Science.gov

Sample records for hydrogen induced c-c

  1. Hydrogen induced C-C, C-N, and C-S bond activation on Pt and Ni surfaces

    SciTech Connect

    Gland, J.L.

    1992-12-01

    The work has focussed on hydrogen induced bond activation in adsorbed organic molecules and intermediates containin C-S and C-N and C-C bonds on Ni(100), Ni(111), and Pt(111) surfaces. Fluorescence Yield Near Edge Spectroscopy (FYNES) above the carbon K edge was used for adsorbed organic reactants and in-situ kinetic studies of bond activation. Results indicate that the activation is enhanced on Ni relative to Pt. Methylthiolate and methylamine adsorbed on Pt(111) were studied.

  2. Hydrogen induced C-C, C-N, and C-S bond activation on Pt and Ni surfaces

    SciTech Connect

    Gland, J.L.

    1992-01-01

    The work has focussed on hydrogen induced bond activation in adsorbed organic molecules and intermediates containin C-S and C-N and C-C bonds on Ni(100), Ni(111), and Pt(111) surfaces. Fluorescence Yield Near Edge Spectroscopy (FYNES) above the carbon K edge was used for adsorbed organic reactants and in-situ kinetic studies of bond activation. Results indicate that the activation is enhanced on Ni relative to Pt. Methylthiolate and methylamine adsorbed on Pt(111) were studied.

  3. Influence of sulfur addition and S-induced wall catalytic effects on C-C bond cleavage and aromatics hydrogenation

    SciTech Connect

    Schmidt, E.; Song, Chunshan; Schobert, H.H.

    1995-12-31

    Catalytic hydrocracking of 4-(1-naphthylmethyl)bibenzyl, designated as NMBB, predominately yielded naphthalene and 4-methylbibenzyl. Sulfur addition to most catalyst precursors lead to substantially higher catalyst activity and subsequently higher conversion. NMBB was also treated with sulfur alone in the absence of catalysts in concentrations of 1.2 to 3.4 wt, corresponding to conditions present in catalytic runs with added sulfur to precursors. It was found that increasing sulfur concentrations lead to higher NMBB conversion. Furthermore, sulfur had a permanent influence on the reactor walls. It reacted with the transition metals in the stainless steel to form a microscopic black iron sulfide layer on the surface, which could not be removed mechanically. The {open_quotes}non-catalytic{close_quotes} runs which were done after experiments with added sulfur yielded higher conversions than normal runs done in new reactors. This {open_quotes}wall catalytic effect{close_quotes} can be reduced by treating sulfided reactors with hydrochloric acid for a short period of time and subsequent immersing into a base bath overnight. These results demonstrate the significant influence of sulfur addition and S-induced residual wall-effect on C-C bond cleavage and hydrogenation of aromatics in batch reactors.

  4. Influence of sulfur addition and S-induced wall catalytic effect on C-C bond cleavage and aromatics hydrogenation

    SciTech Connect

    Schmidt, E.; Song, C.; Schobert, H.H.

    1995-12-31

    Catalytic hydrocracking of 4-(-1-naphthylmethyl)bibenzyl NMBB predominately yielded naphthalene and 4-methylbibenzyl. Sulfur addition to most catalyst precursors lead to substantially higher catalyst activity and subsequently higher conversion. In order to clarify the effect of sulfur alone on model compound conversion, NMBB was treated with sulfur in concentrations of 1.2 to 3.4 wt%, corresponding to conditions present in catalytic runs with sulfur. It was found that increasing sulfur concentrations leads to higher NMBB conversion. Furthermore, sulfur had a permanent influence on the reactor walls. It reacted with the transition metals in the steel to form a microscopic black iron sulfide layer on the surface, which could not be removed mechanically. The {open_quotes}non catalytic{close_quotes} runs after experiments with added sulfur yielded higher conversion than normal runs with new reactors. This {open_quotes}wall catalytic effect{close_quotes} can be reduced by treating sulfided reactors with hydrochloric acid for a short period of time and subsequent immersing into a base bath over night. These results demonstrate the significant influence of sulfur addition and S-induced residual wall-effect on C-C bond cleavage and hydrogenation of aromatics in batch reactors.

  5. Total synthesis of bryostatin 7 via C-C bond-forming hydrogenation.

    PubMed

    Lu, Yu; Woo, Sang Kook; Krische, Michael J

    2011-09-07

    The marine macrolide bryostatin 7 is prepared in 20 steps (longest linear sequence) and 36 total steps with five C-C bonds formed using hydrogenative methods. This approach represents the most concise synthesis of any bryostatin reported, to date.

  6. Formation of C-C bonds via ruthenium-catalyzed transfer hydrogenation().

    PubMed

    Moran, Joseph; Krische, Michael J

    2012-01-01

    Ruthenium-catalyzed transfer hydrogenation of diverse π-unsaturated reactants in the presence of aldehydes provides products of carbonyl addition. Dehydrogenation of primary alcohols in the presence of the same π-unsaturated reactants provides identical products of carbonyl addition. In this way, carbonyl addition is achieved from the alcohol or aldehyde oxidation level in the absence of stoichiometric organometallic reagents or metallic reductants. In this account, the discovery of ruthenium-catalyzed C-C bond-forming transfer hydrogenations and the recent development of diastereo- and enantioselective variants are discussed.

  7. C-C Bond Activation and Coupling of Propene Induced by la Atom

    NASA Astrophysics Data System (ADS)

    Hewage, Dilrukshi; Tao, Hong; Silva, Ruchira; Kumari, Sudesh; Yang, Dong-Sheng

    2013-06-01

    A series of La(C_nH_m) complexes with n ≤ 6 and m ≤ 12 were produced by the reactions between propene and La in a supersonic molecular beam source. Their formation and structures were investigated using mass-analyzed threshold ionization (MATI) spectroscopy in combination with theoretical calculations. Previously, we identified the formation of La(C_3H_4) and H-La(C_3H_5) through dehydrogenation and metal insertion mechanisms. In this work, we will discuss the formation of La(CH_2) and La(C_4H_6) by La induced C-C bond activation and coupling. La(CH_2) is formed by the C-C bond breakage and 1,2-hydride shift of propene and is a Schrock-type carbene complex. This complex is then coupled with the C=C bond of a second propene molecule to form La(C_4H_6) by removing two hydrogen atoms. The resultant La(C_4H_6) complex was idetified in two low-energy isomeric forms: one was a metallacycle (isomer A) and the other was lanthanum trimethylenemethane (isomer B). Both La(C_4H_6) isomers are in a doublet ground state, with isomer A in C_s point group and isomer B in C_3_v. Adiabatic ionization energies and several vibrational frequencies of the two complexes were obtained from the sharp MATI spectra.

  8. Enantioselective Allylation, Crotylation and Reverse Prenylation of Substituted Isatins via Iridium Catalyzed C-C Bond Forming Transfer Hydrogenation**

    PubMed Central

    Itoh, Junji; Han, Soo Bong; Krische, Michael J.

    2010-01-01

    Oxindoles with a Twist Transfer hydrogenation of substituted isatins in the presence of allyl acetate, α-methyl allyl acetate or 1,1,-dimethylallene employing an ortho-cyclometallated iridium catalyst modified by CTH-(R)-P-PHOS provides products of carbonyl allylation, crotylation and reverse prenylation, respectively, in highly enantiomerically enriched form. These studies represent the first use of activated ketones as electrophilic partners in asymmetric C-C bond forming transfer hydrogenation. PMID:19606435

  9. Formation of C-C Bonds via Ruthenium Catalyzed Transfer Hydrogenation: Carbonyl Addition from the Alcohol or Aldehyde Oxidation Level.

    PubMed

    Shibahara, Fumitoshi; Krische, Michael J

    2008-01-01

    Under the conditions of ruthenium catalyzed transfer hydrogenation employing isopropanol as terminal reductant, π-unsaturated compounds (1,3-dienes, allenes, 1,3-enynes and alkynes) reductively couple to aldehydes to furnish products of carbonyl addition. In the absence of isopropanol, π-unsaturated compounds couple directly from the alcohol oxidation level to form identical products of carbonyl addition. Such "alcohol-unsaturate C-C couplings" enable carbonyl allylation, propargylation and vinylation from the alcohol oxidation level in the absence of stoichiometric organometallic reagents or metallic reductants. Thus, direct catalytic C-H functionalization of alcohols at the carbinol carbon is achieved.

  10. Mechanistic Insights on C-O and C-C Bond Activation and Hydrogen Insertion during Acetic Acid Hydrogenation Catalyzed by Ruthenium Clusters in Aqueous Medium

    SciTech Connect

    Shangguan, Junnan; Olarte, Mariefel V.; Chin, Ya-Huei

    2016-06-07

    Catalytic pathways for acetic acid (CH3COOH) and hydrogen (H2) reactions on dispersed Ru clusters in the aqueous medium and the associated kinetic requirements for C-O and C-C bond cleavages and hydrogen insertion are established from rate and isotopic assessments. CH3COOH reacts with H2 in steps that either retain its carbon backbone and lead to ethanol, ethyl acetate, and ethane (47-95 %, 1-23 %, and 2-17 % carbon selectivities, respectively) or break its C-C bond and form methane (1-43 % carbon selectivities) at moderate temperatures (413-523 K) and H2 pressures (10-60 bar, 298 K). Initial CH3COOH activation is the kinetically relevant step, during which CH3C(O)-OH bond cleaves on a metal site pair at Ru cluster surfaces nearly saturated with adsorbed hydroxyl (OH*) and acetate (CH3COO*) intermediates, forming an adsorbed acetyl (CH3CO*) and hydroxyl (OH*) species. Acetic acid turnover rates increase proportionally with both H2 (10-60 bar) and CH3COOH concentrations at low CH3COOH concentrations (<0.83 M), but decrease from first to zero order as the CH3COOH concentration and the CH3COO* coverages increase and the vacant Ru sites concomitantly decrease. Beyond the initial CH3C(O)-OH bond activation, sequential H-insertions on the surface acetyl species (CH3CO*) lead to C2 products and their derivative (ethanol, ethane, and ethyl acetate) and the competitive C-C bond cleavage of CH3CO* causes the eventual methane formation. The instantaneous carbon selectivities towards C2 species (ethanol, ethane, and ethyl acetate) increase linearly with the concentration of proton-type Hδ+ (derived from carboxylic acid dissociation) and chemisorbed H*. The selectivities towards C2 products decrease with increasing temperature, because of higher observed barriers for C-C bond cleavage than H-insertion. This study offers an interpretation of mechanism and energetics and provides kinetic evidence of carboxylic acid assisted proton-type hydrogen (Hδ+) shuffling during H

  11. Hydrogen Induced C-C, C-N, & C-S Bond Activation on Pt & Ni Surfaces

    SciTech Connect

    Gland, J. L.

    2004-07-29

    The primary reactions investigated were chosen based on their importance in fuel and chemical production as well as in environmental remediation, and include reactions for hydrodesulfurization (HDS), hydrodenitrogenation (HDN), carbon-carbon hydrogenolysis, and hydrocarbon oxidation.

  12. [Hydrogen induced C-C, C-N, and C-S bond activities on Pi and Ni surfaces]: Summary

    SciTech Connect

    Gland, J.L.

    1994-12-31

    This document summarizes research applied to chemical bond activation studies. Topics summarized include: Carbon nitrogen bonds experimentation with aniline on Ni(111), Mi(100), and Pt(111) surfaces; carbon sulfur bonds experimentation with methanethiol, phenylthiol, and dimethyl disulfide on Pt(111) and Ni(111) surfaces; carbon-carbon bonds experimentation on Ni(100), Ni(111) and Pt(111) surfaces; and in-situ fluorescence yield near edge spectroscopy.

  13. Scope and Mechanisms of Frustrated Lewis Pair Catalyzed Hydrogenation Reactions of Electron-Deficient C=C Double Bonds.

    PubMed

    Morozova, Varvara; Mayer, Peter; Berionni, Guillaume

    2015-11-23

    Several phosphonium and ammonium triarylborohydrides, which are intermediates in hydrogenation reactions catalyzed by frustrated Lewis pairs, were synthesized in high yield under mild conditions from triaryl boranes, ammonium or phosphonium halides, and triethylsilane. The kinetics and mechanisms of the reactions of these hydridoborate salts with benzhydrylium ions, iminium ions, quinone methides, and Michael acceptors were investigated, and their nucleophilicity was determined and compared with that of other hydride donors.

  14. Osmium(0)-Catalyzed C-C Coupling of Ethylene and α-Olefins with Diols, Ketols, or Hydroxy Esters via Transfer Hydrogenation.

    PubMed

    Park, Boyoung Y; Luong, Tom; Sato, Hiroki; Krische, Michael J

    2016-09-16

    Osmium(0) complexes derived from Os3(CO)12 and XPhos (2-dicyclohexylphosphino-2',4',6'-triisopropylbiphenyl) catalyze the C-C coupling of α-hydroxy esters 1a-1i, α-ketols 1j-1o, or 1,2-diols dihydro-1j-1o with ethylene 2a to form ethylated tertiary alcohols 3a-3o. As illustrated in couplings of 1-octene 2b with vicinally dioxygenated reactants 1a, 1b, 1i, 1j, 1k, 1m, higher α-olefins are converted to adducts 4a, 4b, 4i, 4j, 4k, 4m with complete levels of branched regioselectivity. Oxidation level independent C-C coupling is demonstrated by the reaction of 1-octene 2b with diol dihydro-1k, α-ketol 1k, and dione dehydro-1k. Functionalized olefins 2c-2f react with ethyl mandelate 1a to furnish adducts 5a-8a as single regioisomers. The collective data, including deuterium labeling studies, are consistent with a catalytic mechanism involving olefin-dione oxidative coupling to form an oxa-osmacyclopentane, which upon reductive cleavage via hydrogen transfer from the secondary alcohol reactant releases the product of carbinol C-alkylation with regeneration of the ketone. Single-crystal X-ray diffraction data of the dinuclear complex Os2(CO)4(O2CR)2(XPhos)2 and the trinuclear complex Os3(CO)11(XPhos) are reported. These studies suggest increased π-backbonding at the stage of the metal-olefin π-complex plays a critical role in facilitating alkene-carbonyl oxidative coupling, as isostructural ruthenium(0) complexes, which are weaker π-donors, do not catalyze the transformations reported herein.

  15. Surfactant-induced hydrogen production in cyanobacteria

    SciTech Connect

    Famiglietti, M.; Luisi, P.L. ); Hochkoeppler, A. . Dept. di Biologia)

    1993-10-01

    Addition of Tween 85 to aqueous suspensions of Anabaena variabilis induced photosynthetic evolution of hydrogen over a time span of several weeks: as much as 148 nmol H[sub 2]/h [center dot] mg dry weight was produced in the first week by a suspension containing 4.2 mg dry weight of cells and 77 mM Tween 85. The chemical structure of Tween 85 was a necessary prerequisite for inducing hydrogen production, as compounds such as Tween 20, 60, and 80 had a quite different effect. There was a coupling between photosynthetic oxygen evolution and hydrogen evolution: Hydrogen evolution started to be effective only when oxygen evolution subdued. The presence of heterocysts in A. variabilis was also required for the Tween-induced hydrogen production. Based on these observations, possible mechanisms for the photosynthetic effect of Tween 85 are advanced and discussed.

  16. Surfactant-Induced hydrogen production in cyanobacteria.

    PubMed

    Famiglietti, M; Hochkoeppler, A; Luisi, P L

    1993-10-01

    Addition of Tween 85 to aqueous suspensions of Anabaena variabilis induced photosynthetic evolution of hydrogen over a time span of several weeks: As much as 148 nmol H(2)/h . mg dry weight was produced in the first week by a suspension containing 4.2 mg dry weight of cells and 77 mM Tween 85. The chemical structure of Tween 85 was a necessary prerequisite for inducing hydrogen production, as compounds such as Tween 20, 60, and 80 had a quite different effect. There was a coupling between photosynthetic oxygen evolution and hydrogen evolution: Hydrogen evolution started to be effective only when oxygen evolution subdued. The presence of heterocysts in A. variabilis was also required for the Tween-induced hydrogen production. Based on these observations, possible mechanisms for the photosynthetic effect of Tween 85 are advanced and discussed. (c) 1993 John Wiley & Sons, Inc.

  17. Cryogenic hydrogen-induced air liquefaction technologies

    NASA Technical Reports Server (NTRS)

    Escher, William J. D.

    1990-01-01

    Extensively utilizing a special advanced airbreathing propulsion archives database, as well as direct contacts with individuals who were active in the field in previous years, a technical assessment of cryogenic hydrogen-induced air liquefaction, as a prospective onboard aerospace vehicle process, was performed and documented. The resulting assessment report is summarized. Technical findings are presented relating the status of air liquefaction technology, both as a singular technical area, and also that of a cluster of collateral technical areas including: compact lightweight cryogenic heat exchangers; heat exchanger atmospheric constituents fouling alleviation; para/ortho hydrogen shift conversion catalysts; hydrogen turbine expanders, cryogenic air compressors and liquid air pumps; hydrogen recycling using slush hydrogen as heat sink; liquid hydrogen/liquid air rocket-type combustion devices; air collection and enrichment systems (ACES); and technically related engine concepts.

  18. Cryogenic hydrogen-induced air liquefaction technologies

    NASA Technical Reports Server (NTRS)

    Escher, William J. D.

    1990-01-01

    Extensively utilizing a special advanced airbreathing propulsion archives database, as well as direct contacts with individuals who were active in the field in previous years, a technical assessment of cryogenic hydrogen-induced air liquefaction, as a prospective onboard aerospace vehicle process, was performed and documented. The resulting assessment report is summarized. Technical findings are presented relating the status of air liquefaction technology, both as a singular technical area, and also that of a cluster of collateral technical areas including: compact lightweight cryogenic heat exchangers; heat exchanger atmospheric constituents fouling alleviation; para/ortho hydrogen shift conversion catalysts; hydrogen turbine expanders, cryogenic air compressors and liquid air pumps; hydrogen recycling using slush hydrogen as heat sink; liquid hydrogen/liquid air rocket-type combustion devices; air collection and enrichment systems (ACES); and technically related engine concepts.

  19. Hydrogen evolution from aliphatic alcohols and 1,4-selective hydrogenation of NAD+ catalyzed by a [C,N] and a [C,C] cyclometalated organoiridium complex at room temperature in water.

    PubMed

    Maenaka, Yuta; Suenobu, Tomoyoshi; Fukuzumi, Shunichi

    2012-06-06

    A [C,N] cyclometalated Ir complex, [Ir(III)(Cp*)(4-(1H-pyrazol-1-yl-κN(2))benzoic acid-κC(3))(H(2)O)](2)SO(4) [1](2)·SO(4), was reduced by aliphatic alcohols to produce the corresponding hydride complex [Ir(III)(Cp*)(4-(1H-pyrazol-1-yl-κN(2))-benzoate-κC(3))H](-)4 at room temperature in a basic aqueous solution (pH 13.6). Formation of the hydride complex 4 was confirmed by (1)H and (13)C NMR, ESI MS, and UV-vis spectra. The [C,N] cyclometalated Ir-hydride complex 4 reacts with proton to generate a stoichiometric amount of hydrogen when the pH was decreased to pH 0.8 by the addition of diluted sulfuric acid. Photoirradiation (λ > 330 nm) of an aqueous solution of the [C,N] cyclometalated Ir-hydride complex 4 resulted in the quantitative conversion to a unique [C,C] cyclometalated Ir-hydride complex 5 with no byproduct. The complex 5 catalyzed hydrogen evolution from ethanol in a basic aqueous solution (pH 11.9) under ambient conditions. The 1,4-selective catalytic hydrogenation of β-nicotinamide adenine dinucleotide (NAD(+)) by ethanol was also made possible by the complex 1 to produce 1,4-dihydro-β-nicotinamide adenine dinucleotide (1,4-NADH) at room temperature. The overall catalytic mechanism of hydrogenation of NAD(+), accompanied by the oxidation of ethanol, was revealed on the basis of the kinetic analysis and detection of the reaction intermediates.

  20. Hydrogen-induced cracking of drip shield

    SciTech Connect

    Lu, S C

    1999-08-01

    A simple and conservative model has been developed to evaluate the effects of hydrogen-induced cracking on the drip shield. The basic premise of the model is that failure will occur once the hydrogen content exceeds a certain limit or critical value, HC. This model is very conservative because it assumes that, once the environmental and material conditions can support that particular corrosion process, failure will be effectively instantaneous. In the description of the HIC model presented in Section 6.1, extensive evidence has been provided to support a qualitative assessment of Ti-7 as an excellent choice of material for the drip shield with regard to degradation caused by hydrogen-induced cracking. LTCTF test data observed at LLNL, although unqualified, provides additional indication beyond a qualitative level that hydrogen concentration appears to be low in titanium materials. Quantitative evaluation based on the HIC model described in Section 6.1 indicates that the hydrogen concentration does not exceed the critical value. It is concluded that drip shield material (Ti-7) is able to sustain the effects of hydrogen-induced cracking.

  1. Fatigue-induced Orosomucoid 1 Acts on C-C Chemokine Receptor Type 5 to Enhance Muscle Endurance

    PubMed Central

    Lei, Hong; Sun, Yang; Luo, Zhumin; Yourek, Gregory; Gui, Huan; Yang, Yili; Su, Ding-Feng; Liu, Xia

    2016-01-01

    Understanding and managing fatigue is a significant challenge in clinic and society. In attempting to explore how the body responds to and regulates fatigue, we found in rodent fatigue models that orosomucoid 1 (ORM1) was significantly increased in multiple tissues, including blood and muscle. Interestingly, administration of exogenous ORM1 increased muscle glycogen and enhanced muscle endurance, whereas ORM1 deficiency resulted in a significant decrease of muscle endurance both in vivo and in vitro, which could largely be restored by exogenous ORM1. Further studies demonstrated that ORM1 can bind to C-C chemokine receptor type 5 (CCR5) on muscle cells and deletion of the receptor abolished the effect of ORM1. Thus, fatigue upregulates the level of ORM1, which in turn functions as an anti-fatigue protein to enhance muscle endurance via the CCR5 pathway. Modulation of the level of ORM1 and CCR5 signaling could be a novel strategy for the management of fatigue. PMID:26740279

  2. Thermally induced evolution of hydrogenated amorphous carbon

    NASA Astrophysics Data System (ADS)

    Mangolini, Filippo; Rose, Franck; Hilbert, James; Carpick, Robert W.

    2013-10-01

    The thermally induced structural evolution of hydrogenated amorphous carbon (a-C:H) films was investigated in situ by X-ray photoelectron spectroscopy for annealing temperatures up to 500 °C. A model for the conversion of sp3- to sp2-hybridized carbon in a-C:H vs. temperature and time was developed and applied to determine the ranges of activation energies for the thermally activated processes occurring. The energies are consistent with ordering and clustering of sp2 carbon, scission of sp3 carbon-hydrogen bonds and formation of sp2 carbon, and direct transformation of sp3- to sp2-hybridized carbon.

  3. Hydrogen sulfide induces calcium waves in astrocytes.

    PubMed

    Nagai, Yasuo; Tsugane, Mamiko; Oka, Jun-Ichiro; Kimura, Hideo

    2004-03-01

    Hydrogen sulfide (H2S) modifies hippocampal long-term potentiation (LTP) and functions as a neuromodulator. Here, we show that H2S increases intracellular Ca2+ and induces Ca2+ waves in primary cultures of astrocytes as well as hippocampal slices. H2S increases the influx of Ca2+ and to a lesser extent causes the release from intracellular Ca2+ stores. Ca2+ waves induced by neuronal excitation as well as responses to exogenously applied H2S are potently blocked by La3+ and Gd3+, inhibitors of Ca2+ channels. These observations suggest that H2S induces Ca2+ waves that propagate to neighboring astrocytes.

  4. Hydrogenation-induced ferromagnetism on graphite surfaces

    NASA Astrophysics Data System (ADS)

    Moaied, Mohammed; Alvarez, J. V.; Palacios, J. J.

    2014-09-01

    We calculate the electronic structure and magnetic properties of hydrogenated graphite surfaces using van der Waals density functional theory (DFT) and model Hamiltonians. We find, as previously reported, that the interaction between hydrogen atoms on graphene favors adsorption on different sublattices along with an antiferromagnetic coupling of the induced magnetic moments. On the contrary, when hydrogenation takes place on the surface of graphene multilayers or graphite (Bernal stacking), the interaction between hydrogen atoms competes with the different adsorption energies of the two sublattices. This competition may result in all hydrogen atoms adsorbed on the same sublattice and, thereby, in a ferromagnetic state for low concentrations. Based on the exchange couplings obtained from the DFT calculations, we have also evaluated the Curie temperature by mapping this system onto an Ising-like model with randomly located spins. Remarkably, the long-range nature of the magnetic coupling in these systems makes the Curie temperature size dependent and larger than room temperature for typical concentrations and sizes.

  5. CO hydrogenation, deoxygenation, and C-C coupling promoted by ((silox)/sub 2/TaH/sub 2/)/sub 2/

    SciTech Connect

    Toreki, R.; LaPointe, R.E.; Wolczanski, P.T.

    1987-11-25

    The Fischer-Tropsch (F-T) reaction considered a potential solution to future energy concerns, has commanded the attention of researchers in both heterogeneous and homogeneous catalysis for the past 15 years. The most widely accepted mechanism for this conversion of synthesis gas (CO/H/sub 2/) to hydrocarbons and oxygenates incorporates three crucial steps: (1) CO is deoxygenated, presumably via dissociative adsorption; (2) H-transfer to surface carbides or CO/sub ads/ produces surface methylene groups, (3) C-C bond formation occurs through oligomerization of (CH/sub 2/)/sub ads/. Various organometallic species model the individual steps, yet fall short of corroborating the entire sequence. Reported herein is the carbonylation of ((silox)/sub 2/TaH/sub 2/)/sub 2/ (silox = t-Bu/sub 3/SiO/sup -/) and successive reactions which encompass the critical transformations of the F-T pathway.

  6. Diene Hydroacylation from the Alcohol or Aldehyde Oxidation Level via Ruthenium Catalyzed C-C Bond Forming Transfer Hydrogenation: Synthesis of β,γ-Unsaturated Ketones

    PubMed Central

    Shibahara, Fumitoshi; Bower, John F.; Krische, Michael J.

    2011-01-01

    Under the conditions of ruthenium catalyzed transfer hydrogenation, isoprene couples to benzylic and aliphatic alcohols 1a–1g to deliver β,γ-unsaturated ketones 3a–3g in good to excellent isolated yields. Under identical conditions, aldehydes 2a–2g couple to isoprene to provide an identical set of β,γ-unsaturated ketones 3a–3g in good to excellent isolated yields. As demonstrated by the coupling of butadiene, myrcene and 1,2-dimethylbutadiene to representative alcohols 1b, 1c and 1e, diverse acyclic dienes participate in transfer hydrogenative coupling to form β,γ-unsaturated ketones. In all cases, complete branch-regioselectivity is observed and, with the exception of adduct 3j, isomerization to the conjugated enone is not detected. Thus, formal intermolecular diene hydroacylation is achieved from the alcohol or aldehyde oxidation level. In earlier studies employing a related ruthenium catalyst, acyclic dienes were coupled to carbonyl partners from the alcohol or aldehyde oxidation level to furnish branched homoallylic alcohols. Thus, under transfer hydrogenative coupling conditions, all oxidations levels of substrate (alcohol or aldehyde) and product (homoallyl alcohol or β,γ-unsaturated ketone) are accessible. PMID:18841895

  7. Light-induced hydrogen evolution from hydrogenated amorphous silicon: Hydrogen diffusion by formation of bond centered hydrogen

    NASA Astrophysics Data System (ADS)

    Tanimoto, H.; Arai, H.; Mizubayashi, H.; Yamanaka, M.; Sakata, I.

    2014-02-01

    The light-induced hydrogen evolution (LIHE) from amorphous (a-) Si:H by the order of at. % is observed during white light soaking (WLS) of 100-400 mW/cm2 at 350-500 K or ultra violet light soaking (UVLS) of 30-120 mW/cm2 at 305-320 K in a vacuum. The thermal desorption spectroscopy indicates that LIHE originated from bonded hydrogen takes place through the diffusion of light-induced mobile hydrogen (LIMH) with the activation energy of 0.5 eV. LIMH is assigned to bond centered hydrogen and the hydrogen diffusion process becomes prominent when LIMH can leave from a-Si:H such under light soaking in a vacuum above room temperature. For H2 in microvoids, the hydrogen evolution rate is governed by the surface barrier and its activation energy of 1.0 eV in dark decreases to 0.4 eV under WLS or UVLS.

  8. Hydrogen Induced Damage in Pipeline Steels

    NASA Astrophysics Data System (ADS)

    Angus, Garrett R.

    The hydrogen induced cracking (HIC) resistance of several grades of plate steels was investigated using electrolytic hydrogen charging. HIC generated by electrolytic charging was also compared to the industrial standard test for HIC, the NACE standard TM0284. The electrolytic charging (EC) apparatus was designed to optimize the reproducibility of the HIC results and the robustness of the components during long charging times. A characterization study on the EC apparatus was undertaken. Alterations to applied current density and charging time were conducted on a highly susceptible plate steel, 100XF, to assess HIC damage as a function of charging conditions. Intermediate current densities of 10 to 15 mA/cm2 produced the greatest extent of cracking without significant corrosion related surface damage. The hydrogen charging time did not greatly affect the extent and depth of cracking for test times between 24 to 48 hours. Thus, for subsequent experiments, the applied current density was set to 15 mA/cm2 and the charging time was set to 24 hours. Plate steel grades X52, X60, X70, and 100XF were prestrained in tension to various levels and then electrolytically charged with hydrogen or tested with the NACE standard TM0284 test (solution A) saturated with H2S(g) to induce HIC. Prestrain was introduced to assess its impact on HIC. Hydrogen damage was quantified with the crack ratios defined in the NACE Standard TM0284. The results from the EC and NACE methods were very comparable to one, with respect to the magnitude of cracking and the trends between alloy and pre-strain conditions observed. Both methods showed that HIC substantially increased for the high strength 100XF steel compared to the lower strength alloys. This is consistent with NACE recommendations for HIC resistance steels, which suggests that alloy strength should be less than 116 ksi (800 MPa) or 248 HV (22 HRC). The HIC results were largely independent of the pre-strain levels imposed within the

  9. Multifaceted coordination of naphthyridine-functionalized N-heterocyclic carbene: a novel "Ir(III)(C--N)(C--C)" compound and its evaluation as transfer hydrogenation catalyst.

    PubMed

    Sinha, Arup; Rahaman, S M Wahidur; Sarkar, Mithun; Saha, Biswajit; Daw, Prosenjit; Bera, Jitendra K

    2009-12-07

    The 1,8-naphthyridine-functionalized N-heterocyclic carbene 1-benzyl-3-(5,7-dimethyl-1,8-naphthyrid-2-yl)imidazol-2-ylidene (BIN) has been successfully coordinated to Pd(II), W(0), Rh(I), and Ir(III), exhibiting its diverse binding modes. Reaction of BIN x HBr with Ag(2)O, followed by transmetalation with PdCl(2)(COD)(2) provides a cis complex PdCl(2)(kappaC(2)-BIN)(2) (1). Treatment of BIN x HBr with W(CO)(4)(piperidine)(2) in acetonitrile affords a chelate complex W(CO)(4)(kappa(2)C(2),N(1)'-BIN) (2). Reaction of {RhCl(COD)}(2) with KO(t)Bu and subsequent treatment with BIN x HBr in 1:2 and 1:1 ratio results in the mono and dinuclear complexes [Rh(COD)Br(kappaC(2)-BIN)] (3) and [{Rh(COD)Br}(2)(kappaN(8)':kappaC(2)-BIN)] (4), respectively. In complex 3, the "Rh(COD)Br" unit is coordinated to the carbene center, whereas an additional "Rh(COD)Br" unit is attached to naphthyridine nitrogen in complex 4 in an anti arrangement. Under identical reaction condition, a novel Ir(III) complex [Ir(kappa(2)C(2),N(1)'-BIN)(kappa(2)C(3)',C(2)-BIN)(H(2)O)Br]Br (5) has been synthesized. Complex 5 is proved to be catalytically active in hydrogen transfer reaction from (i)PrOH. All complexes have been characterized by spectroscopic methods and X-ray crystallography.

