Science.gov

Sample records for hydrogen fuelled ices

  1. Determination of operating parameters of industrial engine fuelled with post processing gases with high hydrogen content

    NASA Astrophysics Data System (ADS)

    Brzeżański, M.; Mareczek, M.; Marek, W.; Papuga, T.

    2016-09-01

    The results of investigations of SI engine fuelled with hydrogen and mixed n-butanol with isobutanol have been presented in article. The idea of flexible feeding system and the aim and methodology of carried out measurement have been also described. Obtained results have been compared to the results of tests carried out during flexible feeding of the same engine. The proposed control system enables not only application of different liquid and gaseous fuels but also application of the fuels which chemical composition vary within the relatively short time intervals.

  2. Hydrogen ICE Vehicle Testing Activities

    SciTech Connect

    J. Francfort; D. Karner

    2006-04-01

    The Advanced Vehicle Testing Activity teamed with Electric Transportation Applications and Arizona Public Service to develop and monitor the operations of the APS Alternative Fuel (Hydrogen) Pilot Plant. The Pilot Plant provides 100% hydrogen, and hydrogen and compressed natural gas (H/CNG)-blended fuels for the evaluation of hydrogen and H/CNG internal combustion engine (ICE) vehicles in controlled and fleet testing environments. Since June 2002, twenty hydrogen and H/CNG vehicles have accumulated 300,000 test miles and 5,700 fueling events. The AVTA is part of the Department of Energy’s FreedomCAR and Vehicle Technologies Program. These testing activities are managed by the Idaho National Laboratory. This paper discusses the Pilot Plant design and monitoring, and hydrogen ICE vehicle testing methods and results.

  3. Modelling of flame propagation in the gasoline fuelled Wankel rotary engine with hydrogen additives

    NASA Astrophysics Data System (ADS)

    Fedyanov, E. A.; Zakharov, E. A.; Prikhodkov, K. V.; Levin, Y. V.

    2017-02-01

    Recently, hydrogen has been considered as an alternative fuel for a vehicles power unit. The Wankel engine is the most suitable to be adapted to hydrogen feeding. A hydrogen additive helps to decrease incompleteness of combustion in the volumes near the apex of the rotor. Results of theoretical researches of the hydrogen additives influence on the flame propagation in the combustion chamber of the Wankel rotary engine are presented. The theoretical research shows that the blend of 70% gasoline with 30% hydrogen could accomplish combustion near the T-apex in the stoichiometric mixture and in lean one. Maps of the flame front location versus the angle of rotor rotation and hydrogen fraction are obtained. Relations of a minimum required amount of hydrogen addition versus the engine speed are shown on the engine modes close to the average city driving cycle. The amount of hydrogen addition that could be injected by the nozzle with different flow sections is calculated in order to analyze the capacity of the feed system.

  4. Hydrogen Fuel Pilot Plant and Hydrogen ICE Vehicle Testing

    SciTech Connect

    J. Francfort

    2005-03-01

    The U.S. Department Energy's Advanced Vehicle Testing Activity (AVTA) teamed with Electric Transportation Applications (ETA) and Arizona Public Service (APS) to develop the APS Alternative Fuel (Hydrogen) Pilot Plant that produces and compresses hydrogen on site through an electrolysis process by operating a PEM fuel cell in reverse; natural gas is also compressed onsite. The Pilot Plant dispenses 100% hydrogen, 15 to 50% blends of hydrogen and compressed natural gas (H/CNG), and 100% CNG via a credit card billing system at pressures up to 5,000 psi. Thirty internal combustion engine (ICE) vehicles (including Daimler Chrysler, Ford and General Motors vehicles) are operating on 100% hydrogen and 15 to 50% H/CNG blends. Since the Pilot Plant started operating in June 2002, they hydrogen and H/CNG ICE vehicels have accumulated 250,000 test miles.

  5. Hydrogen behavior in ice condenser containments

    SciTech Connect

    Lundstroem, P.; Hongisto, O.; Theofanous, T.G.

    1995-09-01

    A new hydrogen management strategy is being developed for the Loviisa ice condenser containment. The strategy relies on containment-wide natural circulations that develop, once the ice condenser doors are forced open, to effectively produce a well-mixed behavior, and a correspondingly slow rise in hydrogen concentration. Levels can then be kept low by a distributed catalytic recombiner system, and (perhaps) an igniter system as a backup, while the associated energy releases can be effectively dissipated in the ice bed. Verification and fine-tuning of the approach is carried out experimentally in the VICTORIA facility and by associated scaling/modelling studies. VICTORIA represents an 1/15th scale model of the Loviisa containment, hydrogen is simulated by helium, and local concentration measurements are obtained by a newly developed instrument specifically for this purpose, called SPARTA. This paper is focused on experimental results from several key experiments that provide a first delineation of key behaviors.

  6. Hydrogen-Bonding Surfaces for Ice Mitigation

    NASA Technical Reports Server (NTRS)

    Smith, Joseph G., Jr.; Wohl, Christopher J.; Kreeger, Richard E.; Hadley, Kevin R.; McDougall, Nicholas

    2014-01-01

    Ice formation on aircraft, either on the ground or in-flight, is a major safety issue. While ground icing events occur predominantly during the winter months, in-flight icing can happen anytime during the year. The latter is more problematic since it could result in increased drag and loss of lift. Under a Phase I ARMD NARI Seedling Activity, coated aluminum surfaces possessing hydrogen-bonding groups were under investigation for mitigating ice formation. Hydroxyl and methyl terminated dimethylethoxysilanes were prepared via known chemistries and characterized by spectroscopic methods. These materials were subsequently used to coat aluminum surfaces. Surface compositions were based on pure hydroxyl and methyl terminated species as well as mixtures of the two. Coated surfaces were characterized by contact angle goniometry. Receding water contact angle data suggested several potential surfaces that may exhibit reduced ice adhesion. Qualitative icing experiments performed under representative environmental temperatures using supercooled distilled water delivered via spray coating were inconclusive. Molecular modeling studies suggested that chain mobility affected the interface between ice and the surface more than terminal group chemical composition. Chain mobility resulted from the creation of "pockets" of increased free volume for longer chains to occupy.

  7. The complex kinetics of the ice VI to ice XV hydrogen ordering phase transition

    NASA Astrophysics Data System (ADS)

    Shephard, Jacob J.; Salzmann, Christoph G.

    2015-09-01

    The reversible phase transition from hydrochloric-acid-doped ice VI to its hydrogen-ordered counterpart ice XV is followed using differential scanning calorimetry. Upon cooling at ambient pressure fast hydrogen ordering is observed at first followed by a slower process which manifests as a tail to the initial sharp exotherm. The residual hydrogen disorder in H2O and D2O ice XV is determined as a function of the cooling rate. We conclude that it will be difficult to obtain fully hydrogen-ordered ice XV by cooling at ambient pressure. Our new experimental findings are discussed in the context of recent computational work on ice XV.

  8. New porous water ice metastable at atmospheric pressure obtained by emptying a hydrogen-filled ice

    NASA Astrophysics Data System (ADS)

    Del Rosso, Leonardo; Celli, Milva; Ulivi, Lorenzo

    2016-11-01

    The properties of some forms of water ice reserve still intriguing surprises. Besides the several stable or metastable phases of pure ice, solid mixtures of water with gases are precursors of other ices, as in some cases they may be emptied, leaving a metastable hydrogen-bound water structure. We present here the first characterization of a new form of ice, obtained from the crystalline solid compound of water and molecular hydrogen called C0-structure filled ice. By means of Raman spectroscopy, we measure the hydrogen release at different temperatures and succeed in rapidly removing all the hydrogen molecules, obtaining a new form of ice (ice XVII). Its structure is determined by means of neutron diffraction measurements. Of paramount interest is that the emptied crystal can adsorb again hydrogen and release it repeatedly, showing a temperature-dependent hysteresis.

  9. New porous water ice metastable at atmospheric pressure obtained by emptying a hydrogen-filled ice

    PubMed Central

    del Rosso, Leonardo; Celli, Milva; Ulivi, Lorenzo

    2016-01-01

    The properties of some forms of water ice reserve still intriguing surprises. Besides the several stable or metastable phases of pure ice, solid mixtures of water with gases are precursors of other ices, as in some cases they may be emptied, leaving a metastable hydrogen-bound water structure. We present here the first characterization of a new form of ice, obtained from the crystalline solid compound of water and molecular hydrogen called C0-structure filled ice. By means of Raman spectroscopy, we measure the hydrogen release at different temperatures and succeed in rapidly removing all the hydrogen molecules, obtaining a new form of ice (ice XVII). Its structure is determined by means of neutron diffraction measurements. Of paramount interest is that the emptied crystal can adsorb again hydrogen and release it repeatedly, showing a temperature-dependent hysteresis. PMID:27819265

  10. New porous water ice metastable at atmospheric pressure obtained by emptying a hydrogen-filled ice.

    PubMed

    Del Rosso, Leonardo; Celli, Milva; Ulivi, Lorenzo

    2016-11-07

    The properties of some forms of water ice reserve still intriguing surprises. Besides the several stable or metastable phases of pure ice, solid mixtures of water with gases are precursors of other ices, as in some cases they may be emptied, leaving a metastable hydrogen-bound water structure. We present here the first characterization of a new form of ice, obtained from the crystalline solid compound of water and molecular hydrogen called C0-structure filled ice. By means of Raman spectroscopy, we measure the hydrogen release at different temperatures and succeed in rapidly removing all the hydrogen molecules, obtaining a new form of ice (ice XVII). Its structure is determined by means of neutron diffraction measurements. Of paramount interest is that the emptied crystal can adsorb again hydrogen and release it repeatedly, showing a temperature-dependent hysteresis.

  11. Ice method for production of hydrogen clathrate hydrates

    DOEpatents

    Lokshin, Konstantin; Zhao, Yusheng

    2008-05-13

    The present invention includes a method for hydrogen clathrate hydrate synthesis. First, ice and hydrogen gas are supplied to a containment volume at a first temperature and a first pressure. Next, the containment volume is pressurized with hydrogen gas to a second higher pressure, where hydrogen clathrate hydrates are formed in the process.

  12. The existence of memory effect on hydrogen ordering in ice: The effect makes ice attractive

    SciTech Connect

    Chakoumakos, Bryan C

    2011-01-01

    The existence of ferroelectric ice XI with ordered hydrogen in space becomes of interest in astronomy and physical chemistry because of the strong electrostatic force. However, the influence was believed to be limited because it forms in a narrow temperature range. From neutron diffraction experiments, we found that small hydrogen-ordered domains exist at significantly higher temperature and the domains induce the growth of 'bulk' ice XI. The small ordered domain is named 'memory' of hydrogen ordered ice because it is the residual structure of ice XI. Since the memory exists up to at least 111 K, most of ices in the solar system are hydrogen ordered and may have ferroelectricity. The small hydrogen-ordered domains govern the cosmochemical properties of ice and evolution of icy grains in the universe.

  13. Direct-fuelled fuel cells

    NASA Astrophysics Data System (ADS)

    Waidhas, M.; Drenckhahn, W.; Preidel, W.; Landes, H.

    Fuel supply is one important problem to be solved for commercial application of fuel cell technology. Conventional fuel-cell types require hydrogen as the fuel, which has to be free from impurities when operated at temperatures below 100 °C. The storage and distribution of this explosive and extremely fugitive gas is one of the open questions in the context of a customer-oriented broad commercial market. The direct-fuelled fuel cells (DMFCs) overcome the hydrogen specific restrictions. They are capable of directly using natural gas or fuels which are liquid under ambient conditions. In this paper the different options from direct-fuelled systems are described and their general aspects discussed. The state-of-the-art at Siemens in this field, and also the remaining technical questions are outlined as a basis for assessing future applications.

  14. Hydrogen bonding in the hexagonal ice surface.

    PubMed

    Barnett, Irene Li; Groenzin, Henning; Shultz, Mary Jane

    2011-06-16

    A recently developed technique in sum frequency generation spectroscopy, polarization angle null (or PAN-SFG), is applied to two orientations of the prism face of hexagonal ice. It is found that the vibrational modes of the surface are similar in different faces. As in the basal face, the prism face of ice contains five dominant resonances: 3096, 3146, 3205, 3253, and 3386 cm(-1). On the basal face, the reddest resonance occurs at 3098 cm(-1); within the bandwidth, the same as the prism face. On both the prism and basal faces, this mode contains a significant quadrupole component and is assigned to the bilayer stitching hydrogen bonds. The bluest of the resonances, 3386 cm(-1), occurs slightly blue-shifted at 3393 cm(-1) in the basal face. The prism face has two orientations: one with the optic or c axis in the input plane (the plane formed by the surface normal and the interrogating beam propagation) and one with the c axis perpendicular to the input plane. The 3386 cm(-1) mode has significant intensity only with the c axis in the input plane. On the basis of these orientation characteristics, the 3386 cm(-1) mode is assigned to double-donor molecules in either the top half bilayer or in the lower half bilayer. On the basis of frequency considerations, it is assigned to double-donor molecules in the top half bilayer. These are water molecules containing a nonbonded lone pair. In addition to identification of the components of the broad hydrogen-bonded region, PAN-SFG measures the tangential vs longitudinal content of the vibrational modes. In accord with previous suggestions, the lower frequency modes are predominantly tangential, whereas the higher frequency modes are mainly longitudinal. On the prism face, the 3386 cm(-1) mode is entirely longitudinal.

  15. The sticking of atomic hydrogen on amorphous water ice

    SciTech Connect

    Veeraghattam, Vijay K.; Manrodt, Katie; Lewis, Steven P.; Stancil, P. C. E-mail: lewis@physast.uga.edu

    2014-07-20

    Using classical molecular dynamics, we have simulated the sticking and scattering process of a hydrogen atom on an amorphous ice film to predict the sticking probability of hydrogen on ice surfaces. A wide range of initial kinetic energies of the incident hydrogen atom (10 K-600 K) and two different ice temperatures (10 K and 70 K) were used to investigate this fundamental process in interstellar chemistry. We report here the sticking probability of atomic hydrogen as a function of incident kinetic energy, gas temperature, and substrate temperature, which can be used in astrophysical models. The current results are compared to previous theoretical and experimental studies that have reported a wide range in the sticking coefficient.

  16. First principles molecular dynamics study of filled ice hydrogen hydrate

    NASA Astrophysics Data System (ADS)

    Zhang, Jingyun; Kuo, Jer-Lai; Iitaka, Toshiaki

    2012-08-01

    We investigated structural changes, phase diagram, and vibrational properties of hydrogen hydrate in filled-ice phase C2 by using first principles molecular dynamics simulation. It was found that the experimentally reported "cubic" structure is unstable at low temperature and/or high pressure: The "cubic" structure reflects the symmetry at high (room) temperature where the hydrogen bond network is disordered and the hydrogen molecules are orientationally disordered due to thermal rotation. In this sense, the "cubic" symmetry would definitely be lowered at low temperature where the hydrogen bond network and the hydrogen molecules are expected to be ordered. At room temperature and below 30 GPa, it is the thermal effects that play an essential role in stabilizing the structure in "cubic" symmetry. Above 60 GPa, the hydrogen bonds in the framework would be symmetrized and the hydrogen bond order-disorder transition would disappear. These results also suggest the phase behavior of other filled-ice hydrates. In the case of rare gas hydrate, there would be no guest molecules' rotation-nonrotation transition since the guest molecules keep their spherical symmetry at any temperature. On the contrary methane hydrate MH-III would show complex transitions due to the lower symmetry of the guest molecule. These results would encourage further experimental studies, especially nuclear magnetic resonance spectroscopy and neutron scattering, on the phases of filled-ice hydrates at high pressures and/or low temperatures.

  17. Evolution of Hydrogen Dynamics in Amorphous Ice with Density.

    PubMed

    Parmentier, A; Shephard, J J; Romanelli, G; Senesi, R; Salzmann, C G; Andreani, C

    2015-06-04

    The single-particle dynamics of hydrogen atoms in several of the amorphous ices are reported using a combination of deep inelastic neutron scattering (DINS) and inelastic neutron scattering (INS). The mean kinetic energies of the hydrogen nuclei are found to increase with increasing density, indicating the weakening of hydrogen bonds as well as a trend toward steeper and more harmonic hydrogen vibrational potential energy surfaces. DINS shows much more pronounced changes in the O-H stretching component of the mean kinetic energy going from low- to high-density amorphous ices than indicated by INS and Raman spectroscopy. This highlights the power of the DINS technique to retrieve accurate ground-state kinetic energies beyond the harmonic approximation. In a novel approach, we use information from DINS and INS to determine the anharmonicity constants of the O-H stretching modes. Furthermore, our experimental kinetic energies will serve as important benchmark values for path-integral Monte Carlo simulations.

  18. Liquid state of a hydrogen bond network in ice

    NASA Astrophysics Data System (ADS)

    Ryzhkin, M. I.; Klyuev, A. V.; Sinitsyn, V. V.; Ryzhkin, I. A.

    2016-08-01

    It is theoretically shown that the Coulomb interaction between violations of the Bernal-Fowler rules leads to a temperature-induced stepwise increase in their concentration by 6-7 orders of magnitude. This first-order phase transition is accompanied by commensurable decrease in the relaxation time and can be interpreted as melting of the hydrogen bond network. The new phase with the melted hydrogen lattice and survived oxygen one is unstable in the bulk of ice, and further drastic increase in the concentrations of oxygen interstitials and vacancies accomplishes the ice melting. The fraction of broken hydrogen bonds immediately after the melting is about 0.07 of their total number that implies an essential conservation of oxygen lattice in water.

  19. Analysis Sharpens Mars Hydrogen Map, Hinting Equatorial Water Ice

    NASA Image and Video Library

    2017-09-28

    Re-analysis of 2002-2009 data from a hydrogen-finding instrument on NASA's Mars Odyssey orbiter increased the resolution of maps of hydrogen abundance. The reprocessed data (lower map) shows more "water-equivalent hydrogen" (darker blue) in some parts of this equatorial region of Mars. Puzzingly, this suggests the possible presence of water ice just beneath the surface near the equator, though it would not be thermodynamically stable there. The upper map uses raw data from Odyssey's neutron spectrometer instrument, which senses the energy state of neutrons coming from Mars, providing an indication of how much hydrogen is present in the top 3 feet (1 meter) of the surface. Hydrogen detected by Odyssey at high latitudes of Mars in 2002 was confirmed to be in the form of water ice by the follow-up NASA Phoenix Mars Lander mission in 2008. A 2017 reprocessing of the older data applied image-reconstruction techniques often used to reduce blurring from medical imaging data. The results are shown here for an area straddling the equator for about one-fourth the circumference of the planet, centered at 175 degrees west longitude. The white contours outline lobes of a formation called Medusae Fossae, coinciding with some areas of higher hydrogen abundance in the enhanced-resolution analysis. The black line indicates the limit of a relatively young lava plain, coinciding with areas of lower hydrogen abundance in the enhanced-resolution analysis. The color-coding key for hydrogen abundance in both maps is indicated by the horizontal bar, in units expressed as how much water would be present in the ground if the hydrogen is all in the form of water. Units of the equivalent water weight, as a percentage of the material in the ground, are correlated with counts recorded by the spectrometer, ranging from less than 1 weight-percent water equivalent (red) to more than 30 percent (dark blue). https://photojournal.jpl.nasa.gov/catalog/PIA21848

  20. Unveiling subsurface hydrogen-bond structure of hexagonal water ice

    NASA Astrophysics Data System (ADS)

    Otsuki, Yuji; Sugimoto, Toshiki; Ishiyama, Tatsuya; Morita, Akihiro; Watanabe, Kazuya; Matsumoto, Yoshiyasu

    2017-09-01

    The phase-resolved sum-frequency-generation (SFG) spectrum for the basal face of hexagonal ice is reported and is interpreted by molecular dynamics simulations combined with ab initio quantum calculations. Here, we demonstrate that the line shape of the SFG spectra of isotope-diluted OH chromophores is a sensitive indicator of structural rumpling uniquely emerging at the subsurface of hexagonal ice. In the outermost subsurface between the first (B1) and second (B2) bilayer, the hydrogen bond of OB 1-H ⋯OB 2 is weaker than that of OB 1⋯H -OB 2 . This implies that subsurface O-O distance is laterally altered, depending on the direction of O-H bond along the surface normal: H-up or H-down, which is in stark contrast to bulk hydrogen bonds. This new finding uncovers how water molecules undercoordinated at the topmost surface influence on the subsurface structural rumpling associated with orientational frustration inherent in water ice.

  1. Early spawning of Antarctic krill in the Scotia Sea is fuelled by “superfluous” feeding on non-ice associated phytoplankton blooms

    NASA Astrophysics Data System (ADS)

    Schmidt, Katrin; Atkinson, Angus; Venables, Hugh J.; Pond, David W.

    2012-01-01

    The spawning success of Antarctic krill ( Euphausia superba) is generally assumed to depend on substantial winter sea ice extent, as ice biota can serve as a food source during winter/spring and the seasonal ice melt conditions the upper water column for extensive phytoplankton blooms. However, direct observations during spring are rare. Here we studied krill body condition and maturity stage in relation to feeding (i.e. stomach fullness, diet, absorption of individual fatty acids and defecation rate) across the Scotia Sea in November 2006. The phytoplankton concentrations were low at the marginal ice zone (MIZ) in the southern Scotia Sea (Stn. 1, 2, and 3), high in open waters of the Southern Antarctic Circumpolar Current Front (SACCF) in the central Scotia Sea (Stn. 5), and moderate further north (Stn. 6 and 7). Krill had low lipid reserves (˜6.5% of dry mass, DM), low mass:length ratios (˜1.7 mg DM mm -1), and small digestive glands (˜7% of total DM) near the ice edge. The stomachs contained lithogenic particles, diatom debris, and bacterial fatty acids, but low proportions of diatom-indicating fatty acids, which suggest that these krill were feeding on detritus rather than on fresh ice algae. In the SACCF, krill had higher lipid reserves (˜10% of DM), high mass:length ratios (˜2.2 mg DM mm -1), and large digestive glands (˜16% of total DM). Stomach content and tissue composition indicate feeding on diatoms. In the north, moderate food concentrations co-occurred with low lipid reserves in krill, and moderate mass:length ratios and digestive gland sizes. Only in the phytoplankton bloom in the SACCF had the mating season already started and some females were about to spawn. Based on the way krill processed their food at the different stations, we indicate two mechanisms that can lead to fast regeneration of body reserves and oocyte maturation in E. superba. One is "superfluous" feeding at high food concentrations, which maximises the overall nutrient gain

  2. Radiation Effects in Hydrogen-Laden Porous Water Ice Films: Implications for Interstellar Ices

    NASA Astrophysics Data System (ADS)

    Raut, Ujjwal; Baragiola, Raul; Mitchell, Emma; Shi, Jianming

    H _{2} is the dominant gas in the dense clouds of the interstellar medium (ISM). At densities of 10 (5) cm (-3) , an H _{2} molecule arrives at the surface of a 0.1 mum-sized, ice-covered dust grain once every few seconds [1]. At 10 K, H _{2} can diffuse into the pores of the ice mantle and adsorb at high-energy binding sites, loading the ice with hydrogen over the lifetime of the cloud. These icy grains are also impacted by galactic cosmic rays and stellar winds (in clouds with embedded protostar). Based on the available cosmic proton flux spectrum [2], we estimate a small impact rate of nearly 1 hit per year on a 0.1 μm sized grain, or 10 (-7) times the impact frequency of the neutral H _{2}. The energy deposited by such impacts can release the adsorbed H _{2} into the gas phase (impact desorption or sputtering). Recently, we have reported on a new process of ion-induced enhanced adsorption, where molecules from the gas phase are incorporated into the film when irradiation is performed in the presence of ambient gas [3]. The interplay between ion-induced ejection and adsorption can be important in determining the gas-solid balance in the ISM. To understand the effects of cosmic rays/stellar winds impacts on interstellar ice immersed in H _{2} gas, we have performed irradiation of porous amorphous ice films loaded with H _{2} through co-deposition or adsorption following growth. The irradiations were performed with 100 keV H (+) using fluxes of 10 (10) -10 (12) H (+) cm (-2) s (-1) at 7 K, in presence of ambient H _{2} at pressures ranging from 10 (-5) to 10 (-8) Torr. Our initial results show a net loss in adsorbed H _{2} during irradiation, from competing ion-induced ejection and adsorption. The H _{2} loss per ion decreases exponentially with fluence, with a cross-section of 10 (-13) cm (2) . In addition to hydrogen removal, irradiation also leads to trapping of H _{2} in the ice film, from closing of the pores during irradiation [4]. As a result, 2.6 percent

  3. Doping-enhanced dipolar dynamics in ice V as a precursor of hydrogen ordering in ice XIII

    NASA Astrophysics Data System (ADS)

    Köster, K. W.; Raidt, A.; Fuentes Landete, V.; Gainaru, C.; Loerting, T.; Böhmer, R.

    2016-11-01

    Dielectric spectroscopy measurements are carried out in the temperature range from about 100 to 145 K on nominally pure ice V as well as on crystals doped with KOH and with HCl in order to investigate their reorientation dynamics at ambient pressure. The orientational glass transition temperature of pure ice V is detected at 123 K, in agreement with previous indications from calorimetry. KOH doped ice V displays an about 60-fold enhanced hydrogen dynamics and the dipolar relaxation induced by HCl doping is even by a factor of about 40 000 faster than that of the undoped material. The phase transition of HCl doped ice V to ice XIII is accompanied by a significant reorientational slowdown and a pronounced freeze-out of the electrical susceptibility. The results obtained near this transition are discussed in relation to other order/disorder ice pairs such as ice I/XI and ice XII/XIV.

  4. Raman spectroscopic study of hydrogen ordered ice XIII and of its reversible phase transition to disordered ice V.

    PubMed

    Salzmann, Christoph G; Hallbrucker, Andreas; Finney, John L; Mayer, Erwin

    2006-07-14

    Raman spectra of recovered ordered H(2)O (D(2)O) ice XIII doped with 0.01 M HCl (DCl) recorded in vacuo at 80 K are reported in the range 3600-200 cm(-1). The bands are assigned to the various types of modes on the basis of isotope ratios. On thermal cycling between 80 and 120 K, the reversible phase transition to disordered ice V is observed. The remarkable effect of HCl (DCl) on orientational ordering in ice V and its phase transition to ordered ice XIII, first reported in a powder neutron diffraction study of DCl doped D(2)O ice V (C. G. Salzmann, P. G. Radaelli, A. Hallbrucker, E. Mayer, J. L. Finney, Science, 2006, 311, 1758), is demonstrated by Raman spectroscopy and discussed. The dopants KOH and HF have only a minor effect on hydrogen ordering in ice V, as shown by the Raman spectra.

  5. Insights into hydrogen bonding via ice interfaces and isolated water.

    PubMed

    Shultz, Mary Jane; Bisson, Patrick; Vu, Tuan Hoang

    2014-11-14

    Water in a confined environment has a combination of fewer available configurations and restricted mobility. Both affect the spectroscopic signature. In this work, the spectroscopic signature of water in confined environments is discussed in the context of competing models for condensed water: (1) as a system of intramolecular coupled molecules or (2) as a network with intermolecular dipole-dipole coupled O-H stretches. Two distinct environments are used: the confined asymmetric environment at the ice surface and the near-isolated environment of water in an infrared transparent matrix. Both the spectroscopy and the environment are described followed by a perspective discussion of implications for the two competing models. Despite being a small molecule, water is relatively complex; perhaps not surprisingly the results support a model that blends inter- and intramolecular coupling. The frequency, and therefore the hydrogen-bond strength, appears to be a function of donor-acceptor interaction and of longer-range dipole-dipole alignment in the hydrogen-bonded network. The O-H dipole direction depends on the local environment and reflects intramolecular O-H stretch coupling.

  6. Insights into hydrogen bonding via ice interfaces and isolated water

    NASA Astrophysics Data System (ADS)

    Shultz, Mary Jane; Bisson, Patrick; Vu, Tuan Hoang

    2014-11-01

    Water in a confined environment has a combination of fewer available configurations and restricted mobility. Both affect the spectroscopic signature. In this work, the spectroscopic signature of water in confined environments is discussed in the context of competing models for condensed water: (1) as a system of intramolecular coupled molecules or (2) as a network with intermolecular dipole-dipole coupled O-H stretches. Two distinct environments are used: the confined asymmetric environment at the ice surface and the near-isolated environment of water in an infrared transparent matrix. Both the spectroscopy and the environment are described followed by a perspective discussion of implications for the two competing models. Despite being a small molecule, water is relatively complex; perhaps not surprisingly the results support a model that blends inter- and intramolecular coupling. The frequency, and therefore the hydrogen-bond strength, appears to be a function of donor-acceptor interaction and of longer-range dipole-dipole alignment in the hydrogen-bonded network. The O-H dipole direction depends on the local environment and reflects intramolecular O-H stretch coupling.

  7. Signatures of Quantum-Tunneling Diffusion of Hydrogen Atoms on Water Ice at 10 K.

    PubMed

    Kuwahata, K; Hama, T; Kouchi, A; Watanabe, N

    2015-09-25

    Reported here is the first observation of the tunneling surface diffusion of a hydrogen (H) atom on water ice. Photostimulated desorption and resonance-enhanced multiphoton ionization methods were used to determine the diffusion rates at 10 K on amorphous solid water and polycrystalline ice. H-atom diffusion on polycrystalline ice was 2 orders of magnitude faster than that of deuterium atoms, indicating the occurrence of tunneling diffusion. Whether diffusion is by tunneling or thermal hopping also depends on the diffusion length of the atoms and the morphology of the surface. Our findings contribute to a better understanding of elementary physicochemical processes of hydrogen on cosmic ice dust.

  8. On the Formation of Interstellar Water Ice: Constraints from a Search for Hydrogen Peroxide Ice in Molecular Clouds

    NASA Technical Reports Server (NTRS)

    Smith, R. G.; Charnely, S. B.; Pendleton, Y. J.; Wright, C. M.; Maldoni, M. M.; Robinson, G.

    2011-01-01

    Recent surface chemistry experiments have shown that the hydrogenation of molecular oxygen on interstellar dust grains is a plausible formation mechanism, via hydrogen peroxide (H2O2), for the production of water (H2O) ice mantles in the dense interstellar medium. Theoretical chemistry models also predict the formation of a significant abundance of H2O2 ice in grain mantles by this route. At their upper limits, the predicted and experimental abundances are sufficiently high that H2O2 should be detectable in molecular cloud ice spectra. To investigate this further, laboratory spectra have been obtained for H2O2/H2O ice films between 2.5 and 200 micron, from 10 to 180 K, containing 3%, 30%, and 97% H2O2 ice. Integrated absorbances for all the absorption features in low-temperature H2O2 ice have been derived from these spectra. For identifying H2O2 ice, the key results are the presence of unique features near 3.5, 7.0, and 11.3 micron. Comparing the laboratory spectra with the spectra of a group of 24 protostars and field stars, all of which have strong H2O ice absorption bands, no absorption features are found that can definitely be identified with H2O2 ice. In the absence of definite H2O2 features, the H2O2 abundance is constrained by its possible contribution to the weak absorption feature near 3.47 micron found on the long-wavelength wing of the 3 micron H2O ice band. This gives an average upper limit for H2O2, as a percentage of H2O, of 9% +/- 4%. This is a strong constraint on parameters for surface chemistry experiments and dense cloud chemistry models.

  9. On the Formation of Interstellar Water Ice: Constraints from a Search for Hydrogen Peroxide Ice in Molecular Clouds

    NASA Technical Reports Server (NTRS)

    Smith, R. G.; Charnely, S. B.; Pendleton, Y. J.; Wright, C. M.; Maldoni, M. M.; Robinson, G.

    2011-01-01

    Recent surface chemistry experiments have shown that the hydrogenation of molecular oxygen on interstellar dust grains is a plausible formation mechanism, via hydrogen peroxide (H2O2), for the production of water (H2O) ice mantles in the dense interstellar medium. Theoretical chemistry models also predict the formation of a significant abundance of H2O2 ice in grain mantles by this route. At their upper limits, the predicted and experimental abundances are sufficiently high that H2O2 should be detectable in molecular cloud ice spectra. To investigate this further, laboratory spectra have been obtained for H2O2/H2O ice films between 2.5 and 200 micron, from 10 to 180 K, containing 3%, 30%, and 97% H2O2 ice. Integrated absorbances for all the absorption features in low-temperature H2O2 ice have been derived from these spectra. For identifying H2O2 ice, the key results are the presence of unique features near 3.5, 7.0, and 11.3 micron. Comparing the laboratory spectra with the spectra of a group of 24 protostars and field stars, all of which have strong H2O ice absorption bands, no absorption features are found that can definitely be identified with H2O2 ice. In the absence of definite H2O2 features, the H2O2 abundance is constrained by its possible contribution to the weak absorption feature near 3.47 micron found on the long-wavelength wing of the 3 micron H2O ice band. This gives an average upper limit for H2O2, as a percentage of H2O, of 9% +/- 4%. This is a strong constraint on parameters for surface chemistry experiments and dense cloud chemistry models.

  10. Imaging of hydrogen halides photochemistry on argon and ice nanoparticles

    NASA Astrophysics Data System (ADS)

    Poterya, V.; Lengyel, J.; Pysanenko, A.; Svrčková, P.; Fárník, M.

    2014-08-01

    The photodissociation dynamics of HX (X = Cl, Br) molecules deposited on large ArN and (H2O)N, bar{N}≈ 102-103, clusters is investigated at 193 nm using velocity map imaging of H and Cl photofragments. In addition, time-of-flight mass spectrometry after electron ionization complemented by pickup cross section measurements provide information about the composition and structure of the clusters. The hydrogen halides coagulate efficiently to generate smaller (HX)n clusters on ArN upon multiple pickup conditions. This implies a high mobility of HX molecules on argon. On the other hand, the molecules remain isolated on (H2O)N. The photodissociation on ArN leads to strong H-fragment caging manifested by the fragment intensity peaking sharply at zero kinetic energy. Some of the Cl-fragments from HCl photodissociation on ArN are also caged, while some of the fragments escape the cluster directly without losing their kinetic energy. The images of H-fragments from HX on (H2O)N also exhibit a strong central intensity, however, with a different kinetic energy distribution which originates from different processes: the HX acidic dissociation followed by H3O neutral hydronium radical formation after the UV excitation, and the slow H-fragments stem from subsequent decay of the H3O. The corresponding Cl-cofragment from the photoexcitation of the HCl.(H2O)N is trapped in the ice nanoparticle.

  11. Imaging of hydrogen halides photochemistry on argon and ice nanoparticles.

    PubMed

    Poterya, V; Lengyel, J; Pysanenko, A; Svrčková, P; Fárník, M

    2014-08-21

    The photodissociation dynamics of HX (X = Cl, Br) molecules deposited on large ArN and (H2O)N, N̄ ≈ 10(2)-10(3), clusters is investigated at 193 nm using velocity map imaging of H and Cl photofragments. In addition, time-of-flight mass spectrometry after electron ionization complemented by pickup cross section measurements provide information about the composition and structure of the clusters. The hydrogen halides coagulate efficiently to generate smaller (HX)n clusters on ArN upon multiple pickup conditions. This implies a high mobility of HX molecules on argon. On the other hand, the molecules remain isolated on (H2O)N. The photodissociation on ArN leads to strong H-fragment caging manifested by the fragment intensity peaking sharply at zero kinetic energy. Some of the Cl-fragments from HCl photodissociation on ArN are also caged, while some of the fragments escape the cluster directly without losing their kinetic energy. The images of H-fragments from HX on (H2O)N also exhibit a strong central intensity, however, with a different kinetic energy distribution which originates from different processes: the HX acidic dissociation followed by H3O neutral hydronium radical formation after the UV excitation, and the slow H-fragments stem from subsequent decay of the H3O. The corresponding Cl-cofragment from the photoexcitation of the HCl·(H2O)N is trapped in the ice nanoparticle.

  12. Water hydrogen bond structure near highly charged interfaces is not like ice.

    PubMed

    Nihonyanagi, Satoshi; Yamaguchi, Shoichi; Tahara, Tahei

    2010-05-26

    Imaginary chi(2) spectra of HOD at air/charged surfactant/aqueous interfaces highly resemble the IR spectrum of the bulk liquid HOD, showing no indication of the "ice-like" structure. Clearly, the hydrogen bond structures at highly charged interfaces are not like ice but very similar to the structure in the bulk.

  13. Thermodynamic Stability of Ice II and Its Hydrogen-Disordered Counterpart: Role of Zero-Point Energy.

    PubMed

    Nakamura, Tatsuya; Matsumoto, Masakazu; Yagasaki, Takuma; Tanaka, Hideki

    2016-03-03

    We investigate why no hydrogen-disordered form of ice II has been found in nature despite the fact that most of hydrogen-ordered ices have hydrogen-disordered counterparts. The thermodynamic stability of a set of hydrogen-ordered ice II variants relative to ice II is evaluated theoretically. It is found that ice II is more stable than the disordered variants so generated as to satisfy the simple ice rule due to the lower zero-point energy as well as the pair interaction energy. The residual entropy of the disordered ice II phase gradually compensates the unfavorable free energy with increasing temperature. The crossover, however, occurs at a high temperature well above the melting point of ice III. Consequently, the hydrogen-disordered phase does not exist in nature. The thermodynamic stability of partially hydrogen-disordered ices is also scrutinized by examining the free-energy components of several variants obtained by systematic inversion of OH directions in ice II. The potential energy of one variant is lower than that of the ice II structure, but its Gibbs free energy is slightly higher than that of ice II due to the zero-point energy. The slight difference in the thermodynamic stability leaves the possibility of the partial hydrogen-disorder in real ice II.

  14. HYDROGEN-DEUTERIUM EXCHANGE IN PHOTOLYZED METHANE-WATER ICES

    SciTech Connect

    Weber, Amanda S.; Hodyss, Robert; Johnson, Paul V.; Willacy, Karen; Kanik, Isik

    2009-09-20

    Previous work has concluded that H-D exchange occurs readily in polycyclic aromatic hydrocarbons frozen in deuterated water (D{sub 2}O) irradiated with ultraviolet light. Here, we examine H-D exchange in methane-water ices following exposure to ultraviolet radiation and analyze the products formed as a result. We find that H-D exchange also occurs in methane-water ices by means of ultraviolet photolysis. Exchange proceeds through a radical mechanism that implies that almost all organic species will undergo significant H-D exchange with the matrix in water ices exposed to ultraviolet radiation. Given sufficient energetic processing of the ice, the H/D ratio of an ice matrix may be transferred to the organic species in the ice.

  15. Gas Fuelling System for SST-1Tokamak

    NASA Astrophysics Data System (ADS)

    Dhanani, Kalpesh; Raval, D. C.; Khan, Ziauddin; Semwal, Pratibha; George, Siju; Paravastu, Yuvakiran; Thankey, Prashant; Khan, M. S.; Pradhan, Subrata

    2017-04-01

    SST-1 Tokamak, the first Indian Steady-state Superconducting experimental device is at present under operation in the Institute for Plasma Research. For plasma break down & initiation, piezoelectric valve based gas feed system is implemented as a primary requirement due to its precise control, easy handling, low construction and maintenance cost and its flexibility in the selection of the working gas. Hydrogen gas feeding with piezoelectric valve is used in the SST-1 plasma experiments. The piezoelectric valves used in SST-1 are remotely driven by a PXI based platform and are calibrated before each SST-1 plasma operation with precise control. This paper will present the technical development and the results of the gas fuelling system of SST-1.

  16. Carbon-Fuelled Future

    SciTech Connect

    Appel, Aaron M.

    2014-09-12

    Whether due to changes in policy or consumption of available fossil fuels, alternative sources of energy will be required, especially given the rising global energy demand. However, one of the main factors limiting the widespread utilization of renewable energy, such as wind, solar, wave or geothermal, is our ability to store energy. Storage of energy from carbon-neutral sources, such as electricity from solar or wind, can be accomplished through many routes. One approach is to store energy in the form of chemical bonds, as fuels. The conversion of low-energy compounds, such as water and carbon dioxide, to higher energy molecules, such as hydrogen or carbon-based fuels, enables the storage of carbon-neutral energy on a very large scale. The author¹s work in this area is supported by the US Department of Energy Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  17. Configurational entropy of hydrogen-disordered ice polymorphs

    SciTech Connect

    Herrero, Carlos P. Ramírez, Rafael

    2014-06-21

    The configurational entropy of several H-disordered ice polymorphs is calculated by means of a thermodynamic integration along a path between a totally H-disordered state and one fulfilling the Bernal-Fowler ice rules. A Monte Carlo procedure based on a simple energy model is used, so that the employed thermodynamic path drives the system from high temperatures to the low-temperature limit. This method turns out to be precise enough to give reliable values for the configurational entropy s{sub th} of different ice phases in the thermodynamic limit (number of molecules N → ∞). The precision of the method is checked for the ice model on a two-dimensional square lattice. Results for the configurational entropy are given for H-disordered arrangements on several polymorphs, including ices Ih, Ic, II, III, IV, V, VI, and XII. The highest and lowest entropy values correspond to ices VI and XII, respectively, with a difference of 3.3% between them. The dependence of the entropy on the ice structures has been rationalized by comparing it with structural parameters of the various polymorphs, such as the mean ring size. A particularly good correlation has been found between the configurational entropy and the connective constant derived from self-avoiding walks on the ice networks.

  18. ON THE FORMATION OF INTERSTELLAR WATER ICE: CONSTRAINTS FROM A SEARCH FOR HYDROGEN PEROXIDE ICE IN MOLECULAR CLOUDS

    SciTech Connect

    Smith, R. G.; Wright, C. M.; Robinson, G.; Charnley, S. B.; Pendleton, Y. J.; Maldoni, M. M. E-mail: c.wright@adfa.edu.au E-mail: Steven.B.Charnley@nasa.gov

    2011-12-20

    Recent surface chemistry experiments have shown that the hydrogenation of molecular oxygen on interstellar dust grains is a plausible formation mechanism, via hydrogen peroxide (H{sub 2}O{sub 2}), for the production of water (H{sub 2}O) ice mantles in the dense interstellar medium. Theoretical chemistry models also predict the formation of a significant abundance of H{sub 2}O{sub 2} ice in grain mantles by this route. At their upper limits, the predicted and experimental abundances are sufficiently high that H{sub 2}O{sub 2} should be detectable in molecular cloud ice spectra. To investigate this further, laboratory spectra have been obtained for H{sub 2}O{sub 2}/H{sub 2}O ice films between 2.5 and 200 {mu}m, from 10 to 180 K, containing 3%, 30%, and 97% H{sub 2}O{sub 2} ice. Integrated absorbances for all the absorption features in low-temperature H{sub 2}O{sub 2} ice have been derived from these spectra. For identifying H{sub 2}O{sub 2} ice, the key results are the presence of unique features near 3.5, 7.0, and 11.3 {mu}m. Comparing the laboratory spectra with the spectra of a group of 24 protostars and field stars, all of which have strong H{sub 2}O ice absorption bands, no absorption features are found that can definitely be identified with H{sub 2}O{sub 2} ice. In the absence of definite H{sub 2}O{sub 2} features, the H{sub 2}O{sub 2} abundance is constrained by its possible contribution to the weak absorption feature near 3.47 {mu}m found on the long-wavelength wing of the 3 {mu}m H{sub 2}O ice band. This gives an average upper limit for H{sub 2}O{sub 2}, as a percentage of H{sub 2}O, of 9% {+-} 4%. This is a strong constraint on parameters for surface chemistry experiments and dense cloud chemistry models.

  19. Water formation at low temperatures by surface O2 hydrogenation I: Characterization of ice penetration.

    PubMed

    Ioppolo, S; Cuppen, H M; Romanzin, C; van Dishoeck, E F; Linnartz, H

    2010-10-14

    Water is the main component of interstellar ice mantles, is abundant in the solar system and is a crucial ingredient for life. The formation of this molecule in the interstellar medium cannot be explained by gas-phase chemistry only and its surface hydrogenation formation routes at low temperatures (O, O(2), O(3) channels) are still unclear and most likely incomplete. In a previous paper we discussed an unexpected zeroth-order H(2)O production behavior in O(2) ice hydrogenation experiments compared to the first-order H(2)CO and CH(3)OH production behavior found in former studies on hydrogenation of CO ice. In this paper we experimentally investigate in detail how the structure of O(2) ice leads to this rare behavior in reaction order and production yield. In our experiments H atoms are added to a thick O(2) ice under fully controlled conditions, while the changes are followed by means of reflection absorption infrared spectroscopy (RAIRS). The H-atom penetration mechanism is systematically studied by varying the temperature, thickness and structure of the O(2) ice. We conclude that the competition between reaction and diffusion of the H atoms into the O(2) ice explains the unexpected H(2)O and H(2)O(2) formation behavior. In addition, we show that the proposed O(2) hydrogenation scheme is incomplete, suggesting that additional surface reactions should be considered. Indeed, the detection of newly formed O(3) in the ice upon H-atom exposure proves that the O(2) channel is not an isolated route. Furthermore, the addition of H(2) molecules is found not to have a measurable effect on the O(2) reaction channel.

  20. SOLUBILITY OF WATER ICE IN METALLIC HYDROGEN: CONSEQUENCES FOR CORE EROSION IN GAS GIANT PLANETS

    SciTech Connect

    Wilson, H. F.; Militzer, B.

    2012-01-20

    Using ab initio simulations we investigate whether water ice is stable in the cores of giant planets, or whether it dissolves into the layer of metallic hydrogen above. By Gibbs free energy calculations we find that for pressures between 10 and 40 Mbar the ice-hydrogen interface is thermodynamically unstable at temperatures above approximately 3000 K, far below the temperature of the core-mantle boundaries in Jupiter and Saturn. This implies that the dissolution of core material into the fluid layers of giant planets is thermodynamically favored, and that further modeling of the extent of core erosion is warranted.

  1. Hydrogen bonds and van der waals forces in ice at ambient and high pressures.

    PubMed

    Santra, Biswajit; Klimeš, Jiří; Alfè, Dario; Tkatchenko, Alexandre; Slater, Ben; Michaelides, Angelos; Car, Roberto; Scheffler, Matthias

    2011-10-28

    The first principles methods, density-functional theory and quantum Monte Carlo, have been used to examine the balance between van der Waals (vdW) forces and hydrogen bonding in ambient and high-pressure phases of ice. At higher pressure, the contribution to the lattice energy from vdW increases and that from hydrogen bonding decreases, leading vdW to have a substantial effect on the transition pressures between the crystalline ice phases. An important consequence, likely to be of relevance to molecular crystals in general, is that transition pressures obtained from density-functional theory exchange-correlation functionals which neglect vdW forces are greatly overestimated.

  2. LABORATORY MEASUREMENTS OF INFRARED ABSORPTION SPECTRA OF HYDROGEN-ORDERED ICE: A STEP TO THE EXPLORATION OF ICE XI IN SPACE

    SciTech Connect

    Arakawa, M.; Kagi, H.; Fukazawa, H. E-mail: kagi@eqchem.s.u-tokyo.ac.jp

    2009-10-01

    Infrared absorption spectra of ice were obtained at 4, 60, 100, 140, 160, and 240 K to make spectroscopic observations of hydrogen ordering at low temperatures. A broad peak observed at around 850 cm{sup -1} (11.7 {mu}m) was derived from libration of water molecules. The peak width was notably narrower at temperatures less than 140 K. A decrease in the peak width occurring in accordance with the formation of ice with ordered arrangements of hydrogen atoms was suggested from incoherent inelastic neutron-scattering studies. These results are consistent with ordering of hydrogen atoms. The existence of hydrogen-ordered ice in space is the subject of continuing astronomical debate. Our results demonstrate that ordered ice in space is detectable using infrared telescopes and planetary exploration.

  3. Hydrogenation reactions in interstellar CO ice analogues. A combined experimental/theoretical approach

    NASA Astrophysics Data System (ADS)

    Fuchs, G. W.; Cuppen, H. M.; Ioppolo, S.; Romanzin, C.; Bisschop, S. E.; Andersson, S.; van Dishoeck, E. F.; Linnartz, H.

    2009-10-01

    Context: Hydrogenation reactions of CO in inter- and circumstellar ices are regarded as an important starting point in the formation of more complex species. Previous laboratory measurements by two groups of the hydrogenation of CO ices provided controversial results about the formation rate of methanol. Aims: Our aim is to resolve this controversy by an independent investigation of the reaction scheme for a range of H-atom fluxes and different ice temperatures and thicknesses. To fully understand the laboratory data, the results are interpreted theoretically by means of continuous-time, random-walk Monte Carlo simulations. Methods: Reaction rates are determined by using a state-of-the-art ultra high vacuum experimental setup to bombard an interstellar CO ice analog with H atoms at room temperature. The reaction of CO + H into H2CO and subsequently CH3OH is monitored by a Fourier transform infrared spectrometer in a reflection absorption mode. In addition, after each completed measurement, a temperature programmed desorption experiment is performed to identify the produced species according to their mass spectra and to determine their abundance. Different H-atom fluxes, morphologies, and ice thicknesses are tested. The experimental results are interpreted using Monte Carlo simulations. This technique takes into account the layered structure of CO ice. Results: The formation of both formaldehyde and methanol via CO hydrogenation is confirmed at low temperature (T = 12{-}20 K). We confirm that the discrepancy between the two Japanese studies is caused mainly by a difference in the applied hydrogen atom flux, as proposed by Hidaka and coworkers. The production rate of formaldehyde is found to decrease and the penetration column to increase with temperature. Temperature-dependent reaction barriers and diffusion rates are inferred using a Monte Carlo physical chemical model. The model is extended to interstellar conditions to compare with observational H2CO/CH3OH data.

  4. A Comprehensive Study of Hydrogen Adsorbing to Amorphous Water ice: Defining Adsorption in Classical Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Dupuy, John L.; Lewis, Steven P.; Stancil, P. C.

    2016-11-01

    Gas-grain and gas-phase reactions dominate the formation of molecules in the interstellar medium (ISM). Gas-grain reactions require a substrate (e.g., a dust or ice grain) on which the reaction is able to occur. The formation of molecular hydrogen (H2) in the ISM is the prototypical example of a gas-grain reaction. In these reactions, an atom of hydrogen will strike a surface, stick to it, and diffuse across it. When it encounters another adsorbed hydrogen atom, the two can react to form molecular hydrogen and then be ejected from the surface by the energy released in the reaction. We perform in-depth classical molecular dynamics simulations of hydrogen atoms interacting with an amorphous water-ice surface. This study focuses on the first step in the formation process; the sticking of the hydrogen atom to the substrate. We find that careful attention must be paid in dealing with the ambiguities in defining a sticking event. The technical definition of a sticking event will affect the computed sticking probabilities and coefficients. Here, using our new definition of a sticking event, we report sticking probabilities and sticking coefficients for nine different incident kinetic energies of hydrogen atoms [5-400 K] across seven different temperatures of dust grains [10-70 K]. We find that probabilities and coefficients vary both as a function of grain temperature and incident kinetic energy over the range of 0.99-0.22.

  5. Isotope studies of hydrogen and oxygen in ground ice-experiences with the equilibration technique.

    PubMed

    Meyer, H; Schönicke, L; Wand, U; Hubberten, H W; Friedrichsen, H

    2000-01-01

    Equilibration technique suitable for a large amount of samples is described for hydrogen and oxygen isotope analyses of ground ice, especially ice wedges, including the sampling strategy and the analytical procedure as well as the calibration of the Finnigan MAT Delta-S mass spectrometer in June, 1999. Since for future analyses of ice wedges, a higher sampling resolution with limited sample volume is required, the limit of the equilibration technique for small water sample sizes of between 0.05 and 5 ml was checked. For water samples smaller than 1 ml, corresponding to a molar ratio [H2O]/[H2] of smaller than 0.994, a balance correction has to be applied. The experimental errors due to partial evaporation during evacuation, the balance calculation of the isotope equilibration process, the linearity as well as memory effects of the mass spectrometer for samples with large differences in delta18O and deltaD are tackled in this paper. In the polar regions of Northern Siberia without Late Pleistocene and Holocene glaciation, ground ice is used as an archive for paleoclimate studies. First results of stable isotope measurements on ice wedges clearly show a shift towards heavier isotopes and thus warmer winter temperatures as well as a change in the source of the precipitation between Late Pleistocene and Holocene. These results indicate the high potential of ground ice for paleoclimate studies.

  6. An Evaluation of the Lifetime of Hydrogen Peroxide in Polar Snow and Ice

    NASA Astrophysics Data System (ADS)

    Hullar, T.; Anastasio, C.

    2011-12-01

    Hydrogen peroxide (HOOH), an important tropospheric oxidant, is also present in polar ice cores and surface snow. In the presence of sunlight, HOOH at or near the snow surface readily photolyzes to form the hydroxyl radical (OH). The estimated lifetime of HOOH in polar surface snow during the summer is at most several months, which should result in complete destruction of HOOH before burial beneath the photic zone. However, field observations reveal a continuous record of HOOH in polar snow. HOOH levels in ice cores can be used to understand past atmospheres, but chemical reactions of HOOH can complicate climate interpretation. Here, we examine the impacts of four processes on the net lifetime of HOOH in polar snow: 1. Chemical recycling of HOOH by reaction of OH with organics. The photolysis of HOOH on ice produces OH, which can react with organics to form peroxyl radicals, and ultimately HOOH. 2. Production of HOOH from illumination of trace species in snow. Illumination of natural ice samples and laboratory-prepared samples containing model trace species produces HOOH. 3. Photolysis of HOOH. This process in/on ice is affected by the location of HOOH, with quantum yields for HOOH loss in bulk ice lower than values measured in the quasi-liquid layer (QLL). 4. Burial by snowfall, which decreases the actinic flux and HOOH photolysis rate constant. The impact of any one of these mechanisms does not appear sufficient to explain the extended lifetime of HOOH in polar snow and ice. We are currently working to examine whether accounting for all four processes, as well as diurnal and seasonal variations in actinic flux, may sufficiently extend the net lifetime of HOOH in polar snow and ice to reconcile laboratory and field observations.

  7. Stabilities of filled ice II structure of hydrogen and helium hydrates at low temperatures and high pressures

    NASA Astrophysics Data System (ADS)

    Hirai, H.; Umeda, A.; Fujii, T.; Machida, S.; Shinozaki, A.; Kawamura, T.; Yamamoto, Y.; Yagi, T.

    2011-12-01

    Hydrogen hydrate is expected to be a hydrogen storage material, because it can contain relatively high hydrogen and its synthetic condition is mild comparable to industrial production. Three phases of hydrogen hydrate have been known so for. One is a clathrate hydrate sII [1], and others are filled ice II structure and filled ice Ic structure [2]. The ratio of water to hydrogen molecules for these phases are1:3, 1:6, 1:1, respectively. The clathrate sII containing only hydrogen molecules is stable only in a lower temperature region. At room temperature, above about 0.8 GPa filled ice II and above 2.5 GPa filled ice Ic are formed. The latter one survives at least up to 90 GPa [3]. However, investigations in low temperature and high pressure region have been limited. In this study, low temperature and high pressure experiments were performed by using diamond anvil cells and a helium-refrigeration cryostat in a region of 0.2 to 4.5 GPa and 130 to 300 K. X-ray diffractometry (XRD) showed a series of phase change from sII to filled ice Ic via filled ice II. For example, at 220K, sII transformed to filled ice II at approximately 0.7 GPa and further transformed to filled ice Ic structure at about 2.0 GPa. The present results experimentally confirmed the previously predicted phase boundaries. For filled ice II structure, Raman spectroscopy revealed that pressure dependency of vibration mode of guest hydrogen molecules and OH stretching mode of host water molecules changed at approximately 2.5 GPa. The XRD also showed change in axial ratio at the same pressure. These result suggested that state of filled ice II structure changed at about 2.5 GPa. Helium hydrate is known to form filled ice II structure [4], but high pressure study has not been yet fully performed. Similar experiments were carried out in a region of 0.2 to 5.0 GPa and 200 to 300 K. The results showed that the filled ice II structure did not transformed to filled ice Ic structure, but decomposed into helium

  8. Fuelling and density control for DEMO

    NASA Astrophysics Data System (ADS)

    Vincenzi, P.; Koechl, F.; Garzotti, L.; King, D. B.; Tindale, E.; Bolzonella, T.; Lang, P. T.; Pegourié, B.; Romanelli, M.; Wenninger, R.

    2015-09-01

    Plasma fuelling and density control are an open issue regarding EU DEMO studies and solutions may be different from present day experiments. The present paper addresses through JINTRAC core transport code simulations the feasibility of different fuelling methods such as gas puff and pellet injection and the influence of neoclassical and anomalous inward pinch in the edge transport barrier in order to achieve and control the target DEMO density. Given the expected high fusion power production, He accumulation in the plasma core is a critical issue, and an estimation of the influence of impurities (He, Ar, and W) on core fuelling and plasma dilution is given together with a discussion on D-T core balance. The DEMO reference scenario investigated in this work is characterized by a peaked density profile, which requires a careful core fuelling. Due to the large pedestal temperature gradient, gas puff may not be a feasible option for core density control, unless assuming a large anomalous inward pinch in the edge transport barrier of more than ~2 m s-1. Pellet injection from the high field side of the torus, on the contrary, may represent a viable solution for core fuelling and D-T ratio control. The effect of pellet mass, speed, and injection geometry is also discussed in the present paper. Regardless, core fuelling efficiency with pellet injection is almost entirely determined by the presence of E  ×  B drift.

  9. The formation of molecular hydrogen from water ice in the lunar regolith by energetic charged particles

    NASA Astrophysics Data System (ADS)

    Jordan, A. P.; Stubbs, T. J.; Joyce, C. J.; Schwadron, N. A.; Spence, H. E.; Wilson, J. K.

    2013-06-01

    On 9 October 2009, the Lunar Crater Observation and Sensing Satellite (LCROSS) mission impacted a spent Centaur rocket into the permanently shadowed region (PSR) within Cabeus crater and detected water vapor and ice, as well as other volatiles, in the ejecta plume. The Lyman Alpha Mapping Project (LAMP), a far ultraviolet (FUV) imaging spectrograph on board the Lunar Reconnaissance Orbiter (LRO), observed this plume as FUV emissions from the fluorescence of sunlight by molecular hydrogen (H2) and other constituents. Energetic charged particles, such as galactic cosmic rays (GCRs) and solar energetic particles (SEPs), can dissociate the molecules in water ice to form H2. We examine how much H2can be formed by these types of particle radiation interacting with water ice sequestered in the regolith within PSRs, and we assess whether it can account for the H2 observed by LAMP. To estimate H2formation, we use the GCR and SEP radiation dose rates measured by the LRO Cosmic Ray Telescope for the Effects of Radiation (CRaTER). The exposure time of the ice is calculated by considering meteoritic gardening and the penetration depth of the energetic particles. We find that GCRs and SEPs could convert at least 1-7% of the original water molecules into H2. Therefore, given the amount of water detected by LCROSS, such particle radiation‒induced dissociation of water ice could likely account for a significant percentage (10-100%) of the H2measured by LAMP.

  10. Heterogeneous Ice Processes Important for Odd Hydrogen and Ozone on Mars

    NASA Astrophysics Data System (ADS)

    Kostko, Oleg; Marschall, J.; Kalogerakis, K. S.

    2012-10-01

    Odd-hydrogen chemistry plays an important role in the ozone budget and the stabilization of carbon dioxide in the Martian atmosphere. In the lower atmosphere, heterogeneous processes influence the fate of odd-hydrogen species. The quantitative details of these heterogeneous physicochemical processes are poorly understood, leading to discrepancies between models and observations of the Martian atmosphere. Atmospheric models consistently underestimate the ozone abundances and overestimate the hydrogen peroxide densities. Heterogeneous loss of odd-hydrogen species has been suggested as a possible explanation. Relevant laboratory results are scarce in the literature, especially at the temperature range appropriate for the Martian atmosphere. We are conducting laboratory experiments to determine the uptake of various odd-hydrogen species by water ice and other substrates. We use a Knudsen cell apparatus, which is a low-pressure stirred-flow reactor in a configuration that allows heterogeneous uptake effects to be quantified by the change in the concentration of a gas phase species mixture flowing over a condensed matter substrate. We will present our recent results and discuss their relevance to the Martian odd-hydrogen and ozone chemistry. This material is based upon work supported by the National Aeronautics and Space Administration under Grant NNX10AM85G issued through the Mars Fundamental Research Program.

  11. Heterogeneous Ice Processes Important for Odd Hydrogen and Ozone on Mars

    NASA Astrophysics Data System (ADS)

    Kostko, O.; Marschall, J.; Kalogerakis, K.

    2012-12-01

    Odd-hydrogen chemistry plays an important role in the ozone budget and the stabilization of carbon dioxide in the Martian atmosphere. In the lower atmosphere, heterogeneous processes influence the fate of odd-hydrogen species. The quantitative details of these heterogeneous physicochemical processes are poorly understood, leading to discrepancies between models and observations of the Martian atmosphere. Atmospheric models consistently underestimate the ozone abundances and overestimate the hydrogen peroxide densities. Heterogeneous loss of odd-hydrogen species has been suggested as a possible explanation. Relevant laboratory results are scarce in the literature, especially at the temperature range appropriate for the Martian atmosphere. We are conducting laboratory experiments to determine the uptake of various odd-hydrogen species by water ice and other substrates. We use a Knudsen cell apparatus, which is a low-pressure stirred-flow reactor in a configuration that allows heterogeneous uptake effects to be quantified by the change in the concentration of a gas phase species mixture flowing over a condensed matter substrate. We will present our recent results and discuss their relevance to the Martian odd-hydrogen and ozone chemistry. This material is based upon work supported by the National Aeronautics and Space Administration under Grant NNX10AM85G issued through the Mars Fundamental Research Program.

  12. Heterogeneous Ice Processes Important for Odd Hydrogen and Ozone on Mars

    NASA Astrophysics Data System (ADS)

    Kostko, Oleg; Marschall, Jochen; Kalogerakis, Konstantinos S.

    2013-04-01

    Odd-hydrogen chemistry plays an important role in the ozone budget and the stabilization of carbon dioxide in the Martian atmosphere. In the lower atmosphere, heterogeneous processes influence the fate of odd-hydrogen species. The quantitative details of these heterogeneous physicochemical processes are poorly understood, leading to discrepancies between models and observations of the Martian atmosphere. Atmospheric models consistently underestimate the ozone abundances and overestimate the hydrogen peroxide densities. Heterogeneous loss of odd-hydrogen species has been suggested as a possible explanation. Relevant laboratory results are scarce in the literature, especially at the temperature range appropriate for the Martian atmosphere. We are conducting laboratory experiments to determine the uptake of various odd-hydrogen species by water ice and other substrates. We use a Knudsen cell apparatus, which is a low-pressure stirred-flow reactor in a configuration that allows heterogeneous uptake effects to be quantified by the change in the concentration of a gas phase species mixture flowing over a condensed matter substrate. We will present our recent results and discuss their relevance to the Martian odd-hydrogen and ozone chemistry. This material is based upon work supported by the U.S. National Aeronautics and Space Administration under Grant NNX10AM85G issued through the Mars Fundamental Research Program.

  13. Adsorption isotherms for hydrogen chloride (HCl) on ice surfaces between 190 and 220 K.

    PubMed

    Zimmermann, S; Kippenberger, M; Schuster, G; Crowley, J N

    2016-05-18

    The interaction of hydrogen chloride (HCl) with ice surfaces at temperatures between 190 and 220 K was investigated using a coated-wall flow-tube connected to a chemical ionization mass spectrometer. Equilibrium surface coverages of HCl were determined at gas phase concentrations as low as 2 × 10(9) molecules cm(-3) (∼4 × 10(-8) Torr at 200 K) to derive Langmuir adsorption isotherms. The data are described by a temperature independent partition coefficient: KLang = (3.7 ± 0.2) × 10(-11) cm(3) molecule(-1) with a saturation surface coverage Nmax = (2.0 ± 0.2) × 10(14) molecules cm(-2). The lack of a systematic dependence of KLang on temperature contrasts the behaviour of numerous trace gases which adsorb onto ice via hydrogen bonding and is most likely related to the ionization of HCl at the surface. The results are compared to previous laboratory studies, and the equilibrium partitioning of HCl to ice surfaces under conditions relevant to the atmosphere is evaluated.

  14. NO ICE HYDROGENATION: A SOLID PATHWAY TO NH{sub 2}OH FORMATION IN SPACE

    SciTech Connect

    Congiu, Emanuele; Dulieu, Francois; Chaabouni, Henda; Baouche, Saoud; Lemaire, Jean Louis; Fedoseev, Gleb; Ioppolo, Sergio; Lamberts, Thanja; Linnartz, Harold; Laffon, Carine; Parent, Philippe; Cuppen, Herma M.

    2012-05-01

    Icy dust grains in space act as catalytic surfaces onto which complex molecules form. These molecules are synthesized through exothermic reactions from precursor radicals and, mostly, hydrogen atom additions. Among the resulting products are species of biological relevance, such as hydroxylamine-NH{sub 2}OH-a precursor molecule in the formation of amino acids. In this Letter, laboratory experiments are described that demonstrate NH{sub 2}OH formation in interstellar ice analogs for astronomically relevant temperatures via successive hydrogenation reactions of solid nitric oxide (NO). Inclusion of the experimental results in an astrochemical gas-grain model proves the importance of a solid-state NO+H reaction channel as a starting point for prebiotic species in dark interstellar clouds and adds a new perspective to the way molecules of biological importance may form in space.

  15. Investigation of the hydrogen bonding in ice Ih by first-principles density function methods.

    PubMed

    Zhang, P; Tian, L; Zhang, Z P; Shao, G; Li, J C

    2012-07-28

    It is a well recognized difficult task to simulate the vibrational dynamics of ices using the density functional theory (DFT), and there has thus been rather limited success in modelling the inelastic neutron scattering (INS) spectra for even the simplest structure of ice, ice Ih, particularly in the translational region below 400 cm(-1). The reason is partly due to the complex nature of hydrogen bonding (H-bond) among water-water molecules which require considerable improvement of the quantum mechanical simulation methods, and partly owing to the randomness of protons in ice structures which often requires simulation of large super-lattices. In this report, we present the first series of successful simulation results for ice Ih using DFT methods. On the basis of the recent advancement in the DFT programs, we have achieved for the first time theoretical outcomes that not only reproduce the rotational frequencies between 500 to 1200 cm(-1) for ice Ih, but also the two optic peaks at ∼240 and 320 cm(-1) in the translational region of the INS spectra [J. C. Li, J. Chem. Phys 105, 6733 (1996)]. Besides, we have also investigated the impact of pairwise configurations of H(2)O molecules on the H-bond and found that different proton arrangements of pairwise H(2)O in the ice Ih crystal lattice could not alter the nature of H-bond as significantly as suggested in an early paper [J. C. Li and D. K. Ross, Nature (London) 365, 327 (1993)], i.e., reproducing the two experimental optic peaks do not need to invoke the two H-bonds as proposed in the previous model which led to considerable debates. The results of this work suggest that the observed optic peaks may be attributed to the coupling between the two bands of H-O stretching modes in H(2)O. The current computational work is expected to shed new light on the nature of the H-bonds in water, and in addition to offer a new approach towards probing the interaction between water and biomaterials for which H-bond is essential.

  16. Antarctic stratospheric chemistry of chlorine nitrate, hydrogen chloride, and ice - Release of active chlorine

    NASA Technical Reports Server (NTRS)

    Molina, Mario J.; Tso, Tai-Ly; Molina, Luisa T.; Wang, Frank C.-Y.

