.
1985-01-01
The application of diffusion theory to the analysis of hydrogen desorption data (coulombs of H2 desorbed versus time) has been studied. From these analyses, important information concerning hydrogen solubilities and the nature of the hydrogen distributions in the metal has been obtained. Two nickel base alloys, Rene' 41 and Waspaloy, and one ferrous alloy, 4340 steel, are studied in this work. For the nickel base alloys, it is found that the hydrogen distributions after electrolytic charging conforms closely to those which would be predicted by diffusion theory. For Waspaloy samples charged at 5,000 psi, it is found that the hydrogen distributions are essentially the same as those obtained by electrolytic charging. The hydrogen distributions in electrolytically charged 4340 steel, on the other hand, are essentially uniform in nature, which would not be predicted by diffusion theory. A possible explanation has been proposed. Finally, it is found that the hydrogen desorption is completely explained by the nature of the hydrogen distribution in the metal, and that the fast hydrogen is not due to surface and sub-surface hydride formation, as was originally proposed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilking, S., E-mail: Svenja.Wilking@uni-konstanz.de; Ebert, S.; Herguth, A.
The degradation effect boron doped and oxygen-rich crystalline silicon materials suffer from under illumination can be neutralized in hydrogenated silicon by the application of a regeneration process consisting of a combination of slightly elevated temperature and carrier injection. In this paper, the influence of variations in short high temperature steps on the kinetics of the regeneration process is investigated. It is found that hotter and longer firing steps allowing an effective hydrogenation from a hydrogen-rich silicon nitride passivation layer result in an acceleration of the regeneration process. Additionally, a fast cool down from high temperature to around 550 °C seems tomore » be crucial for a fast regeneration process. It is suggested that high cooling rates suppress hydrogen effusion from the silicon bulk in a temperature range where the hydrogenated passivation layer cannot release hydrogen in considerable amounts. Thus, the hydrogen content of the silicon bulk after the complete high temperature step can be increased resulting in a faster regeneration process. Hence, the data presented here back up the theory that the regeneration process might be a hydrogen passivation of boron-oxygen related defects.« less
NASA Astrophysics Data System (ADS)
Li, H.; Cheng, X. Y.; Shen, H. P.; Su, L. C.; Zhang, S. Y.
The susceptibility to hydrogen embrittlement in high strength mooring chain steel with different boron content (0, 0.003 %, 0.008 %) were investigated by electrochemical hydrogen charging technique and tensile test. The results revealed that appropriate boron content can effectively depress hydrogen induced embrittlement. Precharged with a low current density, this effect seemed to be unobvious. It gradually became clearly with the increasing current density. The increase of resistance to the hydrogen embrittlement for 3B and 8B after adding appropriate boron was attributed to three facts. The first was that the segregation of boron atoms along grain boundaries reduced the grain boundary segregation of phosphorus, which prohibited hydrogen concentration at the grain boundaries, depressing the possibility of the intergranular fracture due to H. The second was that the segregation of boron increased intergranular cohesion, enhanced grain boundary strength, and refined the final microstructure. The third was that the addition of boron changed the state of hydrogen traps, leading to the small amount of diffusible hydrogen. That is to say, hydrogen transferred to these defects by dislocations was accordingly decreased, which led to the low sensitive of hydrogen induced cracking.
Study on the hydrogenation of Zircaloy-4
NASA Astrophysics Data System (ADS)
da Silva Dupim, Ivaldete; Moreira, João M. L.; Silva, Selma Luiza; Silva, Cecilia Chaves Guedes e.; Nunes, Oswaldo; Gomide, Ricardo Gonçalves
2012-08-01
In this article we investigate producing Zirconium powder from discarded Zircaloy-4 material through the hydride-dehydride method. We restrict our study to the first part of the method, namely the hydrogenation process. Differential thermal analyses of the hydrogenation process of the Zircaloy-4 show that no hydrogen absorption occurs at temperatures below 573 K and hydrogen gas pressure of 25 kPa. When the system temperature is raised to around 770 K, with the same gas pressure, the protecting oxide layer of the specimens can be overcome and they are quickly hydrogenated. The bulk of the reaction occurs in about 5 min with the precipitation of Zirconium hydrides in the Zr-δ and Zr-ɛ phases. Once the temperature passes 573 K, the incubation time to initiate the reaction is short (about 5 min). Tests in a tube furnace system with larger samples, hydrogen pressure varying from 30 to 180 kPa, and temperature from 700 to 833.15 K, show that the specimens are fully hydrogenated and can be easily pulverized. The results indicate that the hydrogenation of the Zircaloy-4 chips can be successfully undertaken at temperatures around 770 K and hydrogen gas pressure as low as 30 kPa.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1986-02-01
To make the coal-to-hydrogen route economically attractive, improvements are being sought in each step of the process: coal gasification, water-carbon monoxide shift reaction, and hydrogen separation. This report addresses the use of membranes in the hydrogen separation step. The separation of hydrogen from synthesis gas is a major cost element in the manufacture of hydrogen from coal. Separation by membranes is an attractive, new, and still largely unexplored approach to the problem. Membrane processes are inherently simple and efficient and often have lower capital and operating costs than conventional processes. In this report current ad future trends in hydrogen productionmore » and use are first summarized. Methods of producing hydrogen from coal are then discussed, with particular emphasis on the Texaco entrained flow gasifier and on current methods of separating hydrogen from this gas stream. The potential for membrane separations in the process is then examined. In particular, the use of membranes for H{sub 2}/CO{sub 2}, H{sub 2}/CO, and H{sub 2}/N{sub 2} separations is discussed. 43 refs., 14 figs., 6 tabs.« less
NASA Astrophysics Data System (ADS)
Nagao, Akihide; Dadfarnia, Mohsen; Somerday, Brian P.; Sofronis, Petros; Ritchie, Robert O.
2018-03-01
Hydrogen embrittlement of lath martenistic steels is characterized by intergranular and "quasi-cleavage" transgranular fracture. Recent transmission electron microscopy (TEM) analyses (Nagao et al., 2012a, 2014a, 2014b, 2014c) of samples lifted from beneath fracture surfaces through focused ion beam machining (FIB) revealed a failure mechanism that can be termed hydrogen-enhanced-plasticity mediated decohesion. Fracture occurs by the synergistic action of the hydrogen-enhanced localized plasticity and decohesion. In particular, intergranular cracking takes place by dislocation pile-ups impinging on prior austenite grain boundaries and "quasi-cleavage" is the case when dislocation pile-ups impinge on block boundaries. These high-angle boundaries, which have already weakened by the presence of hydrogen, debond by the pile-up stresses. The micromechanical model of Novak et al. (2010) is used to quantitatively describe and predict the hydrogen-induced failure of these steels. The model predictions verify that introduction of nanosized (Ti,Mo)C precipitates in the steel microstructure enhances the resistance to hydrogen embrittlement. The results are used to discuss microstructural designs that are less susceptible to hydrogen-induced failure in systems with fixed hydrogen content (closed systems).
Protein hydrogen exchange: Testing current models
Skinner, John J; Lim, Woon K; Bédard, Sabrina; Black, Ben E; Englander, S Walter
2012-01-01
To investigate the determinants of protein hydrogen exchange (HX), HX rates of most of the backbone amide hydrogens of Staphylococcal nuclease were measured by NMR methods. A modified analysis was used to improve accuracy for the faster hydrogens. HX rates of both near surface and well buried hydrogens are spread over more than 7 orders of magnitude. These results were compared with previous hypotheses for HX rate determination. Contrary to a common assumption, proximity to the surface of the native protein does not usually produce fast exchange. The slow HX rates for unprotected surface hydrogens are not well explained by local electrostatic field. The ability of buried hydrogens to exchange is not explained by a solvent penetration mechanism. The exchange rates of structurally protected hydrogens are not well predicted by algorithms that depend only on local interactions or only on transient unfolding reactions. These observations identify some of the present difficulties of HX rate prediction and suggest the need for returning to a detailed hydrogen by hydrogen analysis to examine the bases of structure-rate relationships, as described in the companion paper (Skinner et al., Protein Sci 2012;21:996–1005). PMID:22544567
Hydrogen Production from Nuclear Energy
NASA Astrophysics Data System (ADS)
Walters, Leon; Wade, Dave
2003-07-01
During the past decade the interest in hydrogen as transportation fuel has greatly escalated. This heighten interest is partly related to concerns surrounding local and regional air pollution from the combustion of fossil fuels along with carbon dioxide emissions adding to the enhanced greenhouse effect. More recently there has been a great sensitivity to the vulnerability of our oil supply. Thus, energy security and environmental concerns have driven the interest in hydrogen as the clean and secure alternative to fossil fuels. Remarkable advances in fuel-cell technology have made hydrogen fueled transportation a near-term possibility. However, copious quantities of hydrogen must be generated in a manner independent of fossil fuels if environmental benefits and energy security are to be achieved. The renewable technologies, wind, solar, and geothermal, although important contributors, simply do not comprise the energy density required to deliver enough hydrogen to displace much of the fossil transportation fuels. Nuclear energy is the only primary energy source that can generate enough hydrogen in an energy secure and environmentally benign fashion. Methods of production of hydrogen from nuclear energy, the relative cost of hydrogen, and possible transition schemes to a nuclear-hydrogen economy will be presented.
NASA Astrophysics Data System (ADS)
Dmitriyeva, Olga; Hamm, Steven C.; Knies, David L.; Cantwell, Richard; McConnell, Matt
2018-05-01
Our previous work experimentally demonstrated the enhancement of electrochemical hydrogen insertion into palladium by modifying the chemical composition of the cathode surface with Pb, Pt and Bi, referred to as surface promoters. The experiment demonstrated that an optimal combination of the surface promoters led to an increase in hydrogen fugacity of more than three orders of magnitude, while maintaining the same current density. This manuscript discusses the application of Density Functional Theory (DFT) to elucidate the thermodynamics and kinetics of observed enhancement of electrochemical hydrogen insertion into palladium. We present theoretical simulations that: (1) establish the elevation of hydrogen's chemical potential on Pb and Bi surfaces to enhance hydrogen insertion, (2) confirm the increase of a Tafel activation barrier that results in a decrease of the reaction rate at the given hydrogen overpotential, and (3) explain why the surface promoter's coverage needs to be non-uniform, namely to allow hydrogen insertion into palladium bulk while simultaneously locking hydrogen below the surface (the corking effect). The discussed DFT-based method can be used for efficient scanning of different material configurations to design a highly effective hydrogen storage system.
Impact of hydrogen refueling configurations and market parameters on the refueling cost of hydrogen
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reddi, Krishna; Elgowainy, Amgad; Rustagi, Neha
The cost of hydrogen in early fuel cell electric vehicle (FCEV) markets is dominated by the cost of refueling stations, mainly due to the high cost of refueling equipment, small station capacities, lack of economies of scale, and low utilization of the installed refueling capacity. Using the hydrogen delivery scenario analysis model (HDSAM), this study estimates the impacts of these factors on the refueling cost for different refueling technologies and configurations, and quantifies the potential reduction in future hydrogen refueling cost compared to today’s cost in the United States. The current hydrogen refueling station levelized cost, for a 200 kg/daymore » dispensing capacity, is in the range of 6–8 dollars/kg H 2 when supplied with gaseous hydrogen, and 8–9 dollars/kg H 2 for stations supplied with liquid hydrogen. After adding the cost of hydrogen production, packaging, and transportation to the station’s levelized cost, the current cost of hydrogen at dispensers for FCEVs in California is in the range of 13–15 dollars/kg H 2. The refueling station capacity utilization strongly influences the hydrogen refueling cost. The underutilization of station capacity in early FCEV markets, such as in California, results in a levelized station cost that is approximately 40% higher than it would be in a scenario where the station had been fully utilized since it began operating. In future mature hydrogen FCEV markets, with a large demand for hydrogen, the refueling station’s levelized cost can be reduced to 2 dollars/kg H 2 as a result of improved capacity utilization and reduced equipment cost via learning and economies of scale.« less
Dose-dependent inhibition of gastric injury by hydrogen in alkaline electrolyzed drinking water
2014-01-01
Background Hydrogen has been reported to relieve damage in many disease models, and is a potential additive in drinking water to provide protective effects for patients as several clinical studies revealed. However, the absence of a dose–response relationship in the application of hydrogen is puzzling. We attempted to identify the dose–response relationship of hydrogen in alkaline electrolyzed drinking water through the aspirin induced gastric injury model. Methods In this study, hydrogen-rich alkaline water was obtained by adding H2 to electrolyzed water at one atmosphere pressure. After 2 weeks of drinking, we detected the gastric mucosal damage together with MPO, MDA and 8-OHdG in rat aspirin induced gastric injury model. Results Hydrogen-dose dependent inhibition was observed in stomach mucosal. Under pH 8.5, 0.07, 0.22 and 0.84 ppm hydrogen exhibited a high correlation with inhibitory effects showed by erosion area, MPO activity and MDA content in the stomach. Gastric histology also demonstrated the inhibition of damage by hydrogen-rich alkaline water. However, 8-OHdG level in serum did not have significant hydrogen-dose dependent effect. pH 9.5 showed higher but not significant inhibitory response compared with pH 8.5. Conclusions Hydrogen is effective in relieving the gastric injury induced by aspirin-HCl, and the inhibitory effect is dose-dependent. The reason behind this may be that hydrogen-rich water directly interacted with the target tissue, while the hydrogen concentration in blood was buffered by liver glycogen, evoking a suppressed dose–response effect. Drinking hydrogen-rich water may protect healthy individuals from gastric damage caused by oxidative stress. PMID:24589018
Sensor for Measuring Hydrogen Partial Pressure in Parabolic Trough Power Plant Expansion Tanks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glatzmaier, Greg C.; Cooney, Daniel A.
The National Renewable Energy Laboratory and Acciona Energy North America are working together to design and implement a process system that provides a permanent solution to the issue of hydrogen buildup at parabolic trough power plants. We are pursuing a method that selectively removes hydrogen from the expansion tanks that serve as reservoirs for the heat transfer fluid (HTF) that circulates in the collector field and power block components. Our modeling shows that removing hydrogen from the expansion tanks at a design rate reduces and maintains dissolved hydrogen in the circulating HTF to a selected target level. Our collaborative workmore » consists of several tasks that are needed to advance this process concept to a development stage, where it is ready for implementation at a commercial power plant. Our main effort is to design and evaluate likely process-unit operations that remove hydrogen from the expansion tanks at a specified rate. Additionally, we designed and demonstrated a method and instrumentation to measure hydrogen partial pressure and concentration in the expansion-tank headspace gas. We measured hydrogen partial pressure in the headspace gas mixture using a palladium-alloy membrane, which is permeable exclusively to hydrogen. The membrane establishes a pure hydrogen gas phase that is in equilibrium with the hydrogen in the gas mixture. We designed and fabricated instrumentation, and demonstrated its effectiveness in measuring hydrogen partial pressures over a range of three orders of magnitude. Our goal is to install this instrument at the Nevada Solar One power plant and to demonstrate its effectiveness in measuring hydrogen levels in the expansion tanks under normal plant operating conditions.« less
Optical hydrogen sensors based on metal-hydrides
NASA Astrophysics Data System (ADS)
Slaman, M.; Westerwaal, R.; Schreuders, H.; Dam, B.