  10. Hydrogen-Induced Cracking of the Drip Shield

    SciTech Connect

    F. Hua

    2004-09-07

    Hydrogen-induced cracking is characterized by the decreased ductility and fracture toughness of a material due to the absorption of atomic hydrogen in the metal crystal lattice. Corrosion is the source of hydrogen generation. For the current design of the engineered barrier without backfill, hydrogen-induced cracking may be a concern because the titanium drip shield can be galvanically coupled to rock bolts (or wire mesh), which may fall onto the drip shield, thereby creating conditions for hydrogen production by electrochemical reaction. The purpose of this report is to analyze whether the drip shield will fail by hydrogen-induced cracking under repository conditions within 10,000 years after emplacement. Hydrogen-induced cracking is a scenario of premature failure of the drip shield. This report develops a realistic model to assess the form of hydrogen-induced cracking degradation of the drip shield under the hydrogen-induced cracking. The scope of this work covers the evaluation of hydrogen absorbed due to general corrosion and galvanic coupling to less noble metals (e.g., Stainless Steel Type 316 and carbon steels) under the repository conditions during the 10,000-year regulatory period after emplacement and whether the absorbed hydrogen content will exceed the critical hydrogen concentration value, above which the hydrogen-induced cracking is assumed to occur. This report also provides the basis for excluding the features, events, and processes (FEPs) related to hydrogen-induced cracking of the drip shield with particular emphasis on FEP 2.1.03.04.OB, hydride cracking of drip shields (DTN: M00407SEPFEPLA.000 [DIRS 170760]). This report is prepared according to ''Technical Work Plan (TWP) for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 169944]).

  11. Urinary chemokine (C-C motif) ligand 2 (monocyte chemotactic protein-1) as a tubular injury marker for early detection of cisplatin-induced nephrotoxicity.

    PubMed

    Nishihara, Kumiko; Masuda, Satohiro; Shinke, Haruka; Ozawa, Aiko; Ichimura, Takaharu; Yonezawa, Atsushi; Nakagawa, Shunsaku; Inui, Ken-Ichi; Bonventre, Joseph V; Matsubara, Kazuo

    2013-02-15

    Because of the difficulty in detecting segment-specific response in the kidney, we investigated the molecular events underlying acute kidney injury in the proximal tubules of rats with cisplatin (cis-diamminedichloroplatinum II)-induced nephrotoxicity. Microarray analysis revealed that mRNA levels of several cytokines and chemokines, such as interleukin-1beta, chemokine (C-C motif) ligand (CCL) 2, CCL20, chemokine (C-X-C motif) ligand (CXCL) 1, and CXCL10 were significantly increased after cisplatin treatment in both isolated proximal tubules and whole kidney. Interestingly, tubular CCL2 mRNA levels increased soon after cisplatin administration, whereas CCL2 mRNA levels in whole kidney first decreased and then increased. Levels of both CCL2 and kidney injury molecule-1 (KIM-1) in the whole kidney increased after cisplatin administration. Immunofluorescence analysis revealed CCL2 changes in the proximal tubular cells initially and then in the medullary interstitium. Urinary CCL2 excretion significantly increased approximately 3-fold compared with controls the day after cisplatin administration (5mg/kg), when no changes were observed plasma creatinine and blood urea nitrogen levels. Urinary levels of KIM-1 also increased 3-fold after cisplatin administration. In addition, urinary CCL2 rather than KIM-1 increased in chronic renal failure rats after administration of low-dose cisplatin (2mg/kg), suggesting that urinary CCL2 was selective for cisplatin-induced nephrotoxicity in renal impairment. These results indicated that the increase in cytokine and chemokine expression in renal epithelial cells might be responsible for kidney deterioration in cisplatin-induced nephrotoxicity, and that urinary CCL2 is associated with tubular injury and serves as a sensitive and noninvasive marker for the early detection of cisplatin-induced tubular injury.

  12. Synthesis of seco-B-ring bryostatin analogue WN-1 via C-C bond-forming hydrogenation: critical contribution of the B-ring in determining bryostatin-like and phorbol 12-myristate 13-acetate-like properties.

    PubMed

    Andrews, Ian P; Ketcham, John M; Blumberg, Peter M; Kedei, Noemi; Lewin, Nancy E; Peach, Megan L; Krische, Michael J

    2014-09-24

    The seco-B-ring bryostatin analogue, macrodiolide WN-1, was prepared in 17 steps (longest linear sequence) and 30 total steps with three bonds formed via hydrogen-mediated C-C coupling. This synthetic route features a palladium-catalyzed alkoxycarbonylation of a C2-symmetric diol to form the C9-deoxygenated bryostatin A-ring. WN-1 binds to PKCα (Ki = 16.1 nM) and inhibits the growth of multiple leukemia cell lines. Although structural features of the WN-1 A-ring and C-ring are shared by analogues that display bryostatin-like behavior, WN-1 displays PMA-like behavior in U937 cell attachment and proliferation assays, as well as in K562 and MV-4-11 proliferation assays. Molecular modeling studies suggest the pattern of internal hydrogen bonds evident in bryostatin 1 is preserved in WN-1, and that upon docking WN-1 into the crystal structure of the C1b domain of PKCδ, the binding mode of bryostatin 1 is reproduced. The collective data emphasize the critical contribution of the B-ring to the function of the upper portion of the molecule in conferring a bryostatin-like pattern of biological activity.

  13. Time domain para hydrogen induced polarization.

    PubMed

    Ratajczyk, Tomasz; Gutmann, Torsten; Dillenberger, Sonja; Abdulhussaein, Safaa; Frydel, Jaroslaw; Breitzke, Hergen; Bommerich, Ute; Trantzschel, Thomas; Bernarding, Johannes; Magusin, Pieter C M M; Buntkowsky, Gerd

    2012-01-01

    Para hydrogen induced polarization (PHIP) is a powerful hyperpolarization technique, which increases the NMR sensitivity by several orders of magnitude. However the hyperpolarized signal is created as an anti-phase signal, which necessitates high magnetic field homogeneity and spectral resolution in the conventional PHIP schemes. This hampers the application of PHIP enhancement in many fields, as for example in food science, materials science or MRI, where low B(0)-fields or low B(0)-homogeneity do decrease spectral resolution, leading to potential extinction if in-phase and anti-phase hyperpolarization signals cannot be resolved. Herein, we demonstrate that the echo sequence (45°-τ-180°-τ) enables the acquisition of low resolution PHIP enhanced liquid state NMR signals of phenylpropiolic acid derivatives and phenylacetylene at a low cost low-resolution 0.54 T spectrometer. As low field TD-spectrometers are commonly used in industry or biomedicine for the relaxometry of oil-water mixtures, food, nano-particles, or other systems, we compare two variants of para-hydrogen induced polarization with data-evaluation in the time domain (TD-PHIP). In both TD-ALTADENA and the TD-PASADENA strong spin echoes could be detected under conditions when usually no anti-phase signals can be measured due to the lack of resolution. The results suggest that the time-domain detection of PHIP-enhanced signals opens up new application areas for low-field PHIP-hyperpolarization, such as non-invasive compound detection or new contrast agents and biomarkers in low-field Magnetic Resonance Imaging (MRI). Finally, solid-state NMR calculations are presented, which show that the solid echo (90y-τ-90x-τ) version of the TD-ALTADENA experiment is able to convert up to 10% of the PHIP signal into visible magnetization.

  14. Cerebrospinal Fluid Chemokine (C-C Motif) Ligand 2 Is an Early-Response Biomarker for Blast-Overpressure-Wave-Induced Neurotrauma in Rats.

    PubMed

    Wang, Ying; Wei, Yanling; Oguntayo, Samuel; Wilder, Donna; Tong, Lawrence; Su, Yan; Gist, Irene; Arun, Peethambaran; Long, Joseph B

    2017-02-15

    Chemokines and their receptors are of great interest within the milieu of immune responses elicited in the central nervous system in response to trauma. Chemokine (C-C motif)) ligand 2 (CCL2), which is also known as monocyte chemotactic protein-1, has been implicated in the pathogenesis of traumatic brain injury (TBI), brain ischemia, Alzheimer's disease, and other neurodegenerative diseases. In this study, we investigated the time course of CCL2 accumulation in cerebrospinal fluid (CSF) after exposures to single and repeated blast overpressures of varied intensities along with the neuropathological changes and motor deficits resulting from these blast conditions. Significantly increased concentrations of CCL2 in CSF were evident by 1 h of blast exposure and persisted over 24 h with peak levels measured at 6 h post-injury. The increased levels of CCL2 in CSF corresponded with both the number and intensities of blast overpressure and were also commensurate with the extent of neuromotor impairment and neuropathological abnormalities resulting from these exposures. CCL2 levels in CSF and plasma were tightly correlated with levels of CCL2 messenger RNA in cerebellum, the brain region most consistently neuropathologically disrupted by blast. In view of the roles of CCL2 that have been implicated in multiple neurodegenerative disorders, it is likely that the sustained high levels of CCL2 and the increased expression of its main receptor, CCR2, in the brain after blast may similarly contribute to neurodegenerative processes after blast exposure. In addition, the markedly elevated concentration of CCL2 in CSF might be a candidate early-response biomarker for diagnosis and prognosis of blast-induced TBI.

  15. X-ray Crystal Structure of a Metalled Double-Helix Generated by Infinite and Consecutive C*-Ag(I) -C* (C*:N(1) -Hexylcytosine) Base Pairs through Argentophilic and Hydrogen Bond Interactions.

    PubMed

    Terrón, Angel; Moreno-Vachiano, Blas; Bauzá, Antonio; García-Raso, Angel; Fiol, Juan Jesús; Barceló-Oliver, Miquel; Molins, Elies; Frontera, Antonio

    2017-02-10

    The synthesis of a metalled double-helix containing exclusively silver-mediated C*-C* base pairs is reported herein (C*=N(1) hexylcytosine). Remarkably, it is the first crystal structure containing infinite and consecutive C*-Ag(I) -C* base pairs that form a double helix. The Ag(I) ion occupies the center between two C* residues with N(3)-Ag bond lengths of 2.1 Å and short Ag(I) -Ag(I) distances (3.1 Å) suggesting an interesting argentophilic attraction as a stabilization source of the helical disposition. The solid-state structure is further stabilized by metal-mediated base-pairs, hydrogen bonding and π-stacking interactions. Moreover, the angle N(3)-Ag-N(3) is almost linear in the [Ag(N(1) hexylcytosine)2 ](+) motif and the bases are not coplanar, thus generating a double-strand helical aggregate in the solid state. The noncovalent and argentophilic interactions have been rationalized based on DFT calculations.

  16. Cryogenic hydrogen-induced air-liquefaction technologies

    NASA Technical Reports Server (NTRS)

    Escher, William J. D.

    1990-01-01

    Extensive use of a special advanced airbreathing propulsion archives data base, as well as direct contacts with individuals who were active in the field in previous years, a technical assessment of cryogenic hydrogen induced air liquefaction, as a prospective onboard aerospace vehicle process, was performed and documented in 1986. The resulting assessment report is summarized. Technical findings relating the status of air liquefaction technology are presented both as a singular technical area, and also as that of a cluster of collateral technical areas including: Compact lightweight cryogenic heat exchangers; Heat exchanger atmospheric constituents fouling alleviation; Para/ortho hydrogen shift conversion catalysts; Hydrogen turbine expanders, cryogenic air compressors and liquid air pumps; Hydrogen recycling using slush hydrogen as heat sinks; Liquid hydrogen/liquid air rocket type combustion devices; Air Collection and Enrichment System (ACES); and Technically related engine concepts.

  17. Cryogenic hydrogen-induced air-liquefaction technologies

    NASA Technical Reports Server (NTRS)

    Escher, William J. D.

    1990-01-01

    Extensive use of a special advanced airbreathing propulsion archives data base, as well as direct contacts with individuals who were active in the field in previous years, a technical assessment of cryogenic hydrogen induced air liquefaction, as a prospective onboard aerospace vehicle process, was performed and documented in 1986. The resulting assessment report is summarized. Technical findings relating the status of air liquefaction technology are presented both as a singular technical area, and also as that of a cluster of collateral technical areas including: Compact lightweight cryogenic heat exchangers; Heat exchanger atmospheric constituents fouling alleviation; Para/ortho hydrogen shift conversion catalysts; Hydrogen turbine expanders, cryogenic air compressors and liquid air pumps; Hydrogen recycling using slush hydrogen as heat sinks; Liquid hydrogen/liquid air rocket type combustion devices; Air Collection and Enrichment System (ACES); and Technically related engine concepts.

  18. Charge induced enhancement of adsorption for hydrogen storage materials

    NASA Astrophysics Data System (ADS)

    Sun, Xiang

    2009-12-01

    . Direct measurement of the amount of hydrogen adsorption was also carried out with porous nickel oxides and magnesium oxides using the piezoelectric material PMN-PT as the charge supplier due to the pressure. The adsorption enhancement from the PMN-PT generated charges is obvious at hydrogen pressure between 0 and 60 bars, where the hydrogen uptake is increased at about 35% for nickel oxide and 25% for magnesium oxide. Computer simulation reveals that under the external electric field, the electron cloud of hydrogen molecules is pulled over to the adsorbent site and can overlap with the adsorbent electrons, which in turn enhances the adsorption energy. Experiments were also carried out to examine the effects of hydrogen spillover with charge induced enhancement. The results show that the overall storage capacity in nickel oxide increased remarkably by a factor of 4.

  19. A Tungsten Complex with a Bidentate, Hemilabile N-Heterocyclic Carbene Ligand, Facile Displacement of the Weakly Bound W-(C=C) Bond, and the Vulnerability of the NHC Ligand Towards Catalyst Deactivation During Ketone Hydrogenation

    SciTech Connect

    Wu,F.; Dioumaev, V.; Szalda, D.; Hanson, J.; Bullock, R.

    2007-01-01

    The initial reaction observed between the N-heterocyclic carbene IMes (IMes = 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene) and molybdenum and tungsten hydride complexes CpM(CO){sub 2}(PPh{sub 3})H (M = Mo, W) is deprotonation of the metal hydride by IMes, giving [(IMes)H]{sup +}[CpM(CO){sub 2}(PPh{sub 3})]{sup -}. At longer reaction times and higher temperatures, the reaction of IMes with CpM(CO){sub 2}(PR{sub 3})H (M = Mo, W; R = Me, Ph) produces CpM(CO){sub 2}(IMes)H. Hydride transfer from CpW(CO)2(IMes)H to Ph{sub 3}C{sub +}B(C{sub 6}F{sub 5}){sub 4}{sup -} gives CpW(CO){sub 2}(IMes){sup +}B(C{sub 6}F{sub 5}){sub 4}{sup -}, which was crystallographically characterized using X-ray radiation from a synchrotron. The IMes is bonded as a bidentate ligand, through the carbon of the carbene as well as forming a weak bond from the metal to a C=C bond of one mesityl ring. The weakly bound C=C ligand is hemilabile, being readily displaced by H{sub 2}, THF, ketones, or alcohols. Reaction of CpW(CO){sub 2}(IMes){sup +} with H{sub 2} gives the dihydride complex [CpW(CO){sub 2}(IMes)(H){sub 2}]{sup +}. Addition of Et{sub 2}CH-OH to CpW(CO){sub 2}(IMes){sup +}B(C{sub 6}F{sub 5}){sub 4}{sup -} gives the alcohol complex [CpW(CO){sub 2}(IMes)(Et{sub 2}CH-OH)]{sup +}[B(C{sub 6}F{sub 5}){sub 4}]{sup -}, which was characterized by crystallography and exhibits no evidence for hydrogen bonding of the bound OH group. Addition of H{sub 2} to the ketone complex [CpW(CO){sub 2}(IMes)(Et{sub 2}C=O)]{sup +}[B(C{sub 6}F{sub 5}){sub 4}]{sup -} produces an equilibrium with the dihydride [CpW(CO){sub 2}(IMes)(H){sub 2}]{sup +} (K{sub eq} = 1.1 x 10{sup 3} at 25 {sup o}C). The tungsten ketone complex [CpW(CO){sub 2}(IMes)(Et{sub 2}C=O)]{sup +}[B(C{sub 6}F{sub 5}){sub 4}]{sup -}- serves as a modest catalyst for hydrogenation of Et{sub 2}C=O to Et{sub 2}CH-OH in neat ketone solvent. Decomposition of the catalyst produces [H(IMes)]{sup +}B(C{sub 6}F{sub 5}){sub 4}{sup -}, indicating that these

  20. Lactulose accelerates liver regeneration in rats by inducing hydrogen.

    PubMed

    Yu, Jianhua; Zhang, Weiguang; Zhang, Rongguo; Ruan, Xinxian; Ren, Peitu; Lu, Baochun

    2015-05-01

    Oxidative stress and inflammation are implicated in the process of liver regeneration. Lactulose orally administered can be bacterially fermented and induces dramatic amounts of endogenous hydrogen. Hydrogen has been confirmed to have antioxidant and anti-inflammatory properties. This study investigated the potential influence of lactulose administration on liver regeneration. Antibiotics were used to suppress bacterial fermentation of lactulose, and hydrogen-rich saline was used as a supplementary measure of exogenous hydrogen. The liver regeneration model was produced in Sprague-Dawley rats through 70% partial hepatectomy. Compared with non-lactulose-treated group, lactulose administration remarkably increased the weights of remnant liver and inhibited increases in serum levels of transaminases more notably. In the lactulose-treated group, increases of markers for regeneration, such as proliferating cell nuclear antigen and cyclin D1, were highly elevated. Biochemically, lactulose administration increased liver superoxide dismutase activity and decreased malondialdehyde content. In the lactulose-treated group, excessive increases in inflammatory cytokines, such as interleukin-6 and tumor necrosis factor-α, were inhibited significantly. Increased heme oxygenase-1 and superoxide dismutase 2 expression were also observed after lactulose treatment. The antibiotics suppressed the regeneration-promoting effect of lactulose by reducing hydrogen production, whereas supplementing hydrogen by hydrogen-rich saline would get a similar regeneration-promoting effect as lactulose administration. Lactulose administration accelerates posthepatectomized liver regeneration in rats by inducing hydrogen, which may result from attenuation of the oxidative stress response and excessive inflammatory response. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Saturated hydrogen saline attenuates endotoxin-induced lung dysfunction.

    PubMed

    Zhang, Yan; Liu, Yiming; Zhang, Jin

    2015-09-01

    Acute lung injury induced by lipopolysaccharides (LPSs) is caused by pulmonary inflammation and pulmonary vascular permeability. Activation of p38 mitogen-activated protein kinase causes inflammation, and proinflammatory cytokines and oxidative stress induce autophagy, a catabolic mechanism responsible for protein degradation and recycling of damaged proteins and cytoplasmic organelles. If not controlled, excessive autophagy responses can result in cell death. In this study, we pretreated rats with saturated hydrogen saline, and examined the molecular mechanism by which saturated hydrogen saline attenuates LPS-induced acute lung dysfunction. Sixty-four male Sprague-Dawley rats were randomly assigned to one of three groups--a control group, an LPS group, or an LPS plus saturated hydrogen saline (LPS + H2) group. Treatment with saturated hydrogen saline prolonged the median survival time of rats and reduced lung dysfunction induced by LPS. Moreover, saturated hydrogen saline significantly attenuated LPS-mediated induction of serum tumor necrosis factor α, interleukin 6, myeloperoxidase, and malondialdehyde (P < 0.05). Autophagosomes were found in the cytoplasm of type II alveolar epithelial cells of LPS-treated rats, and light chain 3 protein (LC3)I/II was increased by LPS treatment. In contrast, saturated hydrogen saline decreased the number of autophagosomes and LC3I/II expression. Saturated hydrogen saline also attenuated the LPS-mediated increase in apoptosis and p38 expression. Taken together, saturated hydrogen saline may attenuate LPS-induced acute lung dysfunction in rats by reducing inflammation, autophagy, and apoptosis involving the p38 mitogen-activated protein kinase signaling pathway. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Nanodiamond for hydrogen storage: temperature-dependent hydrogenation and charge-induced dehydrogenation.

    PubMed

    Lai, Lin; Barnard, Amanda S

    2012-02-21

    Carbon-based hydrogen storage materials are one of hottest research topics in materials science. Although the majority of studies focus on highly porous loosely bound systems, these systems have various limitations including use at elevated temperature. Here we propose, based on computer simulations, that diamond nanoparticles may provide a new promising high temperature candidate with a moderate storage capacity, but good potential for recyclability. The hydrogenation of nanodiamonds is found to be easily achieved, in agreement with experiments, though we find the stability of hydrogenation is dependent on the morphology of nanodiamonds and surrounding environment. Hydrogenation is thermodynamically favourable even at high temperature in pure hydrogen, ammonia, and methane gas reservoirs, whereas water vapour can help to reduce the energy barrier for desorption. The greatest challenge in using this material is the breaking of the strong covalent C-H bonds, and we have identified that the spontaneous release of atomic hydrogen may be achieved through charging of hydrogenated nanodiamonds. If the degree of induced charge is properly controlled, the integrity of the host nanodiamond is maintained, which indicates that an efficient and recyclable approach for hydrogen release may be possible.

  3. Tribochemistry and superlubricity induced by hydrogen ions.

    PubMed

    Li, Jinjin; Zhang, Chenhui; Sun, Liang; Lu, Xinchun; Luo, Jianbin

    2012-11-13

    Friction behavior of aqueous solution at macroscale is quite different from that at nanoscale. At macroscale, tribochemistry usually occurs between lubricant and friction surfaces in the running-in process due to a high contact pressure, and most such processes can lead to friction reduction. In the present work, we reported that the hydrogen ions in aqueous solution played an important role in tribochemistry in running-in process (friction reducing process), which could result in the friction coefficient reducing from 0.4 to 0.04 between Si(3)N(4) and glass surfaces at macroscale. It is found that the running-in process and low friction state are closely dependent on the concentration of hydrogen ions in the contact region between the two friction surfaces. The lubrication mechanism is attributed to tribochemical reaction occurring between hydrogen ions and surfaces in the running-in process, which forms an electrical double layer and hydration layer to lower friction force. Finally, the running-in process of H(3)PO(4) (pH = 1.5) was investigated, which could realize superlubricity with an ultralow friction coefficient of about 0.004.

  4. Mechanism of vacancy formation induced by hydrogen in tungsten

    SciTech Connect

    Liu, Yi-Nan; Ahlgren, T.; Bukonte, L.; Nordlund, K.; Shu, Xiaolin; Yu, Yi; Lu, Guang-Hong; Li, Xiao-Chun

    2013-12-15

    We report a hydrogen induced vacancy formation mechanism in tungsten based on classical molecular dynamics simulations. We demonstrate the vacancy formation in tungsten due to the presence of hydrogen associated directly with a stable hexagonal self-interstitial cluster as well as a linear crowdion. The stability of different self-interstitial structures has been further studied and it is particularly shown that hydrogen plays a crucial role in determining the configuration of SIAs, in which the hexagonal cluster structure is preferred. Energetic analysis has been carried out to prove that the formation of SIA clusters facilitates the formation of vacancies. Such a mechanism contributes to the understanding of the early stage of the hydrogen blistering in tungsten under a fusion reactor environment.

  5. Hydrogen Effects in Prestrained Transformation Induced Plasticity Steel

    NASA Astrophysics Data System (ADS)

    Ronevich, J. A.; De Cooman, B. C.; Speer, J. G.; De Moor, E.; Matlock, D. K.

    2012-07-01

    Thermal desorption analysis (TDA) was performed on laboratory heat-treated transformation induced plasticity (TRIP) steel with 14.5 pct retained austenite (RA), ultimate tensile strength (UTS) of 880 MPa, and elongation to failure of 33 pct. Samples were tensile prestrained 5 pct at 253 K (-20 °C), 296 K (23 °C), and 375 K (102 °C) to generate different amounts of deformation-induced martensite, 10.5, 5.5, and 0.5 pct, respectively, prior to cathodically charging to a hydrogen content of 1 to 2 ppm. TDA was performed on charged samples to determine the location and strength of hydrogen trapping sites. TDA results suggest that dislocations were the main trapping sites in prestrained TRIP steel. The TDA peak intensity increased with prestrain, suggesting that the quantity of hydrogen trap sites increased with deformation. Tensile tests were performed on the four hydrogen-charged TRIP steel conditions. As confirmed with transmission electron microscope images, samples with more homogeneous dislocation distributions ( i.e., prestrained at 375 K (102 °C)) exhibited greater resistance to hydrogen embrittlement than samples that included a high dislocation density adjacent to the formations of strain-induced martensite ( i.e., samples prestrained at 253 K (-20 °C) and 296 K (23 °C)).

  6. Hydrogen leak detection using laser-induced breakdown spectroscopy.

    PubMed

    Ball, A J; Hohreiter, V; Hahn, D W

    2005-03-01

    Laser-induced breakdown spectroscopy (LIBS) is investigated as a technique for real-time monitoring of hydrogen gas. Two methodologies were examined: The use of a 100 mJ laser pulse to create a laser-induced breakdown directly in a sample gas stream, and the use of a 55 mJ laser pulse to create a laser-induced plasma on a solid substrate surface, with the expanding plasma sampling the gas stream. Various metals were analyzed as candidate substrate surfaces, including aluminum, copper, molybdenum, stainless steel, titanium, and tungsten. Stainless steel was selected, and a detailed analysis of hydrogen detection in binary mixtures of nitrogen and hydrogen at atmospheric pressure was performed. Both the gaseous plasma and the plasma initiated on the stainless steel surface generated comparable hydrogen emission signals, using the 656.28 Halpha emission line, and exhibited excellent signal linearity. The limit of detection is about 20 ppm (mass) as determined for both methodologies, with the solid-initiated plasma yielding a slightly better value. Overall, LIBS is concluded to be a viable candidate for hydrogen sensing, offering a combination of high sensitivity with a technique that is well suited to implementation in field environments.

  7. Moisture-Induced Alumina Scale Spallation: The Hydrogen Factor

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    2010-01-01

    For some time the oxidation community has been concerned with interfacial spallation of protective alumina scales, not just upon immediate cool down, but as a time-delayed phenomenon. Moisture-induced delayed spallation (MIDS) and desktop spallation (DTS) of thermal barrier coatings (TBCs) refer to this process. It is most apparent for relatively adherent alumina scales that have survived initial cool down in a dry environment, have built up considerable thickness and strain energy, and have been somewhat damaged, such as by cyclic oxidation cracking. Indeed, a "sensitive zone" can be described that maximizes the observed effect as a function of all the relevant factors. Moisture has been postulated to serve as a source of interfacial hydrogen embrittlement. Hydrogen is derived from reaction with aluminum in the alloy at an exposed interface. The purpose of this monograph is to trace the close analogy of this phenomenon to other hydrogen-induced effects, such as embrittlement of aluminides and blistering of alloys and anodic alumina films. A formalized, top-down, logic-tree structure is presented as a guide to this discussion. A theoretical basis for interfacial weakening by hydrogen is first cited, as are demonstrations of hydrogen detection as a reaction product or interfacial species. Further support is provided by critical experiments that recreate the moisture effect, but by isolating hydrogen from other potential causative factors. These experiments include tests in H 2-containing atmospheres or cathodic hydrogen charging. Accordingly, they strongly indicate that interfacial hydrogen, derived from moisture, is the key chemical species accounting for delayed alumina scale spallation.

  8. A single-step growth process of graphane using hydrogen plasma and observation of an induced bandgap

    NASA Astrophysics Data System (ADS)

    Teague, M. L.; Boyd, D. A.; Teng, W.-S.; Hsu, C.-C.; Yeh, N.-C.; Gharib, M.

    There has been considerable interest in reliably opening up a bandgap in graphene for electronic applications. One promising method is the hydrogenation of graphene into graphane. We present Raman spectroscopy, scanning tunneling microscopy/spectroscopy (STM/STS) and x-ray photoemission spectroscopy (XPS) studies of hydrogenated multilayer graphene on Cu as a function of hydrogen exposure time (t) . Our growth process for hydrogenated graphene involved in-situ exposure of PECVD-grown graphene on Cu to hydrogen plasma. Raman measurements revealed an increase in intensity of a pronounced and narrow D-band with t when compared to pristine graphene. FTIR studies revealed the presence of C-H bonds on the surface of our samples post hydrogenation. STM topographic studies revealed a nanoscale Moiré pattern resulting from the hydrogenated graphene. For t = 120s, STS studies revealed an average gap of Δ ~(0.275+/-0.050) eV, which increased to average value of Δ ~(0.315+/-0.050) eV for t = 600s. Topographic and spectroscopic studies showed approximate hydrogen coverage of 20%, 50% and 80% for t = 30s, 60s and 120s, respectively. XPS studies of the C-1s state revealed an energy shift from the C-C peak (284.6 nm) towards a C-H peak (285.8 nm), consistent with the formation of carbon-hydrogen bonds. Our results have demonstrated the existence of a bandgap opening in graphene, induced by the adsorption of atomic hydrogen onto graphene.

  9. Helium-ion-induced release of hydrogen from graphite

    SciTech Connect

    Langley, R.A.

    1987-01-01

    The ion-induced release of hydrogen from AXF-5Q graphite was studied for 350-eV helium ions. The hydrogen was implanted into the graphite with a low energy (approx.200 eV) and to a high fluence. This achieved a thin (approx.10-nm), saturated near-surface region. The release of hydrogen was measured as a function of helium fluence. A model that includes ion-induced detrapping, retrapping, and surface recombination was used to analyze the experimental data. A value of (1.65 +- 0.2) x 10/sup -16/ cm/sup 2/ was obtained from the detrapping cross section, and a value of (0.5 to 4) x 10/sup -14/ cm/sup 4//atoms was obtained for the recombination coefficient. 11 refs., 4 figs.

  10. Moisture-Induced Alumina Scale Spallation: The Hydrogen Factor

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    2009-01-01

    For some time our community has been concerned with interfacial spallation of protective alumina scales, not just upon immediate cooldown, but as a time-delayed phenomenon. Moisture-induced delayed spallation (MIDS) and desktop spallation (DTS) of TBC's refer to this process. It is most apparent for relatively adherent alumina scales that have survived cool down in a dry environment, built up considerable thickness and strain energy, and have been somewhat damaged, such as by cyclic oxidation cracking. Indeed, a "sweet zone" can be defined that maximizes the observed effect as a function of all the relevant factors. Moisture has been postulated to serve as a source of interfacial hydrogen embrittlement derived from reaction with aluminum in the alloy at an exposed interface. The purpose of this monograph is to trace the close analogy of this phenomenon to other hydrogen effects, such as embrittlement of aluminides and blistering of alloys and anodic alumina films. A formalized, top-down, logic tree structure is presented as a guide to this discussion. A theoretical basis for interfacial weakening by hydrogen is first cited, as are demonstrations of hydrogen as a reaction product or detected interfacial species. Further support is provided by critical experiments that produce the same moisture effect, but by isolating hydrogen from other potential causative factors. These experiments include tests in H2-containing atmospheres or cathodic hydrogen charging.

  11. The Role of Hydrogen-Enhanced Strain-Induced Lattice Defects on Hydrogen Embrittlement Susceptibility of X80 Pipeline Steel

    NASA Astrophysics Data System (ADS)

    Hattori, M.; Suzuki, H.; Seko, Y.; Takai, K.

