Sample records for hydrogen deuterium carbon

  1. Energy Levels of Hydrogen and Deuterium

    National Institute of Standards and Technology Data Gateway

    SRD 142 NIST Energy Levels of Hydrogen and Deuterium (Web, free access)   This database provides theoretical values of energy levels of hydrogen and deuterium for principle quantum numbers n = 1 to 200 and all allowed orbital angular momenta l and total angular momenta j. The values are based on current knowledge of the revelant theoretical contributions including relativistic, quantum electrodynamic, recoil, and nuclear size effects.

  2. Cryogenic tritium-hydrogen-deuterium and deuterium-tritium layer implosions with high density carbon ablators in near-vacuum hohlraums

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meezan, N. B., E-mail: meezan1@llnl.gov; Hopkins, L. F. Berzak; Pape, S. Le

    2015-06-15

    High Density Carbon (or diamond) is a promising ablator material for use in near-vacuum hohlraums, as its high density allows for ignition designs with laser pulse durations of <10 ns. A series of Inertial Confinement Fusion (ICF) experiments in 2013 on the National Ignition Facility [Moses et al., Phys. Plasmas 16, 041006 (2009)] culminated in a deuterium-tritium (DT) layered implosion driven by a 6.8 ns, 2-shock laser pulse. This paper describes these experiments and comparisons with ICF design code simulations. Backlit radiography of a tritium-hydrogen-deuterium (THD) layered capsule demonstrated an ablator implosion velocity of 385 km/s with a slightly oblate hot spot shape.more » Other diagnostics suggested an asymmetric compressed fuel layer. A streak camera-based hot spot self-emission diagnostic (SPIDER) showed a double-peaked history of the capsule self-emission. Simulations suggest that this is a signature of low quality hot spot formation. Changes to the laser pulse and pointing for a subsequent DT implosion resulted in a higher temperature, prolate hot spot and a thermonuclear yield of 1.8 × 10{sup 15} neutrons, 40% of the 1D simulated yield.« less

  3. Regio-Selective Intramolecular Hydrogen/Deuterium Exchange in Gas-Phase Electron Transfer Dissociation

    NASA Astrophysics Data System (ADS)

    Hamuro, Yoshitomo

    2017-05-01

    Protein backbone amide hydrogen/deuterium exchange mass spectrometry (HDX-MS) typically utilizes enzymatic digestion after the exchange reaction and before MS analysis to improve data resolution. Gas-phase fragmentation of a peptic fragment prior to MS analysis is a promising technique to further increase the resolution. The biggest technical challenge for this method is elimination of intramolecular hydrogen/deuterium exchange (scrambling) in the gas phase. The scrambling obscures the location of deuterium. Jørgensen's group pioneered a method to minimize the scrambling in gas-phase electron capture/transfer dissociation. Despite active investigation, the mechanism of hydrogen scrambling is not well-understood. The difficulty stems from the fact that the degree of hydrogen scrambling depends on instruments, various parameters of mass analysis, and peptide analyzed. In most hydrogen scrambling investigations, the hydrogen scrambling is measured by the percentage of scrambling in a whole molecule. This paper demonstrates that the degree of intramolecular hydrogen/deuterium exchange depends on the nature of exchangeable hydrogen sites. The deuterium on Tyr amide of neurotensin (9-13), Arg-Pro-Tyr-Ile-Leu, migrated significantly faster than that on Ile or Leu amides, indicating the loss of deuterium from the original sites is not mere randomization of hydrogen and deuterium but more site-specific phenomena. This more precise approach may help understand the mechanism of intramolecular hydrogen exchange and provide higher confidence for the parameter optimization to eliminate intramolecular hydrogen/deuterium exchange during gas-phase fragmentation.

  4. Regio-Selective Intramolecular Hydrogen/Deuterium Exchange in Gas-Phase Electron Transfer Dissociation.

    PubMed

    Hamuro, Yoshitomo

    2017-05-01

    Protein backbone amide hydrogen/deuterium exchange mass spectrometry (HDX-MS) typically utilizes enzymatic digestion after the exchange reaction and before MS analysis to improve data resolution. Gas-phase fragmentation of a peptic fragment prior to MS analysis is a promising technique to further increase the resolution. The biggest technical challenge for this method is elimination of intramolecular hydrogen/deuterium exchange (scrambling) in the gas phase. The scrambling obscures the location of deuterium. Jørgensen's group pioneered a method to minimize the scrambling in gas-phase electron capture/transfer dissociation. Despite active investigation, the mechanism of hydrogen scrambling is not well-understood. The difficulty stems from the fact that the degree of hydrogen scrambling depends on instruments, various parameters of mass analysis, and peptide analyzed. In most hydrogen scrambling investigations, the hydrogen scrambling is measured by the percentage of scrambling in a whole molecule. This paper demonstrates that the degree of intramolecular hydrogen/deuterium exchange depends on the nature of exchangeable hydrogen sites. The deuterium on Tyr amide of neurotensin (9-13), Arg-Pro-Tyr-Ile-Leu, migrated significantly faster than that on Ile or Leu amides, indicating the loss of deuterium from the original sites is not mere randomization of hydrogen and deuterium but more site-specific phenomena. This more precise approach may help understand the mechanism of intramolecular hydrogen exchange and provide higher confidence for the parameter optimization to eliminate intramolecular hydrogen/deuterium exchange during gas-phase fragmentation. Graphical Abstract ᅟ.

  5. Carbon impurities behavior and its impact on ion thermal confinement in high-ion-temperature deuterium discharges on the Large Helical Device

    NASA Astrophysics Data System (ADS)

    Mukai, K.; Nagaoka, K.; Takahashi, H.; Yokoyama, M.; Murakami, S.; Nakano, H.; Ida, K.; Yoshinuma, M.; Seki, R.; Kamio, S.; Fujiwara, Y.; Oishi, T.; Goto, M.; Morita, S.; Morisaki, T.; Osakabe, M.; LHD Experiment Group1, the

    2018-07-01

    The behavior of carbon impurities in deuterium plasmas and its impact on thermal confinement were investigated in comparison with hydrogen plasmas in the Large Helical Device (LHD). Deuterium plasma experiments have been started in the LHD and high-ion-temperature plasmas with central ion temperature (T i) of 10 keV were successfully obtained. The thermal confinement improvement could be sustained for a longer time compared with hydrogen plasmas. An isotope effect was observed in the time evolution of the carbon density profiles. A transiently peaked profile was observed in the deuterium plasmas due to the smaller carbon convection velocity and diffusivity in the deuterium plasmas compared with the hydrogen plasmas. The peaked carbon density profile was strongly correlated to the ion thermal confinement improvement. The peaking of the carbon density profile will be one of the clues to clarify the unexplained mechanisms for the formations of ion internal transport barrier and impurity hole on LHD. These results could also lead to a better understanding of the isotope effect in the thermal confinement in torus plasma.

  6. Distribution of deuterium and hydrogen in Zr and Ti foil assemblies under the action of a pulsed deuterium high-temperature plasma

    NASA Astrophysics Data System (ADS)

    Bondarenko, G. G.; Volobuev, I. V.; Eriskin, A. A.; Kobzev, A. P.; Nikulin, V. Ya.; Peregudova, E. N.; Silin, P. V.; Borovitskaya, I. V.

    2017-09-01

    Deuteron and proton elastic recoil detection analysis is used to study the accumulation and redistribution of deuterium and hydrogen in assemblies of two high-pure zirconium or titanium foils upon pulsed action of high-temperature deuterium plasma (PHTDP) in a plasma-focus installation PF-4. It is noted that, under the action of PHTDP, an implanted deuterium and hydrogen gas impurity are redistributed in the irradiated foils in large depths, which are significantly larger than the deuterium ion free paths (at their maximum velocity to 108 cm/s). The observed phenomenon is attributed to the carrying out of implanted deuterium and hydrogen under the action of powerful shock waves formed in the metallic foils under the action of PHTDP and/or the acceleration of diffusion of deuterium and hydrogen atoms under the action of a compression-rarefaction shock wave at the shock wave front with the redistribution of deuterium and hydrogen to large depths.

  7. SAIDE: A Semi-Automated Interface for Hydrogen/Deuterium Exchange Mass Spectrometry.

    PubMed

    Villar, Maria T; Miller, Danny E; Fenton, Aron W; Artigues, Antonio

    2010-01-01

    Deuterium/hydrogen exchange in combination with mass spectrometry (DH MS) is a sensitive technique for detection of changes in protein conformation and dynamics. Since temperature, pH and timing control are the key elements for reliable and efficient measurement of hydrogen/deuterium content in proteins and peptides, we have developed a small, semiautomatic interface for deuterium exchange that interfaces the HPLC pumps with a mass spectrometer. This interface is relatively inexpensive to build, and provides efficient temperature and timing control in all stages of enzyme digestion, HPLC separation and mass analysis of the resulting peptides. We have tested this system with a series of standard tryptic peptides reconstituted in a solvent containing increasing concentration of deuterium. Our results demonstrate the use of this interface results in minimal loss of deuterium due to back exchange during HPLC desalting and separation. For peptides reconstituted in a buffer containing 100% deuterium, and assuming that all amide linkages have exchanged hydrogen with deuterium, the maximum loss of deuterium content is only 17% of the label, indicating the loss of only one deuterium molecule per peptide.

  8. SAIDE: A Semi-Automated Interface for Hydrogen/Deuterium Exchange Mass Spectrometry

    PubMed Central

    Villar, Maria T.; Miller, Danny E.; Fenton, Aron W.; Artigues, Antonio

    2011-01-01

    Deuterium/hydrogen exchange in combination with mass spectrometry (DH MS) is a sensitive technique for detection of changes in protein conformation and dynamics. Since temperature, pH and timing control are the key elements for reliable and efficient measurement of hydrogen/deuterium content in proteins and peptides, we have developed a small, semiautomatic interface for deuterium exchange that interfaces the HPLC pumps with a mass spectrometer. This interface is relatively inexpensive to build, and provides efficient temperature and timing control in all stages of enzyme digestion, HPLC separation and mass analysis of the resulting peptides. We have tested this system with a series of standard tryptic peptides reconstituted in a solvent containing increasing concentration of deuterium. Our results demonstrate the use of this interface results in minimal loss of deuterium due to back exchange during HPLC desalting and separation. For peptides reconstituted in a buffer containing 100% deuterium, and assuming that all amide linkages have exchanged hydrogen with deuterium, the maximum loss of deuterium content is only 17% of the label, indicating the loss of only one deuterium molecule per peptide. PMID:25309638

  9. Polarized hydrogen/deuterium molecules

    NASA Astrophysics Data System (ADS)

    Shestakov, Yu V.; Nikolenko, D. M.; Rachek, I. A.; Sadykov, R. Sh; Toporkov, D. K.; Yurchenko, A. V.; Zevakov, S. A.

    2017-12-01

    The prototype of a polarized molecular hydrogen/deuterium source which is based on the classical Stern-Gerlach separation scheme has been tested at the Budker Institute of Nuclear Physics (BINP), Novosibirsk. It consists of the circular slit nozzle cooled down to 6.5 K and the two superconducting sextupole magnets. The flux of polarized hydrogen molecules of 3·1012 mol/s was measured for a total gas flow through the nozzle of 5·10-2 Torr·l/s. The obtained results will be used to develop a much more intense source of polarized molecules.

  10. Hydrogen/deuterium exchange in mass spectrometry.

    PubMed

    Kostyukevich, Yury; Acter, Thamina; Zherebker, Alexander; Ahmed, Arif; Kim, Sunghwan; Nikolaev, Eugene

    2018-03-30

    The isotopic exchange approach is in use since the first observation of such reactions in 1933 by Lewis. This approach allows the investigation of the pathways of chemical and biochemical reactions, determination of structure, composition, and conformation of molecules. Mass spectrometry has now become one of the most important analytical tools for the monitoring of the isotopic exchange reactions. Investigation of conformational dynamics of proteins, quantitative measurements, obtaining chemical, and structural information about individual compounds of the complex natural mixtures are mainly based on the use of isotope exchange in combination with high resolution mass spectrometry. The most important reaction is the Hydrogen/Deuterium exchange, which is mainly performed in the solution. Recently we have developed the approach allowing performing of the Hydrogen/Deuterium reaction on-line directly in the ionization source under atmospheric pressure. Such approach simplifies the sample preparation and can accelerate the exchange reaction so that certain hydrogens that are considered as non-labile will also participate in the exchange. The use of in-ionization source H/D exchange in modern mass spectrometry for structural elucidation of molecules serves as the basic theme in this review. We will focus on the mechanisms of the isotopic exchange reactions and on the application of in-ESI, in-APCI, and in-APPI source Hydrogen/Deuterium exchange for the investigation of petroleum, natural organic matter, oligosaccharides, and proteins including protein-protein complexes. The simple scenario for adaptation of H/D exchange reactions into mass spectrometric method is also highlighted along with a couple of examples collected from previous studies. © 2018 Wiley Periodicals, Inc.

  11. Measurement of the ratio of hydrogen to deuterium at the KSTAR 2009 experimental campaign

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwak, Jong-Gu; Wang, Son Jong; Kim, Sun Ho

    The control of the ratio of hydrogen to the deuterium is one of the very important issues for ion cyclotron range of frequency (ICRF) minority heating as well as the plasma wall interaction in the tokamak. The ratio of hydrogen to deuterium during the tokamak shot was deduced from the emission spectroscopy measurements during the KSTAR 2009 experimental campaign. Graphite tiles were used for the plasma facing components (PFCs) at KSTAR and its surface area exposed to the plasma was about 11 m{sup 2}. The data showed that it remained as high as around 50% during the campaign period becausemore » graphite tiles were exposed to the air for about two months and the hydrogen contents at the tiles are not fully pumped out due to the lack of baking on the PFC in the 2009 campaign. The validation of the spectroscopy method was checked by using the Zeeman effects and the ratio of hydrogen to the deuterium is compared with results from the residual gas analysis. During the tokamak shot, the ratio is low below 10% initially and saturated after around 1 s. When there is a hydrogen injection to the vessel via ion cyclotron wall conditioning and the boronization process where the carbone is used, the ratio of the hydrogen to the deuterium is increased by up to 100% and it recovers to around 50% after one day of operation. However it does not decrease below 50% at the end of the experimental campaign. It was found that the full baking on the PFC (with a high temperature and sufficient vacuum pumping) is required for the ratio control which guarantees the efficient ICRF heating at the KSTAR 2010 experimental campaign.« less

  12. Observations of interstellar hydrogen and deuterium toward Alpha Centauri A

    NASA Technical Reports Server (NTRS)

    Landsman, W. B.; Henry, R. C.; Moos, H. W.; Linsky, J. L.

    1984-01-01

    A composite profile is presented of the Ly-alpha emission line of Alpha Cen A, obtained from 10 individual spectra with the high-resolution spectrograph aboard the International Ultraviolet Explorer (IUE) satellite. There is excellent overall agreement with two previous Copernicus observations. Interstellar deuterium is detected, and a lower limit is set on the deuterium to hydrogen ratio of nDI/nHI greater than 8 x 10 to the -6th. In addition, the deuterium bulk velocity appears blueshifted by 8 + or - 2 km/s with respect to interstellar hydrogen, suggesting a nonuniform medium along the line of sight.

  13. Para-hydrogen induced polarization of amino acids, peptides and deuterium-hydrogen gas.

    PubMed

    Glöggler, Stefan; Müller, Rafael; Colell, Johannes; Emondts, Meike; Dabrowski, Martin; Blümich, Bernhard; Appelt, Stephan

    2011-08-14

    Signal Amplification by Reversible-Exchange (SABRE) is a method of hyperpolarizing substrates by polarization transfer from para-hydrogen without hydrogenation. Here, we demonstrate that this method can be applied to hyperpolarize small amounts of all proteinogenic amino acids and some chosen peptides down to the nanomole regime and can be detected in a single scan in low-magnetic fields down to 0.25 mT (10 kHz proton frequency). An outstanding feature is that depending on the chemical state of the used catalyst and the investigated amino acid or peptide, hyperpolarized hydrogen-deuterium gas is formed, which was detected with (1)H and (2)H NMR spectroscopy at low magnetic fields of B(0) = 3.9 mT (166 kHz proton frequency) and 3.2 mT (20 kHz deuterium frequency).

  14. Effects of chemical states of carbon on deuterium retention in carbon-containing materials

    NASA Astrophysics Data System (ADS)

    Oyaidzu, Makoto; Kimura, Hiromi; Nakahata, Toshihiko; Nishikawa, Yusuke; Tokitani, Masayuki; Oya, Yasuhisa; Iwakiri, Hirotomo; Yoshida, Naoaki; Okuno, Kenji

    2007-08-01

    Deuterium retention behavior in highly oriented pyrolytic graphite (HOPG), poly-crystalline diamond, poly-crystalline SiC, sintered WC, and converted B 4C were investigated to reveal tritium behavior in re-deposition and co-deposition layers. Such layers would contain carbon, when the first wall and/or divertor were made of graphite or carbon-containing materials. Furthermore, the employment of other materials such as tungsten, and first wall conditioning such as boronization would complicate the layers. No different deuterium trapping sites due to carbon from those in HOPG were found in all the samples, where two deuterium trapping processes were observed: hot atom chemical trapping of energetic deuterium by a dangling bond of carbon and thermochemical trapping of thermalized deuterium in a constituent atom vacancy surrounded by carbons. Additionally, the latter reaction could be easily counteracted by or competed with the other deuterium trapping reactions by constituent atoms.

  15. Implanted Deuterium Retention and Release in Carbon-Coated Beryllium

    NASA Astrophysics Data System (ADS)

    Anderl, R. A.; Longhurst, G. R.; Pawelko, R. J.; Oates, M. A.

    1997-06-01

    Deuterium implantation experiments have been conducted on samples of clean and carbon-coated beryllium. These studies entailed preparation and characterization of beryllium samples coated with carbon thicknesses of 100, 500, and 1000 Å. Heat treatment of a beryllium sample coated with carbon to a thickness of approximately 100 Å revealed that exposure to a temperature of 400°C under high vacuum conditions was sufficient to cause substantial diffusion of beryllium through the carbon layer, resulting in more beryllium than carbon at the surface. Comparable concentrations of carbon and beryllium were observed in the bulk of the coating layer. Higher than expected oxygen levels were observed throughout the coating layer as well. Samples were exposed to deuterium implantation followed by thermal desorption without exposure to air. Differences were observed in deuterium retention and postimplantation release behavior in the carbon-coated samples as compared with bare samples. For comparable implantation conditions (sample temperature of 400°C and an incident deuterium flux of approximately 6 × 1019 D/m2-s), the quantity of deuterium retained in the bare sample was less than that retained in the carbon-coated samples. Further, the release of the deuterium took place at lower temperatures for the bare beryllium surfaces than for carbon-coated beryllium samples.

  16. On-tissue Direct Monitoring of Global Hydrogen/Deuterium Exchange by MALDI Mass Spectrometry: Tissue Deuterium Exchange Mass Spectrometry (TDXMS)*

    PubMed Central

    Quanico, Jusal; Franck, Julien

    2016-01-01

    Hydrogen/deuterium exchange mass spectrometric (H/DXMS) methods for protein structural analysis are conventionally performed in solution. We present Tissue Deuterium Exchange Mass Spectrometry (TDXMS), a method to directly monitor deuterium uptake on tissue, as a means to better approximate the deuterium exchange behavior of proteins in their native microenvironment. Using this method, a difference in deuterium uptake behavior was observed when the same proteins were monitored in solution and on tissue. The higher maximum deuterium uptake at equilibrium for all proteins analyzed in solution suggests a more open conformation in the absence of interacting partners normally observed on tissue. We also demonstrate a difference in the deuterium uptake behavior of a few proteins across different morphological regions of the same tissue section. Modifications of the total number of hydrogens exchanged, as well as the kinetics of exchange, were both observed. These results provide information on the implication of protein interactions with partners as well as on the conformational changes related to these interactions, and illustrate the importance of examining protein deuterium exchange behavior in the presence of its specific microenvironment directly at the level of tissues. PMID:27512083

  17. Buscopan labeled with carbon-14 and deuterium.

    PubMed

    Latli, Bachir; Stiasni, Michael; Hrapchak, Matt; Li, Zhibin; Grinberg, Nelu; Lee, Heewon; Busacca, Carl A; Senanayake, Chris H

    2016-11-01

    Hyosine butyl bromide, the active ingredient in Buscopan, is an anticholinergic and antimuscarinic drug used to treat pain and discomfort caused by abdominal cramps. A straightforward synthesis of carbon-14- and deuterium-labeled Buscopan was developed using scopolamine, n-butyl-1- 14 C bromide, and n-butyl- 2 H 9 bromide, respectively. In a second carbon-14 synthesis, the radioactive carbon was incorporated in the tropic acid moiety to follow its metabolism. Herein, we describe the detailed preparations of carbon-14- and deuterium-labeled Buscopan. Copyright © 2016 John Wiley & Sons, Ltd.

  18. The pion nucleon scattering lengths from pionic hydrogen and deuterium

    NASA Astrophysics Data System (ADS)

    Schröder, H.-Ch.; Badertscher, A.; Goudsmit, P. F. A.; Janousch, M.; Leisi, H. J.; Matsinos, E.; Sigg, D.; Zhao, Z. G.; Chatellard, D.; Egger, J.-P.; Gabathuler, K.; Hauser, P.; Simons, L. M.; Rusi El Hassani, A. J.

    2001-07-01

    This is the final publication of the ETH Zurich Neuchâtel PSI collaboration on the pionic hydrogen and deuterium precision X-ray experiments. We describe the recent hydrogen 3 p 1 s measurement, report on the determination of the Doppler effect correction to the transition line width, analyze the deuterium shift measurement and discuss implications of the combined hydrogen and deuterium results. From the pionic hydrogen 3 p 1 s transition experiments we obtain the strong-interaction energy level shift \\varepsilon_{1s} = -7.108±0.013 (stat.)±0.034 (syst.) eV and the total decay width Γ_{1s} = 0.868±0.040 (stat.)±0.038 (syst.) eV of the 1s state. Taking into account the electromagnetic corrections we find the hadronic π N s-wave scattering amplitude a_{π-prightarrowπ-p} = 0.0883±0.0008 m_{π}^{-1} for elastic scattering and a_{π-prightarrowπ0n} = -0.128±0.006 m_{π} ^{-1} for single charge exchange, respectively. We then combine the pionic hydrogen results with the 1 s level shift measurement on pionic deuterium and test isospin symmetry of the strong interaction: our data are still compatible with isospin symmetry. The isoscalar and isovector π N scattering lengths (within the framework of isospin symmetry) are found to be b_0 = -0.0001^{+0.0009}_{-0.0021} m_{π}^{-1} and b1 = -0.0885^{+0.0010}_{-0.0021} m_{π} ^{-1}, respectively. Using the GMO sum rule, we obtain from b_1 a new value of the π N coupling constant (g_{π N} = 13.21_{-0.05}^{+0.11}) from which follows the Goldberger Treiman discrepancy Δ_{{GT}} =0.027_{-0.008}^{+0.012}. The new values of b_0 and g_{π N} imply an increase of the nucleon sigma term by at least 9 MeV.

  19. Ordered ground states of metallic hydrogen and deuterium

    NASA Technical Reports Server (NTRS)

    Ashcroft, N. W.

    1981-01-01

    The physical attributes of some of the more physically distinct ordered states of metallic hydrogen and metallic deuterium at T = 0 and nearby are discussed. The likelihood of superconductivity in both is considered with respect to the usual coupling via the density fluctuations of the ions.

  20. Influence of Murchison Minerals on Hydrogen-Deuterium Exchange of Amino Acids

    NASA Astrophysics Data System (ADS)

    Lerner, N. R.

    1993-07-01

    The amino acids found on the Murchison meteorite are deuterium enriched. For the glycine-alanine fraction, delta D = +2448 per mil, and for the alpha-amino isobutyric acid fraction, delta D = +149 per mil [1]. In order to retain such levels of deuterium enrichment, the amino acids found in Murchison must have not only retained the deuterium enrichment of their interstellar precursors (delta D > +1500 per mil [2]) during synthesis, as has been recently shown [3], but they must have also retained their deuterium label during the aqueous alteration phase [4]. By measuring the rates of deuterium exchange of amino acids with D(sub)2O, limits can be set on the length of time and the conditions under which the Murchison parent body experienced an aqueous environment. The rates of hydrogen-deuterium exchange of nondeuterated glycine, alanine, alpha-amino isobutyric acid, and amino diacetic acid have been measured in D(sub)2O as a function of temperature, pH, and the presence of Murchison minerals. In addition to the amino and carboxylic hydrogens, only the alpha- hydrogens of glycine, alanine, and amino diacetic acid are found to exchange. Even for solutions maintained for weeks at temperatures as high as 120 degrees C, no exchange was observed with the hydrogens of the methyl groups of alanine or alpha-amino isobutyric acid. The rate of exchange for alpha-hydrogens of amino acids is first-order with respect to the amino acid concentration. Increasing the pH of the solution markedly increases the rate of exchange. For example, at 115 degrees C and pH 4.0, 7.0, and 10 the rates are 14, 30, and 125 yr^-1 respectively for glycine and 2.0, 3.5, and 14 yr^-1 respectively for alanine. In a pH-6.0 D(sub)2O solution of amino acids containing Murchison dust the rates are 135 yr^-1 for glycine and 32 yr^-1 for alanine, rates close to those for the pH 10 solution. Activation energies for exchange were obtained from Arrhenius plots constructed from measurements made between 70 degrees

  1. Modeling of hydrogen/deuterium dynamics and heat generation on palladium nanoparticles for hydrogen storage and solid-state nuclear fusion.

    PubMed

    Tanabe, Katsuaki

    2016-01-01

    We modeled the dynamics of hydrogen and deuterium adsorbed on palladium nanoparticles including the heat generation induced by the chemical adsorption and desorption, as well as palladium-catalyzed reactions. Our calculations based on the proposed model reproduce the experimental time-evolution of pressure and temperature with a single set of fitting parameters for hydrogen and deuterium injection. The model we generated with a highly generalized set of formulations can be applied for any combination of a gas species and a catalytic adsorbent/absorbent. Our model can be used as a basis for future research into hydrogen storage and solid-state nuclear fusion technologies.

  2. Carbon and hydrogen isotope fractionation by moderately thermophilic methanogens

    NASA Astrophysics Data System (ADS)

    Valentine, David L.; Chidthaisong, Amnat; Rice, Andrew; Reeburgh, William S.; Tyler, Stanley C.

    2004-04-01

    A series of laboratory studies were conducted to increase understanding of stable carbon (13C/12C) and hydrogen (D/H) isotope fractionation arising from methanogenesis by moderately thermophilic acetate- and hydrogen-consuming methanogens. Studies of the aceticlastic reaction were conducted with two closely related strains of Methanosaeta thermophila. Results demonstrate a carbon isotope fractionation of only 7‰ (α = 1.007) between the methyl position of acetate and the resulting methane. Methane formed by this process is enriched in 13C when compared with other natural sources of methane; the magnitude of this isotope effect raises the possibility that methane produced at elevated temperature by the aceticlastic reaction could be mistaken for thermogenic methane based on carbon isotopic content. Studies of H2/CO2 methanogenesis were conducted with Methanothermobacter marburgensis. The fractionation of carbon isotopes between CO2 and CH4 was found to range from 22 to 58‰ (1.023 ≤ α ≤ 1.064). Greater fractionation was associated with low levels of molecular hydrogen and steady-state metabolism. The fractionation of hydrogen isotopes between source H2O and CH4 was found to range from 127 to 275‰ (1.16 ≤ α ≤ 1.43). Fractionation was dependent on growth phase with greater fractionation associated with later growth stages. The maximum observed fractionation factor was 1.43, independent of the δD-H2 supplied to the culture. Fractionation was positively correlated with temperature and/or metabolic rate. Results demonstrate significant variability in both hydrogen and carbon isotope fractionation during methanogenesis from H2/CO2. The relatively small fractionation associated with deuterium during H2/CO2 methanogenesis provides an explanation for the relatively enriched deuterium content of biogenic natural gas originating from a variety of thermal environments. Results from these experiments are used to develop a hypothesis that differential

  3. Online hydrogen/deuterium exchange performed in the ion mobility cell of a hybrid mass spectrometer.

    PubMed

    Nagy, Kornél; Redeuil, Karine; Rezzi, Serge

    2009-11-15

    The present paper describes the performance of online, gas-phase hydrogen/deuterium exchange implemented in the ion mobility cell of a quadrupole time-of-flight mass spectrometer. Deuterium oxide and deuterated methanol were utilized to create deuterated vapor that is introduced into the ion mobility region of the mass spectrometer. Hydrogen/deuterium exchange occurs spontaneously in the milliseconds time frame without the need of switching the instrument into ion mobility mode. The exchange was studied in case of low molecular weight molecules and proteins. The observed number of exchanged hydrogens was equal to the number of theoretically exchangeable hydrogens for all low molecular weight compounds. This method needs only minimal instrumental modifications, is simple, cheap, environment friendly, compatible with ultraperformance liquid chromatography, and can be implemented on commercially available instruments. It does not compromise choice of liquid chromatographic solvents and accurate mass or parallel-fragmentation (MS(E)) methods. The performance of this method was compared to that of conventional alternatives where the deuterated solvent is introduced into the cone gas of the instrument. Although the degree of exchange was similar between the two methods, the "cone gas method" requires 10 times higher deuterated solvent volumes (50 muL/min) and offers reduced sensitivity in the tandem mass spectrometry (MS/MS) mode. The presented method is suggested as a standard future element of mass spectrometers to aid online structural characterization of unknowns and to study conformational changes of proteins with hydrogen/deuterium exchange.

  4. Heterogeneous Catalysis: Deuterium Exchange Reactions of Hydrogen and Methane

    ERIC Educational Resources Information Center

    Mirich, Anne; Miller, Trisha Hoette; Klotz, Elsbeth; Mattson, Bruce

    2015-01-01

    Two gas phase deuterium/hydrogen exchange reactions are described utilizing a simple inexpensive glass catalyst tube containing 0.5% Pd on alumina through which gas mixtures can be passed and products collected for analysis. The first of these exchange reactions involves H[subscript 2] + D[subscript 2], which proceeds at temperatures as low as 77…

  5. Effects of lithium-implantation on the hydrogen retention in both a-C:H and a-SiC:H materials submitted to deuterium bombardment

    NASA Astrophysics Data System (ADS)

    Barbier, G.; Ross, G. G.; El Khakani, M. A.; Chevarier, N.; Chevarier, A.

    1997-02-01

    The hydrogen release in plasma facing materials is a challenging problem for the hydrogen recycling. The hydrogen desorption from the a-C:H and a-SiC:H materials induced by deuterium bombardment has been investigated. Prior to the deuterium bombardment, both materials were implanted with different fluences of lithium ions. Before and after each irradiation, depth profiles of H, Li and deuterium were determined by nuclear microanalysis. After deuterium bombardment, it is shown that the retention of the initial hydrogen in both materials was enhanced by increasing the total dose of the implanted Li. For the a-C:H samples, the hydrogen desorption under deuterium bombardment was strongly reduced by lithium implantation. This effect was also evidenced in a-SiC:H samples, even though it is less spectacular than in a-C:H. Also, nuclear analyses showed that the retained dose of deuterium decreases when the lithium concentration increases. This could be a result of the formation of LiH bonds which occurs to the detriment of deuterium retention in both a-C:H and a-SiC:H materials. Preliminary results of both materials exposed to TdeV tokamak discharges confirms the role of Li in hydrogen retention, already observed in deuterium bombardment exposure.

  6. Ultraviolet observations of cool stars. VII - Local interstellar hydrogen and deuterium Lyman-alpha

    NASA Technical Reports Server (NTRS)

    Mcclintock, W.; Henry, R. C.; Linsky, J. L.; Moos, H. W.

    1978-01-01

    High-resolution Copernicus spectra of Epsilon Eri and Epsilon Ind containing interstellar hydrogen and deuterium L-alpha absorption lines are presented, reduced, and analyzed. Parameters of the interstellar hydrogen and deuterium toward these two stars are derived independently, without any assumptions concerning the D/H ratio. Copernicus spectra of Alpha Aur and Alpha Cen A are reanalyzed, and limits on the D/H number-density ratio consistent with the data for all four stars are considered. A comparison of the present estimates for the parameters of the local interstellar medium with those obtained by other techniques shows that there is no compelling evidence for significant variations in the hydrogen density and D/H ratio in the local interstellar medium. On this basis the hypothesis of an approaching local interstellar cloud proposed by Vidal-Madjar et al. (1978) is rejected

  7. High-resolution spectroscopy of the 1S-2S transition of atomic hydrogen and deuterium

    NASA Astrophysics Data System (ADS)

    Schmidt-Kaler, F.; Leibfried, D.; Seel, S.; Zimmermann, C.; König, W.; Weitz, M.; Hänsch, T. W.

    1995-04-01

    Two-photon spectroscopy of the hydrogen 1S-2S transition in a cold atomic beam has reached a resolution Δν/ν of 1 part in 1011 in hydrogen and 7 parts in 1012 in deuterium. The hydrogen and deuterium 1S-2S transition frequencies have been determined with a precision of 1 part in 1011. This leads to an accurate value for the Rydberg constant, while the 1S Lamb shift and the isotope shift are determined with order of magnitude improvements over previous measurements. We describe in detail the 1S-2S spectrometer, calculate the line shape of the resonance, and compare it to the experimental data.

  8. Deuterium Enrichment in Stratospheric Molecular Hydrogen

    NASA Astrophysics Data System (ADS)

    Rahn, T.; Eiler, J.; McCarthy, M. C.; Boering, K. A.; Wennberg, P.; Atlas, E.; Donnelly, S.; Schauffler, S.

    2002-12-01

    Molecular hydrogen (H2) is the second most abundant reduced gas in the atmosphere (after methane) with a globally averaged mixing ratio of ~ 530 ppbv. Its largest source is believed to be photochemical oxidation of methane (C H4) and non-methane hydrocarbons (NMHCs); other recognized sources include biomass burning, fossil fuel burning, nitrogen fixation, and ocean degassing. As with other atmospheric trace gases, the stable isotopic content of H2 has the potential to help quantify various aspects of its production and destruction. The average deuterium content of H2 (expressed as δDH2) is enriched by ~110 ‰ relative to Vienna Standard Mean Ocean Water while CH4 in the troposphere, the precursor for photochemical H2 production, is depleted by ~ 90 ‰ relative to V-SMOW and similar values are expected for NMHCs. Both natural and anthropogenic combustion sources of H2 have been shown to be depleted in deuterium by 200 to 300 ‰ (Gerst and Quay, 2001; Rahn et al., 2002), and the ocean and N2 fixation sources are expected to be in near thermodynamic equilibrium with local H2O and should have deuterium levels of ~-700 ‰ (Rahn et al., 2002). In order to offset these deuterium depleted sources and account for the observed tropospheric δDH2, the balancing loss processes must discriminate against reaction with HD and/or the total fractionation associated with CH4 oxidation and the subsequent reactions leading to H2 must favor production of deuterated H2. We have analyzed a suite of stratospheric air samples in order to investigate the photochemical processes influencing the deuterium content of H2. While the mixing ratio of H2 is nearly constant, the deuterium content increases such that δD=440 ‰ in samples with a stratospheric mean age of ~6 years. The constant mixing ratio results from the fact that production due to CH4 oxidation and loss due to H2 oxidation are approximately equal. The observed trend in δD of stratospheric H2 can only be accounted for by an

  9. Hydrogen and deuterium in the local interstellar medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murthy, J.N.

    1987-01-01

    This work reports on the results of a series of IUE observations of interstellar HI and DI Ly..cap alpha.. absorption against the chromospheric Ly..cap alpha.. emission of the nearby late-type stars ..cap alpha.. Cen B(1.3 pc), epsilon Eri (3.3 pc), Procyon (3.5 pc), Altair (5.1 pc), Capella (13.2 pc), and HR 1099 (33 pc). The density, velocity dispersion, and bulk velocity of the neutral hydrogen along the line of sight to each of these stars was derived. Lower limits were placed on the deuterium-to-hydrogen (D/H) ratio towards the same stars. These IUE results are generally consistent with previous observations ofmore » the same stars with the Copernicus satellite showing that this modeling procedure is independent of stellar variations over a period of several years. The HI absorption profile towards Altair shows a broad saturated core and steep line wings, consistent with a multicomponent interstellar medium in that direction. The bulk velocities towards the other stars are consistent with a bulk flow from the approximate direction of the galactic center but do show local variations from a uniform flow, possibly indicating a complicated velocity structure even in the solar neighborhood. Interstellar deuterium is detected towards every star except Altair and the derived values for the D/H ratio are consistent with those previously found with Copernicus.« less

  10. Refinement of the experimental dynamic structure factor for liquid para-hydrogen and ortho-deuterium using semi-classical quantum simulation.

    PubMed

    Smith, Kyle K G; Poulsen, Jens Aage; Cunsolo, A; Rossky, Peter J

    2014-01-21

    The dynamic structure factor of liquid para-hydrogen and ortho-deuterium in corresponding thermodynamic states (T = 20.0 K, n = 21.24 nm(-3)) and (T = 23.0 K, n = 24.61 nm(-3)), respectively, has been computed by both the Feynman-Kleinert linearized path-integral (FK-LPI) and Ring-Polymer Molecular Dynamics (RPMD) methods and compared with Inelastic X Ray Scattering spectra. The combined use of computational and experimental methods enabled us to reduce experimental uncertainties in the determination of the true sample spectrum. Furthermore, the refined experimental spectrum of para-hydrogen and ortho-deuterium is consistently reproduced by both FK-LPI and RPMD results at momentum transfers lower than 12.8 nm(-1). At larger momentum transfers the FK-LPI results agree with experiment much better for ortho-deuterium than for para-hydrogen. More specifically we found that for k ∼ 20.0 nm(-1) para-hydrogen provides a test case for improved approximations to quantum dynamics.

  11. Analysis of phosphoinositide 3-kinase inhibitors by bottom-up electron-transfer dissociation hydrogen/deuterium exchange mass spectrometry

    PubMed Central

    Masson, Glenn R.; Maslen, Sarah L.

    2017-01-01

    Until recently, one of the major limitations of hydrogen/deuterium exchange mass spectrometry (HDX-MS) was the peptide-level resolution afforded by proteolytic digestion. This limitation can be selectively overcome through the use of electron-transfer dissociation to fragment peptides in a manner that allows the retention of the deuterium signal to produce hydrogen/deuterium exchange tandem mass spectrometry (HDX-MS/MS). Here, we describe the application of HDX-MS/MS to structurally screen inhibitors of the oncogene phosphoinositide 3-kinase catalytic p110α subunit. HDX-MS/MS analysis is able to discern a conserved mechanism of inhibition common to a range of inhibitors. Owing to the relatively minor amounts of protein required, this technique may be utilised in pharmaceutical development for screening potential therapeutics. PMID:28381646

  12. IUE observations of hydrogen and deuterium in the local interstellar medium

    NASA Technical Reports Server (NTRS)

    Murthy, J.; Henry, R. C.; Moos, H. W.; Landsman, W. B.; Linsky, J. L.

    1987-01-01

    High-resolution Ly-alpha spectra of the late-type stars Epsilon Eri, Procyon, Altair, Capella, and HR 1099 taken with the short-wavelength camera on IUE are presented. The density, velocity dispersion, and bulk velocity of the interstellar H I toward each of the stars is derived from the spectra. Lower limits on the deuterium-to-hydrogen ratio toward these stars are obtained.

  13. Refinement of the experimental dynamic structure factor for liquid para-hydrogen and ortho-deuterium using semi-classical quantum simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Kyle K. G., E-mail: kylesmith@utexas.edu; Rossky, Peter J., E-mail: peter.rossky@austin.utexas.edu; Poulsen, Jens Aage, E-mail: jens72@chem.gu.se

    The dynamic structure factor of liquid para-hydrogen and ortho-deuterium in corresponding thermodynamic states (T = 20.0 K, n = 21.24 nm{sup −3}) and (T = 23.0 K, n = 24.61 nm{sup −3}), respectively, has been computed by both the Feynman-Kleinert linearized path-integral (FK-LPI) and Ring-Polymer Molecular Dynamics (RPMD) methods and compared with Inelastic X Ray Scattering spectra. The combined use of computational and experimental methods enabled us to reduce experimental uncertainties in the determination of the true sample spectrum. Furthermore, the refined experimental spectrum of para-hydrogen and ortho-deuterium is consistently reproduced by both FK-LPI and RPMD results at momentum transfers lower than 12.8 nm{sup −1}.more » At larger momentum transfers the FK-LPI results agree with experiment much better for ortho-deuterium than for para-hydrogen. More specifically we found that for k ∼ 20.0 nm{sup −1} para-hydrogen provides a test case for improved approximations to quantum dynamics.« less

  14. Sulfur and Hydrogen Isotope Anomalies in Meteorite Sulfonic Acids

    NASA Technical Reports Server (NTRS)

    Cooper, George W.; Thiemens, Mark H.; Jackson, Teresa L.; Chang, Sherwood

    1997-01-01

    Intramolecular carbon, hydrogen, and sulfur isotope ratios were measured on a homologous series of organic sulfonic acids discovered in the Murchison meteorite. Mass-independent sulfur isotope fractionations were observed along with high deuterium/hydrogen ratios. The deuterium enrichments indicate formation of the hydrocarbon portion of these compounds in a low-temperature environment that is consistent with that of interstellar clouds. Sulfur-33 enrichments observed in methanesulfonic acid could have resulted from gas-phase ultraviolet irradiation of a precursor, carbon disulfide. The source of the sulfonic acid precursors may have been the reactive interstellar molecule carbon monosulfide.

  15. Conformational Assessment of Adnectin and Adnectin-Drug Conjugate by Hydrogen/Deuterium Exchange Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Huang, Richard Y.-C.; O'Neil, Steven R.; Lipovšek, Daša; Chen, Guodong

    2018-05-01

    Higher-order structure (HOS) characterization of therapeutic protein-drug conjugates for comprehensive assessment of conjugation-induced protein conformational changes is an important consideration in the biopharmaceutical industry to ensure proper behavior of protein therapeutics. In this study, conformational dynamics of a small therapeutic protein, adnectin 1, together with its drug conjugate were characterized by hydrogen/deuterium exchange mass spectrometry (HDX-MS) with different spatial resolutions. Top-down HDX allows detailed assessment of the residue-level deuterium content in the payload conjugation region. HDX-MS dataset revealed the ability of peptide-based payload/linker to retain deuterium in HDX experiments. Combined results from intact, top-down, and bottom-up HDX indicated no significant conformational changes of adnectin 1 upon payload conjugation. [Figure not available: see fulltext.

  16. THE BIOLOGY OF DEUTERIUM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katz, J.J.; Crespi, H.L.; Finkel, A.J.

    1958-10-31

    Group C hemolytic streptococci, Type I pnemococci, Mycobacterium tuberculosis and M.phlei, and Escherichia coli showed that the growth rates were diminished with elevation of the D/.sub 2/O concentration above 50 per cent and that cessation of growth uniformly occurred at D/sub 2/O levels greater than 90 per cent. Deuterium may also be utilized in the study of metabolism by the administration of deuterated essential metabolites. Experiments are described wherein fungi have been grown on glucose in which the hydrogen on carbon-1 (D-glucose-d/sub 1/) has been completely replaced by deuterium. (auth)« less

  17. IUE observations of neutral hydrogen and deuterium in the local interstellar medium

    NASA Technical Reports Server (NTRS)

    Landsman, W. B.; Murthy, J.; Henry, R. C.; Moos, H. W.; Linsky, J. L.

    1986-01-01

    Small-aperture, high-dispersion IUE spectra have been obtained of seven late-type stars that, in general, confirm previous Copernicus results concerning the distribution of hydrogen and deuterium in the local interstellar medium. In addition, the IUE Ly Alpha spectra of Altair, and of the Alpha Cen components, suggest that multiple velocity components exist in these two directions.

  18. Localizing Carbohydrate Binding Sites in Proteins Using Hydrogen/Deuterium Exchange Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Zhang, Jingjing; Kitova, Elena N.; Li, Jun; Eugenio, Luiz; Ng, Kenneth; Klassen, John S.

    2016-01-01

    The application of hydrogen/deuterium exchange mass spectrometry (HDX-MS) to localize ligand binding sites in carbohydrate-binding proteins is described. Proteins from three bacterial toxins, the B subunit homopentamers of Cholera toxin and Shiga toxin type 1 and a fragment of Clostridium difficile toxin A, and their interactions with native carbohydrate receptors, GM1 pentasaccharides (β-Gal-(1→3)-β-GalNAc-(1→4)[α-Neu5Ac-(2→3)]-β-Gal-(1→4)-Glc), Pk trisaccharide (α-Gal-(1→4)-β-Gal-(1→4)-Glc) and CD-grease (α-Gal-(1→3)-β-Gal-(1→4)-β-GlcNAcO(CH2)8CO2CH3), respectively, served as model systems for this study. Comparison of the differences in deuterium uptake for peptic peptides produced in the absence and presence of ligand revealed regions of the proteins that are protected against deuterium exchange upon ligand binding. Notably, protected regions generally coincide with the carbohydrate binding sites identified by X-ray crystallography. However, ligand binding can also result in increased deuterium exchange in other parts of the protein, presumably through allosteric effects. Overall, the results of this study suggest that HDX-MS can serve as a useful tool for localizing the ligand binding sites in carbohydrate-binding proteins. However, a detailed interpretation of the changes in deuterium exchange upon ligand binding can be challenging because of the presence of ligand-induced changes in protein structure and dynamics.

  19. Hydrogen-deuterium substitution in solid ethanol by surface reactions at low temperatures

    NASA Astrophysics Data System (ADS)

    Oba, Yasuhiro; Osaka, Kazuya; Chigai, Takeshi; Kouchi, Akira; Watanabe, Naoki

    2016-10-01

    Ethanol (CH3CH2OH) is one of the most abundant complex organic molecules in star-forming regions. Despite its detection in the gas phase only, ethanol is believed to be formed by low-temperature grain-surface reactions. Methanol, the simplest alcohol, has been a target for observational, experimental, and theoretical studies in view of its deuterium enrichment in the interstellar medium; however, the deuterium chemistry of ethanol has not yet been an area of focus. Recently, deuterated dimethyl ether, a structural isomer of ethanol, was found in star-forming regions, indicating that deuterated ethanol can also be present in those environments. In this study, we performed laboratory experiments on the deuterium fractionation of solid ethanol at low temperatures through a reaction with deuterium (D) atoms at 10 K. Hydrogen (H)-D substitution, which increases the deuteration level, was found to occur on the ethyl group but not on the hydroxyl group. In addition, when deuterated ethanol (e.g. CD3CD2OD) solid was exposed to H atoms at 10 K, D-H substitution that reduced the deuteration level occurred on the ethyl group. Based on the results, it is likely that deuterated ethanol is present even under H-atom-dominant conditions in the interstellar medium.

  20. Deuterium isotope effects on 13C and 15N chemical shifts of intramolecularly hydrogen-bonded enaminocarbonyl derivatives of Meldrum’s and Tetronic acid

    NASA Astrophysics Data System (ADS)

    Ullah, Saif; Zhang, Wei; Hansen, Poul Erik

    2010-07-01

    Secondary deuterium isotope effects on 13C and 15N nuclear shieldings in a series of cyclic enamino-diesters and enamino-esters and acyclic enaminones and enamino-esters have been examined and analysed using NMR and DFT (B3LYP/6-31G(d,p)) methods. One-dimensional and two-dimensional NMR spectra of enaminocarbonyl and their deuterated analogues were recorded in CDCl 3 and CD 2Cl 2 at variable temperatures and assigned. 1JNH coupling constants for the derivatives of Meldrum's and tetronic acids reveal that they exist at the NH-form. It was demonstrated that deuterium isotope effects, for the hydrogen bonded compounds, due to the deuterium substitution at the nitrogen nucleus lead to large one-bond isotope effects at nitrogen, 1Δ 15N(D), and two-bond isotope effects on carbon nuclei, 2ΔC(ND), respectively. A linear correlations exist between 2ΔC(ND) and 1Δ 15N(D) whereas the correlation with δNH is divided into two. A good agreement between the experimentally observed 2ΔC(ND) and calculated dσ 13C/dR NH was obtained. A very good correlation between calculated NH bond lengths and observed NH chemical shifts is found. The observed isotope effects are shown to depend strongly on Resonance Assisted Hydrogen bonding.

  1. Quantifying hydrogen-deuterium exchange of meteoritic dicarboxylic acids during aqueous extraction

    NASA Astrophysics Data System (ADS)

    Fuller, M.; Huang, Y.

    2003-03-01

    Hydrogen isotope ratios of organic compounds in carbonaceous chondrites provide critical information about their origins and evolutionary history. However, because many of these compounds are obtained by aqueous extraction, the degree of hydrogen-deuterium (H/D) exchange that occurs during the process needs to be quantitatively evaluated. This study uses compound- specific hydrogen isotopic analysis to quantify the H/D exchange during aqueous extraction. Three common meteoritic dicarboxylic acids (succinic, glutaric, and 2-methyl glutaric acids) were refluxed under conditions simulating the extraction process. Changes in D values of the dicarboxylic acids were measured following the reflux experiments. A pseudo-first order rate law was used to model the H/D exchange rates which were then used to calculate the isotope exchange resulting from aqueous extraction. The degree of H/D exchange varies as a result of differences in molecular structure, the alkalinity of the extraction solution and presence/absence of meteorite powder. However, our model indicates that succinic, glutaric, and 2-methyl glutaric acids with a D of 1800 would experience isotope changes of 38, 10, and 6, respectively during the extraction process. Therefore, the overall change in D values of the dicarboxylic acids during the aqueous extraction process is negligible. We also demonstrate that H/D exchange occurs on the chiral -carbon in 2-methyl glutaric acid. The results suggest that the racemic mixture of 2-methyl glutaric acid in the Tagish Lake meteorite could result from post-synthesis aqueous alteration. The approach employed in this study can also be used to quantify H/D exchange for other important meteoritic compounds such as amino acids.

  2. Hydrogen and deuterium transport and inventory parameters through W and W-alloys for fusion reactor applications

    NASA Astrophysics Data System (ADS)

    Benamati, G.; Serra, E.; Wu, C. H.

    2000-12-01

    The aim of this work is to measure the hydrogen/deuterium transport and inventory parameters in relevant structural and/or armour materials for the International Thermonuclear Experimental Reactor (ITER) divertor such as W and W-alloys. The W-alloys: W, W + 1% La 2O 3 and W + 5% Re have been investigated. The materials were supplied from the Metallwerk Plansee GmbH (Austria). Measurements were conducted using a time-dependent permeation method over the temperature range 673-873 K with hydrogen and deuterium pressures in the range 10-100 kPa (100-1000 mbar). The samples were also characterized using optical microscopy, SEM and energy dispersive spectroscopy (EDS) in order to investigate the composition, microstructure and morphology of the surfaces and cross-sections through the samples.

  3. Deuterium retention in tungsten in dependence of the surface conditions

    NASA Astrophysics Data System (ADS)

    Ogorodnikova, O. V.; Roth, J.; Mayer, M.

    2003-03-01

    The paper reviews hydrogen isotope retention and migration in tungsten (W). Due to a large scatter of the deuterium (D) retention database, new measurements of ion-driven D retention in polycrystalline W foil have been performed to clarify the mechanism of hydrogen isotope inventory in W. Deuterium retention has been investigated as a function of ion fluence, implantation temperature, incident energy and surface conditions. Special attention has been given on the investigation of D retention in thin films of tungsten carbide and tungsten oxide which can be formed on W surface in a fusion device. Such kinds of films increase the D retention in W. Several points are reviewed: (i) inventory in pure W, (ii) inventory in W pre-implanted by carbon ions and (iii) inventory in tungsten oxide.

  4. Functionalization of Carbon Nanotubes using Atomic Hydrogen

    NASA Technical Reports Server (NTRS)

    Khare, Bishun N.; Cassell, Alan M.; Nguyen, Cattien V.; Meyyappan, M.; Han, Jie; Arnold, Jim (Technical Monitor)

    2001-01-01

    We have investigated the irradiation of multi walled and single walled carbon nanotubes (SWNTs) with atomic hydrogen. After irradiating the SWNT sample, a band at 2940/cm (3.4 microns) that is characteristic of the C-H stretching mode is observed using Fourier transform infrared (FTIR) spectroscopy. Additional confirmation of SWNT functionalization is tested by irradiating with atomic deuterium. A weak band in the region 1940/cm (5.2 micron) to 2450/cm (4.1 micron) corresponding to C-D stretching mode is also observed in the FTIR spectrum. This technique provides a clean gas phase process for the functionalization of SWNTs, which could lead to further chemical manipulation and/or the tuning of the electronic properties of SWNTs for nanodevice applications.

  5. Ion Mobility Spectrometry-Hydrogen Deuterium Exchange Mass Spectrometry of Anions: Part 2. Assessing Charge Site Location and Isotope Scrambling

    NASA Astrophysics Data System (ADS)

    Khakinejad, Mahdiar; Ghassabi Kondalaji, Samaneh; Donohoe, Gregory C.; Valentine, Stephen J.

    2016-03-01

    Ion mobility spectrometry (IMS) coupled with gas-phase hydrogen deuterium exchange (HDX)-mass spectrometry (MS) and molecular dynamic simulations (MDS) has been used for structural investigation of anions produced by electrospraying a sample containing a synthetic peptide having the sequence KKDDDDDIIKIIK. In these experiments the potential of the analytical method for locating charge sites on ions as well as for utilizing collision-induced dissociation (CID) to reveal the degree of deuterium uptake within specific amino acid residues has been assessed. For diffuse (i.e., more elongated) [M - 2H]2- ions, decreased deuterium content along with MDS data suggest that the D4 and D6 residues are charge sites, whereas for the more diffuse [M - 3H]3- ions, the data suggest that the D4, D7, and the C-terminus are deprotonated. Fragmentation of mobility-selected, diffuse [M - 2H]2- ions to determine deuterium uptake at individual amino acid residues reveals a degree of deuterium retention at incorporation sites. Although the diffuse [M - 3H]3- ions may show more HD scrambling, it is not possible to clearly distinguish HD scrambling from the expected deuterium uptake based on a hydrogen accessibility model. The capability of the IMS-HDX-MS/MS approach to provide relevant details about ion structure is discussed. Additionally, the ability to extend the approach for locating protonation sites on positively-charged ions is presented.

  6. D0 production in deep inelastic muon scattering on hydrogen and deuterium

    NASA Astrophysics Data System (ADS)

    Aubert, J. J.; Bassompierre, G.; Becks, K. H.; Benchouk, C.; Best, C.; Böhm, E.; de Bouard, X.; Brasse, F. W.; Broll, C.; Brown, S.; Carr, J.; Clifft, R. W.; Cobb, J. H.; Coignet, G.; Combley, F.; Court, G. R.; D'Agostini, G.; Dau, W. D.; Davies, J. K.; Déclais, Y.; Dosselli, U.; Drees, J.; Edwards, A.; Edwards, M.; Favier, J.; Ferrero, M. I.; Flauger, W.; Forsbach, H.; Gabathuler, E.; Gamet, R.; Gayler, J.; Gerhardt, V.; Gössling, C.; Haas, J.; Hamacher, K.; Hayman, P.; Henckes, M.; Korbel, V.; Landgraf, U.; Leenen, M.; Maire, M.; Minssieux, H.; Mohr, W.; Montgomery, H. E.; Moser, K.; Mount, R. P.; Nagy, E.; Nassalski, J.; Norton, P. R.; McNicholas, J.; Osborne, A. M.; Payre, P.; Peroni, C.; Pessard, H.; Pietrzyk, U.; Rith, K.; Schneegans, M.; Schneider, A.; Sloan, T.; Stier, H. E.; Stockhausen, W.; Thénard, J. M.; Thompson, J. C.; Urban, L.; Villers, M.; Wahlen, H.; Whalley, M.; Williams, D.; Williams, W. S. C.; Williamson, J.; Wimpenny, S. J.

    1986-01-01

    Inclusive D0(D0) production in deep inelastic scattering of 280 GeV and 240 GeV muons on hydrogen and deuterium targets has been measured; differential cross sections are given and the total cross sections extrapolated to Q2 = 0. They are compared with the results of photoproduction experiments and with measurements of the muoproduction of charm detected indirectly by multimuon events.

  7. Comment on "A centroid molecular dynamics study of liquid para hydrogen and ortho deuterium" [J. Chem. Phys. 121, 6412 (2004)].

    PubMed

    Miller, Thomas F; Manolopoulos, David E; Madden, Paul A; Konieczny, Martin; Oberhofer, Harald

    2005-02-01

    We show that the two phase points considered in the recent simulations of liquid para hydrogen by Hone and Voth lie in the liquid-vapor coexistence region of a purely classical molecular dynamics simulation. By contrast, their phase point for ortho deuterium was in the one-phase liquid region for both classical and quantum simulations. These observations are used to account for their report that quantum mechanical effects enhance the diffusion in liquid para hydrogen and decrease it in ortho deuterium.(c) 2005 American Institute of Physics.

  8. Comparison of hydrogen and deuterium adsorption on Pd(100).

    PubMed

    Gladys, M J; Kambali, I; Karolewski, M A; Soon, A; Stampfl, C; O'Connor, D J

    2010-01-14

    Low energy ion recoil spectroscopy is a powerful technique for the determination of adsorbate position on metal surfaces. In this study, this technique is employed to compare the adsorption sites of hydrogen and deuterium on Pd(100) by detection of either H or D recoil ions produced by Ne(+) bombardment. Comparisons of experimental and Kalypso simulated azimuthal yield distributions show that, at room temperature, both hydrogen isotopes are adsorbed in the fourfold hollow site of Pd(100), however, at different heights above the surface (H-0.20 A and D-0.25 A). The adsorbates remain in the hollow site at all temperatures up to 383 K even though they move up to 0.40-0.45 A above the surface. Density functional theory calculations show a similar coverage dependent adsorption height for both H and D and confirm a real difference between the H and D adsorption heights based on zero point energies.

  9. Deuterium uptake and sputtering of simultaneous lithiated, boronized, and oxidized carbon surfaces irradiated by low-energy deuterium

    NASA Astrophysics Data System (ADS)

    Domínguez-Gutiérrez, F. J.; Krstić, P. S.; Allain, J. P.; Bedoya, F.; Islam, M. M.; Lotfi, R.; van Duin, A. C. T.

    2018-05-01

    We study the effects of deuterium irradiation on D-uptake by simultaneously boronized, lithiated, oxidized, and deuterated carbon surfaces. We present analysis of the bonding chemistry of D for various concentrations of boron, lithium, oxygen, and deuterium on carbon surfaces using molecular dynamics with reactive force field potentials, which are here adapted to include the interaction of boron and lithium. We calculate D retention and sputtering yields of each constituent of the Li-C-B-O mixture and discuss the role of oxygen in these processes. The extent of the qualitative agreement between new experimental data for B-C-O-D obtained in this paper and computational data is provided. As in the case of the Li-C-O system, comparative studies where experimental and computational data complement each other (in this case on the B-Li-C-O system) provide deeper insights into the mechanisms behind the role that O plays in the retention of D, a relevant issue in fusion machines.

  10. Determination of Equine Cytochrome c Backbone Amide Hydrogen/Deuterium Exchange Rates by Mass Spectrometry Using a Wider Time Window and Isotope Envelope

    NASA Astrophysics Data System (ADS)

    Hamuro, Yoshitomo

    2017-03-01

    A new strategy to analyze amide hydrogen/deuterium exchange mass spectrometry (HDX-MS) data is proposed, utilizing a wider time window and isotope envelope analysis of each peptide. While most current scientific reports present HDX-MS data as a set of time-dependent deuteration levels of peptides, the ideal HDX-MS data presentation is a complete set of backbone amide hydrogen exchange rates. The ideal data set can provide single amide resolution, coverage of all exchange events, and the open/close ratio of each amide hydrogen in EX2 mechanism. Toward this goal, a typical HDX-MS protocol was modified in two aspects: measurement of a wider time window in HDX-MS experiments and deconvolution of isotope envelope of each peptide. Measurement of a wider time window enabled the observation of deuterium incorporation of most backbone amide hydrogens. Analysis of the isotope envelope instead of centroid value provides the deuterium distribution instead of the sum of deuteration levels in each peptide. A one-step, global-fitting algorithm optimized exchange rate and deuterium retention during the analysis of each amide hydrogen by fitting the deuterated isotope envelopes at all time points of all peptides in a region. Application of this strategy to cytochrome c yielded 97 out of 100 amide hydrogen exchange rates. A set of exchange rates determined by this approach is more appropriate for a patent or regulatory filing of a biopharmaceutical than a set of peptide deuteration levels obtained by a typical protocol. A wider time window of this method also eliminates false negatives in protein-ligand binding site identification.

  11. Determination of diffusion coefficients of hydrogen and deuterium in Zr-2.5%Nb pressure tube material using hot vacuum extraction-quadrupole mass spectrometry

    NASA Astrophysics Data System (ADS)

    Shrivastava, Komal Chandra; Kulkarni, A. S.; Ramanjaneyulu, P. S.; Sunil, Saurav; Saxena, M. K.; Singh, R. N.; Tomar, B. S.; Ramakumar, K. L.

    2015-06-01

    The diffusion coefficients of hydrogen and deuterium in Zr-2.5%Nb alloy were measured in the temperature range 523 to 673 K, employing hot vacuum extraction-quadrupole mass spectrometry (HVE-QMS). One end of the Zr-2.5%Nb alloy specimens was charged electrolytically with the desired hydrogen isotope. After annealing at different temperatures for a predetermined time, the specimens were cut into thin slices, which were analyzed for their H2/D2 content using the HVE-QMS technique. The depth profile data were fitted into the equation representing the solution of Fick's second law of diffusion. The activation energy of hydrogen/deuterium diffusion was obtained from the Arrhenius relation between the diffusion coefficient and temperature. The temperature dependent diffusion coefficient can be represented as DH = 1.41 × 10-7 exp(-36,000/RT) and DD = 6.16 × 10-8 exp(-35,262/RT) for hydrogen and deuterium, respectively.

  12. Comparative Study of Hydrogen- and Deuterium-Induced Degradation of Ferroelectric (Pb,La)(Zr,Ti)O3 Capacitors Using Time-of-Flight Secondary Ion Measurement.

    PubMed

    Takada, Yoko; Okamoto, Naoki; Saito, Takeyasu; Yoshimura, Takeshi; Fujimura, Norifumi; Higuchi, Koji; Kitajima, Akira; Shishido, Rie

    2016-10-01

    Ferroelectric (Pb,La)(Zr,Ti)O 3 (PLZT) capacitors were fabricated with Pt, Al:ZnO (AZO), or Sn:In 2 O 3 (ITO) top electrodes. Hydrogen- or deuterium-induced degradation was investigated for the three capacitors by annealing in a 3% H 2 /balance N 2 or 3% D 2 /balance N 2 ambient environment at 200 °C and 1 torr. The remnant polarization of all capacitors decreased after annealing in both H 2 and D 2 ambient after 45 min, and the remnant polarization of the Pt/PLZT/Pt capacitor significantly decreased after 45-min annealing compared with that of the AZO/PLZT/Pt and ITO/PLZT/Pt capacitors, even though the initial remnant polarization for the Pt/PLZT/Pt capacitor was larger. Time-of-flight secondary ion mass spectrometry showed slight differences in hydrogen content for the three different capacitors after H 2 annealing. In contrast, the deuterium content of the Pt/PLZT/Pt and AZO/PLZT/Pt or ITO/PLZT/PT capacitors was significantly different after deuterium annealing. Deuterium depth profiles for the Pt/PLZT/Pt capacitor after annealing showed that deuterium conformally exists in the PLZT layer of the Pt/PLZT/Pt capacitor, and deuterium accumulation under the Pt bottom electrode was also observed. This result suggests that diffusion of deuterium in Pt was much higher than that in PLZT. AZO and ITO top electrodes could act as a hydrogen barrier layer for ferroelectric films.

  13. The hydrogen isotope ratio in W7-AS during deuterium NBI heating

    NASA Astrophysics Data System (ADS)

    Zebisch, P.; Taglauer, E.; W7-AS Team; NBI Team

    1999-04-01

    With a so-called sniffer probe the fraction of hydrogen during discharges with deuterium NBI heating was studied in the plasma edge of the stellarator W7-AS. As expected, the ratios were significantly lower than in discharges with hydrogen NBI heating but were higher than those in discharges with only ECRH. An examination of the possible reasons for this increase concludes that it is not only partially caused by the direct influence of neutral injection but also depends on the energy content of the plasma determined by the heating power and the confinement time. Of course, the isotope ratio also depends on the starting conditions, i.e. the isotope ratio before the onset of NBI.

  14. Determination of Equine Cytochrome c Backbone Amide Hydrogen/Deuterium Exchange Rates by Mass Spectrometry Using a Wider Time Window and Isotope Envelope.

    PubMed

    Hamuro, Yoshitomo

    2017-03-01

    A new strategy to analyze amide hydrogen/deuterium exchange mass spectrometry (HDX-MS) data is proposed, utilizing a wider time window and isotope envelope analysis of each peptide. While most current scientific reports present HDX-MS data as a set of time-dependent deuteration levels of peptides, the ideal HDX-MS data presentation is a complete set of backbone amide hydrogen exchange rates. The ideal data set can provide single amide resolution, coverage of all exchange events, and the open/close ratio of each amide hydrogen in EX2 mechanism. Toward this goal, a typical HDX-MS protocol was modified in two aspects: measurement of a wider time window in HDX-MS experiments and deconvolution of isotope envelope of each peptide. Measurement of a wider time window enabled the observation of deuterium incorporation of most backbone amide hydrogens. Analysis of the isotope envelope instead of centroid value provides the deuterium distribution instead of the sum of deuteration levels in each peptide. A one-step, global-fitting algorithm optimized exchange rate and deuterium retention during the analysis of each amide hydrogen by fitting the deuterated isotope envelopes at all time points of all peptides in a region. Application of this strategy to cytochrome c yielded 97 out of 100 amide hydrogen exchange rates. A set of exchange rates determined by this approach is more appropriate for a patent or regulatory filing of a biopharmaceutical than a set of peptide deuteration levels obtained by a typical protocol. A wider time window of this method also eliminates false negatives in protein-ligand binding site identification. Graphical Abstract ᅟ.

  15. Deuterium enrichment by selective photo-induced dissociation of an organic carbonyl compound

    DOEpatents

    Marling, John B.

    1981-01-01

    A method for producing a deuterium enriched material by photoinduced dissociation which uses as the working material a gas phase photolytically dissociable organic carbonyl compound containing at least one hydrogen atom bonded to an atom which is adjacent to a carbonyl group and consisting of molecules wherein said hydrogen atom is present as deuterium and molecules wherein said hydrogen atom is present as another isotope of hydrogen. The organic carbonyl compound is subjected to intense infrared radiation at a preselected wavelength to selectively excite and thereby induce dissociation of the deuterium containing species to yield a deuterium enriched stable molecular product. Undissociated carbonyl compound, depleted in deuterium, is preferably redeuterated for reuse.

  16. Hydrogen/deuterium exchange studies of native rabbit MM-CK dynamics.

    PubMed

    Mazon, Hortense; Marcillat, Olivier; Forest, Eric; Vial, Christian

    2004-02-01

    Creatine kinase (CK) isoenzymes catalyse the reversible transfer of a phosphoryl group from ATP onto creatine. This reaction plays a very important role in the regulation of intracellular ATP concentrations in excitable tissues. CK isoenzymes are highly resistant to proteases in native conditions. To appreciate localized backbone dynamics, kinetics of amide hydrogen exchange with deuterium was measured by pulse-labeling the dimeric cytosolic muscle CK isoenzyme. Upon exchange, the protein was digested with pepsin, and the deuterium content of the resulting peptides was determined by liquid chromatography coupled to mass spectrometry (MS). The deuteration kinetics of 47 peptides identified by MS/MS and covering 96% of the CK backbone were analyzed. Four deuteration patterns have been recognized: The less deuterated peptides are located in the saddle-shaped core of CK, whereas most of the highly deuterated peptides are close to the surface and located around the entrance to the active site. Their exchange kinetics are discussed by comparison with the known secondary and tertiary structures of CK with the goal to reveal the conformational dynamics of the protein. Some of the observed dynamic motions may be linked to the conformational changes associated with substrate binding and catalytic mechanism.

  17. Dual Studies on a Hydrogen-Deuterium Exchange of Resorcinol and the Subsequent Kinetic Isotope Effect

    ERIC Educational Resources Information Center

    Giles, Richard; Kim, Iris; Chao, Weyjuin Eric; Moore, Jennifer; Jung, Kyung Woon

    2014-01-01

    An efficient laboratory experiment has been developed for undergraduate students to conduct hydrogen-deuterium (H-D) exchange of resorcinol by electrophilic aromatic substitution using D[subscript 2]O and a catalytic amount of H[subscript 2]SO[subscript 4]. The resulting labeled product is characterized by [superscript 1]H NMR. Students also…

  18. Determination of hydrogen/deuterium ratio with neutron measurements on MAST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klimek, I., E-mail: iwona.klimek@physics.uu.se; Cecconello, M.; Ericsson, G.

    2014-11-15

    On MAST, compressional Alfvén eigenmodes can be destabilized by the presence of a sufficiently large population of energetic particles in the plasma. This dependence was studied in a series of very similar discharges in which increasing amounts of hydrogen were puffed into a deuterium plasma. A simple method to estimate the isotopic ratio n{sub H}/n{sub D} using neutron emission measurements is here described. The inferred isotopic ratio ranged from 0.0 to 0.6 and no experimental indication of changes in radial profile of n{sub H}/n{sub D} were observed. These findings are confirmed by TRANSP/NUBEAM simulations of the neutron emission.

  19. A technique for determining the deuterium/hydrogen contrast map in neutron macromolecular crystallography.

    PubMed

    Chatake, Toshiyuki; Fujiwara, Satoru

    2016-01-01

    A difference in the neutron scattering length between hydrogen and deuterium leads to a high density contrast in neutron Fourier maps. In this study, a technique for determining the deuterium/hydrogen (D/H) contrast map in neutron macromolecular crystallography is developed and evaluated using ribonuclease A. The contrast map between the D2O-solvent and H2O-solvent crystals is calculated in real space, rather than in reciprocal space as performed in previous neutron D/H contrast crystallography. The present technique can thus utilize all of the amplitudes of the neutron structure factors for both D2O-solvent and H2O-solvent crystals. The neutron D/H contrast maps clearly demonstrate the powerful detectability of H/D exchange in proteins. In fact, alternative protonation states and alternative conformations of hydroxyl groups are observed at medium resolution (1.8 Å). Moreover, water molecules can be categorized into three types according to their tendency towards rotational disorder. These results directly indicate improvement in the neutron crystal structure analysis. This technique is suitable for incorporation into the standard structure-determination process used in neutron protein crystallography; consequently, more precise and efficient determination of the D-atom positions is possible using a combination of this D/H contrast technique and standard neutron structure-determination protocols.

  20. Hydrogen And Deuterium In The Local Interstellar Medium.

    NASA Astrophysics Data System (ADS)

    Murthy, Jayant

    2016-03-01

    In this work we report on the results of a series of IUE observations of interstellar HI and DI Ly alpha absorption against the chromospheric Lyalpha emission of the nearby late -type stars alpha Cen B(1.3 pc), epsilon Eri (3.3 pc), Procyon (3.5 pc), Altair (5.1 pc), Capella (13.2 pc), and HR 1099 (33 pc). From these observations we have derived the density, velocity dispersion, and bulk velocity of the neutral hydrogen along the line of sight to each of these stars. We have also placed lower limits on the deuterium to hydrogen (D/H) ratio towards the same stars. Our IUE results are generally consistent with previous observations of the same stars with the Copernicus satellite showing that our modelling procedure is independent of stellar variations over a period of several years. The HI absorption profile towards Altair shows a broad saturated core and steep line wings, consistent with a multicomponent interstellar medium in that direction. The bulk velocities towards the other stars are consistent with a bulk flow from the approximate direction of the galactic center but do show local variations from a uniform flow, possibly indicating a complicated velocity structure even in the solar neighbourhood. Interstellar deuterium is detected towards every star except Altair and the derived values for the D/H ratio are consistent with those previously found with Copernicus. In particular, we confirm the strong lower limit of 1.9 times 10^{-5} on the D/H ratio found towards Capella and we also place a lower limit of 1.5 times 10 ^{-5} on the D/H ratio towards alpha Cen B. Although an interstellar D/H ratio of 2 times 10^ {-5} is consistent with all the observations of late-type stars, the lower D/H ratios found towards several hot stars may indicate real variations in the D/H ratio in the local interstellar medium. Finally, we discuss the reality of a step in the cosmic background and of several galactic emission lines found by Auriemma et al. (1984) and show that, in

  1. Deuterium separation by infrared-induced addition reaction

    DOEpatents

    Marling, John B.

    1977-01-01

    A method for deuterium enrichment by the infrared-induced addition reaction of a deuterium halide with an unsaturated aliphatic compound. A gaseous mixture of a hydrogen halide feedstock and an unsaturated aliphatic compound, particularly an olefin, is irradiated to selectively vibrationally excite the deuterium halide contained therein. The excited deuterium halide preferentially reacts with the unsaturated aliphatic compound to produce a deuterated addition product which is removed from the reaction mixture.

  2. SISGR - Hydrogen Caged in Carbon-Exploration of Novel Carbon-Hydrogen Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lueking, Angela; Badding, John; Crespi, Vinent

    Hydrogen trapped in a carbon cage, captured through repulsive interactions, is a novel concept in hydrogen storage. Trapping hydrogen via repulsive interactions borrows an idea from macroscale hydrogen storage (i.e. compressed gas storage tanks) and reapplies these concepts on the nanoscale in specially designed molecular containers. Under extreme conditions of pressure, hydrogen solubility in carbon materials is expected to increase and carbon is expected to restructure to minimize volume via a mixed sp2/sp3 hydrogenated state. Thermodynamics dictate that pre-formed C-H structures will rearrange with increased pressure, yet the final carbon-hydrogen interactions may be dependent upon the mechanism by which hydrogenmore » is introduced. Gas “trapping” is meant to denote gas present in a solid in a high density, adsorbed-like state, when the external pressure is much less than that necessary to provide a comparable fluid density. Trapping thus denotes a kinetically metastable state rather than thermodynamic equilibrium. This project probed mechanochemical means to polymerize select hydrocarbons in the presence of gases, in an attempt to form localized carbon cages that trap gases via repulsive interactions. Aromatic, polyaromatic, and hydroaromatic molecules expected to undergo cyclo-addition reactions were polymerized at high (~GPa) pressures to form extended hydrogenated amorphous carbon networks. Notably, aromatics with a pre-existing internal free volume (such as Triptycene) appeared to retain an internal porosity upon application of pressure. However, a high photoluminescence background after polymerization precluded in situ identification of trapped gases. No spectroscopic evidence was found after depressurization that would be indicative of pockets of trapped gases in a localized high-pressure environment. Control studies suggested this measurement may be insensitive to gases at low pressure. Similarly, no spectral fingerprint was found for gas

  3. Equilibrium carbon and hydrogen isotope fractionation in iron

    NASA Astrophysics Data System (ADS)

    Schauble, E. A.

    2009-12-01

    Recent theoretical and experimental studies (e.g., [1-3]) have suggested that Si- and Fe-isotopic signatures can be used to characterize the compositions and conditions of segregation of metallic cores in planetary interiors. This study expands the theoretical framework to include carbon and hydrogen, which may also be alloying elements. Hydrogen (D/H) and carbon (13C/12C) fractionations in iron-rich metallic melts are estimated by modeling analogous iron-rich crystals, i.e., dhcp-FeH and η-Fe2C. C- and H-atoms in these crystals are completely coordinated by iron. The driving energy for equilibrium fractionation is assumed to come from the reduction of vibrational frequencies when heavy isotopes are substituted for light ones; vibrations are assumed to be harmonic. This treatment is crude at high temperature, and for the relatively anharmonic vibrations typical of hydrogen-bearing substances, but may provide a reasonably accurate, semi-quantitative approximation of real fractionation behavior. Vibrational frequencies of all crystals are modeled with density functional theory, using gradient-corrected functionals and ultrasoft pseudopotentials. For both carbon and hydrogen, the models suggest that the metal phase will be strongly depleted in heavy isotopes. At 2000 K, 1 atm, η-Fe2C will have 3‰ lower 13C/12C than coexisting diamond. Combining this result with previous high-temperature theoretical and experimental studies (e.g., [4]), metal-graphite fractionation is expected to be very similar, while metal-CO2 fractionation will be almost twice as large, ca. -5‰. Deuterium/hydrogen fractionations are expected to be an order of magnitude larger, with 50-70‰ lower D/H in dhcp-FeH than in coexisting H2 gas at 2000 K, and approximately 100‰ lower D/H than water vapor. These fractionations are much larger than those inferred for silicon and iron, as expected given the differences in atomic mass. References: 1. Georg et al. (2007) Nature 447:1102; 2. Rustad & Yin

  4. Field emission energy distributions of hydrogen and deuterium on the /100/ and /110/ planes of tungsten.

    NASA Technical Reports Server (NTRS)

    Plummer, E. W.; Bell, A. E.