2012-06-01
For many hydrogen related applications it is preferred to use optical hydrogen sensors above electrical systems. Optical sensors reduce the risk of ignition by spark formation and are less sensitive to electrical interference. Currently palladium and palladium alloys are used for most hydrogen sensors since they are well known for their hydrogen dissociation and absorption properties at relatively low temperatures. The disadvantages of palladium in sensors are the low optical response upon hydrogen loading, the cross sensitivity for oxygen and carbon, the limited detection range and the formation of micro-cracks after some hydrogen absorption/desorption cycles. In contrast to Pd, we find that the use of magnesium or rear earth bases metal-hydrides in optical hydrogen sensors allow tuning of the detection levels over a broad pressure range, while maintaining a high optical response. We demonstrate a stable detection layer for detecting hydrogen below 10% of the lower explosion limit in an oxygen rich environment. This detection layer is deposited at the bare end of a glass fiber as a micro-mirror and is covered with a thin layer of palladium. The palladium layer promotes the hydrogen uptake at room temperature and acts as a hydrogen selective membrane. To protect the sensor for a long time in air a final layer of a hydrophobic fluorine based coating is applied. Such a sensor can be used for example as safety detector in automotive applications. We find that this type of fiber optic hydrogen sensor is also suitable for hydrogen detection in liquids. As example we demonstrate a sensor for detecting a broad range of concentrations in transformer oil. Such a sensor can signal a warning when sparks inside a high voltage power transformer decompose the transformer oil over a long period.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karner, D.; Francfort, J.E.
2003-01-22
Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy's Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to runmore » CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service's Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents the results of 4,695 miles of testing for one of the blended fuel vehicles, a Ford F-150 pickup truck, operating on up to 50% hydrogen-50% CNG fuel.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Don Karner; Francfort, James Edward
2003-01-01
Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy’s Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline engines that were converted to runmore » CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service’s Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents the results of 4,695 miles of testing for one of the blended fuel vehicles, a Ford F-150 pickup truck, operating on up to 50% hydrogen–50% CNG fuel.« less
Advanced Vehicle Testing Activity: Dodge Ram Wagon Van -- Hydrogen/CNG Operations Summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Don Karner; Francfort, James Edward
2003-01-01
Over the past two years, Arizona Public Service, a subsidiary of Pinnacle West Capital Corporation, in cooperation with the U.S. Department of Energy’s Advanced Vehicle Testing Activity, tested four gaseous fuel vehicles as part of its alternative fueled vehicle fleet. One vehicle, a Dodge Ram Wagon Van, operated initially using compressed natural gas (CNG) and later a blend of CNG and hydrogen. Of the other three vehicles, one was fueled with pure hydrogen and two were fueled with a blend of CNG and hydrogen. The three blended-fuel vehicles were originally equipped with either factory CNG engines or factory gasoline enginesmore » that were converted to run CNG fuel. The vehicles were variously modified to operate on blended fuel and were tested using 15 to 50% blends of hydrogen (by volume). The pure-hydrogen-fueled vehicle was converted from gasoline fuel to operate on 100% hydrogen. All vehicles were fueled from the Arizona Public Service’s Alternative Fuel Pilot Plant, which was developed to dispense gaseous fuels, including CNG, blends of CNG and hydrogen, and pure hydrogen with up to 99.9999% purity. The primary objective of the test was to evaluate the safety and reliability of operating vehicles on hydrogen and blended hydrogen fuel, and the interface between the vehicles and the hydrogen fueling infrastructure. A secondary objective was to quantify vehicle emissions, cost, and performance. Over a total of 40,000 fleet test miles, no safety issues were found. Also, significant reductions in emissions were achieved by adding hydrogen to the fuel. This report presents results of 22,816 miles of testing for the Dodge Ram Wagon Van, operating on CNG fuel, and a blended fuel of 15% hydrogen–85% CNG.« less
Impact of hydrogen refueling configurations and market parameters on the refueling cost of hydrogen
Reddi, Krishna; Elgowainy, Amgad; Rustagi, Neha; ...
2017-06-30
The cost of hydrogen in early fuel cell electric vehicle (FCEV) markets is dominated by the cost of refueling stations, mainly due to the high cost of refueling equipment, small station capacities, lack of economies of scale, and low utilization of the installed refueling capacity. Using the hydrogen delivery scenario analysis model (HDSAM), this study estimates the impacts of these factors on the refueling cost for different refueling technologies and configurations, and quantifies the potential reduction in future hydrogen refueling cost compared to today’s cost in the United States. The current hydrogen refueling station levelized cost, for a 200 kg/daymore » dispensing capacity, is in the range of 6–8 dollars/kg H 2 when supplied with gaseous hydrogen, and 8–9 dollars/kg H 2 for stations supplied with liquid hydrogen. After adding the cost of hydrogen production, packaging, and transportation to the station’s levelized cost, the current cost of hydrogen at dispensers for FCEVs in California is in the range of 13–15 dollars/kg H 2. The refueling station capacity utilization strongly influences the hydrogen refueling cost. The underutilization of station capacity in early FCEV markets, such as in California, results in a levelized station cost that is approximately 40% higher than it would be in a scenario where the station had been fully utilized since it began operating. In future mature hydrogen FCEV markets, with a large demand for hydrogen, the refueling station’s levelized cost can be reduced to 2 dollars/kg H 2 as a result of improved capacity utilization and reduced equipment cost via learning and economies of scale.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suzuki, Toshimitsu; Ikenaga, Na-oki; Sakota, Takahiro
1994-12-31
It is of great importance to evaluate quantitative hydrogen transfer process by using coal model compounds with a hydrogen-donor solvent. Cronauer el al. showed that in the cracking of benzyl phenyl ether the hydrogen required to stabilize free radicals comes from a donor solvent or intramolecular rearrangement and not from gaseous hydrogen in the absence of a catalyst. Korobkov et al. and Schlosberg et al. showed that the thermolysis of benzyl phenyl ether and dibenzyl ether were accomplished by intramolecular rearrangements. Yokokawa et al. reported that tetralin retarded the catalyzed hydrocracking of coal model compounds containing C-C and C-O bonds.more » However, few studies dealt with quantitative discussion in the hydrogen transfer process from a hydrogen-donor solvent or molecular hydrogen to free radicals derived from a model compound except a series of studies by Nicole and co-workers. On the other hand, it is well known that the amount of naphthalene produced from tetralin decreases after the liquefaction of coal in tetralin with catalyst as compared to the liquefaction in the absence of catalysts. To account for this, two mechanisms are proposed. One is that the catalyst hydrogenates naphthalene produced from tetralin, and the other is that the catalyst promotes the direct hydrogen transfer from molecular hydrogen to free radicals. The purpose of this work is to elucidate the role of catalyst and tetralin by means of the quantitative treatment of the hydrogen transfer reaction stabilizing thermally decomposed free radicals. Cracking of benzyl phenyl ether (BPE), dibenzyl ether (DBE), 1,2-diphenylethane, and 1,3-diphenylpropane was studied in tetralin in the presence of highly disposed catalyst.« less
Dose-dependent inhibition of gastric injury by hydrogen in alkaline electrolyzed drinking water.
Xue, Jinling; Shang, Guodong; Tanaka, Yoshinori; Saihara, Yasuhiro; Hou, Lingyan; Velasquez, Natalia; Liu, Wenjun; Lu, Yun
2014-03-03
Hydrogen has been reported to relieve damage in many disease models, and is a potential additive in drinking water to provide protective effects for patients as several clinical studies revealed. However, the absence of a dose-response relationship in the application of hydrogen is puzzling. We attempted to identify the dose-response relationship of hydrogen in alkaline electrolyzed drinking water through the aspirin induced gastric injury model. In this study, hydrogen-rich alkaline water was obtained by adding H2 to electrolyzed water at one atmosphere pressure. After 2 weeks of drinking, we detected the gastric mucosal damage together with MPO, MDA and 8-OHdG in rat aspirin induced gastric injury model. Hydrogen-dose dependent inhibition was observed in stomach mucosal. Under pH 8.5, 0.07, 0.22 and 0.84 ppm hydrogen exhibited a high correlation with inhibitory effects showed by erosion area, MPO activity and MDA content in the stomach. Gastric histology also demonstrated the inhibition of damage by hydrogen-rich alkaline water. However, 8-OHdG level in serum did not have significant hydrogen-dose dependent effect. pH 9.5 showed higher but not significant inhibitory response compared with pH 8.5. Hydrogen is effective in relieving the gastric injury induced by aspirin-HCl, and the inhibitory effect is dose-dependent. The reason behind this may be that hydrogen-rich water directly interacted with the target tissue, while the hydrogen concentration in blood was buffered by liver glycogen, evoking a suppressed dose-response effect. Drinking hydrogen-rich water may protect healthy individuals from gastric damage caused by oxidative stress.
Hydrogen Infrastructure Testing and Research Facility | Hydrogen and Fuel
stations, enabling NREL to validate current industry standards and methods for hydrogen fueling as well as the HITRF to: Develop, quantify performance of, and improve renewable hydrogen production methods
Hydrogen molecule defect in proton-conductive SrTiO3 Perovskite
NASA Astrophysics Data System (ADS)
Onishi, Taku
2017-11-01
In proton-conductive SrTiO3 perovskite, no hydrogen molecule defect ideally exists. However, the unforeseen chemical reaction is often observed after the use of fuel cell. From the viewpoint of battery safety, we have investigated the effect of hydrogen molecule defect by molecular orbital analysis. When counter cation vacancy exists, the activation energy for hydrogen molecule migration was 1.39 - 1.50 eV, which is much smaller than the dissociation energy of hydrogen molecule. It implies that hydrogen molecule may migrate without its dissociation.
NASA Technical Reports Server (NTRS)
Hanson, J. A.; Escher, W. J. D.
1979-01-01
The paper examines technologies of hydrogen production. Its delivery, distribution, and end-use systems are reviewed, and a classification of solar energy and hydrogen production methods is suggested. The operation of photoelectric processes, biophotolysis, photocatalysis, photoelectrolysis, and of photovoltaic systems are reviewed, with comments on their possible hydrogen production potential. It is concluded that solar hydrogen derived from wind energy, photovoltaic technology, solar thermal electric technology, and hydropower could supply some of the hydrogen for air transport by the middle of the next century.
Hydrogen Permeation in Cold-Rolled High-Mn Twinning-Induced Plasticity Steels
NASA Astrophysics Data System (ADS)
Han, Do Kyeong; Hwang, A. In; Byeon, Woo Jun; Noh, Seung Jeong; Suh, Dong-Woo
2017-11-01
Hydrogen permeation is investigated in cold-rolled Fe-0.6C-18Mn-(1.5Al) alloys. The hydrogen mobility is lower in cold-rolled alloys compared with annealed alloys. Al-containing alloy shows less deceleration of hydrogen mobility compared with the Al-free alloy. This is attributed to the reduced formation of mechanical twins and dislocations. Mechanical twins trap hydrogen strongly but are vulnerable to crack initiation; suppression of these is thought to be a major favorable influence of Al on hydrogen-induced mechanical degradation.
The Effect of Converting to a U.S. Hydrogen Fuel Cell Vehicle Fleet on Emissions and Energy Use
NASA Astrophysics Data System (ADS)
Colella, W. G.; Jacobson, M. Z.; Golden, D. M.
2004-12-01
This study analyzes the potential change in emissions and energy use from replacing fossil-fuel based vehicles with hydrogen fuel cell vehicles. This study examines three different hydrogen production scenarios to determine their resultant emissions and energy usage: hydrogen produced via 1) steam reforming of methane, 2) coal gasification, or 3) wind electrolysis. The atmospheric model simulations require two primary sets of data: the actual emissions associated with hydrogen fuel production and use, and the corresponding reduction in emissions associated with reducing fossil fuel use. The net change in emissions is derived using 1) the U.S. EPA's National Emission Inventory (NEI) that incorporates several hundred categories of on-road vehicles and 2) a Process Chain Analysis (PCA) for the different hydrogen production scenarios. NEI: The quantity of hydrogen-related emission is ultimately a function of the projected hydrogen consumption in on-road vehicles. Data for hydrogen consumption from on-road vehicles was derived from the number of miles driven in each U.S. county based on 1999 NEI data, the average fleet mileage of all on-road vehicles, the average gasoline vehicle efficiency, and the efficiency of advanced 2004 fuel cell vehicles. PCA: PCA involves energy and mass balance calculations around the fuel extraction, production, transport, storage, and delivery processes. PCA was used to examine three different hydrogen production scenarios: In the first scenario, hydrogen is derived from natural gas, which is extracted from gas fields, stored, chemically processed, and transmitted through pipelines to distributed fuel processing units. The fuel processing units, situated in similar locations as gasoline refueling stations, convert natural gas to hydrogen via a combination of steam reforming and fuel oxidation. Purified hydrogen is compressed for use onboard fuel cell vehicles. In the second scenario, hydrogen is derived from coal, which is extracted from mines and chemically processed into a hydrogen rich gas. Hydrogen is transmitted through pipelines to refueling stations. In the third scenario, hydrogen is derived via electrolysis powered by wind-generated electricity that has been transmitted across the country to electrolyzers at distributed hydrogen refueling stations. If hydrogen is produced via the first scenario, total annual U.S. production of carbon dioxide (CO2) could be expected to decrease by approximately 900 million metric tons, or 16 percent of annual U.S. CO2 production from all anthropogenic sources. Under this scenario, compared with the conventional vehicle fleet, a fuel cell vehicle fleet would produce some additional CO2 emissions due to the electric power required for the compression of hydrogen, but less CO2 emissions on the road during vehicle operation. This scenario results in an additional methane leakage of approximately one million metric tons per year, or 4 percent of annual U.S. methane emissions from all anthropogenic sources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu Tangkui, E-mail: zhutangkui@sohu.com; Li, Miaoquan, E-mail: honeymli@nwpu.edu.cn
Effect of hydrogen content on the lattice parameter of Ti-6Al-4V alloy has been investigated by X-ray diffraction. The experimental results show that the solution of hydrogen in the Ti-6Al-4V alloy affects significantly on the lattice parameters of {alpha}, {beta} and {delta} phases, especially the {beta} phase. Furthermore, the critical hydrogen content of {delta} hydride formation for Ti-6Al-4V alloy is 0.385 wt.%. When the hydrogen content is lower than the critical hydrogen content, the {delta} hydride cannot precipitate and the lattice parameter ({alpha}) of {beta} phase linearly increases with the increasing of hydrogen content. When the hydrogen content is higher thanmore » the critical hydrogen content, the {delta} hydride precipitates and the lattice parameter ({alpha}) of {beta} phase varies inconspicuously with hydrogen content. In addition, the effects of lattice variations and {delta} hydride formation on microstructure are discussed. The {alpha}/{beta} interfaces of lamellar transformed {beta} phase become fuzzy with the increasing of hydrogen content because of the lattice expansion of {beta} phase. Compared with that of the Ti-6Al-4V alloy at low hydrogen content ({<=} 0.385 wt.%), the contrasts of primary {alpha} phase and transformed {beta} phase of Ti-6Al-4V alloy at high hydrogen content ({>=} 0.385 wt.%) were completely reversed due to the formation of {delta} hydride. - Research Highlights: {yields} A novel method for determining {delta} hydride in Ti-6Al-4V alloy is presented. {yields} The critical hydrogen content of {delta} hydride formation is 0.385 wt.%. {yields} The lattice parameter of {beta} phase can be expressed as follows: a=0.323(1+9.9x10{sup -2}C{sub H}) . {yields} Precipitation of {delta} hydride has a significant influence on the microstructure. {yields} The {alpha}/{beta} interfaces of transformed {beta} phase became fuzzy in the hydrogenated alloy.« less
Effects of Internal and External Hydrogen on Inconel 718
NASA Technical Reports Server (NTRS)
Walter, R. J.; Frandsen, J. D.