    2017-08-01

    Studies to date have not completely determined the factors influencing hydrogen embrittlement of ferrite/bainite X80 pipeline steel. Hydrogen embrittlement susceptibility was evaluated based on fracture strain in tensile testing. We conducted a thermal desorption analysis to measure the amount of tracer hydrogen corresponding to that of lattice defects. Hydrogen embrittlement susceptibility and the amount of tracer hydrogen significantly increased with decreasing crosshead speed. Additionally, a significant increase in the formation of hydrogen-enhanced strain-induced lattice defects was observed immediately before the final fracture. In contrast to hydrogen-free specimens, the fracture surface of the hydrogen-charged specimens exhibited shallower dimples without nuclei, such as secondary phase particles. These findings indicate that the presence of hydrogen enhanced the formation of lattice defects, particularly just prior to the occurrence of final fracture. This in turn enhanced the formation of shallower dimples, thereby potentially causing premature fracture of X80 pipeline steel at lower crosshead speeds.

  12. UV-induced synthesis of hydrogen peroxide

    SciTech Connect

    Murphy, T.M.; Huerta, A.J. )

    1989-04-01

    Suspension-cultured rose cells irradiated with UV (254 mm, 558 J m{sup {minus}2}) showed a transient efflux of K{sup +}, and a production of H{sub 2}O{sub 2} measured by chemiluminescence of luminol in the presence of peroxidase. The peak concentration of H{sub 2}O{sub 2}, attained at about 60-90 min after irradiation, was 2-5 uM. The addition of superoxide dismutase to irradiated cells stimulated luminscence, suggesting that the H{sub 2}O{sub 2} came at least in part from superoxide that was present in the extracellular medium. Treatments that inhibited the UV-induced efflux of K{sup +} also inhibited the appearance of H{sub 2}O{sub 2}, though the converse was not always true, suggesting that K{sup +} efflux was necessary for H{sub 2}O{sub 2} synthesis, but not vice-versa. H{sub 2}O{sub 2} in the extracellular space is required for lignin synthesis in many plant tissues. Phenolic compounds, the other substrates for lignin, are induced by UV. We suggest that the UV-stimulated production of H{sub 2}O{sub 2} is part of a coordinated induction of lignin synthesis.

  13. Laser induced crystallization of hydrogenated amorphous silicon-carbon alloys

    NASA Astrophysics Data System (ADS)

    Summonte, C.; Rizzoli, R.; Servidori, M.; Milita, S.; Nicoletti, S.; Bianconi, M.; Desalvo, A.; Iencinella, D.

    2004-10-01

    Laser induced crystallization of hydrogenated amorphous silicon carbon alloy (a-Si1-xCx:H) films has been investigated by means of synchrotron x-ray diffraction. The a-Si1-xCx:H films were deposited on (100) silicon wafers by very high frequency plasma enhanced chemical vapor deposition at 100MHz in hydrogen diluted silane-methane gas mixtures. The substrate was kept at 250°C or 350°C and the stoichiometry was changed from x =0.20 to 0.63. The structural characterization of the as-grown films has been carried out by Rutherford backscattering (hydrogen concentration) and infrared spectroscopy (film ordering). The films were irradiated by a KrF excimer laser (248nm ) with varying energy density and number of pulses. After irradiation, the formation of SiC crystallites has been revealed by synchrotron x-ray diffraction. Besides SiC nanocrystals, the formation of crystalline Si and graphite is observed for under- (x <0.50) and over-stoichiometric (x>0.50) samples, respectively. The essential role played by hydrogen concentration and hydrogen bonding configuration in determining the melting threshold and the consequent SiC grain formation is highlighted.

  14. Drinking hydrogen water and intermittent hydrogen gas exposure, but not lactulose or continuous hydrogen gas exposure, prevent 6-hydorxydopamine-induced Parkinson’s disease in rats

    PubMed Central

    2012-01-01

    Background Lactulose is a synthetic disaccharide that can be catalyzed only by intestinal bacteria in humans and rodents, and a large amount of hydrogen is produced by bacterial catalysis of lactulose. We previously reported marked effects of ad libitum administration of hydrogen water on prevention of a rat model of Parkinson’s disease (PD). Methods End-alveolar breath hydrogen concentrations were measured in 28 healthy subjects and 37 PD patients, as well as in 9 rats after taking hydrogen water or lactulose. Six-hydroxydopamine (6-OHDA)-induced hemi-PD model was stereotactically generated in rats. We compared effects of hydrogen water and lactulose on prevention of PD. We also analyzed effects of continuous and intermittent administration of 2% hydrogen gas. Results Hydrogen water increased breath hydrogen concentrations from 8.6 ± 2.1 to 32.6 ± 3.3 ppm (mean and SEM, n = 8) in 10 min in healthy subjects. Lactulose increased breath hydrogen concentrations in 86% of healthy subjects and 59% of PD patients. Compared to monophasic hydrogen increases in 71% of healthy subjects, 32% and 41% of PD patients showed biphasic and no increases, respectively. Lactulose also increased breath hydrogen levels monophasically in 9 rats. Lactulose, however, marginally ameliorated 6-OHDA-induced PD in rats. Continuous administration of 2% hydrogen gas similarly had marginal effects. On the other hand, intermittent administration of 2% hydrogen gas prevented PD in 4 of 6 rats. Conclusions Lack of dose responses of hydrogen and the presence of favorable effects with hydrogen water and intermittent hydrogen gas suggest that signal modulating activities of hydrogen are likely to be instrumental in exerting a protective effect against PD. PMID:22608009

  15. Functional polymer laminates from hyperthermal hydrogen induced cross-linking.

    PubMed

    Thompson, David B; Trebicky, Tomas; Crewdson, Patrick; McEachran, Matthew J; Stojcevic, Goran; Arsenault, Gilles; Lau, Woon M; Gillies, Elizabeth R

    2011-12-20

    The use of a hyperthermal hydrogen induced cross-linking process to prepare laminates comprising polypropylene, poly(isobutylene-co-isoprene), and poly(vinyl acetate) is described. In this new, milder alternative to conventional plasma techniques, neutral molecular hydrogen projectiles were used to create carbon radicals on impacted surfaces by collision-induced dissociation of C-H bonds, and this process was used to cross-link polymers on a polypropylene surface. It was demonstrated that multiple layers of cross-linked materials could be added, creating polymer laminates with each layer introducing new functionalities and properties. In particular, the present work shows that the process is largely nondestructive toward ester functionalities. First, the esters were grafted to become nonleachable. Then, the esters were subsequently hydrolyzed to convert the surface from hydrophobic to hydrophilic. Afterward, the esters could be recovered by simple esterification demonstrating that further chemical transformations were possible.

  16. Hydrogen peroxide-induced apoptosis in human gingival fibroblasts.

    PubMed

    Gutiérrez-Venegas, Gloria; Guadarrama-Solís, Adriana; Muñoz-Seca, Carmen; Arreguín-Cano, Juan Antonio

    2015-01-01

    In the process of bleaching vital, discolored teeth, low concentrations of hydrogen peroxide (H2O2) are effective alternatives to heat-activated 30% H2O2. However, interest has been expressed in the assessment of pathological effects of long-term exposure to bleaching agents such as irritation and ulceration of the gingival or other soft tissues. The aim of the present study was to determine the effect of hydrogen peroxide on apoptosis in human gingival fibroblasts (HGF). Cytochrome c, Bcl-2, Bax, Bid and caspase-3 protein expression were detected by Western blotting. HGF cell apoptosis induced by H2O2 was both dose and time dependent. The addition of H2O2 resulted in the release of cytochrome c to the cytosol, and an increase of Caspase-3 cleavage. Data suggest that oxidative stress-induced apoptosis in HGF is intrinsic pathway involved the release of apoptotic signal from mitochondria.

  17. Hydrogen peroxide-induced apoptosis in human gingival fibroblasts

    PubMed Central

    Gutiérrez-Venegas, Gloria; Guadarrama-Solís, Adriana; Muñoz-Seca, Carmen; Arreguín-Cano, Juan Antonio

    2015-01-01

    In the process of bleaching vital, discolored teeth, low concentrations of hydrogen peroxide (H2O2) are effective alternatives to heat-activated 30% H2O2. However, interest has been expressed in the assessment of pathological effects of long-term exposure to bleaching agents such as irritation and ulceration of the gingival or other soft tissues. The aim of the present study was to determine the effect of hydrogen peroxide on apoptosis in human gingival fibroblasts (HGF). Cytochrome c, Bcl-2, Bax, Bid and caspase-3 protein expression were detected by Western blotting. HGF cell apoptosis induced by H2O2 was both dose and time dependent. The addition of H2O2 resulted in the release of cytochrome c to the cytosol, and an increase of Caspase-3 cleavage. Data suggest that oxidative stress-induced apoptosis in HGF is intrinsic pathway involved the release of apoptotic signal from mitochondria. PMID:26884825

  18. Pressure-induced Hydrogen Bond Symmetrization in Aluminous Phase D

    NASA Astrophysics Data System (ADS)

    Thompson, E. C.; Chidester, B.; Danielson, L. R.; Prakapenka, V.; Campbell, A.; Tsuchiya, J.

    2016-12-01

    Phase D, (Mg,Al)(Si,Al)2O6OH2, is a dense hydrous magnesium silicate which is stable at pressures and temperatures corresponding to depths up to 1200 km, potentially ushering hydrogen through the transition zone and into the lower mantle [1]. Previously, a pressure-induced hydrogen-bond symmetrization in Mg-end member phase D was established at 40 GPa on the basis of first-principles [2] and subsequent high-pressure X-ray diffraction (XRD) experiments [3]. This hydrogen-bond symmetrization was found to lead to an increase in the bulk modulus of 20%. Al-substitution stabilizes phase D at high P-T conditions, and aluminous end-member phase D (Al2SiO6H2) is likely precursor to Al-rich phase H and δ-AlOOH, which may form a solid solution and continuous hydrous reservoir with P-T stability extending to the core-mantle boundary [4]. This study combines first-principles DFT calculations using the Quantum ESPRESSO package with high-pressure XRD experiments, to evaluate the hydrogen-bond symmetrization of the aluminous end-member phase D. As with the Mg-end member, the aluminous phase undergoes hydrogen-bond symmetrization at 40 GPa, with an associated increase in the bulk modulus. Also, as with the Al-free phase, the c/a ratio was found to reduce with increased pressure up to the point of hydrogen-bond symmetrization, above which pressure there was an associated stabilization of the c/a ratio. However, in contrast to the Al-free phase, the increase in bulk modulus from the hydrogen-off-center (HOC) to hydrogen centered (HC) structures is only 5%, a significant departure from the 20% increase reported for the HOC to HC transition in the Mg-end member. The pressure at which hydrogen bond symmetrization occurred, as well as the equations of state parameters for both the HOC and HC proton arrangements, were calculated to be within 1% for both ordered and disordered aluminum substitution structures. [1] Frost and Fei (1998) J. Geophys. Res. 103, 7463-7474. [2] Tsuchiya et al

  19. Hydrogen saturation stabilizes vacancy-induced ferromagnetic ordering in graphene.

    PubMed

    Li, Weifeng; Zhao, Mingwen; Zhao, Xian; Xia, Yueyuan; Mu, Yuguang

    2010-11-07

    Density functional theory calculations are performed to explore vacancy-induced magnetism in graphene. The hydrogen saturation not only stabilizes the vacancy structure but also induces distinct magnetic coupling depending on the defect distribution: weak magnetic coupling between defects on different sublattices and strong coupling between defects on the same sublattice. Ferromagnetic ordering has to be accompanied with a semiconducting property. The interaction integral J between defective spins decreases linearly with the increase of the distance between them. Based on the 2D Ising model and Monte Carlo simulations, the possible highest Curie temperature T(c) of defective graphene is predicted to be lower than 500 K.

  20. Hydrogen saline prevents selenite-induced cataract in rats

    PubMed Central

    Yang, Chun-xiao; Ding, Tian-bing

    2013-01-01

    Purpose The aim of this study was to investigate the potential antioxidative effect and mechanism for the protective effects of hydrogen saline on selenite-induced cataract in rats. Methods Sprague-Dawley rat pups were divided into the following groups: control (Group A), selenite induced (Group B), and selenite plus hydrogen saline treated (Group C). Rat pups in Groups B and C received a single subcutaneous injection of sodium selenite (25 μmol/kg bodyweight) on postnatal day 12. Group C also received an intraperitoneal injection of H2 saline (5 ml/kg bodyweight) daily from postnatal day 8 to postnatal day 17. The development of cataract was assessed weekly by slit-lamp examination for 2 weeks. After sacrifice, extricated lenses were analyzed for activities of superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, and glutathione S-transferase, levels of malondialdehyde, reduced glutathione (GSH), and total sulfhydryl contents. Results The magnitude of lens opacification in Group B was significantly higher than in Group A (p<0.05), while Group C had less opacification than Group B (p<0.05). Compared with Group B, the mean activities of the antioxidant enzymes superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, and glutathione S-transferase, levels of GSH, and total sulfhydryl contents were higher, whereas the level of malondialdehyde was lower following treatment with hydrogen saline(p<0.05). Conclusions This is an initial report showing that hydrogen saline can prevent selenite-induced cataract in rats. It acts via maintaining antioxidant enzymes and GSH, protecting the sulfhydryl group, and inhibiting lipid peroxidation. PMID:23922487

  1. Gamma radiation induces hydrogen absorption by copper in water

    NASA Astrophysics Data System (ADS)

    Lousada, Cláudio M.; Soroka, Inna L.; Yagodzinskyy, Yuriy; Tarakina, Nadezda V.; Todoshchenko, Olga; Hänninen, Hannu; Korzhavyi, Pavel A.; Jonsson, Mats

    2016-04-01

    One of the most intricate issues of nuclear power is the long-term safety of repositories for radioactive waste. These repositories can have an impact on future generations for a period of time orders of magnitude longer than any known civilization. Several countries have considered copper as an outer corrosion barrier for canisters containing spent nuclear fuel. Among the many processes that must be considered in the safety assessments, radiation induced processes constitute a key-component. Here we show that copper metal immersed in water uptakes considerable amounts of hydrogen when exposed to γ-radiation. Additionally we show that the amount of hydrogen absorbed by copper depends on the total dose of radiation. At a dose of 69 kGy the uptake of hydrogen by metallic copper is 7 orders of magnitude higher than when the absorption is driven by H2(g) at a pressure of 1 atm in a non-irradiated dry system. Moreover, irradiation of copper in water causes corrosion of the metal and the formation of a variety of surface cavities, nanoparticle deposits, and islands of needle-shaped crystals. Hence, radiation enhanced uptake of hydrogen by spent nuclear fuel encapsulating materials should be taken into account in the safety assessments of nuclear waste repositories.

  2. Gamma radiation induces hydrogen absorption by copper in water

    PubMed Central

    Lousada, Cláudio M.; Soroka, Inna L.; Yagodzinskyy, Yuriy; Tarakina, Nadezda V.; Todoshchenko, Olga; Hänninen, Hannu; Korzhavyi, Pavel A.; Jonsson, Mats

    2016-01-01

    One of the most intricate issues of nuclear power is the long-term safety of repositories for radioactive waste. These repositories can have an impact on future generations for a period of time orders of magnitude longer than any known civilization. Several countries have considered copper as an outer corrosion barrier for canisters containing spent nuclear fuel. Among the many processes that must be considered in the safety assessments, radiation induced processes constitute a key-component. Here we show that copper metal immersed in water uptakes considerable amounts of hydrogen when exposed to γ-radiation. Additionally we show that the amount of hydrogen absorbed by copper depends on the total dose of radiation. At a dose of 69 kGy the uptake of hydrogen by metallic copper is 7 orders of magnitude higher than when the absorption is driven by H2(g) at a pressure of 1 atm in a non-irradiated dry system. Moreover, irradiation of copper in water causes corrosion of the metal and the formation of a variety of surface cavities, nanoparticle deposits, and islands of needle-shaped crystals. Hence, radiation enhanced uptake of hydrogen by spent nuclear fuel encapsulating materials should be taken into account in the safety assessments of nuclear waste repositories. PMID:27086752

  3. Gamma radiation induces hydrogen absorption by copper in water.

    PubMed

    Lousada, Cláudio M; Soroka, Inna L; Yagodzinskyy, Yuriy; Tarakina, Nadezda V; Todoshchenko, Olga; Hänninen, Hannu; Korzhavyi, Pavel A; Jonsson, Mats

    2016-04-18

    One of the most intricate issues of nuclear power is the long-term safety of repositories for radioactive waste. These repositories can have an impact on future generations for a period of time orders of magnitude longer than any known civilization. Several countries have considered copper as an outer corrosion barrier for canisters containing spent nuclear fuel. Among the many processes that must be considered in the safety assessments, radiation induced processes constitute a key-component. Here we show that copper metal immersed in water uptakes considerable amounts of hydrogen when exposed to γ-radiation. Additionally we show that the amount of hydrogen absorbed by copper depends on the total dose of radiation. At a dose of 69 kGy the uptake of hydrogen by metallic copper is 7 orders of magnitude higher than when the absorption is driven by H2(g) at a pressure of 1 atm in a non-irradiated dry system. Moreover, irradiation of copper in water causes corrosion of the metal and the formation of a variety of surface cavities, nanoparticle deposits, and islands of needle-shaped crystals. Hence, radiation enhanced uptake of hydrogen by spent nuclear fuel encapsulating materials should be taken into account in the safety assessments of nuclear waste repositories.

  4. Para-hydrogen induced polarization in heterogeneous hydrogenationreactions

    SciTech Connect

    Koptyug, Igor V.; Kovtunov, Kirill; Burt, Scott R.; Anwar, M.Sabieh; Hilty, Christian; Han, Song-I; Pines, Alexander; Sagdeev, Renad Z.

    2007-01-31

    We demonstrate the creation and observation ofpara-hydrogen-induced polarization in heterogeneous hydrogenationreactions. Wilkinson's catalyst, RhCl(PPh3)3, supported on eithermodified silica gel or a polymer, is shown to hydrogenate styrene intoethylbenzene and to produce enhanced spin polarizations, observed throughNMR, when the reaction was performed with H2 gas enriched in the paraspinisomer. Furthermore, gaseous phase para-hydrogenation of propylene topropane with two catalysts, the Wilkinson's catalyst supported onmodified silica gel and Rh(cod)(sulfos) (cod = cycloocta-1,5-diene;sulfos) - O3S(C6H4)CH2C(CH2PPh2)3) supported on silica gel, demonstratesheterogeneous catalytic conversion resulting in large spin polarizations.These experiments serve as a direct verification of the mechanism ofheterogeneous hydrogenation reactions involving immobilized metalcomplexes and can be potentially developed into a practical tool forproducing catalyst-free fluids with highly polarized nuclear spins for abroad range of hyperpolarized NMR and MRI applications.

  5. Mechanisms of hydrogen peroxide-induced contraction of rat aorta.

    PubMed

    Yang, Z W; Zheng, T; Zhang, A; Altura, B T; Altura, B M

    1998-03-05

    It has been suggested that reactive oxygen species may be involved in the regulation of vascular tone. However, the underlying mechanisms remain to be elucidated. The present studies were designed to investigate the contractile effects of hydrogen peroxide (H2O2), one of the reactive oxygen species, on isolated ring segments of rat aorta with and without endothelium. H2O2 induced an endothelium-independent contraction in isolated rat aorta ring segments in a concentration-dependent manner at concentrations from 5 x 10(-6) to 5 x 10(-3) M. H2O2-induced contractions of denuded rat aorta rings were stronger than those on intact rat aorta segments. The contractile effects of H2O2 were inhibited completely by 1200 u/ml catalase. The presence of 1.0 microM Fe2+ or 10 microM proadifen, a cytochrome P450 monooxygenase inhibitor, potentiated the contractile effect of H2O2 on isolated rat aorta segments. 1 mM deferoxamine (a Fe2+ chelator) or 100 microM dimethyl sulfoxide (a hydroxyl radical scavenger) significantly attenuated the vessel contractions induced by hydrogen peroxide plus Fe2+ or hydrogen peroxide itself. Removal of extracellular Ca2+ ([Ca2+]0), addition of 5 microM verapamil, administration of a protein kinase C inhibitor (staurosporine), treatment with an inhibitor of protein tyrosine phosphorylation (genistein) or employment of 5.0 microM indomethacin resulted in a significant attenuation of the contractile responses of the vessels to H2O2. Pharmacological antagonists (e.g. a muscarinic acetylcholine receptor antagonist (atropine), an antagonist of histamine H1 receptors (diphenhydramine), an antagonist of histamine H2 receptors (cimetidine), an alpha-adrenoceptor antagonist (phentolamine), a beta-adrenoceptor antagonist (propranolol) and an antagonist of serotonin receptor (methysergide)) did not inhibit or attenuate the contractions induced by H2O2. Exposure of primary aortic smooth muscle cells to H2O2 (5 x 10(-6) to 5 x 10(-3) M) produced significant rises

  6. Hydrogen-induced nanotunnel opening within semiconductor subsurface

    NASA Astrophysics Data System (ADS)

    Soukiassian, Patrick; Wimmer, Erich; Celasco, Edvige; Giallombardo, Claudia; Bonanni, Simon; Vattuone, Luca; Savio, Letizia; Tejeda, Antonio; Silly, Mathieu; D'Angelo, Marie; Sirotti, Fausto; Rocca, Mario

    2013-11-01

    One of the key steps in nanotechnology is our ability to engineer and fabricate low-dimensional nano-objects, such as quantum dots, nanowires, two-dimensional atomic layers or three-dimensional nano-porous systems. Here we report evidence of nanotunnel opening within the subsurface region of a wide band-gap semiconductor, silicon carbide. Such an effect is induced by selective hydrogen/deuterium interaction at the surface, which possesses intrinsic compressive stress. This finding is established with a combination of ab-initio computations, vibrational spectroscopy and synchrotron-radiation-based photoemission. Hydrogen/deuterium-induced puckering of the subsurface Si atoms marks the critical step in this nanotunnel opening. Depending on hydrogen/deuterium coverages, the nanotunnels are either metallic or semiconducting. Dangling bonds generated inside the nanotunnel offer a promising template to capture atoms or molecules. These features open nano-tailoring capabilities towards advanced applications in electronics, chemistry, storage, sensors or biotechnology. Understanding and controlling such a mechanism open routes towards surface/interface functionalization.

  7. Hydrogen-induced nanotunnel opening within semiconductor subsurface

    PubMed Central

    Soukiassian, Patrick; Wimmer, Erich; Celasco, Edvige; Giallombardo, Claudia; Bonanni, Simon; Vattuone, Luca; Savio, Letizia; Tejeda, Antonio; Silly, Mathieu; D’angelo, Marie; Sirotti, Fausto; Rocca, Mario

    2013-01-01

    One of the key steps in nanotechnology is our ability to engineer and fabricate low-dimensional nano-objects, such as quantum dots, nanowires, two-dimensional atomic layers or three-dimensional nano-porous systems. Here we report evidence of nanotunnel opening within the subsurface region of a wide band-gap semiconductor, silicon carbide. Such an effect is induced by selective hydrogen/deuterium interaction at the surface, which possesses intrinsic compressive stress. This finding is established with a combination of ab-initio computations, vibrational spectroscopy and synchrotron-radiation-based photoemission. Hydrogen/deuterium-induced puckering of the subsurface Si atoms marks the critical step in this nanotunnel opening. Depending on hydrogen/deuterium coverages, the nanotunnels are either metallic or semiconducting. Dangling bonds generated inside the nanotunnel offer a promising template to capture atoms or molecules. These features open nano-tailoring capabilities towards advanced applications in electronics, chemistry, storage, sensors or biotechnology. Understanding and controlling such a mechanism open routes towards surface/interface functionalization.

  8. Myocardial infarction-induced N-terminal fragment of cardiac myosin-binding protein C (cMyBP-C) impairs myofilament function in human myocardium.

    PubMed

    Witayavanitkul, Namthip; Ait Mou, Younss; Kuster, Diederik W D; Khairallah, Ramzi J; Sarkey, Jason; Govindan, Suresh; Chen, Xin; Ge, Ying; Rajan, Sudarsan; Wieczorek, David F; Irving, Thomas; Westfall, Margaret V; de Tombe, Pieter P; Sadayappan, Sakthivel

    2014-03-28

    Myocardial infarction (MI) is associated with depressed cardiac contractile function and progression to heart failure. Cardiac myosin-binding protein C, a cardiac-specific myofilament protein, is proteolyzed post-MI in humans, which results in an N-terminal fragment, C0-C1f. The presence of C0-C1f in cultured cardiomyocytes results in decreased Ca(2+) transients and cell shortening, abnormalities sufficient for the induction of heart failure in a mouse model. However, the underlying mechanisms remain unclear. Here, we investigate the association between C0-C1f and altered contractility in human cardiac myofilaments in vitro. To accomplish this, we generated recombinant human C0-C1f (hC0C1f) and incorporated it into permeabilized human left ventricular myocardium. Mechanical properties were studied at short (2 μm) and long (2.3 μm) sarcomere length (SL). Our data demonstrate that the presence of hC0C1f in the sarcomere had the greatest effect at short, but not long, SL, decreasing maximal force and myofilament Ca(2+) sensitivity. Moreover, hC0C1f led to increased cooperative activation, cross-bridge cycling kinetics, and tension cost, with greater effects at short SL. We further established that the effects of hC0C1f occur through direct interaction with actin and α-tropomyosin. Our data demonstrate that the presence of hC0C1f in the sarcomere is sufficient to induce depressed myofilament function and Ca(2+) sensitivity in otherwise healthy human donor myocardium. Decreased cardiac function post-MI may result, in part, from the ability of hC0C1f to bind actin and α-tropomyosin, suggesting that cleaved C0-C1f could act as a poison polypeptide and disrupt the interaction of native cardiac myosin-binding protein C with the thin filament.

  9. Testing of DLR C/C-SiC and C/C for HIFiRE 8 Scramjet Combustor

    NASA Technical Reports Server (NTRS)

    Glass, David E.; Capriotti, Diego P.; Reimer, Thomas; Kutemeyer, Marius; Smart, Michael K.

    2014-01-01

    Ceramic Matrix Composites (CMCs) have been proposed for use as lightweight hot structures in scramjet combustors. Previous studies have calculated significant weight savings by utilizing CMCs (active and passive) versus actively cooled metallic scramjet structures. Both a carbon/carbon (C/C) and a carbon/carbon-silicon carbide (C/C-SiC) material fabricated by DLR (Stuttgart, Germany) are being considered for use in a passively cooled combustor design for Hypersonic International Flight Research Experimentation (HIFiRE) 8, a joint Australia / Air Force Research Laboratory hypersonic flight program, expected to fly at Mach 7 for approximately 30 sec, at a dynamic pressure of 55 kilopascals. Flat panels of the DLR C/C and C/C-SiC materials were installed downstream of a hydrogen-fueled, dual-mode scramjet combustor and tested for several minutes at conditions simulating flight at Mach 5 and Mach 6. Gaseous hydrogen fuel was used to fuel the scramjet combustor. The test panels were instrumented with embedded Type K and Type S thermocouples. Zirconia felt insulation was used during some of the tests to reduce heat loss from the back surface and thus increase the heated surface temperature of the C/C-SiC panel approximately 177 C (350 F). The final C/C-SiC panel was tested for three cycles totaling over 135 sec at Mach 6 enthalpy. Slightly more erosion was observed on the C/C panel than the C/C-SiC panels, but both material systems demonstrated acceptable recession performance for the HIFiRE 8 flight.

  10. Feasibility and induced effects of subsurface porous media hydrogen storage

    NASA Astrophysics Data System (ADS)

    Tilmann Pfeiffer, Wolf; Li, Dedong; Wang, Bo; Bauer, Sebastian

    2015-04-01

    Fluctuations in energy production from renewable sources like wind or solar power can lead to shortages in energy supply which can be mitigated using energy storage concepts. Underground storage of hydrogen in porous sandstone formations could be a storage option for large amounts of energy over long storage cycles. However, this use of the subsurface requires an analysis of possible interactions with other uses of the subsurface such as geothermal energy storage or groundwater abstraction. This study aims at quantifying the feasibility of porous media hydrogen storage to provide stored energy on a timescale of several days to weeks as well as possible impacts on the subsurface. The hypothetical storage site is based on an anticlinal structure located in Schleswig-Holstein, northern Germany. The storage is injected and extracted using five wells completed in a partially eroded, heterogeneous sandstone layer in the top of the structure at a depth of about 500 m. The storage formation was parameterized based on a local facies model with intrinsic permeabilities of 250-2500 mD and porosities of 35-40%. Storage initialization and subsequent storage cycles, each consisting of a hydrogen injection and extraction, were numerically simulated. The simulation results indicate the general feasibility of this hydrogen storage concept. The simulated sandstone formation is able to provide an average of around 1480 t of hydrogen per week (1830 TJ) which is about 5% of the total weekly energy production or about 10% of the weekly energy consumption of Schleswig-Holstein with the hydrogen production rate being the limiting factor of the overall performance. Induced hydraulic effects are a result of the induced overpressure within the storage formation. Propagation of the pressure signal does not strongly depend on the formation heterogeneity and thus shows approximately radial characteristics with one bar pressure change in distances of about 5 km from the injection wells. Thermal

  11. Light-induced metastable structural changes in hydrogenated amorphous silicon

    SciTech Connect

    Fritzsche, H.

    1996-09-01

    Light-induced defects (LID) in hydrogenated amorphous silicon (a-Si:H) and its alloys limit the ultimate efficiency of solar panels made with these materials. This paper reviews a variety of attempts to find the origin of and to eliminate the processes that give rise to LIDs. These attempts include novel deposition processes and the reduction of impurities. Material improvements achieved over the past decade are associated more with the material`s microstructure than with eliminating LIDs. We conclude that metastable LIDs are a natural by-product of structural changes which are generally associated with non-radiative electron-hole recombination in amorphous semiconductors.

  12. A model for pressurized hydrogen induced thin film blisters

    NASA Astrophysics Data System (ADS)

    van den Bos, R. A. J. M.; Reshetniak, V.; Lee, C. J.; Benschop, J.; Bijkerk, F.

    2016-12-01

    We introduce a model for hydrogen induced blister formation in nanometer thick thin films. The model assumes that molecular hydrogen gets trapped under a circular blister cap causing it to deflect elastically outward until a stable blister is formed. In the first part, the energy balance required for a stable blister is calculated. From this model, the adhesion energy of the blister cap, the internal pressure, and the critical H-dose for blister formation can be calculated. In the second part, the flux balance required for a blister to grow to a stable size is calculated. The model is applied to blisters formed in a Mo/Si multilayer after being exposed to hydrogen ions. From the model, the adhesion energy of the Mo/Si blister cap was calculated to be around 1.05 J/m2 with internal pressures in the range of 175-280 MPa. Based on the model, a minimum ion dose for the onset of blister formation was calculated to be d = 4.2 × 1018 ions/cm2. From the flux balance equations, the diffusion constant for the Mo/Si blister cap was estimated to be DH2=(10 ±1 )×10-18 cm2/s .

  13. Microstructural characterization of hydrogen induced cracking in TRIP-assisted steel by EBSD

    SciTech Connect

    Laureys, A.; Depover, T.; Petrov, R.; Verbeken, K.