    1972-01-01

    Total energy distributions of field emitted electrons from the tungsten (110) and (100) planes as a function of coverage by hydrogen and deuterium have been recorded utilizing a spherical deflection energy analyzer. The elastic tunneling resonance spectrum gives a plot of the 'local density of states' in the adsorbate. The inelastic tunneling spectrum reveals those discrete excitation energies available in the adsorbate-substrate complex. These spectroscopic data have been used to infer the chemical nature of the binding states which have been observed in the flash desorption spectrum of hydrogen from tungsten.

  5. The Effect of Ion Energy and Substrate Temperature on Deuterium Trapping in Tungsten

    NASA Astrophysics Data System (ADS)

    Roszell, John Patrick Town

    Tungsten is a candidate plasma facing material for next generation magnetic fusion devices such as ITER and there are major operational and safety issues associated with hydrogen (tritium) retention in plasma facing components. An ion gun was used to simulate plasma-material interactions under various conditions in order to study hydrogen retention characteristics of tungsten thus enabling better predictions of hydrogen retention in ITER. Thermal Desorption Spectroscopy (TDS) was used to measure deuterium retention from ion irradiation while modelling of TDS spectra with the Tritium Migration Analysis Program (TMAP) was used to provide information about the trapping mechanisms involved in deuterium retention in tungsten. X-ray Photoelectron Spectroscopy (XPS) and Secondary Ion Mass Spectrometry (SIMS) were used to determine the depth resolved composition of specimens used for irradiation experiments. Carbon and oxygen atoms will be among the most common contaminants within ITER. C and O contamination in polycrystalline tungsten (PCW) specimens even at low levels (˜0.1%) was shown to reduce deuterium retention by preventing diffusion of deuterium into the bulk of the specimen. This diffusion barrier was also responsible for the inhibition of blister formation during irradiations at 500 K. These observations may provide possible mitigation techniques for problems associated with tritium retention and mechanical damage to plasma facing components caused by hydrogen implantation. Deuterium trapping in PCW and single crystal tungsten (SCW) was studied as a function of ion energy and substrate temperature. Deuterium retention was shown to decrease with decreasing ion energy below 100 eV/D+. Irradiation of tungsten specimens with 10 eV/D+ ions was shown to retain up to an order of magnitude less deuterium than irradiation with 500 eV/D+ ions. Furthermore, the retention mechanism for deuterium was shown to be consistent across the entire energy range studied (10-500 e

  6. First measurements of deuterium-tritium and deuterium-deuterium fusion reaction yields in ignition-scalable direct-drive implosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forrest, C. J.; Radha, P. B.; Knauer, J. P.

    In this study, the deuterium-tritium (D-T) and deuterium-deuterium neutron yield ratio in cryogenic inertial confinement fusion (ICF) experiments is used to examine multifluid effects, traditionally not included in ICF modeling. This ratio has been measured for ignition-scalable direct-drive cryogenic DT implosions at the Omega Laser Facility using a high-dynamic-range neutron time-of-flight spectrometer. The experimentally inferred yield ratio is consistent with both the calculated values of the nuclear reaction rates and the measured preshot target-fuel composition. These observations indicate that the physical mechanisms that have been proposed to alter the fuel composition, such as species separation of the hydrogen isotopes, aremore » not significant during the period of peak neutron production in ignition-scalable cryogenic direct-drive DT implosions.« less

  7. First measurements of deuterium-tritium and deuterium-deuterium fusion reaction yields in ignition-scalable direct-drive implosions

    DOE PAGES

    Forrest, C. J.; Radha, P. B.; Knauer, J. P.; ...

    2017-03-03

    In this study, the deuterium-tritium (D-T) and deuterium-deuterium neutron yield ratio in cryogenic inertial confinement fusion (ICF) experiments is used to examine multifluid effects, traditionally not included in ICF modeling. This ratio has been measured for ignition-scalable direct-drive cryogenic DT implosions at the Omega Laser Facility using a high-dynamic-range neutron time-of-flight spectrometer. The experimentally inferred yield ratio is consistent with both the calculated values of the nuclear reaction rates and the measured preshot target-fuel composition. These observations indicate that the physical mechanisms that have been proposed to alter the fuel composition, such as species separation of the hydrogen isotopes, aremore » not significant during the period of peak neutron production in ignition-scalable cryogenic direct-drive DT implosions.« less

  8. Structural phase transition at high temperatures in solid molecular hydrogen and deuterium

    NASA Astrophysics Data System (ADS)

    Cui, T.; Takada, Y.; Cui, Q.; Ma, Y.; Zou, G.

    2001-07-01

    We study the effect of temperature up to 1000 K on the structure of dense molecular para-hydrogen (p-H2) and ortho-deuterium (o-D2), using the path-integral Monte Carlo method. We find a structural phase transition from orientationally disordered hexagonal close packed (hcp) to an orthorhombic structure of Cmca symmetry before melting. The transition is basically induced by thermal fluctuations, but quantum fluctuations of protons (deuterons) are important in determining the transition temperature through effectively hardening the intermolecular interaction. We estimate the phase line between hcp and Cmca phases as well as the melting line of the Cmca solid.

  9. Impact of temperature during He+ implantation on deuterium retention in tungsten, tungsten with carbon deposit and tungsten carbide

    NASA Astrophysics Data System (ADS)

    Oya, Yasuhisa; Sato, Misaki; Li, Xiaochun; Yuyama, Kenta; Fujita, Hiroe; Sakurada, Shodai; Uemura, Yuki; Hatano, Yuji; Yoshida, Naoaki; Ashikawa, Naoko; Sagara, Akio; Chikada, Takumi

    2016-02-01

    Temperature dependence on deuterium (D) retention for He+ implanted tungsten (W) was studied by thermal desorption spectroscopy (TDS) to evaluate the tritium retention behavior in W. The activation energies were evaluated using Hydrogen Isotope Diffusion and Trapping (HIDT) simulation code and found to be 0.55 eV, 0.65 eV, 0.80 eV and 1.00 eV. The heating scenarios clearly control the D retention behavior and, dense and large He bubbles could work as a D diffusion barrier toward the bulk, leading to D retention enhancement at lower temperature of less than 430 K, even if the damage was introduced by He+ implantation. By comparing the D retention for W, W with carbon deposit and tungsten carbide (WC), the dense carbon layer on the surface enhances the dynamic re-emission of D as hydrocarbons, and induces the reduction of D retention. However, by He+ implantation, the D retention was increased for all the samples.

  10. Improved protein hydrogen/deuterium exchange mass spectrometry platform with fully automated data processing.

    PubMed

    Zhang, Zhongqi; Zhang, Aming; Xiao, Gang

    2012-06-05

    Protein hydrogen/deuterium exchange (HDX) followed by protease digestion and mass spectrometric (MS) analysis is accepted as a standard method for studying protein conformation and conformational dynamics. In this article, an improved HDX MS platform with fully automated data processing is described. The platform significantly reduces systematic and random errors in the measurement by introducing two types of corrections in HDX data analysis. First, a mixture of short peptides with fast HDX rates is introduced as internal standards to adjust the variations in the extent of back exchange from run to run. Second, a designed unique peptide (PPPI) with slow intrinsic HDX rate is employed as another internal standard to reflect the possible differences in protein intrinsic HDX rates when protein conformations at different solution conditions are compared. HDX data processing is achieved with a comprehensive HDX model to simulate the deuterium labeling and back exchange process. The HDX model is implemented into the in-house developed software MassAnalyzer and enables fully unattended analysis of the entire protein HDX MS data set starting from ion detection and peptide identification to final processed HDX output, typically within 1 day. The final output of the automated data processing is a set (or the average) of the most possible protection factors for each backbone amide hydrogen. The utility of the HDX MS platform is demonstrated by exploring the conformational transition of a monoclonal antibody by increasing concentrations of guanidine.

  11. A potent IκB kinase-β inhibitor labeled with carbon-14 and deuterium.

    PubMed

    Latli, Bachir; Eriksson, Magnus; Hrapchak, Matt; Busacca, Carl A; Senanayake, Chris H

    2016-06-30

    3-Amino-4-(1,1-difluoro-propyl)-6-(4-methanesulfonyl-piperidin-1-yl)-thieno[2,3-b]pyridine-2-carboxylic acid amide (1) is a potent IκB Kinase-β (IKK-β) inhibitor. The efficient preparations of this compound labeled with carbon-14 and deuterium are described. The carbon-14 synthesis was accomplished in six radiochemical steps in 25% overall yield. The key transformations were the modified Guareschi-Thorpe condensation of 2-cyano-(14) C-acetamide and a keto-ester followed by chlorination to 2,6-dichloropyridine derivative in one pot. The isolated dichloropyridine was then converted in three steps in one pot to [(14) C]-(1). The carbon-14 labeled (1) was isolated with a specific activity of 54.3 mCi/mmol and radiochemical purity of 99.8%. The deuterium labeled (1) was obtained in eight steps and in 57% overall chemical yield using 4-hydroxypiperidine-2,2,3,3,4,5,5,6,6-(2) H9 . The final three steps of this synthesis were run in one pot. Copyright © 2016 John Wiley & Sons, Ltd.

  12. Site occupancy of interstitial deuterium atoms in face-centred cubic iron

    PubMed Central

    Machida, Akihiko; Saitoh, Hiroyuki; Sugimoto, Hidehiko; Hattori, Takanori; Sano-Furukawa, Asami; Endo, Naruki; Katayama, Yoshinori; Iizuka, Riko; Sato, Toyoto; Matsuo, Motoaki; Orimo, Shin-ichi; Aoki, Katsutoshi

    2014-01-01

    Hydrogen composition and occupation state provide basic information for understanding various properties of the metal–hydrogen system, ranging from microscopic properties such as hydrogen diffusion to macroscopic properties such as phase stability. Here the deuterization process of face-centred cubic Fe to form solid-solution face-centred cubic FeDx is investigated using in situ neutron diffraction at high temperature and pressure. In a completely deuterized specimen at 988 K and 6.3 GPa, deuterium atoms occupy octahedral and tetrahedral interstitial sites with an occupancy of 0.532(9) and 0.056(5), respectively, giving a deuterium composition x of 0.64(1). During deuterization, the metal lattice expands approximately linearly with deuterium composition at a rate of 2.21 Å3 per deuterium atom. The minor occupation of the tetrahedral site is thermally driven by the intersite movement of deuterium atoms along the ‹111› direction in the face-centred cubic metal lattice. PMID:25256789

  13. A centroid molecular dynamics study of liquid para-hydrogen and ortho-deuterium.

    PubMed

    Hone, Tyler D; Voth, Gregory A

    2004-10-01

    Centroid molecular dynamics (CMD) is applied to the study of collective and single-particle dynamics in liquid para-hydrogen at two state points and liquid ortho-deuterium at one state point. The CMD results are compared with the results of classical molecular dynamics, quantum mode coupling theory, a maximum entropy analytic continuation approach, pair-product forward- backward semiclassical dynamics, and available experimental results. The self-diffusion constants are in excellent agreement with the experimental measurements for all systems studied. Furthermore, it is shown that the method is able to adequately describe both the single-particle and collective dynamics of quantum liquids. (c) 2004 American Institute of Physics

  14. Tunneling in hydrogen and deuterium atom addition to CO at low temperatures

    NASA Astrophysics Data System (ADS)

    Andersson, Stefan; Goumans, T. P. M.; Arnaldsson, Andri

    2011-09-01

    The hydrogen and deuterium atom addition reactions of CO to form HCO and DCO are addressed by Harmonic Quantum Transition State Theory calculations. Special attention is paid to the reactions at very low temperatures (5-20 K) where it is found that quantum tunneling leads to substantial rates of reaction. This supports experiments in the solid phase, which conclude that these reactions are driven by tunneling at low temperatures. The calculated kinetic isotope effect of kD/ kH = 1/250 is found to be lower than the experimentally deduced value of 0.08 for the surface reaction. Possible reasons for this discrepancy are discussed.

  15. Tunneling effects in the kinetics of helium and hydrogen isotopes desorption from single-walled carbon nanotube bundles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Danilchenko, B. A., E-mail: danil@iop.kiev.ua; Yaskovets, I. I.; Uvarova, I. Y.

    2014-04-28

    The kinetics of desorption both helium isotopes and molecules of hydrogen and deuterium from open-ended or γ-irradiated single-walled carbon nanotube bundles was investigated in temperature range of 10–300 K. The gases desorption rates obey the Arrhenius law at high temperatures, deviate from it with temperature reduction and become constant at low temperatures. These results indicate the quantum nature of gas outflow from carbon nanotube bundles. We had deduced the crossover temperature below which the quantum corrections to the effective activation energy of desorption become significant. This temperature follows linear dependence against the inverse mass of gas molecule and is consistent withmore » theoretical prediction.« less

  16. Protein and Peptide Gas-phase Structure Investigation Using Collision Cross Section Measurements and Hydrogen Deuterium Exchange

    NASA Astrophysics Data System (ADS)

    Khakinejad, Mahdiar

    Protein and peptide gas-phase structure analysis provides the opportunity to study these species outside of their explicit environment where the interaction network with surrounding molecules makes the analysis difficult [1]. Although gas-phase structure analysis offers a unique opportunity to study the intrinsic behavior of these biomolecules [2-4], proteins and peptides exhibit very low vapor pressures [2]. Peptide and protein ions can be rendered in the gas-phase using electrospray ionization (ESI) [5]. There is a growing body of literature that shows proteins and peptides can maintain solution structures during the process of ESI and these structures can persist for a few hundred milliseconds [6-9]. Techniques for monitoring gas-phase protein and peptide ion structures are categorized as physical probes and chemical probes. Collision cross section (CCS) measurement, being a physical probe, is a powerful method to investigate gas-phase structure size [3, 7, 10-15]; however, CCS values alone do not establish a one to one relation with structure(i.e., the CCS value is an orientationally averaged value [15-18]. Here we propose the utility of gas-phase hydrogen deuterium exchange (HDX) as a second criterion of structure elucidation. The proposed approach incudes extensive MD simulations to sample biomolecular ion conformation space with the production of numerous, random in-silico structures. Subsequently a CCS can be calculated for these structures and theoretical CCS values are compared with experimental values to produce a pool of candidate structures. Utilizing a chemical reaction model based on the gas-phase HDX mechanism, the HDX kinetics behavior of these candidate structures are predicted and compared to experimental results to nominate the best in-silico structures which match (chemically and physically) with experimental observations. For the predictive approach to succeed, an extensive technique and method development is essential. To combine CCS

  17. Synthesis of hydrogen-carbon clathrate material and hydrogen evolution therefrom at moderate temperatures and pressures

    DOEpatents

    Lueking, Angela [State College, PA; Narayanan, Deepa [Redmond, WA

    2011-03-08

    A process for making a hydrogenated carbon material is provided which includes forming a mixture of a carbon source, particularly a carbonaceous material, and a hydrogen source. The mixture is reacted under reaction conditions such that hydrogen is generated and/or released from the hydrogen source, an amorphous diamond-like carbon is formed, and at least a portion of the generated and/or released hydrogen associates with the amorphous diamond-like carbon, thereby forming a hydrogenated carbon material. A hydrogenated carbon material including a hydrogen carbon clathrate is characterized by evolution of molecular hydrogen at room temperature at atmospheric pressure in particular embodiments of methods and compositions according to the present invention.

  18. First Measurements of Deuterium-Tritium and Deuterium-Deuterium Fusion Reaction Yields in Ignition-Scalable Direct-Drive Implosions

    NASA Astrophysics Data System (ADS)

    Forrest, C. J.; Radha, P. B.; Knauer, J. P.; Glebov, V. Yu.; Goncharov, V. N.; Regan, S. P.; Rosenberg, M. J.; Sangster, T. C.; Shmayda, W. T.; Stoeckl, C.; Gatu Johnson, M.

    2017-03-01

    The deuterium-tritium (D-T) and deuterium-deuterium neutron yield ratio in cryogenic inertial confinement fusion (ICF) experiments is used to examine multifluid effects, traditionally not included in ICF modeling. This ratio has been measured for ignition-scalable direct-drive cryogenic DT implosions at the Omega Laser Facility [T. R. Boehly et al., Opt. Commun. 133, 495 (1997), 10.1016/S0030-4018(96)00325-2] using a high-dynamic-range neutron time-of-flight spectrometer. The experimentally inferred yield ratio is consistent with both the calculated values of the nuclear reaction rates and the measured preshot target-fuel composition. These observations indicate that the physical mechanisms that have been proposed to alter the fuel composition, such as species separation of the hydrogen isotopes [D. T. Casey et al., Phys. Rev. Lett. 108, 075002 (2012), 10.1103/PhysRevLett.108.075002], are not significant during the period of peak neutron production in ignition-scalable cryogenic direct-drive DT implosions.

  19. Molecular dynamics simulations of interactions between hydrogen and fusion-relevant materials

    NASA Astrophysics Data System (ADS)

    de Rooij, E. D.

    2010-02-01

    sticking probability of small hydrocarbons is highest on material previously subjected to the highest hydrogen flux. This result suggests that redeposition is more effective under high than under low hydrogen fluxes, partly explaining the experimentally observed reduction in the carbon erosion yield. Lastly, we studied amorphous tungsten carbide. Amorphous material with three different carbon percentages (15, 50 and 95%) was subjected to deuterium bombardment and the resulting erosion and deuterium retention was analysed. The 95% carbon sample behaves like doped carbon, the carbon erosion yield is reduced and no tungsten is eroded. Segregation of the materials was observed, resulting in an accumulation of tungsten at the surface. The hydrogen retention was similar to a-C:H. The 15% carbon sample showed no significant erosion or retention. The most interesting was the 50% sample. Here deuterium bubbles formed that burst open after sufficiently long bombardment, thereby removing both carbon and tungsten from the surface. In the context of ITER our MD simulations suggest that tungsten is the better suited material since both the erosion and the hydrogen retention are significantly lower than for carbon.

  20. Diffusion of hydrogen in a hydrogen-saturated tungsten

    NASA Astrophysics Data System (ADS)

    Krstic, Predrag; Kaganovich, Igor

    2015-11-01

    Hydrogen diffusion in monoscrystalline tungsten is studied by molecular dynamics with BOP potential in function of hydrogen concentration and temperature. Tungsten surface is prepared by cumulative irradiation of the 25 eV deuterium atoms at various fluences. The diffusion coefficients for T>500K and various D concentrations were calculated from the average slope of the mean square displacements of deuterium as functions of time. The accumulation of deuterium suppresses its diffusion at all temperatures. The results are in a reasonable agreement with the existing experiments. Supported by the LDRD of PPPL.

  1. Hydrogen isotopic compositions of organic compounds in plants reflect the plant's carbon metabolism

    NASA Astrophysics Data System (ADS)

    Cormier, M. A.; Kahmen, A.; Werner, R. A.

    2015-12-01

    The main factors controlling δ2H of plant organic compounds are generally assumed to be the plant's source water and the evaporative deuterium enrichment of leaf water. Hydrogen isotope analyses of plant compounds from sediments or tree rings are therefore mainly applied to assess hydrological conditions at different spatial and temporal scales. However, the biochemical hydrogen isotope fractionation occurring during biosynthesis of plant organic compounds (ɛbio) also accounts for a large part of the variability observed in the δ2H values. Nevertheless, only few studies have directly addressed the physiological basis of this variability and even fewer studies have thus explored possible applications of hydrogen isotope variability in plant organic compounds for plant physiological research. Here we show two datasets indicating that the plant's carbon metabolism can have a substantial influence on δ2H values of n-alkanes and cellulose. First, we performed a controlled experiment where we forced plants into heterotrophic and autotrophic C-metabolism by growing them under four different light treatments. Second, we assessed the δ2H values of different parasitic heterotrophic plants and their autotrophic host plants. Our two datasets show a systematic shift in ɛbio of up to 80 ‰ depending on the plant's carbon metabolism (heterotrophic or autotrophic). Differences in n-alkane and cellulose δ2H values in plants with autotrophic vs. heterotrophic metabolisms can be explained by different NADPH pools that are used by the plants to build their compounds either with assimilates that originate directly from photosynthesis or from stored carbohydrates. Our results have significant implications for the calibration and interpretation of geological records. More importantly, as the δ2H values reflect the plant's carbon metabolism involved during the tissue formation, our findings highlight the potential of δ2H values as new tool for studying plant and ecosystem carbon

  2. Computational methods and challenges in hydrogen/deuterium exchange mass spectrometry.

    PubMed

    Claesen, Jürgen; Burzykowski, Tomasz

    2017-09-01

    Hydrogen/Deuterium exchange (HDX) has been applied, since the 1930s, as an analytical tool to study the structure and dynamics of (small) biomolecules. The popularity of using HDX to study proteins increased drastically in the last two decades due to the successful combination with mass spectrometry (MS). Together with this growth in popularity, several technological advances have been made, such as improved quenching and fragmentation. As a consequence of these experimental improvements and the increased use of protein-HDXMS, large amounts of complex data are generated, which require appropriate analysis. Computational analysis of HDXMS requires several steps. A typical workflow for proteins consists of identification of (non-)deuterated peptides or fragments of the protein under study (local analysis), or identification of the deuterated protein as a whole (global analysis); determination of the deuteration level; estimation of the protection extent or exchange rates of the labile backbone amide hydrogen atoms; and a statistically sound interpretation of the estimated protection extent or exchange rates. Several algorithms, specifically designed for HDX analysis, have been proposed. They range from procedures that focus on one specific step in the analysis of HDX data to complete HDX workflow analysis tools. In this review, we provide an overview of the computational methods and discuss outstanding challenges. © 2016 Wiley Periodicals, Inc. Mass Spec Rev 36:649-667, 2017. © 2016 Wiley Periodicals, Inc.

  3. Dynamic Compression Experiments on Hydrogen and Deuterium in the Warm Dense Liquid.

    NASA Astrophysics Data System (ADS)

    Desjarlais, Michael; McCoy, Chad; Cochrane, Kyle; Mattsson, Thomas; Knudson, Marcus; Redmer, Ronald

    2017-06-01

    Recently a shock-ramp platform has been developed on the Z Accelerator to access off-Hugoniot states in liquids. The accelerator delivers a two-step current pulse; the first accelerates the electrode to a constant velocity, which upon impact with the sample cell creates a well-defined shock, the subsequent current rise produces ramp compression from the initially shocked state producing relatively cool (1-2 kK), high pressure (>300 GPa), high compression (10 to 15-fold compression) states. This technique allows experimental access to the region of phase space where hydrogen is predicted to undergo a first-order phase transition from an insulating molecular-like to a conducting atomic-like liquid. Here we discuss the experimental platform, survey various theoretical predictions for the liquid-liquid, insulator-to-metal transition in hydrogen, and present results of experiments on both deuterium and hydrogen that clearly show an abrupt transition to a metallic state. We also present results from recent experiments at higher temperatures (3-4 kK) and compare the observations to both first-principles theory and previous step-wise loading experiments that exhibited a minimum metallic conductivity. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  4. Stable carbon and hydrogen isotope fractionation of dissolved organic groundwater pollutants by equilibrium sorption.

    PubMed

    Höhener, Patrick; Yu, Xianjing

    2012-03-15

    Linear free energy relationships (LFERs) were established which relate equilibrium vapor-liquid isotope effects to stable carbon and hydrogen isotope enrichment factors for equilibrium sorption to geosorbents. The LFERs were established for normal, cyclic or branched alkanes, monoaromatic hydrocarbons, and chloroethenes. These LFERs predict that isotopic light compounds sorb more strongly than their heavy counterparts. Defining fractionation as in classical literature by "heavy divided by light", carbon enrichment factors for equilibrium sorption were derived which ranged from -0.13±0.04‰ (benzene) to -0.52±0.19‰ (trichloroethene at 5-15 °C). Hydrogen enrichment factors for sorption of 14 different compounds were between -2.4 and -9.2‰. For perdeuterated hydrocarbons the predicted enrichment factors ranged from -19±5.4‰ (benzene) to -64±30‰ (cyclohexane). Equilibrium sorption experiments with a soil and activated carbon as sorbents were performed in the laboratory for perdeuterocyclohexane and perdeuterotoluene. The measured D/H enrichments agreed with the LFER prediction for both compounds and both sorbents within the uncertainty estimate of the prediction. The results of this work suggest that equilibrium sorption does create only very small isotope shifts for (13)C in groundwater pollutants in aquifers. It is also suggested that deuterium shifts are expected to be higher, especially for strongly sorbing pollutants. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Deuterium-rich Water in Meteorites

    NASA Astrophysics Data System (ADS)

    Deloule, E.; Robert, F.

    1995-09-01

    D/H ratios of 2 meteorites (Renazzo CR and Semarkona LL3), which are known to exhibit the largest departures from the terrestrial hydrogen isotopic ratios, have been determined with the CRPG Nancy ion-microprobe. Correlations between the D/H ratios and the chemical compositions (H2O, K, Si, C/H) of plausible hydrogen carriers were observed. From these correlations, it is possible to show that, contrary to previous interpretations, phyllosilicates are the carriers of the deuterium-rich hydrogen in Semarkona and Renazzo : 870 x10-6 D/H 670 x106 (+4600 dD 3300) and 320 x10-6 (dD 1050), respectively. Hydrogen is also present in the chondrules of these two deuterium-rich meteorites. Isotopic equilibrium between the deuterium depleted phases and the deuterium-rich phyllosilicates was never attained. This is illustrated at a micron scale by the D/H ratios obtained continuously during a 3 hours measurement on a same position (see figure below). It can be seen that water-rich mineral(s) having D/H up to 550 x10-6 (dD = +2500) are in contact with a mineral having D/H = 234 x10-6 (dD = +500). The thickness of the boundary where the diffusion of hydrogen took place is restricted to less than 0.2 mm. Such isotopic heterogeneity is quite spectacular if one remembers that the isotopic variations that we can see within these 0.2 mm are an order of magnitude larger than the total observed variations on Earth. The large differences in D/H ratios between matrix (up to 700 x 10-6, dD up to +3500) and chondrules (from 120 x10-6 (dD = -230) to 230 x10-6 (dD = +475)) show that hydrogen in chondrules cannot originate from the matrix by simple contamination or diffusion processes. The high D/H ratios measured in water bearing minerals could not have been produced thermally within a dense solar nebula. Chemical reactions (i.e. involving ions or radicals), taking place in interstellar space or in the outer regions of the nebula at 110-140K are presently the only conceivable mechanisms

  6. First Measurements of Deuterium-Tritium and Deuterium-Deuterium Fusion Reaction Yields in Ignition-Scalable Direct-Drive Implosions.

    PubMed

    Forrest, C J; Radha, P B; Knauer, J P; Glebov, V Yu; Goncharov, V N; Regan, S P; Rosenberg, M J; Sangster, T C; Shmayda, W T; Stoeckl, C; Gatu Johnson, M

    2017-03-03

    The deuterium-tritium (D-T) and deuterium-deuterium neutron yield ratio in cryogenic inertial confinement fusion (ICF) experiments is used to examine multifluid effects, traditionally not included in ICF modeling. This ratio has been measured for ignition-scalable direct-drive cryogenic DT implosions at the Omega Laser Facility [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)OPCOB80030-401810.1016/S0030-4018(96)00325-2] using a high-dynamic-range neutron time-of-flight spectrometer. The experimentally inferred yield ratio is consistent with both the calculated values of the nuclear reaction rates and the measured preshot target-fuel composition. These observations indicate that the physical mechanisms that have been proposed to alter the fuel composition, such as species separation of the hydrogen isotopes [D. T. Casey et al., Phys. Rev. Lett. 108, 075002 (2012)PRLTAO0031-900710.1103/PhysRevLett.108.075002], are not significant during the period of peak neutron production in ignition-scalable cryogenic direct-drive DT implosions.

  7. Variable-temperature Fourier transform near-infrared imaging spectroscopy of the deuterium/hydrogen exchange in liquid D₂O.

    PubMed

    Unger, Miriam; Ozaki, Yukihiro; Siesler, Heinz W

    2014-01-01

    In the present publication, the deuterium/hydrogen (D/H) exchange of liquid D2O exposed to water vapor of the surrounding atmosphere has been studied by variable-temperature Fourier transform near-infrared (FT-NIR) imaging spectroscopy. Apart from the visualization of the exchange process in the time-resolved FT-NIR images, kinetic parameters and the activation energy for this D/H exchange reaction have been derived from the Arrhenius plot of the variable-temperature spectroscopic data.

  8. Carbon Dioxide-Free Hydrogen Production with Integrated Hydrogen Separation and Storage.

    PubMed

    Dürr, Stefan; Müller, Michael; Jorschick, Holger; Helmin, Marta; Bösmann, Andreas; Palkovits, Regina; Wasserscheid, Peter

    2017-01-10

    An integration of CO 2 -free hydrogen generation through methane decomposition coupled with hydrogen/methane separation and chemical hydrogen storage through liquid organic hydrogen carrier (LOHC) systems is demonstrated. A potential, very interesting application is the upgrading of stranded gas, for example, gas from a remote gas field or associated gas from off-shore oil drilling. Stranded gas can be effectively converted in a catalytic process by methane decomposition into solid carbon and a hydrogen/methane mixture that can be directly fed to a hydrogenation unit to load a LOHC with hydrogen. This allows for a straight-forward separation of hydrogen from CH 4 and conversion of hydrogen to a hydrogen-rich LOHC material. Both, the hydrogen-rich LOHC material and the generated carbon on metal can easily be transported to destinations of further industrial use by established transport systems, like ships or trucks. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Deuterium trapping in tungsten

    NASA Astrophysics Data System (ADS)

    Poon, Michael

    Tungsten is one of the primary material candidates being investigated for use in the first-wall of a magnetic confinement fusion reactor. An ion accelerator was used to simulate the type of ion interaction that may occur at a plasma-facing material. Thermal desorption spectroscopy (TDS) was the primary tool used to analyze the effects of the irradiation. Secondary ion mass spectroscopy (SIMS) was used to determine the distribution of trapped D in the tungsten specimen. The tritium migration analysis program (TMAP) was used to simulate thermal desorption profiles from the D depth distributions. Fitting of the simulated thermal desorption profiles with the measured TDS results provided values of the D trap energies. Deuterium trapping in single crystal tungsten was studied as a function of the incident ion fluence, ion flux, irradiation temperature, irradiation history, and surface impurity levels during irradiation. The results show that deuterium was trapped at vacancies and voids. Two deuterium atoms could be trapped at a tungsten vacancy, with trapping energies of 1.4 eV and 1.2 eV for the first and second D atoms, respectively. In a tungsten void, D is trapped as atoms adsorbed on the inner walls of the void with a trap energy of 2.1 eV, or as D2 molecules inside the void with a trap energy of 1.2 eV. Deuterium trapping in polycrystalline tungsten was also studied as a function of the incident fluence, irradiation temperature, and irradiation history. Deuterium trapping in polycrystalline tungsten also occurs primarily at vacancies and voids with the same trap energies as in single crystal tungsten; however, the presence of grain boundaries promotes the formation of large surface blisters with high fluence irradiations at 500 K. In general, D trapping is greater in polycrystalline tungsten than in single crystal tungsten. To simulate mixed materials comprising of carbon (C) and tungsten, tungsten specimens were pre-irradiated with carbon ions prior to D

  10. Enhancement of deuterium retention in damaged tungsten by plasma-induced defect clustering

    NASA Astrophysics Data System (ADS)

    Jin, Younggil; Roh, Ki-Baek; Sheen, Mi-Hyang; Kim, Nam-Kyun; Song, Jaemin; Kim, Young-Woon; Kim, Gon-Ho

    2017-12-01

    The enhancement of deuterium retention was investigated for tungsten in the presence of both 2.8 MeV self-ion induced cascade damage and fuel hydrogen isotope plasma. Vacancy clustering in cascade damaged polycrystalline tungsten occurred due to deuterium irradiation and was observed near the grain boundary by using all-step transmission electron microscopy analysis. Analysis of the highest desorption temperature peak using thermal desorption spectroscopy supports reasonable evidence of defect clustering in the damaged polycrystalline tungsten. The defect clustering was neither observed on the damaged polycrystalline tungsten without deuterium irradiation nor on the damaged single-crystalline tungsten with deuterium irradiation. This result implies the synergetic role of deuterium and grain boundary on defect clustering. This study proposes a path for the defect transform from point defect to defect cluster, by the agglomeration between irradiated deuterium and cascade damage-induced defect. This agglomeration may induce more severe damage on the tungsten divertor at which the high fuel hydrogen ions, fast neutrons, and self-ions are irradiated simultaneously and it would increase the in-vessel tritium inventory.

  11. Nepenthesin from monkey cups for hydrogen/deuterium exchange mass spectrometry.

    PubMed

    Rey, Martial; Yang, Menglin; Burns, Kyle M; Yu, Yaping; Lees-Miller, Susan P; Schriemer, David C

    2013-02-01

    Studies of protein dynamics, structure and interactions using hydrogen/deuterium exchange mass spectrometry (HDX-MS) have sharply increased over the past 5-10 years. The predominant technology requires fast digestion at pH 2-3 to retain deuterium label. Pepsin is used almost exclusively, but it provides relatively low efficiency under the constraints of the experiment, and a selectivity profile that renders poor coverage of intrinsically disordered regions. In this study we present nepenthesin-containing secretions of the pitcher plant Nepenthes, commonly called monkey cups, for use in HDX-MS. We show that nepenthesin is at least 1400-fold more efficient than pepsin under HDX-competent conditions, with a selectivity profile that mimics pepsin in part, but also includes efficient cleavage C-terminal to "forbidden" residues K, R, H, and P. High efficiency permits a solution-based analysis with no detectable autolysis, avoiding the complication of immobilized enzyme reactors. Relaxed selectivity promotes high coverage of disordered regions and the ability to "tune" the mass map for regions of interest. Nepenthesin-enriched secretions were applied to an analysis of protein complexes in the nonhomologous end-joining DNA repair pathway. The analysis of XRCC4 binding to the BRCT domains of Ligase IV points to secondary interactions between the disordered C-terminal tail of XRCC4 and remote regions of the BRCT domains, which could only be identified with a nepenthesin-based workflow. HDX data suggest that stalk-binding to XRCC4 primes a BRCT conformation in these remote regions to support tail interaction, an event which may be phosphoregulated. We conclude that nepenthesin is an effective alternative to pepsin for all HDX-MS applications, and especially for the analysis of structural transitions among intrinsically disordered proteins and their binding partners.

  12. Time-resolved pulsed hydrogen/deuterium exchange mass spectrometry probes gaseous proteins structural kinetics.

    PubMed

    Rajabi, Khadijeh

    2015-01-01

    A pulsed hydrogen/deuterium exchange (HDX) method has been developed for rapid monitoring of the exchange kinetics of protein ions with D2O a few milliseconds after electrospray ionization (ESI). The stepwise gradual evolution of HDX of multiply charged protein ions was monitored using the pulsed HDX mass spectrometry technique. Upon introducing a very short pulse of D2O (in the μs to ms time scale) into the linear ion trap (LIT) of a time-of-flight (TOF) mass spectrometer, bimodal distributions were detected for the ions of cytochrome c and ubiquitin. Mechanistic details of HDX reactions for ubiquitin and cytochrome c in the gas phase were uncovered and the structural transitions were followed by analyzing the kinetics of HDX.

  13. Is Deuterium Nuclear Fusion Catalyzed by Antineutrinos?

    NASA Astrophysics Data System (ADS)

    Shomer, Isaac

    2010-02-01

    The hypothesis of Fischbach and Jenkins that neutrinos emitted from the sun accelerate radioactive decay is noted. It is thought that neutrinos accelerate beta decay by reacting with neutron-rich nuclides to form a beta particle and a daughter product, with no antineutrino emitted. Conversely, it is proposed that antineutrinos can react with proton-rich nuclides to cause positron decay, with no neutrino emitted. It is also proposed that the nuclear fusion of the hydrogen bomb is triggered not only by the energy of the igniting fission bomb, but by the antineutrinos created by the rapid beta decay of the daughter products in the fission process. The contemplated mechanism for antineutrino initiated fusion is the following: 1. The antineutrinos from the fission daughter products cause positron decay of deuterium by the process outlined above. 2. In a later fusion step, these positrons subsequently react with neutrons in deuterium to create antineutrinos. Electrons are unavailable to annihilate positrons in the plasma of the hydrogen bomb. 3. These antineutrinos thereafter react with more deuterium to form positrons, thereby propagating a chain reaction. )

  14. THE DEUTERIUM ISOTOPE RATE EFFECT IN FREE RADICAL REACTIONS OF t-CARBON DEUTERATED DDT AND ITS ANALOGS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dachauer, A.C.

    1962-01-01

    DDT and several of its analogs were synthesized with deuterium in the t- carbon position so that any chemical reaction involving this site in the molecule would then be subject to the deuterium isotope rate effect. Lithium aluminum deuteride, used as the source of the deuterium, was employed to reduce trichloromethyl p-chlorophenyl ketone, trichloromethyl p-bromophenyl ketone, and trichloromethyl p-methoxyphenyl ketone to the corresponding alcohols. The alcohols were then condensed with chlorobenzene, bromobenzene, and anisole respectively to form 1,1,1-trichloro2,2-bis(p-chloro-phenyl)ethane-2-d (d-DDT), 1,1,1-trichloro-2,2-bis (p-bromophenyl)ethane-2-d (d-DBrDT), and 1,1, 1-trichloro- 2,2-bis (p-methoxyphenyl)ethane (d-methoxychlor). The deuterated and non- deuterated insecticides were identical in physical appearance andmore » melting points. Infrared spectra showed sigrificant differences; in particular, each deuterated compound had a distinctive band at ca 10.5 mu , missing in the spectra of the non-deuterated insecticides. NMR analysis confirmed the tertiary position of the deuterium and gave proof of high isotopic purity, each insecticide being 98% deuterated in the desired site. The isotope rate effect was first studied in the reaction of DDT, methoxychlor, and their deuterated analogs with alcoholic sodium- hydroxide. The base catalyzed dehydrohalogenation showed an isotope rate effect, k/sub H//k/sub D/, of the order of 5.4 for DDT and 8 for methoxychlor. The results were considered to be of a magnitude sufficient for the isotope rate effect to be manifested in the in vivo studies. The insecticides and their deuterated analogs were tested for toxicity on houseflies. The results showed that d-DDT and d-DBrDT were more toxic than their non-deuterated counterparts by a factor of ca 1.5 while d-methoxychlor showed a toxicity equal to methoxychlor. The results are explained on the basis of the detoxication process in the insects. In vitro studies showed that

  15. ETD in a traveling wave ion guide at tuned Z-spray ion source conditions allows for site-specific hydrogen/deuterium exchange measurements.

    PubMed

    Rand, Kasper D; Pringle, Steven D; Morris, Michael; Engen, John R; Brown, Jeffery M

    2011-10-01

    The recent application of electron transfer dissociation (ETD) to measure the hydrogen exchange of proteins in solution at single-residue resolution (HX-ETD) paves the way for mass spectrometry-based analyses of biomolecular structure at an unprecedented level of detail. The approach requires that activation of polypeptide ions prior to ETD is minimal so as to prevent undesirable gas-phase randomization of the deuterium label from solution (i.e., hydrogen scrambling). Here we explore the use of ETD in a traveling wave ion guide of a quadrupole-time-of-flight (Q-TOF) mass spectrometer with a "Z-spray" type ion source, to measure the deuterium content of individual residues in peptides. We systematically identify key parameters of the Z-spray ion source that contribute to collisional activation and define conditions that allow ETD experiments to be performed in the traveling wave ion guide without gas-phase hydrogen scrambling. We show that ETD and supplemental collisional activation in a subsequent traveling wave ion guide allows for improved extraction of residue-specific deuterium contents in peptides with low charge. Our results demonstrate the feasibility, and illustrate the advantages of performing HX-ETD experiments on a high-resolution Q-TOF instrument equipped with traveling wave ion guides. Determination of parameters of the Z-spray ion source that contribute to ion heating are similarly pertinent to a growing number of MS applications that also rely on an energetically gentle transfer of ions into the gas-phase, such as the analysis of biomolecular structure by native mass spectrometry in combination with gas-phase ion-ion/ion-neutral reactions or ion mobility spectrometry. © American Society for Mass Spectrometry, 2011

  16. Measurements of the separated longitudinal structure function FL from hydrogen and deuterium targets at low Q2

    NASA Astrophysics Data System (ADS)

    Tvaskis, V.; Tvaskis, A.; Niculescu, I.; Abbott, D.; Adams, G. S.; Afanasev, A.; Ahmidouch, A.; Angelescu, T.; Arrington, J.; Asaturyan, R.; Avery, S.; Baker, O. K.; Benmouna, N.; Berman, B. L.; Biselli, A.; Blok, H. P.; Boeglin, W. U.; Bosted, P. E.; Brash, E.; Breuer, H.; Chang, G.; Chant, N.; Christy, M. E.; Connell, S. H.; Dalton, M. M.; Danagoulian, S.; Day, D.; Dodario, T.; Dunne, J. A.; Dutta, D.; El Khayari, N.; Ent, R.; Fenker, H. C.; Frolov, V. V.; Gaskell, D.; Garrow, K.; Gilman, R.; Gueye, P.; Hafidi, K.; Hinton, W.; Holt, R. J.; Horn, T.; Huber, G. M.; Jackson, H.; Jiang, X.; Jones, M. K.; Joo, K.; Kelly, J. J.; Keppel, C. E.; Kuhn, J.; Kinney, E.; Klein, A.; Kubarovsky, V.; Liang, Y.; Lolos, G.; Lung, A.; Mack, D.; Malace, S.; Markowitz, P.; Mbianda, G.; McGrath, E.; Mckee, D.; Meekins, D. G.; Mkrtchyan, H.; Napolitano, J.; Navasardyan, T.; Niculescu, G.; Nozar, M.; Ostapenko, T.; Papandreou, Z.; Potterveld, D.; Reimer, P. E.; Reinhold, J.; Roche, J.; Rock, S. E.; Schulte, E.; Segbefia, E.; Smith, C.; Smith, G. R.; Stoler, P.; Tadevosyan, V.; Tang, L.; Telfeyan, J.; Todor, L.; Ungaro, M.; Uzzle, A.; Vidakovic, S.; Villano, A.; Vulcan, W. F.; Warren, G.; Wesselmann, F.; Wojtsekhowski, B.; Wood, S. A.; Yan, C.; Zihlmann, B.

    2018-04-01

    Structure functions, as measured in lepton-nucleon scattering, have proven to be very useful in studying the partonic dynamics within the nucleon. However, it is experimentally difficult to separately determine the longitudinal and transverse structure functions, and consequently there are substantially less data available in particular for the longitudinal structure function. Here, we present separated structure functions for hydrogen and deuterium at low four-momentum transfer squared, Q2<1 GeV2 , and compare them with parton distribution parametrization and kT factorization approaches. While differences are found, the parametrizations generally agree with the data, even at the very low-Q2 scale of the data. The deuterium data show a smaller longitudinal structure function and a smaller ratio of longitudinal to transverse cross section, R , than the proton. This suggests either an unexpected difference in R for the proton and the neutron or a suppression of the gluonic distribution in nuclei.

  17. Comprehensive Gas-Phase Peptide Ion Structure Studies Using Ion Mobility Techniques: Part 2. Gas-Phase Hydrogen/Deuterium Exchange for Ion Population Estimation.

    PubMed

    Khakinejad, Mahdiar; Ghassabi Kondalaji, Samaneh; Tafreshian, Amirmahdi; Valentine, Stephen J

    2017-05-01

    Gas-phase hydrogen/deuterium exchange (HDX) using D 2 O reagent and collision cross-section (CCS) measurements are utilized to monitor the ion conformers of the model peptide acetyl-PAAAAKAAAAKAAAAKAAAAK. The measurements are carried out on a home-built ion mobility instrument coupled to a linear ion trap mass spectrometer containing electron transfer dissociation (ETD) capabilities. ETD is utilized to obtain per-residue deuterium uptake data for select ion conformers, and a new algorithm is presented for interpreting the HDX data. Using molecular dynamics (MD) production data and a hydrogen accessibility scoring (HAS)-number of effective collisions (NEC) model, hypothetical HDX behavior is attributed to various in-silico candidate (CCS match) structures. The HAS-NEC model is applied to all candidate structures, and non-negative linear regression is employed to determine structure contributions resulting in the best match to deuterium uptake. The accuracy of the HAS-NEC model is tested with the comparison of predicted and experimental isotopic envelopes for several of the observed c-ions. It is proposed that gas-phase HDX can be utilized effectively as a second criterion (after CCS matching) for filtering suitable MD candidate structures. In this study, the second step of structure elucidation, 13 nominal structures were selected (from a pool of 300 candidate structures) and each with a population contribution proposed for these ions. Graphical Abstract ᅟ.

  18. Investigating the Interaction between the Neonatal Fc Receptor and Monoclonal Antibody Variants by Hydrogen/Deuterium Exchange Mass Spectrometry*

    PubMed Central

    Jensen, Pernille Foged; Larraillet, Vincent; Schlothauer, Tilman; Kettenberger, Hubert; Hilger, Maximiliane; Rand, Kasper D.

    2015-01-01

    The recycling of immunoglobulins by the neonatal Fc receptor (FcRn) is of crucial importance in the maintenance of antibody levels in plasma and is responsible for the long half-lives of endogenous and recombinant monoclonal antibodies. From a therapeutic point of view there is great interest in understanding and modulating the IgG–FcRn interaction to optimize antibody pharmacokinetics and ultimately improve efficacy and safety. Here we studied the interaction between a full-length human IgG1 and human FcRn via hydrogen/deuterium exchange mass spectrometry and targeted electron transfer dissociation to map sites perturbed by binding on both partners of the IgG–FcRn complex. Several regions in the antibody Fc region and the FcRn were protected from exchange upon complex formation, in good agreement with previous crystallographic studies of FcRn in complex with the Fc fragment. Interestingly, we found that several regions in the IgG Fab region also showed reduced deuterium uptake. Our findings indicate the presence of hitherto unknown FcRn interaction sites in the Fab region or a possible conformational link between the IgG Fc and Fab regions upon FcRn binding. Further, we investigated the role of IgG glycosylation in the conformational response of the IgG–FcRn interaction. Removal of antibody glycans increased the flexibility of the FcRn binding site in the Fc region. Consequently, FcRn binding did not induce a similar conformational stabilization of deglycosylated IgG as observed for the wild-type glycosylated IgG. Our results provide new molecular insight into the IgG–FcRn interaction and illustrate the capability of hydrogen/deuterium exchange mass spectrometry to advance structural proteomics by providing detailed information on the conformation and dynamics of large protein complexes in solution. PMID:25378534

  19. Measurement of backbone hydrogen-deuterium exchange in the type III secretion system needle protein PrgI by solid-state NMR

    NASA Astrophysics Data System (ADS)

    Chevelkov, Veniamin; Giller, Karin; Becker, Stefan; Lange, Adam

    2017-10-01

    In this report we present site-specific measurements of amide hydrogen-deuterium exchange rates in a protein in the solid state phase by MAS NMR. Employing perdeuteration, proton detection and a high external magnetic field we could adopt the highly efficient Relax-EXSY protocol previously developed for liquid state NMR. According to this method, we measured the contribution of hydrogen exchange on apparent 15N longitudinal relaxation rates in samples with differing D2O buffer content. Differences in the apparent T1 times allowed us to derive exchange rates for multiple residues in the type III secretion system needle protein.

  20. Investigation of the role of the micro-porous layer in polymer electrolyte fuel cells with hydrogen deuterium contrast neutron radiography.

    PubMed

    Cho, Kyu Taek; Mench, Matthew M

    2012-03-28

    In this study, the high resolution hydrogen-deuterium contrast radiography method was applied to elucidate the impact of the micro-porous layer (MPL) on water distribution in the porous fuel cell media. At the steady state, deuterium replaced hydrogen in the anode stream, and the large difference in neutron attenuation of the D(2)O produced at the cathode was used to track the produced water. It was found that the water content peaked in the cathode-side diffusion media (DM) for the cell without MPL, but with an MPL on the anode and cathode DM, the peak water amount was pushed toward the anode, resulting in a relatively flattened water profile through components and demonstrating a liquid barrier effect. Additionally, the dynamic water behavior in diffusion media was analyzed to understand the effect of a MPL and operating conditions. The water content in the DM changed with applied current, although there is a significant amount of residual liquid content that does not appear to be part of capillary channels. The effect of the MPL on irreducible saturation in DM and cell performance was also investigated.

  1. Online Hydrogen-Deuterium Exchange Traveling Wave Ion Mobility Mass Spectrometry (HDX-IM-MS): a Systematic Evaluation

    NASA Astrophysics Data System (ADS)

    Cryar, Adam; Groves, Kate; Quaglia, Milena

    2017-06-01

    Hydrogen-deuterium exchange mass spectrometry (HDX-MS) is an important tool for measuring and monitoring protein structure. A bottom-up approach to HDX-MS provides peptide level deuterium uptake values and a more refined localization of deuterium incorporation compared with global HDX-MS measurements. The degree of localization provided by HDX-MS is proportional to the number of peptides that can be identified and monitored across an exchange experiment. Ion mobility spectrometry (IMS) has been shown to improve MS-based peptide analysis of biological samples through increased separation capacity. The integration of IMS within HDX-MS workflows has been commercialized but presently its adoption has not been widespread. The potential benefits of IMS, therefore, have not yet been fully explored. We herein describe a comprehensive evaluation of traveling wave ion mobility integrated within an online-HDX-MS system and present the first reported example of UDMSE acquisition for HDX analysis. Instrument settings required for optimal peptide identifications are described and the effects of detector saturation due to peak compression are discussed. A model system is utilized to confirm the comparability of HDX-IM-MS and HDX-MS uptake values prior to an evaluation of the benefits of IMS at increasing sample complexity. Interestingly, MS and IM-MS acquisitions were found to identify distinct populations of peptides that were unique to the respective methods, a property that can be utilized to increase the spatial resolution of HDX-MS experiments by >60%. [Figure not available: see fulltext.

  2. Local dynamics measured by hydrogen/deuterium exchange and mass spectrometry of creatine kinase digested by two proteases.

    PubMed

    Mazon, Hortense; Marcillat, Olivier; Forest, Eric; Vial, Christian

    2005-12-01

    Hydrogen/deuterium exchange coupled to mass spectrometry has been used to investigate the structure and dynamics of native dimeric cytosolic muscle creatine kinase. The protein was incubated in D2O for various time. After H/D exchange and rapid quenching of the reaction, the partially deuterated protein was cleaved in parallel by two different proteases (pepsin or type XIII protease from Aspergillus saitoi) to increase the sequence coverage and spatial resolution of deuterium incorporation. The resulting peptides were analyzed by liquid chromatography coupled to mass spectrometry. In comparison with the 3D structure of MM-CK, the analysis of the two independent proteolysis deuteration patterns allowed us to get new insights into CK local dynamics as compared to a previous study using pepsin [Mazon et al. Protein Science 13 (2004) 476-486]. In particular, we obtained more information on the kinetics and extent of deuterium exchange in the N- and C-terminal extremities represented by the 1-22 and 362-380 pepsin peptides. Indeed, we observed a very different behaviour of the 1-12 and 13-22 type XIII protease peptides, and similarly for the 362-373 and 374-380 peptides. Moreover, comparison of the deuteration patterns of type XIII protease segments of the large 90-126 pepsin peptide led us to identify a small relatively dynamic region (108-114).

  3. Characterization of the International Humic Substances Society standard and reference fulvic and humic acids by solution state carbon-13 (13C) and hydrogen-1 (1H) nuclear magnetic resonance spectrometry

    USGS Publications Warehouse

    Thorn, Kevin A.; Folan, Daniel W.; MacCarthy, Patrick

    1989-01-01

    Standard and reference samples of the International Humic Substances Society have been characterized by solution state carbon-13 and hydrogen-1 nuclear magnetic resonance (NMR) spectrometry. Samples included the Suwannee River, soil, and peat standard fulvic and humic acids, the Leonardite standard humic acid, the Nordic aquatic reference fulvic and humic acids, and the Summit Hill soil reference humic acid. Aqueous-solution carbon-13 NMR analyses included the measurement of spin-lattice relaxation times, measurement of nuclear Overhauser enhancement factors, measurement of quantitative carbon distributions, recording of attached proton test spectra, and recording of spectra under nonquantitative conditions. Distortionless enhancement by polarization transfer carbon-13 NMR spectra also were recorded on the Suwannee River fulvic acid in deuterated dimethyl sulfoxide. Hydrogen-1 NMR spectra were recorded on sodium salts of the samples in deuterium oxide. The carbon aromaticities of the samples ranged from 0.24 for the Suwannee River fulvic acid to 0.58 for the Leonardite humic acid.

  4. Hydrogen-deuterium exchange mass spectrometry reveals folding and allostery in protein-protein interactions.

    PubMed

    Ramirez-Sarmiento, Cesar A; Komives, Elizabeth A

    2018-04-06

    Hydrogen-deuterium exchange mass spectrometry (HDXMS) has emerged as a powerful approach for revealing folding and allostery in protein-protein interactions. The advent of higher resolution mass spectrometers combined with ion mobility separation and ultra performance liquid chromatographic separations have allowed the complete coverage of large protein sequences and multi-protein complexes. Liquid-handling robots have improved the reproducibility and accurate temperature control of the sample preparation. Many researchers are also appreciating the power of combining biophysical approaches such as stopped-flow fluorescence, single molecule FRET, and molecular dynamics simulations with HDXMS. In this review, we focus on studies that have used a combination of approaches to reveal (re)folding of proteins as well as on long-distance allosteric changes upon interaction. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. The Variability of Atmospheric Deuterium Brightness at Mars: Evidence for Seasonal Dependence

    NASA Astrophysics Data System (ADS)

    Mayyasi, Majd; Clarke, John; Bhattacharyya, Dolon; Deighan, Justin; Jain, Sonal; Chaffin, Michael; Thiemann, Edward; Schneider, Nick; Jakosky, Bruce

    2017-10-01

    The enhanced ratio of deuterium to hydrogen on Mars has been widely interpreted as indicating the loss of a large column of water into space, and the hydrogen content of the upper atmosphere is now known to be highly variable. The variation in the properties of both deuterium and hydrogen in the upper atmosphere of Mars is indicative of the dynamical processes that produce these species and propagate them to altitudes where they can escape the planet. Understanding the seasonal variability of D is key to understanding the variability of the escape rate of water from Mars. Data from a 15 month observing campaign, made by the Mars Atmosphere and Volatile Evolution Imaging Ultraviolet Spectrograph high-resolution echelle channel, are used to determine the brightness of deuterium as observed at the limb of Mars. The D emission is highly variable, with a peak in brightness just after southern summer solstice. The trends of D brightness are examined against extrinsic as well as intrinsic sources. It is found that the fluctuations in deuterium brightness in the upper atmosphere of Mars (up to 400 km), corrected for periodic solar variations, vary on timescales that are similar to those of water vapor fluctuations lower in the atmosphere (20-80 km). The observed variability in deuterium may be attributed to seasonal factors such as regional dust storm activity and subsequent circulation lower in the atmosphere.

  6. THE EXCHANGE OF DEUTERIUM WITH METHANOL OVER RANEY NICKEL CATALYST AND THE EFFECT OF CERTAIN NITRO COMPOUNDS UPON THE EXCHANGE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, H.A.; Stewart, B.B.

    Deuterium gas exchanges slowly with liquid methanol over Raney nickel catalyst at 35 deg . The reaction is zero order with respect to deuterium pressure and has a low activation energy. The influences of catalyst weight, catalyst treatment, and of the presence of certain nitro compounds were studied. Since active Raney nickel can liberate hydrogen directly, a method for determining the origin of hydrogen which undergoes exchange with the deuterium gas was developed. It was shown that the exchanged hydrogen does originate from the hydroxyl hydrogen of methanol. The results are discussed in the light of the mechanism of catalyticmore » exchange and catalytic hydrogenation reactions. (auth)« less

  7. Eight-Liter Hydrogen-Deuterium Bubble Chamber in Magnetic Field; VOS MILITROVAYA VODORODNO-DEITERIEVAYA PUZYR'KOVAYA KAMERA V MAGNITNOM POLE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blokhintseva, T.D.; Vasilenko, A.T.; Grebinnik, V.G.

    1961-01-01

    A design of an 8-liter hydrogen-deuterium bubble chamber is described, and its operating characteristics are given. The chamber is a metal-glass device with the vertical location of its working volume. The chamber is illuminated by means of a lens. In the expansion system the bellows are used. The magnetic field is 12000 oersted in the working volume. The operating cycle of the chamber does not exceed 2 secs. (auth)

  8. Deuterium-tritium pulse propulsion with hydrogen as propellant and the entire space-craft as a gigavolt capacitor for ignition

    NASA Astrophysics Data System (ADS)

    Winterberg, F.

    2013-08-01

    A deuterium-tritium (DT) nuclear pulse propulsion concept for fast interplanetary transport is proposed utilizing almost all the energy for thrust and without the need for a large radiator: By letting the thermonuclear micro-explosion take place in the center of a liquid hydrogen sphere with the radius of the sphere large enough to slow down and absorb the neutrons of the DT fusion reaction, heating the hydrogen to a fully ionized plasma at a temperature of ∼105 K. By using the entire spacecraft as a magnetically insulated gigavolt capacitor, igniting the DT micro-explosion with an intense GeV ion beam discharging the gigavolt capacitor, possible if the space craft has the topology of a torus.

  9. Confinement of hydrogen at high pressure in carbon nanotubes

    DOEpatents

    Lassila, David H [Aptos, CA; Bonner, Brian P [Livermore, CA

    2011-12-13

    A high pressure hydrogen confinement apparatus according to one embodiment includes carbon nanotubes capped at one or both ends thereof with a hydrogen-permeable membrane to enable the high pressure confinement of hydrogen and release of the hydrogen therethrough. A hydrogen confinement apparatus according to another embodiment includes an array of multi-walled carbon nanotubes each having first and second ends, the second ends being capped with palladium (Pd) to enable the high pressure confinement of hydrogen and release of the hydrogen therethrough as a function of palladium temperature, wherein the array of carbon nanotubes is capable of storing hydrogen gas at a pressure of at least 1 GPa for greater than 24 hours. Additional apparatuses and methods are also presented.

  10. Measurements of the separated longitudinal structure function F L from hydrogen and deuterium targets at low Q 2

    DOE PAGES

    Tvaskis, V.; Tvaskis, A.; Niculescu, I.; ...

    2018-04-26

    Structure functions, as measured in lepton-nucleon scattering, have proven to be very useful in studying the partonic dynamics within the nucleon. Furthermore, it is experimentally difficult to separately determine the longitudinal and transverse structure functions, and consequently there are substantially less data available in particular for the longitudinal structure function. Here, we present separated structure functions for hydrogen and deuterium at low four-momentum transfer squared, Q 2 < 1 GeV 2, and compare them with parton distribution parametrization and k T factorization approaches. While differences are found, the parametrizations generally agree with the data, even at the very low-Q 2more » scale of the data. The deuterium data show a smaller longitudinal structure function and a smaller ratio of longitudinal to transverse cross section, R, than the proton. This suggests either an unexpected difference in R for the proton and the neutron or a suppression of the gluonic distribution in nuclei.« less

  11. Measurements of the separated longitudinal structure function F L from hydrogen and deuterium targets at low Q 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tvaskis, V.; Tvaskis, A.; Niculescu, I.

    Structure functions, as measured in lepton-nucleon scattering, have proven to be very useful in studying the partonic dynamics within the nucleon. Furthermore, it is experimentally difficult to separately determine the longitudinal and transverse structure functions, and consequently there are substantially less data available in particular for the longitudinal structure function. Here, we present separated structure functions for hydrogen and deuterium at low four-momentum transfer squared, Q 2 < 1 GeV 2, and compare them with parton distribution parametrization and k T factorization approaches. While differences are found, the parametrizations generally agree with the data, even at the very low-Q 2more » scale of the data. The deuterium data show a smaller longitudinal structure function and a smaller ratio of longitudinal to transverse cross section, R, than the proton. This suggests either an unexpected difference in R for the proton and the neutron or a suppression of the gluonic distribution in nuclei.« less

  12. The presence of isolated hydrogen donors in heavily carbon-doped GaAs

    NASA Astrophysics Data System (ADS)

    Fushimi, Hiroshi; Wada, Kazumi

    1994-12-01

    The deactivation mechanism of carbon acceptors in GaAs has systematically been studied by measuring the annealing behavior and depth profiles of the carrier concentration. It is found that hydrogen impurities dominate carbon deactivation. Their deactivation undergoes two different ways: Hydrogen donors isolated from carbon acceptors compensate carbon and hydrogen impurities neutralize the carbon by forming neutral carbon-hydrogen complexes. The compensating hydrogen donors diffuse out extremely fast at relatively low temperatures. This is, to the best of our knowledge, the first report on the presence of isolated hydrogen donors in heavily carbon-doped GaAs. The dissociation of carbon-hydrogen complexes is much slower than reported. The mechanism is discussed in terms of a hydrogen retrapping effect by carbon.

  13. Thermally induced evolution of hydrogenated amorphous carbon

    NASA Astrophysics Data System (ADS)

    Mangolini, Filippo; Rose, Franck; Hilbert, James; Carpick, Robert W.

    2013-10-01

    The thermally induced structural evolution of hydrogenated amorphous carbon (a-C:H) films was investigated in situ by X-ray photoelectron spectroscopy for annealing temperatures up to 500 °C. A model for the conversion of sp3- to sp2-hybridized carbon in a-C:H vs. temperature and time was developed and applied to determine the ranges of activation energies for the thermally activated processes occurring. The energies are consistent with ordering and clustering of sp2 carbon, scission of sp3 carbon-hydrogen bonds and formation of sp2 carbon, and direct transformation of sp3- to sp2-hybridized carbon.

  14. Determination of the ratio r v = d v u v of the valence quark distributions in the proton from neutrino and antineutrino reactions on hydrogen and deuterium

    NASA Astrophysics Data System (ADS)

    Jones, G. T.; Jones, R. W. L.; Kennedy, B. W.; Klein, H.; Morrison, D. R. O.; Wachsmuth, H.; Miller, D. B.; Mobayyen, M. M.; Wainstein, S.; Aderholz, M.; Hantke, D.; Katz, U. F.; Kern, J.; Schmitz, N.; Wittek, W.; Borner, H. P.; Myatt, G.; Cooper-Sarkar, A. M.; Guy, J.; Venus, W.; Bullock, F. W.; Burke, S.

    1994-12-01

    Based on a QCD analysis of the parton momentum distributions in the proton, the ratio r v = d v / u v of the d and u valence quark distributions is determined as function of x in the range 0.01< x<0.7. The analysis uses data from neutrino and antineutrino charged current interactions on hydrogen and deuterium, obtained with BEBC in the (anti)neutrino wideband beam of the CERN SPS. Since v mainly depends on the deuterium/hydrogen ratios of the normalised x-y-Q 2-distributions many systematic effects cancel. It is found that r v decreases with increasing x, and drops below the naive SU(6) expectation of 0.5 for x≳0.3. An extrapolation of r v to x=1 is consistent with the hypothesis r v (1)=0.

  15. Deuterium diffusion and retention in tungsten coated with barrier layer during ion irradiation

    NASA Astrophysics Data System (ADS)

    Begrambekov, L. B.; Kaplevsky, A. S.; Dovganyuk, S. S.; Evsin, A. E.; Baryshnikova, I. E.

    2017-12-01

    The results of the comparative analysis of low-temperature desorption of deuterium from tungsten coated with aluminum and yttrium films under the irradiation by hydrogen plasma with oxygen impurity are presented. The irradiation of aluminum or yttrium coating by H2+1%O2 plasma leads to the desorption of implanted deuterium from the samples. It was shown that the number of atoms desorbed depends on the sign of enthalpy of hydrogen solution in the metal film.

  16. Combining Crystallography and Hydrogen-Deuterium Exchange to Study Galectin-Ligand Complexes.

    PubMed

    Ruiz, Federico M; Gilles, Ulrich; Lindner, Ingo; André, Sabine; Romero, Antonio; Reusch, Dietmar; Gabius, Hans-Joachim

    2015-09-21

    The physiological significance arising from translating information stored in glycans into cellular effects explains the interest in structurally defining lectin-carbohydrate recognition. The relatively small set of adhesion/growth-regulatory galectins in chicken makes this system attractive to study the origins of specificity and divergence. Cell binding by using glycosylation mutants reveals binding of the N-terminal domain of chicken galectin-8 (CG-8N) to α-2,3-sialylated and galactose-terminated glycan chains. Cocrystals with lactose and its 3'-sialylated derivative disclose Arg58 as a key contact for the carboxylic acid and differences in loop lengths to the three homodimeric chicken galectins. Monitoring hydrogen-deuterium exchange by mass spectrometry revealed an effective reduction of deuteration after ligand binding within the contact area. In addition, evidence for changes in solvent accessibility of amide protons beyond this site was obtained. Their detection, which highlights the sensor capacity of this technique, encourages systematic studies on galectins and beyond. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Evidence of 9Be  +  p nuclear reactions during 2ω CH and hydrogen minority ICRH in JET-ILW hydrogen and deuterium plasmas

    NASA Astrophysics Data System (ADS)

    Krasilnikov, A. V.; Kiptily, V.; Lerche, E.; Van Eester, D.; Afanasyev, V. I.; Giroud, C.; Goloborodko, V.; Hellesen, C.; Popovichev, S. V.; Mironov, M. I.; contributors, JET

    2018-02-01

    The intensity of 9Be  +  p nuclear fusion reactions was experimentally studied during second harmonic (2ω CH) ion-cyclotron resonance heating (ICRH) and further analyzed during fundamental hydrogen minority ICRH of JET-ILW hydrogen and deuterium plasmas. In relatively low-density plasmas with a high ICRH power, a population of fast H+ ions was created and measured by neutral particle analyzers. Primary and secondary nuclear reaction products, due to 9Be  +  p interaction, were observed with fast ion loss detectors, γ-ray spectrometers and neutron flux monitors and spectrometers. The possibility of using 9Be(p, d)2α and 9Be(p, α)6Li nuclear reactions to create a population of fast alpha particles and study their behaviour in non-active stage of ITER operation is discussed in the paper.

  18. Hydrogen bond and halogen bond inside the carbon nanotube

    NASA Astrophysics Data System (ADS)

    Wang, Weizhou; Wang, Donglai; Zhang, Yu; Ji, Baoming; Tian, Anmin

    2011-02-01

    The hydrogen bond and halogen bond inside the open-ended single-walled carbon nanotubes have been investigated theoretically employing the newly developed density functional M06 with the suitable basis set and the natural bond orbital analysis. Comparing with the hydrogen or halogen bond in the gas phase, we find that the strength of the hydrogen or halogen bond inside the carbon nanotube will become weaker if there is a larger intramolecular electron-density transfer from the electron-rich region of the hydrogen or halogen atom donor to the antibonding orbital of the X-H or X-Hal bond involved in the formation of the hydrogen or halogen bond and will become stronger if there is a larger intermolecular electron-density transfer from the electron-rich region of the hydrogen or halogen atom acceptor to the antibonding orbital of the X-H or X-Hal bond. According to the analysis of the molecular electrostatic potential of the carbon nanotube, the driving force for the electron-density transfer is found to be the negative electric field formed in the carbon nanotube inner phase. Our results also show that the X-H bond involved in the formation of the hydrogen bond and the X-Hal bond involved in the formation of the halogen bond are all elongated when encapsulating the hydrogen bond and halogen bond within the carbon nanotube, so the carbon nanotube confinement may change the blue-shifting hydrogen bond and the blue-shifting halogen bond into the red-shifting hydrogen bond and the red-shifting halogen bond. The possibility to replace the all electron nanotube-confined calculation by the simple polarizable continuum model is also evaluated.

  19. Ion Mobility Spectrometry-Mass Spectrometry Coupled with Gas-Phase Hydrogen/Deuterium Exchange for Metabolomics Analyses

    NASA Astrophysics Data System (ADS)

    Maleki, Hossein; Karanji, Ahmad K.; Majuta, Sandra; Maurer, Megan M.; Valentine, Stephen J.

    2018-02-01

    Ion mobility spectrometry-mass spectrometry (IMS-MS) in combination with gas-phase hydrogen/deuterium exchange (HDX) and collision-induced dissociation (CID) is evaluated as an analytical method for small-molecule standard and mixture characterization. Experiments show that compound ions exhibit unique HDX reactivities that can be used to distinguish different species. Additionally, it is shown that gas-phase HDX kinetics can be exploited to provide even further distinguishing capabilities by using different partial pressures of reagent gas. The relative HDX reactivity of a wide variety of molecules is discussed in light of the various molecular structures. Additionally, hydrogen accessibility scoring (HAS) and HDX kinetics modeling of candidate ( in silico) ion structures is utilized to estimate the relative ion conformer populations giving rise to specific HDX behavior. These data interpretation methods are discussed with a focus on developing predictive tools for HDX behavior. Finally, an example is provided in which ion mobility information is supplemented with HDX reactivity data to aid identification efforts of compounds in a metabolite extract.

  20. Hydrogen attack - Influence of hydrogen sulfide. [on carbon steel

    NASA Technical Reports Server (NTRS)

    Eliezer, D.; Nelson, H. G.

    1978-01-01

    An experimental study is conducted on 12.5-mm-thick SAE 1020 steel (plain carbon steel) plate to assess hydrogen attack at room temperature after specimen exposure at 525 C to hydrogen and a blend of hydrogen sulfide and hydrogen at a pressure of 3.5 MN/sq m for exposure times up to 240 hr. The results are discussed in terms of tensile properties, fissure formation, and surface scales. It is shown that hydrogen attack from a high-purity hydrogen environment is severe, with the formation of numerous methane fissures and bubbles along with a significant reduction in the room-temperature tensile yield and ultimate strengths. However, no hydrogen attack is observed in the hydrogen/hydrogen sulfide blend environment, i.e. no fissure or bubble formation occurred and the room-temperature tensile properties remained unchanged. It is suggested that the observed porous discontinuous scale of FeS acts as a barrier to hydrogen entry, thus reducing its effective equilibrium solubility in the iron lattice. Therefore, hydrogen attack should not occur in pressure-vessel steels used in many coal gasification processes.

  1. The Area between Exchange Curves as a Measure of Conformational Differences in Hydrogen-Deuterium Exchange Mass Spectrometry Studies

    PubMed Central

    Mazur, Sharlyn J.; Weber, Daniel P.

    2018-01-01

    Hydrogen-deuterium exchange mass spectrometry (HDX-MS) provides information about protein conformational mobility under native conditions. The area between exchange curves, Abec, a functional data analysis concept, was adapted to the interpretation of HDX-MS data and provides a useful measure of exchange curve dissimilarity for tests of significance. Importantly, for most globular proteins under native conditions, Abec values provide an estimate of the log ratio of exchange-competent fractions in the two states, and thus are related to differences in the free energy of microdomain unfolding. PMID:28236290

  2. Water Sorption and Vapor-Phase Deuterium Exchange Studies on Methemoglobin CC, SC, SS, AS, and AA

    PubMed Central

    Killion, Philip J.; Cameron, Bruce F.

    1972-01-01

    Five hemoglobins whose genetic relationship to one another involves one set of alleles, hemoglobins CC, SC, SS, AS, and AA, were studied in the Met form. Two different investigations were conducted at 28°C on these methemoglobins within a McBain gravimetric sorption system: sorption of H2O vapor and vapor-phase deuterium-hydrogen exchange. For each of the five samples there was close agreement between the per cent hydration of polar sites as determined from sorption studies and the maximum per cent of labile hydrogens that were exchanged during the vapor-phase deuterium exchange study. Both studies measured a slight increase in the number of polar sites accessible to H2O or D2O vapor for those samples in which the substituent in the sixth position from the N-terminus of the two β-chains had a positively charged side chain and a slight decrease for those in which the substituent had a negatively charged side chain. The in-exchange of deuterium for hydrogen occurred at a faster observed rate than the out-exchange of hydrogen for deuterium. PMID:5030563

  3. Carbonate thermochemical cycle for the production of hydrogen

    DOEpatents

    Collins, Jack L [Knoxville, TN; Dole, Leslie R [Knoxville, TN; Ferrada, Juan J [Knoxville, TN; Forsberg, Charles W [Oak Ridge, TN; Haire, Marvin J [Oak Ridge, TN; Hunt, Rodney D [Oak Ridge, TN; Lewis, Jr, Benjamin E [Knoxville, TN; Wymer, Raymond G [Oak Ridge, TN

    2010-02-23

    The present invention is directed to a thermochemical method for the production of hydrogen from water. The method includes reacting a multi-valent metal oxide, water and a carbonate to produce an alkali metal-multi-valent metal oxide compound, carbon dioxide, and hydrogen.

  4. Deuterium Retention and Physical Sputtering of Low Activation Ferritic Steel

    NASA Astrophysics Data System (ADS)

    T, Hino; K, Yamaguchi; Y, Yamauchi; Y, Hirohata; K, Tsuzuki; Y, Kusama

    2005-04-01

    Low activation materials have to be developed toward fusion demonstration reactors. Ferritic steel, vanadium alloy and SiC/SiC composite are candidate materials of the first wall, vacuum vessel and blanket components, respectively. Although changes of mechanical-thermal properties owing to neutron irradiation have been investigated so far, there is little data for the plasma material interactions, such as fuel hydrogen retention and erosion. In the present study, deuterium retention and physical sputtering of low activation ferritic steel, F82H, were investigated by using deuterium ion irradiation apparatus. After a ferritic steel sample was irradiated by 1.7 keV D+ ions, the weight loss was measured to obtain the physical sputtering yield. The sputtering yield was 0.04, comparable to that of stainless steel. In order to obtain the retained amount of deuterium, technique of thermal desorption spectroscopy (TDS) was employed to the irradiated sample. The retained deuterium desorbed at temperature ranging from 450 K to 700 K, in the forms of DHO, D2, D2O and hydrocarbons. Hence, the deuterium retained can be reduced by baking with a relatively low temperature. The fluence dependence of retained amount of deuterium was measured by changing the ion fluence. In the ferritic steel without mechanical polish, the retained amount was large even when the fluence was low. In such a case, a large amount of deuterium was trapped in the surface oxide layer containing O and C. When the fluence was large, the thickness of surface oxide layer was reduced by the ion sputtering, and then the retained amount in the oxide layer decreased. In the case of a high fluence, the retained amount of deuterium became comparable to that of ferritic steel with mechanical polish or SS 316L, and one order of magnitude smaller than that of graphite. When the ferritic steel is used, it is required to remove the surface oxide layer for reduction of fuel hydrogen retention. Ferritic steel sample was

  5. Thermodynamics and vibrational study of hydrogenated carbon nanotubes: A DFT study

    NASA Astrophysics Data System (ADS)

    Khalil, Rana M. Arif; Hussain, Fayyaz; Rana, Anwar Manzoor; Imran, Muhammad

    2018-02-01

    Thermodynamic stability of the hydrogenated carbon nanotubes has been explored in the chemisorption limit. Statistical physics and density functional theory calculations have been used to predict hydrogen release temperatures at standard pressure in zigzag and armchair carbon nanotubes. It is found that hydrogen release temperatures decrease with increase in diameters of hydrogenated zigzag carbon nanotubes (CNTs) but opposite trend is noted in armchair CNTs at standard pressure of 1 bar. The smaller diameter hydrogenated zigzag CNTs have large values of hydrogen release temperature due to the stability of Csbnd H bonds. The vibrational density of states for hydrogenated carbon nanotubes have been calculated to confirm the Csbnd H stretching mode caused by sp3 hybridization.

  6. Hydrogen content estimation of hydrogenated amorphous carbon by visible Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Adamopoulos, G.; Robertson, J.; Morrison, N. A.; Godet, C.

    2004-12-01

    In the present study, we report the hydrogen content estimation of the hydrogenated amorphous carbon (a-C:H) films using visible Raman spectroscopy in a fast and nondestructive way. Hydrogenated diamondlike carbon films were deposited by the plasma enhanced chemical vapor deposition, plasma beam source, and integrated distributed electron cyclotron resonance techniques. Methane and acetylene were used as source gases resulting in different hydrogen content and sp2/sp3 fraction. Ultraviolet-visible (UV-Vis) spectroscopic ellipsometry (1.5-5eV ) as well as UV-Vis spectroscopy were provided with the optical band gap (Tauc gap). The sp2/sp3 fraction and the hydrogen content were independently estimated by electron energy loss spectroscopy and elastic recoil detection analysis-Rutherford back scattering, respectively. The Raman spectra that were acquired in the visible region using the 488nm line shows the superposition of Raman features on a photoluminescence (PL) background. The direct relationship of the sp2 content and the optical band gap has been confirmed. The difference in the PL background for samples of the same optical band gap (sp2 content) and different hydrogen content was demonstrated and an empirical relationship between the visible Raman spectra PL background slope and the corresponding hydrogen content was extracted.