1999-01-01
Internal hydrogen embrittlement (IHE) and hydrogen environment embrittlement (HEE) tensile and bend crack growth tests were performed on Inconel 718. For the IHE tests, the specimens were precharged to approximately 90 ppm hydrogen by exposure to 34.5 MPa H2 at 650 C. The HEE tests were performed in 34.5 MPa H2. Parameters evaluated were test temperature, strain rate for smooth and notch specimen geometries. The strain rate effect was very significant at ambient temperature for both IHE and HEE and decreased with increasing temperatures. For IHE, the strain rate effect was neglible at 260'C, and for HEE the strain rate effect was neglible at 400 C. At low temperatures, IHE was more severe than HEE, and at high temperatures HEE was more severe than IHE with a cross over temperature about 350 C. At 350 C, the equilibrium hydrogen concentration in Inconel 718 is about 50% lower than the hydrogen content of the precharged IHE specimens. Dislocation hydrogen sweeping of surface absorbed hydrogen was the likely transport mechanism for increasing the hydrogen concentration in the HEE tests sufficiently to produce the same degree of embrittlement as that of the more highly hydrogen charged IHE specimens. The main IHE fracture characteristic was formation of large, brittle flat facets, which decreased with increasing test temperature. The IHE fracture matrix surrounding the large facets ranged between brittle fine faceted to microvoid ductility depending upon strain rate, specimen geometry as well as temperature. The HEE fractures were characteristically fine featured, transgranular and brittle with a significant portion forming a "saw tooth" crystallographic pattern. Both IHE and HEE fractures were predominantly along the {1 1 1) slip and twin boundaries. With respect to embrittlement mechanism, it was postulated that dislocation hydrogen sweeping and hydrogen enhanced localized plasticity were active in HEE and IHE for concentrating hydrogen along (1 1 1) slip and twin planes. Final brittle failure occurred by hydrogen induced planer decohesion.
Study of Catalyst Variation Effect in Glycerol Conversion Process to Hydrogen Gas by Steam Reforming
NASA Astrophysics Data System (ADS)
Widayat; Hartono, R.; Elizabeth, E.; Annisa, A. N.
2018-04-01
Along with the economic development, needs of energy being increase too. Hydrogen as alternative energy has many usages. Besides that, hydrogen is one source of energy that is a clean fuel, but process production of hydrogen from natural gas as a raw material has been used for a long time. Therefore, there is need new invention to produce hydrogen from the others raw material. Glycerol, a byproduct of biodiesel production, is a compound which can be used as a raw material for hydrogen production. By using glycerol as a raw material of hydrogen production, we can get added value of glycerol as well as an energy source solution. The process production of hydrogen by steam reforming is a thermochemical process with efficiency 70%. This process needs contribution of catalyst to improve its efficiency and selectivity of the process. In this study will be examined the effect variation of catalyst for glycerol conversion process to hydrogen by steam reforming. The method for catalyst preparation was variation of catalyst impregnation composition, catalyst calcined with difference concentration of hydrochloric acid and calcined with difference hydrochloric acid ratio. After that, all of catalyst which have been prepared, used for steam reforming process for hydrogen production from glycerol as a raw material. From the study, the highest yield of hydrogen gas showed in the process production by natural zeolite catalyst with 1:15 Hydrochloric acid ratio was 42.28%. Hydrogen yield for 2M calcined natural zeolite catalyst was 38.37%, for ZSM-5 catalyst was 15.83%, for 0.5M calcined natural zeolite was 13.09% and for ultrasonic natural zeolite was 11.43%. The lowest yield of hydrogen gas showed in catalyst 2Zn/ZSM-5 with 11.22%. This result showed that hydrogen yield product was affected by catalyst variation because of the catalyst has difference characteristic and difference catalytic activity after the catalyst preparation process.
Hydrogen Permeability of Incoloy 800H, Inconel 617, and Haynes 230 Alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pattrick Calderoni
A potential issue in the design of the NGNP reactor and high-temperature components is the permeation of fission generated tritium and hydrogen product from downstream hydrogen generation through high-temperature components. Such permeation can result in the loss of fission-generated tritium to the environment and the potential contamination of the helium coolant by permeation of product hydrogen into the coolant system. The issue will be addressed in the engineering design phase, and requires knowledge of permeation characteristics of the candidate alloys. Of three potential candidates for high-temperature components of the NGNP reactor design, the hydrogen permeability has been documented well onlymore » for Incoloy 800H, but at relatively high partial pressures of hydrogen. Hydrogen permeability data have been published for Inconel 617, but only in two literature reports and for partial pressures of hydrogen greater than one atmosphere, far higher than anticipated in the NGNP reactor. The hydrogen permeability of Haynes 230 has not been published. To support engineering design of the NGNP reactor components, the hydrogen permeability of Inconel 617 and Haynes 230 were determined using a measurement system designed and fabricated at the Idaho National Laboratory. The performance of the system was validated using Incoloy 800H as reference material, for which the permeability has been published in several journal articles. The permeability of Incoloy 800H, Inconel 617 and Haynes 230 was measured in the temperature range 650 to 950 °C and at hydrogen partial pressures of 10-3 and 10-2 atm, substantially lower pressures than used in the published reports. The measured hydrogen permeability of Incoloy 800H and Inconel 617 were in good agreement with published values obtained at higher partial pressures of hydrogen. The hydrogen permeability of Inconel 617 and Haynes 230 were similar, about 50% greater than for Incoloy 800H and with similar temperature dependence.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Hongcai J
In the past decades, there has been an escalation of interest in the study of MOFs due to their fascinating structures and intriguing application potentials. Their exceptionally high surface areas, uniform yet tunable pore sizes, and well-defined adsorbate-MOF interaction sites make them suitable for hydrogen storage. Various strategies to increase the hydrogen capacity of MOFs, such as constructing pore sizes comparable to hydrogen molecules, increasing surface area and pore volume, utilizing catenation, and introducing coordinatively unsaturated metal centers (UMCs) have been widely explored to increase the hydrogen uptake of the MOFs. MOFs with hydrogen uptake approaching the DOE gravimetric storagemore » goal under reasonable pressure but cryo- temperature (typically 77 K) were achieved. However, the weak interaction between hydrogen molecules and MOFs has been the major hurdle limiting the hydrogen uptake of MOFs at ambient temperature. Along the road, we have realized both high surface area and strong interaction between framework and hydrogen are equally essential for porous materials to be practically applicable in Hydrogen storage. Increasing the isosteric heats of adsorption for hydrogen through the introduction of active centers into the framework could have great potential on rendering the framework with strong interaction toward hydrogen. Approaches on increasing the surface areas and improving hydrogen affinity by optimizing size and structure of the pores and the alignment of active centers around the pores in frameworks have been pursued, for example: (a) the introduction of coordinatively UMC (represents a metal center missing multiple ligands) with potential capability of multiple dihydrogen-binding (Kubas type, non-dissociative) per UMC, (b) the design and synthesis of proton-rich MOFs in which a + H3 binds dihydrogen just like a metal ion does, and (c) the preparation of MOFs and PPNs with well aligned internal electric fields. We believe the accomplishments of this DOE supported research will greatly benefit the future pursuit of hydrogen storage materials. The ultimate goal to increase the gravimetric and volumetric hydrogen storage capacity to meet DOE targets for Light-Duty Vehicles is achievable.« less
The role of surface oxides on hydrogen sorption kinetics in titanium thin films
NASA Astrophysics Data System (ADS)
Hadjixenophontos, Efi; Michalek, Lukas; Roussel, Manuel; Hirscher, Michael; Schmitz, Guido
2018-05-01
Titanium is presently discussed as a catalyst to accelerate the hydrogenation kinetics of hydrogen storage materials. It is however known that H absorption in Ti decisively depends on the surface conditions (presence or absence of the natural surface oxide). In this work, we use Ti thin films of controlled thickness (50-800 nm) as a convenient tool for quantifying the atomic transport. XRD and TEM investigations allow us to follow the hydrogenation progress inside the film. Hydrogenation of TiO2/Ti bi-layers is studied at 300 °C, for different durations (10 s to 600 min) and at varying pressures of pure H2 atmosphere. Under these conditions, the hydrogenation is found to be linear in time. By comparing films with and without TiO2, as well as by studying the pressure dependence of hydrogenation, it is demonstrated that hydrogen transport across the oxide represents the decisive kinetic barrier rather than the splitting of H2 molecules at the surface. Hydrogenation appears by a layer-like reaction initiated by heterogeneous nucleation at the backside interface to the substrate. The linear growth constant and the H diffusion coefficient inside the oxide are quantified, as well as a reliable lower bound to the hydrogen diffusion coefficient in Ti is derived. The pressure dependence of hydrogen absorption is quantitatively modelled.
Hamasaki, Takeki; Harada, Gakuro; Nakamichi, Noboru; Kabayama, Shigeru; Teruya, Kiichiro; Fugetsu, Bunshi; Gong, Wei; Sakata, Ichiro; Shirahata, Sanetaka
2017-01-01
Electrochemically reduced water (ERW) is produced near a cathode during electrolysis and exhibits an alkaline pH, contains richly dissolved hydrogen, and contains a small amount of platinum nanoparticles. ERW has reactive oxygen species (ROS)-scavenging activity and recent studies demonstrated that hydrogen-dissolved water exhibits ROS-scavenging activity. Thus, the antioxidative capacity of ERW is postulated to be dependent on the presence of hydrogen levels; however, there is no report verifying the role of dissolved hydrogen in ERW. In this report, we clarify whether the responsive factor for antioxidative activity in ERW is dissolved hydrogen. The intracellular ROS scavenging activity of ERW and hydrogen-dissolved water was tested by both fluorescent stain method and immuno spin trapping assay. We confirm that ERW possessed electrolysis intensity-dependent intracellular ROS-scavenging activity, and ERW exerts significantly superior ROS-scavenging activity in HT1080 cells than the equivalent level of hydrogen-dissolved water. ERW retained its ROS-scavenging activity after removal of dissolved hydrogen, but lost its activity when autoclaved. An oxygen radical absorbance capacity assay, the 2,2-diphenyl-1-picrylhydrazyl assay and chemiluminescence assay could not detect radical-scavenging activity in both ERW and hydrogen-dissolved water. These results indicate that ERW contains electrolysis-dependent hydrogen and an additional antioxidative factor predicted to be platinum nanoparticles. PMID:28182635
Hydrogen-rich water ameliorates bronchopulmonary dysplasia (BPD) in newborn rats.
Muramatsu, Yukako; Ito, Mikako; Oshima, Takahiro; Kojima, Seiji; Ohno, Kinji
2016-09-01
Bronchopulmonary dysplasia (BPD) is characterized by developmental arrest of the alveolar tissue. Oxidative stress is causally associated with development of BPD. The effects of hydrogen have been reported in a wide range of disease models and human diseases especially caused by oxidative stress. We made a rat model of BPD by injecting lipopolysaccharide (LPS) into the amniotic fluid at E16.5. The mother started drinking hydrogen-rich water from E9.5 and also while feeding milk. Hydrogen normalized LPS-induced abnormal enlargement of alveoli at P7 and P14. LPS increased staining for nitrotyrosine and 8-OHdG of the lungs, and hydrogen attenuated the staining. At P1, LPS treatment decreased expressions of genes for FGFR4, VEGFR2, and HO-1 in the lungs, and hydrogen increased expressions of these genes. In contrast, LPS treatment and hydrogen treatment had no essential effect on the expression of SOD1. Inflammatory marker proteins of TNFα and IL-6 were increased by LPS treatment, and hydrogen suppressed them. Treatment of A549 human lung adenocarcinoma epithelial cells with 10% hydrogen gas for 24 hr decreased production of reactive oxygen species in both LPS-treated and untreated cells. Lack of any known adverse effects of hydrogen makes hydrogen a promising therapeutic modality for BPD. Pediatr Pulmonol. 2016; 51:928-935. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Cao, Zheng; Bowie, James U
2014-01-01
Equilibrium H/D fractionation factors have been extensively employed to qualitatively assess hydrogen bond strengths in protein structure, enzyme active sites, and DNA. It remains unclear how fractionation factors correlate with hydrogen bond free energies, however. Here we develop an empirical relationship between fractionation factors and free energy, allowing for the simple and quantitative measurement of hydrogen bond free energies. Applying our empirical relationship to prior fractionation factor studies in proteins, we find: [1] Within the folded state, backbone hydrogen bonds are only marginally stronger on average in α-helices compared to β-sheets by ∼0.2 kcal/mol. [2] Charge-stabilized hydrogen bonds are stronger than neutral hydrogen bonds by ∼2 kcal/mol on average, and can be as strong as –7 kcal/mol. [3] Changes in a few hydrogen bonds during an enzyme catalytic cycle can stabilize an intermediate state by –4.2 kcal/mol. [4] Backbone hydrogen bonds can make a large overall contribution to the energetics of conformational changes, possibly playing an important role in directing conformational changes. [5] Backbone hydrogen bonding becomes more uniform overall upon ligand binding, which may facilitate participation of the entire protein structure in events at the active site. Our energetic scale provides a simple method for further exploration of hydrogen bond free energies. PMID:24501090
Hamasaki, Takeki; Harada, Gakuro; Nakamichi, Noboru; Kabayama, Shigeru; Teruya, Kiichiro; Fugetsu, Bunshi; Gong, Wei; Sakata, Ichiro; Shirahata, Sanetaka
2017-01-01
Electrochemically reduced water (ERW) is produced near a cathode during electrolysis and exhibits an alkaline pH, contains richly dissolved hydrogen, and contains a small amount of platinum nanoparticles. ERW has reactive oxygen species (ROS)-scavenging activity and recent studies demonstrated that hydrogen-dissolved water exhibits ROS-scavenging activity. Thus, the antioxidative capacity of ERW is postulated to be dependent on the presence of hydrogen levels; however, there is no report verifying the role of dissolved hydrogen in ERW. In this report, we clarify whether the responsive factor for antioxidative activity in ERW is dissolved hydrogen. The intracellular ROS scavenging activity of ERW and hydrogen-dissolved water was tested by both fluorescent stain method and immuno spin trapping assay. We confirm that ERW possessed electrolysis intensity-dependent intracellular ROS-scavenging activity, and ERW exerts significantly superior ROS-scavenging activity in HT1080 cells than the equivalent level of hydrogen-dissolved water. ERW retained its ROS-scavenging activity after removal of dissolved hydrogen, but lost its activity when autoclaved. An oxygen radical absorbance capacity assay, the 2,2-diphenyl-1-picrylhydrazyl assay and chemiluminescence assay could not detect radical-scavenging activity in both ERW and hydrogen-dissolved water. These results indicate that ERW contains electrolysis-dependent hydrogen and an additional antioxidative factor predicted to be platinum nanoparticles.