    2016-02-15

    The present work evaluates hydrogen induced cracking by performing an elaborate EBSD (Electron BackScatter Diffraction) study in a steel with transformation induced plasticity (TRIP-assisted steel). This type of steel exhibits a multiphase microstructure which undergoes a deformation induced phase transformation. Additionally, each microstructural constituent displays a different behavior in the presence of hydrogen. The aim of this study is to obtain a better understanding on the mechanisms governing hydrogen induced crack initiation and propagation in the hydrogen saturated multiphase structure. Tensile tests on notched samples combined with in-situ electrochemical hydrogen charging were conducted. The tests were interrupted at stresses just after reaching the tensile strength, i.e. before macroscopic failure of the material. This allowed to study hydrogen induced crack initiation and propagation by SEM (Scanning Electron Microscopy) and EBSD. A correlation was found between the presence of martensite, which is known to be very susceptible to hydrogen embrittlement, and the initiation of hydrogen induced cracks. Initiation seems to occur mostly by martensite decohesion. High strain regions surrounding the hydrogen induced crack tips indicate that further crack propagation may have occurred by the HELP (hydrogen-enhanced localized plasticity) mechanism. Small hydrogen induced cracks located nearby the notch are typically S-shaped and crack propagation was dominantly transgranularly. The second stage of crack propagation consists of stepwise cracking by coalescence of small hydrogen induced cracks. - Highlights: • Hydrogen induced cracking in TRIP-assisted steel is evaluated by EBSD. • Tensile tests were conducted on notched hydrogen saturated samples. • Crack initiation occurs by a H-Enhanced Interface DEcohesion (HEIDE) mechanism. • Crack propagation involves growth and coalescence of small cracks. • Propagation is governed by the characteristics of

  14. Geranylgeranylacetone suppresses hydrogen peroxide-induced apoptosis of osteoarthritic chondrocytes.

    PubMed

    Yoda, Masaki; Sakai, Tadahiro; Mitsuyama, Hirohito; Hiraiwa, Hideki; Ishiguro, Naoki

    2011-11-01

    Osteoarthritis (OA) is a common disease, afflicting many sufferers with both pain and functional disorders. Various therapies have been attempted for OA, but no fully effective treatment has been established yet. Apoptosis of chondrocytes caused by reactive oxygen species (ROS) has been considered important in the pathogenesis of OA. The progression of OA may be prevented by suppressing apoptosis of chondrocytes. Geranylgeranylacetone (GGA) has been used as an anti-ulcer drug in Japan for more than 20 years. Several recent studies have shown that GGA can induce heat shock protein (HSP) and exert cytoprotective actions on a large variety of cells and tissues. In this study, we investigated the effects of GGA on the apoptosis of OA chondrocytes induced by hydrogen peroxide (H(2)O(2)). Human isolated OA chondrocytes were cultured in the absence or presence of GGA. Cell viability, caspase 3/7 and 9 activities, HSP70 mRNA and protein expressions were examined, and morphological analyses were conducted after exposure of cells to H(2)O(2) to induce apoptosis. Geranylgeranylacetone dose-dependently reversed the H(2)O(2)-induced decrease in cell viability. It was recognized that GGA rendered OA chondrocytes resistant to H(2)O(2)-induced apoptosis from Hoechst 33342 staining and TUNEL staining. Caspases 3 and 9 were activated by addition of H(2)O(2), and GGA suppressed this H(2)O(2)-induced activation of both caspases. H(2)O(2)-induced induction of HSP70 was enhanced in OA chondrocytes by pretreatment with GGA. The results showed that GGA can suppress apoptosis of chondrocytes and enhance production of HSP70. This study is the first, to our knowledge, to demonstrate that GGA protects OA chondrocytes from H(2)O(2)-induced apoptosis, at least in part by enhancing HSP70 production. These results indicate that GGA is a potentially useful drug for the treatment of OA.

  15. Thermodynamic properties of carbon in b.c.c. and f.c.c. iron-silicon-carbon solid solutions.

    NASA Technical Reports Server (NTRS)

    Chraska, P.; Mclellan, R. B.

    1971-01-01

    The equilibrium between hydrogen-methane gas mixtures and Fe-Si-C solid solutions has been investigated both as a function of temperature and carburizing gas composition. The thermodynamic properties of the carbon atoms in both b.c.c. and f.c.c. solid solution have been derived from the equilibrium measurements. The results found have been compared with those of earlier investigations and with the predictions of recent theoretical models on ternary solid solutions containing both substitutional and interstitial solute atoms.

  16. A General Approach To Fabricate Fe3O4 Nanoparticles Decorated with Pd, Au, and Rh: Magnetically Recoverable and Reusable Catalysts for Suzuki C-C Cross-Coupling Reactions, Hydrogenation, and Sequential Reactions.

    PubMed

    Gonzàlez de Rivera, Ferran; Angurell, Inmaculada; Rossell, Marta D; Erni, Rolf; Llorca, Jordi; Divins, Núria J; Muller, Guillermo; Seco, Miquel; Rossell, Oriol

    2013-09-02

    A facile strategy has been explored for loading noble metals onto the surface of ferrite nanoparticles with the assistance of phosphine-functionalized linkers. Palladium loading is shown to occur with participation of both the phosphine function and the surface hydroxyl groups. Hybrid nanoparticles containing simultaneously Pd and Au (or Rh) are obtained by successive loading of metals. Similarly, ferrite nanoparticles decorated with Pd, Au, and Rh have also been formed by using the same strategy. The catalytic properties of the new nanoparticles are evidenced in processes such as reduction of 4-nitrophenol or hydrogenation of styrene. Besides, the sequential process involving a cross-coupling reaction followed by reduction of 1-nitrobiphenyl has been successfully achieved by employing Pd/Au decorated nanoferrite particles. Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Hydrogen peroxide induces apoptosis via a mitochondrial pathway in chondrocytes

    NASA Astrophysics Data System (ADS)

    Zhuang, Cai-ping; Liang, Qian; Wang, Xiao-ping; Chen, Tong-sheng

    2012-03-01

    The degenerative joint disease such as osteoarthritis (OA) is closely associated with the death of chondrocytes in apoptosis fashion. Hydrogen peroxide (H2O2), higher expression following acute damage in OA patients, has been shown to be up-regulated during apoptosis in a bulk of experimental models. This study was aimed to explore the mechanism of H2O2-induced rabbit chondrocytes apoptosis. Articular cartilage was biopsied from the joints of 6 weeks old New Zealand rabbits. Cell Counting Kit (CCK-8) assay was used to assess the inhibitory effect of H2O2 on cell viability. H2O2 treatment induced a remarkable reduction of cell viability. We used flow cytometry to assess the form of cell death with Annexin-V/PI double staining, and found that H2O2 treatment induced apoptosis in a dose-and time-dependent manner. Exposure of chondrocytes to 1.5 mM of H2O2 for 2 h induced a burst apoptosis that can be alleviated by N-acetyl cysteine (NAC) pretreatment, an anti-oxidant amino-acid derivative. Loss of mitochondria membrane potential (▵Ψm) was evaluated using confocal microscopy imaging and flow cytometry (FCM). H2O2 treatment induced a marked reduction of ▵Ψm, and the abrupt disappearance of ▵Ψm occurred within 5 minutes. These results indicate that H2O2 induces a rapid apoptosis via a mitochondrial pathway in rabbit chondrocytes.

  18. HYDROGEN EFFECTS ON STRAIN-INDUCED MARTENSITE FORMATION IN TYPE 304L STAINLESS STEEL

    SciTech Connect

    Morgan, M; Ps Lam, P

    2008-12-11

    Unstable austenitic stainless steels undergo a strain-induced martensite transformation. The effect of hydrogen on this transformation is not well understood. Some researchers believe that hydrogen makes the transformation to martensite more difficult because hydrogen is an austenite stabilizer. Others believe that hydrogen has little or no effect at all on the transformation and claim that the transformation is simply a function of strain and temperature. Still other researchers believe that hydrogen should increase the ability of the metal to transform due to hydrogen-enhanced dislocation mobility and slip planarity. While the role of hydrogen on the martensite transformation is still debated, it has been experimentally verified that this transformation does occur in hydrogen-charged materials. What is the effect of strain-induced martensite on hydrogen embrittlement? Martensite near crack-tips or other highly strained regions could provide much higher hydrogen diffusivity and allow for quicker hydrogen concentration. Martensite may be more intrinsically brittle than austenite and has been shown to be severely embrittled by hydrogen. However, it does not appear to be a necessary condition for embrittlement since Type 21-6-9 stainless steel is more stable than Type 304L stainless steel but susceptible to hydrogen embrittlement. In this study, the effect of hydrogen on strain-induced martensite formation in Type 304L stainless steel was investigated by monitoring the formation of martensite during tensile tests of as-received and hydrogen-charged samples and metallographically examining specimens from interrupted tensile tests after increasing levels of strain. The effect of hydrogen on the fracture mechanisms was also studied by examining the fracture features of as-received and hydrogen-charged specimens and relating them to the stress-strain behavior.

  19. Hydrogen Embrittlement Susceptibility and Hydrogen-Induced Additive Stress of 7050 Aluminum Alloy Under Various Aging States

    NASA Astrophysics Data System (ADS)

    Qi, W. J.; Song, R. G.; Qi, X.; Li, H.; Wang, Z. X.; Wang, C.; Jin, J. R.

    2015-09-01

    Hydrogen embrittlement susceptibility of 7050 aluminum alloy under various aging states has been investigated by means of cathodic hydrogen permeation, slow strain rate test, hydrogen determinator, x-ray diffraction, and scanning electron microscope, and effect of hydrogen on atomic binding force of charged alloy has been calculated by free electron theory in this paper. Simultaneously, hydrogen-induced additive stress (σad) of 7050 aluminum alloy hydrogen charged with different current densities under various aging states have been investigated by flowing stress differential method. The results showed that hydrogen concentration of examined alloy increased with increasing charging time or current density under the same aging state. Hydrogen segregation occurred at grain boundaries which enlarged the crystal lattice constant, meanwhile, it reduced the average bonding energy and interatomic bonding force of the grain boundary atoms, thus resulting in hydrogen embrittlement; moreover, σad of 7050 aluminum alloy increased linearly with increasing hydrogen concentration under the same aging state, i.e., under aged: σad = -1.61 + 9.93 × 105 C H, peak aged: σad = -1.55 + 9.67 × 105 C H, over aged: σad = -0.16 + 9.35 × 105 C H, correspondingly, σad increased the susceptibility to hydrogen embrittlement ( I HE) further. Under the same charging condition, aging states had a great influence on σad and I HE, the under-aged state alloy was of the highest, the over-aged state alloy was of the lowest, and peak-aged was in the middle.

  20. Light-induced metastability in pure and hydrogenated amorphous silicon

    SciTech Connect

    Queen, D. R.; Liu, X.; Karel, J.; Wang, Q.; Crandall, R. S.; Metcalf, T. H.; Hellman, F.

    2015-10-01

    Light soaking is found to increase the specific heat C and internal friction Q-1 of pure (a-Si) and hydrogenated (a-Si:H) amorphous silicon. At the lowest temperatures, the increases in C and Q-1 are consistent with an increased density of two-level systems (TLS). The light-induced increase in C persists to room temperature. Neither the sound velocity nor shear modulus change with light soaking indicating that the Debye specific heat is unchanged which suggests that light soaking creates localized vibrational modes in addition to TLS. The increase can be reversibly added and removed by light soaking and annealing, respectively, suggesting that it is related to the Staebler-Wronski effect (SWE), even in a-Si without H, and involves a reversible nanoscale structural rearrangement that is facilitated by, but does not require, H to occur.

  1. Bandgap opening in graphene induced by patterned hydrogen adsorption.

    PubMed

    Balog, Richard; Jørgensen, Bjarke; Nilsson, Louis; Andersen, Mie; Rienks, Emile; Bianchi, Marco; Fanetti, Mattia; Laegsgaard, Erik; Baraldi, Alessandro; Lizzit, Silvano; Sljivancanin, Zeljko; Besenbacher, Flemming; Hammer, Bjørk; Pedersen, Thomas G; Hofmann, Philip; Hornekaer, Liv

    2010-04-01

    Graphene, a single layer of graphite, has recently attracted considerable attention owing to its remarkable electronic and structural properties and its possible applications in many emerging areas such as graphene-based electronic devices. The charge carriers in graphene behave like massless Dirac fermions, and graphene shows ballistic charge transport, turning it into an ideal material for circuit fabrication. However, graphene lacks a bandgap around the Fermi level, which is the defining concept for semiconductor materials and essential for controlling the conductivity by electronic means. Theory predicts that a tunable bandgap may be engineered by periodic modulations of the graphene lattice, but experimental evidence for this is so far lacking. Here, we demonstrate the existence of a bandgap opening in graphene, induced by the patterned adsorption of atomic hydrogen onto the Moiré superlattice positions of graphene grown on an Ir(111) substrate.

  2. Hydrogen retention in tungsten materials studied by Laser Induced Desorption

    NASA Astrophysics Data System (ADS)

    Zlobinski, M.; Philipps, V.; Schweer, B.; Huber, A.; Reinhart, M.; Möller, S.; Sergienko, G.; Samm, U.; 't Hoen, M. H. J.; Manhard, A.; Schmid, K.; Textor Team

    2013-07-01

    Development of methods to characterise the first wall in ITER and future fusion devices without removal of wall tiles is important to support safety assessments for tritium retention and dust production and to understand plasma wall processes in general. Laser based techniques are presently under investigation to provide these requirements, among which Laser Induced Desorption Spectroscopy (LIDS) is proposed to measure the deuterium and tritium load of the plasma facing surfaces by thermal desorption and spectroscopic detection of the desorbed fuel in the edge of the fusion plasma. The method relies on its capability to desorb the hydrogen isotopes in a laser heated spot. The application of LID on bulk tungsten targets exposed to a wide range of deuterium fluxes, fluences and impact energies under different surface temperatures is investigated in this paper. The results are compared with Thermal Desorption Spectrometry (TDS), Nuclear Reaction Analysis (NRA) and a diffusion model.

  3. Cavitation-induced ignition of cryogenic hydrogen-oxygen fluids

    NASA Astrophysics Data System (ADS)

    Osipov, V. V.; Muratov, C. B.; Ponizovskaya-Devine, E.; Foygel, M.; Smelyanskiy, V. N.

    2011-03-01

    The Challenger disaster and purposeful experiments with liquid hydrogen (H2) and oxygen (Ox) tank breaches demonstrated that cryogenic H2/Ox fluids always self-ignite in the process of their sudden mixing. Here, we propose a cavitation-induced self-ignition mechanism that may be realized under these conditions. In one possible scenario, self-ignition is caused by the strong shock waves generated by the collapse of pure Ox vapor bubble near the surface of the Ox liquid that may initiate detonation of the gaseous H2/Ox mixture next to the gas-liquid interface. This effect is further enhanced by H2/Ox combustion inside the collapsing bubble in the presence of admixed H2 gas.

  4. Salidroside inhibits endogenous hydrogen peroxide induced cytotoxicity of endothelial cells.

    PubMed

    Zhao, Xingyu; Jin, Lianhai; Shen, Nan; Xu, Bin; Zhang, Wei; Zhu, Hongli; Luo, Zhengli

    2013-01-01

    Salidroside, a phenylpropanoid glycoside isolated from Rhodiola rosea L., shows potent antioxidant property. Herein, we investigated the protective effects of salidroside against hydrogen peroxide (H2O2)-induced oxidative damage in human endothelial cells (EVC-304). EVC-304 cells were incubated in the presence or absence of low steady states of H2O2 (3-4 µM) generated by glucose oxidase (GOX) with or without salidroside. 3(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), superoxide dismutase (SOD), malondialdehyde (MDA), and glutathione (GSH) assays were performed, together with Hoechst 33258 staining and flow cytometric analysis using Annexin-V and propidium iodide (PI) label. The results indicated that salidroside pretreatment attenuated endogenous H2O2 induced apoptotic cell death in EVC-304 cells in a dose-dependent pattern. Furthermore, Western blot data revealed that salidroside inhibited activation of caspase-3, 9 and cleavage of poly(ADP-ribose) polymerase (PARP) induced by endogenous H2O2. It also decreased the expression of Bax and rescued the balance of pro- and anti-apoptotic proteins. All these results demonstrated that salidroside may present a potential therapy for oxidative stress in cardiovascular and cerebrovascular diseases.

  5. Hydrogen-containing saline attenuates doxorubicin-induced heart failure in rats.

    PubMed

    Wu, Shujing; Zhu, Liqun; Yang, Jing; Fan, Zhixin; Dong, Yanli; Luan, Rui; Cai, Jingjing; Fu, Lu

    2014-08-01

    Interactions between doxorubicin (DOX) and iron generate reactive oxygen species and contribute to DOX-induced heart failure. Hydrogen, as a selective antioxidant, is a promising potential therapeutic option for the treatment of a variety of diseases. Therefore, we investigated the preventive effects of hydrogen treatment on DOX-induced heart failure in rats. We found that cardiac function was significantly improved and that the plasma levels of oxidative-stress markers and myocardial autophagic activity were decreased in animals treated with hydrogen-containing saline. Therefore, we conclude that hydrogen-containing saline may have beneficial effects for doxorubicin-induced heart failure.

  6. Iminopropadienones RN=C=C=C=O and bisiminopropadienes RN=C=C=C=NR: Matrix infrared spectra and anharmonic frequency calculations

    NASA Astrophysics Data System (ADS)

    Bégué, Didier; Baraille, Isabelle; Andersen, Heidi Gade; Wentrup, Curt

    2013-10-01

    Methyliminopropadienone MeN=C=C=C=O 1a was generated by flash vacuum thermolysis from four different precursors and isolated in solid argon. The matrix-isolation infrared spectrum is dominated by unusually strong anharmonic effects resulting in complex fine structure of the absorptions due to the NCCCO moiety in the 2200 cm-1 region. Doubling and tripling of the corresponding absorption bands are observed for phenyliminopropadienone PhN=C=C=C=O 1b and bis(phenylimino)propadiene PhN=C=C=C=NPh 9, respectively. Anharmonic vibrational frequency calculations allow the identification of a number of overtones and combination bands as the cause of the splittings for each molecule. This method constitutes an important tool for the characterization of reactive intermediates and unusual molecules by matrix-isolation infrared spectroscopy.

  7. Iminopropadienones RN=C=C=C=O and bisiminopropadienes RN=C=C=C=NR: matrix infrared spectra and anharmonic frequency calculations.

    PubMed

    Bégué, Didier; Baraille, Isabelle; Andersen, Heidi Gade; Wentrup, Curt

    2013-10-28

    Methyliminopropadienone MeN=C=C=C=O 1a was generated by flash vacuum thermolysis from four different precursors and isolated in solid argon. The matrix-isolation infrared spectrum is dominated by unusually strong anharmonic effects resulting in complex fine structure of the absorptions due to the NCCCO moiety in the 2200 cm(-1) region. Doubling and tripling of the corresponding absorption bands are observed for phenyliminopropadienone PhN=C=C=C=O 1b and bis(phenylimino)propadiene PhN=C=C=C=NPh 9, respectively. Anharmonic vibrational frequency calculations allow the identification of a number of overtones and combination bands as the cause of the splittings for each molecule. This method constitutes an important tool for the characterization of reactive intermediates and unusual molecules by matrix-isolation infrared spectroscopy.

  8. Hydrogen Sulfide Induced Disruption of Na+ Homeostasis in the Cortex

    PubMed Central

    Chao, Dongman; He, Xiaozhou; Yang, Yilin; Balboni, Gianfranco; Salvadori, Severo; Kim, Dong H.; Xia, Ying

    2012-01-01

    Maintenance of ionic balance is essential for neuronal functioning. Hydrogen sulfide (H2S), a known toxic environmental gaseous pollutant, has been recently recognized as a gasotransmitter involved in numerous biological processes and is believed to play an important role in the neural activities under both physiological and pathological conditions. However, it is unclear if it plays any role in maintenance of ionic homeostasis in the brain under physiological/pathophysiological conditions. Here, we report by directly measuring Na+ activity using Na+ selective electrodes in mouse cortical slices that H2S donor sodium hydrosulfide (NaHS) increased Na+ influx in a concentration-dependent manner. This effect could be partially blocked by either Na+ channel blocker or N-methyl-D-aspartate receptor (NMDAR) blocker alone or almost completely abolished by coapplication of both blockers but not by non-NMDAR blocker. These data suggest that increased H2S in pathophysiological conditions, e.g., hypoxia/ischemia, potentially causes a disruption of ionic homeostasis by massive Na+ influx through Na+ channels and NMDARs, thus injuring neural functions. Activation of delta-opioid receptors (DOR), which reduces Na+ currents/influx in normoxia, had no effect on H2S-induced Na+ influx, suggesting that H2S-induced disruption of Na+ homeostasis is resistant to DOR regulation and may play a major role in neuronal injury in pathophysiological conditions, e.g., hypoxia/ischemia. PMID:22474073

  9. Laser-induced separation of hydrogen isotopes in the liquid phase

    DOEpatents

    Freund, Samuel M.; Maier, II, William B.; Beattie, Willard H.; Holland, Redus F.

    1980-01-01

    Hydrogen isotope separation is achieved by either (a) dissolving a hydrogen-bearing feedstock compound in a liquid solvent, or (b) liquefying a hydrogen-bearing feedstock compound, the liquid phase thus resulting being kept at a temperature at which spectral features of the feedstock relating to a particular hydrogen isotope are resolved, i.e., a clear-cut isotope shift is delineated, irradiating the liquid phase with monochromatic radiation of a wavelength which at least preferentially excites those molecules of the feedstock containing a first hydrogen isotope, inducing photochemical reaction in the excited molecules, and separating the reaction product containing the first isotope from the liquid phase.

  10. Hydrogen sulfide inhalation ameliorates allergen induced airway hypereactivity by modulating mast cell activation.

    PubMed

    Roviezzo, Fiorentina; Bertolino, Antonio; Sorrentino, Rosalinda; Terlizzi, Michela; Matteis, Maria; Calderone, Vincenzo; Mattera, Valentina; Martelli, Alma; Spaziano, Giuseppe; Pinto, Aldo; D'Agostino, Bruno; Cirino, Giuseppe

    2015-10-01

    Compelling evidence suggests that hydrogen sulfide represents an important gaseous transmitter in the mammalian respiratory system. In the present study, we have evaluated the role of mast cells in hydrogen sulfide-induced effects on airways in a mouse model of asthma. Mice were sensitized to ovalbumin and received aerosol of a hydrogen sulfide donor (NaHS; 100 ppm) starting at day 7 after ovalbumin challenge. Exposure to hydrogen sulfide abrogated ovalbumin-induced bronchial hypereactivity as well as the increase in lung resistance. Concomitantly, hydrogen sulfide prevented mast cell activity as well as FGF-2 and IL-13 upregulation. Conversely, pulmonary inflammation and the increase in plasmatic IgE levels were not affected by hydrogen sulfide. A lack of hydrogen sulfide effects in mast cell deficient mice occurred. Primary fibroblasts harvested from ovalbumin-sensitized mice showed an increased proliferation rate that was inhibited by hydrogen sulfide aerosol. Furthermore, ovalbumin-induced transdifferentiation of pulmonary fibroblasts into myofibroblasts was reversed. Finally, hydrogen sulfide did abrogate in vitro the degranulation of the mast cell-like RBL-2H3 cell line. Similarly to the in vivo experiments the inhibitory effect was present only when the cells were activated by antigen exposure. In conclusion, inhaled hydrogen sulfide improves lung function and inhibits bronchial hyper-reactivity by modulating mast cells and in turn fibroblast activation.

  11. Polarization-induced σ-holes and hydrogen bonding.

    PubMed

    Hennemann, Matthias; Murray, Jane S; Politzer, Peter; Riley, Kevin E; Clark, Timothy

    2012-06-01

    The strong collinear polarizability of the A-H bond in A-H···B hydrogen bonds is shown to lead to an enhanced σ-hole on the donor hydrogen atom and hence to stronger hydrogen bonding. This effect helps to explain the directionality of hydrogen bonds, the well known cooperative effect in hydrogen bonding, and the occurrence of blue-shifting. The latter results when significant additional electron density is shifted into the A-H bonding region by the polarization effect. The shift in the A-H stretching frequency is shown to depend essentially linearly on the calculated atomic charge on the donor hydrogen for all donors in which A belongs to the same row of the periodic table. A further result of the polarization effect, which is also expected for other σ-hole bonds, is that the strength of the non-covalent interaction depends strongly on external electric fields.

  12. Applications of light-induced electron-transfer and hydrogen-abstraction processes: photoelectrochemical production of hydrogen from reducing radicals

    SciTech Connect

    Chandrasekaran, K.; Whitten, D.G.

    1980-07-16

    A study of several photoprocesses which generate reducing radicals in similar photoelectrochemical cells was reported. Coupling of a light-induced reaction to produce a photocurrent concurrent with hydrogen generation in a second compartment can occur for a number of electron transfers and hydrogen abstractions in what appears to be a fairly general process. Irradiation of the RuL/sub 3//sup +2//Et/sub 3/N: photoanode compartment leads to production of a photocurrent together with generation of hydrogen at the cathode. A rather different type of reaction that also results in formation of two reducing radicals as primary photoproducts if the photoreduction of ketones and H-heteroaromatics by alcohols and other hydrogen atom donors. Irradiation of benzophenone/2-propanol/MV/sup +2/ solutions in the photoanode compartment (intensity 1.4 x 10/sup -8/ einstein/s) leads to a buildup of moderate levels of MV/sup +/ and to a steady photocurrent of 320 ..mu..A. The MV/sup +/ is oxidized at the anode of the photolyzed compartment with concomitant reduction of H/sup +/ in the cathode compartment. There was no decrease in benzophenone concentration over moderate periods of irradiation, and a steady production of hydrogen in the cathode compartment was observed. The photocurrent produced was linear with the square of absorbed light intensity. The quantum efficiency at the above-indicated intensity is 22%; quantitative analysis of the hydrogen produced gives good agreement with this value. 1 figure, 1 table. (DP)

  13. Pyruvate protects neurons against hydrogen peroxide-induced toxicity.

    PubMed

    Desagher, S; Glowinski, J; Prémont, J

    1997-12-01

    Hydrogen peroxide (H2O2) is suspected to be involved in numerous brain pathologies such as neurodegenerative diseases or in acute injury such as ischemia or trauma. In this study, we examined the ability of pyruvate to improve the survival of cultured striatal neurons exposed for 30 min to H2O2, as estimated 24 hr later by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazoliumbromide assay. Pyruvate strongly protected neurons against both H2O2 added to the external medium and H2O2 endogenously produced through the redox cycling of the experimental quinone menadione. The neuroprotective effect of pyruvate appeared to result rather from the ability of alpha-ketoacids to undergo nonenzymatic decarboxylation in the presence of H2O2 than from an improvement of energy metabolism. Indeed, several other alpha-ketoacids, including alpha-ketobutyrate, which is not an energy substrate, reproduced the neuroprotective effect of pyruvate. In contrast, lactate, a neuronal energy substrate, did not protect neurons from H2O2. Optimal neuroprotection was achieved with relatively low concentrations of pyruvate (induced by the cotransport of pyruvate and protons into neurons. Indeed, cytosolic acidification both enhanced the H2O2-induced neurotoxicity and decreased the rate of pyruvate decarboxylation by H2O2. Together, these results indicate that pyruvate efficiently protects neurons against both exogenous and endogenous H2O2. Its low toxicity and its capacity to cross the blood-brain barrier open a new therapeutic perspective in brain pathologies in which H2O2 is involved.

  14. Effects of helium and hydrogen on radiation-induced microstructural changes in austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Jin, Hyung-Ha; Ko, Eunsol; Lim, Sangyeop; Kwon, Junhyun

    2015-09-01

    Microstructural changes in austenitic stainless steel by helium, hydrogen, and iron ion irradiation were investigated with transmission electron microscopy. Typical radiation-induced changes, such as the formation of Frank loops in the matrix and radiation-induced segregation (RIS) or depletion at grain boundaries, were observed after ion irradiation. The helium ion irradiation led to the formation of cavities both at grain boundaries and in the matrix, as well as the development of smaller Frank loops. The hydrogen ion irradiation generated stronger RIS behavior at the grain boundaries compared to irradiation with helium and iron ions. The effects of helium and hydrogen on radiation-induced microstructural changes were discussed.

  15. 98. Catalog HHistory 1, C.C.C., 19 Tree Planting, Negative No. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    98. Catalog H-History 1, C.C.C., 19 Tree Planting, Negative No. P 474c (Photographer and date unknown) TRANSPLANTING TREE. - Skyline Drive, From Front Royal, VA to Rockfish Gap, VA , Luray, Page County, VA

  16. 99. Catalog HHistory 1, C.C.C., 23 Guard Rail Construction, Negative ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    99. Catalog H-History 1, C.C.C., 23 Guard Rail Construction, Negative No. P455e (Photographer and date unknown) GUARD RAIL INSTALLATION. - Skyline Drive, From Front Royal, VA to Rockfish Gap, VA , Luray, Page County, VA

  17. 100. Catalog HHistory 1, C.C.C., 34 Landscaping, Negative No. P ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    100. Catalog H-History 1, C.C.C., 34 Landscaping, Negative No. P 733c (Photographer and date unknown) SLOPE MAINTENANCE WORK BY CCC. - Skyline Drive, From Front Royal, VA to Rockfish Gap, VA , Luray, Page County, VA

  18. 101. Catalog HHistory 1, C.C.C., 34 Landscaping, Negative No. 1340 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    101. Catalog H-History 1, C.C.C., 34 Landscaping, Negative No. 1340 (Photographer and date unknown) BANK BLENDING WORK BY CCC. - Skyline Drive, From Front Royal, VA to Rockfish Gap, VA , Luray, Page County, VA

  19. Molecular Hydrogen Therapy Ameliorates Organ Damage Induced by Sepsis.

    PubMed

    Zheng, Yijun; Zhu, Duming

    2016-01-01

    Since it was proposed in 2007, molecular hydrogen therapy has been widely concerned and researched. Many animal experiments were carried out in a variety of disease fields, such as cerebral infarction, ischemia reperfusion injury, Parkinson syndrome, type 2 diabetes mellitus, metabolic syndrome, chronic kidney disease, radiation injury, chronic hepatitis, rheumatoid arthritis, stress ulcer, acute sports injuries, mitochondrial and inflammatory disease, and acute erythema skin disease and other pathological processes or diseases. Molecular hydrogen therapy is pointed out as there is protective effect for sepsis patients, too. The impact of molecular hydrogen therapy against sepsis is shown from the aspects of basic vital signs, organ functions (brain, lung, liver, kidney, small intestine, etc.), survival rate, and so forth. Molecular hydrogen therapy is able to significantly reduce the release of inflammatory factors and oxidative stress injury. Thereby it can reduce damage of various organ functions from sepsis and improve survival rate. Molecular hydrogen therapy is a prospective method against sepsis.

  20. Hydrogen induced stabilization of meta-stable Mg-Ti

    NASA Astrophysics Data System (ADS)

    Jensen, I. J. T.; Diplas, S.; Løvvik, O. M.

    2012-03-01

    The hydrogenation of Mg0.8125Ti0.1875 was investigated by density functional calculations, using a model where Ti was segregated into nano-clusters. Introducing small amounts of hydrogen resulted in significant stabilization, with the mixing enthalpy (cohesive energy relative to standard state elements) becoming negative for hydrogen contents exceeding 0.07 H per metal. H prefers sites on the interface between Mg and Ti, with hydrogenation energies down to -115 kJ/(mol H2). Trapping of H on these very stable sites is proposed as an alternative explanation to why the reversibility of Mg-Ti thin films, which are initially meta-stable, can be preserved over many cycles of hydrogenation.

  1. Hydrogen-Induced Phase Transformations: a Base for a New Sphere of the Science of Metals (an Analytical Review)

    NASA Astrophysics Data System (ADS)

    Goltsov, V. A.

    2017-03-01

    Data on the phase transformations induced in metals by hydrogen are generalized and analyzed. It is suggested to classify hydrogen-induced phase transformations on the basis of allowance for the temperature dependence of the parameters of diffusion of substitutional and interstitial (hydrogen) atoms like in the classical science of metals. A pioneer classification of hydrogen-induced phase transformations by this method is developed.