    1987-01-01

    The reaction rate between atmospheric hydrogen chloride (HCl) and chlorine nitrate (ClONO2) is greatly enhanced in the presence of ice particles; HCl dissolves readily into ice, and the collisional reaction probability for ClONO2 on the surface of ice with HCl in the mole fraction range from about 0.003 to 0.010 is in the range from about 0.05 to 0.1 for temperatures near 200 K. Chlorine is released into the gas phase on a time scale of at most a few milliseconds, whereas nitric acid (HNO3), the other product, remains in the condensed phase. This reaction could play an important role in explaining the observed depletion of ozone over Antarctica; it releases photolytically active chlorine from its most abundant reservoir species, and it promotes the formation of HNO3 and thus removes nitrogen dioxide from the gas phase. Hence it establishes the necessary conditions for the efficient catalytic destruction of ozone by halogenated free radicals.

  17. Antarctic stratospheric chemistry of chlorine nitrate, hydrogen chloride, and ice - Release of active chlorine

    NASA Technical Reports Server (NTRS)

    Molina, Mario J.; Tso, Tai-Ly; Molina, Luisa T.; Wang, Frank C.-Y.

    1987-01-01

    The reaction rate between atmospheric hydrogen chloride (HCl) and chlorine nitrate (ClONO2) is greatly enhanced in the presence of ice particles; HCl dissolves readily into ice, and the collisional reaction probability for ClONO2 on the surface of ice with HCl in the mole fraction range from about 0.003 to 0.010 is in the range from about 0.05 to 0.1 for temperatures near 200 K. Chlorine is released into the gas phase on a time scale of at most a few milliseconds, whereas nitric acid (HNO3), the other product, remains in the condensed phase. This reaction could play an important role in explaining the observed depletion of ozone over Antarctica; it releases photolytically active chlorine from its most abundant reservoir species, and it promotes the formation of HNO3 and thus removes nitrogen dioxide from the gas phase. Hence it establishes the necessary conditions for the efficient catalytic destruction of ozone by halogenated free radicals.

  18. Hydrogen-bond potential for ice VIII-X phase transition

    PubMed Central

    Zhang, Xi; Chen, Shun; Li, Jichen

    2016-01-01

    Repulsive force between the O-H bonding electrons and the O:H nonbonding pair within hydrogen bond (O-H:O) is an often overlooked interaction which dictates the extraordinary recoverability and sensitivity of water and ice. Here, we present a potential model for this hidden force opposing ice compression of ice VIII-X phase transition based on the density functional theory (DFT) and neutron scattering observations. We consider the H-O bond covalent force, the O:H nonbond dispersion force, and the hidden force to approach equilibrium under compression. Due to the charge polarization within the O:H-O bond, the curvatures of the H-O bond and the O:H nonbond potentials show opposite sign before transition, resulting in the asymmetric relaxation of H-O and O:H (O:H contraction and H-O elongation) and the H+ proton centralization towards phase X. When cross the VIII-X phase boundary, both H-O and O:H contract slightly. The potential model reproduces the VIII-X phase transition as observed in experiment. Development of the potential model may provide a choice for further calculations of water anomalies. PMID:27841335

  19. Hydrogen-bond potential for ice VIII-X phase transition.

    PubMed

    Zhang, Xi; Chen, Shun; Li, Jichen

    2016-11-14

    Repulsive force between the O-H bonding electrons and the O:H nonbonding pair within hydrogen bond (O-H:O) is an often overlooked interaction which dictates the extraordinary recoverability and sensitivity of water and ice. Here, we present a potential model for this hidden force opposing ice compression of ice VIII-X phase transition based on the density functional theory (DFT) and neutron scattering observations. We consider the H-O bond covalent force, the O:H nonbond dispersion force, and the hidden force to approach equilibrium under compression. Due to the charge polarization within the O:H-O bond, the curvatures of the H-O bond and the O:H nonbond potentials show opposite sign before transition, resulting in the asymmetric relaxation of H-O and O:H (O:H contraction and H-O elongation) and the H(+) proton centralization towards phase X. When cross the VIII-X phase boundary, both H-O and O:H contract slightly. The potential model reproduces the VIII-X phase transition as observed in experiment. Development of the potential model may provide a choice for further calculations of water anomalies.

  20. A new and simple approach to determine the abundance of hydrogen molecules on interstellar ice mantles

    NASA Astrophysics Data System (ADS)

    Hincelin, U.; Chang, Q.; Herbst, E.

    2015-02-01

    Context. Water is usually the main component of ice mantles, which cover the cores of dust grains in cold portions of dense interstellar clouds. When molecular hydrogen is adsorbed onto an icy mantle through physisorption, a common assumption in gas-grain rate-equation models is to use an adsorption energy for molecular hydrogen on a pure water substrate. However, at high density and low temperature, when H2 is efficiently adsorbed onto the mantle, its surface abundance can be strongly overestimated if this assumption is still used. Unfortunately, the more detailed microscopic Monte Carlo treatment cannot be used to study the abundance of H2 in ice mantles if a full gas-grain network is utilized. Aims: We present a numerical method adapted for rate-equation models that takes into account the possibility that an H2 molecule can, while diffusing on the surface, find itself bound to another hydrogen molecule, with a far weaker bond than the H2-water bond, which can lead to more efficient desorption. We label the ensuing desorption "encounter desorption". Methods: The method is implemented first in a simple system consisting only of hydrogen molecules at steady state between gas and dust using the rate-equation approach and comparing the results with the results of a microscopic Monte Carlo calculation. We then discuss the use of the rate-equation approach with encounter desorption embedded in a complete gas-grain chemical network. Results: For the simple system, the rate-equation model with encounter desorption reproduces the H2 granular coverage computed by the microscopic Monte Carlo model at 10 K for a gas density from 104 to 1012 cm-3, and yields up to a factor 4 difference above 1012 cm-3. The H2 granular coverage is also reproduced by a complete gas-grain network. We use the rate-equation approach to study the gas-grain chemistry of cold dense regions with and without the encounter desorption mechanism. We find that the grain surface and gas phase species can be

  1. Ice Regelation: Hydrogen-bond extraordinary recoverability and water quasisolid-phase-boundary dispersivity

    PubMed Central

    Zhang, Xi; Huang, Yongli; Sun, Peng; Liu, Xinjuan; Ma, Zengsheng; Zhou, Yichun; Zhou, Ji; Zheng, Weitao; Sun, Chang Q.

    2015-01-01

    Regelation, i.e., ice melts under compression and freezes again when the pressure is relieved, remains puzzling since its discovery in 1850’s by Faraday. Here we show that hydrogen bond (O:H-O) cooperativity and its extraordinary recoverability resolve this anomaly. The H-O bond and the O:H nonbond possesses each a specific heat ηx(T/ΘDx) whose Debye temperature ΘDx is proportional to its characteristic phonon frequency ωx according to Einstein’s relationship. A superposition of the ηx(T/ΘDx) curves for the H-O bond (x = H, ωH ~ 3200 cm−1) and the O:H nonbond (x = L, ωL ~ 200 cm−1, ΘDL = 198 K) yields two intersecting temperatures that define the liquid/quasisolid/solid phase boundaries. Compression shortens the O:H nonbond and stiffens its phonon but does the opposite to the H-O bond through O-O Coulomb repulsion, which closes up the intersection temperatures and hence depress the melting temperature of quasisolid ice. Reproduction of the Tm(P) profile clarifies that the H-O bond energy EH determines the Tm with derivative of EH = 3.97 eV for bulk water and ice. Oxygen atom always finds bonding partners to retain its sp3-orbital hybridization once the O:H breaks, which ensures O:H-O bond recoverability to its original state once the pressure is relieved. PMID:26351109

  2. Ice Regelation: Hydrogen-bond extraordinary recoverability and water quasisolid-phase-boundary dispersivity.

    PubMed

    Zhang, Xi; Huang, Yongli; Sun, Peng; Liu, Xinjuan; Ma, Zengsheng; Zhou, Yichun; Zhou, Ji; Zheng, Weitao; Sun, Chang Q

    2015-09-09

    Regelation, i.e., ice melts under compression and freezes again when the pressure is relieved, remains puzzling since its discovery in 1850's by Faraday. Here we show that hydrogen bond (O:H-O) cooperativity and its extraordinary recoverability resolve this anomaly. The H-O bond and the O:H nonbond possesses each a specific heat ηx(T/ΘDx) whose Debye temperature ΘDx is proportional to its characteristic phonon frequency ωx according to Einstein's relationship. A superposition of the ηx(T/ΘDx) curves for the H-O bond (x=H, ωH~3200 cm(-1)) and the O:H nonbond (x=L, ωL~200 cm(-1), ΘDL=198 K) yields two intersecting temperatures that define the liquid/quasisolid/solid phase boundaries. Compression shortens the O:H nonbond and stiffens its phonon but does the opposite to the H-O bond through O-O Coulomb repulsion, which closes up the intersection temperatures and hence depress the melting temperature of quasisolid ice. Reproduction of the Tm(P) profile clarifies that the H-O bond energy EH determines the Tm with derivative of EH=3.97 eV for bulk water and ice. Oxygen atom always finds bonding partners to retain its sp3-orbital hybridization once the O:H breaks, which ensures O:H-O bond recoverability to its original state once the pressure is relieved.

  3. Hydrogen isotope composition of dry season atmospheric water vapor on Quelccaya Ice Cap, Peru

    NASA Astrophysics Data System (ADS)

    Samuels-Crow, K. E.; Galewsky, J.; Hardy, D. R.; Braun, C.

    2011-12-01

    In-situ measurements of modern meteorological conditions at Quelccaya Ice Cap's summit, including the isotopic composition of atmospheric water vapor, may aid in the interpretation of the 1500-year, annually resolved ice-core record available from the site (Thompson et al., 2003). Betweeen July 7 and July 9, 2011, we collected 11 samples of atmospheric water vapor from the summit of Quelccaya and analyzed the hydrogen isotopic composition on a Finnegan MAT-252 mass spectrometer using the method of Strong et al 2007. δD values ranged from -134% to -168%, and specific humidity ranged from 1.5 to 3 g/kg. The isotopic composition of tropical Andean ice cores has been variously interpreted in terms of simple Rayleigh distillation models, in which water evaporates from the tropical Atlantic and condenses as it moves upslope (Grootes et al., 1989; Pierrehumbert, 1999), or in terms of the condensation temperature (Thompson et al., 2003). The joint distribution of water vapor concentrations and δD values in our dataset cannot be explained by a simple upslope Rayleigh distillation model. Such a model predicts higher water-vapor concentrations and lower δD values than those measured during the sampling period. We hypothesize that the joint distribution of water vapor mixing ratio and isotopic composition can be explained by large-scale mixing of air parcels that were last saturated in the upper tropical troposphere. Such mixing necessarily leads to parcels that have higher delta values than would be expected for the simple Rayleigh distillation to the observed mixing ratio. Local effects of snow sublimation may exert additional controls over the water-vapor mixing ratio and delta values. Further monitoring during both the wet and dry seasons may clarify the relationship between large-scale water-vapor transport and the snow and ice preserved on Quelccaya. References Friedman, I. (1953) Deuterium content of natural waters and other substances, Geoch. et Cosmochim. Acta, 4

  4. Studies of biomass fuelled MCFC systems

    NASA Astrophysics Data System (ADS)

    Kivisaari, Timo; Björnbom, Pehr; Sylwan, Christopher

    In the present work, the methods, techniques and results obtained during the studies of biomass fuelled molten carbonate fuel cell (MCFC) systems within the Swedish national fuel cell program are presented. The power plants are 60 MW class, utilising biomass (i.e. wood chips) as the primary fuel. The biomass is converted via pressurised gasification into a gaseous form that, after subsequent cleaning, can be used in the fuel cells. An investigation of the effects of gasification pressure, temperature and the influence of internal reforming on the overall system performance is presented. All studies were carried out using the Aspen Plus™ with Model Manager™ simulation package.

  5. Interaction of hydrogen chloride with ice surfaces: the effects of grain size, surface roughness, and surface disorder.

    PubMed

    McNeill, V Faye; Geiger, Franz M; Loerting, Thomas; Trout, Bernhardt L; Molina, Luisa T; Molina, Mario J

    2007-07-19

    Characterization of the interaction of hydrogen chloride (HCl) with polar stratospheric cloud (PSC) ice particles is essential to understanding the processes responsible for ozone depletion. The interaction of HCl with ice was studied using a coated-wall flow tube with chemical ionization mass spectrometry (CIMS) between 5x10(-8) and 10(-4) Torr HCl and between 186 and 223 K, including conditions recently shown to induce quasi-liquid layer (QLL) formation on single crystalline ice samples. Measurements were performed on smooth and rough (vapor-deposited) polycrystalline ice films. A numerical model of the coated-wall flow reactor was used to interpret these results and results of studies on zone-refined ice cylinders with grain sizes on the order of several millimeters (reported elsewhere). We found that HCl adsorption on polycrystalline ice films typically used in laboratory studies under conditions not known to induce surface disordering consists of two modes: one relatively strong mode leading to irreversible adsorption, and one relatively weak binding mode leading to reversible adsorption. We have indirect experimental evidence that these two modes of adsorption correspond to adsorption to sites at crystal faces and those at grain boundaries, but there is not enough information to enable us to conclusively assign each adsorption mode to a type of site. Unlike what was observed in the zone-refined ice study, there was no strong qualitative contrast found between the HCl uptake curves under QLL versus non-QLL conditions for adsorption on smooth and vapor-deposited ices. We also found indirect evidence that HCl hexahydrate formation on ice between 3x10(-7) and 2x10(-6) Torr HCl and between 186 and 190 K is a process involving hydrate nucleation and propagation on the crystal surface, rather than one originating in grain boundaries, as has been suggested for ice formed at lower temperatures. These results underscore the dependence of the HCl-ice interaction on the

  6. Formation of Glycerol through Hydrogenation of CO Ice under Prestellar Core Conditions

    NASA Astrophysics Data System (ADS)

    Fedoseev, G.; Chuang, K.-J.; Ioppolo, S.; Qasim, D.; van Dishoeck, E. F.; Linnartz, H.

    2017-06-01

    Observational studies reveal that complex organic molecules (COMs) can be found in various objects associated with different star formation stages. The identification of COMs in prestellar cores, i.e., cold environments in which thermally induced chemistry can be excluded and radiolysis is limited by cosmic rays and cosmic-ray-induced UV photons, is particularly important as this stage sets up the initial chemical composition from which ultimately stars and planets evolve. Recent laboratory results demonstrate that molecules as complex as glycolaldehyde and ethylene glycol are efficiently formed on icy dust grains via nonenergetic atom addition reactions between accreting H atoms and CO molecules, a process that dominates surface chemistry during the “CO freeze-out stage” in dense cores. In the present study we demonstrate that a similar mechanism results in the formation of the biologically relevant molecule glycerol—HOCH2CH(OH)CH2OH—a three-carbon-bearing sugar alcohol necessary for the formation of membranes of modern living cells and organelles. Our experimental results are fully consistent with a suggested reaction scheme in which glycerol is formed along a chain of radical-radical and radical-molecule interactions between various reactive intermediates produced upon hydrogenation of CO ice or its hydrogenation products. The tentative identification of the chemically related simple sugar glyceraldehyde—HOCH2CH(OH)CHO—is discussed as well. These new laboratory findings indicate that the proposed reaction mechanism holds much potential to form even more complex sugar alcohols and simple sugars.

  7. Investigating the Uptake Mechanisms of Hydrogen Peroxide to Single and Polycrystalline Ice with a Novel Flow Tube System

    NASA Astrophysics Data System (ADS)

    Hong, Angela; Ammann, Markus; Bartels-Rausch, Thorsten

    2016-04-01

    Air-ice chemical interactions are important for describing the distribution and subsequent chemical fate of trace atmospheric gases within ice and snow and determining the oxidative capacities of these environments. The nature of this interaction is governed by a compound's physicochemical properties as well as ice microstructure. Hydrogen peroxide (H2O2), a reservoir of HOx radicals in the atmosphere and an important chromophore in snow and ice, is a trace gas that demonstrates complex uptake behaviour to frozen aqueous media by the reversible, fast adsorption to the air-ice interface, aggregation, and lateral interactions, and a slower process, ostensibly via uptake into the bulk. However, the exact mechanism and kinetics for the slow uptake of H2O2 and the size of this reservoir is unknown. It is important to describe and quantify this loss term, over environmentally-relevant timescales, accommodation of H2O2 into the bulk may be the dominant process which controls the composition and chemistry of the snow and overlying atmosphere. We hypothesize that the slow uptake of H2O2 occurs by diffusion into the grain boundaries of ice. To provide mechanistic insight to the macroscopic phenomenon of atmospheric gas uptake to ice, and discern various mechanisms including adsorption to air-ice interface and accommodation into the bulk through uptake into grain boundaries, we design, machine, and validate a novel flow reactor system featuring a Drilled Ice Flow Tube (DIFT). Our flow reactor system is uniquely suited to testing these uptake mechanisms: by controlling the degree of grain boundaries present in the DIFT (ie. monocrystalline or polycrystalline), we can directly observe the effect of the ice microstructure on the adsorptive and bulk uptake of trace atmospheric gases over long timescales (eg. on the order of hours). Here, we describe method development of the DIFT and demonstrate using polarised microscopy imagery that our experimental set-up allows for the direct

  8. Characteristics and indications of hydrogen and oxygen isotopes distribution in lake ice body.

    PubMed

    Zhen, Zhi-Lei; Li, Chang-You; Zhang, Sheng; Li, Wen-Bao; Shi, Xiao-Hong; Sun, Biao

    2015-01-01

    Stable isotopes have been used to identify the characteristics of precipitation, evaporation, basin hydrology, and residence times. However, lakes in the cold regions are usually covered by ice for 5-6 months. To get a better understanding of stable isotopes characteristics and indications in lake ice bodies, ice and water were sampled during the icebound season in both the ice and water bodies in Dali Lake, and deuterium, oxygen-18 total nitrogen (TN), and the major ions were analyzed. The results showed that deuterium and oxygen-18 compositions (δD-δ¹⁸O) compositions in the ice body were greater than in the water body beneath, scattered on a straight line, and deviating downward from the global meteoric water line in the top right. The ice profile showed that the δD-δ¹⁸O compositions increased from the ice surface downward and decreased near to the bottom. In contrast, the TN and the major ions in the ice decreased from the ice surface downward and increased near to the bottom, meaning that the concentrations of δ¹⁸O had a negative correlation with the concentrations of TN and major ions. These indicated that stable isotopes can be used for tracing the nutriment and ion transport processes in the ice body.

  9. Formation of CO and CO2 Molecules by Ion Irradiation of Water Ice-covered Hydrogenated Carbon Grains

    NASA Astrophysics Data System (ADS)

    Mennella, V.; Palumbo, M. E.; Baratta, G. A.

    2004-11-01

    We present the results of experiments aimed at studying the influence of the type of grain on the chemical composition of the ice mantles during energetic processing under simulated dense medium conditions. Formation of CO and CO2 molecules occurs when hydrogenated carbon grains with a water ice cap are irradiated with 30 keV He+ ions at low temperature. The fraction of carbon in the grains converted to CO and CO2 by ions is at least 0.03 and 0.02, respectively. An estimation of the formation cross section of these molecules by 30 keV He+ ions has been derived from the intensity increase of their infrared stretching bands as a function of the ion fluence. On the basis of the laboratory results, it has been possible to evaluate the contribution of CO and CO2 produced on carbon grain by cosmic rays to the observed column densities of these molecules for dense clouds whose visual extinction is known. The mechanism we have studied does not dominate other CO2 formation processes; however, its contribution is in addition to other processes occurring on ice mantles. The spectral profile and the contribution to the observed column densities make solid CO formed by cosmic-ray irradiation of ice-layered carbon grains a good candidate for the red component of the interstellar CO stretching feature, which is generally attributed to CO mixed in with water ice. As a consequence of the formation of CO and CO2 molecules on carbon grains, a slow chemical erosion of the particles takes place.

  10. Self-diffusion of polycrystalline ice Ih under confining pressure: Hydrogen isotope analysis using 2-D Raman imaging

    NASA Astrophysics Data System (ADS)

    Noguchi, Naoki; Kubo, Tomoaki; Durham, William B.; Kagi, Hiroyuki; Shimizu, Ichiko

    2016-08-01

    We have developed a high-resolution technique based on micro Raman spectroscopy to measure hydrogen isotope diffusion profiles in ice Ih. The calibration curve for quantitative analysis of deuterium in ice Ih was constructed using micro Raman spectroscopy. Diffusion experiments using diffusion couples composed of dense polycrystalline H2O and D2O ice were carried out under a gas confining pressure of 100 MPa (to suppress micro-fracturing and pore formation) at temperatures from 235 K to 245 K and diffusion times from 0.2 to 94 hours. Two-dimensional deuterium profiles across the diffusion couples were determined by Raman imaging. The location of small spots of frost from room air could be detected from the shapes of the Raman bands of OH and OD stretching modes, which change because of the effect of the molar ratio of deuterium on the molecular coupling interaction. We emphasize the validity for screening the impurities utilizing the coupling interaction. Some recrystallization and grain boundary migration occurred in recovered diffusion couples, but analysis of two-dimensional diffusion profiles of regions not affected by grain boundary migration allowed us to measure a volume diffusivity for ice at 100 MPa of (2.8 ± 0.4) ×10-3exp[ -57.0 ± 15.4kJ /mol/RT ] m2 /s (R is the gas constant, T is temperature). Based on ambient pressure diffusivity measurements by others, this value indicates a high (negative) activation volume for volume diffusivity of -29.5 cm3/mol or more. We can also constrain the value of grain boundary diffusivity in ice at 100 MPa to be <104 that of volume diffusivity.

  11. Hydrogen-bond vibrational and energetic dynamical properties in sI and sII clathrate hydrates and in ice Ih: Molecular dynamics insights.

    PubMed

    Chakraborty, Somendra Nath; English, Niall J

    2015-10-21

    Equilibrium molecular dynamics (MD) simulations have been performed on cubic (sI and sII) polymorphs of methane hydrate, and hexagonal ice (ice Ih), to study the dynamical properties of hydrogen-bond vibrations and hydrogen-bond self-energy. It was found that hydrogen-bond energies are greatest in magnitude in sI hydrates, followed by sII, and their energies are least in magnitude in ice Ih. This is consistent with recent MD-based findings on thermal conductivities for these various materials [N. J. English and J. S. Tse, Phys. Rev. Lett. 103, 015901 (2009)], in which the lower thermal conductivity of sI methane hydrate was rationalised in terms of more strained hydrogen-bond arrangements. Further, modes for vibration and energy-transfer via hydrogen bonds in sI hydrate were found to occur at higher frequencies vis-à-vis ice Ih and sII hydrate in both the water-librational and OH⋯H regions because of the more strained nature of hydrogen bonds therein.

  12. Hydrogen-bond vibrational and energetic dynamical properties in sI and sII clathrate hydrates and in ice Ih: Molecular dynamics insights

    NASA Astrophysics Data System (ADS)

    Chakraborty, Somendra Nath; English, Niall J.

    2015-10-01

    Equilibrium molecular dynamics (MD) simulations have been performed on cubic (sI and sII) polymorphs of methane hydrate, and hexagonal ice (ice Ih), to study the dynamical properties of hydrogen-bond vibrations and hydrogen-bond self-energy. It was found that hydrogen-bond energies are greatest in magnitude in sI hydrates, followed by sII, and their energies are least in magnitude in ice Ih. This is consistent with recent MD-based findings on thermal conductivities for these various materials [N. J. English and J. S. Tse, Phys. Rev. Lett. 103, 015901 (2009)], in which the lower thermal conductivity of sI methane hydrate was rationalised in terms of more strained hydrogen-bond arrangements. Further, modes for vibration and energy-transfer via hydrogen bonds in sI hydrate were found to occur at higher frequencies vis-à-vis ice Ih and sII hydrate in both the water-librational and OH⋯H regions because of the more strained nature of hydrogen bonds therein.

  13. Structural changes of filled ice Ic hydrogen hydrate under low temperatures and high pressures from 5 to 50 GPa

    NASA Astrophysics Data System (ADS)

    Hirai, Hisako; Kagawa, Shingo; Tanaka, Takehiko; Matsuoka, Takahiro; Yagi, Takehiko; Ohishi, Yasuo; Nakano, Satoshi; Yamamoto, Yoshitaka; Irifune, Tetsuo

    2012-08-01

    Low-temperature and high-pressure experiments were performed on the filled ice Ic structure of hydrogen hydrate at previously unexplored conditions of 5-50 GPa and 30-300 K using diamond anvil cells and a helium-refrigeration cryostat. In situ x-ray diffractometry revealed that the cubic filled ice Ic structure transformed to tetragonal at low temperatures and high pressures; the axis ratio of the tetragonal phase changed depending on the pressure and temperature. These results were consistent with theoretical predictions performed via first principle calculations. The tetragonal phase was determined to be stable above 20 GPa at 300 K, above 15 GPa at 200 K, and above 10 GPa at 100 K. Further changes in the lattice parameters were observed from about 45-50 GPa throughout the temperature region examined, which suggests the transformation to another high-pressure phase above 50 GPa. In our previous x-ray study that was performed up to 80 GPa at room temperature, a similar transformation was observed above 50 GPa. In this study, the observed change in the lattice parameters corresponds to the beginning of that transformation. The reasons for the transformation to the tetragonal structure are briefly discussed: the tetragonal structure might be induced due to changes in the vibrational or rotational modes of the hydrogen molecules under low temperature and high pressure.

  14. Structural changes of filled ice Ic hydrogen hydrate under low temperatures and high pressures from 5 to 50 GPa.

    PubMed

    Hirai, Hisako; Kagawa, Shingo; Tanaka, Takehiko; Matsuoka, Takahiro; Yagi, Takehiko; Ohishi, Yasuo; Nakano, Satoshi; Yamamoto, Yoshitaka; Irifune, Tetsuo

    2012-08-21

    Low-temperature and high-pressure experiments were performed on the filled ice Ic structure of hydrogen hydrate at previously unexplored conditions of 5-50 GPa and 30-300 K using diamond anvil cells and a helium-refrigeration cryostat. In situ x-ray diffractometry revealed that the cubic filled ice Ic structure transformed to tetragonal at low temperatures and high pressures; the axis ratio of the tetragonal phase changed depending on the pressure and temperature. These results were consistent with theoretical predictions performed via first principle calculations. The tetragonal phase was determined to be stable above 20 GPa at 300 K, above 15 GPa at 200 K, and above 10 GPa at 100 K. Further changes in the lattice parameters were observed from about 45-50 GPa throughout the temperature region examined, which suggests the transformation to another high-pressure phase above 50 GPa. In our previous x-ray study that was performed up to 80 GPa at room temperature, a similar transformation was observed above 50 GPa. In this study, the observed change in the lattice parameters corresponds to the beginning of that transformation. The reasons for the transformation to the tetragonal structure are briefly discussed: the tetragonal structure might be induced due to changes in the vibrational or rotational modes of the hydrogen molecules under low temperature and high pressure.

  15. Fog inerting effects on hydrogen combustion in a PWR ice condenser contaminant

    SciTech Connect

    Luangdilok, W.; Bennett, R.B.

    1995-05-01

    A mechanistic fog inerting model has been developed to account for the effects of fog on the upward lean flammability limits of a combustible mixture based on the thermal theory of flame propagation. Benchmarking of this model with test data shows reasonably good agreement between the theory and the experiment. Applications of the model and available fog data to determine the upward lean flammability limits of the H{sub 2}-air-steam mixture in the ice condenser upper plenum region of a pressurized water reactor (PWR) ice condenser contaminant during postulated large loss of coolant accident (LOCA) conditions indicate that combustion may be suppressed beyond the downward flammability limit (8 percent H{sub 2} by volume). 18 refs., 3 tabs.

  16. Formation, Evolution and Destruction of Possible DIB Carriers: Dirty Molecular Hydrogen Ice Clusters

    NASA Astrophysics Data System (ADS)

    Lynch, D. K.; Bernstein, L. S.; Clark, F. O.

    2014-02-01

    We suggest that the diffuse interstellar bands (DIBs) are absorption lines arising from electronic transitions in molecular clusters primarily composed of a single molecule, atom, or ion (``seed''), embedded in a single-layer shell of H2 molecules (Bernstein et al. 2013). We refer to these clusters as CHCs (Contaminated H2 Clusters). CHCs arise from cm-sized, dirty H2 ice balls, called CHIMPs (Contaminated H2 Ice Macro-Particles), formed in cold, dense, Giant Molecular Clouds (GMCs), and later released into the interstellar medium (ISM) upon GMC disruption. Absorption by the CHIMP of a UV photon releases CHCs. CHCs produce DIBs when they absorb optical photons. When this occurs, the absorbed photon energy disrupts the CHC.

  17. Comparison of two stable hydrogen isotope-ratio measurement techniques on Antarctic surface-water and ice samples

    USGS Publications Warehouse

    Hopple, J.A.; Hannon, J.E.; Coplen, T.B.

    1998-01-01

    A comparison of the new hydrogen isotope-ratio technique of Vaughn et al. ([Vaughn, B.H., White, J.W.C., Delmotte, M., Trolier, M., Cattani, O., Stievenard, M., 1998. An automated system for hydrogen isotope analysis of water. Chem. Geol. (Isot. Geosci. Sect.), 152, 309-319]; the article immediately preceding this article) for the analysis of water samples utilizing automated on-line reduction by elemental uranium showed that 94% of 165 samples of Antarctic snow, ice, and stream water agreed with the ??2H values determined by H2-H2O platinum equilibration, exhibiting a bias of +0.5??? and a 2 - ?? variation of 1.9???. The isotopic results of 10 reduction technique samples, however, gave ??2H values that differed by 3.5??? or more, and were too negative by as much as 5.4??? and too positive by as much as 4.9??? with respect to those determined using the platinum equilibration technique.

  18. Radiation effects in water ice: a near-edge x-ray absorption fine structure study.

    PubMed

    Laffon, C; Lacombe, S; Bournel, F; Parent, Ph

    2006-11-28

    The changes in the structure and composition of vapor-deposited ice films irradiated at 20 K with soft x-ray photons (3-900 eV) and their subsequent evolution with temperatures between 20 and 150 K have been investigated by near-edge x-ray absorption fine structure spectroscopy (NEXAFS) at the oxygen K edge. We observe the hydroxyl OH, the atomic oxygen O, and the hydroperoxyl HO(2) radicals, as well as the oxygen O(2) and hydrogen peroxide H(2)O(2) molecules in irradiated porous amorphous solid water (p-ASW) and crystalline (I(cryst)) ice films. The evolution of their concentrations with the temperature indicates that HO(2), O(2), and H(2)O(2) result from a simple step reaction fuelled by OH, where O(2) is a product of HO(2) and HO(2) a product of H(2)O(2). The local order of ice is also modified, whatever the initial structure is. The crystalline ice I(cryst) becomes amorphous. The high-density amorphous phase (I(a)h) of ice is observed after irradiation of the p-ASW film, whose initial structure is the normal low-density form of the amorphous ice (I(a)l). The phase I(a)h is thus peculiar to irradiated ice and does not exist in the as-deposited ice films. A new "very high density" amorphous phase-we call I(a)vh-is obtained after warming at 50 K the irradiated p-ASW ice. This phase is stable up to 90 K and partially transforms into crystalline ice at 150 K.

  19. Emergence of charge-transfer-to-solvent band in the absorption spectra of hydrogen halides on ice nanoparticles: spectroscopic evidence for acidic dissociation.

    PubMed

    Oncák, Milan; Slavícek, Petr; Poterya, Viktoriya; Fárník, Michal; Buck, Udo

    2008-06-19

    Extensive ab initio calculations complemented by a photodissociation experiment at 193 nm elucidate the nature of hydrogen halide molecules bound on free ice nanoparticles. Electronic absorption spectra of small water clusters (up to 5 water molecules) and water clusters doped with hydrogen fluoride, hydrogen chloride and hydrogen bromide were calculated. The spectra were modeled at the time-dependent density functional (TDDFT) level of theory with the BHandHLYP functional using the reflection principle. We observe the emergence of a charge-transfer-to-solvent (CTTS) band in the absorption spectra upon the acidic dissociation of the hydrogen halides. The CTTS band provides a spectroscopically observable feature for the acidic dissociation. The calculated spectra were compared with our new experimental photodissociation data for larger water clusters doped with HCl and HBr. We conclude that HCl and HBr dissociate to a large extent on the surface of ice nanoparticles at temperatures near 120 K and photoactive products are formed. The acidic dissociation of HX leads to an enhancement by about 4 orders of magnitude of the HCl photolysis rate in the 200-300 nm region, which is potentially relevant for the halogen budget in the atmosphere.

  20. Improving accuracy and precision of ice core δD(CH4) analyses using methane pre-pyrolysis and hydrogen post-pyrolysis trapping and subsequent chromatographic separation

    NASA Astrophysics Data System (ADS)

    Bock, M.; Schmitt, J.; Beck, J.; Schneider, R.; Fischer, H.

    2014-07-01

    Firn and polar ice cores offer the only direct palaeoatmospheric archive. Analyses of past greenhouse gas concentrations and their isotopic compositions in air bubbles in the ice can help to constrain changes in global biogeochemical cycles in the past. For the analysis of the hydrogen isotopic composition of methane (δD(CH4) or δ2H(CH4)) 0.5 to 1.5 kg of ice was hitherto used. Here we present a method to improve precision and reduce the sample amount for δD(CH4) measurements in (ice core) air. Pre-concentrated methane is focused in front of a high temperature oven (pre-pyrolysis trapping), and molecular hydrogen formed by pyrolysis is trapped afterwards (post-pyrolysis trapping), both on a carbon-PLOT capillary at -196 °C. Argon, oxygen, nitrogen, carbon monoxide, unpyrolysed methane and krypton are trapped together with H2 and must be separated using a second short, cooled chromatographic column to ensure accurate results. Pre- and post-pyrolysis trapping largely removes the isotopic fractionation induced during chromatographic separation and results in a narrow peak in the mass spectrometer. Air standards can be measured with a precision better than 1‰. For polar ice samples from glacial periods, we estimate a precision of 2.3‰ for 350 g of ice (or roughly 30 mL - at standard temperature and pressure (STP) - of air) with 350 ppb of methane. This corresponds to recent tropospheric air samples (about 1900 ppb CH4) of about 6 mL (STP) or about 500 pmol of pure CH4.

  1. Improving accuracy and precision of ice core δD (CH4) analyses using methane pre- and hydrogen post-pyrolysis trapping and subsequent chromatographic separation

    NASA Astrophysics Data System (ADS)

    Bock, M.; Schmitt, J.; Beck, J.; Schneider, R.; Fischer, H.

    2013-12-01

    Firn and polar ice cores offer the only direct paleoatmospheric archive. Analyses of past greenhouse gas concentrations and their isotopic compositions in air bubbles in the ice can help to constrain changes in global biogeochemical cycles in the past. For the analysis of the hydrogen isotopic composition of methane (δD (CH4)) 0.5 to 1.5 kg of ice was previously necessary to achieve the required precision. Here we present a method to improve precision and reduce the sample amount for δD (CH4) measurements on (ice core) air. Pre-concentrated methane is focused before a high temperature oven (pre pyrolysis trapping), and molecular hydrogen formed by pyrolysis is trapped afterwards (post pyrolysis trapping), both on a carbon-PLOT capillary at -196 °C. A small amount of methane and krypton are trapped together with H2 and must be separated using a short second chromatographic column to ensure accurate results. Pre and post pyrolysis trapping largely removes the isotopic fractionation induced during chromatographic separation and results in a narrow peak in the mass spectrometer. Air standards can be measured with a precision better than 1‰. For polar ice samples from glacial periods we estimate a precision of 2.2‰ for 350 g of ice (or roughly 30 mL (at standard temperature and pressure (STP)) of air) with 350 ppb of methane. This corresponds to recent tropospheric air samples (about 1900 ppb CH4) of about 6 mL (STP) or about 500 pmol of pure CH4.

  2. Vacuum ultraviolet emission spectrum measurement of a microwave-discharge hydrogen-flow lamp in several configurations: Application to photodesorption of CO ice

    SciTech Connect

    Chen, Y.-J.; Wu, C.-Y. R.; Chuang, K.-J.; Chu, C.-C.; Yih, T.-S.; Muñoz Caro, G. M.; Nuevo, M.; Ip, W.-H.

    2014-01-20

    We report measurements of the vacuum ultraviolet (VUV) emission spectra of a microwave-discharge hydrogen-flow lamp (MDHL), a common tool in astrochemistry laboratories working on ice VUV photoprocessing. The MDHL provides hydrogen Ly-α (121.6 nm) and H{sub 2} molecular emission in the 110-180 nm range. We show that the spectral characteristics of the VUV light emitted in this range, in particular the relative proportion of Ly-α to molecular emission bands, strongly depend on the pressure of H{sub 2} inside the lamp, the lamp geometry (F type versus T type), the gas used (pure H{sub 2} versus H{sub 2} seeded in He), and the optical properties of the window used (MgF{sub 2} versus CaF{sub 2}). These different configurations are used to study the VUV irradiation of CO ice at 14 K. In contrast to the majority of studies dedicated to the VUV irradiation of astrophysical ice analogs, which have not taken into consideration the emission spectrum of the MDHL, our results show that the processes induced by photons in CO ice from a broad energy range are different and more complex than the sum of individual processes induced by monochromatic sources spanning the same energy range, as a result of the existence of multistate electronic transitions and discrepancy in absorption cross sections between parent molecules and products in the Ly-α and H{sub 2} molecular emission ranges.

  3. Vacuum Ultraviolet Emission Spectrum Measurement of a Microwave-discharge Hydrogen-flow Lamp in Several Configurations: Application to Photodesorption of CO Ice

    NASA Astrophysics Data System (ADS)

    Chen, Y.-J.; Chuang, K.-J.; Muñoz Caro, G. M.; Nuevo, M.; Chu, C.-C.; Yih, T.-S.; Ip, W.-H.; Wu, C.-Y. R.

    2014-01-01

    We report measurements of the vacuum ultraviolet (VUV) emission spectra of a microwave-discharge hydrogen-flow lamp (MDHL), a common tool in astrochemistry laboratories working on ice VUV photoprocessing. The MDHL provides hydrogen Ly-α (121.6 nm) and H2 molecular emission in the 110-180 nm range. We show that the spectral characteristics of the VUV light emitted in this range, in particular the relative proportion of Ly-α to molecular emission bands, strongly depend on the pressure of H2 inside the lamp, the lamp geometry (F type versus T type), the gas used (pure H2 versus H2 seeded in He), and the optical properties of the window used (MgF2 versus CaF2). These different configurations are used to study the VUV irradiation of CO ice at 14 K. In contrast to the majority of studies dedicated to the VUV irradiation of astrophysical ice analogs, which have not taken into consideration the emission spectrum of the MDHL, our results show that the processes induced by photons in CO ice from a broad energy range are different and more complex than the sum of individual processes induced by monochromatic sources spanning the same energy range, as a result of the existence of multistate electronic transitions and discrepancy in absorption cross sections between parent molecules and products in the Ly-α and H2 molecular emission ranges.

  4. Ambient temperature does not affect fuelling rate in absence of digestive constraints in long-distance migrant shorebird fuelling up in captivity

    PubMed Central

    Vézina, François; Piersma, Theunis

    2010-01-01

    Pre-flight fuelling rates in free-living red knots Calidris canutus, a specialized long-distance migrating shorebird species, are positively correlated with latitude and negatively with temperature. The single published hypothesis to explain these relationships is the heat load hypothesis that states that in warm climates red knots may overheat during fuelling. To limit endogenous heat production (measurable as basal metabolic rate BMR), birds would minimize the growth of digestive organs at a time they need. This hypothesis makes the implicit assumption that BMR is mainly driven by digestive organ size variation during pre-flight fuelling. To test the validity of this assumption, we fed captive knots with trout pellet food, a diet previously shown to quickly lead to atrophied digestive organs, during a fuelling episode. Birds were exposed to two thermal treatments (6 and 24°C) previously shown to generate different fuelling rates in knots. We made two predictions. First, easily digested trout pellet food rather than hard-shelled prey removes the heat contribution of the gut and would therefore eliminate an ambient temperature effect on fuelling rate. Second, if digestive organs were the main contributors to variations in BMR but did not change in size during fuelling, we would expect no or little change in BMR in birds fed ad libitum with trout pellets. We show that cold-acclimated birds maintained higher body mass and food intake (8 and 51%) than warm-acclimated birds. Air temperature had no effect on fuelling rate, timing of fuelling, timing of peak body mass or BMR. During fuelling, average body mass increased by 32% while average BMR increased by 15% at peak of mass and 26% by the end of the experiment. Our results show that the small digestive organs characteristic of a trout pellet diet did not prevent BMR from increasing during premigratory fuelling. Our results are not consistent with the heat load hypothesis as currently formulated. PMID:20339851

  5. Ambient temperature does not affect fuelling rate in absence of digestive constraints in long-distance migrant shorebird fuelling up in captivity.

    PubMed

    Petit, Magali; Vézina, François; Piersma, Theunis

    2010-08-01

    Pre-flight fuelling rates in free-living red knots Calidris canutus, a specialized long-distance migrating shorebird species, are positively correlated with latitude and negatively with temperature. The single published hypothesis to explain these relationships is the heat load hypothesis that states that in warm climates red knots may overheat during fuelling. To limit endogenous heat production (measurable as basal metabolic rate BMR), birds would minimize the growth of digestive organs at a time they need. This hypothesis makes the implicit assumption that BMR is mainly driven by digestive organ size variation during pre-flight fuelling. To test the validity of this assumption, we fed captive knots with trout pellet food, a diet previously shown to quickly lead to atrophied digestive organs, during a fuelling episode. Birds were exposed to two thermal treatments (6 and 24 degrees C) previously shown to generate different fuelling rates in knots. We made two predictions. First, easily digested trout pellet food rather than hard-shelled prey removes the heat contribution of the gut and would therefore eliminate an ambient temperature effect on fuelling rate. Second, if digestive organs were the main contributors to variations in BMR but did not change in size during fuelling, we would expect no or little change in BMR in birds fed ad libitum with trout pellets. We show that cold-acclimated birds maintained higher body mass and food intake (8 and 51%) than warm-acclimated birds. Air temperature had no effect on fuelling rate, timing of fuelling, timing of peak body mass or BMR. During fuelling, average body mass increased by 32% while average BMR increased by 15% at peak of mass and 26% by the end of the experiment. Our results show that the small digestive organs characteristic of a trout pellet diet did not prevent BMR from increasing during premigratory fuelling. Our results are not consistent with the heat load hypothesis as currently formulated.

  6. Utilization of waste glycerin to fuelling of spark ignition engines

    NASA Astrophysics Data System (ADS)

    Stelmasiak, Z.; Pietras, D.

    2016-09-01

    The paper discusses a possibilities of usage a simple alcohols to fuelling of spark ignition engines. Methanol and blends of methanol with glycerin, being a waste product from production of bio-components to fuels based on rapeseed oil, have been used in course of the investigations. The main objective of the research was to determine possibilities of utilization of glycerin to blending of engine fuels. The investigations have been performed using the Fiat 1100 MPI engine. Parameters obtained with the engine powered by pure methanol and by methanol- glycerin mixtures with 10÷30%vol content of glycerin were compared to parameters of the engine fuelled conventionally with the E95 gasoline. The investigations have shown increase of overall efficiency of the engine run on pure methanol with 2.5÷5.0%, and run on the mixture having 10% addition of glycerin with 2.0÷7.8%. Simultaneously, fuelling of the engine with the investigated alcohols results in reduced concentration of toxic components in exhaust gases like: CO, THC and NOx, as well as the greenhouse gas CO2.

  7. Plasma fuelling with cryogenic pellets in the stellarator TJ-II

    NASA Astrophysics Data System (ADS)

    McCarthy, K. J.; Panadero, N.; Velasco, J. L.; Combs, S. K.; Caughman, J. B. O.; Fontdecaba, J. M.; Foust, C.; García, R.; Hernández Sánchez, J.; Navarro, M.; Pastor, I.; Soleto, A.; the TJ-II Team

    2017-05-01

    Cryogenic pellet injection is a widely used technique for delivering fuel to the core of magnetically confined plasmas. Indeed, such systems are currently functioning on many tokamak, reversed field pinch and stellarator devices. A pipe-gun-type pellet injector is now operated on the TJ-II, a low-magnetic shear stellarator of the heliac type. Cryogenic hydrogen pellets, containing between 3  ×  1018 and 4  ×  1019 atoms, are injected at velocities between 800 and 1200 m s-1 from its low-field side into plasmas created and/or maintained in this device by electron cyclotron resonance and/or neutral beam injection heating. In this paper, the first systematic study of pellet ablation, particle deposition and fuelling efficiency is presented for TJ-II. From this, light-emission profiles from ablating pellets are found to be in reasonable agreement with simulated pellet ablation profiles (created using a neutral gas shielding-based code) for both heating scenarios. In addition, radial offsets between recorded light-emission profiles and particle deposition profiles provide evidence for rapid outward drifting of ablated material that leads to pellet particle loss from the plasma. Finally, fuelling efficiencies are documented for a range of target plasma densities (~4  ×  1018-  ~2  ×  1019 m-3). These range from ~20%-  ~85% and are determined to be sensitive to pellet penetration depth. Additional observations, such as enhanced core ablation, are discussed and planned future work is outlined.

  8. A cislunar transportation system fuelled by lunar resources

    NASA Astrophysics Data System (ADS)

    Sowers, G. F.

    2016-11-01

    A transportation system for a self sustaining economy in cislunar space is discussed. The system is based on liquid oxygen (LO2), liquid hydrogen (LH2) propulsion whose fuels are derived from ice mined at the polar regions of the Moon. The elements of the transportation system consist of the Advanced Cryogenic Evolved Stage (ACES) and the XEUS lander, both being developed by United Launch Alliance (ULA). The main propulsion elements and structures are common between ACES and XEUS. Both stages are fully reusable with refueling of their LO2/LH2 propellants. Utilization of lunar sourced propellants has the potential to dramatically lower the cost of transportation within the cislunar environs. These lower costs dramatically lower the barriers to entry of a number of promising cislunar based activities including space solar power. One early application of the architecture is providing lunar sourced propellant to refuel ACES for traditional spacecraft deployment missions. The business case for this application provides an economic framework for a potential lunar water mining operation.

  9. The Stability of Lubricant Oil Acidity of Biogas Fuelled Engine due to Biogas Desulfurization

    NASA Astrophysics Data System (ADS)

    Gde Tirta Nindhia, Tjokorda; Wayan Surata, I.; Wardana, Ari

    2017-05-01

    This research is established for the purpose of the understanding the stability of the acidity of lubricant oil in biogas fuelled engine due to the absence of hydrogen sulfide (H2S). As was recognized that other than Methane (CH4), there are also other gas impurities in the biogas such as carbon dioxide (CO2), hydrogen sulfide (H2S), moisture (H2O) and ammonia (NH3). Due to H2S contents in the biogas fuel, the engine was found failure. This is caused by corrosion in the combustion chamber due to increase of lubricant acidity. To overcome this problem in practical, the lubricant is increased the pH to basic level with the hope will be decrease to normal value after several time use. Other method is by installing pH measurement sensor in the engine lubricant so that when lubricant is known turn to be acid, then lubricant replacement should be done. In this research, the effect of biogas desulfurization down to zero level to the acidity of lubricant oil in the four stroke engine was carried out with the hope that neutral lubrication oil to be available during running the engine. The result indicates that by eliminating H2S due desulfurization process, effect on stability and neutrality of pH lubricant. By this method the engine safety can be obtained without often replacement the lubricant oil.

  10. Hydrogen

    PubMed Central

    Bockris, John O’M.

    2011-01-01

    The idea of a “Hydrogen Economy” is that carbon containing fuels should be replaced by hydrogen, thus eliminating air pollution and growth of CO2 in the atmosphere. However, storage of a gas, its transport and reconversion to electricity doubles the cost of H2 from the electrolyzer. Methanol made with CO2 from the atmosphere is a zero carbon fuel created from inexhaustible components from the atmosphere. Extensive work on the splitting of water by bacteria shows that if wastes are used as the origin of feed for certain bacteria, the cost for hydrogen becomes lower than any yet known. The first creation of hydrogen and electricity from light was carried out in 1976 by Ohashi et al. at Flinders University in Australia. Improvements in knowledge of the structure of the semiconductor-solution system used in a solar breakdown of water has led to the discovery of surface states which take part in giving rise to hydrogen (Khan). Photoelectrocatalysis made a ten times increase in the efficiency of the photo production of hydrogen from water. The use of two electrode cells; p and n semiconductors respectively, was first introduced by Uosaki in 1978. Most photoanodes decompose during the photoelectrolysis. To avoid this, it has been necessary to create a transparent shield between the semiconductor and its electronic properties and the solution. In this way, 8.5% at 25 °C and 9.5% at 50 °C has been reached in the photo dissociation of water (GaP and InAs) by Kainthla and Barbara Zeleney in 1989. A large consortium has been funded by the US government at the California Institute of Technology under the direction of Nathan Lewis. The decomposition of water by light is the main aim of this group. Whether light will be the origin of the post fossil fuel supply of energy may be questionable, but the maximum program in this direction is likely to come from Cal. Tech. PMID:28824125

  11. Gyrokinetic simulations of particle transport in pellet fuelled JET discharges

    NASA Astrophysics Data System (ADS)

    Tegnered, D.; Oberparleiter, M.; Nordman, H.; Strand, P.; Garzotti, L.; Lupelli, I.; Roach, C. M.; Romanelli, M.; Valovič, M.; Contributors, JET

    2017-10-01

    Pellet injection is a likely fuelling method of reactor grade plasmas. When the pellet ablates, it will transiently perturb the density and temperature profiles of the plasma. This will in turn change dimensionless parameters such as a/{L}n,a/{L}T and plasma β. The microstability properties of the plasma then changes which influences the transport of heat and particles. In this paper, gyrokinetic simulations of a JET L-mode pellet fuelled discharge are performed. The ion temperature gradient/trapped electron mode turbulence is compared at the time point when the effect from the pellet is the most pronounced with a hollow density profile and when the profiles have relaxed again. Linear and nonlinear simulations are performed using the gyrokinetic code GENE including electromagnetic effects and collisions in a realistic geometry in local mode. Furthermore, global nonlinear simulations are performed in order to assess any nonlocal effects. It is found that the positive density gradient has a stabilizing effect that is partly counteracted by the increased temperature gradient in the this region. The effective diffusion coefficients are reduced in the positive density region region compared to the intra pellet time point. No major effect on the turbulent transport due to nonlocal effects are observed.

  12. Vibrational modes of hydrogens in the proton ordered phase XI of ice: Raman spectra above 400 cm(-1).

    PubMed

    Shigenari, Takeshi; Abe, Kohji

    2012-05-07

    Polarized Raman spectra of the proton ordered phase of ice Ih, i.e., ice XI, were measured above 400 cm(-1) in the range of librational, bending, and stretching vibrations. Vibrational modes in ice XI, of which symmetry is C(2v) (12)(Cmc2(1)), were discussed from the group theoretical point of view. In the librational mode spectra below 1200 cm(-1), several new peaks and clear polarization dependencies were observed. Assignments of the librational modes agree reasonably well with the recent MD calculations by Iwano et al. (J. Phys. Soc. Jpn. 79, 063601 (2010)). In contrast, the spectra for bands above 1200 cm(-1) show no distinct polarization dependencies and the spectra resemble those in ice Ih. In ice XI, however, fine structure composed of several weak peaks appear on the broad bending and the combination band. No direct evidence of the LO-TO splitting of the ν(3) anti-symmetric stretching mode was obtained. It is contrary to the case of the translational modes Abe and Shigenari (J. Chem. Phys. 134, 104506 (2011)). Present results suggest that the influence of the proton ordering in ice XI is weaker than the effect of inter- and intra-molecular couplings in the stretching vibrations of ice Ih.

  13. Distance-dependent radiation chemistry: Oxidation versus hydrogenation of CO in electron-irradiated H2O/CO/H2O ices

    SciTech Connect

    Petrik, Nikolay G.; Monckton, Rhiannon J.; Koehler, Sven; Kimmel, Gregory A.

    2014-11-26

    Electron-stimulated oxidation of CO in layered H2O/CO/H2O ices was investigated with infrared reflection-absorption spectroscopy (IRAS) as function of the distance of the CO layer from the water/vacuum interface. The results show that while both oxidation and reduction reactions occur within the irradiated water films, there are distinct regions where either oxidation or reduction reactions are dominant. At depths less than ~ 15 ML, CO oxidation dominates over the sequential hydrogenation of CO to methanol (CH3OH), and CO2 is the major product of CO oxidation, consistent with previous observations. At its highest yield, CO2 accounts for ~45% of all the reacted CO. Another oxidation product is identified as the formate anion (HCO2-). In contrast, for CO buried more than ~ 35 ML below the water/vacuum interface, the CO-to-methanol conversion efficiency is close to 100%. Production of CO2 and formate are not observed for the more deeply buried CO layers, where hydrogenation dominates. Experiments with CO dosed on pre-irradiated ASW samples suggest that OH radicals are primarily responsible for the oxidation reactions. Possible mechanisms of CO oxidation, involving primary and secondary processes of water radiolysis at low temperature, are discussed. The observed distance-dependent radiation chemistry results from the higher mobility of hydrogen atoms that are created by the interaction of the 100 eV electrons with the water films. These hydrogen atoms, which are primarily created at or near the water/vacuum interface, can desorb from or diffuse into the water films, while the less-mobile OH radicals remain in the near-surface zone resulting in preferential oxidation reactions there. The diffusing hydrogen atoms are responsible for the hydrogenation reactions that are dominant for the more deeply buried CO layers.

  14. Electric Properties of Water Ice doped with Hydrogen Peroxide (H2O2): Implications for Icy Moons such as Europa

    NASA Astrophysics Data System (ADS)

    Keller, C.; Freund, F. T.; Cruikshank, D. P.

    2012-12-01

    Large floats of ice on Jupiter's moon Europa drift and collide. The float boundaries are marked by brownish-reddish colors. The origin of these colors is poorly understood. Maybe upwelling of water along the active float boundaries brings finely divided suspended matter or organic compounds from the ocean below to the surface, where the intense, high energy environment in Jupiter's radiation belt would lead to photochemical oxidation. At the same time it has been suggested that Europa's ice contains traces of H2O2, presumably due to micro-meteorite impacts and other processes. We measured the electric currents generated in pure and H2O2-doped water ice when we subjected one end of ice blocks to uniaxial stress. Ice samples with 0%, 0.3% and 0.03% H2O2 were formed in polyethylene troughs, 4.1 x 13.5 x 3.8 cm, with Cu contacts at both ends, at 263K (-10°C), 190K (-78°C, dry ice) and 77K (-196°C,liquid N2). At 77K the ice samples detached themselves from at least one of the Cu contacts, due to thermal contraction. At 190K, when stressing one end, essentially no currents were produced in the pure water ice. By contrast, H2O2-doped ices produced several hundred picoamperes (pA) of positive currents, indicating defect electrons (holes) flowing down the stress gradient. At 263K the results are ambiguous. These (as yet preliminary) results indicate that stresses might break the peroxy bonds of imbedded H2O2 molecules, releasing the same type of positive hole charge carriers as observed during stress experiments with silicate rocks. Since positive holes are defect electrons associated with O 2sp levels at the upper edge of the valence band, they seem to have the capability to spread through the ices. Chemically positive holes are equivalent to highly oxidizing oxygen radicals. They may be responsible for oxidation reactions along the boundaries of active ice floats on Europa.

  15. Low-temperature surface formation of NH3 and HNCO: hydrogenation of nitrogen atoms in CO-rich interstellar ice analogues

    NASA Astrophysics Data System (ADS)

    Fedoseev, G.; Ioppolo, S.; Zhao, D.; Lamberts, T.; Linnartz, H.

    2015-01-01

    Solid-state astrochemical reaction pathways have the potential to link the formation of small nitrogen-bearing species, like NH3 and HNCO, and prebiotic molecules, specifically amino acids. To date, the chemical origin of such small nitrogen-containing species is still not well understood, despite the fact that ammonia is an abundant constituent of interstellar ices towards young stellar objects and quiescent molecular clouds. This is mainly because of the lack of dedicated laboratory studies. The aim of this work is to experimentally investigate the formation routes of NH3 and HNCO through non-energetic surface reactions in interstellar ice analogues under fully controlled laboratory conditions and at astrochemically relevant temperatures. This study focuses on the formation of NH3 and HNCO in CO-rich (non-polar) interstellar ices that simulate the CO freeze-out stage in dark interstellar cloud regions, well before thermal and energetic processing start to become relevant. We demonstrate and discuss the surface formation of solid HNCO through the interaction of CO molecules with NH radicals - one of the intermediates in the formation of solid NH3 upon sequential hydrogenation of N atoms. The importance of HNCO for astrobiology is discussed.

  16. Are lifestyle shifts fuelling the obesity epidemic in urbanised Africans?

    PubMed

    Ojiambo, Robert M

    2016-12-01

    Humans evolved for active lifestyles involving hunting-gathering and agriculture. To sustain these energy-intensive lifestyles, diets consisting of energy-dense foods were selected. It can therefore be argued that humans are physiologically adapted for active lifestyles. However, with rapid industrialisation, there has been an upsurge in the usage of labour-saving devices as well as a glut in the supply of energy-dense foods. This mismatch between energy supply and expenditure in modern man may be fuelling the contemporary trends in obesity in urbanised man. On the other hand, recent emerging evidence indicates that air pollution related to motorised transportation in urban areas may be obesogenic by causing alterations in the lipid metabolic pathways, resulting in fat deposition. These lifestyle shifts are drastically different from traditional rural African lifestyles and mirror the different prevalence rates of obesity and related co-morbidities between rural versus urban areas. © The Author(s) 2015.

  17. Topological study of pseudo-cubic hydrogen-bond networks in a binary system composed of primary ammonium carboxylates: an analogue of an ice cube.

    PubMed

    Yuge, Tetsuharu; Tohnai, Norimitsu; Fukuda, Takeyoshi; Hisaki, Ichiro; Miyata, Mikiji

    2007-01-01

    Hierarchical classification and single-crystal X-ray analysis of unique pseudo-cubic hydrogen-bond networks composed of primary ammonium carboxylates were carried out. The networks consist of four carboxylate anions and four primary ammonium cations at the corners of the cube, and twelve charge-assisted N--H...O hydrogen bonds on the sides of the cube. The configuration of the carboxylate anions generates topological diversity in the network. The results of this hierarchical classification showed that pseudo-cubic hydrogen-bond networks composed of primary ammonium carboxylates can form nine topologically different networks. These pseudo-cubic networks are a subset of the networks formed by octameric water in the form of an "ice cube". The classification system can be applied to other pseudo-cubic networks in a similar way. A survey of crystal structures based on combinations of triphenylacetic acid with various alkylamines (carbon numbers up to eight) and examination of the CSD (Cambridge Structural Database) showed eight salts that form such networks in their crystal structures. These structures are classified into six topologically different networks. Similar networks composed of other salts are also discussed from a topological point of view.

  18. Thermal formation of hydroxynitriles, precursors of hydroxyacids in astrophysical ice analogs: Acetone ((CH3)2Cdbnd O) and hydrogen cyanide (HCN) reactivity

    NASA Astrophysics Data System (ADS)

    Fresneau, Aurélien; Danger, Grégoire; Rimola, Albert; Duvernay, Fabrice; Theulé, Patrice; Chiavassa, Thierry

    2015-11-01

    Reactivity in astrophysical environments is still poorly understood. In this contribution, we investigate the thermal reactivity of interstellar ice analogs containing acetone ((CH3)2CO), ammonia (NH3), hydrogen cyanide (HCN) and water (H2O) by means of infrared spectroscopy and mass spectrometry techniques, complemented by quantum chemical calculations. We show that no reaction occurs in H2O:HCN:(CH3)2CO ices. Nevertheless, HCN does indeed react with acetone once activated by NH3 into CN- to form 2-hydroxy-2-methylpropanenitrile (HOsbnd C(CH3)2sbnd CN), with a calculated activation energy associated with the rate determining step of about 51 kJ mol-1. This reaction inhibits the formation of 2-aminopropan-2-ol (HOsbnd C(CH3)2sbnd NH2) from acetone and NH3, even in the presence of water, which is the first step of the Strecker synthesis to form 2-aminoisobutyric acid (NH2C(CH3)2COOH). However, HOsbnd C(CH3)2sbnd CN formation could be part of an alternative chemical pathway leading to 2-hydroxy-2-methyl-propanoic acid (HOC(CH3)2COOH), which could explain the presence of hydroxy acids in some meteorites.

  19. Analysis of fuelling requirements in ITER H-modes with SOLPS-EPED1 derived scalings

    NASA Astrophysics Data System (ADS)

    Polevoi, A. R.; Loarte, A.; Kukushkin, A. S.; Pacher, H. D.; Pacher, G. W.; Köchl, F.

    2017-02-01

    Fuelling requirements for ITER are analysed in relation to pellet fuelling and ELM pacing, and a divertor power load control consistent with the ITER pumping and fuel throughput capabilities. The plasma parameters at the separatrix and the particle sources are derived from scalings based on SOLPS simulations. Effective transport coefficients in the H-mode pedestal are derived from EPED1 + SOLPS scalings for the pedestal height and width. 1.5D transport is simulated in the ASTRA framework. The operating window for ITER DT plasmas with the required fusion performance and level of ELM, and divertor power load control compatible with ITER fuelling and pumping capabilities, is determined. It is shown that the flexibility of the ITER fuelling systems, comprising pellet and gas injection systems, enables operation with Q  =  10, which was found to be marginal in previous studies following a similar approach but with different assumptions. The present assessment shows that a reduction of < {{n}e}> by a factor ~2 (from 9 to 5  ×  1019 m-3) in 15 MA H-mode plasmas leads to a reduction in the required pellet fuelling rate by a factor of four. Results of the analysis of the fuelling requirements for a range of ITER scenarios are found to be similar to those obtained with the JINTRAC code that included 2D modelling of the edge plasma.

  20. An autonomous chemically fuelled small-molecule motor.

    PubMed

    Wilson, Miriam R; Solà, Jordi; Carlone, Armando; Goldup, Stephen M; Lebrasseur, Nathalie; Leigh, David A

    2016-06-09

    Molecular machines are among the most complex of all functional molecules and lie at the heart of nearly every biological process. A number of synthetic small-molecule machines have been developed, including molecular muscles, synthesizers, pumps, walkers, transporters and light-driven and electrically driven rotary motors. However, although biological molecular motors are powered by chemical gradients or the hydrolysis of adenosine triphosphate (ATP), so far there are no synthetic small-molecule motors that can operate autonomously using chemical energy (that is, the components move with net directionality as long as a chemical fuel is present). Here we describe a system in which a small molecular ring (macrocycle) is continuously transported directionally around a cyclic molecular track when powered by irreversible reactions of a chemical fuel, 9-fluorenylmethoxycarbonyl chloride. Key to the design is that the rate of reaction of this fuel with reactive sites on the cyclic track is faster when the macrocycle is far from the reactive site than when it is near to it. We find that a bulky pyridine-based catalyst promotes carbonate-forming reactions that ratchet the displacement of the macrocycle away from the reactive sites on the track. Under reaction conditions where both attachment and cleavage of the 9-fluorenylmethoxycarbonyl groups occur through different processes, and the cleavage reaction occurs at a rate independent of macrocycle location, net directional rotation of the molecular motor continues for as long as unreacted fuel remains. We anticipate that autonomous chemically fuelled molecular motors will find application as engines in molecular nanotechnology.

  1. An autonomous chemically fuelled small-molecule motor

    NASA Astrophysics Data System (ADS)

    Wilson, Miriam R.; Solà, Jordi; Carlone, Armando; Goldup, Stephen M.; Lebrasseur, Nathalie; Leigh, David A.

    2016-06-01

    Molecular machines are among the most complex of all functional molecules and lie at the heart of nearly every biological process. A number of synthetic small-molecule machines have been developed, including molecular muscles, synthesizers, pumps, walkers, transporters and light-driven and electrically driven rotary motors. However, although biological molecular motors are powered by chemical gradients or the hydrolysis of adenosine triphosphate (ATP), so far there are no synthetic small-molecule motors that can operate autonomously using chemical energy (that is, the components move with net directionality as long as a chemical fuel is present). Here we describe a system in which a small molecular ring (macrocycle) is continuously transported directionally around a cyclic molecular track when powered by irreversible reactions of a chemical fuel, 9-fluorenylmethoxycarbonyl chloride. Key to the design is that the rate of reaction of this fuel with reactive sites on the cyclic track is faster when the macrocycle is far from the reactive site than when it is near to it. We find that a bulky pyridine-based catalyst promotes carbonate-forming reactions that ratchet the displacement of the macrocycle away from the reactive sites on the track. Under reaction conditions where both attachment and cleavage of the 9-fluorenylmethoxycarbonyl groups occur through different processes, and the cleavage reaction occurs at a rate independent of macrocycle location, net directional rotation of the molecular motor continues for as long as unreacted fuel remains. We anticipate that autonomous chemically fuelled molecular motors will find application as engines in molecular nanotechnology.

  2. Effect of Fuelling Depth on the Fusion Performance and Particle Confinement of a Fusion Reactor

    NASA Astrophysics Data System (ADS)

    Wang, Shijia; Wang, Shaojie

    2016-12-01

    The fusion performance and particle confinement of an international thermonuclear experimental reactor (ITER)-like fusion device have been modeled by numerically solving the energy transport equation and the particle transport equation. The effect of fuelling depth has been investigated. The plasma is primarily heated by the fusion produced alpha particles and the loss process of particles and energy in the scrape-off layer has been taken into account. To study the effect of fuelling depth on fusion performance, the ITERH-98P(y,2) scaling law has been used to evaluate the transport coefficients. It is shown that the particle confinement and fusion performance are significantly dependent on the fuelling depth. Deviation of 10% of the minor radius on fuelling depth can make the particle confinement change by ∼ 61% and the fusion performance change by ∼ 108%. The enhancement of fusion performance is due to the better particle confinement induced by deeper particle fuelling. supported by National Natural Science Foundation of China (Nos. 11175178 and 11375196) and the National Magnetic Confinement Fusion Science Program of China (No. 2014GB113000)

  3. Synthesis of CO and CO2 Molecules by UV Irradiation of Water Ice-covered Hydrogenated Carbon Grains

    NASA Astrophysics Data System (ADS)

    Mennella, V.; Baratta, G. A.; Palumbo, M. E.; Bergin, E. A.

    2006-06-01

    We present the results of UV irradiation with Lyα photons of carbon grains with a water ice cap at 11 K. Formation of CO and CO2 molecules takes place during irradiation. An estimation of the formation cross section of these molecules by Lyα photons has been obtained from the intensity increase of their infrared stretching bands as a function of the photon fluence. The fraction of carbon in the grains converted to CO and CO2 by UV photons is 0.06 and 0.05, respectively. The spectral profile of the CO stretching feature and that of the CO2 bending mode indicate a polar environment for these molecules. On the basis of the present laboratory results and those obtained in previous work on ion irradiation of similar samples, it has been possible to estimate the contribution of polar CO and CO2 produced on carbon grains by energetic processing to the observed column densities of these molecules for dense clouds whose visual extinction is known. A significant amount of polar CO and CO2 is produced through the mechanism we have studied. Furthermore, we have found that the laboratory profile of the bending band of CO2 produced on carbon grains is compatible with that observed toward the field star Elias 16.

  4. Simultaneous hydrogenation and UV-photolysis experiments of NO in CO-rich interstellar ice analogues; linking HNCO, OCN-, NH2CHO, and NH2OH

    NASA Astrophysics Data System (ADS)

    Fedoseev, G.; Chuang, K.-J.; van Dishoeck, E. F.; Ioppolo, S.; Linnartz, H.