Nie, Beining; Stutzman, Jerrod; Xie, Aihua
2005-01-01
Hydrogen bonding is a fundamental element in protein structure and function. Breaking a single hydrogen bond may impair the stability of a protein. We report an infrared vibrational spectral marker for probing the hydrogen-bond number for buried, protonated Asp or Glu residues in proteins. Ab initio computational studies were performed on hydrogen-bonding interactions of a COOH group with a variety of side-chain model compounds of polar and charged amino acids in vacuum using density function theory. For hydrogen-bonding interactions with polar side-chain groups, our results show a strong correlation between the C=O stretching frequency and the hydrogen bond number of a COOH group: ∼1759–1776 cm−1 for zero, ∼1733–1749 cm−1 for one, and 1703–1710 cm−1 for two hydrogen bonds. Experimental evidence for this correlation will be discussed. In addition, we show an approximate linear correlation between the C=O stretching frequency and the hydrogen-bond strength. We propose that a two-dimensional infrared spectroscopy, C=O stretching versus O-H stretching, may be employed to identify the specific type of hydrogen-bonding interaction. This vibrational spectral marker for hydrogen-bonding interaction is expected to enhance the power of time-resolved Fourier transform infrared spectroscopy for structural characterization of functionally important intermediates of proteins. PMID:15653739
Berta, Marton; Dethlefsen, Frank; Ebert, Markus; Schäfer, Dirk; Dahmke, Andreas
2018-04-17
Hydrogen storage in geological formations is one of the most promising technologies for balancing major fluctuations between energy supply from renewable energy plants and energy demand of customers. If hydrogen gas is stored in a porous medium or if it leaks into a shallow aquifer, redox reactions can oxidize hydrogen and reduce electron acceptors such as nitrate, Fe III and Mn IV (hydro)oxides, sulfate, and carbonate. These reactions are of key significance, because they can cause unintentional losses in hydrogen stored in porous media and they also can cause unwanted changes in the composition of protected potable groundwater. To represent an aquifer environment enclosing a hydrogen plume, laboratory experiments using sediment-filled columns were constructed and percolated by groundwater in equilibrium with high (2-15 bar) hydrogen partial pressures. Here, we show that hydrogen is consumed rapidly in these experiments via sulfate reduction (18 ± 5 μM h -1 ) and acetate production (0.030 ± 0.006 h -1 ), while no methanogenesis took place. The observed reaction rates were independent from the partial pressure of hydrogen and hydrogen consumption only stopped in supplemental microcosm experiments where salinity was increased above 35 g L -1 . The outcomes presented here are implemented for planning the sustainable use of the subsurface space within the ANGUS+ project.
Yan, Y.; Qian, S.; Littrell, K.; ...
2015-02-13
A non-destructive neutron scattering method to precisely measure the uptake of hydrogen and the distribution of hydride precipitates in light water reactor (LWR) fuel cladding was developed. Zircaloy-4 cladding used in commercial LWRs was used to produce hydrided specimens. The hydriding apparatus consists of a closed stainless steel vessel that contains Zr alloy specimens and hydrogen gas. Following hydrogen charging, the hydrogen content of the hydrided specimens was measured using the vacuum hot extraction method, by which the samples with desired hydrogen concentration were selected for the neutron study. Optical microscopy shows that our hydriding procedure results in uniform distributionmore » of circumferential hydrides across the wall. Small angle neutron incoherent scattering was performed in the High Flux Isotope Reactor at Oak Ridge National Laboratory. This study demonstrates that the hydrogen in commercial Zircaloy-4 cladding can be measured very accurately in minutes by this nondestructive method over a wide range of hydrogen concentrations from a very small amount ( 20 ppm) to over 1000 ppm. The hydrogen distribution in a tube sample was obtained by scaling the neutron scattering rate with a factor determined by a calibration process using standard, destructive direct chemical analysis methods on the specimens. This scale factor will be used in future tests with unknown hydrogen concentrations, thus providing a nondestructive method for absolute hydrogen concentration determination.« less
Hydrogen Storage in Diamond Powder Utilizing Plasma NaF Surface Treatment for Fuel Cell Applications
NASA Astrophysics Data System (ADS)
Leal, David A.; Velez, Angel; Prelas, Mark A.; Gosh, Tushar; Leal-Quiros, E.
2006-12-01
Hydrogen Fuel Cells offer the vital solution to the world's socio-political dependence on oil. Due to existing difficulty in safe and efficient hydrogen storage for fuel cells, storing the hydrogen in hydrocarbon compounds such as artificial diamond is a realistic solution. By treating the surface of the diamond powder with a Sodium Fluoride plasma exposure, the surface of the diamond is cleaned of unwanted molecules. Due to fluorine's electro negativity, the diamond powder is activated and ready for hydrogen absorption. These diamond powder pellets are then placed on a graphite platform that is heated by conduction in a high voltage circuit made of tungsten wire. Then, the injection of hydrogen gas into chamber allows the storage of the Hydrogen on the surface of the diamond powder. By neutron bombardment in the nuclear reactor, or Prompt Gamma Neutron Activation Analysis, the samples are examined for parts per million amounts of hydrogen in the sample. Sodium Fluoride surface treatment allows for higher mass percentage of stored hydrogen in a reliable, resistant structure, such as diamond for fuel cells and permanently alters the diamonds terminal bonds for re-use in the effective storage of hydrogen. The highest stored amount utilizing the NaF plasma surface treatment was 22229 parts per million of hydrogen in the diamond powder which amounts to 2.2229% mass increase.
In-situ TEM on (de)hydrogenation of Pd at 0.5-4.5 bar hydrogen pressure and 20-400°C.
Yokosawa, Tadahiro; Alan, Tuncay; Pandraud, Gregory; Dam, Bernard; Zandbergen, Henny
2012-01-01
We have developed a nanoreactor, sample holder and gas system for in-situ transmission electron microscopy (TEM) of hydrogen storage materials up to at least 4.5 bar. The MEMS-based nanoreactor has a microheater, two electron-transparent windows and a gas inlet and outlet. The holder contains various O-rings to have leak-tight connections with the nanoreactor. The system was tested with the (de)hydrogenation of Pd at pressures up to 4.5 bar. The Pd film consisted of islands being 15 nm thick and 50-500 nm wide. In electron diffraction mode we observed reproducibly a crystal lattice expansion and shrinkage owing to hydrogenation and dehydrogenation, respectively. In selected-area electron diffraction and bright/dark-field modes the (de)hydrogenation of individual Pd particles was followed. Some Pd islands are consistently hydrogenated faster than others. When thermally cycled, thermal hysteresis of about 10-16°C between hydrogen absorption and desorption was observed for hydrogen pressures of 0.5-4.5 bar. Experiments at 0.8 bar and 3.2 bar showed that the (de)hydrogenation temperature is not affected by the electron beam. This result shows that this is a fast method to investigate hydrogen storage materials with information at the nanometer scale. Copyright © 2011 Elsevier B.V. All rights reserved.
Hydrogen transmission/storage with a metal hydride/organic slurry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Breault, R.W.; Rolfe, J.; McClaine, A.
1998-08-01
Thermo Power Corporation has developed a new approach for the production, transmission, and storage of hydrogen. In this approach, a chemical hydride slurry is used as the hydrogen carrier and storage media. The slurry protects the hydride from unanticipated contact with moisture in the air and makes the hydride pumpable. At the point of storage and use, a chemical hydride/water reaction is used to produce high-purity hydrogen. An essential feature of this approach is the recovery and recycle of the spent hydride at centralized processing plants, resulting in an overall low cost for hydrogen. This approach has two clear benefits:more » it greatly improves energy transmission and storage characteristics of hydrogen as a fuel, and it produces the hydrogen carrier efficiently and economically from a low cost carbon source. The preliminary economic analysis of the process indicates that hydrogen can be produced for $3.85 per million Btu based on a carbon cost of $1.42 per million Btu and a plant sized to serve a million cars per day. This compares to current costs of approximately $9.00 per million Btu to produce hydrogen from $3.00 per million Btu natural gas, and $25 per million Btu to produce hydrogen by electrolysis from $0.05 per Kwh electricity. The present standard for production of hydrogen from renewable energy is photovoltaic-electrolysis at $100 to $150 per million Btu.« less
Hydrogen: Its Future Role in the Nation's Energy Economy.
Winsche, W E; Hoffman, K C; Salzano, F J
1973-06-29
In examining the potential role of hydrogen in the energy economy of the future, we take an optimistic view. All the technology required for implementation is feasible but a great deal of development and refinement is necessary. A pessimistic approach would obviously discourage further thinking about an important and perhaps the most reasonable alternative for the future. We have considered a limited number of alternative energy systems involving hydrogen and have shown that hydrogen could be a viable secondary source of energy derived from nuclear power; for the immediate future, hydrogen could be derived from coal. A hydrogen supply system could have greater flexibility and be competitive with a more conventional all-electric delivery system. Technological improvements could make hydrogen as an energy source an economic reality. The systems examined in this article show how hydrogen can serve as a general-purpose fuel for residential and automotive applications. Aside from being a source of heat and motive power, hydrogen could also supply the electrical needs of the household via fuel cells (19), turbines, or conventional "total energy systems." The total cost of energy to a residence supplied with hydrogen fuel depends on the ratio of the requirements for direct fuel use to the requirements for electrical use. A greater direct use of hydrogen as a fuel without conversion to electricity reduces the overall cost of energy supplied to the household because of the greater expense of electrical transmission and distribution. Hydrogen fuel is especially attractive for use in domestic residential applications where the bulk of the energy requirement is for thermal energy. Although a considerable amount of research is required before any hydrogen energy delivery system can be implemented, the necessary developments are within the capability of present-day technology and the system could be made attractive economically .Techniques for producing hydrogen from water by electrolysis, from coal, and directly from thermal energy could be found that are less expensive than those now available; inexpensive fuel cells could be developed, and high-temperature turbines could be used for the efficient conversion of hydrogen (and oxygen) to electricity. The use of hydrogen as an automotive fuel would be a key factor in the development of a hydrogen energy economy, and safe storage techniques for carrying sufficient quantities of hydrogen in automotive systems can certainly be developed. The use of hydrogen in automobiles would significantly reduce urban pollution because the dispersed fossil fuel emissions would be replaced by radioactive wastes generated at large central stations. The conversion of internal or external combustion engines for combustion of hydrogen fuel would probably have less economic impact on the automotive industry than the mass introduction of electric automobiles. However, this is a subject that requires more detailed study. All of the safety aspects of hydrogen utilization will have to be examined, especially the problems of safety in the domestic use and the long distance transport of hydrogen in pipelines at high pressures. It is our opinion that the various energy planning agencies should now begin to outline the mode of implementing hydrogen energy delivery systems in the energy economy. The initial transition to hydrogen energy derived from available fossil fuels such as coal should be considered together with the long range view of all the hydrogen being derived eventually from nuclear energy. By the year 1985 when petroleum imports may be in excess of the domestic supply, these plans could set the stage for the transition period from fossil to a predominantly nuclear energy economy able to supply abundant synthetic fuels such as hydrogen. Synthetic fuels will obviously be more expensive than fuels now derived from petroleum; however, there may be no other viable choice. Thus, it is essential that the analysis and technological feasibility of a hydrogen energy system be considered now. It is of vital importance to the nation to develop some general-purpose fuel that can be Produced from a variety of domestic energy sources and reduce our dependence on imported oil.
Composition and method for storing and releasing hydrogen
Thorn, David L.; Tumas, William; Ott, Kevin C.; Burrell, Anthony K.
2010-06-15
A chemical system for storing and releasing hydrogen utilizes an endothermic reaction that releases hydrogen coupled to an exothermic reaction to drive the process thermodynamically, or an exothermic reaction that releases hydrogen coupled to an endothermic reaction.
Sensitive hydrogen leak detector
Myneni, Ganapati Rao
1999-01-01
A sensitive hydrogen leak detector system using passivation of a stainless steel vacuum chamber for low hydrogen outgassing, a high compression ratio vacuum system, a getter operating at 77.5 K and a residual gas analyzer as a quantitative hydrogen sensor.
Method for the hydrogenation of poly-si
Wang, Qi
2013-11-12
A method for hydrogenating poly-si. Poly-si is placed into the interior of a chamber. A filament is placed into the interior of a chamber. The base pressure of the interior of the chamber is evacuated, preferably to 10.sup.-6 Torr or less. The poly-si is heated for a predetermined poly-si heating time. The filament is heated by providing an electrical power to the filament. Hydrogen is supplied into the pressurized interior of the chamber comprising the heated poly-si and the heated filament. Atomic hydrogen is produced by the filament at a rate whereby the atomic hydrogen surface density at the poly-si is less than the poly-si surface density. Preferably, the poly-si is covered from the atomic hydrogen produced by the heated filament for a first predetermined covering time. Preferably, the poly-si is then uncovered from the atomic hydrogen produced by the heated filament for a first hydrogenation time.
Hafnium—an optical hydrogen sensor spanning six orders in pressure
Boelsma, C.; Bannenberg, L. J.; van Setten, M. J.; Steinke, N.-J.; van Well, A. A.; Dam, B.
2017-01-01
Hydrogen detection is essential for its implementation as an energy vector. So far, palladium is considered to be the most effective hydrogen sensing material. Here we show that palladium-capped hafnium thin films show a highly reproducible change in optical transmission in response to a hydrogen exposure ranging over six orders of magnitude in pressure. The optical signal is hysteresis-free within this range, which includes a transition between two structural phases. A temperature change results in a uniform shift of the optical signal. This, to our knowledge unique, feature facilitates the sensor calibration and suggests a constant hydrogenation enthalpy. In addition, it suggests an anomalously steep increase of the entropy with the hydrogen/metal ratio that cannot be explained on the basis of a classical solid solution model. The optical behaviour as a function of its hydrogen content makes hafnium well-suited for use as a hydrogen detection material. PMID:28580959
Hydrogen calibration of GD-spectrometer using Zr-1Nb alloy
NASA Astrophysics Data System (ADS)
Mikhaylov, Andrey A.; Priamushko, Tatiana S.; Babikhina, Maria N.; Kudiiarov, Victor N.; Heller, Rene; Laptev, Roman S.; Lider, Andrey M.
2018-02-01
To study the hydrogen distribution in Zr-1Nb alloy (Э110 alloy) GD-OES was applied in this work. Qualitative analysis needs the standard samples with hydrogen. However, the standard samples with high concentrations of hydrogen in the zirconium alloy which would meet the requirements of the shape, size are absent. In this work method of Zr + H calibration samples production was performed at the first time. Automated Complex Gas Reaction Controller was used for samples hydrogenation. To calculate the parameters of post-hydrogenation incubation of the samples in an inert gas atmosphere the diffusion equations were used. Absolute hydrogen concentrations in the samples were determined by melting in the inert gas atmosphere using RHEN602 analyzer (LECO Company). Hydrogen distribution was studied using nuclear reaction analysis (HZDR, Dresden, Germany). RF GD-OES was used for calibration. The depth of the craters was measured with the help of a Hommel-Etamic profilometer by Jenoptik, Germany.
Catal, Tunc; Lesnik, Keaton Larson; Liu, Hong
2015-01-01
Methanogens can utilize the hydrogen produced in microbial electrolysis cells (MECs), thereby decreasing the hydrogen generation efficiency. However, various antibiotics have previously been shown to inhibit methanogenesis. In the present study antibiotics, including neomycin sulfate, 2-bromoethane sulfonate, 2-chloroethane sulfonate, 8-aza-hypoxanthine, were examined to determine if hydrogen production could be improved through inhibition of methanogenesis but not hydrogen production in MECs. 1.1mM neomycin sulfate inhibited both methane and hydrogen production while 2-chloroethane sulfonate (20mM), 2-bromoethane sulfonate (20mM), and 8-aza-hypoxanthine (3.6mM) can inhibited methane generation and with concurrent increases in hydrogen production. Our results indicated that adding select antibiotics to the mixed species community in MECs could be a suitable method to enhance hydrogen production efficiency. Copyright © 2015 Elsevier Ltd. All rights reserved.
Plasmonic hydrogen sensor based on integrated microring resonator
NASA Astrophysics Data System (ADS)
Yi, Ya Sha; Wu, Da Chuan
2017-12-01
We have proposed and demonstrated numerically an ultrasmall and highly sensitive plasmonic hydrogen sensor based on an integrated microring resonator, with a footprint size as small as 4×4 μm2. With a palladium (Pd) or platinum (Pt) hydrogen-sensitive layer coated on the inner surface of the microring resonator and the excitation of surface plasmon modes at the interface from the microring resonator waveguide, the device is highly sensitive to low hydrogen concentration variation, and the sensitivity is at least one order of magnitude larger than that of the optical fiber-based hydrogen sensor. We have also investigated the tradeoff between the portion coverage of the Pd/Pt layer and the sensitivity, as well as the width of the hydrogen-sensitive layer. This ultrasmall plasmonic hydrogen sensor holds promise for the realization of a highly compact sensor with integration capability for applications in hydrogen fuel economy.