  2. Is hydrogen sulfide-induced suspended animation general anesthesia?

    PubMed

    Li, Rosie Q; McKinstry, Andrew R; Moore, Jason T; Caltagarone, Breanna M; Eckenhoff, Maryellen F; Eckenhoff, Roderic G; Kelz, Max B

    2012-06-01

    Hydrogen sulfide (H(2)S) depresses mitochondrial function and thereby metabolic rates in mice, purportedly resulting in a state of "suspended animation." Volatile anesthetics also depress mitochondrial function, an effect that may contribute to their anesthetic properties. In this study, we ask whether H(2)S has general anesthetic properties, and by extension, whether mitochondrial effects underlie the state of anesthesia. We compared loss of righting reflex, electroencephalography, and electromyography in mice exposed to metabolically equipotent concentrations of halothane, isoflurane, sevoflurane, and H(2)S. We also studied combinations of H(2)S and anesthetics to assess additivity. Finally, the long-term effects of H(2)S were assessed by using the Morris water maze behavioral testing 2 to 3 weeks after exposures. Exposure to H(2)S decreases O(2) consumption, CO(2) production, and body temperature similarly to that of the general anesthetics, but fails to produce a loss of righting reflex or muscle atonia at metabolically equivalent concentrations. When combined, H(2)S antagonizes the metabolic effects of isoflurane, but potentiates the isoflurane-induced loss of righting reflex. We found no effect of prior H(2)S exposure on memory or learning. H(2)S (250 ppm), not itself lethal, produced delayed lethality when combined with subanesthetic concentrations of isoflurane. H(2)S cannot be considered a general anesthetic, despite similar metabolic suppression. Metabolic suppression, presumably via mitochondrial actions, is not sufficient to account for the hypnotic or immobilizing components of the anesthetic state. Combinations of H(2)S and isoflurane can be lethal, suggesting extreme care in the combination of these gases in clinical situations.

  3. Hydrogen Treatment Protects against Cell Death and Senescence Induced by Oxidative Damage.

    PubMed

    Han, A Lum; Park, Seong-Hoon; Park, Mi Sung

    2017-02-28

    Hydrogen has potential for preventive and therapeutic applications as an antioxidant. However, micro- and macroparticles of hydrogen in water disappear easily over time. In order to eliminate reactive oxygen species (ROS) related with the aging process, we used functional water containing nanoparticle hydrogen. Nanoparticle hydrogen does not disappear easily and collapse under water after long periods of time. We used murine embryonic fibroblasts that were isolated from 12.5-day embryos of C57BL/6 mice. We investigated the ability of nanoparticle hydrogen in water to suppress hydroxyurea-induced ROS production, cytotoxicity, and the accumulation of β-galactosidase (an indicator of aging), and promote cell proliferation. The accumulation of β-galactosidase in the cytoplasm and the appearance of abnormal nuclei were inhibited by daily treatment of cells with hydrogen water. When the aging process was accelerated by hydroxyurea-induced oxidative stress, the effect of hydrogen water was even more remarkable. Thus, this study showed the antioxidant and anti-senescence effects of hydrogen water. Nanoparticle hydrogen water is potentially a potent anti-aging agent.

  4. Grain boundary-induced variability of charge transport in hydrogenated polycrystalline graphene

    NASA Astrophysics Data System (ADS)

    Barrios Vargas, Jose E.; Toft Falkenberg, Jesper; Soriano, David; Cummings, Aron W.; Brandbyge, Mads; Roche, Stephan

    2017-06-01

    Chemical functionalization has proven to be a promising means of tailoring the unique properties of graphene. For example, hydrogenation can yield a variety of interesting effects, including a metal-insulator transition or the formation of localized magnetic moments. Meanwhile, graphene grown by chemical vapor deposition is the most suitable for large-scale production, but the resulting material tends to be polycrystalline. Up to now there has been relatively little focus on how chemical functionalization, and hydrogenation in particular, impacts the properties of polycrystalline graphene. In this work, we use numerical simulations to study the electrical properties of hydrogenated polycrystalline graphene. We find a strong correlation between the spatial distribution of the hydrogen adsorbates and the charge transport properties. Charge transport is weakly sensitive to hydrogenation when adsorbates are confined to the grain boundaries, while a uniform distribution of hydrogen degrades the electronic mobility. This difference stems from the formation of the hydrogen-induced resonant impurity states, which are inhibited when the honeycomb symmetry is locally broken by the grain boundaries. These findings suggest a tunability of electrical transport of polycrystalline graphene through selective hydrogen functionalization, and also have implications for hydrogen-induced magnetization and spin lifetime of this material.

  5. Fructose-induced breath hydrogen in patients with fruit intolerance.

    PubMed

    Mann, Nirmal S; Cheung, Eddie C

    2008-02-01

    To measure bloating score, flatus passage, and hydrogen production after oral fructose in patients with history of fruit intolerance and compare these parameters with those in normal controls. Some patients complain of abdominal distention and excessive flatus after ingesting certain fruits such as mango, persimmon, and grapes but not after eating apricots and melon. We recorded breath hydrogen, flatus passage and bloating after 20 g fructose in 8 patients with history of fruit intolerance and 4 healthy controls. Breath hydrogen was measured every 15 minutes for 480 minutes using EC-60 gastrolyzer. Number of passage of flatus was recorded over 8 hours. Severity of abdominal distention on a scale of 1 to 10 was noted. The patients with fruit intolerance produced breath hydrogen 1745.2+/-7.8 parts per million, passed flatus 13.8+/-0.3 times, and had bloating score of 5.7+/-0.1. The healthy controls produced breath hydrogen 712.5+/-5.8 parts per million in 8 hours, passed flatus 7.2+/-0.5 time, and had bloating score of 2.7+/-0.2. After 20 g fructose, patients with history of fruit intolerance produce more breath hydrogen, pass flatus more frequently, and have a higher bloating score compared with healthy controls.

  6. Atomic Scale Structure of (001) Hydrogen-Induced Platelets in Germanium

    NASA Astrophysics Data System (ADS)

    David, Marie-Laure; Pizzagalli, Laurent; Pailloux, Fréderic; Barbot, Jean François

    2009-04-01

    An accurate characterization of the structure of hydrogen-induced platelets is a prerequisite for investigating both hydrogen aggregation and formation of larger defects. On the basis of quantitative high resolution transmission electron microscopy experiments combined with extensive first principles calculations, we present a model for the atomic structure of (001) hydrogen-induced platelets in germanium. It involves broken Ge-Ge bonds in the [001] direction that are dihydride passivated, vacancies, and trapped H2 molecules, showing that the species involved in platelet formation depend on the habit plane. This model explains all previous experimental observations.

  7. Hydrogen peroxide-inducible proteins in Salmonella typhimurium overlap with heat shock and other stress proteins.

    PubMed Central

    Morgan, R W; Christman, M F; Jacobson, F S; Storz, G; Ames, B N

    1986-01-01

    Hydrogen peroxide treatment induces the synthesis of 30 proteins in Salmonella typhimurium. Five of these proteins are also induced by heat shock, including the highly conserved DnaK protein. The induction of one of these five proteins by heat shock is dependent on oxyR, a positive regulator of hydrogen peroxide-inducible genes, while the induction of the other four by heat shock is oxyR independent. Five of the 30 hydrogen peroxide-inducible proteins have been identified, and their structural genes have been mapped. Other stresses such as nalidixic acid, ethanol, or cumene hydroperoxide treatment also induce subsets of the 30 hydrogen peroxide-inducible proteins as well as additional proteins. Hydrogen peroxide-inducible proteins are shown to be largely different from those proteins induced by aerobiosis. In addition, the expression of the katG (catalase) gene is shown to be regulated by oxyR at the level of mRNA. Images PMID:3534881

  8. Hydrogen peroxide induces G:C to T:A and G:C to C:G transversions in the supF gene of Escherichia coli.

    PubMed

    Akasaka, S; Yamamoto, K

    1994-06-03

    A vector plasmid, pZ189, carrying an Escherichia coli supF gene as a target for mutations, was treated with a combination of hydrogen peroxide and Fe3+/EDTA complex and propagated in E. coli host cells that had been induced for SOS functions by ultraviolet irradiation. The mutations frequency increased by up to 30-fold over spontaneous background levels with increasing concentrations of hydrogen peroxide. The increase in mutation frequency correlated with an increase in the formation of 8-hydroxydeoxyguanosine in the pZ189 DNA. Sequence analysis of 82 independent supF mutant plasmids revealed that 70 mutants contained base substitutions, with 63 of the 70 involving a G:C base pair, and with G:C-->C:G (28 cases) and G:C-->T:A (26 cases) transversions predominating. Investigation of the influence of the local DNA sequence on the transversions revealed that the guanine at the center of the triplet 5'-PuGA-3' was five times more likely to mutate after treatment with hydrogen peroxide than that at the center of 5'PyGN3'. G:C-->T:A transversions presumably resulted from mispairing of an altered G (probably 8-hydroxydeoxyguanosine) with deoxyadenosine. The origin of the G:C-->C:G transversions may be an as yet unidentified lesion generated by hydrogen peroxide. Mutagenic hotspots for base substitutions were found at positions 133, 160 and 168. Mutation spectra and the positions of mutagenic hotspots, when compared with a previously determined spontaneous mutagenesis spectrum, also provide information on the mechanism of spontaneous mutagenesis.

  9. Mapping the Globe with C & C Technologies

    NASA Astrophysics Data System (ADS)

    Kleiner, A. A.

    2001-12-01

    C & C Technologies is an international survey and mapping company with an entrepreneurial spirit that is evident throughout. C & C was recently awarded the MTS (Marine Technology Society) ROV Committee Corporate Excellence Award in recognition of their pioneering spirit displayed by the introduction of the HUGIN 3000 Autonomous Underwater Vehicle (AUV) to the offshore industry. This presentation will outline the wide variety of global mapping projects that C & C has performed for government, private sector, and academia. These include high-resolution mapping of Cater Lake, the Panama Canal, Antarctica, Lake Tahoe, and the HUGIN 3000ś discovery of the German submarine U-166 in 5000 feet of water in the Gulf of Mexico. Adacemic disciplines required to support these technical challenges will be characterized and job opportunities in this emerging field will be addressed.

  10. Saturated hydrogen saline attenuates endotoxin-induced acute liver dysfunction in rats.

    PubMed

    Xu, X-F; Zhang, J

    2013-01-01

    To determine the effect of saturated hydrogen saline on lipopolysaccharide (LPS)-induced acute liver dysfunction, rats were divided into control, LPS, and LPS plus saturated hydrogen saline (LPS+H(2)) groups. Treatment with saturated hydrogen saline prolonged the median survival time and reduced liver dysfunction. Moreover, saturated hydrogen saline significantly reduced pathological alterations in liver tissues, the number of ballooned hepatocytes, serum tumor necrosis factor (TNF)-alpha and interleukin (IL)-6 levels, and myeloperoxidase (MPO) and malondialdehyde (MDA) levels in liver tissues (P<0.05). Cell apoptosis was detected in liver tissues after LPS treatment, and attenuated by saturated hydrogen saline treatment. Saturated hydrogen saline also decreased phosphorylated extracellular signal-regulated kinase (p-ERK), phosphorylated Jun kinase (p-JNK), nuclear factor-kappa B (NF-kappaB), and second mitochondria-derived activator of caspase (Smac) levels, and increased p38 activation (P<0.05). Thus, saturated hydrogen saline may attenuate LPS-induced acute liver dysfunction in rats, possibly by reducing inflammation and cell apoptosis. Mitogen-activated protein kinase (MAPK), NF-kappaB, and Smac may contribute to saturated hydrogen saline-mediated liver protection.

  11. Profiling molecular changes induced by hydrogen treatment of lung allografts prior to procurement

    PubMed Central

    Tanaka, Yugo; Shigemura, Norihisa; Kawamura, Tomohiro; Noda, Kentaro; Isse, Kumiko; Stolz, Donna Beer; Billiar, Timothy R.; Toyoda, Yoshiya; Bermudez, Christian A.; Lyons-Weiler, James; Nakao, Atsunori

    2014-01-01

    Background We previously demonstrated that donor treatment with inhaled hydrogen protects lung grafts from cold ischemia/reperfusion (I/R) injury during lung transplantation. To elucidate the mechanisms underlying hydrogen’s protective effects, we conducted a gene array analysis to identify changes in gene expression associated with hydrogen treatment. Methods Donor rats were exposed to mechanical ventilation with 98% oxygen and 2% nitrogen or 2% hydrogen for 3 h before harvest; lung grafts were stored for 4 h in cold Perfadex. Affymetrix gene array analysis of mRNA transcripts was performed on the lung tissue prior to implantation. Results Pretreatment of donor lungs with hydrogen altered the expression of 229 genes represented on the array (182 upregulated; 47 downregulated). Hydrogen treatment induced several lung surfactant-related genes, ATP synthase genes and stress-response genes. The intracellular surfactant pool, tissue adenosine triphosphate (ATP) levels and heat shock protein 70 (HSP70) expression increased in the hydrogen-treated grafts. Hydrogen treatment also induced the transcription factors C/EBPα and C/EBPβ, which are known regulators of surfactant-related genes. Conclusion Donor ventilation with hydrogen significantly increases expression of surfactant-related molecules, ATP synthases and stress-response molecules in lung grafts. The induction of these molecules may underlie hydrogen’s protective effects against I/R injury during transplantation. PMID:22902635

  12. Lichen Symbiosis: Nature's High Yielding Machines for Induced Hydrogen Production

    PubMed Central

    Papazi, Aikaterini; Kastanaki, Elizabeth; Pirintsos, Stergios; Kotzabasis, Kiriakos

    2015-01-01

    Hydrogen is a promising future energy source. Although the ability of green algae to produce hydrogen has long been recognized (since 1939) and several biotechnological applications have been attempted, the greatest obstacle, being the O2-sensitivity of the hydrogenase enzyme, has not yet been overcome. In the present contribution, 75 years after the first report on algal hydrogen production, taking advantage of a natural mechanism of oxygen balance, we demonstrate high hydrogen yields by lichens. Lichens have been selected as the ideal organisms in nature for hydrogen production, since they consist of a mycobiont and a photobiont in symbiosis. It has been hypothesized that the mycobiont’s and photobiont’s consumption of oxygen (increase of COX and AOX proteins of mitochondrial respiratory pathways and PTOX protein of chrolorespiration) establishes the required anoxic conditions for the activation of the phycobiont’s hydrogenase in a closed system. Our results clearly supported the above hypothesis, showing that lichens have the ability to activate appropriate bioenergetic pathways depending on the specific incubation conditions. Under light conditions, they successfully use the PSII-dependent and the PSII-independent pathways (decrease of D1 protein and parallel increase of PSaA protein) to transfer electrons to hydrogenase, while under dark conditions, lichens use the PFOR enzyme and the dark fermentative pathway to supply electrons to hydrogenase. These advantages of lichen symbiosis in combination with their ability to survive in extreme environments (while in a dry state) constitute them as unique and valuable hydrogen producing natural factories and pave the way for future biotechnological applications. PMID:25826211

  13. Lichen symbiosis: nature's high yielding machines for induced hydrogen production.

    PubMed

    Papazi, Aikaterini; Kastanaki, Elizabeth; Pirintsos, Stergios; Kotzabasis, Kiriakos

    2015-01-01

    Hydrogen is a promising future energy source. Although the ability of green algae to produce hydrogen has long been recognized (since 1939) and several biotechnological applications have been attempted, the greatest obstacle, being the O2-sensitivity of the hydrogenase enzyme, has not yet been overcome. In the present contribution, 75 years after the first report on algal hydrogen production, taking advantage of a natural mechanism of oxygen balance, we demonstrate high hydrogen yields by lichens. Lichens have been selected as the ideal organisms in nature for hydrogen production, since they consist of a mycobiont and a photobiont in symbiosis. It has been hypothesized that the mycobiont's and photobiont's consumption of oxygen (increase of COX and AOX proteins of mitochondrial respiratory pathways and PTOX protein of chrolorespiration) establishes the required anoxic conditions for the activation of the phycobiont's hydrogenase in a closed system. Our results clearly supported the above hypothesis, showing that lichens have the ability to activate appropriate bioenergetic pathways depending on the specific incubation conditions. Under light conditions, they successfully use the PSII-dependent and the PSII-independent pathways (decrease of D1 protein and parallel increase of PSaA protein) to transfer electrons to hydrogenase, while under dark conditions, lichens use the PFOR enzyme and the dark fermentative pathway to supply electrons to hydrogenase. These advantages of lichen symbiosis in combination with their ability to survive in extreme environments (while in a dry state) constitute them as unique and valuable hydrogen producing natural factories and pave the way for future biotechnological applications.

  14. Hydrogen

    PubMed Central

    Bockris, John O’M.

    2011-01-01

    The idea of a “Hydrogen Economy” is that carbon containing fuels should be replaced by hydrogen, thus eliminating air pollution and growth of CO2 in the atmosphere. However, storage of a gas, its transport and reconversion to electricity doubles the cost of H2 from the electrolyzer. Methanol made with CO2 from the atmosphere is a zero carbon fuel created from inexhaustible components from the atmosphere. Extensive work on the splitting of water by bacteria shows that if wastes are used as the origin of feed for certain bacteria, the cost for hydrogen becomes lower than any yet known. The first creation of hydrogen and electricity from light was carried out in 1976 by Ohashi et al. at Flinders University in Australia. Improvements in knowledge of the structure of the semiconductor-solution system used in a solar breakdown of water has led to the discovery of surface states which take part in giving rise to hydrogen (Khan). Photoelectrocatalysis made a ten times increase in the efficiency of the photo production of hydrogen from water. The use of two electrode cells; p and n semiconductors respectively, was first introduced by Uosaki in 1978. Most photoanodes decompose during the photoelectrolysis. To avoid this, it has been necessary to create a transparent shield between the semiconductor and its electronic properties and the solution. In this way, 8.5% at 25 °C and 9.5% at 50 °C has been reached in the photo dissociation of water (GaP and InAs) by Kainthla and Barbara Zeleney in 1989. A large consortium has been funded by the US government at the California Institute of Technology under the direction of Nathan Lewis. The decomposition of water by light is the main aim of this group. Whether light will be the origin of the post fossil fuel supply of energy may be questionable, but the maximum program in this direction is likely to come from Cal. Tech. PMID:28824125

  15. Treatment with hydrogen molecule attenuates cardiac dysfunction in streptozotocin-induced diabetic mice.

    PubMed

    Wu, Feng; Qiu, Yihua; Ye, Guangming; Luo, Hede; Jiang, Junsong; Yu, Feng; Zhou, Wei; Zhang, Shuai; Feng, Jinzhong

    2015-01-01

    Diabetic cardiomyopathy, a disorder of the heart muscle in diabetic patients, is one of the major causes of heart failure. The aim of present study was to investigate the therapeutic effect of hydrogen molecule on streptozotocin-induced diabetic cardiomyopathy in mice. Diabetes was induced in adult male mice by consecutive peritoneal injection of streptozotocin (50 mg/kg/day) for 5 days. Then, they were treated with hydrogen water (1.3±0.2 mg/l) for 8 weeks (four groups, n=83-88 in each group). Although treatment of diabetic mice with hydrogen water did not significantly affect blood glucose level, it significantly attenuated cardiac hypertrophy and reduced expression of atrial natriuretic factor and β-myosin heavy chain; it alleviated cardiac fibrosis and reduced expression of collagen I and III, transforming growth factor beta, alpha-smooth muscle actin, and osteopontin; it reduced cardiac caspase-3 activity and ratio of bax/bcl-2. Importantly, hydrogen water treatment improved cardiac function in streptozotocin-diabetic mice. Furthermore, it was found that hydrogen water treatment abated oxidative stress, suppressed inflammation, and attenuated endoplasmic reticulum stress in the hearts of streptozotocin-diabetic mice. In addition, hydrogen water treatment suppressed activation of Jun NH2-terminal kinase and p38 mitogen activated protein kinase signaling and nuclear factor κB signaling in the hearts of streptozotocin-diabetic mice. Treatment with hydrogen molecule attenuated cardiac dysfunction in streptozotocin-induced diabetic mice, which was independent of glycemic control. Treatment with hydrogen molecule attenuated cardiac dysfunction in streptozotocin-induced type 1 diabetic mice. Molecular hydrogen could thus be envisaged as a nutritional countermeasure for diabetic cardiomyopathy. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Attenuation of Cigarette Smoke-Induced Airway Mucus Production by Hydrogen-Rich Saline in Rats

    PubMed Central

    Zhang, Jingxi; Dong, Yuchao; Xu, Wujian; Li, Qiang

    2013-01-01

    Background Over-production of mucus is an important pathophysiological feature in chronic airway disease such as chronic obstructive pulmonary disease (COPD) and asthma. Cigarette smoking (CS) is the leading cause of COPD. Oxidative stress plays a key role in CS-induced airway abnormal mucus production. Hydrogen protected cells and tissues against oxidative damage by scavenging hydroxyl radicals. In the present study we investigated the effect of hydrogen on CS-induced mucus production in rats. Methods Male Sprague-Dawley rats were divided into four groups: sham control, CS group, hydrogen-rich saline pretreatment group and hydrogen-rich saline control group. Lung morphology and tissue biochemical changes were determined by immunohistochemistry, Alcian Blue/periodic acid-Schiff staining, TUNEL, western blot and realtime RT-PCR. Results Hydrogen-rich saline pretreatment attenuated CS-induced mucus accumulation in the bronchiolar lumen, goblet cell hyperplasia, muc5ac over-expression and abnormal cell apoptosis in the airway epithelium as well as malondialdehyde increase in the BALF. The phosphorylation of EGFR at Tyr1068 and Nrf2 up-regulation expression in the rat lungs challenged by CS exposure were also abrogated by hydrogen-rich saline. Conclusion Hydrogen-rich saline pretreatment ameliorated CS-induced airway mucus production and airway epithelium damage in rats. The protective role of hydrogen on CS-exposed rat lungs was achieved at least partly by its free radical scavenging ability. This is the first report to demonstrate that intraperitoneal administration of hydrogen-rich saline protected rat airways against CS damage and it could be promising in treating abnormal airway mucus production in COPD. PMID:24376700

  17. A vibrational study of the hydrogen induced reconstructions on Cu(110)

    NASA Astrophysics Data System (ADS)

    Hayden, B. E.; Lackey, D.; Schott, J.

    1990-12-01

    Hydrogen adsorbed at 100 K on Cu(110) induces a (1 × 3) surface reconstruction observable in LEED in the coverage region 0.2 > φ H > 0.8. Two loss peaks associated with the hydrogen adsorbed in this phase are observed in HREELS at 620 and 505 cm -1. These features persist throughout the coverage range 0.0 < φ H < 1.0. Additional losses associated with hydrogen on a (1 × 2) reconstructed surface appear at φ H > 0.8 where a conversion of the (1 × 3) to the (1 × 2) phase is evident in LEED. Hydrogen adsorption at 300 K leads directly to the (1 × 2) reconstructed phase observable in LEED over the coverage range 0.1 < φ H < 1.0 and exhibits associated HREELS losses at 765, 950 and 1150 cm -1. Heating the (1 × 3) phase formed at 100 K irreversibly produces the (1 × 2) reconstruction in the temperature range 140-190 K. We assign the modes observed in the (1 × 3) phase to hydrogen in a pseudo four-fold hollow site on a buckled reconstructed surface. The modes on the (1 × 2) phase are associated with hydrogen in a tilted trigonal site on a missing row reconstructed surface. The hydrogen site transition from (1 × 3) to (1 × 2) on Cu(110) is analogous to the behaviour in metal hydrides where a conversion from octahedral to tetrahedral hydrogen coordination occurs for increasing hydrogen concentrations.

  18. Hydrogen induced optically-active defects in silicon photonic nanocavities.

    PubMed

    Boninelli, S; Franzò, G; Cardile, P; Priolo, F; Lo Savio, R; Galli, M; Shakoor, A; O'Faolain, L; Krauss, T F; Vines, L; Svensson, B G

    2014-04-21

    We demonstrate intense room temperature photoluminescence (PL) from optically active hydrogen- related defects incorporated into crystalline silicon. Hydrogen was incorporated into the device layer of a silicon on insulator (SOI) wafer by two methods: hydrogen plasma treatment and ion implantation. The room temperature PL spectra show two broad PL bands centered at 1300 and 1500 nm wavelengths: the first one relates to implanted defects while the other band mainly relates to the plasma treatment. Structural characterization reveals the presence of nanometric platelets and bubbles and we attribute different features of the emission spectrum to the presence of these different kind of defects. The emission is further enhanced by introducing defects into photonic crystal (PhC) nanocavities. Transmission electron microscopy analyses revealed that the isotropicity of plasma treatment causes the formation of a higher defects density around the whole cavity compared to the ion implantation technique, while ion implantation creates a lower density of defects embedded in the Si layer, resulting in a higher PL enhancement. These results further increase the understanding of the nature of optically active hydrogen defects and their relation with the observed photoluminescence, which will ultimately lead to the development of intense and tunable crystalline silicon light sources at room temperature.

  19. Cryogenic hydrogen-induced air-liquefaction technologies for combined-cycle propulsion applications

    NASA Technical Reports Server (NTRS)

    Escher, William J. D.

    1992-01-01

    Given here is a technical assessment of the realization of cryogenic hydrogen induced air liquefaction technologies in a prospective onboard aerospace vehicle process setting. The technical findings related to the status of air liquefaction technologies are reviewed. Compact lightweight cryogenic heat exchangers, heat exchanger atmospheric constituent fouling alleviation measures, para/ortho-hydrogen shift-conversion catalysts, cryogenic air compressors and liquid air pumps, hydrogen recycling using slush hydrogen as a heat sink, liquid hydrogen/liquid air rocket-type combustion devices, and technically related engine concepts are discussed. Much of the LACE work is related to aerospaceplane propulsion concepts that were developed in the 1960's. Emphasis is placed on the Liquid Air Cycle Engine (LACE).

  20. Hydrogenation-induced edge magnetization in armchair MoS2 nanoribbon and electric field effects

    NASA Astrophysics Data System (ADS)

    Ouyang, Fangping; Yang, Zhixiong; Ni, Xiang; Wu, Nannan; Chen, Yu; Xiong, Xiang

    2014-02-01

    We performed density functional theory study on the electronic and magnetic properties of armchair MoS2 nanoribbons (AMoS2NR) with different edge hydrogenation. Although bare and fully passivated AMoS2NRs are nonmagnetic semiconductors, it was found that hydrogenation in certain patterns can induce localized ferromagnetic edge state in AMoS2NRs and make AMoS2NRs become antiferromagnetic semiconductors or ferromagnetic semiconductors. Electric field effects on the bandgap and magnetic moment of AMoS2NRs were investigated. Partial edge hydrogenation can change a small-sized AMoS2NR from semiconductor to metal or semimetal under a moderate transverse electric field. Since the rate of edge hydrogenation can be controlled experimentally via the temperature, pressure and concentration of H2, our results suggest edge hydrogenation is a useful method to engineer the band structure of AMoS2NRs.

  1. Oral intake of hydrogen-rich water ameliorated chlorpyrifos-induced neurotoxicity in rats

    SciTech Connect

    Wang, Tingting; Zhao, Ling; Liu, Mengyu; Xie, Fei; Ma, Xuemei Zhao, Pengxiang; Liu, Yunqi; Li, Jiala; Wang, Minglian; Yang, Zhaona; Zhang, Yutong

    2014-10-01

    Chronic exposure to low-levels of organophosphate (OP) compounds, such as chlorpyrifos (CPF), induces oxidative stress and could be related to neurological disorders. Hydrogen has been identified as a novel antioxidant which could selectively scavenge hydroxyl radicals. We explore whether intake of hydrogen-rich water (HRW) can protect Wistar rats from CPF-induced neurotoxicity. Rats were gavaged daily with 6.75 mg/kg body weight (1/20 LD{sub 50}) of CPF and given HRW by oral intake. Nissl staining and electron microscopy results indicated that HRW intake had protective effects on the CPF-induced damage of hippocampal neurons and neuronal mitochondria. Immunostaining results showed that the increased glial fibrillary acidic protein (GFAP) expression in astrocytes induced by CPF exposure can be ameliorated by HRW intake. Moreover, HRW intake also attenuated CPF-induced oxidative stress as evidenced by enhanced level of MDA, accompanied by an increase in GSH level and SOD and CAT activity. Acetylcholinesterase (AChE) activity tests showed significant decrease in brain AChE activity after CPF exposure, and this effect can be ameliorated by HRW intake. An in vitro study demonstrated that AChE activity was more intense in HRW than in normal water with or without chlorpyrifos-oxon (CPO), the metabolically-activated form of CPF. These observations suggest that HRW intake can protect rats from CPF-induced neurotoxicity, and the protective effects of hydrogen may be mediated by regulating the oxidant and antioxidant status of rats. Furthermore, this work defines a novel mechanism of biological activity of hydrogen by directly increasing the AChE activity. - Highlights: • Hydrogen molecules protect rats from CPF-induced damage of hippocampal neurons. • The increased GFAP expression induced by CPF can also be ameliorated by hydrogen. • Hydrogen molecules attenuated the increase in CPF-induced oxidative stress. • Hydrogen molecules attenuated AChE inhibition in vivo

  2. 102. Catalog HHistory 1, C.C.C., 34 Landscaping, Negative No. 6040a ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    102. Catalog H-History 1, C.C.C., 34 Landscaping, Negative No. 6040a (Photographer and date unknown) BEAUTIFICATION PROGRAM STARTED AS SOON AS GRADING ALONG THE DRIVE WAS COMPLETED. CCC CAMP 3 SHOWN PLANTING LAUREL. - Skyline Drive, From Front Royal, VA to Rockfish Gap, VA , Luray, Page County, VA

  3. 104. Catalog HHistory 1, C.C.C., 73 Picnic Furniture Construction, Negative ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    104. Catalog H-History 1, C.C.C., 73 Picnic Furniture Construction, Negative No. 8821 ca. 1936 WOOD UTILIZATION. COMPLETED RUSTIC BENCH MADE BY CCC ENROLLEES AT CAMP NP-3 FOR USE AT PARKING OVERLOOKS AND PICNIC GROUNDS. NOTE SAW IN BACKGROUND USED FOR HALVING CHESTNUT. - Skyline Drive, From Front Royal, VA to Rockfish Gap, VA , Luray, Page County, VA

  4. 103. Catalog HHistory 1, C.C.C., 58 Landscaping, Negative No. 870 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    103. Catalog H-History 1, C.C.C., 58 Landscaping, Negative No. 870 10 ca. 1936 PROPAGATION AND PLANTING. ROOTED PLANTS TRANSPLANTED FROM HOT BEDS TO CANS TO SHADED BEDS IN PREPARATION FOR PLANTING ON ROAD SLOPES. NURSERY AT NORTH ENTRANCE. - Skyline Drive, From Front Royal, VA to Rockfish Gap, VA , Luray, Page County, VA

  5. C=C π bond modified graphitic carbon nitride films for enhanced photoelectrochemical cell performance.

    PubMed

    Bian, Juncao; Xi, Lifei; Li, Jianfu; Xiong, Ze; Huang, Chao; Lange, Kathrin; Tang, Jinyao; Shalom, Menny; Zhang, Rui-Qin

    2017-03-08

    Applications of graphitic carbon nitride (g-CN) in photoelectrochemical and optoelectronic devices are still hindered due to the difficulties in synthesis of g-CN films with tunable chemical, physical and catalytic properties. Herein we present a general method to alter the electronic and photoelectrochemical properties of g-CN films by annealing. We found that N atoms can be removed from the g-CN networks after annealing treatment. Assisted by theoretical calculations, we confirm that upon appropriate N removal, the adjacent C atoms will form new C=C π bonds. Detailed calculations demonstrate that the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) are localized at the structure unit with C=C π bonds and the electrons are more delocalized. Valence band X-ray photoelectron spectroscopy spectra together with the absorption spectra unveil that the structure changes result in the alteration of the g-CN energy levels and position of band edges. Our results show that the photocurrent density of the annealed g-CN film is doubled compared with the pristine one, thanks to the better charge separation and transport within the film induced by the new C=C π bonds. An ultrathin TiO2 film (2.2 nm) is applied as stabilizer and the photocurrent density is kept at 0.05 mA/cm2 at 1.23 V vs. reversible hydrogen electrode after two-cycle stability assessment. This work enables the applications of g-CN films in many electronic and optoelectronic devices.