    2016-08-01

    The laboratory work presented here simulates the chemistry on icy dust grains as typical for the `CO freeze-out stage' in dark molecular clouds. It differs from previous studies in that solid-state hydrogenation and vacuum UV photoprocessing are applied simultaneously to co-depositing molecules. In parallel, the reactions at play are described for fully characterized laboratory conditions. The focus is on the formation of molecules containing both carbon and nitrogen atoms, starting with NO in CO-, H2CO-, and CH3OH-rich ices at 13 K. The experiments yield three important conclusions. (1) Without UV processing hydroxylamine (NH2OH) is formed, as reported previously. (2) With UV processing (energetic) NH2 is formed through photodissociation of NH2OH. This radical is key in the formation of species with an N-C bond. (3) The formation of three N-C bearing species, HNCO, OCN-, and NH2CHO, is observed. The experiments put a clear chemical link between these species; OCN- is found to be a direct derivative of HNCO and the latter is shown to have the same precursor as formamide (NH2CHO). Moreover, the addition of VUV competing channels decreases the amount of NO molecules converted into NH2OH by at least one order of magnitude. Consequently, this decrease in NH2OH formation yield directly influences the amount of NO molecules that can be converted into HNCO, OCN-, and NH2CHO.

  5. Producing desired ice faces

    PubMed Central

    Shultz, Mary Jane; Brumberg, Alexandra; Bisson, Patrick J.; Shultz, Ryan

    2015-01-01

    The ability to prepare single-crystal faces has become central to developing and testing models for chemistry at interfaces, spectacularly demonstrated by heterogeneous catalysis and nanoscience. This ability has been hampered for hexagonal ice, Ih––a fundamental hydrogen-bonded surface––due to two characteristics of ice: ice does not readily cleave along a crystal lattice plane and properties of ice grown on a substrate can differ significantly from those of neat ice. This work describes laboratory-based methods both to determine the Ih crystal lattice orientation relative to a surface and to use that orientation to prepare any desired face. The work builds on previous results attaining nearly 100% yield of high-quality, single-crystal boules. With these methods, researchers can prepare authentic, single-crystal ice surfaces for numerous studies including uptake measurements, surface reactivity, and catalytic activity of this ubiquitous, fundamental solid. PMID:26512102

  6. Large Eddy simulation of turbulent hydrogen-fuelled supersonic combustion in an air cross-flow

    NASA Astrophysics Data System (ADS)

    Ingenito, A.; Cecere, D.; Giacomazzi, E.

    2013-09-01

    The main aim of this article is to provide a theoretical understanding of the physics of supersonic mixing and combustion. Research in advanced air-breathing propulsion systems able to push vehicles well beyond is of interest around the world. In a scramjet, the air stream flow captured by the inlet is decelerated but still maintains supersonic conditions. As the residence time is very short , the study of an efficient mixing and combustion is a key issue in the ongoing research on compressible flows. Due to experimental difficulties in measuring complex high-speed unsteady flowfields, the most convenient way to understand unsteady features of supersonic mixing and combustion is to use computational fluid dynamics. This work investigates supersonic combustion physics in the Hyshot II combustion chamber within the Large Eddy simulation framework. The resolution of this turbulent compressible reacting flow requires: (1) highly accurate non-dissipative numerical schemes to properly simulate strong gradients near shock waves and turbulent structures away from these discontinuities; (2) proper modelling of the small subgrid scales for supersonic combustion, including effects from compressibility on mixing and combustion; (3) highly detailed kinetic mechanisms (the Warnatz scheme including 9 species and 38 reactions is adopted) accounting for the formation and recombination of radicals to properly predict flame anchoring. Numerical results reveal the complex topology of the flow under investigation. The importance of baroclinic and dilatational effects on mixing and flame anchoring is evidenced. Moreover, their effects on turbulence-scale generation and the scaling law are analysed.

  7. A comparison of exhaust emissions from vehicles fuelled with petrol, LPG and CNG

    NASA Astrophysics Data System (ADS)

    Bielaczyc, P.; Szczotka, A.; Woodburn, J.

    2016-09-01

    This paper presents an analysis of THC, NMHC, CO, NOx and CO2 emissions during testing of two bi-fuel vehicles, fuelled with petrol and gaseous fuels, on a chassis dynamometer in the context of the Euro 6 emissions requirements. The analyses were performed on one Euro 5 bi-fuel vehicle (petrol/LPG) and one Euro 5 bi-fuel vehicle (petrol/CNG), both with SI engines equipped with MPI feeding systems operating in closed-loop control, typical three-way-catalysts and heated oxygen sensors. The vehicles had been adapted by their manufacturers for fuelling with LPG or CNG by using additional special equipment mounted onto the existing petrol fuelling system. The vehicles tested featured multipoint gas injection systems. The aim of this paper was an analysis of the impact of the gaseous fuels on the exhaust emission in comparison to the emission of the vehicles fuelled with petrol. The tests subject to the analyses presented here were performed in the Engine Research Department of BOSMAL Automotive Research and Development Institute Ltd in Bielsko-Biala, Poland, within a research programme investigating the influence of alternative fuels on exhaust emissions from light duty vehicle vehicles with spark-ignition and compression-ignition engines.

  8. Edge dynamics in pellet-fuelled inner-wall jet discharges

    SciTech Connect

    Cohen, S.A.; Ehrenberg, J.; Bartlett, D.V.; Campbell, D.J.; Cheetham, A.D.; de Kock, L.; Gondhalekar, A.; Gottardi, N.; Granetz, R.; Houlberg, W.

    1987-01-01

    This paper reports on the density behavior in JET during pellet-fuelled inner-wall discharges without auxiliary heating. Certain discharges, characterized by minor disruptions at the q = 2 surface, show a ten times more rapid decay of the plasma density than previously observed. It is shown that this is related to the combined effects of plasma and wall properties.

  9. Biogas-fuelling of small engine-alternator set for rural applications

    SciTech Connect

    Jawurek, H.H.; Rallis, C.J.

    1984-08-01

    The fuelling of a portable engine-alternator set with simulated biogases (mixtures of methane, CH/sub 4/, and carbon dioxide, CO/sub 2/) was investigated. The only modification required for gas-fuelling of the engine (a normally petrol-fuelled, side-valve machine rated at 5,2 kW mechanical output) was the fitting of a simple venturi-type gas feed adaptor. Hand-starting and acceptable running of the engines was possible with biogasses containing up to 31 vol % CO/sub 2/. Replacement of petrol with pure CH/sub 4/ resulted in a 17 % loss of maximum power output. Increasing CO/sub 2/ content of the gas led to further losses of maximum power, with a 35 % loss at 31 % CO/sub 2/. Gas consumption for pure CH/sub 4/ was 1,65 normal m/sup 3//h at 2,2 kA electrical power output (the maximum for this fuel); for biogas of 31 % CO/sub 2/ the corresponding figures were 2,15 m/sup 3//h and 1,65 kW. The overall efficiency of the unit (electrical output divided by calorific input) was higher with biogas-fuelling than with petrol; also the engine ran 80 to 100/sup 0/ C hotter and with reduced carbon deposits in the combustion chamber. The loss in power on fuelling with biogas, instead of petrol, could be partially offset by increasing the compression ratio of the engine.

  10. Ice, Ice, Baby!

    NASA Astrophysics Data System (ADS)

    Hamilton, C.

    2008-12-01

    The Center for Remote Sensing of Ice Sheets (CReSIS) has developed an outreach program based on hands-on activities called "Ice, Ice, Baby". These lessons are designed to teach the science principles of displacement, forces of motion, density, and states of matter. These properties are easily taught through the interesting topics of glaciers, icebergs, and sea level rise in K-8 classrooms. The activities are fun, engaging, and simple enough to be used at science fairs and family science nights. Students who have participated in "Ice, Ice, Baby" have successfully taught these to adults and students at informal events. The lessons are based on education standards which are available on our website www.cresis.ku.edu. This presentation will provide information on the activities, survey results from teachers who have used the material, and other suggested material that can be used before and after the activities.

  11. Thermodynamics of ice: Not obeying the rules

    NASA Astrophysics Data System (ADS)

    Ryzhkin, Ivan A.

    2016-11-01

    The physical properties of ice are governed by its tetrahedral network of hydrogen bonds and the ice rules that determine the distribution of the protons. Deviations from the tetrahedral structure and violations of these rules can lead to surprising phenomena, such as the ferroelectric state now reported for thin films of epitaxial ice.

  12. Impact of fuelling and impurity on pedestal dynamics and instabilities in the HL-2A tokamak

    NASA Astrophysics Data System (ADS)

    Zhong, W. L.; Zou, X. L.; Gao, J. M.; Shi, Z. B.; Feng, B. B.; Cui, Z. Y.; Xu, M.; Shen, Y.; Dong, J. Q.; Ding, X. T.; Duan, X. R.; Liu, Yong; HL-2A Team

    2017-01-01

    In recent experiments of the HL-2A tokamak, the effect on the pedestal dynamics by the plasma fuelling with supersonic molecular beam injection (SMBI) has been intensively investigated. Experimental results in several tokamaks suggested that SMBI is a promising technique for ELM mitigation. In addition to the fuelling, the impact of impurities on the pedestal dynamics and instabilities has been investigated in HL-2A. Experimental results have shown that during the H-mode phase, a broadband electromagnetic (EM) turbulence was driven by peaked impurity density profile at the edge plasma region, and governed by double critical gradients of the impurity density. The absolute value of the threshold in positive gradient region is much lower than that in the negative region. This strong asymmetry in the critical gradients has been predicted by theoretical simulation. The results reveal that pedestal dynamics and heat loads can be actively controlled by exciting or changing pedestal instabilities.

  13. Tracing the origin of the AGN fuelling reservoir in MCG-6-30-15

    NASA Astrophysics Data System (ADS)

    Raimundo, S. I.; Davies, R. I.; Canning, R. E. A.; Celotti, A.; Fabian, A. C.; Gandhi, P.

    2017-02-01

    The active galaxy MCG-6-30-15 has a 400 pc diameter stellar kinematically distinct core, counter-rotating with respect to the main body of the galaxy. Our previous high spatial resolution (0.1 arcsec) H-band observations of this galaxy mapped the stellar kinematics and [Fe II] 1.64 μm gas dynamics though mainly restricted to the spatial region of the counter-rotating core. In this work, we probe the stellar kinematics on a larger field of view and determine the ionized and molecular gas dynamics to study the formation of the counter-rotating core and the implications for active galactic nucleus (AGN) fuelling. We present integral field spectroscopy observations with SINFONI in the H and K bands in the central 1.2 kpc and with VIMOS HR-blue in the central 4 kpc of the galaxy. Ionized gas outflows of vout ˜ 100 km s-1 are traced by the [Ca VIII] 2.32 μm coronal line and extend out to at least a radius of r ˜ 140 pc. The molecular gas, traced by the H2 2.12 μm emission, is also counter-rotating with respect to the main body of the galaxy, indicating that the formation of the distinct core was associated with inflow of external gas into the centre of MCG-6-30-15. The molecular gas traces the available gas reservoir for AGN fuelling and is detected as close as r ˜ 50-100 pc. External gas accretion is able to significantly replenish the fuelling reservoir suggesting that the event which formed the counter-rotating core was also the main mechanism providing gas for AGN fuelling.

  14. Disaggregate demand for conventional and alternative fuelled vehicles in the Census Metropolitan Area of Hamilton, Canada

    NASA Astrophysics Data System (ADS)

    Potoglou, Dimitrios

    The focus of this thesis is twofold. First, it offers insight on how households' car-ownership behaviour is affected by urban form and availability of local-transit at the place of residence, after controlling for socio-economic and demographic characteristics. Second, it addresses the importance of vehicle attributes, household and individual characteristics as well as economic incentives and urban form to potential demand for alternative fuelled vehicles. Data for the empirical analyses of the aforementioned research activities were obtained through an innovative Internet survey, which is also documented in this thesis, conducted in the Census Metropolitan Area of Hamilton. The survey included a retrospective questionnaire of households' number and type of vehicles and a stated choices experiment for assessing the potential demand for alternative fuelled vehicles. Established approaches and emerging trends in automobile demand modelling identified early on in this thesis suggest a disaggregate approach and specifically, the estimation of discrete choice models both for explaining car ownership and vehicle-type choice behaviour. It is shown that mixed and diverse land uses as well as short distances between home and work are likely to decrease the probability of households to own a large number of cars. Regarding the demand for alternative fuelled vehicles, while vehicle attributes are particularly important, incentives such as free parking and access to high occupancy vehicle lanes will not influence the choice of hybrids or alternative fuelled vehicles. An improved understating of households' behaviour regarding the number of cars as well as the factors and trade-offs for choosing cleaner vehicles can be used to inform policy designed to reduce car ownership levels and encourage adoption of cleaner vehicle technologies in urban areas. Finally, the Internet survey sets the ground for further research on implementation and evaluation of this data collection method.

  15. Control of particle and power exhaust in pellet fuelled ITER DT scenarios employing integrated models

    NASA Astrophysics Data System (ADS)

    Wiesen, S.; Köchl, F.; Belo, P.; Kotov, V.; Loarte, A.; Parail, V.; Corrigan, G.; Garzotti, L.; Harting, D.

    2017-07-01

    The integrated model JINTRAC is employed to assess the dynamic density evolution of the ITER baseline scenario when fuelled by discrete pellets. The consequences on the core confinement properties, α-particle heating due to fusion and the effect on the ITER divertor operation, taking into account the material limitations on the target heat loads, are discussed within the integrated model. Using the model one can observe that stable but cyclical operational regimes can be achieved for a pellet-fuelled ITER ELMy H-mode scenario with Q  =  10 maintaining partially detached conditions in the divertor. It is shown that the level of divertor detachment is inversely correlated with the core plasma density due to α-particle heating, and thus depends on the density evolution cycle imposed by pellet ablations. The power crossing the separatrix to be dissipated depends on the enhancement of the transport in the pedestal region being linked with the pressure gradient evolution after pellet injection. The fuelling efficacy of the deposited pellet material is strongly dependent on the E  ×  B plasmoid drift. It is concluded that integrated models like JINTRAC, if validated and supported by realistic physics constraints, may help to establish suitable control schemes of particle and power exhaust in burning ITER DT-plasma scenarios.

  16. Fuelling decisions in migratory birds: geomagnetic cues override the seasonal effect.

    PubMed

    Kullberg, Cecilia; Henshaw, Ian; Jakobsson, Sven; Johansson, Patrik; Fransson, Thord

    2007-09-07

    Recent evaluations of both temporal and spatial precision in bird migration have called for external cues in addition to the inherited programme defining the migratory journey in terms of direction, distance and fuelling behaviour along the route. We used juvenile European robins (Erithacus rubecula) to study whether geomagnetic cues affect fuel deposition in a medium-distance migrant by simulating a migratory journey from southeast Sweden to the wintering area in southern Spain. In the late phase of the onset of autumn migration, robins exposed to the magnetic treatment attained a lower fuel load than control birds exposed to the ambient magnetic field of southeast Sweden. In contrast, robins captured in the early phase of the onset of autumn migration all showed low fuel deposition irrespective of experimental treatment. These results are, as expected, the inverse of what we have found in similar studies in a long-distance migrant, the thrush nightingale (Luscinia luscinia), indicating that the reaction in terms of fuelling behaviour to a simulated southward migration varies depending on the relevance for the species. Furthermore, we suggest that information from the geomagnetic field act as an important external cue overriding the seasonal effect on fuelling behaviour in migratory birds.

  17. Fuelling decisions in migratory birds: geomagnetic cues override the seasonal effect

    PubMed Central

    Kullberg, Cecilia; Henshaw, Ian; Jakobsson, Sven; Johansson, Patrik; Fransson, Thord

    2007-01-01

    Recent evaluations of both temporal and spatial precision in bird migration have called for external cues in addition to the inherited programme defining the migratory journey in terms of direction, distance and fuelling behaviour along the route. We used juvenile European robins (Erithacus rubecula) to study whether geomagnetic cues affect fuel deposition in a medium-distance migrant by simulating a migratory journey from southeast Sweden to the wintering area in southern Spain. In the late phase of the onset of autumn migration, robins exposed to the magnetic treatment attained a lower fuel load than control birds exposed to the ambient magnetic field of southeast Sweden. In contrast, robins captured in the early phase of the onset of autumn migration all showed low fuel deposition irrespective of experimental treatment. These results are, as expected, the inverse of what we have found in similar studies in a long-distance migrant, the thrush nightingale (Luscinia luscinia), indicating that the reaction in terms of fuelling behaviour to a simulated southward migration varies depending on the relevance for the species. Furthermore, we suggest that information from the geomagnetic field act as an important external cue overriding the seasonal effect on fuelling behaviour in migratory birds. PMID:17609189

  18. Exposure assessment of particulates of diesel and natural gas fuelled buses in silico.

    PubMed

    Pietikäinen, Mari; Oravisjärvi, Kati; Rautio, Arja; Voutilainen, Arto; Ruuskanen, Juhani; Keiski, Riitta L

    2009-12-15

    Lung deposition estimates of particulate emissions of diesel and natural gas (CNG) fuelled vehicles were studied by using in silico methodology. Particulate emissions and particulate number size distributions of two Euro 2 petroleum based diesel buses and one Euro 3 gas bus were measured. One of the petroleum based diesel buses used in the study was equipped with an oxidation catalyst on the vehicle (DI-OC) while the second had a partial-DPF catalyst (DI-pDPF). The third bus used was the gas bus with an oxidation catalyst on the vehicle (CNG-OC). The measurements were done using a transient chassis dynamometer test cycle (Braunschweig cycle) and an Electric Low Pressure Impactor (ELPI) with formed particulates in the size range of 7 nm to 10 microm. The total amounts of the emitted diesel particulates were 88-fold for DI-OC and 57-fold for DI-pDPF compared to the total amount of emitted CNG particulates. Estimates for the deposited particulates were computed with a lung deposition model ICRP 66 using in-house MATLAB scripts. The results were given as particulate numbers and percentages deposited in five different regions of the respiratory system. The percentages of particulates deposited in the respiratory system were 56% for DI-OC, 51% for DI-pDPF and 77% for CNG-OC of all the inhaled particulates. The result shows that under similar conditions the total lung dose of particulates originating from petroleum diesel fuelled engines DI-OC and DI-pDPF was more than 60-fold and 35-fold, respectively, compared to the lung dose of particulates originating from the CNG fuelled engine. The results also indicate that a majority (35-50%) of the inhaled particulates emitted from the tested petroleum diesel and CNG engines penetrate deep into the unciliated regions of the lung where gas-exchange occurs.

  19. Piezo-fluidic Gaseous Fuel MPI System for Natural Gas Fuelled IC Engines

    NASA Astrophysics Data System (ADS)

    Chen, Rui

    A fast response piezo-fluidic gaseous fuel injector system designed for natural gas fuelled internal combustion (IC) engines is described in this paper. The system consists mainly of no moving part fluidic gas injector and piezo controlling interface. It can be arranged as a multi-point injection (MPI) system for IC engine fuel control. Both steady state and dynamic characteristics were investigated on a laboratory test rig. A comprehensive jet attachment and switching simulation model was also developed and reported. The agreement between predicted and experimental results is shown to be good.

  20. Occupational exposure to asbestos during renovation of oil-shale fuelled power plants in Estonia.

    PubMed

    Kangur, Maie

    2007-01-01

    Many thousands of tonnes of asbestos were used in buildings in the past, especially for thermal insulation of pipes and boilers in power plants. Occupational exposure to asbestos dust now mainly occurs during demolition, renovation and routine maintenance activities. The objective of this study was to evaluate occupational exposure to airborne asbestos during renovation of solid oil-shale fuelled power plants carried out in 2001-2003. Air monitoring inside and outside of the renovation area was performed. The concentration of airborne fibres in the working environment increased during renovation but the valid limit value (0.1 fibres/cm(3)) was not exceeded.

  1. Ice Bridge Antarctic Sea Ice

    NASA Image and Video Library

    2009-10-21

    Sea ice is seen out the window of NASA's DC-8 research aircraft as it flies 2,000 feet above the Bellingshausen Sea in West Antarctica on Wednesday, Oct., 21, 2009. This was the fourth science flight of NASA’s Operation Ice Bridge airborne Earth science mission to study Antarctic ice sheets, sea ice, and ice shelves. Photo Credit: (NASA/Jane Peterson)

  2. Map of Martian Polar Hydrogen

    NASA Image and Video Library

    2003-03-13

    This gamma ray spectrometer map centered on the north pole of Mars is based on gamma-rays from the element hydrogen. In this region, hydrogen is mainly in the form of water ice. Regions of high ice content are shown in red and those low in ice content are shown in blue. The very ice-rich region at the north pole is due to a permanent polar cap of water ice on the surface. Elsewhere in this region, the ice is buried under several to a few tens of centimeters of dry soil. The sub-surface ice is not uniformly distributed in the north, but varies with both latitude and longitude. In the north, the soil is well over 50 percent ice, which is more than can be accommodated by just filling the pore space in pre-existing soil. This high ice content implies that the ice may have been slowly co-deposited with dust in the past when conditions were wetter. Deposition of ice by this process means it is more likely that the ice deposits are very thick and may even be deep enough to have liquid water at their base. http://photojournal.jpl.nasa.gov/catalog/PIA04254

  3. Self-regulation of ice flow varies across the ablation area in south-west Greenland

    NASA Astrophysics Data System (ADS)

    van de Wal, R. S. W.; Smeets, C. J. P. P.; Boot, W.; Stoffelen, M.; van Kampen, R.; Doyle, S. H.; Wilhelms, F.; van den Broeke, M. R.; Reijmer, C. H.; Oerlemans, J.; Hubbard, A.

    2015-04-01

    The concept of a positive feedback between ice flow and enhanced melt rates in a warmer climate fuelled the debate regarding the temporal and spatial controls on seasonal ice acceleration. Here we combine melt, basal water pressure and ice velocity data. Using 20 years of data covering the whole ablation area, we show that there is not a strong positive correlation between annual ice velocities and melt rates. Annual velocities even slightly decreased with increasing melt. Results also indicate that melt variations are most important for velocity variations in the upper ablation zone up to the equilibrium line altitude. During the extreme melt in 2012, a large velocity response near the equilibrium line was observed, highlighting the possibility of meltwater to have an impact even high on the ice sheet. This may lead to an increase of the annual ice velocity in the region above S9 and requires further monitoring.

  4. Self-regulation of ice flow varies across the ablation area in South-West Greenland

    NASA Astrophysics Data System (ADS)

    van de Wal, R. S. W.; Smeets, C. J. P. P.; Boot, W.; Stoffelen, M.; van Kampen, R.; Doyle, S.; Wilhelms, F.; van den Broeke, M. R.; Reijmer, C. H.; Oerlemans, J.; Hubbard, A.

    2014-09-01

    The concept of a positive feedback between ice flow and enhanced melt rates in a warmer climate fuelled the debate regarding the temporal and spatial controls on seasonal ice acceleration. Here we combine melt, basal water pressure, and ice velocity data. We show using twenty years of data covering the whole ablation area that there is no strong feedback between annual ice velocities and melt rates. Annual velocities even slightly decreased with increasing melt. Results also indicate that melt variations are most important for velocity variations in the upper ablation zone up to the equilibrium line altitude. During the extreme melt in 2012 a large velocity response near the equilibrium line was observed, highlighting the possibility of rapidly changing bed conditions in this part of the ice sheet that may lead to a doubling of the annual ice velocity.

  5. Study on Ultra-Long Life,Small U-Zr Metallic Fuelled Core With Burnable Poison

    SciTech Connect

    Kenji Tsuji; Hiromitsu Inagaki; Akira Nishikawa; Hisato Matsumiya; Yoshiaki Sakashita; Yasuyuki Moriki; Mitsuaki Yamaoka; Norihiko Handa

    2002-07-01

    A conceptual design for a 50 MWe sodium cooled, U-Pu-Zr metallic fuelled, fast reactor core, which aims at a core lifetime of 30 years, has been performed [1]. As for the compensation for a large burn-up reactivity through 30 years, an axially movable reflector, which is located around the core, carries the major part of it and a burnable poison does the rest. This concept has achieved not only a long core lifetime but also a high discharged burn-up. On this study, a conceptual design for a small fast reactor loading U-Zr metallic fuelled core instead of U-Pu-Zr fuelled core has been conducted, based on the original core arrangement of 4S reactor [2]. Within the range of this study including safety requirements, adopting the burnable poison would be effective to construct a core concept that achieves both a long lifetime and a high discharged burn-up. (authors)

  6. Sea Ice

    NASA Technical Reports Server (NTRS)

    Parkinson, Claire L.; Cavalieri, Donald J.

    2005-01-01

    Sea ice covers vast areas of the polar oceans, with ice extent in the Northern Hemisphere ranging from approximately 7 x 10(exp 6) sq km in September to approximately 15 x 10(exp 6) sq km in March and ice extent in the Southern Hemisphere ranging from approximately 3 x 10(exp 6) sq km in February to approximately 18 x 10(exp 6) sq km in September. These ice covers have major impacts on the atmosphere, oceans, and ecosystems of the polar regions, and so as changes occur in them there are potential widespread consequences. Satellite data reveal considerable interannual variability in both polar sea ice covers, and many studies suggest possible connections between the ice and various oscillations within the climate system, such as the Arctic Oscillation, North Atlantic Oscillation, and Antarctic Oscillation, or Southern Annular Mode. Nonetheless, statistically significant long-term trends are also apparent, including overall trends of decreased ice coverage in the Arctic and increased ice coverage in the Antarctic from late 1978 through the end of 2003, with the Antarctic ice increases following marked decreases in the Antarctic ice during the 1970s. For a detailed picture of the seasonally varying ice cover at the start of the 21st century, this chapter includes ice concentration maps for each month of 2001 for both the Arctic and the Antarctic, as well as an overview of what the satellite record has revealed about the two polar ice covers from the 1970s through 2003.

  7. Emissions analysis on diesel engine fuelled with cashew nut shell biodiesel and pentanol blends.

    PubMed

    Devarajan, Yuvarajan; Munuswamy, Dinesh Babu; Nagappan, BeemKumar

    2017-04-06

    The present work is intended to investigate the emission characteristics of neat cashew nut shell methyl ester (CNSME100) by adding pentanol at two different proportions and compared with the baseline diesel. CNSME100 is prepared by the conventional transesterification process. CNSME100 is chosen due to its non-edible nature. Pentanol is chosen as an additive because of its higher inbuilt oxygen content and surface to volume ratio which reduces the drawbacks of neat CNSME100. Emission characteristics were carried out in single cylinder naturally aspirated CI engine fuelled with neat cashew nut shell methyl ester (CNSME), cashew nut shell methyl ester and pentanol by 10% volume (CNSME90P10), cashew nut shell methyl ester and pentanol by 20% volume (CNSME80P20), and diesel. This work also aims to investigate the feasibility of operating an engine fuelled with neat methyl ester and alcohol blends. Experimental results showed that by blending higher alcohol to neat cashew nut shell methyl ester reduces the emissions significantly. It is also found that the emission from neat methyl ester and pentanol blends is lesser than diesel at all loads.

  8. Ice Stars

    NASA Image and Video Library

    2017-09-27

    Ice Stars - August 4th, 2002 Description: Like distant galaxies amid clouds of interstellar dust, chunks of sea ice drift through graceful swirls of grease ice in the frigid waters of Foxe Basin near Baffin Island in the Canadian Arctic. Sea ice often begins as grease ice, a soupy slick of tiny ice crystals on the ocean's surface. As the temperature drops, grease ice thickens and coalesces into slabs of more solid ice. Credit: USGS/NASA/Landsat 7 To learn more about the Landsat satellite go to: landsat.gsfc.nasa.gov/ NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook

  9. Over Ice

    NASA Image and Video Library

    All about NASA's IceBridge P-3B plane and its IceBridge retrofit. Upgraded with 21st century "special modifications", the aircraft is less a cold war relic and more like the Space Agency's Millenni...

  10. Prospecting for Martian Ice from Orbit

    NASA Technical Reports Server (NTRS)

    Kanner, L. C.; Bell, M. S.; Allen, C. C.

    2003-01-01

    Recent data from the Gamma-Ray Spectrometer (GRS) on Mars Odyssey indicate the presence of a hydrogen-rich layer tens of centimeters thick in high latitudes on Mars. This hydrogen-rich layer correlates to previously determined regions of ice stability. It has been suggested that the subsurface hydrogen is ice and constitutes 35 plus or minus 15% by weight near the north and south polar regions. This study constrains the location of subsurface ice deposits on the scale of kilometers or smaller by combining GRS data with surface features indicative of subsurface ice. The most recognizable terrestrial geomorphic indicators of subsurface ice, formed in permafrost and periglacial environments, include thermokarst pits, pingos, pseudocraters and patterned ground. Patterned ground features have geometric forms such as circles, polygons, stripes and nets. This study focuses on the polygonal form of patterned ground, selected for its discernable shape and subsurface implications. Polygonal features are typically demarcated by troughs, beneath which grow vertical ice-wedges. Ice-wedges form in thermal contraction cracks in ice-rich soil and grow with annual freezing and thawing events repeated over tens of years. Ice wedges exist below the depth of seasonal freeze-thaw. Terrestrial ice wedges can be several meters deep and polygons can be tens of meters apart, and, on rare occasions, up to 1 km. The crack spacing of terrestrial polygons is typically 3 to 10 times the crack depth.

  11. Bacterial ice nucleation: significance and molecular basis.

    PubMed

    Gurian-Sherman, D; Lindow, S E

    1993-11-01

    Several bacterial species are able to catalyze ice formation at temperatures as warm as -2 degrees C. These microorganisms efficiently catalyze ice formation at temperatures much higher than most organic or inorganic substances. Because of their ubiquity on the surfaces of frost-sensitive plants, they are responsible for initiating ice formation, which results in frost injury. The high temperature of ice catalysis conferred by bacterial ice nuclei makes them useful in ice nucleation-limited processes such as artificial snow production, the freezing of some food products, and possibly in future whether modification schemes. The rarity of other ice nuclei active at high subfreezing temperature, and the ease and sensitivity with which ice nuclei can be quantified, have made the use of a promoterless bacterial ice nucleation gene valuable as a reporter of transcription. Target genes to which this promoter is fused can be used in cells in natural habitats. Warm-temperature ice nucleation sites have also been extensively studied at a molecular level. Nucleation sites active at high temperatures (above -5 degrees C) are probably composed of bacterial ice nucleation protein molecules that form functionally aligned aggregates. Models of ice nucleation proteins predict that they form a planar array of hydrogen binding groups that closely complement that of an ice crystal face. Moreover, interdigitation of these molecules may produce a large contiguous template for ice formation.

  12. Effect ofHydrogen Use on Diesel Engine Performance

    NASA Astrophysics Data System (ADS)

    Ceraat, A.; Pana, C.; Negurescu, N.; Nutu, C.; Mirica, I.; Fuiorescu, D.

    2016-11-01

    Necessity of pollutant emissions decreasing, a great interest aspect discussed at 2015 Paris Climate Conference, highlights the necessity of alternative fuels use at diesel engines. Hydrogen is considered a future fuel for the automotive industry due to its properties which define it as the cleanest fuel and due to the production unlimited sources. The use of hydrogen as fuel for diesel engines has a higher degree of complexity because of some hydrogen particularities which lead to specific issues of the hydrogen use at diesel engine: tendency of uncontrolled ignition with inlet backfire, in-cylinder combustion with higher heat release rates and with high NOx level, storage difficulties. Because hydrogen storing on vehicle board implies important difficulties in terms of safety and automotive range, the partial substitution of diesel fuel by hydrogen injected into the inlet manifold represents the most efficient method. The paper presents the results of the experimental researches carried on a truck diesel engine fuelled with diesel fuel and hydrogen, in-cylinder phenomena's study showing the influence of some parameters on combustion, engine performance and pollutant emissions. The paper novelty is defined by the hydrogen fuelling method applied to diesel engine and the efficient control of the engine running.

  13. Effects of hydrogen isotope in coupling between confinement, wall material and SoL turbulence

    NASA Astrophysics Data System (ADS)

    Itoh, K.; Itoh, S.-I.; Sasaki, M.; Kosuga, Y.

    2017-05-01

    The hydrogen isotope effect on confinement is discussed by investigating the coupling between confinement, wall material and scrape-off-layer (SoL) turbulence. An emphasis is placed upon the dependence of the neutral density on the hydrogen mass number. The momentum loss via CX process in the barrier is studied, and its influence on the radial electric field in the barrier (so as to modify the suppression of transport) is discussed. The penetration of slow neutrals and the reflection of fast neutrals on the wall are considered. Combining these processes, the influence of hydrogen mass number on the atomic, molecular, material and plasma interactions is investigated. The penetration of strong fluctuations in the SoL plasma into the confined plasma via the fuelling of neutral particles (i.e. fuelling fuels turbulence) is also discussed. The hydrogen isotope effect on this source of edge turbulence, which can affect the core-confinement, is discussed.

  14. Ice Bridge Antarctic Sea Ice

    NASA Image and Video Library

    2009-10-21

    An iceberg is seen out the window of NASA's DC-8 research aircraft as it flies 2,000 feet above the Amundsen Sea in West Antarctica on Wednesday, Oct., 21, 2009. This was the fourth science flight of NASA’s Operation Ice Bridge airborne Earth science mission to study Antarctic ice sheets, sea ice, and ice shelves. Photo Credit: (NASA/Jane Peterson)

  15. Energy and Exergy Analysis of a Diesel Engine Fuelled with Diesel and Simarouba Biodiesel Blends

    NASA Astrophysics Data System (ADS)

    Panigrahi, Nabnit; Mohanty, Mahendra Kumar; Mishra, Sruti Ranjan; Mohanty, Ramesh Chandra

    2016-08-01

    This article intends to determine the available work and various losses of a diesel engine fuelled with diesel and SB20 (20 % Simarouba biodiesel by volume blended with 80 % diesel by volume). The energy and exergy analysis were carried out by using first law and second law of thermodynamics respectively. The experiments were carried out on a 3.5 kW compression ignition engine. The analysis was conducted on per mole of fuel basis. The energy analysis indicates that about 37.23 and 37.79 % of input energy is converted into the capacity to do work for diesel and SB20 respectively. The exergetic efficiency was 34.8 and 35 % for diesel and Simarouba respectively. Comparative study indicates that the energetic and exergetic performance of SB20 resembles with that of diesel fuel.

  16. Development of pyro-processing technology for thorium-fuelled molten salt reactor

    SciTech Connect

    Uhlir, J.; Straka, M.; Szatmary, L.

    2012-07-01

    The Molten Salt Reactor (MSR) is classified as the non-classical nuclear reactor type based on the specific features coming out from the use of liquid fuel circulating in the MSR primary circuit. Other uniqueness of the reactor type is based on the fact that the primary circuit of the reactor is directly connected with the on-line reprocessing technology, necessary for keeping the reactor in operation for a long run. MSR is the only reactor system, which can be effectively operated within the {sup 232}Th- {sup 233}U fuel cycle as thorium breeder with the breeding factor significantly higher than one. The fuel cycle technologies proposed as ford the fresh thorium fuel processing as for the primary circuit fuel reprocessing are pyrochemical and mainly fluoride. Although these pyrochemical processes were never previously fully verified, the present-day development anticipates an assumption for the successful future deployment of the thorium-fuelled MSR technology. (authors)

  17. [Experimental research on alcohols, aldehydes, aromatic hydrocarbons and olefins emissions from alcohols fuelled vehicles].

    PubMed

    Zhang, Fan; Wang, Jian-Hai; Wang, Xiao-Cheng; Wang, Jian-Xin

    2013-07-01

    Using two vehicles fuelled with pure gasoline, M15, M30 and pure gasoline, E10, E20 separately, 25 degrees C normal temperature type I emission test, -7 degrees C low temperature type VI emission test and type IV evaporation emission test were carried out. FTIR, HPLC and GC-MS methods were utilized to measure alcohols, aldehydes, aromatic hydrocarbons and olefins emissions. The test results indicate that at the low as well as normal ambient temperature, as the alcohols proportion increasing in the fuel, unburned methanol, formaldehyde, acetaldehyde increase proportionally, benzene, toluene, ethylene, propylene, 1,3-butadiene and isobutene decrease slightly. The unregulated emissions at the low ambient temperature are significantly higher than those at the normal ambient temperature. The difference of HC emissions in the entire process of evaporative emission tests of E10, gasoline and M15 fuels is slight. There is a small difference of unregulated emissions in the diurnal test of three fuels.

  18. Exergy analysis of an ethanol fuelled proton exchange membrane (PEM) fuel cell system for automobile applications

    NASA Astrophysics Data System (ADS)

    Song, Shuqin; Douvartzides, Savvas; Tsiakaras, Panagiotis

    An integrated ethanol fuelled proton exchange membrane fuel cell (PEMFC) power system was investigated following a second law exergy analysis. The system was assumed to have the typical design for automobile applications and was comprised of a vaporizer/mixer, a steam reformer, a CO-shift reactor, a CO-remover (PROX) reactor, a PEMFC and a burner. The exergy analysis was applied for different PEMFC power and voltage outputs assuming the ethanol steam reforming at about 600 K and the CO-shift reaction at about 400 K. A detailed parametric analysis of the plant is presented and operation guidelines are suggested for effective performance. In every case, the exergy analysis method is proved to allow an accurate allocation of the deficiencies of the subsystems of the plant and serves as a unique tool for essential technical improvements.

  19. Evaporative emissions of 1,3-butadiene from petrol-fuelled motor vehicles

    NASA Astrophysics Data System (ADS)

    Ye, Y.; Galbally, I. E.; Weeks, I. A.; Duffy, B. L.; Nelson, P. F.

    This study reports the identification and quantification of 1,3-butadiene in petrol and in the evaporative emissions from Australian light-duty passenger vehicles. The mass fraction of 1,3-butadiene in each of the different grades of any brand of Australian petrol was found to be relatively constant for a given marketing area. However, the mass fractions vary significantly between the different brands (or refineries) from 0.004±0.001% to 0.047±0.008%. The measurements of the evaporative emissions of 1,3-butadiene from in-service motor vehicles were performed using standard Australian Design Rule 37/00 (ADR 37/00) Sealed Housing Evaporative Determination (SHED) tests. For post-1985 catalyst equipped vehicles fuelled with unleaded petrol, average evaporative emissions of 1,3-butadiene were 9.4 (0.7-22) and 5.0 (0.1-23) mg per test for diurnal and hot soak SHED tests, respectively. The corresponding average evaporative emissions for the older, pre-1986 non-catalyst equipped vehicles fuelled with leaded petrol were 26.5 (11.7-45.4) and 9.2 (4.3-13.1) mg per test, respectively, about double the observed emissions from newer vehicles. For the complete vehicle set (all ages), the average mass fraction of 1,3-butadiene in the total hydrocarbon (sum of C 1-C 10 hydrocarbons) emission was 0.21±0.14% from the diurnal phase and was 0.11±0.06% from the hot-soak phase. Evaporative emissions were estimated to contribute about 4% (ranging from 1-15%) of the total (exhaust and evaporative) emissions of 1,3-butadiene from Australian motor vehicles.

  20. Influence of the first wall material on the particle fuelling in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Lunt, T.; Reimold, F.; Wolfrum, E.; Carralero, D.; Feng, Y.; Schmid, K.; the ASDEX Upgrade Team

    2017-05-01

    In the period from 2002 to 2007 the material of the plasma facing components (PFCs) of ASDEX Upgrade (AUG) was changed from carbon (C) to tungsten (W). Comparing the measured density profiles of low-density L-mode discharges with little or no gas puff before and after this modification, a significantly higher pedestal-top density was found for W PFCs together with a steeper gradient and a lower pedestal temperature. This change can be explained by larger particle- and energy reflection coefficients for D on W compared to D on C, as shown by EMC3-EIRENE simulations of AUG discharges in similar conditions on a computational grid extending to the main chamber first wall. In the simulations, a change of the wall material at fixed separatrix density indeed shows that for W PFCs more neutrals cross the separatrix, resulting in a steeper density gradient. Analysis of the source resolved and poloidally resolved neutral flux densities across the separatrix show a dominant contribution of the divertor targets to the fuelling profile in the simulation of the low density case. Increasing the density decreases the electron temperature at the target and therefore the potential drop in the electrostatic sheath as well as the energy of the ions impinging on the surface. Neutrals with ∼eV energies, able to reach the separatrix, are then only produced via molecular dissociation processes in the plasma volume independently of the PFC material. Also the contribution of the main chamber PFCs to the fuelling is observed to increase at higher densities.

  1. Vapor deposition of water on graphitic surfaces: Formation of amorphous ice, bilayer ice, ice I, and liquid water

    SciTech Connect

    Lupi, Laura; Kastelowitz, Noah; Molinero, Valeria

    2014-11-14

    Carbonaceous surfaces are a major source of atmospheric particles and could play an important role in the formation of ice. Here we investigate through molecular simulations the stability, metastability, and molecular pathways of deposition of amorphous ice, bilayer ice, and ice I from water vapor on graphitic and atomless Lennard-Jones surfaces as a function of temperature. We find that bilayer ice is the most stable ice polymorph for small cluster sizes, nevertheless it can grow metastable well above its region of thermodynamic stability. In agreement with experiments, the simulations predict that on increasing temperature the outcome of water deposition is amorphous ice, bilayer ice, ice I, and liquid water. The deposition nucleation of bilayer ice and ice I is preceded by the formation of small liquid clusters, which have two wetting states: bilayer pancake-like (wetting) at small cluster size and droplet-like (non-wetting) at larger cluster size. The wetting state of liquid clusters determines which ice polymorph is nucleated: bilayer ice nucleates from wetting bilayer liquid clusters and ice I from non-wetting liquid clusters. The maximum temperature for nucleation of bilayer ice on flat surfaces, T{sub B}{sup max} is given by the maximum temperature for which liquid water clusters reach the equilibrium melting line of bilayer ice as wetting bilayer clusters. Increasing water-surface attraction stabilizes the pancake-like wetting state of liquid clusters leading to larger T{sub B}{sup max} for the flat non-hydrogen bonding surfaces of this study. The findings of this study should be of relevance for the understanding of ice formation by deposition mode on carbonaceous atmospheric particles, including soot.

  2. Vapor deposition of water on graphitic surfaces: formation of amorphous ice, bilayer ice, ice I, and liquid water.

    PubMed

    Lupi, Laura; Kastelowitz, Noah; Molinero, Valeria

    2014-11-14

    Carbonaceous surfaces are a major source of atmospheric particles and could play an important role in the formation of ice. Here we investigate through molecular simulations the stability, metastability, and molecular pathways of deposition of amorphous ice, bilayer ice, and ice I from water vapor on graphitic and atomless Lennard-Jones surfaces as a function of temperature. We find that bilayer ice is the most stable ice polymorph for small cluster sizes, nevertheless it can grow metastable well above its region of thermodynamic stability. In agreement with experiments, the simulations predict that on increasing temperature the outcome of water deposition is amorphous ice, bilayer ice, ice I, and liquid water. The deposition nucleation of bilayer ice and ice I is preceded by the formation of small liquid clusters, which have two wetting states: bilayer pancake-like (wetting) at small cluster size and droplet-like (non-wetting) at larger cluster size. The wetting state of liquid clusters determines which ice polymorph is nucleated: bilayer ice nucleates from wetting bilayer liquid clusters and ice I from non-wetting liquid clusters. The maximum temperature for nucleation of bilayer ice on flat surfaces, T(B)(max) is given by the maximum temperature for which liquid water clusters reach the equilibrium melting line of bilayer ice as wetting bilayer clusters. Increasing water-surface attraction stabilizes the pancake-like wetting state of liquid clusters leading to larger T(B)(max) for the flat non-hydrogen bonding surfaces of this study. The findings of this study should be of relevance for the understanding of ice formation by deposition mode on carbonaceous atmospheric particles, including soot.

  3. Sea ice terminology

    SciTech Connect

    Not Available

    1980-09-01

    A group of definitions of terms related to sea ice is presented, as well as a graphic representation of late winter ice zonation of the Beaufort Sea Coast. Terms included in the definition list are belt, bergy bit, bight, brash ice, calving, close pack ice, compacting, compact pack ice, concentration, consolidated pack ice, crack, diffuse ice edge, fast ice, fast-ice boundary, fast-ice edge, first-year ice, flaw, flaw lead, floe, flooded ice, fractured, fractured zone, fracturing, glacier, grey ice, grey-white ice, growler, hummock, iceberg, iceberg tongue, ice blink, ice boundary, ice cake, ice edge, ice foot, ice free, ice island, ice shelf, large fracture, lead, medium fracture, multiyear ice, nilas, old ice, open pack ice, open water, pack ice, polar ice, polynya, puddle, rafted ice, rafting, ram, ridge, rotten ice, second-year ice, shearing, shore lead, shore polynya, small fracture, strip, tabular berg, thaw holes, very close pack ice, very open pack ice, water sky, young coastal ice, and young ice.

  4. Sea Ice

    NASA Technical Reports Server (NTRS)

    Perovich, D.; Gerland, S.; Hendricks, S.; Meier, Walter N.; Nicolaus, M.; Richter-Menge, J.; Tschudi, M.

    2013-01-01

    During 2013, Arctic sea ice extent remained well below normal, but the September 2013 minimum extent was substantially higher than the record-breaking minimum in 2012. Nonetheless, the minimum was still much lower than normal and the long-term trend Arctic September extent is -13.7 per decade relative to the 1981-2010 average. The less extreme conditions this year compared to 2012 were due to cooler temperatures and wind patterns that favored retention of ice through the summer. Sea ice thickness and volume remained near record-low levels, though indications are of slightly thicker ice compared to the record low of 2012.

  5. Ice-structuring mechanism for zirconium acetate.

    PubMed

    Deville, Sylvain; Viazzi, Céline; Guizard, Christian

    2012-10-23

    The control of ice nucleation and growth is critical in many natural and engineering situations. However, very few compounds are able to interact directly with the surface of ice crystals. Ice-structuring proteins, found in certain fish, plants, and insects, bind to the surface of ice, thereby controlling their growth. We recently revealed the ice-structuring properties of zirconium acetate, which are similar to those of ice-structuring proteins. Because zirconium acetate is a salt and therefore different from proteins having ice-structuring properties, its ice-structuring mechanism remains unelucidated. Here we investigate this ice-structuring mechanism through the role of the concentration of zirconium acetate and the ice crystal growth velocity. We then explore other compounds presenting similar functional groups (acetate, hydroxyl, or carboxylic groups). On the basis of these results, we propose that zirconium acetate adopts a hydroxy-bridged polymer structure that can bind to the surface of the ice crystals through hydrogen bonding, thereby slowing down the ice crystal growth.

  6. Cold adaptation of zinc metalloproteases in the thermolysin family from deep sea and arctic sea ice bacteria revealed by catalytic and structural properties and molecular dynamics: new insights into relationship between conformational flexibility and hydrogen bonding.

    PubMed

    Xie, Bin-Bin; Bian, Fei; Chen, Xiu-Lan; He, Hai-Lun; Guo, Jun; Gao, Xiang; Zeng, Yin-Xin; Chen, Bo; Zhou, Bai-Cheng; Zhang, Yu-Zhong

    2009-04-03

    Increased conformational flexibility is the prevailing explanation for the high catalytic efficiency of cold-adapted enzymes at low temperatures. However, less is known about the structural determinants of flexibility. We reported two novel cold-adapted zinc metalloproteases in the thermolysin family, vibriolysin MCP-02 from a deep sea bacterium and vibriolysin E495 from an Arctic sea ice bacterium, and compared them with their mesophilic homolog, pseudolysin from a terrestrial bacterium. Their catalytic efficiencies, k(cat)/K(m) (10-40 degrees C), followed the order pseudolysin < MCP-02 < E495 with a ratio of approximately 1:2:4. MCP-02 and E495 have the same optimal temperature (T(opt), 57 degrees C, 5 degrees C lower than pseudolysin) and apparent melting temperature (T(m) = 64 degrees C, approximately 10 degrees C lower than pseudolysin). Structural analysis showed that the slightly lower stabilities resulted from a decrease in the number of salt bridges. Fluorescence quenching experiments and molecular dynamics simulations showed that the flexibilities of the proteins were pseudolysin < MCP-02 < E495, suggesting that optimization of flexibility is a strategy for cold adaptation. Molecular dynamics results showed that the ordinal increase in flexibility from pseudolysin to MCP-02 and E495, especially the increase from MCP-02 to E495, mainly resulted from the decrease of hydrogen-bond stability in the dynamic structure, which was due to the increase in asparagine, serine, and threonine residues. Finally, a model for the cold adaptation of MCP-02 and E495 was proposed. This is the first report of the optimization of hydrogen-bonding dynamics as a strategy for cold adaptation and provides new insights into the structural basis underlying conformational flexibility.

  7. Ice Surfaces

    NASA Astrophysics Data System (ADS)

    Shultz, Mary Jane

    2017-05-01

    Ice is a fundamental solid with important environmental, biological, geological, and extraterrestrial impact. The stable form of ice at atmospheric pressure is hexagonal ice, Ih. Despite its prevalence, Ih remains an enigmatic solid, in part due to challenges in preparing samples for fundamental studies. Surfaces of ice present even greater challenges. Recently developed methods for preparation of large single-crystal samples make it possible to reproducibly prepare any chosen face to address numerous fundamental questions. This review describes preparation methods along with results that firmly establish the connection between the macroscopic structure (observed in snowflakes, microcrystallites, or etch pits) and the molecular-level configuration (detected with X-ray or electron scattering techniques). Selected results of probing interactions at the ice surface, including growth from the melt, surface vibrations, and characterization of the quasi-liquid layer, are discussed.

  8. Environmental effect of antioxidant additives on exhaust emission reduction in compression ignition engine fuelled with Annona methyl ester.

    PubMed

    Senthil, R; Silambarasan, R

    2015-01-01

    The aim of the present study is to analyse the effect of antioxidant l-ascorbic acid on engine performance and emissions of a diesel engine fuelled with methyl ester of Annona oil (MEAO). The antioxidant is mixed in various concentrations (100-400 mg) with MEAO. Result shows that the antioxidant additive mixture (MEAO+LA200) is effective in control of nitrogen oxides (NOx) and hydrocarbon (HC) emission of MEAO-fuelled engine without doing any engine modification. In this study by using MEAO, the NOx emission is reduced by about 23.38% at full load while compared with neat diesel fuel. Likewise there is a reduction in carbon monoxide, smoke, and HC by about 48%, 28.57% and 29.71% at full load condition compared with neat diesel fuel.

  9. Bioethanol/gasoline blends for fuelling conventional and hybrid scooter. Regulated and unregulated exhaust emissions

    NASA Astrophysics Data System (ADS)

    Costagliola, Maria Antonietta; Prati, Maria Vittoria; Murena, Fabio

    2016-05-01

    The aim of this experimental activity was to evaluate the influence of ethanol fuel on the pollutant emissions measured at the exhaust of a conventional and a hybrid scooter. Both scooters are 4-stroke, 125 cm3 of engine capacity and Euro 3 compliant. They were tested on chassis dynamometer for measuring gaseous emissions of CO, HC, NOx, CO2 and some toxic micro organic pollutants, such as benzene, 1,3-butadiene, formaldehyde and acetaldehyde. The fuel consumption was estimated throughout a carbon balance on the exhaust species. Moreover, total particles number with diameter between 20 nm up to 1 μm was measured. Worldwide and European test cycles were carried out with both scooters fuelled with gasoline and ethanol/gasoline blends (10/90, 20/80 and 30/70% vol). According to the experimental results relative to both scooter technologies, the addiction of ethanol in gasoline reduces CO and particles number emissions. The combustion of conventional scooter becomes unstable when a percentage of 30%v of bioethanol is fed; as consequence a strong increasing of hydrocarbon is monitored, including carcinogenic species. The negative effects of ethanol fuel are related to the increasing of fuel consumption due to the less carbon content for volume unit and to the increasing of formaldehyde and acetaldehyde due to the higher oxygen availability. Almost 70% of Ozone Formation Potential is covered by alkenes and aromatics.

  10. PM, carbon, and PAH emissions from a diesel generator fuelled with soy-biodiesel blends.

    PubMed

    Tsai, Jen-Hsiung; Chen, Shui-Jen; Huang, Kuo-Lin; Lin, Yuan-Chung; Lee, Wen-Jhy; Lin, Chih-Chung; Lin, Wen-Yinn

    2010-07-15

    Biodiesels have received increasing attention as alternative fuels for diesel engines and generators. This study investigates the emissions of particulate matter (PM), total carbon (TC), e.g., organic/elemental carbons, and polycyclic aromatic hydrocarbons (PAHs) from a diesel generator fuelled with soy-biodiesel blends. Among the tested diesel blends (B0, B10 (10 vol% soy-biodiesel), B20, and B50), B20 exhibited the lowest PM emission concentration despite the loads (except the 5 kW case), whereas B10 displayed lower PM emission factors when operating at 0 and 10 kW than the other fuel blends. The emission concentrations or factors of EC, OC, and TC were the lowest when B10 or B20 was used regardless of the loading. Under all tested loads, the average concentrations of total-PAHs emitted from the generator using the B10 and B20 were lower (by 38% and 28%, respectively) than those using pure petroleum diesel fuel (B0), while the emission factors of total-PAHs decreased with an increasing ratio of biodiesel to premium diesel. With an increasing loading, although the brake specific fuel consumption decreased, the energy efficiency increased despite the bio/petroleum diesel ratio. Therefore, soy-biodiesel is promising for use as an alternative fuel for diesel generators to increase energy efficiency and reduce the PM, carbon, and PAH emissions.

  11. Thermal instabilities in cooling galactic coronae: fuelling star formation in galactic discs

    NASA Astrophysics Data System (ADS)

    Hobbs, Alexander; Read, Justin; Power, Chris; Cole, David

    2013-09-01

    We investigate the means by which cold gas can accrete on to Milky Way mass galaxies from a hot corona of gas, using a new smoothed particle hydrodynamics code, `SPHS'. We find that the `cold clumps' seen in many classic SPH simulations in the literature are not present in our SPHS simulations. Instead, cold gas condenses from the halo along filaments that form at the intersection of supernovae-driven bubbles from previous phases of star formation. This positive feedback feeds cold gas to the galactic disc directly, fuelling further star formation. The resulting galaxies in the SPH and SPHS simulations differ greatly in their morphology, gas phase diagrams and stellar content. We show that the classic SPH cold clumps owe to a numerical thermal instability caused by an inability for cold gas to mix in the hot halo. The improved treatment of mixing in SPHS suppresses this instability leading to a dramatically different physical outcome. In our highest resolution SPHS simulation, we find that the cold filaments break up into bound, physically motivated clumps that form stars. The filaments are overdense by a factor of 10-100 compared to the surrounding gas, suggesting that the fragmentation results from a physical non-linear instability driven by the overdensity. This `fragmenting filament' mode of disc growth has important implications for galaxy formation, in particular the role of star formation in bringing cold gas into disc galaxies.

  12. Particle emission from heavy-duty engine fuelled with blended diesel and biodiesel.

    PubMed

    Martins, Leila Droprinchinski; da Silva Júnior, Carlos Roberto; Solci, Maria Cristina; Pinto, Jurandir Pereira; Souza, Davi Zacarias; Vasconcellos, Pérola; Guarieiro, Aline Lefol Nani; Guarieiro, Lílian Lefol Nani; Sousa, Eliane Teixeira; de Andrade, Jailson B

    2012-05-01

    In this study, particulate matter (PM) were characterized from a place impacted by heavy-duty vehicles (Bus Station) fuelled with diesel/biodiesel fuel blend (B3) in the city of Londrina, Brazil. Sixteen priority polycyclic aromatic hydrocarbons (PAH) concentrations were analyzed in the samples by their association with atmospheric PM, mass size distributions and major ions (fluorite, chloride, bromide, nitrate, phosphate, sulfate, nitrite, oxalate; fumarate, formate, succinate and acetate; lithium, sodium, potassium, magnesium, calcium and ammonium). Results indicate that major ions represented 21.2% particulate matter mass. Nitrate, sulfate, and ammonium, respectively, presented the highest concentration levels, indicating that biodiesel may also be a significant source for these ions, especially nitrate. Dibenzo[a,h]anthracene and indeno[1,2,3,-cd]pyrene were the main PAH found, and a higher fraction of PAH particles was found in diameters lower than 0.25 μm in Londrina bus station. The fine and ultrafine particles were dominant among the PM evaluated, suggesting that biodiesel decreases the total PAH emission. However, it does also increase the fraction of fine and ultrafine particles when compared to diesel.

  13. Emission of a compression ignition engine fuelled by diesel and imitated syngas

    NASA Astrophysics Data System (ADS)

    Mahgoub, Bahaaddein Kamal M.; Sulaiman, S. A.; Karim, Zainal Ambri B. A.

    2012-06-01

    Biomass can be converted into a useful source of energy through gasification. The gasification product, known as synthesis gas or syngas, composition of syngas may fluctuate due to many factors such as operational errors of the gasifier as well as the type of feedstock used or may be due to the feeding rate fluctuation. Therefore it would be difficult to assess the effect of syngas composition and diesel replacement ratio to the emission when combusted in dual fuel syngas - diesel compression ignition engine. In order to overcome this problem controllable composition and conditions of imitated syngas was used in this study by selective three compositions of syngas close to the real conditions. The objective of this study is to determine the exhaust emissions of a compression ignition engine fuelled with diesel and imitated syngas at different compositions and diesel replacement ratios to determine the most appropriate composition of syngas and diesel replacement ratio which will give less emission. The test results on syngas emission are compared with the results of diesel. CO2 and NOX emission level was reduced on syngas dual fuel mode, but there were increases in CO and THC emissions throughout all syngas compositions examined due to poor combustion efficiency of dual fuel operation.

  14. Water Ice Abundance on Ceres

    NASA Image and Video Library

    2016-12-15

    This frame from an animation shows dwarf planet Ceres overlaid with the concentration of hydrogen determined from data acquired by the gamma ray and neutron detector GRaND instrument aboard NASA Dawn spacecraft. The hydrogen is in the upper yard (or meter) of regolith, the loose surface material on Ceres. The color scale gives hydrogen content in water-equivalent units, which assumes all of the hydrogen is in the form of H2O. Blue indicates where hydrogen content is higher, near the poles, while red indicates lower content at lower latitudes. In reality, some of the hydrogen is in the form of water ice, while a portion of the hydrogen is in the form of hydrated minerals (such as OH, in serpentine group minerals). The color information is superimposed on shaded relief map for context. A second animation (Figure 2) compares the hydrogen content of Ceres' regolith with that of the giant asteroid Vesta, which Dawn orbited from 2011 to 2012. These data show Vesta is a much drier world, with a much lower percent of hydrogen in its regolith. Both maps were produced from data acquired by GRaND. Videos are available at http://photojournal.jpl.nasa.gov/catalog/PIA21081

  15. Evaluation of the use of bioethanol fuelled buses based on ambient air pollution screening and on-road measurements.

    PubMed

    López-Aparicio, S; Hak, C

    2013-05-01

    Mitigation measures to reduce greenhouse gas emissions may have adverse effects on urban air quality and human exposure to harmful pollutants. The use of bioethanol fuelled vehicles is increasing worldwide and may create new undesired pollution effects. Different measurement campaigns were performed in a pilot study to contribute to the understanding of the consequences associated with the use of bioethanol blended fuel (E95) on a series of pollutants. Ambient screening measurements of NO2, O3, acetic acid, formaldehyde and acetaldehyde were performed at different urban locations, exposed and not exposed to the circulation of bioethanol buses. In addition, volatile organic compounds were measured at the exhaust pipe of a bioethanol fuelled bus, both under idling conditions (carbonyls; DNPH cartridge) and under on-road driving conditions applying online monitoring (PTR-TOF). Higher ambient acetaldehyde values were measured at locations exposed to bioethanol fuelled buses than at locations not exposed, and very high acetaldehyde and acetic acid values were measured from the exhaust pipe during driving conditions (acetaldehyde>150 ppm; acetic acid ≈ 20-30 ppm) and modelled at close distance to the bioethanol bus. Human exposure to high concentration of acetaldehyde is expected, and it may involve a significantly increased chance in developing cancer. The high concentration of acetic acid will involve odour annoyance and significant material degradation or corrosion.

  16. A centre-triggered magnesium fuelled cathodic arc thruster uses sublimation to deliver a record high specific impulse

    NASA Astrophysics Data System (ADS)

    Neumann, Patrick R. C.; Bilek, Marcela; McKenzie, David R.

    2016-08-01

    The cathodic arc is a high current, low voltage discharge that operates in vacuum and provides a stream of highly ionised plasma from a solid conducting cathode. The high ion velocities, together with the high ionisation fraction and the quasineutrality of the exhaust stream, make the cathodic arc an attractive plasma source for spacecraft propulsion applications. The specific impulse of the cathodic arc thruster is substantially increased when the emission of neutral species is reduced. Here, we demonstrate a reduction of neutral emission by exploiting sublimation in cathode spots and enhanced ionisation of the plasma in short, high-current pulses. This, combined with the enhanced directionality due to the efficient erosion profiles created by centre-triggering, substantially increases the specific impulse. We present experimentally measured specific impulses and jet power efficiencies for titanium and magnesium fuels. Our Mg fuelled source provides the highest reported specific impulse for a gridless ion thruster and is competitive with all flight rated ion thrusters. We present a model based on cathode sublimation and melting at the cathodic arc spot explaining the outstanding performance of the Mg fuelled source. A further significant advantage of an Mg-fuelled thruster is the abundance of Mg in asteroidal material and in space junk, providing an opportunity for utilising these resources in space.

  17. Ice-binding mechanism of winter flounder antifreeze proteins.

    PubMed Central

    Cheng, A; Merz, K M

    1997-01-01

    We have studied the winter flounder antifreeze protein (AFP) and two of its mutants using molecular dynamics simulation techniques. The simulations were performed under four conditions: in the gas phase, solvated by water, adsorbed on the ice (2021) crystal plane in the gas phase and in aqueous solution. This study provided details of the ice-binding pattern of the winter flounder AFP. Simulation results indicated that the Asp, Asn, and Thr residues in the AFP are important in ice binding and that Asn and Thr as a group bind cooperatively to the ice surface. These ice-binding residues can be collected into four distinct ice-binding regions: Asp-1/Thr-2/Asp-5, Thr-13/Asn-16, Thr-24/Asn-27, and Thr-35/Arg-37. These four regions are 11 residues apart and the repeat distance between them matches the ice lattice constant along the (1102) direction. This match is crucial to ensure that all four groups can interact with the ice surface simultaneously, thereby, enhancing ice binding. These Asx (x = p or n)/Thr regions each form 5-6 hydrogen bonds with the ice surface: Asn forms about three hydrogen bonds with ice molecules located in the step region while Thr forms one to two hydrogen bonds with the ice molecules in the ridge of the (2021) crystal plane. Both the distance between Thr and Asn and the ordering of the two residues are crucial for effective ice binding. The proper sequence is necessary to generate a binding surface that is compatible with the ice surface topology, thus providing a perfect "host/guest" interaction that simultaneously satisfies both hydrogen bonding and van der Waals interactions. The results also show the relation among binding energy, the number of hydrogen bonds, and the activity. The activity is correlated to the binding energy, and in the case of the mutants we have studied the number of hydrogen bonds. The greater the number of the hydrogen bonds the greater the antifreeze activity. The roles van der Waals interactions and the hydrophobic

  18. Electromelting of confined monolayer ice.

    PubMed

    Qiu, Hu; Guo, Wanlin

    2013-05-10

    In sharp contrast to the prevailing view that electric fields promote water freezing, here we show by molecular dynamics simulations that monolayer ice confined between two parallel plates can melt into liquid water under a perpendicularly applied electric field. The melting temperature of the monolayer ice decreases with the increasing strength of the external field due to the field-induced disruption of the water-wall interaction induced well-ordered network of the hydrogen bond. This electromelting process should add an important new ingredient to the physics of water.

  19. Inhibition of ice crystal growth in ice cream mix by gelatin hydrolysate.

    PubMed

    Damodaran, Srinivasan

    2007-12-26

    The inhibition of ice crystal growth in ice cream mix by gelatin hydrolysate produced by papain action was studied. The ice crystal growth was monitored by thermal cycling between -14 and -12 degrees C at a rate of one cycle per 3 min. It is shown that the hydrolysate fraction containing peptides in the molecular weight range of about 2000-5000 Da exhibited the highest inhibitory activity on ice crystal growth in ice cream mix, whereas fractions containing peptides greater than 7000 Da did not inhibit ice crystal growth. The size distribution of gelatin peptides formed in the hydrolysate was influenced by the pH of hydrolysis. The optimum hydrolysis conditions for producing peptides with maximum ice crystal growth inhibitory activity was pH 7 at 37 degrees C for 10 min at a papain to gelatin ratio of 1:100. However, this may depend on the type and source of gelatin. The possible mechanism of ice crystal growth inhibition by peptides from gelatin is discussed. Molecular modeling of model gelatin peptides revealed that they form an oxygen triad plane at the C-terminus with oxygen-oxygen distances similar to those found in ice nuclei. Binding of this oxygen triad plane to the prism face of ice nuclei via hydrogen bonding appears to be the mechanism by which gelatin hydrolysate might be inhibiting ice crystal growth in ice cream mix.

  20. Multiscale mass transport in z ˜6 galactic discs: fuelling black holes

    NASA Astrophysics Data System (ADS)

    Prieto, Joaquin; Escala, Andrés

    2016-08-01

    By using Adaptive Mesh Refinement cosmological hydrodynamic N-body zoom-in simulations, with the RAMSES code, we studied the mass transport processes on to galactic nuclei from high redshift up to z ˜6. Due to the large dynamical range of the simulations, we were able to study the mass accretion process on scales from ˜50 kpc to ˜few 1 pc. We studied the black hole (BH) growth on to the Galactic Centre in relation with the mass transport processes associated to both the Reynolds stress and the gravitational stress on the disc. Such methodology allowed us to identify the main mass transport process as a function of the scales of the problem. We found that in simulations that include radiative cooling and supernovae feedback, the supermassive black hole (SMBH) grows at the Eddington limit for some periods of time presenting ≈ 0.5 throughout its evolution. The α parameter is dominated by the Reynolds term, αR, with αR ≫ 1. The gravitational part of the α parameter, αG, has an increasing trend towards the Galactic Centre at higher redshifts, with values αG ˜1 at radii ≲ few 101 pc contributing to the BH fuelling. In terms of torques, we also found that gravity has an increasing contribution towards the Galactic Centre at earlier epochs with a mixed contribution above ˜100 pc. This complementary work between pressure gradients and gravitational potential gradients allows an efficient mass transport on the disc with average mass accretion rates of the order of ˜few 1 M⊙ yr-1. These levels of SMBH accretion rates found in our cosmological simulations are needed in all models of SMBH growth that attempt to explain the formation of redshift 6-7 quasars.

  1. Hydrogen production

    NASA Technical Reports Server (NTRS)

    England, C.; Chirivella, J. E.; Fujita, T.; Jeffe, R. E.; Lawson, D.; Manvi, R.

    1975-01-01

    The state of hydrogen production technology is evaluated. Specific areas discussed include: hydrogen production fossil fuels; coal gasification processes; electrolysis of water; thermochemical production of hydrogen; production of hydrogen by solar energy; and biological production of hydrogen. Supply options are considered along with costs of hydrogen production.

  2. Hydrogen production

    NASA Technical Reports Server (NTRS)

    England, C.; Chirivella, J. E.; Fujita, T.; Jeffe, R. E.; Lawson, D.; Manvi, R.

    1975-01-01

    The state of hydrogen production technology is evaluated. Specific areas discussed include: hydrogen production fossil fuels; coal gasification processes; electrolysis of water; thermochemical production of hydrogen; production of hydrogen by solar energy; and biological production of hydrogen. Supply options are considered along with costs of hydrogen production.

  3. Operation IceBridge: Sea Ice Interlude

    NASA Image and Video Library

    Sea ice comes in an array of shapes and sizes and has its own ephemeral beauty. Operation IceBridge studies sea ice at both poles, and also runs across interesting formations en route to other targ...