  7. Polymeric carbon nitride for solar hydrogen production.

    PubMed

    Li, Xiaobo; Masters, Anthony F; Maschmeyer, Thomas

    2017-07-04

    If solar hydrogen production from water is to be a realistic candidate for industrial hydrogen production, the development of photocatalysts, which avoid the use of expensive and/or toxic elements is highly desirable from a scalability, cost and environmental perspective. Metal-free polymeric carbon nitride is an attractive material that can absorb visible light and produce hydrogen from water. This article reviews recent developments in polymeric carbon nitride as used in photocatalysis and then develops the discussion focusing on the three primary processes of a photocatalytic reaction: light-harvesting, carrier generation/separation/transportation and surface reactions.

  8. Carbon material for hydrogen storage

    DOEpatents

    Bourlinos, Athanasios; Steriotis, Theodore; Stubos, Athanasios; Miller, Michael A

    2016-09-13

    The present invention relates to carbon based materials that are employed for hydrogen storage applications. The material may be described as the pyrolysis product of a molecular precursor such as a cyclic quinone compound. The pyrolysis product may then be combined with selected transition metal atoms which may be in nanoparticulate form, where the metals may be dispersed on the material surface. Such product may then provide for the reversible storage of hydrogen. The metallic nanoparticles may also be combined with a second metal as an alloy to further improve hydrogen storage performance.

  9. Characterization of Aggregation Propensity of a Human Fc-Fusion Protein Therapeutic by Hydrogen/Deuterium Exchange Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Huang, Richard Y.-C.; Iacob, Roxana E.; Krystek, Stanley R.; Jin, Mi; Wei, Hui; Tao, Li; Das, Tapan K.; Tymiak, Adrienne A.; Engen, John R.; Chen, Guodong

    2017-05-01

    Aggregation of protein therapeutics has long been a concern across different stages of manufacturing processes in the biopharmaceutical industry. It is often indicative of aberrant protein therapeutic higher-order structure. In this study, the aggregation propensity of a human Fc-fusion protein therapeutic was characterized. Hydrogen/deuterium exchange mass spectrometry (HDX-MS) was applied to examine the conformational dynamics of dimers collected from a bioreactor. HDX-MS data combined with spatial aggregation propensity calculations revealed a potential aggregation interface in the Fc domain. This study provides a general strategy for the characterization of the aggregation propensity of Fc-fusion proteins at the molecular level.

  10. Probing Conformational Dynamics of Tau Protein by Hydrogen/Deuterium Exchange Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Huang, Richard Y.-C.; Iacob, Roxana E.; Sankaranarayanan, Sethu; Yang, Ling; Ahlijanian, Michael; Tao, Li; Tymiak, Adrienne A.; Chen, Guodong

    2018-01-01

    Fibrillization of the microtubule-associated protein tau has been recognized as one of the signature pathologies of the nervous system in Alzheimer's disease, progressive supranuclear palsy, and other tauopathies. The conformational transition of tau in the fibrillization process, tau monomer to soluble aggregates to fibrils in particular, remains unclear. Here we report on the use of hydrogen/deuterium exchange mass spectrometry (HDX-MS) in combination with other biochemical approaches, including Thioflavin S fluorescence measurements, enzyme-linked immunosorbent assay (ELISA), and Western blotting to understand the heparin-induced tau's fibrillization. HDX-MS studies including anti-tau antibody epitope mapping experiments provided molecular level details of the full-length tau's conformational dynamics and its regional solvent accessibility upon soluble aggregates formation. The results demonstrate that R3 region in the full-length tau's microtubule binding repeat region (MTBR) is stabilized in the aggregation process, leaving both N and C terminal regions to be solvent exposed in the soluble aggregates and fibrils. The findings also illustrate the practical utility of orthogonal analytical methodologies for the characterization of protein higher order structure. [Figure not available: see fulltext.

  11. Sequestration of carbon dioxide with hydrogen to useful products

    DOEpatents

    Adams, Michael W. W.; Kelly, Robert M.; Hawkins, Aaron B.; Menon, Angeli Lal; Lipscomb, Gina Lynette Pries; Schut, Gerrit Jan

    2017-03-07

    Provided herein are genetically engineered microbes that include at least a portion of a carbon fixation pathway, and in one embodiment, use molecular hydrogen to drive carbon dioxide fixation. In one embodiment, the genetically engineered microbe is modified to convert acetyl CoA, molecular hydrogen, and carbon dioxide to 3-hydroxypropionate, 4-hydroxybutyrate, acetyl CoA, or the combination thereof at levels greater than a control microbe. Other products may also be produced. Also provided herein are cell free compositions that convert acetyl CoA, molecular hydrogen, and carbon dioxide to 3-hydroxypropionate, 4-hydroxybutyrate, acetyl CoA, or the combination thereof. Also provided herein are methods of using the genetically engineered microbes and the cell free compositions.

  12. The deuterium content of water in some volcanic glasses

    USGS Publications Warehouse

    Friedman, I.; Smith, R.L.

    1958-01-01

    The deuterium-hydrogen composition (relative to Lake Michigan water = 0.0) of water extractsd from coexisting perlite and obsidian from eleven different localities was determined. The water content of the obsidians is generally from 0.09 to 0.29 per cent by weight, though two samples from near Olancha, California, contain about 0.92 per cent. The relative deuterium concentration is from -4.6 to -12.3 per cent. The coexisting perlite contains from 2.0 to 3.8 per cent of water with a relative deuterium concentration of -3.1 to -16.6 per cent. The deuterium concentration in the perlites is not related to that in the enclosed obsidian. The deuterium concentration in the perlite water is related to the deuterium concentration of the modern meteoric water and the perlite water contains approximately 4 per cent less deuterium than does the groundwater of the area in which the perlites occur. The above relations hold true for perlites from northern New Mexico, east slope of the Sierra Nevada. California Coast Range, Yellowstone Park, Wyoming, and New Zealand. As the water in the obsidian is unrelated to meteoric water, but the enclosing perlite water is related, we believe that this is evidence for the secondary hydration of obsidian to form high water content perlitic glass. ?? 1958.

  13. Method and source for producing a high concentration of positively charged molecular hydrogen or deuterium ions

    DOEpatents

    Ehlers, Kenneth W.; Leung, Ka-Ngo

    1988-01-01

    A high concentration of positive molecular ions of hydrogen or deuterium gas is extracted from a positive ion source having a short path length of extracted ions, relative to the mean free path of the gas molecules, to minimize the production of other ion species by collision between the positive ions and gas molecules. The ion source has arrays of permanent magnets to produce a multi-cusp magnetic field in regions remote from the plasma grid and the electron emitters, for largely confining the plasma to the space therebetween. The ion source has a chamber which is short in length, relative to its transverse dimensions, and the electron emitters are at an even shorter distance from the plasma grid, which contains one or more extraction apertures.

  14. Deuterium Enrichment of PAHs by VUV Irradiation of Interstellar Ices

    NASA Technical Reports Server (NTRS)

    Bernstein, Max P.; Sandford, Scott A.; Allamandola, Louis J.; Gillette, J. Seb; Zare, Richard N.; DeVincenzi, Donald (Technical Monitor)

    1998-01-01

    Laboratory results demonstrate that polycyclic aromatic hydrocarbons (PAHs) rapidly exchange their hydrogen atoms with those of nearby molecules when they are frozen into low-temperature ices and exposed to vacuum ultraviolet radiation. As a result, PAHs quickly become deuterium-enriched when VUV irradiated in D-containing ices. This mechanism has important consequences for several astrophysical issues owing to the ubiquitous nature of PAHs in the interstellar medium. For example, this process may explain the deuterium enrichments found in PAHs in meteorites and interplanetary dust particles. These results also provide general predictions about the molecular siting of the deuterium on aromatic materials in meteorites if this process produced a significant fraction of their D-enrichment.

  15. Advantages of isotopic depletion of proteins for hydrogen/deuterium exchange experiments monitored by mass spectrometry.

    PubMed

    Bou-Assaf, George M; Chamoun, Jean E; Emmett, Mark R; Fajer, Piotr G; Marshall, Alan G

    2010-04-15

    Solution-phase hydrogen/deuterium exchange (HDX) monitored by mass spectrometry is an excellent tool to study protein-protein interactions and conformational changes in biological systems, especially when traditional methods such as X-ray crystallography or nuclear magnetic resonance are not feasible. Peak overlap among the dozens of proteolytic fragments (including those from autolysis of the protease) can be severe, due to high protein molecular weight(s) and the broad isotopic distributions due to multiple deuterations of many peptides. In addition, different subunits of a protein complex can yield isomeric proteolytic fragments. Here, we show that depletion of (13)C and/or (15)N for one or more protein subunits of a complex can greatly simplify the mass spectra, increase the signal-to-noise ratio of the depleted fragment ions, and remove ambiguity in assignment of the m/z values to the correct isomeric peptides. Specifically, it becomes possible to monitor the exchange progress for two isobaric fragments originating from two or more different subunits within the complex, without having to resort to tandem mass spectrometry techniques that can lead to deuterium scrambling in the gas phase. Finally, because the isotopic distribution for a small to medium-size peptide is essentially just the monoisotopic species ((12)C(c)(1)H(h)(14)N(n)(16)O(o)(32)S(s)), it is not necessary to deconvolve the natural abundance distribution for each partially deuterated peptide during HDX data reduction.

  16. Modeling Deuterium Release from Plasma Implanted Surfaces

    NASA Astrophysics Data System (ADS)

    Grossman, A. A.; Doerner, R.; Hirooka, Y.; Luckhardt, S. C.; Sze, F. C.

    1997-11-01

    When energetic ions or atoms of hydrogen isotopes interact with a solid surface, they may either be reflected or they may be implanted, a slowing down process within the subsurface layer of the energetic particles to thermal velocities. Subsequent interactions of the thermalized particles are those of diffusion and trapping within the material and the possibility of re-emission from the solid via desorption. The diffusion equation and its boundary conditions govern the transport of this thermalized hydrogen within the material. Diffusivities obey an Arrhenius law over as much as fourteen orders of magnitude for the temperature range of interest for a fusion reactor first wall and divertor plate. Using TMAP4, a variety of diffusion models are set up for comparison with experiments on PISCES which involve implantation and desorption of deuterium from beryllium, tungsten, carbon and boron carbide. The parameters and characteristics of the models which give the closest fit to the experimental data are reported. At the high fluences of these experiments, it is necessary to take into account saturation effects during implantation using a separate implantation layer with thickness given by TRIM and a higher trapping to lattice ratio than in the bulk in order to model the experimental data.

  17. Hydrogen storage in engineered carbon nanospaces.

    PubMed

    Burress, Jacob; Kraus, Michael; Beckner, Matt; Cepel, Raina; Suppes, Galen; Wexler, Carlos; Pfeifer, Peter

    2009-05-20

    It is shown how appropriately engineered nanoporous carbons provide materials for reversible hydrogen storage, based on physisorption, with exceptional storage capacities (approximately 80 g H2/kg carbon, approximately 50 g H2/liter carbon, at 50 bar and 77 K). Nanopores generate high storage capacities (a) by having high surface area to volume ratios, and (b) by hosting deep potential wells through overlapping substrate potentials from opposite pore walls, giving rise to a binding energy nearly twice the binding energy in wide pores. Experimental case studies are presented with surface areas as high as 3100 m(2) g(-1), in which 40% of all surface sites reside in pores of width approximately 0.7 nm and binding energy approximately 9 kJ mol(-1), and 60% of sites in pores of width>1.0 nm and binding energy approximately 5 kJ mol(-1). The findings, including the prevalence of just two distinct binding energies, are in excellent agreement with results from molecular dynamics simulations. It is also shown, from statistical mechanical models, that one can experimentally distinguish between the situation in which molecules do (mobile adsorption) and do not (localized adsorption) move parallel to the surface, how such lateral dynamics affects the hydrogen storage capacity, and how the two situations are controlled by the vibrational frequencies of adsorbed hydrogen molecules parallel and perpendicular to the surface: in the samples presented, adsorption is mobile at 293 K, and localized at 77 K. These findings make a strong case for it being possible to significantly increase hydrogen storage capacities in nanoporous carbons by suitable engineering of the nanopore space.

  18. Atomic hydrogen cleaning of EUV multilayer optics

    NASA Astrophysics Data System (ADS)

    Graham, Samuel, Jr.; Steinhaus, Charles A.; Clift, W. Miles; Klebanoff, Leonard E.; Bajt, Sasa

    2003-06-01

    Recent studies have been conducted to investigate the use of atomic hydrogen as an in-situ contamination removal method for EUV optics. In these experiments, a commercial source was used to produce atomic hydrogen by thermal dissociation of molecular hydrogen using a hot filament. Samples for these experiments consisted of silicon wafers coated with sputtered carbon, Mo/Si optics with EUV-induced carbon, and bare Si-capped and Ru-B4C-capped Mo/Si optics. Samples were exposed to an atomic hydrogen source at a distance of 200 - 500 mm downstream and angles between 0-90° with respect to the source. Carbon removal rates and optic oxidation rates were measured using Auger electron spectroscopy depth profiling. In addition, at-wavelength peak reflectance (13.4 nm) was measured using the EUV reflectometer at the Advanced Light Source. Data from these experiments show carbon removal rates up to 20 Ê/hr for sputtered carbon and 40 Ê/hr for EUV deposited carbon at a distance of 200 mm downstream. The cleaning rate was also observed to be a strong function of distance and angular position. Experiments have also shown that the carbon etch rate can be increased by a factor of 4 by channeling atomic hydrogen through quartz tubes in order to direct the atomic hydrogen to the optic surface. Atomic hydrogen exposures of bare optic samples show a small risk in reflectivity degradation after extended periods. Extended exposures (up to 20 hours) of bare Si-capped Mo/Si optics show a 1.2% loss (absolute) in reflectivity while the Ru-B4C-capped Mo/Si optics show a loss on the order of 0.5%. In order to investigate the source of this reflectivity degradation, optic samples were exposed to atomic deuterium and analyzed using low energy ion scattering direct recoil spectroscopy to determine any reactions of the hydrogen with the multilayer stack. Overall, the results show that the risk of over-etching with atomic hydrogen is much less than previous studies using RF discharge cleaning

  19. Atomic hydrogen cleaning of EUV multilayer optics

    NASA Astrophysics Data System (ADS)

    Graham, Samuel, Jr.; Steinhaus, Charles A.; Clift, W. Miles; Klebanoff, Leonard E.; Bajt, Sasa

    2003-06-01

    Recent studies have been conducted to investigate the use of atomic hydrogen as an in-situ contamination removal method for EUV optics. In these experiments, a commercial source was used to produce atomic hydrogen by thermal dissociation of molecular hydrogen using a hot filament. Samples for these experiments consisted of silicon wafers coated with sputtered carbon, Mo/Si optics with EUV-induced carbon, and bare Si-capped and Ru-B4C-capped Mo/Si optics. Samples were exposed to an atomic hydrogen source at a distance of 200 - 500 mm downstream and angles between 0-90° with respect to the source. Carbon removal rates and optic oxidation rates were measured using Auger electron spectroscopy depth profiling. In addition, at-wavelength peak reflectance (13.4 nm) was measured using the EUV reflectometer at the Advanced Light Source. Data from these experiments show carbon removal rates up to 20 Å/hr for sputtered carbon and 40 Å/hr for EUV deposited carbon at a distance of 200 mm downstream. The cleaning rate was also observed to be a strong function of distance and angular position. Experiments have also shown that the carbon etch rate can be increased by a factor of 4 by channeling atomic hydrogen through quartz tubes in order to direct the atomic hydrogen to the optic surface. Atomic hydrogen exposures of bare optic samples show a small risk in reflectivity degradation after extended periods. Extended exposures (up to 20 hours) of bare Si-capped Mo/Si optics show a 1.2% loss (absolute) in reflectivity while the Ru-B4C-capped Mo/Si optics show a loss on the order of 0.5%. In order to investigate the source of this reflectivity degradation, optic samples were exposed to atomic deuterium and analyzed using low energy ion scattering direct recoil spectroscopy to determine any reactions of the hydrogen with the multilayer stack. Overall, the results show that the risk of over-etching with atomic hydrogen is much less than previous studies using RF discharge cleaning

  20. Differential hydrogen/deuterium exchange mass spectrometry analysis of protein–ligand interactions

    PubMed Central

    Chalmers, Michael J; Busby, Scott A; Pascal, Bruce D; West, Graham M; Griffin, Patrick R

    2011-01-01

    Functional regulation of ligand-activated receptors is driven by alterations in the conformational dynamics of the protein upon ligand binding. Differential hydrogen/deuterium exchange (HDX) coupled with mass spectrometry has emerged as a rapid and sensitive approach for characterization of perturbations in conformational dynamics of proteins following ligand binding. While this technique is sensitive to detecting ligand interactions and alterations in receptor dynamics, it also can provide important mechanistic insights into ligand regulation. For example, HDX has been used to determine a novel mechanism of ligand activation of the nuclear receptor peroxisome proliferator activated receptor-γ, perform detailed analyses of binding modes of ligands within the ligand-binding pocket of two estrogen receptor isoforms, providing insight into selectivity, and helped classify different types of estrogen receptor-α ligands by correlating their pharmacology with the way they interact with the receptor based solely on hierarchical clustering of receptor HDX signatures. Beyond small-molecule–receptor interactions, this technique has also been applied to study protein–protein complexes, such as mapping antibody–antigen interactions. In this article, we summarize the current state of the differential HDX approaches and the future outlook. We summarize how HDX analysis of protein–ligand interactions has had an impact on biology and drug discovery. PMID:21329427

  1. Measurement of trace impurities in ultra pure hydrogen and deuterium at the parts-per-billion level using gas chromatography

    NASA Astrophysics Data System (ADS)

    Ganzha, V.; Ivshin, K.; Kammel, P.; Kravchenko, P.; Kravtsov, P.; Petitjean, C.; Trofimov, V.; Vasilyev, A.; Vorobyov, A.; Vznuzdaev, M.; Wauters, F.

    2018-02-01

    A series of muon experiments at the Paul Scherrer Institute in Switzerland deploy ultra-pure hydrogen active targets. A new gas impurity analysis technique was developed, based on conventional gas chromatography, with the capability to measure part-per-billion (ppb) traces of nitrogen and oxygen in hydrogen and deuterium. Key ingredients are a cryogenic admixture accumulation, a directly connected sampling system and a dedicated calibration setup. The dependence of the measured concentration on the sample volume was investigated, confirming that all impurities from the sample gas are collected in the accumulation column and measured with the gas chromatograph. The system was calibrated utilizing dynamic dilution of admixtures into the gas flow down to sub-ppb level concentrations. The total amount of impurities accumulated in the purification system during a three month long experimental run was measured and agreed well with the calculated amount based on the measured concentrations in the flow.

  2. Functionalized carbon nanostructures for hydrogen catalysis

    NASA Astrophysics Data System (ADS)

    Hu, Lung-Hao

    Sodium borohydride, NaBH4, is widely used as a source of pure hydrogen. Hydrogen is of interest because it is a source of clean energy. It can be converted directly into electrical energy by means of fuel cells. One of the objectives of this thesis was to develop a new catalytic process to (i) enhance the rate of hydrogen generation, and (ii) to achieve hydrogen generation equal to 100% of the theoretically expected value. The catalyst investigated in this research is constructed by starting from single wall carbon nanotubes (SWNT). This material has a very high specific surface area and good conductivity. The SWNT were formed into a paper by a special filtration process. Polysilazane, a polymeric precursor (Ceraset(TM)-SN from KiON Corp., Wiesbaden, Germany) was diluted by acetone and then layered onto SWNT paper. The Ceraset coated SWNT was then pyrolyzed at 1100°C for three hours to form a silicon carbonitride (SiCN), polymer derived ceramic (PDC), layer on the surface of SWNT filtered paper. This functionalized SiCN carbon nanotube paper (SiCN/CNT) was used as the substrate for catalyst dispersions. The catalyst consisted of transition metals, Pt/Pd/Ru. Suspension solutions of Pt, Pd and Ru were impregnated onto the SiCN/CNT paper with the expectation of creating a monolayer of these transition metals on surface of the SiCN/CNT substrate. It is likely that an interaction could occur between the transition metals and the silicon atoms present in the SiCN layer on the surface of the carbon nanotubes. It is known that transition metals and silicon react to form silicides, suggesting the formation of a strong Si-transition metal bond. Therefore, it is possible that this bond could provide good wetting of metal atoms on SiCN functionalized carbon nanotube substrate. In the limit a monolayer of the transition metals may be achieved, which would correspond to a near zero dihedral angle between the substrate and the cluster of transition metals. In such a scenario a

  3. Trapping state of hydrogen isotopes in carbon and graphite investigated by thermal desorption spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atsumi, H.; Tanabe, T.; Shikama, T.

    Thermal desorption spectrometry (TDS) has been investigated to obtain fundamental information of tritium behavior in graphite and carbon materials especially at high temperatures. 29 brands of graphite, HOPG, glassy carbon and CFC materials charged with deuterium gas are tested up to the temperature of 1735 K with a heating rate of 0.1 K/s. TDS spectra have five peaks at 600-700 K, around 900 K, 1200 K, 1300-1450 K and 1600-1650 K. The amounts of released deuterium have been compared with crystallographic parameters derived from XRD analysis. The results can be summarized as follows. First, TDS spectra of deuterium were quitemore » varied among the samples tested, such as existence of peaks, peak temperatures and release amounts of deuterium. Secondly, TDS spectra may consist of five peaks, which are peak 1 (600-700 K), peak 2 (around 900 K), peak 3 (around 1200 K), peak 4 (1300-1450 K) and peak 5 (1600-1650 K). Thirdly, the correlations between the estimated surface area of edge surface and the total amount of released deuterium could be observed for peaks 4 and 5. Fourthly, high energy trapping site (peak 5) may exist even at edge surface or a near surface region, not only for intercalary. And fifth, in order to obtain the lower tritium retention for graphite and CFC materials, the material should be composed of a filler grain with a smaller crystallite size or having the smaller net edge surface in its structure. It is shown that heat treatment does not reduce originally existing trapping sites but trapping sites generated by neutron irradiation for instance can be reduced in some degree.« less

  4. Top-Down Hydrogen-Deuterium Exchange Analysis of Protein Structures Using Ultraviolet Photodissociation.

    PubMed

    Brodie, Nicholas I; Huguet, Romain; Zhang, Terry; Viner, Rosa; Zabrouskov, Vlad; Pan, Jingxi; Petrotchenko, Evgeniy V; Borchers, Christoph H

    2018-03-06

    Top-down hydrogen-deuterium exchange (HDX) analysis using electron capture or transfer dissociation Fourier transform mass spectrometry (FTMS) is a powerful method for the analysis of secondary structure of proteins in solution. The resolution of the method is a function of the degree of fragmentation of backbone bonds in the proteins. While fragmentation is usually extensive near the N- and C-termini, electron capture (ECD) or electron transfer dissociation (ETD) fragmentation methods sometimes lack good coverage of certain regions of the protein, most often in the middle of the sequence. Ultraviolet photodissociation (UVPD) is a recently developed fast-fragmentation technique, which provides extensive backbone fragmentation that can be complementary in sequence coverage to the aforementioned electron-based fragmentation techniques. Here, we explore the application of electrospray ionization (ESI)-UVPD FTMS on an Orbitrap Fusion Lumos Tribrid mass spectrometer to top-down HDX analysis of proteins. We have incorporated UVPD-specific fragment-ion types and fragment-ion mixtures into our isotopic envelope fitting software (HDX Match) for the top-down HDX analysis. We have shown that UVPD data is complementary to ETD, thus improving the overall resolution when used as a combined approach.

  5. Carbide-Derived Carbons with Tunable Porosity Optimized for Hydrogen Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisher, John E.; Gogotsi, Yury; Yildirim, Taner

    2010-01-07

    On-board hydrogen storage is a key requirement for fuel cell-powered cars and trucks. Porous carbon-based materials can in principle adsorb more hydrogen per unit weight at room temperature than liquid hydrogen at -176 oC. Achieving this goal requires interconnected pores with very high internal surface area, and binding energies between hydrogen and carbon significantly enhanced relative to H2 on graphite. In this project a systematic study of carbide-derived carbons, a novel form of porous carbon, was carried out to discover a high-performance hydrogen sorption material to meet the goal. In the event we were unable to improve on the statemore » of the art in terms of stored hydrogen per unit weight, having encountered the same fundamental limit of all porous carbons: the very weak interaction between H2 and the carbon surface. On the other hand we did discover several strategies to improve storage capacity on a volume basis, which should be applicable to other forms of porous carbon. Further discoveries with potentially broader impacts include • Proof that storage performance is not directly related to pore surface area, as had been previously claimed. Small pores (< 1.5 nm) are much more effective in storing hydrogen than larger ones, such that many materials with large total surface areas are sub-par performers. • Established that the distribution of pore sizes can be controlled during CDC synthesis, which opens the possibility of developing high performance materials within a common family while targeting widely disparate applications. Examples being actively pursued with other funding sources include methane storage, electrode materials for batteries and supercapacitors with record high specific capacitance, and perm-selective membranes which bind cytokines for control of infections and possibly hemodialysis filters.« less

  6. Polarized deuterium internal target at AmPS (NIKHEF)

    NASA Astrophysics Data System (ADS)

    Ferro-Luzzi, M.; Zhou, Z.-L.; van den Brand, J. F. J.; Bulten, H. J.; Alarcon, R.; van Bakel, N.; Botto, T.; Bouwhuis, M.; van Buuren, L.; Comfort, J.; Doets, M.; Dolfini, S.; Ent, R.; Geurts, D.; Heimberg, P.; Higinbotham, D. W.; de Jager, C. W.; Lang, J.; de Lange, D. J.; Norum, B.; Passchier, I.; Poolman, H. R.; Six, E.; Steijger, J.; Szczerba, D.; Unal, O.; de Vries, H.

    1998-01-01

    We describe the polarized deuterium target internal to the NIKHEF medium-energy electron storage ring. Tensor polarized deuterium was produced in an atomic beam source and injected into a storage cell target. A Breit-Rabi polarimeter was used to monitor the injected atomic beam intensity and polarization. An electrostatic ion-extraction system and a Wien filter were utilized to measure on-line the atomic fraction of the target gas in the storage cell. This device was supplemented with a tensor polarization analyzer using the neutron anisotropy of the 3H(d,n)α reaction at 60 keV. This method allows determining the density-averaged nuclear polarization of the target gas, independent of spatial and temporal variations. We address issues important for polarized hydrogen/deuterium internal targets, such as the effects of spin-exchange collisions and resonant transitions induced by the RF fields of the charged particle beam.

  7. Carbon hybridized halloysite nanotubes for high-performance hydrogen storage capacities

    PubMed Central

    Jin, Jiao; Fu, Liangjie; Yang, Huaming; Ouyang, Jing

    2015-01-01

    Hybrid nanotubes of carbon and halloysite nanotubes (HNTs) with different carbon:HNTs ratio were hydrothermally synthesized from natural halloysite and sucrose. The samples display uniformly cylindrical hollow tubular structure with different morphologies. These hybrid nanotubes were concluded to be promising medium for physisorption-based hydrogen storage. The hydrogen adsorption capacity of pristine HNTs was 0.35% at 2.65 MPa and 298 K, while that of carbon coated HNTs with the pre-set carbon:HNTs ratio of 3:1 (3C-HNTs) was 0.48% under the same condition. This carbon coated method could offer a new pattern for increasing the hydrogen adsorption capacity. It was also possible to enhance the hydrogen adsorption capacity through the spillover mechanism by incorporating palladium (Pd) in the samples of HNTs (Pd-HNTs) and 3C-HNTs (Pd-3C-HNTs and 3C-Pd-HNTs are the samples with different location of Pd nanoparticles). The hydrogen adsorption capacity of the Pd-HNTs was 0.50% at 2.65 MPa and 298 K, while those of Pd-3C-HNTs and 3C-Pd-HNTs were 0.58% and 0.63%, respectively. In particular, for this spillover mechanism of Pd-carbon-HNTs ternary system, the bidirectional transmission of atomic and molecular hydrogen (3C-Pd-HNTs) was concluded to be more effective than the unidirectional transmission (Pd-3C-HNTs) in this work for the first time. PMID:26201827

  8. Submolecular regulation of cell transformation by deuterium depleting water exchange reactions in the tricarboxylic acid substrate cycle.

    PubMed

    Boros, László G; D'Agostino, Dominic P; Katz, Howard E; Roth, Justine P; Meuillet, Emmanuelle J; Somlyai, Gábor

    2016-02-01

    The naturally occurring isotope of hydrogen ((1)H), deuterium ((2)H), could have an important biological role. Deuterium depleted water delays tumor progression in mice, dogs, cats and humans. Hydratase enzymes of the tricarboxylic acid (TCA) cycle control cell growth and deplete deuterium from redox cofactors, fatty acids and DNA, which undergo hydride ion and hydrogen atom transfer reactions. A model is proposed that emphasizes the terminal complex of mitochondrial electron transport chain reducing molecular oxygen to deuterium depleted water (DDW); this affects gluconeogenesis as well as fatty acid oxidation. In the former, the DDW is thought to diminish the deuteration of sugar-phosphates in the DNA backbone, helping to preserve stability of hydrogen bond networks, possibly protecting against aneuploidy and resisting strand breaks, occurring upon exposure to radiation and certain anticancer chemotherapeutics. DDW is proposed here to link cancer prevention and treatment using natural ketogenic diets, low deuterium drinking water, as well as DDW production as the mitochondrial downstream mechanism of targeted anti-cancer drugs such as Avastin and Glivec. The role of (2)H in biology is a potential missing link to the elusive cancer puzzle seemingly correlated with cancer epidemiology in western populations as a result of excessive (2)H loading from processed carbohydrate intake in place of natural fat consumption. Published by Elsevier Ltd.

  9. Rapid Annealing Of Amorphous Hydrogenated Carbon

    NASA Technical Reports Server (NTRS)

    Alterovitz, Samuel A.; Pouch, John J.; Warner, Joseph D.

    1989-01-01

    Report describes experiments to determine effects of rapid annealing on films of amorphous hydrogenated carbon. Study represents first efforts to provide information for applications of a-C:H films where rapid thermal processing required. Major finding, annealing causes abrupt increase in absorption and concomitant decrease in optical band gap. Most of change occurs during first 20 s, continues during longer annealing times. Extend of change increases with annealing temperature. Researchers hypothesize abrupt initial change caused by loss of hydrogen, while gradual subsequent change due to polymerization of remaining carbon into crystallites or sheets of graphite. Optical band gaps of unannealed specimens on silicon substrates lower than those of specimens on quartz substrates.

  10. Methanation of gas streams containing carbon monoxide and hydrogen

    DOEpatents

    Frost, Albert C.

    1983-01-01

    Carbon monoxide-containing gas streams having a relatively high concentration of hydrogen are pretreated so as to remove the hydrogen in a recoverable form for use in the second step of a cyclic, essentially two-step process for the production of methane. The thus-treated streams are then passed over a catalyst to deposit a surface layer of active surface carbon thereon essentially without the formation of inactive coke. This active carbon is reacted with said hydrogen removed from the feed gas stream to form methane. The utilization of the CO in the feed gas stream is appreciably increased, enhancing the overall process for the production of relatively pure, low-cost methane from CO-containing waste gas streams.

  11. Material processing with hydrogen and carbon monoxide on Mars

    NASA Astrophysics Data System (ADS)

    Hepp, Aloysius F.; Landis, Geoffrey A.; Linne, Diane L.

    Several novel proposals are examined for propellant production from carbon dioxide and monoxide and hydrogen. Potential uses were also examined of CO as a fuel or as a reducing agent in metal oxide processing as obtained or further reduced to carbon. Hydrogen can be reacted with CO to produce a wide variety of hydrocarbons, alcohols, and other organic compounds. Methanol, produced by Fischer-Tropsch chemistry may be useful as a fuel; it is easy to store and handle because it is a liquid at Mars temperatures. The reduction of CO2 to hydrocarbons such as methane or acetylene can be accomplished with hydrogen. Carbon monoxide and hydrogen require cryogenic temperatures for storage as liquids. Noncryogenic storage of hydrogen may be accomplished using hydrocarbons, inorganic hydrides, or metal hydrides. Noncryogenic storage of CO may be accomplished in the form of iron carbonyl (FE(CO)5) or other metal carbonyls. Low hydrogen content fuels such as acetylene (C2H2) may be effective propellants with low requirements for earth derived resources. The impact on manned Mars missions of alternative propellant production and utilization is discussed.

  12. Material processing with hydrogen and carbon monoxide on Mars

    NASA Technical Reports Server (NTRS)

    Hepp, Aloysius F.; Landis, Geoffrey A.; Linne, Diane L.

    1991-01-01

    Several novel proposals are examined for propellant production from carbon dioxide and monoxide and hydrogen. Potential uses were also examined of CO as a fuel or as a reducing agent in metal oxide processing as obtained or further reduced to carbon. Hydrogen can be reacted with CO to produce a wide variety of hydrocarbons, alcohols, and other organic compounds. Methanol, produced by Fischer-Tropsch chemistry may be useful as a fuel; it is easy to store and handle because it is a liquid at Mars temperatures. The reduction of CO2 to hydrocarbons such as methane or acetylene can be accomplished with hydrogen. Carbon monoxide and hydrogen require cryogenic temperatures for storage as liquids. Noncryogenic storage of hydrogen may be accomplished using hydrocarbons, inorganic hydrides, or metal hydrides. Noncryogenic storage of CO may be accomplished in the form of iron carbonyl (FE(CO)5) or other metal carbonyls. Low hydrogen content fuels such as acetylene (C2H2) may be effective propellants with low requirements for earth derived resources. The impact on manned Mars missions of alternative propellant production and utilization is discussed.

  13. Carbon-hydrogen to carbon-phosphorus transformations.

    PubMed

    Montchamp, Jean-Luc

    2015-01-01

    Literature published between 2008 and 2013 concerning the functionalization of carbon-hydrogen into carbon-phosphorus bonds is surveyed. The chapter is organized by reaction mechanism. The majority of methods still proceed via deprotonation of C-H into C-M (M=Li, Na, etc.) followed by reaction with a phosphorus electrophile P-X, where X is usually chlorine. A few examples of electrophilic aromatic substitution and related processes have also been reported, although this approach has not yet been developed significantly. Over the past 5 years a rapidly growing family of reactions includes transition metal "C-H activation" and formally related radical-based processes has been developed. The latter processes offer exciting prospects for the synthesis of organophosphorus compounds.

  14. Noncatalytic hydrogenation of decene-1 with hydrogen accumulated in a hybrid carbon nanostructure in nanosized membrane reactors

    NASA Astrophysics Data System (ADS)

    Soldatov, A. P.

    2014-08-01

    Studies on the creation of nanosized membrane reactors (NMRs) of a new generation with accumulated hydrogen and a regulated volume of reaction zone were continued at the next stage. Hydrogenation was performed in the pores of ceramic membranes with hydrogen preliminarily adsorbed in mono- and multilayered orientated carbon nanotubes with graphene walls (OCNTGs)—a new hybrid carbon nanostructure formed on the inner pore surface. Quantitative determination of hydrogen adsorption in OCNTGs was performed using TRUMEM ultrafiltration membranes with D av = 50 and 90 nm and showed that hydrogen adsorption was up to ˜1.5% of the mass of OCNTG. The instrumentation and procedure for noncatalytic hydrogenation of decene-1 at 250-350°C using hydrogen accumulated and stored in OCNTG were developed. The conversion of decene-1 into decane was ˜0.2-1.8% at hydrogenation temperatures of 250 and 350°C, respectively. The rate constants and activation energy of hydrogenation were determined. The latter was found to be 94.5 kJ/mol, which is much smaller than the values typical for noncatalytic hydrogenations and very close to the values characteristic for catalytic reactions. The quantitative distribution of the reacting compounds in each pore regarded as a nanosized membrane reactor was determined. The activity of hydrogen adsorbed in a 2D carbon nanostructure was evaluated. Possible mechanisms of noncatalytic hydrogenation were discussed.

  15. Two different carbon-hydrogen complexes in silicon with closely spaced energy levels

    NASA Astrophysics Data System (ADS)

    Stübner, R.; Kolkovsky, Vl.; Weber, J.

    2015-08-01

    An acceptor and a single donor state of carbon-hydrogen defects (CHA and CHB) are observed by Laplace deep level transient spectroscopy at 90 K. CHA appears directly after hydrogenation by wet chemical etching or hydrogen plasma treatment, whereas CHB can be observed only after a successive annealing under reverse bias at about 320 K. The activation enthalpies of these states are 0.16 eV for CHA and 0.14 eV for CHB. Our results reconcile previous controversial experimental results. We attribute CHA to the configuration where substitutional carbon binds a hydrogen atom on a bond centered position between carbon and the neighboring silicon and CHB to another carbon-hydrogen defect.

  16. Production of carbon monoxide-free hydrogen and helium from a high-purity source

    DOEpatents

    Golden, Timothy Christopher [Allentown, PA; Farris, Thomas Stephen [Bethlehem, PA

    2008-11-18

    The invention provides vacuum swing adsorption processes that produce an essentially carbon monoxide-free hydrogen or helium gas stream from, respectively, a high-purity (e.g., pipeline grade) hydrogen or helium gas stream using one or two adsorber beds. By using physical adsorbents with high heats of nitrogen adsorption, intermediate heats of carbon monoxide adsorption, and low heats of hydrogen and helium adsorption, and by using vacuum purging and high feed stream pressures (e.g., pressures of as high as around 1,000 bar), pipeline grade hydrogen or helium can purified to produce essentially carbon monoxide -free hydrogen and helium, or carbon monoxide, nitrogen, and methane-free hydrogen and helium.

  17. Iron-catalyzed hydrogenation of bicarbonates and carbon dioxide to formates.

    PubMed

    Zhu, Fengxiang; Zhu-Ge, Ling; Yang, Guangfu; Zhou, Shaolin

    2015-02-01

    The catalytic hydrogenation of carbon dioxide and bicarbonate to formate has been explored extensively. The vast majority of the known active catalyst systems are based on precious metals. Herein, we describe an effective, phosphine-free, air- and moisture-tolerant catalyst system based on Knölker's iron complex for the hydrogenation of bicarbonate and carbon dioxide to formate. The catalyst system can hydrogenate bicarbonate at remarkably low hydrogen pressures (1-5 bar). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Measuring the shock impedance mismatch between high-density carbon and deuterium at the National Ignition Facility

    DOE PAGES

    Millot, M.; Celliers, P. M.; Sterne, P. A.; ...

    2018-04-18

    Fine-grained diamond, or high-density carbon (HDC), is being used as an ablator for inertial confinement fusion (ICF) research at the National Ignition Facility (NIF). Accurate equation of state (EOS) knowledge over a wide range of phase space is critical in the design and analysis of integrated ICF experiments. Here in this paper, we report shock and release measurements of the shock impedance mismatch between HDC and liquid deuterium conducted during shock-timing experiments having a first shock in the ablator ranging between 8 and 14 Mbar. Using ultrafast Doppler imaging velocimetry to track the leading shock front, we characterize the shockmore » velocity discontinuity upon the arrival of the shock at the HDC/liquid deuterium interface. Comparing the experimental data with tabular EOS models used to simulate integrated ICF experiments indicates the need for an improved multiphase EOS model for HDC in order to achieve a significant increase in neutron yield in indirect-driven ICF implosions with HDC ablators.« less

  19. Measuring the shock impedance mismatch between high-density carbon and deuterium at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Millot, M.; Celliers, P. M.; Sterne, P. A.; Benedict, L. X.; Correa, A. A.; Hamel, S.; Ali, S. J.; Baker, K. L.; Berzak Hopkins, L. F.; Biener, J.; Collins, G. W.; Coppari, F.; Divol, L.; Fernandez-Panella, A.; Fratanduono, D. E.; Haan, S. W.; Le Pape, S.; Meezan, N. B.; Moore, A. S.; Moody, J. D.; Ralph, J. E.; Ross, J. S.; Rygg, J. R.; Thomas, C.; Turnbull, D. P.; Wild, C.; Eggert, J. H.

    2018-04-01

    Fine-grained diamond, or high-density carbon (HDC), is being used as an ablator for inertial confinement fusion (ICF) research at the National Ignition Facility (NIF). Accurate equation of state (EOS) knowledge over a wide range of phase space is critical in the design and analysis of integrated ICF experiments. Here, we report shock and release measurements of the shock impedance mismatch between HDC and liquid deuterium conducted during shock-timing experiments having a first shock in the ablator ranging between 8 and 14 Mbar. Using ultrafast Doppler imaging velocimetry to track the leading shock front, we characterize the shock velocity discontinuity upon the arrival of the shock at the HDC/liquid deuterium interface. Comparing the experimental data with tabular EOS models used to simulate integrated ICF experiments indicates the need for an improved multiphase EOS model for HDC in order to achieve a significant increase in neutron yield in indirect-driven ICF implosions with HDC ablators.

  20. Measuring the shock impedance mismatch between high-density carbon and deuterium at the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Millot, M.; Celliers, P. M.; Sterne, P. A.

    Fine-grained diamond, or high-density carbon (HDC), is being used as an ablator for inertial confinement fusion (ICF) research at the National Ignition Facility (NIF). Accurate equation of state (EOS) knowledge over a wide range of phase space is critical in the design and analysis of integrated ICF experiments. Here in this paper, we report shock and release measurements of the shock impedance mismatch between HDC and liquid deuterium conducted during shock-timing experiments having a first shock in the ablator ranging between 8 and 14 Mbar. Using ultrafast Doppler imaging velocimetry to track the leading shock front, we characterize the shockmore » velocity discontinuity upon the arrival of the shock at the HDC/liquid deuterium interface. Comparing the experimental data with tabular EOS models used to simulate integrated ICF experiments indicates the need for an improved multiphase EOS model for HDC in order to achieve a significant increase in neutron yield in indirect-driven ICF implosions with HDC ablators.« less

  1. [Consideration of the deuterium-free water supply to an expedition to Mars].

    PubMed

    Siniak, Iu E; Turusov, V S; Grigor'ev, A I; Zaridze, D G; Gaĭdadymov, V B; Gus'kova, E I; Antoshina, E E; Gor'kova, T G; Trukhanova, L S

    2003-01-01

    Interplanetary missions, including to Mars, will put crews into severe radiation conditions. Search for methods of reducing the risk of radiation-induced cancer is of the top priority in preparation for the mission to Mars. One of the options is designing life support systems that will generate water with low content of the stable hydrogen isotope (deuterium) to be consumed by crewmembers. Preliminary investigations have shown that a decrease of the deuterium fraction by 65% does impart to water certain anti-cancer properties. Therefore, drinking deuterium-free water has the potential to reduce the risk of cancer consequent to the extreme radiation exposure of the Martian crew.

  2. Online Simultaneous Hydrogen/Deuterium Exchange of Multitarget Gas-Phase Molecules by Electrospray Ionization Mass Spectrometry Coupled with Gas Chromatography.

    PubMed

    Jeong, Eun Sook; Cha, Eunju; Cha, Sangwon; Kim, Sunghwan; Oh, Han Bin; Kwon, Oh-Seung; Lee, Jaeick

    2017-11-21

    In this study, a hydrogen/deuterium (H/D) exchange method using gas chromatography-electrospray ionization/mass spectrometry (GC-ESI/MS) was first investigated as a novel tool for online H/D exchange of multitarget analytes. The GC and ESI source were combined with a homemade heated column transfer line. GC-ESI/MS-based H/D exchange occurs in an atmospheric pressure ion source as a result of reacting the gas-phase analyte eluted from GC with charged droplets of deuterium oxide infused as the ESI spray solvent. The consumption of the deuterated solvent at a flow rate of 2 μL min -1 was more economical than that in online H/D exchange methods reported to date. In-ESI-source H/D exchange by GC-ESI/MS was applied to 11 stimulants with secondary amino or hydroxyl groups. After H/D exchange, the spectra of the stimulants showed unexchanged, partially exchanged, and fully exchanged ions showing various degrees of exchange. The relative abundances corrected for naturally occurring isotopes of the fully exchanged ions of stimulants, except for etamivan, were in the range 24.3-85.5%. Methylephedrine and cyclazodone showed low H/D exchange efficiency under acidic, neutral, and basic spray solvent conditions and nonexchange for etamivan with an acidic phenolic OH group. The in-ESI-source H/D exchange efficiency by GC-ESI/MS was sufficient to determine the number of hydrogen by elucidation of fragmentation from the spectrum. Therefore, this online H/D exchange technique using GC-ESI/MS has potential as an alternative method for simultaneous H/D exchange of multitarget analytes.

  3. Effect of high pressure hydrogen on the mechanical characteristics of single carbon fiber

    NASA Astrophysics Data System (ADS)

    Jeon, Sang Koo; Kwon, Oh Heon; Jang, Hoon-Sik; Ryu, Kwon Sang; Nahm, Seung Hoon

    2018-02-01

    In this study, carbon fiber was exposed to a pressure of 7 MPa for 24 h in high pressure chamber. The tensile test for carbon fiber was conducted to estimate the effect on the high pressure hydrogen in the atmosphere. To determine the tensile strength and Weibull modulus, approximately thirty carbon fiber samples were measured in all cases, and carbon fiber exposed to high pressure argon was evaluated to verify only the effect of hydrogen. Additionally, carbon fiber samples were annealed at 1950 °C for 1 h for a comparison with normal carbon fiber and then tested under identical conditions. The results showed that the tensile strength scatter of normal carbon fiber exposed to hydrogen was relatively wider and the Weibull modulus was decreased. Moreover, the tensile strength of the annealed carbon fiber exposed to hydrogen was increased, and these samples indicated a complex Weibull modulus because the hydrogen stored in the carbon fiber influenced the mechanical characteristic.

  4. Efficient Hydrogen-Dependent Carbon Dioxide Reduction by Escherichia coli.

    PubMed

    Roger, Magali; Brown, Fraser; Gabrielli, William; Sargent, Frank

    2018-01-08

    Hydrogen-dependent reduction of carbon dioxide to formic acid offers a promising route to greenhouse gas sequestration, carbon abatement technologies, hydrogen transport and storage, and the sustainable generation of renewable chemical feedstocks [1]. The most common approach to performing direct hydrogenation of CO 2 to formate is to use chemical catalysts in homogeneous or heterogeneous reactions [2]. An alternative approach is to use the ability of living organisms to perform this reaction biologically. However, although CO 2 fixation pathways are widely distributed in nature, only a few enzymes have been described that have the ability to perform the direct hydrogenation of CO 2 [3-5]. The formate hydrogenlyase (FHL) enzyme from Escherichia coli normally oxidizes formic acid to carbon dioxide and couples that reaction directly to the reduction of protons to molecular hydrogen [6]. In this work, the reverse reaction of FHL is unlocked. It is established that FHL can operate as a highly efficient hydrogen-dependent carbon dioxide reductase when gaseous CO 2 and H 2 are placed under pressure (up to 10 bar). Using intact whole cells, the pressurized system was observed to rapidly convert 100% of gaseous CO 2 to formic acid, and >500 mM formate was observed to accumulate in solution. Harnessing the reverse reaction has the potential to allow the versatile E. coli system to be employed as an exciting new carbon capture technology or as a cell factory dedicated to formic acid production, which is a commodity in itself as well as a feedstock for the synthesis of other valued chemicals. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  5. The temperature and ion energy dependence of deuterium retention in lithium films

    NASA Astrophysics Data System (ADS)

    Buzi, Luxherta; Koel, Bruce E.; Skinner, Charles H.

    2016-10-01

    Lithium conditioning of plasma facing components in magnetic fusion devices has improved plasma performance and lowered hydrogen recycling. For applications of lithium in future high heat flux and long pulse duration machines it is important to understand and parameterize deuterium retention in lithium. This work presents surface science studies of deuterium retention in lithium films as a function of surface temperature, incident deuterium ion energy and flux. Initial experiments are performed on thin (3-30 ML) lithium films deposited on a single crystal molybdenum substrate to avoid effects due to grain boundaries, intrinsic defects and impurities. A monoenergetic and mass-filtered deuterium ion beam was generated in a differentially pumped Colutron ion gun. Auger electron spectroscopy and X-ray photoelectron spectroscopy were used to identify the elemental composition and temperature programmed desorption was used to measure the deuterium retention under the different conditions. Support was provided through DOE Contract Number DE-AC02-09CH11466.

  6. Polar Aprotic Modifiers for Chromatographic Separation and Back-Exchange Reduction for Protein Hydrogen/Deuterium Exchange Monitored by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Valeja, Santosh G.; Emmett, Mark R.; Marshall, Alan G.

    2012-04-01

    Hydrogen/deuterium exchange monitored by mass spectrometry is an important non-perturbing tool to study protein structure and protein-protein interactions. However, water in the reversed-phase liquid chromatography mobile phase leads to back-exchange of D for H during chromatographic separation of proteolytic peptides following H/D exchange, resulting in incorrect identification of fast-exchanging hydrogens as unexchanged hydrogens. Previously, fast high-performance liquid chromatography (HPLC) and supercritical fluid chromatography have been shown to decrease back-exchange. Here, we show that replacement of up to 40% of the water in the LC mobile phase by the modifiers, dimethylformamide (DMF) and N-methylpyrrolidone (NMP) (i.e., polar organic modifiers that lack rapid exchanging hydrogens), significantly reduces back-exchange. On-line LC micro-ESI FT-ICR MS resolves overlapped proteolytic peptide isotopic distributions, allowing for quantitative determination of the extent of back-exchange. The DMF modified solvent composition also improves chromatographic separation while reducing back-exchange relative to conventional solvent.

  7. Polarized deuterium internal target at AmPS (NIKHEF)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norum, Blaine; De Jager, Cornelis; Geurts, D.

    1997-08-01

    We describe the polarized deuterium target internal to the NIKHEF medium-energy electron storage ring. Tensor polarized deuterium was produced in an atomic beam source and injected into a storage cell target. A Breit-Rabi polarimeter was used to monitor the injected atomic beam intensity and polarization. An electrostatic ion-extraction system and a Wien filter were utilized to measure on-line the atomic fraction of the target gas in the storage cell. This device was supplemented with a tensor polarization analyzer using the neutron anisotropy of the 3H(d,n)sigma reaction at 60 keV. This method allows determining the density-averaged nuclear polarization of the targetmore » gas, independent of spatial and temporal variations. We address issues important for polarized hydrogen/deuterium internal targets, such as the effects of spin-exchange collisions and resonant transitions induced by the RF fields of the charged particle beam.« less

  8. Polarized deuterium internal target at AmPS (NIKHEF)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferro-Luzzi, M.; NIKHEF, P.O. Box 41882, 1009 DB Amsterdam; Zhou, Z.-L.

    1998-01-20

    We describe the polarized deuterium target internal to the NIKHEF medium-energy electron storage ring. Tensor polarized deuterium was produced in an atomic beam source and injected into a storage cell target. A Breit-Rabi polarimeter was used to monitor the injected atomic beam intensity and polarization. An electrostatic ion-extraction system and a Wien filter were utilized to measure on-line the atomic fraction of the target gas in the storage cell. This device was supplemented with a tensor polarization analyzer using the neutron anisotropy of the {sup 3}H(d,n){alpha} reaction at 60 keV. This method allows determining the density-averaged nuclear polarization of themore » target gas, independent of spatial and temporal variations. We address issues important for polarized hydrogen/deuterium internal targets, such as the effects of spin-exchange collisions and resonant transitions induced by the RF fields of the charged particle beam.« less

  9. A biosensor for hydrogen peroxide detection based on electronic properties of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Majidi, Roya

    2013-01-01

    Density functional theory has been used to study the effect of hydrogen peroxide on the electronic properties of single walled carbon nanotubes. The metallic and semiconducting carbon nanotubes have been considered in the presence of different number of hydrogen peroxide. The results indicate that hydrogen peroxide has no significant effect on the metallic nanotube and these nanotubes remain to be metallic. In contrast, the electronic properties of the semiconducting nanotubes are so sensitive to hydrogen peroxide. The energy band gap of these nanotubes is decreased by increasing the number of hydrogen peroxide. The electronic sensivity of the carbon nanotubes to hydrogen peroxide opens new insights into developing biosensors based on the single walled carbon nanotubes.

  10. Hydrogenated nanostructure boron doped amorphous carbon films by DC bias

    NASA Astrophysics Data System (ADS)

    Ishak, A.; Dayana, K.; Saurdi, I.; Malek, M. F.; Rusop, M.

    2018-03-01

    Hydrogenated nanostructure-boron doped amorphous carbon thin film carbon was deposited at different negative bias using custom-made deposition bias assisted-CVD. Solid of boron and palm oil were used as dopant and carbon source, respectively. The hydrogenated nanostructure amorphous films were characterized by Field emission scanning electron microscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, while the photo-response studies of thin film is done by I-V measurement under light measurement. The results showed the carbon film were in nanostructure with hydrogen and boron might be incorporated in the film. The Raman spectra observed the increase of upward shift of D and G peaks as negative bias increased which related to the structural change as boron incorporated in carbon network. These structural changes were further correlated with photo-response study and the results obtained are discussed and compared.

  11. First principles study of hydrogen adsorption on carbon nanowires.

    NASA Astrophysics Data System (ADS)

    Tapia, Alejandro; Aguilera, Luis; Murrieta, Gabriel; de Coss, Romeo

    2007-03-01

    Recently has been reported a new type of one-dimensional carbon structures. Carbon nanowires formed by a linear carbon-atom chain inside an armchair (5,5) carbon nanotube has been observed using high-resolution transmission electron microscopy. In the present work we have studied the changes in the electronic structure of a carbon nanowires and (5,5) single-walled carbon nanotubes (SWCN) when a hydrogen atom is adsorbed. We used the Density Functional Theory and the calculations where performed by the pseudopotentials LCAO method (SIESTA code) and the Generalized Gradient Approximation (GGA) for the exchange-correlation potential. We have analyzed the changes in the atomic structure, density of states (LDOS), and the local orbital population. We found charge transfer from the nanotube to the linear chain and the hydrogen atom, the electronic character of the chain and nanotube sub-systems in chain@SWCN is the same that in the corresponding isolated systems, chain or SWCN. But the hydrogen adsorption produced changes in the atomic estructure and the electronic properties. This research was supported by PRIORI-UADY under Grant No. FING-05-004 and Consejo Nacional de Ciencia y Tecnolog'ia (Conacyt) under Grants No. 43830-F and 49985-J.

  12. Material processing with hydrogen and carbon monoxide on Mars

    NASA Astrophysics Data System (ADS)

    Hepp, Aloysius F.; Linne, Diane L.; Landis, Geoffrey A.

    Several novel proposals are examined for propellant production from carbon dioxide and monoxide and hydrogen. Potential uses were also examined of CO as a fuel or as a reducing agent in metal oxide processing as obtained or further reduced to carbon. Hydrogen can be reacted with CO to produce a wide variety of hydrocarbons, alcohols, and other organic compounds. Methanol, produced by Fischer-Tropsch chemistry may be useful as a fuel; it is easy to store and handle because it is a liquid at Mars temperatures. The reduction of CO2 to hydrocarbons such as methane or acetylene can be accomplished with hydrocarbons. Carbon monoxide and hydrogen require cryogenic temperatures for storage as liquid. Noncryogenic storage of hydrogen may be accomplished using hydrocarbons, inorganic hydrides, or metal hydrides. Noncryogenic storage of CO may be accomplished in the form of iron carbonyl (FE(CO)5) or other metal carbonyls. Low hydrogen content fuels such as acetylene (C2H2) may be effective propellants with low requirements for earth derived resources. The impact on manned Mars missions of alternative propellant production and utilization is discussed.

  13. Deuterium enrichment of polycyclic aromatic hydrocarbons by photochemically induced exchange with deuterium-rich cosmic ices

    NASA Technical Reports Server (NTRS)

    Sandford, S. A.; Bernstein, M. P.; Allamandola, L. J.; Gillette, J. S.; Zare, R. N.

    2000-01-01

    The polycyclic aromatic hydrocarbon (PAH) coronene (C24H12) frozen in D2O ice in a ratio of less than 1 part in 500 rapidly exchanges its hydrogen atoms with the deuterium in the ice at interstellar temperatures and pressures when exposed to ultraviolet radiation. Exchange occurs via three different chemical processes: D atom addition, D atom exchange at oxidized edge sites, and D atom exchange at aromatic edge sites. Observed exchange rates for coronene (C24H12)-D2O and d12-coronene (C24D12)-H2O isotopic substitution experiments show that PAHs in interstellar ices could easily attain the D/H levels observed in meteorites. These results may have important consequences for the abundance of deuterium observed in aromatic materials in the interstellar medium and in meteorites. These exchange mechanisms produce deuteration in characteristic molecular locations on the PAHs that may distinguish them from previously postulated processes for D enrichment of PAHs.

  14. Comparative higher-order structure analysis of antibody biosimilars using combined bottom-up and top-down hydrogen-deuterium exchange mass spectrometry.

    PubMed

    Pan, Jingxi; Zhang, Suping; Borchers, Christoph H

    2016-12-01

    Hydrogen/deuterium exchange (HDX) coupled with mass spectrometry (MS) is a powerful technique for higher-order structural characterization of antibodies. Although the peptide-based bottom-up HDX approach and the protein-based top-down HDX approach have complementary advantages, the work done so far on biosimilars has involved only one or the other approach. Herein we have characterized the structures of two bevacizumab (BEV) biosimilars and compared them to the reference BEV using both methods. A sequence coverage of 87% was obtained for the heavy chain and 74% for the light chain in the bottom-up approach. The deuterium incorporation behavior of the peptic peptides from the three BEVs were compared side by side and showed no differences at various HDX time points. Top-down experiments were carried out using subzero temperature LC-MS, and the deuterium incorporation of the intact light chain and heavy chain were obtained. Top-down ETD was also performed to obtain amino acid-level HDX information that covered 100% of the light chain, but only 50% coverage is possible for the heavy chain. Consistent with the intact subunit level data, no differences were observed in the amino acid level HDX data. All these results indicate that there are no differences between the three BEV samples with respect to their high-order structures. The peptide level information from the bottom-up approach, and the residue level and intact subunit level information from the top-down approach were complementary and covered the entire antibody. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Theoretical analysis of hydrogen spillover mechanism on carbon nanotubes

    PubMed Central

    Juarez-Mosqueda, Rosalba; Mavrandonakis, Andreas; Kuc, Agnieszka B.; Pettersson, Lars G. M.; Heine, Thomas

    2015-01-01

    The spillover mechanism of molecular hydrogen on carbon nanotubes in the presence of catalytically active platinum clusters was critically and systematically investigated by using density-functional theory. Our simulation model includes a Pt4 cluster for the catalyst nanoparticle and curved and planar circumcoronene for two exemplary single-walled carbon nanotubes (CNT), the (10,10) CNT and one of large diameter, respectively. Our results show that the H2 molecule dissociates spontaneously on the Pt4 cluster. However, the dissociated H atoms have to overcome a barrier of more than 2 eV to migrate from the catalyst to the CNT, even if the Pt4 cluster is at full saturation with six adsorbed and dissociated hydrogen molecules. Previous investigations have shown that the mobility of hydrogen atoms on the CNT surface is hindered by a barrier. We find that instead the Pt4 catalyst may move along the outer surface of the CNT with activation energy of only 0.16 eV, and that this effect offers the possibility of full hydrogenation of the CNT. Thus, although we have not found a low-energy pathway to spillover onto the CNT, we suggest, based on our calculations and calculated data reported in the literature, that in the hydrogen-spillover process the observed saturation of the CNT at hydrogen background pressure occurs through mobile Pt nanoclusters, which move on the substrate more easily than the substrate-chemisorbed hydrogens, and deposit or reattach hydrogens in the process. Initial hydrogenation of the carbon substrate, however, is thermodynamically unfavoured, suggesting that defects should play a significant role. PMID:25699250

  16. A Infrared Absorption Study of Dopant-Hydrogen Complexes in Semiconductors

    NASA Astrophysics Data System (ADS)

    Kozuch, David Michael

    1992-01-01

    Hydrogen passivation of shallow electrical dopants in semiconductors has been investigated. In particular, the passivation of the shallow dopants tin, carbon, and silicon in gallium arsenide has been studied via Fourier transform infrared spectroscopy, thermal annealing, Hall effect, secondary ion mass spectroscopy, and uniaxial stress. The bond-stretching and bond-wagging vibrational modes of the rm Sn_{Ga} - H complex in GaAs have been identified at 1327.8 cm^{-1} and 967.7 cm ^{-1}, respectively. The presence of hydrogen in the defect pair is confirmed by the deuterium -shifted bond-stretching signal at 746.6 cm^ {-1}. Infrared and Hall data correlated the passivation of Sn_{rm Ga } donors with the formation of the rm Sn_{Ga} - H complexes. A series of isochronal anneals probed the thermal stability of the complex. Arguments supporting an antibonding configuration for the rm Sn_{Ga} - H complex are presented. Infrared measurements on highly carbon doped epi -layers reveal new absorption signals at 2643, 2651, and 2688 cm^{-1} in addition to the previously identified rm C_ {As} - H stretching vibration at 2636 cm^{-1}. These new signals are related to a family of carbon-hydrogen complexes: rm C_{x} - H. Deuterium -shifted counterparts for all these signals have been observed for the first time. Sources of hydrogen have been traced to the metalorganic precursors and carrier gas used during epi-layer growth. Hydrogen-containing annealing ambients were surprisingly effective for introducing hydrogen into the epi-layers. Several atomic arrangements for the new rm C_{x} - H complexes have been considered with the most likely candidate being a rm C_{As} - H complex perturbed by another C_{rm As} acceptor in a second nearest neighbor position. The first uniaxial stress measurements have been performed on the rm Si_{As} - H complex in GaAs. The stress-induced frequency shifts and the intensity ratios of the stress-split components of the 2094.45 cm^{-1} stretching

  17. Gas-Phase Hydrogen-Deuterium Exchange Labeling of Select Peptide Ion Conformer Types: a Per-Residue Kinetics Analysis.

    PubMed

    Khakinejad, Mahdiar; Kondalaji, Samaneh Ghassabi; Tafreshian, Amirmahdi; Valentine, Stephen J

    2015-07-01

    The per-residue, gas-phase hydrogen deuterium exchange (HDX) kinetics for individual amino acid residues on selected ion conformer types of the model peptide KKDDDDDIIKIIK have been examined using ion mobility spectrometry (IMS) and HDX-tandem mass spectrometry (MS/MS) techniques. The [M + 4H](4+) ions exhibit two major conformer types with collision cross sections of 418 Å(2) and 446 Å(2); the [M + 3H](3+) ions also yield two different conformer types having collision cross sections of 340 Å(2) and 367 Å(2). Kinetics plots of HDX for individual amino acid residues reveal fast- and slow-exchanging hydrogens. The contributions of each amino acid residue to the overall conformer type rate constant have been estimated. For this peptide, N- and C-terminal K residues exhibit the greatest contributions for all ion conformer types. Interior D and I residues show decreased contributions. Several charge state trends are observed. On average, the D residues of the [M + 3H](3+) ions show faster HDX rate contributions compared with [M + 4H](4+) ions. In contrast the interior I8 and I9 residues show increased accessibility to exchange for the more elongated [M + 4H](4+) ion conformer type. The contribution of each residue to the overall uptake rate showed a good correlation with a residue hydrogen accessibility score model calculated using a distance from charge site and initial incorporation site for nominal structures obtained from molecular dynamic simulations (MDS).

  18. Carbon dioxide hydrogenation on Ni(110).

    PubMed

    Vesselli, Erik; De Rogatis, Loredana; Ding, Xunlei; Baraldi, Alessandro; Savio, Letizia; Vattuone, Luca; Rocca, Mario; Fornasiero, Paolo; Peressi, Maria; Baldereschi, Alfonso; Rosei, Renzo; Comelli, Giovanni

    2008-08-27

    We demonstrate that the key step for the reaction of CO 2 with hydrogen on Ni(110) is a change of the activated molecule coordination to the metal surface. At 90 K, CO 2 is negatively charged and chemically bonded via the carbon atom. When the temperature is increased and H approaches, the H-CO 2 complex flips and binds to the surface through the two oxygen atoms, while H binds to the carbon atom, thus yielding formate. We provide the atomic-level description of this process by means of conventional ultrahigh vacuum surface science techniques combined with density functional theory calculations and corroborated by high pressure reactivity tests. Knowledge about the details of the mechanisms involved in this reaction can yield a deeper comprehension of heterogeneous catalytic organic synthesis processes involving carbon dioxide as a reactant. We show why on Ni the CO 2 hydrogenation barrier is remarkably smaller than that on the common Cu metal-based catalyst. Our results provide a possible interpretation of the observed high catalytic activity of NiCu alloys.

  19. Process for producing methane from gas streams containing carbon monoxide and hydrogen

    DOEpatents

    Frost, Albert C.

    1980-01-01

    Carbon monoxide-containing gas streams are passed over a catalyst capable of catalyzing the disproportionation of carbon monoxide so as to deposit a surface layer of active surface carbon on the catalyst essentially without formation of inactive coke thereon. The surface layer is contacted with steam and is thus converted to methane and CO.sub.2, from which a relatively pure methane product may be obtained. While carbon monoxide-containing gas streams having hydrogen or water present therein can be used only the carbon monoxide available after reaction with said hydrogen or water is decomposed to form said active surface carbon. Although hydrogen or water will be converted, partially or completely, to methane that can be utilized in a combustion zone to generate heat for steam production or other energy recovery purposes, said hydrogen is selectively removed from a CO--H.sub.2 -containing feed stream by partial oxidation thereof prior to disproportionation of the CO content of said stream.

  20. Supercritical fluid chromatography coupled with in-source atmospheric pressure ionization hydrogen/deuterium exchange mass spectrometry for compound speciation.

    PubMed

    Cho, Yunju; Choi, Man-Ho; Kim, Byungjoo; Kim, Sunghwan

    2016-04-29

    An experimental setup for the speciation of compounds by hydrogen/deuterium exchange (HDX) with atmospheric pressure ionization while performing chromatographic separation is presented. The proposed experimental setup combines the high performance supercritical fluid chromatography (SFC) system that can be readily used as an inlet for mass spectrometry (MS) and atmospheric pressure photo ionization (APPI) or atmospheric pressure chemical ionization (APCI) HDX. This combination overcomes the limitation of an approach using conventional liquid chromatography (LC) by minimizing the amount of deuterium solvents used for separation. In the SFC separation, supercritical CO2 was used as a major component of the mobile phase, and methanol was used as a minor co-solvent. By using deuterated methanol (CH3OD), AP HDX was achieved during SFC separation. To prove the concept, thirty one nitrogen- and/or oxygen-containing standard compounds were analyzed by SFC-AP HDX MS. The compounds were successfully speciated from the obtained SFC-MS spectra. The exchange ions were observed with as low as 1% of CH3OD in the mobile phase, and separation could be performed within approximately 20min using approximately 0.24 mL of CH3OD. The results showed that SFC separation and APPI/APCI HDX could be successfully performed using the suggested method. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Experimental research of neutron yield and spectrum from deuterium gas-puff z-pinch on the GIT-12 generator at current above 2 MA

    NASA Astrophysics Data System (ADS)

    Cherdizov, R. K.; Fursov, F. I.; Kokshenev, V. A.; Kurmaev, N. E.; Labetsky, A. Yu; Ratakhin, N. A.; Shishlov, A. V.; Cikhardt, J.; Cikhardtova, B.; Klir, D.; Kravarik, J.; Kubes, P.; Rezac, K.; Dudkin, G. N.; Garapatsky, A. A.; Padalko, V. N.; Varlachev, V. A.

    2017-05-01

    The Z-pinch experiments with deuterium gas-puff surrounded by an outer plasma shell were carried out on the GIT-12 generator (Tomsk, Russia) at currents of 2 MA. The plasma shell consisting of hydrogen and carbon ions was formed by 48 plasma guns. The deuterium gas-puff was created by a fast electromagnetic valve. This configuration provides an efficient mode of the neutron production in DD reaction, and the neutron yield reaches a value above 1012 neutrons per shot. Neutron diagnostics included scintillation TOF detectors for determination of the neutron energy spectrum, bubble detectors BD-PND, a silver activation detector, and several activation samples for determination of the neutron yield analysed by a Sodium Iodide (NaI) and a high-purity Germanium (HPGe) detectors. Using this neutron diagnostic complex, we measured the total neutron yield and amount of high-energy neutrons.

  2. Adsorption of nitrogen, hydrogen, and deuterium on carbon nanotubes bundles

    NASA Astrophysics Data System (ADS)

    Vilches, Oscar E.; Tyburski, Adam; Wilson, Tate; Depies, Matt; Becquet, Daphne; Bienfait, Michel

    2001-03-01

    Adsorption isotherm measurements on bundles of closed ends carbon nanotubes will be reported, for temperatures between 77K and 96K for N2, H2, and D2, and between 28K and 40K for H2 and D2. Results show the two broad coverage vs. pressure steps reported by Migone's group [S.E.Weber et al., Phys. Rev. B61, 13150 (2000)] and Bienfait's group [M.Muris et al., Langmuir 16, 7019 (2000)] for other adsorbates using similar substrates. The calculated isosteric heat from the lower coverage step is about twice the isosteric heat of the higher coverage step for each of the molecules, with this higher step having somewhat smaller binding energy than the same molecules on graphite.

  3. High-throughput simultaneous determination of plasma water deuterium and 18-oxygen enrichment using a high-temperature conversion elemental analyzer with isotope ratio mass spectrometry.

    PubMed

    Richelle, M; Darimont, C; Piguet-Welsch, C; Fay, L B

    2004-01-01

    This paper presents a high-throughput method for the simultaneous determination of deuterium and oxygen-18 (18O) enrichment of water samples isolated from blood. This analytical method enables rapid and simple determination of these enrichments of microgram quantities of water. Water is converted into hydrogen and carbon monoxide gases by the use of a high-temperature conversion elemental analyzer (TC-EA), that are then transferred on-line into the isotope ratio mass spectrometer. Accuracy determined with the standard light Antartic precipitation (SLAP) and Greenland ice sheet precipitation (GISP) is reliable for deuterium and 18O enrichments. The range of linearity is from 0 up to 0.09 atom percent excess (APE, i.e. -78 up to 5725 delta per mil (dpm)) for deuterium enrichment and from 0 up to 0.17 APE (-11 up to 890 dpm) for 18O enrichment. Memory effects do exist but can be avoided by analyzing the biological samples in quintuplet. This method allows the determination of 1440 samples per week, i.e. 288 biological samples per week. Copyright 2004 John Wiley & Sons, Ltd.

  4. Carbonate-Promoted Hydrogenation of Carbon Dioxide to Multicarbon Carboxylates

    PubMed Central

    2018-01-01

    CO2 hydrogenation is a potential alternative to conventional petrochemical methods for making commodity chemicals and fuels. Research in this area has focused mostly on transition-metal-based catalysts. Here we show that hydrated alkali carbonates promote CO2 hydrogenation to formate, oxalate, and other C2+ carboxylates at elevated temperature and pressure in the absence of transition-metal catalysts or solvent. The reactions proceed rapidly, reaching up to 56% yield (with respect to CO32–) within minutes. Isotope labeling experiments indicate facile H2 and C–H deprotonations in the alkali cation-rich reaction media and identify probable intermediates for the C–C bond formations leading to the various C2+ products. The carboxylate salts are in equilibrium with volatile carboxylic acids under CO2 hydrogenation conditions, which may enable catalytic carboxylic acid syntheses. Our results provide a foundation for base-promoted and base-catalyzed CO2 hydrogenation processes that could complement existing approaches. PMID:29806007

  5. Gas phase recombination of hydrogen and deuterium atoms. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Trainor, D. W.; Ham, D. O.; Kaufman, F.

    1973-01-01

    Rate constants for the reaction H + H + M - H2 + M, with M = H2, He, and Ar were measured over the temperature range 77 to 298 K. Hydrogen atoms were produced by thermal dissociation and absolute atom concentrations were measured through use of self-balancing, isothermal catalytic probe detector. The specific rate constants were 8.1 + or - 0.4 x 10 to the minus 33rd power, 7.0 + or - 0.4 x 10 to the minus 33rd power, and 9.2 + or - 0.6 x at 298 K for M = H2, He, and Ar respectively; these values rising to 18.5 + or - 2.2 x 10 to the minus 33rd power, 12.0 + or - 1.5 x 10 to the minus 33rd power, and 27.4 + or - 4.6 x 10 to the minus 33rd power cm to the 6th power/molecules sq/sec at 77 K. for the equivalent deuterium atom process with D2 as the third body, the rate constants are 6.1 + or - 0.3 x 10 to the minus 33rd power cm to the 6th power/molecules sq/sec at 298 K and 15.1 + or - 1.0 x 10 to the minus 33rd power cm to the 6th power/molecules sq/sec at 77 K. These values are compared with previous experimental measurements and with recent theoretical calculations.

  6. Extraction of Carbon Dioxide and Hydrogen from Seawater and Hydrocarbon Production Therefrom

    DTIC Science & Technology

    2016-04-05

    extracted from the acidified seawater. Optionally, the ion exchange reaction can be conducted under conditions which produce hydrogen as well as carbon dioxide. The carbon dioxide and hydrogen may be used to produce hydrocarbons.

  7. Hydrogen isotope and light element profiling in solid tritium targets used for neutron production

    NASA Astrophysics Data System (ADS)

    Earwaker, L. G.; England, J. B. A.; Goldie, D. J.

    1987-04-01

    Five targets consisting of titanium tritide layers on copper backings have been investigated using nuclear reaction analysis. As these targets are commonly used to produce monoenergetic neutrons via the T(p, n) 3 He and T(d, n) 4 He reactions, it is important to know of the presence of other elements which may produce neutrons at different energies. The thicknesses of the titanium tritide layers were measured by observing the T(p, n) 3 He threshold yield curve and also the energy spread of the neutrons using a 3He-filled gridded ion chamber. Elastic recoil analysis with a particle identifying system was used to measure the hydrogen, deuterium, tritium and 3He content, and elastic scattering was used to study the carbon and oxygen. Surprisingly high concentrations of both hydrogen and oxygen were found on all targets, including the three which had never been used. Also surprising was the 3He content which was approximately the same for targets of all ages and conditions of use. As expected, the carbon content increased strongly with use, originating no doubt, from vacuum pump oil. Up to 3% deuterium atoms were observed in unused targets with much higher contents being recorded in used targets.

  8. Oxidative coupling of sp 2 and sp 3 carbon-hydrogen bonds to construct dihydrobenzofurans.

    PubMed

    Shi, Jiang-Ling; Wang, Ding; Zhang, Xi-Sha; Li, Xiao-Lei; Chen, Yu-Qin; Li, Yu-Xue; Shi, Zhang-Jie

    2017-08-10

    Metal-catalyzed cross-couplings provide powerful, concise, and accurate methods to construct carbon-carbon bonds from organohalides and organometallic reagents. Recent developments extended cross-couplings to reactions where one of the two partners connects with an aryl or alkyl carbon-hydrogen bond. From an economic and environmental point of view, oxidative couplings between two carbon-hydrogen bonds would be ideal. Oxidative coupling between phenyl and "inert" alkyl carbon-hydrogen bonds still awaits realization. It is very difficult to develop successful strategies for oxidative coupling of two carbon-hydrogen bonds owning different chemical properties. This article provides a solution to this challenge in a convenient preparation of dihydrobenzofurans from substituted phenyl alkyl ethers. For the phenyl carbon-hydrogen bond activation, our choice falls on the carboxylic acid fragment to form the palladacycle as a key intermediate. Through careful manipulation of an additional ligand, the second "inert" alkyl carbon-hydrogen bond activation takes place to facilitate the formation of structurally diversified dihydrobenzofurans.Cross-dehydrogenative coupling is finding increasing application in synthesis, but coupling two chemically distinct sites remains a challenge. Here, the authors report an oxidative coupling between sp 2 and sp 3 carbons by sequentially activating the more active aryl site followed by the alkyl position.

  9. Carbon nanotube materials for hydrogen storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dillon, A.C.; Parilla, P.A.; Jones, K.M.