  6. Tolerance of pentose utilising yeast to hydrogen peroxide-induced oxidative stress

    PubMed Central

    2014-01-01

    Background Bioethanol fermentations follow traditional beverage fermentations where the yeast is exposed to adverse conditions such as oxidative stress. Lignocellulosic bioethanol fermentations involve the conversion of pentose and hexose sugars into ethanol. Environmental stress conditions such as osmotic stress and ethanol stress may affect the fermentation performance; however, oxidative stress as a consequence of metabolic output can also occur. However, the effect of oxidative stress on yeast with pentose utilising capabilities has yet to be investigated. Results Assaying for the effect of hydrogen peroxide-induced oxidative stress on Candida, Pichia and Scheffersomyces spp. has demonstrated that these yeast tolerate hydrogen peroxide-induced oxidative stress in a manner consistent with that demonstrated by Saccharomyces cerevisiae. Pichia guillermondii appears to be more tolerant to hydrogen peroxide-induced oxidative stress when compared to Candida shehatae, Candida succiphila or Scheffersomyces stipitis. Conclusions Sensitivity to hydrogen peroxide-induced oxidative stress increased in the presence of minimal media; however, addition of amino acids and nucleobases was observed to increase tolerance. In particular adenine increased tolerance and methionine reduced tolerance to hydrogen peroxide-induced oxidative stress. PMID:24636079

  7. Novel xenon calibration scheme for two-photon absorption laser induced fluorescence of hydrogen

    SciTech Connect

    Elliott, Drew; Scime, Earl; Short, Zachary

    2016-11-15

    Two photon absorption laser induced fluorescence (TALIF) measurements of neutral hydrogen and its isotopes are typically calibrated by performing TALIF measurements on krypton with the same diagnostic system and using the known ratio of the absorption cross sections [K. Niemi et al., J. Phys. D 34, 2330 (2001)]. Here we present the measurements of a new calibration method based on a ground state xenon scheme for which the fluorescent emission wavelength is nearly identical to that of hydrogen, thereby eliminating chromatic effects in the collection optics and simplifying detector calibration. We determine that the ratio of the TALIF cross sections of xenon and hydrogen is 0.024 ± 0.001.

  8. Novel xenon calibration scheme for two-photon absorption laser induced fluorescence of hydrogen

    NASA Astrophysics Data System (ADS)

    Elliott, Drew; Scime, Earl; Short, Zachary

    2016-11-01

    Two photon absorption laser induced fluorescence (TALIF) measurements of neutral hydrogen and its isotopes are typically calibrated by performing TALIF measurements on krypton with the same diagnostic system and using the known ratio of the absorption cross sections [K. Niemi et al., J. Phys. D 34, 2330 (2001)]. Here we present the measurements of a new calibration method based on a ground state xenon scheme for which the fluorescent emission wavelength is nearly identical to that of hydrogen, thereby eliminating chromatic effects in the collection optics and simplifying detector calibration. We determine that the ratio of the TALIF cross sections of xenon and hydrogen is 0.024 ± 0.001.

  9. Hydrogen-induced improvements in electrical characteristics of a-IGZO thin-film transistors

    NASA Astrophysics Data System (ADS)

    Tsao, S. W.; Chang, T. C.; Huang, S. Y.; Chen, M. C.; Chen, S. C.; Tsai, C. T.; Kuo, Y. J.; Chen, Y. C.; Wu, W. C.

    2010-12-01

    This study investigates the effect of hydrogen incorporation on amorphous indium-gallium-zinc oxide thin-film transistors (a-IGZO TFTs). The threshold voltage ( Vth) and subthreshold swing ( SS) of hydrogen-incorporated a-IGZO TFTs were improved, and the threshold voltage shift (Δ Vth) in hysteresis loop was also suppressed from 4 V to 2 V. The physical property and chemical composition of a-IGZO films were analyzed by X-ray diffraction and X-ray photoelectron spectroscopy, respectively. Experimental results show that the hydrogen-induced passivation of the interface trap states between active layer and dielectric is responsible for the improvement of SS and Vth.

  10. Effects of neutron irradiation on hydrogen-induced intergranular fracture in a low activation 9%Cr-2%W steel

    NASA Astrophysics Data System (ADS)

    Kimura, A.; Kayano, H.; Narui, M.

    1991-03-01

    Hydrogen charging changed the fracture mode in tensile tests at room temperature from ductile shear rupture to intergranular cracking, resulting in a considerable reduction of the ductility of a low activation 9%Cr-2%W martensitic steel. The critical hydrogen charging current density required to cause hydrogen-induced intergranular cracking was reduced by neutron irradiation, suggesting that neutron irradiation enhanced hydrogen-induced intergranular cracking. This hydrogen-induced intergranular cracking was not caused by irreversible damage due to hydrogen charging, since it disappeared after aging at room temperature. The recovery rate of the fracture mode from intergranular cracking to ductile rupture during aging at room temperature was reduced by irradiation. A mechanism of irradiation-induced enhancement of hydrogen embrittlement in a low activation 9%Cr-2%W martensitic steel is proposed.

  11. Hydrogen sulfide determines HNO-induced stimulation of trigeminal afferents.

    PubMed

    Wild, Vanessa; Messlinger, Karl; Fischer, Michael J M

    2015-08-18

    Endogenous NO and hydrogen sulfide form HNO, which causes CGRP release via TRPA1 channel activation in sensory nerves. In the present study, stimulation of intact trigeminal afferent neuron preparations with NO donors, Na2S or both was analyzed by measuring CGRP release as an index of mass activation. Combined stimulation was able to activate all parts of the trigeminal system and acted synergistic compared to stimulation with both substances alone. To investigate the contribution of both substances, we varied their ratio and tracked intracellular calcium in isolated neurons. Our results demonstrate that hydrogen sulfide is the rate-limiting factor for HNO formation. CGRP has a key role in migraine pathophysiology and HNO formation at all sites of the trigeminal system should be considered for this novel means of activation.

  12. Hydrogen-induced ferromagnetism in two-dimensional Pt dichalcogenides

    NASA Astrophysics Data System (ADS)

    Manchanda, P.; Enders, A.; Sellmyer, D. J.; Skomski, R.

    2016-09-01

    Electronic, structural, and magnetic properties of Pt dichalcogenide monolayers are investigated using first-principle calculations. We find that hydrogenation lifts the spin degeneracy in narrow antibonding Pt 5 d subband electrons and transforms the nonmagnetic semiconductors Pt X2(X =S ,Se ,Te ) into ferromagnetic metals, Pt X2 -1H; neither strain nor thin-film edges are necessary to support the transition. The trend towards ferromagnetism is most pronounced for X =S , decreasing with increasing atomic weight of the chalcogens.

  13. Hydrogen decoration of radiation damage induced defect structures

    SciTech Connect

    Kirnstötter, S.; Faccinelli, M.; Hadley, P.; Schustereder, W.; Laven, J. G.; Schulze, H.-J.

    2014-02-21

    The defect complexes that are formed when protons with energies in the MeV-range were implanted into high-purity silicon were investigated. After implantation, the samples were annealed at 400 °C or 450 °C for times ranging between 15 minutes and 30 hours. The resistivity of the samples was then analyzed by Spreading Resistance Profiling (SRP). The resistivity shows minima where there is a high carrier concentration and it is possible to extract the carrier concentration from the resistivity data. Initially, there is a large peak in the carrier concentration at the implantation depth where most of the hydrogen is concentrated. For longer anneals, this peak widens as the hydrogen diffuses away from the implantation depth. Following the changes in resistivity as a function of annealing time allows us to characterize the diffusion of hydrogen through these samples. Differences in the diffusion were observed depending on whether the silicon was grown by the magnetic Czochralski (m:Cz) method or the Float zone (Fz) method.

  14. Hydrogen-induced defects in ion-implanted Si

    NASA Astrophysics Data System (ADS)

    Socher, S.; Lavrov, E. V.; Weber, J.

    2012-09-01

    Single crystalline silicon implanted with 28Si ions and subsequently hydrogenated from an rf plasma at 200∘C is studied by Raman and photoluminescence spectroscopy. A broad Raman band at 3830 cm-1 previously assigned to the rovibrational transitions of hydrogen molecules trapped in Si multivacancies [Ishioka , Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.60.10852 60, 10852 (1999)] reveals a complex line shape at 60 K. In contrast, our study correlates the Raman band to three different localized traps for hydrogen molecules which are identified from the dependence on the ion dose and annealing behavior. Each of these traps, which is saturated with H2, gives rise to three Raman transitions due to para- and ortho-H2. The H2 signals are shown to correlate with the Si-H vibrational modes at 1888, 1930, and 1964 cm-1. Ortho to para conversion rates of H2 at 77 K and room temperature were found to be 62±15 and 8±2 h, respectively.

  15. Hydrogenation induced structure and property changes in GdGa

    NASA Astrophysics Data System (ADS)

    Nedumkandathil, Reji; Kranak, Verina F.; Johansson, Robert; Ångström, Jonas; Balmes, Oliver; Andersson, Mikael S.; Nordblad, Per; Scheicher, Ralph H.; Sahlberg, Martin; Häussermann, Ulrich

    2016-07-01

    Hydrides GdGaHx were obtained by exposing the Zintl phase GdGa with the CrB structure to a hydrogen atmosphere at pressures from 1.5 to 50 bar and temperatures from 50 to 500 °C. Structural analysis by powder X-ray diffraction suggests that conditions with hydrogen pressures in a range between 15 and 50 bar and temperatures below 500 °C afford a uniform hydride phase with the NdGaH1.66 structure (Cmcm, a=3.9867(7) Å, b=12.024(2) Å, c=4.1009(6) Å) which hosts H in two distinct positions, H1 and H2. H1 is coordinated in a tetrahedral fashion by Gd atoms, whereas H2 atoms are inserted between Ga atoms. The assignment of the NdGaH1.66 structure is corroborated by first principles DFT calculations. Modeling of phase and structure stability as a function of composition resulted in excellent agreement with experimental lattice parameters when x=1.66 and revealed the presence of five-atom moieties Ga-H2-Ga-H2-Ga in GdGaH1.66. From in situ powder X-ray diffraction using synchrotron radiation it was established that hydrogenation at temperatures above 200 °C affords a hydride with x≈1.3, which is stable up to 500 °C, and that additional H absorption, yielding GdGaH1.66, takes place at lower temperatures. Consequently, GdGaH1.66 desorbs H above T=200 °C. Without the presence of hydrogen, hydrides GdGaHx decompose at temperatures above 300 °C into GdH2 and an unidentified Gd-Ga intermetallics. Thus the hydrogenation of GdGa is not reversible. From magnetic measurements the Curie-Weiss constant and effective magnetic moment of GdGaH1.66 were obtained. The former indicates antiferromagnetic interactions, the latter attains a value of 8 μB which is typical for compounds containing Gd3+ions.

  16. Hydrogenation induced structure and property changes in GdGa

    SciTech Connect

    Nedumkandathil, Reji; Kranak, Verina F.; Johansson, Robert; Ångström, Jonas; Balmes, Oliver; Andersson, Mikael S.; Nordblad, Per; Scheicher, Ralph H.; Sahlberg, Martin; Häussermann, Ulrich

    2016-07-15

    Hydrides GdGaH{sub x} were obtained by exposing the Zintl phase GdGa with the CrB structure to a hydrogen atmosphere at pressures from 1.5 to 50 bar and temperatures from 50 to 500 °C. Structural analysis by powder X-ray diffraction suggests that conditions with hydrogen pressures in a range between 15 and 50 bar and temperatures below 500 °C afford a uniform hydride phase with the NdGaH{sub 1.66} structure (Cmcm, a=3.9867(7) Å, b=12.024(2) Å, c=4.1009(6) Å) which hosts H in two distinct positions, H1 and H2. H1 is coordinated in a tetrahedral fashion by Gd atoms, whereas H2 atoms are inserted between Ga atoms. The assignment of the NdGaH{sub 1.66} structure is corroborated by first principles DFT calculations. Modeling of phase and structure stability as a function of composition resulted in excellent agreement with experimental lattice parameters when x=1.66 and revealed the presence of five-atom moieties Ga-H2-Ga-H2-Ga in GdGaH{sub 1.66}. From in situ powder X-ray diffraction using synchrotron radiation it was established that hydrogenation at temperatures above 200 °C affords a hydride with x≈1.3, which is stable up to 500 °C, and that additional H absorption, yielding GdGaH{sub 1.66}, takes place at lower temperatures. Consequently, GdGaH{sub 1.66} desorbs H above T=200 °C. Without the presence of hydrogen, hydrides GdGaH{sub x} decompose at temperatures above 300 °C into GdH{sub 2} and an unidentified Gd-Ga intermetallics. Thus the hydrogenation of GdGa is not reversible. From magnetic measurements the Curie-Weiss constant and effective magnetic moment of GdGaH{sub 1.66} were obtained. The former indicates antiferromagnetic interactions, the latter attains a value of ~8 μ{sub B} which is typical for compounds containing Gd{sup 3+}ions. - Graphical abstract: Ferromagnetic GdGa absorbs hydrogen in two steps to yield antiferromagnetic GdGaH{sub 1.66}. Display Omitted - Highlights: • Elucidation of hydrogen uptake behavior of the rare earth gallide

  17. Hydrogen Protects Mice from Radiation Induced Thymic Lymphoma in BALB/c Mice

    PubMed Central

    Zhao, Luqian; Zhou, Chuanfeng; Zhang, Jian; Gao, Fu; Li, Bailong; Chuai, Yunhai; Liu, Cong; Cai, Jianming

    2011-01-01

    Ionizing radiation (IR) is a well-known carcinogen, however the mechanism of radiation induced thymic lymphoma is not well known. Moreover, an easy and effective method to protect mice from radiation induced thymic lymphoma is still unknown. Hydrogen, or H2, is seldom regarded as an important agent in medical usage, especially as a therapeutic gas. Here in this study, we found that H2 protects mice from radiation induced thymic lymphoma in BALB/c mice. PMID:21448340

  18. The nature of solid-state N-H triplebondO/O-H triplebond N tautomeric competition in resonant systems. Intramolecular proton transfer in low-barrier hydrogen bonds formed by the triplebond O=C-C=N-NH triple bond --> <-- triplebond HO-C=C-N=N triplebond Ketohydrazone-Azoenol system. A variable-temperature X-ray crystallographic and DFT computational study.

    PubMed

    Gilli, Paola; Bertolasi, Valerio; Pretto, Loretta; Lycka, Antonín; Gilli, Gastone

    2002-11-13

    The tautomeric.O=C-C=N-NH triplebond --> <-- HO-C=C-N=N triplebond ketohydrazone-azoenol system may form strong N-H triplebond O/O-H triplebond N intramolecular resonance-assisted H-bonds (RAHBs) which are sometimes of the low-barrier H-bond type (LBHB) with dynamic exchange of the proton in the solid state. The problem of the N-H triplebond O/O-H triplebond N competition in these compounds is studied here through variable-temperature (100, 150, 200, and 295 K) crystal-structure determination of pF = 1-(4-F-phenylazo)2-naphthol and oF = 1-(2-F-phenylazo)2-naphthol, two molecules that, on the ground of previous studies (Gilli, P; Bertolasi, V.; Ferretti, V.; Gilli, G. J. Am. Chem. Soc. 2000, 122, 10405), were expected to represent an almost perfect balance of the two tautomers. According to predictions, the two molecules form remarkably strong bonds (d(N triplebond O) = 2.53-2.55 A) of double-minimum or LBHB type with dynamic N-H triplebond O/ O-H triplebond N exchange in the solid state. The enthalpy differences between the two minima, as measured by van't Hoff methods from the X-ray-determined proton populations, are very small and amount to DeltaH degrees = -0.120 and DeltaH degrees = -0.156 kcal mol(-)(1) in favor of the N-H triplebond O form for pF and oF, respectively. Successive emulation of pF by DFT methods at the B3LYP/6-31+G(d,p)//B3LYP/6-31+G(d,p) level has shown that both energetic and geometric experimental aspects can be almost perfectly reproduced. Generalization of these results was sought by performing DFT calculations at the same level of theory along the complete proton-transfer (PT) pathway for five test molecules designed in such a way that the RAHB formed changes smoothly from weak N-H triplebond O to strong O-H.N through very strong N-H triplebond O/O-H triplebond N bond of LBHB type. A systematic correlation analysis of H-bond energies, H-bond and pi-conjugated fragment geometries, and H-bond Bader's AIM topological properties performed

  19. A kinetic model for thermally induced hydrogen and carbon isotope fractionation of individual n-alkanes in crude oil

    NASA Astrophysics Data System (ADS)

    Tang, Yongchun; Huang, Yongsong; Ellis, Geoffrey S.; Wang, Yi; Kralert, Paul G.; Gillaizeau, Bruno; Ma, Qisheng; Hwang, Rong

    2005-09-01

    A quantitative kinetic model has been proposed to simulate the large D and 13C isotope enrichments observed in individual n-alkanes (C 13-C 21) during artificial thermal maturation of a North Sea crude oil under anhydrous, closed-system conditions. Under our experimental conditions, average n-alkane δ 13C values increase by ˜4‰ and δD values increase by ˜50‰ at an equivalent vitrinite reflectance value of 1.5%. While the observed 13C-enrichment shows no significant dependence on hydrocarbon chain length, thermally induced D-enrichment increases with increasing n-alkane carbon number. This differential fractionation effect is speculated to be due to the combined effect of the greater extent of thermal cracking of higher molecular weight, n-alkanes compared to lower molecular weight homologues, and the generation of isotopically lighter, lower molecular weight compounds. This carbon-number-linked hydrogen isotopic fractionation behavior could form the basis of a new maturity indicator to quantitatively assess the extent of oil cracking in petroleum reservoirs. Quantum mechanical calculations of the average change in enthalpy (ΔΔH ‡) and entropy (ΔΔS ‡) as a result of isotopic substitution in n-alkanes undergoing homolytic cleavage of C-C bonds lead to predictions of isotopic fractionation that agree quite well with our experimental results. For n-C 20 ( n-icosane), the changes in enthalpy are calculated to be ˜1340 J mol -1 (320 cal mol -1) and 230 J mol -1 (55 cal mol -1) for D-H and 13C- 12C, respectively. Because the enthalpy term associated with hydrogen isotope fractionation is approximately six times greater than that for carbon, variations in δD values for individual long-chain hydrocarbons provide a highly sensitive measure of the extent of thermal alteration experienced by the oil. Extrapolation of the kinetic model to typical geological heating conditions predicts significant enrichment in 13C and D for n-icosane at equivalent vitrinite

  20. Brazing C-C composites to metals

    SciTech Connect

    Liu, J.Y.; Banerjee, P.; Chin, B.A.

    1994-12-31

    Carbon-carbon composites are attractive for use at high temperature because of their high strength, modulus, chemical stability and resistance to activation by radiation. In these applications, the C-C composite must be joined to itself and to metals. The research described in this paper has led to the invention of a new brazing filler metal from the Cu-Mu-Ti system and the development of a brazing process for joining CC composites to metals. The newly invented brazing filler metal compositions, with controllable melting points ranging from 800{emdash}920{degrees}C has excellent wettability on both C-C composites and metals (stainless steel, Nb, Mo, W, and Zr). Sound joints of C-C composite/metal were produced using the brazing filler metal and the specially developed brazing processes. Finite element analyses were used to predict the residual stress distribution in the brazed joints. Theoretical predictions were confirmed by interlayer experiments. The brazed joints were studied using optical and scanning electron microscopy (SEM) to examine the microstructure and fractured brazed joints. The results showed 100% bonding was obtained using the developed braze metal and brazing procedure.

  1. Testing of DLR C/C-SiC for HIFiRE 8 Scramjet Combustor

    NASA Technical Reports Server (NTRS)

    Glass, David E.; Capriotti, Diego P.; Reimer, Thomas; Kutemeyer, Marius; Smart, Michael

    2013-01-01

    Ceramic Matrix Composites (CMCs) have been proposed for hot structures in scramjet combustors. Previous studies have calculated significant weight savings by utilizing CMCs (active and passive) versus actively cooled metallic scramjet structures. Both a C/C and a C/C-SiC material system fabricated by DLR (Stuttgart, Germany) are being considered for use in a passively cooled combustor design for HIFiRE 8, a joint Australia / AFRL hypersonic flight program, expected to fly at Mach 7 for approximately 30 sec, at a dynamic pressure of 55 kPa. Flat panels of the DLR C/C and the C/C-SiC were tested in the NASA Langley Direct Connect Rig (DCR) at Mach 5 and Mach 6 enthalpy for several minutes. Gaseous hydrogen fuel was used to fuel the scramjet combustor. The test panels were instrumented with embedded Type K and Type S thermocouples. Zirconia felt insulation was used in some of the tests to increase the surface temperature of the C/C-SiC panel for approximately 350degF. The final C/C-SiC panel was tested for 3 cycles totaling over 135 sec at Mach 6 enthalpy. Slightly more erosion was observed on the C/C panel than the C/C-SiC panels, but both material systems demonstrated acceptable recession performance for the HIFiRE 8 flight.

  2. Anomalous absorption in c-C_3H and c-C_3D radicals

    NASA Astrophysics Data System (ADS)

    Chandra, S.; Shinde, S. V.; Kegel, W. H.; Sedlmayr, E.

    Yamamoto et al. (1987) reported the first detection of the c-C_3H radical in TMC-1 through its transition 2_1 2 rightarrow 1_1 1 at 91.5 GHz. The column density of c-C_3H in TMC-1 was estimated to be 6 times 10^12 cm^-2, which is about one order of magnitude lower than that of the c-C_3H_2 which is ubiquitous in galactic objects. Mangum & Wootten (1990) detected c-C_3H through the transition 1_1 0 rightarrow 1_1 1 at 14.8 GHz in 12 additional galactic objects. The most probable production mechanism of both the c-C_3H and c-C_3H_2 in dark clouds is a common dissociation reaction of the C_3H_3^+ ion (Adams & Smith 1987). Although the c-C_3H is 0.8 eV less stable than its isomer l-C_3H, finding of comparable column densities of both the isomers in TMC-1 suggests that the formation rate for both, c-C_3H and l-C_3H, are of about the same order in the cosmic objects. The existence of a metastable isomer under interstellar conditions is a well known phenomenon in astronomy. The aim of this investigation is a quantitative estimate of relative line intensities under NLTE conditions. For wide ranges of physical parameters, where these molecules may be found, we have solved a set of statistical equilibrium equations coupled with the equations of radiative transfer in an on-the-spot approximation. For c-C_3H, we accounted for 51 energy levels connected by 207 radiative transitions and for c-C_3D, we accounted for 51 energy levels connected by 205 radiative transitions. Our results show that the 3_3 1 rightarrow 3_3 0 transition of c-C_3H and c-C_3D may be found in absorption against the cosmic microwave background (CMB). Furthermore, we found population inversion for the 1_1 0 rightarrow 1_1 1 transition. These findings may be useful in identifying these molecules in other cosmic objects, as well as for the determination of physical parameters in these objects.

  3. Structured rf hydrogen plasma induced by magnetic field.

    SciTech Connect

    Barnat, Edward V.

    2007-11-01

    Images of the spatial structure of a capacitively coupled hydrogen discharge are presented for various strengths of applied magnetic field. With increasing magnetic field, we find that not only does the distribution of emission change because of the confinement of the electrons by the magnetic field, but we also find 'dark-bands' regions that form in the discharge. By using narrowband interference filters (10 nm bandwidth), we examine how the relative optical emission centered on H{sub {alpha}} and H{sub {beta}} (with respect to the total optical emission) change with the applied magnetic field.

  4. Hydrogen peroxide induced loss of heterozygosity correlates with replicative lifespan and mitotic asymmetry in Saccharomyces cerevisiae.

    PubMed

    Güven, Emine; Parnell, Lindsay A; Jackson, Erin D; Parker, Meighan C; Gupta, Nilin; Rodrigues, Jenny; Qin, Hong

    2016-01-01

    Cellular aging in Saccharomyces cerevisiae can lead to genomic instability and impaired mitotic asymmetry. To investigate the role of oxidative stress in cellular aging, we examined the effect of exogenous hydrogen peroxide on genomic instability and mitotic asymmetry in a collection of yeast strains with diverse backgrounds. We treated yeast cells with hydrogen peroxide and monitored the changes of viability and the frequencies of loss of heterozygosity (LOH) in response to hydrogen peroxide doses. The mid-transition points of viability and LOH were quantified using sigmoid mathematical functions. We found that the increase of hydrogen peroxide dependent genomic instability often occurs before a drop in viability. We previously observed that elevation of genomic instability generally lags behind the drop in viability during chronological aging. Hence, onset of genomic instability induced by exogenous hydrogen peroxide treatment is opposite to that induced by endogenous oxidative stress during chronological aging, with regards to the midpoint of viability. This contrast argues that the effect of endogenous oxidative stress on genome integrity is well suppressed up to the dying-off phase during chronological aging. We found that the leadoff of exogenous hydrogen peroxide induced genomic instability to viability significantly correlated with replicative lifespan (RLS), indicating that yeast cells' ability to counter oxidative stress contributes to their replicative longevity. Surprisingly, this leadoff is positively correlated with an inverse measure of endogenous mitotic asymmetry, indicating a trade-off between mitotic asymmetry and cell's ability to fend off hydrogen peroxide induced oxidative stress. Overall, our results demonstrate strong associations of oxidative stress to genomic instability and mitotic asymmetry at the population level of budding yeast.

  5. Hydrogen peroxide induced loss of heterozygosity correlates with replicative lifespan and mitotic asymmetry in Saccharomyces cerevisiae

    PubMed Central

    Jackson, Erin D.; Parker, Meighan C.; Gupta, Nilin; Rodrigues, Jenny

    2016-01-01

    Cellular aging in Saccharomyces cerevisiae can lead to genomic instability and impaired mitotic asymmetry. To investigate the role of oxidative stress in cellular aging, we examined the effect of exogenous hydrogen peroxide on genomic instability and mitotic asymmetry in a collection of yeast strains with diverse backgrounds. We treated yeast cells with hydrogen peroxide and monitored the changes of viability and the frequencies of loss of heterozygosity (LOH) in response to hydrogen peroxide doses. The mid-transition points of viability and LOH were quantified using sigmoid mathematical functions. We found that the increase of hydrogen peroxide dependent genomic instability often occurs before a drop in viability. We previously observed that elevation of genomic instability generally lags behind the drop in viability during chronological aging. Hence, onset of genomic instability induced by exogenous hydrogen peroxide treatment is opposite to that induced by endogenous oxidative stress during chronological aging, with regards to the midpoint of viability. This contrast argues that the effect of endogenous oxidative stress on genome integrity is well suppressed up to the dying-off phase during chronological aging. We found that the leadoff of exogenous hydrogen peroxide induced genomic instability to viability significantly correlated with replicative lifespan (RLS), indicating that yeast cells’ ability to counter oxidative stress contributes to their replicative longevity. Surprisingly, this leadoff is positively correlated with an inverse measure of endogenous mitotic asymmetry, indicating a trade-off between mitotic asymmetry and cell’s ability to fend off hydrogen peroxide induced oxidative stress. Overall, our results demonstrate strong associations of oxidative stress to genomic instability and mitotic asymmetry at the population level of budding yeast. PMID:27833823

  6. Role of high-energy phosphate metabolism in hydrogen peroxide-induced cardiac dysfunction.

    PubMed

    Matsumoto, Y; Kaneko, M; Iimuro, M; Fujise, Y; Hayashi, H

    2000-01-01

    This study was undertaken to clarify the role of high-energy phosphate metabolism in hydrogen peroxide-induced cardiac dysfunction using phosphorus and fluorine nuclear magnetic resonance spectroscopy. The exposure of a Langendorff-perfused heart to hydrogen peroxide (200-400 micromol/L, 8 min) provoked biphasic contractile dysfunction characterized by a transient depression of left ventricular developed pressure during the administration of hydrogen peroxide and a delayed elevation of left ventricular end-diastolic pressure after the washout of hydrogen peroxide. The initial phase of cardiac dysfunction correlated well with the accumulation of sugar phosphates (r = 0.89, p < 0.01). Furthermore, we demonstrated that glibenclamide, a potent inhibitor of the ATP-sensitive K+ channel, attenuated the initial depression of developed pressure. On the other hand, the delayed elevation of end-diastolic pressure correlated well with the total ATP depletion (r = 0.96, p < 0.01). However, ATP loss was supposed to be a mere result from the increased ATP consumption corresponding to a rise in intracellular free Ca2+ (from the control value of 315+/-23 nmol/L to 708+/-104 after the administration of hydrogen peroxide, p < 0.01), which also paralleled the elevation of end-diastolic pressure. Thus glycolytic inhibition and intracellular Ca2+ overload are independently responsible for the biphasic contractile dysfunction induced by hydrogen peroxide.

  7. Quantitative observations of hydrogen-induced, slow crack growth in a low alloy steel

    NASA Technical Reports Server (NTRS)

    Nelson, H. G.; Williams, D. P.

    1973-01-01

    Hydrogen-induced slow crack growth, da/dt, was studied in AISI-SAE 4130 low alloy steel in gaseous hydrogen and distilled water environments as a function of applied stress intensity, K, at various temperatures, hydrogen pressures, and alloy strength levels. At low values of K, da/dt was found to exhibit a strong exponential K dependence (Stage 1 growth) in both hydrogen and water. At intermediate values of K, da/dt exhibited a small but finite K dependence (Stage 2), with the Stage 2 slope being greater in hydrogen than in water. In hydrogen, at a constant K, (da/dt) sub 2 varied inversely with alloy strength level and varied essentially in the same complex manner with temperature and hydrogen pressure as noted previously. The results of this study provide support for most of the qualitative predictions of the lattice decohesion theory as recently modified by Oriani. The lack of quantitative agreement between data and theory and the inability of theory to explain the observed pressure dependence of slow crack growth are mentioned and possible rationalizations to account for these differences are presented.

  8. Hydrogen Induced Cracking in Titanium Drip Shield of High-Level Waste Repository

    SciTech Connect

    Lu, S C

    2001-05-30

    Both qualitative and quantitative assessments have been conducted to evaluate the effects of hydrogen induced cracking on the drip shield. The basic premise of the assessments is that failure will occur once the hydrogen content exceeds a certain limit or critical value, H{sub c}. Potential mechanisms for hydrogen absorption in the drip shield have been identified to be general passive corrosion and galvanic couple with steel components. Both qualitative and quantitative evaluations indicated that hydrogen concentration in the drip shield will be below the critical value by a considerable margin. The choice of the mathematical models and associated parameters appears to be reasonable. Continued effort in data collection and development should provide validation and improved level of confidence of the proposed models.

  9. Mushroom extract protects against hydrogen peroxide-induced toxicity in hepatic and neuronal human cultured cells.

    PubMed

    Guizani, Nejib; Waly, Mostafa I

    2012-11-15

    Hydrogen peroxide is an oxidative stress agent that is associated with depletion of intracellular glutathione and inhibition of antioxidant enzymes in different cell lines. Consumption of antioxidant-rich foods reduces cellular oxidative stress and its related health problems. This study aimed to assess the antioxidant properties of mushroom, Agaricus bisporous cultivar extract, against hydrogen peroxide induced oxidative stress in cultured human hepatic (HepG2) and neuronal (SH-SY5Y) cells. In this study, hydrogen peroxide caused significant oxidative stress in HepG2 and SH-SY5Y cells as demonstrated by glutathione depletion, impairment of total antioxidant capacity and inhibition of antioxidant enzymes (glutathione peroxidase, catalase and superoxide dismutase). Agaricusbisporous extract ameliorated the observed hydrogen peroxide-induced oxidative cellular insult as indicated by restoring the activity of glutathione and the assayed antioxidant enzymes to control levels. The results suggest that mushroom extract as antioxidant properties and protects against the oxidative stress induced by hydrogen peroxide-in cultured human hepatic and neuronal cells.