Operating characteristics of a hydrogen-argon plasma torch for supersonic combustion applications
NASA Technical Reports Server (NTRS)
Barbi, E.; Mahan, J. R.; O'Brien, W. F.; Wagner, T. C.
1989-01-01
The residence time of the combustible mixture in the combustion chamber of a scramjet engine is much less than the time normally required for complete combustion. Hydrogen and hydrocarbon fuels require an ignition source under conditions typically found in a scramjet combustor. Analytical studies indicate that the presence of hydrogen atoms should greatly reduce the ignition delay in this environment. Because hydrogen plasmas are prolific sources of hydrogen atoms, a low-power, uncooled hydrogen plasma torch has been built and tested to evaluate its potential as a possible flame holder for supersonic combustion. The torch was found to be unstable when operated on pure hydrogen; however, stable operation could be obtained by using argon as a body gas and mixing in the desired amount of hydrogen. The stability limits of the torch are delineated and its electrical and thermal behavior documented. An average torch thermal efficiency of around 88 percent is demonstrated.
Souto, Juan Carlos; Yustos, Pedro; Ladero, Miguel; Garcia-Ochoa, Felix
2011-02-01
In this work, a phenomenological study of the isomerisation and disproportionation of rosin acids using an industrial 5% Pd on charcoal catalyst from 200 to 240°C is carried out. Medium composition is determined by elemental microanalysis, GC-MS and GC-FID. Dehydrogenated and hydrogenated acid species molar amounts in the final product show that dehydrogenation is the main reaction. Moreover, both hydrogen and non-hydrogen concentration considering kinetic models are fitted to experimental data using a multivariable non-linear technique. Statistical discrimination among the proposed kinetic models lead to the conclusion hydrogen considering models fit much better to experimental results. The final kinetic model involves first-order isomerisation reactions of neoabietic and palustric acids to abietic acid, first-order dehydrogenation and hydrogenation of this latter acid, and hydrogenation of pimaric acids. Hydrogenation reactions are partial first-order regarding the acid and hydrogen. Copyright © 2010 Elsevier Ltd. All rights reserved.
Trapping of hydrogen atoms in X-irradiated salts at room temperature and the decay kinetics
NASA Technical Reports Server (NTRS)
May, C. E.; Philipp, W. H.; Marsik, S. J.
1974-01-01
The salts (hypophosphites, formates, a phosphite, a phosphate, and an oxalate) were X-irradiated, whereby hydrogen formed chemically by a radiolytic process becomes trapped in the solid. By room temperature vacuum extraction, the kinetics for the evolution of this trapped hydrogen was studied mass spectrometrically. All salts except two exhibited second-order kinetics. The two exceptions (NaH2PO2(H2O) and K2HPO4) showed first-order kinetics. Based on experimental results, the escape of hydrogen involves three steps: the diffusion of hydrogen atoms from the bulk to the surface, association of these atoms on the surface (rate controlling step for second-order hydrogen evolution), and the desorption of molecular hydrogen from the surface. The hydrogen does not escape if the irradiated salt is stored in air, apparently because adsorbed air molecules occupy surface sites required in the escape mechanism.
Development Of A Centrifugal Hydrogen Pipeline Gas Compressor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Di Bella, Francis A.
2015-04-16
Concepts NREC (CN) has completed a Department of Energy (DOE) sponsored project to analyze, design, and fabricate a pipeline capacity hydrogen compressor. The pipeline compressor is a critical component in the DOE strategy to provide sufficient quantities of hydrogen to support the expected shift in transportation fuels from liquid and natural gas to hydrogen. The hydrogen would be generated by renewable energy (solar, wind, and perhaps even tidal or ocean), and would be electrolyzed from water. The hydrogen would then be transported to the population centers in the U.S., where fuel-cell vehicles are expected to become popular and necessary tomore » relieve dependency on fossil fuels. The specifications for the required pipeline hydrogen compressor indicates a need for a small package that is efficient, less costly, and more reliable than what is available in the form of a multi-cylinder, reciprocating (positive displacement) compressor for compressing hydrogen in the gas industry.« less
The Role of Hydrogen for Sulfurimonas denitrificans’ Metabolism
Han, Yuchen; Perner, Mirjam
2014-01-01
Sulfurimonas denitrificans was originally isolated from coastal marine sediments. It can grow with thiosulfate and nitrate or sulfide and oxygen. Recently sequencing of its genome revealed that it encodes periplasmic and cytoplasmic [NiFe]-hydrogenases but the role of hydrogen for its metabolism has remained unknown. We show the first experimental evidence that S. denitrificans can indeed express a functional hydrogen uptake active hydrogenase and can grow on hydrogen. In fact, under the provided conditions it grew faster and denser on hydrogen than on thiosulfate alone and even grew with hydrogen in the absence of reduced sulfur compounds. In our experiments, at the time points tested, the hydrogen uptake activity appeared to be related to the periplasmic hydrogenase and not to the cytoplasmic hydrogenase. Our data suggest that under the provided conditions S. denitrificans can grow more efficiently with hydrogen than with thiosulfate. PMID:25170905
Massanet-Nicolau, Jaime; Jones, Rhys Jon; Guwy, Alan; Dinsdale, Richard; Premier, Giuliano; Mulder, Martijn J J
2016-10-01
The use of electrochemical hydrogen removal (EHR) together with carbon dioxide removal (CDR) was demonstrated for the first time using a continuous hydrogen producing fermenter. CDR alone was found to increase hydrogen yields from 0.07molH2molhexose to 0.72molH2molhexose. When CDR was combined with EHR, hydrogen yields increased further to 1.79molH2molhexose. The pattern of carbohydrate utilisation and volatile fatty acid (VFA) production are consistent with the hypothesis that increased yields are the result of relieving end product inhibition and inhibition of microbial hydrogen consumption. In situ removal of hydrogen and carbon dioxide as demonstrated here not only increase hydrogen yield but also produces a relatively pure product gas and unlike other approaches can be used to enhance conventional, mesophilic, CSTR type fermentation of low grade/high solids biomass. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.
Current Development in Treatment and Hydrogen Energy Conversion of Organic Solid Waste
NASA Astrophysics Data System (ADS)
Shin, Hang-Sik
2008-02-01
This manuscript summarized current developments on continuous hydrogen production technologies researched in Korea advanced institute of science and technology (KAIST). Long-term continuous pilot-scale operation of hydrogen producing processes fed with non-sterile food waste exhibited successful results. Experimental findings obtained by the optimization processes of growth environments for hydrogen producing bacteria, the development of high-rate hydrogen producing strategies, and the feasibility tests for real field application could contribute to the progress of fermentative hydrogen production technologies. Three major technologies such as controlling dilution rate depending on the progress of acidogenesis, maintaining solid retention time independently from hydraulic retention time, and decreasing hydrogen partial pressure by carbon dioxide sparging could enhance hydrogen production using anaerobic leaching beds reactors and anaerobic sequencing batch reactors. These findings could contribute to stable, reliable and effective performances of pilot-scale reactors treating organic wastes.
Effect of hydrogen on the mechanical properties of titanium and its alloys
NASA Technical Reports Server (NTRS)
Beck, F. H.
1975-01-01
Occluded hydrogen resulting from cathodic charging of commercially pure titanium and titanium alloys, Ti-8Al-1Mo-1V and Ti-6Al-4V, was shown to cause embrittlement of the alloys. Embrittlement was a function of the interstitial hydrogen content rather than the amount of precipitated titanium hydride. The effects of hydrogen concentration on the critical strain for plastic instability along pure shear directions was determined for alloys Ti-8Al-1Mo-1V and Ti-5Al-2.5Sn. Hydrogen, in concentrations below that necessary for spontaneous hydride precipitation, increased the strain necessary for instability formation or instability failure. The strain rate sensitivity also increased with increasing hydrogen concentration. The effect of hydrogen on slip and twinning was determined for titanium single crystals. The critical resolved shear stress for prism slip was increased and the critical resolved shear stress for twinning was decreased with increasing hydrogen concentration.
Review of hydrogen storage in inorganic fullerene-like nanotubes
NASA Astrophysics Data System (ADS)
Chen, J.; Wu, F.
Following the discovery of carbon nanotubes, inorganic fullerene-like nanotubes such as WS2-MoS2, NbS2, TiS2, and BN were reported. Inorganic (non-carbon) nanotubes constitute an important class of nanomaterials with interesting properties and potential applications. As known, efficient hydrogen storage is one key problem in the development of a hydrogen energy system. Hydrogen storage using carbon nanostructures is scientifically interesting and challenging. It thus would be worthwhile to look into hydrogen storage in inorganic nanotubes because the van der Waals gaps between the nanotube layers are potential candidates for hydrogen uptake. Furthermore, the inorganic nanotubes combine two elements, which is different from the pure carbon nanotubes. These may show a novel hydrogen adsorption-desorption mechanism. The present review provides a brief study of hydrogen adsorption on MoS2, TiS2, and BN nanotubes.
RenNanqi; GuoWanqian; LiuBingfeng; CaoGuangli; DingJie
2011-06-01
Among different technologies of hydrogen production, bio-hydrogen production exhibits perhaps the greatest potential to replace fossil fuels. Based on recent research on dark fermentative hydrogen production, this article reviews the following aspects towards scaled-up application of this technology: bioreactor development and parameter optimization, process modeling and simulation, exploitation of cheaper raw materials and combining dark-fermentation with photo-fermentation. Bioreactors are necessary for dark-fermentation hydrogen production, so the design of reactor type and optimization of parameters are essential. Process modeling and simulation can help engineers design and optimize large-scale systems and operations. Use of cheaper raw materials will surely accelerate the pace of scaled-up production of biological hydrogen. And finally, combining dark-fermentation with photo-fermentation holds considerable promise, and has successfully achieved maximum overall hydrogen yield from a single substrate. Future development of bio-hydrogen production will also be discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.
Friebe, Sebastian; Geppert, Benjamin; Caro, Jürgen
2015-06-26
A short-circuited PEM fuel cell with a Nafion membrane has been evaluated in the room-temperature separation of hydrogen from exhaust gas streams. The separated hydrogen can be recovered or consumed in an in situ olefin hydrogenation when the fuel cell is operated as catalytic membrane reactor. Without applying an outer electrical voltage, there is a continuous hydrogen flux from the higher to the lower hydrogen partial pressure side through the Nafion membrane. On the feed side of the Nafion membrane, hydrogen is catalytically split into protons and electrons by the Pt/C electrocatalyst. The protons diffuse through the Nafion membrane, the electrons follow the short-circuit between the two brass current collectors. On the cathode side, protons and electrons recombine, and hydrogen is released. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Life Cycle Greenhouse Gas Emissions of By-product Hydrogen from Chlor-Alkali Plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Dong-Yeon; Elgowainy, Amgad A.; Dai, Qiang
Current hydrogen production capacity in the U.S. is about 15.8 million tonne (or metric ton) per year (Brown 2016). Some of the hydrogen (2 million tonne) is combusted for its heating energy value, which makes total annual net production 13.8 million tonne (Table 1). If captive by-product hydrogen (3.3 million tonne) from catalytic reforming at oil refineries is excluded (Brown 2016; EIA 2008), approximately 11 million tonne is available from the conventional captive and merchant hydrogen market (DOE 2013). Captive hydrogen (owned by the refiner) is produced and consumed on site (e.g., process input at refineries), whereas merchant hydrogen ismore » produced and sold as a commodity to external consumers. Whether it is merchant or captive, most hydrogen produced in the U.S. is on-purpose (not by-product)— around 10 million tonne/year.« less
Detector and energy analyzer for energetic-hydrogen in beams and plasmas
Bastasz, Robert J.; Hughes, Robert C.; Wampler, William R.
1988-01-01
A detector for detecting energetic hydrogen ions and atoms ranging in energy from about 1 eV up to 1 keV in an evacuated environment includes a Schottky diode with a palladium or palladium-alloy gate metal applied to a silicondioxide layer on an n-silicon substrate. An array of the energetic-hydrogen detectors having a range of energy sensitivities form a plasma energy analyzer having a rapid response time and a sensitivity for measuring fluxes of energetic hydrogen. The detector is sensitive to hydrogen and its isotopes but is insensitive to non-hydrogenic particles. The array of energetic-hydrogen detectors can be formed on a single silicon chip, with thin-film layers of gold metal applied in various thicknesses to successive detectors in the array. The gold layers serve as particle energy-filters so that each detector is sensitive to a different range of hydrogen energies.
Detector and energy analyzer for energetic-hydrogen in beams and plasmas
Bastasz, R.J.; Hughes, R.C.; Wampler, W.R.
1988-11-01
A detector for detecting energetic hydrogen ions and atoms ranging in energy from about 1 eV up to 1 keV in an evacuated environment includes a Schottky diode with a palladium or palladium-alloy gate metal applied to a silicon-dioxide layer on an n-silicon substrate. An array of the energetic-hydrogen detectors having a range of energy sensitivities form a plasma energy analyzer having a rapid response time and a sensitivity for measuring fluxes of energetic hydrogen. The detector is sensitive to hydrogen and its isotopes but is insensitive to non-hydrogenic particles. The array of energetic-hydrogen detectors can be formed on a single silicon chip, with thin-film layers of gold metal applied in various thicknesses to successive detectors in the array. The gold layers serve as particle energy-filters so that each detector is sensitive to a different range of hydrogen energies. 4 figs.
Species measurements in a hypersonic, hydrogen-air, combustion wake
NASA Technical Reports Server (NTRS)
Skinner, K. A.; Stalker, R. J.
1995-01-01
A continuously sampling, time-of-flight mass spectrometer has been used to measure relative species concentrations in a two-dimensional, hydrogen-air combustion wake at mainstream Mach numbers exceeding 5. The experiments, which were conducted in a free piston shock tunnel, yielded distributions of hydrogen, oxygen, nitrogen, water and nitric oxide at stagnation enthalpies ranging from 5.6 MJ kg(exp -1) to 1.2 MJ kg(exp -1) and at a distance of approximately 100 times the thickness of the initial hydrogen jet. The amount of hydrogen that was mixed in stoichiometric proportions was approximately independent of the stagnation enthalpy, in spite of the fact that the proportion of hydrogen in the wake increased with stagnation enthalpy. Roughly 50 percent of the mixed hydrogen underwent combustion at the highest enthalpy. The proportion of hydrogen reacting to water could be approximately predicted using reaction rates based on mainstream temperatures.
The hydrogen embrittlement of titanium-based alloys
NASA Astrophysics Data System (ADS)
Tal-Gutelmacher, Ervin; Eliezer, Dan
2005-09-01
Titanium-based alloys provide an excellent combination of a high strength/weight ratio and good corrosion behavior, which makes these alloys among the most important advanced materials for a variety of aerospace, marine, industrial, and commercial applications. Although titanium is considered to be reasonably resistant to chemical attack, severe problems can arise when titanium-based alloys come in contact with hydrogen-containing environments, where they can pick up large amounts of hydrogen, especially at elevated temperatures. The severity and the extent of the hydrogen interaction with titanium-based alloys are directly related to the microstructure and composition of the titanium alloys. This paper addresses the hydrogen embrittlement of titanium-based alloys. The hydrogen-titanium interaction is reviewed, including the solubility of hydrogen in α and β phases of titanium and hydride formation. Also, the paper summarizes the detrimental effects of hydrogen in different titanium alloys.