    1998-08-01

    Carbon single-wall nanotubes (SWNTs) are essentially elongated pores of molecular dimensions and are capable of adsorbing hydrogen at relatively high temperatures and low pressures. This behavior is unique to these materials and indicates that SWNTs are the ideal building block for constructing safe, efficient, and high energy density adsorbents for hydrogen storage applications. In past work the authors developed methods for preparing and opening SWNTs, discovered the unique adsorption properties of these new materials, confirmed that hydrogen is stabilized by physical rather than chemical interactions, measured the strength of interaction to be {approximately} 5 times higher than for adsorption onmore » planar graphite, and performed infrared absorption spectroscopy to determine the chemical nature of the surface terminations before, during, and after oxidation. This year the authors have made significant advances in synthesis and characterization of SWNT materials so that they can now prepare gram quantities of high-purity SWNT samples and measure and control the diameter distribution of the tubes by varying key parameters during synthesis. They have also developed methods which purify nanotubes and cut nanotubes into shorter segments. These capabilities provide a means for opening the tubes which were unreactive to the oxidation methods that successfully opened tubes, and offer a path towards organizing nanotube segments to enable high volumetric hydrogen storage densities. They also performed temperature programmed desorption spectroscopy on high purity carbon nanotube material obtained from collaborator Prof. Patrick Bernier and finished construction of a high precision Seivert`s apparatus which will allow the hydrogen pressure-temperature-composition phase diagrams to be evaluated for SWNT materials.« less

  10. Hexicon 2: Automated Processing of Hydrogen-Deuterium Exchange Mass Spectrometry Data with Improved Deuteration Distribution Estimation

    NASA Astrophysics Data System (ADS)

    Lindner, Robert; Lou, Xinghua; Reinstein, Jochen; Shoeman, Robert L.; Hamprecht, Fred A.; Winkler, Andreas

    2014-06-01

    Hydrogen-deuterium exchange (HDX) experiments analyzed by mass spectrometry (MS) provide information about the dynamics and the solvent accessibility of protein backbone amide hydrogen atoms. Continuous improvement of MS instrumentation has contributed to the increasing popularity of this method; however, comprehensive automated data analysis is only beginning to mature. We present Hexicon 2, an automated pipeline for data analysis and visualization based on the previously published program Hexicon (Lou et al. 2010). Hexicon 2 employs the sensitive NITPICK peak detection algorithm of its predecessor in a divide-and-conquer strategy and adds new features, such as chromatogram alignment and improved peptide sequence assignment. The unique feature of deuteration distribution estimation was retained in Hexicon 2 and improved using an iterative deconvolution algorithm that is robust even to noisy data. In addition, Hexicon 2 provides a data browser that facilitates quality control and provides convenient access to common data visualization tasks. Analysis of a benchmark dataset demonstrates superior performance of Hexicon 2 compared with its predecessor in terms of deuteration centroid recovery and deuteration distribution estimation. Hexicon 2 greatly reduces data analysis time compared with manual analysis, whereas the increased number of peptides provides redundant coverage of the entire protein sequence. Hexicon 2 is a standalone application available free of charge under http://hx2.mpimf-heidelberg.mpg.de.

  11. Hexicon 2: automated processing of hydrogen-deuterium exchange mass spectrometry data with improved deuteration distribution estimation.

    PubMed

    Lindner, Robert; Lou, Xinghua; Reinstein, Jochen; Shoeman, Robert L; Hamprecht, Fred A; Winkler, Andreas

    2014-06-01

    Hydrogen-deuterium exchange (HDX) experiments analyzed by mass spectrometry (MS) provide information about the dynamics and the solvent accessibility of protein backbone amide hydrogen atoms. Continuous improvement of MS instrumentation has contributed to the increasing popularity of this method; however, comprehensive automated data analysis is only beginning to mature. We present Hexicon 2, an automated pipeline for data analysis and visualization based on the previously published program Hexicon (Lou et al. 2010). Hexicon 2 employs the sensitive NITPICK peak detection algorithm of its predecessor in a divide-and-conquer strategy and adds new features, such as chromatogram alignment and improved peptide sequence assignment. The unique feature of deuteration distribution estimation was retained in Hexicon 2 and improved using an iterative deconvolution algorithm that is robust even to noisy data. In addition, Hexicon 2 provides a data browser that facilitates quality control and provides convenient access to common data visualization tasks. Analysis of a benchmark dataset demonstrates superior performance of Hexicon 2 compared with its predecessor in terms of deuteration centroid recovery and deuteration distribution estimation. Hexicon 2 greatly reduces data analysis time compared with manual analysis, whereas the increased number of peptides provides redundant coverage of the entire protein sequence. Hexicon 2 is a standalone application available free of charge under http://hx2.mpimf-heidelberg.mpg.de.

  12. Development of Affordable, Low-Carbon Hydrogen Supplies at an Industrial Scale

    ERIC Educational Resources Information Center

    Roddy, Dermot J.

    2008-01-01

    An existing industrial hydrogen generation and distribution infrastructure is described, and a number of large-scale investment projects are outlined. All of these projects have the potential to generate significant volumes of low-cost, low-carbon hydrogen. The technologies concerned range from gasification of coal with carbon capture and storage…

  13. Study of ion-irradiated tungsten in deuterium plasma

    NASA Astrophysics Data System (ADS)

    Khripunov, B. I.; Gureev, V. M.; Koidan, V. S.; Kornienko, S. N.; Latushkin, S. T.; Petrov, V. B.; Ryazanov, A. I.; Semenov, E. V.; Stolyarova, V. G.; Danelyan, L. S.; Kulikauskas, V. S.; Zatekin, V. V.; Unezhev, V. N.

    2013-07-01

    Experimental study aimed at investigation of neutron induced damage influence on fusion reactor plasma facing materials is reported. Displacement damage was produced in tungsten by high-energy helium and carbon ions at 3-10 MeV. The reached level of displacement damage ranged from several dpa to 600 dpa. The properties of the irradiated tungsten were studied in steady-state deuterium plasma on the LENTA linear divertor simulator. Plasma exposures were made at 250 eV of ion energy to fluence 1021-1022 ion/сm2. Erosion dynamics of the damaged layer and deuterium retention were observed. Surface microstructure modifications and important damage of the 5 μm layer shown. Deuterium retention in helium-damaged tungsten (ERD) showed its complex behavior (increase or decrease) depending on implanted helium quantity and the structure of the surface layer.

  14. Approach to characterization of the higher order structure of disulfide-containing proteins using hydrogen/deuterium exchange and top-down mass spectrometry.

    PubMed

    Wang, Guanbo; Kaltashov, Igor A

    2014-08-05

    Top-down hydrogen/deuterium exchange (HDX) with mass spectrometric (MS) detection has recently matured to become a potent biophysical tool capable of providing valuable information on higher order structure and conformational dynamics of proteins at an unprecedented level of structural detail. However, the scope of the proteins amenable to the analysis by top-down HDX MS still remains limited, with the protein size and the presence of disulfide bonds being the two most important limiting factors. While the limitations imposed by the physical size of the proteins gradually become more relaxed as the sensitivity, resolution and dynamic range of modern MS instrumentation continue to improve at an ever accelerating pace, the presence of the disulfide linkages remains a much less forgiving limitation even for the proteins of relatively modest size. To circumvent this problem, we introduce an online chemical reduction step following completion and quenching of the HDX reactions and prior to the top-down MS measurements of deuterium occupancy of individual backbone amides. Application of the new methodology to the top-down HDX MS characterization of a small (99 residue long) disulfide-containing protein β2-microglobulin allowed the backbone amide protection to be probed with nearly a single-residue resolution across the entire sequence. The high-resolution backbone protection pattern deduced from the top-down HDX MS measurements carried out under native conditions is in excellent agreement with the crystal structure of the protein and high-resolution NMR data, suggesting that introduction of the chemical reduction step to the top-down routine does not trigger hydrogen scrambling either during the electrospray ionization process or in the gas phase prior to the protein ion dissociation.

  15. Properties of thick GEM in low-pressure deuterium

    NASA Astrophysics Data System (ADS)

    Lee, C. S.; Ota, S.; Tokieda, H.; Kojima, R.; Watanabe, Y. N.; Uesaka, T.

    2014-05-01

    Deuteron inelastic scattering (d, d') provides a promising spectroscopic tool to study nuclear incompressibility. In studies of deuteron inelastic scattering of unstable nuclei, measurements of low-energy recoiled particles is very important. In order to perform these measurements, we are developing a GEM-TPC based gaseous active target, called CAT (Center for nuclear study Active Target), operated with pure deuterium gas. The CAT has been tested with deuterium gas at 1 atm and 100-μm-thick GEMs. The low-pressure operation of CAT is planned in order to improve the detection capability for lower-energy recoil particles. A 400 μm-thick gas electron multiplier (THGEM) was chosen for the low-pressure operation of CAT. However, the properties of THGEM in low-pressure deuterium are currently undocumented. In this work, the performance of THGEM with low-pressure pure deuterium gas has been investigated. The effective gas gain of THGEM has been measured in various conditions using a 5.5-MeV 241Am alpha source. The effective gas gain was measured for 0.2-, 0.3- and 0.4-atm deuterium gas and a gas gain of about 103 was achieved by a double THGEM structure at 0.2 atm. The maximum achieved gain decreased with increasing gas pressure. The dependences of the effective gas gain on the electric field strengths of the drift, transfer and induction regions were investigated. The gain stability as a function of time in hydrogen gas was also tested and a relaxation time of THGEM of about 60 hours was observed with a continuous irradiation of alpha particles, which is significantly longer than previous studies have reported. We have tried to evaluate the gas gain of THGEM in deuterium gas by considering only the Townsend ionization process; however, it turned out that more phenomenological aspects, such as transfer efficiency, should be included in the evaluation. The basic properties of THGEM in low-pressure deuterium have been investigated for the first time.

  16. Determination of the parton distributions and structure functions of the proton from neutrino and antineutrino reactions on hydrogen and deuterium

    NASA Astrophysics Data System (ADS)

    Jones, G. T.; Jones, R. W. L.; Kennedy, B. W.; Klein, H.; Morrison, D. R. O.; Wachsmuth, H.; Miller, D. B.; Mobayyen, M. M.; Wainstein, S.; Aderholz, M.; Hantke, D.; Katz, U. F.; Kern, J.; Schmitz, N.; Wittek, W.; Borner, H. P.; Myatt, G.; Cooper-Sarkar, A. M.; Guy, J.; Venus, W.; Bullock, F. W.; Burke, S.

    1994-12-01

    This analysis is based on data from neutrino and antineutrino scattering on hydrogen and deuterium, obtained with BEBC in the (anti) neutrino wideband beam of the CERN SPS. The parton momentum distributions in the proton and the proton structure functions are determined in the range 0.01

  17. A comparison of the energy distributions of hadrons produced in deep inelastic scattering of muons on hydrogen and deuterium targets

    NASA Astrophysics Data System (ADS)

    Aubert, J. J.; Bassompierre, G.; Becks, K. H.; Benchouk, C.; Best, C.; Böhm, E.; de Bouard, X.; Brasse, F. W.; Broll, C.; Brown, S.; Carr, J.; Clifft, R.; Cobb, J. H.; Coignet, G.; Combley, F.; Court, G. R.; D'Agostini, G.; Dau, W. D.; Davies, J. K.; Déclais, Y.; Dosselli, U.; Drees, J.; Edwards, A.; Edwards, M.; Eszes, G.; Favier, J.; Ferrero, M. I.; Flauger, W.; Forsbach, H.; Gabathuler, E.; Gamet, R.; Gayler, J.; Gerhardt, V.; Gössling, C.; Haas, J.; Hamacher, K.; Hayman, P.; Henckes, M.; Korbel, V.; Korzen, B.; Landgraf, U.; Leenen, M.; Maire, M.; Mohr, W.; Montgomery, H. E.; Moser, K.; Mount, R. P.; Nagy, E.; Nassalski, J.; Norton, P. R.; McNicholas, J.; Osborne, A. M.; Pavel, N.; Payre, P.; Peroni, C.; Peschel, H.; Pessard, H.; Pietrzyk, U.; Ribarics, P.; Rith, K.; Schneegans, M.; Schneider, A.; Sloan, T.; Stier, H. E.; Stockhausen, W.; Thénard, J. M.; Thompson, J. C.; Urban, L.; Villers, M.; Wahlen, H.; Whalley, M.; Williams, D.; Williams, W. S. C.; Williamson, J.; Wimpenny, S. J.

    1986-06-01

    The energy distribution of inclusive hadrons produced by 280 GeV muons on hydrogen and deuterium targets are compared. The sum of the scaled energy distributions of the positive and negative hadrons is found to be the same for the two targets. The difference of these distributions is observed to factorise in x and z and the z-dependence is found to be independent of the target type and have a form (1- z)2.1±0.2. The net charge of the hadronic jet is positive at high x even in the case when the scattering takes place on the neutron. These results are in good agreement with the expectations of the Quark Parton Model.

  18. HYDROGEN ISOTOPE TARGETS

    DOEpatents

    Ashley, R.W.

    1958-08-12

    The design of targets for use in the investigation of nuclear reactions of hydrogen isotopes by bombardment with accelerated particles is described. The target con struction eomprises a backing disc of a metal selected from the group consisting of molybdenunn and tungsten, a eoating of condensed titaniunn on the dise, and a hydrogen isotope selected from the group consisting of deuterium and tritium absorbed in the coatiag. The proeess for preparing these hydrogen isotope targets is described.

  19. Formaldehyde metabolism by Escherichia coli. Carbon and solvent deuterium incorporation into glycerol, 1,2-propanediol, and 1,3-propanediol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunter, B.K.; Nicholls, K.M.; Sanders, J.K.

    1985-07-16

    Escherichia coli were grown on 14.3% uniformly TC-labeled glucose as the sole carbon source and challenged anaerobically with 90% TC-labeled formaldehyde. The major multiply labeled metabolites were identified by TC NMR spectroscopy to be glycerol and 1,2-propanediol, and a minor metabolite was shown to be 1,3-propanediol. In each case, formaldehyde is incorporated only into the C1 position. A novel form of TC NMR isotope dilution analysis of the major products reveals that all the 1,2-diol C1 is formaldehyde derived but that about 40% of the glycerol C1 is derived from bacterial sources. Glycerokinase converted the metabolite (1- TC)glycerol to equalmore » amounts of (3- TC)glycerol 3-phosphate and (1- TC)glycerol 3-phosphate, demonstrating that the metabolite is racemic. When ( TC)formaldehyde incubation was carried out in H2O/D2O mixtures, deuterium incorporation was detected by beta- and gamma-isotope shifts. The 1,3-diol is deuterium labeled only at C2 and only once, while the 1,2-diol and glycerol are each labeled independently at both C2 and C3; C3 is multiply labeled. Deuterium incorporation levels are different for each metabolite, indicating that the biosynthetic pathways probably diverge early.« less

  20. Hydrogen production using thermocatalytic decomposition of methane on Ni30/activated carbon and Ni30/carbon black.

    PubMed

    Srilatha, K; Viditha, V; Srinivasulu, D; Ramakrishna, S U B; Himabindu, V

    2016-05-01

    Hydrogen is an energy carrier of the future need. It could be produced from different sources and used for power generation or as a transport fuel which mainly in association with fuel cells. The primary challenge for hydrogen production is reducing the cost of production technologies to make the resulting hydrogen cost competitive with conventional fuels. Thermocatalytic decomposition (TCD) of methane is one of the most advantageous processes, which will meet the future demand, hence an attractive route for COx free environment. The present study deals with the production of hydrogen with 30 wt% of Ni impregnated in commercially available activated carbon and carbon black catalysts (samples coded as Ni30/AC and Ni30/CB, respectively). These combined catalysts were not attempted by previous studies. Pure form of hydrogen is produced at 850 °C and volume hourly space velocity (VHSV) of 1.62 L/h g on the activity of both the catalysts. The analysis (X-ray diffraction (XRD)) of the catalysts reveals moderately crystalline peaks of Ni, which might be responsible for the increase in catalytic life along with formation of carbon fibers. The activity of carbon black is sustainable for a longer time compared to that of activated carbon which has been confirmed by life time studies (850 °C and 54 sccm of methane).

  1. Two different carbon-hydrogen complexes in silicon with closely spaced energy levels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stübner, R., E-mail: ronald.stuebner@physik.tu-dresden.de, E-mail: kolkov@ifpan.edu.pl; Kolkovsky, Vl., E-mail: ronald.stuebner@physik.tu-dresden.de, E-mail: kolkov@ifpan.edu.pl; Weber, J.

    An acceptor and a single donor state of carbon-hydrogen defects (CH{sub A} and CH{sub B}) are observed by Laplace deep level transient spectroscopy at 90 K. CH{sub A} appears directly after hydrogenation by wet chemical etching or hydrogen plasma treatment, whereas CH{sub B} can be observed only after a successive annealing under reverse bias at about 320 K. The activation enthalpies of these states are 0.16 eV for CH{sub A} and 0.14 eV for CH{sub B}. Our results reconcile previous controversial experimental results. We attribute CH{sub A} to the configuration where substitutional carbon binds a hydrogen atom on a bond centered position between carbonmore » and the neighboring silicon and CH{sub B} to another carbon-hydrogen defect.« less

  2. Phosphoglucoisomerase-catalyzed interconversion of hexose phosphates: isotopic discrimination between hydrogen and deuterium.

    PubMed

    Malaisse, W J; Malaisse-Lagae, F; Liemans, V; Ottinger, R; Willem, R

    1990-03-27

    The discrimination between the isotopes of hydrogen in the reaction catalyzed by yeast phosphoglucoisomerase is examined by NMR, as well as by spectrofluorometric or radioisotopic methods. The monodirectional conversion of D-glucose 6-phosphate to D-fructose 6-phosphate displays a lower maximal velocity with D-[2-2H]glucose 6-phosphate than unlabelled D-glucose 6-phosphate, with little difference in the affinity of the enzyme for these two substrates. About 72% of the deuterium located on the C2 of D-[1-13C,2-2H]glucose 6-phosphate is transferred intramolecularly to the C1 of D-[1-13C,1-2H]fructose 6-phosphate. The velocity of the monodirectional conversion of D-[U-14C]glucose 6-phosphate (or D-[2-3H]glucose 6-phosphate) to D-fructose 6-phosphate is virtually identical in H2O and D2O, respectively, but is four times lower with the tritiated than 14C-labelled ester. In the monodirectional reaction, the intramolecular transfer from the C2 of D-[2-3H]glucose 6-phosphate is higher in the presence of D2O than H2O. Whereas prolonged exposure of D-[1-13C]glucose 6-phosphate to D2O, in the presence of phosphoglucoisomerase, leads to the formation of both D-[1-13C,2-2H]glucose 6-phosphate and D-[1-13C,1-2H]fructose 6-phosphate, no sizeable incorporation of dueterium from D2O on the C1 of D-[1-13C]fructose 1,6-bisphosphate is observed when the monodirectional conversion of D-[1-13C]glucose 6-phosphate occurs in the concomitant presence of phosphoglucoisomerase and phosphofructokinase. The latter finding contrasts with the incorporation of hydrogen from 1H2O or tritium from 3H2O in the monodirectional conversion of D-[2-3H]glucose 6-phosphate and unlabelled D-glucose 6-phosphate, respectively, to their corresponding ketohexose esters.

  3. Determination of the deuterium/hydrogen ratio in gas reaction products by laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    D'Ulivo, A.; Onor, M.; Pitzalis, E.; Spiniello, R.; Lampugnani, L.; Cristoforetti, G.; Legnaioli, S.; Palleschi, V.; Salvetti, A.; Tognoni, E.

    2006-07-01

    This paper reports the first application of laser-induced breakdown spectroscopy technique (LIBS) to the determination of deuterium/hydrogen numeric ratio ( β) in the headspace gases, essentially HD + H 2, that are generated by the hydrolysis of NaBD 4-NaBH 4 mixtures (molar fraction of NaBD 4, x = 50-100%) in acidic H 2O media (0 < pH < 1). The LIBS measurement of β can be easily achieved with a coefficient of variation better than 5% (over four replicates). The value of β allowed the calculation of the molar fraction of NaBD 4, xLIBS, with a coefficient of variation better than 2.5%. The comparison of x vs. xLIBS gives results that are in good agreement, within an average deviation of 3%, for x in the range of 50-100%. The best performances are obtained for β close to unit, which makes LIBS perfectly suited for the detection of H-D exchange taking place during aqueous hydrolysis of NaBD 4 or NaBH 4.

  4. A Reexamination of Deuterium Fractionation on Mars

    NASA Astrophysics Data System (ADS)

    Pathare, A.; Paige, D. A.

    1997-07-01

    The ratio of deuterium to hydrogen in the Martian atmosphere is enhanced by a factor of 5 with respect to the terrestrial value, probably due to fractionation associated with thermal Jeans escape from the top of the atmosphere. Theoretical analyses of the relative efficiency of H and D escape have suggested that the deuterium enrichment implies Mars has outgassed the vast majority of its H2O and that the Martian atmosphere is presently not exchanging water with a juvenile reservoir. However, measurements of high and variable D/H values within hydrous minerals in SNC meteorites strongly suggest that mixing between the atmosphere and juvenile water has taken place. Furthermore, the lack of any observed enrichment of atmospheric (18) O with respect to (16) O, in spite of fractionating nonthermal escape mechanisms, indicates buffering by some juvenile source of oxygen, most probably in the form of a surface or subsurface reservoir of water. We propose that this apparent paradox in the interpretation of isotopic hydrogen and oxygen fractionation --or lack thereof-- can be resolved by re-examining the standard model of deuterium fractionation efficiency on Mars. Specifically, we demonstrate the importance of using upper atmospheric temperatures more representative of the range experienced by the Martian exosphere over the course of the solar cycle. Preliminary calculations involving changes in effusion velocity and diffusive separation as a function of exospheric temperature indicate that incorporating these more representative lower exospheric temperatures will reduce the relative efficiency of D escape, in which case the observed enrichment of deuterium can indeed result from exchange with a juvenile source of water. We are in the process of confirming these computations with a one-dimensional upper atmospheric photochemical model that considers the effects of changing solar activity and exospheric temperature on ionospheric composition. If our initial calculations are

  5. Displacement damage dose and implantation temperature effects on the trapping and release of deuterium implanted into SiC

    NASA Astrophysics Data System (ADS)

    Muñoz, P.; García-Cortés, I.; Sánchez, F. J.; Moroño, A.; Malo, M.; Hodgson, E. R.

    2017-09-01

    Radiation damage to flow channel insert (FCI) materials is an important issue for the concept of dual-coolant blanket development in future fusion devices. Silicon Carbide (SiC) is one of the most suitable materials for FCI. Because of the severe radiation environment and exposure to tritium during operation it is of fundamental importance to study hydrogen isotope trapping and release in these materials. Here the trapping, detrapping, and diffusion of deuterium implanted into SiC is studied in correlation with pre- and post-damage induced under different conditions. For this, SiC samples are pre-damaged with 50 keV Ne+ ions at different temperatures (20, 200, 450, 700 °C) to different damage doses (1, 3.6, 7 dpa). Next, deuterium is introduced into the samples at 450 °C by ion implantation at 7 keV. The implanted deuterium retained in the sample is analysed using secondary ion mass spectrometry (SIMS) and thermo-stimulated desorption (TSD) measurements. The results indicate that with increasing neon damage dose, the maximum deuterium desorption occurs at higher temperatures. In contrast, when increasing neon implantation temperature for a fixed dose, the maximum deuterium desorption release temperature decreases. It is interpreted that the neon bombardment produces thermally stable traps for hydrogen isotopes and the stability of this damage increases with neon pre-implantation dose. A decrease of the trapping of implanted deuterium is also observed to occur due to damage recovery by thermal annealing during pre-implantation at the higher temperatures. Finally, direct particle bombardment induced deuterium release is also observed.

  6. Quantum fluctuations increase the self-diffusive motion of para-hydrogen in narrow carbon nanotubes.

    PubMed

    Kowalczyk, Piotr; Gauden, Piotr A; Terzyk, Artur P; Furmaniak, Sylwester

    2011-05-28

    Quantum fluctuations significantly increase the self-diffusive motion of para-hydrogen adsorbed in narrow carbon nanotubes at 30 K comparing to its classical counterpart. Rigorous Feynman's path integral calculations reveal that self-diffusive motion of para-hydrogen in a narrow (6,6) carbon nanotube at 30 K and pore densities below ∼29 mmol cm(-3) is one order of magnitude faster than the classical counterpart. We find that the zero-point energy and tunneling significantly smoothed out the free energy landscape of para-hydrogen molecules adsorbed in a narrow (6,6) carbon nanotube. This promotes a delocalization of the confined para-hydrogen at 30 K (i.e., population of unclassical paths due to quantum effects). Contrary the self-diffusive motion of classical para-hydrogen molecules in a narrow (6,6) carbon nanotube at 30 K is very slow. This is because classical para-hydrogen molecules undergo highly correlated movement when their collision diameter approached the carbon nanotube size (i.e., anomalous diffusion in quasi-one dimensional pores). On the basis of current results we predict that narrow single-walled carbon nanotubes are promising nanoporous molecular sieves being able to separate para-hydrogen molecules from mixtures of classical particles at cryogenic temperatures. This journal is © the Owner Societies 2011

  7. Efficient generation of fast neutrons by magnetized deuterons in an optimized deuterium gas-puff z-pinch

    NASA Astrophysics Data System (ADS)

    Klir, D.; Shishlov, A. V.; Kokshenev, V. A.; Kubes, P.; Labetsky, A. Yu; Rezac, K.; Cherdizov, R. K.; Cikhardt, J.; Cikhardtova, B.; Dudkin, G. N.; Fursov, F. I.; Garapatsky, A. A.; Kovalchuk, B. M.; Kravarik, J.; Kurmaev, N. E.; Orcikova, H.; Padalko, V. N.; Ratakhin, N. A.; Sila, O.; Turek, K.; Varlachev, V. A.

    2015-04-01

    Z-pinch experiments with deuterium gas puffs have been carried out on the GIT-12 generator at 3 MA currents. Recently, a novel configuration of a deuterium gas-puff z-pinch was used to accelerate deuterons and to generate fast neutrons. In order to form a homogeneous, uniformly conducting layer at a large initial radius, an inner deuterium gas puff was surrounded by an outer hollow cylindrical plasma shell. The plasma shell consisting of hydrogen and carbon ions was formed at the diameter of 350 mm by 48 plasma guns. A linear mass of the plasma shell was about 5 µg cm-1 whereas a total linear mass of deuterium gas in single or double shell gas puffs was about 100 µg cm-1. The implosion lasted 700 ns and seemed to be stable up to a 5 mm radius. During stagnation, m = 0 instabilities became more pronounced. When a disruption of necks occurred, the plasma impedance reached 0.4 Ω and high energy (>2 MeV) bremsstrahlung radiation together with high energy deuterons were produced. Maximum neutron energies of 33 MeV were observed by axial time-of-flight detectors. The observed neutron spectra could be explained by a suprathermal distribution of deuterons with a high energy tail f≤ft({{E}\\text{d}}\\right)\\propto E\\text{d}-(1.8+/- 0.2) . Neutron yields reached 3.6 × 1012 at a 2.7 MA current. A high neutron production efficiency of 6 × 107 neutrons per one joule of plasma energy resulted from the generation of high energy deuterons and from their magnetization inside plasmas.

  8. Photobiological hydrogen production and carbon dioxide sequestration

    NASA Astrophysics Data System (ADS)

    Berberoglu, Halil

    Photobiological hydrogen production is an alternative to thermochemical and electrolytic technologies with the advantage of carbon dioxide sequestration. However, it suffers from low solar to hydrogen energy conversion efficiency due to limited light transfer, mass transfer, and nutrient medium composition. The present study aims at addressing these limitations and can be divided in three parts: (1) experimental measurements of the radiation characteristics of hydrogen producing and carbon dioxide consuming microorganisms, (2) solar radiation transfer modeling and simulation in photobioreactors, and (3) parametric experiments of photobiological hydrogen production and carbon dioxide sequestration. First, solar radiation transfer in photobioreactors containing microorganisms and bubbles was modeled using the radiative transport equation (RTE) and solved using the modified method of characteristics. The study concluded that Beer-Lambert's law gives inaccurate results and anisotropic scattering must be accounted for to predict the local irradiance inside a photobioreactor. The need for accurate measurement of the complete set of radiation characteristics of microorganisms was established. Then, experimental setup and analysis methods for measuring the complete set of radiation characteristics of microorganisms have been developed and successfully validated experimentally. A database of the radiation characteristics of representative microorganisms have been created including the cyanobacteria Anabaena variabilis, the purple non-sulfur bacteria Rhodobacter sphaeroides and the green algae Chlamydomonas reinhardtii along with its three genetically engineered strains. This enabled, for the first time, quantitative assessment of the effect of genetic engineering on the radiation characteristics of microorganisms. In addition, a parametric experimental study has been performed to model the growth, CO2 consumption, and H 2 production of Anabaena variabilis as functions of

  9. Stereoselective heterocycle synthesis through oxidative carbon-hydrogen bond activation.

    PubMed

    Liu, Lei; Floreancig, Paul E

    2010-01-01

    Heterocycles are ubiquitous structures in both drugs and natural products, and efficient methods for their construction are being pursued constantly. Carbon-hydrogen bond activation offers numerous advantages for the synthesis of heterocycles with respect to minimizing the length of synthetic routes and reducing waste. As interest in chiral medicinal leads increases, stereoselective methods for heterocycle synthesis must be developed. The use of carbon-hydrogen bond activation reactions for stereoselective heterocycle synthesis has produced a range of creative transformations that provide a wide array of structural motifs, selected examples of which are described in this review.

  10. Electrochemical Hydrogen Storage in Facile Synthesized Co@N-Doped Carbon Nanoparticle Composites.

    PubMed

    Zhou, Lina; Qu, Xiaosheng; Zheng, Dong; Tang, Haolin; Liu, Dan; Qu, Deyang; Xie, ZhiZhong; Li, Junsheng; Qu, Deyu

    2017-11-29

    A Co@nitrogen-doped carbon nanoparticle composite was synthesized via a facile molecular self-assembling procedure. The material was used as the host for the electrochemical storage of hydrogen. The hydrogen storage capacity of the material was over 300 mAh g -1 at a rate of 100 mAg -1 . It also exhibited superior stability for storage of hydrogen, high rate capability, and good cyclic life. Hybridizing metallic cobalt nanoparticle with nitrogen-doped mesoporous carbon is found to be a good approach for the electrochemical storage of hydrogen.

  11. Palladium on Nitrogen-Doped Mesoporous Carbon: A Bifunctional Catalyst for Formate-Based, Carbon-Neutral Hydrogen Storage.

    PubMed

    Wang, Fanan; Xu, Jinming; Shao, Xianzhao; Su, Xiong; Huang, Yanqiang; Zhang, Tao

    2016-02-08

    The lack of safe, efficient, and economical hydrogen storage technologies is a hindrance to the realization of the hydrogen economy. Reported herein is a reversible formate-based carbon-neutral hydrogen storage system that is established over a novel catalyst comprising palladium nanoparticles supported on nitrogen-doped mesoporous carbon. The support was fabricated by a hard template method and nitridated under a flow of ammonia. Detailed analyses demonstrate that this bicarbonate/formate redox equilibrium is promoted by the cooperative role of the doped nitrogen functionalities and the well-dispersed, electron-enriched palladium nanoparticles. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Hydrogen isotope separation utilizing bulk getters

    DOEpatents

    Knize, R.J.; Cecchi, J.L.

    1991-08-20

    Tritium and deuterium are separated from a gaseous mixture thereof, derived from a nuclear fusion reactor or some other source, by providing a casing with a bulk getter therein for absorbing the gaseous mixture to produce an initial loading of the getter, partially desorbing the getter to produce a desorbed mixture which is tritium-enriched, pumping the desorbed mixture into a separate container, the remaining gaseous loading in the getter being deuterium-enriched, desorbing the getter to a substantially greater extent to produce a deuterium-enriched gaseous mixture, and removing the deuterium-enriched mixture into another container. The bulk getter may comprise a zirconium-aluminum alloy, or a zirconium-vanadium-iron alloy. The partial desorption may reduce the loading by approximately fifty percent. The basic procedure may be extended to produce a multistage isotope separator, including at least one additional bulk getter into which the tritium-enriched mixture is absorbed. The second getter is then partially desorbed to produce a desorbed mixture which is further tritium-enriched. The last-mentioned mixture is then removed from the container for the second getter, which is then desorbed to a substantially greater extent to produce a desorbed mixture which is deuterium-enriched. The last-mentioned mixture is then removed so that the cycle can be continued and repeated. The method of isotope separation is also applicable to other hydrogen isotopes, in that the method can be employed for separating either deuterium or tritium from normal hydrogen. 4 figures.

  13. Hydrogen isotope separation utilizing bulk getters

    DOEpatents

    Knize, Randall J.; Cecchi, Joseph L.

    1991-01-01

    Tritium and deuterium are separated from a gaseous mixture thereof, derived from a nuclear fusion reactor or some other source, by providing a casing with a bulk getter therein for absorbing the gaseous mixture to produce an initial loading of the getter, partially desorbing the getter to produce a desorbed mixture which is tritium-enriched, pumping the desorbed mixture into a separate container, the remaining gaseous loading in the getter being deuterium-enriched, desorbing the getter to a substantially greater extent to produce a deuterium-enriched gaseous mixture, and removing the deuterium-enriched mixture into another container. The bulk getter may comprise a zirconium-aluminum alloy, or a zirconium-vanadium-iron alloy. The partial desorption may reduce the loading by approximately fifty percent. The basic procedure may be extended to produce a multistage isotope separator, including at least one additional bulk getter into which the tritium-enriched mixture is absorbed. The second getter is then partially desorbed to produce a desorbed mixture which is further tritium-enriched. The last-mentioned mixture is then removed from the container for the second getter, which is then desorbed to a substantially greater extent to produce a desorbed mixture which is deuterium-enriched. The last-mentioned mixture is then removed so that the cycle can be continued and repeated. The method of isotope separation is also applicable to other hydrogen isotopes, in that the method can be employed for separating either deuterium or tritium from normal hydrogen.

  14. Hydrogen isotope separation utilizing bulk getters

    DOEpatents

    Knize, Randall J.; Cecchi, Joseph L.

    1990-01-01

    Tritium and deuterium are separated from a gaseous mixture thereof, derived from a nuclear fusion reactor or some other source, by providing a casing with a bulk getter therein for absorbing the gaseous mixture to produce an initial loading of the getter, partially desorbing the getter to produce a desorbed mixture which is tritium-enriched, pumping the desorbed mixture into a separate container, the remaining gaseous loading in the getter being deuterium-enriched, desorbing the getter to a substantially greater extent to produce a deuterium-enriched gaseous mixture, and removing the deuterium-enriched mixture into another container. The bulk getter may comprise a zirconium-aluminum alloy, or a zirconium-vanadium-iron alloy. The partial desorption may reduce the loading by approximately fifty percent. The basic procedure may be extended to produce a multistage isotope separator, including at least one additional bulk getter into which the tritium-enriched mixture is absorbed. The second getter is then partially desorbed to produce a desorbed mixture which is further tritium-enriched. The last-mentioned mixture is then removed from the container for the second getter, which is then desorbed to a substantially greater extent to produce a desorbed mixture which is deuterium-enriched. The last-mentioned mixture is then removed so that the cycle can be continued and repeated. The method of isotope separation is also applicable to other hydrogen isotopes, in that the method can be employed for separating either deuterium or tritium from normal hydrogen.

  15. Development of Approaches for Deuterium Incorporation in Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, Barbara R

    2015-01-01

    Soon after the discovery of deuterium, efforts to utilize this stable isotope of hydrogen for labeling of plants began and have proven successful for natural abundance to 20% enrichment. However, isotopic labeling with deuterium (2H) in higher plants at the level of 40% and higher is complicated by both physiological responses, particularly water exchange through transpiration, and inhibitory effects of D2O on germination, rooting, and growth. The highest incorporation of 40 50% had been reported for photoheterotrophic cultivation of the duckweed Lemna. Higher substitution is desirable for certain applications using neutron scattering and nuclear magnetic resonance (NMR) techniques. 1H2H-NMR andmore » mass spectroscopy are standard methods frequently used for determination of location and amount of deuterium substitution. The changes in infrared (IR) absorption observed for H to D substitution in hydroxyl and alkyl groups provide rapid initial evaluation of incorporation. Short-term experiments with cold-tolerant annual grasses can be carried out in enclosed growth containers to evaluate incorporation. Growth in individual chambers under continuous air perfusion with dried sterile-filtered air enables long-term cultivation of multiple plants at different D2O concentrations. Vegetative propagation from cuttings extends capabilities to species with low germination rates. Cultivation in 50% D2O of annual ryegrass and switchgrass following establishment of roots by growth in H2O produces samples with normal morphology and 30 40 % deuterium incorporation in the biomass. Winter grain rye (Secale cereale) was found to efficiently incorporate deuterium by photosynthetic fixation from 50% D2O but did not incorporate deuterated phenylalanine-d8 from the growth medium.« less

  16. Hydrogen and elemental carbon production from natural gas and other hydrocarbons

    DOEpatents

    Detering, Brent A.; Kong, Peter C.

    2002-01-01

    Diatomic hydrogen and unsaturated hydrocarbons are produced as reactor gases in a fast quench reactor. During the fast quench, the unsaturated hydrocarbons are further decomposed by reheating the reactor gases. More diatomic hydrogen is produced, along with elemental carbon. Other gas may be added at different stages in the process to form a desired end product and prevent back reactions. The product is a substantially clean-burning hydrogen fuel that leaves no greenhouse gas emissions, and elemental carbon that may be used in powder form as a commodity for several processes.

  17. Sputtering yields of carbon based materials under high particle flux with low energy

    NASA Astrophysics Data System (ADS)

    Nakamura, K.; Nagase, A.; Dairaku, M.; Akiba, M.; Araki, M.; Okumura, Y.

    1995-04-01

    A new ion source which can produce high particle flux beams at low energies has been developed. This paper presents preliminary results on the sputtering yield of the carbon fiber reinforced composites (CFCs) measured with the new ion source. The sputtering yields of 1D and 2D CFCs, which are candidate materials for the divertor armour tiles, have been measured by the weight loss method under the hydrogen and deuterium particle fluxes of 2 ˜ 7 × 10 20/m 2 s at 50 ˜ 150 eV. Preferential sputtering of the matrix was observed on CFCs which included the matrix of 40 ˜ 60 w%. The energy dependence of the sputtering yields was weak. The sputtering yields of CFCs normally irradiated with deuterium beam were from 0.073 to 0.095, and were around three times larger than those with hydrogen beam.

  18. Significant Quantum Effects in Hydrogen Activation

    DOE PAGES

    Kyriakou, Georgios; Davidson, Erlend R. M.; Peng, Guowen; ...

    2014-03-31

    Dissociation of molecular hydrogen is an important step in a wide variety of chemical, biological, and physical processes. Due to the light mass of hydrogen, it is recognized that quantum effects are often important to its reactivity. However, understanding how quantum effects impact the reactivity of hydrogen is still in its infancy. Here, we examine this issue using a well-defined Pd/Cu(111) alloy that allows the activation of hydrogen and deuterium molecules to be examined at individual Pd atom surface sites over a wide range of temperatures. Experiments comparing the uptake of hydrogen and deuterium as a function of temperature revealmore » completely different behavior of the two species. The rate of hydrogen activation increases at lower sample temperature, whereas deuterium activation slows as the temperature is lowered. Density functional theory simulations in which quantum nuclear effects are accounted for reveal that tunneling through the dissociation barrier is prevalent for H 2 up to ~190 K and for D 2 up to ~140 K. Kinetic Monte Carlo simulations indicate that the effective barrier to H 2 dissociation is so low that hydrogen uptake on the surface is limited merely by thermodynamics, whereas the D 2 dissociation process is controlled by kinetics. These data illustrate the complexity and inherent quantum nature of this ubiquitous and seemingly simple chemical process. Here, examining these effects in other systems with a similar range of approaches may uncover temperature regimes where quantum effects can be harnessed, yielding greater control of bond-breaking processes at surfaces and uncovering useful chemistries such as selective bond activation or isotope separation.« less

  19. Carbon-Encapsulated WOx Hybrids as Efficient Catalysts for Hydrogen Evolution.

    PubMed

    Jing, Shengyu; Lu, Jiajia; Yu, Guangtao; Yin, Shibin; Luo, Lin; Zhang, Zengsong; Ma, Yanfeng; Chen, Wei; Shen, Pei Kang

    2018-05-29

    Developing non-noble metal catalysts as Pt substitutes, with good activity and stability, remains a great challenge for cost-effective electrochemical evolution of hydrogen. Herein, carbon-encapsulated WO x anchored on a carbon support (WO x @C/C) that has remarkable Pt-like catalytic behavior for the hydrogen evolution reaction (HER) is reported. Theoretical calculations reveal that carbon encapsulation improves the conductivity, acting as an electron acceptor/donor, and also modifies the Gibbs free energy of H* values for different adsorption sites (carbon atoms over the W atom, O atom, WO bond, and hollow sites). Experimental results confirm that WO x @C/C obtained at 900 °C with 40 wt% metal loading has excellent HER activity regarding its Tafel slope and overpotential at 10 and 60 mA cm -2 , and also has outstanding stability at -50 mV for 18 h. Overall, the results and facile synthesis method offer an exciting avenue for the design of cost-effective catalysts for scalable hydrogen generation. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Hydrogenated pyrene: Statistical single-carbon loss below the knockout threshold

    NASA Astrophysics Data System (ADS)

    Wolf, Michael; Giacomozzi, Linda; Gatchell, Michael; de Ruette, Nathalie; Stockett, Mark H.; Schmidt, Henning T.; Cederquist, Henrik; Zettergren, Henning

    2016-04-01

    An ongoing discussion revolves around the question of what effect hydrogenation has on carbon backbone fragmentation in polycyclic aromatic hydrocarbons (PAHs). In order to shed more light on this issue, we have measured absolute single carbon loss cross sections in collisions between native or hydrogenated pyrene cations (C16H+10+m, m = 0, 6, 16) and He as functions of center-of-mass energies down to 20 eV. Classical molecular dynamics (MD) simulations give further insight into energy transfer processes and also yield m-dependent threshold energies for prompt (femtoseconds) carbon knockout. Such fast, non-statistical fragmentation processes dominate CHx-loss for native pyrene (m = 0), while much slower statistical fragmentation processes contribute significantly to single-carbon loss for the hydrogenated molecules (m = 6 and m = 16). The latter is shown by measurements of large CHx-loss cross sections far below the MD knockout thresholds for C16H+16 and C16H+26. Contribution to the "Atomic Cluster Collisions (7th International Symposium)", edited by Gerardo Delgado Barrio, Andrey Solov'Yov, Pablo Villarreal, Rita Prosmiti.

  1. Optimization of Nano-Carbon Materials for Hydrogen Sorption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yakobson, Boris I

    2013-08-02

    Research undertaken has added to the understanding of several critical areas, by providing both negative answers (and therefore eliminating expensive further studies of unfeasible paths) and positive feasible options for storage. Theoretical evaluation of the early hypothesis of storage on pure carbon single wall nanotubes (SWNT) has been scrutinized with the use of comprehensive computational methods (and experimental tests by the Center partners), and demonstrated that the fundamentally weak binding energy of hydrogen is not sufficiently enhanced by the SWNT curvature or even defects, which renders carbon nanotubes not practical media. More promising direction taken was towards 3-dimensional architectures ofmore » high porosity where concurrent attraction of H2 molecule to surrounding walls of nano-scale cavities can double or even triple the binding energy and therefore make hydrogen storage feasible even at ambient or somewhat lower temperatures. An efficient computational tool has been developed for the rapid capacity assessment combining (i) carbon-foam structure generation, (ii) accurate empirical force fields, with quantum corrections for the lightweight H2, and (iii) grand canonical Monte Carlo simulation. This made it possible to suggest optimal designs for carbon nanofoams, obtainable via welding techniques from SWNT or by growth on template-zeolites. As a precursor for 3D-foams, we have investigated experimentally the synthesis of VANTA (Vertically Aligned NanoTube Arrays). This can be used for producing nano-foams. On the other hand, fluorination of VANTA did not show promising increase of hydrogen sorption in several tests and may require further investigation and improvements. Another significant result of this project was in developing a fundamental understanding of the elements of hydrogen spillover mechanisms. The benefit of developed models is the ability to foresee possible directions for further improvement of the spillover mechanism.« less

  2. Thermocatalytic process for CO.sub.2-free production of hydrogen and carbon from hydrocarbons

    DOEpatents

    Muradov, Nazim Z [Melbourne, FL

    2011-08-23

    A novel process and apparatus are disclosed for sustainable CO.sub.2-free production of hydrogen and carbon by thermocatalytic decomposition (dissociation, pyrolysis, cracking) of hydrocarbon fuels over carbon-based catalysts in the absence of air and/or water. The apparatus and thermocatalytic process improve the activity and stability of carbon catalysts during the thermocatalytic process and produce both high purity hydrogen (at least, 99.0 volume %) and carbon, from any hydrocarbon fuel, including sulfurous fuels. In a preferred embodiment, production of hydrogen and carbon is achieved by both internal and external activation of carbon catalysts. Internal activation of carbon catalyst is accomplished by recycling of hydrogen-depleted gas containing unsaturated and aromatic hydrocarbons back to the reactor. External activation of the catalyst can be achieved via surface gasification with hot combustion gases during catalyst heating. The process and apparatus can be conveniently integrated with any type of fuel cell to generate electricity.

  3. Hydrogen Adsorption on Activated Carbon an Carbon Nanotubes Using Volumetric Differential Pressure Technique

    NASA Astrophysics Data System (ADS)

    Sanip, S. M.; Saidin, M. A. R.; Aziz, M.; Ismail, A. F.

    2010-03-01

    A simple hydrogen adsorption measurement system utilizing the volumetri differential pressure technique has been designed, fabricated and calibrated. Hydroge adsorption measurements have been carried out at temperatures 298 K and 77 K on activate carbon and carbon nanotubes with different surface areas. The adsorption data obtained will b helpful in understanding the adsorption property of the studied carbon materials using th fundamentals of adsorption theory. The principle of the system follows the Sievert-type metho The system measures a change in pressure between the reference cell, R1 and the sample cell S1, S2, S3 over a certain temperature range. R1, S1, S2, and S3 having known fixed volume The sample temperatures will be monitored by thermocouple TC while the pressures in R1 an S1, S2, S3 will be measured using a digital pressure transducer. The maximum operatin pressure of the pressure transducer is 20 bar and calibrated with an accuracy of ±0.01 bar. Hig purity hydrogen is being used in the system and the amount of samples for the study is betwee 1.0-2.0 grams. The system was calibrated using helium gas without any samples in S1, S2 an S3. This will provide a correction factor during the adsorption process providing an adsorption free reference point when using hydrogen gas resulting in a more accurate reading of th adsorption process by eliminating the errors caused by temperature expansion effects and oth non-adsorption related phenomena. The ideal gas equation of state is applied to calculate th hydrogen adsorption capacity based on the differential pressure measurements. Activated carbo with a surface area of 644.87 m2/g showed a larger amount of adsorption as compared to multiwalled nanotubes (commercial) with a surface area of 119.68 m2/g. This study als indicated that there is a direct correlation between the amounts of hydrogen adsorbed an surface area of the carbon materials under the conditions studied and that the adsorption significant at 77

  4. 40 CFR 415.330 - Applicability; description of the carbon monoxide and by-product hydrogen production subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... carbon monoxide and by-product hydrogen production subcategory. 415.330 Section 415.330 Protection of... MANUFACTURING POINT SOURCE CATEGORY Carbon Monoxide and By-Product Hydrogen Production Subcategory § 415.330 Applicability; description of the carbon monoxide and by-product hydrogen production subcategory. The provisions...

  5. 40 CFR 415.330 - Applicability; description of the carbon monoxide and by-product hydrogen production subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... carbon monoxide and by-product hydrogen production subcategory. 415.330 Section 415.330 Protection of... MANUFACTURING POINT SOURCE CATEGORY Carbon Monoxide and By-Product Hydrogen Production Subcategory § 415.330 Applicability; description of the carbon monoxide and by-product hydrogen production subcategory. The provisions...

  6. 40 CFR 415.330 - Applicability; description of the carbon monoxide and by-product hydrogen production subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... carbon monoxide and by-product hydrogen production subcategory. 415.330 Section 415.330 Protection of... MANUFACTURING POINT SOURCE CATEGORY Carbon Monoxide and By-Product Hydrogen Production Subcategory § 415.330 Applicability; description of the carbon monoxide and by-product hydrogen production subcategory. The provisions...

  7. 40 CFR 415.330 - Applicability; description of the carbon monoxide and by-product hydrogen production subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... carbon monoxide and by-product hydrogen production subcategory. 415.330 Section 415.330 Protection of... MANUFACTURING POINT SOURCE CATEGORY Carbon Monoxide and By-Product Hydrogen Production Subcategory § 415.330 Applicability; description of the carbon monoxide and by-product hydrogen production subcategory. The provisions...

  8. 40 CFR 415.330 - Applicability; description of the carbon monoxide and by-product hydrogen production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... carbon monoxide and by-product hydrogen production subcategory. 415.330 Section 415.330 Protection of... MANUFACTURING POINT SOURCE CATEGORY Carbon Monoxide and By-Product Hydrogen Production Subcategory § 415.330 Applicability; description of the carbon monoxide and by-product hydrogen production subcategory. The provisions...

  9. Isotopic exchange of hydrogen in aromatic amino acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pshenichnikova, A.B.; Karnaukhova, E.N.; Mitsner, B.I.

    The kinetics of the isotopic replacement of hydrogen in the aromatic amino acids L-tryptophan, L-tyrosine, and L-phenylalanine in solutions of deuterochloric and deuterosulfuric acids in deuterium oxide were investigated by PMR spectroscopy. The reactions were shown to be of first orders with respect both to the concentration of the substrate and to the activity of the deuterium ion. The isotopic effects of hydrogen and the values of the activation energy of H-D exchange in different positions of the aromatic ring in tryptophan and tyrosine were determined. The effect of properties of the medium on the rate of the isotopic exchangemore » of hydrogen is discussed. 17 refs., 2 figs., 2 tabs.« less

  10. Thermally induced hydrosilylation at deuterium-terminated silicon nanoparticles: an investigation of the radical chain propagation mechanism.

    PubMed

    Holm, Jason; Roberts, Jeffrey T

    2009-06-16

    Isotopic labeling techniques were employed to study alkene addition to hydrogen- and deuterium-terminated silicon nanoparticles. Deuterium-terminated silicon nanoparticle synthesis is described, as is the characterization of fresh deuterium-terminated particles by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and in situ Fourier transform infrared spectroscopy (FTIR). Particles were refluxed in pure 1-dodecene and subsequently characterized by FTIR and nuclear magnetic resonance (NMR) spectroscopy. (1)H NMR results showed features consistent with dodecyl-terminated nanoparticles. Infrared absorption spectra of refluxed particles showed strong evidence of new C-D bond formation, which is consistent with a radical chain mechanism for alkene addition by hydrosilylation.

  11. Direct measurements and comparisons between deuterium and impurity rotation and density profiles in the H-mode steep gradient region on DIII-D

    NASA Astrophysics Data System (ADS)

    Haskey, S. R.; Grierson, B. A.; Chrystal, C.; Stagner, L.; Burrell, K.; Groebner, R. J.; Kaplan, D. H.; Nazikian, R.

    2016-10-01

    The recently commissioned edge deuterium charge exchange recombination (CER) spectroscopy diagnostic on DIII-D is providing direct measurements of the deuterium rotation, temperature, and density in H-mode pedestals. The deuterium temperature and temperature scale length can be 50 % lower than the carbon measurement in the gradient region of the pedestal, indicating that the ion pedestal pressure can deviate significantly from that inferred from carbon CER. In addition, deuterium exhibits a larger toroidal rotation in the co-Ip direction near the separatrix compared with the carbon. These differences are qualitatively consistent with theory-based models that identify thermal ion orbit loss across the separatrix as a source of intrinsic angular momentum. The first direct measurements of the deuterium density pedestal profile show an inward shift of the impurity pedestal compared with the main ions, validating neoclassical predictions from the XGC0 code. Work supported by the U.S. DOE under DE-FC02-04ER54698 and DE-AC02-09CH11466.

  12. Characterization of a deuterium-deuterium plasma fusion neutron generator

    NASA Astrophysics Data System (ADS)

    Lang, R. F.; Pienaar, J.; Hogenbirk, E.; Masson, D.; Nolte, R.; Zimbal, A.; Röttger, S.; Benabderrahmane, M. L.; Bruno, G.

    2018-01-01

    We characterize the neutron output of a deuterium-deuterium plasma fusion neutron generator, model 35-DD-W-S, manufactured by NSD/Gradel-Fusion. The measured energy spectrum is found to be dominated by neutron peaks at 2.2 MeV and 2.7 MeV. A detailed GEANT4 simulation accurately reproduces the measured energy spectrum and confirms our understanding of the fusion process in this generator. Additionally, a contribution of 14 . 1 MeV neutrons from deuterium-tritium fusion is found at a level of 3 . 5%, from tritium produced in previous deuterium-deuterium reactions. We have measured both the absolute neutron flux as well as its relative variation on the operational parameters of the generator. We find the flux to be proportional to voltage V 3 . 32 ± 0 . 14 and current I 0 . 97 ± 0 . 01. Further, we have measured the angular dependence of the neutron emission with respect to the polar angle. We conclude that it is well described by isotropic production of neutrons within the cathode field cage.

  13. Hydrogen molecules and hydrogen-related defects in crystalline silicon

    NASA Astrophysics Data System (ADS)

    Fukata, N.; Sasaki, S.; Murakami, K.; Ishioka, K.; Nakamura, K. G.; Kitajima, M.; Fujimura, S.; Kikuchi, J.; Haneda, H.

    1997-09-01

    We have found that hydrogen exists in molecular form in crystalline silicon treated with hydrogen atoms in the downstream of a hydrogen plasma. The vibrational Raman line of hydrogen molecules is observed at 4158 cm-1 for silicon samples hydrogenated between 180 and 500 °C. The assignment of the Raman line is confirmed by its isotope shift to 2990 cm-1 for silicon treated with deuterium atoms. The Raman intensity has a maximum for hydrogenation at 400 °C. The vibrational Raman line of the hydrogen molecules is broad and asymmetric. It consists of at least two components, possibly arising from hydrogen molecules in different occupation sites in crystalline silicon. The rotational Raman line of hydrogen molecules is observed at 590 cm-1. The Raman band of Si-H stretching is observed for hydrogenation temperatures between 100 and 500 °C and the intensity has a maximum for hydrogenation at 250 °C.

  14. Developpement d'un modele thermodynamique pour les cristallites de coke: Application aux systems carbone-hydrogene et carbone-soufre

    NASA Astrophysics Data System (ADS)

    Ouzilleau, Philippe

    cristallite size parameters La (diameter of the crystallite) and Lc (height of the crystallite). The use of the Compound Energy Formalism is necessary to establish the methodology of the present model. Globally, the planar structure of the crystallites is divided into three sublattices on which individual chemical species are assumed to mix randomly. Appropriate thermodynamic paths are used to define the relative enthalpies and absolute entropies of these chemical species. The relative enthalpy and absolute entropy of the coke crystallites are derived for various values of La in the carbon/hydrogen and carbon/sulfur chemical systems. For the carbon/hydrogen system, the model parameters are based on the known values for the entropy of formation of simple hydrogenous organic compounds in the gaseous phase and known carbon/hydrogen bond enthalpies. Also, additional enthalpic properties of coke crystallites and graphitic structures are required for the definition of the thermodynamic paths (for example, the enthalpy associated with the delocalization of one electron in graphitic structures). Results for the carbon/hydrogen system are compared to experiments concerning the dehydrogenation of various cokes. A very satisfying agreement is obtained between the dehydrogenation curves predictively calculated by the model and the reported experimental results (obtained using slow heating rates). Most of the hydrogen content of coke crystallites (this content does not inclue the hydrogen in the condensed volatile matter phase) is predicted to leave the crystalline structure for temperatures between 1100 and 1300 K. Also, experimental measurements of the Gibbs energy of coke relative to graphite are reported. These measurements were obtained using a solid state electrochemical technique. A stabiliy of approximately 900 J g-1, relative to graphite, is reported for temperatures between 950 and 1250 K and for a crystallite size La of ˜10 nm. This value is in excellent agreement with the

  15. Nanoconfinement in activated mesoporous carbon of calcium borohydride for improved reversible hydrogen storage.

    PubMed

    Comănescu, Cezar; Capurso, Giovanni; Maddalena, Amedeo

    2012-09-28

    Mesoporous carbon frameworks were synthesized using the soft-template method. Ca(BH(4))(2) was incorporated into activated mesoporous carbon by the incipient wetness method. The activation of mesoporous carbon was necessary to optimize the surface area and pore size. Thermal programmed absorption measurements showed that the confinement of this borohydride into carbon nanoscaffolds improved its reversible capacity (relative to the reactive portion) and performance of hydrogen storage compared to unsupported borohydride. Hydrogen release from the supported hydride started at a temperature as low as 100 °C and the dehydrogenation rate was fast compared to the bulk borohydride. In addition, the hydrogen pressure necessary to regenerate the borohydride from the dehydrogenation products was reduced.

  16. Allosteric Coupling of CARMIL and V-1 Binding to Capping Protein Revealed by Hydrogen-Deuterium Exchange.

    PubMed

    Johnson, Britney; McConnell, Patrick; Kozlov, Alex G; Mekel, Marlene; Lohman, Timothy M; Gross, Michael L; Amarasinghe, Gaya K; Cooper, John A

    2018-05-29

    Actin assembly is important for cell motility. The ability of actin subunits to join or leave filaments via the barbed end is critical to actin dynamics. Capping protein (CP) binds to barbed ends to prevent subunit gain and loss and is regulated by proteins that include V-1 and CARMIL. V-1 inhibits CP by sterically blocking one binding site for actin. CARMILs bind at a distal site and decrease the affinity of CP for actin, suggested to be caused by conformational changes. We used hydrogen-deuterium exchange with mass spectrometry (HDX-MS) to probe changes in structural dynamics induced by V-1 and CARMIL binding to CP. V-1 and CARMIL induce changes in both proteins' binding sites on the surface of CP, along with a set of internal residues. Both also affect the conformation of CP's ββ subunit "tentacle," a second distal actin-binding site. Concerted regulation of actin assembly by CP occurs through allosteric couplings between CP modulator and actin binding sites. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  17. Kinetic and Mechanistic Studies of the Deuterium Exchange in Classical Keto-Enol Tautomeric Equilibrium Reactions

    ERIC Educational Resources Information Center

    Nichols, Michael A.; Waner, Mark J.

    2010-01-01

    An extension of the classic keto-enol tautomerization of beta-dicarbonyl compounds into a kinetic analysis of deuterium exchange is presented. It is shown that acetylacetone and ethyl acetoacetate undergo nearly complete deuterium exchange of the alpha-methylene carbon when dissolved in methanol-d[subscript 4]. The extent of deuteration may be…

  18. KRAS G12C Drug Development: Discrimination between Switch II Pocket Configurations Using Hydrogen/Deuterium-Exchange Mass Spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Jia; Harrison, Rane A.; Li, Lianbo

    KRAS G12C, the most common RAS mutation found in non-small-cell lung cancer, has been the subject of multiple recent covalent small-molecule inhibitor campaigns including efforts directed at the guanine nucleotide pocket and separate work focused on an inducible pocket adjacent to the switch motifs. Multiple conformations of switch II have been observed, suggesting that switch II pocket (SIIP) binders may be capable of engaging a range of KRAS conformations. Here we report the use of hydrogen/deuterium-exchange mass spectrometry (HDX MS) to discriminate between conformations of switch II induced by two chemical classes of SIIP binders. We investigated the structural basismore » for differences in HDX MS using X-ray crystallography and discovered a new SIIP configuration in response to binding of a quinazoline chemotype. These results have implications for structure-guided drug design targeting the RAS SIIP.« less

  19. New Pathways and Metrics for Enhanced, Reversible Hydrogen Storage in Boron-Doped Carbon Nanospaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pfeifer, Peter; Wexler, Carlos; Hawthorne, M. Frederick

    This project, since its start in 2007—entitled “Networks of boron-doped carbon nanopores for low-pressure reversible hydrogen storage” (2007-10) and “New pathways and metrics for enhanced, reversible hydrogen storage in boron-doped carbon nanospaces” (2010-13)—is in support of the DOE's National Hydrogen Storage Project, as part of the DOE Hydrogen and Fuel Cells Program’s comprehensive efforts to enable the widespread commercialization of hydrogen and fuel cell technologies in diverse sectors of the economy. Hydrogen storage is widely recognized as a critical enabling technology for the successful commercialization and market acceptance of hydrogen powered vehicles. Storing sufficient hydrogen on board a wide rangemore » of vehicle platforms, at energy densities comparable to gasoline, without compromising passenger or cargo space, remains an outstanding technical challenge. Of the main three thrust areas in 2007—metal hydrides, chemical hydrogen storage, and sorption-based hydrogen storage—sorption-based storage, i.e., storage of molecular hydrogen by adsorption on high-surface-area materials (carbons, metal-organic frameworks, and other porous organic networks), has emerged as the most promising path toward achieving the 2017 DOE storage targets of 0.055 kg H2/kg system (“5.5 wt%”) and 0.040 kg H2/liter system. The objective of the project is to develop high-surface-area carbon materials that are boron-doped by incorporation of boron into the carbon lattice at the outset, i.e., during the synthesis of the material. The rationale for boron-doping is the prediction that boron atoms in carbon will raise the binding energy of hydro- gen from 4-5 kJ/mol on the undoped surface to 10-14 kJ/mol on a doped surface, and accordingly the hydro- gen storage capacity of the material. The mechanism for the increase in binding energy is electron donation from H2 to electron-deficient B atoms, in the form of sp2 boron-carbon bonds. Our team is proud to

  20. Carbon and hydrogen isotope fractionation during aerobic biodegradation of quinoline and 3-methylquinoline.

    PubMed

    Cui, Mingchao; Zhang, Wenbing; Fang, Jun; Liang, Qianqiong; Liu, Dongxuan

    2017-08-01

    Compound-specific isotope analysis has been used extensively to investigate the biodegradation of various organic pollutants. To date, little isotope fractionation information is available for the biodegradation of quinolinic compounds. In this study, we report on the carbon and hydrogen isotope fractionation during quinoline and 3-methylquinoline aerobic microbial degradation by a Comamonas sp. strain Q10. Degradation of quinoline and 3-methylquinoline was accompanied by isotope fractionation. Large hydrogen and small carbon isotope fractionation was observed for quinoline while minor carbon and hydrogen isotope fractionation effects occurred for 3-methylquinoline. Bulk carbon and hydrogen enrichment factors (ε bulk ) for quinoline biodegradation were -1.2 ± 0.1 and -38 ± 1‰, respectively, while -0.7 ± 0.1 and -5 ± 1‰ for 3-methylquinoline, respectively. This reveals a potential advantage for employing quinoline as the model compound and hydrogen isotope analysis for assessing aerobic biodegradation of quinolinic compounds. The apparent kinetic isotope effects (AKIE C ) values of carbon were 1.008 ± 0.0005 for quinoline and 1.0048 ± 0.0005 for 3-methylquinoline while AKIE H values of hydrogen of 1.264 ± 0.011 for quinoline and 1.0356 ± 0.0103 for 3-methylquinoline were obtained. The combined evaluation of carbon and hydrogen isotope fractionation yields Λ values (Λ = Δδ 2 H/Δδ 13 C ≈ εH bulk /εC bulk ) of 29 ± 2 for quinoline and 8 ± 2 for 3-methylquinoline. The results indicate that the substrate specificity may have a significant influence on the isotope fractionation for the biodegradation of quinolinic compounds. The substrate-specific isotope enrichment factors would be important for assessing the behavior and fate of quinolinic compounds in the environment.

  1. Deuterium retention and release behaviours of tungsten and deuterium co-deposited layers

    NASA Astrophysics Data System (ADS)

    Qiao, L.; Zhang, H. W.; Xu, J.; Chai, L. Q.; Hu, M.; Wang, P.

    2018-04-01

    Tungsten (W) layer deposited in argon and deuterium atmosphere by magnetron sputtering was used as a model system to study the deuterium (D) retention and release behavior in co-deposited W layer. After deposition several selected samples were exposed in deuterium plasma at 370 K with a flux of 4.0 × 1021 D/(m2 s) up to a fluence of 1.1 × 1025 D/m2. Structures of co-deposited W layers are investigated by field-emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD), and the corresponding D retention and release behaviors are studied as functions of deposition and exposure parameters using thermal desorption spectroscopy (TDS). Two main D release peaks were detected from TDS spectra located near 600 and 800 K in these W and D co-deposited layers, and total deuterium retention increased linearly as a function of W layer's thickness. After deuterium plasma exposure, the total D retention amount in W layer increases significantly and D release peak shifts to lower temperature. Clearly, despite the high density of defects expected in co-deposited W layers, the initial deuterium retention before exposure to the deuterium plasma is low even for the samples with a W&D layer. But due to the high densities of defects, during the deuterium plasma exposure the deuterium retention increases faster for co-deposited layer than for the bulk W sample.

  2. Maximising biohydrogen yields via continuous electrochemical hydrogen removal and carbon dioxide scrubbing.

    PubMed

    Massanet-Nicolau, Jaime; Jones, Rhys Jon; Guwy, Alan; Dinsdale, Richard; Premier, Giuliano; Mulder, Martijn J J

    2016-10-01

    The use of electrochemical hydrogen removal (EHR) together with carbon dioxide removal (CDR) was demonstrated for the first time using a continuous hydrogen producing fermenter. CDR alone was found to increase hydrogen yields from 0.07molH2molhexose to 0.72molH2molhexose. When CDR was combined with EHR, hydrogen yields increased further to 1.79molH2molhexose. The pattern of carbohydrate utilisation and volatile fatty acid (VFA) production are consistent with the hypothesis that increased yields are the result of relieving end product inhibition and inhibition of microbial hydrogen consumption. In situ removal of hydrogen and carbon dioxide as demonstrated here not only increase hydrogen yield but also produces a relatively pure product gas and unlike other approaches can be used to enhance conventional, mesophilic, CSTR type fermentation of low grade/high solids biomass. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  3. Determination of Backbone Amide Hydrogen Exchange Rates of Cytochrome c Using Partially Scrambled Electron Transfer Dissociation Data

    NASA Astrophysics Data System (ADS)

    Hamuro, Yoshitomo; E, Sook Yen

    2018-05-01

    The technological goal of hydrogen/deuterium exchange-mass spectrometry (HDX-MS) is to determine backbone amide hydrogen exchange rates. The most critical challenge to achieve this goal is obtaining the deuterium incorporation in single-amide resolution, and gas-phase fragmentation may provide a universal solution. The gas-phase fragmentation may generate the daughter ions which differ by a single amino acid and the difference in deuterium incorporations in the two analogous ions can yield the deuterium incorporation at the sub-localized site. Following the pioneering works by Jørgensen and Rand, several papers utilized the electron transfer dissociation (ETD) to determine the location of deuterium in single-amide resolution. This paper demonstrates further advancement of the strategy by determining backbone amide hydrogen exchange rates, instead of just determining deuterium incorporation at a single time point, in combination with a wide time window monitoring. A method to evaluate the effects of scrambling and to determine the exchange rates from partially scrambled HDX-ETD-MS data is described. All parent ions for ETD fragmentation were regio-selectively scrambled: The deuterium in some regions of a peptide ion was scrambled while that in the other regions was not scrambled. The method determined 31 backbone amide hydrogen exchange rates of cytochrome c in the non-scrambled regions. Good fragmentation of a parent ion, a low degree of scrambling, and a low number of exchangeable hydrogens in the preceding side chain are the important factors to determine the exchange rate. The exchange rates determined by the HDX-MS are in good agreement with those determined by NMR. [Figure not available: see fulltext.

  4. Determination of Backbone Amide Hydrogen Exchange Rates of Cytochrome c Using Partially Scrambled Electron Transfer Dissociation Data.

    PubMed

    Hamuro, Yoshitomo; E, Sook Yen

    2018-05-01

    The technological goal of hydrogen/deuterium exchange-mass spectrometry (HDX-MS) is to determine backbone amide hydrogen exchange rates. The most critical challenge to achieve this goal is obtaining the deuterium incorporation in single-amide resolution, and gas-phase fragmentation may provide a universal solution. The gas-phase fragmentation may generate the daughter ions which differ by a single amino acid and the difference in deuterium incorporations in the two analogous ions can yield the deuterium incorporation at the sub-localized site. Following the pioneering works by Jørgensen and Rand, several papers utilized the electron transfer dissociation (ETD) to determine the location of deuterium in single-amide resolution. This paper demonstrates further advancement of the strategy by determining backbone amide hydrogen exchange rates, instead of just determining deuterium incorporation at a single time point, in combination with a wide time window monitoring. A method to evaluate the effects of scrambling and to determine the exchange rates from partially scrambled HDX-ETD-MS data is described. All parent ions for ETD fragmentation were regio-selectively scrambled: The deuterium in some regions of a peptide ion was scrambled while that in the other regions was not scrambled. The method determined 31 backbone amide hydrogen exchange rates of cytochrome c in the non-scrambled regions. Good fragmentation of a parent ion, a low degree of scrambling, and a low number of exchangeable hydrogens in the preceding side chain are the important factors to determine the exchange rate. The exchange rates determined by the HDX-MS are in good agreement with those determined by NMR. Graphical Abstract ᅟ.

  5. Determination of Backbone Amide Hydrogen Exchange Rates of Cytochrome c Using Partially Scrambled Electron Transfer Dissociation Data

    NASA Astrophysics Data System (ADS)

    Hamuro, Yoshitomo; E, Sook Yen

    2018-03-01

    The technological goal of hydrogen/deuterium exchange-mass spectrometry (HDX-MS) is to determine backbone amide hydrogen exchange rates. The most critical challenge to achieve this goal is obtaining the deuterium incorporation in single-amide resolution, and gas-phase fragmentation may provide a universal solution. The gas-phase fragmentation may generate the daughter ions which differ by a single amino acid and the difference in deuterium incorporations in the two analogous ions can yield the deuterium incorporation at the sub-localized site. Following the pioneering works by Jørgensen and Rand, several papers utilized the electron transfer dissociation (ETD) to determine the location of deuterium in single-amide resolution. This paper demonstrates further advancement of the strategy by determining backbone amide hydrogen exchange rates, instead of just determining deuterium incorporation at a single time point, in combination with a wide time window monitoring. A method to evaluate the effects of scrambling and to determine the exchange rates from partially scrambled HDX-ETD-MS data is described. All parent ions for ETD fragmentation were regio-selectively scrambled: The deuterium in some regions of a peptide ion was scrambled while that in the other regions was not scrambled. The method determined 31 backbone amide hydrogen exchange rates of cytochrome c in the non-scrambled regions. Good fragmentation of a parent ion, a low degree of scrambling, and a low number of exchangeable hydrogens in the preceding side chain are the important factors to determine the exchange rate. The exchange rates determined by the HDX-MS are in good agreement with those determined by NMR. [Figure not available: see fulltext.

  6. Collision cascades enhanced hydrogen redistribution in cobalt implanted hydrogenated diamond-like carbon films

    NASA Astrophysics Data System (ADS)

    Gupta, P.; Becker, H.-W.; Williams, G. V. M.; Hübner, R.; Heinig, K.-H.; Markwitz, A.

    2017-03-01

    Hydrogenated diamond-like carbon films produced by C3H6 deposition at 5 kV and implanted at room temperature with 30 keV Co atoms to 12 at.% show not only a bimodal distribution of Co atoms but also a massive redistribution of hydrogen in the films. Resonant nuclear reaction analysis was used to measure the hydrogen depth profiles (15N-method). Depletion of hydrogen near the surface was measured to be as low as 7 at.% followed by hydrogen accumulation from 27 to 35 at.%. A model is proposed considering the thermal energy deposited by collision cascade for thermal insulators. In this model, sufficient energy is provided for dissociated hydrogen to diffuse out of the sample from the surface and diffuse into the sample towards the interface which is however limited by the range of the incoming Co ions. At a hydrogen concentration of ∼35 at.%, the concentration gradient of the mobile unbounded hydrogen atoms is neutralised effectively stopping diffusion towards the interface. The results point towards new routes of controlling the composition and distribution of elements at the nanoscale within a base matrix without using any heat treatment methods. Exploring these opportunities can lead to a new horizon of materials and device engineering needed for enabling advanced technologies and applications.

  7. Efficient Neutron Production from a Novel Configuration of Deuterium Gas-Puff Z-Pinch

    NASA Astrophysics Data System (ADS)

    Klir, D.; Kubes, P.; Rezac, K.; Cikhardt, J.; Kravarik, J.; Sila, O.; Shishlov, A. V.; Kovalchuk, B. M.; Ratakhin, N. A.; Kokshenev, V. A.; Labetsky, A. Yu.; Cherdizov, R. K.; Fursov, F. I.; Kurmaev, N. E.; Dudkin, G. N.; Nechaev, B. A.; Padalko, V. N.; Orcikova, H.; Turek, K.

    2014-03-01

    A novel configuration of a deuterium z pinch has been used to generate fusion neutrons. Injecting an outer hollow cylindrical plasma shell around an inner deuterium gas puff, neutron yields from DD reactions reached Yn=(2.9±0.3)×1012 at 700 ns implosion time and 2.7 MA current. Such a neutron yield means a tenfold increase in comparison with previous deuterium gas puff experiments at the same current generator. The increase of beam-target yields was obtained by a larger amount of current assembled on the z-pinch axis, and subsequently by higher induced voltage and higher energies of deuterons. A stack of CR-39 track detectors on the z-pinch axis showed hydrogen ions up to 38 MeV. Maximum neutron energies of 15 and 22 MeV were observed by radial and axial time-of-flight detectors, respectively. The number of DD neutrons per one joule of stored plasma energy approached 5×107. This implies that deuterium gas puff z pinches belong to the most efficient plasma-based sources of DD neutrons.

  8. An Overview of Natural Gas Conversion Technologies for Co-Production of Hydrogen and Value-Added Solid Carbon Products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dagle, Robert A.; Dagle, Vanessa; Bearden, Mark D.

    This report was prepared in response to the U.S. Department of Energy Fuel Cell Technologies Office Congressional Appropriation language to support research on carbon-free production of hydrogen using new chemical processes that utilize natural gas to produce solid carbon and hydrogen. The U.S. produces 9-10 million tons of hydrogen annually with more than 95% of the hydrogen produced by steam-methane reforming (SMR) of natural gas. SMR is attractive because of its high hydrogen yield; but it also converts the carbon to carbon dioxide. Non-oxidative thermal decomposition of methane to carbon and hydrogen is an alternative to SMR and produces COmore » 2-free hydrogen. The produced carbon can be sold as a co-product, thus providing economic credit that reduces the delivered net cost of hydrogen. The combination of producing hydrogen with potentially valuable carbon byproducts has market value in that this allows greater flexibility to match the market prices of hydrogen and carbon. That is, the higher value product can subsidize the other in pricing decisions. In this report we highlight the relevant technologies reported in the literature—primarily thermochemical and plasma conversion processes—and recent research progress and commercial activities. Longstanding technical challenges include the high energetic requirements (e.g., high temperatures and/or electricity requirements) necessary for methane activation and, for some catalytic processes, the separation of solid carbon product from the spent catalyst. We assess current and new carbon product markets that could be served given technological advances, and we discuss technical barriers and potential areas of research to address these needs. We provide preliminary economic analysis for these processes and compare to other emerging (e.g., electrolysis) and conventional (e.g., SMR) processes for hydrogen production. The overarching conclusion of this study is that the cost of hydrogen can be potentially

  9. Single crystal diamond detector measurements of deuterium-deuterium and deuterium-tritium neutrons in Joint European Torus fusion plasmas.

    PubMed

    Cazzaniga, C; Sundén, E Andersson; Binda, F; Croci, G; Ericsson, G; Giacomelli, L; Gorini, G; Griesmayer, E; Grosso, G; Kaveney, G; Nocente, M; Perelli Cippo, E; Rebai, M; Syme, B; Tardocchi, M

    2014-04-01

    First simultaneous measurements of deuterium-deuterium (DD) and deuterium-tritium neutrons from deuterium plasmas using a Single crystal Diamond Detector are presented in this paper. The measurements were performed at JET with a dedicated electronic chain that combined high count rate capabilities and high energy resolution. The deposited energy spectrum from DD neutrons was successfully reproduced by means of Monte Carlo calculations of the detector response function and simulations of neutron emission from the plasma, including background contributions. The reported results are of relevance for the development of compact neutron detectors with spectroscopy capabilities for installation in camera systems of present and future high power fusion experiments.

  10. Hydrogen and carbon nanotube production via catalytic decomposition of methane

    NASA Astrophysics Data System (ADS)

    Deniz, Cansu; Karatepe, Nilgün

    2013-09-01

    The future energy demand is expected to increase significantly due to an increasing world population and demands for higher standards of living and better air quality. Hydrogen is considered as an energy carrier because of its high conversion efficiency and low pollutant emissions. It can be produced from various sources and transformed into electricity and other energy forms with a low pollution. The catalytic decomposition of hydrocarbon has been seen as a really useful method for production of pure hydrogen and for the environmental concern. The objective of this study was to assess the impact of catalyst composition and processing parameters on COx-free hydrogen production and to produce an available solid form of co-product carbon as carbon nanotubes via catalytic decomposition of methane. The optimum experimental conditions for methane decomposition have been investigated. Fe, Co and Ni are used as catalysts (nano materials) over different substrates as SiO2 and MgO to produce hydrogen at optimum temperatures.