  10. Hydrogen Induced Stress Cracking of Materials Under Cathodic Protection

    NASA Astrophysics Data System (ADS)

    LaCoursiere, Marissa P.

    Hydrogen embrittlement of AISI 4340, InconelRTM 718, Alloy 686 and Alloy 59 was studied using slow strain rate tests of both smooth and notched cylindrical specimens. Two heat treatments of the AISI 4340 material were used as a standard for two levels of yield strength: 1479 MPa, and 1140 MPa. A subset of the 1140 MPa AISI 4340 material also underwent plasma nitriding. The InconelRTM 718 material was hardened following AMS 5663M to obtain a yield strength of 1091 MPa. The Alloy 686 material was obtained in the Grade 3 condition with a minimum yield strength of 1034 MPa. The Alloy 59 material was obtained with a cold worked condition similar to the Alloy 686 and with a minimum yield strength of 1034 MPa. Ninety-nine specimens were tested, including smooth cylindrical tensile test specimens and smooth and notched cylindrical slow strain rate tensile tests specimens. Testing included specimens that had been precharged with hydrogen in 3.5% NaCl at 50°C for 2 weeks (AISI 4340), 4 weeks (InconelRTM 718, Alloy 686, Alloy 59) and 16 weeks (InconelRTM 718, Alloy 686, Alloy 59) using a potentiostat to deliver a cathodic potential of -1100 mV vs. SCE. The strain rate over the gauge section for the smooth specimens and in the notch root for the notched specimens was 1 x 10-6 /s. It was found that the AISI 4340 was highly embrittled in simulated ocean water when compared to the nickel based superalloys. The higher strength AISI 4340 showed much more embrittlement, as expected. Testing of the AISI 4340 at both 20°C and 4°C showed that the temperature had no effect on the hydrogen embrittlement response. The InconelRTM 718 was highly embrittled when precharged, although it only showed low levels of embrittlement when unprecharged. Both the Alloy 686 and Alloy 59 showed minimal embrittlement in all conditions. Therefore, for the materials examined, the use of Alloy 686 and Alloy 59 for components in salt water environments when under a cathodic potential of -1100 mV vs. SCE is

  11. Gettering of copper to hydrogen-induced cavities in silicon

    NASA Astrophysics Data System (ADS)

    Wong-Leung, J.; Ascheron, C. E.; Petravic, M.; Elliman, R. G.; Williams, J. S.

    1995-03-01

    Hydrogen implantation and subsequent thermal annealing is found to result in a well-defined band of cavities in Si. This band is an extremely efficient gettering layer for Cu which is also introduced into the near surface of Si by ion implantation. Profiling of implanted Cu indicates that ˜95% of an initial 3×1015 cm-2 Cu implant is redistributed following annealing at a temperature of 780 °C from a near-surface damaged layer to a narrow band of cavities of width ˜1000 Å at a depth of ˜1 μm. Furthermore, the Si between the surface and the cavity band is essentially defect-free and that some cavities contain the bulk Cu3Si phase.

  12. Hydrogen therapy may reduce the risks related to radiation-induced oxidative stress in space flight.

    PubMed

    Schoenfeld, Michael P; Ansari, Rafat R; Zakrajsek, June F; Billiar, Timothy R; Toyoda, Yoshiya; Wink, David A; Nakao, Atsunori

    2011-01-01

    Cosmic radiation is known to induce DNA and lipid damage associated with increased oxidative stress and remains a major concern in space travel. Hydrogen, recently discovered as a novel therapeutic medical gas in a variety of biomedical fields, has potent antioxidant and anti-inflammatory activities. It is expected that space mission activities will increase in coming years both in numbers and duration. It is therefore important to estimate and prevent the risks encountered by astronauts due to oxidative stress prior to developing clinical symptoms of disease. We hypothesize that hydrogen administration to the astronauts by either inhalation or drinking hydrogen-rich water may potentially yield a novel and feasible preventative/therapeutic strategy to prevent radiation-induced adverse events. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Two solvent-induced porous hydrogen-bonded organic frameworks: solvent effects on structures and functionalities.

    PubMed

    Wang, Hailong; Bao, Zongbi; Wu, Hui; Lin, Rui-Biao; Zhou, Wei; Hu, Tong-Liang; Li, Bin; Zhao, John Cong-Gui; Chen, Banglin

    2017-09-05

    Two solvent-induced porous hydrogen-bonded organic frameworks have been obtained, and their synthesis, crystal structures, gas sorption behaviours and fluorescence sensing applications have been systematically investigated to elucidate the solvent effects on the structures and functionalities of HOFs.

  14. [Inhibition of hydrogen peroxide production on chondrocytes induced by fulvic acid by ginger volatile oil].

    PubMed

    Guo, P; Xu, J; Xu, S; Wang, K

    1997-09-01

    In order to investigate the effect of ginger on Kashin-Beck disease (KBD), the ginger volatile oil was taken as a scavenger and proved effective in inhibiting the production of hydrogen peroxide in chondrocytes induced by fulvic acid from KBD area.

  15. Structure dependent hydrogen induced etching features of graphene crystals

    NASA Astrophysics Data System (ADS)

    Thangaraja, Amutha; Shinde, Sachin M.; Kalita, Golap; Papon, Remi; Sharma, Subash; Vishwakarma, Riteshkumar; Sharma, Kamal P.; Tanemura, Masaki

    2015-06-01

    H2 induced etching of graphene is of significant interest to understand graphene growth process as well as to fabricate nanoribbons and various other structures. Here, we demonstrate the structure dependent H2 induced etching behavior of graphene crystals. We synthesized graphene crystals on electro-polished Cu foil by an atmospheric pressure chemical vapor deposition process, where some of the crystals showed hexagonal shaped snowflake-dendritic morphology. Significant differences in H2 induced etching behavior were observed for the snowflake-dendritic and regular graphene crystals by annealing in a gas mixture of H2 and Ar. The regular graphene crystals were etched anisotropically creating hexagonal holes with pronounced edges, while etching of all the dendritic crystals occurred from the branches of lobs creating symmetrical fractal structures. The etching behavior provides important clue of graphene nucleation and growth as well as their selective etching to fabricate well-defined structures for nanoelectronics.

  16. Hydrogen protects auditory hair cells from cisplatin-induced free radicals.

    PubMed

    Kikkawa, Yayoi S; Nakagawa, Takayuki; Taniguchi, Mirei; Ito, Juichi

    2014-09-05

    Cisplatin is a widely used chemotherapeutic agent for the treatment of various malignancies. However, its maximum dose is often limited by severe ototoxicity. Cisplatin ototoxicity may require the production of reactive oxygen species (ROS) in the inner ear by activating enzymes specific to the cochlea. Molecular hydrogen was recently established as an antioxidant that selectively reduces ROS, and has been reported to protect the central nervous system, liver, kidney and cochlea from oxidative stress. The purpose of this study was to evaluate the potential of molecular hydrogen to protect cochleae against cisplatin. We cultured mouse cochlear explants in medium containing various concentrations of cisplatin and examined the effects of hydrogen gas dissolved directly into the media. Following 48-h incubation, the presence of intact auditory hair cells was assayed by phalloidin staining. Cisplatin caused hair cell loss in a dose-dependent manner, whereas the addition of hydrogen gas significantly increased the numbers of remaining auditory hair cells. Additionally, hydroxyphenyl fluorescein (HPF) staining of the spiral ganglion showed that formation of hydroxyl radicals was successfully reduced in hydrogen-treated cochleae. These data suggest that molecular hydrogen can protect auditory tissues against cisplatin toxicity, thus providing an additional strategy to protect against drug-induced inner ear damage.

  17. Hydrogen-induced defects in austenite and ferrite of a duplex steel.

    PubMed

    Głowacka, A; Swiatnicki, W A; Jezierska, E

    2006-09-01

    The influence of hydrogen on the microstructure of two types of austeno-ferritic duplex stainless steel (Cr26-Ni6 model steel and Cr22-Ni5-Mo3 commercial steel), each of them after two thermo-mechanical treatments, was investigated. The aim of this study was to reveal microstructural changes appearing during the hydrogen charging and particularly to clarify the occurrence of phase transformations induced by hydrogen. The specific microstructural changes in the ferrite (alpha) and austenite (gamma) of both types of steel were observed. A strong increase of dislocation density was noticed in the alpha phase. In the case of model steel, longer hydrogen charging times led to significant ferrite grain refinement. In the commercial steel, the strips and twin plates appeared in the ferrite after hydrogenation. The appearance of stacking faults was revealed in the gamma phase. The martensite laths appeared in austenite after longer hydrogenation times. It seems that the microstructural changes gave rise to the formation of microcracks in the alpha and gamma phases as well as on the alpha/gamma interphase boundaries.

  18. Hydrogen in drinking water attenuates noise-induced hearing loss in guinea pigs.

    PubMed

    Lin, Ying; Kashio, Akinori; Sakamoto, Takashi; Suzukawa, Keigo; Kakigi, Akinobu; Yamasoba, Tatsuya

    2011-01-03

    It has been shown that molecular hydrogen acts as a therapeutic and preventive antioxidant by selectively reducing the hydroxyl radical, the most cytotoxic of the reactive oxygen species. In the present study, we tested the hypothesis that acoustic damage in guinea pigs can be attenuated by the consumption of molecular hydrogen. Guinea pigs received normal water or hydrogen-rich water for 14 days before they were exposed to 115 dB SPL 4-kHz octave band noise for 3h. Animals in each group underwent measurements for auditory brainstem response (ABR) or distortion-product otoacoustic emissions (DPOAEs) before the treatment (baseline) and immediately, 1, 3, 7, and 14 days after noise exposure. The ABR thresholds at 2 and 4 kHz were significantly better on post-noise days 1, 3, and 14 in hydrogen-treated animals when compared to the normal water-treated controls. Compared to the controls, the hydrogen-treated animals showed greater amplitude of DPOAE input/output growth functions during the recovery process, with statistical significance detected on post-noise days 3 and 7. These findings suggest that hydrogen can facilitate the recovery of hair cell function and attenuate noise-induced temporary hearing loss. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  19. Effect of different microstructural parameters on hydrogen induced cracking in an API X70 pipeline steel

    NASA Astrophysics Data System (ADS)

    Mohtadi-Bonab, M. A.; Eskandari, M.; Karimdadashi, R.; Szpunar, J. A.

    2017-07-01

    In this study, the surface and cross section of an as-received API X70 pipeline steel was studied by SEM and EDS techniques in order to categorize the shape and morphology of inclusions. Then, an electrochemical hydrogen charging using a mixed solution of 0.2 M sulfuric acid and 3 g/l ammonium thiocyanate has been utilized to create hydrogen cracks in X70 steel. After hydrogen charging experiments, the cross section of this steel has been accurately checked by SEM in order to find out hydrogen cracks. The region of hydrogen cracks was investigated by SEM and EBSD techniques to predict the role of different microstructural parameters involving hydrogen induced cracking (HIC) phenomenon. The results showed that inclusions were randomly distributed in the cross section of tested specimens. Moreover, different types of inclusions in as-received X70 steel were found. However, only inclusions which were hard, brittle and incoherent with the metal matrix, such as manganese sulfide and carbonitride precipitates, were recognized to be harmful to HIC phenomenon. Moreover, HIC cracks propagate dominantly in transgraular manner through differently oriented grains with no clear preferential trend. Moreover, a different type of HIC crack with about 15-20 degrees of deviation from the rolling direction was found and studied by EBSD technique and role of micro-texture parameters on HIC was discussed.

  20. Hydrogen Balmer Series Self-Absorption Measurement in Laser-Induced Air Plasma

    NASA Astrophysics Data System (ADS)

    Gautam, Ghaneshwar; Parigger, Christian

    2015-05-01

    In experimental studies of laser-induced plasma, we use focused Nd:YAG laser radiation to generate optical breakdown in laboratory air. A Czerny-Turner type spectrometer and an ICCD camera are utilized to record spatially and temporally resolved spectra. Time-resolved spectroscopy methods are employed to record plasma dynamics for various time delays in the range of 0.300 microsecond to typically 10 microsecond after plasma initiation. Early plasma emission spectra reveal hydrogen alpha and ionized nitrogen lines for time delays larger than 0.3 microsecond, the hydrogen beta line emerges from the free-electron background radiation later in the plasma decay for time delays in excess of 1 microsecond. The self-absorption analyses include comparisons of recorded data without and with the use of a doubling mirror. The extent of self-absorption of the hydrogen Balmer series is investigated for various time delays from plasma generation. There are indications of self-absorption of hydrogen alpha by comparison with ionized nitrogen lines at a time delay of 0.3 microsecond. For subsequent time delays, self-absorption effects on line-widths are hardly noticeable, despite the fact of the apparent line-shape distortions. Of interest are comparisons of inferred electron densities from hydrogen alpha and hydrogen beta lines as the plasma decays, including assessments of spatial variation of electron density.

  1. Hydrogen-Induced Cracking Assessment in Pipeline Steels Through Permeation and Crystallographic Texture Measurements

    NASA Astrophysics Data System (ADS)

    Mohtadi-Bonab, M. A.; Karimdadashi, R.; Eskandari, M.; Szpunar, J. A.

    2016-05-01

    Electrochemical hydrogen charging and permeation techniques were used to characterize hydrogen distribution, trapping, and diffusion in X60 and X60 sour service (X60SS) pipeline steels. The results obtained contribute to better understanding of hydrogen-induced cracking (HIC). SEM observations illustrated that all HIC cracks were formed at the center of cross section in the X60 steel after 3-h hydrogen charging and length of cracks increased with charging time. No HIC cracks were recorded at the cross section of X60SS steel after the same charging for different durations. Hydrogen permeation tests showed that the density of reversible hydrogen traps was lower at the center of cross section in the X60SS steel compared to the X60 one, and this is considered as one of the main reasons for high resistance of X60SS steel to HIC. EBSD orientation imaging results proved that the accumulation of <111>||ND-oriented grains at the center of the cross section in the X60SS steel was high. This is also considered as another reason for higher resistance of this steel to HIC. Finally, the center segregation zone with higher hardness value in the X60 steel was more pronounced than in the X60SS steel which made the X60 steel susceptible to HIC cracking.

  2. Measurement of a hyperfine-induced spin-exchange frequency shift in atomic hydrogen

    SciTech Connect

    Walsworth, R.L.; Silvera, I.F. ); Mattison, E.M.; Vessot, R.F.C. )

    1992-09-01

    We have measured a hyperfine-induced spin-exchange frequency shift in the atomic-hydrogen ground-state hyperfine transition. A recent quantum-mechanical treatment of low-energy hydrogen-hydrogen scattering by Koelman {ital et} {ital al}. (Phys. Rev. A 38, 3535 (1988)) predicts such frequency shifts to become large at low temperature, and to affect the performance of atomic clocks such as the cryogenic hydrogen maser. The experiment reported here was performed with a hydrogen maser operating near room temperature, where the reported hyperfine effects are predicted to be small, but measurable. Using an adiabatic fast passage (AFP) technique to vary the incoming atomic population in the masing states from approximately 100% (AFP on) to 50% (AFP off), we determined the change in the dimensionless hyperfine-induced frequency-shift parameter {Omega} to be {Omega}{sub on}{minus}{Omega}{sub off}=5.38 (1.06){times}10{sup {minus}4}. The theoretical prediction at this temperature is {Omega}{sub on}{minus}{Omega}{sub off}={minus}0.76{times}10{sup {minus}4} to {minus}1.12{times}10{sup {minus}4}, for the range of masing-state populations used in the present experiment. We review the relevant theory, report our experimental method and results, and discuss possible reasons for the discrepancy between experiment and theory.

  3. Hydrogen peroxide centrally attenuates hyperosmolarity-induced thirst and natriuresis.

    PubMed

    Zanella, Regis C; Melo, Mariana Rosso; Furuya, Werner Issao; Colombari, Eduardo; Menani, José V; Colombari, Débora Simões Almeida

    2016-01-01

    Intragastric hypertonic NaCl that simulates the ingestion of osmotically active substances by food intake induces thirst, vasopressin and oxytocin release, diuresis and natriuresis. Reactive oxygen species (ROS) produced endogenously in central areas may act modulating autonomic and behavioral responses. In the present study, we investigated the effects of H2O2 injected centrally on water intake and renal responses induced by increasing plasma osmolality with intragastric (ig) administration of 2M NaCl (2 ml/rat). Male Holtzman rats (280-320 g) with stainless steel cannula implanted in the lateral ventricle (LV) were used. Injections of H2O2 (2.5 μmol/1 μl) into the LV reduced ig 2M NaCl-induced water intake (3.1 ± 0.7, vs. PBS: 8.6 ± 1.0 ml/60 min, p<0.05), natriuresis (769 ± 93, vs. PBS: 1158 ± 168 μEq/120 min, p<0.05) and diuresis (4.1 ± 0.5, vs. PBS: 5.0 ± 0.5 ml/120 min, p<0.05). Injections of H2O2 into the LV also decreased meal associated water intake (4.9 ± 1.5, vs. PBS: 11.0 ± 1.7 ml/120 min). However, H2O2 into the LV did not modify 2% sucrose intake (3.3 ± 1.5, vs. PBS: 5.4 ± 2.3 ml/120 min) or 24h food deprivation-induced food intake (8.2 ± 2.0, vs. PBS: 11.0 ± 1.6g/120 min), suggesting that this treatment does not produce nonspecific inhibition of ingestive behaviors. The data suggest an inhibitory role for H2O2 acting centrally on thirst and natriuresis induced by hyperosmolarity and on meal-associated thirst.

  4. Hydrogen water alleviates lung injury induced by one-lung ventilation.

    PubMed

    Wu, Qifei; Zhang, Jingyao; Wan, Yong; Song, Sidong; Zhang, Yong; Zhang, Guangjian; Liu, Chang; Fu, Junke

    2015-12-01

    With the development of thoracic surgeries, one-lung ventilation (OLV) has been routinely used to facilitate surgical exposure. However, OLV can cause lung injury during the surgical process and becomes an important factor affecting the outcomes. To date, effective treatments for the prevention of lung injury caused by OLV are lacking. Hydrogen has been demonstrated to have effective protection against tissue injuries caused by oxidative stress, inflammation, and apoptosis. This study investigated the efficacy of hydrogen water consumption on the prevention of lung injury induced by OLV in rats. Male Sprague-Dawley rats (n = 32, 240-260 g) were divided randomly into the following four groups: sham group, sham + H2 group, OLV group, OLV + H2 group. The rats drank hydrogen water or degassed hydrogen water for 4 wk before the operation and received OLV for 60 min and two-lung ventilation for 60 min. Lung tissues were assayed for wet-to-dry ratio, oxidative stress variables, proinflammatory cytokines, and hematoxylin-eosin staining. Hydrogen water consumption reduced wet-to-dry weight ratio, malondialdehyde and myeloperoxidase activity and decreased the concentration of TNF-α, IL-1β, and IL-6 in the lung tissues compared with sham group and sham + H2 group. Hydrogen water consumption further attenuated NF-κB activation and caused histopathologic alterations. Our data demonstrated that hydrogen water consumption ameliorated OLV-induced lung injury, and it may exert its protective role by its anti-inflammation, antioxidation and reducing NF-κB activity in the lung tissues. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Combined laser induced ignition and plasma spectroscopy: Fundamentals and application to a hydrogen air combustor

    NASA Astrophysics Data System (ADS)

    Zimmer, L.; Okai, K.; Kurosawa, Y.

    2007-12-01

    Combined Laser Induced Ignition and Plasma Spectroscopy (LI2PS) has the potential to give the exact local composition of a mixture at the ignition point and at the ignition time. However, as different laser energies are required to ignite a particular mixture as function of space, the typical approach using two power meters to calibrate the plasma spectroscopy measurement is not well suited. Furthermore, LI2PS requires single shot measurements and therefore high accuracy. In this paper, a novel calibration scheme is presented for application of Laser Induced Plasma Spectroscopy (LIPS) to gaseous analyses. Numerical simulations of air spectra are used to show that species emission can be used directly from the broadband spectra to determine the plasma conditions. The ratio of nitrogen emission around 744 nm and around 870 nm is found to be a sensitive indication of temperature in the emission ranging from 700 to 890 nm. Comparisons with experimental spectra show identical tendencies and validate the findings of the simulations. This approach is used in a partially-premixed hydrogen-air burner. First, helium is used instead of hydrogen. After an explanation of timing issue related to LIPS, it is shown that the calibration required depends only on nitrogen excitation and nitrogen-hydrogen ratio, without the need to know the deposited power. Measurements of the fuel distribution as function of injection momentum and spatial localization are reported. To illustrate the use of such a single shot approach, combined laser ignition and plasma spectroscopy is proposed. In this case, the calibration is based on hydrogen excitation and hydrogen-oxygen and hydrogen-nitrogen ratio. Results obtained with LI2PS show that ignition is successful only for high power and relatively high hydrogen concentration compared to the local mean. It is expected that LI2PS will become an important tool when dealing with partially-premixed or diffusion flame ignition.

  6. Impact-induced devolatilization and hydrogen isotopic fractionation of serpentine: implications for planetary accretion.

    PubMed

    Tyburczy, J A; Krishnamurthy, R V; Epstein, S; Ahrens, T J

    1990-05-01

    The degree of impact-induced devolatilization of nonporous serpentine, porous serpentine, and deuterium-enriched serpentine was investigated using two independent experimental methods, the gas recovery method and the solid recovery method, yielding consistent results. The gas recovery method enables determination of the chemical and hydrogen isotopic composition of the recovered gases. Experiments on deuterium-enriched serpentine unambiguously identify the samples as the source of the recovered gases, as opposed to other possible contaminants. For shock pressures near incipient devolatilization (Pinitial = 5.0 GPa), the hydrogen isotopic composition of the evolved gas is similar to that of the starting material. For higher shock pressures the bulk evolved gas is significantly lower in deuterium than the starting material. There is also significant reduction of H2O to H2 in gases recovered at higher shock pressures, probably caused by reaction of evolved H2O with the metal gas recovery fixture. The hydrogen isotopic fractionation between the evolved gas and the residual solid indicates nonequilibrium, kinetic control of gas-solid isotopic ratios. In contrast, gaseous H2O-H2 isotopic fractionation suggests high temperature (800-1300 K) isotopic equilibrium between the gaseous species, indicating initiation of devolatilization at sites of greater than average energy deposition (i.e., shear bands). Impact-induced hydrogen isotopic fractionation of hydrous silicates during accretion can affect the distribution of hydrogen isotopes of planetary bodies during accretion, leaving the interiors enriched in deuterium. The significance of this process for planetary development depends on the models used for extrapolation of the observed isotopic fractionation to devolatilizations greater than those investigated experimentally and assumptions about timing and rates of protoatmosphere loss, frequency of multiple impacts, and rates of gas-solid or gas-melt isotopic re

  7. Hydrogen-rich saline ameliorates the severity of L-arginine-induced acute pancreatitis in rats

    SciTech Connect

    Chen, Han; Sun, Yan Ping; Li, Yang; Liu, Wen Wu; Xiang, Hong Gang; Fan, Lie Ying; Sun, Qiang; Xu, Xin Yun; Cai, Jian Mei; Ruan, Can Ping; Su, Ning; Yan, Rong Lin; Sun, Xue Jun; Wang, Qiang

    2010-03-05

    Molecular hydrogen, which reacts with the hydroxyl radical, has been considered as a novel antioxidant. Here, we evaluated the protective effects of hydrogen-rich saline on the L-arginine (L-Arg)-induced acute pancreatitis (AP). AP was induced in Sprague-Dawley rats by giving two intraperitoneal injections of L-Arg, each at concentrations of 250 mg/100 g body weight, with an interval of 1 h. Hydrogen-rich saline (>0.6 mM, 6 ml/kg) or saline (6 ml/kg) was administered, respectively, via tail vein 15 min after each L-Arg administration. Severity of AP was assessed by analysis of serum amylase activity, pancreatic water content and histology. Samples of pancreas were taken for measuring malondialdehyde and myeloperoxidase. Apoptosis in pancreatic acinar cell was determined with terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling technique (TUNEL). Expression of proliferating cell nuclear antigen (PCNA) and nuclear factor kappa B (NF-{kappa}B) were detected with immunohistochemistry. Hydrogen-rich saline treatment significantly attenuated the severity of L-Arg-induced AP by ameliorating the increased serum amylase activity, inhibiting neutrophil infiltration, lipid oxidation and pancreatic tissue edema. Moreover, hydrogen-rich saline treatment could promote acinar cell proliferation, inhibit apoptosis and NF-{kappa}B activation. These results indicate that hydrogen treatment has a protective effect against AP, and the effect is possibly due to its ability to inhibit oxidative stress, apoptosis, NF-{kappa}B activation and to promote acinar cell proliferation.

  8. Hydrogen peroxide-induced structural alterations of RNAse A.

    PubMed

    Lasch, P; Petras, T; Ullrich, O; Backmann, J; Naumann, D; Grune, T

    2001-03-23

    Proteins exposed to oxidative stress are degraded via proteolytic pathways. In the present study, we undertook a series of in vitro experiments to establish a correlation between the structural changes induced by mild oxidation of the model protein RNase A and the proteolytic rate found upon exposure of the modified protein toward the isolated 20 S proteasome. Fourier transform infrared spectroscopy was used as a structure-sensitive probe. We report here strong experimental evidence for oxidation-induced conformational rearrangements of the model protein RNase A and, at the same time, for covalent modifications of amino acid side chains. Oxidation-related conformational changes, induced by H(2)O(2) exposure of the protein may be monitored in the amide I region, which is sensitive to changes in protein secondary structure. A comparison of the time- and H(2)O(2) concentration-dependent changes in the amide I region demonstrates a high degree of similarity to spectral alterations typical for temperature-induced unfolding of RNase A. In addition, spectral parameters of amino acid side chain marker bands (Tyr, Asp) revealed evidence for covalent modifications. Proteasome digestion measurements on oxidized RNase A revealed a specific time and H(2)O(2) concentration dependence; at low initial concentration of the oxidant, the RNase A turnover rate increases with incubation time and concentration. Based on these experimental findings, a correlation between structural alterations detected upon RNase A oxidation and proteolytic rates of RNase A is established, and possible mechanisms of the proteasome recognition process of oxidatively damaged proteins are discussed.

  9. Difference in light-induced annealing behavior of deposition- and light-induced defects in hydrogenated amorphous silicon

    NASA Astrophysics Data System (ADS)

    Hata, N.; Matsuda, A.

    1993-10-01

    First experimental results on light-induced annealing (LIA) of deposition-induced defects (DID) in hydrogenated amorphous silicon (a-Si:H) are reported. LIA of DID and of light-induced defects (LID) showed a big difference: the reduction in density of DID by LIA is as low as one third or less of LID reduced by LIA, while thermal annealing reduced DID and LID very similarly. Those results indicate a structural difference between DID and LID, and are discussed in connection with a structural model of a-Si:H.

  10. Caffeic acid protects hydrogen peroxide induced cell damage in WI-38 human lung fibroblast cells.

    PubMed

    Kang, Kyoung Ah; Lee, Kyoung Hwa; Zhang, Rui; Piao, Meijing; Chae, Sungwook; Kim, Kil Nam; Jeon, You Jin; Park, Doek Bae; You, Ho Jin; Kim, Jin Sook; Hyun, Jin Won

    2006-09-01

    Cytoprotective effect of caffeic acid (3,4-dihydroxy cinnamic acid) on human lung fibroblast (WI-38) cells against hydrogen peroxide induced damage was investigated. Caffeic acid was found to scavenge intracellular reactive oxygen species, and 1,1-diphenyl-2-picrylhydrazyl radical, and thus prevented lipid peroxidation. The caffeic acid protected cell damage of WI-38 cells exposed to hydrogen peroxide (H(2)O(2)), via the activation of extracellular signal regulated kinase protein. Caffeic acid increased the activity of catalase and its protein expression. Hence, from the present study, it is suggestive that caffeic acid protects WI-38 cells against H2O2 damage by enhancing the cellular antioxidant activity.

  11. Reduction of hydrogen peroxide-induced erythrocyte damage by Carica papaya leaf extract.

    PubMed

    Okoko, Tebekeme; Ere, Diepreye

    2012-06-01

    To investigate the in vitro antioxidant potential of Carica papaya (C. papaya) leaf extract and its effect on hydrogen peroxide-induced erythrocyte damage assessed by haemolysis and lipid peroxidation. Hydroxyl radical scavenging activities, hydrogen ion scavenging activity, metal chelating activity, and the ferrous ion reducing ability were assessed as antioxidant indices. In the other experiment, human erythrocytes were treated with hydrogen peroxide to induce erythrocyte damage. The extract (at various concentrations) was subsequently incubated with the erythrocytes and later analysed for haemolysis and lipid peroxidation as indices for erythrocyte damage. Preliminary investigation of the extract showed that the leaf possessed significant antioxidant and free radical scavenging abilities using in vitro models in a concentration dependent manner (P<0.05). The extract also reduced hydrogen peroxide induced erythrocyte haemolysis and lipid peroxidation significantly when compared with ascorbic acid (P<0.05). The IC50 values were 7.33 mg/mL and 1.58 mg/mL for inhibition of haemolysis and lipid peroxidation, respectively. In all cases, ascorbic acid (the reference antioxidant) possessed higher activity than the extract. The findings show that C. papaya leaves possess significant bioactive potential which is attributed to the phytochemicals which act in synergy. Thus, the leaves can be exploited for pharmaceutical and nutritional purposes.

  12. Moisture-Induced Spallation and Interfacial Hydrogen Embrittlement of Alumina Scales

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    2005-01-01

    Thermal expansion mismatch stresses and interfacial sulfur activity are the major factors producing primary Al2O3 scale spallation on high temperature alloys. However, moisture-induced delayed spallation appears as a secondary, but often dramatic, illustration of an additional mechanistic detail. A historical review of delayed failure of alumina scales and TBC s on superalloys is presented herein. Similarities with metallic phenomena suggest that hydrogen embrittlement from ambient humidity, resulting from the reaction Al+3H2O=Al(OH)3+3H(+)+3e(-), is the operative mechanism. This proposal was tested by standard cathodic hydrogen charging in 1N H2SO4, applied to Rene N5 pre-oxidized at 1150 C for 1000 1-hr cycles, and monitored by weight change, induced current, and microstructure. Here cathodic polarization at -2.0 V abruptly stripped mature Al2O3 scales at the oxide-metal interface. Anodic polarization at +2.0 V, however, produced alloy dissolution. Finally, with no applied voltage, the electrolyte alone produced neither scale spallation nor alloy dissolution. These experiments thus highlight the detrimental effects of hydrogen charging on alumina scale adhesion. It is proposed that interfacial hydrogen embrittlement is produced by moist air and is the root cause of both moisture-induced, delayed scale spallation and desktop TBC failures.