Detection of hydrogen peroxide with chemiluminescent micelles
Lee, Dongwon; Erigala, Venkata R; Dasari, Madhuri; Yu, Junhua; Dickson, Robert M; Murthy, Niren
2008-01-01
The overproduction of hydrogen peroxide is implicated in the progress of numerous life-threatening diseases and there is a great need for the development of contrast agents that can detect hydrogen peroxide in vivo. In this communication, we present a new contrast agent for hydrogen peroxide, termed peroxalate micelles, which detect hydrogen peroxide through chemiluminescence, and have the physical/chemical properties needed for in vivo imaging applications. The peroxalate micelles are composed of amphiphilic peroxalate based copolymers and the fluorescent dye rubrene, they have a ‘stealth’ polyethylene glycol (PEG) corona to evade macrophage phagocytosis, and a diameter of 33 nm to enhance extravasation into permeable tissues. The peroxalate micelles can detect nanomolar concentrations of hydrogen peroxide (>50 nM) and thus have the sensitivity needed to detect physiological concentrations of hydrogen peroxide. We anticipate numerous applications of the peroxalate micelles for in vivo imaging of hydrogen peroxide, given their high sensitivity, small size, and biocompatible PEG corona. PMID:19337415
Device for hydrogen separation and method
Paglieri, Stephen N [White Rock, NM; Anderson, Iver E [Ames, IA; Terpstra, Robert L [Ames, IA
2009-11-03
A device for hydrogen separation has a porous support and hydrogen separation material on the support. The support is prepared by heat treatment of metal microparticles, preferably of iron-based or nickel-based alloys that also include aluminum and/or yttrium. The hydrogen separation material is then deposited on the support. Preferred hydrogen separation materials include metals such as palladium, alloys, platinum, refractory metals, and alloys.
NASA Technical Reports Server (NTRS)
Ota, K.; Conger, W. L.
1977-01-01
The reaction between barium sulfide and water, a reaction found in several sulfur based thermochemical cycles, was investigated kinetically at 653-866 C. Gaseous products were hydrogen and hydrogen sulfide. The rate determining step for hydrogen formation was a surface reaction between barium sulfide and water. An expression was derived for the rate of hydrogen formation.
Hydrogen storage material and process using graphite additive with metal-doped complex hydrides
Zidan, Ragaiy [Aiken, SC; Ritter, James A [Lexington, SC; Ebner, Armin D [Lexington, SC; Wang, Jun [Columbia, SC; Holland, Charles E [Cayce, SC
2008-06-10
A hydrogen storage material having improved hydrogen absorbtion and desorption kinetics is provided by adding graphite to a complex hydride such as a metal-doped alanate, i.e., NaAlH.sub.4. The incorporation of graphite into the complex hydride significantly enhances the rate of hydrogen absorbtion and desorption and lowers the desorption temperature needed to release stored hydrogen.
Blending Hydrogen into Natural Gas Pipeline Networks. A Review of Key Issues
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melaina, M. W.; Antonia, O.; Penev, M.
2013-03-01
This study assesses the potential to deliver hydrogen through the existing natural gas pipeline network as a hydrogen and natural gas mixture to defray the cost of building dedicated hydrogen pipelines. Blending hydrogen into the existing natural gas pipeline network has also been proposed as a means of increasing the output of renewable energy systems such as large wind farms.
Hydrogen-water vapor mixtures: Control of hydrothermal atmospheres by hydrogen osmosis
Shaw, H.R.
1963-01-01
Experiments at 700??C and 800 bars total pressure demonstrate positive deviations from ideality for mixtures of hydrogen and H2O gases. The deviations are greater than predicted with Stockmayer's method. The composition of the mixture and the fugacity of hydrogen are controlled by diffusing hydrogen through metallic membranes. The results give the fugacities of both H 2O and oxygen.
Design of a Hydrogen Community for Santa Monica
2011-01-01
transportation of hydrogen fuel have been discussed. Cascade simulations were conducted for different compressor capacities and storage bank configurations...been discussed. Cascade simulations were conducted for different compressor capacities and storage bank configurations. Hydrogen dispensing using...tanks (Storage capacity of 198 kg of H2 at 350 and 700 bar), four compressors which assist in dispensing 400 kg of hydrogen in 14 hours, two hydrogen
2012-01-01
Background Second generation hydrogen fermentation technologies using organic agricultural and forestry wastes are emerging. The efficient microbial fermentation of hexoses and pentoses resulting from the pretreatment of lingocellulosic materials is essential for the success of these processes. Results Conversion of arabinose and glucose to hydrogen, by extreme thermophilic, anaerobic, mixed cultures was studied in continuous (70°C, pH 5.5) and batch (70°C, pH 5.5 and pH 7) assays. Two expanded granular sludge bed (EGSB) reactors, Rarab and Rgluc, were continuously fed with arabinose and glucose, respectively. No significant differences in reactor performance were observed for arabinose and glucose organic loading rates (OLR) ranging from 4.3 to 7.1 kgCOD m-3 d-1. However, for an OLR of 14.2 kgCOD m-3 d-1, hydrogen production rate and hydrogen yield were higher in Rarab than in Rgluc (average hydrogen production rate of 3.2 and 2.0 LH2 L-1 d-1 and hydrogen yield of 1.10 and 0.75 molH2 mol-1substrate for Rarab and Rgluc, respectively). Lower hydrogen production in Rgluc was associated with higher lactate production. Denaturing gradient gel electrophoresis (DGGE) results revealed no significant difference on the bacterial community composition between operational periods and between the reactors. Increased hydrogen production was observed in batch experiments when hydrogen partial pressure was kept low, both with arabinose and glucose as substrate. Sugars were completely consumed and hydrogen production stimulated (62% higher) when pH 7 was used instead of pH 5.5. Conclusions Continuous hydrogen production rate from arabinose was significantly higher than from glucose, when higher organic loading rate was used. The effect of hydrogen partial pressure on hydrogen production from glucose in batch mode was related to the extent of sugar utilization and not to the efficiency of substrate conversion to hydrogen. Furthermore, at pH 7.0, sugars uptake, hydrogen production and yield were higher than at pH 5.5, with both arabinose and glucose as substrates. PMID:22330180
Evaluating different concentrations of hydrogen peroxide in an automated room disinfection system.
Murdoch, L E; Bailey, L; Banham, E; Watson, F; Adams, N M T; Chewins, J
2016-09-01
A comparative study was made on the efficacy of 5, 10 and 35% weight by weight (w/w) hydrogen peroxide solutions when applied using an automated room disinfection system. Six-log biological indicators of methicillin-resistant Staphylococcus aureus (MRSA) and Geobacillus stearothermophilus were produced on stainless steel coupons and placed within a large, sealed, environmentally controlled enclosure. Five percent hydrogen peroxide was distributed throughout the enclosure using a Bioquell hydrogen peroxide vapour generator (BQ-50) for 40 min and left to reside for a further 200 min. Biological indicators were removed at 10-min intervals throughout the first 120 min of the process. The experiment was repeated for 10 and 35% hydrogen peroxide solutions. Five percent and 10% hydrogen peroxide solutions failed to achieve any reduction of MRSA, but achieved full kill of G. stearothermophilus spores at 70 and 40 min respectively. Thirty-five percent hydrogen peroxide achieved a 6-log reduction of MRSA after 30 min and full kill of G. stearothermophilus at 20 min. The concentration of 5% hydrogen peroxide within the enclosure after the 200-min dwell was measured at 9·0 ppm. This level exceeds the 15-min Short Term Exposure Limit (STEL) for hydrogen peroxide of 2·0 ppm. Users of automated hydrogen peroxide disinfection systems should review system efficacy and room re-entry protocols in light of these results. This research allows hospital infection control teams to consider the impact and risks of using low concentrations of hydrogen peroxide for disinfection within their facilities, and to question automated room disinfection system providers on the efficacy claims they make. The evidence that low concentration hydrogen peroxide solutions do not rapidly, autonomously break down, is in contradiction to the claims made by some hydrogen peroxide equipment providers and raises serious health and safety concerns. Facilities using hydrogen peroxide systems that claim autonomous break down of hydrogen peroxide should introduce monitoring procedures to ensure rooms are safe for re-entry and patient occupation. © 2016 The Society for Applied Microbiology.
Safe Detection System for Hydrogen Leaks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lieberman, Robert A.; Beshay, Manal
2012-02-29
Hydrogen is an "environmentally friendly" fuel for future transportation and other applications, since it produces only pure ("distilled") water when it is consumed. Thus, hydrogen-powered vehicles are beginning to proliferate, with the total number of such vehicles expected to rise to nearly 100,000 within the next few years. However, hydrogen is also an odorless, colorless, highly flammable gas. Because of this, there is an important need for hydrogen safety monitors that can warn of hazardous conditions in vehicles, storage facilities, and hydrogen production plants. To address this need, IOS has developed a unique intrinsically safe optical hydrogen sensing technology, andmore » has embodied it in detector systems specifically developed for safety applications. The challenge of using light to detect a colorless substance was met by creating chemically-sensitized optical materials whose color changes in the presence of hydrogen. This reversible reaction provides a sensitive, reliable, way of detecting hydrogen and measuring its concentration using light from low-cost LEDs. Hydrogen sensors based on this material were developed in three completely different optical formats: point sensors ("optrodes"), integrated optic sensors ("optical chips"), and optical fibers ("distributed sensors") whose entire length responds to hydrogen. After comparing performance, cost, time-to-market, and relative market need for these sensor types, the project focused on designing a compact optrode-based single-point hydrogen safety monitor. The project ended with the fabrication of fifteen prototype units, and the selection of two specific markets: fuel cell enclosure monitoring, and refueling/storage safety. Final testing and development of control software for these markets await future support.« less
Effect of species, life stage, and water temperature on the toxicity of hydrogen peroxide to fish
Rach, J.J.; Schreier, Theresa M.; Howe, G.E.; Redman, S.D.
1997-01-01
Hydrogen peroxide is a drug of low regulatory priority status that is effective in treating fish and fish eggs infected by fungi. However, only limited information is available to guide fish culturists in administering hydrogen peroxide to diseased fish. Laboratory tests were conducted to determine (1) the sensitivity of brown trout Salmo trutta, lake trout Salvelinus namaycush, fathead minnow Pimephales promelas, walleye Stizostedion vitreum, channel catfish Ictalurus punctatus, and bluegill Lepomis, machrochirus to hydrogen peroxide treatments; (2) the sensitivity of various life stages of rainbow trout Oncorhynchus mykiss to hydrogen peroxide treatments; and (3) the effect of water temperature on the acute toxicity of hydrogen peroxide to three fish species. Fish were exposed to hydrogen peroxide concentrations ranging from 100 to 5,000 mu L/L (ppm) for 15-min or 45-min treatments every other day for four consecutive treatments to determine the sensitivity of various species and life stages of fish. Except for walleye, most species of fish tested (less than or equal to 2 g) tolerated hydrogen peroxide of 1,000 mu L/L or greater. Walleyes were sensitive to hydrogen peroxide concentrations as low as 100 mu L/L. A correlation was found between the toxicity of hydrogen peroxide and the life stages of rainbow trout; larger fish were more sensitive. Generally, the toxicity of hydrogen peroxide increased for all species as water temperature increased. The results of these experiments demonstrate that it is important to consider the effects of species, life stage, and water temperature when conducting hydrogen peroxide treatments.
Kato, Shinya; Matsuoka, Daigo; Miwa, Nobuhiko
2015-08-01
We prepared nano-bubble hydrogen-dissolved water (nano-H water) which contained hydrogen nano-bubbles of <717-nm diameter for 54% of total bubbles. In the DMPO-spin trap electron spin resonance (ESR) method, the DMPO-OH:MnO ratio, being attributed to amounts of hydroxyl radicals (OH), was 2.78 for pure water (dissolved hydrogen [DH]≤0.01 ppm, oxidation-reduction potential [ORP]=+324 mV), 2.73 for tap water (0.01 ppm, +286 mV), 2.93 for commercially available hydrogen water (0.075 ppm, +49 mV), and 2.66 for manufactured hydrogen water (0.788 ppm, -614 mV), whereas the nano-H water (0.678 ppm, -644 mV) exhibited 2.05, showing the superiority of nano-H water to other types of hydrogen water in terms of OH-scavenging activity. Then, the reduction activity of nano-H water was assessed spectrophotometrically by the 2,2'-bipyridyl method. Differential absorbance at 530 nm was in the order: 0.018 for pure water, 0.055 for tap water, 0.079 for nano-H water, 0.085 for commercially available hydrogen water, and 0.090 for manufactured hydrogen water, indicating a prominent reduction activity of hydrogen water and nano-H water against oxidation in ascorbate-coupled ferric ion-bipyridyl reaction. Thus, nano-H water has an improved antioxidant activity as compared to hydrogen water of similar DH-level, indicating the more marked importance of nano-bubbles rather than the concentration of hydrogen in terms of OH-scavenging. Copyright © 2015 Elsevier B.V. All rights reserved.
Hydrogen-bonding Interactions between Apigenin and Ethanol/Water: A Theoretical Study
NASA Astrophysics Data System (ADS)
Zheng, Yan-Zhen; Zhou, Yu; Liang, Qin; Chen, Da-Fu; Guo, Rui; Lai, Rong-Cai
2016-10-01
In this work, hydrogen-bonding interactions between apigenin and water/ethanol were investigated from a theoretical perspective using quantum chemical calculations. Two conformations of apigenin molecule were considered in this work. The following results were found. (1) For apigenin monomer, the molecular structure is non-planar, and all of the hydrogen and oxygen atoms can be hydrogen-bonding sites. (2) Eight and seven optimized geometries are obtained for apigenin (I)-H2O/CH3CH2OH and apigenin (II)-H2O/CH3CH2OH complexes, respectively. In apigenin, excluding the aromatic hydrogen atoms in the phenyl substituent, all other hydrogen atoms and the oxygen atoms form hydrogen-bonds with H2O and CH3CH2OH. (3) In apigenin-H2O/CH3CH2OH complexes, the electron density and the E(2) in the related localized anti-bonding orbital are increased upon hydrogen-bond formation. These are the cause of the elongation and red-shift of the X-H bond. The sum of the charge change transfers from the hydrogen-bond acceptor to donor. The stronger interaction makes the charge change more intense than in the less stable structures. (4) Most of the hydrogen-bonds in the complexes are electrostatic in nature. However, the C4-O5···H, C9-O4···H and C13-O2···H hydrogen-bonds have some degree of covalent character. Furthermore, the hydroxyl groups of the apigenin molecule are the preferred hydrogen-bonding sites.
Hydrogen generation by reaction of Si nanopowder with neutral water
NASA Astrophysics Data System (ADS)
Kobayashi, Yuki; Matsuda, Shinsuke; Imamura, Kentaro; Kobayashi, Hikaru
2017-05-01
Si and its oxide are nonpoisonous materials, and thus, it can be taken for medical effects. We have developed a method of generation of hydrogen by use of reactions of Si nanopowder with water in the neutral pH region. Si nanopowder is fabricated by the simple bead milling method. Si nanopowder reacts with water to generate hydrogen even in cases where pH is set at the neutral region between 7.0 and 8.6. The hydrogen generation rate strongly depends on pH and in the case of pH 8.0, ˜55 ml/g hydrogen which corresponds to that contained in approximately 3 L saturated hydrogen-rich water is generated in 1 h. The reaction rate for hydrogen generation greatly increases with pH, indicating that the reacting species is hydroxide ions. The change of pH after the hydrogen generation reaction is negligibly low compared with that estimated assuming that hydroxide ions are consumed by the reaction. From these results, we conclude the following reaction mechanism: Si nanopowder reacts with hydroxide ions in the rate-determining reaction to form hydrogen molecules, SiO2, and electrons in the conduction band. Then, generated electrons are accepted by water molecules, resulting in production of hydrogen molecules and hydroxide ions. The hydrogen generation rate strongly depends on the crystallite size of Si nanopowder, but not on the size of aggregates of Si nanopowder. The present study shows a possibility to use Si nanopowder for hydrogen generation in the body in order to eliminate hydroxyl radicals which cause various diseases.