  11. Fractionation of carbon and hydrogen isotopes by methane-oxidizing bacteria

    USGS Publications Warehouse

    Coleman, D.D.; Risatti, J.B.; Schoell, M.

    1981-01-01

    Carbon isotopic analysis of methane has become a popular technique in the exploration for oil and gas because it can be used to differentiate between thermogenic and microbial gas and can sometimes be used for gas-source rock correlations. Methane-oxidizing bacteria, however, can significantly change the carbon isotopic composition of methane; the origin of gas that has been partially oxidized by these bacteria could therefore be misinterpreted. We cultured methane-oxidizing bacteria at two different temperatures and monitored the carbon and hydrogen isotopic compositions of the residual methane. The residual methane was enriched in both 13C and D. For both isotopic species, the enrichment at equivalent levels of conversion was greater at 26??C than at 11.5??C. The change in ??D relative to the change in ??13C was independent of temperature within the range studied. One culture exhibited a change in the fractionation pattern for carbon (but not for hydrogen) midway through the experiment, suggesting that bacterial oxidation of methane may occur via more than one pathway. The change in the ??D value for the residual methane was from 8 to 14 times greater than the change in the ??13C value, indicating that combined carbon and hydrogen isotopic analysis may be an effective way of identifying methane which has been subjected to partial oxidation by bacteria. ?? 1981.

  12. The impact of carbon-13 and deuterium on relative quantification of proteins using stable isotope diethyl labeling.

    PubMed

    Koehler, Christian J; Arntzen, Magnus Ø; Thiede, Bernd

    2015-05-15

    Stable isotopic labeling techniques are useful for quantitative proteomics. A cost-effective and convenient method for diethylation by reductive amination was established. The impact using either carbon-13 or deuterium on quantification accuracy and precision was investigated using diethylation. We established an effective approach for stable isotope labeling by diethylation of amino groups of peptides. The approach was validated using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) and nanospray liquid chromatography/electrospray ionization (nanoLC/ESI)-ion trap/orbitrap for mass spectrometric analysis as well as MaxQuant for quantitative data analysis. Reaction conditions with low reagent costs, high yields and minor side reactions were established for diethylation. Furthermore, we showed that diethylation can be applied to up to sixplex labeling. For duplex experiments, we compared diethylation in the analysis of the proteome of HeLa cells using acetaldehyde-(13) C(2)/(12) C(2) and acetaldehyde-(2) H(4)/(1) H(4). Equal numbers of proteins could be identified and quantified; however, (13) C(4)/(12) C(4) -diethylation revealed a lower variance of quantitative peptide ratios within proteins resulting in a higher precision of quantified proteins and less falsely regulated proteins. The results were compared with dimethylation showing minor effects because of the lower number of deuteriums. The described approach for diethylation of primary amines is a cost-effective and accurate method for up to sixplex relative quantification of proteomes. (13) C(4)/(12) C(4) -diethylation enables duplex quantification based on chemical labeling without using deuterium which reduces identification of false-negatives and increases the quality of the quantification results. Copyright © 2015 John Wiley & Sons, Ltd.

  13. Molecular Identification of the Deuterium-Rich Carrier in Insoluble Organic Matter in Carbonaceous Chondrites

    NASA Astrophysics Data System (ADS)

    Remusat, L.; Robert, F.; Meibom, A.; Mostefaoui, S.; Delpoux, O.; Binet, L.; Gourier, D.; Derenne, S.

    2007-12-01

    Insoluble organic matter (IOM) in primitive carbonaceous chondrites is known to be enriched in deuterium, with D/H ratios > 300×10 -6. It is also characterized by a high degree of isotopic heterogeneity, as demonstrated by the observation of D-rich "hot spots" in NanoSIMS ion microprobe images [1] and by GC-irMS studies [2]. Understanding the origin of this heterogeneity represents a fundamental challenge with implications for the origin and distribution of organics in the interstellar medium and in the protoplanetary disk from which our planetary system formed. We have determined the carrier of the isotopically anomalous hydrogen in IOM isolated from the carbonaceous chondrite Orgueil. Electron Paramagnetic Resonance spectroscopy has shown that hydrogen in the benzylic bond of organic radicals has a deuterium to hydrogen (D/H) ratio of 1.5±0.5×10-2 in Orgueil IOM, which is the highest solar system D/H ratio ever reported [3]. By combining these data with quantitative image analysis recorded at a high spatial resolution with the NanoSIMS, we are able to prove that the organic radicals can account for the deuterium excess in the IOM D-rich "hot spots". Furthermore, the radicals fall on a well-defined trend between D/H ratio and C-H bond energy [2], consistent with a new interpretation of the hydrogen isotopic variations in solar system organics according to which pre-existing organics exchange their D with highly deuterated gaseous molecules, such as H2D+ or HD2+. The distributions of these deuterated species has been theoritically mapped in protostellar disks [4]. This conclusion runs contrary to previous interpretations, according to which the IOM is an interstellar product reprocessed in the protosolar gas and deuterium-rich "hot spot" relics of pristine interstellar organic matter, which escaped solar nebula or parent body processes. [1] Busemann et al (2006) Science 312, 727-730; [2] Remusat L. et al. (2006) Earth Planet. Sci. Let. 243, 15-25 ; [3] Delpoux O

  14. Homogeneous Reduction of Carbon Dioxide with Hydrogen.

    PubMed

    Dong, Kaiwu; Razzaq, Rauf; Hu, Yuya; Ding, Kuiling

    2017-04-01

    Carbon dioxide (CO 2 ), a key greenhouse gas produced from both anthropogenic and natural sources, has been recently considered to be an important C1 building-block for the synthesis of many industrial fuels and chemicals. Catalytic hydrogenation of CO 2 using a homogeneous system is regarded as an efficient process for CO 2 valorization. This approach leads to the direct products including formic acid (HCOOH), carbon monoxide (CO), methanol (MeOH), and methane (CH 4 ). The hydrogenation of CO 2 to CO followed by alkene carbonylation provides value-added compounds, which also avoids the tedious separation and transportation of toxic CO. Moreover, the reduction of CO 2 with H 2 in the presence of amines is of significance to attain fine chemicals through catalytic formylation and methylation reactions. The synthesis of higher alcohols and dialkoxymethane from CO 2 and H 2 has been demonstrated recently, which opens access to new molecular structures using CO 2 as an important C1 source.

  15. Electron spin resonance of an irradiated single crystal of potassium hydrogen maleate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iwasaki, Machio; Itoh, Koichi

    1963-09-15

    Electron spin resonance absorptions of x-irradiated single crystals of potassium hydrogen maleate and potassium deuterium maleate were observed. Both compounds gave the same hyperfine structures, although the slightly sharper line widths were observed for the deuterium exchanged compound.

  16. Water electrolysis with a conducting carbon cloth: subthreshold hydrogen generation and superthreshold carbon quantum dot formation.

    PubMed

    Biswal, Mandakini; Deshpande, Aparna; Kelkar, Sarika; Ogale, Satishchandra

    2014-03-01

    A conducting carbon cloth, which has an interesting turbostratic microstructure and functional groups that are distinctly different from other ordered forms of carbon, such as graphite, graphene, and carbon nanotubes, was synthesized by a simple one-step pyrolysis of cellulose fabric. This turbostratic disorder and surface chemical functionalities had interesting consequences for water splitting and hydrogen generation when such a cloth was used as an electrode in the alkaline electrolysis process. Importantly, this work also gives a new twist to carbon-assisted electrolysis. During electrolysis, the active sites in the carbon cloth allow slow oxidation of its surface to transform the surface groups from COH to COOH and so forth at a voltage as low as 0.2 V in a two-electrode system, along with platinum as the cathode, instead of 1.23 V (plus overpotential), which is required for platinum, steel, or even graphite anodes. The quantity of subthreshold hydrogen evolved was 24 mL cm(-2)  h(-1) at 1 V. Interestingly, at a superthreshold potential (>1.23 V+overpotential), another remarkable phenomenon was found. At such voltages, along with the high rate and quantity of hydrogen evolution, rapid exfoliation of the tiny nanoscale (5-7 nm) units of carbon quantum dots (CQDs) are found in copious amounts due to an enhanced oxidation rate. These CQDs show bright-blue fluorescence under UV light. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Effective Application of Bicelles for Conformational Analysis of G Protein-Coupled Receptors by Hydrogen/Deuterium Exchange Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Duc, Nguyen Minh; Du, Yang; Thorsen, Thor S.; Lee, Su Youn; Zhang, Cheng; Kato, Hideaki; Kobilka, Brian K.; Chung, Ka Young

    2015-05-01

    G protein-coupled receptors (GPCRs) have important roles in physiology and pathology, and 40% of drugs currently on the market target GPCRs for the treatment of various diseases. Because of their therapeutic importance, the structural mechanism of GPCR signaling is of great interest in the field of drug discovery. Hydrogen/deuterium exchange mass spectrometry (HDX-MS) is a useful tool for analyzing ligand binding sites, the protein-protein interaction interface, and conformational changes of proteins. However, its application to GPCRs has been limited for various reasons, including the hydrophobic nature of GPCRs and the use of detergents in their preparation. In the present study, we tested the application of bicelles as a means of solubilizing GPCRs for HDX-MS studies. GPCRs (e.g., β2-adrenergic receptor [β2AR], μ-opioid receptor, and protease-activated receptor 1) solubilized in bicelles produced better sequence coverage (greater than 90%) than GPCRs solubilized in n-dodecyl-β-D-maltopyranoside (DDM), suggesting that bicelles are a more effective method of solubilization for HDX-MS studies. The HDX-MS profile of β2AR in bicelles showed that transmembrane domains (TMs) undergo lower deuterium uptake than intracellular or extracellular regions, which is consistent with the fact that the TMs are highly ordered and embedded in bicelles. The overall HDX-MS profiles of β2AR solubilized in bicelles and in DDM were similar except for intracellular loop 3. Interestingly, we detected EX1 kinetics, an important phenomenon in protein dynamics, at the C-terminus of TM6 in β2AR. In conclusion, we suggest the application of bicelles as a useful method for solubilizing GPCRs for conformational analysis by HDX-MS.

  18. [Determination of deuterium concentration in foods and influence of water with modified isotopic composition on oxidation parameters and heavy hydrogen isotopes content in experimental animals].

    PubMed

    Basov, A A; Bykov, I M; Baryshev, M G; Dzhimak, S S; Bykov, M I

    2014-01-01

    The article presents the results of the study of the deuterium (D) content in food products as well as the influence of deuterium depleted water (DDW) on the concentration of heavy hydrogen isotopes in the blood and lyophilized tissues of rats. The most significant difference in the content of D was found between potato and pork fat, which indexes the standard delta notation (δ) D in promille, related to the international standard SMOW (Standard Mean Ocean of Water) amounted to -83,2 per thousand and -250,7 per thousand, respectively (p<0,05). Among the investigated samples of water deuterium concentration ranged from -75,5 per thousand (Narzan) to +72,1 per thousand (Kubai), that indicates the ability of some food products to increase the concentration of heavy hydrogen atoms in the body. The data obtained in the experimental modeling of the diet of male Wistar rats in the age of 5-6 mo (weight 235 ± 16 g) using DDW (δD = -743,2 per thousand) instead of drinking water (δD = -37,0 per thousand) with identical mineral composition showed that after 2 weeks significant (p <0,05) formation of isotopic (deuterium-protium, D/H) gradient in the body is possible. Changing the direction of isotopic D/H gradient in laboratory animals in comparison with its physiological indicators (72-127 per thousand, "plasma>tissue") is due to different rates ofisotopic exchange reactions in plasma and tissues (liver, kidney, heart), which can be explained by entering into the composition of a modified diet of organic substrates with more than DDW concentration D, which are involved in the construction of cellular structures and eventually lead to a redistribution of D and change direction of D/H gradient "plasma

  19. Patterns of structural dynamics in RACK1 protein retained throughout evolution: A hydrogen-deuterium exchange study of three orthologs

    PubMed Central

    Tarnowski, Krzysztof; Fituch, Kinga; Szczepanowski, Roman H; Dadlez, Michal; Kaus-Drobek, Magdalena

    2014-01-01

    RACK1 is a member of the WD repeat family of proteins and is involved in multiple fundamental cellular processes. An intriguing feature of RACK1 is its ability to interact with at least 80 different protein partners. Thus, the structural features enabling such interactomic flexibility are of great interest. Several previous studies of the crystal structures of RACK1 orthologs described its detailed architecture and confirmed predictions that RACK1 adopts a seven-bladed β-propeller fold. However, this did not explain its ability to bind to multiple partners. We performed hydrogen-deuterium (H-D) exchange mass spectrometry on three orthologs of RACK1 (human, yeast, and plant) to obtain insights into the dynamic properties of RACK1 in solution. All three variants retained similar patterns of deuterium uptake, with some pronounced differences that can be attributed to RACK1's divergent biological functions. In all cases, the most rigid structural elements were confined to B-C turns and, to some extent, strands B and C, while the remaining regions retained much flexibility. We also compared the average rate constants for H-D exchange in different regions of RACK1 and found that amide protons in some regions exchanged at least 1000-fold faster than in others. We conclude that its evolutionarily retained structural architecture might have allowed RACK1 to accommodate multiple molecular partners. This was exemplified by our additional analysis of yeast RACK1 dimer, which showed stabilization, as well as destabilization, of several interface regions upon dimer formation. PMID:24591271

  20. Predicting protein aggregation during storage in lyophilized solids using solid state amide hydrogen/deuterium exchange with mass spectrometric analysis (ssHDX-MS).

    PubMed

    Moorthy, Balakrishnan S; Schultz, Steven G; Kim, Sherry G; Topp, Elizabeth M

    2014-06-02

    Solid state amide hydrogen/deuterium exchange with mass spectrometric analysis (ssHDX-MS) was used to assess the conformation of myoglobin (Mb) in lyophilized formulations, and the results correlated with the extent of aggregation during storage. Mb was colyophilized with sucrose (1:1 or 1:8 w/w), mannitol (1:1 w/w), or NaCl (1:1 w/w) or in the absence of excipients. Immediately after lyophilization, samples of each formulation were analyzed by ssHDX-MS and Fourier transform infrared spectroscopy (FTIR) to assess Mb conformation, and by dynamic light scattering (DLS) and size exclusion chromatography (SEC) to determine the extent of aggregation. The remaining samples were then placed on stability at 25 °C and 60% RH or 40 °C and 75% RH for up to 1 year, withdrawn at intervals, and analyzed for aggregate content by SEC and DLS. In ssHDX-MS of samples immediately after lyophilization (t = 0), Mb was less deuterated in solids containing sucrose (1:1 and 1:8 w/w) than in those containing mannitol (1:1 w/w), NaCl (1:1 w/w), or Mb alone. Deuterium uptake kinetics and peptide mass envelopes also indicated greater Mb structural perturbation in mannitol, NaCl, or Mb-alone samples at t = 0. The extent of deuterium incorporation and kinetic parameters related to rapidly and slowly exchanging amide pools (Nfast, Nslow), measured at t = 0, were highly correlated with the extent of aggregation on storage as measured by SEC. In contrast, the extent of aggregation was weakly correlated with FTIR band intensity and peak position measured at t = 0. The results support the use of ssHDX-MS as a formulation screening tool in developing lyophilized protein drug products.

  1. Predicting Protein Aggregation during Storage in Lyophilized Solids Using Solid State Amide Hydrogen/Deuterium Exchange with Mass Spectrometric Analysis (ssHDX-MS)

    PubMed Central

    2015-01-01

    Solid state amide hydrogen/deuterium exchange with mass spectrometric analysis (ssHDX-MS) was used to assess the conformation of myoglobin (Mb) in lyophilized formulations, and the results correlated with the extent of aggregation during storage. Mb was colyophilized with sucrose (1:1 or 1:8 w/w), mannitol (1:1 w/w), or NaCl (1:1 w/w) or in the absence of excipients. Immediately after lyophilization, samples of each formulation were analyzed by ssHDX-MS and Fourier transform infrared spectroscopy (FTIR) to assess Mb conformation, and by dynamic light scattering (DLS) and size exclusion chromatography (SEC) to determine the extent of aggregation. The remaining samples were then placed on stability at 25 °C and 60% RH or 40 °C and 75% RH for up to 1 year, withdrawn at intervals, and analyzed for aggregate content by SEC and DLS. In ssHDX-MS of samples immediately after lyophilization (t = 0), Mb was less deuterated in solids containing sucrose (1:1 and 1:8 w/w) than in those containing mannitol (1:1 w/w), NaCl (1:1 w/w), or Mb alone. Deuterium uptake kinetics and peptide mass envelopes also indicated greater Mb structural perturbation in mannitol, NaCl, or Mb-alone samples at t = 0. The extent of deuterium incorporation and kinetic parameters related to rapidly and slowly exchanging amide pools (Nfast, Nslow), measured at t = 0, were highly correlated with the extent of aggregation on storage as measured by SEC. In contrast, the extent of aggregation was weakly correlated with FTIR band intensity and peak position measured at t = 0. The results support the use of ssHDX-MS as a formulation screening tool in developing lyophilized protein drug products. PMID:24816133

  2. Electron Localization States in Asymmetric Shape Carbon Nanotubes Caused by Hydrogen Adsorption

    NASA Astrophysics Data System (ADS)

    Pan, L. J.; Chen, W. G.

    2017-12-01

    In this paper, we presented pseudopotential-based density functional theory studies on energy, structure, energy band structure of hydrogenated single-walled carbon nanotube. The stability of the configuration mainly depends on hydrogen coverage. According to the adsorption energies, the stability deteriorates with the increase of the hydrogen adsorption. The cross section of configurations become various shapes such as “beetle” or “lip” appearance without the balanced effects of hydrogen atoms. We also explored the energy band structures of configurations in three typical adsorption patterns, showing that the disparate trends of energy band gap as the hydrogen atoms concentrate. For C32H24, the band gap may reach the large value of 2.79 eV for the adsorption pattern A configuration and reduce to be zero for the adsorption pattern C case, the values of band gap for pattern A configurations decrease, which is opposite of the pattern B configurations as the adsorption hydrogen becomes more disperse. It is deduced that the hydrogen adsorption has significant effect on the electrical properties of the carbon nanotube.

  3. Catalytic Metal Free Production of Large Cage Structure Carbon Particles: A Candidate for Hydrogen Storage

    NASA Technical Reports Server (NTRS)

    Kimura, Yuki; Nuth, Joseph A., III; Ferguson, Frank T.

    2005-01-01

    We will demonstrate that carbon particles consisting of large cages can be produced without catalytic metal. The carbon particles were produced in CO gas as well as by introduction of 5% methane gas into the CO gas. The gas-produced carbon particles were able to absorb approximately 16.2 wt% of hydrogen. This value is 2.5 times higher than the 6.5 wt% goal for the vehicular hydrogen storage proposed by the Department of Energy in the USA. Therefore, we believe that this carbon particle is an excellent candidate for hydrogen storage for fuel cells.

  4. Closed system Fischer-Tropsch synthesis over meteoritic iron, iron ore and nickel-iron alloy. [deuterium-carbon monoxide reaction catalysis

    NASA Technical Reports Server (NTRS)

    Nooner, D. W.; Gibert, J. M.; Gelpi, E.; Oro, J.

    1976-01-01

    Experiments were performed in which meteoritic iron, iron ore and nickel-iron alloy were used to catalyze (in Fischer-Tropsch synthesis) the reaction of deuterium and carbon monoxide in a closed vessel. Normal alkanes and alkenes and their monomethyl substituted isomers and aromatic hydrocarbons were synthesized. Iron oxide and oxidized-reduced Canyon Diablo used as Fischer-Tropsch catalysts were found to produce aromatic hydrocarbons in distributions having many of the features of those observed in carbonaceous chondrites, but only at temperatures and reaction times well above 300 C and 6-8 h.

  5. Oligonucleotide gas-phase hydrogen/deuterium exchange with D2S in the collision cell of a quadrupole-Fourier transform ion cyclotron resonance mass spectrometer.

    PubMed

    Mo, Jingjie; Håkansson, Kristina

    2007-10-15

    We have implemented gas-phase hydrogen/deuterium exchange (HDX) experiments in the external collision cell of a hybrid quadrupole-Fourier transform ion cyclotron resonance mass spectrometer. In this configuration, multiply charged oligonucleotide anions undergo significant exchange with D(2)S at reaction intervals ranging from 0.11 to 60.1 s. For DNA homohexamers, relative exchange rates were dC(6) approximately dA(6) > dG(6) > dT(6), correlating with the gas-phase acidities of nucleobases (C > A > T > G), except for guanine. Our results are consistent with a relay mechanism in which D(2)S interacts with both a backbone phosphate group and a neutral nucleobase through hydrogen bonding. We propose that the faster exchange of polyguanosine compared to polythymidine is due to the larger size of guanine and the orientation of its labile hydrogens, which may result in gas-phase conformations more favorable for forming complexes with D(2)S. Similar trends were observed for RNA homohexamers, although their HDX rates were faster than for DNA, suggesting they can also exchange via another relay process involving the 2'-hydroxyl group. HDX of DNA duplexes further supports the involvement of nucleobase hydrogens because duplexes exchanged slower than their corresponding single strands, presumably due to the intermolecular hydrogen bonds between nucleobases. This work constitutes the first investigation of the mechanisms of oligonucleotide gas-phase HDX. Our results on duplexes show promise for application of this strategy to the characterization of structured nucleic acids.

  6. Molecular dynamics simulations of hydrogen bombardment of tungsten carbide surfaces

    NASA Astrophysics Data System (ADS)

    Träskelin, P.; Juslin, N.; Erhart, P.; Nordlund, K.

    2007-05-01

    The interaction between energetic hydrogen and tungsten carbide (WC) is of interest both due to the use of hydrogen-containing plasmas in thin-film manufacturing and due to the presence of WC in the divertor of fusion reactors. In order to study this interaction, we have carried out molecular dynamics simulations of the low-energy bombardment of deuterium impinging onto crystalline as well as amorphous WC surfaces. We find that prolonged bombardment leads to the formation of an amorphous WC surface layer, regardless of the initial structure of the WC sample. Loosely bound hydrocarbons, which can erode by swift chemical sputtering, are formed at the surface. Carbon-terminated surfaces show larger sputtering yields than tungsten-terminated surfaces. In both cumulative and noncumulative simulations, C is seen to sputter preferentially. Implications for mixed material erosion in ITER are discussed.

  7. Cloning single wall carbon nanotubes for hydrogen storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tour, James M; Kittrell, Carter

    2012-08-30

    The purpose of this research is to development the technology required for producing 3-D nano-engineered frameworks for hydrogen storage based on sp 2 carbon media, which will have high gravimetric and especially high volumetric uptake of hydrogen, and in an aligned fibrous array that will take advantage of the exceptionally high thermal conductivity of sp 2 carbon materials to speed up the fueling process while minimizing or eliminating the need for internal cooling systems. A limitation for nearly all storage media using physisorption of the hydrogen molecule is the large amount of surface area (SA) occupied by each H 2more » molecule due to its large zero-point vibrational energy. This creates a conundrum that in order to maximize SA, the physisorption media is made more tenuous and the density is decreased, usually well below 1 kg/L, so that there comes a tradeoff between volumetric and gravimetric uptake. Our major goal was to develop a new type of media with high density H 2 uptake, which favors volumetric storage and which, in turn, has the capability to meet the ultimate DoE H 2 goals.« less

  8. Infrared emission from hydrogenated amorphous carbon and amorphous carbon grains in the interstellar medium

    NASA Technical Reports Server (NTRS)

    Duley, W. W.; Jones, A. P.; Taylor, S. D.; Williams, D. A.

    1993-01-01

    The correlations deduced by Boulanger et al. (1990) from IRAS maps of the Chamaeleon, Taurus and Ursa Major molecular cloud complexes are interpreted in terms of the evolutionary hydrogenated amorphous carbon model of interstellar dust. In particular, regions of relatively strong 12-micron emission may be regions where recently accreted carbon is being converted by ambient UV to small PAHs in situ. Regions of weak 12-micron emission are probably quiescent regions where carbon has been annealed to amorphous carbon. Observational consequences of these inferences are briefly described.

  9. Qualitative and quantitative analysis of mixtures of compounds containing both hydrogen and deuterium

    NASA Technical Reports Server (NTRS)

    Crespi, H. L.; Harkness, L.; Katz, J. J.; Norman, G.; Saur, W.

    1969-01-01

    Method allows qualitative and quantitative analysis of mixtures of partially deuterated compounds. Nuclear magnetic resonance spectroscopy determines location and amount of deuterium in organic compounds but not fully deuterated compounds. Mass spectroscopy can detect fully deuterated species but not the location.

  10. Application of a New Ensemble Conserving Quantum Dynamics Simulation Algorithm to Liquid para-Hydrogen and ortho-Deuterium

    DOE PAGES

    Smith, Kyle K.G.; Poulsen, Jens Aage; Nyman, Gunnar; ...

    2015-06-30

    Here, we apply the Feynman-Kleinert Quasi-Classical Wigner (FK-QCW) method developed in our previous work [Smith et al., J. Chem. Phys. 142, 244112 (2015)] for the determination of the dynamic structure factor of liquid para-hydrogen and ortho-deuterium at state points of (T = 20.0 K, n = 21.24 nm -3) and (T = 23.0 K, n = 24.61 nm -3), respectively. When applied to this challenging system, it is shown that this new FK-QCW method consistently reproduces the experimental dynamic structure factor reported by Smith et al. [J. Chem. Phys. 140, 034501 (2014)] for all momentum transfers considered. Moreover, this showsmore » that FK-QCW provides a substantial improvement over the Feynman-Kleinert linearized path-integral method, in which purely classical dynamics are used. Furthermore, for small momentum transfers, it is shown that FK-QCW provides nearly the same results as ring-polymer molecular dynamics (RPMD), thus suggesting that FK-QCW provides a potentially more appealing algorithm than RPMD since it is not formally limited to correlation functions involving linear operators.« less

  11. Application of a new ensemble conserving quantum dynamics simulation algorithm to liquid para-hydrogen and ortho-deuterium.

    PubMed

    Smith, Kyle K G; Poulsen, Jens Aage; Nyman, Gunnar; Cunsolo, Alessandro; Rossky, Peter J

    2015-06-28

    We apply the Feynman-Kleinert Quasi-Classical Wigner (FK-QCW) method developed in our previous work [Smith et al., J. Chem. Phys. 142, 244112 (2015)] for the determination of the dynamic structure factor of liquid para-hydrogen and ortho-deuterium at state points of (T = 20.0 K, n = 21.24 nm(-3)) and (T = 23.0 K, n = 24.61 nm(-3)), respectively. When applied to this challenging system, it is shown that this new FK-QCW method consistently reproduces the experimental dynamic structure factor reported by Smith et al. [J. Chem. Phys. 140, 034501 (2014)] for all momentum transfers considered. This shows that FK-QCW provides a substantial improvement over the Feynman-Kleinert linearized path-integral method, in which purely classical dynamics are used. Furthermore, for small momentum transfers, it is shown that FK-QCW provides nearly the same results as ring-polymer molecular dynamics (RPMD), thus suggesting that FK-QCW provides a potentially more appealing algorithm than RPMD since it is not formally limited to correlation functions involving linear operators.

  12. Application of a New Ensemble Conserving Quantum Dynamics Simulation Algorithm to Liquid para-Hydrogen and ortho-Deuterium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Kyle K.G.; Poulsen, Jens Aage; Nyman, Gunnar

    Here, we apply the Feynman-Kleinert Quasi-Classical Wigner (FK-QCW) method developed in our previous work [Smith et al., J. Chem. Phys. 142, 244112 (2015)] for the determination of the dynamic structure factor of liquid para-hydrogen and ortho-deuterium at state points of (T = 20.0 K, n = 21.24 nm -3) and (T = 23.0 K, n = 24.61 nm -3), respectively. When applied to this challenging system, it is shown that this new FK-QCW method consistently reproduces the experimental dynamic structure factor reported by Smith et al. [J. Chem. Phys. 140, 034501 (2014)] for all momentum transfers considered. Moreover, this showsmore » that FK-QCW provides a substantial improvement over the Feynman-Kleinert linearized path-integral method, in which purely classical dynamics are used. Furthermore, for small momentum transfers, it is shown that FK-QCW provides nearly the same results as ring-polymer molecular dynamics (RPMD), thus suggesting that FK-QCW provides a potentially more appealing algorithm than RPMD since it is not formally limited to correlation functions involving linear operators.« less

  13. Application of a new ensemble conserving quantum dynamics simulation algorithm to liquid para-hydrogen and ortho-deuterium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Kyle K. G., E-mail: kylesmith@utexas.edu; Poulsen, Jens Aage, E-mail: jens72@chem.gu.se; Nyman, Gunnar, E-mail: nyman@chem.gu.se

    We apply the Feynman-Kleinert Quasi-Classical Wigner (FK-QCW) method developed in our previous work [Smith et al., J. Chem. Phys. 142, 244112 (2015)] for the determination of the dynamic structure factor of liquid para-hydrogen and ortho-deuterium at state points of (T = 20.0 K, n = 21.24 nm{sup −3}) and (T = 23.0 K, n = 24.61 nm{sup −3}), respectively. When applied to this challenging system, it is shown that this new FK-QCW method consistently reproduces the experimental dynamic structure factor reported by Smith et al. [J. Chem. Phys. 140, 034501 (2014)] for all momentum transfers considered. This shows that FK-QCWmore » provides a substantial improvement over the Feynman-Kleinert linearized path-integral method, in which purely classical dynamics are used. Furthermore, for small momentum transfers, it is shown that FK-QCW provides nearly the same results as ring-polymer molecular dynamics (RPMD), thus suggesting that FK-QCW provides a potentially more appealing algorithm than RPMD since it is not formally limited to correlation functions involving linear operators.« less

  14. Chemical shift and electric field gradient tensors for the amide and carboxyl hydrogens in the model peptide N-acetyl-D,L-valine. Single-crystal deuterium NMR study.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerald, R. E., II; Bernhard, T.; Haeberlen, U.

    1993-01-01

    Solid-state NMR spectroscopy is well established as a method for describing molecular structure with resolution on the atomic scale. Many of the NMR observables result from anisotropic interactions between the nuclear spin and its environment. These observables can be described by second-rank tensors. For example, the eigenvalues of the traceless symmetric part of the hydrogen chemical shift (CS) tensor provide information about the strength of inter- or intramolecular hydrogen bonding. On the other hand, the eigenvectors of the deuterium electric field gradient (EFG) tensor give deuteron/proton bond directions with an accuracy rivalled only by neutron diffraction. In this paper themore » authors report structural information of this type for the amide and carboxyl hydrogen sites in a single crystal of the model peptide N-acetyl-D,L-valine (NAV). They use deuterium NMR to infer both the EFG and CS tensors at the amide and carboxyl hydrogen sites in NAV. Advantages of this technique over multiple-pulse proton NMR are that it works in the presence of {sup 14}N spins which are very hard to decouple from protons and that additional information in form of the EFG tensors can be derived. The change in the CS and EFG tensors upon exchange of a deuteron for a proton (the isotope effect) is anticipated to be very small; the effect on the CS tensors is certainly smaller than the experimental errors. NAV has served as a model peptide before in a variety of NMR studies, including those concerned with developing solid-state NMR spectroscopy as a method for determining the structure of proteins. NMR experiments on peptide or protein samples which are oriented in at least one dimension can provide important information about the three-dimensional structure of the peptide or the protein. In order to interpret the NMR data in terms of the structure of the polypeptide, the relationship of the CS and EFG tensors to the local symmetry elements of an amino acide, e.g., the peptide

  15. Catalytic conversion of hydrocarbons to hydrogen and high-value carbon

    DOEpatents

    Shah, Naresh; Panjala, Devadas; Huffman, Gerald P.

    2005-04-05

    The present invention provides novel catalysts for accomplishing catalytic decomposition of undiluted light hydrocarbons to a hydrogen product, and methods for preparing such catalysts. In one aspect, a method is provided for preparing a catalyst by admixing an aqueous solution of an iron salt, at least one additional catalyst metal salt, and a suitable oxide substrate support, and precipitating metal oxyhydroxides onto the substrate support. An incipient wetness method, comprising addition of aqueous solutions of metal salts to a dry oxide substrate support, extruding the resulting paste to pellet form, and calcining the pellets in air is also discloses. In yet another aspect, a process is provided for producing hydrogen from an undiluted light hydrocarbon reactant, comprising contacting the hydrocarbon reactant with a catalyst as described above in a reactor, and recovering a substantially carbon monoxide-free hydrogen product stream. In still yet another aspect, a process is provided for catalytic decomposition of an undiluted light hydrocarbon reactant to obtain hydrogen and a valuable multi-walled carbon nanotube coproduct.

  16. Influence of displacement damage on deuterium and helium retention in austenitic and ferritic-martensitic alloys considered for ADS service

    NASA Astrophysics Data System (ADS)

    Voyevodin, V. N.; Karpov, S. A.; Kopanets, I. E.; Ruzhytskyi, V. V.; Tolstolutskaya, G. D.; Garner, F. A.

    2016-01-01

    The behavior of ion-implanted hydrogen (deuterium) and helium in austenitic 18Cr10NiTi stainless steel, EI-852 ferritic steel and ferritic/martensitic steel EP-450 and their interaction with displacement damage were investigated. Energetic argon irradiation was used to produce displacement damage and bubble formation to simulate nuclear power environments. The influence of damage morphology and the features of radiation-induced defects on deuterium and helium trapping in structural alloys was studied using ion implantation, the nuclear reaction D(3He,p)4He, thermal desorption spectrometry and transmission electron microscopy. It was found in the case of helium irradiation that various kinds of helium-radiation defect complexes are formed in the implanted layer that lead to a more complicated spectra of thermal desorption. Additional small changes in the helium spectra after irradiation with argon ions to a dose of ≤25 dpa show that the binding energy of helium with these traps is weakly dependent on the displacement damage. It was established that retention of deuterium in ferritic and ferritic-martensitic alloys is three times less than in austenitic steel at damage of ∼1 dpa. The retention of deuterium in steels is strongly enhanced by presence of radiation damages created by argon ion irradiation, with a shift in the hydrogen release temperature interval of 200 K to higher temperature. At elevated temperatures of irradiation the efficiency of deuterium trapping is reduced by two orders of magnitude.

  17. Hydrogen storage studies on palladium-doped carbon materials (AC, CB, CNMs) @ metal-organic framework-5.

    PubMed

    Viditha, V; Srilatha, K; Himabindu, V

    2016-05-01

    Metal organic frameworks (MOFs) are a rapidly growing class of porous materials and are considered as best adsorbents for their high surface area and extraordinary porosity. The MOFs are synthesized by using various chemicals like triethylamine, terepthalic acid, zinc acetate dihydrate, chloroform, and dimethylformamide (DMF). Synthesized MOFs are intercalated with palladium/activated carbon, carbon black, and carbon nanomaterials by chemical reduction method for the purpose of enhancing the hydrogen adsorption capacities. We have observed that the palladium doped activated carbon on MOF-5 showed high hydrogen storage capacity. This may be due to the affinity of the palladium toward hydrogen molecule. The samples are characterized by X-ray diffraction, scanning electron microscopy (SEM), and Brunauer-Emmett-Teller (BET) surface area analysis. We have observed a clear decrease in the BET surface area and pore volume. The obtained results show a better performance for the synthesized sample. To our best knowledge, no one has reported the work on palladium-doped carbon materials (activated carbon, carbon black, carbon nanomaterials) impregnated to the metal-organic framework-5. We have attempted to synthesize carbon nanomaterials using indigenously fabricated chemical vapor deposition (CVD) unit as a support. We have observed an increase in the hydrogen storage capacities.

  18. Fullerene-like hydrogenated carbon films with super-low friction and wear, and low sensitivity to environment

    NASA Astrophysics Data System (ADS)

    Ji, Li; Li, Hongxuan; Zhao, Fei; Quan, Weilong; Chen, Jianmin; Zhou, Huidi

    2010-01-01

    A novel hydrogenated carbon film containing fullerene-like nanostructure was prepared by pulse bias-assisted plasma enhanced chemical vapour deposition, and the fullerene-like arrangement in the film was characterized by high resolution transmission electron microscopy. The as-prepared hydrogenated carbon film exhibited super-low friction and wear in both dry N2 and humid ambient atmospheres, and was superior to the conventional hydrogenated carbon films. These excellent tribological properties could be attributed to the unique fullerene-like nanostructure, which endows the film with some special chemical and physical features, such as high chemical inertness, hardness and elastic recovery owing to the closed, curved and caged graphite planes, and hence, improves the tribological properties of the hydrogenated carbon film.

  19. Cryogenic distillation facility for isotopic purification of protium and deuterium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alekseev, I.; Arkhipov, Ev.; Bondarenko, S.

    Isotopic purification of the protium and deuterium is an important requirement of many physics experiments. A cryogenic facility for high-efficiency separation of hydrogen isotopes with a cryogenic distillation column as the main element is described. The instrument is portable, so that it can be used at the experimental site. It was designed and built at the Petersburg Nuclear Physics Institute, Gatchina, Russia. Fundamental operating parameters have been measured including a liquid holdup in the column packing, the pressure drops across the column and the purity of the product at different operating modes. A mathematical model describes expected profiles of hydrogenmore » isotope concentration along the distillation column. An analysis of ortho-parahydrogen isomeric composition by gas chromatography was used for evaluation of the column performance during the tuning operations. The protium content during deuterium purification (≤100 ppb) was measured using gas chromatography with accumulation of the protium in the distillation column. A high precision isotopic measurement at the Institute of Particle Physics, ETH-Zurich, Switzerland, provided an upper bound of the deuterium content in protium (≤6 ppb), which exceeds all commercially available products.« less

  20. Preparation, microstructure and hydrogen sorption properties of nanoporous carbon aerogels under ambient drying

    NASA Astrophysics Data System (ADS)

    Tian, H. Y.; Buckley, C. E.; Mulè, S.; Paskevicius, M.; Dhal, B. B.

    2008-11-01

    Organic aerogels are prepared by the sol-gel method from polymerization of resorcinol with furfural. These aerogels are further carbonized in nitrogen in order to obtain their corresponding carbon aerogels (CA); a sample which was carbonized at 900 °C was also activated in a carbon dioxide atmosphere at 900 °C. The chemical reaction mechanism and optimum synthesis conditions are investigated by means of Fourier transform infrared spectroscopy and thermoanalyses (thermogravimetric/differential thermal analyses) with a focus on the sol-gel process. The carbon aerogels were investigated with respect to their microstructures, using small angle x-ray scattering (SAXS), transmission electron microscopy (TEM) and nitrogen adsorption measurements at 77 K. SAXS studies showed that micropores with a radius of gyration of <0.35 ± 0.07 to 0.55 ± 0.05 nm were present, and TEM measurements and nitrogen adsorption showed that larger mesopores were also present. Hydrogen storage properties of the CA were also investigated. An activated sample with a Brunauer-Emmett-Teller surface area of 1539 ± 20 m2 g-1 displayed a reasonably high hydrogen uptake at 77 K with a maximum hydrogen sorption of 3.6 wt% at 2.5 MPa. These results suggest that CA are promising candidate hydrogen storage materials.

  1. Equations of state for hydrogen and deuterium.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerley, Gerald Irwin

    2003-12-01

    This report describes the complete revision of a deuterium equation of state (EOS) model published in 1972. It uses the same general approach as the 1972 EOS, i.e., the so-called 'chemical model,' but incorporates a number of theoretical advances that have taken place during the past thirty years. Three phases are included: a molecular solid, an atomic solid, and a fluid phase consisting of both molecular and atomic species. Ionization and the insulator-metal transition are also included. The most important improvements are in the liquid perturbation theory, the treatment of molecular vibrations and rotations, and the ionization equilibrium and mixturemore » models. In addition, new experimental data and theoretical calculations are used to calibrate certain model parameters, notably the zero-Kelvin isotherms for the molecular and atomic solids, and the quantum corrections to the liquid phase. The report gives a general overview of the model, followed by detailed discussions of the most important theoretical issues and extensive comparisons with the many experimental data that have been obtained during the last thirty years. Questions about the validity of the chemical model are also considered. Implications for modeling the 'giant planets' are also discussed.« less

  2. [Microbial synthesis of deuterium labelled L-phenylalanine with different levels of isotopic enrichment by facultative methylotrophic bacterium Brevibacterium methylicum with RMP assimilation of carbon].

    PubMed

    Mosin, O V; Shvets, V I; Skladnev, D A; Ignatov, I

    2014-01-01

    The preparative microbial synthesis of amino acids labelled with stable isotopes, including deuterium ( 2 H), suitable for biomedical applications by methylotrophic bacteria was studied using L-phenylalanine as example. This amino acid is secreted by Gram-negative aerobic facultative methylotrophic bacteria Brevibacterium methylicum, assimilating methanol via ribulose-5-monophosphate (RMP) cycle of assimilation of carbon, The data on adaptation of L-phenylalanine secreted by methylotrophic bacterium В. methylicum to the maximal concentration of deuterium in the growth medium with 98% 2 Н 2 O and 2% [ 2 Н]methanol, and biosynthesis of deuterium labelled L-phenylalanine With different levels of enrichment are presented. The strain was adapted by means of plating initial cells on firm (2% agarose) minimal growth media with an increasing gradient of 2 Н 2 O concentration from 0; 24.5; 49.0; 73.5 up to 98% 2 Н 2 O followed by subsequent selection of separate colonies stable to the action of 2 Н 2 O. These colonies were capable to produce L-phenylalanine. L-phenylalanine was extracted from growth medium by extraction with isopropanol with the subsequent crystallization in ethanol (output 0.65 g/l). The developed method of microbial synthesis allows to obtain deuterium labelled L-phenylalanine with different levels of isotopic enrichment, depending on concentration of 2 Н 2 O in growth media, from 17% (on growth medium with 24,5% 2 Н 2 O) up to 75% (on growth medium with 98% 2 Н 2 O) of deuterium in the molecule that is confirmed with the data of the electron impact (EI) mass- spectrometry analysis of methyl ethers of N-dimethylamino(naphthalene)-5-sulfochloride (dansyl) phenylalanine in these experimental conditions.

  3. Compound-Specific Carbon, Nitrogen, and Hydrogen Isotopic Ratios for Amino Acids in CM and CR Chondrites and their use in Evaluating Potential Formation Pathways

    NASA Technical Reports Server (NTRS)

    Elsila, Jamie E.; Charnley, Steven B.; Burton, Aaron S.; Glavin, Daniel P.; Dworkin, Jason P.

    2012-01-01

    Stable hydrogen, carbon, and nitrogen isotopic ratios (oD, 013C, and olSN) of organic compounds can revcal information about their origin and formation pathways. Several formation mechanisms and environments have been postulated for the amino acids detected in carbonaceous chondrites. As each proposed mechanism utilizes different precursor molecules, the isotopic signatures of the resulting amino acids may indicate the most likely of these pathways. We have applied gas chromatography with mass spectrometry and combustion isotope ratio mass spectrometry to measure the compound-specific C, N, and H stable isotopic ratios of amino acids from seven CM and CR carbonaceous chondrites: CM1I2 Allan Hills (ALH) 83100, CM2 Murchison, CM2 Lewis Cliff (LEW) 90500, CM2 Lonewolf Nunataks (LON) 94101, CRZ Graves Nunataks (GRA) 95229, CRZ Elephant Moraine (EET) 92042, and CR3 Queen Alexandra Range (QUE) 99177. We compare the isotopic compositions of amino acids in these meteorites with predictions of expected isotopic enrichments from potential formation pathways. We observe trends of decreasing ODC and increasing oD with increasing carbon number in the aH, (l-NH2 amino acids that correspond to predictions made for formation via Streckercyanohydrin synthesis. We also observe light ODC signatures for -alanine, which may indicate either formation via Michael addition or via a pathway that forms primarily small, straight-chain, amine-terminal amino acids (n-ro-amino acids). Higher deuterium enrichments are observed in amethyl amino acids, indicating formation of these amino acids or their precursors in cold interstellar or nebular environments. Finally, individual amino acids are more enriched in deuterium in CR chondrites than CM chondrites, reflecting different parent-body chemistry.

  4. On the habitability of universes without stable deuterium

    NASA Astrophysics Data System (ADS)

    Adams, Fred C.; Grohs, Evan

    2017-05-01

    In both stars and in the early universe, the production of deuterium is the first step on the way to producing heavier nuclei. If the strong force were slightly weaker, then deuterium would not be stable, and many authors have noted that nuclesynthesis would be compromised so that helium production could not proceed through standard reaction chains. Motivated by the possibility that other regions of space-time could have different values for the fundamental constants, this paper considers stellar evolution in universes without stable deuterium and argues that such universes can remain habitable. Even in universes with no stellar nucleosynthesis, stars can form and will generate energy through gravitational contraction. Using both analytic estimates and a state-of-the-art stellar evolution code, we show that such stars can be sufficiently luminous and long-lived to support life. Stars with initial masses that exceed the Chandrasekhar mass cannot be supported by degeneracy pressure and will explode at the end of their contraction phase. The resulting explosive nucleosynthesis can thus provide the universe with some heavy elements. We also explore the possibility that helium can be produced in stellar cores through a triple-nucleon reaction that is roughly analogous to the triple-alpha reaction that operates in our universe. Stars burning hydrogen through this process are somewhat hotter than those in our universe, but otherwise play the same role. Next we show that with even trace amounts (metallicity Z ∼10-10) of heavy elements - produced through the triple-nucleon process or by explosive nucleosynthesis - the CNO cycle can operate and allow stars to function. Finally, we consider Big Bang Nucleosynthesis without stable deuterium and find that only trace amounts of helium are produced, with even smaller abundances of other nuclei. With stars evolving through gravitational contraction, explosive nucleosynthesis, the triple-nucleon reaction, and the CNO cycle

  5. Solar-Driven Hydrogen Peroxide Production Using Polymer-Supported Carbon Dots as Heterogeneous Catalyst

    NASA Astrophysics Data System (ADS)

    Gogoi, Satyabrat; Karak, Niranjan

    2017-10-01

    Safe, sustainable, and green production of hydrogen peroxide is an exciting proposition due to the role of hydrogen peroxide as a green oxidant and energy carrier for fuel cells. The current work reports the development of carbon dot-impregnated waterborne hyperbranched polyurethane as a heterogeneous photo-catalyst for solar-driven production of hydrogen peroxide. The results reveal that the carbon dots possess a suitable band-gap of 2.98 eV, which facilitates effective splitting of both water and ethanol under solar irradiation. Inclusion of the carbon dots within the eco-friendly polymeric material ensures their catalytic activity and also provides a facile route for easy catalyst separation, especially from a solubilizing medium. The overall process was performed in accordance with the principles of green chemistry using bio-based precursors and aqueous medium. This work highlights the potential of carbon dots as an effective photo-catalyst.

  6. Evaluation of Lighting Systems, Carbon Sources, and Bacteria Cultures on Photofermentative Hydrogen Production.

    PubMed

    Hu, Chengcheng; Choy, Sing-Ying; Giannis, Apostolos

    2018-05-01

    Fluorescent and incandescent lighting systems were applied for batch photofermentative hydrogen production by four purple non-sulfur photosynthetic bacteria (PNSB). The hydrogen production efficiency of Rhodopseudomonas palustris, Rhodobacter sphaeroides, Rhodobacter capsulatus, and Rhodospirillum rubrum was evaluated using different carbon sources (acetate, butyrate, lactate, and malate). Incandescent light was found to be more effective for bacteria cell growth and hydrogen production. It was observed that PNSB followed substrate selection criteria for hydrogen production. Only R. palustris was able to produce hydrogen using most carbon sources. Cell density was almost constant, but cell growth rate and hydrogen production were significantly varied under the different lighting systems. The kinetics study suggested that initial substrate concentration had a positive correlation with lag phase duration. Among the PNSB, R. palustris grew faster and had higher hydrogen yields of 1.58, 4.92, and 2.57 mol H 2 /mol using acetate, butyrate, and lactate, respectively. In the integrative approach with dark fermentation effluents rich in organic acids, R. palustris should be enriched in the phototrophic microbial consortium of the continuous hydrogen production system.

  7. Thermochemical generation of hydrogen and carbon dioxide

    NASA Technical Reports Server (NTRS)

    Lawson, Daniel D. (Inventor); England, Christopher (Inventor)

    1984-01-01

    Mixing of carbon in the form of high sulfur coal with sulfuric acid reduces the temperature of sulfuric acid decomposition from 830.degree. C. to between 300.degree. C. and 400.degree. C. The low temperature sulfuric acid decomposition is particularly useful in thermal chemical cycles for splitting water to produce hydrogen. Carbon dioxide is produced as a commercially desirable byproduct. Lowering of the temperature for the sulfuric acid decomposition or oxygen release step simplifies equipment requirements, lowers thermal energy input and reduces corrosion problems presented by sulfuric acid at conventional cracking temperatures. Use of high sulfur coal as the source of carbon for the sulfuric acid decomposition provides an environmentally safe and energy efficient utilization of this normally polluting fuel.

  8. Hydrogen storage and delivery: the carbon dioxide - formic acid couple.

    PubMed

    Laurenczy, Gábor

    2011-01-01

    Carbon dioxide and the carbonates, the available natural C1 sources, can be easily hydrogenated into formic acid and formates in water; the rate of this reduction strongly depends on the pH of the solution. This reaction is catalysed by ruthenium(II) pre-catalyst complexes with a large variety of water-soluble phosphine ligands; high conversions and turnover numbers have been realised. Although ruthenium(II) is predominant in these reactions, the iron(II) - tris[(2-diphenylphosphino)-ethyl]phosphine (PP3) complex is also active, showing a new perspective to use abundant and inexpensive iron-based compounds in the CO2 reduction. In the catalytic hydrogenation cycles the in situ formed metal hydride complexes play a key role, their structures with several other intermediates have been proven by multinuclear NMR spectroscopy. In the other hand safe and convenient hydrogen storage and supply is the fundamental question for the further development of the hydrogen economy; and carbon dioxide has been recognised to be a viable H2 vector. Formic acid--containing 4.4 weight % of H2, that is 53 g hydrogen per litre--is suitable for H2 storage; we have shown that in aqueous solutions it can be selectively decomposed into CO-free (CO < 10 ppm) CO2 and H2. The reaction takes place under mild experimental conditions and it is able to generate high pressure H2 (up to 600 bar). The cleavage of HCOOH is catalysed by several hydrophilic Ru(II) phosphine complexes (meta-trisulfonated triphenylphosphine, mTPPTS, being the most efficient one), either in homogeneous systems or as immobilised catalysts. We have also shown that the iron(II)--hydrido tris[(2-diphenylphosphino)ethyl]phosphine complex catalyses with an exceptionally high rate and efficiency (turnover frequency, TOF = 9425 h(-1)mol(-1); turnover number, TON = 92400) the formic acid cleavage, in environmentally friendly propylene carbonate solution, opening the way to use cheap, non-noble metal based catalysts for this

  9. Technoeconomical analysis of the co-production of hydrogen energy and carbon materials

    NASA Astrophysics Data System (ADS)

    Guerra, Zuimdie

    HECAM (Hydrogen Energy and Carbon Materials) is a new energy production strategy. The main paradigm of HECAM is that energy extracted from the carbon in hydrocarbon fuels is not worth the production of carbon dioxide. The hydrocarbon fuel is heated in an oxygen free environment and it is chemically decomposed by the heat into gases (mostly hydrogen and methane), small quantities of liquid (light oil and tar), and a solid residue containing carbon and ash (char or coke). More quantities of hydrocarbons will need to be used, but less carbon dioxide will be produced. HECAM is going to compete with steam methane reforming (SMR) to produce hydrogen. HECAM with thermocatalytic decomposition of methane and efficient sensible heat recovery has a production cost per gigajoule of hydrogen about 9% higher than SMR, but will produce about half the carbon dioxide emissions that SMR produces. If HECAM with efficient sensible heat recovery is used to produce electricity in a power plant, it will have a comparable electricity production cost and carbon dioxide emissions to a natural gas combined cycle (NGCC) power plant. The byproduct coke is not a waste residue, but a valuable co-product. Uses for the byproduct coke material may be carbon sequestration, mine land restoration, additive to enhance agricultural soils, low sulfur and mercury content heating fuel for power plants, new construction materials, or carbon-base industrial materials. This study investigated the use of byproduct coke for new construction materials. HECAM concrete substitute (HCS) materials will have a comparable cost with concrete when the cost of the raw materials is $65 per metric ton of HCS produced. HECAM brick substitute (HBS) materials will have 20% higher cost per brick than clay bricks. If the HECAM byproduct coke can be formed into bricks as a product of the HECAM process, the manufacture of HBS bricks will be cheaper and may be cost competitive with clay bricks. The results of this analysis are

  10. Reversible Inter- and Intramolecular Carbon-Hydrogen Activation, Hydrogen Addition, and Catalysis by the Unsaturated Complex Pt(IPr)(SnBu(t)3)(H).

    PubMed

    Koppaka, Anjaneyulu; Captain, Burjor

    2016-03-21

    The complex Pt(IPr)(SnBu(t)3)(H) (1) was obtained from the reaction of Pt(COD)2 with Bu(t)3SnH and IPr [IPr = N,N'-bis(2,6-diisopropylphenyl)imidazol-2-ylidene]. Complex 1 undergoes exchange reactions with deuterated solvents (C6D6, toluene-d8, and CD2Cl2), where the hydride ligand and the methyl hydrogen atoms on the isopropyl group of the IPr ligand have been replaced by deuterium atoms. Complex 1 reacts with H2 gas reversibly at room temperature to yield the complex Pt(IPr)(SnBu(t)3)(H)3 (2). Complex 2 also undergoes exchange reactions with deuterated solvents as in 1 to deuterate the hydride ligands and the methyl hydrogen atoms on the isopropyl group of the IPr ligand. Complex 1 catalyzes the hydrogenation of styrene to ethylbenzene at room temperature. The reaction of 1 with 1 equiv of styrene at -20 °C yields the η(2)-coordinated product Pt(IPr)(SnBu(t)3)(η(2)-CH2CHPh)(H) (3), and with 2 equiv of styrene, it forms Pt(IPr)(η(2)-CH2CHPh)2 (4).

  11. Preparation, microstructure and hydrogen sorption properties of nanoporous carbon aerogels under ambient drying.

    PubMed

    Tian, H Y; Buckley, C E; Mulè, S; Paskevicius, M; Dhal, B B

    2008-11-26

    Organic aerogels are prepared by the sol-gel method from polymerization of resorcinol with furfural. These aerogels are further carbonized in nitrogen in order to obtain their corresponding carbon aerogels (CA); a sample which was carbonized at 900 °C was also activated in a carbon dioxide atmosphere at 900 °C. The chemical reaction mechanism and optimum synthesis conditions are investigated by means of Fourier transform infrared spectroscopy and thermoanalyses (thermogravimetric/differential thermal analyses) with a focus on the sol-gel process. The carbon aerogels were investigated with respect to their microstructures, using small angle x-ray scattering (SAXS), transmission electron microscopy (TEM) and nitrogen adsorption measurements at 77 K. SAXS studies showed that micropores with a radius of gyration of <0.35 ± 0.07 to 0.55 ± 0.05 nm were present, and TEM measurements and nitrogen adsorption showed that larger mesopores were also present. Hydrogen storage properties of the CA were also investigated. An activated sample with a Brunauer-Emmett-Teller surface area of 1539 ± 20 m(2) g(-1) displayed a reasonably high hydrogen uptake at 77 K with a maximum hydrogen sorption of 3.6 wt% at 2.5 MPa. These results suggest that CA are promising candidate hydrogen storage materials.

  12. Influence of surface treatments on micropore structure and hydrogen adsorption behavior of nanoporous carbons.

    PubMed

    Kim, Byung-Joo; Park, Soo-Jin

    2007-07-15

    The scope of this work was to control the pore sizes of porous carbons by various surface treatments and to investigate the relation between pore structures and hydrogen adsorption capacity. The effects of various surface treatments (i.e., gas-phase ozone, anodic oxidation, fluorination, and oxygen plasma) on the micropore structures of porous carbons were investigated by N(2)/77 K isothermal adsorption. The hydrogen adsorption capacity was measured by H(2) isothermal adsorption at 77 K. In the result, the specific surface area and micropore volume of all of the treated samples were slightly decreased due to the micropore filling or pore collapsing behaviors. It was also found that in F(2)-treated carbons the center of the pore size distribution was shifted to left side, meaning that the average size of the micropores decreased. The F(2)- and plasma-treated samples showed higher hydrogen storage capacities than did the other samples, the F(2)-treated one being the best, indicating that the micropore size of the porous carbons played a key role in the hydrogen adsorption at 77 K.

  13. Actin Isoform-specific Conformational Differences Observed with Hydrogen/Deuterium Exchange and Mass Spectrometry*

    PubMed Central

    Stokasimov, Ema; Rubenstein, Peter A.

    2009-01-01

    Actin can exist in multiple conformations necessary for normal function. Actin isoforms, although highly conserved in sequence, exhibit different biochemical properties and cellular roles. We used amide proton hydrogen/deuterium (HD) exchange detected by mass spectrometry to analyze conformational differences between Saccharomyces cerevisiae and muscle actins in the G and F forms to gain insight into these differences. We also utilized HD exchange to study interdomain and allosteric communication in yeast-muscle hybrid actins to better understand the conformational dynamics of actin. Areas showing differences in HD exchange between G- and F-actins are areas of intermonomer contacts, consistent with the current filament models. Our results showed greater exchange for yeast G-actin compared with muscle actin in the barbed end pivot region and areas in subdomains 1 and 2 and for F-actin in monomer-monomer contact areas. These results suggest greater flexibility of the yeast actin monomer and filament compared with muscle actin. For hybrid G-actins, the muscle-like and yeastlike parts of the molecule generally showed exchange characteristics resembling their parent actins. A few exceptions were a peptide on top of subdomain 2 and the pivot region between subdomains 1 and 3 with muscle actin-like exchange characteristics although the areas were yeastlike. These results demonstrate that there is cross-talk between subdomains 1 and 2 and the large and small domains. Hybrid F-actin data showing greater exchange compared with both yeast and muscle actins are consistent with mismatched yeast-muscle interfaces resulting in decreased stability of the hybrid filament contacts. PMID:19605362

  14. Measurements of the nucleon structure function in the range 0.002 < x < 0.17 and 00.2 < Q2 < 8 GeV2 in deuterium, carbon and calcium

    NASA Astrophysics Data System (ADS)

    European Muon Collaboration; Arneodo, M.; Arvidson, A.; Aubert, J. J.; Badelek, B.; Beaufays, J.; Bee, C. P.; Benchouk, C.; Berghoff, G.; Bird, I. G.; Blum, D.; Böhm, E.; de Bouard, X.; Brasse, F. W.; Braun, H.; Broll, C.; Brown, S. C.; Brück, H.; Calén, H.; Chima, J. S.; Ciborowski, J.; Clifft, R.; Coignet, G.; Combley, F.; Coughlan, J.; d'Agostini, G.; Dahlgren, S.; Derado, I.; Dreyer, T.; Drees, J.; Düren, M.; Eckardt, V.; Edwards, A.; Edwards, M.; Ernst, T.; Eszes, G.; Favier, J.; Ferrero, M. I.; Figiel, J.; Flauger, W.; Foster, J.; Gabathuler, E.; Gajewski, J.; Gamet, R.; Geddes, N.; Grafström, P.; Gustafsson, L.; Haas, J.; Hagberg, E.; Hasert, F. J.; Hayman, P.; Heusse, P.; Jaffre, M.; Jacholkowska, A.; Janata, F.; Jancso, G.; Johnson, A. S.; Kabuss, E. M.; Kellner, G.; Krüger, A.; Krüger, J.; Kullander, S.; Landgraf, U.; Lanske, D.; Loken, J.; Long, K.; Maire, M.; Malecki, P.; Manz, A.; Maselli, S.; Mohr, W.; Montanet, F.; Montgomery, H. E.; Nagy, E.; Nassalski, J.; Norton, P. R.; Oakham, F. G.; Osborne, A. M.; Pascaud, C.; Pawlik, B.; Payre, P.; Peroni, C.; Peschel, H.; Pessard, H.; Pettingale, J.; Pietrzyk, B.; Poensgen, B.; Pötsch, M.; Renton, P.; Ribarics, P.; Rith, K.; Rondio, E.; Sandacz, A.; Scheer, M.; Schlagböhmer, A.; Schiemann, H.; Schmitz, N.; Schneegans, M.; Scholz, M.; Schouten, M.; Schröder, T.; Schultze, K.; Sloan, T.; Stier, H. E.; Studt, M.; Taylor, G. N.; Thenard, J. M.; Thompson, J. C.; de la Torre, A.; Toth, J.; Urban, L.; Urban, L.; Wallucks, W.; Whalley, M.; Wheeler, S.; Williams, W. S. C.; Wimpenny, S. J.; Windmolders, R.; Wolf, G.

    1990-03-01

    Small angle scattering of 280 GeV positive muons by deuterium, carbon and calcium has been measured at scattering angles down to 2 mrad. The nucleon structure function F2 extracted from deuterium does not show a significant x dependence in the measured range of Q2 and its Q2 dependence is linear in logQ2. For calcium, a depletion of F2 is observed at low x by 30% as compared with the values at x = 0.1 where F2(Ca) and F2 (D) are not significantly different. This depletion is attributed to shadowing. The carbon structure function exhibits a similar, but less pronounced, x dependence. Such behaviour is observed to be independent of Q2. The data are consistent with those obtained from other charged lepton experiments both at similar and higher values of x and Q2 and considerably extend the range of the measurements down to the low values of x to be measured in forthcoming experiments at HERA.

  15. Activation energy for diamond growth from the carbon-hydrogen gas system at low substrate temperatures

    NASA Astrophysics Data System (ADS)

    Stiegler, J.; Lang, T.; von Kaenel, Y.; Michler, J.; Blank, E.

    1997-01-01

    The growth kinetics of diamond films deposited at low substrate temperatures (600-400 °C) from the carbon-hydrogen gas system have been studied. When the substrate temperature alone was varied, independently of all other process parameters in the microwave plasma reactor, an activation energy in the order of 7 kcal/mol was observed. This value did not change with different carbon concentrations in hydrogen. It is supposed that growth kinetics in this temperature range are controlled by a single chemical reaction, probably the abstraction of surface bonded hydrogen by gas phase atomic hydrogen.

  16. Water drives the deuterium content of the methane emitted from plants

    NASA Astrophysics Data System (ADS)

    Vigano, I.; Holzinger, R.; Keppler, F.; Greule, M.; Brand, W. A.; Geilmann, H.; van Weelden, H.; Röckmann, T.

    2010-07-01

    The spatial distribution of the deuterium content of precipitation has a well-established latitudinal variation that is reflected in organic molecules in plants growing at different locations. Some laboratory and field studies have already shown that the deuterium content of methane emitted from methanogens can be partially related to δD variations of the water in the surrounding environment. Here we present a similar relation for the methane emitted from plant biomass under UV radiation. To show this relation, we determined the hydrogen isotopic composition of methane released from leaves of a range of plants grown with water of different deuterium content (δD = -130‰ to +115‰). The plant leaves were irradiated with UV light and the CH 4 isotopic composition was measured by continuous flow isotope ratio mass spectrometry (CF-IRMS). Furthermore, the deuterium content of bulk biomass and of the methoxyl (OCH 3) groups of the biomass was measured. The D/H ratio successively decreases from bulk biomass (δD = -106‰ to -50‰) via methoxyl groups (δD = -310‰ to -115‰) to the CH 4 emitted (δD = -581‰ to -196‰). The range of isotope ratios in bulk biomass and OCH 3 groups is smaller than in the water used to grow the plants. Methoxyl groups, which contain only non-exchangeable hydrogen, can be used to assess the fraction of external water that was incorporated before OCH 3 groups were formed. Surprisingly, the CH 4 formed under UV irradiation has a wider isotopic range than the OCH 3 groups. Although the precise production pathway cannot be fully determined, the presented experiments indicate that methoxyl groups are not the only source substrate for CH 4, but that other sources, including very depleted ones, must contribute. The main limitation to the interpretation of the data is the possible influence of exchangeable water, which could not be quantified. Future studies should include measurements of leaf water and avoid interaction between different

  17. Towards efficient solar hydrogen production by intercalated carbon nitride photocatalyst.

    PubMed

    Gao, Honglin; Yan, Shicheng; Wang, Jiajia; Huang, Yu An; Wang, Peng; Li, Zhaosheng; Zou, Zhigang

    2013-11-07

    The development of efficient photocatalytic material for converting solar energy to hydrogen energy as viable alternatives to fossil-fuel technologies is expected to revolutionize energy shortage and environment issues. However, to date, the low quantum yield for solar hydrogen production over photocatalysts has hindered advances in the practical applications of photocatalysis. Here, we show that a carbon nitride intercalation compound (CNIC) synthesized by a simple molten salt route is an efficient polymer photocatalyst with a high quantum yield. We found that coordinating the alkali metals into the C-N plane of carbon nitride will induce the un-uniform spatial charge distribution. The electrons are confined in the intercalated region while the holes are in the far intercalated region, which promoted efficient separation of photogenerated carriers. The donor-type alkali metal ions coordinating into the nitrogen pots of carbon nitrides increase the free carrier concentration and lead to the formation of novel nonradiative paths. This should favor improved transport of the photogenerated electron and hole and decrease the electron-hole recombination rate. As a result, the CNIC exhibits a quantum yield as high as 21.2% under 420 nm light irradiation for solar hydrogen production. Such high quantum yield opens up new opportunities for using cheap semiconducting polymers as energy transducers.

  18. Investigation of Kp- and Kd-atom formation and their collisional processes with hydrogen and deuterium targets by the classical-trajectory Monte Carlo method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raeisi, G. M.; Department of Physics, Shahrekord University, Shahrekord 115; Kalantari, S. Z.

    The classical-trajectory Monte Carlo method has been used to study the capture of negative kaons by hydrogen and deuterium atoms; subsequently, the elastic scattering, Stark mixing, and Coulomb deexcitation cross sections of Kp and Kd atoms have been determined. The results for kaonic atom formation confirm the initial conditions that have been parametrically applied by most atomic cascade models. Our results show that Coulomb deexcitation in Kp and Kd atoms with {Delta}n>1 is important in addition to n=1. We have shown that the contribution of molecular structure effects to the cross sections of the collisional processes is larger than themore » isotopic effects of the targets. We have also compared our results with the semiclassical approaches.« less

  19. Interaction between adsorbed hydrogen and potassium on a carbon nanocone containing material as studied by photoemission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Xiaofeng; Raaen, Steinar, E-mail: sraaen@ntnu.no

    2015-09-14

    Hydrogen adsorption on a potassium doped carbon nanocone containing material was studied by photoelectron spectroscopy and work function measurement. The valence band spectra indicate that there is charge transfer from potassium to carbon. Upon deposition on carbon potassium is in its ionic state for lower doping and shows both ionic and metallic behavior at higher doping. Adsorption of hydrogen facilitates diffusion of potassium on the carbon material as seen by changes in the K{sub 2p} core level spectrum. Variations in the measured sample work function indicate that hydrogen initially adsorb on the K dopants and subsequently adsorb on the carbonmore » cone containing material.« less

  20. Deuterium permeation through EPDM rubber compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zapp, P.E.

    1988-01-01

    The permeation of deuterium through a specially formulated compound of ethylene propylene diene rubber was measured in the temperature range of 26/degree/C to 120/degree/C. The results were similar to permeation through two commercial compounds of this elastomer. Permeation was reduced after gamma irradiation (in the presence of hydrogen gas to simulate a tritium exposure). However the reduction was smaller than that experienced by the two commercial compounds. Radiation damage is apparently less severe in the special compound. It is possible that mechanical properties such as compression set may be influenced less by ionizing radiation in this compound as compared withmore » the commercial compounds. 4 figs., 1 tab.« less

  1. Hydrogen atom distribution and hydrogen induced site depopulation for the La{sub 2-x}Mg{sub x}Ni{sub 7}-H system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guzik, Matylda N., E-mail: Matylda.Guzik@ife.no; Physics Department, Institute for Energy Technology, P.O. Box 40, NO-2027 Kjeller; Hauback, Bjorn C.

    2012-02-15

    La{sub 2-x}Mg{sub x}Ni{sub 7} and its hydrides/deuterides were investigated by high resolution synchrotron powder X-ray and neutron diffraction. Upon deuteration the single phase sample of the intermetallic compound with the refined composition La{sub 1.63}Mg{sub 0.37}Ni{sub 7} (space group: P6{sub 3}/mmc) expands isotropically, in contrast to the Mg free phase. The hydrogen uptake, {approx}9 D/f.u., is higher than in La{sub 2}Ni{sub 7}D{sub 6.5}. The refined composition accounts for La{sub 1.63}Mg{sub 0.37}Ni{sub 7}D{sub 8.8} (beta-phase). Rietveld refinements using the neutron and synchrotron diffraction data suggest that deuterium atoms occupy 5 different interstitial sites within both AB{sub 2} and AB{sub 5} slabs, eithermore » in an ordered or a disordered way. All determined D sites have an occupancy >50% and the shortest D-D contact is 1.96(3) A. It is supposed that a competition between the tendency to form directional bonds and repulsive D-D (H-H) interactions is the most important factor that influences the distribution of deuterium atoms in this structure. A hitherto unknown second, alpha-phase with composition La{sub 1.63}Mg{sub 0.37}Ni{sub 7}D{sub 0.56}, crystallizing with the same hexagonal symmetry as La{sub 1.63}Mg{sub 0.37}Ni{sub 7}D{sub 8.8}, has been discovered. The unit cell parameters for this D-poor phase differ slightly from those of the intermetallic. Alpha-phase displays only one D site (4f, space group: P6{sub 3}/mmc) occupied >50%, which is not populated in the D-rich beta-phase. This hydrogen/deuterium induced site depopulation can be explained by repulsive D-D (H-H) interactions that are likely to influence non-occupancy of certain interstices in metal lattice when absorbing hydrogen. - Graphical abstract: The detailed D atoms arrangement in La{sub 1.63}Mg{sub 0.37}Ni{sub 7}D{sub 8.8} differs significantly from the previously reported La{sub 1.5}Mg{sub 0.5}Ni{sub 7}D{sub 8.9(9.1)}. The present model consists of only five deuterium

  2. Continuous catalytic hydrogenation of polyaromatic hydrocarbon compounds in hydrogen-supercritical carbon dioxide.

    PubMed

    Yuan, Tao; Fournier, Anick R; Proudlock, Raymond; Marshall, William D

    2007-03-15

    A continuous hydrogenation device was evaluated for the detoxification of selected tri-, tetra-, or pentacyclic polyaromatic hydrocarbon (PAH) compounds {anthracene, phenanthrene, chrysene, and benzo[a]pyrene (B[a]P)} by hydrogenation. A substrate stream in hexane, 0.05-1.0% (w/v), was mixed with hydrogen-carbon dioxide (H2-CO2, 5-30% v/v) and delivered to a heated reactor column (25 cm x 1 cm) containing palladium supported on gamma alumina (Pd0/gamma-Al2O3) that was terminated with a capillary restrictor. The flow rate from the reactor, approximately 800 mL min(-1) decompressed gas, corresponded to 4 mL min(-1) fluid under the operating conditions of the trials. Reaction products were recovered by passing the reactor effluent through hexane. At 90 degrees C, the anthracene or phenanthrene substrate was hydrogenated only partially to octahydro and dodecahydro species and contained only a minor quantity of totally hydrogenated products. For substrates with increasing numbers of fused aromatic rings, the hydrogenation efficiency was decreased further. However, at an increasing temperature (90-150 degrees C) and increasing mobile phase flow rate (20.68 MPa corresponding to 2100 mL min(-1) decompressed gas), B[a]P and chrysene were hydrogenated, virtuallytotally, to their corresponding perhydro analogues (eicosahydrobenzo[a]pyrenes and octadecahydrochrysenes), respectively. That this approach might be useful for decontaminating soil extracts was supported by companion in vitro trials in which the substrate and products were assayed for mutagenic activity with five bacterial strains that are auxotrophic for histidine (Salmonella typhimurium TA98, TA100, TA1535, and TA1537) or tryptophan (Escherichia coliWP2 uvrA), using the bacterial reverse mutation assay (modified Ames test). Generally, substantial increases in revertant colony counts were not observed with any of the strains following exposure to the hydrogenation products in the absence or presence of the 10 or 30

  3. Meridional distribution of molecular hydrogen and its deuterium content in the atmosphere

    NASA Astrophysics Data System (ADS)

    Rice, Andrew; Quay, Paul; Stutsman, Johnny; Gammon, Richard; Price, Heather; Jaeglé, Lyatt

    2010-06-01

    The atmospheric molecular hydrogen concentration and its deuterium abundance were measured in remote air samples collected onboard six Pacific Ocean ship transects between 37°N and 77°S during years 2001 through 2005. The data reveal a year-round interhemispheric gradient in H2 concentration and isotopic composition with the extratropical Northern Hemisphere lower in H2 concentration by 17 ± 11 ppb and δD of H2 by 16 ± 12‰ than the Southern Hemisphere (95% confidence). On the basis of these snapshots, the interhemispheric gradient in δD was observed to be smallest in September through November, a time that experiences the largest gradient in concentration, and the largest in April, a time that has a small gradient in concentration. A simple hemispheric box model of the atmosphere indicates that, while the hemispheric asymmetry in soil sink of H2 is primarily responsible for the observed interhemispheric gradient in H2 concentration, the hemispheric difference in the δD of the H2 sources and sinks are equally responsible for the observed interhemispheric gradient in δD. Both the inverse correlation between interhemispheric H2 and δD gradients and their seasonal changes point to the importance of the H2 produced by photochemical sources. Comparisons with a three-dimensional chemical transport model shows reasonable agreement with mean behavior in both variables and provides an accounting for H2 sources and sinks within ±15% without a dramatic change in the H2 budget. Anomalous H2 concentrations and δD in tropics and low-latitude regions observed during the November-December 2001 meridional H2 and δD snapshot is thought to be a result of H2 emissions from biomass burning, possibly from continental Africa.

  4. Seasonality of Leaf Carbon Isotopic Composition and Leaf Water Isotopic Enrichment in a Mixed Evergreen Forest in Southern California

    NASA Astrophysics Data System (ADS)

    Santiago, L. S.; Sickman, J. O.; Goulden, M.; DeVan, C.; Pasquini, S. C.; Pivovaroff, A. L.

    2011-12-01

    Leaf carbon isotopic composition and leaf water isotopic enrichment reflect physiological processes and are important for linking local and regional scale processes to global patterns. We investigated how seasonality affects the isotopic composition of bulk leaf carbon, leaf sugar carbon, and leaf water hydrogen under a Mediterranean climate. Leaf and stem samples were collected monthly from four tree species (Calocedrus decurrens, Pinus lambertiana, Pinus ponderosa, and Quercus chrysolepis) at the James San Jacinto Mountain Reserve in southern California. Mean monthly bulk leaf carbon isotopic composition varied from -34.5 % in P. ponderosa to -24.7 % in P. lambertiana and became more depleted in 13C from the spring to the summer. Mean monthly leaf sugar varied from -29.3 % in P. ponderosa to -21.8 % in P. lambertiana and was enriched in 13C during the winter, spring and autumn, but depleted during the mid-summer. Leaf water hydrogen isotopic composition was 28.4 to 68.8 % more enriched in deuterium than source water and this enrichment was greater as seasonal drought progressed. These data indicate that leaf carbon and leaf water hydrogen isotopic composition provide sensitive measures that connect plant physiological processes to short-term climatic variability.

  5. Deuterium Exchange in Ethyl Acetoacetate: An Undergraduate GC-MS [Gas Chromatography-Mass Spectroscopy] Experiment

    ERIC Educational Resources Information Center

    Heinson, C. D.; Williams, J. M.; Tinnerman, W. N.; Malloy, T. B.

    2005-01-01

    The role of ethanol O-d in nullifying the deuterolysis may be demonstrated by determining that transesterification of methyl acetoacetate of the ethyl ester occurs as well as deuterium exchange of the five acetoacetate hydrogens. The significant acidity of the methylene protons in the acetoacetate group, the efficacy of base catalysis, the role of…

  6. Fast-quench reactor for hydrogen and elemental carbon production from natural gas and other hydrocarbons

    DOEpatents

    Detering, Brent A.; Kong, Peter C.

    2006-08-29

    A fast-quench reactor for production of diatomic hydrogen and unsaturated carbons is provided. During the fast quench in the downstream diverging section of the nozzle, such as in a free expansion chamber, the unsaturated hydrocarbons are further decomposed by reheating the reactor gases. More diatomic hydrogen is produced, along with elemental carbon. Other gas may be added at different stages in the process to form a desired end product and prevent back reactions. The product is a substantially clean-burning hydrogen fuel that leaves no greenhouse gas emissions, and elemental carbon that may be used in powder form as a commodity for several processes.