  4. Gypsum and hydrohalite dynamics in sea ice brines

    NASA Astrophysics Data System (ADS)

    Butler, Benjamin M.; Papadimitriou, Stathys; Day, Sarah J.; Kennedy, Hilary

    2017-09-01

    Mineral authigenesis from their dissolved sea salt matrix is an emergent feature of sea ice brines, fuelled by dramatic equilibrium solubility changes in the large sub-zero temperature range of this cryospheric system on the surface of high latitude oceans. The multi-electrolyte composition of seawater results in the potential for several minerals to precipitate in sea ice, each affecting the in-situ geochemical properties of the sea ice brine system, the habitat of sympagic biota. The solubility of two of these minerals, gypsum (CaSO4 ·2H2O) and hydrohalite (NaCl · 2H2O), was investigated in high ionic strength multi-electrolyte solutions at below-zero temperatures to examine their dissolution-precipitation dynamics in the sea ice brine system. The gypsum dynamics in sea ice were found to be highly dependent on the solubilities of mirabilite and hydrohalite between 0.2 and - 25.0 ° C. The hydrohalite solubility between - 14.3 and - 25.0 ° C exhibits a sharp change between undersaturated and supersaturated conditions, and, thus, distinct temperature fields of precipitation and dissolution in sea ice, with saturation occurring at - 22.9 ° C. The sharp changes in hydrohalite solubility at temperatures ⩽-22.9 °C result from the formation of an ice-hydrohalite aggregate, which alters the structural properties of brine inclusions in cold sea ice. Favourable conditions for gypsum precipitation in sea ice were determined to occur in the region of hydrohalite precipitation below - 22.9 ° C and in conditions of metastable mirabilite supersaturation above - 22.9 ° C (investigated at - 7.1 and - 8.2 ° C here) but gypsum is unlikely to persist once mirabilite forms at these warmer (>-22.9 °C) temperatures. The dynamics of hydrohalite in sea ice brines based on its experimental solubility were consistent with that derived from thermodynamic modelling (FREZCHEM code) but the gypsum dynamics derived from the code were inconsistent with that indicated by its

  5. Ice Waves

    NASA Image and Video Library

    2017-09-27

    Ice Waves - May 21st, 2001 Description: Along the southeastern coast of Greenland, an intricate network of fjords funnels glacial ice to the Atlantic Ocean. During the summer melting season, newly calved icebergs join slabs of sea ice and older, weathered bergs in an offshore slurry that the southward-flowing East Greenland Current sometimes swirls into stunning shapes. Exposed rock of mountain peaks, tinted red in this image, hints at a hidden landscape. Credit: USGS/NASA/Landsat 7 To learn more about the Landsat satellite go to: landsat.gsfc.nasa.gov/ NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook

  6. Breakup of Pack Ice, Antarctic Ice Shelf

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Breakup of Pack Ice along the periphery of the Antarctic Ice Shelf (53.5S, 3.0E) produced this mosaic of ice floes off the Antarctic Ice Shelf. Strong offshore winds, probably associated with strong katabatic downdrafts from the interior of the continent, are seen peeling off the edges of the ice shelf into long filamets of sea ice, icebergs, bergy bits and growlers to flow northward into the South Atlantic Ocean. 53.5S, 3.0E

  7. Hydrogen systems

    SciTech Connect

    Veziroglu, T.N.; Zhu, Y.; Bao, D.

    1985-01-01

    This book presents the papers given at a symposium on hydrogen fuels. Topics considered at the symposium included hydrogen from fossil fuels, electrolysis, photolytic hydrogen generation, thermochemical and photochemical methods of hydrogen production, catalysts, hydrogen biosynthesis, novel and hybrid methods of hydrogen production, storage and handling, metal hydrides and their characteristics, utilization, hydrogen fueled internal combustion engines, hydrogen gas turbines, hydrogen flow and heat transfer, fuel cells, synthetic hydrocarbon fuels, thermal energy transfer, hydrogen purification, research programs, economics, primary energy sources, environmental impacts, and safety.

  8. Thermodynamics of ice nucleation in liquid water.

    PubMed

    Wang, Xin; Wang, Shui; Xu, Qinzhi; Mi, Jianguo

    2015-01-29

    We present a density functional theory approach to investigate the thermodynamics of ice nucleation in supercooled water. Within the theoretical framework, the free-energy functional is constructed by the direct correlation function of oxygen-oxygen of the equilibrium water, and the function is derived from the reference interaction site model in consideration of the interactions of hydrogen-hydrogen, hydrogen-oxygen, and oxygen-oxygen. The equilibrium properties, including vapor-liquid and liquid-solid phase equilibria, local structure of hexagonal ice crystal, and interfacial structure and tension of water-ice are calculated in advance to examine the basis for the theory. The predicted phase equilibria and the water-ice surface tension are in good agreement with the experimental data. In particular, the critical nucleus radius and free-energy barrier during ice nucleation are predicted. The critical radius is similar to the simulation value, suggesting that the current theoretical approach is suitable in describing the thermodynamic properties of ice crystallization.

  9. Geomorphic Evidence for Martian Ground Ice and Climate Change

    NASA Technical Reports Server (NTRS)

    Kanner, L. C.; Allen, C. C.; Bell, M. S.

    2004-01-01

    Recent results from gamma-ray and neutron spectrometers on Mars Odyssey indicate the presence of a hydrogen-rich layer tens of centimeters thick in the uppermost meter in high latitudes (>60 ) on Mars. This hydrogen-rich layer correlates to regions of ice stability. Thus, the subsurface hydrogen is thought to be water ice constituting 35+/- 15% by weight near the north and south polar regions. We refine the location of subsurface ice deposits at a < km scale by combining existing spectroscopy data with surface features indicative of subsurface ice. A positive correlation between spectroscopy data and geomorphic ice indicators has been previously suggested for high latitudes. Here we expand the comparative study to northern mid latitudes (30 deg.N- 65 deg.N).

  10. Geomorphic Evidence for Martian Ground Ice and Climate Change

    NASA Technical Reports Server (NTRS)

    Kanner, L. C.; Allen, C. C.; Bell, M. S.

    2004-01-01

    Recent results from gamma-ray and neutron spectrometers on Mars Odyssey indicate the presence of a hydrogen-rich layer tens of centimeters thick in the uppermost meter in high latitudes (greater than 60) on Mars. This hydrogen-rich layer correlates to regions of ice stability. Thus, the subsurface hydrogen is thought to be water ice constituting 35 plus or minus 15% by weight near the north and south polar regions. We refine the location of subsurface ice deposits at a less than km scale by combining existing spectroscopy data with surface features indicative of subsurface ice. A positive correlation between spectroscopy data and geomorphic ice indicators has been previously suggested for high latitudes. Here we expand the comparative study to northern mid latitudes (30 degrees N- 65 degrees N).

  11. Geomorphic Evidence for Martian Ground Ice and Climate Change

    NASA Technical Reports Server (NTRS)

    Kanner, L. C.; Allen, C. C.; Bell, M. S.

    2004-01-01

    Recent results from gamma-ray and neutron spectrometers on Mars Odyssey indicate the presence of a hydrogen-rich layer tens of centimeters thick in the uppermost meter in high latitudes (greater than 60) on Mars. This hydrogen-rich layer correlates to regions of ice stability. Thus, the subsurface hydrogen is thought to be water ice constituting 35 plus or minus 15% by weight near the north and south polar regions. We refine the location of subsurface ice deposits at a less than km scale by combining existing spectroscopy data with surface features indicative of subsurface ice. A positive correlation between spectroscopy data and geomorphic ice indicators has been previously suggested for high latitudes. Here we expand the comparative study to northern mid latitudes (30 degrees N- 65 degrees N).

  12. Geomorphic Evidence for Martian Ground Ice and Climate Change

    NASA Technical Reports Server (NTRS)

    Kanner, L. C.; Allen, C. C.; Bell, M. S.

    2004-01-01

    Recent results from gamma-ray and neutron spectrometers on Mars Odyssey indicate the presence of a hydrogen-rich layer tens of centimeters thick in the uppermost meter in high latitudes (>60 ) on Mars. This hydrogen-rich layer correlates to regions of ice stability. Thus, the subsurface hydrogen is thought to be water ice constituting 35+/- 15% by weight near the north and south polar regions. We refine the location of subsurface ice deposits at a < km scale by combining existing spectroscopy data with surface features indicative of subsurface ice. A positive correlation between spectroscopy data and geomorphic ice indicators has been previously suggested for high latitudes. Here we expand the comparative study to northern mid latitudes (30 deg.N- 65 deg.N).

  13. Ice-binding proteins: a remarkable diversity of structures for stopping and starting ice growth.

    PubMed

    Davies, Peter L

    2014-11-01

    Antifreeze proteins (AFPs) were discovered in marine fishes that need protection from freezing. These ice-binding proteins (IBPs) are widespread across biological kingdoms, and their functions include freeze tolerance and ice adhesion. Consistent with recent independent evolution, AFPs have remarkably diverse folds that rely heavily on hydrogen- and disulfide-bonding. AFP ice-binding sites are typically flat, extensive, relatively hydrophobic, and are thought to organize water into an ice-like arrangement that merges and freezes with the quasi-liquid layer next to the ice lattice. In this article, the roles, properties, and structure-function interactions of IBPs are reviewed, and their relationship to ice nucleation proteins, which promote freezing at high subzero temperatures, is explored. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Simple computer experiments with ordinary ice.

    PubMed

    Shulgin, Ivan L; Ruckenstein, Eli

    2006-10-26

    Simple computer experiments in which various fractions of hydrogen bonds (H-bonds) in ice are allowed to break are presented in this paper. First, up to six million water molecules were used to build an artificial piece of ordinary hexagonal ice in the form of a cube, a monolayer, a bilayer, a trilayer, and thicker layers. Then, certain percentages of H-bonds were broken, and the obtained structures were examined. It was found that a large percentage of H-bonds must be broken in order to completely fragment the network of ice into clusters. For a cubic piece of ice, which can be considered bulk ordinary ice, this percentage is equal to 61% H-bonds, a figure also predicted as the threshold of the percolation theory for ice. If, as usually assumed, 13-20% of H-bonds are broken during melting (estimates based on the comparison between the heats of melting and sublimation of ice), the H-bond network of ice is not fragmented and the overwhelming majority of water molecules (>99%) belong to a new, distorted but unbroken network. The percentage of broken H-bonds required for full fragmentation of layers increases with the number of layers and reaches the bulk value of ice for 5-8 layers. This value is consistent with the literature observation that films of water thicker than 20-30 A have properties close to those of the bulk structure.

  15. Partially ordered state of ice XV

    PubMed Central

    Komatsu, K.; Noritake, F.; Machida, S.; Sano-Furukawa, A.; Hattori, T.; Yamane, R.; Kagi, H.

    2016-01-01

    Most ice polymorphs have order–disorder “pairs” in terms of hydrogen positions, which contributes to the rich variety of ice polymorphs; in fact, three recently discovered polymorphs— ices XIII, XIV, and XV—are ordered counter forms to already identified disordered phases. Despite the considerable effort to understand order–disorder transition in ice crystals, there is an inconsistency among the various experiments and calculations for ice XV, the ordered counter form of ice VI, i.e., neutron diffraction observations suggest antiferroelectrically ordered structures, which disagree with dielectric measurement and theoretical studies, implying ferroelectrically ordered structures. Here we investigate in-situ neutron diffraction measurements and density functional theory calculations to revisit the structure and stability of ice XV. We find that none of the completely ordered configurations are particular favored; instead, partially ordered states are established as a mixture of ordered domains in disordered ice VI. This scenario in which several kinds of ordered configuration coexist dispels the contradictions in previous studies. It means that the order–disorder pairs in ice polymorphs are not one-to-one correspondent pairs but rather have one-to-n correspondence, where there are n possible configurations at finite temperature. PMID:27375120

  16. Thin Ice Films at Mineral Surfaces.

    PubMed

    Yeşilbaş, Merve; Boily, Jean-François

    2016-07-21

    Ice films formed at mineral surfaces are of widespread occurrence in nature and are involved in numerous atmospheric and terrestrial processes. In this study, we studied thin ice films at surfaces of 19 synthetic and natural mineral samples of varied structure and composition. These thin films were formed by sublimation of thicker hexagonal ice overlayers mostly produced by freezing wet pastes of mineral particles at -10 and -50 °C. Vibration spectroscopy revealed that thin ice films contained smaller populations of strongly hydrogen-bonded water molecules than in hexagonal ice and liquid water. Thin ice films at the surfaces of the majority of minerals considered in this work [i.e., metal (oxy)(hydr)oxides, phyllosilicates, silicates, volcanic ash, Arizona Test Dust] produced intense O-H stretching bands at ∼3400 cm(-1), attenuated bands at ∼3200 cm(-1), and liquid-water-like bending band at ∼1640 cm(-1) irrespective of structure and composition. Illite, a nonexpandable phyllosilicate, is the only mineral that stabilized a form of ice that was strongly resilient to sublimation in temperatures as low as -50 °C. As mineral-bound thin ice films are the substrates upon which ice grows from water vapor or aqueous solutions, this study provides new constraints from which their natural occurrences can be understood.

  17. Partially ordered state of ice XV

    NASA Astrophysics Data System (ADS)

    Komatsu, K.; Noritake, F.; Machida, S.; Sano-Furukawa, A.; Hattori, T.; Yamane, R.; Kagi, H.

    2016-07-01

    Most ice polymorphs have order-disorder “pairs” in terms of hydrogen positions, which contributes to the rich variety of ice polymorphs; in fact, three recently discovered polymorphs— ices XIII, XIV, and XV—are ordered counter forms to already identified disordered phases. Despite the considerable effort to understand order-disorder transition in ice crystals, there is an inconsistency among the various experiments and calculations for ice XV, the ordered counter form of ice VI, i.e., neutron diffraction observations suggest antiferroelectrically ordered structures, which disagree with dielectric measurement and theoretical studies, implying ferroelectrically ordered structures. Here we investigate in-situ neutron diffraction measurements and density functional theory calculations to revisit the structure and stability of ice XV. We find that none of the completely ordered configurations are particular favored; instead, partially ordered states are established as a mixture of ordered domains in disordered ice VI. This scenario in which several kinds of ordered configuration coexist dispels the contradictions in previous studies. It means that the order-disorder pairs in ice polymorphs are not one-to-one correspondent pairs but rather have one-to-n correspondence, where there are n possible configurations at finite temperature.

  18. "Solid State" Chemistry in Titan Ice Particles

    NASA Image and Video Library

    2016-09-20

    Scientists from NASA's Cassini mission suggested in a 2016 paper that the appearance of a cloud of dicyanoacetylene (C4N2) ice in Titan's stratosphere may be explained by "solid-state" chemistry taking place inside ice particles. The particles have an inner layer of cyanoacetylene (HC3N) ice coated with an outer layer of hydrogen cyanide (HCN) ice. Left: When a photon of light penetrates the outer shell, it can interact with the HC3N, producing C3N and H. Center: The C3N then reacts with HCN to yield C4N2 and H (shown at right). Another reaction that also yields C4N2 ice and H also is possible, but the researchers think it is less likely. http://photojournal.jpl.nasa.gov/catalog/PIA20715

  19. Magnetic monopoles in quantum spin ice

    NASA Astrophysics Data System (ADS)

    Petrova, Olga; Moessner, Roderich; Sondhi, Shivaji

    Typical spin ice materials can be modeled using classical Ising spins. The geometric frustration of the pyrochlore lattice causes the spins to satisfy ice rules, whereas a violation of the ice constraint constitutes an excitation. Flipping adjacent spins fractionalizes the excitation into two monopoles. Long range dipolar spin couplings result in Coulombic interactions between charges, while the leading effect of quantum fluctuations is to provide the monopoles with kinetic energy. We study the effect of adding quantum dynamics to spin ice, a well-known classical spin liquid, with a particular view of how to best detect its presence in experiment. For the weakly diluted quantum spin ice, we find a particularly crisp phenomenon, namely, the emergence of hydrogenic excited states in which a magnetic monopole is bound to a vacancy at various distances.

  20. Experimental investigations of the hydrogen addition effects on diesel engine performance

    NASA Astrophysics Data System (ADS)

    Mirica, I.; Pana, C.; Negurescu, N.; Cernat, A.; Nutu, C.

    2016-08-01

    In the global content regarding the impact on the environmental of the gases emissions resulted from the fossil fuels combustion, an interest aspect discussed on the 21st Session of the Conference of the Parties from the 2015 Paris Climate Conference and the gradual diminution of the worldwide oil reserves contribute to the necessity of searching of alternative energy from durable and renewable resources. At the use of hydrogen as addition in air to diesel engine, the level of CO, HC and smoke from the exhaust gases will decrease due to the improvement of the combustion process. At low and medium partial loads and low hydrogen energetic ratios used the NOX emission level can decrease comparative to classic diesel engine. The hydrogen use as fuel for diesel engine leads to the improving of the energetic and emissions performance of the engine due to combustion improvement and reduction of carbon content. The paper presents, in a comparative way, results of the experimental researches carried on a truck compression ignition engine fuelled with diesel fuel and with hydrogen diesel fuel and hydrogen as addition in air at different engine operation regimes. The results obtained during experimental investigations show better energetic and pollution performance of the engine fuelled with hydrogen as addition in air comparative to classic engine. The influences of hydrogen addition on engine operation are shown.

  1. Square ice in graphene nanocapillaries.

    PubMed

    Algara-Siller, G; Lehtinen, O; Wang, F C; Nair, R R; Kaiser, U; Wu, H A; Geim, A K; Grigorieva, I V

    2015-03-26

    Bulk water exists in many forms, including liquid, vapour and numerous crystalline and amorphous phases of ice, with hexagonal ice being responsible for the fascinating variety of snowflakes. Much less noticeable but equally ubiquitous is water adsorbed at interfaces and confined in microscopic pores. Such low-dimensional water determines aspects of various phenomena in materials science, geology, biology, tribology and nanotechnology. Theory suggests many possible phases for adsorbed and confined water, but it has proved challenging to assess its crystal structure experimentally. Here we report high-resolution electron microscopy imaging of water locked between two graphene sheets, an archetypal example of hydrophobic confinement. The observations show that the nanoconfined water at room temperature forms 'square ice'--a phase having symmetry qualitatively different from the conventional tetrahedral geometry of hydrogen bonding between water molecules. Square ice has a high packing density with a lattice constant of 2.83 Å and can assemble in bilayer and trilayer crystallites. Molecular dynamics simulations indicate that square ice should be present inside hydrophobic nanochannels independently of their exact atomic nature.

  2. Square ice in graphene nanocapillaries

    NASA Astrophysics Data System (ADS)

    Algara-Siller, G.; Lehtinen, O.; Wang, F. C.; Nair, R. R.; Kaiser, U.; Wu, H. A.; Geim, A. K.; Grigorieva, I. V.

    2015-03-01

    Bulk water exists in many forms, including liquid, vapour and numerous crystalline and amorphous phases of ice, with hexagonal ice being responsible for the fascinating variety of snowflakes. Much less noticeable but equally ubiquitous is water adsorbed at interfaces and confined in microscopic pores. Such low-dimensional water determines aspects of various phenomena in materials science, geology, biology, tribology and nanotechnology. Theory suggests many possible phases for adsorbed and confined water, but it has proved challenging to assess its crystal structure experimentally. Here we report high-resolution electron microscopy imaging of water locked between two graphene sheets, an archetypal example of hydrophobic confinement. The observations show that the nanoconfined water at room temperature forms `square ice'--a phase having symmetry qualitatively different from the conventional tetrahedral geometry of hydrogen bonding between water molecules. Square ice has a high packing density with a lattice constant of 2.83 Å and can assemble in bilayer and trilayer crystallites. Molecular dynamics simulations indicate that square ice should be present inside hydrophobic nanochannels independently of their exact atomic nature.

  3. Anchored Clathrate Waters Bind Antifreeze Proteins to Ice

    SciTech Connect

    C Garnham; R Campbell; P Davies

    2011-12-31

    The mechanism by which antifreeze proteins (AFPs) irreversibly bind to ice has not yet been resolved. The ice-binding site of an AFP is relatively hydrophobic, but also contains many potential hydrogen bond donors/acceptors. The extent to which hydrogen bonding and the hydrophobic effect contribute to ice binding has been debated for over 30 years. Here we have elucidated the ice-binding mechanism through solving the first crystal structure of an Antarctic bacterial AFP. This 34-kDa domain, the largest AFP structure determined to date, folds as a Ca{sup 2+}-bound parallel beta-helix with an extensive array of ice-like surface waters that are anchored via hydrogen bonds directly to the polypeptide backbone and adjacent side chains. These bound waters make an excellent three-dimensional match to both the primary prism and basal planes of ice and in effect provide an extensive X-ray crystallographic picture of the AFP{vert_ellipsis}ice interaction. This unobstructed view, free from crystal-packing artefacts, shows the contributions of both the hydrophobic effect and hydrogen bonding during AFP adsorption to ice. We term this mode of binding the 'anchored clathrate' mechanism of AFP action.

  4. Fast piezoelectric valve offering controlled gas injection in magnetically confined fusion plasmas for diagnostic and fuelling purposes

    NASA Astrophysics Data System (ADS)

    Griener, M.; Schmitz, O.; Bald, K.; Bösser, D.; Cavedon, M.; De Marné, P.; Eich, T.; Fuchert, G.; Herrmann, A.; Kappatou, A.; Lunt, T.; Rohde, V.; Schweer, B.; Sochor, M.; Stroth, U.; Terra, A.; Wolfrum, E.

    2017-03-01

    In magnetically confined fusion plasmas controlled gas injection is crucial for plasma fuelling as well as for various diagnostic applications such as active spectroscopy. We present a new, versatile system for the injection of collimated thermal gas beams into a vacuum chamber. This system consists of a gas pressure chamber, sealed by a custom made piezo valve towards a small capillary for gas injection. The setup can directly be placed inside of the vacuum chamber of fusion devices as it is small and immune against high magnetic fields. This enables gas injection close to the plasma periphery with high duty cycles and fast switch on/off times ≲ 0.5 ms. In this work, we present the design details of this new injection system and a systematic characterization of the beam properties as well as the gas flowrates which can be accomplished. The thin and relatively short capillary yields a small divergence of the injected beam with a half opening angle of 20°. The gas box is designed for pre-fill pressures of 10 mbar up to 100 bars and makes a flowrate accessible from 1018 part/s up to 1023 part/s. It hence is a versatile system for both diagnostic as well as fuelling applications. The implementation of this system in ASDEX Upgrade will be described and its application for line ratio spectroscopy on helium will be demonstrated on a selected example.

  5. Particulate emission characterization of a biodiesel vs diesel-fuelled compression ignition transport engine: A comparative study

    NASA Astrophysics Data System (ADS)

    Dwivedi, Dipankar; Agarwal, Avinash Kumar; Sharma, Mukesh

    This study was set out to characterize particulate emissions from diesel engines fuelled by (i) mineral diesel and (ii) B20 (a blend of 20% biodiesel with diesel); in terms of metals and benzene soluble organic fraction (BSOF), which is an indicator of toxicity and carcinogenicity. A medium duty, transport diesel engine (Mahindra MDI 3000) was operated at idling, 25%, 50%, 75% and rated load at maximum torque speed (1800 rpm) and samples of particulate were collected using a partial flow dilution tunnel for both fuels. Collected particulate samples were analyzed for their metal contents. In addition, metal contents in mineral diesel, biodiesel and lubricating oil were also measured to examine and correlate their (metals present in fuel) impact on particulate characteristics. Results indicated comparatively lower emission of particulate from B20-fuelled engine than diesel engine exhaust. Metals like Cd, Pb, Na, and Ni in particulate of B20 exhaust were lower than those in the exhaust of mineral diesel. However, emissions of Fe, Cr, Ni Zn, and Mg were higher in B20 exhaust. This reduction in particulate and metals in B20 exhaust was attributed to near absence of aromatic compounds, sulphur and relatively low levels of metals in biodiesel. However, benzene soluble organic fraction (BSOF) was found higher in B20 exhaust particulate compared to diesel exhaust particulate.

  6. Fast piezoelectric valve offering controlled gas injection in magnetically confined fusion plasmas for diagnostic and fuelling purposes.

    PubMed

    Griener, M; Schmitz, O; Bald, K; Bösser, D; Cavedon, M; De Marné, P; Eich, T; Fuchert, G; Herrmann, A; Kappatou, A; Lunt, T; Rohde, V; Schweer, B; Sochor, M; Stroth, U; Terra, A; Wolfrum, E

    2017-03-01

    In magnetically confined fusion plasmas controlled gas injection is crucial for plasma fuelling as well as for various diagnostic applications such as active spectroscopy. We present a new, versatile system for the injection of collimated thermal gas beams into a vacuum chamber. This system consists of a gas pressure chamber, sealed by a custom made piezo valve towards a small capillary for gas injection. The setup can directly be placed inside of the vacuum chamber of fusion devices as it is small and immune against high magnetic fields. This enables gas injection close to the plasma periphery with high duty cycles and fast switch on/off times ≲ 0.5 ms. In this work, we present the design details of this new injection system and a systematic characterization of the beam properties as well as the gas flowrates which can be accomplished. The thin and relatively short capillary yields a small divergence of the injected beam with a half opening angle of 20°. The gas box is designed for pre-fill pressures of 10 mbar up to 100 bars and makes a flowrate accessible from 10(18) part/s up to 10(23) part/s. It hence is a versatile system for both diagnostic as well as fuelling applications. The implementation of this system in ASDEX Upgrade will be described and its application for line ratio spectroscopy on helium will be demonstrated on a selected example.

  7. Detroit Commuter Hydrogen Project

    SciTech Connect

    Brooks, Jerry; Prebo, Brendan

    2010-07-31

    This project was undertaken to demonstrate the viability of using hydrogen as a fuel in an internal combustion engine vehicle for use as a part of a mass transit system. The advantages of hydrogen as a fuel include renew-ability, minimal environmental impact on air quality and the environment, and potential to reduce dependence on foreign energy sources for the transportation sector. Recognizing the potential for the hydrogen fuel concept, the Southeast Michigan Congress of Governments (SEMCOG) determined to consider it in the study of a proposed regional mass transit rail system for southeast Michigan. SEMCOG wanted to evaluate the feasibility of using hydrogen fueled internal combustion engine (H2ICE) vehicles in shuttle buses to connect the Detroit Metro Airport to a proposed, nearby rail station. Shuttle buses are in current use on the airport for passenger parking and inter-terminal transport. This duty cycle is well suited to the application of hydrogen fuel at this time because of the ability to re-fuel vehicles at a single nearby facility, overcoming the challenge of restricted fuel availability in the undeveloped hydrogen fuel infrastructure. A cooperative agreement between SEMCOG and the DOE was initiated and two H2ICE buses were placed in regular passenger service on March 29, 2009 and operated for six months in regular passenger service. The buses were developed and built by the Ford Motor Company. Wayne County Airport Authority provided the location for the demonstration with the airport transportation contractor, Metro Cars Inc. operating the buses. The buses were built on Ford E450 chassis and incorporated a modified a 6.8L V-10 engine with specially designed supercharger, fuel rails and injectors among other sophisticated control systems. Up to 30 kg of on-board gaseous hydrogen were stored in a modular six tank, 350 bar (5000 psi) system to provide a 150 mile driving range. The bus chassis and body were configured to carry nine passengers with

  8. Hydrogen sensor

    DOEpatents

    Duan, Yixiang; Jia, Quanxi; Cao, Wenqing

    2010-11-23

    A hydrogen sensor for detecting/quantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites hydrogen from a gas sample and produces light emission from excited hydrogen. A power supply provides power to the microplasma generator, and a spectrometer generates an emission spectrum from the light emission. A programmable computer is adapted for determining whether or not the gas sample includes hydrogen, and for quantitating the amount of hydrogen and/or hydrogen isotopes are present in the gas sample.

  9. Hydrogen peroxide on the surface of Europa

    USGS Publications Warehouse

    Carlson, R.W.; Anderson, M.S.; Johnson, R.E.; Smythe, W.D.; Hendrix, A.R.; Barth, C.A.; Soderblom, L.A.; Hansen, G.B.; McCord, T.B.; Dalton, J.B.; Clark, R.N.; Shirley, J.H.; Ocampo, A.C.; Matson, D.L.

    1999-01-01

    Spatially resolved infrared and ultraviolet wavelength spectra of Europa's leading, anti-jovian quadrant observed from the Galileo spacecraft show absorption features resulting from hydrogen peroxide. Comparisons with laboratory measurements indicate surface hydrogen peroxide concentrations of about 0.13 percent, by number, relative to water ice. The inferred abundance is consistent with radiolytic production of hydrogen peroxide by intense energetic particle bombardment and demonstrates that Europa's surface chemistry is dominated by radiolysis.

  10. Hydrogen peroxide on the surface of Europa.

    PubMed

    Carlson, R W; Anderson, M S; Johnson, R E; Smythe, W D; Hendrix, A R; Barth, C A; Soderblom, L A; Hansen, G B; McCord, T B; Dalton, J B; Clark, R N; Shirley, J H; Ocampo, A C; Matson, D L

    1999-03-26

    Spatially resolved infrared and ultraviolet wavelength spectra of Europa's leading, anti-jovian quadrant observed from the Galileo spacecraft show absorption features resulting from hydrogen peroxide. Comparisons with laboratory measurements indicate surface hydrogen peroxide concentrations of about 0.13 percent, by number, relative to water ice. The inferred abundance is consistent with radiolytic production of hydrogen peroxide by intense energetic particle bombardment and demonstrates that Europa's surface chemistry is dominated by radiolysis.

  11. AGN fuelling: Bridging Large and Small Scales - Overlapping Inflows as Catalysts of Accretion

    NASA Astrophysics Data System (ADS)

    Manuel Carmona Loaiza, Juan Manuel

    2015-05-01

    One of the biggest challenges in understanding the fuelling of supermassive black holes in active galactic nuclei (AGN) is not on accounting for the source of fuel, as a galaxy can comfortably supply the required mass budget, but on its actual delivery. While a clear picture has been developed for the large scale (~ kpc) down to the intermediate one (~ 100 pc), and for the smallest scales (~ 0.1 pc) where an accretion disc likely forms, a bridge that has proven difficult to build is that between ~ 100 pc and ~ 0.1 pc. It is feared that gas at these scales might still retain enough angular momentum and settle into a larger scale disc with very low or no inflow to form or replenish the inner accretion disc (on ~ 0.01 pc scales). In this Thesis, I present numerical simulations in which a rotating gaseous shell flows towards a SMBH because of its lack of rotational support. As inflow proceeds, gas from the shell impacts an already present nuclear (~ 10pc) disc. The cancellation of angular momentum and redistribution of gas, due to the misalignment between the angular momentum of the shell and that of the disc, is studied in this scenario. The underlying hypothesis is that even if transport of angular momentum at these scales may be inefficient, the interaction of an inflow with a nuclear disc would still provide a mechanism to bring mass inwards because of the cancellation of angular momentum. I quantify the amount of gas such a cancellation would bring to the central parsec under different circumstances: Co- and counter-rotation between the disc and the shell and the presence or absence of an initial turbulent kick; I also discuss the impact of self gravity in our simulations. The scenario we study is highly idealized and designed to capture the specific outcomes produced by the mechanism proposed. I find that angular momentum cancellation and redistribution via hydrodynamical shocks leads to sub-pc inflows enhanced by more than 2-3 orders of magnitude. In all of our

  12. Hydrogenation apparatus

    DOEpatents

    Friedman, Joseph [Encino, CA; Oberg, Carl L [Canoga Park, CA; Russell, Larry H [Agoura, CA

    1981-01-01

    Hydrogenation reaction apparatus comprising a housing having walls which define a reaction zone and conduits for introducing streams of hydrogen and oxygen into the reaction zone, the oxygen being introduced into a central portion of the hydrogen stream to maintain a boundary layer of hydrogen along the walls of the reaction zone. A portion of the hydrogen and all of the oxygen react to produce a heated gas stream having a temperature within the range of from 1100.degree. to 1900.degree. C., while the boundary layer of hydrogen maintains the wall temperature at a substantially lower temperature. The heated gas stream is introduced into a hydrogenation reaction zone and provides the source of heat and hydrogen for a hydrogenation reaction. There also is provided means for quenching the products of the hydrogenation reaction. The present invention is particularly suitable for the hydrogenation of low-value solid carbonaceous materials to provide high yields of more valuable liquid and gaseous products.

  13. Meth (Crank, Ice) Facts

    MedlinePlus

    ... Crank, Ice) Facts Meth (Crank, Ice) Facts Listen Methamphetamine—meth for short—is a white, bitter powder. ... names for meth are: Crank Ice Crystal Glass Chalk PDF File: EasyToRead_MethFacts_012017.pdf In This ...

  14. Disappearing Ice

    NASA Technical Reports Server (NTRS)

    2008-01-01

    These images were acquired by NASA's Phoenix Mars Lander's Surface Stereo Imager on the 21st and 25th days of the mission, or Sols 20 and 24 (June 15 and 18, 2008).

    These images show sublimation of ice in the trench informally called 'Dodo-Goldilocks' over the course of four days.

    In the lower left corner, lumps disappear, similar to the process of evaporation.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  15. Disappearing Ice

    NASA Technical Reports Server (NTRS)

    2008-01-01

    These images were acquired by NASA's Phoenix Mars Lander's Surface Stereo Imager on the 21st and 25th days of the mission, or Sols 20 and 24 (June 15 and 18, 2008).

    These images show sublimation of ice in the trench informally called 'Dodo-Goldilocks' over the course of four days.

    In the lower left corner, lumps disappear, similar to the process of evaporation.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  16. Anchored clathrate waters bind antifreeze proteins to ice.

    PubMed

    Garnham, Christopher P; Campbell, Robert L; Davies, Peter L

    2011-05-03

    The mechanism by which antifreeze proteins (AFPs) irreversibly bind to ice has not yet been resolved. The ice-binding site of an AFP is relatively hydrophobic, but also contains many potential hydrogen bond donors/acceptors. The extent to which hydrogen bonding and the hydrophobic effect contribute to ice binding has been debated for over 30 years. Here we have elucidated the ice-binding mechanism through solving the first crystal structure of an Antarctic bacterial AFP. This 34-kDa domain, the largest AFP structure determined to date, folds as a Ca(2+)-bound parallel beta-helix with an extensive array of ice-like surface waters that are anchored via hydrogen bonds directly to the polypeptide backbone and adjacent side chains. These bound waters make an excellent three-dimensional match to both the primary prism and basal planes of ice and in effect provide an extensive X-ray crystallographic picture of the AFPice interaction. This unobstructed view, free from crystal-packing artefacts, shows the contributions of both the hydrophobic effect and hydrogen bonding during AFP adsorption to ice. We term this mode of binding the "anchored clathrate" mechanism of AFP action.

  17. The normal modes of lattice vibrations of ice XI

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Wang, Zhe; Lu, Ying-Bo; Ding, Zheng-Wen

    2016-07-01

    The vibrational spectrum of ice XI at thermal wavelengths using the CASTEP code, a first-principles simulation method, is investigated. A dual-track approach is constructed to verify the validity for the computational phonon spectrum: collate the simulated spectrum with inelastic neutron scattering experiments and assign the photon scattering peaks according to the calculated normal vibration frequencies. The 33 optical normal vibrations at the Brillouin center are illustrated definitely from the ab initio outcomes. The depolarizing field effect of the hydrogen bond vibrations at frequencies of 229 cm-1 and 310 cm-1 is found to agree well with the LST relationship. It is a convincing evidence to manifest the LO-TO splitting of hydrogen bonds in ice crystal. We attribute the two hydrogen bond peaks to the depolarization effect and apply this viewpoint to ordinary ice phase, ice Ih, which is difficult to analyse their vibration modes due to proton disorder.

  18. The normal modes of lattice vibrations of ice XI

    PubMed Central

    Zhang, Peng; Wang, Zhe; Lu, Ying-Bo; Ding, Zheng-Wen

    2016-01-01

    The vibrational spectrum of ice XI at thermal wavelengths using the CASTEP code, a first-principles simulation method, is investigated. A dual-track approach is constructed to verify the validity for the computational phonon spectrum: collate the simulated spectrum with inelastic neutron scattering experiments and assign the photon scattering peaks according to the calculated normal vibration frequencies. The 33 optical normal vibrations at the Brillouin center are illustrated definitely from the ab initio outcomes. The depolarizing field effect of the hydrogen bond vibrations at frequencies of 229 cm−1 and 310 cm−1 is found to agree well with the LST relationship. It is a convincing evidence to manifest the LO-TO splitting of hydrogen bonds in ice crystal. We attribute the two hydrogen bond peaks to the depolarization effect and apply this viewpoint to ordinary ice phase, ice Ih, which is difficult to analyse their vibration modes due to proton disorder. PMID:27375199

  19. Comparing in Cylinder Pressure Modelling of a DI Diesel Engine Fuelled on Alternative Fuel Using Two Tabulated Chemistry Approaches

    PubMed Central

    Ngayihi Abbe, Claude Valery; Nzengwa, Robert; Danwe, Raidandi

    2014-01-01

    The present work presents the comparative simulation of a diesel engine fuelled on diesel fuel and biodiesel fuel. Two models, based on tabulated chemistry, were implemented for the simulation purpose and results were compared with experimental data obtained from a single cylinder diesel engine. The first model is a single zone model based on the Krieger and Bormann combustion model while the second model is a two-zone model based on Olikara and Bormann combustion model. It was shown that both models can predict well the engine's in-cylinder pressure as well as its overall performances. The second model showed a better accuracy than the first, while the first model was easier to implement and faster to compute. It was found that the first method was better suited for real time engine control and monitoring while the second one was better suited for engine design and emission prediction. PMID:27379306

  20. Comparing in Cylinder Pressure Modelling of a DI Diesel Engine Fuelled on Alternative Fuel Using Two Tabulated Chemistry Approaches.

    PubMed

    Ngayihi Abbe, Claude Valery; Nzengwa, Robert; Danwe, Raidandi

    2014-01-01

    The present work presents the comparative simulation of a diesel engine fuelled on diesel fuel and biodiesel fuel. Two models, based on tabulated chemistry, were implemented for the simulation purpose and results were compared with experimental data obtained from a single cylinder diesel engine. The first model is a single zone model based on the Krieger and Bormann combustion model while the second model is a two-zone model based on Olikara and Bormann combustion model. It was shown that both models can predict well the engine's in-cylinder pressure as well as its overall performances. The second model showed a better accuracy than the first, while the first model was easier to implement and faster to compute. It was found that the first method was better suited for real time engine control and monitoring while the second one was better suited for engine design and emission prediction.

  1. The phase diagram of high-pressure superionic ice

    NASA Astrophysics Data System (ADS)

    Sun, Jiming; Clark, Bryan K.; Torquato, Salvatore; Car, Roberto

    2015-08-01

    Superionic ice is a special group of ice phases at high temperature and pressure, which may exist in ice-rich planets and exoplanets. In superionic ice liquid hydrogen coexists with a crystalline oxygen sublattice. At high pressures, the properties of superionic ice are largely unknown. Here we report evidence that from 280 GPa to 1.3 TPa, there are several competing phases within the close-packed oxygen sublattice. At even higher pressure, the close-packed structure of the oxygen sublattice becomes unstable to a new unusual superionic phase in which the oxygen sublattice takes the P21/c symmetry. We also discover that higher pressure phases have lower transition temperatures. The diffusive hydrogen in the P21/c superionic phase shows strong anisotropic behaviour and forms a quasi-two-dimensional liquid. The ionic conductivity changes abruptly in the solid to close-packed superionic phase transition, but continuously in the solid to P21/c superionic phase transition.

  2. Sea-ice software: ICEMAN

    NASA Technical Reports Server (NTRS)

    Lee, Meemong

    1988-01-01

    An oceanographer's work bench which provides tools for ice data display, ice type classification, global and local ice motion analysis, and data enhancing is presented. The user interface; ice texture analysis; and ice motion analysis are described.

  3. Structures of surface and interface of amorphous ice

    NASA Astrophysics Data System (ADS)

    Kumagai, Yu; Ikeda-Fukazawa, Tomoko

    2017-06-01

    To investigate the surface structure, we performed molecular dynamics calculations of amorphous ice. The result shows that a low density layer, which forms a few hydrogen bonds with weaker strength, exists in the surface. Furthermore, the sintering processes were simulated to investigate the structure of grain boundary formed from the adsorption of two surfaces. The result indicates that a low density region exists in a boundary between amorphous ice grains. The structures of surface and interface of amorphous ice have important implications for adsorption, diffusion, and chemical reaction in ice grains of interstellar molecular clouds.

  4. Ice Front at Venable Ice Shelf

    NASA Image and Video Library

    2013-06-13

    This photo, taken onboard the Chilean Navy P3 aircraft, shows the ice front of Venable Ice Shelf, West Antarctica, in October 2008. It is an example of a small-size ice shelf that is a large melt water producer.

  5. Ice Crystal Icing Research at NASA

    NASA Technical Reports Server (NTRS)

    Flegel, Ashlie B.

    2017-01-01

    Ice crystals found at high altitude near convective clouds are known to cause jet engine power-loss events. These events occur due to ice crystals entering a propulsion systems core flowpath and accreting ice resulting in events such as uncommanded loss of thrust (rollback), engine stall, surge, and damage due to ice shedding. As part of a community with a growing need to understand the underlying physics of ice crystal icing, NASA has been performing experimental efforts aimed at providing datasets that can be used to generate models to predict the ice accretion inside current and future engine designs. Fundamental icing physics studies on particle impacts, accretion on a single airfoil, and ice accretions observed during a rollback event inside a full-scale engine in the Propulsion Systems Laboratory are summarized. Low fidelity code development using the results from the engine tests which identify key parameters for ice accretion risk and the development of high fidelity codes are described. These activities have been conducted internal to NASA and through collaboration efforts with industry, academia, and other government agencies. The details of the research activities and progress made to date in addressing ice crystal icing research challenges are discussed.

  6. Does migratory distance affect fuelling in a medium-distance passerine migrant?: results from direct and step-wise simulated magnetic displacements

    PubMed Central

    Ilieva, Mihaela; Bianco, Giuseppe; Åkesson, Susanne

    2016-01-01

    ABSTRACT In birds, fat accumulation before and during migration has been shown to be endogenously controlled and tuned by, among other factors, the Earth's magnetic field. However, our knowledge about the influence of the geomagnetic field on the fuelling in migrating birds is still limited to just a few nocturnally migrating passerine species. In order to study if variations of the magnetic field can also influence the fuelling of both day- and night-migrating passerines, we caught first-year dunnocks (Prunella modularis) and subjected them to three magnetic field conditions simulated by a system of magnetic coils: (1) local geomagnetic field of southern Sweden, (2) magnetic field corresponding to the centre of the expected wintering area, and (3) magnetic field met at the northern limit of the species' breeding distribution. We did not find a difference in mass increase between the birds kept in a local magnetic field and a field resembling their wintering area, irrespectively of the mode of magnetic displacement, i.e. direct or step-wise. However, the dunnocks magnetically displaced north showed a lower rate of fuelling in comparison to the control group, probably due to elevated activity. Compared with previous studies, our results suggest that the fuelling response to magnetic displacements during the migration period is specific to the eco-physiological situation. Future studies need to address if there is an effect of magnetic field manipulation on the level of migratory activity in dunnocks and how widespread the influence of local geomagnetic field parameters is on fuelling decisions in different bird species, which have different migratory strategies, distances and migration history. PMID:26883627

  7. Scrambled Ice

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This complex area on the side of Europa which faces away from Jupiter shows several types of features which are formed by disruptions of Europa's icy crust. North is to the top of the image, taken by NASA's Galileo spacecraft, and the Sun illuminates the surface from the left. The prominent wide, dark bands are up to 20 kilometers (12 miles) wide and over 50 kilometers (30 miles) long. They are believed to have formed when Europa's icy crust fractured, separated and filled in with darker, 'dirtier' ice or slush from below. A relatively rare type of feature on Europa is the 15-kilometer-diameter (9.3-mile) impact crater in the lower left corner. The small number of impact craters on Europa's surface is an indication of its relatively young age. A region of chaotic terrain south of this impact crater contains crustal plates which have broken apart and rafted into new positions. Some of these 'ice rafts' are nearly 1 kilometer (about half a mile) across. Other regions of chaotic terrain are visible and indicate heating and disruption of Europa's icy crust from below. The youngest features in this scene are the long, narrow cracks in the ice which cut across all other features. One of these cracks is about 30 kilometers (18 miles) to the right of the impact crater and extends for hundreds of miles from the top to the bottom of the image.

    The image, centered near 23 degrees south latitude and 179 degrees longitude, covers an area about 240 by 215 kilometers (150 by 130 miles) across. The finest details that can be discerned in this picture are about 460 meters (500 yards) across. The image was taken as Galileo flew by Europa on March 29, 1998. The image was taken by the onboard solid state imaging system camera from an altitude of 23,000 kilometers (14,000 miles).

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech

  8. Scrambled Ice

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This complex area on the side of Europa which faces away from Jupiter shows several types of features which are formed by disruptions of Europa's icy crust. North is to the top of the image, taken by NASA's Galileo spacecraft, and the Sun illuminates the surface from the left. The prominent wide, dark bands are up to 20 kilometers (12 miles) wide and over 50 kilometers (30 miles) long. They are believed to have formed when Europa's icy crust fractured, separated and filled in with darker, 'dirtier' ice or slush from below. A relatively rare type of feature on Europa is the 15-kilometer-diameter (9.3-mile) impact crater in the lower left corner. The small number of impact craters on Europa's surface is an indication of its relatively young age. A region of chaotic terrain south of this impact crater contains crustal plates which have broken apart and rafted into new positions. Some of these 'ice rafts' are nearly 1 kilometer (about half a mile) across. Other regions of chaotic terrain are visible and indicate heating and disruption of Europa's icy crust from below. The youngest features in this scene are the long, narrow cracks in the ice which cut across all other features. One of these cracks is about 30 kilometers (18 miles) to the right of the impact crater and extends for hundreds of miles from the top to the bottom of the image.

    The image, centered near 23 degrees south latitude and 179 degrees longitude, covers an area about 240 by 215 kilometers (150 by 130 miles) across. The finest details that can be discerned in this picture are about 460 meters (500 yards) across. The image was taken as Galileo flew by Europa on March 29, 1998. The image was taken by the onboard solid state imaging system camera from an altitude of 23,000 kilometers (14,000 miles).

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech

  9. Glacier-derived permafrost ground ice, Bylot Island, Nunavut

    NASA Astrophysics Data System (ADS)

    Coulombe, S.; Fortier, D.; Lacelle, D.; Godin, E.; Veillette, A.

    2014-12-01

    Massive icy bodies are important components of permafrost geosystems. In situ freezing of water in the ground by ice-segregation processes forms most of these icy bodies. Other hypotheses for the origin of massive ice include the burial of ice (e.g. glacier, snow, lake, river, sea). The analysis of ground-ice characteristics can give numerous clues about the geomorphologic processes and the thermal conditions at the time when permafrost developed. Massive underground ice therefore shows a great potential as a natural archive of the earth's past climate. Identifying the origin of massive ice is a challenge for permafrost science since the different types of massive ice remain difficult to distinguish on the sole basis of field observations. There is actually no clear method to accurately assess the origin of massive ice and identification criteria need to be defined. The present study uses physico-chemical techniques to characterize buried glacier ice observed on Bylot Island, Nunavut. Combined to the analysis of cryostratigraphy, massive-ice cores crystallography and high-resolution imagery of the internal structure of the ice cores were obtained using micro-computed tomography techniques. These techniques are well suited for detailed descriptions (shape, size, orientation) of crystals, gas inclusions and sediment inclusions. Oxygen and hydrogen isotopes ratios of massive-ice cores were also obtained using common equilibrium technique. Preliminary results suggest the occurrence of two types of buried massive-ice of glacial origin similar to those found on contemporary glaciers: 1) Englacial ice: clear to whitish ice, with large crystals (cm) and abundant gas bubbles at crystal intersections; 2) Basal glacier ice: ice-rich, banded, micro-suspended to suspended cryostructures and ice-rich lenticular to layered cryostructures, with small ice crystals (mm) and a few disseminated gas bubbles. Glacier-derived permafrost contains antegenetic ice, which is ice that

  10. The Many Faces of Ice and Nonlinear Interferometry

    NASA Astrophysics Data System (ADS)

    Shultz, Mary Jane

    Ice is likely the most ubiquitous solid in the Universe, yet even here on Earth its surface contains many mysteries. At atmospheric pressure, the stable form of ice is hexagonal ice; known as Ih. This contribution will present data about (i) equilibrium growth at the ice-water interface, (ii) procedures to generate any targeted ice face, and (iii) vibrational spectra of the ice-air interface. Contrary to common belief, the stable ice-water interfaces does not consist of the basal face; rather it consists of pyramidal or prism faces. Growth results from a balance between the molecular density and the top half-bilayer configuration. Arguments reminiscent of Pauling's residual entropy of ice generate the configurational contribution. Prism faces are favored due to greater entropy. Ice grows cryptomorphologically: the macroscopic sample does not reveal the crystalline axes. Locating the crystal axes as well as generating authentic faces for fundamental studies use a combination of the birefringence of ice and etch profiles. Surface vibrational spectroscopy supports an ice model consisting of extended, cooperative motion and beyond-bonding-partner determination of hydrogen bond strength. The surface vibrational spectrum is probed with the nonlinear spectroscopy sum frequency generation (SFG). Currently, nonlinearity limits use of SFG to diagnose interactions. This limitation can be circumvented by measuring the full, complex spectrum. We will report initial results from a newly invented nonlinear interferometer that reveals the full complex spectrum.

  11. Ice sheet margins and ice shelves

    NASA Technical Reports Server (NTRS)

    Thomas, R. H.

    1984-01-01

    The effect of climate warming on the size of ice sheet margins in polar regions is considered. Particular attention is given to the possibility of a rapid response to warming on the order of tens to hundreds of years. It is found that the early response of the polar regions to climate warming would be an increase in the area of summer melt on the ice sheets and ice shelves. For sufficiently large warming (5-10C) the delayed effects would include the breakup of the ice shelves by an increase in ice drainage rates, particularly from the ice sheets. On the basis of published data for periodic changes in the thickness and melting rates of the marine ice sheets and fjord glaciers in Greenland and Antarctica, it is shown that the rate of retreat (or advance) of an ice sheet is primarily determined by: bedrock topography; the basal conditions of the grounded ice sheet; and the ice shelf condition downstream of the grounding line. A program of satellite and ground measurements to monitor the state of ice sheet equilibrium is recommended.

  12. Brash Ice Behavior.

    DTIC Science & Technology

    1981-05-01

    34 cannonball " brash ice should not be confused is slush ice or mush ice. Slush is defined as accumulation of snow in water, but either of these terms...that " cannonball ice" consists of perfect spheres, but rather that the pieces are relatively spherical, their three dimensions being comparable

  13. Modern Airfoil Ice Accretions

    NASA Technical Reports Server (NTRS)

    Addy, Harold E., Jr.; Potapczuk, Mark G.; Sheldon, David W.

    1997-01-01

    This report presents results from the first icing tests performed in the Modem Airfoils program. Two airfoils have been subjected to icing tests in the NASA Lewis Icing Research Tunnel (IRT). Both airfoils were two dimensional airfoils; one was representative of a commercial transport airfoil while the other was representative of a business jet airfoil. The icing test conditions were selected from the FAR Appendix C envelopes. Effects on aerodynamic performance are presented including the effects of varying amounts of glaze ice as well as the effects of approximately the same amounts of glaze, mixed, and rime ice. Actual ice shapes obtained in these tests are also presented for these cases. In addition, comparisons are shown between ice shapes from the tests and ice shapes predicted by the computer code, LEWICE for similar conditions. Significant results from the tests are that relatively small amounts of ice can have nearly as much effect on airfoil lift coefficient as much greater amounts of ice and that glaze ice usually has a more detrimental effect than either rime or mixed ice. LEWICE predictions of ice shapes, in general, compared reasonably well with ice shapes obtained in the IRT, although differences in details of the ice shapes were observed.

  14. Dynamics enhanced by HCl doping triggers full Pauling entropy release at the ice XII–XIV transition

    PubMed Central

    Köster, K. W.; Fuentes-Landete, V.; Raidt, A.; Seidl, M.; Gainaru, C.; Loerting, T.; Böhmer, R.

    2015-01-01

    The pressure–temperature phase diagram of ice displays a perplexing variety of structurally distinct phases. In the century-long history of scientific research on ice, the proton-ordered ice phases numbered XIII through XV were discovered only recently. Despite considerable effort, none of the transitions leading from the low-temperature ordered ices VIII, IX, XI, XIII, XIV and XV to their high-temperature disordered counterparts were experimentally found to display the full Pauling entropy. Here we report calorimetric measurements on suitably high-pressure-treated, hydrogen chloride-doped ice XIV that demonstrate just this at the transition to ice XII. Dielectric spectroscopy on undoped and on variously doped ice XII crystals reveals that addition of hydrogen chloride, the agent triggering complete proton order in ice XIV, enhances the precursor dynamics strongest. These discoveries provide new insights into the puzzling observation that different dopants trigger the formation of different proton-ordered ice phases. PMID:26076946

  15. Dynamics enhanced by HCl doping triggers full Pauling entropy release at the ice XII-XIV transition

    NASA Astrophysics Data System (ADS)

    Köster, K. W.; Fuentes-Landete, V.; Raidt, A.; Seidl, M.; Gainaru, C.; Loerting, T.; Böhmer, R.

    2015-06-01

    The pressure-temperature phase diagram of ice displays a perplexing variety of structurally distinct phases. In the century-long history of scientific research on ice, the proton-ordered ice phases numbered XIII through XV were discovered only recently. Despite considerable effort, none of the transitions leading from the low-temperature ordered ices VIII, IX, XI, XIII, XIV and XV to their high-temperature disordered counterparts were experimentally found to display the full Pauling entropy. Here we report calorimetric measurements on suitably high-pressure-treated, hydrogen chloride-doped ice XIV that demonstrate just this at the transition to ice XII. Dielectric spectroscopy on undoped and on variously doped ice XII crystals reveals that addition of hydrogen chloride, the agent triggering complete proton order in ice XIV, enhances the precursor dynamics strongest. These discoveries provide new insights into the puzzling observation that different dopants trigger the formation of different proton-ordered ice phases.

  16. Dynamics enhanced by HCl doping triggers full Pauling entropy release at the ice XII-XIV transition.

    PubMed

    Köster, K W; Fuentes-Landete, V; Raidt, A; Seidl, M; Gainaru, C; Loerting, T; Böhmer, R

    2015-06-16

    The pressure-temperature phase diagram of ice displays a perplexing variety of structurally distinct phases. In the century-long history of scientific research on ice, the proton-ordered ice phases numbered XIII through XV were discovered only recently. Despite considerable effort, none of the transitions leading from the low-temperature ordered ices VIII, IX, XI, XIII, XIV and XV to their high-temperature disordered counterparts were experimentally found to display the full Pauling entropy. Here we report calorimetric measurements on suitably high-pressure-treated, hydrogen chloride-doped ice XIV that demonstrate just this at the transition to ice XII. Dielectric spectroscopy on undoped and on variously doped ice XII crystals reveals that addition of hydrogen chloride, the agent triggering complete proton order in ice XIV, enhances the precursor dynamics strongest. These discoveries provide new insights into the puzzling observation that different dopants trigger the formation of different proton-ordered ice phases.

  17. Hydrogen-based power generation from bioethanol steam reforming

    SciTech Connect

    Tasnadi-Asztalos, Zs. Cormos, C. C. Agachi, P. S.

    2015-12-23

    This paper is evaluating two power generation concepts based on hydrogen produced from bioethanol steam reforming at industrial scale without and with carbon capture. The power generation from bioethanol conversion is based on two important steps: hydrogen production from bioethanol catalytic steam reforming and electricity generation using a hydrogen-fuelled gas turbine. As carbon capture method to be assessed in hydrogen-based power generation from bioethanol steam reforming, the gas-liquid absorption using methyl-di-ethanol-amine (MDEA) was used. Bioethanol is a renewable energy carrier mainly produced from biomass fermentation. Steam reforming of bioethanol (SRE) provides a promising method for hydrogen and power production from renewable resources. SRE is performed at high temperatures (e.g. 800-900°C) to reduce the reforming by-products (e.g. ethane, ethene). The power generation from hydrogen was done with M701G2 gas turbine (334 MW net power output). Hydrogen was obtained through catalytic steam reforming of bioethanol without and with carbon capture. For the evaluated plant concepts the following key performance indicators were assessed: fuel consumption, gross and net power outputs, net electrical efficiency, ancillary consumptions, carbon capture rate, specific CO{sub 2} emission etc. As the results show, the power generation based on bioethanol conversion has high energy efficiency and low carbon footprint.

  18. Hydrogen-based power generation from bioethanol steam reforming

    NASA Astrophysics Data System (ADS)

    Tasnadi-Asztalos, Zs.; Cormos, C. C.; Agachi, P. S.

    2015-12-01

    This paper is evaluating two power generation concepts based on hydrogen produced from bioethanol steam reforming at industrial scale without and with carbon capture. The power generation from bioethanol conversion is based on two important steps: hydrogen production from bioethanol catalytic steam reforming and electricity generation using a hydrogen-fuelled gas turbine. As carbon capture method to be assessed in hydrogen-based power generation from bioethanol steam reforming, the gas-liquid absorption using methyl-di-ethanol-amine (MDEA) was used. Bioethanol is a renewable energy carrier mainly produced from biomass fermentation. Steam reforming of bioethanol (SRE) provides a promising method for hydrogen and power production from renewable resources. SRE is performed at high temperatures (e.g. 800-900°C) to reduce the reforming by-products (e.g. ethane, ethene). The power generation from hydrogen was done with M701G2 gas turbine (334 MW net power output). Hydrogen was obtained through catalytic steam reforming of bioethanol without and with carbon capture. For the evaluated plant concepts the following key performance indicators were assessed: fuel consumption, gross and net power outputs, net electrical efficiency, ancillary consumptions, carbon capture rate, specific CO2 emission etc. As the results show, the power generation based on bioethanol conversion has high energy efficiency and low carbon footprint.

  19. Icing: Accretion, Detection, Protection

    NASA Technical Reports Server (NTRS)

    Reinmann, John J.

    1994-01-01

    The global aircraft industry and its regulatory agencies are currently involved in three major icing efforts: ground icing; advanced technologies for in-flight icing; and tailplane icing. These three major icing topics correspondingly support the three major segments of any aircraft flight profile: takeoff; cruise and hold; and approach and land. This lecture addressess these three topics in the same sequence as they appear in flight, starting with ground deicing, followed by advanced technologies for in-flight ice protection, and ending with tailplane icing.

  20. Wilkins Ice Shelf

    NASA Image and Video Library

    2009-04-20

    The Wilkins Ice Shelf, as seen by NASA Terra spacecraft, on the western side of the Antarctic Peninsula, experienced multiple disintegration events in 2008. By the beginning of 2009, a narrow ice bridge was all that remained to connect the ice shelf to ice fragments fringing nearby Charcot Island. That bridge gave way in early April 2009. Days after the ice bridge rupture, on April 12, 2009, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite acquired this image of the southern base of the ice bridge, where it connected with the remnant ice shelf. Although the ice bridge has played a role in stabilizing the ice fragments in the region, its rupture doesn't guarantee the ice will immediately move away. http://photojournal.jpl.nasa.gov/catalog/PIA11991

  1. Hydrogen generator

    SciTech Connect

    Adlhart, O. J.

    1985-04-23

    This disclosure relates to a replaceable cartridge hydrogen generator of the type which relies at least partially on the process of anodic corrosion to produce hydrogen. A drum contains a plurality of the cartridges.

  2. High productivity in an ice melting hot spot at the eastern boundary of the Weddell Gyre

    NASA Astrophysics Data System (ADS)

    Geibert, W.; Assmy, P.; Bakker, D. C. E.; Hanfland, C.; Hoppema, M.; Pichevin, L. E.; Schröder, M.; Schwarz, J. N.; Stimac, I.; Usbeck, R.; Webb, A.

    2010-09-01

    The Southern Ocean (SO) plays a key role in modulating atmospheric CO2 via physical and biological processes. However, over much of the SO, biological activity is iron-limited. New in situ data from the Antarctic zone south of Africa in a region centered at ˜20°E-25°E reveal a previously overlooked region of high primary production, comparable in size to the northwest African upwelling region. Here, sea ice together with enclosed icebergs is channeled by prevailing winds to the eastern boundary of the Weddell Gyre, where a sharp transition to warmer waters causes melting. This cumulative melting provides a steady source of iron, fuelling an intense phytoplankton bloom that is not fully captured by monthly satellite production estimates. These findings imply that future changes in sea-ice cover and dynamics could have a significant effect on carbon sequestration in the SO.

  3. Frazil Ice Dynamics,

    DTIC Science & Technology

    1984-04-01

    necessary nd Identify by block number) Crystal growth Ice prevention Crystallization Mathematical analysis Frazil ice Ice *O Ice formation 120. ABSTRACT... growth - and nucleation of new crystals are the major parameters in these equations. Expressions tor the growth rate ot frazil ice N. V, crystals are...described. The growth rate along the major axis is controlled by heat transfer. The heat transfer coefficient * O is a function of crystal size, the fluid

  4. Hydrogen Generator

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A unit for producing hydrogen on site is used by a New Jersey Electric Company. The hydrogen is used as a coolant for the station's large generator; on-site production eliminates the need for weekly hydrogen deliveries. High purity hydrogen is generated by water electrolysis. The electrolyte is solid plastic and the control system is electronic. The technology was originally developed for the Gemini spacecraft.

  5. Hydrogen Production

    SciTech Connect

    2014-09-01

    This 2-page fact sheet provides a brief introduction to hydrogen production technologies. Intended for a non-technical audience, it explains how different resources and processes can be used to produce hydrogen. It includes an overview of research goals as well as “quick facts” about hydrogen energy resources and production technologies.

  6. Hydrogen Storage

    SciTech Connect

    2008-11-01

    This 2-page fact sheet provides a brief introduction to hydrogen storage technologies. Intended for a non-technical audience, it explains the different ways in which hydrogen can be stored, as well as the technical challenges and research goals for storing hydrogen on board a vehicle.

  7. Ice Clouds

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Heavy water ice clouds almost completely obscure the surface in Vastitas Borealis.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

    Image information: VIS instrument. Latitude 69.5, Longitude 283.6 East (76.4 West). 19 meter/pixel resolution.

  8. Arctic ice islands

    SciTech Connect

    Sackinger, W.M.; Jeffries, M.O.; Lu, M.C.; Li, F.C.

    1988-01-01

    The development of offshore oil and gas resources in the Arctic waters of Alaska requires offshore structures which successfully resist the lateral forces due to moving, drifting ice. Ice islands are floating, a tabular icebergs, up to 60 meters thick, of solid ice throughout their thickness. The ice islands are thus regarded as the strongest ice features in the Arctic; fixed offshore structures which can directly withstand the impact of ice islands are possible but in some locations may be so expensive as to make oilfield development uneconomic. The resolution of the ice island problem requires two research steps: (1) calculation of the probability of interaction between an ice island and an offshore structure in a given region; and (2) if the probability if sufficiently large, then the study of possible interactions between ice island and structure, to discover mitigative measures to deal with the moving ice island. The ice island research conducted during the 1983-1988 interval, which is summarized in this report, was concerned with the first step. Monte Carlo simulations of ice island generation and movement suggest that ice island lifetimes range from 0 to 70 years, and that 85% of the lifetimes are less then 35 years. The simulation shows a mean value of 18 ice islands present at any time in the Arctic Ocean, with a 90% probability of less than 30 ice islands. At this time, approximately 34 ice islands are known, from observations, to exist in the Arctic Ocean, not including the 10-meter thick class of ice islands. Return interval plots from the simulation show that coastal zones of the Beaufort and Chukchi Seas, already leased for oil development, have ice island recurrences of 10 to 100 years. This implies that the ice island hazard must be considered thoroughly, and appropriate safety measures adopted, when offshore oil production plans are formulated for the Alaskan Arctic offshore. 132 refs., 161 figs., 17 tabs.

  9. SPINS-IND: Pellet injector for fuelling of magnetically confined fusion systems

    NASA Astrophysics Data System (ADS)

    Gangradey, R.; Mishra, J.; Mukherjee, S.; Panchal, P.; Nayak, P.; Agarwal, J.; Saxena, Y. C.

    2017-06-01

    Using a Gifford-McMahon cycle cryocooler based refrigeration system, a single barrel hydrogen pellet injection (SPINS-IND) system is indigenously developed at Institute for Plasma Research, India. The injector is based on a pipe gun concept, where a pellet formed in situ in the gun barrel is accelerated to high speed using high pressure light propellant gas. The pellet size is decided by considering the Greenwald density limit and its speed is decided by considering a neutral gas shielding model based scaling law. The pellet shape is cylindrical of dimension (1.6 mm ℓ × 1.8 mm φ). For pellet ejection and acceleration, a fast opening valve of short opening duration is installed at the breech of the barrel. A three-stage differential pumping system is used to restrict the flow of the propellant gas into the plasma vacuum vessel. Diagnostic systems such as light gate and fast imaging camera (240 000 frames/s) are employed to measure the pellet speed and size, respectively. A trigger circuit and a programmable logic controller based integrated control system developed on LabVIEW enables to control the pellet injector remotely. Using helium as a propellant gas, the pellet speed is varied in the range 650 m/s-800 m/s. The reliability of pellet formation and ejection is found to be more than 95%. This paper describes the details of SPINS-IND and its test results.

  10. Hydrogenation apparatus

    DOEpatents

    Friedman, J.; Oberg, C. L.; Russell, L. H.

    1981-06-23

    Hydrogenation reaction apparatus is described comprising a housing having walls which define a reaction zone and conduits for introducing streams of hydrogen and oxygen into the reaction zone, the oxygen being introduced into a central portion of the hydrogen stream to maintain a boundary layer of hydrogen along the walls of the reaction zone. A portion of the hydrogen and all of the oxygen react to produce a heated gas stream having a temperature within the range of from 1,100 to 1,900 C, while the boundary layer of hydrogen maintains the wall temperature at a substantially lower temperature. The heated gas stream is introduced into a hydrogenation reaction zone and provides the source of heat and hydrogen for a hydrogenation reaction. There also is provided means for quenching the products of the hydrogenation reaction. The present invention is particularly suitable for the hydrogenation of low-value solid carbonaceous materials to provide high yields of more valuable liquid and gaseous products. 2 figs.

  11. Sea Ice Ecosystems

    NASA Astrophysics Data System (ADS)

    Arrigo, Kevin R.

    2014-01-01

    Polar sea ice is one of the largest ecosystems on Earth. The liquid brine fraction of the ice matrix is home to a diverse array of organisms, ranging from tiny archaea to larger fish and invertebrates. These organisms can tolerate high brine salinity and low temperature but do best when conditions are milder. Thriving ice algal communities, generally dominated by diatoms, live at the ice/water interface and in recently flooded surface and interior layers, especially during spring, when temperatures begin to rise. Although protists dominate the sea ice biomass, heterotrophic bacteria are also abundant. The sea ice ecosystem provides food for a host of animals, with crustaceans being the most conspicuous. Uneaten organic matter from the ice sinks through the water column and feeds benthic ecosystems. As sea ice extent declines, ice algae likely contribute a shrinking fraction of the total amount of organic matter produced in polar waters.