NASA Technical Reports Server (NTRS)
Shanabarger, Mickey R.
1993-01-01
The goal of this program was to develop an understanding of heterogeneous kinetic processes for those molecular species which produce gaseous hydrogen degradation of the mechanical properties of metallic structural materials. Although hydrogen degradation of metallic materials is believed to result from dissolved protonic hydrogen, the heterogeneous hydrogen interface transport processes often dominate the kinetics of degradation. The initial step in the interface transport process is the dissociative chemisorption of the molecular species at the metal surface followed by hydrogen absorption into and transport through the bulk. The interaction of hydrogen with the surfaces of alpha-2(Ti3Al) titanium aluminide, gamma(TiAl) titanium aluminide, and beryllium were studied.
Jensen, H S; Nielsen, A H; Lens, P N L; Hvitved-Jacobsen, T; Vollertsen, J
2009-11-01
Corrosion of concrete sewer pipes caused by hydrogen sulphide is a problem in many sewer networks. The mechanisms of production and fate of hydrogen sulphide in the sewer biofilms and wastewater as well as its release to the sewer atmosphere are largely understood. In contrast, the mechanisms of the uptake of hydrogen sulphide on the concrete surfaces and subsequent concrete corrosion are basically unknown. To shed light on these mechanisms, the uptake of hydrogen sulphide from a sewer gas phase was compared to the biological hydrogen sulphide removal potential of the concrete corrosion products. The results showed that both microbial degradation at and sorption to the concrete surfaces were important for the uptake of hydrogen sulphide on the concrete surfaces.
Hydrogen sulfide emission in sewer networks: a two-phase modeling approach to the sulfur cycle.
Yongsiri, C; Vollertsen, J; Hvitved-Jacobsen, T
2004-01-01
Wherever transport of anaerobic wastewater occurs, potential problems associated with hydrogen sulfide in relation to odor nuisance, health risk and corrosion exist. Improved understanding of prediction of hydrogen sulfide emission into the sewer atmosphere is needed for better evaluation of such problems in sewer networks. A two-phase model for emission of hydrogen sulfide along stretches of gravity sewers is presented to estimate the occurrence of both sulfide in the water phase and hydrogen sulfide in the sewer atmosphere. The model takes into account air-water mass transfer of hydrogen sulfide and interactions with other processes in the sulfur cycle. Various emission scenarios are simulated to illustrate the release characteristics of hydrogen sulfide.
NASA Astrophysics Data System (ADS)
Boyd, Russell J.; Choi, Sai Cheng
1986-08-01
The topological properties of the charge density of the hydrogen-bonded complexes between nitrites and hydrogen chloride correlate linearly with theoretical estimates of the hydrogen-bond energy. At the 6-31G ** level, the hydrogenbond energies range from a low of 10 kJ/mol m NCCN—HC1 to a high of 38 kJ/mol in LiCN—HCl. A linear relationship between the charge density at the hydrogen-bond critical point and the NH internuclear distance of the RCN—HC1 complexes indicates that the generalization of the bond-length-bond-order relationship of CC bonds due to Bader, Tang, Tal and Biegler-König can be extended to intermolecular hydrogen bonding.
Detection of hydrogen peroxide with graphyne
NASA Astrophysics Data System (ADS)
Majidi, R.; Karami, A. R.
2013-12-01
The effect of hydrogen peroxide on the electronic properties of graphyne has been investigated to explore the possibility of using graphyne based biosensor. We have used density functional theory to study the electronic properties of γ-graphyne in the presence of different number of hydrogen peroxide. The optimal adsorption position, orientation, and distance of hydrogen peroxide adsorbed on the graphyne sheet have been determined by calculating adsorption energy. It is found that γ-graphyne which is an intrinsic semiconductor becomes an n-type semiconductor due to the presence of hydrogen peroxide. The energy band gap of γ-graphyne is decreased by increasing the number of hydrogen peroxide. The results demonstrate that γ-graphyne is a promising candidate for biosensor application because of its electrical sensitivity to hydrogen peroxide.
A biosensor for hydrogen peroxide detection based on electronic properties of carbon nanotubes
NASA Astrophysics Data System (ADS)
Majidi, Roya
2013-01-01
Density functional theory has been used to study the effect of hydrogen peroxide on the electronic properties of single walled carbon nanotubes. The metallic and semiconducting carbon nanotubes have been considered in the presence of different number of hydrogen peroxide. The results indicate that hydrogen peroxide has no significant effect on the metallic nanotube and these nanotubes remain to be metallic. In contrast, the electronic properties of the semiconducting nanotubes are so sensitive to hydrogen peroxide. The energy band gap of these nanotubes is decreased by increasing the number of hydrogen peroxide. The electronic sensivity of the carbon nanotubes to hydrogen peroxide opens new insights into developing biosensors based on the single walled carbon nanotubes.
NASA Astrophysics Data System (ADS)
Xue, Wenhua; Dang, Hongli; Liu, Yingdi; Jentoft, Friederike; Resasco, Daniel; Wang, Sanwu
2014-03-01
In the study of catalytic reactions of biomass, furfural conversion over metal catalysts with the presence of hydrogen has attracted wide attention. We report ab initio molecular dynamics simulations for furfural and hydrogen on the Pd(111) surface at finite temperatures. The simulations demonstrate that the presence of hydrogen is important in promoting furfural conversion. In particular, hydrogen molecules dissociate rapidly on the Pd(111) surface. As a result of such dissociation, atomic hydrogen participates in the reactions with furfural. The simulations also provide detailed information about the possible reactions of hydrogen with furfural. Supported by DOE (DE-SC0004600). This research used the supercomputer resources of the XSEDE, the NERSC Center, and the Tandy Supercomputing Center.
Gonzalez-Cortes, S.; Slocombe, D. R.; Xiao, T.; Aldawsari, A.; Yao, B.; Kuznetsov, V. L.; Liberti, E.; Kirkland, A. I.; Alkinani, M. S.; Al-Megren, H. A.; Thomas, J. M.; Edwards, P. P.
2016-01-01
Hydrogen is often described as the fuel of the future, especially for application in hydrogen powered fuel-cell vehicles (HFCV’s). However, its widespread implementation in this role has been thwarted by the lack of a lightweight, safe, on-board hydrogen storage material. Here we show that benign, readily-available hydrocarbon wax is capable of rapidly releasing large amounts of hydrogen through microwave-assisted catalytic decomposition. This discovery offers a new material and system for safe and efficient hydrogen storage and could facilitate its application in a HFCV. Importantly, hydrogen storage materials made of wax can be manufactured through completely sustainable processes utilizing biomass or other renewable feedstocks. PMID:27759014
Stability of hydrogenated graphene: a first-principles study
Yi, Ding; Yang, Liu; Xie, Shijie; ...
2015-02-10
In order to explain the disagreement between present theoretical and experimental investigations on the stability of hydrogenated graphene, we have systematically studied hydrogenated graphene with different configurations from the consideration of single-side and double-side adsorption using first-principles calculations. Both binding energy and formation energy are calculated to characterize the stability of the system. It is found that single-side hydrogenated graphene is always unstable. However, for double-side hydrogenation, some configurations are stable due to the increased carbon–carbon sp 3 hybridization compared to single-side hydrogenation. Furthermore, it is found that the system is energetically favorable when an equal number of hydrogen atomsmore » are adsorbed on each side of the graphene.« less
Positron Spectroscopy of Nanodiamonds after Hydrogen Sorption
Laptev, Roman; Abzaev, Yuri; Lider, Andrey; Ivashutenko, Alexander
2018-01-01
The structure and defects of nanodiamonds influence the hydrogen sorption capacity. Positronium can be used as a sensor for detecting places with the most efficient capture of hydrogen atoms. Hydrogenation of carbon materials was performed from gas atmosphere. The concentration of hydrogen absorbed by the sample depends on the temperature and pressure. The concentration 1.2 wt % is achieved at the temperature of 243 K and the pressure of 0.6 MPa. The hydrogen saturation of nanodiamonds changes the positron lifetime. Increase of sorption cycle numbers effects the positron lifetime, as well as the parameters of the Doppler broadening of annihilation line. The electron-positron annihilation being a sensitive method, it allows detecting the electron density fluctuation of the carbon material after hydrogen saturation. PMID:29324712
Guidelines for use of Hydrogen Fuel in Commercial Vehicles
DOT National Transportation Integrated Search
2008-01-01
Over the next 50 years, hydrogen use is expected to grow dramatically as an automotive and electrical power source fuel. As hydrogen becomes commercially viable, the safety concerns associated with hydrogen systems, equipment, and operation are of co...
High capacity hydrogen storage nanocomposite materials
Zidan, Ragaiy; Wellons, Matthew S.
2017-12-12
A novel hydrogen absorption material is provided comprising a mixture of a lithium hydride with a fullerene. The subsequent reaction product provides for a hydrogen storage material which reversibly stores and releases hydrogen at temperatures of about 270.degree. C.
High capacity hydrogen storage nanocomposite materials
Zidan, Ragaiy; Wellons, Matthew S
2015-02-03
A novel hydrogen absorption material is provided comprising a mixture of a lithium hydride with a fullerene. The subsequent reaction product provides for a hydrogen storage material which reversibly stores and releases hydrogen at temperatures of about 270.degree. C.
Photosynthetic water splitting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greenbaum, E.
1981-01-01
The photosynthetic unit of hydrogen evolution, the turnover time of photosynthetic hydrogen production, and hydrogenic photosynthesis are discussed in the section on previous work. Recent results are given on simultaneous photoproduction of hydrogen and oxygen, kinetic studies, microscopic marine algae-seaweeds, and oxygen profiles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhatia, M. A.; Solanki, K. N., E-mail: kiran.solanki@asu.edu; Groh, S.
2014-08-14
In this study, we present atomistic mechanisms of 1/2 [111](11{sup ¯}0) edge dislocation interactions with point defects (hydrogen and vacancies) and hydrogen solute atmospheres in body centered cubic (bcc) iron. In metals such as iron, increases in hydrogen concentration can increase dislocation mobility and/or cleavage-type decohesion. Here, we first investigate the dislocation mobility in the presence of various point defects, i.e., change in the frictional stress as the edge dislocation interacts with (a) vacancy, (b) substitutional hydrogen, (c) one substitutional and one interstitial hydrogen, (d) interstitial hydrogen, (e) vacancy and interstitial hydrogen, and (f) two interstitial hydrogen. Second, we examinemore » the role of a hydrogen-solute atmosphere on the rate of local dislocation velocity. The edge dislocation simulation with a vacancy in the compression side of the dislocation and an interstitial hydrogen atom at the tension side exhibit the strongest mechanical response, suggesting a higher potential barrier and hence, the higher frictional stress (i.e., ∼83% higher than the pure iron Peierls stress). In the case of a dislocation interacting with a vacancy on the compressive side, the vacancy binds with the edge dislocation, resulting in an increase in the friction stress of about 28% when compared with the Peierls stress of an edge dislocation in pure iron. Furthermore, as the applied strain increases, the vacancy migrates through a dislocation transportation mechanism by attaining a velocity of the same order as the dislocation velocity. For the case of the edge dislocation interacting with interstitial hydrogen on the tension side, the hydrogen atom jumps through one layer perpendicular to the glide plane during the pinning-unpinning process. Finally, our simulation of dislocation interactions with hydrogen show first an increase in the local dislocation velocity followed by a pinning of the dislocation core in the atmosphere, resulting in resistance to dislocation motion as the dislocation moves though the hydrogen-solute atmospheres. With this systematic, atomistic study of the edge dislocation with various point defects, we show significant increase in obstacle strengths in addition to an increase in the local dislocation velocity during interaction with solute atmospheres. The results have implications for constitutive development and modeling of the hydrogen effect on dislocation mobility and deformation in metals.« less
Schimmelmann, A.; Lewan, M.D.; Wintsch, R.P.
1999-01-01
Immature source rock chips containing different types of kerogen (I, II, IIS, III) were artificially matured in isotopically distinct waters by hydrous pyrolysis and by pyrolysis in supercritical water. Converging isotopic trends of inorganic (water) and organic (kerogen, bitumen, oil) hydrogen with increasing time and temperature document that water-derived hydrogen is added to or exchanged with organic hydrogen, or both, during chemical reactions that take place during thermal maturation. Isotopic mass-balance calculations show that, depending on temperature (310-381??C), time (12-144 h), and source rock type, between ca. 45 and 79% of carbon-bound hydrogen in kerogen is derived from water. Estimates for bitumen and oil range slightly lower, with oil-hydrogen being least affected by water-derived hydrogen. Comparative hydrous pyrolyses of immature source rocks at 330??C for 72 h show that hydrogen in kerogen, bitumen, and expelled oil/wax ranks from most to least isotopically influenced by water-derived hydrogen in the order IIS > II ~ III > I. Pyrolysis of source rock containing type II kerogen in supercritical water at 381 ??C for 12 h yields isotopic results that are similar to those from hydrous pyrolysis at 350??C for 72 h, or 330??C for 144 h. Bulk hydrogen in kerogen contains several percent of isotopically labile hydrogen that exchanges fast and reversibly with hydrogen in water vapor at 115??C. The isotopic equilibration of labile hydrogen in kerogen with isotopic standard water vapors significantly reduces the analytical uncertainty of D/H ratios when compared with simple D/H determination of bulk hydrogen in kerogen. If extrapolation of our results from hydrous pyrolysis is permitted to natural thermal maturation at lower temperatures, we suggest that organic D/H ratios of fossil fuels in contact with formation waters are typically altered during chemical reactions, but that D/H ratios of generated hydrocarbons are subsequently little or not affected by exchange with water hydrogen at typical reservoir conditions over geologic time. It will be difficult to utilize D/H ratios of thermally mature bulk or fractions of organic matter to quantitatively reconstruct isotopic aspects of paleoclimate and paleoenvironment. Hope resides in compound-specific D/H ratios of thermally stable, extractable biomarkers ('molecular fossils') that are less susceptible to hydrogen exchange with water-derived hydrogen.
NASA Astrophysics Data System (ADS)
Kwak, Young Jun; Choi, Eunho; Song, Myoung Youp
2018-03-01
The addition of carboxymethylcellulose, sodium salt (CMC) might improve the hydrogen uptake and release properties of Mg since it has a relatively low melting point and the melting of CMC during milling in hydrogen (reaction-accompanying milling) may make the milled samples be in good states to absorb and release hydrogen rapidly and to have a large hydrogen-storage capacity. Samples with compositions of 95 w/o Mg + 5 w/o CMC (named Mg-5CMC) and 90 w/o Mg + 10 w/o CMC (named Mg-10CMC) were prepared by adding CMC via reaction-accompanying milling. Activation of Mg-10CMC was completed after about 3 hydrogen uptake-release cycles. Mg-10CMC had a higher initial hydrogen uptake rate and a larger amount of hydrogen absorbed in 60 min, U (60 min), than Mg-5CMC before and after activation. At the cycle number of three (CN = 3), Mg-10CMC had a very high initial hydrogen uptake rate (1.56 w/o H/min) and a large U (60 min) (5.57 w/o H) at 593 K in hydrogen of 12 bar, showing that the activated Mg-10CMC has an effective hydrogen-storage capacity of about 5.6 w/o at 593 K in hydrogen of 12 bar at CN = 3. At CN = 2, Mg-10CMC released 1.00 w/o H in 2.5 min, 4.67 w/o H in 10 min, and 4.76 w/o H in 60 min at 648 K in hydrogen of 1.0 bar. The milling in hydrogen of Mg with CMC is believed to generate imperfections and cracks and reduce the particle size. The addition of 10 w/o CMC was more effective on the initial hydrogen uptake rate and U (60 min) compared with the 10 w/o additions of NbF5, TaF5, Fe2O3, and MnO, and the 10 w/o simultaneous addition of Ni, Fe, and Ti. To the best of our knowledge, this study is the first in which a polymer CMC is added to Mg by reaction-accompanying milling to improve the hydrogen storage properties of Mg.