  7. Constraints on Biogenic Emplacement of Crystalline Calcium Carbonate and Dolomite

    NASA Astrophysics Data System (ADS)

    Colas, B.; Clark, S. M.; Jacob, D. E.

    2015-12-01

    Amorphous calcium carbonate (ACC) is a biogenic precursor of calcium carbonates forming shells and skeletons of marine organisms, which are key components of the whole marine environment. Understanding carbonate formation is an essential prerequisite to quantify the effect climate change and pollution have on marine population. Water is a critical component of the structure of ACC and the key component controlling the stability of the amorphous state. Addition of small amounts of magnesium (1-5% of the calcium content) is known to promote the stability of ACC presumably through stabilization of the hydrogen bonding network. Understanding the hydrogen bonding network in ACC is fundamental to understand the stability of ACC. Our approach is to use Monte-Carlo simulations constrained by X-ray and neutron scattering data to determine hydrogen bonding networks in ACC as a function of magnesium doping. We have already successfully developed a synthesis protocol to make ACC, and have collected X-ray data, which is suitable for determining Ca, Mg and O correlations, and have collected neutron data, which gives information on the hydrogen/deuterium (as the interaction of X-rays with hydrogen is too low for us to be able to constrain hydrogen atom positions with only X-rays). The X-ray and neutron data are used to constrain reverse Monte-Carlo modelling of the ACC structure using the Empirical Potential Structure Refinement program, in order to yield a complete structural model for ACC including water molecule positions. We will present details of our sample synthesis and characterization methods, X-ray and neutron scattering data, and reverse Monte-Carlo simulations results, together with a discussion of the role of hydrogen bonding in ACC stability.

  8. Alkaline fuel cell: carbon nanobeads coated with metal catalyst over porous ceramic for hydrogen electrode

    NASA Astrophysics Data System (ADS)

    Chatterjee, A. K.; Sharon, Maheshwar; Banerjee, Rangan

    The development of a hydrogen electrode using a porous ceramic coated with carbon nanobeads for an alkaline fuel cell (AFC) is reported. This electrode can provide necessary strength and porosity to enable hydrogen to diffuse without allowing electrolyte to percolate inside the electrode. Various catalysts (Pt, Ni, Co and Fe) are electrochemically dispersed over the carbon nanobeads to examine their performance in the alkaline fuel cell. Turpentine oil has been used as a precursor for preparing the carbon nanobeads by a chemical vapour deposition technique. Scanning electron microscopic and transmission electron microscopic images show that the carbon nanobeads have sizes between 500 and 650 nm and are spread uniformly over the entire ceramic substrate. X-ray diffraction (XRD) patterns indicate that the nanobeads are graphitic in nature. Thus, the electrode is highly conductive. The current-voltage characteristics and chronopotentiometry of a half cell (i.e. hydrogen electrode coated with different electrocatalysts) and a full cell (using both hydrogen and oxygen electrodes) with 30% KOH solution are measured. About 93% of the theoretical hydrogen dissociation voltage is obtained with Ni and Pt catalyst. All other metals (Co and Fe) give a lower voltage. Ni-coated carbon nanobeads deposited over a ceramic oxide can be used in place of Raney nickel electrode as their characteristics are similar to those of a platinum electrode.

  9. Compound-specific carbon, nitrogen, and hydrogen isotopic ratios for amino acids in CM and CR chondrites and their use in evaluating potential formation pathways

    NASA Astrophysics Data System (ADS)

    Elsila, Jamie E.; Charnley, Steven B.; Burton, Aaron S.; Glavin, Daniel P.; Dworkin, Jason P.

    2012-09-01

    Stable hydrogen, carbon, and nitrogen isotopic ratios (δD, δ13C, and δ15N) of organic compounds can reveal information about their origin and formation pathways. Several formation mechanisms and environments have been postulated for the amino acids detected in carbonaceous chondrites. As each proposed mechanism utilizes different precursor molecules, the isotopic signatures of the resulting amino acids may indicate the most likely of these pathways. We have applied gas chromatography with mass spectrometry and combustion isotope ratio mass spectrometry to measure the compound-specific C, N, and H stable isotopic ratios of amino acids from seven CM and CR carbonaceous chondrites: CM1/2 Allan Hills (ALH) 83100, CM2 Murchison, CM2 Lewis Cliff (LEW) 90500, CM2 Lonewolf Nunataks (LON) 94101, CR2 Graves Nunataks (GRA) 95229, CR2 Elephant Moraine (EET) 92042, and CR3 Queen Alexandra Range (QUE) 99177. We compare the isotopic compositions of amino acids in these meteorites with predictions of expected isotopic enrichments from potential formation pathways. We observe trends of decreasing δ13C and increasing δD with increasing carbon number in the α-H, α-NH2 amino acids that correspond to predictions made for formation via Strecker-cyanohydrin synthesis. We also observe light δ13C signatures for β-alanine, which may indicate either formation via Michael addition or via a pathway that forms primarily small, straight-chain, amine-terminal amino acids (n-ω-amino acids). Higher deuterium enrichments are observed in α-methyl amino acids, indicating formation of these amino acids or their precursors in cold interstellar or nebular environments. Finally, individual amino acids are more enriched in deuterium in CR chondrites than in CM chondrites, reflecting different parent-body chemistry.

  10. Ruthenium-Catalyzed Synthesis of Dialkoxymethane Ethers Utilizing Carbon Dioxide and Molecular Hydrogen.

    PubMed

    Thenert, Katharina; Beydoun, Kassem; Wiesenthal, Jan; Leitner, Walter; Klankermayer, Jürgen

    2016-09-26

    The synthesis of dimethoxymethane (DMM) by a multistep reaction of methanol with carbon dioxide and molecular hydrogen is reported. Using the molecular catalyst [Ru(triphos)(tmm)] in combination with the Lewis acid Al(OTf)3 resulted in a versatile catalytic system for the synthesis of various dialkoxymethane ethers. This new catalytic reaction provides the first synthetic example for the selective conversion of carbon dioxide and hydrogen into a formaldehyde oxidation level, thus opening access to new molecular structures using this important C1 source. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Irradiation of nuclear materials with laser-plasma filaments produced in air and deuterium by terrawatt (TW) laser pulses

    NASA Astrophysics Data System (ADS)

    Avotina, Liga; Lungu, Mihail; Dinca, Paul; Butoi, Bogdan; Cojocaru, Gabriel; Ungureanu, Razvan; Marcu, Aurelian; Luculescu, Catalin; Hapenciuc, Claudiu; Ganea, Paul C.; Petjukevics, Aleksandrs; Lungu, Cristian P.; Kizane, Gunta; Ticos, C. M.; Antohe, Stefan

    2018-01-01

    Be-C-W mixed materials with variable atomic ratios were exposed to high power (TW) laser induced filamentation plasma in air in normal conditions and in deuterium at a reduced pressure of 20 Torr. Morphological and structural investigations were performed on the irradiated zones for both ambient conditions. The presence of low-pressure deuterium increased the overall ablation rate for all samples. From the elemental concentration point of view, the increase of the carbon percentage has led to an increase in the ablation rate. An increase of the tungsten percentage had the opposite effect. From structural spectroscopic investigations using XPS, Raman and FT-IR of the irradiated and non-irradiated sample surfaces, we conclude that deuterium-induced enhancement of the ablation process could be explained by preferential amorphous carbon removal, possibly by forming deuterated hydrocarbons which further evaporated, weakening the layer structure.

  12. Carbon, Hydrogen, and Oxygen Isotope Ratios of Cellulose from Plants Having Intermediary Photosynthetic Modes 1

    PubMed Central

    Sternberg, Leonel O'Reilly; Deniro, Michael J.; Ting, Irwin P.

    1984-01-01

    Carbon and hydrogen isotope ratios of cellulose nitrate and oxygen isotope ratios of cellulose from species of greenhouse plants having different photosynthetic modes were determined. When hydrogen isotope ratios are plotted against carbon isotope ratios, four clusters of points are discernible, each representing different photosynthetic modes: C3 plants, C4 plants, CAM plants, and C3 plants that can shift to CAM or show the phenomenon referred to as CAM-cycling. The combination of oxygen and carbon isotope ratios does not distinguish among the different photosynthetic modes. Analysis of the carbon and hydrogen isotope ratios of cellulose nitrate should prove useful for screening different photosynthetic modes in field specimens that grew near one another. This method will be particularly useful for detection of plants which show CAM-cycling. PMID:16663360

  13. Research Progress on the Indirect Hydrogenation of Carbon Dioxide to Methanol.

    PubMed

    Du, Xian-Long; Jiang, Zheng; Su, Dang Sheng; Wang, Jian-Qiang

    2016-02-19

    Methanol is a sustainable source of liquid fuels and one of the most useful organic chemicals. To date, most of the work in this area has focused on the direct hydrogenation of CO2 to methanol. However, this process requires high operating temperatures (200-250 °C), which limits the theoretical yield of methanol. Thus, it is desirable to find a new strategy for the efficient conversion of CO2 to methanol at relatively low reaction temperatures. This Minireview seeks to outline the recent advances on the indirect hydrogenation of CO2 to methanol. Much emphasis is placed on discussing specific systems, including hydrogenation of CO2 derivatives (organic carbonates, carbamates, formates, cyclic carbonates, etc.) and cascade reactions, with the aim of critically highlighting both the achievements and remaining challenges associated with this field. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Deuterium supersaturation in low-energy plasma-loaded tungsten surfaces

    NASA Astrophysics Data System (ADS)

    Gao, L.; Jacob, W.; von Toussaint, U.; Manhard, A.; Balden, M.; Schmid, K.; Schwarz-Selinger, T.

    2017-01-01

    Fundamental understanding of hydrogen-metal interactions is challenging due to a lack of knowledge on defect production and/or evolution upon hydrogen ingression, especially for metals undergoing hydrogen irradiation with ion energy below the displacement thresholds reported in literature. Here, applying a novel low-energy argon-sputter depth profiling method with significantly improved depth resolution for tungsten (W) surfaces exposed to deuterium (D) plasma at 300 K, we show the existence of a 10 nm thick D-supersaturated surface layer (DSSL) with an unexpectedly high D concentration of ~10 at.% after irradiation with ion energy of 215 eV. Electron back-scatter diffraction reveals that the W lattice within this DSSL is highly distorted, thus strongly blurring the Kikuchi pattern. We explain this strong damage by the synergistic interaction of energetic D ions and solute D atoms with the W lattice. Solute D atoms prevent the recombination of vacancies with interstitial W atoms, which are produced by collisions of energetic D ions with W lattice atoms (Frenkel pairs). This proposed damaging mechanism could also be active on other hydrogen-irradiated metal surfaces. The present work provides deep insight into hydrogen-induced lattice distortion at plasma-metal interfaces and sheds light on its modelling work.

  15. Role of deuterium desorption kinetics on the thermionic emission properties of polycrystalline diamond films with respect to kinetic isotope effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paxton, W. F., E-mail: william.f.paxton@vanderbilt.edu; Howell, M.; Kang, W. P.

    2014-06-21

    The desorption kinetics of deuterium from polycrystalline chemical vapor deposited diamond films were characterized by monitoring the isothermal thermionic emission current behavior. The reaction was observed to follow a first-order trend as evidenced by the decay rate of the thermionic emission current over time which is in agreement with previously reported studies. However, an Arrhenius plot of the reaction rates at each tested temperature did not exhibit the typical linear behavior which appears to contradict past observations of the hydrogen (or deuterium) desorption reaction from diamond. This observed deviation from linearity, specifically at lower temperatures, has been attributed to non-classicalmore » processes. Though no known previous studies reported similar deviations, a reanalysis of the data obtained in the present study was performed to account for tunneling which appeared to add merit to this hypothesis. Additional investigations were performed by reevaluating previously reported data involving the desorption of hydrogen (as opposed to deuterium) from diamond which further indicated this reaction to be dominated by tunneling at the temperatures tested in this study (<775 °C). An activation energy of 3.19 eV and a pre-exponential constant of 2.3 × 10{sup 12} s{sup −1} were determined for the desorption reaction of deuterium from diamond which is in agreement with previously reported studies.« less

  16. Ab initio molecular dynamics simulation study of successive hydrogenation reactions of carbon monoxide producing methanol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pham, Thi Nu; Ono, Shota; Ohno, Kaoru, E-mail: ohno@ynu.ac.jp

    Doing ab initio molecular dynamics simulations, we demonstrate a possibility of hydrogenation of carbon monoxide producing methanol step by step. At first, the hydrogen atom reacts with the carbon monoxide molecule at the excited state forming the formyl radical. Formaldehyde was formed after adding one more hydrogen atom to the system. Finally, absorption of two hydrogen atoms to formaldehyde produces methanol molecule. This study is performed by using the all-electron mixed basis approach based on the time dependent density functional theory within the adiabatic local density approximation for an electronic ground-state configuration and the one-shot GW approximation for an electronicmore » excited state configuration.« less

  17. Isotopic inferences of ancient biochemistries - Carbon, sulfur, hydrogen, and nitrogen

    NASA Technical Reports Server (NTRS)

    Schidlowski, M.; Hayes, J. M.; Kaplan, I. R.

    1983-01-01

    In processes of biological incorporation and subsequent biochemical processing sizable isotope effects occur as a result of both thermodynamic and kinetic fractionations which take place during metabolic and biosynthetic reactions. In this chapter a review is provided of earlier work and recent studies on isotope fractionations in the biogeochemical cycles of carbon, sulfur, hydrogen, and nitrogen. Attention is given to the biochemistry of carbon isotope fractionation, carbon isotope fractionation in extant plants and microorganisms, isotope fractionation in the terrestrial carbon cycle, the effects of diagenesis and metamorphism on the isotopic composition of sedimentary carbon, the isotopic composition of sedimentary carbon through time, implications of the sedimentary carbon isotope record, the biochemistry of sulfur isotope fractionation, pathways of the biogeochemical cycle of nitrogen, and the D/H ratio in naturally occurring materials.

  18. Reprint of: Effects of cold deformation, electron irradiation and extrusion on deuterium desorption behavior in Zr-1%Nb alloy

    NASA Astrophysics Data System (ADS)

    Morozov, O.; Mats, O.; Mats, V.; Zhurba, V.; Khaimovich, P.

    2018-01-01

    The present article introduces the data of analysis of ranges of ion-implanted deuterium desorption from Zr-1% Nb alloy. The samples studied underwent plastic deformation, low temperature extrusion and electron irradiation. Plastic rolling of the samples at temperature ∼300 K resulted in plastic deformation with the degree of ε = 3.9 and the formation of nanostructural state with the average grain size of d = 61 nm. The high degree of defectiveness is shown in thermodesorption spectrum as an additional area of the deuterium desorption in the temperature ranges 650-850 K. The further processing of the sample (that had undergone plastic deformation by plastic rolling) with electron irradiation resulted in the reduction of the average grain size (58 nm) and an increase in borders concentration. As a result the amount of deuterium desorpted increased in the temperature ranges 650-900 K. In case of Zr-1% Nb samples deformed by extrusion the extension of desorption area is observed towards the temperature reduction down to 420 K. The formation of the phase state of deuterium solid solution in zirconium was not observed. The structural state behavior is a control factor in the process of deuterium thermodesorption spectrum structure formation with a fixed implanted deuterium dose (hydrogen diagnostics). It appears as additional temperature ranges of deuterium desorption depending on the type, character and defect content.

  19. Hydrogen production from carbonaceous material

    DOEpatents

    Lackner, Klaus S.; Ziock, Hans J.; Harrison, Douglas P.

    2004-09-14

    Hydrogen is produced from solid or liquid carbon-containing fuels in a two-step process. The fuel is gasified with hydrogen in a hydrogenation reaction to produce a methane-rich gaseous reaction product, which is then reacted with water and calcium oxide in a hydrogen production and carbonation reaction to produce hydrogen and calcium carbonate. The calcium carbonate may be continuously removed from the hydrogen production and carbonation reaction zone and calcined to regenerate calcium oxide, which may be reintroduced into the hydrogen production and carbonation reaction zone. Hydrogen produced in the hydrogen production and carbonation reaction is more than sufficient both to provide the energy necessary for the calcination reaction and also to sustain the hydrogenation of the coal in the gasification reaction. The excess hydrogen is available for energy production or other purposes. Substantially all of the carbon introduced as fuel ultimately emerges from the invention process in a stream of substantially pure carbon dioxide. The water necessary for the hydrogen production and carbonation reaction may be introduced into both the gasification and hydrogen production and carbonation reactions, and allocated so as transfer the exothermic heat of reaction of the gasification reaction to the endothermic hydrogen production and carbonation reaction.

  20. A trimodal porous carbon as an effective catalyst for hydrogen production by methane decomposition.

    PubMed

    Shen, Yi; Lua, Aik Chong

    2016-01-15

    A new type of porous carbon with an interconnected trimodal pore system is synthesized by a nanocasting method using nanoparticulated bimodal micro-mesoporous silica particles as the template. The synthesized template and carbon material are characterized using transmission electron microscopy (TEM), field emission electron scanning microscopy (FESEM) and nitrogen adsorption-desorption test. The synthesized carbon material has an extremely high surface area, a large pore volume and an interconnected pore structure, which could provide abundant active sites and space for chemical reactions and minimize the diffusion resistance of the reactants. The resulting carbon is used as the catalyst for hydrogen production by the thermal decomposition of methane. The catalytic results show that the as-synthesized carbon in this study produces much higher methane conversion and hydrogen yield than the commercial carbon materials. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Method of carbon dioxide-free hydrogen production from hydrocarbon decomposition over metal salts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erlebacher, Jonah; Gaskey, Bernard

    A process to decompose methane into carbon (graphitic powder) and hydrogen (H.sub.2 gas) without secondary production of carbon dioxide, employing a cycle in which a secondary chemical is recycled and reused, is disclosed.

  2. Theoretical modeling of infrared spectra of the hydrogen and deuterium bond in aspirin crystal

    NASA Astrophysics Data System (ADS)

    Ghalla, Houcine; Rekik, Najeh; Michta, Anna; Oujia, Brahim; Flakus, Henryk T.

    2010-01-01

    An extended quantum theoretical approach of the ν IR lineshape of cyclic dimers of weakly H-bonded species is proposed. We have extended a previous approach [M.E.-A. Benmalti, P. Blaise, H.T. Flakus, O. Henri-Rousseau, Chem. Phys. 320 (2006) 267] by accounting for the anharmonicity of the slow mode which is described by a "Morse" potential in order to reproduce the polarized infrared spectra of the hydrogen and deuterium bond in acetylsalicylic acid (aspirin) crystals. From comparison of polarized IR spectra of isotopically neat and isotopically diluted aspirin crystals it resulted that centrosymmetric aspirin dimer was the bearer of the crystal main spectral properties. In this approach, the adiabatic approximation is performed for each separate H-bond bridge of the dimer and a strong non-adiabatic correction is introduced into the model via the resonant exchange between the fast mode excited states of the two moieties. Within the strong anharmonic coupling theory, according to which the X-H→⋯Y high-frequency mode is anharmonically coupled to the H-bond bridge, this model incorporated the Davydov coupling between the excited states of the two moieties, the quantum direct and indirect dampings and the anharmonicity for the H-bond bridge. The spectral density is obtained within the linear response theory by Fourier transform of the damped autocorrelation functions. The evaluated spectra are in fairly good agreement with the experimental ones by using a minimum number of independent parameters. The effect of deuteration has been well reproduced by reducing simply the angular frequency of the fast mode and the anharmonic coupling parameter.

  3. Deep levels due to hydrogen in ZnO single crystals

    NASA Astrophysics Data System (ADS)

    Parmar, Narendra; Weber, Marc; Lynn, Kelvin

    2009-05-01

    Hydrogen impurities and oxygen vacancies are involved in the ˜0.7 eV shift of the optical absorption edge of ZnO. Deuterium causes a smaller shift. Titanium metal is used to bind hydrogen as it diffuses out of ZnO. Positron annihilation spectroscopy coupled with other techniques point to the presence of oxygen vacancies. Removing hydrogen followed by annealing in oxygen reduces the carrier concentration.

  4. The Path of Carbon in Photosynthesis IX. Photosynthesis, Photoreduction, and the Hydrogen-Oxygen-Carbon Dioxide Dark Reaction

    DOE R&D Accomplishments Database

    Badin, E. J.; Calvin, M.

    1950-02-01

    A comparison of the rates of fixation of Carbon 14 dioxide in algae for the processes of photosynthesis, photoreduction and the hydrogen-oxygen-carbon dioxide dark reaction has been made. For the same series of experiments, rates of incorporation of tracer carbon into the separate soluble components using the radiogram method have been determined. The mechanism of carbon dioxide uptake has been shown to occur via two distinct paths. In all cases studied, essentially the same compounds appear radioactive. The distribution with time, however, differs markedly.

  5. Direct and reversible hydrogenation of CO2 to formate by a bacterial carbon dioxide reductase.

    PubMed

    Schuchmann, K; Müller, V

    2013-12-13

    Storage and transportation of hydrogen is a major obstacle for its use as a fuel. An increasingly considered alternative for the direct handling of hydrogen is to use carbon dioxide (CO2) as an intermediate storage material. However, CO2 is thermodynamically stable, and developed chemical catalysts often require high temperatures, pressures, and/or additives for high catalytic rates. Here, we present the discovery of a bacterial hydrogen-dependent carbon dioxide reductase from Acetobacterium woodii directly catalyzing the hydrogenation of CO2. We also demonstrate a whole-cell system able to produce formate as the sole end product from dihydrogen (H2) and CO2 as well as syngas. This discovery opens biotechnological alternatives for efficient CO2 hydrogenation either by using the isolated enzyme or by employing whole-cell catalysis.

  6. Carbon-tuned bonding method significantly enhanced the hydrogen storage of BN-Li complexes.

    PubMed

    Deng, Qing-ming; Zhao, Lina; Luo, You-hua; Zhang, Meng; Zhao, Li-xia; Zhao, Yuliang

    2011-11-01

    Through first-principles calculations, we found doping carbon atoms onto BN monolayers (BNC) could significantly strengthen the Li bond on this material. Unlike the weak bond strength between Li atoms and the pristine BN layer, it is observed that Li atoms are strongly hybridized and donate their electrons to the doped substrate, which is responsible for the enhanced binding energy. Li adsorbed on the BNC layer can serve as a high-capacity hydrogen storage medium, without forming clusters, which can be recycled at room temperature. Eight polarized H(2) molecules are attached to two Li atoms with an optimal binding energy of 0.16-0.28 eV/H(2), which results from the electrostatic interaction of the polarized charge of hydrogen molecules with the electric field induced by positive Li atoms. This practical carbon-tuned BN-Li complex can work as a very high-capacity hydrogen storage medium with a gravimetric density of hydrogen of 12.2 wt%, which is much higher than the gravimetric goal of 5.5 wt % hydrogen set by the U.S. Department of Energy for 2015.

  7. Nuclear magnetic resonance of molecular hydrogen trapped in single-walled carbon nanotube bundles.

    PubMed

    Shiraishi, Masashi; Ata, Masafumi

    2002-10-01

    Molecular dynamics of hydrogen trapped in single-walled carbon nanotube bundles was analyzed by nuclear magnetic resonance. The chemical shift of hydrogen was about 5.1 ppm at 293 K, which is similar to that of water. The relaxation time, T1, was about 0.1-0.2 s. Values in this work are comparable to those for hydrogen loaded in silica and a-Si.

  8. DYNAMIC DEUTERIUM ENRICHMENT IN COMETARY WATER VIA ELEY–RIDEAL REACTIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Yunxi; Giapis, Konstantinos P., E-mail: giapis@cheme.caltech.edu

    2017-01-20

    The deuterium-to-hydrogen ratio (D/H) in water found in the coma of Jupiter family comet (JFC) 67P/Churyumov–Gerasimenko was reported to be (5.3 ± 0.7) × 10{sup −4}, the highest among comets and three times the value for other JFCs with an ocean-like ratio. This discrepancy suggests the diverse origins of JFCs and clouds the issue of the origin of Earth’s oceanic water. Here we demonstrate that Eley–Rideal reactions between accelerated water ions and deuterated cometary surface analogs can lead to instantaneous deuterium enrichment in water scattered from the surface. The reaction proceeds with H{sub 2}O{sup +} abstracting adsorbed D atoms, formingmore » an excited H{sub 2}DO* state, which dissociates subsequently to produce energetic HDO. Hydronium ions are also produced readily by the abstraction of H atoms, consistent with H{sub 3}O{sup +} detection and abundance in various comets. Experiments with water isotopologs and kinematic analysis on deuterated platinum surfaces confirmed the dynamic abstraction mechanism. The instantaneous fractionation process is independent of the surface temperature and may operate on the surface of cometary nuclei or dust grains, composed of deuterium-rich silicates and carbonaceous chondrites. The requisite energetic water ions have been detected in the coma of 67P in two populations. This dynamic fractionation process may temporarily increase the water D/H ratio, especially as the comet gets closer to the Sun. The magnitude of the effect depends on the water ion energy-flux and the deuterium content of the exposed cometary surfaces.« less

  9. Efficient photocatalytic hydrogen production by platinum-loaded carbon-doped cadmium indate nanoparticles.

    PubMed

    Thornton, Jason M; Raftery, Daniel

    2012-05-01

    Undoped and carbon doped cadmium indate (CdIn(2)O(4)) powders were synthesized using a sol-gel pyrolysis method and evaluated for hydrogen generation activity under UV-visible irradiation without the use of a sacrificial reagent. Each catalyst powder was loaded with a platinum cocatalyst in order to increase electron-hole pair separation and promote surface reactions. Carbon-doped indium oxide and cadmium oxide were also prepared and analyzed for comparison. UV-vis diffuse reflectance spectra indicate the band gap for C-CdIn(2)O(4) to be 2.3 eV. C-doped In(2)O(4) showed a hydrogen generation rate approximately double that of the undoped material. When compared to platinized TiO(2) in methanol, which was used as a control material, C-CdIn(2)O(4) showed a 4-fold increase in hydrogen production. The quantum efficiency of the material was calculated at different wavelength intervals and found to be 8.7% at 420-440 nm. The material was capable of hydrogen generation using visible light only and with good efficiency even at 510 nm.

  10. Hydrogenated 5-carbon compound and method of making

    DOEpatents

    Elliott, Douglas C.; Frye, John G.

    1999-01-01

    The present invention is based upon the surprising discovery that a 5-carbon compound selected from the group of 4-oxopentanoic acid, at least one lactone of 4-oxopentanoic acid, and combinations thereof, may be hydrogenated with a bimetallic catalyst of a noble metal in combination with a second metal and preserve the pendant methyl group. It was further unexpectedly discovered that the same conditions of bimetallic catalyst in the presence of hydrogen are useful for catalyzing the different intermediate reactions for example angelicalactone to gamma-valerolactone and gamma-valerolactone to 1,4-pentanediol. Finally, it was surprising that levulinic acid could be converted to 2-methyltetrahydrofuran with heating in the presence of the bimetallic catalyst and hydrogen in a single process vessel. The method of the present invention unexpectedly produced a fuel or fuel component having 2-methyltetrahydrofuran either in a yield greater than 4.5 mol % or in combination with alcohols.

  11. Hydrogenated 5-carbon compound and method of making

    DOEpatents

    Elliott, D.C.; Frye, J.G.

    1999-03-16

    The present invention is based upon the surprising discovery that a 5-carbon compound selected from the group of 4-oxopentanoic acid, at least one lactone of 4-oxopentanoic acid, and combinations thereof, may be hydrogenated with a bimetallic catalyst of a noble metal in combination with a second metal and preserve the pendant methyl group. It was further unexpectedly discovered that the same conditions of bimetallic catalyst in the presence of hydrogen are useful for catalyzing the different intermediate reactions, for example, angelicalactone to gamma-valerolactone and gamma-valerolactone to 1,4-pentanediol. Finally, it was surprising that levulinic acid could be converted to 2-methyltetrahydrofuran with heating in the presence of the bimetallic catalyst and hydrogen in a single process vessel. The method of the present invention unexpectedly produced a fuel or fuel component having 2-methyltetrahydrofuran either in a yield greater than 4.5 mol % or in combination with alcohols. 8 figs.

  12. H NMR studies of substrate hydrogen exchange reactions catalyzed by L-methionine gamma-lyase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esaki, N.; Nakayama, T.; Sawada, S.

    Hydrogen exchange reactions of various L-amino acids catalyzed by L-methionine gamma-lyase (EC 4.4.1.11) have been studied. The enzyme catalyzes the rapid exchange of the alpha- and beta-hydrogens of L-methionine and S-methyl-L-cysteine with deuterium from the solvent. The rate of alpha-hydrogen exchange was about 40 times faster than that of the enzymatic elimination reaction of the sulfur-containing amino acids. The enzyme also catalyzes the exchange reaction of alpha- and beta-hydrogens of the straight-chain L-amino acids which are not susceptible to elimination. The exchange rates of the alpha-hydrogen and the total beta-hydrogens of L-alanine and L-alpha-aminobutyrate with deuterium followed first-order kinetics. Formore » L-norvaline, L-norleucine, S-methyl-L-cysteine, and L-methionine, the rate of alpha-hydrogen exchange followed first-order kinetics, but the rate of total beta-hydrogen exchange decreased due to a primary isotope effect at the alpha-position. L-Phenylalanine and L-tryptophan slowly underwent alpha-hydrogen exchange. The pro-R hydrogen of glycine was deuterated stereospecifically.« less

  13. Investigation of Helicon discharges as RF coupling concept of negative hydrogen ion sources

    NASA Astrophysics Data System (ADS)

    Briefi, S.; Fantz, U.

    2013-02-01

    The ITER reference source for H- and D- requires a high RF input power (up to 90 kW per driver). To reduce the demands on the RF circuit, it is highly desirable to reduce the power consumption while retaining the values of the relevant plasma parameters namely the positive ion density and the atomic hydrogen density. Helicon plasmas are a promising alternative RF coupling concept but they are typically generated in long thin discharge tubes using rare gases and an RF frequency of 13.56 MHz. Hence the applicability to the ITER reference source geometry, frequency and the utilization of hydrogen/deuterium has to be proved. In this paper the strategy of the approach for using Helicon discharges for ITER reference source parameters is introduced and the first promising measurements which were carried out at a small laboratory experiment are presented. With increasing RF power a mode transition to the Helicon regime was observed for argon and argon/hydrogen mixtures. In pure hydrogen/deuterium the mode transition could not yet be achieved as the available RF power is too low. In deuterium a special feature of Helicon discharges, the socalled low field peak, could be observed at a moderate B-field of 3 mT.

  14. Magnetic Carbon Supported Palladium Nanoparticles: An Efficient and Sustainable Catalyst for Hydrogenation Reactions

    EPA Science Inventory

    Magnetic carbon supported Pd catalyst has been synthesized via in situ generation of nanoferrites and incorporation of carbon from renewable cellulose via calcination; the catalyst can be used for the hydrogenation of alkenes and reduction of aryl nitro compounds.

  15. Dissociation of CH4 by electron impact: Production of metastable hydrogen and carbon fragments

    NASA Technical Reports Server (NTRS)

    Finn, T. G.; Carnahan, B. L.; Zipf, E. C.

    1974-01-01

    Metastable fragments produced by electron impact excitation of CH4 have been investigated for incident electron energies from threshold to 300 eV. Only metastable hydrogen and carbon atoms were observed. Onset energies for the production of metastable hydrogen atoms were observed at electron impact energies of 22.0 + or - .5 eV, 25.5 + or - .6 eV, 36.7 + or - .6 eV and 66 + or - 3 eV, and at 26.6 + or - .6 eV for the production of metastable carbon atoms. Most of the fragments appear to have been formed in high-lying Rydberg states. The total metastable hydrogen cross section reaches a maximum value of approximately 1 X 10 to the minus 18th power sq cm at 100 eV. At the same energy, the metastable carbon cross section is 2 x 10 to the minus 19th power sq cm.

  16. Structural Insights of Glucan Phosphatase Dynamics using Amide Hydrogen/Deuterium Exchange Mass Spectrometry

    PubMed Central

    Hsu, Simon; Kim, Youngjun; Li, Sheng; Durrant, Eric S.; Pace, Rachel M.; Woods, Virgil L.; Gentry, Matthew S.

    2009-01-01

    Laforin and Starch Excess 4 (SEX4) are founding members of a class of phosphatases that dephosphorylate phosphoglucans. Each protein contains a carbohydrate binding module (CBM) and a dual specificity phosphatase (DSP) domain. The gene encoding laforin is mutated in a fatal neurodegenerative disease called Lafora disease (LD). In the absence of laforin function, insoluble glucans accumulate that are hyperphosphorylated and exhibit sparse branching. It is hypothesized that these accumulations trigger the neurodegeneration and premature death of LD patients. We recently demonstrated that laforin removes phosphate from phosphoglucans and hypothesized that this function inhibits insoluble glucan accumulation. Loss of SEX4 function in plants yields a similar cellular phenotype; cells accumulate an excess amount of insoluble, hyperphosphorylated glucans. While multiple groups have shown that these phosphatases dephosphorylate phosphoglucans, there is no structure of a glucan phosphatase and little is known about the mechanism whereby they perform this action. We utilized hydrogen-deuterium exchange mass spectrometry (DXMS) and structural modeling to probe the conformational and structural dynamics of the glucan phosphatase SEX4. We found that the enzyme does not undergo a global conformational change upon glucan binding, but instead undergoes minimal rearrangement upon binding. The CBM undergoes increased protection from deuteration when bound to glucans, confirming its role in glucan binding. More interestingly, we identified structural components of the DSP that also undergo increased protection from deuteration upon glucan addition. To determine the position of these regions, we generated a homology model of the SEX4 DSP. The homology model shows that all of these regions are adjacent the DSP active site. Therefore, our results suggest that these regions of the DSP participate in presenting the phosphoglucan to the active site and provide the first structural analysis

  17. The effects of hydrogen proportion on the synthesis of carbon nanomaterials with gaseous detonation (deflagration) method

    NASA Astrophysics Data System (ADS)

    Zhao, Tiejun; Li, Xiaojie; Lee, John H. S.; Yan, Honghao

    2018-02-01

    Using ferrocene, H2 and O2, Carbon nanomaterials were prepared with gaseous detonation (deflagration) method. The effects of H2 on the phase and morphology of carbon nanomaterials were studied by various proportions of H2 in the reaction. The prepared samples were characterized by x-ray diffractometer, transmission electron microscope and Raman spectrometer. The results show that hydrogen proportion has a great influence on the phase and morphology of carbon nanomaterials. The high hydrogen proportion leads to much unreacted hydrogen, which could protect the iron atom from oxidation of carbon and dilute the reactants contributing to uniform particle size. In addition, the graphitization degree of multi-walled carbon nanotubes, observed in samples with high H2 proportion, is high enough to see the lattice fringes, but the degree of graphitization of whole sample is lower than which fabricated with low H2 proportion, and it may result from the low energy generation.

  18. The role of carbon dioxide in chemoselective hydrogenation of halonitroaromatics over supported noble metal catalysts in supercritical carbon dioxide.

    PubMed

    Ichikawa, Shinichiro; Tada, Mizuki; Iwasawa, Yasuhiro; Ikariya, Takao

    2005-02-21

    Chemoselective hydrogenation of halogenated nitrobenzenes over Pt/C catalysts proceeds effectively in supercritical carbon dioxide (scCO2) to produce halogenated anilines with excellent selectivity; the rate of the hydrogenation of nitro groups is markedly enhanced in scCO2 compared to the neat reaction, and the dehalogenation reaction is significantly suppressed.

  19. Hydrogen Storage | Hydrogen and Fuel Cells | NREL

    Science.gov Websites

    research. An International Multi-Laboratory Investigation of Carbon-Based Hydrogen Sorbent Materials Carbon Nanotube Anions, Journal of Materials Research (2012) Manipulation of Hydrogen Binding Energy and Spectroscopy, Journal of Physical Chemistry C (2012) Reactions and Reversible Hydrogenation of Single-Walled

  20. Deuterium retention and release from molybdenum exposed to a Penning discharge

    NASA Astrophysics Data System (ADS)

    Causey, R. A.; Kunz, C. L.; Cowgill, D. F.

    2005-03-01

    Both molybdenum and tungsten are candidate materials for plasma-facing applications in fusion reactors. While tungsten has a higher melting point and a higher threshold for sputtering, it is a brittle material that is difficult to machine into shapes required for fusion applications. For this reason, molybdenum is now receiving serious consideration as an alternative for tungsten. If molybdenum is to be used as a plasma-facing material, the hydrogen retention and recycling characteristics must be known. In this report, we present experimental results on deuterium retention in molybdenum after exposure to a Penning discharge at temperatures from 573 to 773 K. D2+ ions with energies of 1.2 keV were implanted into the 50 mm diameter molybdenum samples at fluxes of 10 20 D/m 2 s. Thermal desorption spectroscopy was used to determine both the amount of retained deuterium and the release kinetics. Low retention values similar to those measured previously for tungsten were observed.

  1. Direct Evidence for Solid-like Hydrogen in a Nanoporous Carbon Hydrogen Storage Material at Supercritical Temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ting, Valeska P.; Ramirez-Cuesta, Anibal J.; Bimbo, Nuno

    Here in this paper we report direct physical evidence that confinement of molecular hydrogen (H 2) in an optimized nanoporous carbon results in accumulation of hydrogen with characteristics commensurate with solid H 2 at temperatures up to 67 K above the liquid vapor critical temperature of bulk H 2. This extreme densification is attributed to confinement of 112 molecules in the optimally sized micropores, and occurs at pressures as low as 0.02 MPa. The quantities of contained, solid-like H 2 increased with pressure and were directly evaluated using in situ inelastic neutron scattering and confirmed by analysis of gas sorptionmore » isotherms. The demonstration of the existence of solid-like H 2 challenges the existing assumption that supercritical hydrogen confined in nanopores has an upper limit of liquid H 2 density. Thus, this insight offers opportunities for the development of more accurate models for the evaluation and design of nanoporous materials for high capacity adsorptive hydrogen storage.« less

  2. Direct Evidence for Solid-like Hydrogen in a Nanoporous Carbon Hydrogen Storage Material at Supercritical Temperatures

    DOE PAGES

    Ting, Valeska P.; Ramirez-Cuesta, Anibal J.; Bimbo, Nuno; ...

    2015-07-14

    Here in this paper we report direct physical evidence that confinement of molecular hydrogen (H 2) in an optimized nanoporous carbon results in accumulation of hydrogen with characteristics commensurate with solid H 2 at temperatures up to 67 K above the liquid vapor critical temperature of bulk H 2. This extreme densification is attributed to confinement of 112 molecules in the optimally sized micropores, and occurs at pressures as low as 0.02 MPa. The quantities of contained, solid-like H 2 increased with pressure and were directly evaluated using in situ inelastic neutron scattering and confirmed by analysis of gas sorptionmore » isotherms. The demonstration of the existence of solid-like H 2 challenges the existing assumption that supercritical hydrogen confined in nanopores has an upper limit of liquid H 2 density. Thus, this insight offers opportunities for the development of more accurate models for the evaluation and design of nanoporous materials for high capacity adsorptive hydrogen storage.« less

  3. Nucleation of Hydrogen Deficient Carbon Clusters in Circumstellar Envelopes of Carbon Stars

    NASA Astrophysics Data System (ADS)

    Chiong, C. C.; Asvany, O.; Balucani, N.; Lee, Y. T.; Kaiser, R. I.

    2001-04-01

    Hydrogen deficient carbon clusters HCn and H2Cn are thought to resemble the crucial link between naked carbon clusters such as C2/C3, polycyclic aromatic hydrocarbons, and carbon rich interstellar/circumstellar grains. To fully understand the astrophysical significance of these grain nuclei condensation processes, it is of paramount significance to elucidate first detailed mechanism how these simple precursors are formed in outflow of carbon rich stars. Due to this importance, we initiated in our laboratory a systematic research program to investigate reactions of C2 and C3 clusters in their singlet X1Σg+ ground state with unsaturated hydrocarbons C2H2 and C2H4 employing the crossed molecular beam technique. These experiments yield the first doubly differential reactive cross section on the cluster versus H/H2 exchange and supply valuable information on the stepwise growth of carbon rich structures in extraterrestrial environments. Preliminary data analyses identify the CCCCH, CCCCH, and CCCCH2 isomers which were identified in the circumstellar shell of IRC+10216 together with hitherto unobserved interstellar n-C4H3, n-C5H3, and CCCCCH2 radicals.

  4. Gas phase hydrogen permeation in alpha titanium and carbon steels

    NASA Technical Reports Server (NTRS)

    Johnson, D. L.; Shah, K. K.; Reeves, B. H.; Gadgeel, V. L.

    1980-01-01

    Commercially pure titanium and heats of Armco ingot iron and steels containing from 0.008-1.23 w/oC were annealed or normalized and machined into hollow cylinders. Coefficients of diffusion for alpha-Ti and alpha-Fe were determined by the lag-time technique. Steady state permeation experiments yield first power pressure dependence for alpha-Ti and Sievert's law square root dependence for Armco iron and carbon steels. As in the case of diffusion, permeation data confirm that alpha-titanium is subject to at least partial phase boundary reaction control while the steels are purely diffusion controlled. The permeation rate in steels also decreases as the carbon content increases. As a consequence of Sievert's law, the computed hydrogen solubility decreases as the carbon content increases. This decreases in explained in terms of hydrogen trapping at carbide interfaces. Oxidizing and nitriding the surfaces of alpha-titanium membranes result in a decrease in the permeation rate for such treatment on the gas inlet surfaces but resulted in a slight increase in the rate for such treatment on the gas outlet surfaces. This is explained in terms of a discontinuous TiH2 layer.

  5. Fractography of the high temperature hydrogen attack of a medium carbon steel

    NASA Technical Reports Server (NTRS)

    Melson, H. G.; Moorhead, R. D.

    1975-01-01

    Microscopic fracture processes were studied which are associated with hydrogen attack of a medium carbon steel in a well-controlled, high-temperature, high-purity hydrogen environment. Exposure to a hydrogen pressure and temperature of 3.5 MN/m2 and 575 C was found to degrade room temperature tensile properties with increasing exposure time. After 408 hr, yield and ultimate strengths were reduced by more than 40 percent and elongation was reduced to less than 2 percent. Initial fissure formation was found to be associated with manganese rich particles, most probably manganese oxide, aligned in the microstructure during the rolling operation. Fissure growth was found to be associated with a reduction in carbide content of the microstructure and was inhibited by the depletion of carbon. The interior surfaces of sectioned fissures or bubbles exhibit both primary and secondary cracking by intergranular separation. The grain surfaces were rough and rounded, suggesting a diffusion-associated separation process. Specimens that failed at room temperature after exposure to hydrogen were found to exhibit mixed mode fracture having varying amounts of intergranular separation, dimple formation, and cleavage, depending on exposure time.

  6. Charge Modulation in Graphitic Carbon Nitride as a Switchable Approach to High-Capacity Hydrogen Storage.

    PubMed

    Tan, Xin; Kou, Liangzhi; Tahini, Hassan A; Smith, Sean C

    2015-11-01

    Electrical charging of graphitic carbon nitride nanosheets (g-C4 N3 and g-C3 N4 ) is proposed as a strategy for high-capacity and electrocatalytically switchable hydrogen storage. Using first-principle calculations, we found that the adsorption energy of H2 molecules on graphitic carbon nitride nanosheets is dramatically enhanced by injecting extra electrons into the adsorbent. At full hydrogen coverage, the negatively charged graphitic carbon nitride achieves storage capacities up to 6-7 wt %. In contrast to other hydrogen storage approaches, the storage/release occurs spontaneously once extra electrons are introduced or removed, and these processes can be simply controlled by switching on/off the charging voltage. Therefore, this approach promises both facile reversibility and tunable kinetics without the need of specific catalysts. Importantly, g-C4 N3 has good electrical conductivity and high electron mobility, which can be a very good candidate for electron injection/release. These predictions may prove to be instrumental in searching for a new class of high-capacity hydrogen storage materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Bond topography and nanostructure of hydrogenated fullerene-like carbon films: A comparative study

    NASA Astrophysics Data System (ADS)

    Wang, Yongfu; Gao, Kaixiong; Shi, Jing; Zhang, Junyan

    2016-09-01

    Fullerene-like nanostructural hydrogenated amorphous carbon (FL-C:H) films were prepared by dc- and pulse- plasma enhanced chemical vapor deposition technique (PECVD). Both the films exhibit relatively stresses (0.63 GPa) in spite of their FL features and nanostructural bonding configurations, especially the pentagonal carbon rings. The creation of pentagonal rings is not fully driven by thermodynamics, but is closely related to compressive stress determined by the ion bombardment at the discharged state of the pulse- and dc- discharged plasmas methods. The dc method leads to FL's basal planes which contain less cross-linkages, and causes amorphous strongly hydrogenated structures.

  8. HYDROGENATION OF POLYCYCLIC AROMATIC COMPOUNDS USING NI SUPPORT ON H-BETA ZEOLITE IN SUPERCRITICAL CARBON DIOXIDE

    EPA Science Inventory

    The primary rationale for use of supercritical carbon dioxide as a solvent in hydrogenation is the elimination of mass transfer limitations, through enhancement of the solubility of hydrogen at the reaction locus. Hydrogenation of anthracene was performed using NiHB-zeolite catal...

  9. Hydrogen storage properties of nano-structural carbon and metal hydrides composites

    NASA Astrophysics Data System (ADS)

    Miyaoka, Hiroki; Ichikawa, Takayuki; Isobe, Shigehito; Fujii, Hironobu

    2006-08-01

    Thermodynamic and structural properties of some ball-milled mixtures composed of the hydrogenated nanostructural carbon (C nanoH x) and metal hydride (MH; M=Li, Na, Mg and Ca) were examined from thermal desoroption mass spectroscopy and powder X-ray diffraction, respectively. The results showed that the hydrogen desorption temperatures are significantly lowered from those of each hydride (C nanoH x, MH) in the composites. This indicates that a new type of interaction exists between C nanoH x and MH, which destabilizes C-H and/or M-H bonding as well. Therefore, the above Metal-C-H system would be recognized as a new family of hydrogen storage materials.

  10. Does Aerobic Respiration Produce Carbon Dioxide or Hydrogen Ion and Bicarbonate?

    PubMed

    Swenson, Erik R

    2018-05-01

    Maintenance of intracellular pH is critical for clinical homeostasis. The metabolism of glucose, fatty acids, and amino acids yielding the generation of adenosine triphosphate in the mitochondria is accompanied by the production of acid in the Krebs cycle. Both the nature of this acidosis and the mechanism of its disposal have been argued by two investigators with a long-abiding interest in acid-base physiology. They offer different interpretations and views of the molecular mechanism of this intracellular pH regulation during normal metabolism. Dr. John Severinghaus has posited that hydrogen ion and bicarbonate are the direct end products in the Krebs cycle. In the late 1960s, he showed in brain and brain homogenate experiments that acetazolamide, a carbonic anhydrase inhibitor, reduces intracellular pH. This led him to conclude that hydrogen ion and bicarbonate are the end products, and the role of intracellular carbonic anhydrase is to rapidly generate diffusible carbon dioxide to minimize acidosis. Dr. Erik Swenson posits that carbon dioxide is a direct end product in the Krebs cycle, a more widely accepted view, and that acetazolamide prevents rapid intracellular bicarbonate formation, which can then codiffuse with carbon dioxide to the cell surface and there be reconverted for exit from the cell. Loss of this "facilitated diffusion of carbon dioxide" leads to intracellular acidosis as the still appreciable uncatalyzed rate of carbon dioxide hydration generates more protons. This review summarizes the available evidence and determines that resolution of this question will require more sophisticated measurements of intracellular pH with faster temporal resolution.

  11. Carbon-free hydrogen production from low rank coal

    NASA Astrophysics Data System (ADS)

    Aziz, Muhammad; Oda, Takuya; Kashiwagi, Takao

    2018-02-01

    Novel carbon-free integrated system of hydrogen production and storage from low rank coal is proposed and evaluated. To measure the optimum energy efficiency, two different systems employing different chemical looping technologies are modeled. The first integrated system consists of coal drying, gasification, syngas chemical looping, and hydrogenation. On the other hand, the second system combines coal drying, coal direct chemical looping, and hydrogenation. In addition, in order to cover the consumed electricity and recover the energy, combined cycle is adopted as addition module for power generation. The objective of the study is to find the best system having the highest performance in terms of total energy efficiency, including hydrogen production efficiency and power generation efficiency. To achieve a thorough energy/heat circulation throughout each module and the whole integrated system, enhanced process integration technology is employed. It basically incorporates two core basic technologies: exergy recovery and process integration. Several operating parameters including target moisture content in drying module, operating pressure in chemical looping module, are observed in terms of their influence to energy efficiency. From process modeling and calculation, two integrated systems can realize high total energy efficiency, higher than 60%. However, the system employing coal direct chemical looping represents higher energy efficiency, including hydrogen production and power generation, which is about 83%. In addition, optimum target moisture content in drying and operating pressure in chemical looping also have been defined.

  12. Single-wall carbon nanotube-based proton exchange membrane assembly for hydrogen fuel cells.

    PubMed

    Girishkumar, G; Rettker, Matthew; Underhile, Robert; Binz, David; Vinodgopal, K; McGinn, Paul; Kamat, Prashant

    2005-08-30

    A membrane electrode assembly (MEA) for hydrogen fuel cells has been fabricated using single-walled carbon nanotubes (SWCNTs) support and platinum catalyst. Films of SWCNTs and commercial platinum (Pt) black were sequentially cast on a carbon fiber electrode (CFE) using a simple electrophoretic deposition procedure. Scanning electron microscopy and Raman spectroscopy showed that the nanotubes and the platinum retained their nanostructure morphology on the carbon fiber surface. Electrochemical impedance spectroscopy (EIS) revealed that the carbon nanotube-based electrodes exhibited an order of magnitude lower charge-transfer reaction resistance (R(ct)) for the hydrogen evolution reaction (HER) than did the commercial carbon black (CB)-based electrodes. The proton exchange membrane (PEM) assembly fabricated using the CFE/SWCNT/Pt electrodes was evaluated using a fuel cell testing unit operating with H(2) and O(2) as input fuels at 25 and 60 degrees C. The maximum power density obtained using CFE/SWCNT/Pt electrodes as both the anode and the cathode was approximately 20% better than that using the CFE/CB/Pt electrodes.

  13. The Potential Role Played by the Fullerene-Like Structures of Interstellar Carbon Dust in the Formation of Molecular Hydrogen in Space

    NASA Astrophysics Data System (ADS)

    Cataldo, Franco; Iglesias-Groth, Susana

    After a general introduction to the problem of formation of molecular hydrogen from atomic hydrogen in the interstellar medium and in the dense molecular clouds in particular, and after the explanation of the key role played by the surfaces on this process, it is proposed that the most suitable carbon surface for the formation of molecular hydrogen (from the radiative association process of atomic hydrogen) can be represented by carbon black rather than by graphite. Furthermore, it is proposed that the fullerene-like structures present in the carbon black graphene sheets are the reaction sites where molecular hydrogen may be formed.

  14. Study of the potential for improving the economics of hydrogen liquefaction through the use of centrifugal compressors and the addition of a heavy water plant

    NASA Technical Reports Server (NTRS)

    Baker, C. R.

    1977-01-01

    An approach to the liquefaction of hydrogen was developed which permits the application of standard centrifugal compressors in place of reciprocating machines. A second fluid, such as propane, is added to the hydrogen prior to compression to form a mixture having a molecular weight much greater than that of hydrogen alone, so that a standard centrifugal compressor can be used. After compression, the mixture is cooled to cryogenic temperature levels where the propane condenses out of the mixture and is separated as a liquid. Since a small amount of deuterium is produced during hydrogen liquefaction, the potential of recovering deuterium and selling it as a co-product was investigated. Deuterium, in the form of heavy water, can be used in certain nuclear reactors as a neutron moderator to reduce the neutron velocity and enhance the probability of neutron collision with uranium nucleii.

  15. EFFECT OF DEUTERIUM OXIDE ON THE REPRODUCTIVE POTENTIAL OF MICE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Czajka, D.M.; Finkel, A.J.

    1960-11-25

    Replacement of hydrogen with deuterium by the administration of 25% D/ sub 2/O in the drinkng water resulted in certain alterations in the reproductive potential of female mice, These changes included an apparent decrease in the number of pregnancies carried close to term, an increase in the incidence of wholly nonviable litters, and a decrease in the survival of newborn mice. Examination of uterine contents late in pregnancy, however, revealed that neither the incidence of pregnancy nor the mean number of implanted embryos per pregnant female was correlated with the duration of deuteration. Reduction of the incidence of viable newbornmore » mice in part reflected the increase in nonviability of fetuses examined in utero late in gestation and in part may have been the result of maternal cannibalism. Reduction of fetal viability was greatest when the dams had been substantially deuterated at the time of implantation of the fetus, which occurred at about the fifth day after mating. When the administration of deuterium to female mice preceded mating by 1 week, the higher the level of deuteration, the lower was the total fetal viability. A critical level appeared to exist here between 25 and 30 at.% deuterium in the drinking water, above which fetal viability ceased. The reduction of mean litter size and of viability of the newbern was at least partly reversible by restoring the dams to ordinary drinking water. (auth)« less

  16. Hydrogen/deuterium (H/D) exchange of gelatinized starch studied by two-dimensional (2D) near-infrared (NIR) correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Shinzawa, Hideyuki; Mizukado, Junji

    2018-05-01

    Hydrogen/deuterium (H/D) exchange of gelatinized starch was probed by in-situ near-infrared (NIR) monitoring coupled with two-dimensional (2D) correlation spectroscopy. Gelatinized starch undergoes spontaneous H/D exchange in D2O. During the substitution, the exchange rate essentially becomes different depending on solvent accessibility of various parts of the molecule. Thus, by analyzing the change in the NIR feature observed during the substitution, it becomes possible to sort out local structure and dynamics of the system. 2D correlation analysis of the time-dependent NIR spectra reveals the presence of different local structure of the starch, each having different solvent accessibility. For example, during the H/D exchange, the D2O is first absorbed by starch molecules especially around the surface area between the starch and water, where the water molecules are weakly interacted with the starch molecules. This absorption is quickly followed by the development of HDO species. Further absorption of the D2O results in the penetration of the molecules inside the starch and eventually develops the relatively strong interaction between the HDO and starch molecules because of the presence of dominant starch molecules.

  17. Molecular metal–Nx centres in porous carbon for electrocatalytic hydrogen evolution

    PubMed Central

    Liang, Hai-Wei; Brüller, Sebastian; Dong, Renhao; Zhang, Jian; Feng, Xinliang; Müllen, Klaus

    2015-01-01

    Replacement of precious platinum with efficient and low-cost catalysts for electrocatalytic hydrogen evolution at low overpotentials holds tremendous promise for clean energy devices. Here we report a novel type of robust cobalt–nitrogen/carbon catalyst for the hydrogen evolution reaction (HER) that is prepared by the pyrolysis of cobalt–N4 macrocycles or cobalt/o-phenylenediamine composites and using silica colloids as a hard template. We identify the well-dispersed molecular CoNx sites on the carbon support as the active sites responsible for the HER. The CoNx/C catalyst exhibits extremely high turnover frequencies per cobalt site in acids, for example, 0.39 and 6.5 s−1 at an overpotential of 100 and 200 mV, respectively, which are higher than those reported for other scalable non-precious metal HER catalysts. Our results suggest the great promise of developing new families of non-precious metal HER catalysts based on the controlled conversion of homogeneous metal complexes into solid-state carbon catalysts via economically scalable protocols. PMID:26250525

  18. Molecular metal-Nx centres in porous carbon for electrocatalytic hydrogen evolution

    NASA Astrophysics Data System (ADS)

    Liang, Hai-Wei; Brüller, Sebastian; Dong, Renhao; Zhang, Jian; Feng, Xinliang; Müllen, Klaus

    2015-08-01

    Replacement of precious platinum with efficient and low-cost catalysts for electrocatalytic hydrogen evolution at low overpotentials holds tremendous promise for clean energy devices. Here we report a novel type of robust cobalt-nitrogen/carbon catalyst for the hydrogen evolution reaction (HER) that is prepared by the pyrolysis of cobalt-N4 macrocycles or cobalt/o-phenylenediamine composites and using silica colloids as a hard template. We identify the well-dispersed molecular CoNx sites on the carbon support as the active sites responsible for the HER. The CoNx/C catalyst exhibits extremely high turnover frequencies per cobalt site in acids, for example, 0.39 and 6.5 s-1 at an overpotential of 100 and 200 mV, respectively, which are higher than those reported for other scalable non-precious metal HER catalysts. Our results suggest the great promise of developing new families of non-precious metal HER catalysts based on the controlled conversion of homogeneous metal complexes into solid-state carbon catalysts via economically scalable protocols.

  19. Ion Mobility Spectrometry-Hydrogen Deuterium Exchange Mass Spectrometry of Anions: Part 1. Peptides to Proteins

    NASA Astrophysics Data System (ADS)

    Donohoe, Gregory C.; Khakinejad, Mahdiar; Valentine, Stephen J.

    2015-04-01

    Ion mobility spectrometry (IMS) coupled with hydrogen deuterium exchange (HDX)-mass spectrometry (MS) has been used to study the conformations of negatively-charged peptide and protein ions. Results are presented for ion conformers of angiotensin 1, a synthetic peptide (SP), bovine insulin, ubiquitin, and equine cytochrome c. In general, the SP ion conformers demonstrate a greater level of HDX efficiency as a greater proportion of the sites undergo HDX. Additionally, these ions exhibit the fastest rates of exchange. Comparatively, the angiotensin 1 ions exhibit a lower rate of exchange and HDX level presumably because of decreased accessibility of exchange sites by charge sites. The latter are likely confined to the peptide termini. Insulin ions show dramatically reduced HDX levels and exchange rates, which can be attributed to decreased conformational flexibility resulting from the disulfide bonds. For the larger ubiquitin and protein ions, increased HDX is observed for larger ions of higher charge state. For ubiquitin, a conformational transition from compact to more elongated species (from lower to higher charge states) is reflected by an increase in HDX levels. These results can be explained by a combination of interior site protection by compact conformers as well as decreased access by charge sites. The elongated cytochrome c ions provide the largest HDX levels where higher values correlate with charge state. These results are consistent with increased exchange site accessibility by additional charge sites. The data from these enhanced IMS-HDX experiments are described in terms of charge site location, conformer rigidity, and interior site protection.

  20. Variability of Deuterium Fractionation Associated With Soil Uptake of Atmospheric Molecular Hydrogen

    NASA Astrophysics Data System (ADS)

    Rahn, T.; Randerson, J. T.; Eiler, J.

    2005-12-01

    Molecular hydrogen (H2) is the second most abundant reduced gas in the atmosphere (after methane) with a globally averaged mixing ratio of ~530 nmol/mol. Its largest sources are photochemical oxidation of methane and non-methane hydrocarbons with other recognized sources that include biomass burning, fossil fuel burning, nitrogen fixation, and ocean degassing. These sources are balanced by reaction of H2 with hydroxyl radicals (~25%) in the atmosphere and by deposition at the terrestrial soil surface (~75%). As with other atmospheric trace gases, the stable isotopic content of H2 has the potential to help quantify the various aspects of its production and destruction. The average deuterium content of H2 is dDH2 = ~130 ‰ relative to Standard Mean Ocean Water. While recent studies have begun to elucidate the deuterium content of the individual sources of H2 and the fractionation associated with hydroxyl oxidation has been well established in the laboratory, there are still few data documenting the fractionation associated with soil uptake. We measured the fractionation associated with soil uptake in May, June and August of 2002 in three upland ecosystems that were part of an Alaskan fire chronosequence. Fire occurred at these sites in 1999, 1987, and ~1920. Grasses and herbaceous vegetation establish initially after fire and are gradually replaced by deciduous trees and finally by evergreen trees and moss. All three sites were in interior Alaska near the town of Delta Junction (63° 54'N, 145° 40'W). Fluxes were measured with a Plexiglas flux chamber (8 liter volume) with a manifold of four ~400 ml double-valved glass flasks in parallel and a diaphragm pump for circulation (5 SLPM). Flasks were continuously flushed by the circulating system and isolated sequentially; they were then returned to the laboratory at Caltech for subsequent analysis. In the field, the chamber was seated on Plexiglas collars that were installed prior to initiating the study and left in

  1. Polymer formulations for gettering hydrogen

    DOEpatents

    Shepodd, T.J.; Whinnery, L.L.

    1998-11-17

    A novel composition is described comprising organic polymer molecules having carbon-carbon double bonds, for removing hydrogen from the atmosphere within enclosed spaces. Organic polymers molecules containing carbon-carbon double bonds throughout their structures, preferably polybutadiene, polyisoprene and derivatives thereof, intimately mixed with an insoluble catalyst composition, comprising a hydrogenation catalyst and a catalyst support, preferably Pd supported on carbon, provide a hydrogen getter composition useful for removing hydrogen from enclosed spaces even in the presence of contaminants such as common atmospheric gases, water vapor, carbon dioxide, ammonia, oil mists, and water. The hydrogen getter composition disclosed herein is particularly useful for removing hydrogen from enclosed spaces containing potentially explosive mixtures of hydrogen and oxygen. 1 fig.

  2. Polymer system for gettering hydrogen

    DOEpatents

    Shepodd, Timothy Jon; Whinnery, LeRoy L.

    2000-01-01

    A novel composition comprising organic polymer molecules having carbon-carbon double bonds, for removing hydrogen from the atmosphere within enclosed spaces. Organic polymers molecules containing carbon-carbon double bonds throughout their structures, preferably polybutadiene, polyisoprene and derivatives thereof, intimately mixed with an insoluble catalyst composition, comprising a hydrogenation catalyst and a catalyst support, preferably Pd supported on carbon, provide a hydrogen getter composition useful for removing hydrogen from enclosed spaces even in the presence of contaminants such as common atmospheric gases, water vapor, carbon dioxide, ammonia, oil mists, and water. The hydrogen getter composition disclosed herein is particularly useful for removing hydrogen from enclosed spaces containing potentially explosive mixtures of hydrogen and oxygen.

  3. Polymer formulations for gettering hydrogen

    DOEpatents

    Shepodd, Timothy Jon; Whinnery, LeRoy L.

    1998-11-17

    A novel composition comprising organic polymer molecules having carbon-carbon double bonds, for removing hydrogen from the atmosphere within enclosed spaces. Organic polymers molecules containing carbon-carbon double bonds throughout their structures, preferably polybutadiene, polyisoprene and derivatives thereof, intimately mixed with an insoluble catalyst composition, comprising a hydrogenation catalyst and a catalyst support, preferably Pd supported on carbon, provide a hydrogen getter composition useful for removing hydrogen from enclosed spaces even in the presence of contaminants such as common atmospheric gases, water vapor, carbon dioxide, ammonia, oil mists, and water. The hydrogen getter composition disclosed herein is particularly useful for removing hydrogen from enclosed spaces containing potentially explosive mixtures of hydrogen and oxygen.

  4. Imidazole C-2 Hydrogen/Deuterium Exchange Reaction at Histidine for Probing Protein Structure and Function with MALDI Mass Spectrometry

    PubMed Central

    Hayashi, Naoka; Kuyama, Hiroki; Nakajima, Chihiro; Kawahara, Kazuki; Miyagi, Masaru; Nishimura, Osamu; Matsuo, Hisayuki; Nakazawa, Takashi

    2015-01-01

    We present a mass spectrometric method for analyzing protein structure and function, based on the imidazole C-2 or histidine Cε1 hydrogen/deuterium (H/D) exchange reaction, which is intrinsically second order with respect to the concentrations of the imidazolium cation and OD− in D2O. The second-order rate constant (k2) of this reaction was calculated from the pH-dependency of the pseudo-first-order rate constant (kφ) obtained from the change of average mass ΔMr (0 ≤ ΔMr < 1) of a peptide fragment containing a defined histidine residue at incubation time (t) such that kφ = − [ln(1−ΔMr)]/t. We preferred using k2 rather than kφ because k2max (maximal value of k2) was empirically related to pKa as illustrated with a Brønsted plot: logk2max=-0.7pKa+α (α is an arbitrary constant), so that we could analyze the effect of structure on the H/D-exchange rate in terms of log(k2max/k2) representing the deviation of k2 from k2max. In the catalytic site of bovine ribonuclease A, His12 showed much larger change in log(k2max/k2) compared with His119 upon binding with cytidine 3′-monophosphate, as anticipated from the X-ray structures and the possible change in solvent accessibility. However, there is a need of considering the hydrogen bonds of the imidazole group with non-dissociable groups to interpret an extremely slow H/D exchange rate of His48 in partially solvent-exposed situation. PMID:24606199

  5. Pressure-induced orientational glass phase in molecular para-hydrogen.

    PubMed

    Schelkacheva, T I; Tareyeva, E E; Chtchelkatchev, N M

    2009-02-01

    We propose a theoretical description of a possible orientational glass transition in solid molecular para-hydrogen and ortho-deuterium under pressure supposing that they are mixtures of J=0 and J=2 states of molecules. The theory uses the basic concepts and methods of standard spin-glass theory. We expect our orientational glass to correspond to the II' phase of the high-pressure hydrogen phase diagram.

  6. Neutron Structure of Human Carbonic Anhydrase II: Implications for Proton Transfer†

    PubMed Central

    Fisher, S. Zoë; Kovalevsky, Andrey Y.; Domsic, John F.; Mustyakimov, Marat; McKenna, Robert; Silverman, David N.; Langan, Paul A.

    2010-01-01

    Human carbonic anhydrase II (HCA II) catalyzes the reversible hydration of carbon dioxide to form bicarbonate and a proton. Despite many high-resolution X-ray crystal structures, mutagenesis, and kinetic data, the structural details of the active site, especially the proton transfer pathway, are unclear. A large HCA II crystal was prepared at pH 9.0 and subjected to vapor H–D exchange to replace labile hydrogens with deuteriums. Neutron diffraction studies were conducted at the Protein Crystallography Station at Los Alamos National Laboratory. The structure to 2.0 Å resolution reveals several interesting active site features: (1) the Zn-bound solvent appearing to be predominantly a D2O molecule, (2) the orientation and hydrogen bonding pattern of solvent molecules in the active site cavity, (3) the side chain of His64 being unprotonated (neutral) and predominantly in an inward conformation pointing toward the zinc, and (4) the phenolic side chain of Tyr7 appearing to be unprotonated. The implications of these details are discussed, and a proposed mechanism for proton transfer is presented. PMID:20025241

  7. Deuterium REDOR: Principles and Applications for Distance Measurements

    NASA Astrophysics Data System (ADS)

    Sack, I.; Goldbourt, A.; Vega, S.; Buntkowsky, G.

    1999-05-01

    The application of short composite pulse schemes ([figure] and [figure]) to the rotational echo double-resonance (REDOR) spectroscopy ofX-2H (X: spin{1}/{2}, observed) systems with large deuterium quadrupolar interactions has been studied experimentally and theoretically and compared with simple 180° pulse schemes. The basic properties of the composite pulses on the deuterium nuclei have been elucidated, using average Hamiltonian theory, and exact simulations of the experiments have been achieved by stepwise integration of the equation of motion of the density matrix. REDOR experiments were performed on15N-2H in doubly labeled acetanilide and on13C-2H in singly2H-labeled acetanilide. The most efficient REDOR dephasing was observed when [figure] composite pulses were used. It is found that the dephasing due to simple 180° deuterium pulses is about a factor of 2 less efficient than the dephasing due to the composite pulse sequences and thus the range of couplings observable byX-2H REDOR is enlarged toward weaker couplings, i.e., larger distances. From these experiments the2H-15N dipolar coupling between the amino deuteron and the amino nitrogen and the2H-13C dipolar couplings between the amino deuteron and the α and β carbons have been elucidated and the corresponding distances have been determined. The distance data from REDOR are in good agreement with data from X-ray and neutron diffraction, showing the power of the method.

  8. Effects of molecular dissociation on the hydrogen equation of state

    NASA Astrophysics Data System (ADS)

    Bonev, Stanimir; Schwegler, Eric; Galli, Giulia; Gygi, Francois

    2002-03-01

    It has been suggested recently(François Gygi and G. Galli, submitted to Phys. Rev. Lett.) that the physical mechanism behind the larger compressibility of liquid deuterium observed in laser shock experiments as compared to ab initio simulations may be related to shock-induced electronic excitations. A possible result of such non-adiabatic processes is hindering of the molecular dissociation. This has motivated us to study the importance of molecular dissociation on the hydrogen equation of state. To this end, we have carried out ab initio molecular dynamics simulations of liquid deuterium where intramolecular dissociation is prevented by the use of bond length contraints. Simulations at both fixed thermodynamic conditions and dynamical simulations of shocked deuterium will be discussed.

  9. Inhalation toxicology. IX., Times-to-incapacitation for rats exposed to carbon monoxide alone, to hydrogen cyanide alone, and to mixtures of carbon monoxide and hydrogen cyanide.

    DOT National Transportation Integrated Search

    1989-01-01

    Laboratory rats were exposed to experimental atmospheres that contained a) carbon monoxide in air, b) hydrogen cyanide in air, and c) mixtures of CO and HCN in air. The toxic potency of each of the three types of environments was evaluated toxico-kin...

  10. Stable hydrogen and carbon isotope ratios of extractable hydrocarbons in the Murchison meteorite

    NASA Technical Reports Server (NTRS)

    Krishnamurthy, R. V.; Epstein, S.; Pizzarello, S.; Cronin, J. R.; Yuen, G. U.

    1991-01-01

    A fairly fool-proof method to ensure that the compounds isolated from meteorites are truly part of the meteorites and not an artifact introduced by exposure to the terrestrial environment, storage, or handling is presented. The stable carbon and hydrogen isotope ratios in several of the chemical compounds extracted from the Murchison meteorite were measured. The results obtained by studying the amino acids in this meteorite gave very unusual hydrogen and carbon isotope ratios. The technique was extended to the different classes of hydrocarbons and the hydrocarbons were isolated using a variety of separation techniques. The results and methods used in this investigation are described in this two page paper.

  11. Unexpected regioselective carbon-hydrogen bond activation/cyclization of indolyl aldehydes or ketones with alkynes to benzo-fused oxindoles.

    PubMed

    Liu, Xingyan; Li, Gaocan; Song, Feijie; You, Jingsong

    2014-09-25

    Rhodium-catalyzed carbon-hydrogen bond activation has attracted great interest in the construction of carbon-carbon and carbon-heteroatom bonds. In recent years, transition metal-mediated oxygen transposition through a 'dehydration-rehydration' process has been considered as a promising strategy towards oxygen-functionalized compounds. Here we describe an unexpected rhodium-catalyzed regioselective carbon-hydrogen bond activation/cyclization of easily available indolyl aldehydes or ketones with alkynes to afford benzo-fused oxindoles, involving the sequential carbonyl-assisted carbon-hydrogen activation of the indole ring at the 4-position, [4+2] cyclization, aromatization via dehydration, nucleophilic addition of water to iminium and oxidation. Isotopic labelling experiments disclose the occurrence of apparent oxygen transposition via dehydration-rehydration from the indolyl-3-carbonyl group to the 2-position of pyrrole to forge a new carbonyl bond. The tandem reaction has been used as the key step for the concise synthesis of priolines, a type of alkaloid isolated from the roots of Salvia prionitis.

  12. Reaction engineering for materials processing in space: Reduction of ilmenite by hydrogen and carbon monoxide

    NASA Technical Reports Server (NTRS)

    Zhao, Y.; Shadman, F.

    1991-01-01

    Oxygen is a consumable material which needs to be produced continuously in most space missions. Its use for propulsion as well as life support makes oxygen one of the largest volume chemicals to be produced in space. Production of oxygen from lunar materials is of particular interest and is very attractive possibility. The kinetics and mechanism of reduction of ilmenite by carbon monoxide and hydrogen at 800 to 1100 C were investigated. The temporal profiles of conversion for carbon monoxide have a sigmoidal shape and indicate the presence of three different stages (induction, acceleration, and deceleration) during the reduction reaction. The apparent activation energy decreases from 18 kcal/mole at 10 percent conversion to 10 kcal/mole at 50 percent conversion. The reaction is first order with respect to carbon monoxide under the experimental conditions studied. Both SEM and EDX analysis show that the diffusion of Fe product away from the reaction front and through the TiO2 phase, followed by the nucleation and growth of a separate Fe phase are important steps affecting the process kinetics. The results from hydrogen reduction show that the mechanism of ilmenite reduction by hydrogen is similar to that by carbon monoxide. However, the titanium dioxide can be further reduced by hydrogen at 800 to 1000 C. The detailed comparison and theoretical modeling of both reduction processes is presented.

  13. Direct synthesis of formic acid from carbon dioxide by hydrogenation in acidic media

    PubMed Central

    Moret, Séverine; Dyson, Paul J.; Laurenczy, Gábor

    2014-01-01

    The chemical transformation of carbon dioxide into useful products becomes increasingly important as CO2 levels in the atmosphere continue to rise as a consequence of human activities. In this article we describe the direct hydrogenation of CO2 into formic acid using a homogeneous ruthenium catalyst, in aqueous solution and in dimethyl sulphoxide (DMSO), without any additives. In water, at 40 °C, 0.2 M formic acid can be obtained under 200 bar, however, in DMSO the same catalyst affords 1.9 M formic acid. In both solvents the catalysts can be reused multiple times without a decrease in activity. Worldwide demand for formic acid continues to grow, especially in the context of a renewable energy hydrogen carrier, and its production from CO2 without base, via the direct catalytic carbon dioxide hydrogenation, is considerably more sustainable than the existing routes. PMID:24886955

  14. Direct synthesis of formic acid from carbon dioxide by hydrogenation in acidic media.

    PubMed

    Moret, Séverine; Dyson, Paul J; Laurenczy, Gábor

    2014-06-02

    The chemical transformation of carbon dioxide into useful products becomes increasingly important as CO2 levels in the atmosphere continue to rise as a consequence of human activities. In this article we describe the direct hydrogenation of CO2 into formic acid using a homogeneous ruthenium catalyst, in aqueous solution and in dimethyl sulphoxide (DMSO), without any additives. In water, at 40 °C, 0.2 M formic acid can be obtained under 200 bar, however, in DMSO the same catalyst affords 1.9 M formic acid. In both solvents the catalysts can be reused multiple times without a decrease in activity. Worldwide demand for formic acid continues to grow, especially in the context of a renewable energy hydrogen carrier, and its production from CO2 without base, via the direct catalytic carbon dioxide hydrogenation, is considerably more sustainable than the existing routes.

  15. Biological conversion of carbon dioxide and hydrogen into liquid fuels and industrial chemicals.

    PubMed

    Hawkins, Aaron S; McTernan, Patrick M; Lian, Hong; Kelly, Robert M; Adams, Michael W W

    2013-06-01

    Non-photosynthetic routes for biological fixation of carbon dioxide into valuable industrial chemical precursors and fuels are moving from concept to reality. The development of 'electrofuel'-producing microorganisms leverages techniques in synthetic biology, genetic and metabolic engineering, as well as systems-level multi-omic analysis, directed evolution, and in silico modeling. Electrofuel processes are being developed for a range of microorganisms and energy sources (e.g. hydrogen, formate, electricity) to produce a variety of target molecules (e.g. alcohols, terpenes, alkenes). This review examines the current landscape of electrofuel projects with a focus on hydrogen-utilizing organisms covering the biochemistry of hydrogenases and carbonic anhydrases, kinetic and energetic analyses of the known carbon fixation pathways, and the state of genetic systems for current and prospective electrofuel-producing microorganisms. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Measurement of gluconeogenesis using glucose fragments and mass spectrometry after ingestion of deuterium oxide.

    PubMed

    Chacko, Shaji K; Sunehag, Agneta L; Sharma, Susan; Sauer, Pieter J J; Haymond, Morey W

    2008-04-01

    We report a new method to measure the fraction of glucose derived from gluconeogenesis using gas chromatography-mass spectrometry and positive chemical ionization. After ingestion of deuterium oxide by subjects, glucose derived from gluconeogenesis is labeled with deuterium. Our calculations of gluconeogenesis are based on measurements of the average enrichment of deuterium on carbon 1, 3, 4, 5, and 6 of glucose and the deuterium enrichment in body water. In a sample from an adult volunteer after ingestion of deuterium oxide, fractional gluconeogenesis using the "average deuterium enrichment method" was 48.3 +/- 0.5% (mean +/- SD) and that with the C-5 hexamethylenetetramine (HMT) method by Landau et al. (Landau BR, Wahren J, Chandramouli V, Schumann WC, Ekberg K, Kalhan SC; J Clin Invest 98: 378-385, 1996) was 46.9 +/- 5.4%. The coefficient of variation of 10 replicate analyses using the new method was 1.0% compared with 11.5% for the C-5 HMT method. In samples derived from an infant receiving total parenteral nutrition, fractional gluconeogenesis was 13.3 +/- 0.3% using the new method and 13.7 +/- 0.8% using the C-5 HMT method. Fractional gluconeogenesis measured in six adult volunteers after 66 h of continuous fasting was 83.7 +/- 2.3% using the new method and 84.2 +/- 5.0% using the C-5 HMT method. In conclusion, the average deuterium enrichment method is simple, highly reproducible, and cost effective. Furthermore, it requires only small blood sample volumes. With the use of an additional tracer, glucose rate of appearance can also be measured during the same analysis. Thus the new method makes measurements of gluconeogenesis available and affordable to large numbers of investigators under conditions of low and high fractional gluconeogenesis ( approximately 10 to approximately 90) in all subject populations.