  12. Stochastic ice stream dynamics

    PubMed Central

    Bertagni, Matteo Bernard; Ridolfi, Luca

    2016-01-01

    Ice streams are narrow corridors of fast-flowing ice that constitute the arterial drainage network of ice sheets. Therefore, changes in ice stream flow are key to understanding paleoclimate, sea level changes, and rapid disintegration of ice sheets during deglaciation. The dynamics of ice flow are tightly coupled to the climate system through atmospheric temperature and snow recharge, which are known exhibit stochastic variability. Here we focus on the interplay between stochastic climate forcing and ice stream temporal dynamics. Our work demonstrates that realistic climate fluctuations are able to (i) induce the coexistence of dynamic behaviors that would be incompatible in a purely deterministic system and (ii) drive ice stream flow away from the regime expected in a steady climate. We conclude that environmental noise appears to be crucial to interpreting the past behavior of ice sheets, as well as to predicting their future evolution. PMID:27457960

  13. Stochastic ice stream dynamics.

    PubMed

    Mantelli, Elisa; Bertagni, Matteo Bernard; Ridolfi, Luca

    2016-08-09

    Ice streams are narrow corridors of fast-flowing ice that constitute the arterial drainage network of ice sheets. Therefore, changes in ice stream flow are key to understanding paleoclimate, sea level changes, and rapid disintegration of ice sheets during deglaciation. The dynamics of ice flow are tightly coupled to the climate system through atmospheric temperature and snow recharge, which are known exhibit stochastic variability. Here we focus on the interplay between stochastic climate forcing and ice stream temporal dynamics. Our work demonstrates that realistic climate fluctuations are able to (i) induce the coexistence of dynamic behaviors that would be incompatible in a purely deterministic system and (ii) drive ice stream flow away from the regime expected in a steady climate. We conclude that environmental noise appears to be crucial to interpreting the past behavior of ice sheets, as well as to predicting their future evolution.

  14. Stochastic ice stream dynamics

    NASA Astrophysics Data System (ADS)

    Mantelli, Elisa; Bertagni, Matteo Bernard; Ridolfi, Luca

    2016-08-01

    Ice streams are narrow corridors of fast-flowing ice that constitute the arterial drainage network of ice sheets. Therefore, changes in ice stream flow are key to understanding paleoclimate, sea level changes, and rapid disintegration of ice sheets during deglaciation. The dynamics of ice flow are tightly coupled to the climate system through atmospheric temperature and snow recharge, which are known exhibit stochastic variability. Here we focus on the interplay between stochastic climate forcing and ice stream temporal dynamics. Our work demonstrates that realistic climate fluctuations are able to (i) induce the coexistence of dynamic behaviors that would be incompatible in a purely deterministic system and (ii) drive ice stream flow away from the regime expected in a steady climate. We conclude that environmental noise appears to be crucial to interpreting the past behavior of ice sheets, as well as to predicting their future evolution.

  15. Iced-airfoil aerodynamics

    NASA Astrophysics Data System (ADS)

    Bragg, M. B.; Broeren, A. P.; Blumenthal, L. A.

    2005-07-01

    Past research on airfoil aerodynamics in icing are reviewed. This review emphasizes the time period after the 1978 NASA Lewis workshop that initiated the modern icing research program at NASA and the current period after the 1994 ATR accident where aerodynamics research has been more aircraft safety focused. Research pre-1978 is also briefly reviewed. Following this review, our current knowledge of iced airfoil aerodynamics is presented from a flowfield-physics perspective. This article identifies four classes of ice accretions: roughness, horn ice, streamwise ice, and spanwise-ridge ice. For each class, the key flowfield features such as flowfield separation and reattachment are discussed and how these contribute to the known aerodynamic effects of these ice shapes. Finally Reynolds number and Mach number effects on iced-airfoil aerodynamics are summarized.

  16. Sea ice ecosystems.

    PubMed

    Arrigo, Kevin R

    2014-01-01

    Polar sea ice is one of the largest ecosystems on Earth. The liquid brine fraction of the ice matrix is home to a diverse array of organisms, ranging from tiny archaea to larger fish and invertebrates. These organisms can tolerate high brine salinity and low temperature but do best when conditions are milder. Thriving ice algal communities, generally dominated by diatoms, live at the ice/water interface and in recently flooded surface and interior layers, especially during spring, when temperatures begin to rise. Although protists dominate the sea ice biomass, heterotrophic bacteria are also abundant. The sea ice ecosystem provides food for a host of animals, with crustaceans being the most conspicuous. Uneaten organic matter from the ice sinks through the water column and feeds benthic ecosystems. As sea ice extent declines, ice algae likely contribute a shrinking fraction of the total amount of organic matter produced in polar waters.

  17. Top Sounder Ice Penetration

    NASA Astrophysics Data System (ADS)

    Porter, D. L.; Goemmer, S. A.; Sweeney, J. H.

    2014-12-01

    Ice draft measurements are made as part of normal operations for all US Navy submarines operating in the Arctic Ocean. The submarine ice draft data are unique in providing high resolution measurements over long transects of the ice covered ocean. The data has been used to document a multidecadal drop in ice thickness, and for validating and improving numerical sea-ice models. A submarine upward-looking sonar draft measurement is made by a sonar transducer mounted in the sail or deck of the submarine. An acoustic beam is transmitted upward through the water column, reflecting off the bottom of the sea ice and returning to the transducer. Ice thickness is estimated as the difference between the ship's depth (measured by pressure) and the acoustic range to the bottom of the ice estimated from the travel time of the sonar pulse. Digital recording systems can provide the return off the water-ice interface as well as returns that have penetrated the ice. Typically, only the first return from the ice hull is analyzed. Information regarding ice flow interstitial layers provides ice age information and may possibly be derived with the entire return signal. The approach being investigated is similar to that used in measuring bottom sediment layers and will involve measuring the echo level from the first interface, solving the reflection loss from that transmission, and employing reflection loss versus impedance mismatch to ascertain ice structure information.

  18. Geological Evidence for Recent Ice Ages on Mars

    NASA Astrophysics Data System (ADS)

    Head, J. W.; Mustard, J. F.; Kreslavsky, M. A.; Milliken, R. E.; Marchant, D. R.

    2003-12-01

    A primary cause of ice ages on Earth is orbital forcing from variations in orbital parameters of the planet. On Mars such variations are known to be much more extreme. Recent exploration of Mars has revealed abundant water ice in the near-surface at high latitudes in both hemispheres. We outline evidence that these near-surface, water-ice rich mantling deposits represent a mixture of ice and dust that is layered, meters thick, and latitude dependent. These units were formed during a geologically recent major martian ice age, and were emplaced in response to the changing stability of water ice and dust on the surface during variations in orbital parameters. Evidence for these units include a smoothing of topography at subkilometer baselines from about 30o north and south latitudes to the poles, a distinctive dissected texture in MOC images in the +/-30o-60o latitude band, latitude-dependent sets of topographic characteristics and morphologic features (e.g., polygons, 'basketball' terrain texture, gullies, viscous flow features), and hydrogen concentrations consistent with the presence of abundant ice at shallow depths above 60o latitude. The most equatorward extent of these ice-rich deposits was emplaced down to latitudes equivalent to Saudi Arabia and the southern United States on Earth during the last major martian ice age, probably about 0.4-2.1 million years ago. Mars is currently in an inter-ice age period and the ice-rich deposits are presently undergoing reworking, degradation and retreat in response to the current stability relations of near-surface ice. Unlike Earth, martian ice ages are characterized by warmer climates in the polar regions and the enhanced role of atmospheric water ice and dust transport and deposition to produce widespread and relatively evenly distributed smooth deposits at mid-latitudes during obliquity maxima.

  19. Breakup of Pack Ice, Antarctic Ice Shelf

    NASA Image and Video Library

    1991-09-18

    STS048-152-007 (12-18 Sept 1991) --- The periphery of the Antarctic ice shelf and the Antarctic Peninsula were photographed by the STS 48 crew members. Strong offshore winds, probably associated with katabatic winds from the interior of the continent, are peeling off the edges of the ice shelf into ribbons of sea ice, icebergs, bergy bits and growlers into the cold waters of the circum-Antarctic southern ocean.

  20. Ross Ice Shelf, Antarctic Ice and Clouds

    NASA Technical Reports Server (NTRS)

    1991-01-01

    In this view of Antarctic ice and clouds, (56.5S, 152.0W), the Ross Ice Shelf of Antarctica is almost totally clear, showing stress cracks in the ice surface caused by wind and tidal drift. Clouds on the eastern edge of the picture are associated with an Antarctic cyclone. Winds stirred up these storms have been known to reach hurricane force.

  1. Reconstructing a hydrogen-driven microbial metabolic network in Opalinus Clay rock.

    PubMed

    Bagnoud, Alexandre; Chourey, Karuna; Hettich, Robert L; de Bruijn, Ino; Andersson, Anders F; Leupin, Olivier X; Schwyn, Bernhard; Bernier-Latmani, Rizlan

    2016-10-14

    The Opalinus Clay formation will host geological nuclear waste repositories in Switzerland. It is expected that gas pressure will build-up due to hydrogen production from steel corrosion, jeopardizing the integrity of the engineered barriers. In an in situ experiment located in the Mont Terri Underground Rock Laboratory, we demonstrate that hydrogen is consumed by microorganisms, fuelling a microbial community. Metagenomic binning and metaproteomic analysis of this deep subsurface community reveals a carbon cycle driven by autotrophic hydrogen oxidizers belonging to novel genera. Necromass is then processed by fermenters, followed by complete oxidation to carbon dioxide by heterotrophic sulfate-reducing bacteria, which closes the cycle. This microbial metabolic web can be integrated in the design of geological repositories to reduce pressure build-up. This study shows that Opalinus Clay harbours the potential for chemolithoautotrophic-based system, and provides a model of microbial carbon cycle in deep subsurface environments where hydrogen and sulfate are present.

  2. Reconstructing a hydrogen-driven microbial metabolic network in Opalinus Clay rock

    NASA Astrophysics Data System (ADS)

    Bagnoud, Alexandre; Chourey, Karuna; Hettich, Robert L.; de Bruijn, Ino; Andersson, Anders F.; Leupin, Olivier X.; Schwyn, Bernhard; Bernier-Latmani, Rizlan

    2016-10-01

    The Opalinus Clay formation will host geological nuclear waste repositories in Switzerland. It is expected that gas pressure will build-up due to hydrogen production from steel corrosion, jeopardizing the integrity of the engineered barriers. In an in situ experiment located in the Mont Terri Underground Rock Laboratory, we demonstrate that hydrogen is consumed by microorganisms, fuelling a microbial community. Metagenomic binning and metaproteomic analysis of this deep subsurface community reveals a carbon cycle driven by autotrophic hydrogen oxidizers belonging to novel genera. Necromass is then processed by fermenters, followed by complete oxidation to carbon dioxide by heterotrophic sulfate-reducing bacteria, which closes the cycle. This microbial metabolic web can be integrated in the design of geological repositories to reduce pressure build-up. This study shows that Opalinus Clay harbours the potential for chemolithoautotrophic-based system, and provides a model of microbial carbon cycle in deep subsurface environments where hydrogen and sulfate are present.

  3. Reconstructing a hydrogen-driven microbial metabolic network in Opalinus Clay rock

    PubMed Central

    Bagnoud, Alexandre; Chourey, Karuna; Hettich, Robert L.; de Bruijn, Ino; Andersson, Anders F.; Leupin, Olivier X.; Schwyn, Bernhard; Bernier-Latmani, Rizlan

    2016-01-01

    The Opalinus Clay formation will host geological nuclear waste repositories in Switzerland. It is expected that gas pressure will build-up due to hydrogen production from steel corrosion, jeopardizing the integrity of the engineered barriers. In an in situ experiment located in the Mont Terri Underground Rock Laboratory, we demonstrate that hydrogen is consumed by microorganisms, fuelling a microbial community. Metagenomic binning and metaproteomic analysis of this deep subsurface community reveals a carbon cycle driven by autotrophic hydrogen oxidizers belonging to novel genera. Necromass is then processed by fermenters, followed by complete oxidation to carbon dioxide by heterotrophic sulfate-reducing bacteria, which closes the cycle. This microbial metabolic web can be integrated in the design of geological repositories to reduce pressure build-up. This study shows that Opalinus Clay harbours the potential for chemolithoautotrophic-based system, and provides a model of microbial carbon cycle in deep subsurface environments where hydrogen and sulfate are present. PMID:27739431

  4. Synechocystis sp. PCC6803 metabolic models for the enhanced production of hydrogen.

    PubMed

    Montagud, Arnau; Gamermann, Daniel; Fernández de Córdoba, Pedro; Urchueguía, Javier F

    2015-06-01

    In the present economy, difficulties to access energy sources are real drawbacks to maintain our current lifestyle. In fact, increasing interests have been gathered around efficient strategies to use energy sources that do not generate high CO2 titers. Thus, science-funding agencies have invested more resources into research on hydrogen among other biofuels as interesting energy vectors. This article reviews present energy challenges and frames it into the present fuel usage landscape. Different strategies for hydrogen production are explained and evaluated. Focus is on biological hydrogen production; fermentation and photon-fuelled hydrogen production are compared. Mathematical models in biology can be used to assess, explore and design production strategies for industrially relevant metabolites, such as biofuels. We assess the diverse construction and uses of genome-scale metabolic models of cyanobacterium Synechocystis sp. PCC6803 to efficiently obtain biofuels. This organism has been studied as a potential photon-fuelled production platform for its ability to grow from carbon dioxide, water and photons, on simple culture media. Finally, we review studies that propose production strategies to weigh this organism's viability as a biofuel production platform. Overall, the work presented in this review unveils the industrial capabilities of cyanobacterium Synechocystis sp. PCC6803 to evolve interesting metabolites as a clean biofuel production platform.

  5. Dynamics of Ice/Water Confined in Nanoporous Alumina.

    PubMed

    Suzuki, Yasuhito; Steinhart, Martin; Graf, Robert; Butt, Hans-Jürgen; Floudas, George

    2015-11-19

    Dielectric (DS), IR spectroscopy, and (1)H MAS NMR are employed in the study of ice/water confined in nanoporous alumina with pore diameters ranging from 400 nm down to 25 nm. Within nanoporous alumina there is a transformation from heterogeneous nucleation of hexagonal ice in the larger pores to homogeneous nucleation of cubic ice in the smaller pores. DS and IR show excellent agreement in the temperature interval and pore size dependence of the transformation. DS further revealed two dynamic processes under confinement. The "fast" and "slow" processes with an Arrhenius temperature dependence are attributed to ice and supercooled water relaxation, respectively. The main relaxation process of ice under confinement ("slow" process) has an activation energy of 44 ± 2 kJ/mol. The latter is in agreement with the reported relaxation times and activation energy of cubic ice prepared following a completely different route (by pressure). (1)H MAS NMR provided new insight in the state of ice structures as well as of supercooled water. Under confinement, a layer of liquid-like water coexists with ice structures. In addition, both ice structures under confinement appear to be more ordered than bulk hexagonal ice. Supercooled water in the smaller pores is different from bulk water. It shows a shift of the signal toward higher chemical shift values which may suggest stronger hydrogen bonding between the water molecules or increasing interactions with the AAO walls.

  6. Nuclear Quantum Effects in Different Ice Phases

    NASA Astrophysics Data System (ADS)

    Fernandez-Serra, Marivi; Pamuk, Betul; Allen, Philip B.

    We have previously explained that the anomalous isotope effect in hexagonal ices is liked to the anticorrelation between the covalent OH bond and the hydrogen bond by using the quasiharmonic approximation combined with ab initio density functional theory. In this study, we show that similar physics plays a role in the isotope effect on temperature of the proton-order/disorder phase transition between ice XI and iceIh. By using a van der Waals density functional, we calculate a temperature difference between heavy and light ices of 6 K as compared to the experimental value of 4 K. Furthermore, we extend our study to analyze the zero-point effects in different ice phases and ice-like structures with different densities and crystal structures to understand how this can be linked to the anomalous isotope effect in liquid water. This work is supported by DOE Grants No. DE-FG02-09ER16052, No. DE-SC0003871 (M.V.F.S.), and No. DE-FG02-08ER46550 (P.B.A.) and the grant FIS2012-37549-C05 from the Spanish Ministry of Economy and Competitiveness.

  7. On Ultrafast Time-Domain TeraHertz Spectroscopy in the Condensed Phase: Linear Spectroscopic Measurements of Hydrogen-Bond Dynamics of Astrochemical Ice Analogs and Nonlinear TeraHertz Kerr Effect Measurements of Vibrational Quantum Beats

    NASA Astrophysics Data System (ADS)

    Allodi, Marco A.

    Much of the chemistry that affects life on planet Earth occurs in the condensed phase. The TeraHertz (THz) or far-infrared (far-IR) region of the electromagnetic spectrum (from 0.1 THz to 10 THz) has been shown to provide unique possibilities in the study of condensed-phase processes. The goal of this work is to expand the possibilities available in the THz region and undertake new investigations of fundamental interest to chemistry. Since we are fundamentally interested in condensed-phase processes, this thesis focuses on two areas where THz spectroscopy can provide new understanding: astrochemistry and solvation science. To advance these fields, we had to develop new instrumentation that would enable the experiments necessary to answer new questions in either astrochemistry or solvation science. We first developed a new experimental setup capable of studying astrochemical ice analogs in both the TeraHertz (THz), or far-Infrared (far-IR), region (0.3 - 7.5 THz; 10 - 250 wavenumbers) and the mid-IR (400 - 4000 wavenumbers). The importance of astrochemical ices lies in their key role in the formation of complex organic molecules, such as amino acids and sugars in space. Thus, the instruments are capable of performing variety of spectroscopic studies that can provide especially relevant laboratory data to support astronomical observations from telescopes such as the Herschel Space Telescope, the Stratospheric Observatory for Infrared Astronomy (SOFIA), and the Atacama Large Millimeter Array (ALMA). The experimental apparatus uses a THz time-domain spectrometer, with a 1750/875 nm plasma source and a GaP detector crystal, to cover the bandwidth mentioned above with 10 GHz (0.3 wavenumber) resolution. Using the above instrumentation, experimental spectra of astrochemical ice analogs of water and carbon dioxide in pure, mixed, and layered ices were collected at different temperatures under high-vacuum conditions with the goal of investigating the structure of the ice

  8. Conceptual design of thorium-fuelled Mitrailleuse accelerator-driven subcritical reactor using D-Be neutron source

    SciTech Connect

    Kokubo, Y.; Kamei, T.

    2012-07-01

    A distributed accelerator is a charged-particle accelerator that uses a new acceleration method based on repeated electrostatic acceleration. This method offers outstanding benefits not possible with the conventional radio-frequency acceleration method, including: (1) high acceleration efficiency, (2) large acceleration current, and (3) lower failure rate made possible by a fully solid-state acceleration field generation circuit. A 'Mitrailleuse Accelerator' is a product we have conceived to optimize this distributed accelerator technology for use with a high-strength neutron source. We have completed the conceptual design of a Mitrailleuse Accelerator and of a thorium-fuelled subcritical reactor driven by a Mitrailleuse Accelerator. This paper presents the conceptual design details and approach to implementing the subcritical reactor core. We will spend the next year or so on detailed design work, and then will start work on developing a prototype for demonstration. If there are no obstacles in setting up a development organization, we expect to finish verifying the prototype's performance by the third quarter of 2015. (authors)

  9. The Trivariate / Radio Optical X-Ray / Luminosity Function CD Galaxies - Part Two - the Fuelling of Radio Sources

    NASA Astrophysics Data System (ADS)

    Valentijn, E. A.; Bijleveld, W.

    1983-09-01

    In order to the test the hypothesis that radio sources in elliptical galaxies are fuelled by a fraction of accreted X-ray gas, a sample of 81 cD galaxies in clusters and 23 cD galaxies in poor groups is studied. Various subsamples have been defined (reviewed in Table t) according to the origin of the cD galaxy classification (optically, radio or X-ray selected). A catalogue is presented, listing the measured optical, radio and X-ray luminosities from various origins, but all transformed to a uniform and homogeneous system: optical Mv (38 kpc metric diameter), radio P1.4 (1.4 GHz monochromatic total radio power) and Lx (1 Mpc metric diameter 0.5-3.0 keV X-ray band). The three luminosity parameters are investigated for cross- correlations by studying power-power plots and by analysing how the integral radio luminosity function, expressed in fractions of radio detections (F(> P1.4)), depend on Mv and Lx. All three parameters are found to correlate with each other. F(> P1.4) increases with both increasing Lx and brighter Mv and Lx also increases with brighter Mv. The determinations of the different regression relations are internally consistent. The empirical conclusions from the analysis are: (i) The mean Mv of poor group cDs is 0.m4 fainter than the mean Mv of cluster cDs. (ii) The bivariate radio luminosity functions of both samples confirm, both in shape and in their dependence on Mv, those of normal and giant ellipticals. (iii) cD galaxies have an increasing probability to contain a central (≲ 28 kpc) radio source when the X-ray luminosity of their halo (˜1 Mpc diameter) increases. 50 ± 9% of Lx ≧ 1044 erg s-1 cDs have a central radio source with P1.4 ≧ 1024WHz-1, while 12+l2-5% of Lx < 1043 ergs-1 cDs have a radio source of that power. This important conclusion is summarised in Fig. 5. (iv) Comparing rich cluster cDs and poor group cDs a relation between Mv and Lx is found. This relation holds among the rich cluster cDs as well. The physical origins of

  10. Hydrogen Embrittlement

    NASA Technical Reports Server (NTRS)

    Woods, Stephen; Lee, Jonathan A.

    2016-01-01

    Hydrogen embrittlement (HE) is a process resulting in a decrease in the fracture toughness or ductility of a metal due to the presence of atomic hydrogen. In addition to pure hydrogen gas as a direct source for the absorption of atomic hydrogen, the damaging effect can manifest itself from other hydrogen-containing gas species such as hydrogen sulfide (H2S), hydrogen chloride (HCl), and hydrogen bromide (HBr) environments. It has been known that H2S environment may result in a much more severe condition of embrittlement than pure hydrogen gas (H2) for certain types of alloys at similar conditions of stress and gas pressure. The reduction of fracture loads can occur at levels well below the yield strength of the material. Hydrogen embrittlement is usually manifest in terms of singular sharp cracks, in contrast to the extensive branching observed for stress corrosion cracking. The initial crack openings and the local deformation associated with crack propagation may be so small that they are difficult to detect except in special nondestructive examinations. Cracks due to HE can grow rapidly with little macroscopic evidence of mechanical deformation in materials that are normally quite ductile. This Technical Memorandum presents a comprehensive review of experimental data for the effects of gaseous Hydrogen Environment Embrittlement (HEE) for several types of metallic materials. Common material screening methods are used to rate the hydrogen degradation of mechanical properties that occur while the material is under an applied stress and exposed to gaseous hydrogen as compared to air or helium, under slow strain rates (SSR) testing. Due to the simplicity and accelerated nature of these tests, the results expressed in terms of HEE index are not intended to necessarily represent true hydrogen service environment for long-term exposure, but rather to provide a practical approach for material screening, which is a useful concept to qualitatively evaluate the severity of

  11. Hydrogen Generator

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Another spinoff from spacecraft fuel cell technology is the portable hydrogen generator shown. Developed by General Electric Company, it is an aid to safer operation of systems that use hydrogen-for example, gas chromatographs, used in laboratory analysis of gases. or flame ionization detectors used as $ollution monitors. The generator eliminates the need for high-pressure hydrogen storage bottles, which can be a safety hazard, in laboratories, hospitals and industrial plants. The unit supplies high-purity hydrogen by means of an electrochemical process which separates the hydrogen and oxygen in distilled water. The oxygen is vented away and the hydrogen gas is stored within the unit for use as needed. GE's Aircraft Equipment Division is producing about 1,000 of the generators annually.

  12. Effect of salt on the H-bond symmetrization in ice

    PubMed Central

    Bove, Livia Eleonora; Gaal, Richard; Raza, Zamaan; Ludl, Adriaan-Alexander; Klotz, Stefan; Saitta, Antonino Marco; Goncharov, Alexander F.; Gillet, Philippe

    2015-01-01

    The richness of the phase diagram of water reduces drastically at very high pressures where only two molecular phases, proton-disordered ice VII and proton-ordered ice VIII, are known. Both phases transform to the centered hydrogen bond atomic phase ice X above about 60 GPa, i.e., at pressures experienced in the interior of large ice bodies in the universe, such as Saturn and Neptune, where nonmolecular ice is thought to be the most abundant phase of water. In this work, we investigate, by Raman spectroscopy up to megabar pressures and ab initio simulations, how the transformation of ice VII in ice X is affected by the presence of salt inclusions in the ice lattice. Considerable amounts of salt can be included in ice VII structure under pressure via rock–ice interaction at depth and processes occurring during planetary accretion. Our study reveals that the presence of salt hinders proton order and hydrogen bond symmetrization, and pushes ice VII to ice X transformation to higher and higher pressures as the concentration of salt is increased. PMID:26100876

  13. Dibble Ice Shelf

    NASA Image and Video Library

    2013-06-13

    This photo, aken onboard a National Science Foundation/NASA chartered Twin Otter aircraft, shows the ice front of Dibble Ice Shelf, East Antarctica, a significant melt water producer from the Wilkes Land region, East Antarctica.

  14. Greenland Ice Flow

    NASA Image and Video Library

    Greenland looks like a big pile of snow seen from space using a regular camera. But satellite radar interferometry helps us detect the motion of ice beneath the snow. Ice starts flowing from the fl...

  15. Looking for Ice

    NASA Image and Video Library

    2016-03-23

    This image was targeted for NASA Mars Reconnaissance Orbiter spacecraft to look at a candidate new crater on a lobate apron. Such aprons are often ice-rich, but the crater shows no bright material that would indicate ice.

  16. Hydrogen energy progress 5678

    SciTech Connect

    Veziroglu, T.N. )

    1990-01-01

    This book covers the proceedings of the 8th World Hydrogen Energy Conference, and includes: international hydrogen energy programs; hydrogen production; storage of hydrogen; hydrogen transmission and distribution; combustion systems/hydrogen engines; fuel cells; and synfuel production.

  17. ICE CHEMISTRY IN STARLESS MOLECULAR CORES

    SciTech Connect

    Kalvans, J.

    2015-06-20

    Starless molecular cores are natural laboratories for interstellar molecular chemistry research. The chemistry of ices in such objects was investigated with a three-phase (gas, surface, and mantle) model. We considered the center part of five starless cores, with their physical conditions derived from observations. The ice chemistry of oxygen, nitrogen, sulfur, and complex organic molecules (COMs) was analyzed. We found that an ice-depth dimension, measured, e.g., in monolayers, is essential for modeling of chemistry in interstellar ices. Particularly, the H{sub 2}O:CO:CO{sub 2}:N{sub 2}:NH{sub 3} ice abundance ratio regulates the production and destruction of minor species. It is suggested that photodesorption during the core-collapse period is responsible for the high abundance of interstellar H{sub 2}O{sub 2} and O{sub 2}H and other species synthesized on the surface. The calculated abundances of COMs in ice were compared to observed gas-phase values. Smaller activation barriers for CO and H{sub 2}CO hydrogenation may help explain the production of a number of COMs. The observed abundance of methyl formate HCOOCH{sub 3} could be reproduced with a 1 kyr, 20 K temperature spike. Possible desorption mechanisms, relevant for COMs, are gas turbulence (ice exposure to interstellar photons) or a weak shock within the cloud core (grain collisions). To reproduce the observed COM abundances with the present 0D model, 1%–10% of ice mass needs to be sublimated. We estimate that the lifetime for starless cores likely does not exceed 1 Myr. Taurus cores are likely to be younger than their counterparts in most other clouds.

  18. Ice Chemistry in Starless Molecular Cores

    NASA Astrophysics Data System (ADS)

    Kalvāns, J.

    2015-06-01

    Starless molecular cores are natural laboratories for interstellar molecular chemistry research. The chemistry of ices in such objects was investigated with a three-phase (gas, surface, and mantle) model. We considered the center part of five starless cores, with their physical conditions derived from observations. The ice chemistry of oxygen, nitrogen, sulfur, and complex organic molecules (COMs) was analyzed. We found that an ice-depth dimension, measured, e.g., in monolayers, is essential for modeling of chemistry in interstellar ices. Particularly, the H2O:CO:CO2:N2:NH3 ice abundance ratio regulates the production and destruction of minor species. It is suggested that photodesorption during the core-collapse period is responsible for the high abundance of interstellar H2O2 and O2H and other species synthesized on the surface. The calculated abundances of COMs in ice were compared to observed gas-phase values. Smaller activation barriers for CO and H2CO hydrogenation may help explain the production of a number of COMs. The observed abundance of methyl formate HCOOCH3 could be reproduced with a 1 kyr, 20 K temperature spike. Possible desorption mechanisms, relevant for COMs, are gas turbulence (ice exposure to interstellar photons) or a weak shock within the cloud core (grain collisions). To reproduce the observed COM abundances with the present 0D model, 1%-10% of ice mass needs to be sublimated. We estimate that the lifetime for starless cores likely does not exceed 1 Myr. Taurus cores are likely to be younger than their counterparts in most other clouds.

  19. Hydrogen generator

    SciTech Connect

    Hansen, J.R.

    1984-06-19

    A hydrogen generator decomposes water into hydrogen and oxygen, and includes an induction coil which is electrically heated to a temperature sufficient to decompose water passing therethrough. A generator coil is connected in communicating relation to the induction coil, and is positioned in a fire resistant crucible containing ferrous oxide pellets. Oxygen and hydrogen produced by decomposition of water pass through the ferrous oxide pellets where the oxygen reacts with the ferrous oxide and the hydrogen is burned to produce heat for heating a building, such as a conventional home.

  20. Organic Synthesis in Simulated Interstellar Ice Analogs

    NASA Technical Reports Server (NTRS)

    Dworkin, Jason P.; Bernstein, Max P.; Sandford, Scott A.; Allamandola, Louis J.; Deamer, David W.; Elsila, Jamie; Zare, Richard N.; DeVincenzi, Donald (Technical Monitor)

    2001-01-01

    Comets and carbonaceous micrometeorites may have been significant sources of organic compounds on the early Earth. Ices on grains in interstellar dense molecular clouds contain a variety of simple molecules as well as aromatic molecules of various sizes. While in these clouds the icy grains are processed by ultraviolet light and cosmic radiation which produces more complex organic molecules. ID We have run laboratory simulations to identify the types of molecules which could have been generated photolytically in pre-cometary ices. Experiments were conducted by forming various realistic interstellar mixed-molecular ices with and without polycyclic aromatic hydrocarbons (PAHs) at approx. 10 K under high vacuum irradiated with LTV light from a hydrogen plasma lamp: The residue that remained after warming to room temperature was analyzed by HPLC, and by laser desorption mass spectrometry. The residue contains several classes of compounds which may be of prebiotic significance.

  1. Organic Synthesis in Simulated Interstellar Ice Analogs

    NASA Technical Reports Server (NTRS)

    Dworkin, Jason P.; Bernstein, Max P.; Sandford, Scott A.; Allamandola, Louis J.; Deamer, David W.; Elsila, Jamie; Zare, Richard N.

    2001-01-01

    Comets and carbonaceous micrometeorites may have been significant sources of organic compounds on the early Earth. Ices on grains in interstellar dense molecular clouds contain a variety of simple molecules as well as aromatic molecules of various sizes. While in these clouds the icy grains are processed by ultraviolet light and cosmic radiation which produces more complex organic molecules. We have run laboratory simulations to identify the types of molecules which could have been generated photolytically in pre-cometary ices. Experiments were conducted by forming various realistic interstellar mixed-molecular ices with and without polycyclic aromatic hydrocarbons (PAHs) at approx. 10 K under high vacuum irradiated with UV light from a hydrogen plasma lamp. The residue that remained after warming to room temperature was analyzed by HPLC, and by laser desorption mass spectrometry. The residue contains several classes of compounds which may be of prebiotic significance.

  2. Organic Synthesis in Simulated Interstellar Ice Analogs

    NASA Technical Reports Server (NTRS)

    Dworkin, Jason P.; Bernstein, Max P.; Sandford, Scott A.; Allamandola, Louis J.; Deamer, David W.; Elsila, Jamie; Zare, Richard N.

    2001-01-01

    Comets and carbonaceous micrometeorites may have been significant sources of organic compounds on the early Earth. Ices on grains in interstellar dense molecular clouds contain a variety of simple molecules as well as aromatic molecules of various sizes. While in these clouds the icy grains are processed by ultraviolet light and cosmic radiation which produces more complex organic molecules. We have run laboratory simulations to identify the types of molecules which could have been generated photolytically in pre-cometary ices. Experiments were conducted by forming various realistic interstellar mixed-molecular ices with and without polycyclic aromatic hydrocarbons (PAHs) at approx. 10 K under high vacuum irradiated with UV light from a hydrogen plasma lamp. The residue that remained after warming to room temperature was analyzed by HPLC, and by laser desorption mass spectrometry. The residue contains several classes of compounds which may be of prebiotic significance.

  3. Organic Synthesis in Simulated Interstellar Ice Analogs

    NASA Technical Reports Server (NTRS)

    Dworkin, Jason P.; Bernstein, Max P.; Sandford, Scott A.; Allamandola, Louis J.; Deamer, David W.; Elsila, Jamie; Zare, Richard N.; DeVincenzi, Donald (Technical Monitor)

    2001-01-01

    Comets and carbonaceous micrometeorites may have been significant sources of organic compounds on the early Earth. Ices on grains in interstellar dense molecular clouds contain a variety of simple molecules as well as aromatic molecules of various sizes. While in these clouds the icy grains are processed by ultraviolet light and cosmic radiation which produces more complex organic molecules. ID We have run laboratory simulations to identify the types of molecules which could have been generated photolytically in pre-cometary ices. Experiments were conducted by forming various realistic interstellar mixed-molecular ices with and without polycyclic aromatic hydrocarbons (PAHs) at approx. 10 K under high vacuum irradiated with LTV light from a hydrogen plasma lamp: The residue that remained after warming to room temperature was analyzed by HPLC, and by laser desorption mass spectrometry. The residue contains several classes of compounds which may be of prebiotic significance.

  4. Development of Advanced Small Hydrogen Engines

    SciTech Connect

    Sapru, Krishna; Tan, Zhaosheng; Chao, Ben

    2010-09-30

    The main objective of the project is to develop advanced, low cost conversions of small (< 25 hp) gasoline internal combustion engines (ICEs) to run on hydrogen fuel while maintaining the same performance and durability. This final technical report summarizes the results of i) the details of the conversion of several small gasoline ICEs to run on hydrogen, ii) the durability test of a converted hydrogen engine and iii) the demonstration of a prototype bundled canister solid hydrogen storage system. Peak power of the hydrogen engine achieves 60% of the power output of the gasoline counterpart. The efforts to boost the engine power with various options including installing the over-sized turbocharger, retrofit of custom-made pistons with high compression ratio, an advanced ignition system, and various types of fuel injection systems are not realized. A converted Honda GC160 engine with ACS system to run with hydrogen fuel is successful. Total accumulative runtime is 785 hours. A prototype bundled canister solid hydrogen storage system having nominal capacity of 1.2 kg is designed, constructed and demonstrated. It is capable of supporting a wide range of output load of a hydrogen generator.

  5. Ice electrode electrolytic cell

    DOEpatents

    Glenn, David F.; Suciu, Dan F.; Harris, Taryl L.; Ingram, Jani C.

    1993-01-01

    This invention relates to a method and apparatus for removing heavy metals from waste water, soils, or process streams by electrolytic cell means. The method includes cooling a cell cathode to form an ice layer over the cathode and then applying an electric current to deposit a layer of the heavy metal over the ice. The metal is then easily removed after melting the ice. In a second embodiment, the same ice-covered electrode can be employed to form powdered metals.

  6. Ice electrode electrolytic cell

    DOEpatents

    Glenn, D.F.; Suciu, D.F.; Harris, T.L.; Ingram, J.C.

    1993-04-06

    This invention relates to a method and apparatus for removing heavy metals from waste water, soils, or process streams by electrolytic cell means. The method includes cooling a cell cathode to form an ice layer over the cathode and then applying an electric current to deposit a layer of the heavy metal over the ice. The metal is then easily removed after melting the ice. In a second embodiment, the same ice-covered electrode can be employed to form powdered metals.

  7. Ice electrode electrolytic cell

    SciTech Connect

    Glenn, D.F.; Suciu, D.F.; Harris, T.L.; Ingram, J.C.

    1992-12-31

    This invention relates to a method and apparatus for removing heavy metals from waste water, soils, or process streams by electrolytic cell means. The method includes cooling a cell cathode to form an ice layer over the cathode and then applying an electric current to deposit a layer of the heavy metal over the ice. The metal is then easily removed after melting the ice. In a second embodiment, the same ice-covered electrode can be employed to form powdered metals.

  8. Spatial and Depth Distribution of Sub-surface Ice in the Polar Regions of Mars.

    NASA Astrophysics Data System (ADS)

    Boynton, W.; Kim, K.; Janes, D.; Kerry, K.; Williams, R.; Reedy, R.; Drake, D.

    The Mars Odyssey spacecraft has been in its mapping orbit for slightly over one Mars year. The Gamma-Ray Spectrometer (GRS) has been collecting data with the boom extended since June 2002 and has not quite collected a full Mars year of data in this configuration. Nevertheless, the statistical precision in the polar regions is such that the spatial resolution of the GRS maps are only slightly degraded by having to average over a larger region to improve the signal-to-noise ratio. Especially in the northern region, clear spatially resolved regions of different apparent ice contents can be resolved. For example in the region near 315E E. longitude, near the mouth of Chasma Boreale, has distinctly less ice (or deeper ice) than do the regions of similar latitude but at other longitudes. Although less easily resolved, it appears that the region around the Olympia Planitia also has less ice than regions surrounding it. In the case of Olympia Planitia, the hydrogen gamma ray signal is lower even than regions more equatorward at the same longitude. We have completed a detailed examination of the ground-truth calibration of the GRS by comparing the signal to that expected from a pure water ice northern residual cap. Doing so allows us to set accurate limits on the distribution of ice (really ice equivalent hydrogen) abundance with depth. Over much of the north polar region we can set limits that the distribution of ice with depth. If we assume the ice is buried beneath a hydrogen-poor dust layer, we can also set a limit on how deep the ice can be buried by assuming the lower ice-rich layer is pure ice. In this case the ice cannot be buried by more than 10 to 20 g/cm2 of hydrogen-poor dust, otherwise the gamma-ray flux would be too weak to account for the observed signal. If, on the other hand, we make the assumption that there is no dust layer to attenuate the gamma-ray signal, the ice content must be between 35% and 50% ice by mass. Because it is likely that there is at

  9. Ice Formation on Wings

    NASA Technical Reports Server (NTRS)

    Ritz, L

    1939-01-01

    This report makes use of the results obtained in the Gottingen ice tunnel in which the atmospheric conditions are simulated and the process of ice formation photographed. The effect of ice formation is threefold: 1) added weight to the airplane; 2) a change in the lift and drag forces; 3) a change in the stability characteristics.

  10. Aircraft icing: Introduction

    NASA Technical Reports Server (NTRS)

    Enders, J. H.

    1979-01-01

    The objectives of the Workshop were as follows: (1) to assess the current understanding of fixed wing and rotorcraft operational icing environments and problems (2) to evaluate facilities requirements for R&D and certification purposes (3) to examine means of improving icing forecasts (4) to identify shortcomings in aeronautical icing knowledge which can be alleviated by new research and instrumentation development.

  11. Ice Cream Headaches

    MedlinePlus

    Diseases and Conditions Ice cream headaches By Mayo Clinic Staff Ice cream headaches are brief, stabbing headaches that can happen when you eat, drink or inhale something cold. Digging into an ice cream cone is a common trigger, but eating or ...

  12. The Antarctic Ice.

    ERIC Educational Resources Information Center

    Radok, Uwe

    1985-01-01

    The International Antarctic Glaciological Project has collected information on the East Antarctic ice sheet since 1969. Analysis of ice cores revealed climatic history, and radar soundings helped map bedrock of the continent. Computer models of the ice sheet and its changes over time will aid in predicting the future. (DH)

  13. Ice Versus Rock

    ERIC Educational Resources Information Center

    Rule, Audrey C.; Olson, Eric A.; Dehm, Janet

    2005-01-01

    During a snow bank exploration, students noticed "ice caves," or pockets, in some of the larger snow banks, usually below darker layers. Most of these caves had many icicles hanging inside. Students offered reasonable explanations of ice cave formation--squirrels, kids, snow blowers--and a few students came close to the true ice cave-formation…

  14. Ice Versus Rock

    ERIC Educational Resources Information Center

    Rule, Audrey C.; Olson, Eric A.; Dehm, Janet

    2005-01-01

    During a snow bank exploration, students noticed "ice caves," or pockets, in some of the larger snow banks, usually below darker layers. Most of these caves had many icicles hanging inside. Students offered reasonable explanations of ice cave formation--squirrels, kids, snow blowers--and a few students came close to the true ice cave-formation…

  15. Experiments in Ice Physics.

    ERIC Educational Resources Information Center

    Martin, P. F.; And Others

    1978-01-01

    Describes experiments in ice physics that demonstrate the behavior and properties of ice. Show that ice behaves as an ionic conductor in which charge is transferred by the movement of protons, its electrical conductivity is highly temperature-dependent, and its dielectric properties show dramatic variation in the kilohertz range. (Author/GA)

  16. The Antarctic Ice.

    ERIC Educational Resources Information Center

    Radok, Uwe

    1985-01-01

    The International Antarctic Glaciological Project has collected information on the East Antarctic ice sheet since 1969. Analysis of ice cores revealed climatic history, and radar soundings helped map bedrock of the continent. Computer models of the ice sheet and its changes over time will aid in predicting the future. (DH)

  17. Technology for Ice Rinks

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Ron Urban's International Ice Shows set up portable ice rinks for touring troupes performing on temporary rinks at amusement parks, sports arenas, dinner theaters, shopping malls and civic centers. Key to enhanced rink portability, fast freezing and maintaining ice consistency is a mat of flexible tubing called ICEMAT, an offshoot of a solar heating system developed by Calmac, Mfg. under contract with Marshall.

  18. Experiments in Ice Physics.

    ERIC Educational Resources Information Center

    Martin, P. F.; And Others

    1978-01-01

    Describes experiments in ice physics that demonstrate the behavior and properties of ice. Show that ice behaves as an ionic conductor in which charge is transferred by the movement of protons, its electrical conductivity is highly temperature-dependent, and its dielectric properties show dramatic variation in the kilohertz range. (Author/GA)

  19. Freezing Hydrogen

    NASA Image and Video Library

    2009-11-17

    An engineer loads hydrogen gas into the Wide-Field Infrared Survey Explorer in a clean room at the Vandenberg Air Force Base, Calif. The hydrogen is cooled and frozen inside a Thermos-like bottle, called the cryostat, which keeps the science instrument

  20. Hydrogen Bibliography

    SciTech Connect

    Not Available

    1991-12-01

    The Hydrogen Bibliography is a compilation of research reports that are the result of research funded over the last fifteen years. In addition, other documents have been added. All cited reports are contained in the National Renewable Energy Laboratory (NREL) Hydrogen Program Library.

  1. Hydroxyl radical reactivity at the air-ice interface

    NASA Astrophysics Data System (ADS)

    Kahan, T. F.; Zhao, R.; Donaldson, D. J.

    2010-01-01

    Hydroxyl radicals are important oxidants in the atmosphere and in natural waters. They are also expected to be important in snow and ice, but their reactivity has not been widely studied in frozen aqueous solution. We have developed a spectroscopic probe to monitor the formation and reactions of hydroxyl radicals in situ. Hydroxyl radicals are produced in aqueous solution via the photolysis of nitrite, nitrate, and hydrogen peroxide, and react rapidly with benzene to form phenol. Similar phenol formation rates were observed in aqueous solution and bulk ice. However, no reaction was observed at air-ice interfaces, or when bulk ice samples were crushed prior to photolysis to increase their surface area. We also monitored the heterogeneous reaction between benzene present at air-water and air-ice interfaces with gas-phase OH produced from HONO photolysis. Rapid phenol formation was observed on water surfaces, but no reaction was observed at the surface of ice. Under the same conditions, we observed rapid loss of the polycyclic aromatic hydrocarbon (PAH) anthracene at air-water interfaces, but no loss was observed at air-ice interfaces. Our results suggest that the reactivity of hydroxyl radicals toward aromatic organics is similar in bulk ice samples and in aqueous solution, but is significantly suppressed in the quasi-liquid layer (QLL) that exists at air-ice interfaces.

  2. Hydroxyl radical reactivity at the air-ice interface

    NASA Astrophysics Data System (ADS)

    Kahan, T. F.; Zhao, R.; Donaldson, D. J.

    2009-10-01

    Hydroxyl radicals are important oxidants in the atmosphere and in natural waters. They are also expected to be important in snow and ice, but their reactivity has not been widely studied in frozen aqueous solution. We have developed a spectroscopic probe to monitor the formation and reactions of hydroxyl radicals in situ. Hydroxyl radicals are produced in aqueous solution via the photolysis of nitrite, nitrate, and hydrogen peroxide, and react rapidly with benzene to form phenol. Similar phenol formation rates were observed in aqueous solution and bulk ice. However, no reaction was observed at the air-ice interface, or when bulk ice samples were crushed prior to photolysis to increase their surface area. We also monitored the heterogeneous reaction between benzene present at air-water and air-ice interfaces with gas-phase OH produced from HONO photolysis. Rapid phenol formation was observed on water surfaces, but no reaction was observed at the surface of ice. Under the same conditions, we observed rapid loss of the polycyclic aromatic hydrocarbon (PAH) anthracene at the air-water interface, but no loss was observed at the air-ice interface. Our results suggest that the reactivity of hydroxyl radicals toward aromatic organics is similar in bulk ice samples and in aqueous solution, but is significantly suppressed in the quasi-liquid layer (QLL) that exists at the air-ice interface.

  3. Lactose digestion from flavored and frozen yogurts, ice milk, and ice cream by lactase-deficient persons.

    PubMed

    Martini, M C; Smith, D E; Savaiano, D A

    1987-10-01

    Lactose digestion from and tolerance to flavored and frozen yogurts, ice cream, and ice milk were evaluated (20 g lactose/meal) in lactase-deficient subjects by use of breath hydrogen techniques. Unflavored yogurt caused significantly less hydrogen production than milk (37 vs 185 delta ppm X h, n = 9). Flavored yogurt was intermediate (77 delta ppm X h). Subjects were free of symptoms after consuming flavored and unflavored yogurts. Of seven commercial yogurts tested, all contained significant levels of microbial beta-galactosidase (beta-gal). In addition, eight subjects were fed meals of milk, ice milk, ice cream, and frozen yogurts with and without cultures containing high levels of beta-gal. Peak hydrogen excretion after consumption of frozen yogurt with high beta-gal was less than one-half of that observed after the other five test meals and intolerance symptoms were absent. Tolerance to frozen yogurt, produced under usual commercial procedures, was found to be similar to that of ice milk and ice cream.

  4. On the role of cubic structure in ice nucleation

    NASA Astrophysics Data System (ADS)

    Takahashi, Tōru

    1982-10-01

    To clarify the formation mechanism of snow polycrystals the possibility of formation of a cubic ice embryo is discussed on the basis of the homogeneous nucleation theory for supercooled water formed from ambient water molecules in the phase of supersaturated vapour. In this connection, attention is paid to a finding from a model of broken hydrogen bonds that the plane {111} of a cubic ice crystal has a smaller specific interfacial energy than each of the {0001} or {10ovbar|10} planes of a hexagonal ice crystal. Hence, it follows that a critical cubic embryo has a smaller activation energy than a critical hexagonal embryo below a critical temperature; namely, Ostwald's step rule (Stufenregel) holds for a change from cubic ice to hexagonal ice below a critical temperature. This discussion is reinforced by examining, from the viewpoint of this step rule, the observed misorientation of the c-axis of natural snow polycrystals and the results of experiments using frozen water droplets.

  5. Alaska marine ice atlas

    SciTech Connect

    LaBelle, J.C.; Wise, J.L.; Voelker, R.P.; Schulze, R.H.; Wohl, G.M.

    1982-01-01

    A comprehensive Atlas of Alaska marine ice is presented. It includes information on pack and landfast sea ice and calving tidewater glacier ice. It also gives information on ice and related environmental conditions collected over several years time and indicates the normal and extreme conditions that might be expected in Alaska coastal waters. Much of the information on ice conditions in Alaska coastal waters has emanated from research activities in outer continental shelf regions under assessment for oil and gas exploration and development potential. (DMC)

  6. Ice Observation Handbook, 1984

    DTIC Science & Technology

    1984-01-01

    which is navigable by surface vessels. Flaw polynya : A polynya between drift ice and fast ice. Floating ice: Any form of ice found floating in water...10 to 6/10 with many leads and polynyas , and the floes are generally not in contact with one another. Open water: A large area of freely navigable...the surface; its appearance may rapidly cover wide areas of water. 9l 2-9 7-7 Polynya : Any non-linear shaped opening enclosed in ice. Polynyas may

  7. Seasat and floating ice

    NASA Technical Reports Server (NTRS)

    Weeks, W. F.

    1974-01-01

    Data collected by SEASAT would be useful in developing predictive physical models for the drift and deformation of sea ice, for estimating the heat budget of the polar seas, for the optimum routing of shipping through pack ice areas, for the design of both offshore structures and shipping capable of surviving in heavy pack ice, and for the tracking of large icebergs and ice islands. The instrument package for SEASAT-A is particularly useful for studying sea ice in that the Coherent Imaging Radar (CIR), the Scanning Multifrequency Microwave Radiometer (SMMR) and the Compressed Pulse Radar Altimeter (CPRA) are not limited by the presence of clouds.

  8. Hydrogen carriers

    NASA Astrophysics Data System (ADS)

    He, Teng; Pachfule, Pradip; Wu, Hui; Xu, Qiang; Chen, Ping

    2016-12-01

    Hydrogen has the potential to be a major energy vector in a renewable and sustainable future energy mix. The efficient production, storage and delivery of hydrogen are key technical issues that require improvement before its potential can be realized. In this Review, we focus on recent advances in materials development for on-board hydrogen storage. We highlight the strategic design and optimization of hydrides of light-weight elements (for example, boron, nitrogen and carbon) and physisorbents (for example, metal-organic and covalent organic frameworks). Furthermore, hydrogen carriers (for example, NH3, CH3OH-H2O and cycloalkanes) for large-scale distribution and for on-site hydrogen generation are discussed with an emphasis on dehydrogenation catalysts.

  9. Arctic ice management

    NASA Astrophysics Data System (ADS)

    Desch, Steven J.; Smith, Nathan; Groppi, Christopher; Vargas, Perry; Jackson, Rebecca; Kalyaan, Anusha; Nguyen, Peter; Probst, Luke; Rubin, Mark E.; Singleton, Heather; Spacek, Alexander; Truitt, Amanda; Zaw, Pye Pye; Hartnett, Hilairy E.

    2017-01-01

    As the Earth's climate has changed, Arctic sea ice extent has decreased drastically. It is likely that the late-summer Arctic will be ice-free as soon as the 2030s. This loss of sea ice represents one of the most severe positive feedbacks in the climate system, as sunlight that would otherwise be reflected by sea ice is absorbed by open ocean. It is unlikely that CO2 levels and mean temperatures can be decreased in time to prevent this loss, so restoring sea ice artificially is an imperative. Here we investigate a means for enhancing Arctic sea ice production by using wind power during the Arctic winter to pump water to the surface, where it will freeze more rapidly. We show that where appropriate devices are employed, it is possible to increase ice thickness above natural levels, by about 1 m over the course of the winter. We examine the effects this has in the Arctic climate, concluding that deployment over 10% of the Arctic, especially where ice survival is marginal, could more than reverse current trends of ice loss in the Arctic, using existing industrial capacity. We propose that winter ice thickening by wind-powered pumps be considered and assessed as part of a multipronged strategy for restoring sea ice and arresting the strongest feedbacks in the climate system.

  10. ICE SLURRY APPLICATIONS

    PubMed Central

    Kauffeld, M.; WANG, M. J.; Goldstein, V.; Kasza, K. E.

    2011-01-01

    The role of secondary refrigerants is expected to grow as the focus on the reduction of greenhouse gas emissions increases. The effectiveness of secondary refrigerants can be improved when phase changing media are introduced in place of single phase media. Operating at temperatures below the freezing point of water, ice slurry facilitates several efficiency improvements such as reductions in pumping energy consumption as well as lowering the required temperature difference in heat exchangers due to the beneficial thermo-physical properties of ice slurry. Research has shown that ice slurry can be engineered to have ideal ice particle characteristics so that it can be easily stored in tanks without agglomeration and then be extractable for pumping at very high ice fraction without plugging. In addition ice slurry can be used in many direct contact food and medical protective cooling applications. This paper provides an overview of the latest developments in ice slurry technology. PMID:21528014

  11. Of Ice and Microbes

    NASA Astrophysics Data System (ADS)

    Deming, Jody

    2006-12-01

    Inuit hunters of the North have long recognized ice as the natural state of water from which life flows on Earth. Although unaware of the microscopic world, they chart changes in properties of ice and water that derive from a succession of microbial inhabitants. Scientific hunters of the West have largely overlooked all but the warmest of ices as dynamic scenes of microbial life, considering the frozen realm to archive life forms instead. Deeply frozen glacial ice on Earth does appear to preserve microbes effectively, but isn't the ocean beneath the geologically dynamic ice of Europa believed too salty? Aren't the subsurface ices of Mars expected to be rich in all manner of mineralogical impurities? Wherever salt and other mineral impurities are sufficiently abundant in Earth ice, the ice contains interior liquid water that can range from nano-layer films on grain surfaces (glacial ice) to a porous network of brine (Arctic winter sea ice down to 20°C). Other recent studies of saline ices have indicated a world of interacting life forms, with viruses infecting bacteria in brines at -12°C (the lowest temperature tested), the domains of Bacteria and Archaea undergoing succession in winter ices (down to -28°C), and evidence that cellular maintenance may go forward incrementally even below the eutectic of seawater (-55°C). Microbes are also known to alter the physical properties of their icy homes by producing exopolymers that further depress the freezing point, either directly or by entraining more salt into the ice. Even the most inhospitable of ices to human hunters may contain interior oases for microbes, in control to some degree of their own space. In considering the habitability of icy worlds beyond Earth, we'd do well to learn more about the evolutionary prowess of microbes in adapting to conditions beyond our warm-blooded imaginations.

  12. Arctic landfast sea ice

    NASA Astrophysics Data System (ADS)

    Konig, Christof S.

    Landfast ice is sea ice which forms and remains fixed along a coast, where it is attached either to the shore, or held between shoals or grounded icebergs. Landfast ice fundamentally modifies the momentum exchange between atmosphere and ocean, as compared to pack ice. It thus affects the heat and freshwater exchange between air and ocean and impacts on the location of ocean upwelling and downwelling zones. Further, the landfast ice edge is essential for numerous Arctic mammals and Inupiat who depend on them for their subsistence. The current generation of sea ice models is not capable of reproducing certain aspects of landfast ice formation, maintenance, and disintegration even when the spatial resolution would be sufficient to resolve such features. In my work I develop a new ice model that permits the existence of landfast sea ice even in the presence of offshore winds, as is observed in mature. Based on viscous-plastic as well as elastic-viscous-plastic ice dynamics I add tensile strength to the ice rheology and re-derive the equations as well as numerical methods to solve them. Through numerical experiments on simplified domains, the effects of those changes are demonstrated. It is found that the modifications enable landfast ice modeling, as desired. The elastic-viscous-plastic rheology leads to initial velocity fluctuations within the landfast ice that weaken the ice sheet and break it up much faster than theoretically predicted. Solving the viscous-plastic rheology using an implicit numerical method avoids those waves and comes much closer to theoretical predictions. Improvements in landfast ice modeling can only verified in comparison to observed data. I have extracted landfast sea ice data of several decades from several sources to create a landfast sea ice climatology that can be used for that purpose. Statistical analysis of the data shows several factors that significantly influence landfast ice distribution: distance from the coastline, ocean depth, as

  13. Metallic Hydrogen

    NASA Astrophysics Data System (ADS)

    Silvera, Isaac F.; Dias, Ranga; Noked, Ori; Salamat, Ashkan; Zaghoo, Mohamed

    2017-04-01

    One of the great challenges in condensed matter physics has been to produce metallic hydrogen (MH) in the laboratory. There are two approaches: solid molecular hydrogen can be compressed to high density at extreme pressures of order 5-6 megabars. The transition to MH should take place at low temperatures and is expected to occur as a structural first-order phase transition with dissociation of molecules into atoms, rather than the closing of a gap. A second approach is to produce dense molecular hydrogen at pressures of order 1-2 megabars and heat the sample. With increasing temperature, it was predicted that molecular hydrogen first melts and then dissociates to atomic metallic liquid hydrogen as a first-order phase transition. We have observed this liquid-liquid phase transition to metallic hydrogen, also called the plasma phase transition. In low-temperature studies, we have pressurized HD to over 3 megabars and observed two new phases. Molecular hydrogen has been pressurized to 4.2 megabars. A new phase transition has been observed at 3.55 megabars, but it is not yet metallic.

  14. Preparing and Analyzing Iced Airfoils

    NASA Technical Reports Server (NTRS)

    Vickerman, Mary B.; Baez, Marivell; Braun, Donald C.; Cotton, Barbara J.; Choo, Yung K.; Coroneos, Rula M.; Pennline, James A.; Hackenberg, Anthony W.; Schilling, Herbert W.; Slater, John W.; hide

    2004-01-01

    SmaggIce version 1.2 is a computer program for preparing and analyzing iced airfoils. It includes interactive tools for (1) measuring ice-shape characteristics, (2) controlled smoothing of ice shapes, (3) curve discretization, (4) generation of artificial ice shapes, and (5) detection and correction of input errors. Measurements of ice shapes are essential for establishing relationships between characteristics of ice and effects of ice on airfoil performance. The shape-smoothing tool helps prepare ice shapes for use with already available grid-generation and computational-fluid-dynamics software for studying the aerodynamic effects of smoothed ice on airfoils. The artificial ice-shape generation tool supports parametric studies since ice-shape parameters can easily be controlled with the artificial ice. In such studies, artificial shapes generated by this program can supplement simulated ice obtained from icing research tunnels and real ice obtained from flight test under icing weather condition. SmaggIce also automatically detects geometry errors such as tangles or duplicate points in the boundary which may be introduced by digitization and provides tools to correct these. By use of interactive tools included in SmaggIce version 1.2, one can easily characterize ice shapes and prepare iced airfoils for grid generation and flow simulations.

  15. Simulation of the interaction of acetone with ice: (0001) surface, bulk ice and small-angle grain boundaries

    NASA Astrophysics Data System (ADS)

    Hammer, S. M.; Panisch, R.; Kobus, M.; Glinnemann, J.; Schmidt, M. U.

    2009-04-01

    Local structures and energies are calculated for the interactions of acetone with ice Ih by force-field and ab-initio methods. Three interaction sites are investigated: 1) (0001) surface of ice 2) ice bulk (with the acetone substituting one or more water molecules as point defect) 3) small-angle grain boundaries in ice (2D-lattice defects) Ice Ih is the stable ice polymorph at atmospheric conditions.[1]When ice (snow/hail/graupel) begins to form in the troposphere, volatile organic compounds will be adsorbed at the surface or incorporated into the crystals. Acetone (CH3)2CO is one of the most prominent organic pollutants in the atmosphere. For the force-field calculations a modified Dreiding force field[2] was used. Results[3] 1) An acetone molecule adsorbed on the (0001) surface of ice forms two hydrogen bonds between the CO group and two dangling O-H bonds (i.e. bonds which stick out from the surface) of two water molecules. The calculated adsorption enthalpy corresponds well with experimentally determined values. This geometry was confirmed by ab-initio calculations. 2) In bulk ice, the acetone molecule replaces only one water molecule, and distorts the surrounding ice structure. 3) The position of an acetone molecule at a small-angle grain boundary or at a similar lattice defect is energetically more favourable than incorporation in bulk ice. [1] V. F. Petrenko and R. W. Whitworth, Physics of Ice, Oxford University Press Inc., New York, 1999. [2] S. L. Mayo, B. D. Olafson, W. A. Goddard III, J. Phys. Chem. 1990, 94, 8897-8909. [3] S. M. Hammer, R. Panisch, M. Kobus, J. Glinnemann, M. U. Schmidt, CrystEngComm 2009, accepted.

  16. Ice flow of the Antarctica Ice Sheet

    NASA Astrophysics Data System (ADS)

    Mouginot, J.; Scheuchl, B.; Rignot, E. J.

    2011-12-01

    Ice velocity is fundamental characteristic of the dynamics of ice sheets and is essential to know for calculating the mass budget of ice sheet and for controlling ice sheet numerical models with realistic boundary conditions. Until recently, data were mostly available on a discrete basis over small areas with variable precision. Here, we report on our results of processing ice velocity from the interferometric synthetic-aperture radar data acquired by ALOS PALSAR in 2006 to 2010 by the Japan Aerospace Exploration Agency (JAXA), by ENVISAT ASAR in 2007 to 2009, by RADARSAT-2 in 2009 and 2011, by RADARSAT-1 in 1997 and 2000 and by ERS-1 & -2 in 1996 in the framework of the International Polar Year 2007-2009. The result is the most comprehensive and precise high-resolution digital map of ice motion ever produced on the Antarctic continent. While important surprises are found along the coastline, it is in the interior that this map is revealing the most interesting features. The data reveal widespread, patterned, enhanced flow with tributary glaciers reaching hundreds to thousands of kilometers inland, over the entire continent. We show that the ice motion along these flow features has a strong basal slip component. This has far reaching implications for the modeling of ice sheet flow and evolution. In addition, our multi-year coverage of the coastal sectors reveal the beginning of an acceleration on Thwaites glacier and a wave of accelerated flow propagating inland rapidly on Pine Island Glacier between 2006 and 2010. This work was conducted at the Department of Earth System Science, University of California Irvine under a contract with the National Aeronautics and Space Administration's MEaSUREs program.

  17. Thermoelastic properties of ice VII and its high-pressure polymorphs

    NASA Astrophysics Data System (ADS)

    Asahara, Y.; Hirose, K.; Ohishi, Y.; Hirao, N.; Murakami, M.

    2010-12-01

    Ice VII is one of the high pressure polymorph of solid H2O. At room temperature, compressed liquid water transforms to tetragonal ice VI at 1.05 GPa and with further compression, ice VI transforms to cubic ice VII at 2.1 GPa. Ice VII consists of a body-centred cubic (bcc) lattice of oxygen and each oxygen atom covalently bonded to two hydrogen atoms occupying two of four tetrahedral sites. The bcc-framework of oxygen is stable at least up to 170 GPa at room temperature; however, it has been suggested that there are several phase transitions related to changes of a hydrogen bonding state. Phase relation and thermoelastic properties of these dense ices are important knowledge to understand the structure and dynamics of interior of icy planets and satellites. We conducted acoustic velocity measurements in polycrystalline ice to clarify the thermoelastic properties of bcc-structured ice at high pressures. Acoustic velocities in polycrystalline H2O ice have been measured at room temperature and a pressure range of 6-60 GPa using a Brillouin scattering method. Synchrotron x-ray diffraction measurements were also conducted simultaneously with the Brillouin scattering measurements at a pressure range of 40-60 GPa. Obtained elastic moduli of high-pressure ice indicate that bcc-structured ice undergoes two transitions related to a change in the hydrogen bonding state at approximately 40 GPa and 58 GPa, i.e. transitions of ice VII to the pretransitional state of ice VII at 40 GPa and to the dynamically disordered ice X at 58 GPa, respectively. This observation is consistent with previous spectroscopic studies as well as the x-ray diffraction studies. Present result implies that the transition from ice VII to the dynamically disordered ice X is accompanied by a discontinuous change of several thermodynamic properties of ice. The elasticity difference between ice VII and the dynamically disordered ice X may affect the dynamics of impacted icy satellites and the interiors of

  18. Hydrogen storage and delivery system development: Fabrication

    SciTech Connect

    Handrock, J.L.; Malinowski, M.E.; Wally, K.

    1996-10-01

    Hydrogen storage and delivery is an important element in effective hydrogen utilization for energy applications and is an important part of the FY1994-1998 Hydrogen Program Implementation Plan. This project is part of the Field Work Proposal entitled Hydrogen Utilization in Internal Combustion Engines (ICE). The goal of the Hydrogen Storage and Delivery System Development Project is to expand the state-of-the-art of hydrogen storage and delivery system design and development. At the foundation of this activity is the development of both analytical and experimental evaluation platforms. These tools provide the basis for an integrated approach for coupling hydrogen storage and delivery technology to the operating characteristics of potential hydrogen energy use applications. Analytical models have been developed for internal combustion engine (ICE) hybrid and fuel cell driven vehicles. The dependence of hydride storage system weight and energy use efficiency on engine brake efficiency and exhaust temperature for ICE hybrid vehicle applications is examined. Results show that while storage system weight decreases with increasing engine brake efficiency energy use efficiency remains relatively unchanged. The development, capability, and use of a newly developed fuel cell vehicle hydride storage system model will also be discussed. As an example of model use power distribution and control for a simulated driving cycle is presented. An experimental test facility, the Hydride Bed Testing Laboratory (HBTL) has been designed and fabricated. The development of this facility and its use in storage system development will be reviewed. These two capabilities (analytical and experimental) form the basis of an integrated approach to storage system design and development. The initial focus of these activities has been on hydride utilization for vehicular applications.

  19. Hydrogen storage and delivery system development: Analysis

    SciTech Connect

    Handrock, J.L.

    1996-10-01

    Hydrogen storage and delivery is an important element in effective hydrogen utilization for energy applications and is an important part of the FY1994-1998 Hydrogen Program Implementation Plan. This project is part of the Field Work Proposal entitled Hydrogen Utilization in Internal Combustion Engines (ICE). The goal of the Hydrogen Storage and Delivery System Development Project is to expand the state-of-the-art of hydrogen storage and delivery system design and development. At the foundation of this activity is the development of both analytical and experimental evaluation platforms. These tools provide the basis for an integrated approach for coupling hydrogen storage and delivery technology to the operating characteristics of potential hydrogen energy use applications. Results of the analytical model development portion of this project will be discussed. Analytical models have been developed for internal combustion engine (ICE) hybrid and fuel cell driven vehicles. The dependence of hydride storage system weight and energy use efficiency on engine brake efficiency and exhaust temperature for ICE hybrid vehicle applications is examined. Results show that while storage system weight decreases with increasing engine brake efficiency energy use efficiency remains relatively unchanged. The development, capability, and use of a recently developed fuel cell vehicle storage system model will also be discussed. As an example of model use, power distribution and control for a simulated driving cycle is presented. Model calibration results of fuel cell fluid inlet and exit temperatures at various fuel cell idle speeds, assumed fuel cell heat capacities, and ambient temperatures are presented. The model predicts general increases in temperature with fuel cell power and differences between inlet and exit temperatures, but under predicts absolute temperature values, especially at higher power levels.