A first-principles study of hydrogen storage capacity based on Li-Na-decorated silicene.
Sheng, Zhe; Wu, Shujing; Dai, Xianying; Zhao, Tianlong; Hao, Yue
2018-05-23
Surface decoration with alkali metal adatoms has been predicted to be promising for silicene to obtain high hydrogen storage capacity. Herein, we performed a detailed study of the hydrogen storage properties of Li and Na co-decorated silicene (Li-Na-decorated silicene) based on first-principles calculations using van der Waals correction. The hydrogen adsorption behaviors, including the adsorption order, the maximum capacity, and the corresponding mechanism were analyzed in detail. Our calculations show that up to three hydrogen molecules can firmly bind to each Li atom and six for each Na atom, respectively. The hydrogen storage capacity is estimated to be as high as 6.65 wt% with a desirable average adsorption energy of 0.29 eV/H2. It is confirmed that both the charge-induced electrostatic interaction and the orbital hybridizations play a great role in hydrogen storage. Our results may enhance our fundamental understanding of the hydrogen storage mechanism, which is of great importance for the practical application of Li-Na-decorated silicene in hydrogen storage.
Effects of hydrogen-charging on the properties of S235JR steel
NASA Astrophysics Data System (ADS)
Pietkun-Greber, Izabela
2017-10-01
The paper presents the test results of the S235JR steel susceptibility to damage under the influence of hydrogen. The test of mechanical properties was performed on the basis of a static stretch test of non-hydrogenated samples and after cathodic polarization. Electrochemical measurements for the assessment of corrosion resistance of non-hydrogenated and hydrogenated steels were carried out using open circuit potential measurement and registering of potentiodynamic polarization curves in a three-electrode measuring system. Hydrogenation was carried out for between 3 and 24 hours in a solution of 0.1 N sulfuric acid (VI) with the addition of 2 mg/dm 3 of arsenic oxide (III) at an electric current density of 10 mA/cm2. The hydrogen content in the steel before and after saturation with hydrogen was determined using the analyzer. Fracture samples after tensile test were observed using scanning electron microscope. The results of the research showed that as the hydrogen concentration in the examined steel increased (the lengthening of the saturation time), the deterioration of its mechanical and electrochemical properties occurred.
Survival of hydrogen sulfide oxidizing bacteria on corroded concrete surfaces of sewer systems.
Jensen, H S; Nielsen, A H; Hvitved-Jacobsen, T; Vollertsen, J
2008-01-01
The activity of hydrogen sulfide oxidizing bacteria within corroded concrete from a sewer manhole was investigated. The bacteria were exposed to hydrogen sulfide starvation for up till 18 months, upon which their hydrogen sulfide oxidizing activity was measured. It was tested whether the observed reduction in biological activity was caused by a biological lag phase or by decay of the bacteria. The results showed that the bacterial activity declined with approximately 40% pr. month during the first two months of hydrogen sulfide starvation. After 2-3 months of starvation, the activity stabilized. Even after 6 months of starvation, exposure to hydrogen sulfide for 6 hours a day on three successive days could restore the bacteriological activity to about 80% of the initial activity. After 12 months of starvation, the activity could, however, not be restored, and after 18 months the biological activity approached zero. The long-term survival aspect of concrete corroding bacteria has implications for predicting hydrogen sulfide corrosion in sewer systems subject to irregular hydrogen sulfide loadings, e.g. as they occur in temperate climates where hydrogen sulfide often is a summer-problem only.
Hernández, Mario Andrés; Rodríguez Susa, Manuel; Andres, Yves
2014-09-01
Coffee mucilage (CM), a novel substrate produced as waste from agricultural activity in Colombia, the largest fourth coffee producer in the world, was used for hydrogen production. The study evaluated three ratios (C1-3) for co-digestion of CM and swine manure (SM), and an increase in organic load to improve hydrogen production (C4). The hydrogen production was improved by a C/N ratio of 53.4 used in C2 and C4. The average hydrogen production rate in C4 was 7.6 NL H2/LCMd, which indicates a high hydrogen potential compare to substrates such as POME and wheat starch. In this condition, the biogas composition was 0.1%, 50.6% and 39.0% of methane, carbon dioxide and hydrogen, respectively. The butyric and acetic fermentation pathways were the main routes identified during hydrogen production which kept a Bu/Ac ratio at around 1.0. A direct relationship between coffee mucilage, biogas and cumulative hydrogen volume was established. Copyright © 2014 Elsevier Ltd. All rights reserved.
Zhang, Shou-Chi; Lai, Qi-Heng; Lu, Yuan; Liu, Zhi-Dan; Wang, Tian-Min; Zhang, Chong; Xing, Xin-Hui
2016-10-01
Hydrogen was produced from steam-exploded corn stover by using a combination of the cellulolytic bacterium Clostridium cellulolyticum and non-cellulolytic hydrogen-producing bacteria. The highest hydrogen yield of the co-culture system with C. cellulolyticum and Citrobacter amalonaticus reached 51.9 L H2/kg total solid (TS). The metabolites from the co-culture system were significantly different from those of the mono-culture systems. Formate, which inhibits the growth of C. cellulolyticum, could be consumed by the hydrogen-evolving bacteria, and transformed into hydrogen. Glucose and xylose were released from corn stover via hydrolysis by C. cellulolyticum and were quickly utilized in dark fermentation with the co-cultured hydrogen-producing bacteria. Because the hydrolysis of corn stover by C. cellulolyticum was much slower than the utilization of glucose and xylose by the hydrogen-evolving bacteria, the sugar concentrations were always maintained at low levels, which favored a high hydrogen molar yield. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
On-Board Hydrogen Gas Production System For Stirling Engines
Johansson, Lennart N.
2004-06-29
A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed. A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed.
[The origin of hydrogen peroxide in oral cavity and its role in oral microecology balance].
Keke, Zhang; Xuedong, Zhou; Xin, Xu
2017-04-01
Hydrogen peroxide, an important antimicrobial agent in oral cavity, plays a significant role in the balance of oral microecology. At the early stage of biofilm formation, about 80% of the detected initial colonizers belong to the genus Streptococcus. These oral streptococci use different oxidase to produce hydrogen peroxide. Recent studies showed that the produced hydrogen peroxide plays a critical role in modulating oral microecology. Hydrogen peroxide modulates biofilm development attributed to its growth inhibitory nature. Hydrogen peroxide production is closely associated with extracellular DNA(eDNA) release from microbe and the development of its competent cell which are critical for biofilm development and also serves as source for horizontal gene transfer. Microbe also can reduce the damage to themselves through several detoxification mechanisms. Moreover, hydrogen peroxide is also involved in the regulation of interactions between oral microorganisms and host. Taken together, hydrogen peroxide is an imperative ecological factor that contributes to the microbial equilibrium in the oral cavity. Here we will give a brief review of both the origin and the function in the oral microecology balance of hydrogen peroxide.
Ye, Jianchao C.; Ong, Mitchell T.; Heo, Tae Wook; ...
2015-11-05
Atomic hydrogen exists ubiquitously in graphene materials made by chemical methods. Yet determining the effect of hydrogen on the electrochemical performance of graphene remains a significant challenge. Here we report the experimental observations of high rate capacity in hydrogen-treated 3-dimensional (3D) graphene nanofoam electrodes for lithium ion batteries. Structural and electronic characterization suggests that defect sites and hydrogen play synergistic roles in disrupting sp 2 graphene to facilitate fast lithium transport and reversible surface binding, as evidenced by the fast charge-transfer kinetics and increased capacitive contribution in hydrogen-treated 3D graphene. In concert with experiments, multiscale calculations reveal that defect complexesmore » in graphene are prerequisite for low-temperature hydrogenation, and that the hydrogenation of defective or functionalized sites at strained domain boundaries plays a beneficial role in improving rate capacity by opening gaps to facilitate easier Li penetration. Additional reversible capacity is provided by enhanced lithium binding near hydrogen-terminated edge sites. Furthermore, these findings provide qualitative insights in helping the design of graphene-based materials for high-power electrodes.« less
Investment in hydrogen tri-generation for wastewater treatment plants under uncertainties
NASA Astrophysics Data System (ADS)
Gharieh, Kaveh; Jafari, Mohsen A.; Guo, Qizhong
2015-11-01
In this article, we present a compound real option model for investment in hydrogen tri-generation and onsite hydrogen dispensing systems for a wastewater treatment plant under price and market uncertainties. The ultimate objective is to determine optimal timing and investment thresholds to exercise initial and subsequent options such that the total savings are maximized. Initial option includes investment in a 1.4 (MW) Molten Carbonate Fuel Cell (MCFC) fed by mixture of waste biogas from anaerobic digestion and natural gas, along with auxiliary equipment. Produced hydrogen in MCFC via internal reforming, is recovered from the exhaust gas stream using Pressure Swing Adsorption (PSA) purification technology. Therefore the expansion option includes investment in hydrogen compression, storage and dispensing (CSD) systems which creates additional revenue by selling hydrogen onsite in retail price. This work extends current state of investment modeling within the context of hydrogen tri-generation by considering: (i) Modular investment plan for hydrogen tri-generation and dispensing systems, (ii) Multiple sources of uncertainties along with more realistic probability distributions, (iii) Optimal operation of hydrogen tri-generation is considered, which results in realistic saving estimation.
Chen, Yinguang; Xiao, Naidong; Zhao, Yuxiao; Mu, Hui
2012-06-01
The effects of carbohydrate/protein ratio (CH/Pr) and pH on hydrogen production from waste activated sludge (WAS) were investigated. Firstly, the optimal pH value for hydrogen production was influenced by the CH/Pr ratio, which was pH 10, 9, 8, 8, 8 and 6 at the CH/Pr ratio (COD based) of 0.2 (sole sludge), 1, 2.4, 3.8, 5 and 6.6, respectively. The maximal hydrogen production (100.6 mL/g-COD) was achieved at CH/Pr of 5 and pH 8, which was due to the synergistic effect of carbohydrate addition on hydrogen production, the enhancement of sludge protein degradation and protease and amylase activities, and the suitable fermentation pathway for hydrogen production. As hydrogen consumption was observed at pH 8, in order to further increase hydrogen production a two-step pH control strategy (pH 8+pH 10) was developed and the hydrogen production was further improved by 17.6%. Copyright © 2012 Elsevier Ltd. All rights reserved.
Hu, Chengcheng; Choy, Sing-Ying; Giannis, Apostolos
2018-05-01
Fluorescent and incandescent lighting systems were applied for batch photofermentative hydrogen production by four purple non-sulfur photosynthetic bacteria (PNSB). The hydrogen production efficiency of Rhodopseudomonas palustris, Rhodobacter sphaeroides, Rhodobacter capsulatus, and Rhodospirillum rubrum was evaluated using different carbon sources (acetate, butyrate, lactate, and malate). Incandescent light was found to be more effective for bacteria cell growth and hydrogen production. It was observed that PNSB followed substrate selection criteria for hydrogen production. Only R. palustris was able to produce hydrogen using most carbon sources. Cell density was almost constant, but cell growth rate and hydrogen production were significantly varied under the different lighting systems. The kinetics study suggested that initial substrate concentration had a positive correlation with lag phase duration. Among the PNSB, R. palustris grew faster and had higher hydrogen yields of 1.58, 4.92, and 2.57 mol H 2 /mol using acetate, butyrate, and lactate, respectively. In the integrative approach with dark fermentation effluents rich in organic acids, R. palustris should be enriched in the phototrophic microbial consortium of the continuous hydrogen production system.
Ye, Jianchao; Ong, Mitchell T.; Heo, Tae Wook; Campbell, Patrick G.; Worsley, Marcus A.; Liu, Yuanyue; Shin, Swanee J.; Charnvanichborikarn, Supakit; Matthews, Manyalibo J.; Bagge-Hansen, Michael; Lee, Jonathan R.I.; Wood, Brandon C.; Wang, Y. Morris
2015-01-01
Atomic hydrogen exists ubiquitously in graphene materials made by chemical methods. Yet determining the effect of hydrogen on the electrochemical performance of graphene remains a significant challenge. Here we report the experimental observations of high rate capacity in hydrogen-treated 3-dimensional (3D) graphene nanofoam electrodes for lithium ion batteries. Structural and electronic characterization suggests that defect sites and hydrogen play synergistic roles in disrupting sp2 graphene to facilitate fast lithium transport and reversible surface binding, as evidenced by the fast charge-transfer kinetics and increased capacitive contribution in hydrogen-treated 3D graphene. In concert with experiments, multiscale calculations reveal that defect complexes in graphene are prerequisite for low-temperature hydrogenation, and that the hydrogenation of defective or functionalized sites at strained domain boundaries plays a beneficial role in improving rate capacity by opening gaps to facilitate easier Li penetration. Additional reversible capacity is provided by enhanced lithium binding near hydrogen-terminated edge sites. These findings provide qualitative insights in helping the design of graphene-based materials for high-power electrodes. PMID:26536830
Hydrogenation catalysts were derived from Mo(Co)/sub 6//alumina
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowman, R.G.
1979-01-01
Alumina hydrogenation catalysts were derived from mo(CO)/sub 6//alumina with characteristics dependent upon the activation temperature, degree of alumina hydroxylation, and carrier gas used. Decomposition of Mo(CO)/sub 6/ at 100/sup 0/C on partially hydroxylated alumina in helium or hydrogen yielded Mo(CO)/sub 3//alumina, which catalyzed olefin metathesis in helium carrier and both metathesis and hydrogenation in hydrogen carrier. Decomposition of Mo(CO)/sub 6/ on dehydroxylated alumina at 100/sup 0/C in helium and in hydrogen resulted in complete decarbonylation and partial oxidation of molybdenum; this catalyst was 10 times as active as Mo(CO)/sub 3//alumina for hydrogenation. Decomposition of Mo(CO)/sub 6/ on dehydroxylated alumina atmore » 500/sup 0/C in helium gave essentially Mo(0)/alumina, which catalyzed hydrogenation, methanation, and hydrogenolysis in hydrogen. Catalysts activated on dehydroxylated alumina were ten times more active for methanation at 300/sup 0/C than catalyst activated on partially hydroxylated alumina and showed differences in selectivity for cyclopropane hydrogenolysis at 100/sup 0/C.« less
Neira D'Angelo, M F; Ordomsky, V; Schouten, J C; van der Schaaf, J; Nijhuis, T A
2014-07-01
Hydrogen was produced by aqueous-phase reforming (APR) of sorbitol in a carbon-on-alumina tubular membrane reactor (4 nm pore size, 7 cm long, 3 mm internal diameter) that allows the hydrogen gas to permeate to the shell side, whereas the liquid remains in the tube side. The hydrophobic nature of the membrane serves to avoid water loss and to minimize the interaction between the ceramic support and water, thus reducing the risks of membrane degradation upon operation. The permeation of hydrogen is dominated by the diffusivity of the hydrogen in water. Thus, higher operation temperatures result in an increase of the flux of hydrogen. The differential pressure has a negative effect on the flux of hydrogen due to the presence of liquid in the larger pores. The membrane was suitable for use in APR, and yielded 2.5 times more hydrogen than a reference reactor (with no membrane). Removal of hydrogen through the membrane assists in the reaction by preventing its consumption in undesired reactions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.