  17. In-situ neutron imaging of hydrogenous fuels in combustion generated porous carbons under dynamic and steady state pressure conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ossler, Frederik; Santodonato, Louis J.; Bilheux, Hassina Z.

    Here, we report results from experiments where we characterize the surface properties of soot particles interacting with high-pressure methane. We also found considerable differences in behavior of the soot material between static and dynamic pressure conditions that can be explained by multiscale correlations in the dynamics, from the micro to macro of the porous fractal-like carbon matrix. The measurements were possible utilizing cold neutron imaging of methane mixed with combustion generated carbon (soot) inside steel cells. The studies were performed under static and dynamic pressure conditions in the range 10-90 bar, and are of interest for applications of energy storagemore » of hydrogenous fuels. The very high cross sections for neutrons compared to hard X-ray photons, enabled us to find considerable amounts of native hydrogen in the soot and to see and quantify the presence of hydrogen atoms in the carbon soot matrix under different pressure conditions. Our work lays the base for more detailed in-situ investigations on the interaction of porous carbon materials with hydrogen in practical environments for hydrogen and methane storage.« less

  18. In-situ neutron imaging of hydrogenous fuels in combustion generated porous carbons under dynamic and steady state pressure conditions

    DOE PAGES

    Ossler, Frederik; Santodonato, Louis J.; Bilheux, Hassina Z.

    2017-02-12

    Here, we report results from experiments where we characterize the surface properties of soot particles interacting with high-pressure methane. We also found considerable differences in behavior of the soot material between static and dynamic pressure conditions that can be explained by multiscale correlations in the dynamics, from the micro to macro of the porous fractal-like carbon matrix. The measurements were possible utilizing cold neutron imaging of methane mixed with combustion generated carbon (soot) inside steel cells. The studies were performed under static and dynamic pressure conditions in the range 10-90 bar, and are of interest for applications of energy storagemore » of hydrogenous fuels. The very high cross sections for neutrons compared to hard X-ray photons, enabled us to find considerable amounts of native hydrogen in the soot and to see and quantify the presence of hydrogen atoms in the carbon soot matrix under different pressure conditions. Our work lays the base for more detailed in-situ investigations on the interaction of porous carbon materials with hydrogen in practical environments for hydrogen and methane storage.« less

  19. The solubility of hydrogen and deuterium in alloyed, unalloyed and impure plutonium metal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richmond, Scott; Bridgewater, Jon S; Ward, John W

    2010-01-01

    Hydrogen is exothermically absorbed in many transition metals, all rare earths and the actinides. The hydrogen gas adsorbs, dissociates and diffuses into these metals as atomic hydrogen. Absorbed hydrogen is generally detrimental to Pu, altering its properties and greatly enhancing corrosion. Measuring the heat of solution of hydrogen in Pu and its alloys provides significant insight into the thermodynamics driving these changes. Hydrogen is present in all Pu metal unless great care is taken to avoid it. Heats of solution and formation are provided along with evidence for spinodal decomposition.

  20. Design and Validation of In-Source Atmospheric Pressure Photoionization Hydrogen/Deuterium Exchange Mass Spectrometry with Continuous Feeding of D2O.

    PubMed

    Acter, Thamina; Lee, Seulgidaun; Cho, Eunji; Jung, Maeng-Joon; Kim, Sunghwan

    2018-01-01

    In this study, continuous in-source hydrogen/deuterium exchange (HDX) atmospheric pressure photoionization (APPI) mass spectrometry (MS) with continuous feeding of D 2 O was developed and validated. D 2 O was continuously fed using a capillary line placed on the center of a metal plate positioned between the UV lamp and nebulizer. The proposed system overcomes the limitations of previously reported APPI HDX-MS approaches where deuterated solvents were premixed with sample solutions before ionization. This is particularly important for APPI because solvent composition can greatly influence ionization efficiency as well as the solubility of analytes. The experimental parameters for APPI HDX-MS with continuous feeding of D 2 O were optimized, and the optimized conditions were applied for the analysis of nitrogen-, oxygen-, and sulfur-containing compounds. The developed method was also applied for the analysis of the polar fraction of a petroleum sample. Thus, the data presented in this study clearly show that the proposed HDX approach can serve as an effective analytical tool for the structural analysis of complex mixtures. Graphical abstract ᅟ.

  1. Design and Validation of In-Source Atmospheric Pressure Photoionization Hydrogen/Deuterium Exchange Mass Spectrometry with Continuous Feeding of D2O

    NASA Astrophysics Data System (ADS)

    Acter, Thamina; Lee, Seulgidaun; Cho, Eunji; Jung, Maeng-Joon; Kim, Sunghwan

    2018-01-01

    In this study, continuous in-source hydrogen/deuterium exchange (HDX) atmospheric pressure photoionization (APPI) mass spectrometry (MS) with continuous feeding of D2O was developed and validated. D2O was continuously fed using a capillary line placed on the center of a metal plate positioned between the UV lamp and nebulizer. The proposed system overcomes the limitations of previously reported APPI HDX-MS approaches where deuterated solvents were premixed with sample solutions before ionization. This is particularly important for APPI because solvent composition can greatly influence ionization efficiency as well as the solubility of analytes. The experimental parameters for APPI HDX-MS with continuous feeding of D2O were optimized, and the optimized conditions were applied for the analysis of nitrogen-, oxygen-, and sulfur-containing compounds. The developed method was also applied for the analysis of the polar fraction of a petroleum sample. Thus, the data presented in this study clearly show that the proposed HDX approach can serve as an effective analytical tool for the structural analysis of complex mixtures. [Figure not available: see fulltext.

  2. Plasma-deposited amorphous hydrogenated carbon films and their tribological properties

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Pouch, John J.; Alterovitz, Samuel A.

    1989-01-01

    Recent work on the properties of diamondlike carbon films and their dependence on preparation conditions are reviewed. The results of the study indicate that plasma deposition enables one to deposit a variety of amorphous hydrogenated carbon (a-C:H ) films exhibiting more diamondlike behavior to more graphitic behavior. The plasma-deposited a-C:H can be effectively used as hard, wear-resistant, and protective lubricating films on ceramic materials such as Si(sub 3)N(sub 4) under a variety of environmental conditions such as moist air, dry nitrogrn, and vacuum.

  3. Theoretical realization of cluster-assembled hydrogen storage materials based on terminated carbon atomic chains.

    PubMed

    Liu, Chun-Sheng; An, Hui; Guo, Ling-Ju; Zeng, Zhi; Ju, Xin

    2011-01-14

    The capacity of carbon atomic chains with different terminations for hydrogen storage is studied using first-principles density functional theory calculations. Unlike the physisorption of H(2) on the H-terminated chain, we show that two Li (Na) atoms each capping one end of the odd- or even-numbered carbon chain can hold ten H(2) molecules with optimal binding energies for room temperature storage. The hybridization of the Li 2p states with the H(2)σ orbitals contributes to the H(2) adsorption. However, the binding mechanism of the H(2) molecules on Na arises only from the polarization interaction between the charged Na atom and the H(2). Interestingly, additional H(2) molecules can be bound to the carbon atoms at the chain ends due to the charge transfer between Li 2s2p (Na 3s) and C 2p states. More importantly, dimerization of these isolated metal-capped chains does not affect the hydrogen binding energy significantly. In addition, a single chain can be stabilized effectively by the C(60) fullerenes termination. With a hydrogen uptake of ∼10 wt.% on Li-coated C(60)-C(n)-C(60) (n = 5, 8), the Li(12)C(60)-C(n)-Li(12)C(60) complex, keeping the number of adsorbed H(2) molecules per Li and stabilizing the dispersion of individual Li atoms, can serve as better building blocks of polymers than the (Li(12)C(60))(2) dimer. These findings suggest a new route to design cluster-assembled hydrogen storage materials based on terminated sp carbon chains.

  4. Recent advances in catalytic hydrogenation of carbon dioxide.

    PubMed

    Wang, Wei; Wang, Shengping; Ma, Xinbin; Gong, Jinlong

    2011-07-01

    Owing to the increasing emissions of carbon dioxide (CO(2)), human life and the ecological environment have been affected by global warming and climate changes. To mitigate the concentration of CO(2) in the atmosphere various strategies have been implemented such as separation, storage, and utilization of CO(2). Although it has been explored for many years, hydrogenation reaction, an important representative among chemical conversions of CO(2), offers challenging opportunities for sustainable development in energy and the environment. Indeed, the hydrogenation of CO(2) not only reduces the increasing CO(2) buildup but also produces fuels and chemicals. In this critical review we discuss recent developments in this area, with emphases on catalytic reactivity, reactor innovation, and reaction mechanism. We also provide an overview regarding the challenges and opportunities for future research in the field (319 references).

  5. D/H ratios and hydrogen exchangeability of type-II kerogens with increasing thermal maturity

    USGS Publications Warehouse

    Lis, G.P.; Schimmelmann, A.; Mastalerz, Maria

    2006-01-01

    Stable isotope ratios of non-exchangeable hydrogen (??Dn) and of carbon were measured in type-II kerogens from two suites of Late Devonian to Early Mississippian black shale, one from the New Albany Shale (Illinois Basin) and the other from the Exshaw Formation (Alberta Basin). The largely marine-derived organic matter had similar original stable isotope ratios, but today the suites of kerogens express gradients in thermal maturity that have altered their chemical and isotopic compositions. In both suites, ??D n values increase with maturation up to a vitrinite reflectance of Ro 1.5%, then level out. Increasing ??Dn values suggest isotopic exchange of organic hydrogen with water-derived deuterium and/or preferential loss of 1H-enriched chemical moieties from kerogen during maturation. The resulting changes in ??Dn values are altering the original hydrogen isotopic paleoenvironmental signal in kerogen, albeit in a systematic fashion. The specific D/H response of each kerogen suite through maturation correlates with H/C elemental ratio and can therefore be corrected to yield paleoenvironmentally relevant information for a calibrated system. With increasing thermal maturity, the abundance of hydrogen in the kerogen that is isotopically exchangeable with water hydrogen (expressed as Hex, in % of total hydrogen) first decreases to reach a minimum at Ro ??? 0.8-1.1%, followed by a substantial increase at higher thermal maturity. ?? 2005 Elsevier Ltd. All rights reserved.

  6. Micelle-hosted palladium nanoparticles catalyze citral molecule hydrogenation in supercritical carbon dioxide.

    PubMed

    Meric, Pascal; Yu, Kai Man K; Tsang, Shik Chi

    2004-09-28

    A new approach of employing metal particles in micelles for the hydrogenation of organic molecules in the presence of fluorinated surfactant and water in supercritical carbon dioxide has very recently been introduced. This is allegedly to deliver many advantages for carrying out catalysis including the use of supercritical carbon dioxide (scCO2) as a greener solvent. Following this preliminary account, the present work aims to provide direct visual evidence on the formation of metal microemulsions and to investigate whether metal located in the soft micellar assemblies could affect reaction selectivity. Synthesis of Pd nanoparticles in perfluorohydrocarboxylate anionic micelles in scCO2 is therefore carried out in a stainless steel batch reactor at 40 degrees C and in a 150 bar CO2/H2 mixture. Homogeneous dispersion of the microemulsion containing Pd nanoparticles in scCO2 is observed through a sapphire window reactor at W0 ratios (molar water-to-surfactant ratios) ranging from 2 to 30. It is also evidenced that the use of micelle assemblies as new metal catalyst nanocarriers could indeed exert a great influence on product selectivity. The hydrogenation of a citral molecule that contains three reducible groups (aldehyde, double bonds at the 2,3-position and the 6,7-position) is studied. An unusually high selectivity toward citronellal (a high regioselectivity toward the reduction of the 2,3-unsaturation) is observed in supercritical carbon dioxide. On the other hand, when the catalysis is carried out in the conventional liquid or vapor phase over the same reaction time, total hydrogenation of the two double bonds is achieved. It is thought that the high kinetic reluctance for double bond hydrogenation of the citral molecule at the hydrophobic end (the 6,7-position) is due to the unique micelle environment that is in close proximity to the metal surface in supercritical carbon dioxide that guides a head-on attack of the molecule toward the core metal particle.

  7. Molecular processes in astrophysics: Calculations of hydrogen + hydrogen gas excitation, de-excitation, and cooling

    NASA Astrophysics Data System (ADS)

    Kelley, Matthew Thomas

    The implications of H+H2 cooling in astrophysics is important to several applications. One of the most significant and pure applications is its role in cooling in the early universe. Other applications would include molecular dynamics in nebulae and their collapse into stars and astrophysical shocks. Shortly after the big bang, the universe was a hot primordial gas of photons, electrons, and nuclei among other ingredients. By far the most dominant nuclei in the early universe was hydrogen. In fact, in the early universe the matter density was 90 percent hydrogen and only 10 percent helium with small amounts of lithium and deuterium. In order for structure to form in the universe, this primordial gas must form atoms and cool. One of the significant cooling mechanisms is the collision of neutral atomic hydrogen with a neutral diatomic hydrogen molecule. This work performs calculations to determine collisional cooling rates of hydrogen using two potential surfaces.

  8. Carbon dioxide hydrogenation catalysed by well-defined Mn(i) PNP pincer hydride complexes.

    PubMed

    Bertini, Federica; Glatz, Mathias; Gorgas, Nikolaus; Stöger, Berthold; Peruzzini, Maurizio; Veiros, Luis F; Kirchner, Karl; Gonsalvi, Luca

    2017-07-01

    The catalytic reduction of carbon dioxide is of great interest for its potential as a hydrogen storage method and to use carbon dioxide as C-1 feedstock. In an effort to replace expensive noble metal-based catalysts with efficient and cheap earth-abundant counterparts, we report the first example of Mn(i)-catalysed hydrogenation of CO 2 to HCOOH. The hydride Mn(i) catalyst [Mn(PNP NH - i Pr)(H)(CO) 2 ] showed higher stability and activity than its Fe(ii) analogue. TONs up to 10 000 and quantitative yields were obtained after 24 h using DBU as the base at 80 °C and 80 bar total pressure. At catalyst loadings as low as 0.002 mol%, TONs greater than 30 000 could be achieved in the presence of LiOTf as the co-catalyst, which are among the highest activities reported for base-metal catalysed CO 2 hydrogenations to date.

  9. Hydrogen-transfer and charge-transfer in photochemical and radiation induced reactions. Progress report, November 1, 1975--October 31, 1976

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohen, S.G.

    The relative importance of light absorption, quenching of triplet, and hydrogen transfer repair has been examined in retardation by mercaptans of photoreduction of aromatic ketones by alcohols. In the reduction of benzophenone by 2-propanol, retardation is efficient and, after correction for the first two effects, is due entirely to hydrogen-transfer repair, as indicated by deuterium labeling. In reduction of acetophenone by ..cap alpha..-methylbenzyl alcohol, repair by hydrogen transfer is also operative. In reduction of benzophenone by benzhydrol, retardation is less efficient and is due to quenching, as the ketyl radical does not abstract hydrogen from mercaptan rapidly in competition withmore » coupling. Deuterium isotope effects are discussed in terms of competitive reactions. Photoreduction of benzophenone by 2-butylamine and by triethylamine is retarded by aromatic mercaptans and disulfides. Of the retardation not due to light absorption and triplet quenching by the sulfur compounds, half is due to hydrogen-transfer repair, as indicated by racemization and deuterium labeling. The remainder is attributed to quenching by the sulfur compound of the charge-transfer-complex intermediate. Photoreduction by primary and secondary amines, but not by tertiary amines, is accelerated by aliphatic mercaptans. The acceleration is attributed to catalysis of hydrogen transfer by the mercaptan in the charge-transfer complex. The effect is large in hydrocarbon solvent, less in polar organic solvents and absent in water.« less

  10. Diffusion of helium, hydrogen and deuterium in diamond: Experiment, theory and geochemical applications

    NASA Astrophysics Data System (ADS)

    Cherniak, D. J.; Watson, E. B.; Meunier, V.; Kharche, N.

    2018-07-01

    Diffusivities of helium, deuterium and hydrogen have been characterized in diamond. Polished CVD diamond was implanted with either 3He, 2H, or 1H. Implanted samples were sealed under vacuum in silica glass capsules, and annealed in 1-atm furnaces. 3He, 2H and 1H distributions were measured with Nuclear Reaction Analysis. We obtain these Arrhenius relations: DHe = 4.00 × 10-15 exp(-138 ± 14 kJ mol-1/RT) m2 s-1. D2H = 1.02 × 10-4 exp(-262 ± 17 kJ mol-1/RT) m2 s-1. D1H = 2.60 × 10-4 exp(-267 ± 15 kJ mol-1/RT) m2 s-1. Diffusivities of 1H and 2H agree within experimental uncertainties, indicating little diffusive mass fractionation of hydrogen in diamond. To complement the experimental measurements, we performed calculations using a first-principles quantum mechanical description of diffusion in diamond within the Density Functional Theory (DFT). Differences in 1H and 2H diffusivities from calculations are found to be ∼4.5%, reflected in differences in the pre-exponential factor. This small difference in diffusivities, despite the large relative mass difference between these isotopes, is due to the fact that the atomistic process involved in the transition along the diffusion pathway is dictated by local changes to the diamond structures rather than to vibrations involving 1H/2H. This finding is consistent with the experimental results given experimental uncertainties. In contrast, calculations for helium diffusion in diamond indicate a difference of 15% between diffusivities of 3He and 4He. Calculations of diffusion distances for hydrogen using our data yield a distance of 50 μm in diamond in 300,000 years at 500 °C and ∼30 min at 1400 °C. Diffusion distances for He in diamond are shorter than for H at all temperatures above ∼350 °C, but differences increase dramatically with temperature because of the higher activation energy for H diffusion. For example, a 50 μm diffusion distance for He would be attained in ∼40 Myr at 500 °C and 400 yr at 1400

  11. Isotopic exchange of carbon-bound hydrogen over geologic timescales

    NASA Astrophysics Data System (ADS)

    Sessions, Alex L.; Sylva, Sean P.; Summons, Roger E.; Hayes, John M.

    2004-04-01

    The increasing popularity of compound-specific hydrogen isotope (D/H) analyses for investigating sedimentary organic matter raises numerous questions about the exchange of carbon-bound hydrogen over geologic timescales. Important questions include the rates of isotopic exchange, methods for diagnosing exchange in ancient samples, and the isotopic consequences of that exchange. This article provides a review of relevant literature data along with new data from several pilot studies to investigate such issues. Published experimental estimates of exchange rates between organic hydrogen and water indicate that at warm temperatures (50-100°C) exchange likely occurs on timescales of 104 to 108 yr. Incubation experiments using organic compounds and D-enriched water, combined with compound-specific D/H analyses, provide a new and highly sensitive method for measuring exchange at low temperatures. Comparison of δD values for isoprenoid and n-alkyl carbon skeletons in sedimentary organic matter provides no evidence for exchange in young (<1 Ma), cool sediments, but strong evidence for exchange in ancient (>350 Ma) rocks. Specific rates of exchange are probably influenced by the nature and abundance of organic matter, pore-water chemistry, the presence of catalytic mineral surfaces, and perhaps even enzymatic activity. Estimates of equilibrium fractionation factors between organic H and water indicate that typical lipids will be depleted in D relative to water by ∼75 to 140‰ at equilibrium (30°C). Thus large differences in δD between organic molecules and water cannot be unambiguously interpreted as evidence against hydrogen exchange. A better approach may be to use changes in stereochemistry as a proxy for hydrogen exchange. For example, estimated rates of H exchange in pristane are similar to predicted rates for stereochemical inversion in steranes and hopanes. The isotopic consequences of this exchange remain in question. Incubations of cholestene with D2O indicate

  12. Compact determination of hydrogen isotopes

    DOE PAGES

    Robinson, David

    2017-04-06

    Scanning calorimetry of a confined, reversible hydrogen sorbent material has been previously proposed as a method to determine compositions of unknown mixtures of diatomic hydrogen isotopologues and helium. Application of this concept could result in greater process knowledge during the handling of these gases. Previously published studies have focused on mixtures that do not include tritium. This paper focuses on modeling to predict the effect of tritium in mixtures of the isotopologues on a calorimetry scan. Furthermore, the model predicts that tritium can be measured with a sensitivity comparable to that observed for hydrogen-deuterium mixtures, and that under so memore » conditions, it may be possible to determine the atomic fractions of all three isotopes in a gas mixture.« less

  13. Apparatus for hydrogen and carbon production via carbon aerosol-catalyzed dissociation of hydrocarbons

    NASA Technical Reports Server (NTRS)

    Tabatabaie-Raissi, Ali (Inventor); Muradov, Nazim Z. (Inventor); Smith, Franklyn (Inventor)

    2012-01-01

    A novel process and apparatus is disclosed for sustainable, continuous production of hydrogen and carbon by catalytic dissociation or decomposition of hydrocarbons at elevated temperatures using in-situ generated carbon particles. Carbon particles are produced by decomposition of carbonaceous materials in response to an energy input. The energy input can be provided by at least one of a non-oxidative and oxidative means. The non-oxidative means of the energy input includes a high temperature source, or different types of plasma, such as, thermal, non-thermal, microwave, corona discharge, glow discharge, dielectric barrier discharge, or radiation sources, such as, electron beam, gamma, ultraviolet (UV). The oxidative means of the energy input includes oxygen, air, ozone, nitrous oxide (NO.sub.2) and other oxidizing agents. The method, apparatus and process of the present invention is applicable to any gaseous or liquid hydrocarbon fuel and it produces no or significantly less CO.sub.2 emissions compared to conventional processes.

  14. SELECTIVE HYDROGENATION OF ANHYDRIDES TO LACTONES UNDER SUPERCRITICAL CARBON DIOXIDE MEDIUM

    EPA Science Inventory

    Selective Hydrogenation of Anhydrides to Lactones Under Supercritical Carbon Dioxide Medium

    Endalkachew Sahle-Demessie Unnikrishnan R Pillai
    U.S. EPA , 26 W. Martin Luther King Dr. Cincinnati, OH 45268 Phone: 513-569-7739
    Fax: 513-569-7677
    Abstract:
    Hydrogenat...

  15. Deuterium trapping in the carbon-silicon co-deposition layers prepared by RF sputtering in D2 atmosphere

    NASA Astrophysics Data System (ADS)

    Zhang, Hongliang; Zhang, Weiyuan; Su, Ranran; Tu, Hanjun; Shi, Liqun; Hu, Jiansheng

    2018-04-01

    Deuterated carbon-silicon layers co-deposited on graphite and silicon substrates by radio frequency magnetron sputtering in pure D2 plasma were produced to study deuterium trapping and characteristics of the C-Si layers. The C-Si co-deposited layers were examined by ion beam analysis (IBA), Raman spectroscopy (RS), infrared absorption (IR) spectroscopy, thermal desorption spectroscopy (TDS) and scanning electron microscopy (SEM). It was found that the growth rate of the C-Si co-deposition layer decreased with increasing temperature from 350 K to 800 K, the D concentration and C/Si ratios increased differently on graphite and silicon substrates. TDS shows that D desorption is mainly as D2, HD, HDO, CD4, and C2D4 and release peaks occurred at temperatures of less than 900 K. RS and IR analysis reveal that the structure of the C-Si layers became more disordered with increasing temperatures. Rounded areas of peeling with 1-2 μm diameters were observed on the surface.

  16. Molten metal reactor and method of forming hydrogen, carbon monoxide and carbon dioxide using the molten alkaline metal reactor

    DOEpatents

    Bingham, Dennis N.; Klingler, Kerry M.; Turner, Terry D.; Wilding, Bruce M.

    2012-11-13

    A molten metal reactor for converting a carbon material and steam into a gas comprising hydrogen, carbon monoxide, and carbon dioxide is disclosed. The reactor includes an interior crucible having a portion contained within an exterior crucible. The interior crucible includes an inlet and an outlet; the outlet leads to the exterior crucible and may comprise a diffuser. The exterior crucible may contain a molten alkaline metal compound. Contained between the exterior crucible and the interior crucible is at least one baffle.

  17. Carbon-hydrogen defects with a neighboring oxygen atom in n-type Si

    NASA Astrophysics Data System (ADS)

    Gwozdz, K.; Stübner, R.; Kolkovsky, Vl.; Weber, J.

    2017-07-01

    We report on the electrical activation of neutral carbon-oxygen complexes in Si by wet-chemical etching at room temperature. Two deep levels, E65 and E75, are observed by deep level transient spectroscopy in n-type Czochralski Si. The activation enthalpies of E65 and E75 are obtained as EC-0.11 eV (E65) and EC-0.13 eV (E75). The electric field dependence of their emission rates relates both levels to single acceptor states. From the analysis of the depth profiles, we conclude that the levels belong to two different defects, which contain only one hydrogen atom. A configuration is proposed, where the CH1BC defect, with hydrogen in the bond-centered position between neighboring C and Si atoms, is disturbed by interstitial oxygen in the second nearest neighbor position to substitutional carbon. The significant reduction of the CH1BC concentration in samples with high oxygen concentrations limits the use of this defect for the determination of low concentrations of substitutional carbon in Si samples.

  18. Activation of extended red emission photoluminescence in carbon solids by exposure to atomic hydrogen and UV radiation

    NASA Technical Reports Server (NTRS)

    Furton, Douglas G.; Witt, Adolf N.

    1993-01-01

    We report on new laboratory results which relate directly to the observation of strongly enhanced extended red emission (ERE) by interstellar dust in H2 photodissociation zones. The ERE has been attributed to photoluminescence by hydrogenated amorphous carbon (HAC). We are demonstrating that exposure to thermally dissociated atomic hydrogen will restore the photoluminescence efficiency of previously annealed HAC. Also, pure amorphous carbon (AC), not previously photoluminescent, can be induced to photoluminesce by exposure to atomic hydrogen. This conversion of AC into HAC is greatly enhanced by the presence of UV irradiation. The presence of dense, warm atomic hydrogen and a strong UV radiation field are characteristic environmental properties of H2 dissociation zones. Our results lend strong support to the HAC photoluminescence explanation for ERE.

  19. Erosion and deuterium retention of CLF-1 steel exposed to deuterium plasma

    NASA Astrophysics Data System (ADS)

    Qiao, L.; Wang, P.; Hu, M.; Gao, L.; Jacob, W.; Fu, E. G.; Luo, G. N.

    2017-12-01

    In recent years reduced activation ferritic martensitic steel has been proposed as the plasma-facing material in remote regions of the first wall. This study reports the erosion and deuterium retention behaviours in CLF-1 steel exposed to deuterium (D) plasma in a linear experimental plasma system as function of incident ion energy and fluence. The incident D ion energy ranges from 30 to 180 eV at a flux of 4 × 1021 D m-2 s-1 up to a fluence of 1025 D m-2. SEM images revealed a clear change of the surface morphology as functions of incident fluence and impinging energy. The mass loss results showed a decrease of the total sputtering yield of CLF-1 steel with increasing incident fluence by up to one order of magnitude. The total sputtering yield of CLF-1 steel after 7.2 × 1024 D m-2 deuterium plasma exposure reduced by a factor of 4 compared with that of pure iron, which can be attributed to the enrichment of W at the surface due to preferential sputtering of iron and chromium. After D plasma exposure, the total deuterium retention in CLF-1 steel samples measured by TDS decreased with increasing incident fluence and energy, and a clear saturation tendency as function of incident fluence or energy was also observed.

  20. Catalytic hydrogenation of carbon dioxide using Ir(III)-pincer complexes.

    PubMed

    Tanaka, Ryo; Yamashita, Makoto; Nozaki, Kyoko

    2009-10-14

    Catalytic hydrogenation of carbon dioxide in aqueous potassium hydroxide was performed using a newly synthesized isopropyl-substituted PNP-pincer iridium trihydride complex as a catalyst. Potassium formate was obtained with turnover numbers up to 3,500,000 and a turnover frequency of 150,000 h(-1), both of which are the highest values reported to date.

  1. Deuterium retention and surface modification of tungsten macrobrush samples exposed in FTU Tokamak

    NASA Astrophysics Data System (ADS)

    Maddaluno, G.; Giacomi, G.; Rufoloni, A.; Verdini, L.

    2007-06-01

    The effect of discrete structures such as macrobrush or castellated surfaces on power handling and deuterium retention of plasma facing components is to be assessed since such geometrical configurations are needed for increasing the lifetime of the armour to heat-sink joint. Four small macrobrush W and W + 1%La2O3 samples have been exposed in the Frascati Tokamak Upgrade (FTU) scrape-off layer up to the last closed flux surface by means of the Sample Introduction System. FTU is an all metal machine with no carbon source inside vacuum vessel; it exhibits ITER relevant energy and particle fluxes on the plasma facing components. Here, results on morphological surface changes (SEM), chemical composition (EDX) and deuterium retention (TDS) are reported.

  2. Metal organic framework-derived CoPS/N-doped carbon for efficient electrocatalytic hydrogen evolution.

    PubMed

    Li, Yuzhi; Niu, Siqi; Rakov, Dmitrii; Wang, Ying; Cabán-Acevedo, Miguel; Zheng, Shijian; Song, Bo; Xu, Ping

    2018-04-19

    Electrocatalytic hydrogen evolution has attracted a great deal of attention due to the urgent need for clean energy. Herein, we demonstrate the synthesis of ternary pyrite-type cobalt phosphosulphide (CoPS) nanoparticles supported on a nitrogen-doped carbon matrix, CoPS/N-C, through carbonization and subsequent phosphosulfurization of Co-based zeolitic imidazolate frameworks (ZIF-67), as promising hydrogen evolution reaction (HER) electrocatalysts in both acidic and alkaline solutions. The polyhedral structure of ZIF-67 can be well maintained in the as-prepared CoPS/N-C nanocomposites. In particular, CoPS/N-C provides a geometric catalytic current density of -10 mA cm-2 at overpotentials of -80 and -148 mV vs. a reversible hydrogen electrode (RHE) and a Tafel slope of 68 and 78 mV dec-1 in 0.5 M H2SO4 and 1 M KOH, respectively, which is superior to most of the transition metal phosphosulfide materials. This MOF-derived synthesis of a transition metal phosphosulfide supported heteroatom-doped carbon matrix provides a promising opportunity for the development of highly efficient electrocatalysts for renewable energy devices.

  3. Clinical findings and effect of sodium hydrogen carbonate in patients with glutathione synthetase deficiency.

    PubMed

    Gündüz, Mehmet; Ünal, Özlem; Kavurt, Sumru; Türk, Emrecan; Mungan, Neslihan Önenli

    2016-04-01

    Glutathione synthetase (GS) deficiency is a rare inborn error of glutathione (GSH) metabolism manifested by severe metabolic acidosis, hemolytic anemia, neurological problems and massive excretion of pyroglutamic acid (5-oxoproline) in the urine. The disorder has mild, moderate, and severe clinical variants. We aimed to report clinical and laboratory findings of four patients, effect of sodium hydrogen carbonate treatment and long-term follow up of three patients. Urine organic acid analysis was performed with gas chromatography-mass spectrometry. Molecular genetic analysis was performed in three patients, mutation was found in two of them. Enzyme analysis was performed in one patient. Clinical and laboratory findings of four patients were evaluated. One patient died at 4 months old, one patient's growth and development are normal, two patients have developed intellectual disability and seizures in the long term follow up period. Three patients benefited from sodium hydrogen carbonate treatment. The clinical picture varies from patient to patient, so it is difficult to predict the prognosis and the effectiveness of treatment protocols. We reported long term follow up of four patients and demonstrated that sodium hydrogen carbonate is effective for treatment of chronic metabolic acidosis in GS deficieny.

  4. Mapping the contact surfaces in the Lamin A:AIMP3 complex by hydrogen/deuterium exchange FT-ICR mass spectrometry.

    PubMed

    Tao, Yeqing; Fang, Pengfei; Kim, Sunghoon; Guo, Min; Young, Nicolas L; Marshall, Alan G

    2017-01-01

    Aminoacyl-tRNA synthetases-interacting multifunctional protein3 (AIMP3/p18) is involved in the macromolecular tRNA synthetase complex via its interaction with several aminoacyl-tRNA synthetases. Recent reports reveal a novel function of AIMP3 as a tumor suppressor by accelerating cellular senescence and causing defects in nuclear morphology. AIMP3 specifically mediates degradation of mature Lamin A (LmnA), a major component of the nuclear envelope matrix; however, the mechanism of how AIMP3 interacts with LmnA is unclear. Here we report solution-phase hydrogen/deuterium exchange (HDX) for AIMP3, LmnA, and AIMP3 in association with the LmnA C-terminus. Reversed-phase LC coupled with LTQ 14.5 T Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) results in high mass accuracy and resolving power for comparing the D-uptake profiles for AIMP3, LmnA, and their complex. The results show that the AIMP3-LmnA interaction involves one of the two putative binding sites and an adjacent novel interface on AIMP3. LmnA binds AIMP3 via its extreme C-terminus. Together these findings provide a structural insight for understanding the interaction between AIMP3 and LmnA in AIMP3 degradation.

  5. Quantum molecular dynamics study on the proton exchange, ionic structures, and transport properties of warm dense hydrogen-deuterium mixtures

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Li, Zhi-Guo; Dai, Jia-Yu; Chen, Qi-Feng; Chen, Xiang-Rong

    2018-06-01

    Comprehensive knowledge of physical properties such as equation of state (EOS), proton exchange, dynamic structures, diffusion coefficients, and viscosities of hydrogen-deuterium mixtures with densities from 0.1 to 5 g /cm3 and temperatures from 1 to 50 kK has been presented via quantum molecular dynamics (QMD) simulations. The existing multi-shock experimental EOS provides an important benchmark to evaluate exchange-correlation functionals. The comparison of simulations with experiments indicates that a nonlocal van der Waals density functional (vdW-DF1) produces excellent results. Fraction analysis of molecules using a weighted integral over pair distribution functions was performed. A dissociation diagram together with a boundary where the proton exchange (H2+D2⇌2 HD ) occurs was generated, which shows evidence that the HD molecules form as the H2 and D2 molecules are almost 50% dissociated. The mechanism of proton exchange can be interpreted as a process of dissociation followed by recombination. The ionic structures at extreme conditions were analyzed by the effective coordination number model. High-order cluster, circle, and chain structures can be founded in the strongly coupled warm dense regime. The present QMD diffusion coefficient and viscosity can be used to benchmark two analytical one-component plasma (OCP) models: the Coulomb and Yukawa OCP models.

  6. A high deuterium abundance at redshift z = 0.7.

    PubMed

    Webb, J K; Carswell, R F; Lanzetta, K M; Ferlet, R; Lemoine, M; Vidal-Madjar, A; Bowen, D V

    1997-07-17

    Of the light elements, the primordial abundance of deuterium relative to hydrogen, (D/H)p, provides the most sensitive diagnostic for the cosmological mass density parameter, omegaB. Recent high-redshift D/H measurements are highly discrepant, although this may reflect observational uncertainties. The larger primordial D/H values imply a low omegaB (requiring the Universe to be dominated by non-baryonic matter), and cause problems for galactic chemical evolution models, which have difficulty in reproducing the steep decline in D/H to the present-day values. Conversely, the lower D/H values measured at high redshift imply an omegaB greater than that derived from 7Li and 4He abundance measurements, and may require a deuterium-abundance evolution that is too low to easily explain. Here we report the first measurement of D/H at intermediate redshift (z = 0.7010), in a gas cloud selected to minimize observational uncertainties. Our analysis yields a value of D/H ((2.0 +/- 0.5) x 10[-4]) which is at the upper end of the range of values measured at high redshifts. This finding, together with other independent observations, suggests that there may be inhomogeneity in (D/H)p of at least a factor of ten.

  7. Method for converting hydrocarbon fuel into hydrogen gas and carbon dioxide

    DOEpatents

    Clawson, Lawrence G.; Mitchell, William L.; Bentley, Jeffrey M.; Thijssen, Johannes H. J.

    2000-01-01

    A method for converting hydrocarbon fuel into hydrogen gas and carbon dioxide within a reformer 10 is disclosed. According to the method, a stream including an oxygen-containing gas is directed adjacent to a first vessel 18 and the oxygen-containing gas is heated. A stream including unburned fuel is introduced into the oxygen-containing gas stream to form a mixture including oxygen-containing gas and fuel. The mixture of oxygen-containing gas and unburned fuel is directed tangentially into a partial oxidation reaction zone 24 within the first vessel 18. The mixture of oxygen-containing gas and fuel is further directed through the partial oxidation reaction zone 24 to produce a heated reformate stream including hydrogen gas and carbon monoxide. Steam may also be mixed with the oxygen-containing gas and fuel, and the reformate stream from the partial oxidation reaction zone 24 directed into a steam reforming zone 26. High- and low-temperature shift reaction zones 64,76 may be employed for further fuel processing.

  8. Hydrogenolysis Of 5-Carbon Sugars, Sugar Alcohols And Compositions For Reactions Involving Hydrogen

    DOEpatents

    Werpy, Todd A.; Frye, Jr., John G.; Zacher, Alan H.; Miller, Dennis J.

    2004-01-13

    Methods and compositions for reactions of hydrogen over a Re-containing catalyst with compositions containing a 5-carbon sugar, sugar alcohol, or lactic acid are described. It has been surprisingly discovered that reaction with hydrogen over a Re-containing multimetallic catalyst resulted in superior conversion and selectivity to desired products such as propylene glycol. A process for the synthesis of PG from lactate or lactic acid is also described.

  9. Well-defined iron catalyst for improved hydrogenation of carbon dioxide and bicarbonate.

    PubMed

    Ziebart, Carolin; Federsel, Christopher; Anbarasan, Pazhamalai; Jackstell, Ralf; Baumann, Wolfgang; Spannenberg, Anke; Beller, Matthias

    2012-12-26

    The most efficient, stable, and easy-to-synthesize non-noble metal catalyst system for the reduction of CO(2) and bicarbonates is presented. In the presence of the iron(II)-fluoro-tris(2-(diphenylphosphino)phenyl)phosphino]tetrafluoroborate complex 3, the hydrogenation of bicarbonates proceeds in good yields with high catalyst productivity and activity (TON > 7500, TOF > 750). High-pressure NMR studies of the hydrogenation of carbon dioxide demonstrate that the corresponding iron-hydridodihydrogen complex 4 is crucial in the catalytic cycle.

  10. Tri-s-triazine-Based Crystalline Carbon Nitride Nanosheets for an Improved Hydrogen Evolution.

    PubMed

    Ou, Honghui; Lin, Lihua; Zheng, Yun; Yang, Pengju; Fang, Yuanxing; Wang, Xinchen

    2017-06-01

    Tri-s-triazine-based crystalline carbon nitride nanosheets (CCNNSs) have been successfully extracted via a conventional and cost-effective sonication-centrifugation process. These CCNNSs possess a highly defined and unambiguous structure with minimal thickness, large aspect ratios, homogeneous tri-s-triazine-based units, and high crystallinity. These tri-s-triazine-based CCNNSs show significantly enhanced photocatalytic hydrogen generation activity under visible light than g-C 3 N 4 , poly (triazine imide)/Li + Cl - , and bulk tri-s-triazine-based crystalline carbon nitrides. A highly apparent quantum efficiency of 8.57% at 420 nm for hydrogen production from aqueous methanol feedstock can be achieved from tri-s-triazine-based CCNNSs, exceeding most of the reported carbon nitride nanosheets. Benefiting from the inherent structure of 2D crystals, the ultrathin tri-s-triazine-based CCNNSs provide a broad range of application prospects in the fields of bioimaging, and energy storage and conversion. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Carbon-hydrogen-related complexes in Si

    NASA Astrophysics Data System (ADS)

    Kolkovsky, Vl.; Stübner, R.; Gwozdz, K.; Weber, J.

    2018-04-01

    Several deep level transient spectroscopy (DLTS) peaks (E42, E65, E75, E90, E262, and H180) are observed in n- and p-type Czochralski-grown Si samples subjected to hydrogenation by a dc H plasma treatment. The concentration of the defects is found to be proportional to the carbon and hydrogen content in our samples. The analysis of the depth profiles performed in Si samples hydrogenated by wet chemically etching shows that all these defects contain a single H atom. E65 and E75 appear only in samples with a high oxygen content which shows that oxygen is a constituent of these defects. The analysis of the enhancement of the emission rate of the defects with electric field shows that E65, E75, E90, and E262 are single acceptors whereas E42 is a double acceptor. The presence of a barrier for hole capture (about 53 meV) can explain the absence of the enhancement of the emission rate of H180, which can be attributed to a single acceptor state. From a comparison with theory, we assign E90 to CH1BC, E42 (E262) to CH1AB, and H180 to CH1Td. The similarity of the electrical properties of E65 and E75 to those of E90 suggest that E65 and E75 may originate from the CH1BC defect with an oxygen atom in its nearest neighborhood. Our results on the CH-related complexes give a conclusive explanation of some previously reported controversial experimental data.

  12. Deuterium and carbon-13 NMR of the solid polymorphism of benzenehexoyl hexa-n-hexanoate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lifshitz, E.; Goldfarb,, D.; Vega, S.

    Deuterium and carbon-13 NMR of specifically labeled benzenehexoyl hexa-n-hexanoate in the various solid-state phases are reported. The spectra exhibit dynamic line shapes which change discontinuously at the phase transitions. The results are interpreted in terms of sequential melting of the side chains on going from the low-temperature solid phases IV, III, etc., toward the liquid. In phase IV the molecules are very nearly static, except for fast rotation of the methyl groups about their C/sub 3/ axes. The results in phase III were quantitatively interpreted in terms of a two-site isomerization process involving simultaneous rotation by 95/sup 0/ about C/submore » 1/-C/sub 2/ and transition from gtg to g'g't (or equivalently g'tg' to ggt) for the rest of the chain. The specific rate of this reaction at 0/sup 0/C is approx. 10/sup 5/s/sup -1/. In phase II additional chain isomerization processes set-in which were, however, not analyzed quantitatively. Further motional modes, involving reorientation of whole chains about their C/sup ar/-O bonds, appear on going to phase I. In all solid phases the benzene ring remains static.« less

  13. Controllable cyanation of carbon-hydrogen bonds by zeolite crystals over manganese oxide catalyst

    PubMed Central

    Wang, Liang; Wang, Guoxiong; Zhang, Jian; Bian, Chaoqun; Meng, Xiangju; Xiao, Feng-Shou

    2017-01-01

    The synthesis of organic nitriles without using toxic cyanides is in great demand but challenging to make. Here we report an environmentally benign and cost-efficient synthesis of nitriles from the direct oxidative cyanation of primary carbon-hydrogen bonds with easily available molecular oxygen and urea. The key to this success is to design and synthesize manganese oxide catalysts fixed inside zeolite crystals, forming a manganese oxide catalyst with zeolite sheath (MnOx@S-1), which exhibits high selectivity for producing nitriles by efficiently facilitating the oxidative cyanation reaction and hindering the side hydration reaction. The work delineates a sustainable strategy for synthesizing nitriles while avoiding conventional toxic cyanide, which might open a new avenue for selective transformation of carbon-hydrogen bonds. PMID:28504259

  14. Formation of carbon nanoclusters by implantation of keV carbon ions in fused silica followed by thermal annealing

    NASA Astrophysics Data System (ADS)

    Olivero, P.; Peng, J. L.; Liu, A.; Reichart, P.; McCallum, J. C.; Sze, J. Y.; Lau, S. P.; Tay, B. K.; Kalish, R.; Dhar, S.; Feldman, Leonard; Jamieson, David N.; Prawer, Steven

    2005-02-01

    In the last decade, the synthesis and characterization of nanometer sized carbon clusters have attracted growing interest within the scientific community. This is due to both scientific interest in the process of diamond nucleation and growth, and to the promising technological applications in nanoelectronics and quantum communications and computing. Our research group has demonstrated that MeV carbon ion implantation in fused silica followed by thermal annealing in the presence of hydrogen leads to the formation of nanocrystalline diamond, with cluster size ranging from 5 to 40 nm. In the present paper, we report the synthesis of carbon nanoclusters by the implantation into fused silica of keV carbon ions using the Plasma Immersion Ion Implantation (PIII) technique, followed by thermal annealing in forming gas (4% 2H in Ar). The present study is aimed at evaluating this implantation technique that has the advantage of allowing high fluence-rates on large substrates. The carbon nanostructures have been characterized with optical absorption and Raman spectroscopies, cross sectional Transmission Electron Microscopy (TEM), and Parallel Electron Energy Loss Spectroscopy (PEELS). Nuclear Reaction Analysis (NRA) has been employed to evaluate the deuterium incorporation during the annealing process, as a key mechanism to stabilize the formation of the clusters.

  15. Serum albumin forms a lactoferrin-like soluble iron-binding complex in presence of hydrogen carbonate ions.

    PubMed

    Ueno, Hiroshi M; Urazono, Hiroshi; Kobayashi, Toshiya

    2014-02-15

    The iron-lactoferrin complex is a common food ingredient because of its iron-solubilizing capability in the presence of hydrogen carbonate ions. However, it is unclear whether the formation of a stable iron-binding complex is limited to lactoferrin. In this study, we investigated the effects of bovine serum albumin (BSA) on iron solubility and iron-catalyzed lipid oxidation in the presence of hydrogen carbonate ions. BSA could solubilize >100-fold molar equivalents of iron at neutral pH, exceeding the specific metal-binding property of BSA. This iron-solubilizing capability of BSA was impaired by thermally denaturing BSA at ≥ 70 °C for 10 min at pH 8.5. The resulting iron-BSA complex inhibited iron-catalyzed oxidation of soybean oil in a water-in-oil emulsion measured using the Rancimat test. Our study is the first to show that BSA, like lactoferrin, forms a soluble iron-binding complex in the presence of hydrogen carbonate ions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Carbon and hydrogen isotopic effects of stomatal density in Arabidopsis thaliana

    NASA Astrophysics Data System (ADS)

    Lee, Hyejung; Feakins, Sarah J.; Sternberg, Leonel da S. L.

    2016-04-01

    Stomata are key gateways mediating carbon uptake and water loss from plants. Varied stomatal densities in fossil leaves raise the possibility that isotope effects associated with the openness of exchange may have mediated plant wax biomarker isotopic proxies for paleovegetation and paleoclimate in the geological record. Here we use Arabidopsis thaliana, a widely used model organism, to provide the first controlled tests of stomatal density on carbon and hydrogen isotopic compositions of cuticular waxes. Laboratory grown wildtype and mutants with suppressed and overexpressed stomatal densities allow us to directly test the isotope effects of stomatal densities independent of most other environmental or biological variables. Hydrogen isotope (D/H) measurements of both plant waters and plant wax n-alkanes allow us to directly constrain the isotopic effects of leaf water isotopic enrichment via transpiration and biosynthetic fractionations, which together determine the net fractionation between irrigation water and n-alkane hydrogen isotopic composition. We also measure carbon isotopic fractionations of n-alkanes and bulk leaf tissue associated with different stomatal densities. We find offsets of +15‰ for δD and -3‰ for δ13C for the overexpressed mutant compared to the suppressed mutant. Since the range of stomatal densities expressed is comparable to that found in extant plants and the Cenozoic fossil record, the results allow us to consider the magnitude of isotope effects that may be incurred by these plant adaptive responses. This study highlights the potential of genetic mutants to isolate individual isotope effects and add to our fundamental understanding of how genetics and physiology influence plant biochemicals including plant wax biomarkers.

  17. Investigating inner-sphere reorganization via secondary kinetic isotope effects in the C-H cleavage reaction catalyzed by soybean lipoxygenase: tunneling in the substrate backbone as well as the transferred hydrogen.

    PubMed

    Meyer, Matthew P; Klinman, Judith P

    2011-01-26

    This work describes the application of NMR to the measurement of secondary deuterium (2° (2)H) and carbon-13 ((13)C) kinetic isotope effects (KIEs) at positions 9-13 within the substrate linoleic acid (LA) of soybean lipoxygenase-1. The KIEs have been measured using LA labeled with either protium (11,11-h2-LA) or deuterium (11,11-d2-LA) at the reactive C11 position, which has been previously shown to yield a primary deuterium isotope effect of ca. 80. The conditions of measurement yield the intrinsic 2° (2)H and (13)C KIEs on k(cat)/K(m) directly for 11,11-d2-LA, whereas the values for the 2° (2)H KIEs for 11,11-h2-LA are obtained after correction for a kinetic commitment. The pattern of the resulting 2° (2)H and (13)C isotope effects reveals values that lie far above those predicted from changes in local force constants. Additionally, many of the experimental values cannot be modeled by electronic effects, torsional strain, or the simple inclusion of a tunneling correction to the rate. Although previous studies have shown the importance of extensive tunneling for cleavage of the primary hydrogen at C11 of LA, the present findings can only be interpreted by extending the conclusion of nonclassical behavior to the secondary hydrogens and carbons that flank the position undergoing C-H bond cleavage. A quantum mechanical method introduced by Buhks et al. [J. Phys. Chem. 1981, 85, 3763] to model the inner-sphere reorganization that accompanies electron transfer has been shown to be able to reproduce the scale of the 2° (2)H KIEs.

  18. Container for hydrogen isotopes

    DOEpatents

    Solomon, David E.

    1977-01-01

    A container for the storage, shipping and dispensing of hydrogen isotopes such as hydrogen, deuterium, tritium, or mixtures of the same which has compactness, which is safe against fracture or accident, and which is reusable. The container consists of an outer housing with suitable inlet and outlet openings and electrical feed elements, the housing containing an activated sorber material in the form, for example, of titanium sponge or an activated zirconium aluminate cartridge. The gas to be stored is introduced into the chamber under conditions of heat and vacuum and will be retained in the sorber material. Subsequently, it may be released by heating the unit to drive off the stored gas at desired rates.

  19. Effects of hydrogenation on thermal conductivity of ultrananocrystalline diamond/amorphous carbon composite films prepared via coaxial arc plasma deposition

    NASA Astrophysics Data System (ADS)

    Takeichi, Satoshi; Nishiyama, Takashi; Tabara, Mitsuru; Kawawaki, Shuichi; Kohno, Masamichi; Takahashi, Koji; Yoshitake, Tsuyoshi

    2018-06-01

    Ultrananocrystalline diamond (UNCD)/hydrogenated amorphous carbon (a-C:H) composite (UNCD/a-C:H) and UNCD/non-hydrogenated amorphous carbon (a-C) composite (UNCD/a-C) films were prepared via coaxial arc plasma deposition, and their thermal conductivity and interfacial conductance in grain boundaries were measured using a time-domain thermoreflectance method. The interfacial conductance was estimated to be 1,010 and 4,892 MW/(m2·K) for UNCD/a-C:H and UNCD/a-C films, respectively. The reasons for the hydrogenated film having lower interfacial conductance than the non-hydrogenated film are 1) the reduced number of carriers that contribute to heat transport and 2) the hydrogen atoms, which are preferentially located at the grain boundaries and enhance phonon scattering.

  20. Ultrafast Spectroscopy Reveals Electron-Transfer Cascade That Improves Hydrogen Evolution with Carbon Nitride Photocatalysts.

    PubMed

    Corp, Kathryn L; Schlenker, Cody W

    2017-06-14

    Solar hydrogen generation from water represents a compelling component of a future sustainable energy portfolio. Recently, chemically robust heptazine-based polymers known as graphitic carbon nitrides (g-C 3 N 4 ) have emerged as promising photocatalysts for hydrogen evolution using visible light while withstanding harsh chemical environments. However, since g-C 3 N 4 electron-transfer dynamics are poorly understood, rational design rules for improving activity remain unclear. Here, we use visible and near-infrared femtosecond transient absorption (TA) spectroscopy to reveal an electron-transfer cascade that correlates with a near-doubling in photocatalytic activity from 2050 to 3810 μmol h -1 g -1 when we infuse a suspension of bulk g-C 3 N 4 with 10% mass loading of chemically exfoliated carbon nitride. TA spectroscopy indicates that exfoliated carbon nitride quenches photogenerated electrons on g-C 3 N 4 at rates approaching the molecular diffusion limit. The TA signal for photogenerated electrons on g-C 3 N 4 decays with a time constant of 1/k e ' = 660 ps in the mixture versus 1/k e = 4.1 ns in g-C 3 N 4 alone. Our TA measurements suggest that the charge generation efficiency in g-C 3 N 4 is greater than 65%. Exfoliated carbon nitride, which liberates only trace hydrogen levels when photoexcited directly, does not appear to independently sustain appreciable long-lived charge generation. Thus, the activity enhancement in the two-component infusion evidently results from a cooperative effect in which charge is generated on g-C 3 N 4 , followed by electron transfer to exfoliated carbon nitride containing photocatalytic chain terminations. This correlation between electron transfer and photocatalytic activity provides new insight into structural modifications for controlling charge separation dynamics and activity of carbon-based photocatalysts.

  1. Lanthanum-hexaboride carbon composition for use in corrosive hydrogen-fluorine environments

    DOEpatents

    Holcombe, Cressie E.; Kovach, Louis; Taylor, Albert J.

    1981-01-01

    The present invention relates to a structural composition useful in corrosive hydrogen-fluorine environments at temperatures in excess of 1400.degree. K. The composition is formed of a isostatically pressed and sintered or a hot-pressed mixture of lanthanum hexaboride particles and about 10-30 vol. % carbon. The lanthanum-hexaboride reacts with the high-temperature fluorine-containing bases to form an adherent layer of corrosion-inhibiting lanthanum trifluoride on exposed surfaces of the composition. The carbon in the composite significantly strengthens the composite, enhances thermal shock resistance, and significantly facilitates the machining of the composition.

  2. Sulfur and Hydrogen Isotope Anomalies in Organic Compounds from the Murchison Meteorite

    NASA Technical Reports Server (NTRS)

    Cooper, G. W.; Thiemens, M. H.; Jackson, T.; Chang, Sherwood

    1996-01-01

    Isotopic measurements have been made on organic sulfur and phosphorus compounds recently discovered in the Murchison meteorite. Carbon, hydrogen and sulfur measurements were performed on individual members of the organic sulfur compounds, alkyl sulfonates; and carbon and hydrogen measurements were made on bulk alkyl phosphonates. Cooper and Chang reported the first carbon isotopic measurements of Murchison organic sulfonates, providing insight into the potential synthetic mechanisms of these and, possibly, other organic species. Hydrogen isotopic measurements of the sulforiates now reveal deuterium excesses ranging from +660 to +2730 %. The deuterium enrichments indicate formation of the hydrocarbon portion of these compounds in a low temperature astrophysical environment consistent with that of dense molecular clouds. Measurements of the sulfur isotopes provide further constraints on the origin and mechanism of formation of these organic molecules. Recently, there has been growing documentation of sulfur isotopic anomalies in meteoritic material. Thiemens and Jackson have shown that some bulk ureilites possess excess S-33 and Thiemens et al. have reported excess S-33 in an oldhamite separate from the Norton County meteorite. Rees and Thode reported a large S-33 excess in an Allende acid residue, however, attempts to verify this measurements have been unsuccessful, possibly due to the heterogeneous nature of the carrier phase. With the recognition that sulfur isotopes may reflect chemistry in the protosolar nebula or the precursor molecular cloud, identification of potential carriers is of considerable interest. In the present study, the stable isotopes of sulfur were measured in methane sulfonic acid extracted from the Murchison meteorite. The isotopic composition was found to be: (delta)S-33 = 2.48 %, (delta)S-34 = 2.49 % and (delta)S-36 = 6.76 %. Based upon analysis of more than 60 meteoritic and numerous terrestrial samples, the mass fractionation lines are

  3. Prereduction of Metal Oxides via Carbon Plasma Treatment for Efficient and Stable Electrocatalytic Hydrogen Evolution.

    PubMed

    Zhang, Yongqi; Ouyang, Bo; Xu, Kun; Xia, Xinhui; Zhang, Zheng; Rawat, Rajdeep Singh; Fan, Hong Jin

    2018-04-01

    Prereduction of transition metal oxides is a feasible and efficient strategy to enhance their catalytic activity for hydrogen evolution. Unfortunately, the prereduction via the common H 2 annealing method is unstable for nanomaterials during the hydrogen evolution process. Here, using NiMoO 4 nanowire arrays as the example, it is demonstrated that carbon plasma (C-plasma) treatment can greatly enhance both the catalytic activity and the long-term stability of transition metal oxides for hydrogen evolution. The C-plasma treatment has two functions at the same time: it induces partial surface reduction of the NiMoO 4 nanowire to form Ni 4 Mo nanoclusters, and simultaneously deposits a thin graphitic carbon shell. As a result, the C-plasma treated NiMoO 4 can maintain its array morphology, chemical composition, and catalytic activity during long-term intermittent hydrogen evolution process. This work may pave a new way for simultaneous activation and stabilization of transition metal oxide-based electrocatalysts. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Desorption dynamics of deuterium in CuCrZr alloy

    NASA Astrophysics Data System (ADS)

    Thi Nguyen, Lan Anh; Lee, Sanghwa; Noh, S. J.; Lee, S. K.; Park, M. C.; Shu, Wataru; Pitcher, Spencer; Torcy, David; Guillermain, David; Kim, Jaeyong

    2017-12-01

    Desorption behavior of deuterium (D2) in CuCrZr alloy was investigated considering sample thickness, loading and baking temperature of deuterium followed by the ITER scopes. Cylindrical specimens of 1, 3, 5 mm thick with 4 mm diameter were exposed to deuterium at a pressure of 25 bar at 120, 240 and 350 °C for 24 h, then baked at 800 °C in a vacuum chamber maintained at a pressure lower than 10-7 Torr. Deuterium desorption characteristics such as desorption rate and amount of deuterium in the sample were estimated by analyzing the desorption peaks monitored with a residual gas analyzer (RGA), and the trapping energy of deuterium was calculated using thermal desorption spectroscopy (TDS). Secondary ion mass spectroscopy (SIMS) results showed that deuterium atoms embedded in the sample at a depth of less than 15 μm and desorbed as low as 400 °C. All absorbed deuterium atoms in the specimen were completely retrieved by dynamic pumping at 800 °C in 15 min. The desorption rate of deuterium per unit area was inversely proportional to the increment of the thickness of the sample, and was proportional to the loading temperature. Based on the assumption that a uniform distribution of interstitial sites for deuterium follows the Femi-Dirac statistics, the result of TDS demonstrated that the CuCrZr alloy has two types of trapping energies, which were estimated to be 62 and 79 kJ/mol.

  5. Vanadium hydride deuterium-tritium generator

    DOEpatents

    Christensen, Leslie D.

    1982-01-01

    A pressure controlled vanadium hydride gas generator to provide deuterium-tritium gas in a series of pressure increments. A high pressure chamber filled with vanadium-deuterium-tritium hydride is surrounded by a heater which controls the hydride temperature. The heater is actuated by a power controller which responds to the difference signal between the actual pressure signal and a programmed pressure signal.

  6. Hydrogen diffusion in Zircon

    NASA Astrophysics Data System (ADS)

    Ingrin, Jannick; Zhang, Peipei

    2016-04-01

    Hydrogen mobility in gem quality zircon single crystals from Madagascar was investigated through H-D exchange experiments. Thin slices were annealed in a horizontal furnace flushed with a gas mixture of Ar/D2(10%) under ambient pressure between 900 ° C to 1150 ° C. FTIR analyses were performed on oriented slices before and after each annealing run. H diffusion along [100] and [010] follow the same diffusion law D = D0exp[-E /RT], with log D0 = 2.24 ± 1.57 (in m2/s) and E = 374 ± 39 kJ/mol. H diffusion along [001] follows a slightly more rapid diffusion law, with log D0 = 1.11 ± 0.22 (in m2/s) and E = 334 ± 49 kJ/mol. H diffusion in zircon has much higher activation energy and slower diffusivity than other NAMs below 1150 ° C even iron-poor garnets which are known to be among the slowest (Blanchard and Ingrin, 2004; Kurka et al. 2005). During H-D exchange zircon incorporates also deuterium. This hydration reaction involves uranium reduction as it is shown from the exchange of U5+ and U4+ characteristic bands in the near infrared region during annealing. It is the first time that a hydration reaction U5+ + OH- = U4+ + O2- + 1/2H2, is experimentally reported. The kinetics of deuterium incorporation is slightly slower than hydrogen diffusion, suggesting that the reaction is limited by hydrogen mobility. Hydrogen isotopic memory of zircon is higher than other NAMs. Zircons will be moderately retentive of H signatures at mid-crustal metamorphic temperatures. At 500 ° C, a zircon with a radius of 300 μm would retain its H isotopic signature over more than a million years. However, a zircon is unable to retain this information for geologically significant times under high-grade metamorphism unless the grain size is large enough. Refrences Blanchard, M. and Ingrin, J. (2004) Hydrogen diffusion in Dora Maira pyrope. Physics and Chemistry of Minerals, 31, 593-605. Kurka, A., Blanchard, M. and Ingrin, J. (2005) Kinetics of hydrogen extraction and deuteration in

  7. Hydrogen Adsorption Properties of Carbon Nanotubes and Platinum Nanoparticles from a New Ammonium-Ethylimidazolium Chloroplatinate Salt.

    PubMed

    Tamburri, Emanuela; Cassani, Maria Cristina; Ballarin, Barbara; Tomellini, Massimo; Femoni, Cristina; Mignani, Adriana; Terranova, Maria Letizia; Orlanducci, Silvia

    2016-05-23

    Self-supporting membranes built entirely of carbon nanotubes have been prepared by wet methods and characterized by Raman spectroscopy. The membranes are used as supports for the electrodeposition of Pt nanoparticles without the use of additional additives and/or stabilizers. The Pt precursor is an ad hoc synthesized ammonium-ethylimidazolium chloroplatinate(IV) salt, [NH3 (CH2 )2 MIM)][PtCl6 ]. The Pt complex was characterized using NMR spectroscopy, XRD, ESI-MS, and FTIR spectroscopy. The interaction between the Pt-carbon nanotubes nanocomposites and hydrogen is analyzed using electrochemical and quartz microbalance measurements under near-ambient conditions. The contribution of the Pt phase to the hydrogen adsorption on nanotube is found and explained by a kinetic model that takes into account a spillover event. Such a phenomenon may be exploited conveniently for catalysis and electrocatalysis applications in which the hybrid systems could act as a hydrogen transfer agent in specific hydrogenation reactions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Applications of functional carbon nanomaterials from hydrogen storage to drug delivery

    NASA Astrophysics Data System (ADS)

    Leonard, Ashley Dawn

    This dissertation describes the modification and functionalization of single-walled carbon nanotubes (SWCNTs). These SWCNTs were then investigated for their use in medical applications and for the storage of hydrogen. A technique was developed that leads to highly customized, individually suspended aqueous solutions of SWCNTs. These newly generated water-soluble SWCNTs were then functionalized further in water, thereby permitting the second functionalization addends to be chemically sensitive functional groups, for example drugs, that would not withstand the strongly acidic conditions of the first functionalization. The radical scavenging properties of nanovectors derived from SWCNTs were investigated and it was found that even the poorest SWCNT nanovector studied was nearly 40 times more effective at scavenging radicals than dendrite-fullerene DF-1, which has been shown to be a radioprotective to zebrafish via an antioxidant niechanism. This was used as the base to investigate using SWCNTs as protectors and mitigators of radiation exposure. SWCNTs were then explored for their use as drug delivery agents, in particular, the water insoluble chemotherapy drug, paclitaxel. SWCNTs showed promising in vivo and in vitro efficacy in the delivery of paclitaxel. Toxicity and biodistribution studies of the SWCNTs as drug delivery agents were performed in vivo using SWCNTs functionalized with radiolabeled indium. It was found that SWCNTs could be used for hydrogen storage by chemically crosslinking 3-dimensional frameworks of SWCNT fibers. These frameworks were shown to physisorb twice as much hydrogen, at low pressures, with respect to their surface areas, than typical macroporous carbon materials. This makes these SWCNT frameworks attractive materials for the development of a hydrogen vehicle fuel tank.

  9. Carbon and Hydrogen Isotope Fractionation in Lipid Biosynthesis of Piezophilic Bacteria - Implications for Studying Microbial Metabolism and Carbon Cycle in Deep Biosphere

    NASA Astrophysics Data System (ADS)

    Fang, J.; Dasgupta, S.; Zhang, L.; Li, J.; Kato, C.; Bartlett, D.

    2012-12-01

    Piezophiles are pressure-loving microorganisms, which reproduce preferentially or exclusively at pressures greater than atmospheric pressure. In this study, we examined stable carbon and hydrogen isotope fractionation in fatty acid biosynthesis of a piezophilic bacterium Moritella japonica DSK1. The bacterium was grown to stationary phase at hydrstatic pressures of 0.1, 10, 20, and 50 MPa (mega-passcal) in media prepared using sterilized natural seawater supplied with glucose as the sole carbon source. Bacterial cell biomass and individual fatty acids exhibited consistent pressure-dependent carbon and hydrogen isotope fractionations relative to substrates. Average carbon isotope fractionation (delta(FA-glucose)) at high pressures was much higher than that for surface bacteria: -15.7, -15.3, and -18.3‰ at 10, 20, and 50 MPa, respectively. For deltaD, fatty acids are more depleted in D relative to glucose than to water. Monounsaturated fatty acids are more depleted in D than corresponding saturated fatty acids by as much as 36‰. Polyunsaturated fatty acids are most depleted in D. For example, DHA (22:6omega3) has the most negative hydrogen isotope ratio (-170.91‰) (delta(FA-glucose) = -199, delta(FA-water) = -176). The observed isotope effects can be ascribed to the kinetics of enzymatic reactions that are affected by hydrostatic pressure and to operating of two independent lipid biosynthetic pathways of the piezophilic bacteria. Given that most of the biosphere lives under high pressures, our results have important important implications for studying microbial metabolism and carbon cycle in the deep biosphere.

  10. Hydrogen separation process

    DOEpatents

    Mundschau, Michael [Longmont, CO; Xie, Xiaobing [Foster City, CA; Evenson, IV, Carl; Grimmer, Paul [Longmont, CO; Wright, Harold [Longmont, CO

    2011-05-24

    A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to a hydrogen separation membrane system comprising a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to an integrated water gas shift/hydrogen separation membrane system wherein the hydrogen separation membrane system comprises a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for pretreating a membrane, comprising: heating the membrane to a desired operating temperature and desired feed pressure in a flow of inert gas for a sufficient time to cause the membrane to mechanically deform; decreasing the feed pressure to approximately ambient pressure; and optionally, flowing an oxidizing agent across the membrane before, during, or after deformation of the membrane. A method of supporting a hydrogen separation membrane system comprising selecting a hydrogen separation membrane system comprising one or more catalyst outer layers deposited on a hydrogen transport membrane layer and sealing the hydrogen separation membrane system to a porous support.

  11. Investigation of the hydrogen fluxes in the plasma edge of W7-AS during H-mode discharges

    NASA Astrophysics Data System (ADS)

    Langer, U.; Taglauer, E.; Fischer, R.; W7-AS Team

    2001-03-01

    In the stellarator W7-AS the H-mode is characterized by an edge transport barrier which is localized within a few centimeters inside the separatrix. The corresponding L-H transition shows well-known features such as the steepening of the temperature and density profiles in the region of the separatrix. With a so-called sniffer probe the temporal development of the hydrogen and deuterium fluxes has been studied in the plasma edge during different H-mode discharges with deuterium gas puffing. Prior to the transition a significant reduction of the deuterium and also the hydrogen fluxes can be observed. This fact confirms the assumption that the steepening of the density profiles starts at the outermost edge of the plasma. Moreover, sniffer probe measurements in the plasma edge could therefore identify a precursor for the L-H transition. The analysis of the hydrogen neutral gases shows a distinct change of the hydrogen isotope ratio during the transition. This observation is in agreement with the change in the particle fluxes onto the targets and can also be seen in the reduced H α signals from the limiters. It is further demonstrated that significant improvement in the time resolution of the measured data can be obtained by deconvolution of the data with the apparatus function using Bayesian probability theory and the Maximum Entropy method with adaptive kernels.

  12. Effect of hydrogen on the melting of the Fe-C system and the fate of the subducted carbon

    NASA Astrophysics Data System (ADS)

    Lai, X.; Chen, B.; Gao, J.; Zhu, F.

    2017-12-01

    The subducted oceanic crust carries significant amount of carbonates and organic carbons from the surface into the deep mantle. Through slab-mantle interactions, subducted carbons can react with metallic iron in the metal-saturated regions of the mantle and form various reduced species such as Fe carbides. The Fe-C system is found to have higher eutectic melting temperature than mantle geotherm and thus carbon by forming iron carbides may be "redox freezed" in the mantle (Rohrbach and Schmidt 2011). Hydrogen was found to be have significant effect on the melting of the Fe-light-elements systems such as the Fe-S system (Shibazaki et al., 2011). Here we report experimental results from both multi-anvil press and diamond anvil cell experiments on the melting behaviors of the Fe-C-H system. C14H12, a solid-state C-H organic compound was used as a C-H source to react with the metallic iron at high pressure and high temperature conditions. With excess C14H12, hydrogen in the FeHx alloy was totally replaced by carbon at 14.8-24.7 GPa. Conversely, with excess Fe, the existence of hydrogen is found to depress the melting temperature of the Fe-C system by at least 100 K. Hydrogen may facilitate the transport and cycling of subducted carbon in the deep mantle and contribute to formation of superdeep diamonds (Smith et al. 2016). Rohrbach, Arno, and Max W. Schmidt. "Redox freezing and melting in the Earth's deep mantle resulting from carbon-iron redox coupling." Nature 472.7342 (2011): 209. Shibazaki, Yuki, et al. "Effect of hydrogen on the melting temperature of FeS at high pressure: Implications for the core of Ganymede." Earth and Planetary Science Letters 301.1 (2011): 153-158. Smith, Evan M., et al. "Large gem diamonds from metallic liquid in Earth's deep mantle." Science 354.6318 (2016): 1403-1405.

  13. Atomic Layer Epitaxy of Aluminum Nitride: Unraveling the Connection between Hydrogen Plasma and Carbon Contamination.

    PubMed

    Erwin, Steven C; Lyons, John L

    2018-06-13

    Atomistic control over the growth of semiconductor thin films, such as aluminum nitride, is a long-sought goal in materials physics. One promising approach is plasma-assisted atomic layer epitaxy, in which separate reactant precursors are employed to grow the cation and anion layers in alternating deposition steps. The use of a plasma during the growth-most often a hydrogen plasma-is now routine and generally considered critical, but the precise role of the plasma is not well-understood. We propose a theoretical atomistic model and elucidate its consequences using analytical rate equations, density functional theory, and kinetic Monte Carlo statistical simulations. We show that using a plasma has two important consequences, one beneficial and one detrimental. The plasma produces atomic hydrogen in the gas phase, which is important for removing methyl radicals left over from the aluminum precursor molecules. However, atomic hydrogen also leads to atomic carbon on the surface and, moreover, opens a channel for trapping these carbon atoms as impurities in the subsurface region, where they remain as unwanted contaminants. Understanding this dual role leads us to propose a solution for the carbon contamination problem which leaves the main benefit of the plasma largely unaffected.

  14. Self-assembled air-stable magnesium hydride embedded in 3-D activated carbon for reversible hydrogen storage.

    PubMed

    Shinde, S S; Kim, Dong-Hyung; Yu, Jin-Young; Lee, Jung-Ho

    2017-06-01

    The rational design of stable, inexpensive catalysts with excellent hydrogen dynamics and sorption characteristics under realistic environments for reversible hydrogen storage remains a great challenge. Here, we present a simple and scalable strategy to fabricate a monodispersed, air-stable, magnesium hydride embedded in three-dimensional activated carbon with periodic synchronization of transition metals (MHCH). The high surface area, homogeneous distribution of MgH 2 nanoparticles, excellent thermal stability, high energy density, steric confinement by carbon, and robust architecture of the catalyst resulted in a noticeable enhancement of the hydrogen storage performance. The resulting MHCH-5 exhibited outstanding hydrogen storage performance, better than that of most reported Mg-based hydrides, with a high storage density of 6.63 wt% H 2 , a rapid kinetics loading in <5 min at 180 °C, superior reversibility, and excellent long-term cycling stability over ∼435 h. The significant reduction of the enthalpy and activation energy observed in the MHCH-5 demonstrated enhancement of the kinetics of de-/hydrogenation compared to that of commercial MgH 2 . The origin of the intrinsic hydrogen thermodynamics was elucidated via solid state 1 H NMR. This work presents a readily scaled-up strategy towards the design of realistic catalysts with superior functionality and stability for applications in reversible hydrogen storage, lithium ion batteries, and fuel cells.

  15. Multiply Surface-Functionalized Nanoporous Carbon for Vehicular Hydrogen Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pfeifer, Peter; Gillespie, Andrew; Stalla, David

    The purpose of the project “Multiply Surface-Functionalized Nanoporous Carbon for Vehicular Hydrogen Storage” is the development of materials that store hydrogen (H 2) by adsorption in quantities and at conditions that outperform current compressed-gas H 2 storage systems for electric power generation from hydrogen fuel cells (HFCs). Prominent areas of interest for HFCs are light-duty vehicles (“hydrogen cars”) and replacement of batteries with HFC systems in a wide spectrum of applications, ranging from forklifts to unmanned areal vehicles to portable power sources. State-of-the-art compressed H 2 tanks operate at pressures between 350 and 700 bar at ambient temperature and storemore » 3-4 percent of H 2 by weight (wt%) and less than 25 grams of H 2 per liter (g/L) of tank volume. Thus, the purpose of the project is to engineer adsorbents that achieve storage capacities better than compressed H 2 at pressures less than 350 bar. Adsorption holds H 2 molecules as a high-density film on the surface of a solid at low pressure, by virtue of attractive surface-gas interactions. At a given pressure, the density of the adsorbed film is the higher the stronger the binding of the molecules to the surface is (high binding energies). Thus, critical for high storage capacities are high surface areas, high binding energies, and low void fractions (high void fractions, such as in interstitial space between adsorbent particles, “waste” storage volume by holding hydrogen as non-adsorbed gas). Coexistence of high surface area and low void fraction makes the ideal adsorbent a nanoporous monolith, with pores wide enough to hold high-density hydrogen films, narrow enough to minimize storage as non-adsorbed gas, and thin walls between pores to minimize the volume occupied by solid instead of hydrogen. A monolith can be machined to fit into a rectangular tank (low pressure, conformable tank), cylindrical tank (high pressure), or other tank shape without any waste of volume.« less

  16. HIGH-PRESSURE PHYSICS. Direct observation of an abrupt insulator-to-metal transition in dense liquid deuterium.

    PubMed

    Knudson, M D; Desjarlais, M P; Becker, A; Lemke, R W; Cochrane, K R; Savage, M E; Bliss, D E; Mattsson, T R; Redmer, R

    2015-06-26

    Eighty years ago, it was proposed that solid hydrogen would become metallic at sufficiently high density. Despite numerous investigations, this transition has not yet been experimentally observed. More recently, there has been much interest in the analog of this predicted metallic transition in the dense liquid, due to its relevance to planetary science. Here, we show direct observation of an abrupt insulator-to-metal transition in dense liquid deuterium. Experimental determination of the location of this transition provides a much-needed benchmark for theory and may constrain the region of hydrogen-helium immiscibility and the boundary-layer pressure in standard models of the internal structure of gas-giant planets. Copyright © 2015, American Association for the Advancement of Science.

  17. Hydrogen and carbon isotope fractionation during degradation of chloromethane by methylotrophic bacteria

    PubMed Central

    Nadalig, Thierry; Greule, Markus; Bringel, Françoise; Vuilleumier, Stéphane; Keppler, Frank

    2013-01-01

    Chloromethane (CH3Cl) is a widely studied volatile halocarbon involved in the destruction of ozone in the stratosphere. Nevertheless, its global budget still remains debated. Stable isotope analysis is a powerful tool to constrain fluxes of chloromethane between various environmental compartments which involve a multiplicity of sources and sinks, and both biotic and abiotic processes. In this study, we measured hydrogen and carbon isotope fractionation of the remaining untransformed chloromethane following its degradation by methylotrophic bacterial strains Methylobacterium extorquens CM4 and Hyphomicrobium sp. MC1, which belong to different genera but both use the cmu pathway, the only pathway for bacterial degradation of chloromethane characterized so far. Hydrogen isotope fractionation for degradation of chloromethane was determined for the first time, and yielded enrichment factors (ε) of −29‰ and −27‰ for strains CM4 and MC1, respectively. In agreement with previous studies, enrichment in 13C of untransformed CH3Cl was also observed, and similar isotope enrichment factors (ε) of −41‰ and −38‰ were obtained for degradation of chloromethane by strains CM4 and MC1, respectively. These combined hydrogen and carbon isotopic data for bacterial degradation of chloromethane will contribute to refine models of the global atmospheric budget of chloromethane. PMID:24019296

  18. Vanadium hydride deuterium-tritium generator

    DOEpatents

    Christensen, L.D.