  20. Sunlight, Sea Ice, and the Ice Albedo Feedback in a Changing Arctic Sea Ice Cover

    DTIC Science & Technology

    2013-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Sunlight, Sea Ice, and the Ice Albedo Feedback in a...ice age, and iv) onset dates of melt and freezeup. 4. Assess the magnitude of the contribution from ice- albedo feedback to the observed decrease of...COVERED 00-00-2013 to 00-00-2013 4. TITLE AND SUBTITLE Sunlight, Sea Ice, and the Ice Albedo Feedback in a Changing Arctic Sea Ice Cover 5a

  1. Light-controlled propulsion, aggregation and separation of water-fuelled TiO2/Pt Janus submicromotors and their ``on-the-fly'' photocatalytic activities

    NASA Astrophysics Data System (ADS)

    Mou, Fangzhi; Kong, Lei; Chen, Chuanrui; Chen, Zhihong; Xu, Leilei; Guan, Jianguo

    2016-02-01

    In this work, water-fuelled TiO2/Pt Janus submicromotors with light-controlled motions have been developed by utilizing the asymmetrical photocatalytic water redox reaction over TiO2/Pt Janus submicrospheres under UV irradiation. The motion state, speed, aggregation and separation behaviors of the TiO2/Pt Janus submicromotor can be reversibly, wirelessly and remotely controlled at will by regulating the ``on/off'' switch, intensity and pulsed/continuous irradiation mode of UV light. The motion of the water-fuelled TiO2/Pt Janus submicromotor is governed by light-induced self-electrophoresis under the local electrical field generated by the asymmetrical water oxidation and reduction reactions on its surface. The TiO2/Pt Janus submicromotors can interact with each other through the light-switchable electrostatic forces, and hence continuous and pulsed UV irradiation can make the TiO2/Pt Janus submicromotors aggregate and separate at will, respectively. Because of the enhanced mass exchange between the environment and active submicromotors, the separated TiO2/Pt Janus submicromotors powered by the pulsed UV irradiation show a much higher activity for the photocatalytic degradation of the organic dye than the aggregated TiO2/Pt submicromotors. The water-fuelled TiO2/Pt Janus submicromotors developed here have some outstanding advantages as ``swimming'' photocatalysts for organic pollutant remediation in the macro or microenvironment (microchannels and microwells in microchips) because of their small size, long-term stability, wirelessly controllable motion behaviors and long life span.In this work, water-fuelled TiO2/Pt Janus submicromotors with light-controlled motions have been developed by utilizing the asymmetrical photocatalytic water redox reaction over TiO2/Pt Janus submicrospheres under UV irradiation. The motion state, speed, aggregation and separation behaviors of the TiO2/Pt Janus submicromotor can be reversibly, wirelessly and remotely controlled at will by

  2. Interaction of acetone, hydroxyacetone, acetaldehyde and benzaldehyde with the surface of water ice and HNO3·3H2O ice.

    PubMed

    Lasne, Jérôme; Laffon, Carine; Parent, Philippe

    2012-01-14

    Oxygenated volatile organic compounds (OVOCs) influence the oxidative properties of the atmosphere, and their transport from the ground may occur by scavenging by the HNO(3)-rich supercooled water droplets found in polluted convective air masses. With infrared spectroscopy, we have studied the interactions of four typical atmospheric OVOCs (acetone, hydroxyacetone, acetaldehyde and benzaldehyde) with model surfaces of water ice and of trihydrated nitric acid (NAT) ice. We show that these molecules weakly adsorb on water ice and NAT by hydrogen bonding. No chemical reaction occurs between the molecules and the NAT substrate, the OVOCs remaining intact when in contact with hydrated HNO(3) in atmospheric ice clouds.

  3. Ionic conductivity measurements of H2O ice at high pressure and temperature and superionic ice in the mantle of ice giants

    NASA Astrophysics Data System (ADS)

    Sugimura, E.; Komabayashi, T.; Ohta, K.; Hirose, K.; Sata, N.; Ohishi, Y.; Shimizu, K.; Dubrovinsky, L. S.

    2011-12-01

    The experimental evidence for the superionic conduction in H2O ice at high pressure (P) and temperature (T) has been long-searched since its theoretical prediction. Melting experiments reported a steep rise of the melting curve at P-T range of 35-43 GP and 1000-1600 K, which could be due to a first-order phase transition in the solid phases, namely the presence of the triple point of water, ice VII, and a high-T phase which was assumed superionic. Nonetheless, there has still been no report on direct experimental evidence for superionic conduction (ca. 0.1 S/cm) in ice at high pressure. Here we examined ionic conductivity and isothermal molar volume of ice at high-P-T based on impedance spectroscopy (IS) and x-ray diffraction measurements in an externally-resistive heated diamond anvil cell. In situ IS measurements up to 62 GPa and 920 K demonstrated that ice exhibits superionic conduction (> 0.1 S/cm) above 580-720 K at 20-60 GPa. This suggests that superionic conduction occurs at sufficiently lower P-T than the triple point. Isothermal P-V data collected at P = 33-101 GPa and T = 873 K revealed that an anomalous volume reduction occurs at P = 50-53 GPa. This compression manner corresponds to the previously reported highly compressible regime at P = 40-60 GPa, T = 300 K, which were attributed to hydrogen bond symmetrization. There is no volume discontinuity in the isothermal compression, which contradicts the proposed first order P-T boundary between ice VII and superionic ice. Furthermore, all the conductivity data is expressed by a single Arrhenius equation so that the superionic conduction occurs regardless of the ongoing hydrogen bond symmetrization upon compression. We suggests that the previously reported steep rise of the melting temperature of ice above 35-43 GPa is independent of superionic transition, and is a consequence of the hydrogen bond symmetrization. Combining above results with the existing planetary isentropes, superionic conduction in H2O ice

  4. Consider an Ice Stream.

    NASA Astrophysics Data System (ADS)

    Bindschadler, R.

    2002-12-01

    Forty years ago, John Nye was one of the leaders who introduced the rigors of classical physics to glaciology. His elegant treatments frequently took advantage of the then recent discovery that ice could be approximated as a plastic material. With this viewpoint, Nye was able to explain the shape of ice sheets and glaciers, to predict the expected pattern of stress and velocity within a glacier, and to derive the advance and retreat of a glacier from the record of accumulation and ablation. These advances have given generations of glaciologists tools to interpret the excellent observational record of glacier behavior and variation. In the 1980s, glaciologist, weaned on these works of Nye and of other similarly adept colleagues, carried their lessons to West Antarctica to study ice streams, the vast conveyor belts of ice that discharged nearly as much Antarctic ice as the much larger East Antarctic ice sheet. Ice streams were a glaciological conundrum. Despite the gently sloping surface, these broad features roared along, moving fastest when the gravitational impetus was least. After two decades of research, ice streams still have not given up all their secrets, yet much is now known. Internal deformation is negligible. Basal friction is frequently nil leaving the shattered margins as the primary means to avoid rapid wastage of the ice sheet. Within the margins, the resistive force results from a delicate balance of heat and evolving ice fabrics. Nevertheless, the bed beneath an ice stream cannot be ignored. It is ultimately the state of the underlying marine sediment that determines whether the ice stream can slide at all. There too, the heat balance is critical with an influx of water required to keep the bed wet enough to let the streams glide along. Ice stream research has been the portal through which glaciologists have seen and identified the complexities of West Antarctic ice sheet dynamics. Remarkably, nearly all time scales seem important. Ice stream

  5. Arctic Sea Ice

    NASA Astrophysics Data System (ADS)

    Stroeve, J. C.; Fetterer, F.; Knowles, K.; Meier, W.; Serreze, M.; Arbetter, T.

    2004-12-01

    Of all the recent observed changes in the Arctic environment, the reduction of sea ice cover stands out most prominantly. Several independent analysis have established a trend in Arctic ice extent of -3% per decade from the late 1970s to the late 1990s, with a more pronounced trend in summer. The overall downward trend in ice cover is characterized by strong interannual variability, with a low September ice extent in one year typically followed by recovery the next September. Having two extreme minimum years, such as what was observed in 2002 and 2003 is unusual. 2004 marks the third year in a row of substantially below normal sea ice cover in the Arctic. Early summer 2004 appeared unusual in terms of ice extent, with May a record low for the satellite period (1979-present) and June also exhibiting below normal ice extent. August 2004 extent is below that of 2003 and large reductions in ice cover are observed once again off the coasts of Siberia and Alaska and the Greenland Sea. Neither the 2002 or 2003 anomaly appeared to be strongly linked to the positive phase of the Arctic Oscillation (AO) during the preceding winter. Similarly, the AO was negative during winter 2003/2004. In the previous AO framework of Rigor et al (2002), a positive winter AO implied preconditioning of the ice cover to extensive summer decay. In this hypothesis, the AO does not explain all aspects of the recent decline in Arctic ice cover, such as the extreme minima of 2002, 2003 and 2004. New analysis by Rigor and Wallace (2004) suggest that the very positive AO state from 1989-1995 can explain the recent sea ice minima in terms of changes in the Arctic surface wind field associated with the previous high AO state. However, it is also reasonable to expect that a general decrease in ice thickness accompanying warming would manifest itself as greater sensitivity of the ice pack to wind forcings and albedo feedbacks. The decrease in multiyear ice and attendant changes in ice thickness

  6. Highly confined water: two-dimensional ice, amorphous ice, and clathrate hydrates.

    PubMed

    Zhao, Wen-Hui; Wang, Lu; Bai, Jaeil; Yuan, Lan-Feng; Yang, Jinlong; Zeng, Xiao Cheng

    2014-08-19

    the nanoscale confinement not only can disrupt the hydrogen bonding network in bulk water but also can allow satisfaction of the ice rule for low-density and high-density Q2D crystalline structures. Highly confined water can serve as a generic model system for understanding a variety of Q2D materials science phenomena, for example, liquid-solid, solid-solid, solid-amorphous, and amorphous-amorphous transitions in real time, as well as the Ostwald staging during these transitions. Our simulations also bring new molecular insights into the formation of gas hydrate from a gas and water mixture at low temperature.

  7. Light-controlled propulsion, aggregation and separation of water-fuelled TiO2/Pt Janus submicromotors and their "on-the-fly" photocatalytic activities.

    PubMed

    Mou, Fangzhi; Kong, Lei; Chen, Chuanrui; Chen, Zhihong; Xu, Leilei; Guan, Jianguo

    2016-03-07

    In this work, water-fuelled TiO2/Pt Janus submicromotors with light-controlled motions have been developed by utilizing the asymmetrical photocatalytic water redox reaction over TiO2/Pt Janus submicrospheres under UV irradiation. The motion state, speed, aggregation and separation behaviors of the TiO2/Pt Janus submicromotor can be reversibly, wirelessly and remotely controlled at will by regulating the "on/off" switch, intensity and pulsed/continuous irradiation mode of UV light. The motion of the water-fuelled TiO2/Pt Janus submicromotor is governed by light-induced self-electrophoresis under the local electrical field generated by the asymmetrical water oxidation and reduction reactions on its surface. The TiO2/Pt Janus submicromotors can interact with each other through the light-switchable electrostatic forces, and hence continuous and pulsed UV irradiation can make the TiO2/Pt Janus submicromotors aggregate and separate at will, respectively. Because of the enhanced mass exchange between the environment and active submicromotors, the separated TiO2/Pt Janus submicromotors powered by the pulsed UV irradiation show a much higher activity for the photocatalytic degradation of the organic dye than the aggregated TiO2/Pt submicromotors. The water-fuelled TiO2/Pt Janus submicromotors developed here have some outstanding advantages as "swimming" photocatalysts for organic pollutant remediation in the macro or microenvironment (microchannels and microwells in microchips) because of their small size, long-term stability, wirelessly controllable motion behaviors and long life span.

  8. Sea Ice and Oceanographic Conditions.

    ERIC Educational Resources Information Center

    Oceanus, 1986

    1986-01-01

    The coastal waters of the Beaufort Sea are covered with ice three-fourths of the year. These waters (during winter) are discussed by considering: consolidation of coastal ice; under-ice water; brine circulation; biological energy; life under the ice (including kelp and larger animals); food chains; and ice break-up. (JN)

  9. Sea Ice and Oceanographic Conditions.

    ERIC Educational Resources Information Center

    Oceanus, 1986

    1986-01-01

    The coastal waters of the Beaufort Sea are covered with ice three-fourths of the year. These waters (during winter) are discussed by considering: consolidation of coastal ice; under-ice water; brine circulation; biological energy; life under the ice (including kelp and larger animals); food chains; and ice break-up. (JN)

  10. Ice-Nucleating Bacteria

    NASA Astrophysics Data System (ADS)

    Obata, Hitoshi

    Since the discovery of ice-nucleating bacteria in 1974 by Maki et al., a large number of studies on the biological characteristics, ice-nucleating substance, ice nucleation gene and frost damage etc. of the bacteria have been carried out. Ice-nucleating bacteria can cause the freezing of water at relatively warm temperature (-2.3°C). Tween 20 was good substrates for ice-nucleating activity of Pseudomonas fluorescens KUIN-1. Major fatty acids of Isolate (Pseudomonas fluorescens) W-11 grown at 30°C were palmitic, cis-9-hexadecenoic and cis-11-octadecenoic which amounted to 90% of the total fatty acids. Sequence analysis shows that an ice nucleation gene from Pseudomonas fluorescens is related to the gene of Pseudomonas syringae.

  11. Prospecting for Martian Ice

    NASA Technical Reports Server (NTRS)

    McBride, S. A.; Allen, C. C.; Bell, M. S.

    2005-01-01

    During high Martian obliquity, ice is stable to lower latitudes than predicted by models of present conditions and observed by the Gamma Ray Spectrometer (approx. 60 deg N). An ice-rich layer deposited at mid-latitudes could persist to the present day; ablation of the top 1 m of ice leaving a thin insulating cover could account for lack of its detection by GRS. The presence of an ice-layer in the mid-latitudes is suggested by a network of polygons, interpreted as ice-wedge cracks. This study focuses on an exceptional concentration of polygons in Western Utopia (section of Casius quadrangle, roughly 40 deg - 50 deg N, 255 deg - 300 deg W). We attempt to determine the thickness and age of this ice layer through crater-polygons relations.

  12. Subsurface Ice Probe

    NASA Technical Reports Server (NTRS)

    Hecht, Michael; Carsey, Frank

    2005-01-01

    The subsurface ice probe (SIPR) is a proposed apparatus that would bore into ice to depths as great as hundreds of meters by melting the ice and pumping the samples of meltwater to the surface. Originally intended for use in exploration of subsurface ice on Mars and other remote planets, the SIPR could also be used on Earth as an alternative to coring, drilling, and melting apparatuses heretofore used to sample Arctic and Antarctic ice sheets. The SIPR would include an assembly of instrumentation and electronic control equipment at the surface, connected via a tether to a compact assembly of boring, sampling, and sensor equipment in the borehole (see figure). Placing as much equipment as possible at the surface would help to attain primary objectives of minimizing power consumption, sampling with high depth resolution, and unobstructed imaging of the borehole wall. To the degree to which these requirements would be satisfied, the SIPR would offer advantages over the aforementioned ice-probing systems.

  13. Assessment of toxic potential of primary and secondary particulates/aerosols from biodiesel vis-à-vis mineral diesel fuelled engine.

    PubMed

    Agarwal, Avinash Kumar; Gupta, Tarun; Dixit, Neelabh; Shukla, Pravesh Chandra

    2013-05-01

    Toxicity of engine out emissions from primary and secondary aerosols has been a major cause of concern for human health and environmental impact. This study aims to evaluate comparative toxicity of nanoparticles emitted from a modern common rail direct injection engine (CRDI) fuelled with biodiesel blend (B20) vis-à-vis mineral diesel. The toxicity and potential health hazards of exhaust particles were assessed using various parameters such as nanoparticle size and number distribution, surface area distribution, elemental and organic carbon content and polycyclic aromatic hydrocarbons adsorbed onto the particle surfaces, followed by toxic equivalent factor assessment. It was found that biodiesel particulate toxicity was considerably lower in comparison to mineral diesel.

  14. Sea salt dependent electrical conduction in polar ice

    SciTech Connect

    Moore, J.; Paren, J. ); Oerter, H. )

    1992-12-10

    A 45 m length of ice core from Dolleman Island, Antarctic Peninsula has been dielectrically analyzed at 5 cm resolution using the dielectric profiling (DEP) technique. The core has also been chemically analyzed for major ionic impurities. A statistical analysis of the measurements shows that the LF (low frequency) conductivity is determined both by neutral salt and acid concentrations. The statistical relationships have been compared with results from laboratory experiments on ice doped with HF (hydrogen fluoride). Salts (probably dispersed throughout the ice fabric) determine the dielectric conductivity. The salt conduction mechanism is probably due to Bjerrum L defects alone, created by the incorporation of chloride ions in the lattice. Samples of ice from beneath the Filchner-Ronne Ice Shelf were also measured and display a similar conduction mechanism below a solubility limit of about 400 [mu]M of chloride. The temperature dependence of the neutral salt, acid and pure ice contributions to the LF conductivity of natural ice between [approximately] 70[degrees]C and 0[degrees]C is discussed. These results allow a comprehensive comparison of dielectric and chemical data from natural ice.

  15. Graphene Oxide Restricts Growth and Recrystallization of Ice Crystals.

    PubMed

    Geng, Hongya; Liu, Xing; Shi, Guosheng; Bai, Guoying; Ma, Ji; Chen, Jingbo; Wu, Zhuangyuan; Song, Yanlin; Fang, Haiping; Wang, Jianjun

    2017-01-19

    We show graphene oxide (GO) greatly suppresses the growth and recrystallization of ice crystals, and ice crystals display a hexagonal shape in the GO dispersion. Preferred adsorption of GO on the ice crystal surface in liquid water leads to curved ice crystal surface. Therefore, the growth of ice crystal is suppressed owing to the Gibbs-Thompson effect, that is, the curved surface lowers the freezing temperature. Molecular dynamics simulation analysis reveals that oxidized groups on the basal plane of GO form more hydrogen bonds with ice in comparison with liquid water because of the honeycomb hexagonal scaffold of graphene, giving a molecular-level mechanism for controlling ice formation. Application of GO for cryopreservation shows that addition of only 0.01 wt % of GO to a culture medium greatly increases the motility (from 24.3 % to 71.3 %) of horse sperms. This work reports the control of growth of ice with GO, and opens a new avenue for the application of 2D materials.

  16. Evidence for stable square ice from quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Chen, Ji; Zen, Andrea; Brandenburg, Jan Gerit; Alfè, Dario; Michaelides, Angelos

    2016-12-01

    Recent experiments on ice formed by water under nanoconfinement provide evidence for a two-dimensional (2D) "square ice" phase. However, the interpretation of the experiments has been questioned and the stability of square ice has become a matter of debate. Partially this is because the simulation approaches employed so far (force fields and density functional theory) struggle to accurately describe the very small energy differences between the relevant phases. Here we report a study of 2D ice using an accurate wave-function based electronic structure approach, namely diffusion Monte Carlo (DMC). We find that at relatively high pressure, square ice is indeed the lowest enthalpy phase examined, supporting the initial experimental claim. Moreover, at lower pressures, a "pentagonal ice" phase (not yet observed experimentally) has the lowest enthalpy, and at ambient pressure, the "pentagonal ice" phase is degenerate with a "hexagonal ice" phase. Our DMC results also allow us to evaluate the accuracy of various density functional theory exchange-correlation functionals and force field models, and in doing so we extend the understanding of how such methodologies perform to challenging 2D structures presenting dangling hydrogen bonds.

  17. The origin of cold gas in giant elliptical galaxies and its role in fuelling radio-mode AGN feedback

    NASA Astrophysics Data System (ADS)

    Werner, N.; Oonk, J. B. R.; Sun, M.; Nulsen, P. E. J.; Allen, S. W.; Canning, R. E. A.; Simionescu, A.; Hoffer, A.; Connor, T.; Donahue, M.; Edge, A. C.; Fabian, A. C.; von der Linden, A.; Reynolds, C. S.; Ruszkowski, M.

    2014-04-01

    The nature and origin of the cold interstellar medium (ISM) in early-type galaxies are still a matter of debate, and understanding the role of this component in galaxy evolution and in fuelling the central supermassive black holes requires more observational constraints. Here, we present a multiwavelength study of the ISM in eight nearby, X-ray and optically bright, giant elliptical galaxies, all central dominant members of relatively low-mass groups. Using far-infrared spectral imaging with the Herschel Photodetector Array Camera & Spectrometer, we map the emission of cold gas in the cooling lines of [C II]λ157 μm, [O I] λ63 μm and [O Ib] λ145 μm. Additionally, we present Hα+[N II] imaging of warm ionized gas with the Southern Astrophysical Research (SOAR) telescope, and a study of the thermodynamic structure of the hot X-ray emitting plasma with Chandra. All systems with extended Hα emission in our sample (6/8 galaxies) display significant [C II] line emission indicating the presence of reservoirs of cold gas. This emission is cospatial with the optical Hα+[N II] emitting nebulae and the lowest entropy soft X-ray emitting plasma. The entropy profiles of the hot galactic atmospheres show a clear dichotomy, with the systems displaying extended emission-line nebulae having lower entropies beyond r ≳ 1 kpc than the cold-gas-poor systems. We show that while the hot atmospheres of the cold-gas-poor galaxies are thermally stable outside of their innermost cores, the atmospheres of the cold-gas-rich systems are prone to cooling instabilities. This provides considerable weight to the argument that cold gas in giant ellipticals is produced chiefly by cooling from the hot phase. We show that cooling instabilities may develop more easily in rotating systems and discuss an alternative condition for thermal instability for this case. The hot atmospheres of cold-gas-rich galaxies display disturbed morphologies indicating that the accretion of clumpy multiphase gas in

  18. Triangular ice crystals

    NASA Astrophysics Data System (ADS)

    Murray, Benjamin; Salzmann, Christoph; Heymsfield, Andrew; Neely, Ryan

    2014-05-01

    We are all familiar with the hexagonal form of snow crystals and it is well established that this shape is derived from the arrangement of water molecules in the crystal lattice. However, crystals with a triangular form are often found in the Earth's atmosphere and the reason for this non-hexagonal shape has remained elusive. Recent laboratory work has shed light on why ice crystals should take on this triangular or three-fold scalene habit. Studies of the crystal structure of ice have shown that ice which initially crystallises can be made of up of hexagonal layers which are interlaced with cubic layers to produce a 'stacking disordered ice'. The degree of stacking disorder can vary from crystals which are dominantly hexagonal with a few cubic stacking faults, through to ice where the cubic and hexagonal sequences are fully randomised. The introduction of stacking disorder to ice crystals reduces the symmetry of the crystal from 6-fold (hexagonal) to 3-fold (triangular); this offers an explanation for the long standing problem of why some atmospheric ice crystals have a triangular habit. We discuss the implications of triangular crystals for halos, radiative properties, and also discuss the implications for our understanding of the nucleation and early stages of ice crystal growth for ice crystals in the atmosphere.

  19. Ice barrier construction

    SciTech Connect

    Finucane, R. G.; Jahns, H. O.

    1985-06-18

    A method is provided for constructing spray ice barriers to protect offshore structures in a frigid body of water from mobile ice, waves and currents. Water is withdrawn from the body of water and is sprayed through ambient air which is below the freezing temperature of the water so that a substantial amount of the water freezes as it passes through the air. The sprayed water is directed to build up a mass of ice having a size and shape adapted to protect the offshore structure. Spray ice barriers can also be constructed for the containment of pollutant spills.

  20. Ice age paleotopography.

    PubMed

    Peltier, W R

    1994-07-08

    A gravitationally self-consistent theory of postglacial relative sea level change is used to infer the variation of surface ice and water cover since the Last Glacial Maximum (LGM). The results show that LGM ice volume was approximately 35 percent lower than suggested by the CLIMAP reconstruction and the maximum heights of the main Laurentian and Fennoscandian ice complexes are inferred to have been commensurately lower with respect to sea level. Use of these Ice Age boundary conditions in atmospheric general circulation models will yield climates that differ significantly from those previously inferred on the basis of the CLIMAP data set.

  1. Ice age paleotopography

    SciTech Connect

    Peltier, W.R. )

    1994-07-08

    A gravitationally self-consistent theory of postglacial relative sea level change is used to infer the variation of surface ice and water cover since the Last Glacial Maximum (LGM). The results show that LGM ice volume was approximately 35 percent lower than suggested by the CLIMAP reconstruction and the maximum heights of the main Laurentian and Fennoscandian ice complexes are inferred to have been commensurately lower with respect to sea level. Use of these Ice Age boundary conditions in atmospheric general circulation models will yield climates that differ significantly from those previously inferred on the basis of the CLIMAP data set.

  2. An ice lithography instrument.

    PubMed

    Han, Anpan; Chervinsky, John; Branton, Daniel; Golovchenko, J A

    2011-06-01

    We describe the design of an instrument that can fully implement a new nanopatterning method called ice lithography, where ice is used as the resist. Water vapor is introduced into a scanning electron microscope (SEM) vacuum chamber above a sample cooled down to 110 K. The vapor condenses, covering the sample with an amorphous layer of ice. To form a lift-off mask, ice is removed by the SEM electron beam (e-beam) guided by an e-beam lithography system. Without breaking vacuum, the sample with the ice mask is then transferred into a metal deposition chamber where metals are deposited by sputtering. The cold sample is then unloaded from the vacuum system and immersed in isopropanol at room temperature. As the ice melts, metal deposited on the ice disperses while the metals deposited on the sample where the ice had been removed by the e-beam remains. The instrument combines a high beam-current thermal field emission SEM fitted with an e-beam lithography system, cryogenic systems, and a high vacuum metal deposition system in a design that optimizes ice lithography for high throughput nanodevice fabrication. The nanoscale capability of the instrument is demonstrated with the fabrication of nanoscale metal lines.

  3. An ice lithography instrument

    SciTech Connect

    Han, Anpan; Chervinsky, John; Branton, Daniel; Golovchenko, J. A.

    2011-06-15

    We describe the design of an instrument that can fully implement a new nanopatterning method called ice lithography, where ice is used as the resist. Water vapor is introduced into a scanning electron microscope (SEM) vacuum chamber above a sample cooled down to 110 K. The vapor condenses, covering the sample with an amorphous layer of ice. To form a lift-off mask, ice is removed by the SEM electron beam (e-beam) guided by an e-beam lithography system. Without breaking vacuum, the sample with the ice mask is then transferred into a metal deposition chamber where metals are deposited by sputtering. The cold sample is then unloaded from the vacuum system and immersed in isopropanol at room temperature. As the ice melts, metal deposited on the ice disperses while the metals deposited on the sample where the ice had been removed by the e-beam remains. The instrument combines a high beam-current thermal field emission SEM fitted with an e-beam lithography system, cryogenic systems, and a high vacuum metal deposition system in a design that optimizes ice lithography for high throughput nanodevice fabrication. The nanoscale capability of the instrument is demonstrated with the fabrication of nanoscale metal lines.

  4. Electrical Properties of Ice

    DTIC Science & Technology

    1993-08-01

    Back in 1957 Decroly et al. (1957) carried out an experiment that was for a long time considered to be decisive in proving the proton nature of ice...be discussed in detail in the Charge Exchange at Ice/Metal Interfaces section). That is why Decroly et al. used layers of fro- zen IIF between ice...conductivity can be made only with respect to ice surfaces from the experiments of Decroly et al. Unfortunately, even this inference couldn’t be drawn from

  5. Sunlight off the ice

    NASA Image and Video Library

    2017-09-27

    Sunlight reflecting off of ice in the Bellingshausen Sea on Oct. 19, 2012. Credit: NASA / George Hale NASA's Operation IceBridge is an airborne science mission to study Earth's polar ice. For more information about IceBridge, visit: www.nasa.gov/icebridge NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  6. Wave-ice Interaction and the Marginal Ice Zone

    DTIC Science & Technology

    2015-09-30

    concentrations at the time. Any ice present appeared to be fragments of deformed ice (ridges), as most of the level ice had melted . Figure 1: Final...the buoys had approached the edge of the melting pack ice , from late August, when the vast floes had already fragmented due to dynamics and...1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Wave- ice interaction and the Marginal Ice Zone Prof

  7. The effects of ice on methane hydrate nucleation: a microcanonical molecular dynamics study.

    PubMed

    Zhang, Zhengcai; Guo, Guang-Jun

    2017-07-26

    Although ice powders are widely used in gas hydrate formation experiments, the effects of ice on hydrate nucleation and what happens in the quasi-liquid layer of ice are still not well understood. Here, we used high-precision constant energy molecular dynamics simulations to study methane hydrate nucleation from vapor-liquid mixtures exposed to the basal, prismatic, and secondary prismatic planes of hexagonal ice (ice Ih). Although no significant difference is observed in hydrate nucleation processes for these different crystal planes, it is found, more interestingly, that methane hydrate can nucleate either on the ice surface heterogeneously or in the bulk solution phase homogeneously. Several factors are mentioned to be able to promote the heterogeneous nucleation of hydrates, including the adsorption of methane molecules at the solid-liquid interface, hydrogen bonding between hydrate cages and the ice structure, the stronger ability of ice to transfer heat than that of the aqueous solution, and the higher occurrence probability of hydrate cages in the vicinity of the ice surface than in the bulk solution. Meanwhile, however, the other factors including the hydrophilicity of ice and the ice lattice mismatch with clathrate hydrates can inhibit heterogeneous nucleation on the ice surface and virtually promote homogeneous nucleation in the bulk solution. Certainly, the efficiency of ice as a promoter and as an inhibitor for heterogeneous nucleation is different. We estimate that the former is larger than the latter under the working conditions. Additionally, utilizing the benefit of ice to absorb heat, the NVE simulation of hydrate formation with ice can mimic the phenomenon of ice shrinking during the heterogeneous nucleation of hydrates and lower the overly large temperature increase during homogeneous nucleation. These results are helpful in understanding the nucleation mechanism of methane hydrate in the presence of ice.

  8. Using Antifreeze Proteins to understand ice microstructure evolution

    NASA Astrophysics Data System (ADS)

    Bayer-Giraldi, Maddalena; Azuma, Nobuhiko; Takata, Morimasa; Weikusat, Christian; Kondo, Hidemasa; Kipfstuhl, Sepp

    2017-04-01

    Polar ice sheets are considered a unique climate archive. The chemical analysis of its impurities and the development of its microstructure with depth give insight in past climate conditions as well as in the development of the ice sheet with time and deformation. Microstructural patterns like small grain size observed in specific depths are thought to be linked to the retarding effect of impurities on ice grain growth. Clear evidence of size or chemical composition of the impurities causing this effect is missing, but in this context a major role of nanoparticles has been suggested. In order to shed light on different mechanisms by which nanoparticles can control microstructure development we used antifreeze proteins (AFPs) as proxies for particles in ice. These proteins are small nanoparticles, approx. 5 nm in size, with the special characteristics of firmly binding to ice through several hydrogen bonds. We used AFPs from the sea-ice microalgae Fragilariopsis cylindrus (fcAFPs) in bubble-free, small-grained polycrystalline ice obtained by the phase-transition size refinement method. We explain how fcAFP bind to ice by presenting the 3-D-protein structure model inferred by X-ray structure analysis, and show the importance of the chemical interaction between particles and ice in controlling normal grain growth, comparing fcAFPs to other protein nanoparticles. We used modifications of fcAFPs for particle localization through fluorescence spectroscopy. Furthermore, the effect of fcAFPs on the driving factors for ice deformation during creep, i.e. on internal dislocations due to incorporation within the lattice and on the mobility of grain boundaries due to pinning, makes these proteins particularly interesting in studying the process of ice deformation.

  9. Pressure-induced collapse of ice clathrate and hexagonal ice mixtures formed by freezing.

    PubMed

    Andersson, Ove; Johari, G P

    2009-09-21

    We report thermal conductivity kappa measurements of the pressure-induced collapse of two mixtures of ice and tetrahydrofuran (THF) clathrate hydrate formed by freezing aqueous solutions, THF23 H(2)O and THF20 H(2)O, one containing twice as much excess water than the other. On pressurizing, kappa of the solid mixture first decreases at the onset pressure of approximately 0.8 GPa, as occurs for collapse of pure ice, reaches a local minimum at a pressure of approximately 1.0 GPa, and then increases as occurs for the collapse of the pure clathrate THF17 H(2)O. This shows that in the apparently homogeneous mixture, the ice and the clathrate collapse as if the two were in a mechanically mixed state. The manner in which the clathrate aggregate can arrange in the solid indicates that ice occupies the interstitial space in the tightly packed aggregates and H(2)O molecules belonging to the lattice of one form hydrogen bond with that of the other, a feature that is preserved in their collapsed states. On decompression, the original clathrate is partially recovered in the THF20 H(2)O mixture, but the collapsed ice does not transform to the low density amorph. We surmise that on irreversible transformation to the original clathrate, the aggregates expand. Any pressure thus exerted on the small domains of the collapsed ice with a hydrogen bonded interface with the clathrate aggregates could prevent it from transforming to the low density amorph. Measurements of kappa are useful in investigating structural collapse of crystals when dilatometry is unable to do so, as kappa seems to be more sensitive to pressure-induced changes than the volume.

  10. Glass transition on the development of a hydrogen-bond network in nano-channel ice, and subsequent phase transitions of the ordering of hydrogen atom positions within the network in [Co(H(2)bim)(3)](TMA)·20H(2)O.

    PubMed

    Watanabe, Keisuke; Oguni, Masaharu; Tadokoro, Makoto; Oohata, Yûki; Nakamura, Ryouhei

    2006-09-20

    Low-temperature thermal properties of crystalline [Co(H(2)bim)(3)](TMA)·20H(2)O were studied by adiabatic calorimetry, where H(2)bim is 2,2'-biimidazole, TMA is 1,3,5-benzene tricarboxylic acid, and 20H(2)O represents the water forming nano-channel in the crystal. A glass transition was observed at T(g) = 107 K. It was discussed as a freezing-in phenomenon of a small number of water molecules remaining partially disordered in their positional arrangement. The possibility that some defects really remain in the hydrogen-bond network of channel water was mentioned. Two subsequent phase transitions were observed at 54.8 and 59 K. These were interpreted as being of a (super-structural commensurate)-incommensurate-(normal commensurate) type in the heating direction with respect to the hydrogen-atom positions as referred to the periodicity of the hydrogen-bond network. The transition entropy was evaluated to be 0.65 J K(-1)(H(2)O-mol)(-1) as a total of the two, indicating that the disorder of the hydrogen atoms is present only in part of the water molecules of the channel. Based on the fact that the excess heat capacity due to the equilibrium phase transition is observed down to 35-40 K, the relaxation time for the rearrangement of the hydrogen-atom positions was assumed at the longest to be 1 ks at 35 K. This indicates that the activation energy of the rearrangement amounts to at most 13 kJ mol(-1) and that the transfer of Bjerrum defects is attributed to the rearrangement.

  11. Ice-on-ice impact experiments.

    NASA Astrophysics Data System (ADS)

    Kato, Manabu; Iijima, Yu-Ichi; Arakawa, Masahiko; Okimura, Yasuyuki; Fujimura, Akio; Maeno, Norikazu; Mizutani, Hitoshi

    1995-02-01

    Impact experiments, cratering and fragmentation, on water ice were performed in order to test the scaling laws previously constructed on rocks and sands for studying the collision process in the planetary history. The installation of a vertical gas gun in a cold room at -18°C (255 K) made it possible to use a projectile of water ice and to get the detailed mass distribution of ice fragments. Experimental results indicated the necessity for large modification of those scaling laws. Material dependence was investigated by using projectiles of ice, aluminum, and polycarbonate. Differences were observed in the morphology and efficiencies of cratering and in the energies required to initiate the fragmentation. Moreover, an abrupt increase of cratering efficiency, suggesting a change of excavation mechanism, was found at a critical diameter of spalled crater. The mass (size) distribution of small ice fragments obeyed a power law with an exponent significantly larger than that in rocks. The exponent was the same as that in Saturn's ring particles estimated from the data by the microwave occultation, which indicates a collisional disruption ring origin.

  12. Small Airframe Manufacturer's Icing Perspective

    NASA Technical Reports Server (NTRS)

    Hoppins, Jim

    2009-01-01

    This viewgraph presentation describes the icing effects, risk mitigation practices, and icing certifications for various Cessna small aircraft models. NASA's role in the development of simulation tools for icing certifications is also discussed.

  13. Bacterial Ice Crystal Controlling Proteins

    PubMed Central

    Lorv, Janet S. H.; Rose, David R.; Glick, Bernard R.

    2014-01-01

    Across the world, many ice active bacteria utilize ice crystal controlling proteins for aid in freezing tolerance at subzero temperatures. Ice crystal controlling proteins include both antifreeze and ice nucleation proteins. Antifreeze proteins minimize freezing damage by inhibiting growth of large ice crystals, while ice nucleation proteins induce formation of embryonic ice crystals. Although both protein classes have differing functions, these proteins use the same ice binding mechanisms. Rather than direct binding, it is probable that these protein classes create an ice surface prior to ice crystal surface adsorption. Function is differentiated by molecular size of the protein. This paper reviews the similar and different aspects of bacterial antifreeze and ice nucleation proteins, the role of these proteins in freezing tolerance, prevalence of these proteins in psychrophiles, and current mechanisms of protein-ice interactions. PMID:24579057

  14. Bacterial ice crystal controlling proteins.

    PubMed

    Lorv, Janet S H; Rose, David R; Glick, Bernard R

    2014-01-01

    Across the world, many ice active bacteria utilize ice crystal controlling proteins for aid in freezing tolerance at subzero temperatures. Ice crystal controlling proteins include both antifreeze and ice nucleation proteins. Antifreeze proteins minimize freezing damage by inhibiting growth of large ice crystals, while ice nucleation proteins induce formation of embryonic ice crystals. Although both protein classes have differing functions, these proteins use the same ice binding mechanisms. Rather than direct binding, it is probable that these protein classes create an ice surface prior to ice crystal surface adsorption. Function is differentiated by molecular size of the protein. This paper reviews the similar and different aspects of bacterial antifreeze and ice nucleation proteins, the role of these proteins in freezing tolerance, prevalence of these proteins in psychrophiles, and current mechanisms of protein-ice interactions.

  15. Arctic Sea Ice Maximum 2011

    NASA Image and Video Library

    AMSR-E Arctic Sea Ice: September 2010 to March 2011: Scientists tracking the annual maximum extent of Arctic sea ice said that 2011 was among the lowest ice extents measured since satellites began ...

  16. Resonant vibrational energy transfer in ice Ih.

    PubMed

    Shi, L; Li, F; Skinner, J L

    2014-06-28

    Fascinating anisotropy decay experiments have recently been performed on H2O ice Ih by Timmer and Bakker [R. L. A. Timmer, and H. J. Bakker, J. Phys. Chem. A 114, 4148 (2010)]. The very fast decay (on the order of 100 fs) is indicative of resonant energy transfer between OH stretches on different molecules. Isotope dilution experiments with deuterium show a dramatic dependence on the hydrogen mole fraction, which confirms the energy transfer picture. Timmer and Bakker have interpreted the experiments with a Förster incoherent hopping model, finding that energy transfer within the first solvation shell dominates the relaxation process. We have developed a microscopic theory of vibrational spectroscopy of water and ice, and herein we use this theory to calculate the anisotropy decay in ice as a function of hydrogen mole fraction. We obtain very good agreement with experiment. Interpretation of our results shows that four nearest-neighbor acceptors dominate the energy transfer, and that while the incoherent hopping picture is qualitatively correct, vibrational energy transport is partially coherent on the relevant timescale.

  17. [Tail Plane Icing

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Aviation Safety Program initiated by NASA in 1997 has put greater emphasis in safety related research activities. Ice-contaminated-tailplane stall (ICTS) has been identified by the NASA Lewis Icing Technology Branch as an important activity for aircraft safety related research. The ICTS phenomenon is characterized as a sudden, often uncontrollable aircraft nose- down pitching moment, which occurs due to increased angle-of-attack of the horizontal tailplane resulting in tailplane stall. Typically, this phenomenon occurs when lowering the flaps during final approach while operating in or recently departing from icing conditions. Ice formation on the tailplane leading edge can reduce tailplane angle-of-attack range and cause flow separation resulting in a significant reduction or complete loss of aircraft pitch control. In 1993, the Federal Aviation Authority (FAA) and NASA embarked upon a four-year research program to address the problem of tailplane stall and to quantify the effect of tailplane ice accretion on aircraft performance and handling characteristics. The goals of this program, which was completed in March 1998, were to collect aerodynamic data for an aircraft tail with and without ice contamination and to develop analytical methods for predicting the effects of tailplane ice contamination. Extensive dry air and icing tunnel tests which resulted in a database of the aerodynamic effects associated with tailplane ice contamination. Although the FAA/NASA tailplane icing program generated some answers regarding ice-contaminated-tailplane stall (ICTS) phenomena, NASA researchers have found many open questions that warrant further investigation into ICTS. In addition, several aircraft manufacturers have expressed interest in a second research program to expand the database to other tail configurations and to develop experimental and computational methodologies for evaluating the ICTS phenomenon. In 1998, the icing branch at NASA Lewis initiated a second

  18. Storing Hydrogen

    SciTech Connect

    Kim, Hyun Jeong; Karkamkar, Abhijeet J.; Autrey, Thomas; Chupas, Peter; Proffen, Thomas E.

    2010-05-31

    Researchers have been studying mesoporous materials for almost two decades with a view to using them as hosts for small molecules and scaffolds for molding organic compounds into new hybrid materials and nanoparticles. Their use as potential storage systems for large quantities of hydrogen has also been mooted. Such systems that might hold large quantities of hydrogen safely and in a very compact volume would have enormous potential for powering fuel cell vehicles, for instance. A sponge-like form of silicon dioxide, the stuff of sand particles and computer chips, can soak up and store other compounds including hydrogen. Studies carried out at the XOR/BESSRC 11-ID-B beamline at the APS have revealed that the nanoscopic properties of the hydrogenrich compound ammonia borane help it store hydrogen more efficiently than usual. The material may have potential for addressing the storage issues associated with a future hydrogen economy. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  19. Commercial aviation icing research requirements

    NASA Technical Reports Server (NTRS)

    Koegeboehn, L. P.

    1981-01-01

    A short range and long range icing research program was proposed. A survey was made to various industry and goverment agencies to obtain their views of needs for commercial aviation ice protection. Through these responsed, other additional data, and Douglas Aircraft icing expertise; an assessment of the state-of-the-art of aircraft icing data and ice protection systems was made. The information was then used to formulate the icing research programs.

  20. Point defects at the ice (0001) surface.

    PubMed

    Watkins, Matthew; VandeVondele, Joost; Slater, Ben

    2010-07-13

    Using density functional theory we investigate whether intrinsic defects in ice surface segregate. We predict that hydronium, hydroxide, and the Bjerrum L- and D-defects are all more stable at the surface. However, the energetic cost to create a D-defect at the surface and migrate it into the bulk crystal is smaller than its bulk formation energy. Absolute and relative segregation energies are sensitive to the surface structure of ice, especially the spatial distribution of protons associated with dangling hydrogen bonds. It is found that the basal plane surface of hexagonal ice increases the bulk concentration of Bjerrum defects, strongly favoring D-defects over L-defects. Dangling protons associated with undercoordinated water molecules are preferentially injected into the crystal bulk as Bjerrum D-defects, leading to a surface dipole that attracts hydronium ions. Aside from the disparity in segregation energies for the Bjerrum defects, we find the interactions between defect species to be very finely balanced; surface segregation energies for hydronium and hydroxide species and trapping energies of these ionic species with Bjerrum defects are equal within the accuracy of our calculations. The mobility of the ionic hydronium and hydroxide species is greatly reduced at the surface in comparison to the bulk due to surface sites with high trapping affinities. We suggest that, in pure ice samples, the surface of ice will have an acidic character due to the presence of hydronium ions. This may be important in understanding the reactivity of ice particulates in the upper atmosphere and at the boundary layer.

  1. Hydrogen program overview

    SciTech Connect

    Gronich, S.

    1997-12-31

    This paper consists of viewgraphs which summarize the following: Hydrogen program structure; Goals for hydrogen production research; Goals for hydrogen storage and utilization research; Technology validation; DOE technology validation activities supporting hydrogen pathways; Near-term opportunities for hydrogen; Market for hydrogen; and List of solicitation awards. It is concluded that a full transition toward a hydrogen economy can begin in the next decade.

  2. Overview of LIMEX'87 ice observations

    NASA Technical Reports Server (NTRS)

    Carsey, Frank D.; Holt, Benjamin; Argus, Susan A. Digby; Collins, Michael J.; Livingstone, Charles E.

    1989-01-01

    Ice observations, results, and conclusions are summarized for the March 1987 Labrador Ice Margin Experiment (LIMEX'87), an international oceanographic study conducted in the pack ice of the Grand Banks area off the coast of Newfoundland. Included are the ice extent, floe size and thickness, ice kinematics and rheology, ice microwave properties, oceanic properties under the ice, and penetration of swell into the ice.

  3. Artic ice and drilling structures

    SciTech Connect

    Sodhl, D.S.

    1985-04-01

    The sea ice in the southern Beaufort Sea is examined and subdivided into three zones: the fast ice zone, the seasonal pack-ice zone, an the polar pack ice zone. Each zone requires its own type of system. Existing floating drilling systems include ice-strengthened drill ships, conical drilling systems, and floating ice platforms in deep-water land-fast ice. The development of hydrocarbon resources in the Arctic presents great challenges to engineers, since the structures are required to operate safely under various conditions. Significant progress has yet to be made in understanding the behavior of ice.

  4. Spectroscopic signature for ferroelectric ice

    NASA Astrophysics Data System (ADS)

    Wójcik, Marek J.; Gług, Maciej; Boczar, Marek; Boda, Łukasz

    2014-09-01

    Various forms of ice exist within our galaxy. Particularly intriguing type of ice - ‘ferroelectric ice' was discovered experimentally and is stable in temperatures below 72 K. This form of ice can generate enormous electric fields and can play an important role in planetary formation. In this letter we present Car-Parrinello simulation of infrared spectra of ferroelectric ice and compare them with spectra of hexagonal ice. Librational region of the spectra can be treated as spectroscopic signature of ice XI and can be of help to identify ferroelectric ice in the Universe.

  5. Hydrogen gas purification apparatus

    SciTech Connect

    Yanagihara, N.; Gamo, T.; Iwaki, T.; Moriwaki, Y.

    1984-04-24

    A hydrogen gas purification apparatus which includes at least one set of two hydrogen purification containers coupled to each other for heat exchanging therebetween, each of the hydrogen purification containers containing a hydrogen absorbing alloy. The hydrogen gas purification apparatus is so arranged as to cause hydrogen gas to be selectively desorbed from and absorbed into the hydrogen absorbing alloy by the amount of heat produced when the hydrogen gas is selectively absorbed into and desorbed from the hydrogen absorbing alloy.

  6. Larsen B Ice Shelf

    Atmospheric Science Data Center

    2013-04-16

    ... ice shelf and the rough crevasses of glaciers appear orange. In contrast to the spectral composite, which provides information on ... surfaces appear brighter on their illuminated faces, the orange color in the multi-angle composite suggests a macroscopically rough ice ...

  7. Turning into Ice

    ERIC Educational Resources Information Center

    Pietsch, Renée B.; Hanlon, Regina; Bohland, Cynthia; Schmale, David G., III

    2016-01-01

    This article describes an interdisciplinary unit in which students explore biological "ice nucleation"--by particles that cause water to freeze at temperatures above -38°C--through the lens of the microbial ice nucleator "Pseudomonas syringae." Such This activity, which aligns with the "Next Generation Science…

  8. Making an Ice Core.

    ERIC Educational Resources Information Center

    Kopaska-Merkel, David C.

    1995-01-01

    Explains an activity in which students construct a simulated ice core. Materials required include only a freezer, food coloring, a bottle, and water. This hands-on exercise demonstrates how a glacier is formed, how ice cores are studied, and the nature of precision and accuracy in measurement. Suitable for grades three through eight. (Author/PVD)

  9. Ice Core Investigations

    ERIC Educational Resources Information Center

    Krim, Jessica; Brody, Michael

    2008-01-01

    What can glaciers tell us about volcanoes and atmospheric conditions? How does this information relate to our understanding of climate change? Ice Core Investigations is an original and innovative activity that explores these types of questions. It brings together popular science issues such as research, climate change, ice core drilling, and air…

  10. Ross Ice Shelf

    Atmospheric Science Data Center

    2013-04-16

    ... to hatch their young this year due to a combination of huge icebergs grounded near Ross Island and an unprecedented amount of sea ice in the Ross Sea. The grounded icebergs and sea ice have increased the distance between the penguins' feeding ...

  11. Academic Airframe Icing Perspective

    NASA Technical Reports Server (NTRS)

    Bragg, Mike; Rothmayer, Alric; Thompson, David

    2009-01-01

    2-D ice accretion and aerodynamics reasonably well understood for engineering applications To significantly improve our current capabilities we need to understand 3-D: a) Important ice accretion physics and modeling not well understood in 3-D; and b) Aerodynamics unsteady and 3-D especially near stall. Larger systems issues important and require multidisciplinary team approach

  12. Snow and Ice.

    ERIC Educational Resources Information Center

    Minneapolis Independent School District 275, Minn.

    This experimental edition provides a number of activities useful for investigating snow and ice with elementary school children. Commencing with games with ice cubes, the activities lead through studies of snowflakes, snowdrifts, effects of wind and obstacles on the shape and formation of drifts, to a study of animals living under snow. The…

  13. Fire beneath the ice

    SciTech Connect

    Monastersky, R.

    1993-02-13

    A volcano discovered six years ago by researchers Blankenship and Bell under Antarctica poses questions about a potential climatic catastrophe. The researchers claim that the volcano is still active, erupting occasionally and growing. A circular depression on the surface of the ice sheet has ice flowing into it and is used to provide a portrait of the heat source. The volcano is on a critical transition zone within West Antarctica with fast flowing ice streams directly downhill. Work by Blankenship shows that a soft layer of water-logged sediments called till provide the lubricating layer on the underside of the ice streams. Volcanos may provide the source of this till. The ice streams buffer the thick interior ice from the ocean and no one know what will happen if the ice streams continue to shorten. These researchers believe their results indicate that the stability of West Antarctica ultimately depends less on the current climate than on the location of heat and sediments under the ice and the legacy of past climatic changes.

  14. Ice Core Investigations

    ERIC Educational Resources Information Center

    Krim, Jessica; Brody, Michael

    2008-01-01

    What can glaciers tell us about volcanoes and atmospheric conditions? How does this information relate to our understanding of climate change? Ice Core Investigations is an original and innovative activity that explores these types of questions. It brings together popular science issues such as research, climate change, ice core drilling, and air…

  15. Rheology of glacier ice

    NASA Technical Reports Server (NTRS)

    Jezek, K. C.; Alley, R. B.; Thomas, R. H.

    1985-01-01

    A new method for calculating the stress field in bounded ice shelves is used to compare strain rate and deviatoric stress on the Ross Ice Shelf, Antarctica. The analysis shows that strain rate (per second) increases as the third power of deviatoric stress (in newtons/sq meter), with a constant of proportionality equal to 2.3 x 10 to the -25th.

  16. Rheology of glacier ice

    NASA Technical Reports Server (NTRS)

    Jezek, K. C.; Alley, R. B.; Thomas, R. H.

    1985-01-01

    A new method for calculating the stress field in bounded ice shelves is used to compare strain rate and deviatoric stress on the Ross Ice Shelf, Antarctica. The analysis shows that strain rate (per second) increases as the third power of deviatoric stress (in newtons/sq meter), with a constant of proportionality equal to 2.3 x 10 to the -25th.

  17. Making an Ice Core.

    ERIC Educational Resources Information Center

    Kopaska-Merkel, David C.

    1995-01-01

    Explains an activity in which students construct a simulated ice core. Materials required include only a freezer, food coloring, a bottle, and water. This hands-on exercise demonstrates how a glacier is formed, how ice cores are studied, and the nature of precision and accuracy in measurement. Suitable for grades three through eight. (Author/PVD)

  18. Ice forming experiment

    NASA Technical Reports Server (NTRS)

    Vali, G.

    1982-01-01

    A low gravity experiment to assess the effect of the presence of supercooled cloud droplets on the diffusional growth rate of ice crystals is described. The theoretical work and the feasibility studies are summarized. The nucleation of ice crystals in supercooled clouds is also discussed.

  19. Turning into Ice

    ERIC Educational Resources Information Center

    Pietsch, Renée B.; Hanlon, Regina; Bohland, Cynthia; Schmale, David G., III

    2016-01-01

    This article describes an interdisciplinary unit in which students explore biological "ice nucleation"--by particles that cause water to freeze at temperatures above -38°C--through the lens of the microbial ice nucleator "Pseudomonas syringae." Such This activity, which aligns with the "Next Generation Science…

  20. Investigations of ice formation in the Space Shuttle Main Engine 0209 main injector coolant cavity

    NASA Technical Reports Server (NTRS)

    Richards, D. R.; Charklwick, D. M.

    1991-01-01

    Severe main combustion chamber wall and main injector baffle element deterioration occurred during tests of Space Shuttle Main Engine 0209. One of the possible causes considered is ice formation and blockage of coolant to these components, resulting from the mixing of leaking hot turbine exhaust gas (hydrogen rich steam) and hydrogen coolant in the injector coolant cavity. The plausibility of ice blockage is investigated through simple mixing calculations for hot gas and hydrogen, investigation of condensation and water droplet formation, calculation of the freezing times for droplets, and the prediction of ice layer thicknesses. It is concluded that condensation and droplet formation can occur, and small water droplets that form can freeze very quickly when in contact with the cold coolant cavity surfaces. Copnservative analysis predicts, however, that the maximum thickness of the ice layers formed is too small to result in significant blockage of the coolant flow.

  1. Investigations of ice formation in the Space Shuttle Main Engine 0209 main injector coolant cavity

    NASA Technical Reports Server (NTRS)

    Richards, D. R.; Charklwick, D. M.

    1991-01-01

    Severe main combustion chamber wall and main injector baffle element deterioration occurred during tests of Space Shuttle Main Engine 0209. One of the possible causes considered is ice formation and blockage of coolant to these components, resulting from the mixing of leaking hot turbine exhaust gas (hydrogen rich steam) and hydrogen coolant in the injector coolant cavity. The plausibility of ice blockage is investigated through simple mixing calculations for hot gas and hydrogen, investigation of condensation and water droplet formation, calculation of the freezing times for droplets, and the prediction of ice layer thicknesses. It is concluded that condensation and droplet formation can occur, and small water droplets that form can freeze very quickly when in contact with the cold coolant cavity surfaces. Copnservative analysis predicts, however, that the maximum thickness of the ice layers formed is too small to result in significant blockage of the coolant flow.

  2. Extensive water ice within Ceres' aqueously altered regolith: Evidence from nuclear spectroscopy.

    PubMed

    Prettyman, T H; Yamashita, N; Toplis, M J; McSween, H Y; Schörghofer, N; Marchi, S; Feldman, W C; Castillo-Rogez, J; Forni, O; Lawrence, D J; Ammannito, E; Ehlmann, B L; Sizemore, H G; Joy, S P; Polanskey, C A; Rayman, M D; Raymond, C A; Russell, C T

    2017-01-06

    The surface elemental composition of dwarf planet Ceres constrains its regolith ice content, aqueous alteration processes, and interior evolution. Using nuclear spectroscopy data acquired by NASA's Dawn mission, we determined the concentrations of elemental hydrogen, iron, and potassium on Ceres. The data show that surface materials were processed by the action of water within the interior. The non-icy portion of Ceres' carbon-bearing regolith contains similar amounts of hydrogen to those present in aqueously altered carbonaceous chondrites; however, the concentration of iron on Ceres is lower than in the aforementioned chondrites. This allows for the possibility that Ceres experienced modest ice-rock fractionation, resulting in differences between surface and bulk composition. At mid-to-high latitudes, the regolith contains high concentrations of hydrogen, consistent with broad expanses of water ice, confirming theoretical predictions that ice can survive for billions of years just beneath the surface.

  3. Extensive water ice within Ceres’ aqueously altered regolith: Evidence from nuclear spectroscopy

    NASA Astrophysics Data System (ADS)

    Prettyman, T. H.; Yamashita, N.; Toplis, M. J.; McSween, H. Y.; Schörghofer, N.; Marchi, S.; Feldman, W. C.; Castillo-Rogez, J.; Forni, O.; Lawrence, D. J.; Ammannito, E.; Ehlmann, B. L.; Sizemore, H. G.; Joy, S. P.; Polanskey, C. A.; Rayman, M. D.; Raymond, C. A.; Russell, C. T.

    2017-01-01

    The surface elemental composition of dwarf planet Ceres constrains its regolith ice content, aqueous alteration processes, and interior evolution. Using nuclear spectroscopy data acquired by NASA’s Dawn mission, we determined the concentrations of elemental hydrogen, iron, and potassium on Ceres. The data show that surface materials were processed by the action of water within the interior. The non-icy portion of Ceres’ carbon-bearing regolith contains similar amounts of hydrogen to those present in aqueously altered carbonaceous chondrites; however, the concentration of iron on Ceres is lower than in the aforementioned chondrites. This allows for the possibility that Ceres experienced modest ice-rock fractionation, resulting in differences between surface and bulk composition. At mid-to-high latitudes, the regolith contains high concentrations of hydrogen, consistent with broad expanses of water ice, confirming theoretical predictions that ice can survive for billions of years just beneath the surface.

  4. Hydrogen-fueled internal combustion engines.

    SciTech Connect

    Verhelst, S.; Wallner, T.; Energy Systems; Ghent Univ.

    2009-12-01

    The threat posed by climate change and the striving for security of energy supply are issues high on the political agenda these days. Governments are putting strategic plans in motion to decrease primary energy use, take carbon out of fuels and facilitate modal shifts. Taking a prominent place in these strategic plans is hydrogen as a future energy carrier. A number of manufacturers are now leasing demonstration vehicles to consumers using hydrogen-fueled internal combustion engines (H{sub 2}ICEs) as well as fuel cell vehicles. Developing countries in particular are pushing for H{sub 2}ICEs (powering two- and three-wheelers as well as passenger cars and buses) to decrease local pollution at an affordable cost. This article offers a comprehensive overview of H{sub 2}ICEs. Topics that are discussed include fundamentals of the combustion of hydrogen, details on the different mixture formation strategies and their emissions characteristics, measures to convert existing vehicles, dedicated hydrogen engine features, a state of the art on increasing power output and efficiency while controlling emissions and modeling.

  5. Novel Hydrogen Hydrate Structures under Pressure

    NASA Astrophysics Data System (ADS)

    Qian, Guang-Rui; Lyakhov, Andriy O.; Zhu, Qiang; Oganov, Artem R.; Dong, Xiao

    2014-07-01

    Gas hydrates are systems of prime importance. In particular, hydrogen hydrates are potential materials of icy satellites and comets, and may be used for hydrogen storage. We explore the H2O-H2 system at pressures in the range 0-100 GPa with ab initio variable-composition evolutionary simulations. According to our calculation and previous experiments, the H2O-H2 system undergoes a series of transformations with pressure, and adopts the known open-network clathrate structures (sII, C0), dense ``filled ice'' structures (C1, C2) and two novel hydrate phases. One of these is based on the hexagonal ice framework and has the same H2O:H2 ratio (2:1) as the C0 phase at low pressures and similar enthalpy (we name this phase Ih-C0). The other newly predicted hydrate phase has a 1:2 H2O:H2 ratio and structure based on cubic ice. This phase (which we name C3) is predicted to be thermodynamically stable above 38 GPa when including van der Waals interactions and zero-point vibrational energy, and explains previously mysterious experimental X-ray diffraction and Raman measurements. This is the hydrogen-richest hydrate and this phase has a remarkable gravimetric density (18 wt.%) of easily extractable hydrogen.

  6. Rotating ice blocks

    NASA Astrophysics Data System (ADS)

    Dorbolo, Stephane; Adami, Nicolas; Grasp Team

    2014-11-01

    The motion of ice discs released at the surface of a thermalized bath was investigated. As observed in some rare events in the Nature, the discs start spinning spontaneously. The motor of this motion is the cooling of the water close to the ice disc. As the density of water is maximum at 4°C, a downwards flow is generated from the surface of the ice block to the bottom. This flow generates the rotation of the disc. The speed of rotation depends on the mass of the ice disc and on the temperature of the bath. A model has been constructed to study the influence of the temperature of the bath. Finally, ice discs were put on a metallic plate. Again, a spontaneous rotation was observed. FNRS is thanked for financial support.

  7. Polarimetric road ice detection

    NASA Astrophysics Data System (ADS)

    Drummond, Krista

    This thesis investigated the science behind polarimetric road ice detection systems. Laboratory Mueller matrix measurements of a simulated road under differing surface conditions were collected searching for a discriminatory polarization property. These Mueller matrices were decomposed into depolarization, diattenuation, and retardance. Individual sample surface polarization properties were then calculated from these three unique matrices and compared. Specular and off-specular reflection responses of each sample were collected. Four polarization properties stood out for having high separation between dry and iced measurements: Depolarization Index, Linear Diattenuation, Linear Polarizance, and Linear Retardance. Through our investigation polarimetric ice detection is possible. Continued research of the polarization properties of road ice can result in the development of a road ice detection system. Proposed deployment methods of such a system have been outlined following the analysis of the data collected in this experiment.

  8. Quantum Ice : Experimental Signatures

    NASA Astrophysics Data System (ADS)

    Shannon, Nic; Benton, Owen; Sikora, Olga; Penc, Karlo; McClarty, Paul; Pollmann, Frank; Moessner, Roderich; Fulde, Peter

    2012-02-01

    ``Quantum Spin Ice'' materials have attracted considerable attention as three-dimensional examples of quantum spin liquids. Recently, we have used zero-temperature Quantum Monte Carlo simulation to explore one possible scenario for these materials, confirming the possibility of a ``quantum ice'' state driven by quantum tunnelling between an extensive number of different spin-ice configurations [1]. Here we address the simple question : what would such a quantum ice look like in experiment ? We focus in particular on the fate of ``pinch point'' singularities seen in neutron scattering experiments on spin ice materials, showing how these are suppressed and ultimately eliminated as the system is cooled to its ground state [1,2]. [4pt] [1] N. Shannon et al., arXiv:1105.4196[0pt] [2] O. Benton et al., in preparation.

  9. No confinement needed: observation of a metastable hydrophobic wetting two-layer ice on graphene.

    PubMed

    Kimmel, Greg A; Matthiesen, Jesper; Baer, Marcel; Mundy, Christopher J; Petrik, Nikolay G; Smith, R Scott; Dohnálek, Zdenek; Kay, Bruce D

    2009-09-09

    The structure of water at interfaces is crucial for processes ranging from photocatalysis to protein folding. Here, we investigate the structure and lattice dynamics of two-layer crystalline ice films grown on a hydrophobic substrate, graphene on Pt(111), with low energy electron diffraction, reflection-absorption infrared spectroscopy, rare-gas adsorption/desorption, and ab initio molecular dynamics. Unlike hexagonal ice, which consists of stacks of puckered hexagonal "bilayers", this new ice polymorph consists of two flat hexagonal sheets of water molecules in which the hexagons in each sheet are stacked directly on top of each other. Such two-layer ices have been predicted for water confined between hydrophobic walls, but not previously observed experimentally. Our results show that the two-layer ice forms even at zero pressure at a single hydrophobic interface by maximizing the number of hydrogen bonds at the expense of adopting a nontetrahedral geometry with weakened hydrogen bonds.

  10. Atmospheric processes on ice nanoparticles in molecular beams

    PubMed Central

    Fárník, Michal; Poterya, Viktoriya

    2014-01-01

    This review summarizes some recent experiments with ice nanoparticles (large water clusters) in molecular beams and outlines their atmospheric relevance: (1) Investigation of mixed water–nitric acid particles by means of the electron ionization and sodium doping combined with photoionization revealed the prominent role of HNO3 molecule as the condensation nuclei. (2) The uptake of atmospheric molecules by water ice nanoparticles has been studied, and the pickup cross sections for some molecules exceed significantly the geometrical sizes of the ice nanoparticles. (3) Photodissociation of hydrogen halides on water ice particles has been shown to proceed via excitation of acidically dissociated ion pair and subsequent biradical generation and H3O dissociation. The photodissociation of CF2Cl2 molecules in clusters is also mentioned. Possible atmospheric consequences of all these results are briefly discussed. PMID:24790973

  11. A one-dimensional ice structure built from pentagons.

    PubMed

    Carrasco, Javier; Michaelides, Angelos; Forster, Matthew; Haq, Sam; Raval, Rasmita; Hodgson, Andrew

    2009-05-01

    Heterogeneous ice nucleation has a key role in fields as diverse as atmospheric chemistry and biology. Ice nucleation on metal surfaces affords an opportunity to watch this process unfold at the molecular scale on a well-defined, planar interface. A common feature of structural models for such films is that they are built from hexagonal arrangements of molecules. Here we show, through a combination of scanning tunnelling microscopy, infrared spectroscopy and density-functional theory, that about 1-nm-wide ice chains that nucleate on Cu(110) are not built from hexagons, but instead are built from a face-sharing arrangement of water pentagons. The pentagon structure is favoured over others because it maximizes the water-metal bonding while maintaining a strong hydrogen-bonding network. It reveals an unanticipated structural adaptability of water-ice films, demonstrating that the presence of the substrate can be sufficient to favour non-hexagonal structural units.

  12. Residual entropy of ice III from Monte Carlo simulation.

    PubMed

    Kolafa, Jiří

    2016-03-28

    We calculated the residual entropy of ice III as a function of the occupation probabilities of hydrogen positions α and β assuming equal energies of all configurations. To do this, a discrete ice model with Bjerrum defect energy penalty and harmonic terms to constrain the occupation probabilities was simulated by the Metropolis Monte Carlo method for a range of temperatures and sizes followed by thermodynamic integration and extrapolation to N = ∞. Similarly as for other ices, the residual entropies are slightly higher than the mean-field (no-loop) approximation. However, the corrections caused by fluctuation of energies of ice samples calculated using molecular models of water are too large for accurate determination of the chemical potential and phase equilibria.

  13. Coating Reduces Ice Adhesion

    NASA Technical Reports Server (NTRS)

    Smith, Trent; Prince, Michael; DwWeese, Charles; Curtis, Leslie

    2008-01-01

    The Shuttle Ice Liberation Coating (SILC) has been developed to reduce the adhesion of ice to surfaces on the space shuttle. SILC, when coated on a surface (foam, metal, epoxy primer, polymer surfaces), will reduce the adhesion of ice by as much as 90 percent as compared to the corresponding uncoated surface. This innovation is a durable coating that can withstand several cycles of ice growth and removal without loss of anti-adhesion properties. SILC is made of a binder composed of varying weight percents of siloxane(s), ethyl alcohol, ethyl sulfate, isopropyl alcohol, and of fine-particle polytetrafluoroethylene (PTFE). The combination of these components produces a coating with significantly improved weathering characteristics over the siloxane system alone. In some cases, the coating will delay ice formation and can reduce the amount of ice formed. SILC is not an ice prevention coating, but the very high water contact angle (greater than 140 ) causes water to readily run off the surface. This coating was designed for use at temperatures near -170 F (-112 C). Ice adhesion tests performed at temperatures from -170 to 20 F (-112 to -7 C) show that SILC is a very effective ice release coating. SILC can be left as applied (opaque) or buffed off until the surface appears clear. Energy dispersive spectroscopy (EDS) and x-ray photoelectron spectroscopy (XPS) data show that the coating is still present after buffing to transparency. This means SILC can be used to prevent ice adhesion even when coating windows or other objects, or items that require transmission of optical light. Car windshields are kept cleaner and SILC effectively mitigates rain and snow under driving conditions.

  14. Hubble Captures Cosmic Ice Sculptures

    NASA Image and Video Library

    2017-09-27

    NASA image release September 16, 2010 Enjoying a frozen treat on a hot summer day can leave a sticky mess as it melts in the Sun and deforms. In the cold vacuum of space, there is no edible ice cream, but there is radiation from massive stars that is carving away at cold molecular clouds, creating bizarre, fantasy-like structures. These one-light-year-tall pillars of cold hydrogen and dust, imaged by the Hubble Space Telescope, are located in the Carina Nebula. Violent stellar winds and powerful radiation from massive stars are sculpting the surrounding nebula. Inside the dense structures, new stars may be born. This image of dust pillars in the Carina Nebula is a composite of 2005 observations taken of the region in hydrogen light (light emitted by hydrogen atoms) along with 2010 observations taken in oxygen light (light emitted by oxygen atoms), both times with Hubble's Advanced Camera for Surveys. The immense Carina Nebula is an estimated 7,500 light-years away in the southern constellation Carina. The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute (STScI) conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy, Inc. in Washington, D.C. NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe. Follow us on Twitter Join us on Facebook

  15. Tensile properties of impact ices

    NASA Technical Reports Server (NTRS)

    Chu, M. L.; Scavuzzo, R. J.; Kellackey, C. J.

    1992-01-01

    A special test apparatus was developed to measure the tensile strength of impact ices perpendicular to the direction of growth. The apparatus consists of a split tube carefully machined to minimize the effect of the joint on impact ice strength. The tube is supported in the wind tunnel by two carefully aligned bearings. During accretion the tube is turned slowly in the icing cloud to form a uniform coating of ice on the split tube specimen. The two halves of the split tube are secured firmly by a longitudinal bolt to prevent relative motion between the two halves during ice accretion and handling. Tensile test strength results for a variety of icing conditions were obtained. Both glaze and rime ice conditions were investigated. In general, the tensile strength of impact ice was significantly less than refrigerator ice. Based on the limited data taken, the median strength of rime ice was less than glaze ice. However, the mean values were similar.

  16. Proton ordering in cubic ice and hexagonal ice; a potential new ice phase--XIc.

    PubMed

    Raza, Zamaan; Alfè, Dario; Salzmann, Christoph G; Klimeš, Jiří; Michaelides, Angelos; Slater, Ben

    2011-11-28

    Ordinary water ice forms under ambient conditions and has two polytypes, hexagonal ice (Ih) and cubic ice (Ic). From a careful comparison of proton ordering arrangements in Ih and Ic using periodic density functional theory (DFT) and diffusion Monte Carlo (DMC) approaches, we find that the most stable arrangement of water molecules in cubic ice is isoenergetic with that of the proton ordered form of hexagonal ice (known as ice XI). We denote this potential new polytype of ice XI as XIc and discuss a possible route for preparing ice XIc.

  17. The Phase Diagram of Superionic Ice

    NASA Astrophysics Data System (ADS)

    Sun, Jiming; Clark, Bryan; Car, Roberto

    2014-03-01

    Using the variable cell Car-Parrinello molecular dynamics method, we study the phase diagram of superionic ice from 200GPa to 2.5TPa. We present evidence that at very high pressure the FCC structure of the oxygen sublattice may become unstable allowing for a new superionic ice phase, in which the oxygen sublattice takes the P21 structure found in zero-temperature total energy calculations. We also report on how the melting temperature of the hydrogen sublattice is affected by this new crystalline structure of the oxygen sublattice. This work was supported by the NSF under grant DMS-1065894(J.S. and R.C.) and PHY11-25915(B.C.).

  18. Ice nanoclusters at hydrophobic metal surfaces.

    PubMed

    Michaelides, Angelos; Morgenstern, Karina

    2007-08-01

    Studies of the structure of supported water clusters provide a means for obtaining a rigorous molecular-scale description of the initial stages of heterogeneous ice nucleation: a process of importance to fields as diverse as atmospheric chemistry, astrophysics and biology. Here, we report the observation and characterization of metal-supported water hexamers and a family of hydrated nanoclusters--heptamers, octamers and nonamers--through a combination of low-temperature scanning tunnelling microscopy experiments and first-principles electronic-structure calculations. Aside from achieving unprecedented resolution of the cyclic water hexamer--the so-called smallest piece of ice--we identify and explain a hitherto unknown competition between the ability of water molecules to simultaneously bond to a substrate and to accept hydrogen bonds. This competition also rationalizes previous structure predictions for water clusters on other substrates.

  19. Stacking disorder in ice I.

    PubMed

    Malkin, Tamsin L; Murray, Benjamin J; Salzmann, Christoph G; Molinero, Valeria; Pickering, Steven J; Whale, Thomas F

    2015-01-07

    Traditionally, ice I was considered to exist in two well-defined crystalline forms at ambient pressure: stable hexagonal ice (ice Ih) and metastable cubic ice (ice Ic). However, it is becoming increasingly evident that what has been called cubic ice in the past does not have a structure consistent with the cubic crystal system. Instead, it is a stacking-disordered material containing cubic sequences interlaced with hexagonal sequences, which is termed stacking-disordered ice (ice Isd). In this article, we summarise previous work on ice with stacking disorder including ice that was called cubic ice in the past. We also present new experimental data which shows that ice which crystallises after heterogeneous nucleation in water droplets containing solid inclusions also contains stacking disorder even at freezing temperatures of around -15 °C. This supports the results from molecular simulations, that the structure of ice that crystallises initially from supercooled water is always stacking-disordered and that this metastable ice can transform to the stable hexagonal phase subject to the kinetics of recrystallization. We also show that stacking disorder in ice which forms from water droplets is quantitatively distinct from ice made via other routes. The emerging picture of ice I is that of a very complex material which frequently contains stacking disorder and this stacking disorder can vary in complexity depending on the route of formation and thermal history.

  20. Hydrogen-burn survival: preliminary thermal model and test results

    SciTech Connect

    McCulloch, W.H.; Ratzel, A.C.; Kempka, S.N.; Furgal, D.T.; Aragon, J.J.

    1982-08-01

    This report documents preliminary Hydrogen Burn Survival (HBS) Program experimental and analytical work conducted through February 1982. The effects of hydrogen deflagrations on safety-related equipment in nuclear power plant containment buildings are considered. Preliminary results from hydrogen deflagration experiments in the Sandia Variable Geometry Experimental System (VGES) are presented and analytical predictions for these tests are compared and discussed. Analytical estimates of component thermal responses to hydrogen deflagrations in the upper and lower compartments of an ice condenser, pressurized water reactor are also presented.

  1. Hydrogen chloride

    Integrated Risk Information System (IRIS)

    Hydrogen chloride ; CASRN 7647 - 01 - 0 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogeni

  2. Hydrogen technologies

    SciTech Connect

    Not Available

    1992-05-01

    To the non-nonsense engineer, any talk of a hydrogen economy may seem like so much hot air. This paper reports that as legislative, safety and environmental issues continue to tighten, they're promoting hydrogen's chances as an energy source and, more immediately, its prospects as a chemical feedstock. Paradoxically, the environmental demands that are stimulating hydrogen demand are also inhibiting the gas's production. Previously, gasoline was made with benzene, which means that H{sub 2} was rejected. But now that the laws mandate lower aromatic and higher oxygenate levels in gasolines, there's less H{sub 2} available as byproduct. At the same time, H{sub 2} demand is rising in hydrodesulfurization units, since the same laws require refiners to cut sulfur levels in fuels. Supplementary sources for the gas are also shrinking. In the chlor-alkali industry, H{sub 2} output is dropping, as demand for its coproduct chlorine weakens. At the same time, H{sub 2} demand for the making of hydrogen peroxide is growing, as that environmentally safer bleach gains chlorine's market share.

  3. Hydrogen sulfide

    Integrated Risk Information System (IRIS)

    EPA / 635 / R - 03 / 005 www.epa.gov / iris TOXICOLOGICAL REVIEW OF HYDROGEN SULFIDE ( CAS No . 7783 - 06 - 4 ) In Support of Summary Information on the Integrated Risk Information System ( IRIS ) June 2003 U.S . Environmental Protection Agency Washington , DC DISCLAIMER This document has been

  4. Ground Ice at the Phoenix Landing Site: A Preflight Assessment

    NASA Technical Reports Server (NTRS)

    Mellon, M. T.; Arvidson, R. E.; Seelos, F.; Tamppari, L. K.; Boynton, W. V.; Smith, P.

    2004-01-01

    One of the objectives of the Mars Scout mission, Phoenix, is to characterize the present state of water in the martian environment, in a location where water may play a significant role in the present and past habitability of Mars. Given the generally dry and cold climate of Mars today any substantial amount of water is expected to occur in the form of ground ice (subsurface ice) within the regolith. The Mars Odyssey Gamma Ray Spectrometer has indicated abundant subsurface hydrogen and inferred ground ice at high latitudes. Therefore, the Phoenix mission will be targeted to land in the northern high latitudes (approximately 65 degrees N - 75 degrees N) where ground ice is expected to be abundantly available for analysis. The lander will be capable of excavating, sampling, and analyzing, dry and water-rich/icy soils. The location and depth of excavation necessary to achieve the goals of sampling and analysis of icy material become important parameters to assess. In the present work we ask two key questions: 1) At what depth within the regolith do we expect to find ice? 2) How might this depth vary over the region of potential landing sites? Numerous lines of evidence can be employed to provide an indication of the presence or absence of shallow ground ice at the potential landing sites. For example geomorphology, neutrons, gamma rays, and theory each contribute clues to an overall understanding of the distribution of ice. Orbital observations provide information on a variety of spatial scales, typically 10 s of meters (patterned ground) to 100 s of kilometers (gamma rays). While information on all of these scales are important, of particular interest is how the presence and depth of ground ice might vary on spatial scales comparable to the lander and its work area. While ground ice may be stable (and present) on a regional scale, local-scale slopes and changes in the physical characteristics of soils can result in significant variations in the distribution of ice.

  5. Options for refuelling hydrogen fuel cell vehicles in Italy

    NASA Astrophysics Data System (ADS)

    Mercuri, R.; Bauen, A.; Hart, D.

    Hydrogen fuel cell vehicle (H 2 FCV) trials are taking place in a number of cities around the world. In Italy, Milan and Turin are the first to have demonstration projects involving hydrogen-fuelled vehicles, in part to satisfy increasing consumer demand for improved environmental performance. The Italian transport plan specifically highlights the potential for FCVs to enter into the marketplace from around 2005. A scenario for FCV penetration into Italy, developed using projected costs for FCV and hydrogen fuel, suggests that by 2015, 2 million Italian cars could be powered by fuel cells. By 2030, 60% of the parc could be FCVs. To develop an infrastructure to supply these vehicles, a variety of options is considered. Large-scale steam reforming, on-site reforming and electrolysis options are analysed, with hydrogen delivered both in liquid and gaseous form. Assuming mature technologies, with over 10,000 units produced, on-site steam reforming provides the most economic hydrogen supply to the consumer, at US 2.6/kg. However, in the early stages of the infrastructure development there is a clear opportunity for on-site electrolysis and for production of hydrogen at centralised facilities, with delivery in the form of liquid hydrogen. This enables additional flexibility, as the hydrogen may also be used for fuel refining or for local power generation. In the current Italian context, energy companies could have a significant role to play in developing a hydrogen infrastructure. The use of hydrogen FCVs can substantially reduce emissions of regulated pollutants and greenhouse gases. Using externality costs for regulated pollutants, it is estimated that the use of hydrogen fuel cell buses in place of 5% of diesel buses in Milan could avoid US 2 million per year in health costs. The addition of even very low externality costs to fuel prices makes the use of untaxed hydrogen in buses and cars, which is slightly more expensive for the motorist than untaxed gasoline or

  6. Metallic Hydrogen

    NASA Astrophysics Data System (ADS)

    Silvera, Isaac; Zaghoo, Mohamed; Salamat, Ashkan

    2015-03-01

    Hydrogen is the simplest and most abundant element in the Universe. At high pressure it is predicted to transform to a metal with remarkable properties: room temperature superconductivity, a metastable metal at ambient conditions, and a revolutionary rocket propellant. Both theory and experiment have been challenged for almost 80 years to determine its condensed matter phase diagram, in particular the insulator-metal transition. Hydrogen is predicted to dissociate to a liquid atomic metal at multi-megabar pressures and T =0 K, or at megabar pressures and very high temperatures. Thus, its predicted phase diagram has a broad field of liquid metallic hydrogen at high pressure, with temperatures ranging from thousands of degrees to zero Kelvin. In a bench top experiment using static compression in a diamond anvil cell and pulsed laser heating, we have conducted measurements on dense hydrogen in the region of 1.1-1.7 Mbar and up to 2200 K. We observe a first-order phase transition in the liquid phase, as well as sharp changes in optical transmission and reflectivity when this phase is entered. The optical signature is that of a metal. The mapping of the phase line of this transition is in excellent agreement with recent theoretical predictions for the long-sought plasma phase transition to metallic hydrogen. Research supported by the NSF, Grant DMR-1308641, the DOE Stockpile Stewardship Academic Alliance Program, Grant DE-FG52-10NA29656, and NASA Earth and Space Science Fellowship Program, Award NNX14AP17H.

  7. Icing Cloud Calibration of the NASA Glenn Icing Research Tunnel

    NASA Technical Reports Server (NTRS)

    Ide, Robert F.; Oldenburg, John R.

    2001-01-01

    The icing research tunnel at the NASA Glenn Research Center underwent a major rehabilitation in 1999, necessitating recalibration of the icing clouds. This report describes the methods used in the recalibration, including the procedure used to establish a uniform icing cloud and the use of a standard icing blade technique for measurement of liquid water content. The instruments and methods used to perform the droplet size calibration are also described. The liquid water content/droplet size operating envelopes of the icing tunnel are shown for a range of airspeeds and compared to the FAA icing certification criteria. The capabilities of the IRT to produce large droplet icing clouds is also detailed.

  8. Ice sheets and nitrogen.

    PubMed

    Wolff, Eric W

    2013-07-05

    Snow and ice play their most important role in the nitrogen cycle as a barrier to land-atmosphere and ocean-atmosphere exchanges that would otherwise occur. The inventory of nitrogen compounds in the polar ice sheets is approximately 260 Tg N, dominated by nitrate in the much larger Antarctic ice sheet. Ice cores help to inform us about the natural variability of the nitrogen cycle at global and regional scale, and about the extent of disturbance in recent decades. Nitrous oxide concentrations have risen about 20 per cent in the last 200 years and are now almost certainly higher than at any time in the last 800 000 years. Nitrate concentrations recorded in Greenland ice rose by a factor of 2-3, particularly between the 1950s and 1980s, reflecting a major change in NOx emissions reaching the background atmosphere. Increases in ice cores drilled at lower latitudes can be used to validate or constrain regional emission inventories. Background ammonium concentrations in Greenland ice show no significant recent trend, although the record is very noisy, being dominated by spikes of input from biomass burning events. Neither nitrate nor ammonium shows significant recent trends in Antarctica, although their natural variations are of biogeochemical and atmospheric chemical interest. Finally, it has been found that photolysis of nitrate in the snowpack leads to significant re-emissions of NOx that can strongly impact the regional atmosphere in snow-covered areas.

  9. Micromechanics of ice friction

    NASA Astrophysics Data System (ADS)

    Sammonds, P. R.; Bailey, E.; Lishman, B.; Scourfield, S.

    2015-12-01

    Frictional mechanics are controlled by the ice micro-structure - surface asperities and flaws - but also the ice fabric and permeability network structure of the contacting blocks. Ice properties are dependent upon the temperature of the bulk ice, on the normal stress and on the sliding velocity and acceleration. This means the shear stress required for sliding is likewise dependent on sliding velocity, acceleration, and temperature. We aim to describe the micro-physics of the contacting surface. We review micro-mechanical models of friction: the elastic and ductile deformation of asperities under normal loads and their shear failure by ductile flow, brittle fracture, or melting and hydrodynamic lubrication. Combinations of these give a total of six rheological models of friction. We present experimental results in ice mechanics and physics from laboratory experiments to understand the mechanical models. We then examine the scaling relations of the slip of ice, to examine how the micro-mechanics of ice friction can be captured simple reduced-parameter models, describing the mechanical state and slip rate of the floes. We aim to capture key elements that they may be incorporated into mid and ocean-basin scale modelling.

  10. Ice sheets and nitrogen

    PubMed Central

    Wolff, Eric W.

    2013-01-01

    Snow and ice play their most important role in the nitrogen cycle as a barrier to land–atmosphere and ocean–atmosphere exchanges that would otherwise occur. The inventory of nitrogen compounds in the polar ice sheets is approximately 260 Tg N, dominated by nitrate in the much larger Antarctic ice sheet. Ice cores help to inform us about the natural variability of the nitrogen cycle at global and regional scale, and about the extent of disturbance in recent decades. Nitrous oxide concentrations have risen about 20 per cent in the last 200 years and are now almost certainly higher than at any time in the last 800 000 years. Nitrate concentrations recorded in Greenland ice rose by a factor of 2–3, particularly between the 1950s and 1980s, reflecting a major change in NOx emissions reaching the background atmosphere. Increases in ice cores drilled at lower latitudes can be used to validate or constrain regional emission inventories. Background ammonium concentrations in Greenland ice show no significant recent trend, although the record is very noisy, being dominated by spikes of input from biomass burning events. Neither nitrate nor ammonium shows significant recent trends in Antarctica, although their natural variations are of biogeochemical and atmospheric chemical interest. Finally, it has been found that photolysis of nitrate in the snowpack leads to significant re-emissions of NOx that can strongly impact the regional atmosphere in snow-covered areas. PMID:23713125

  11. Skylab floating ice experiment

    NASA Technical Reports Server (NTRS)

    Campbell, W. J. (Principal Investigator); Ramseier, R. O.; Weaver, R. J.; Weeks, W. F.

    1975-01-01

    The author has identified the following significant results. Coupling of the aircraft data with the ground truth observations proved to be highly successful with interesting results being obtained with IR and SLAR passive microwave techniques, and standard photography. Of particular interest were the results of the PMIS system which operated at 10.69 GHz with both vertical and horizontal polarizations. This was the first time that dual polarized images were obtained from floating ice. In both sea and lake ice, it was possible to distinguish a wide variety of thin ice types because of their large differences in brightness temperatures. It was found that the higher brightness temperature was invariably obtained in the vertically polarized mode, and as the age of the ice increases the brightness temperature increases in both polarizations. Associated with this change in age, the difference in temperature was observed as the different polarizations decreased. It appears that the horizontally polarized data is the most sensitive to variations in ice type for both fresh water and sea ice. The study also showed the great amount of information on ice surface roughness and deformation patterns that can be obtained from X-band SLAR observations.

  12. Pyroelectricity of water ice.

    PubMed

    Wang, Hanfu; Bell, Richard C; Iedema, Martin J; Schenter, Gregory K; Wu, Kai; Cowin, James P

    2008-05-22

    Water ice usually is thought to have zero pyroelectricity by symmetry. However, biasing it with ions breaks the symmetry because of the induced partial dipole alignment. This unmasks a large pyroelectricity. Ions were soft-landed upon 1 mum films of water ice at temperatures greater than 160 K. When cooled below 140-150 K, the dipole alignment locks in. Work function measurements of these films then show high and reversible pyroelectric activity from 30 to 150 K. For an initial approximately 10 V induced by the deposited ions at 160 K, the observed bias below 150 K varies approximately as 10 Vx(T/150 K)2. This implies that water has pyroelectric coefficients as large as that of many commercial pyroelectrics, such as lead zirconate titanate (PZT). The pyroelectricity of water ice, not previously reported, is in reasonable agreement with that predicted using harmonic analysis of a model system of SPC ice. The pyroelectricity is observed in crystalline and compact amorphous ice, deuterated or not. This implies that for water ice between 0 and 150 K (such as astrophysical ices), temperature changes can induce strong electric fields (approximately 10 MV/m) that can influence their chemistry, ion trajectories, or binding.

  13. Water Ice on Pluto

    NASA Image and Video Library

    2015-10-16

    The Ralph instrument on NASA's New Horizons spacecraft detected water ice on Pluto's surface, picking up on the ice's near-infrared spectral characteristics. (See featured image from Oct. 8, 2015.) The middle panel shows a region west of Pluto's "heart" feature -- which the mission team calls Tombaugh Regio -- about 280 miles (450 kilometers) across. It combines visible imagery from Ralph's Multispectral Visible Imaging Camera (MVIC) with infrared spectroscopy from the Linear Etalon Imaging Spectral Array (LEISA). Areas with the strongest water ice spectral signature are highlighted in blue. Major outcrops of water ice occur in regions informally called Viking Terra, along Virgil Fossa west of Elliot crater, and in Baré Montes. Numerous smaller outcrops are associated with impact craters and valleys between mountains. In the lower left panel, LEISA spectra are shown for two regions indicated by cyan and magenta boxes. The white curve is a water ice model spectrum, showing similar features to the cyan spectrum. The magenta spectrum is dominated by methane ice absorptions. The lower right panel shows an MVIC enhanced color view of the region in the white box, with MVIC's blue, red and near-infrared filters displayed in blue, green and red channels, respectively. The regions showing the strongest water ice signature are associated with terrains that are actually a lighter shade of red. http://photojournal.jpl.nasa.gov/catalog/PIA20030

  14. High Speed Ice Friction

    NASA Astrophysics Data System (ADS)

    Seymour-Pierce, Alexandra; Sammonds, Peter; Lishman, Ben

    2014-05-01

    Many different tribological experiments have been run to determine the frictional behaviour of ice at high speeds, ostensibly with the intention of applying results to everyday fields such as winter tyres and sports. However, experiments have only been conducted up to linear speeds of several metres a second, with few additional subject specific studies reaching speeds comparable to these applications. Experiments were conducted in the cold rooms of the Rock and Ice Physics Laboratory, UCL, on a custom built rotational tribometer based on previous literature designs. Preliminary results from experiments run at 2m/s for ice temperatures of 271 and 263K indicate that colder ice has a higher coefficient of friction, in accordance with the literature. These results will be presented, along with data from further experiments conducted at temperatures between 259-273K (in order to cover a wide range of the temperature dependent behaviour of ice) and speeds of 2-15m/s to produce a temperature-velocity-friction map for ice. The effect of temperature, speed and slider geometry on the deformation of ice will also be investigated. These speeds are approaching those exhibited by sports such as the luge (where athletes slide downhill on an icy track), placing the tribological work in context.

  15. Hydrogen peroxide poisoning

    MedlinePlus

    Hydrogen peroxide is used in these products: Hydrogen peroxide Hair bleach Some contact lens cleaners Note: Household hydrogen peroxide has a 3% concentration. That means it contains 97% water and 3% hydrogen peroxide. Hair ...

  16. Cyclic steps on ice

    NASA Astrophysics Data System (ADS)

    Yokokawa, M.; Izumi, N.; Naito, K.; Parker, G.; Yamada, T.; Greve, R.

    2016-05-01

    Boundary waves often form at the interface between ice and fluid flowing adjacent to it, such as ripples under river ice covers, and steps on the bed of supraglacial meltwater channels. They may also be formed by wind, such as the megadunes on the Antarctic ice sheet. Spiral troughs on the polar ice caps of Mars have been interpreted to be cyclic steps formed by katabatic wind blowing over ice. Cyclic steps are relatives of upstream-migrating antidunes. Cyclic step formation on ice is not only a mechanical but also a thermodynamic process. There have been very few studies on the formation of either cyclic steps or upstream-migrating antidunes on ice. In this study, we performed flume experiments to reproduce cyclic steps on ice by flowing water, and found that trains of steps form when the Froude number is larger than unity. The features of those steps allow them to be identified as ice-bed analogs of cyclic steps in alluvial and bedrock rivers. We performed a linear stability analysis and obtained a physical explanation of the formation of upstream-migrating antidunes, i.e., precursors of cyclic steps. We compared the results of experiments with the predictions of the analysis and found the observed steps fall in the range where the analysis predicts interfacial instability. We also found that short antidune-like undulations formed as a precursor to the appearance of well-defined steps. This fact suggests that such antidune-like undulations correspond to the instability predicted by the analysis and are precursors of cyclic steps.

  17. The seeding of ice algal blooms in Arctic pack ice: The multiyear ice seed repository hypothesis

    NASA Astrophysics Data System (ADS)

    Olsen, Lasse M.; Laney, Samuel R.; Duarte, Pedro; Kauko, Hanna M.; Fernández-Méndez, Mar; Mundy, Christopher J.; Rösel, Anja; Meyer, Amelie; Itkin, Polona; Cohen, Lana; Peeken, Ilka; Tatarek, Agnieszka; Róźańska-Pluta, Magdalena; Wiktor, Józef; Taskjelle, Torbjørn; Pavlov, Alexey K.; Hudson, Stephen R.; Granskog, Mats A.; Hop, Haakon; Assmy, Philipp

    2017-07-01

    During the Norwegian young sea ICE expedition (N-ICE2015) from January to June 2015 the pack ice in the Arctic Ocean north of Svalbard was studied during four drifts between 83° and 80°N. This pack ice consisted of a mix of second year, first year, and young ice. The physical properties and ice algal community composition was investigated in the three different ice types during the winter-spring-summer transition. Our results indicate that algae remaining in sea ice that survived the summer melt season are subsequently trapped in the upper layers of the ice column during winter and may function as an algal seed repository. Once the connectivity in the entire ice column is established, as a result of temperature-driven increase in ice porosity during spring, algae in the upper parts of the ice are able to migrate toward the bottom and initiate the ice algal spring bloom. Furthermore, this algal repository might seed the bloom in younger ice formed in adjacent leads. This mechanism was studied in detail for the dominant ice diatom Nitzschia frigida. The proposed seeding mechanism may be compromised due to the disappearance of older ice in the anticipated regime shift toward a seasonally ice-free Arctic Ocean.

  18. Liquid Water Oceans in Ice Giants

    NASA Technical Reports Server (NTRS)

    Wiktorowicz, Sloane J.; Ingersoll, Andrew P.

    2007-01-01

    Aptly named, ice giants such as Uranus and Neptune contain significant amounts of water. While this water cannot be present near the cloud tops, it must be abundant in the deep interior. We investigate the likelihood of a liquid water ocean existing in the hydrogen-rich region between the cloud tops and deep interior. Starting from an assumed temperature at a given upper tropospheric pressure (the photosphere), we follow a moist adiabat downward. The mixing ratio of water to hydrogen in the gas phase is small in the photosphere and increases with depth. The mixing ratio in the condensed phase is near unity in the photosphere and decreases with depth; this gives two possible outcomes. If at some pressure level the mixing ratio of water in the gas phase is equal to that in the deep interior, then that level is the cloud base. The gas below the cloud base has constant mixing ratio. Alternately, if the mixing ratio of water in the condensed phase reaches that in the deep interior, then the surface of a liquid ocean will occur. Below this ocean surface, the mixing ratio of water will be constant. A cloud base occurs when the photospheric temperature is high. For a family of ice giants with different photospheric temperatures, the cooler ice giants will have warmer cloud bases. For an ice giant with a cool enough photospheric temperature, the cloud base will exist at the critical temperature. For still cooler ice giants, ocean surfaces will result. A high mixing ratio of water in the deep interior favors a liquid ocean. We find that Neptune is both too warm (photospheric temperature too high) and too dry (mixing ratio of water in the deep interior too low) for liquid oceans to exist at present. To have a liquid ocean, Neptune s deep interior water to gas ratio would have to be higher than current models allow, and the density at 19 kbar would have to be approx. equal to 0.8 g/cu cm. Such a high density is inconsistent with gravitational data obtained during the Voyager

  19. Liquid Water Oceans in Ice Giants

    NASA Technical Reports Server (NTRS)

    Wiktorowicz, Sloane J.; Ingersoll, Andrew P.

    2007-01-01

    Aptly named, ice giants such as Uranus and Neptune contain significant amounts of water. While this water cannot be present near the cloud tops, it must be abundant in the deep interior. We investigate the likelihood of a liquid water ocean existing in the hydrogen-rich region between the cloud tops and deep interior. Starting from an assumed temperature at a given upper tropospheric pressure (the photosphere), we follow a moist adiabat downward. The mixing ratio of water to hydrogen in the gas phase is small in the photosphere and increases with depth. The mixing ratio in the condensed phase is near unity in the photosphere and decreases with depth; this gives two possible outcomes. If at some pressure level the mixing ratio of water in the gas phase is equal to that in the deep interior, then that level is the cloud base. The gas below the cloud base has constant mixing ratio. Alternately, if the mixing ratio of water in the condensed phase reaches that in the deep interior, then the surface of a liquid ocean will occur. Below this ocean surface, the mixing ratio of water will be constant. A cloud base occurs when the photospheric temperature is high. For a family of ice giants with different photospheric temperatures, the cooler ice giants will have warmer cloud bases. For an ice giant with a cool enough photospheric temperature, the cloud base will exist at the critical temperature. For still cooler ice giants, ocean surfaces will result. A high mixing ratio of water in the deep interior favors a liquid ocean. We find that Neptune is both too warm (photospheric temperature too high) and too dry (mixing ratio of water in the deep interior too low) for liquid oceans to exist at present. To have a liquid ocean, Neptune s deep interior water to gas ratio would have to be higher than current models allow, and the density at 19 kbar would have to be approx. equal to 0.8 g/cu cm. Such a high density is inconsistent with gravitational data obtained during the Voyager

  20. Hydrogen forming reaction process

    SciTech Connect

    Marianowski, L.G.; Fleming, D.K.

    1989-03-07

    A hydrogen forming process is described, comprising: conducting in a hydrogen production zone a chemical reaction forming mixed gases comprising molecular hydrogen; contacting one side of a hydrogen ion porous and molecular gas nonporous metallic foil with the mixed gases in the hydrogen production zone; dissociating the molecular hydrogen to ionic hydrogen on the one side of the metallic foil; passing the ionic hydrogen through the metallic foil to its other side; and withdrawing hydrogen from the other side of the metallic foil, thereby removing hydrogen from the hydrogen production zone.

  1. An ice shelf breakup

    SciTech Connect

    Fahnestock, M.

    1996-02-09

    Glaciers and ice sheets are controlled by the climate and must change if the conditions that led to their current configurations are changing. These ice masses exist at the interface between the atmosphere, which provides sustaining snowfall and thermal regulation, and the land, which provides a stable base and in many cases the elevation required to reach suitably cold conditions. Ice sheets and glaciers are distributed around the globe and can serve as potential indicators of past climate variability and current climatic trends. 9 refs.

  2. Ice caps on venus?

    PubMed

    Libby, W F

    1968-03-08

    The data on Venus obtained by Mariner V and Venera 4 are interpreted as evidence of giant polar ice caps holding the water that must have come out of the volcanoes with the observed carbon dioxide, on the assumption that Earth and Venus are of similar composition and volcanic history. The measurements by Venera 4 of the equatorial surface temperature indicate that the microwave readings were high, so that the polar ice caps may be allowed to exist in the face of the 10-centimeter readings of polar temperature. Life seems to be distinctly possible at the edges of the ice sheets.

  3. Ice Jam Data Collection

    DTIC Science & Technology

    1994-03-01

    Sweden, p. 301- LITERATURE CITED 317. Pomerleau, R.T. (1992a) Field ice measurements Beltaos , S . (1978) Field investigations of river ice for...9, LuleA, Sweden, p. 355-371. Proceedings of the 16th Annual Conference of the Beltaos , S ., R. Gerard, S . Petryk and T.D. Association of State...AD- A280 067 Ice Jam Data Collection Kathleen D. White and Jon E. ZufelT March 1994 DTIC S EECTEa @8199M411 aF FI 1,0 Tis EWE’~t a, pm. DTIC QUALFPy

  4. Climate Data Records (CDRs) for Ice Motion and Ice Age

    NASA Astrophysics Data System (ADS)

    Tschudi, M. A.; Fowler, C.; Maslanik, J. A.; Stroeve, J. C.

    2011-12-01

    Climate Data Records (CDRs) for remotely-sensed Arctic sea ice motion and sea ice age are under development by our group at the University of Colorado, Boulder. The ice motion product, archived at NSIDC, has a considerable history of use, while sea ice age is a relatively new product. Our technique to estimate sea ice motion utilizes images from SSM/I, as well as SMMR and the series of AVHRR sensors to estimate the daily motion of ice parcels. This method is augmented by incorporating ice motion observations from the network of drifting buoys deployed as part of the International Arctic Buoy Program. Our technique to calculate ice age relies on following the actual age of the ice for each ice parcel, categorizing the parcel as first-year ice, second-year, ice, etc. based on how many summer melt seasons the ice parcel survives. Both of these research-grade products have been interpolated onto 25x25 km grid points spanning the entire Arctic Ocean using the Equal-Area Scalable Earth (EASE) grid. Datasets generated from this program have shown that the Arctic ice cover has experienced a significant (> 70%) decline in multiyear ice over the last 20 years, leaving a younger ice cover in 2011. By comparing ice age derived by the Lagrangian tracking method to ice thickness estimated by Ice, Cloud and land Elevation Satellite (ICESat) Geoscience Laser Altimeter System (GLAS) data, it is observed that ice age is linearly related to ice thickness, up to an age of 10 years. Therefore, the shift in dominance of multiyear ice to first-year ice relates to a significant thinning of the ice. This thinning is estimated to correspond to a 40% reduction in ice volume in the last 20 years. An ancillary dataset (APP-X) produced by the University of Wisconsin, Madison has been combined with the ice motion product to monitor the properties of the sea ice parcels tracked by the ice motion product. This dataset includes ice surface and 2-meter air temperature, albedo, downwelling shortwave

  5. Hydrogen environment embrittlement.

    NASA Technical Reports Server (NTRS)

    Gray, H. R.

    1972-01-01

    Hydrogen embrittlement is classified into three types: internal reversible hydrogen embrittlement, hydrogen reaction embrittlement, and hydrogen environment embrittlement. Characteristics of and materials embrittled by these types of hydrogen embrittlement are discussed. Hydrogen environment embrittlement is reviewed in detail. Factors involved in standardizing test methods for detecting the occurrence of and evaluating the severity of hydrogen environment embrittlement are considered. The effects of test technique, hydrogen pressure, purity, strain rate, stress concentration factor, and test temperature are discussed.

  6. Advances in ice mechanics - 1987

    SciTech Connect

    Chung, J.S.; Hallam, S.D.; Maatanen, M.; Sinha, N.K.; Sodhi, D.S.

    1987-01-01

    This book presents the papers given at a symposium on the interaction of icebergs with offshore platforms. Topics considered at the symposium included advances in ice mechanics in the United Kingdom, ice mechanics in Finland, recent advances in ice mechanics in Canada, advances in sea ice mechanics in the USA, foundations, monitoring, hazards, risk assessment, and deformation.

  7. Creep of ice: Further studies

    NASA Technical Reports Server (NTRS)

    Heard, H. C.; Durham, W. B.; Kirby, S. H.

    1987-01-01

    Detailed studies have been done of ice creep as related to the icy satellites, Ganymede and Callisto. Included were: (1) the flow of high-pressure water ices II, III, and V, and (2) frictional sliding of ice I sub h. Work was also begun on the study of the effects of impurities on the flow of ice. Test results are summarized.

  8. Arctic Sea ice model sensitivities.

    SciTech Connect

    Peterson, Kara J.; Bochev, Pavel Blagoveston; Paskaleva, Biliana Stefanova

    2010-12-01

    Arctic sea ice is an important component of the global climate system and, due to feedback effects, the Arctic ice cover is changing rapidly. Predictive mathematical models are of paramount importance for accurate estimates of the future ice trajectory. However, the sea ice components of Global Climate Models (GCMs) vary significantly in their prediction of the future state of Arctic sea ice and have generally underestimated the rate of decline in minimum sea ice extent seen over the past thirty years. One of the contributing factors to this variability is the sensitivity of the sea ice state to internal model parameters. A new sea ice model that holds some promise for improving sea ice predictions incorporates an anisotropic elastic-decohesive rheology and dynamics solved using the material-point method (MPM), which combines Lagrangian particles for advection with a background grid for gradient computations. We evaluate the variability of this MPM sea ice code and compare it with the Los Alamos National Laboratory CICE code for a single year simulation of the Arctic basin using consistent ocean and atmospheric forcing. Sensitivities of ice volume, ice area, ice extent, root mean square (RMS) ice speed, central Arctic ice thickness,and central Arctic ice speed with respect to ten different dynamic and thermodynamic parameters are evaluated both individually and in combination using the Design Analysis Kit for Optimization and Terascale Applications (DAKOTA). We find similar responses for the two codes and some interesting seasonal variability in the strength of the parameters on the solution.

  9. Evidence From Hydrogen Isotopes in Meteorites for a Martian Permafrost

    NASA Technical Reports Server (NTRS)

    Usui, T.; Alexander, C. M. O'D.; Wang, J.; Simon, J. I.; Jones, J. H.

    2014-01-01

    Fluvial landforms on Mars suggest that it was once warm enough to maintain persistent liquid water on its surface. The transition to the present cold and dry Mars is closely linked to the history of surface water, yet the evolution of surficial water is poorly constrained. We have investigated the evolution of surface water/ ice and its interaction with the atmosphere by measurements of hydrogen isotope ratios (D/H: deuterium/ hydrogen) of martian meteorites. Hydrogen is a major component of water (H2O) and its isotopes fractionate significantly during hydrological cycling between the atmosphere, surface waters, ground ice, and polar cap ice. Based on in situ ion microprobe analyses of three geochemically different shergottites, we reported that there is a water/ice reservoir with an intermediate D/H ratio (delta D = 1,000?2500 %) on Mars. Here we present the possibility that this water/ice reservoir represents a ground-ice/permafrost that has existed relatively intact over geologic time.

  10. Ice interaction with offshore structures

    SciTech Connect

    Cammaert, A.B.; Muggeridge, D.B.

    1988-01-01

    Oil platforms and other offshore structures being built in the arctic regions must be able to withstand icebergs, ice islands, and pack ice. This reference explain the effect ice has on offshore structures and demonstrates design and construction methods that allow such structures to survive in harsh, ice-ridden environments. It analyzes the characteristics of sea ice as well as dynamic ice forces on structures. Techniques for ice modeling and field testing facilitate the design and construction of sturdy, offshore constructions. Computer programs included.

  11. Vortex ice in nanostructured superconductors

    SciTech Connect

    Reichhardt, Charles; Reichhardt, Cynthia J; Libal, Andras J

    2008-01-01

    We demonstrate using numerical simulations of nanostructured superconductors that it is possible to realize vortex ice states that are analogous to square and kagome ice. The system can be brought into a state that obeys either global or local ice rules by applying an external current according to an annealing protocol. We explore the breakdown of the ice rules due to disorder in the nanostructure array and show that in square ice, topological defects appear along grain boundaries, while in kagome ice, individual defects appear. We argue that the vortex system offers significant advantages over other artificial ice systems.

  12. Hydrogen scavengers

    SciTech Connect

    Carroll, David W.; Salazar, Kenneth V.; Trkula, Mitchell; Sandoval, Cynthia W.

    2002-01-01

    There has been invented a codeposition process for fabricating hydrogen scavengers. First, a .pi.-bonded allylic organometallic complex is prepared by reacting an allylic transition metal halide with an organic ligand complexed with an alkali metal; and then, in a second step, a vapor of the .pi.-bonded allylic organometallic complex is combined with the vapor of an acetylenic compound, irradiated with UV light, and codeposited on a substrate.

  13. Acoustic Monitoring of the Arctic Ice Cap

    NASA Astrophysics Data System (ADS)

    Porter, D. L.; Goemmer, S. A.; Chayes, D. N.

    2012-12-01

    Introduction The monitoring of the Arctic Ice Cap is important economically, tactically, and strategically. In the scenario of ice cap retreat, new paths of commerce open, e.g. waterways from Northern Europe to the Far East. Where ship-going commerce is conducted, the U.S. Navy and U.S. Coast Guard have always stood guard and been prepared to assist from acts of nature and of man. It is imperative that in addition to measuring the ice from satellites, e.g. Icesat, that we have an ability to measure the ice extent, its thickness, and roughness. These parameters play an important part in the modeling of the ice and the processes that control its growth or shrinking and its thickness. The proposed system consists of three subsystems. The first subsystem is an acoustic source, the second is an array of geophones and the third is a system to supply energy and transmit the results back to the analysis laboratory. The subsystems are described below. We conclude with a plan on how to tackle this project and the payoff to the ice cap modeler and hence the users, i.e. commerce and defense. System Two historically tested methods to generate a large amplitude multi-frequency sound source include explosives and air guns. A new method developed and tested by the University of Texas, ARL is a combustive Sound Source [Wilson, et al., 1995]. The combustive sound source is a submerged combustion chamber that is filled with the byproducts of the electrolysis of sea water, i.e. Hydrogen and Oxygen, an explosive mixture which is ignited via a spark. Thus, no additional compressors, gases, or explosives need to be transported to the Arctic to generate an acoustic pulse capable of the sediment and the ice. The second subsystem would be geophones capable of listening in the O(10 Hz) range and transmitting that data back to the laboratory. Thus two single arrays of geophones arranged orthogonal to each other with a range of 1000's of kilometers and a combustive sound source where the two

  14. The phase diagram of high-pressure superionic ice

    PubMed Central

    Sun, Jiming; Clark, Bryan K.; Torquato, Salvatore; Car, Roberto

    2015-01-01

    Superionic ice is a special group of ice phases at high temperature and pressure, which may exist in ice-rich planets and exoplanets. In superionic ice liquid hydrogen coexists with a crystalline oxygen sublattice. At high pressures, the properties of superionic ice are largely unknown. Here we report evidence that from 280 GPa to 1.3 TPa, there are several competing phases within the close-packed oxygen sublattice. At even higher pressure, the close-packed structure of the oxygen sublattice becomes unstable to a new unusual superionic phase in which the oxygen sublattice takes the P21/c symmetry. We also discover that higher pressure phases have lower transition temperatures. The diffusive hydrogen in the P21/c superionic phase shows strong anisotropic behaviour and forms a quasi-two-dimensional liquid. The ionic conductivity changes abruptly in the solid to close-packed superionic phase transition, but continuously in the solid to P21/c superionic phase transition. PMID:26315260

  15. The phase diagram of high-pressure superionic ice.

    PubMed

    Sun, Jiming; Clark, Bryan K; Torquato, Salvatore; Car, Roberto

    2015-08-28

    Superionic ice is a special group of ice phases at high temperature and pressure, which may exist in ice-rich planets and exoplanets. In superionic ice liquid hydrogen coexists with a crystalline oxygen sublattice. At high pressures, the properties of superionic ice are largely unknown. Here we report evidence that from 280 GPa to 1.3 TPa, there are several competing phases within the close-packed oxygen sublattice. At even higher pressure, the close-packed structure of the oxygen sublattice becomes unstable to a new unusual superionic phase in which the oxygen sublattice takes the P2(1)/c symmetry. We also discover that higher pressure phases have lower transition temperatures. The diffusive hydrogen in the P2(1)/c superionic phase shows strong anisotropic behaviour and forms a quasi-two-dimensional liquid. The ionic conductivity changes abruptly in the solid to close-packed superionic phase transition, but continuously in the solid to P2(1)/c superionic phase transition.

  16. The Antartic Ice Borehole Probe

    NASA Technical Reports Server (NTRS)

    Behar, A.; Carsey, F.; Lane, A.; Engelhardt, H.

    2000-01-01

    The Antartic Ice Borehole Probe mission is a glaciological investigation, scheduled for November 2000-2001, that will place a probe in a hot-water drilled hole in the West Antartic ice sheet. The objectives of the probe are to observe ice-bed interactions with a downward looking camera, and ice inclusions and structure, including hypothesized ice accretion, with a side-looking camera.

  17. Waves on Ice

    Atmospheric Science Data Center

    2013-04-16

    ... a wavy pattern on the ice surface. One of MISR's cloud classification products, the Angular Signature Cloud Mask (ASCM), correctly ... NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Science Mission Directorate, Washington, D.C. The Terra spacecraft is managed ...

  18. Veil of Ice

    NASA Image and Video Library

    2007-01-12

    The Cassini spacecraft stares toward Saturn through its gauzy veil of rings. The great ice-particle screen acts like a filter here, attenuating the glare from the planet and making its high altitude haze easy to see

  19. Global ice sheet modeling

    SciTech Connect

    Hughes, T.J.; Fastook, J.L.

    1994-05-01

    The University of Maine conducted this study for Pacific Northwest Laboratory (PNL) as part of a global climate modeling task for site characterization of the potential nuclear waste respository site at Yucca Mountain, NV. The purpose of the study was to develop a global ice sheet dynamics model that will forecast the three-dimensional configuration of global ice sheets for specific climate change scenarios. The objective of the third (final) year of the work was to produce ice sheet data for glaciation scenarios covering the next 100,000 years. This was accomplished using both the map-plane and flowband solutions of our time-dependent, finite-element gridpoint model. The theory and equations used to develop the ice sheet models are presented. Three future scenarios were simulated by the model and results are discussed.

  20. Ice Cream Stick Math.

    ERIC Educational Resources Information Center

    Paddock, Cynthia

    1992-01-01

    Described is a teaching technique which uses the collection of ice cream sticks as a means of increasing awareness of quantity in a self-contained elementary special class for students with learning disabilities and mild mental retardation. (DB)

  1. Ice age terminations.

    PubMed

    Cheng, Hai; Edwards, R Lawrence; Broecker, Wallace S; Denton, George H; Kong, Xinggong; Wang, Yongjin; Zhang, Rong; Wang, Xianfeng

    2009-10-09

    230Th-dated oxygen isotope records of stalagmites from Sanbao Cave, China, characterize Asian Monsoon (AM) precipitation through the ends of the third- and fourthmost recent ice ages. As a result, AM records for the past four glacial terminations can now be precisely correlated with those from ice cores and marine sediments, establishing the timing and sequence of major events. In all four cases, observations are consistent with a classic Northern Hemisphere summer insolation intensity trigger for an initial retreat of northern ice sheets. Meltwater and icebergs entering the North Atlantic alter oceanic and atmospheric circulation and associated fluxes of heat and carbon, causing increases in atmospheric CO2 and Antarctic temperatures that drive the termination in the Southern Hemisphere. Increasing CO2 and summer insolation drive recession of northern ice sheets, with probable positive feedbacks between sea level and CO2.

  2. Ice Cream Stick Math.

    ERIC Educational Resources Information Center

    Paddock, Cynthia

    1992-01-01

    Described is a teaching technique which uses the collection of ice cream sticks as a means of increasing awareness of quantity in a self-contained elementary special class for students with learning disabilities and mild mental retardation. (DB)

  3. Antarctic stratospheric ice crystals

    NASA Technical Reports Server (NTRS)

    Goodman, J.; Toon, O. B.; Pueschel, R. F.; Snetsinger, K. G.; Verma, S.

    1989-01-01

    Ice crystals were replicated over the Palmer Peninsula at approximately 72 deg S on six occasions during the 1987 Airboirne Antarctic Ozone Experiment. The sampling altitude was between 12.5 and 18.5 km (45-65 thousand ft pressure altitude) with the temperature between 190 and 201 K. The atmosphere was subsaturated with respect to ice in all cases. The collected crystals were predominantly solid and hollow columns. The largest crystals were sampled at lower altitudes where the potential temperature was below 400 K. While the crystals were larger than anticipated, their low concentration results in a total surface area that is less than one tenth of the total aerosol surface area. The large ice crystals may play an important role in the observed stratospheric dehydration processes through sedimentation. Evidence of scavenging of submicron particles further suggests that the ice crystals may be effective in the removal of stratospheric chemicals.

  4. Photoplastic effect on ice

    SciTech Connect

    Khusnatdinov, N.N.; Petrenko, V.F.

    1995-09-01

    The study of photoplastic effect (PPE) on ice is essential for both fundamental and applied reasons. It is important for an understanding of dislocation motion as well as the flow of glaciers in cold regions that occurs under intensive solar radiation. It was found that the illumination of ice with UV light ({lambda}<300 nm) leads to its irreversible hardening. A prolonged irradiation with a total light exposure of about 8{center_dot}10{sup {minus}5} J/cm{sup 2} at {lambda} = 260 nm can change the creep rate up to 60 percent. Even more pronounced PPE was found in HCl-doped ice with the concentration, n = 10{sup 18} cm{sup {minus}3}. It is suggested that PPE is caused by the excitation of ``autoionization`` reaction which was found responsible for the photoconductivity of ice.

  5. Record Sea Ice Minimum

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Arctic sea ice reached a record low in September 2007, below the previous record set in 2005 and substantially below the long-term average. This image shows the Arctic as observed by the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) aboard NASA's Aqua satellite on September 16, 2007. In this image, blue indicates open water, white indicates high sea ice concentration, and turquoise indicates loosely packed sea ice. The black circle at the North Pole results from an absence of data as the satellite does not make observations that far north. Three contour lines appear on this image. The red line is the 2007 minimum, as of September 15, about the same time the record low was reached, and it almost exactly fits the sea ice observed by AMSR-E. The green line indicates the 2005 minimum, the previous record low. The yellow line indicates the median minimum from 1979 to 2000.

  6. ION COMPOSITION ELUCIDATION (ICE)

    EPA Science Inventory



    Ion Composition Elucidation (ICE) utilizes selected ion recording with a double focusing mass spectrometer to simultaneously determine exact masses and relative isotopic abundances from mass peak profiles. These can be determined more accurately and at higher sensitivity ...

  7. Ice reconnaissance by satellite

    NASA Technical Reports Server (NTRS)

    Gloersen, P.; Strome, W. M.

    1976-01-01

    The paper describes the significant milestones in the use of satellites for snow and ice monitoring. The feasibility of such monitoring was demonstrated by the Tiros 2 satellite in 1961. Nimbus 1 showed that breaks in the sea ice can be easily monitored during continuous nighttime conditions; Nimbus 3 showed the practicality of delineating regions of active melting of ice and snow in temperate areas. Landsat data have been found to be particularly useful for monitoring and studying glaciers and their attendant surface features. Ice concentration can be determined with reasonable accuracy from a sequence of electronically scanned microwave radiomenter images made aboard Nimbus 5. In the future we can expect improved sensors and spacecraft systems with longer operating lives.

  8. Sea Ice Minimum 2016

    NASA Image and Video Library

    This animation shows the evolution of the Arctic sea ice cover from its wintertime maximum extent, which was reached on Mar. 24, 2016, and was the lowest on record for the second year in a row, to ...

  9. Web life: Ice Flows

    NASA Astrophysics Data System (ADS)

    2016-11-01

    Computer and video gamers of a certain vintage will have fond memories of Lemmings, a game in which players must shepherd pixelated, suicidal rodents around a series of obstacles to reach safety. At first glance, Ice Flows is strikingly similar.

  10. 2011 Sea Ice Minimum

    NASA Image and Video Library

    This video shows Arctic sea ice from March 7, 2011, to Sept. 9, 2011, ending with a comparison of the 30-year average minimum extent, shown in yellow, and the Northwest Passage, in red. (no audio) ...

  11. Record Sea Ice Minimum

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Arctic sea ice reached a record low in September 2007, below the previous record set in 2005 and substantially below the long-term average. This image shows the Arctic as observed by the Advanced Microwave Scanning Radiometer for EOS (AMSR-E) aboard NASA's Aqua satellite on September 16, 2007. In this image, blue indicates open water, white indicates high sea ice concentration, and turquoise indicates loosely packed sea ice. The black circle at the North Pole results from an absence of data as the satellite does not make observations that far north. Three contour lines appear on this image. The red line is the 2007 minimum, as of September 15, about the same time the record low was reached, and it almost exactly fits the sea ice observed by AMSR-E. The green line indicates the 2005 minimum, the previous record low. The yellow line indicates the median minimum from 1979 to 2000.

  12. The PHOCUS Project: Mesospheric Ice Particle Properties

    NASA Astrophysics Data System (ADS)

    Khaplanov, M.; Hedin, J.; Gumbel, J.

    2012-12-01

    On the morning of July 21, 2011, the PHOCUS sounding rocket was launched from Esrange, Sweden, intostrong noctilucent clouds (NLC) and polar mesosphere summer echoes (PMSE). The aim of the PHOCUS project (Particles, Hydrogen and Oxygen Chemistry in the Upper Summer mesosphere) is to study mesospheric particles (ice and meteoric smoke) and their interaction with their neutral and charged environment. Interactions of interest comprise the charging and nucleation of particles, the relationship between meteoric smoke and ice, and the influence of these particles on gas-phase chemistry. Here we will describe the optical measurements of the ice particlesand present first results including comparison to the other simultaneous measurements.Ice particle properties were probed with a set of three NLC photometers from Stockholm University. NLC photometry is currently the best technique available for determining altitude ranges of NLC in situ. At the same time, UV photometry allows a study of particle properties like size and shape by analysing the spectral dependence (colour ratio), angle dependence (phase function), and polarisation of the scattering. The set of NLC photometer flown on PHOCUS was a unique photometer package that for the first time investigated all three parameters simultaneously. Two forward-viewing photometers measured at different wavelengths (one in the UV at 220 nm and the other in the visible at 440 nm) and were both equipped with fixed linear polarisers. The payload spin was utilised to scan through the polarisation direction, thus providing us with the Stokes vectors I, Q and U at both wavelengths. The third photometer (also measured in the UV at 220 nm)was mounted sideways, viewing the overhead sky at an angle of 40°from the rocket spin axis. Due to the payload spin, the NLC was observed under varying scattering geometries as the payload approached the cloud layer. Thus, this set of NLC photometers provided a complete optical characterization of the

  13. Resolution of Unresolved Safety Issue A-48, Hydrogen control measures and effects of hydrogen burns on safety equipment

    SciTech Connect

    Ferrell, C.M.; Soffer, L.

    1989-09-01

    Unresolved Safety Issue (USI) A-48 arose as a result of the large amount of hydrogen generated and burned within containment during the Three Mile Island accident. This issue covers hydrogen control measures for recoverable degraded-core accidents for all boiling-water reactors (BWRs) and those pressurized-water reactors (PWRs) with ice-condenser containments. The Commission and the nuclear industry have sponsored extensive research in this area, which has led to significant revision of the Commission's hydrogen control regulations, given in Title 10, Code of Federal Regulations, Part 50 (10 CFR 50), Section 50.44. BWRs having Mark I and II containments are presently required to operate with inerted containment atmospheres that effectively prevent hydrogen combustion. BWRs with Mark III containments and PWRs with ice-condenser containments are now required to be equipped with hydrogen control systems to protect containment integrity and safety systems inside containment. Industry has chosen to use hydrogen igniter systems to burn hydrogen produced in a controlled fashion to prevent damage. An independent review by a Committee of the National Research Council concluded that, for most accident scenarios, current regulatory requirements make it highly unlikely that hydrogen detonation would be the cause of containment failure. On the basis of the extensive research effort conducted and current regulatory requirements, including their implementation, the staff concludes that no new regulatory guidance on hydrogen control for recoverable degraded-core accidents for these types of plants is necessary and that USI A-48 is resolved.

  14. Altimeter Sea Ice Workshop

    DTIC Science & Technology

    1990-09-01

    Science Fax- 164513 Chalmers University of TechnologyI S-41296 Goteborg, Sweden 5 Altimeter Sea Ice Workshop Presentation Summary Hawkins: Present U.S...into the ground. A large tent slides over the top of the pond for solar shading and inclement weather protection. A mobile gantry, which spans the width...tracks can covering the pond to protect the growing ice from weather when necessary. A walkway mounted on the tracks serves as a mobile base on which the

  15. Hot hydrogen in prebiological and interstellar chemistry

    NASA Technical Reports Server (NTRS)

    Sagan, C.

    1975-01-01

    Two articles discuss the recent experimental work of Hong et al. on the production of amino acids and gas-phase organic compounds from the ultraviolet irradiation of simple gases, with hot hydrogen atoms used as the principal energy conversion agent. The reaction possibilities involving frozen ices are mentioned in both articles, as well as the significance of three-body collisions in this situation.

  16. Water Ice on Triton

    NASA Astrophysics Data System (ADS)

    Cruikshank, Dale P.; Schmitt, Bernard; Roush, Ted L.; Owen, Tobias C.; Quirico, Eric; Geballe, Thomas R.; de Bergh, Catherine; Bartholomew, Mary Jane; Dalle Ore, Cristina M.; Douté, Sylvain; Meier, Roland

    2000-09-01

    We discuss the spectroscopic detection of H 2O ice on Triton, evidenced by the broad absorption bands in the near infrared at 1.55 and 2.04 μm. The detection of water ice on Triton reconfirms earlier preliminary studies (D. P. Cruikshank et al. 1984, Icarus58, 293-305). Although crystalline H 2O ice has a distinctive spectral band at 1.65 μm, and our new models slightly favor the presence of this phase, we cannot unambiguously determine whether Triton's water ice is crystalline or amorphous. Both phases might be present, and special conditions in the surface microstructure may affect the spectroscopic signature of water ice in such a way that crystalline ice is present and its 1.65 μm spectral band is masked. Our spectra (1.87-2.5 μm) taken at an interval of nearly 3.5 years do not show any significant changes that might relate to reports of changes in Triton's spectral reflectance (B. Buratti et al. 1999, Nature397, 219), or in Triton's surface pressure (J. L. Elliot et al. 1998, Nature393, 765-767).

  17. Modelling sea ice dynamics

    NASA Astrophysics Data System (ADS)

    Murawski, Jens; Kleine, Eckhard

    2017-04-01

    Sea ice remains one of the frontiers of ocean modelling and is of vital importance for the correct forecasts of the northern oceans. At large scale, it is commonly considered a continuous medium whose dynamics is modelled in terms of continuum mechanics. Its specifics are a matter of constitutive behaviour which may be characterised as rigid-plastic. The new developed sea ice dynamic module bases on general principles and follows a systematic approach to the problem. Both drift field and stress field are modelled by a variational property. Rigidity is treated by Lagrangian relaxation. Thus one is led to a sensible numerical method. Modelling fast ice remains to be a challenge. It is understood that ridging and the formation of grounded ice keels plays a role in the process. The ice dynamic model includes a parameterisation of the stress associated with grounded ice keels. Shear against the grounded bottom contact might lead to plastic deformation and the loss of integrity. The numerical scheme involves a potentially large system of linear equations which is solved by pre-conditioned iteration. The entire algorithm consists of several components which result from decomposing the problem. The algorithm has been implemented and tested in practice.

  18. Ice-Borehole Probe

    NASA Technical Reports Server (NTRS)

    Behar, Alberto; Carsey, Frank; Lane, Arthur; Engelhardt, Herman

    2006-01-01

    An instrumentation system has been developed for studying interactions between a glacier or ice sheet and the underlying rock and/or soil. Prior borehole imaging systems have been used in well-drilling and mineral-exploration applications and for studying relatively thin valley glaciers, but have not been used for studying thick ice sheets like those of Antarctica. The system includes a cylindrical imaging probe that is lowered into a hole that has been bored through the ice to the ice/bedrock interface by use of an established hot-water-jet technique. The images acquired by the cameras yield information on the movement of the ice relative to the bedrock and on visible features of the lower structure of the ice sheet, including ice layers formed at different times, bubbles, and mineralogical inclusions. At the time of reporting the information for this article, the system was just deployed in two boreholes on the Amery ice shelf in East Antarctica and after successful 2000 2001 deployments in 4 boreholes at Ice Stream C, West Antarctica, and in 2002 at Black Rapids Glacier, Alaska. The probe is designed to operate at temperatures from 40 to +40 C and to withstand the cold, wet, high-pressure [130-atm (13.20-MPa)] environment at the bottom of a water-filled borehole in ice as deep as 1.6 km. A current version is being outfitted to service 2.4-km-deep boreholes at the Rutford Ice Stream in West Antarctica. The probe (see figure) contains a sidelooking charge-coupled-device (CCD) camera that generates both a real-time analog video signal and a sequence of still-image data, and contains a digital videotape recorder. The probe also contains a downward-looking CCD analog video camera, plus halogen lamps to illuminate the fields of view of both cameras. The analog video outputs of the cameras are converted to optical signals that are transmitted to a surface station via optical fibers in a cable. Electric power is supplied to the probe through wires in the cable at a

  19. Ice sheets. Volume loss from Antarctic ice shelves is accelerating.

    PubMed

    Paolo, Fernando S; Fricker, Helen A; Padman, Laurie

    2015-04-17

    The floating ice shelves surrounding the Antarctic Ice Sheet restrain the grounded ice-sheet flow. Thinning of an ice shelf reduces this effect, leading to an increase in ice discharge to the ocean. Using 18 years of continuous satellite radar altimeter observations, we have computed decadal-scale changes in ice-shelf thickness around the Antarctic continent. Overall, average ice-shelf volume change accelerated from negligible loss at 25 ± 64 cubic kilometers per year for 1994-2003 to rapid loss of 310 ± 74 cubic kilometers per year for 2003-2012. West Antarctic losses increased by ~70% in the past decade, and earlier volume gain by East Antarctic ice shelves ceased. In the Amundsen and Bellingshausen regions, some ice shelves have lost up to 18% of their thickness in less than two decades.

  20. Ice recrystallization inhibition in ice cream by propylene glycol monostearate.

    PubMed

    Aleong, J M; Frochot, S; Goff, H D

    2008-11-01

    The effectiveness of propylene glycol monostearate (PGMS) to inhibit ice recrystallization was evaluated in ice cream and frozen sucrose solutions. PGMS (0.3%) dramatically reduced ice crystal sizes in ice cream and in sucrose solutions frozen in a scraped-surface freezer before and after heat shock, but had no effect in quiescently frozen solutions. PGMS showed limited emulsifier properties by promoting smaller fat globule size distributions and enhanced partial coalescence in the mix and ice cream, respectively, but at a much lower level compared to conventional ice cream emulsifier. Low temperature scanning electron microscopy revealed highly irregular crystal morphology in both ice cream and sucrose solutions frozen in a scraped-surface freezer. There was strong evidence to suggest that PGMS directly interacts with ice crystals and interferes with normal surface propagation. Shear during freezing may be required for its distribution around the ice and sufficient surface coverage.

  1. Interaction of ice binding proteins with ice, water and ions.

    PubMed

    Oude Vrielink, Anneloes S; Aloi, Antonio; Olijve, Luuk L C; Voets, Ilja K

    2016-03-19

    Ice binding proteins (IBPs) are produced by various cold-adapted organisms to protect their body tissues against freeze damage. First discovered in Antarctic fish living in shallow waters, IBPs were later found in insects, microorganisms, and plants. Despite great structural diversity, all IBPs adhere to growing ice crystals, which is essential for their extensive repertoire of biological functions. Some IBPs maintain liquid inclusions within ice or inhibit recrystallization of ice, while other types suppress freezing by blocking further ice growth. In contrast, ice nucleating proteins stimulate ice nucleation just below 0 °C. Despite huge commercial interest and major scientific breakthroughs, the precise working mechanism of IBPs has not yet been unraveled. In this review, the authors outline the state-of-the-art in experimental and theoretical IBP research and discuss future scientific challenges. The interaction of IBPs with ice, water and ions is examined, focusing in particular on ice growth inhibition mechanisms.

  2. Ice Flow in the North East Greenland Ice Stream

    NASA Technical Reports Server (NTRS)

    Joughin, Ian; Kwok, Ron; Fahnestock, M.; MacAyeal, Doug

    1999-01-01

    Early observations with ERS-1 SAR image data revealed a large ice stream in North East Greenland (Fahnestock 1993). The ice stream has a number of the characteristics of the more closely studied ice streams in Antarctica, including its large size and gross geometry. The onset of rapid flow close to the ice divide and the evolution of its flow pattern, however, make this ice stream unique. These features can be seen in the balance velocities for the ice stream (Joughin 1997) and its outlets. The ice stream is identifiable for more than 700 km, making it much longer than any other flow feature in Greenland. Our research goals are to gain a greater understanding of the ice flow in the northeast Greenland ice stream and its outlet glaciers in order to assess their impact on the past, present, and future mass balance of the ice sheet. We will accomplish these goals using a combination of remotely sensed data and ice sheet models. We are using satellite radar interferometry data to produce a complete maps of velocity and topography over the entire ice stream. We are in the process of developing methods to use these data in conjunction with existing ice sheet models similar to those that have been used to improve understanding of the mechanics of flow in Antarctic ice streams.

  3. Ice Flow in the North East Greenland Ice Stream

    NASA Technical Reports Server (NTRS)

    Joughin, Ian; Kwok, Ron; Fahnestock, M.; MacAyeal, Doug

    1999-01-01

    Early observations with ERS-1 SAR image data revealed a large ice stream in North East Greenland (Fahnestock 1993). The ice stream has a number of the characteristics of the more closely studied ice streams in Antarctica, including its large size and gross geometry. The onset of rapid flow close to the ice divide and the evolution of its flow pattern, however, make this ice stream unique. These features can be seen in the balance velocities for the ice stream (Joughin 1997) and its outlets. The ice stream is identifiable for more than 700 km, making it much longer than any other flow feature in Greenland. Our research goals are to gain a greater understanding of the ice flow in the northeast Greenland ice stream and its outlet glaciers in order to assess their impact on the past, present, and future mass balance of the ice sheet. We will accomplish these goals using a combination of remotely sensed data and ice sheet models. We are using satellite radar interferometry data to produce a complete maps of velocity and topography over the entire ice stream. We are in the process of developing methods to use these data in conjunction with existing ice sheet models similar to those that have been used to improve understanding of the mechanics of flow in Antarctic ice streams.

  4. Hydrogen environment embrittlement

    NASA Technical Reports Server (NTRS)

    Gray, H. R.

    1972-01-01

    Hydrogen embrittlement is classified into three types: internal reversible hydrogen embrittlement, hydrogen reaction embrittlement, and hydrogen environment embrittlement. Characteristics of and materials embrittled by these types of hydrogen embrittlement are discussed. Hydrogen environment embrittlement is reviewed in detail. Factors involved in standardizing test methods for detecting the occurrence of and evaluating the severity of hydrogen environment embrittlement are considered. The effect of test technique, hydrogen pressure, purity, strain rate, stress concentration factor, and test temperature are discussed. Additional research is required to determine whether hydrogen environment embrittlement and internal reversible hydrogen embrittlement are similar or distinct types of embrittlement.

  5. Metastable hydronium ions in UV-irradiated ice

    SciTech Connect

    Moon, Eui-Seong; Kang, Heon

    2012-11-28

    We show that the irradiation of UV light (10-11 eV) onto an ice film produces metastable hydronium (H{sub 3}O{sup +}) ions in the ice at low temperatures (53-140 K). Evidence of the presence of metastable hydronium ions was obtained by experiments involving adsorption of methylamine onto UV-irradiated ice films and hydrogen-deuterium (H/D) isotopic exchange reaction. The methylamine adsorption experiments showed that photogenerated H{sub 3}O{sup +} species transferred a proton to the methylamine arriving at the ice surface, thus producing the methyl ammonium ion, which was detected by low energy sputtering method. The H{sub 3}O{sup +} species induced the H/D exchange of water, which was monitored through the detection of water isotopomers on the surface by using the Cs{sup +} reactive ion scattering method. Thermal and temporal stabilities of H{sub 3}O{sup +} and its proton migration activity were examined. The lifetime of the hydronium ions in the amorphized ice was greater than 1 h at {approx}53 K and decreased to {approx}5 min at 140 K. Interestingly, a small portion of hydronium ions survived for an extraordinarily long time in the ice, even at 140 K. The average migration distance of protons released from H{sub 3}O{sup +} in the ice was estimated to be about two water molecules at {approx}54 K and about six molecules at 100 K. These results indicate that UV-generated hydronium ions can be efficiently stabilized in low-temperature ice. Such metastable hydronium ions may play a significant role in the acid-base chemistry of ice particles in interstellar clouds.

  6. High-Density Amorphous Ice, the Frost on Interstellar Grains

    NASA Technical Reports Server (NTRS)

    Jenniskens, P.; Blake, D. F.; Wilson, M. A.; Pohorille, A.

    1995-01-01

    Most water ice in the universe is in a form which does not occur naturally on Earth and of which only minimal amounts have been made in the laboratory. We have encountered this 'high-density amorphous ice' in electron diffraction experiments of low-temperature (T less than 30 K) vapor-deposited water and have subsequently modeled its structure using molecular dynamics simulations. The characteristic feature of high-density amorphous ice is the presence of 'interstitial' oxygen pair distances between 3 and 4 A. However, we find that the structure is best described as a collapsed lattice of the more familiar low-density amorphous form. These distortions are frozen in at temperatures below 38 K because, we propose, it requires the breaking of one hydrogen bond, on average, per molecule to relieve the strain and to restructure the lattice to that of low-density amorphous ice. Several features of astrophysical ice analogs studied in laboratory experiments are readily explained by the structural transition from high-density amorphous ice into low-density amorphous ice. Changes in the shape of the 3.07 gm water band, trapping efficiency of CO, CO loss, changes in the CO band structure, and the recombination of radicals induced by low-temperature UV photolysis all covary with structural changes that occur in the ice during this amorphous to amorphous transition. While the 3.07 micrometers ice band in various astronomical environments can be modeled with spectra of simple mixtures of amorphous and crystalline forms, the contribution of the high-density amorphous form nearly always dominates.