    1980-03-13

    A pressure controlled vanadium hydride gas generator was designed to provide deuterium-tritium gas in a series of pressure increments. A high pressure chamber filled with vanadium-deuterium-tritium hydride is surrounded by a heater which controls the hydride temperature. The heater is actuated by a power controller which responds to the difference signal between the actual pressure signal and a programmed pressure signal.

  19. Deuterium enrichment by selective photoinduced dissociation of a multihalogenated organic compound

    DOEpatents

    Marling, John B.; Herman, Irving P.

    1981-01-01

    A method for deuterium enrichment by photoinduced dissociation which uses as the deuterium source a multihalogenated organic compound selected from the group consisting of a dihalomethane, a trihalomethane, a 1,2-dihaloethene, a trihaloethene, a tetrahaloethane and a pentahaloethane. The multihalogenated organic compound is subjected to intense infrared radiation at a preselected wavelength to selectively excite and thereby induce dissociation of substantially only those molecules containing deuterium to provide a deuterium enriched dissociation product. The deuterium enriched product may be combusted with oxygen to provide deuterium enriched water. The deuterium depleted undissociated molecules may be redeuterated by treatment with a deuterium source such as water.

  20. Structure-reactivity relationships in the hydrogenation of carbon dioxide with ruthenium complexes bearing pyridinylazolato ligands.

    PubMed

    Muller, Keven; Sun, Yu; Heimermann, Andreas; Menges, Fabian; Niedner-Schatteburg, Gereon; van Wüllen, Christoph; Thiel, Werner R

    2013-06-10

    Pyridinylazolato (N-N') ruthenium(II) complexes of the type [(N-N')RuCl(PMe3)3] have been obtained in high yields by treating the corresponding functionalised azolylpyridines with [RuCl2 (PMe3)4] in the presence of a base. (15)N NMR spectroscopy was used to elucidate the electronic influence of the substituents attached to the azolyl ring. The findings are in agreement with slight differences in the bond lengths of the ruthenium complexes. Furthermore, the electronic nature of the azolate moiety modulates the catalytic activity of the ruthenium complexes in the hydrogenation of carbon dioxide under supercritical conditions and in the transfer hydrogenation of acetophenone. DFT calculations were performed to shed light on the mechanism of the hydrogenation of carbon dioxide and to clarify the impact of the electronic nature of the pyridinylazolate ligands. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Liquid hydrogen production via hydrogen sulfide methane reformation

    NASA Astrophysics Data System (ADS)

    Huang, Cunping; T-Raissi, Ali

    Hydrogen sulfide (H 2S) methane (CH 4) reformation (H 2SMR) (2H 2S + CH 4 = CS 2 + 4H 2) is a potentially viable process for the removal of H 2S from sour natural gas resources or other methane containing gases. Unlike steam methane reformation that generates carbon dioxide as a by-product, H 2SMR produces carbon disulfide (CS 2), a liquid under ambient temperature and pressure-a commodity chemical that is also a feedstock for the synthesis of sulfuric acid. Pinch point analyses for H 2SMR were conducted to determine the reaction conditions necessary for no carbon lay down to occur. Calculations showed that to prevent solid carbon formation, low inlet CH 4 to H 2S ratios are needed. In this paper, we analyze H 2SMR with either a cryogenic process or a membrane separation operation for production of either liquid or gaseous hydrogen. Of the three H 2SMR hydrogen production flowsheets analyzed, direct liquid hydrogen generation has higher first and second law efficiencies of exceeding 80% and 50%, respectively.

  2. Combustion characteristics of hydrogen. Carbon monoxide based gaseous fuels

    NASA Technical Reports Server (NTRS)

    Notardonato, J. J.; White, D. J.; Kubasco, A. J.; Lecren, R. T.

    1981-01-01

    An experimental rig program was conducted with the objective of evaluating the combuston performance of a family of fuel gases based on a mixture of hydrogen and carbon monoxide. These gases, in addition to being members of a family, were also representative of those secondary fuels that could be produced from coal by various gasification schemes. In particular, simulated Winkler, Lurgi, and Blue-water low and medium energy content gases were used as fuels in the experimental combustor rig. The combustor used was originally designed as a low NOx rich-lean system for burning liquid fuels with high bound nitrogen levels. When used with the above gaseous fuels this combustor was operated in a lean-lean mode with ultra long residence times. The Blue-water gas was also operated in a rich-lean mode. The results of these tests indicate the possibility of the existence of an 'optimum' gas turbine hydrogen - carbon monoxide based secondary fuel. Such a fuel would exhibit NOx and high efficiency over the entire engine operating range. It would also have sufficient stability range to allow normal light-off and engine acceleration. Solar Turbines Incorporated would like to emphasize that the results presented here have been obtained with experimental rig combustors. The technologies generated could, however, be utilized in future commercial gas turbines.

  3. Deuterium Abundance in the Local ISM and Possible Spatial Variations

    NASA Technical Reports Server (NTRS)

    Linsky, Jeffrey L.

    1998-01-01

    Excellent HST/GHRS spectra of interstellar hydrogen and deuterium Lyman-(alpha) absorption toward nearby stars allow us to identify systematic errors that have plagued earlier work and to measure accurate values of the D/H ratio in local interstellar gas. Analysis of 12 sightlines through the Local Interstellar Cloud leads to a mean value of D/H = (1.50 +/- 0.10) x 10(exp -5) with all data points lying within +/- l(delta) of the mean. Whether or not the D/H ratio has different values elsewhere in the Galaxy and beyond is a very important open question that will be one of the major objectives of the Far Ultraviolet Spectroscopic Explorer (FUSE) mission.

  4. Lanthanum-hexaboride carbon composition for use in corrosive hydrogen-fluorine environments

    DOEpatents

    Holcombe, C.E. Jr.; Kovach, L.; Taylor, A.J.

    1980-01-22

    The present invention relates to a structural composition useful in corrosive hydrogen-fluorine environments at temperatures in excess of 1400/sup 0/K. The composition is formed of a isostatically pressed and sintered or a hot-pressed mixture of lanthanum hexaboride particles and about 10 to 30 vol% carbon. The lanthanum-hexaboride reacts with the high-temperature fluorine-containing gases to form an adherent layer of corrosion-inhibiting lanthanum trifluoride on exposed surfaces of the composition. The carbon in the composite significantly strengthens the composite, enhances thermal shock resistance, and significantly facilitates the machining of the composition.

  5. A hydrogen leak-tight, transparent cryogenic sample container for ultracold-neutron transmission measurements

    NASA Astrophysics Data System (ADS)

    Döge, Stefan; Hingerl, Jürgen

    2018-03-01

    The improvement of the number of extractable ultracold neutrons (UCNs) from converters based on solid deuterium (sD2) crystals requires a good understanding of the UCN transport and how the crystal's morphology influences its transparency to the UCNs. Measurements of the UCN transmission through cryogenic liquids and solids of interest, such as hydrogen (H2) and deuterium (D2), require sample containers with thin, highly polished and optically transparent windows and a well defined sample thickness. One of the most difficult sealing problems is that of light gases like hydrogen and helium at low temperatures against high vacuum. Here we report on the design of a sample container with two 1 mm thin amorphous silica windows cold-welded to aluminum clamps using indium wire gaskets, in order to form a simple, reusable, and hydrogen-tight cryogenic seal. The container meets the above-mentioned requirements and withstands up to 2 bar hydrogen gas pressure against isolation vacuum in the range of 10-5 to 10-7 mbar at temperatures down to 4.5 K. Additionally, photographs of the crystallization process are shown and discussed.

  6. Hydrogen-induced slow crack growth of a plain carbon pipeline steel under conditions of cyclic loading

    NASA Technical Reports Server (NTRS)

    Nelson, H. G.

    1976-01-01

    The investigation described was aimed at establishing the degree of compatibility between a plain carbon pipeline-type steel and hydrogen and also hydrogen-rich environments containing small additions of H2S, O2, H2O, CO, CO2, CH4, and natural gas at pressures near 1 atm. Test were carried out under conditions of static and cyclic loading; the subcritical crack growth was monitored. The rates of crack growth observed in the hydrogen and hydrogen-rich environments are compared with the crack rate observed in a natural gas environment to determine the compatibility of the present natural gas transmission system with gaseous hydrogen transport.

  7. Local Interstellar Medium Properties and Deuterium Abundances for the Lines of Sight Toward HR 1099, 31 Comae, beta Ceti, and beta Cassiopeiae

    NASA Technical Reports Server (NTRS)

    Piskunov, Nikolai; Wood, Brian E.; Linsky, Jeffrey L.; Dempsey, Robert C.; Ayres, Thomas R.

    1997-01-01

    We analyze Goddard High-Resolution Spectrograph data to infer the properties of local interstellar gas and the Deuterium/Hydrogen (D/H) ratio for lines of sight toward four nearby late-type stars-HR 1099, 31 Comae, beta Ceti, and beta Cassiopeiae. The data consist of spectra of the hydrogen and deuterium Lyman-(alpha) lines, and echelle spectra of the Mg IIh and k lines toward all stars except beta Cas. Spectra of the RS CVn-type spectroscopic binary system HR 1099 were obtained near opposite quadratures to determine the intrinsic stellar emission line profile and the interstellar absorption separately. Multiple-velocity components were found toward HR 1099 and beta Cet. The spectra of 31 Com and beta Cet are particularly interesting because they sample lines of sight toward the north and south Galactic poles, respectively, for which H I and D I column densities were not previously available. The north Galactic pole appears to be a region of low hydrogen density like the 'interstellar tunnel' toward epsilon CMa. The temperature and turbulent velocities of the Local InterStellar Medium (LISM) that we measure for the lines of sight toward HR 1099, 31 Com, beta Cet, and beta Cas are similar to previously measured values (T approx.7000 K and xi = 1.0-1.6 km/s). The deuterium/hydrogen ratios found for these lines of sight are also consistent with previous measurements of other short lines of sight, which suggest D/H approx. 1.6 x 10(sup -5). In contrast, the Mg abundance measured for the beta Cet line of sight (implying a logarithmic depletion of D(Mg) = +0.30 +/- 0.15) is about 5 times larger than the Mg abundance previously observed toward alpha Cen, and about 20 times larger than all other previous measurements for the LISM. These results demonstrate that metal abundances in the LISM vary greatly over distances of only a few parsecs.

  8. System and method for controlling hydrogen elimination during carbon nanotube synthesis from hydrocarbons

    DOEpatents

    Reilly, Peter T. A.

    2010-03-23

    A system and method for producing carbon nanotubes by chemical vapor deposition includes a catalyst support having first and second surfaces. The catalyst support is capable of hydrogen transport from the first to the second surface. A catalyst is provided on the first surface of the catalyst support. The catalyst is selected to catalyze the chemical vapor deposition formation of carbon nanotubes. A fuel source is provided for supplying fuel to the catalyst.

  9. Efficient hydrogenation of organic carbonates, carbamates and formates indicates alternative routes to methanol based on CO2 and CO.

    PubMed

    Balaraman, Ekambaram; Gunanathan, Chidambaram; Zhang, Jing; Shimon, Linda J W; Milstein, David

    2011-07-22

    Catalytic hydrogenation of organic carbonates, carbamates and formates is of significant interest both conceptually and practically, because these compounds can be produced from CO2 and CO, and their mild hydrogenation can provide alternative, mild approaches to the indirect hydrogenation of CO2 and CO to methanol, an important fuel and synthetic building block. Here, we report for the first time catalytic hydrogenation of organic carbonates to alcohols, and carbamates to alcohols and amines. Unprecedented homogeneously catalysed hydrogenation of organic formates to methanol has also been accomplished. The reactions are efficiently catalysed by dearomatized PNN Ru(II) pincer complexes derived from pyridine- and bipyridine-based tridentate ligands. These atom-economical reactions proceed under neutral, homogeneous conditions, at mild temperatures and under mild hydrogen pressures, and can operate in the absence of solvent with no generation of waste, representing the ultimate 'green' reactions. A possible mechanism involves metal-ligand cooperation by aromatization-dearomatization of the heteroaromatic pincer core.

  10. Efficient hydrogenation of organic carbonates, carbamates and formates indicates alternative routes to methanol based on CO2 and CO

    NASA Astrophysics Data System (ADS)

    Balaraman, Ekambaram; Gunanathan, Chidambaram; Zhang, Jing; Shimon, Linda J. W.; Milstein, David

    2011-08-01

    Catalytic hydrogenation of organic carbonates, carbamates and formates is of significant interest both conceptually and practically, because these compounds can be produced from CO2 and CO, and their mild hydrogenation can provide alternative, mild approaches to the indirect hydrogenation of CO2 and CO to methanol, an important fuel and synthetic building block. Here, we report for the first time catalytic hydrogenation of organic carbonates to alcohols, and carbamates to alcohols and amines. Unprecedented homogeneously catalysed hydrogenation of organic formates to methanol has also been accomplished. The reactions are efficiently catalysed by dearomatized PNN Ru(II) pincer complexes derived from pyridine- and bipyridine-based tridentate ligands. These atom-economical reactions proceed under neutral, homogeneous conditions, at mild temperatures and under mild hydrogen pressures, and can operate in the absence of solvent with no generation of waste, representing the ultimate ‘green’ reactions. A possible mechanism involves metal-ligand cooperation by aromatization-dearomatization of the heteroaromatic pincer core.

  11. Oxygen- and Lithium-Doped Hybrid Boron-Nitride/Carbon Networks for Hydrogen Storage.

    PubMed

    Shayeganfar, Farzaneh; Shahsavari, Rouzbeh

    2016-12-20

    Hydrogen storage capacities have been studied on newly designed three-dimensional pillared boron nitride (PBN) and pillared graphene boron nitride (PGBN). We propose these novel materials based on the covalent connection of BNNTs and graphene sheets, which enhance the surface and free volume for storage within the nanomaterial and increase the gravimetric and volumetric hydrogen uptake capacities. Density functional theory and molecular dynamics simulations show that these lithium- and oxygen-doped pillared structures have improved gravimetric and volumetric hydrogen capacities at room temperature, with values on the order of 9.1-11.6 wt % and 40-60 g/L. Our findings demonstrate that the gravimetric uptake of oxygen- and lithium-doped PBN and PGBN has significantly enhanced the hydrogen sorption and desorption. Calculations for O-doped PGBN yield gravimetric hydrogen uptake capacities greater than 11.6 wt % at room temperature. This increased value is attributed to the pillared morphology, which improves the mechanical properties and increases porosity, as well as the high binding energy between oxygen and GBN. Our results suggest that hybrid carbon/BNNT nanostructures are an excellent candidate for hydrogen storage, owing to the combination of the electron mobility of graphene and the polarized nature of BN at heterojunctions, which enhances the uptake capacity, providing ample opportunities to further tune this hybrid material for efficient hydrogen storage.

  12. Stereoselective hydrogenation of olefins using rhodium-substituted carbonic anhydrase--a new reductase.

    PubMed

    Jing, Qing; Okrasa, Krzysztof; Kazlauskas, Romas J

    2009-01-01

    One useful synthetic reaction missing from nature's toolbox is the direct hydrogenation of substrates using hydrogen. Instead nature uses cofactors like NADH to reduce organic substrates, which adds complexity and cost to these reductions. To create an enzyme that can directly reduce organic substrates with hydrogen, researchers have combined metal hydrogenation catalysts with proteins. One approach is an indirect link where a ligand is linked to a protein and the metal binds to the ligand. Another approach is direct linking of the metal to protein, but nonspecific binding of the metal limits this approach. Herein, we report a direct hydrogenation of olefins catalyzed by rhodium(I) bound to carbonic anhydrase (CA-[Rh]). We minimized nonspecific binding of rhodium by replacing histidine residues on the protein surface using site-directed mutagenesis or by chemically modifying the histidine residues. Hydrogenation catalyzed by CA-[Rh] is slightly slower than for uncomplexed rhodium(I), but the protein environment induces stereoselectivity favoring cis- over trans-stilbene by about 20:1. This enzyme is the first cofactor-independent reductase that reduces organic molecules using hydrogen. This catalyst is a good starting point to create variants with tailored reactivity and selectivity. This strategy to insert transition metals in the active site of metalloenzymes opens opportunities to a wider range of enzyme-catalyzed reactions.

  13. Catalytic hydrogenation of polyaromatic hydrocarbon (PAH) compounds in supercritical carbon dioxide over supported palladium.

    PubMed

    Yuan, Tao; Marshall, William D

    2007-12-01

    A series of supported palladium catalysts were evaluated for their ability to mediate the complete hydrogenation of polycyclic aromatic hydrocarbon (PAH) compounds. Benzo[a]pyrene (B[a]P) or phenanthrene (Phe) in hexane was merged with a hydrogen-carbon dioxide [5% (w/w) H(2)/CO(2)] stream and transferred to a flow through mini-reactor (capacity ca. 1 g) that was maintained at 90 degrees C under a back-pressure of 20.68 MPa. Effluent from the reactor trapped in hexane was monitored/quantified by gas chromatography-mass spectrometry. Catalyst formulations supported on iron powder, high density polyethylene (HDPE) or gamma-alumina were prepared and compared in terms of hydrogenation activity as measured by the quantity of substrate per unit time that could be perhydrogenated to toxicologically innocuous products. Both of the Pd preparations supported on gamma-alumina were more efficient than a commercial Pd(0) (5% w/w) on gamma-Al(2)O(3) formulation or preparations supported on HDPE or the iron powder. Bimetallic mixtures with Pd increased the hydrogenation activity when co-deposited with Cu or Ni but not with Ag or Co. However, increases in hydrogenation activity by increasing the loading of Pd (or bimetallic mixture) on this surface were limited. Despite using supercritical carbon dioxide (scCO(2)) to swell the surfaces of the polymer, the deposition of nanoparticles within the polyethylene formulation was appreciably less active than either the oxidic or the Fe(0) formulations.

  14. Deuterium Abundance in Consciousness and Current Cosmology

    NASA Astrophysics Data System (ADS)

    Rauscher, Elizabeth A.

    We utilize the deuterium-hydrogen abundances and their role in setting limits on the mass and other conditions of cosmogenesis and cosmological evolution. We calculate the dependence of a set of physical variables such as density, temperature, energy mass, entropy and other physical variable parameters through the evolution of the universe under the Schwarzschild conditions as a function from early to present time. Reconciliation with the 3°K and missing mass is made. We first examine the Schwarzschild condition; second, the geometrical constraints of a multidimensional Cartesian space on closed cosmologies, and third we will consider the cosmogenesis and evolution of the universe in a multidimensional Cartesian space, obeying the Schwarzschild condition. Implications of this model for matter creation are made. We also examine experimental evidence for closed versus open cosmologies; x-ray detection of the "missing mass" density. Also the interstellar deuterium abundance, along with the value of the Hubble constant set a general criterion on the value of the curvature constant, k. Once the value of the Hubble constant, H is determined, the deuterium abundance sets stringent restrictions on the value of the curvature constant k by an detailed discussion is presented. The experimental evidences for the determination of H and the primary set of coupled equations to determine D abundance is given. 'The value of k for an open, closed, or flat universe will be discussed in terms of the D abundance which will affect the interpretation of the Schwarzschild, black hole universe. We determine cosmology solutions to Einstein's field obeying the Schwarzschild solutions condition. With this model, we can form a reconciliation of the black hole, from galactic to cosmological scale. Continuous creation occurs at the dynamic blackhole plasma field. We term this new model the multiple big bang or "little whimper model". We utilize the deuteriumhydrogen abundances and their role in

  15. Hydrogenation of Carbon Dioxide to Methane by Ruthenium Nanoparticles in Ionic Liquid.

    PubMed

    Melo, Catarina I; Szczepańska, Anna; Bogel-Łukasik, Ewa; Nunes da Ponte, Manuel; Branco, Luís C

    2016-05-23

    The efficient transformation of carbon dioxide into fuels can be an excellent alternative to sequestration. In this work, we describe CO2 hydrogenation to methane in imidazolium-based ionic liquid media, using ruthenium nanoparticles prepared in situ as catalyst. The best yield of methane (69 %) was achieved using 0.24 mol % ruthenium catalyst (in [omim][NTf2 ], 1-octyl-3-methylimidazolium bistrifluoromethanesulfonylimide, at 40 bar of hydrogen pressure plus 40 bar of CO2 pressure, and at 150 °C. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. A Heterogeneous Metal-Free Catalyst for Hydrogenation: Lewis Acid-Base Pairs Integrated into a Carbon Lattice.

    PubMed

    Ding, Yuxiao; Huang, Xing; Yi, Xianfeng; Qiao, Yunxiang; Sun, Xiaoyan; Zheng, Anmin; Su, Dang Sheng

    2018-06-04

    Designing heterogeneous metal-free catalysts for hydrogenation is a long-standing challenge in catalysis. Nanodiamond-based carbon materials were prepared that are surface-doped with electron-rich nitrogen and electron-deficient boron. The two heteroatoms are directly bonded to each other to form unquenched Lewis pairs with infinite π-electron donation from the surrounding graphitic structure. Remarkably, these Lewis pairs can split H 2 to form H + /H - pairs, which subsequently serve as the active species for hydrogenation of different substrates. This unprecedented finding sheds light on the uptake of H 2 across carbon-based materials and suggests that dual Lewis acidity-basicity on the carbon surface may be used to heterogeneously activate a variety of small molecules. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. The effect of hydrogen on the parameters of plastic deformation localization in low carbon steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lunev, Aleksey G., E-mail: agl@ispms.tsc.ru, E-mail: nadjozhkin@ispms.tsc.ru; Nadezhkin, Mikhail V., E-mail: agl@ispms.tsc.ru, E-mail: nadjozhkin@ispms.tsc.ru; Shlyakhova, Galina V., E-mail: shgv@ispms.tsc.ru

    2014-11-14

    In the present study, the effect of interstitial hydrogen atoms on the mechanical properties and plastic strain localization patterns in tensile tested polycrystals of low-carbon steel Fe-0.07%C has been studied using double exposure speckle photography technique. The main parameters of plastic flow localization at various stages of deformation hardening have been determined in polycrystals of steel electrolytically saturated with hydrogen in a three-electrode electrochemical cell at a controlled constant cathode potential. Also, the effect of hydrogen on changing of microstructure by using optical microscopy has been demonstrated.

  18. Nickel supported on nitrogen-doped carbon nanotubes as hydrogen oxidation reaction catalyst in alkaline electrolyte

    DOE PAGES

    Zhuang, Zhongbin; Giles, Stephen A.; Zheng, Jie; ...

    2016-01-14

    The development of a low-cost, high-performance platinum-group-metal-free hydroxide exchange membrane fuel cell is hindered by the lack of a hydrogen oxidation reaction catalyst at the anode. Here we report that a composite catalyst, nickel nanoparticles supported on nitrogen-doped carbon nanotubes, has hydrogen oxidation activity similar to platinum-group metals in alkaline electrolyte. Although nitrogen-doped carbon nanotubes are a very poor hydrogen oxidation catalyst, as a support, it increases the catalytic performance of nickel nanoparticles by a factor of 33 (mass activity) or 21 (exchange current density) relative to unsupported nickel nanoparticles. Density functional theory calculations indicate that the nitrogen-doped support stabilizesmore » the nanoparticle against reconstruction, while nitrogen located at the edge of the nanoparticle tunes local adsorption sites by affecting the d-orbitals of nickel. Here, owing to its high activity and low cost, our catalyst shows significant potential for use in low-cost, high-performance fuel cells.« less

  19. Nickel supported on nitrogen-doped carbon nanotubes as hydrogen oxidation reaction catalyst in alkaline electrolyte

    PubMed Central

    Zhuang, Zhongbin; Giles, Stephen A.; Zheng, Jie; Jenness, Glen R.; Caratzoulas, Stavros; Vlachos, Dionisios G.; Yan, Yushan

    2016-01-01

    The development of a low-cost, high-performance platinum-group-metal-free hydroxide exchange membrane fuel cell is hindered by the lack of a hydrogen oxidation reaction catalyst at the anode. Here we report that a composite catalyst, nickel nanoparticles supported on nitrogen-doped carbon nanotubes, has hydrogen oxidation activity similar to platinum-group metals in alkaline electrolyte. Although nitrogen-doped carbon nanotubes are a very poor hydrogen oxidation catalyst, as a support, it increases the catalytic performance of nickel nanoparticles by a factor of 33 (mass activity) or 21 (exchange current density) relative to unsupported nickel nanoparticles. Density functional theory calculations indicate that the nitrogen-doped support stabilizes the nanoparticle against reconstruction, while nitrogen located at the edge of the nanoparticle tunes local adsorption sites by affecting the d-orbitals of nickel. Owing to its high activity and low cost, our catalyst shows significant potential for use in low-cost, high-performance fuel cells. PMID:26762466

  20. Hydrogen dissociation catalyzed by carbon-coated nickel nanoparticles: experiment and theory.

    PubMed

    Yermakov, Anatoliy Ye; Boukhvalov, Danil W; Uimin, Michael A; Lokteva, Ekaterina S; Erokhin, Alexey V; Schegoleva, Nina N

    2013-02-04

    Based on the combination of experimental measurements and first-principles calculations we report a novel carbon-based catalytic material and describe significant acceleration of the hydrogenation of magnesium at room temperature in the presence of nickel nanoparticles wrapped in multilayer graphene. The increase in rate of magnesium hydrogenation in contrast to a mix of graphite and nickel nanoparticles evidences intrinsic catalytic properties of the nanocomposites explored. The results from simulation demonstrate that doping of the metal substrate and the presence of Stone-Wales defects turn multilayer graphene from being chemically inert to chemically active. The role of the size of the nanoparticles and temperature are also discussed. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Photoredox-catalyzed deuteration and tritiation of pharmaceutical compounds

    PubMed Central

    Loh, Yong Yao; Nagao, Kazunori; Hoover, Andrew J.; Hesk, David; Rivera, Nelo R.; Colletti, Steven L.; Davies, Ian W.; MacMillan, David W. C.

    2018-01-01

    Deuterium- and tritium-labeled pharmaceutical compounds are pivotal diagnostic tools in drug discovery research, providing vital information about the biological fate of drugs and drug metabolites. Herein we demonstrate that a photoredox-mediated hydrogen atom transfer protocol can efficiently and selectively install deuterium (D) and tritium (T) at α-amino sp3 carbon-hydrogen bonds in a single step, using isotopically labeled water (D2O or T2O) as the source of hydrogen isotope. In this context, we also report a convenient synthesis of T2O from T2, providing access to high-specific-activity T2O. This protocol has been successfully applied to the high incorporation of deuterium and tritium in 18 drug molecules, which meet the requirements for use in ligand-binding assays and absorption, distribution, metabolism, and excretion studies. PMID:29123019

  2. A regenerative process for carbon dioxide removal and hydrogen production in IGCC

    NASA Astrophysics Data System (ADS)

    Hassanzadeh Khayyat, Armin

    Advanced power generation technologies, such as Integrated Gasification-Combined Cycles (IGCC) processes, are among the leading contenders for power generation conversion because of their significantly higher efficiencies and potential environmental advantages, compared to conventional coal combustion processes. Although the increased in efficiency in the IGCC processes will reduce the emissions of carbon dioxide per unit of power generated, further reduction in CO2 emissions is crucial due to enforcement of green house gases (GHG) regulations. In IGCC processes to avoid efficiency losses, it is desirable to remove CO2 in the temperature range of 300° to 500°C, which makes regenerable MgO-based sorbents ideal for such operations. In this temperature range, CO2 removal results in the shifting of the water-gas shift (WGS) reaction towards significant reduction in carbon monoxide (CO), and enhancement in hydrogen production. However, regenerable, reactive and attrition resistant sorbents are required for such application. In this work, a highly reactive and attrition resistant regenerable MgO-based sorbent is prepared through dolomite modification, which can simultaneously remove carbon dioxide and enhance hydrogen production in a single reactor. The results of the experimental tests conducted in High-Pressure Thermogravimetric Analyzer (HP-TGA) and high-pressure packed-bed units indicate that in the temperature range of 300° to 500°C at 20 atm more than 95 molar percent of CO2 can be removed from the simulated coal gas, and the hydrogen concentration can be increased to above 70 percent. However, a declining trend is observed in the capacity of the sorbent exposed to long-term durability analysis, which appears to level off after about 20 cycles. Based on the physical and chemical analysis of the sorbent, a two-zone expanding grain model was applied to obtain an excellent fit to the carbonation reaction rate data at various operating conditions. The modeling

  3. Two tools for applying chromatographic retention data to the mass-based identification of peptides during hydrogen/deuterium exchange experiments by nano-liquid chromatography/matrix-assisted laser desorption/ionization mass spectrometry.

    PubMed

    Gershon, P D

    2010-12-15

    Two tools are described for integrating LC elution position with mass-based data in hydrogen-deuterium exchange (HDX) experiments by nano-liquid chromatography/matrix-assisted laser desorption/ionization mass spectrometry (nanoLC/MALDI-MS, a novel approach to HDX-MS). The first of these, 'TOF2H-Z Comparator', highlights peptides in HDX experiments that are potentially misidentified on the basis of mass alone. The program first calculates normalized values for the organic solvent concentration responsible for the elution of ions in nanoLC/MALDI HDX experiments. It then allows the solvent gradients for the multiple experiments contributing to an MS/MS-confirmed peptic peptide library to be brought into mutual alignment by iteratively re-modeling variables among LC parameters such as gradient shape, solvent species, fraction duration and LC dead time. Finally, using the program, high-probability chromatographic outliers can be flagged within HDX experimental data. The role of the second tool, 'TOF2H-XIC Comparator', is to normalize the LC chromatograms corresponding to all deuteration timepoints of all HDX experiments of a project, to a common reference. Accurate normalization facilitates the verification of chromatographic consistency between all ions whose spectral segments contribute to particular deuterium uptake plots. Gradient normalization in this manner revealed chromatographic inconsistencies between ions whose masses were either indistinguishable or separated by precise isotopic increments. Copyright © 2010 John Wiley & Sons, Ltd.

  4. An amperometric hydrogen peroxide biosensor based on Co3O4 nanoparticles and multiwalled carbon nanotube modified glassy carbon electrode

    NASA Astrophysics Data System (ADS)

    Kaçar, Ceren; Dalkiran, Berna; Erden, Pınar Esra; Kiliç, Esma

    2014-08-01

    In this work a new type of hydrogen peroxide biosensor was fabricated based on the immobilization of horseradish peroxidase (HRP) by cross-linking on a glassy carbon electrode (GCE) modified with Co3O4 nanoparticles, multiwall carbon nanotubes (MWCNTs) and gelatin. The introduction of MWCNTs and Co3O4 nanoparticles not only enhanced the surface area of the modified electrode for enzyme immobilization but also facilitated the electron transfer rate, resulting in a high sensitivity of the biosensor. The fabrication process of the sensing surface was characterized by scanning electron microscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Amperometric detection of hydrogen peroxide was investigated by holding the modified electrode at -0.30 V (vs. Ag/AgCl). The biosensor showed optimum response within 5 s at pH 7.0. The optimized biosensor showed linear response range of 7.4 × 10-7-1.9 × 10-5 M with a detection limit of 7.4 × 10-7. The applicability of the purposed biosensor was tested by detecting hydrogen peroxide in disinfector samples. The average recovery was calculated as 100.78 ± 0.89.

  5. Morphology, mechanical, cross-linking, thermal, and tribological properties of nitrile and hydrogenated nitrile rubber/multi-walled carbon nanotubes composites prepared by melt compounding: The effect of acrylonitrile content and hydrogenation

    NASA Astrophysics Data System (ADS)

    Likozar, Blaž; Major, Zoltan

    2010-11-01

    The purpose of this work was to prepare nanocomposites by mixing multi-walled carbon nanotubes (MWCNT) with nitrile and hydrogenated nitrile elastomers (NBR and HNBR). Utilization of transmission electronic microscopy (TEM), scanning electron microscopy (SEM), and small- and wide-angle X-ray scattering techniques (SAXS and WAXS) for advanced morphology observation of conducting filler-reinforced nitrile and hydrogenated nitrile rubber composites is reported. Principal results were increases in hardness (maximally 97 Shore, type A), elastic modulus (maximally 981 MPa), tensile strength (maximally 27.7 MPa), elongation at break (maximally 216%), cross-link density (maximally 7.94 × 1028 m-3), density (maximally 1.16 g cm-3), and tear strength (11.2 kN m-1), which were clearly visible at particular acrylonitrile contents both for unhydrogenated and hydrogenated polymers due to enhanced distribution of carbon nanotubes (CNT) and their aggregated particles in the applied rubber matrix. Conclusion was that multi-walled carbon nanotubes improved the performance of nitrile and hydrogenated nitrile rubber nanocomposites prepared by melt compounding.

  6. Effects of trophic level and metamorphosis on discrimination of hydrogen isotopes in a plant-herbivore system

    USGS Publications Warehouse

    Peters, Jacob M.; Wolf, Nathan; Stricker, Craig A.; Collier, Timothy R.; Martinez del Rio, Carlos

    2012-01-01

    The use of stable isotopes in ecological studies requires that we know the magnitude of discrimination factors between consumer and element sources. The causes of variation in discrimination factors for carbon and nitrogen have been relatively well studied. In contrast, the discrimination factors for hydrogen have rarely been measured. We grew cabbage looper caterpillars (Trichoplusia ni) on cabbage (Brassica oleracea) plants irrigated with four treatments of deuterium-enriched water (δD = -131, -88, -48, and -2‰, respectively), allowing some of them to reach adulthood as moths. Tissue δD values of plants, caterpillars, and moths were linearly correlated with the isotopic composition of irrigation water. However, the slope of these relationships was less than 1, and hence, discrimination factors depended on the δD value of irrigation water. We hypothesize that this dependence is an artifact of growing plants in an environment with a common atmospheric δD value. Both caterpillars and moths were significantly enriched in deuterium relative to plants by ~45‰ and 23‰ respectively, but the moths had lower tissue to plant discrimination factors than did the caterpillars. If the trophic enrichment documented here is universal, δD values must be accounted for in geographic assignment studies. The isotopic value of carbon was transferred more or less faithfully across trophic levels, but δ15N values increased from plants to insects and we observed significant non-trophic 15N enrichment in the metamorphosis from larvae to adult.

  7. Is High Primordial Deuterium Consistent with Galactic Evolution?

    NASA Astrophysics Data System (ADS)

    Tosi, Monica; Steigman, Gary; Matteucci, Francesca; Chiappini, Cristina

    1998-05-01

    Galactic destruction of primordial deuterium is inevitably linked through star formation to the chemical evolution of the Galaxy. The relatively high present gas content and low metallicity suggest only modest D destruction. In concert with deuterium abundances derived from solar system and/or interstellar observations, this suggests a primordial deuterium abundance in possible conflict with data from some high-redshift, low-metallicity QSO absorbers. We have explored a variety of chemical evolution models including infall of processed material and early, supernovae-driven winds with the aim of identifying models with large D destruction that are consistent with the observations of stellar-produced heavy elements. When such models are confronted with data, we reconfirm that only modest destruction of deuterium (less than a factor of 3) is permitted. When combined with solar system and interstellar data, these results favor the low deuterium abundances derived for the QSO absorbers by Tytler et al.

  8. Graphenes in the absence of metals as carbocatalysts for selective acetylene hydrogenation and alkene hydrogenation

    NASA Astrophysics Data System (ADS)

    Primo, Ana; Neatu, Florentina; Florea, Mihaela; Parvulescu, Vasile; Garcia, Hermenegildo

    2014-10-01

    Catalysis makes possible a chemical reaction by increasing the transformation rate. Hydrogenation of carbon-carbon multiple bonds is one of the most important examples of catalytic reactions. Currently, this type of reaction is carried out in petrochemistry at very large scale, using noble metals such as platinum and palladium or first row transition metals such as nickel. Catalysis is dominated by metals and in many cases by precious ones. Here we report that graphene (a single layer of one-atom-thick carbon atoms) can replace metals for hydrogenation of carbon-carbon multiple bonds. Besides alkene hydrogenation, we have shown that graphenes also exhibit high selectivity for the hydrogenation of acetylene in the presence of a large excess of ethylene.

  9. Extension of the operational regime of the LHD towards a deuterium experiment

    NASA Astrophysics Data System (ADS)

    Takeiri, Y.; Morisaki, T.; Osakabe, M.; Yokoyama, M.; Sakakibara, S.; Takahashi, H.; Nakamura, Y.; Oishi, T.; Motojima, G.; Murakami, S.; Ito, K.; Ejiri, A.; Imagawa, S.; Inagaki, S.; Isobe, M.; Kubo, S.; Masamune, S.; Mito, T.; Murakami, I.; Nagaoka, K.; Nagasaki, K.; Nishimura, K.; Sakamoto, M.; Sakamoto, R.; Shimozuma, T.; Shinohara, K.; Sugama, H.; Watanabe, K. Y.; Ahn, J. W.; Akata, N.; Akiyama, T.; Ashikawa, N.; Baldzuhn, J.; Bando, T.; Bernard, E.; Castejón, F.; Chikaraishi, H.; Emoto, M.; Evans, T.; Ezumi, N.; Fujii, K.; Funaba, H.; Goto, M.; Goto, T.; Gradic, D.; Gunsu, Y.; Hamaguchi, S.; Hasegawa, H.; Hayashi, Y.; Hidalgo, C.; Higashiguchi, T.; Hirooka, Y.; Hishinuma, Y.; Horiuchi, R.; Ichiguchi, K.; Ida, K.; Ido, T.; Igami, H.; Ikeda, K.; Ishiguro, S.; Ishizaki, R.; Ishizawa, A.; Ito, A.; Ito, Y.; Iwamoto, A.; Kamio, S.; Kamiya, K.; Kaneko, O.; Kanno, R.; Kasahara, H.; Kato, D.; Kato, T.; Kawahata, K.; Kawamura, G.; Kisaki, M.; Kitajima, S.; Ko, W. H.; Kobayashi, M.; Kobayashi, S.; Kobayashi, T.; Koga, K.; Kohyama, A.; Kumazawa, R.; Lee, J. H.; López-Bruna, D.; Makino, R.; Masuzaki, S.; Matsumoto, Y.; Matsuura, H.; Mitarai, O.; Miura, H.; Miyazawa, J.; Mizuguchi, N.; Moon, C.; Morita, S.; Moritaka, T.; Mukai, K.; Muroga, T.; Muto, S.; Mutoh, T.; Nagasaka, T.; Nagayama, Y.; Nakajima, N.; Nakamura, Y.; Nakanishi, H.; Nakano, H.; Nakata, M.; Narushima, Y.; Nishijima, D.; Nishimura, A.; Nishimura, S.; Nishitani, T.; Nishiura, M.; Nobuta, Y.; Noto, H.; Nunami, M.; Obana, T.; Ogawa, K.; Ohdachi, S.; Ohno, M.; Ohno, N.; Ohtani, H.; Okamoto, M.; Oya, Y.; Ozaki, T.; Peterson, B. J.; Preynas, M.; Sagara, S.; Saito, K.; Sakaue, H.; Sanpei, A.; Satake, S.; Sato, M.; Saze, T.; Schmitz, O.; Seki, R.; Seki, T.; Sharov, I.; Shimizu, A.; Shiratani, M.; Shoji, M.; Skinner, C.; Soga, R.; Stange, T.; Suzuki, C.; Suzuki, Y.; Takada, S.; Takahata, K.; Takayama, A.; Takayama, S.; Takemura, Y.; Takeuchi, Y.; Tamura, H.; Tamura, N.; Tanaka, H.; Tanaka, K.; Tanaka, M.; Tanaka, T.; Tanaka, Y.; Toda, S.; Todo, Y.; Toi, K.; Toida, M.; Tokitani, M.; Tokuzawa, T.; Tsuchiya, H.; Tsujimura, T.; Tsumori, K.; Usami, S.; Velasco, J. L.; Wang, H.; Watanabe, T.-H.; Watanabe, T.; Yagi, J.; Yajima, M.; Yamada, H.; Yamada, I.; Yamagishi, O.; Yamaguchi, N.; Yamamoto, Y.; Yanagi, N.; Yasuhara, R.; Yatsuka, E.; Yoshida, N.; Yoshinuma, M.; Yoshimura, S.; Yoshimura, Y.

    2017-10-01

    As the finalization of a hydrogen experiment towards the deuterium phase, the exploration of the best performance of hydrogen plasma was intensively performed in the large helical device. High ion and electron temperatures, T i and T e, of more than 6 keV were simultaneously achieved by superimposing high-power electron cyclotron resonance heating onneutral beam injection (NBI) heated plasma. Although flattening of the ion temperature profile in the core region was observed during the discharges, one could avoid degradation by increasing the electron density. Another key parameter to present plasma performance is an averaged beta value ≤ft< β \\right> . The high ≤ft< β \\right> regime around 4% was extended to an order of magnitude lower than the earlier collisional regime. Impurity behaviour in hydrogen discharges with NBI heating was also classified with a wide range of edge plasma parameters. The existence of a no impurity accumulation regime, where the high performance plasma is maintained with high power heating  >10 MW, was identified. Wide parameter scan experiments suggest that the toroidal rotation and the turbulence are the candidates for expelling impurities from the core region.

  10. NMR analysis of t-butyl-catalyzed deuterium exchange at unactivated arene localities.

    PubMed

    Stack, Douglas E; Eastman, Rachel

    2016-10-01

    Regioselective labelling of arene rings via electrophilic exchange is often dictated by the electronic environment caused by substituents present on the aromatic system. Previously, we observed the presence of a t-butyl group, either covalently bond or added as an external reagent, could impart deuterium exchange to the unactivated, C1-position of estrone. Here, we provide nuclear magnetic resonance analysis of this exchange in a solvent system composed of 50:50 trifluoroacetic acid and D 2 O with either 2-t-butylestrone or estrone in the presence of t-butyl alcohol has shed insights into the mechanism of this t-butyl-catalyzed exchange. Fast exchange of the t-butyl group concurrent with the gradual reduction of the H1 proton signal in both systems suggest a mechanism involving ipso attack of the t-butyl position by deuterium. The reversible addition/elimination of the t-butyl group activates the H1 proton towards exchange by a mechanism of t-butyl incorporation, H1 activation and exchange, followed by eventual t-butyl elimination. Density functional calculations are consistent with the observation of fast t-butyl exchange concurrent with slower H1 exchange. The σ-complex resulting from ipso attack of deuterium at the t-butyl carbon was 6.6 kcal/mol lower in energy than that of the σ-complex resulting from deuterium attack at C1. A better understanding of the t-butyl-catalyzed exchange could help in the design of labelling recipes for other phenolic metabolites. Copyright © 2016 The Authors. Journal of Labelled Compounds and Radiopharmaceuticals published by John Wiley & Sons, Ltd.

  11. Leaching under Oxygen Pressure with Carbonate Solution Reduction by Hydrogen; LIXIVIATION OXYDANTE DES PECHBLENDES ET PRECIPITATION DE L'URANIUM PAR L'HYDROGENE. APPLICATION AUX MINERAIS PAUVRES FRANCAIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balaceanu, J.C.; Coussemant, F.; Mouret, P.

    1959-10-31

    A study was made of the basic characteristics of the leaching with carbonate solution under oxygen pressure and of the catalytic hydrogen reduction of low-grade French ores. Pure U/sub 3/O/sub 8/ was used in the investigations on leaching. The effects of oxygen pressure, temperature, initial surface of the oxide, surfuce during the course of the reaction, and concentration of the carbonate solution were determined. It was shown that the heterogeneous reactions involve a constant surface and two steps. A pilot plant experiment was made on a number of low-grade French ores. With ores the leaching is not sensitive to oxygenmore » pressure. Dilute solutions of sodium uranyl carbonate are obtained from the leaching. The uranium can be precipitated as an oxide of a lower valent state by catalytic reduction with hydrogen. The study of this step was made on pure solutions of sodium uranyl carbonate in the presence of nickel and platinum catalysts. The reaction is strongly modified by the presence of even low concentrations of sodium bicarbonate. The reaction velocity increases with hydrogen pressure up to 5 atm, but then becomes independent of the pressure. The precipitation is accelerated by an increase in temperature. (J.S.R.)« less

  12. Molybdenum Carbide Nanoparticles on Carbon Nanotubes and Carbon Xerogel: Low-Cost Cathodes for Hydrogen Production by Alkaline Water Electrolysis.

    PubMed

    Šljukić, Biljana; Santos, Diogo M F; Vujković, Milica; Amaral, Luís; Rocha, Raquel P; Sequeira, César A C; Figueiredo, José L

    2016-05-23

    Low-cost molybdenum carbide (Mo2 C) nanoparticles supported on carbon nanotubes (CNTs) and on carbon xerogel (CXG) were prepared and their activity for the hydrogen evolution reaction (HER) was evaluated in 8 m KOH aqueous electrolyte at 25-85 °C. Measurements of the HER by linear scan voltammetry allowed us to determine Tafel slopes of 71 and 74 mV dec(-1) at 25 °C for Mo2 C/CNT and Mo2 C/CXG, respectively. Stability tests were also performed, which showed the steady performance of the two electrocatalysts. Moreover, the HER kinetics at Mo2 C/CNT was enhanced significantly after the long-term stability tests. The specific activity of both materials was high, and a higher stability was obtained for the activated Mo2 C/CNT (40 A g(-1) at -0.40 V vs. the reversible hydrogen electrode). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Solar hydrogen production: renewable hydrogen production by dry fuel reforming

    NASA Astrophysics Data System (ADS)

    Bakos, Jamie; Miyamoto, Henry K.

    2006-09-01

    SHEC LABS - Solar Hydrogen Energy Corporation constructed a pilot-plant to demonstrate a Dry Fuel Reforming (DFR) system that is heated primarily by sunlight focusing-mirrors. The pilot-plant consists of: 1) a solar mirror array and solar concentrator and shutter system; and 2) two thermo-catalytic reactors to convert Methane, Carbon Dioxide, and Water into Hydrogen. Results from the pilot study show that solar Hydrogen generation is feasible and cost-competitive with traditional Hydrogen production. More than 95% of Hydrogen commercially produced today is by the Steam Methane Reformation (SMR) of natural gas, a process that liberates Carbon Dioxide to the atmosphere. The SMR process provides a net energy loss of 30 to 35% when converting from Methane to Hydrogen. Solar Hydrogen production provides a 14% net energy gain when converting Methane into Hydrogen since the energy used to drive the process is from the sun. The environmental benefits of generating Hydrogen using renewable energy include significant greenhouse gas and criteria air contaminant reductions.

  14. X-ray scattering measurements of dissociation-induced metallization of dynamically compressed deuterium

    DOE PAGES

    Davis, P.; Döppner, T.; Rygg, J. R.; ...

    2016-04-18

    Hydrogen, the simplest element in the universe, has a surprisingly complex phase diagram. Because of applications to planetary science, inertial confinement fusion and fundamental physics, its high-pressure properties have been the subject of intense study over the past two decades. While sophisticated static experiments have probed hydrogen’s structure at ever higher pressures, studies examining the higher-temperature regime using dynamic compression have mostly been limited to optical measurement techniques. Here we present spectrally resolved x-ray scattering measurements from plasmons in dynamically compressed deuterium. Combined with Compton scattering, and velocity interferometry to determine shock pressure and mass density, this allows us tomore » extract ionization state as a function of compression. Furthermore, the onset of ionization occurs close in pressure to where density functional theory-molecular dynamics (DFT-MD) simulations show molecular dissociation, suggesting hydrogen transitions from a molecular and insulating fluid to a conducting state without passing through an intermediate atomic phase.« less

  15. Intracrystalline site preference of hydrogen isotopes in borax

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pradhananga, T.M.; Matsuo, S.

    1985-01-03

    The total hydrogen involved in borax synthesized at 25/sup 0/C in aqueous solution is enriched in deuterium by 5.3% compared with the mother liquor. There is no change in the value of the D/H fractionation factor between the hydrogen in borax and those in the mother liquor with changes in the degree of supersaturation. The fractionation factor changes slightly with a change in the crystallization temperature of borax in the range from 5 to 25/sup 0/C. The D/H ratio in the different sites of borax was estimated by a fractional dehydration technique. The results show that hydrogen atoms of themore » polyanionic group (B/sub 4/O/sub 5/(OH)/sub 4/) are much more enriched in deuterium than those of the cationic group (Na/sub 2/ x 8H/sub 2/O). The delta D values, referred to the mother liquor from which the borax was crystallized, for the cationic group (site A) and the polyanionic group (site B) are -35 +/- 3 and 167 +/- 13%, respectively based on the fractional dehydration results obtained at -21/sup 0/C. At -21/sup 0/C, isotopic exchange between different sites during dehydration is assumed not to occur. The mechanism for dehydration of borax is discussed. 48 references, 8 figures, 3 tables.« less

  16. Another Unprecedented Wieland Mechanism Confirmed: Hydrogen Formation from Hydrogen Peroxide, Formaldehyde, and Sodium Hydroxide.

    PubMed

    Czochara, Robert; Litwinienko, Grzegorz; Korth, Hans-Gert; Ingold, Keith U

    2018-03-26

    In 1923, Wieland and Wingler reported that in the molecular hydrogen producing reaction of hydrogen peroxide with formaldehyde in basic solution, free hydrogen atoms (H . ) are not involved. They postulated that bis(hydroxymethyl)peroxide, HOCH 2 OOCH 2 OH, is the intermediate, which decomposes to yield H 2 and formate, proposing a mechanism that would nowadays be considered as a "concerted process". Since then, several other (conflicting) "mechanisms" have been suggested. Our NMR and Raman spectroscopic and kinetic studies, particularly the determination of the deuterium kinetic isotope effect (DKIE), now confirm that in this base-dependent reaction, both H atoms of H 2 derive from the CH 2 hydrogen atoms of formaldehyde, and not from the OH groups of HOCH 2 OOCH 2 OH or from water. Quantum-chemical CBS-QB3 and W1BD computations show that H 2 release proceeds through a concerted process, which is strongly accelerated by double deprotonation of HOCH 2 OOCH 2 OH, thereby ruling out a free radical pathway. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. The interaction of molecular hydrogen with α-radiolytic oxidants on a (U,Pu)O2 surface

    NASA Astrophysics Data System (ADS)

    Bauhn, Lovisa; Hansson, Niklas; Ekberg, Christian; Fors, Patrik; Delville, Rémi; Spahiu, Kastriot

    2018-07-01

    In order to assess the impact of α-radiolysis of water on the oxidative dissolution of spent fuel, an un-irradiated, annealed MOX fuel pellet with high content of Pu (∼24 wt%), and a specific α-activity of 4.96 GBq/gMOX, was leached in carbonate-containing solutions of low ionic strength. The high Pu content in the pellet stabilizes the (U,Pu)O2(s) matrix towards oxidative dissolution, whereas the α-decays emitted from the surface are expected to produce ∼3.6 × 10-7 mol H2O2/day, contributing to the oxidative dissolution of the pellet. Two sets of leaching tests were conducted under different redox conditions: Ar gas atmosphere and deuterium gas atmosphere. A relatively slow increase of the U and Pu concentrations was observed in the Ar case, with U concentrations increasing from 1·10-6 M after 1 h to ∼7 × 10-5 M after 58 days. Leaching under an atmosphere starting at 1 MPa deuterium gas was undertaken in order to evaluate any effect of dissolved hydrogen on the radiolytic dissolution of the pellet, as well as to investigate any potential recombination of the α-radiolytic products with dissolved deuterium. For the latter purpose, isotopic analysis of the D/H content was carried out on solution samples taken during the leaching. Despite the continuous production of radiolytic oxidants, the concentrations of U and Pu remained quite constant at the level of ∼3 × 10-8 M during the first 30 days, i.e. as long as the deuterium pressure remained higher than 0.8 MPa. These data rule out any oxidative dissolution of the pellet during the first month. The un-irradiated MOX fuel does not contain metallic ε-particles, hence it is mainly the interaction of radiolytic oxidants and dissolved deuterium with the surface of the mixed actinide oxide that causes the neutralization of the oxidants. This conclusion is supported by the steadily increasing levels of HDO measured in the leachate samples.

  18. Solid-phase microextraction may catalize hydrogenation when using hydrogen as carrier in gas chromatography.

    PubMed

    Fiorini, D; Boarelli, M C

    2016-07-01

    When hydrogen is used as carrier gas, carbon-carbon double bonds may be hydrogenated in the hot gas chromatograph (GC) injector if introduced by solid-phase microextraction (SPME). SPME fibers coated with polydimethylsiloxane (PDMS)/carboxen/divinylbenzene (DVB), PDMS/carboxen, polyacrylate, PDMS/DVB and PDMS on fused silica, stableflex or metal alloy core have been tested with fatty acid methyl esters (FAMEs) from olive oil. Using coatings containing DVB, hydrogenation took place with high conversion rates (82.0-92.9%) independently of the core material. With all fibers having a metal core, hydrogenation was observed to a certain extent (27.4-85.3%). PDMS, PDMS/carboxen and polyacrylate coated fibers with a fused silica or stableflex core resulted in negligible hydrogenation (0.2-2.5%). The occurrence of hydrogenation was confirmed also with other substances containing carbon-carbon double bonds (n-alkenes, alkenoic acids, mono- and polyunsaturated fatty acid methyl and ethyl esters). Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Ab Initio Simulation Beryllium in Solid Molecular Hydrogen: Elastic Constant

    NASA Astrophysics Data System (ADS)

    Guerrero, Carlo L.; Perlado, Jose M.

    2016-03-01

    In systems of inertial confinement fusion targets Deuterium-Tritium are manufactured with a solid layer, it must have specific properties to increase the efficiency of ignition. Currently there have been some proposals to model the phases of hydrogen isotopes and hence their high pressure, but these works do not allow explaining some of the structures present at the solid phase change effect of increased pressure. By means of simulation with first principles methods and Quantum Molecular Dynamics, we compare the structural difference of solid molecular hydrogen pure and solid molecular hydrogen with beryllium, watching beryllium inclusion in solid hydrogen matrix, we obtain several differences in mechanical properties, in particular elastic constants. For C11 the difference between hydrogen and hydrogen with beryllium is 37.56%. This may produce a non-uniform initial compression and decreased efficiency of ignition.

  20. Fractography of the high temperature hydrogen attack of a medium carbon steel

    NASA Technical Reports Server (NTRS)

    Nelson, H. G.; Moorhead, R. D.

    1976-01-01

    Results are reported for an experimental study of the microscopic fracture processes associated with hydrogen attack of a commercially produced plain carbon steel in a well-controlled high-temperature hydrogen environment of high purity. In the experiments, sheet samples were exposed to laboratory-grade hydrogen at a pressure of 3.5 MN/sq m and a temperature of 575 C. The fractography of gas-filled fissures and failed tension specimens is analyzed in an effort to identify any predominant microstructural defect associated with fissure formation, the prevalent modes of fracture, and the contribution of gas-filled fissures to the overall failure process. It is found that the tensile properties of the examined steel were significantly degraded after as few as 136 hr of exposure to a high-purity hydrogen atmosphere at 575 C; that the yield strength, ultimate strength, and elongation at fracture were all reduced progressively with increasing exposure time; and that the yield and ultimate strengths were reduced more than 40% after 408 hr while elongation was reduced to less than 2%.

  1. Carbon and Mo transformations during the synthesis of mesoporous Mo2C/carbon catalysts by carbothermal hydrogen reduction

    NASA Astrophysics Data System (ADS)

    Wang, Haiyan; Liu, Shida; Liu, Bing; Montes, Vicente; Hill, Josephine M.; Smith, Kevin J.

    2018-02-01

    The synthesis of mesoporous Mo2C/carbon catalysts by carbothermal hydrogen reduction is reported. Petroleum coke (petcoke) was activated with KOH at 800 °C to obtain high surface area microporous activated petcoke (APC; 2000 m2/g). The APC was wet impregnated with ammonium heptamolybdate (AHM: 10 wt% Mo), dried and reduced in H2 at temperatures from 400 to 800 °C, to yield Mo2C/APC catalysts. Increased reduction temperature increased the Mo2C yield and the mesoporous volume of the Mo2C/APC. At a reduction temperature of 750 °C the mesopore volume of the catalyst doubled compared to the APC support and accounted for 37% of the total pore volume. Maintaining the final CHR temperature for 90 min further increased the Mo2C yield and mesoporosity of the catalyst. The role of Mo2C in the catalytic hydrogenation of the APC and mesopore generation is demonstrated. The activity of the Mo2C/carbon catalysts in the hydrodeoxygenation of 4-methyl phenol increased with increased CHR temperature and catalyst mesoporosity.

  2. Relation of Hydrogen and Methane to Carbon Monoxide in Exhaust Gases from Internal-Combustion Engines

    NASA Technical Reports Server (NTRS)

    Gerrish, Harold C; Tessmann, Arthur M

    1935-01-01

    The relation of hydrogen and methane to carbon monoxide in the exhaust gases from internal-combustion engines operating on standard-grade aviation gasoline, fighting-grade aviation gasoline, hydrogenated safety fuel, laboratory diesel fuel, and auto diesel fuel was determined by analysis of the exhaust gases. Two liquid-cooled single-cylinder spark-ignition, one 9-cylinder radial air-cooled spark-ignition, and two liquid-cooled single-cylinder compression-ignition engines were used.

  3. Facile synthesis high nitrogen-doped porous carbon nanosheet from pomelo peel and as catalyst support for nitrobenzene hydrogenation

    NASA Astrophysics Data System (ADS)

    Zuo, Pingping; Duan, Jiaqi; Fan, Huailin; Qu, Shijie; Shen, Wenzhong

    2018-03-01

    Nitrogen-doping porous carbon-based nanosheets were fabricated from pemole peel and melamine through hydrothermal route and carbonization. The pomelo peel with sponge-like natural structure was employed as carbon source, and melamine was used both as nitrogen precursors and as nanosheet structure directing. The morphology and chemical composition of the obtained porous carbon nanosheet carbon materials were characterized by scanning electron microscopy, thermogravimetric analyzer, Fourier transform infrared spectra, transmission electron microscopy, BET surface area measurement, X-ray photoelectron spectroscopy and X-ray powder diffraction. The result indicated that the nanosheet thickness, nitrogen-doped amount and surface area were determined by the ratio of pomelo peel to melamine and carbonization temperature. The catalytic nitrobenzene hydrogenation was evaluated after Pd was loaded on nitrogen-doping porous carbon-based nanosheet. The results showed Pd@PCN had almost 100% conversion and good cycling performance towards the hydrogenation of nitrobenzene due to the developed pore structure, high nitrogen-doping and well dispersed less Pd particle; it was superior to other nanomaterial supports and demonstrated great potential application.

  4. Transition-metal dispersion on carbon-doped boron nitride nanostructures: Applications for high-capacity hydrogen storage

    NASA Astrophysics Data System (ADS)

    Chen, Ming; Zhao, Yu-Jun; Liao, Ji-Hai; Yang, Xiao-Bao

    2012-07-01

    Using density-functional theory calculations, we investigated the adsorption of transition-metal (TM) atoms (TM = Sc, Ti, V, Cr, Mn, Fe, Co, and Ni) on carbon doped hexagonal boron nitride (BN) sheet and the corresponding cage (B12N12). With carbon substitution of nitrogen, Sc, V, Cr, and Mn atoms were energetically favorable to be dispersed on the BN nanostructures without clustering or the formation of TM dimers, due to the strong binding between TM atoms and substrate, which contains the half-filled levels above the valence bands maximum. The carbon doped BN nanostructures with dispersed Sc could store up to five and six H2, respectively, with the average binding energy of 0.3 ˜ 0.4 eV, indicating the possibility of fabricating hydrogen storage media with high capacity. We also demonstrated that the geometrical effect is important for the hydrogen storage, leading to a modulation of the charge distributions of d levels, which dominates the binding between H2 and TM atoms.

  5. Backward-forward reaction asymmetry of neutron elastic scattering on deuterium

    NASA Astrophysics Data System (ADS)

    Pirovano, E.; Beyer, R.; Junghans, A. R.; Nankov, N.; Nolte, R.; Nyman, M.; Plompen, A. J. M.

    2017-02-01

    A new measurement of the angular distribution of neutron elastic scattering on deuterium was carried out at the neutron time-of-flight facility nELBE. The backward-forward asymmetry of the reaction was investigated via the direct detection of neutrons scattered at the laboratory angle of 15∘ and 165∘ from a polyethylene sample enriched with deuterium. In order to extend the measurement to neutron energies below 1 MeV, 6Li glass scintillators were employed. The data were corrected for the background and the multiple scattering in the target, the events due to scattering on deuterium were separated from those due to carbon, and the ratio of the differential cross section at 15∘ and 165∘ was determined. The results, covering the energy range from 200 keV to 2 MeV, were found to be in agreement with the theoretical predictions calculated by Canton et al. [Eur. Phys. J. A 14, 225 (2002)], 10.1140/epja/i2001-10122-3 and by Golak et al. [Eur. Phys. J. A 50, 177 (2014)], 10.1140/epja/i2014-14177-7. The comparison with the evaluated nuclear data libraries indicated CENDL-3.1, JEFF-3.2, and JENDL-4.0 as the evaluations that best describe the asymmetry of n -d scattering. ENDF/B-VII.1 is compatible with the data for energies below 700 keV, but above the backward to forward ratio is higher than measured. ROSFOND-2010 and BROND-2.2 resulted to have little compatibility with the data.

  6. Deposition of hard elastic hydrogenated fullerenelike carbon films

    NASA Astrophysics Data System (ADS)

    Wang, Zhou; Zhang, Junyan

    2011-05-01

    Hydrogenated fullerenelike carbon (H-FLC) films, with high hardness of 41.7 ± 1.4 GPa and elastic recovery of ˜75.1%, have been uniformly deposited at low temperature by pulse direct current plasma enhanced chemical vapor deposition (pulse DC PECVD). The superior mechanical properties of the H-FLC films are attributed to the unique curvature and interconnection of graphitic basal planes. We propose the fullerenelike structures are formed in the far nonequilibrium pulse plasma environment and stabilized in the sequential fast quenching process. It is expected that the facile deposition of H-FLC films will promote the large-scale low-temperature preparation of engineering protective films for industrial applications.

  7. The use of renewable energy in the form of methane via electrolytic hydrogen generation using carbon dioxide as the feedstock

    NASA Astrophysics Data System (ADS)

    Hashimoto, Koji; Kumagai, Naokazu; Izumiya, Koichi; Takano, Hiroyuki; Shinomiya, Hiroyuki; Sasaki, Yusuke; Yoshida, Tetsuya; Kato, Zenta

    2016-12-01

    The history reveals the continuous increase in world energy consumption and carbon emissions. For prevention of intolerable global warming and complete exhaustion of fossil fuels we need complete conversion from fossil fuel consumption to renewable energy. We have been performing the research and development of global carbon dioxide recycling for more than 25 years to supply renewable energy to the world in the form of methane produced by the reaction of carbon dioxide captured from chimney with hydrogen generated electrolytically using electricity generated by renewable energy. We created the cathode and anode for electrolytic hydrogen generation and the catalyst for carbon dioxide methanation by the reaction with hydrogen. The methane formation from renewable energy will be the most convenient and efficient key technology for the use of renewable energy by storage of intermittent and fluctuating electricity generated from renewable energy and by regeneration of stable electricity. Domestic and international cooperation of companies for industrialization is in progress.

  8. Creation of deuterium protective layer below the tungsten surface

    NASA Astrophysics Data System (ADS)

    Krstic, Predrag; Kaganovich, Igor; Startsev, Edward

    2014-10-01

    By cumulative irradiation of both pre-damaged and virgin surfaces of monocrystal tungsten by deuterium atoms of impact energy of few tens of eV, we simulate by classical molecular dynamics the creation of a deuterium protective layer. The depth and width of the layer depend on the deuterium impact energy and the diffusion rate of deuterium in tungsten, the latter being influenced by the tungsten temperature and damage. Found simulation results are in concert with the experimental results, found recently in DIFFER. Support of the PPPL LDRD project acknowledged.

  9. Carbon-coated Li3 N nanofibers for advanced hydrogen storage.

    PubMed

    Xia, Guanglin; Li, Dan; Chen, Xiaowei; Tan, Yingbin; Tang, Ziwei; Guo, Zaiping; Liu, Huakun; Liu, Zongwen; Yu, Xuebin

    2013-11-20

    3D porous carbon-coated Li3 N nanofibers are successfully fabricated via the electrospinning technique. The as-prepared nanofibers exhibit a highly improved hydrogen-sorption performance in terms of both thermodynamics and kinetics. More interestingly, a stable regeneration can be achieved due to the unique structure of the nanofibers, over 10 cycles of H2 sorption at a temperature as low as 250 °C. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Effect of hydrogen on void initiation in tensile test of carbon steel JIS-S25C

    NASA Astrophysics Data System (ADS)

    Sugawa, S.; Tsutsumi, N.; Oda, K.

    2018-06-01

    In order to investigate the effect of hydrogen on tensile fracture mechanism of a carbon steel, tensile tests were conducted. Pre-strain specimens (0%, 5% and 10%) were used to study the effect of hydrogen content, since saturated hydrogen content in specimens increases in increasing dislocation density. The tensile strength and the yield stress of hydrogen specimens were almost the same as uncharged. In contrast, the reduction of area of hydrogen charged specimens was smaller than that of uncharged. To reveal the reasons of decrease of the reduction of area, the fracture surface and longitudinal cross section near the fracture surface were observed. On the fracture surface of uncharged specimens, only dimples were observed. On the other hand, dimples and flat fracture surface were observed on the fracture surface of hydrogen charged. On the longitudinal cross section of hydrogen charged specimens, many voids were observed compared to uncharged. From these observations, it is showed that hydrogen gives a rise to the increase of voids and the hydrogen charged specimens break without sufficient necking, thus hydrogen makes the reduction of area smaller.

  11. Load-dependent destabilization of the γ-rotor shaft in FOF1 ATP synthase revealed by hydrogen/deuterium-exchange mass spectrometry

    PubMed Central

    Vahidi, Siavash; Bi, Yumin; Dunn, Stanley D.; Konermann, Lars

    2016-01-01

    FoF1 is a membrane-bound molecular motor that uses proton-motive force (PMF) to drive the synthesis of ATP from ADP and Pi. Reverse operation generates PMF via ATP hydrolysis. Catalysis in either direction involves rotation of the γε shaft that connects the α3β3 head and the membrane-anchored cn ring. X-ray crystallography and other techniques have provided insights into the structure and function of FoF1 subcomplexes. However, interrogating the conformational dynamics of intact membrane-bound FoF1 during rotational catalysis has proven to be difficult. Here, we use hydrogen/deuterium exchange mass spectrometry to probe the inner workings of FoF1 in its natural membrane-bound state. A pronounced destabilization of the γ C-terminal helix during hydrolysis-driven rotation was observed. This behavior is attributed to torsional stress in γ, arising from γ⋅⋅⋅α3β3 interactions that cause resistance during γ rotation within the apical bearing. Intriguingly, we find that destabilization of γ occurs only when FoF1 operates against a PMF-induced torque; the effect disappears when PMF is eliminated by an uncoupler. This behavior resembles the properties of automotive engines, where bearings inflict greater forces on the crankshaft when operated under load than during idling. PMID:26884184

  12. Hydrogen isotope separation using molecular sieve of synthetic zeolite 3A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kotoh, K.; Kimura, K.; Nakamura, Y.

    2008-07-15

    It is known that hydrogen isotope molecules can be adsorbed easily onto synthetic zeolite 4A, 5A, and 13X at the liquid-nitrogen temperature of 77.4 K. We show here that hydrogen and deuterium are not adsorptive onto zeolite 3A at the same temperature. This phenomenon is explained by assuming the molecular sieve function in zeolite-3A-crystalline lattice structure. From a series of pseudo-isobaric experiments, it is also shown that the sieving phenomenon appears in a range above 77.4 K. This behavior is interpreted as resulting on the dependence of sieve's mesh size on temperature, where the sieving effect is considered to appearmore » at a certain temperature. In this interpretation, an isotopic difference between hydrogen and deuterium is suggested to exist in the sieving effect appearance temperatures. This is endorsed in the result of pseudo-isobaric experiments. This temperature deference is very significant because that indicates the possibility of an effective method of hydrogen isotope separation. This possibility is verified through an experimental series of adsorption-desorption with a mixture of H{sub 2} and D{sub 2}, where the gas samples adsorbed through the sieve operated at intentionally selected temperatures are isolated and then analyzed. The result demonstrates remarkable values of isotope separation factor. (authors)« less

  13. Methane formation from the hydrogenation of carbon dioxide on Ni(110) surface--a density functional theoretical study.

    PubMed

    Bothra, Pallavi; Periyasamy, Ganga; Pati, Swapan K

    2013-04-21

    The complete hydrogenation mechanisms of CO2 are explored on Ni(110) surface catalyst using density functional theory. We have studied the possible hydrogenation mechanism to form product methane from the stable adsorption-co-adsorption intermediates of CO2 and H2 on Ni(110) surface. Our computations clearly elucidate that the mechanism for the formation of methyl, methoxy and methane moieties from carbon dioxide on the nickel catalyst. Moreover, our studies clearly show that the methane formation via hydroxyl carbonyl intermediate requires a lower energy barrier than via carbon monoxide and formate intermediates on the Ni(110) surface.

  14. Proposal for a possible use of fusion power for hydrogen production within this century

    NASA Astrophysics Data System (ADS)

    Seifritz, W.

    Consideration is given to the possibility of building a commercial fusion power reactor before the turn of the century. The main element incorporated by the proposed system is the PACER project powerplant, which employs the explosive deuterium-deuterium (D-D) fusion process. Because all required technology already exists, PACER is believed to represent the quickest way to harness fusion on a large scale. It is argued that such reactors, scattered throughout the world on a series of 'energy parks', will meet a 30 TW global energy demand after the depletion of fossil fuel resources. Consideration is also given to both the breeding of fissile materials and the electrolytic production of hydrogen; a by-product of which would be deuterium fuel.

  15. Gas-driven permeation of deuterium through tungsten and tungsten alloys

    DOE PAGES

    Buchenauer, Dean A.; Karnesky, Richard A.; Fang, Zhigang Zak; ...

    2016-03-25

    Here, to address the transport and trapping of hydrogen isotopes, several permeation experiments are being pursued at both Sandia National Laboratories (deuterium gas-driven permeation) and Idaho National Laboratories (tritium gas- and plasma-driven tritium permeation). These experiments are in part a collaboration between the US and Japan to study the performance of tungsten at divertor relevant temperatures (PHENIX). Here we report on the development of a high temperature (≤1150 °C) gas-driven permeation cell and initial measurements of deuterium permeation in several types of tungsten: high purity tungsten foil, ITER-grade tungsten (grains oriented through the membrane), and dispersoid-strengthened ultra-fine grain (UFG) tungstenmore » being developed in the US. Experiments were performed at 500–1000 °C and 0.1–1.0 atm D 2 pressure. Permeation through ITER-grade tungsten was similar to earlier W experiments by Frauenfelder (1968–69) and Zaharakov (1973). Data from the UFG alloy indicates marginally higher permeability (< 10×) at lower temperatures, but the permeability converges to that of the ITER tungsten at 1000 °C. The permeation cell uses only ceramic and graphite materials in the hot zone to reduce the possibility for oxidation of the sample membrane. Sealing pressure is applied externally, thereby allowing for elevation of the temperature for brittle membranes above the ductile-to-brittle transition temperature.« less

  16. Interactions of Deuterium Plasma with Lithiated and Boronized Surfaces in NSTX-U

    NASA Astrophysics Data System (ADS)

    Krstic, Predrag

    2015-09-01

    The main research goal of the presented research has been to understand the changes in surface composition and chemistry at the nanoscopic temporal and spatial scales for long pulse Plasma Facing Components (PFCs) and link these to the overall machine performance of the National Spherical Torus Experiment Upgrade (NSTX-U). A study is presented of the lithium surface science, with atomic spatial and temporal resolutions. The dynamic surface responds and evolves in a mixed material environments (D, Li, C, B, O, Mo, W) with impingement of plasma particles in the energy range below 100 eV. The results, obtained by quantum-classical molecular dynamics, include microstructure changes, erosion, surface chemistry, deuterium implantation and permeation. Main objectives of the research are i) a comparison of Li and B deposition on carbon, ii) the role of oxygen and other impurities e.g. boron, carbon in the lithium performance, and iii) how this performance will change when lithium is applied to a high-Z refractory metal substrate (Mo, W). In addition to predicting and understanding the phenomenology of the processes, we will show plasma induced erosion of PFCs, including chemical and physical sputtering yields at various temperatures (300-700 K) as well as deuterium uptake/recycling. This work is supported by the U.S. Department of Energy Office of Science, Office of Fusion Energy Science, Award Number DE-SC0013752.

  17. Nitrogen-doped mesoporous carbon-armored cobalt nanoparticles as efficient hydrogen evolving electrocatalysts.

    PubMed

    Tang, Duihai; Li, Kuo; Zhang, Wenting; Qiao, Zhen-An; Zhu, Junjiang; Zhao, Zhen

    2018-03-15

    A series of Co nanoparticles embedded, N-doped mesoporous carbons have been synthesized through chelate-assisted co-assembly strategy followed by thermal treatment. The preparation is based on an assembly process, with evaporation of an ethanol-water solution containing melamine formaldehyde resin (MF resin) as carbon source, nitrogen source, and chelating agent. Moreover, F127 and Co(NO 3 ) 2 are used as template and metallic precursor, respectively. The Co nanoparticles embedded, N-doped mesoporous carbon annealed at 800 °C (denoted as MFCo800) shows high electrocatalytic activity for hydrogen evolution reaction (HER) with high current density and low overpotential, which has the ability to operate in both acidic and alkaline electrolytes. Copyright © 2017. Published by Elsevier Inc.

  18. Benchmarking Hydrogen and Carbon NMR Chemical Shifts at HF, DFT, and MP2 Levels.

    PubMed

    Flaig, Denis; Maurer, Marina; Hanni, Matti; Braunger, Katharina; Kick, Leonhard; Thubauville, Matthias; Ochsenfeld, Christian

    2014-02-11

    An extensive study of error distributions for calculating hydrogen and carbon NMR chemical shifts at Hartree-Fock (HF), density functional theory (DFT), and Møller-Plesset second-order perturbation theory (MP2) levels is presented. Our investigation employs accurate CCSD(T)/cc-pVQZ calculations for providing reference data for 48 hydrogen and 40 carbon nuclei within an extended set of chemical compounds covering a broad range of the NMR scale with high relevance to chemical applications, especially in organic chemistry. Besides the approximations of HF, a variety of DFT functionals, and conventional MP2, we also present results with respect to a spin component-scaled MP2 (GIAO-SCS-MP2) approach. For each method, the accuracy is analyzed in detail for various basis sets, allowing identification of efficient combinations of method and basis set approximations.

  19. Deuterium-lithium plasma as a source of fusion neutrons

    NASA Astrophysics Data System (ADS)

    Chirkov, A. Yu; Vesnin, V. R.

    2017-11-01

    The concepts of deuterium-tritium (D-T) fusion neutron source are currently developed for hybrid fusion-fission systems and the waste transmutation ones. The need to use tritium technologies is a deterrent factor in this promising direction of energy production. Potential possibilities of using systems that do not require tritium developments are of a significant interest. A deuterium-deuterium (D-D) reaction is considered for the use in demonstration fusion neutron sources. The product of this reaction is tritium, which will burn in the plasma with the emission of fast neutrons. D-D reaction is significantly slower then D-T reaction. Present study shows an increase in neutron yield using a powerful injection of the beam of deuterium atoms. The reactions of the deuterium with lithium isotopes are considered. In some of these reactions, fast neutrons can be obtained. The results of the calculation of the neutron yield from the deuterium lithium plasma are discussed. The estimates of the parameters needed for the realization of a source of fusion neutrons are presented.

  20. Compact hydrogen/helium isotope mass spectrometer

    DOEpatents

    Funsten, Herbert O.; McComas, David J.; Scime, Earl E.

    1996-01-01

    The compact hydrogen and helium isotope mass spectrometer of the present invention combines low mass-resolution ion mass spectrometry and beam-foil interaction technology to unambiguously detect and quantify deuterium (D), tritium (T), hydrogen molecule (H.sub.2, HD, D.sub.2, HT, DT, and T.sub.2), .sup.3 He, and .sup.4 He concentrations and concentration variations. The spectrometer provides real-time, high sensitivity, and high accuracy measurements. Currently, no fieldable D or molecular speciation detectors exist. Furthermore, the present spectrometer has a significant advantage over traditional T detectors: no confusion of the measurements by other beta-emitters, and complete separation of atomic and molecular species of equivalent atomic mass (e.g., HD and .sup.3 He).