  7. Enhanced Sea Ice Concentration and Ice Temperature Algorithms for AMSR

    NASA Technical Reports Server (NTRS)

    Comiso, Josefino C.; Manning, Will; Gersten, Robert

    1998-01-01

    Accurate quantification of sea ice concentration and ice temperature from satellite passive microwave data is important because they provide the only long term, spatially detailed and consistent data set needed to study the climatology of the polar regions. Sea ice concentration data are used to derive large-scale daily ice extents that are utilized in trend analysis of the global sea ice cover. They are also used to quantify the amount of open water and thin ice in polynya and divergence regions which together with ice temperatures are in turn needed to estimate vertical heat and salinity fluxes in these regions. Sea ice concentrations have been derived from the NASA Team and Bootstrap algorithms while a separate technique for deriving ice temperature has been reported. An integrated technique that will utilizes most of the channels of AMSR (Advanced Microwave Scanning Radiometer) has been developed. The technique uses data from the 6 GHz and 37 GHz channels at vertical polarization obtain an initial estimate of sea ice concentration and ice temperature. The derived ice temperature is then utilized to estimate the emissivities for the corresponding observations at all the other channels. A procedure for calculating the ice concentration similar to the Bootstrap technique is then used but with variables being emissivities instead of brightness temperatures to minimizes errors associated with spatial changes in ice temperatures within the ice pack. Comparative studies of ice concentration results with those from other algorithms, including the original Bootstrap algorithm and those from high resolution satellite visible and infrared data will be presented. Also, results from a simulation study that demonstrates the effectiveness of the technique in correcting for spatial variations in ice temperatures will be shown. The ice temperature results are likewise compared with satellite infrared and buoy data with the latter adjusted to account for the effects of the snow

  8. Sea Ice Friction: The Effect of Ice Rubble

    NASA Astrophysics Data System (ADS)

    Scourfield, S.; Sammonds, P. R.; Lishman, B.; Riska, K.; Marchenko, A. V.

    2015-12-01

    Ice deformation processes in the Arctic often generate ice rubble, and situations arise where ice fragments of varying size separate sea ice floes. While the shear forces between sea ice floes in direct contact with each other are controlled by ice-ice friction, what is not known is how the slip of the floes is affected by the presence of rubble between the sliding surfaces. We present the result of field experiments undertaken on fjord ice in Svea, Svalbard, which investigated the velocity and hold time dependence of sea ice friction involving ice gouge. Average air temperature for the duration of time in which experiments were run was -12.4°C, and the thickness of the level fjord ice was 70 cm. A double-direct-shear experiment was done on floating sea ice in the field, with the addition of rubble ice between the sliding surfaces. This was achieved by moving a floating ice block through a channel of open water whilst subjected to normal loading, which was transferred through regions of ice rubble on both sides of the mobile block. The ice rubble regions were 30 cm deep and 50 cm wide. The displacement of the block and the force needed to move the block were measured. The rate dependence of friction was investigated for speeds of 10-3 to 10-2 ms-1. To investigate the state dependence of friction, slide-hold-slide (SHS) tests were conducted for hold times ranging from 1 second to 18 hours. When comparing the results from these experiments with a model for ice friction presented by Schulson and Fortt (2013), similar behaviour is seen at low hold times, where the peak coefficient of friction has a linear relationship with the logarithm of hold time. This is not the case for long hold times, however, and we attribute this to thermal consolidation of the ice rubble region.

  9. Sunlight, Sea Ice, and the Ice Albedo Feedback in a Changing Arctic Sea Ice Cover

    DTIC Science & Technology

    2015-09-30

    and iv) onset dates of melt and freeze up. 4. Assess the magnitude of the contribution from ice -albedo feedback to the observed decrease of sea ice ...in the Chukchi and Beaufort Seas. 5. Relate solar heat input to the ice and ocean to surface, bottom, lateral, and internal melting of the ice ...concentration and melt and freeze up onset dates by i) examining the impact of the shift from multiyear to seasonal ice ; ii) determining heat absorbed in

  10. Wave-Ice and Air-Ice-Ocean Interaction During the Chukchi Sea Ice Edge Advance

    DTIC Science & Technology

    2015-09-30

    Ocean Heat: In the new Arctic summer ice regime, with extended open water periods in areas previously covered with sea ice, ocean heat, received...during these summer ice-free periods, may be either confined to the surface mixed layer or enter deeper ocean waters . Our goal is to determine the...remains in the ocean and has residual effects on ice growth during winter and spring. Sea State Regime: Large expanses of ice-free water in the

  11. ANOMALOUS CO{sub 2} ICE TOWARD HOPS-68: A TRACER OF PROTOSTELLAR FEEDBACK

    SciTech Connect

    Poteet, Charles A.; Megeath, S. Thomas; Bjorkman, Jon E.; Pontoppidan, Klaus M.; Watson, Dan M.; Sheehan, Patrick D.; Isokoski, Karoliina; Linnartz, Harold

    2013-04-01

    We report the detection of a unique CO{sub 2} ice band toward the deeply embedded, low-mass protostar HOPS-68. Our spectrum, obtained with the Infrared Spectrograph on board the Spitzer Space Telescope, reveals a 15.2 {mu}m CO{sub 2} ice bending mode profile that cannot be modeled with the same ice structure typically found toward other protostars. We develop a modified CO{sub 2} ice profile decomposition, including the addition of new high-quality laboratory spectra of pure, crystalline CO{sub 2} ice. Using this model, we find that 87%-92% of the CO{sub 2} is sequestered as spherical, CO{sub 2}-rich mantles, while typical interstellar ices show evidence of irregularly shaped, hydrogen-rich mantles. We propose that (1) the nearly complete absence of unprocessed ices along the line of sight is due to the flattened envelope structure of HOPS-68, which lacks cold absorbing material in its outer envelope, and possesses an extreme concentration of material within its inner (10 AU) envelope region and (2) an energetic event led to the evaporation of inner envelope ices, followed by cooling and re-condensation, explaining the sequestration of spherical, CO{sub 2} ice mantles in a hydrogen-poor mixture. The mechanism responsible for the sublimation could be either a transient accretion event or shocks in the interaction region between the protostellar outflow and envelope. The proposed scenario is consistent with the rarity of the observed CO{sub 2} ice profile, the formation of nearly pure CO{sub 2} ice, and the production of spherical ice mantles. HOPS-68 may therefore provide a unique window into the protostellar feedback process, as outflows and heating shape the physical and chemical structure of protostellar envelopes and molecular clouds.

  12. Formation of hydroxylamine (NH2OH) in electron-irradiated ammonia-water ices.

    PubMed

    Zheng, Weijun; Kaiser, Ralf I

    2010-04-29

    We investigated chemical and physical processes in electron-irradiated ammonia-water ices at temperatures of 10 and 50 K. Chemically speaking, the formation of hydroxylamine (NH(2)OH) was observed in electron-irradiated ammonia-water ices. The synthesis of molecular hydrogen (H(2)), molecular nitrogen (N(2)), molecular oxygen (O(2)), hydrazine (N(2)H(4)), and hydrogen peroxide (H(2)O(2)), which was also monitored in previous irradiation of pure ammonia and water ices, was also evident. These newly formed species were trapped inside of the ices and were released into the gas phase during the warm-up phase of the sample after the irradiation. A quantitative analysis of the data showed that the production rates of the newly formed species at 10 K are higher compared to those at 50 K. Our studies also suggest that hydroxylamine is likely formed by the recombination of amino (NH(2)) with hydroxyl (OH) radicals inside of the ices. Considering the physical effects on the ice sampled during the irradiation, the experiments provided compelling evidence that the crystalline ammonia-water ice samples can be partially converted to amorphous ices during the electron irradiation; similar to the chemical processes, the irradiation-induced amorphization of the ices is faster at 10 K than that at 50 K--a finding which is similar to electron-irradiated crystalline water ices under identical conditions. However, the amorphization of water in water-ammonia ices was found to be faster than that in pure water ices at identical temperatures.

  13. Mechanism of habit change for atmospheric ice crystal growth

    NASA Astrophysics Data System (ADS)

    Lu, Qiu-Jiang

    The basic mechanism that controls the shape change of ice crystal with temperature and supersaturation, or so-called ice crystal habit change, was investigated. From the preliminary analysis of experimental data, it was found that surface kinetic processes on the crystal are responsible in controlling the habit change. Therefore, relevant surface factors and processes were identified first. One of the most important factors was the line tension, or the surface free energy on the side of the two-dimensional embryo. Based on the physical meaning of the line tension and the surface tension, their fundamental difference was clarified under ideal conditions. A method to represent the hexagonal ice crystal lattice under random hydrogen arrangement was developed. Applying this last method, the surface factors such as the line tension and the surface tension for the ideal ice crystal were computed by using the intermolecular potential of the water molecule. Roles of liquid-like layer, transitional liquid layer and interface roughening in the habit change was clarified. The ordinary Brunaeur-Emmett-Teller (BET) adsorption equation was modified to describe the ice crystal growth problem. Through these analyses, the origin of the habit change was traced to the unique characteristic of the hydrogen bond that expands during freezing of water. The same characteristic led to a minimum in the free energy of two-dimensional embryo formation on the crystal plane through the line tension, which was shown to be a function of chemical potential difference. The operation of the two-dimensional nucleation mechanism for ice crystal growth was thus confirmed. Semiquantitative simulation of the habit change process for ice crystals growing both in air and in vapor alone after considering various surface factors was carried out, and the results showed a reasonable agreement with experimental data.

  14. Mechanism of Habit Change for Atmospheric Ice Crystal Growth

    NASA Astrophysics Data System (ADS)

    Lu, Qiu-Jiang

    The basic mechanism that controls the shape change of ice crystal with temperature and supersaturation, or so-called "ice crystal habit change", has been investigated. From the preliminary analysis of experimental data, it was found that surface kinetic processes on the crystal are responsible in controlling the habit change. Therefore, relevant surface factors and processes were identified first. One of the most important factors was the line tension, or the surface free energy on the side of the two-dimensional embryo. Based on the physical meaning of the line tension and the surface tension, their fundamental difference was clarified under ideal conditions. A method to represent the hexagonal ice crystal lattice under random hydrogen arrangement was developed. Applying this method, the surface factors such as the line tension and the surface tension for the ideal ice crystal were computed by using the intermolecular potential of water molecule. Roles of liquid-like layer, transitional liquid layer and interface roughening in the habit change was clarified. The ordinary BET adsorption equation was modified to describe the ice crystal growth problem. Through these analyses, the origin of the habit change was traced to the unique characteristic of the hydrogen bond that expands during freezing of water. The same characteristic led to a minimum in the free energy of two-dimensional embryo formation on the crystal plane through the line tension, which was shown to be a function of chemical potential difference. The operation of the two-dimensional nucleation mechanism for ice crystal growth was thus confirmed. Semiquantitative simulation of the habit change process for ice crystals growing both in air and in vapor alone after considering various surface factors was carried out, and the results showed a reasonable agreement with experimental data.

  15. Interstellar Ice Chemistry: From Water to Complex Organics

    NASA Astrophysics Data System (ADS)

    Oberg, Karin I.; Fayolle, E.; Linnartz, H.; van Dishoeck, E.; Fillion, J.; Bertin, M.

    2013-06-01

    Molecular cloud cores, protostellar envelopes and protoplanetary disk midplanes are all characterized by freeze-out of atoms and molecules (other than H and H2) onto interstellar dust grains. On the grain surface, atom addition reactions, especially hydrogenation, are efficient and H2O forms readily from O, CH3OH from CO etc. The result is an icy mantle typically dominated by H2O, but also rich in CO2, CO, NH3, CH3OH and CH4. These ices are further processed through interactions with radiation, electrons and energetic particles. Because of the efficiency of the freeze-out process, and the complex chemistry that succeeds it, these icy grain mantles constitute a major reservoir of volatiles during star formation and are also the source of much of the chemical evolution observed in star forming regions. Laboratory experiments allow us to explore how molecules and radicals desorb, dissociate, diffuse and react in ices when exposed to different sources of energy. Changes in ice composition and structure is constrained using infrared spectroscopy and mass spectrometry. By comparing ice desorption, segregation, and chemistry efficiencies under different experimental conditions, we can characterize the basic ice processes, e.g. diffusion of different species, that underpin the observable changes in ice composition and structure. This information can then be used to predict the interstellar ice chemical evolution. I will review some of the key laboratory discoveries on ice chemistry during the past few years and how they have been used to predict and interpret astronomical observations of ice bands and gas-phase molecules associated with ice evaporation. These include measurements of thermal diffusion in and evaporation from ice mixtures, non-thermal diffusion efficiencies (including the recent results on frequency resolved UV photodesorption), and the expected temperature dependencies of the complex ice chemistry regulated by radical formation and diffusion. Based on these

  16. Arctic Summer Ice Processes

    NASA Technical Reports Server (NTRS)

    Holt, Benjamin

    1999-01-01

    The primary objective of this study is to estimate the flux of heat and freshwater resulting from sea ice melt in the polar seas. The approach taken is to examine the decay of sea ice in the summer months primarily through the use of spaceborne Synthetic Aperture Radar (SAR) imagery. The improved understanding of the dynamics of the melt process can be usefully combined with ice thermodynamic and upper ocean models to form more complete models of ice melt. Models indicate that more heat is absorbed in the upper ocean when the ice cover is composed of smaller rather than larger floes and when there is more open water. Over the course of the summer, floes disintegrate by physical forcing and heating, melting into smaller and smaller sizes. By measuring the change in distribution of floes together with open water over a summer period, we can make estimates of the amount of heating by region and time. In a climatic sense, these studies are intended to improve the understanding of the Arctic heat budget which can then be eventually incorporated into improved global climate models. This work has two focus areas. The first is examining the detailed effect of storms on floe size and open water. A strong Arctic low pressure storm has been shown to loosen up the pack ice, increase the open water concentration well into the pack ice, and change the distribution of floes toward fewer and smaller floes. This suggests episodic melting and the increased importance of horizontal (lateral) melt during storms. The second focus area is related to an extensive ship-based experiment that recently took place in the Arctic called Surface Heat Budget of the Arctic (SHEBA). An icebreaker was placed purposely into the older pack ice north of Alaska in September 1997. The ship served as the base for experimenters who deployed extensive instrumentation to measure the atmosphere, ocean, and ice during a one-year period. My experiment will be to derive similar measurements (floe size, open

  17. Arctic Summer Ice Processes

    NASA Technical Reports Server (NTRS)

    Holt, Benjamin

    1999-01-01

    The primary objective of this study is to estimate the flux of heat and freshwater resulting from sea ice melt in the polar seas. The approach taken is to examine the decay of sea ice in the summer months primarily through the use of spaceborne Synthetic Aperture Radar (SAR) imagery. The improved understanding of the dynamics of the melt process can be usefully combined with ice thermodynamic and upper ocean models to form more complete models of ice melt. Models indicate that more heat is absorbed in the upper ocean when the ice cover is composed of smaller rather than larger floes and when there is more open water. Over the course of the summer, floes disintegrate by physical forcing and heating, melting into smaller and smaller sizes. By measuring the change in distribution of floes together with open water over a summer period, we can make estimates of the amount of heating by region and time. In a climatic sense, these studies are intended to improve the understanding of the Arctic heat budget which can then be eventually incorporated into improved global climate models. This work has two focus areas. The first is examining the detailed effect of storms on floe size and open water. A strong Arctic low pressure storm has been shown to loosen up the pack ice, increase the open water concentration well into the pack ice, and change the distribution of floes toward fewer and smaller floes. This suggests episodic melting and the increased importance of horizontal (lateral) melt during storms. The second focus area is related to an extensive ship-based experiment that recently took place in the Arctic called Surface Heat Budget of the Arctic (SHEBA). An icebreaker was placed purposely into the older pack ice north of Alaska in September 1997. The ship served as the base for experimenters who deployed extensive instrumentation to measure the atmosphere, ocean, and ice during a one-year period. My experiment will be to derive similar measurements (floe size, open

  18. Ice crystal and ice nucleus measurements in cap clouds

    NASA Technical Reports Server (NTRS)

    Vali, G.; Rogers, D. C.; Deshler, T. L.

    1982-01-01

    Ice nucleation in cap clouds over a mountain in Wyoming was examined with airborne instrumentation. Crosswind and wind parallel passes were made through the clouds, with data being taken on the ice crystal concentrations and sizes. A total of 141 penetrations of 26 separate days in temperatures ranging from -7 to -24 C were performed. Subsequent measurements were also made 100 km away from the mountain. The ice crystal concentrations measured showed good correlation with the ice nucleus content in winter time, midcontinental air masses in Wyoming. Further studies are recommended to determine if the variations in the ice nucleus population are the cause of the variability if ice crystal content.

  19. Interaction and photochemical decomposition of hydroperoxides at water ice surfaces and in bulk ice

    NASA Astrophysics Data System (ADS)

    Schrems, O.; Gand, M.; Ignatov, S. K.; Gadzhiev, O. B.; Cisami

    2011-12-01

    Hydroperoxides are important tropospheric trace gases as they are an important source of OH radicals. The simplest in this class is methyl hydroperoxide (CH3OOH) which is a product of methane oxidation by OH and HO2 radicals. Sinks of CH3OOH are photolysis, reactions with OH radicals or dry and wet deposition. Laboratory studies have shown that CH3OOH absorbs strongly over the region between 200 and 360 nm resulting in excitation to a dissociative electronic excited state. The pathway with the lowest threshold energy involves single bond cleavage giving rise to the CH3O + OH radical products. Our recent measurements at Neumayer station in Antarctica [1] have shown that CH3OOH mixing ratios during the polar day are considerably higher than during the polar night and correlate with UV radiation. Snow and ice-covered regions are huge sinks for tropospheric trace gases. For hydrogen peroxide and methyl hydroperoxide we have studied the low-temperature interaction of CH3OOH with the hexagonal water ice surface using DFT (BLYP/6-31++G(d,p) and B3LYP/6-311++G(2d,2p)) calculations [2, 3]. In these calculations we used the extended cluster models up to (H2O)48, (H2O)56, and (H2O)72 for the various modes of hydroperoxide coordination on different ice crystal planes and incorporation inside the ice [3]. Also, the effect of orientational isomerism of hydrogen bond network inside the water ice was investigated [2]. In laboratory experiments we have simulated the UV photochemistry of CH3OOH trapped in ice (H2O and D2O) at 14 K. The photoproducts (CH2O, HCO, CO, CO2) formed in the ice have been identified by means of FTIR spectroscopy. [1] Riedel K., Weller R., Schrems O., König-Langlo G., Atmos.Environ., 2000,34, 5225-5234. [2] Ignatov S.K., Razuvaev A.G., Sennikov P.G., Schrems O., J.Mol.Struct.(THEOCHEM), 2009, 908,47-54. [3] Ignatov S.K., Gadzhiev O.B., Kulikov M.Yu., Petrov A.I., Razuvaev A.G., Gand M., Feigin A.M., Schrems O., J.Phys.Chem.C, 2011, 115, 9081-9089.

  20. Satellite remote sensing over ice

    NASA Technical Reports Server (NTRS)

    Thomas, R. H.

    1984-01-01

    Satellite remote sensing provides unique opportunities for observing ice-covered terrain. Passive-microwave data give information on snow extent on land, sea-ice extent and type, and zones of summer melting on the polar ice sheets, with the potential for estimating snow-accumulation rates on these ice sheets. All weather, high-resolution imagery of sea ice is obtained using synthetic aperture radars, and ice-movement vectors can be deduced by comparing sequential images of the same region. Radar-altimetry data provide highly detailed information on ice-sheet topography, with the potential for deducing thickening/thinning rates from repeat surveys. The coastline of Antarctica can be mapped accurately using altimetry data, and the size and spatial distribution of icebergs can be monitored. Altimetry data also distinguish open ocean from pack ice and they give an indication of sea-ice characteristics.

  1. Nucleation of Ice

    NASA Astrophysics Data System (ADS)

    Molinero, Valeria

    2009-03-01

    The freezing of water into ice is a ubiquitous transformation in nature, yet the microscopic mechanism of homogeneous nucleation of ice has not yet been elucidated. One of the reasons is that nucleation happens in time scales that are too fast for an experimental characterization and two slow for a systematic study with atomistic simulations. In this work we use coarse-grained molecular dynamics simulations with the monatomic model of water mW[1] to shed light into the mechanism of homogeneous nucleation of ice and its relationship to the thermodynamics of supercooled water. Cooling of bulk water produces either crystalline ice or low- density amorphous ice (LDA) depending on the quenching rate. We find that ice crystallization occurs faster at temperatures close to the liquid-liquid transition, defined as the point of maximum inflection of the density with respect to the temperature. At the liquid-liquid transition, the time scale of nucleation becomes comparable to the time scale of relaxation within the liquid phase, determining --effectively- the end of the metastable liquid state. Our results imply that no ultraviscous liquid water can exist at temperatures just above the much disputed glass transition of water. We discuss how the scenario is changed when water is in confinement, and the relationship of the mechanism of ice nucleation to that of other liquids that present the same phase behavior, silicon [2] and germanium [3]. [4pt] [1] Molinero, V. & Moore, E. B. Water modeled as an intermediate element between carbon and silicon. Journal of Physical Chemistry B (2008). Online at http://pubs.acs.org/cgi- bin/abstract.cgi/jpcbfk/asap/abs/jp805227c.html [0pt] [2] Molinero, V., Sastry, S. & Angell, C. A. Tuning of tetrahedrality in a silicon potential yields a series of monatomic (metal-like) glass formers of very high fragility. Physical Review Letters 97, 075701 (2006).

  2. Hydrogen detector

    DOEpatents

    Kanegae, Naomichi; Ikemoto, Ichiro

    1980-01-01

    A hydrogen detector of the type in which the interior of the detector is partitioned by a metal membrane into a fluid section and a vacuum section. Two units of the metal membrane are provided and vacuum pipes are provided independently in connection to the respective units of the metal membrane. One of the vacuum pipes is connected to a vacuum gauge for static equilibrium operation while the other vacuum pipe is connected to an ion pump or a set of an ion pump and a vacuum gauge both designed for dynamic equilibrium operation.

  3. Heavy ion irradiation of crystalline water ice. Cosmic ray amorphisation cross-section and sputtering yield

    NASA Astrophysics Data System (ADS)

    Dartois, E.; Augé, B.; Boduch, P.; Brunetto, R.; Chabot, M.; Domaracka, A.; Ding, J. J.; Kamalou, O.; Lv, X. Y.; Rothard, H.; da Silveira, E. F.; Thomas, J. C.

    2015-04-01

    Context. Under cosmic irradiation, the interstellar water ice mantles evolve towards a compact amorphous state. Crystalline ice amorphisation was previously monitored mainly in the keV to hundreds of keV ion energies. Aims: We experimentally investigate heavy ion irradiation amorphisation of crystalline ice, at high energies closer to true cosmic rays, and explore the water-ice sputtering yield. Methods: We irradiated thin crystalline ice films with MeV to GeV swift ion beams, produced at the GANIL accelerator. The ice infrared spectral evolution as a function of fluence is monitored with in-situ infrared spectroscopy (induced amorphisation of the initial crystalline state into a compact amorphous phase). Results: The crystalline ice amorphisation cross-section is measured in the high electronic stopping-power range for different temperatures. At large fluence, the ice sputtering is measured on the infrared spectra, and the fitted sputtering-yield dependence, combined with previous measurements, is quadratic over three decades of electronic stopping power. Conclusions: The final state of cosmic ray irradiation for porous amorphous and crystalline ice, as monitored by infrared spectroscopy, is the same, but with a large difference in cross-section, hence in time scale in an astrophysical context. The cosmic ray water-ice sputtering rates compete with the UV photodesorption yields reported in the literature. The prevalence of direct cosmic ray sputtering over cosmic-ray induced photons photodesorption may be particularly true for ices strongly bonded to the ice mantles surfaces, such as hydrogen-bonded ice structures or more generally the so-called polar ices. Experiments performed at the Grand Accélérateur National d'Ions Lourds (GANIL) Caen, France. Part of this work has been financed by the French INSU-CNRS programme "Physique et Chimie du Milieu Interstellaire" (PCMI) and the ANR IGLIAS.

  4. Palaeoclimate signal recorded by stable isotopes in cave ice: a modeling approach

    NASA Astrophysics Data System (ADS)

    Perşoiu, A.; Bojar, A.-V.

    2012-04-01

    Ice accumulations in caves preserve a large variety of geochemical information as candidate proxies for both past climate and environmental changes, one of the most significant being the stable isotopic composition of the ice. A series of recent studies have targeted oxygen and hydrogen stable isotopes in cave ice as proxies for past air temperatures, but the results are far from being as straightforward as they are in high latitude and altitude glaciers and ice caps. The main problems emerging from these studies are related to the mechanisms of cave ice formation (i.e., freezing of water) and post-formation processes (melting and refreezing), which both alter the original isotopic signal in water. Different methods have been put forward to solve these issues and a fair understanding of the present-day link between stable isotopes in precipitation and cave ice exists now. However, the main issues still lays unsolved: 1) is it possible to extend this link to older ice and thus reconstruct past changes in air temperature?; 2) to what extent are ice dynamics processes modifying the original climatic signal and 3) what is the best method to be used in extracting a climatic signal from stable isotopes in cave ice? To respond to these questions, we have conducted a modeling experiment, in which a theoretical cave ice stable isotope record was constructed using present-day observations on stable isotope behavior in cave ice and ice dynamics, and different methods (presently used for both polar and cave glaciers), were used to reconstruct the original, known, isotopic values. Our results show that it is possible to remove the effects of ice melting and refreezing on stable isotope composition of cave ice, and thus reconstruct the original isotopic signal, and further the climatic one.

  5. Ice stream activity scaled to ice sheet volume during Laurentide Ice Sheet deglaciation.

    PubMed

    Stokes, C R; Margold, M; Clark, C D; Tarasov, L

    2016-02-18

    The contribution of the Greenland and West Antarctic ice sheets to sea level has increased in recent decades, largely owing to the thinning and retreat of outlet glaciers and ice streams. This dynamic loss is a serious concern, with some modelling studies suggesting that the collapse of a major ice sheet could be imminent or potentially underway in West Antarctica, but others predicting a more limited response. A major problem is that observations used to initialize and calibrate models typically span only a few decades, and, at the ice-sheet scale, it is unclear how the entire drainage network of ice streams evolves over longer timescales. This represents one of the largest sources of uncertainty when predicting the contributions of ice sheets to sea-level rise. A key question is whether ice streams might increase and sustain rates of mass loss over centuries or millennia, beyond those expected for a given ocean-climate forcing. Here we reconstruct the activity of 117 ice streams that operated at various times during deglaciation of the Laurentide Ice Sheet (from about 22,000 to 7,000 years ago) and show that as they activated and deactivated in different locations, their overall number decreased, they occupied a progressively smaller percentage of the ice sheet perimeter and their total discharge decreased. The underlying geology and topography clearly influenced ice stream activity, but--at the ice-sheet scale--their drainage network adjusted and was linked to changes in ice sheet volume. It is unclear whether these findings can be directly translated to modern ice sheets. However, contrary to the view that sees ice streams as unstable entities that can accelerate ice-sheet deglaciation, we conclude that ice streams exerted progressively less influence on ice sheet mass balance during the retreat of the Laurentide Ice Sheet.

  6. Comparisons of cubed ice, crushed ice, and wetted ice on intramuscular and surface temperature changes.

    PubMed

    Dykstra, Joseph H; Hill, Holly M; Miller, Michael G; Cheatham, Christopher C; Michael, Timothy J; Baker, Robert J

    2009-01-01

    Many researchers have investigated the effectiveness of different types of cold application, including cold whirlpools, ice packs, and chemical packs. However, few have investigated the effectiveness of different types of ice used in ice packs, even though ice is one of the most common forms of cold application. To evaluate and compare the cooling effectiveness of ice packs made with cubed, crushed, and wetted ice on intramuscular and skin surface temperatures. Repeated-measures counterbalanced design. Human performance research laboratory. Twelve healthy participants (6 men, 6 women) with no history of musculoskeletal disease and no known preexisting inflammatory conditions or recent orthopaedic injuries to the lower extremities. Ice packs made with cubed, crushed, or wetted ice were applied to a standardized area on the posterior aspect of the right gastrocnemius for 20 minutes. Each participant was given separate ice pack treatments, with at least 4 days between treatment sessions. Cutaneous and intramuscular (2 cm plus one-half skinfold measurement) temperatures of the right gastrocnemius were measured every 30 seconds during a 20-minute baseline period, a 20-minute treatment period, and a 120-minute recovery period. Differences were observed among all treatments. Compared with the crushed-ice treatment, the cubed-ice and wetted-ice treatments produced lower surface and intramuscular temperatures. Wetted ice produced the greatest overall temperature change during treatment and recovery, and crushed ice produced the smallest change. As administered in our protocol, wetted ice was superior to cubed or crushed ice at reducing surface temperatures, whereas both cubed ice and wetted ice were superior to crushed ice at reducing intramuscular temperatures.

  7. Comparisons of Cubed Ice, Crushed Ice, and Wetted Ice on Intramuscular and Surface Temperature Changes

    PubMed Central

    Dykstra, Joseph H; Hill, Holly M; Miller, Michael G; Cheatham, Christopher C; Michael, Timothy J; Baker, Robert J

    2009-01-01

    Context: Many researchers have investigated the effectiveness of different types of cold application, including cold whirlpools, ice packs, and chemical packs. However, few have investigated the effectiveness of different types of ice used in ice packs, even though ice is one of the most common forms of cold application. Objective: To evaluate and compare the cooling effectiveness of ice packs made with cubed, crushed, and wetted ice on intramuscular and skin surface temperatures. Design: Repeated-measures counterbalanced design. Setting: Human performance research laboratory. Patients or Other Participants: Twelve healthy participants (6 men, 6 women) with no history of musculoskeletal disease and no known preexisting inflammatory conditions or recent orthopaedic injuries to the lower extremities. Intervention(s): Ice packs made with cubed, crushed, or wetted ice were applied to a standardized area on the posterior aspect of the right gastrocnemius for 20 minutes. Each participant was given separate ice pack treatments, with at least 4 days between treatment sessions. Main Outcome Measure(s): Cutaneous and intramuscular (2 cm plus one-half skinfold measurement) temperatures of the right gastrocnemius were measured every 30 seconds during a 20-minute baseline period, a 20-minute treatment period, and a 120-minute recovery period. Results: Differences were observed among all treatments. Compared with the crushed-ice treatment, the cubed-ice and wetted-ice treatments produced lower surface and intramuscular temperatures. Wetted ice produced the greatest overall temperature change during treatment and recovery, and crushed ice produced the smallest change. Conclusions: As administered in our protocol, wetted ice was superior to cubed or crushed ice at reducing surface temperatures, whereas both cubed ice and wetted ice were superior to crushed ice at reducing intramuscular temperatures. PMID:19295957

  8. Ice stream activity scaled to ice sheet volume during Laurentide Ice Sheet deglaciation

    NASA Astrophysics Data System (ADS)

    Stokes, C. R.; Margold, M.; Clark, C. D.; Tarasov, L.

    2016-02-01

    The contribution of the Greenland and West Antarctic ice sheets to sea level has increased in recent decades, largely owing to the thinning and retreat of outlet glaciers and ice streams. This dynamic loss is a serious concern, with some modelling studies suggesting that the collapse of a major ice sheet could be imminent or potentially underway in West Antarctica, but others predicting a more limited response. A major problem is that observations used to initialize and calibrate models typically span only a few decades, and, at the ice-sheet scale, it is unclear how the entire drainage network of ice streams evolves over longer timescales. This represents one of the largest sources of uncertainty when predicting the contributions of ice sheets to sea-level rise. A key question is whether ice streams might increase and sustain rates of mass loss over centuries or millennia, beyond those expected for a given ocean-climate forcing. Here we reconstruct the activity of 117 ice streams that operated at various times during deglaciation of the Laurentide Ice Sheet (from about 22,000 to 7,000 years ago) and show that as they activated and deactivated in different locations, their overall number decreased, they occupied a progressively smaller percentage of the ice sheet perimeter and their total discharge decreased. The underlying geology and topography clearly influenced ice stream activity, but—at the ice-sheet scale—their drainage network adjusted and was linked to changes in ice sheet volume. It is unclear whether these findings can be directly translated to modern ice sheets. However, contrary to the view that sees ice streams as unstable entities that can accelerate ice-sheet deglaciation, we conclude that ice streams exerted progressively less influence on ice sheet mass balance during the retreat of the Laurentide Ice Sheet.

  9. Quantification of Ice Accretions for Icing Scaling Evaluations

    NASA Technical Reports Server (NTRS)

    Ruff, Gary A.; Anderson, David N.

    2003-01-01

    The comparison of ice accretion characteristics is an integral part of aircraft icing research. It is often necessary to compare an ice accretion obtained from a flight test or numerical simulation to one produced in an icing wind tunnel or for validation of an icing scaling method. Traditionally, this has been accomplished by overlaying two-dimensional tracings of ice accretion shapes. This paper addresses the basic question of how to compare ice accretions using more quantitative methods. For simplicity, geometric characteristics of the ice accretions are used for the comparison. One method evaluated is a direct comparison of the percent differences of the geometric measurements. The second method inputs these measurements into a fuzzy inference system to obtain a single measure of the goodness of the comparison. The procedures are demonstrated by comparing ice shapes obtained in the Icing Research Tunnel at NASA Glenn Research Center during recent icing scaling tests. The results demonstrate that this type of analysis is useful in quantifying the similarity of ice accretion shapes and that the procedures should be further developed by expanding the analysis to additional icing data sets.

  10. Modeling Commercial Turbofan Engine Icing Risk With Ice Crystal Ingestion

    NASA Technical Reports Server (NTRS)

    Jorgenson, Philip C. E.; Veres, Joseph P.

    2013-01-01

    The occurrence of ice accretion within commercial high bypass aircraft turbine engines has been reported under certain atmospheric conditions. Engine anomalies have taken place at high altitudes that have been attributed to ice crystal ingestion, partially melting, and ice accretion on the compression system components. The result was degraded engine performance, and one or more of the following: loss of thrust control (roll back), compressor surge or stall, and flameout of the combustor. As ice crystals are ingested into the fan and low pressure compression system, the increase in air temperature causes a portion of the ice crystals to melt. It is hypothesized that this allows the ice-water mixture to cover the metal surfaces of the compressor stationary components which leads to ice accretion through evaporative cooling. Ice accretion causes a blockage which subsequently results in the deterioration in performance of the compressor and engine. The focus of this research is to apply an engine icing computational tool to simulate the flow through a turbofan engine and assess the risk of ice accretion. The tool is comprised of an engine system thermodynamic cycle code, a compressor flow analysis code, and an ice particle melt code that has the capability of determining the rate of sublimation, melting, and evaporation through the compressor flow path, without modeling the actual ice accretion. A commercial turbofan engine which has previously experienced icing events during operation in a high altitude ice crystal environment has been tested in the Propulsion Systems Laboratory (PSL) altitude test facility at NASA Glenn Research Center. The PSL has the capability to produce a continuous ice cloud which are ingested by the engine during operation over a range of altitude conditions. The PSL test results confirmed that there was ice accretion in the engine due to ice crystal ingestion, at the same simulated altitude operating conditions as experienced previously in

  11. Excess electrons in ice: a density functional theory study.

    PubMed

    Bhattacharya, Somesh Kr; Inam, Fakharul; Scandolo, Sandro

    2014-02-21

    We present a density functional theory study of the localization of excess electrons in the bulk and on the surface of crystalline and amorphous water ice. We analyze the initial stages of electron solvation in crystalline and amorphous ice. In the case of crystalline ice we find that excess electrons favor surface states over bulk states, even when the latter are localized at defect sites. In contrast, in amorphous ice excess electrons find it equally favorable to localize in bulk and in surface states which we attribute to the preexisting precursor states in the disordered structure. In all cases excess electrons are found to occupy the vacuum regions of the molecular network. The electron localization in the bulk of amorphous ice is assisted by its distorted hydrogen bonding network as opposed to the crystalline phase. Although qualitative, our results provide a simple interpretation of the large differences observed in the dynamics and localization of excess electrons in crystalline and amorphous ice films on metals.

  12. A Model Study of the Thermal Evolution of Astrophysical Ices

    NASA Technical Reports Server (NTRS)

    Loeffler, M. J.; Teolis, B. D.; Baragiola, R. A.

    2006-01-01

    We address the question of the evolution of ices that have been exposed to radiation from stellar sources and cosmic rays. We studied in the laboratory the thermal evolution of a model ice sample: a mixture of water, hydrogen peroxide, dioxygen, and ozone produced by irradiating solid H2O2 with 50 keV H(+) at 17 K. The changes in composition and release of volatiles during warming to 200 K were monitored by infrared spectroscopy, mass spectrometry, and microbalance techniques. We find evidence for voids in the water component from the infrared bands due to dangling H bonds. The absorption from these bands increases during heating and can be observed at temperatures as high as approx. 155 K. More O2 is stored in the radiolyzed film than can be retained by codeposition of O2 and H2O. This O2 remains trapped until approx. 155 K, where it desorbs in an outburst as water ice crystallizes. Warming of the ice also drastically decreases the intrinsic absorbance of O2 by annealing defects in the ice. We also observe loss of O3 in two stages during heating, which correlates with desorption and possibly chemical reactions with radicals stored in the ice, triggered by the temperature increase.

  13. Light driven microflow in ice

    SciTech Connect

    Weinert, Franz M.; Wuehr, Max; Braun, Dieter

    2009-03-16

    We optically pump water through micrometer thin ice sheets. The ice is locally moved with speeds exceeding 5 cm/s by repetitive melting and freezing, which occurs around a moving infrared laser spot. The minimal channel width is 10 {mu}m. The diffusion limitation of ice allows for fast spatial biomolecule control without predefined channels, valves, or external pumps. Dye molecules are pumped across an ice-ice interface, showing the possibility of microfluidic applications. Pumping in ice is three orders of magnitude faster than the previously shown for thermoviscous pumping in water.

  14. Protein Stability in Ice

    PubMed Central

    Strambini, Giovanni B.; Gonnelli, Margherita

    2007-01-01

    This study presents an experimental approach, based on the change of Trp fluorescence between native and denatured states of proteins, which permits to monitor unfolding equilibria and the thermodynamic stability (ΔG°) of these macromolecules in frozen aqueous solutions. The results obtained by guanidinium chloride denaturation of the azurin mutant C112S from Pseudomonas aeruginosa, in the temperature range from −8 to −16°C, demonstrate that the stability of the native fold may be significantly perturbed in ice depending mainly on the size of the liquid water pool (VL) in equilibrium with the solid phase. The data establish a threshold, around VL = 1.5%, below which in ice ΔG° decreases progressively relative to liquid state, up to 3 kcal/mole for VL = 0.285%. The sharp dependence of ΔG° on VL is consistent with a mechanism based on adsorption of the protein to the ice surface. The reduction in ΔG° is accompanied by a corresponding decrease in m-value indicating that protein-ice interactions increase the solvent accessible surface area of the native fold or reduce that of the denatured state, or both. The method opens the possibility for examining in a more quantitative fashion the influence of various experimental conditions on the ice perturbation and in particular to test the effectiveness of numerous additives used in formulations to preserve labile pharmaco proteins. PMID:17189314

  15. Mysteries at Ice Interfaces

    NASA Astrophysics Data System (ADS)

    Fain, Samuel C., Jr.

    1996-03-01

    Michael Faraday noted that ``two pieces of thawing ice, if put together, adhere and become one...the effect will take place in air, or in water, or in vacuo." Why? He proposed that ``a particle of water, which could retain the liquid state whilst touching ice only on one side, could not retain the liquid state if it were touched by ice on both sides."footnote M. Faraday, Proc. Roy. Soc. London 10, 440 (1860) The existence of special properties at interfaces of ice is generally agreed and has important environmental consequences.(J. G. Dash, H. Fu, and J. S. Wettlaufer, Rep. Prog. Phys. 58), 115 (1995) Why do different experiments infer different properties for this layer? Impurities and electric fields at the interfaces may be responsible for some of the variations in experimental results.footnote V. F. Petrenko, U. S. Army Cold Regions Research and Engineering Laboratory Report 94-22 (1994) Some background on the physical properties of ice will be discussed, including recent force microscopy measurements done at the University of Washington.footnote C.R. Slaughterbeck, E.W. Kukes, B. Pittenger, D.J. Cook, P.C. Williams, V.L. Eden, S.C. Fain, Jr., J. Vac. Sci. Technol. (in press) Supported by NSF Grant DMR-91-19701.

  16. Data archaeology at ICES

    NASA Technical Reports Server (NTRS)

    Dooley, Harry D.

    1992-01-01

    This paper provides a brief overview of the function of the International Council for the Exploration of the Sea (ICES), both past and present, in particular in the context of its interest in compiling oceanographic data sets. Details are provided of the procedures it adopted to ensure adequate internationally collaborative marine investigations during the first part of the century, such as how it provided a forum for action by its member states, how it coordinated and published the results of scientific programs, and how it provided a foundation, through scientists employed in the ICES Office, for the establishment of the original oceanographic marine databases and associated products, and the scientific interpretation of the results. The growth and expansion of this area of ICES activity is then traced, taking into account the changing conditions for oceanographic data management resulting from the establishment of the National Data Centres, as well as the World Data Centres for Oceanography, which were created to meet the needs of the International Geophysical Year (IGY). Finally, there is a discussion of the way in which the very existence of ICES has proved to be a valuable source of old data, some of which have not yet been digitized, but which can be readily retrieved because they have been very carefully documented throughout the years. Lessons from this activity are noted, and suggestions are made on how the past experiences of ICES can be utilized to ensure the availability of marine data to present and future generations of scientists.

  17. Graphane and hydrogenated graphene.

    PubMed

    Pumera, Martin; Wong, Colin Hong An

    2013-07-21

    Graphane, the fully hydrogenated analogue of graphene, and its partially hydrogenated counterparts are attracting increasing attention. We review here its structure and predicted material properties, as well as the current methods of preparation. Graphane and hydrogenated graphenes are far more complex materials than graphene, expected to have a tuneable band gap via the extent of hydrogenation, as well as exhibit ferromagnetism. The methods for hydrogenated graphene characterization are discussed. We show that hydrogenation methods based on low or high pressure gas hydrogenation lead to less hydrogen saturation than wet chemistry methods based on variations of Birch reduction. The special cases of patterning of hydrogenated graphene strips in a graphene lattice are discussed.

  18. Inception of ice accretion by ice crystal impact

    NASA Astrophysics Data System (ADS)

    Löwe, Jens; Kintea, Daniel; Baumert, Arne; Bansmer, Stephan; Roisman, Ilia V.; Tropea, Cameron

    2016-09-01

    In this experimental and theoretical study the ice accretion phenomena on a heated cylinder in Braunschweig Icing Wind Tunnel are investigated. The ice crystal size, velocity, the liquid-to-total mass ratio are accurately controlled. The evolution of the cylinder temperature, the time required for the inception of the ice accretion, and the ice accretion rate are measured for various operating conditions. The surface temperature of the solid target is determined by balancing the heating power in the wall and the cooling effect of the stream of ice particles. We have discovered that the inception of the ice crystal accretion is determined by the instant when the surface temperature of the heated target reduces to the freezing temperature. This result will help to model the phenomena of ice crystal accretion.

  19. Thin Water and Ice Films at Mineral Surfaces

    NASA Astrophysics Data System (ADS)

    Yeşilbaş, Merve; Boily, Jean-François

    2016-04-01

    Mineral-water and ice interactions play important roles in atmospheric cloud formation. They also affect soil biogeochemistry as well as outer-space processes. In this study, thin water and ice films formed on minerals of varied bulk and surface structure, shape, size and surface roughness were probed by Fourier Transform Infrared Spectroscopy (FTIR) and by Dynamic Vapor Adsorption (DVA). Measurements on several types of iron (oxyhydr)oxides, phyllosilicates, orthosilicates, tectosilicates as well as Arizona Test Dust (ATD) and Icelandic volcanic ash constrained our understanding of the molecular-level nature of mineral surface-water and ice interactions. DVA experiments showed that particle size is the key feature controlling water loadings at 25 ° C. Under this condition, nano-sized particles stabilized the equivalence of no more than ˜6 monolayers of water at the near saturation of water vapor while sub-micron sized particles stabilized several thousand layers. This result can be explained by the greater ability of larger sized particles at driving water condensation reactions. Cryogenic FTIR measurements at -10 and -50 ° C revealed that most minerals acquired the thin ice films with similar hydrogen bonding environments as those formed at room temperature.[1,2] These thin ice films have weaker hydrogen bond environments than hexagonal ice (νOH ≈ 3130 cm-1), a result seen by FTIR through predominant O-H stretching modes at νOH ≈ 3408-3425 cm-1. The water bending region (˜1630 cm-1) also reveals that most thin ice films are rather supercooled forms of water. Only the materials with greatest levels of heterogeneity, namely ATD and volcanic ash, stabilized solid forms of water reminiscent to hexagonal ice. This work thus constrains further our understanding of how interfacial ice is stabilized at mineral surfaces, and opens possibilities for future studies focused on atmospheric gas uptake on mineral- water and ice admixtures. [1] Song, X. and Boily, J

  20. Mechanochemical hydrogenation of coal

    DOEpatents

    Yang, Ralph T.; Smol, Robert; Farber, Gerald; Naphtali, Leonard M.

    1981-01-01

    Hydrogenation of coal is improved through the use of a mechanical force to reduce the size of the particulate coal simultaneously with the introduction of gaseous hydrogen, or other hydrogen donor composition. Such hydrogen in the presence of elemental tin during this one-step size reduction-hydrogenation further improves the yield of the liquid hydrocarbon product.

  1. On the ice nucleation spectrum

    NASA Astrophysics Data System (ADS)

    Barahona, D.

    2012-04-01

    This work presents a novel formulation of the ice nucleation spectrum, i.e. the function relating the ice crystal concentration to cloud formation conditions and aerosol properties. The new formulation is physically-based and explicitly accounts for the dependency of the ice crystal concentration on temperature, supersaturation, cooling rate, and particle size, surface area and composition. This is achieved by introducing the concepts of ice nucleation coefficient (the number of ice germs present in a particle) and nucleation probability dispersion function (the distribution of ice nucleation coefficients within the aerosol population). The new formulation is used to generate ice nucleation parameterizations for the homogeneous freezing of cloud droplets and the heterogeneous deposition ice nucleation on dust and soot ice nuclei. For homogeneous freezing, it was found that by increasing the dispersion in the droplet volume distribution the fraction of supercooled droplets in the population increases. For heterogeneous ice nucleation the new formulation consistently describes singular and stochastic behavior within a single framework. Using a fundamentally stochastic approach, both cooling rate independence and constancy of the ice nucleation fraction over time, features typically associated with singular behavior, were reproduced. Analysis of the temporal dependency of the ice nucleation spectrum suggested that experimental methods that measure the ice nucleation fraction over few seconds would tend to underestimate the ice nuclei concentration. It is shown that inferring the aerosol heterogeneous ice nucleation properties from measurements of the onset supersaturation and temperature may carry significant error as the variability in ice nucleation properties within the aerosol population is not accounted for. This work provides a simple and rigorous ice nucleation framework where theoretical predictions, laboratory measurements and field campaign data can be

  2. On the Ice Nucleation Spectrum

    NASA Technical Reports Server (NTRS)

    Barahona, D.

    2012-01-01

    This work presents a novel formulation of the ice nucleation spectrum, i.e. the function relating the ice crystal concentration to cloud formation conditions and aerosol properties. The new formulation is physically-based and explicitly accounts for the dependency of the ice crystal concentration on temperature, supersaturation, cooling rate, and particle size, surface area and composition. This is achieved by introducing the concepts of ice nucleation coefficient (the number of ice germs present in a particle) and nucleation probability dispersion function (the distribution of ice nucleation coefficients within the aerosol population). The new formulation is used to generate ice nucleation parameterizations for the homogeneous freezing of cloud droplets and the heterogeneous deposition ice nucleation on dust and soot ice nuclei. For homogeneous freezing, it was found that by increasing the dispersion in the droplet volume distribution the fraction of supercooled droplets in the population increases. For heterogeneous ice nucleation the new formulation consistently describes singular and stochastic behavior within a single framework. Using a fundamentally stochastic approach, both cooling rate independence and constancy of the ice nucleation fraction over time, features typically associated with singular behavior, were reproduced. Analysis of the temporal dependency of the ice nucleation spectrum suggested that experimental methods that measure the ice nucleation fraction over few seconds would tend to underestimate the ice nuclei concentration. It is shown that inferring the aerosol heterogeneous ice nucleation properties from measurements of the onset supersaturation and temperature may carry significant error as the variability in ice nucleation properties within the aerosol population is not accounted for. This work provides a simple and rigorous ice nucleation framework where theoretical predictions, laboratory measurements and field campaign data can be

  3. Seafloor Control on Sea Ice

    NASA Technical Reports Server (NTRS)

    Nghiem, S. V.; Clemente-Colon, P.; Rigor, I. G.; Hall, D. K.; Neumann, G.

    2011-01-01

    The seafloor has a profound role in Arctic sea ice formation and seasonal evolution. Ocean bathymetry controls the distribution and mixing of warm and cold waters, which may originate from different sources, thereby dictating the pattern of sea ice on the ocean surface. Sea ice dynamics, forced by surface winds, are also guided by seafloor features in preferential directions. Here, satellite mapping of sea ice together with buoy measurements are used to reveal the bathymetric control on sea ice growth and dynamics. Bathymetric effects on sea ice formation are clearly observed in the conformation between sea ice patterns and bathymetric characteristics in the peripheral seas. Beyond local features, bathymetric control appears over extensive ice-prone regions across the Arctic Ocean. The large-scale conformation between bathymetry and patterns of different synoptic sea ice classes, including seasonal and perennial sea ice, is identified. An implication of the bathymetric influence is that the maximum extent of the total sea ice cover is relatively stable, as observed by scatterometer data in the decade of the 2000s, while the minimum ice extent has decreased drastically. Because of the geologic control, the sea ice cover can expand only as far as it reaches the seashore, the continental shelf break, or other pronounced bathymetric features in the peripheral seas. Since the seafloor does not change significantly for decades or centuries, sea ice patterns can be recurrent around certain bathymetric features, which, once identified, may help improve short-term forecast and seasonal outlook of the sea ice cover. Moreover, the seafloor can indirectly influence cloud cover by its control on sea ice distribution, which differentially modulates the latent heat flux through ice covered and open water areas.

  4. Global Assessment of Hydrogen Technologies - Executive Summary

    SciTech Connect

    Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan, Andrew J.

    2007-12-01

    This project was a collaborative effort involving researchers from the University of Alabama at Birmingham (UAB) and Argonne National Laboratory (ANL), drawing on the experience and expertise of both research organizations. The goal of this study was to assess selected hydrogen technologies for potential application to transportation and power generation. Specifically, this study evaluated scenarios for deploying hydrogen technologies and infrastructure in the Southeast. One study objective was to identify the most promising near-term and long-term hydrogen vehicle technologies based on performance, efficiency, and emissions profiles and compare them to traditional vehicle technologies. Hydrogen vehicle propulsion may take many forms, ranging from hydrogen or hythane fueled internal combustion engines (ICEs) to fuel cells and fuel cell hybrid systems. This study attempted to developed performance and emissions profiles for each type (assuming a light duty truck platform) so that effective deployment strategies can be developed. A second study objective was to perform similar cost, efficiency, and emissions analysis related to hydrogen infrastructure deployment in the Southeast. There will be many alternative approaches for the deployment of hydrogen fueling infrastructure, ranging from distributed hydrogen production to centralized production, with a similar range of delivery options. This study attempted to assess the costs and potential emissions associated with each scenario. A third objective was to assess the feasibility of using hydrogen fuel cell technologies for stationary power generation and to identify the advantages and limits of different technologies. Specific attention was given to evaluating different fuel cell membrane types. A final objective was to promote the use and deployment of hydrogen technologies in the Southeast. This effort was to include establishing partnerships with industry as well promoting educational and outreach efforts to public

  5. Microbial abundance in surface ice on the Greenland Ice Sheet

    PubMed Central

    Stibal, Marek; Gözdereliler, Erkin; Cameron, Karen A.; Box, Jason E.; Stevens, Ian T.; Gokul, Jarishma K.; Schostag, Morten; Zarsky, Jakub D.; Edwards, Arwyn; Irvine-Fynn, Tristram D. L.; Jacobsen, Carsten S.

    2015-01-01

    Measuring microbial abundance in glacier ice and identifying its controls is essential for a better understanding and quantification of biogeochemical processes in glacial ecosystems. However, cell enumeration of glacier ice samples is challenging due to typically low cell numbers and the presence of interfering mineral particles. We quantified for the first time the abundance of microbial cells in surface ice from geographically distinct sites on the Greenland Ice Sheet (GrIS), using three enumeration methods: epifluorescence microscopy (EFM), flow cytometry (FCM), and quantitative polymerase chain reaction (qPCR). In addition, we reviewed published data on microbial abundance in glacier ice and tested the three methods on artificial ice samples of realistic cell (102–107 cells ml−1) and mineral particle (0.1–100 mg ml−1) concentrations, simulating a range of glacial ice types, from clean subsurface ice to surface ice to sediment-laden basal ice. We then used multivariate statistical analysis to identify factors responsible for the variation in microbial abundance on the ice sheet. EFM gave the most accurate and reproducible results of the tested methodologies, and was therefore selected as the most suitable technique for cell enumeration of ice containing dust. Cell numbers in surface ice samples, determined by EFM, ranged from ~ 2 × 103 to ~ 2 × 106 cells ml−1 while dust concentrations ranged from 0.01 to 2 mg ml−1. The lowest abundances were found in ice sampled from the accumulation area of the ice sheet and in samples affected by fresh snow; these samples may be considered as a reference point of the cell abundance of precipitants that are deposited on the ice sheet surface. Dust content was the most significant variable to explain the variation in the abundance data, which suggests a direct association between deposited dust particles and cells and/or by their provision of limited nutrients to microbial communities on the GrIS. PMID:25852678

  6. Ice crystal terminal velocities

    NASA Technical Reports Server (NTRS)

    Heymsfield, A.

    1972-01-01

    Terminal velocities of different ice crystal forms were calculated using the most recent ice crystal drag coefficients, aspect ratios, and densities. The equations derived were primarily for use in calculating precipitation rates by sampling particles with an aircraft in cirrus clouds, and determining particle size in cirrus clouds by Doppler radar. However, the equations are sufficiently general for determining particle terminal velocity at any altitude, and most any crystal type. Two sets of equations were derived. The general equations provide a good estimate of terminal velocities at any altitude. The specific equations are a set of equations for ice crystal terminal velocities at 1000 mb. The calculations are in good agreement with terminal velocity measurements. The results from the present study were also compared to prior calculations by others and seem to give more reasonable results, particularly at higher altitudes.

  7. Ice crystal terminal velocities.

    NASA Technical Reports Server (NTRS)

    Heymsfield, A.

    1972-01-01

    Terminal velocities of different ice crystal forms were calculated, using the most recent ice crystal drag coefficients, aspect ratios, and densities. The equations derived were primarily for use in calculating precipitation rates by sampling particles with an aircraft in cirrus clouds, and determining particle size in cirrus clouds by Doppler radar. However, the equations are sufficiently general for determining particle terminal velocity at any altitude, and almost any crystal type. Two sets of equations were derived. The 'general' equations provide a good estimate of terminal velocities at any altitude. The 'specific' equations are a set of equations for ice crystal terminal velocities at 1000 mb. The calculations are in good agreement with terminal velocity measurements. The results from the present study were also compared to prior calculations by others and seem to give more reasonable results, particularly at higher altitudes.

  8. The Great Ice Age

    USGS Publications Warehouse

    Ray, Louis L.

    1992-01-01

    The Great Ice Age, a recent chapter in the Earth's history, was a period of recurring widespread glaciations. During the Pleistocene Epoch of the geologic time scale, which began about a million or more years ago, mountain glaciers formed on all continents, the icecaps of Antarctica and Greenland were more extensive and thicker than today, and vast glaciers, in places as much as several thousand feet thick, spread across northern North America and Eurasia. So extensive were these glaciers that almost a third of the present land surface of the Earth was intermittently covered by ice. Even today remnants of the great glaciers cover almost a tenth of the land, indicating that conditions somewhat similar to those which produced the Great Ice Age are still operating in polar and subpolar climates.

  9. Microwave ice accretion meter

    NASA Technical Reports Server (NTRS)

    Magenheim, Bertram (Inventor); Rocks, James K. (Inventor)

    1984-01-01

    A system for indicating ice thickness and rate of ice thickness growth on surfaces is disclosed. The region to be monitored for ice accretion is provided with a resonant surface waveguide which is mounted flush, below the surface being monitored. A controlled oscillator provides microwave energy via a feed point at a controllable frequency. A detector is coupled to the surface waveguide and is responsive to electrical energy. A measuring device indicates the frequency deviation of the controlled oscillator from a quiescent frequency. A control means is provided to control the frequency of oscillation of the controlled oscillator. In a first, open-loop embodiment, the control means is a shaft operated by an operator. In a second, closed-loop embodiment, the control means is a processor which effects automatic control.

  10. Cutting ice: nanowire regelation.

    PubMed

    Hynninen, Teemu; Heinonen, Vili; Dias, Cristiano L; Karttunen, Mikko; Foster, Adam S; Ala-Nissila, Tapio

    2010-08-20

    Even below its normal melting temperature, ice melts when subjected to high pressure and refreezes once the pressure is lifted. A classic demonstration of this regelation phenomenon is the passing of a thin wire through a block of ice when sufficient force is exerted. Here we present a molecular-dynamics study of a nanowire cutting through ice to unravel the molecular level mechanisms responsible for regelation. In particular, we show that the transition from a stationary to a moving wire due to increased driving force changes from symmetric and continuous to asymmetric and discontinuous as a hydrophilic wire is replaced by a hydrophobic one. This is explained at the molecular level in terms of the wetting properties of the wire.

  11. North Polar Ice

    NASA Technical Reports Server (NTRS)

    2004-01-01

    25 December 2004 For 25 December, the MOC team thought that a visit to a north polar site would be timely. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows, at about 1.5 meters per pixel (5 feet per pixel) resolution, a view of the north polar ice cap of Mars. That the material includes water ice has been known since the mid-1970s, when Viking orbiter observations confirmed that the cap gives off water vapor in the summertime, as the ice is subliming away. The surface shown here, observed by MOC during northern summer in November 2004, is pitted and somewhat grooved. Dark material on pit floors might be trapped, windblown dust. The picture covers an area about 1 km (0.62 mi) across, and is located near 86.8oN, 293.1oW. Sunlight illuminates the scene from the lower left.

  12. Rheology of planetary ices

    SciTech Connect

    Durham, W.B.; Kirby, S.H.; Stern, L.A.

    1996-04-24

    The brittle and ductile rheology of ices of water, ammonia, methane, and other volatiles, in combination with rock particles and each other, have a primary influence of the evolution and ongoing tectonics of icy moons of the outer solar system. Laboratory experiments help constrain the rheology of solar system ices. Standard experimental techniques can be used because the physical conditions under which most solar system ices exist are within reach of conventional rock mechanics testing machines, adapted to the low subsolidus temperatures of the materials in question. The purpose of this review is to summarize the results of a decade-long experimental deformation program and to provide some background in deformation physics in order to lend some appreciation to the application of these measurements to the planetary setting.

  13. Waterway Ice Thickness Measurements

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The ship on the opposite page is a U. S. Steel Corporation tanker cruising through the ice-covered waters of the Great Lakes in the dead of winter. The ship's crew is able to navigate safely by plotting courses through open water or thin ice, a technique made possible by a multi-agency technology demonstration program in which NASA is a leading participant. Traditionally, the Great Lakes-St. Lawrence Seaway System is closed to shipping for more than three months of winter season because of ice blockage, particularly fluctuations in the thickness and location of ice cover due to storms, wind, currents and variable temperatures. Shippers have long sought a system of navigation that would allow year-round operation on the Lakes and produce enormous economic and fuel conservation benefits. Interrupted operations require that industrial firms stockpile materials to carry them through the impassable months, which is costly. Alternatively, they must haul cargos by more expensive overland transportation. Studies estimate the economic benefits of year-round Great Lakes shipping in the hundreds of millions of dollars annually and fuel consumption savings in the tens of millions of gallons. Under Project Icewarn, NASA, the U.S. Coast Guard and the National Oceanic Atmospheric Administration collaborated in development and demonstration of a system that permits safe year-round operations. It employs airborne radars, satellite communications relay and facsimile transmission to provide shippers and ships' masters up-to-date ice charts. Lewis Research Center contributed an accurate methods of measuring ice thickness by means of a special "short-pulse" type of radar. In a three-year demonstration program, Coast Guard aircraft equipped with Side-Looking Airborne Radar (SLAR) flew over the Great Lakes three or four times a week. The SLAR, which can penetrate clouds, provided large area readings of the type and distribution of ice cover. The information was supplemented by short

  14. The mass balance of the ice plain of Ice Stream B and Crary Ice Rise

    NASA Technical Reports Server (NTRS)

    Bindschadler, Robert

    1993-01-01

    The region in the mouth of Ice Stream B (the ice plain) and that in the vicinity of Crary Ice Rise are experiencing large and rapid changes. Based on velocity, ice thickness, and accumulation rate data, the patterns of net mass balance in these regions were calculated. Net mass balance, or the rate of ice thickness change, was calculated as the residual of all mass fluxes into and out of subregions (or boxes). Net mass balance provides a measure of the state of health of the ice sheet and clues to the current dynamics.

  15. Quantum simulation of collective proton tunneling in hexagonal ice crystals.

    PubMed

    Drechsel-Grau, Christof; Marx, Dominik

    2014-04-11

    The effect of proton tunneling on many-body correlated proton transfer in hexagonal ice is investigated by quantum simulation. Classical single-particle hopping along individual hydrogen bonds leads to charge defects at high temperature, whereas six protons in ringlike topologies can move concertedly as a delocalized quasiparticle via collective tunneling at low temperature, thus preventing the creation of high-energy topological defects. Our findings rationalize many-body quantum tunneling in hydrogen-bonded networks and suggest that this phenomenon might be more widespread than previously thought.

  16. Technology status of hydrogen road vehicles. IEA technical report from the IEA Agreement of the production and utilization of hydrogen

    SciTech Connect

    Doyle, T.A.

    1998-01-31

    The report was commissioned under the Hydrogen Implementing Agreement of the International Energy Agency (IEA) and examines the state of the art in the evolving field of hydrogen-fueled vehicles for road transport. The first phase surveys and analyzes developments since 1989, when a comprehensive review was last published. The report emphasizes the following: problems, especially backfiring, with internal combustion engines (ICEs); operational safety; hydrogen handling and on-board storage; and ongoing demonstration projects. Hydrogen vehicles are receiving much attention, especially at the research and development level. However, there has been a steady move during the past 5 years toward integral demonstrations of operable vehicles intended for public roads. Because they emit few, or no greenhouse gases, hydrogen vehicles are beginning to be taken seriously as a promising solution to the problems of urban air quality. Since the time the first draft of the report was prepared (mid-19 96), the 11th World Hydrogen Energy Conference took place in Stuttgart, Germany. This biennial conference can be regarded as a valid updating of the state of the art; therefore, the 1996 results are included in the current version. Sections of the report include: hydrogen production and distribution to urban users; on-board storage and refilling; vehicle power units and drives, and four appendices titled: 'Safety questions of hydrogen storage and use in vehicles', 'Performance of hydrogen fuel in internal production engines for road vehicles, 'Fuel cells for hydrogen vehicles', and 'Summaries of papers on hydrogen vehicles'. (refs., tabs.)

  17. Large Ice Discharge From the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Rignot, Eric

    1999-01-01

    The objectives of this work are to measure the ice discharge of the Greenland Ice Sheet close to the grounding line and/or calving front, and compare the results with mass accumulation and ablation in the interior to estimate the ice sheet mass balance.

  18. Ice Accretions and Icing Effects for Modern Airfoils

    NASA Technical Reports Server (NTRS)

    Addy, Harold E., Jr.

    2000-01-01

    Icing tests were conducted to document ice shapes formed on three different two-dimensional airfoils and to study the effects of the accreted ice on aerodynamic performance. The models tested were representative of airfoil designs in current use for each of the commercial transport, business jet, and general aviation categories of aircraft. The models were subjected to a range of icing conditions in an icing wind tunnel. The conditions were selected primarily from the Federal Aviation Administration's Federal Aviation Regulations 25 Appendix C atmospheric icing conditions. A few large droplet icing conditions were included. To verify the aerodynamic performance measurements, molds were made of selected ice shapes formed in the icing tunnel. Castings of the ice were made from the molds and placed on a model in a dry, low-turbulence wind tunnel where precision aerodynamic performance measurements were made. Documentation of all the ice shapes and the aerodynamic performance measurements made during the icing tunnel tests is included in this report. Results from the dry, low-turbulence wind tunnel tests are also presented.

  19. Hugoniot of water ice

    SciTech Connect

    Gaffney, E.S.

    1984-01-19

    Hugoniot data for water ice are available for pressures ranging from about 150 MPa to about 50 GPa from initial states near 260 K. Limited data on porous ice (snow) at the same initial temperatures are available from 3.5 to 38 GPa and initial densities of 600 and 350 Mg/m/sup 3/. Above about 5 GPa, the data are fairly well-fit by a linear relation between shock and particle velocity: D(km/s) = 1.79 + 1.42u. However, a quadratic form fits the data better: D(km/s) = 1.32 + 1.68u - 0.035u/sup 2/. At lower stresses the velocity is a very complicated function of particle velocity due to elastic propagation, yielding and several possible phase changes. The Hugoniot elastic limit (HEL) of ice at these temperatures is about 180 +- 20 MPa with the elastic waves travelling at about 3900 m/s. The mean stress at the HEL is 115 +- 14 MPa. Comparison with strength measurements at lower strain rate indicates that failure at the HEL probably involves fracture and is almost independent of both temperature and strain rate. Ice V has been reported at about 600 MPa, and ice VI at 1.9 GPa and possibly at 3.7 GPa. Transition to ice III probably commences at the HEL at 200 MPa. Relations between volume, enthalpy and internal energy indicate that states below about 1 GPa maintain their shear strength even after undergoing complete transition to a high pressure phase. Time-resolved stress measurements indicate that equilibrium is achieved in about three microseconds for a 695 MPa shock. Melting is definitely complete below 10 GPa.

  20. Dry Ice Etches Terrain

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] Figure 1

    Every year seasonal carbon dioxide ice, known to us as 'dry ice,' covers the poles of Mars. In the south polar region this ice is translucent, allowing sunlight to pass through and warm the surface below. The ice then sublimes (evaporates) from the bottom of the ice layer, and carves channels in the surface.

    The channels take on many forms. In the subimage shown here (figure 1) the gas from the dry ice has etched wide shallow channels. This region is relatively flat, which may be the reason these channels have a different morphology than the 'spiders' seen in more hummocky terrain.

    Observation Geometry Image PSP_003364_0945 was taken by the High Resolution Imaging Science Experiment (HiRISE) camera onboard the Mars Reconnaissance Orbiter spacecraft on 15-Apr-2007. The complete image is centered at -85.4 degrees latitude, 104.0 degrees East longitude. The range to the target site was 251.5 km (157.2 miles). At this distance the image scale is 25.2 cm/pixel (with 1 x 1 binning) so objects 75 cm across are resolved. The image shown here has been map-projected to 25 cm/pixel . The image was taken at a local Mars time of 06:57 PM and the scene is illuminated from the west with a solar incidence angle of 75 degrees, thus the sun was about 15 degrees above the horizon. At a solar longitude of 219.6 degrees, the season on Mars is Northern Autumn.