  13. Moisture-Induced Delayed Spallation and Interfacial Hydrogen Embrittlement of Alumina Scales

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    2008-01-01

    While interfacial sulfur is the primary chemical factor affecting Al2O3 scale adhesion, moisture-induced delayed spallation appears as a secondary, but impressive, mechanistic detail. Similarities with bulk metallic phenomena suggest that hydrogen embrittlement from ambient humidity, resulting from the reaction Al(sub alloy)+3(H2O)(sub air) = Al(OH)(-) (sub 3) +3H(+) may be the operative mechanism. This proposal was tested on pre-oxidized Rene N5 by standard cathodic hydrogen charging in 1N H2SO4, as monitored by weight change, induced current, and microstructure. Cathodic polarization at -2.0 V abruptly stripped mature Al2O3 scales at the oxide-metal interface. Anodic polarization at +2.0 V, however, produced alloy dissolution. Finally, with no applied voltage, the acid electrolyte produced neither scale spallation nor alloy dissolution. Thus, hydrogen charging was detrimental to alumina scale adhesion. Moisture-induced interfacial hydrogen embrittlement is concluded to be the cause of delayed scale spallation and desktop thermal barrier coating failures.

  14. Moisture-Induced Delayed Spallation and Interfacial Hydrogen Embrittlement of Alumina Scales

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    2008-01-01

    While interfacial sulfur is the primary chemical factor affecting Al2O3 scale adhesion, moisture-induced delayed spallation appears as a secondary, but impressive, mechanistic detail. Similarities with bulk metallic phenomena suggest that hydrogen embrittlement from ambient humidity, resulting from the reaction Al(sub alloy)+3(H2O)(sub air) = Al(OH)(-) (sub 3) +3H(+) may be the operative mechanism. This proposal was tested on pre-oxidized Rene N5 by standard cathodic hydrogen charging in 1N H2SO4, as monitored by weight change, induced current, and microstructure. Cathodic polarization at -2.0 V abruptly stripped mature Al2O3 scales at the oxide-metal interface. Anodic polarization at +2.0 V, however, produced alloy dissolution. Finally, with no applied voltage, the acid electrolyte produced neither scale spallation nor alloy dissolution. Thus, hydrogen charging was detrimental to alumina scale adhesion. Moisture-induced interfacial hydrogen embrittlement is concluded to be the cause of delayed scale spallation and desktop thermal barrier coating failures.

  15. Reduction of hydrogen peroxide-induced erythrocyte damage by Carica papaya leaf extract

    PubMed Central

    Okoko, Tebekeme; Ere, Diepreye

    2012-01-01

    Objective To investigate the in vitro antioxidant potential of Carica papaya (C. papaya) leaf extract and its effect on hydrogen peroxide-induced erythrocyte damage assessed by haemolysis and lipid peroxidation. Methods Hydroxyl radical scavenging activities, hydrogen ion scavenging activity, metal chelating activity, and the ferrous ion reducing ability were assessed as antioxidant indices. In the other experiment, human erythrocytes were treated with hydrogen peroxide to induce erythrocyte damage. The extract (at various concentrations) was subsequently incubated with the erythrocytes and later analysed for haemolysis and lipid peroxidation as indices for erythrocyte damage. Results Preliminary investigation of the extract showed that the leaf possessed significant antioxidant and free radical scavenging abilities using in vitro models in a concentration dependent manner (P<0.05). The extract also reduced hydrogen peroxide induced erythrocyte haemolysis and lipid peroxidation significantly when compared with ascorbic acid (P<0.05). The IC50 values were 7.33 mg/mL and 1.58 mg/mL for inhibition of haemolysis and lipid peroxidation, respectively. In all cases, ascorbic acid (the reference antioxidant) possessed higher activity than the extract. Conclusions The findings show that C. papaya leaves possess significant bioactive potential which is attributed to the phytochemicals which act in synergy. Thus, the leaves can be exploited for pharmaceutical and nutritional purposes. PMID:23569948

  16. Hydrogen-induced atomic structure evolution of the oxygen-chemisorbed Cu(110) surface

    NASA Astrophysics Data System (ADS)

    Shan, Weitao; Liu, Qianqian; Li, Jonathan; Cai, Na; Saidi, Wissam A.; Zhou, Guangwen

    2016-12-01

    Using a combination of scanning tunneling microscopy (STM) and density functional theory (DFT) modeling, we determine the mechanism of the atomic structural evolution of the oxygenated Cu(110) surface induced by the reaction of adsorbed hydrogen with chemisorbed oxygen in the Cu(110)-c(6 × 2)-O structure. Our STM observations show that the reconstructed Cu(110)-c(6 × 2)-O surface undergoes a phase transition to the (2 × 1)-O reconstruction in the course of oxygen loss induced by the reaction with H2 gas. Using DFT modeling, we find that the surface phase transition is initiated via the adsorption of molecular hydrogen on the chemisorbed oxygen, which results in the formation of H2O molecules that desorb spontaneously from the surface. The loss of chemisorbed oxygen induces the c(6 × 2) → (2 × 1) transition that involves the diffusion of Cu―O―Cu chains along the ⟨1 ¯ 10 ⟩ direction.

  17. Role of hydrogen peroxide in hypoxia-induced erythropoietin production.

    PubMed Central

    Fandrey, J; Frede, S; Jelkmann, W

    1994-01-01

    The addition of exogenous H2O2 inhibited hypoxia-induced erythropoietin (Epo) production in the human hepatoma cell line HepG2. Likewise, elevation of endogenous H2O2 levels by the addition of menadione or the catalase inhibitor, aminotriazole, dose-dependently lowered Epo production. The inhibitory effect of exogenous H2O2 on Epo formation could be completely overcome by co-incubation with catalase. When GSH levels in HepG2 cells were lowered, Epo production was more susceptible to H2O2-induced inhibition, indicating that H2O2 might affect thiol groups in regulatory proteins. Endogenous production of H2O2 in HepG2 cells was dependent on the pericellular O2 tension, being lowest under conditions of hypoxia. Our results support the hypothesis that an H2O2-generating haem protein might be part of the O2 sensor that controls Epo production. High H2O2 levels under conditions of normoxia suppress, whereas lower levels in hypoxic cells allow epo gene expression. Images Figure 1 PMID:7980410

  18. Fractographic analysis of gaseous hydrogen induced cracking in 18Ni maraging steel

    NASA Technical Reports Server (NTRS)

    Gangloff, R. P.; Wei, R. P.

    1978-01-01

    Electron microscope fractographic analysis supplemented an extensive study of the kinetics of gaseous hydrogen assisted cracking in 18Ni maraging steel. Temperature determined the crack path morphology in each steel which, in turn, was directly related to the temperature dependence of the crack growth rate. Crack growth in the low temperature regime proceeded along prior austenite grain boundaries. Increasing the temperature above a critical value produced a continuously increasing proportion of transgranular quasi-cleavage associated with lath martensite boundaries. The amount of transgranular cracking was qualitatively correlated with the degree of temperature-induced deviation from Arrhenius behavior. Fractographic observations are interpreted in terms of hypothesized mechanisms for gaseous hydrogen embrittlement. It is concluded that hydrogen segregation to prior austenite and lath martensite boundaries must be considered as a significant factor in developing mechanisms for gaseous embrittlement of high strength steels.

  19. Effects of Hydrogen-Rich Saline on Hepatectomy-Induced Postoperative Cognitive Dysfunction in Old Mice.

    PubMed

    Tian, Yue; Guo, Shanbin; Zhang, Yan; Xu, Ying; Zhao, Ping; Zhao, Xiaochun

    2017-05-01

    This study aims to investigate the protective effects and underlying mechanisms of hydrogen-rich saline on the cognitive functions of elder mice with partial hepatectomy-induced postoperative cognitive dysfunction (POCD). Ninety-six old male Kunming mice were randomly divided into 4 groups (n = 24 each): control group (group C), hydrogen-rich saline group (group H), POCD group (group P), and POCD + hydrogen-rich saline group (group PH). Cognitive function was subsequently assessed using Morris water-maze (MWM) test. TNF-α and IL-1β levels were measured by enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry, along with NF-κB activity determined by ELISA. The morphology of hippocampal tissues were further observed by HE staining. Learning and memory abilities of mice were significantly impaired at day 10 and day 14 post-surgery, as partial hepatectomy significantly prolonged the escape latency, decreased time at the original platform quadrant and frequency of crossing in group P when compared to group C (p < 0.05). The surgery also increased the contents of TNF-α, IL-1β, and NF-κB activity at all time points after surgery (p < 0.05). The introduction of hydrogen-rich saline (group PH) partially rescued spatial memory and learning as it shortened escape latency and increased time and crossing frequency of original platform compared to group P (p < 0.05). Moreover, such treatment also decreased TNF-α and IL-1β levels and NF-κB activity (p < 0.05). In addition, cell necrosis in the hippocampus induced by hepatectomy was also rescued by hydrogen-rich saline. Hydrogen-rich saline can alleviate POCD via inhibiting NF-κB activity in the hippocampus and reducing inflammatory response.

  20. Hydrogen peroxide prevents vascular calcification induced ROS production by regulating Nrf-2 pathway.

    PubMed

    Zhang, Wensong; Li, Yi; Ding, Hanlu; Du, Yaqin; Wang, Li

    2016-08-01

    Although vascular calcification in end-stage renal disease (ESRD) represents a ubiquitous human health problem, effective therapies with limited side effects are still lacking, and the precise mechanisms are not fully understood. The Nrf-2/ARE pathway is a pivotal to regulate anti-oxidative responses in vascular calcification upon ESRD. Although Nrf-2 plays a crucial role in atherosclerosis, pulmonary fibrosis, and brain ischemia, the effect of Nrf-2 and oxidative stress on vascular calcification in ESRD patients is still unclear. The aim of this research was to study the protective role of hydrogen peroxide in vascular calcification and the mechanism of Nrf-2 and oxidative stress on vascular calcification. Here we used the rat vascular smooth muscle cell model of β-glycerophosphate-induced calcification resembling vascular calcification in ESRD to investigate the therapeutic effect of 0.01 mM hydrogen peroxide on vascular calcification and further explores the possible underlying mechanisms. Our current report shows the in vitro role of 0.01 mM hydrogen peroxide in protecting against intracellular ROS accumulation upon vascular calcification. Both hydrogen peroxide and sulforaphane pretreatment reduced ROS production, increased the expression of Nrf-2, and decreased the expression of Runx2 following calcification. Our study demonstrates that 0.01 mM hydrogen peroxide can effectively protect rat aortic vascular smooth muscle cells against oxidative stress by preventing vascular calcification induced ROS production through Nrf-2 pathway. These data might define an antioxidant role of hydrogen peroxide in vascular calcification upon ESRD.

  1. Transcriptome for Photobiological Hydrogen Production Induced by Sulfur Deprivation in the Green Alga Chlamydomonas reinhardtii▿ †

    PubMed Central

    Nguyen, Anh Vu; Thomas-Hall, Skye R.; Malnoë, Alizée; Timmins, Matthew; Mussgnug, Jan H.; Rupprecht, Jens; Kruse, Olaf; Hankamer, Ben; Schenk, Peer M.

    2008-01-01

    Photobiological hydrogen production using microalgae is being developed into a promising clean fuel stream for the future. In this study, microarray analyses were used to obtain global expression profiles of mRNA abundance in the green alga Chlamydomonas reinhardtii at different time points before the onset and during the course of sulfur-depleted hydrogen production. These studies were followed by real-time quantitative reverse transcription-PCR and protein analyses. The present work provides new insights into photosynthesis, sulfur acquisition strategies, and carbon metabolism-related gene expression during sulfur-induced hydrogen production. A general trend toward repression of transcripts encoding photosynthetic genes was observed. In contrast to all other LHCBM genes, the abundance of the LHCBM9 transcript (encoding a major light-harvesting polypeptide) and its protein was strongly elevated throughout the experiment. This suggests a major remodeling of the photosystem II light-harvesting complex as well as an important function of LHCBM9 under sulfur starvation and photobiological hydrogen production. This paper presents the first global transcriptional analysis of C. reinhardtii before, during, and after photobiological hydrogen production under sulfur deprivation. PMID:18708561

  2. Nanochemistry at the atomic scale revealed in hydrogen-induced semiconductor surface metallization

    NASA Astrophysics Data System (ADS)

    Derycke, Vincent; Soukiassian, Patrick G.; Amy, Fabrice; Chabal, Yves J.; D'Angelo, Marie D.; Enriquez, Hanna B.; Silly, Mathieu G.

    2003-04-01

    Passivation of semiconductor surfaces against chemical attack can be achieved by terminating the surface-dangling bonds with a monovalent atom such as hydrogen. Such passivation invariably leads to the removal of all surface states in the bandgap, and thus to the termination of non-metallic surfaces. Here we report the first observation of semiconductor surface metallization induced by atomic hydrogen. This result, established by using photo-electron and photo-absorption spectroscopies and scanning tunnelling techniques, is achieved on a Si-terminated cubic silicon carbide (SiC) surface. It results from competition between hydrogen termination of surface-dangling bonds and hydrogen-generated steric hindrance below the surface. Understanding the ingredient for hydrogen-stabilized metallization directly impacts the ability to eliminate electronic defects at semiconductor interfaces critical for microelectronics, provides a means to develop electrical contacts on high-bandgap chemically passive materials, particularly for interfacing with biological systems, and gives control of surfaces for lubrication, for example of nanomechanical devices.

  3. Anti-inflammation effects of hydrogen saline in LPS activated macrophages and carrageenan induced paw oedema

    PubMed Central

    2012-01-01

    Background Oxidative stress is thought to play an important role in the pathogenesis of inflammation. Recent studies have found that hydrogen gas has the effect of eliminating free radicals. Whether hydrogen saline (more convenient to be used than hydrogen gas) has the anti-inflammation effect or not is still unknown. Methods Carrageenan-induced paw oedema and LPS-activated macrophages are studied in this article. Injection of carrageenan into the foot of a mouse elicited an acute inflammatory response characterized by increase of foot volume and infiltration of neutrophils. While tumor necrosis factorα(TNF-α) secreted by activated macrophages was determined by ELISA and real-time PCR. Results All parameters of inflammation (foot volume, infiltration of neutrophils, amount of TNF-α and the level of TNF-α's mRNA) were attenuated by the hydrogen saline treatment. Conclusion As a more convenient way than inhaling H2, hydrogen saline exhibits a protective effect against inflammation and it might provide a novel therapeutic approach for inflammatory diseases. PMID:22296736

  4. Nanochemistry at the atomic scale revealed in hydrogen-induced semiconductor surface metallization.

    PubMed

    Derycke, Vincent; Soukiassian, Patrick G; Amy, Fabrice; Chabal, Yves J; D'angelo, Marie D; Enriquez, Hanna B; Silly, Mathieu G

    2003-04-01

    Passivation of semiconductor surfaces against chemical attack can be achieved by terminating the surface-dangling bonds with a monovalent atom such as hydrogen. Such passivation invariably leads to the removal of all surface states in the bandgap, and thus to the termination of non-metallic surfaces. Here we report the first observation of semiconductor surface metallization induced by atomic hydrogen. This result, established by using photo-electron and photo-absorption spectroscopies and scanning tunnelling techniques, is achieved on a Si-terminated cubic silicon carbide (SiC) surface. It results from competition between hydrogen termination of surface-dangling bonds and hydrogen-generated steric hindrance below the surface. Understanding the ingredient for hydrogen-stabilized metallization directly impacts the ability to eliminate electronic defects at semiconductor interfaces critical for microelectronics, provides a means to develop electrical contacts on high-bandgap chemically passive materials, particularly for interfacing with biological systems, and gives control of surfaces for lubrication, for example of nanomechanical devices.

  5. Inhibition of azoxymethane-induced rat colon carcinogenesis by potassium hydrogen D-glucarate.

    PubMed

    Yoshimi, N; Walaszek, Z; Mori, H; Hanausek, M; Szemraj, J; Slaga, T J

    2000-01-01

    While calcium D-glucarate was shown to inhibit chemical carcinogenesis in various animal models, the effect of potassium hydrogen D-glucarate has not been extensively investigated. In the present study, potassium hydrogen D-glucarate markedly inhibited azoxymethane (AOM)-induced colon carcinogenesis in male F344 rats. Potassium hydrogen D-glucarate (PHG) or potassium hydrogen carbonate (PHC) were administered to rats in a diet (140 mmol/kg). Continual post-initiation treatment with potassium hydrogen D-glucarate reduced both tumor incidence and multiplicity at sacrifice by ca. 60%, while PHC had no effect. amelioration of overexpression of the betaG gene in rat colon carcinomas was observed using RT-PCR and Northern blot analysis. We hypothesize that previously demonstrated conversion of PHG to D-glucaro-1,4-lactone, a potent inhibitor of beta-glucuronidase (betaG), may be responsible for this effect. The mechanism of PHG inhibition of colon carcinogenesis may also involve suppression of cell proliferation and possibly alterations in cholesterol synthesis or cholesterol metabolism to bile acids. In conclusion, PHG possesses excellent potential as a natural, apparently non-toxic inhibitor to prevent colon cancer.

  6. Anomalous absorption in c-C3H and c-C3D radicals

    NASA Astrophysics Data System (ADS)

    Chandra, S.; Shinde, S. V.; Kegel, W. H.; Sedlmayr, E.

    2007-05-01

    Context: The c-C3H radical was first detected in TMC-1 by Yamamoto et al. (1987, ApJ, 322, L55), who observed the 2{12} → 1{11} transition at 91.5 GHz in emission. Mangum & Wootten (1990, A&A, 239, 319) observed the 1{10} → 1{11} transition at 14.8 GHz in emission in 12 additional galactic objects. Aims: The aim of this investigation is a quantitative estimate of relative line intensities under NLTE conditions. Methods: For wide ranges of physical parameters, where these molecules may be found, we have solved a set of statistical equilibrium equations coupled with the equations of radiative transfer in an on-the-spot approximation. For c-C3H, we accounted for 51 energy levels connected by 207 radiative transitions, and for c-C3D, we accounted for 51 energy levels connected by 205 radiative transitions. Results: Our results show that the 3{31} → 3{30} transition of c-C3H and c-C3D may be found in absorption against the cosmic microwave background (CMB). Furthermore, we found population inversion for the 1{10} → 1{11} transition. These findings may be useful in identifying these molecules in other cosmic objects, as well as for the determination of physical parameters in these objects. Tables 1-3 and Figs. 4, 5 are only available in electronic form at http://www.aanda.org

  7. Molecular hydrogen attenuates radiation-induced nucleobase damage to DNA in aerated aqueous solutions.

    PubMed

    Abou-Hamdan, Mhamad; Gardette, Bernard; Cadet, Jean; Gharib, Bouchra; De Reggi, Max; Douki, Thierry; Triantaphylides, Christian

    2016-09-01

    The main aim of the present study is to gain mechanistic insights into the modulating effect of molecular hydrogen on the γ-radiation-induced alteration pathways of DNA nucleobases. Aerated aqueous solutions of calf thymus DNA were exposed to a (60)Co source at doses ranging from 0 to 55 Gy under normoxic conditions, in the presence or not of 0.7 MPa hydrogen or helium. The measurement of several modified bases was performed using HPLC associated with electrospray ionization tandem pass spectrometry (HPLC-ESI-MS/MS). Bleaching of aqueous solutions of p-nitrosodimethylaniline (p-NDA) solutions was also used to allow the quantification of hydroxyl radical (•OH) formation. pNDA bleaching was significantly reduced in the presence of hyperbaric hydrogen. This is undoubtedly due to (•)OH scavenging by H2 since, under the same conditions, He had no effect. Similarly, base alterations were significantly reduced in the presence of hydrogen, as compared to controls under normal atmosphere or in the presence of helium. The relative proportions of modified nucleobases were not changed, showing that the only effect of H2 is to scavenge (•)OH without exhibiting reducing properties. Our findings demonstrate that H2 exerts a significant protection against radiation-induced DNA base damage in aqueous solutions, (•)OH scavenging being the only mechanism involved.

  8. Suppression of nanoindentation-induced phase transformation in crystalline silicon implanted with hydrogen

    NASA Astrophysics Data System (ADS)

    Jelenković, Emil V.; To, Suet

    2017-09-01

    In this paper the effect of hydrogen implantation in silicon on nanoindentation-induced phase transformation is investigated. Hydrogen ions were implanted in silicon through 300 nm thick oxide with double energy implantation (75 and 40 keV). For both energies implantation dose was 4 × 1016 cm-2. Some samples were thermally annealed at 400 °C. The micro-Raman spectroscopy was applied on nanoindentation imprints and the obtained results were related to the pop out/elbow appearances in nanoindentatioin unloading-displacement curves. The Raman spectroscopy revealed a suppression of Si-XII and Si-III phases and formation of a-Si in the indents of hydrogen implanted Si. The high-resolution x-ray diffraction measurements were taken to support the analysis of silicon phase formation during nanoindentation. Implantation induced strain, high hydrogen concentration, and platelets generation were found to be the factors that control suppression of c-Si phases Si-XII and Si-III, as well as a-Si phase enhancement during nanoindentation. [Figure not available: see fulltext.

  9. Baicalein Decreases Hydrogen Peroxide-Induced Damage to NG108-15 Cells via Upregulation of Nrf2.

    PubMed

    Yeh, Chao-Hung; Ma, Kuo-Hsing; Liu, Pei-Shan; Kuo, Jung-Kuei; Chueh, Sheau-Huei

    2015-08-01

    Baicalein is a flavonoid inhibitor of 12-lipoxygenase. Here, we investigated its effect on hydrogen peroxide-induced damage to NG108-15 cells. Hydrogen peroxide activated the mitochondrial apoptotic pathway, decreased Nrf2 expression, increased reactive oxygen species (ROS) levels, reduced viability, and increased cell death after 2-24 h treatment of NG108-15 cells. Co-treatment with hydrogen peroxide and baicalein completely suppressed the activation of mitochondrial apoptotic pathway by upregulating Nrf2 expression and reducing ROS stress and partially inhibited the effects on cell viability and cell death. Silencing of 12-lipoxygenase had a similar protective effect to baicalein on hydrogen peroxide-induced damage by blocking the hydrogen peroxide-induced decrease in Nrf2 expression and increase in ROS levels. Neither protective effect was altered by addition of 12-hydroxyeicosatetraenoic acid, the product of 12-lipoxygenase, suggesting that hydrogen peroxide induced damage via 12-lipoxygenase by another, as yet unknown, mechanism, rather than activating it. Co-treatment of cells with hydrogen peroxide and N-acetylcysteine or the Nrf2 inducer sulforaphane reduced hydrogen peroxide-induced damage in a similar fashion to baicalein, while the Nrf2 inhibitor retinoic acid blocked the protective effect of baicalein. Silencing Nrf2 also inhibited the protective effects of baicalein, sulforaphane, and N-acetylcysteine and resulted in high ROS levels, suggesting ROS elimination was mediated by Nrf2. Taken together our results suggest that baicalein protects cells from hydrogen peroxide-induced activation of the mitochondrial apoptotic pathway by upregulating Nrf2 and inhibiting 12-lipoxygenase to block the increase in ROS levels. Hydrogen peroxide also activates a second mitochondrial dysfunction independent death pathway which is resistant to baicalein. © 2015 Wiley Periodicals, Inc.

  10. Hydrogen-induced structural transformation of AuCu nanoalloys probed by synchrotron X-ray diffraction techniques.

    PubMed

    Yamauchi, M; Okubo, K; Tsukuda, T; Kato, K; Takata, M; Takeda, S

    2014-04-21

    In situ X-ray diffraction measurements reveal that the transformation of a AuCu nanoalloy from a face-centered-cubic to an L10 structure is accelerated under a hydrogen atmosphere. The structural transformation rate for the AuCu nanoalloy under hydrogen above 433 K was found to be 100 times faster than that in a vacuum, which is the first quantitative observation of hydrogen-induced ordering of nanoalloys.

  11. Collision-induced vibrational absorption in molecular hydrogens

    SciTech Connect

    Reddy, S.P.

    1993-05-01

    Collision induced absorption (CIA) spectra of the first overtone bands of H{sub 2}, D{sub 2}, and HD have been recorded for gas densities up to 500 amagat at 77-300 K. Analyses of these spectra reveal that (1) contrary to the observations in the fundamental bands, the contribution of the isotropic overlap interaction to the first overtone bands is negligible, (2) the squares of the matrix elements B{sub 32}(R)/ea{sub o} [= {lambda}{sub 32} exp(-(R-{sigma})/{rho}{sub 32}) + 3 (R/a{sub o}){sup -4}] where the subscripts 3 and 2 represent L and {lambda}, respectively, account for the absorption intensity of the bands and (3) the mixed term, 2,3 {lambda}{sub 32} exp (-(R-{sigma})/{rho}{sub 32}) <{vert_bar}Q{vert_bar}> <{alpha}> (R/a){sup -4}, gives a negative contribution. In the CIA spectra of H{sub 2} in its second overtone region recorded at 77, 201 and 298 K for gas densities up to 1000 amagat, a dip in the Q branch with characteristic Q{sub p} and Q{sub R} components has been observed. The analysis of the absorption profiles reveals, in addition to the previously known effects, the occurrence of the triple-collision transitions of H{sub 2} of the type Q{sub 1}(J) + Q{sub 1}(J) + Q{sub 1}(J) for the first time. From the profile analysis the absorption coefficient of these transitions is obtained.

  12. Evaluation by Rocket Combustor of C/C Composite Cooled Structure Using Metallic Cooling Tubes

    NASA Astrophysics Data System (ADS)

    Takegoshi, Masao; Ono, Fumiei; Ueda, Shuichi; Saito, Toshihito; Hayasaka, Osamu

    In this study, the cooling performance of a C/C composite material structure with metallic cooling tubes fixed by elastic force without chemical bonding was evaluated experimentally using combustion gas in a rocket combustor. The C/C composite chamber was covered by a stainless steel outer shell to maintain its airtightness. Gaseous hydrogen as a fuel and gaseous oxygen as an oxidizer were used for the heating test. The surface of these C/C composites was maintained below 1500 K when the combustion gas temperature was about 2800 K and the heat flux to the combustion chamber wall was about 9 MW/m2. No thermal damage was observed on the stainless steel tubes that were in contact with the C/C composite materials. The results of the heating test showed that such a metallic tube-cooled C/C composite structure is able to control the surface temperature as a cooling structure (also as a heat exchanger) as well as indicated the possibility of reducing the amount of coolant even if the thermal load to the engine is high. Thus, application of this metallic tube-cooled C/C composite structure to reusable engines such as a rocket-ramjet combined-cycle engine is expected.

  13. Treatment with hydrogen molecule alleviates TNFα-induced cell injury in osteoblast.

    PubMed

    Cai, Wen-Wen; Zhang, Ming-Hua; Yu, Yong-Sheng; Cai, Jin-Hua

    2013-01-01

    Tumor necrosis factor-alpha (TNFα) plays a crucial role in inflammatory diseases such as rheumatoid arthritis and postmenopausal osteoporosis. Recently, it has been demonstrated that hydrogen gas, known as a novel antioxidant, can exert therapeutic anti-inflammatory effect in many diseases. In this study, we investigated the effect of treatment with hydrogen molecule (H(2)) on TNFα-induced cell injury in osteoblast. The osteoblasts isolated from neonatal rat calvariae were cultured. It was found that TNFα suppressed cell viability, induced cell apoptosis, suppressed Runx2 mRNA expression, and inhibited alkaline phosphatase activity, which was reversed by co-incubation with H(2). Incubation with TNFα-enhanced intracellular reactive oxygen species (ROS) formation and malondialdehyde production increased NADPH oxidase activity, impaired mitochondrial function marked by increased mitochondrial ROS formation and decreased mitochondrial membrane potential and ATP synthesis, and suppressed activities of antioxidant enzymes including SOD and catalase, which were restored by co-incubation with H(2). Treatment with H(2) inhibited TNFα-induced activation of NFκB pathway. In addition, treatment with H(2) inhibited TNFα-induced nitric oxide (NO) formation through inhibiting iNOS activity. Treatment with H(2) inhibited TNFα-induced IL-6 and ICAM-1 mRNA expression. In conclusion, treatment with H(2) alleviates TNFα-induced cell injury in osteoblast through abating oxidative stress, preserving mitochondrial function, suppressing inflammation, and enhancing NO bioavailability.

  14. Simultaneous laser-induced fluorescence and Raman imaging inside a hydrogen engine.

    PubMed

    Engel, Sascha Ronald; Koch, Peter; Braeuer, Andreas; Leipertz, Alfred

    2009-12-10

    We report on the simultaneous and two-dimensional measurement of laser-induced fluorescence (LIF) and Raman scattering (Ramanography) applied inside a hydrogen internal combustion (IC) engine. Two different LIF tracer molecules, triethylamine (TEA) and trimethylamine (TMA), were used for the LIF experiments. The LIF and Raman results were found to be in very good agreement. The simultaneous application of Ramanography and LIF imaging indicated that TMA is the more suitable LIF tracer molecule, compared to TEA.

  15. Hydrogen-Induced Cold Cracking in High-Frequency Induction Welded Steel Tubes

    NASA Astrophysics Data System (ADS)

    Banerjee, Kumkum

    2016-04-01

    Detailed investigation was carried out on 0.4C steel tubes used for the telescopic front fork of two-wheelers to establish the root cause for the occurrence of transverse cracks at the weld heat-affected zone of the tubes. Fractographic and microstructural observations provide evidences of delayed hydrogen-induced cracking. The beneficial microstructure for avoiding the transverse cracks was found to be the bainitic-martensitic, while martensitic structure was noted to be deleterious.

  16. EVALUATION OF RADIOLYSIS INDUCED HYDROGEN GENERATION IN DOT 6M DRUMS FROM INTEC

    SciTech Connect

    Vinson, D

    2007-06-18

    bags and/or bottles that will be subject to radiolytically induced hydrogen gas generation due to decomposition of the polymers. Conservative values for hydrogen gas generation rates and rates of pressure increase within the drums have been determined based upon a number of inputs and assumptions. The results are that hydrogen will be produced at a rate of 1.93-cm{sup 3}/yr and 1.50-cm{sup 3}/yr, respectively for drums No.3031 and No.3598. Projected molecular hydrogen concentrations at 2020 have been calculated to remain below the lower flammability limit of 4% molecular hydrogen by volume in air.

  17. Autyomatic Differentiation of C/C++

    SciTech Connect

    Beata Winnicka, Boyana Norris

    2005-11-14

    Automatic differentiation (AD) tools mechanize the process of developing code for the computation of derivatives. AD avoids the inaccuracies inherent in numerical approximations. Furthermore, sophisticated AD algoirthms can often produce c ode that is more reliable and more efficient than code written by an expert programmer. ADIC is the first and only AD tool for C and C++ based on compiler technology. This compiler foundation makes possible analyses and optimizations not available in toos based on operator overloading. The earliest implementations of ADIC included support for ANSI C applications, ADIC 2.0 lverages EDG, a commercial C/C++ parser, to provide robust C++ differentiation support. Modern AD tools, including ADIC are implemented in a modular way, aiming to isolate language-dependent program analyses and semantic transformations. The component design leads to much higher implementation quality because the different components can be implemented by experts in each of the different domains involved. For example, a compiler expert can focus on parsing, canonicalizing, and unparising C and C++, while an expert in graph theory and algorithms can produce new differentiation modules without having to worry about the complexity of parsing and generating C++ code. Thsi separation of concerns was achieved through the use of language-independent program analysis interfaces (in collaboration with researcgers at Rice University) and a language-independent XML representation of the computational portions of programs (XAIF). In addition to improved robustness and faster development times, this design naturally enables the reuse of program analysis algorithms and differentiation modules in compiler-based AD tools for other languages. In fact, the analysis and differention components are used in both ADIC and the Open AD Fortran front-end (based on Rice's Open64 compiler.

  18. Numerical simulations based on probe measurements in EUV-induced hydrogen plasma

    NASA Astrophysics Data System (ADS)

    Abrikosov, Alex; Reshetnyak, Viktor; Astakhov, Dmitry; Dolgov, Alexandr; Yakushev, Oleg; Lopaev, Dmitry; Krivtsun, Vladimir

    2017-04-01

    We use the two-dimensional particle-in-cell model with Monte Carlo collisions to study the plasma induced in hydrogen by short pulses of extreme ultraviolet (EUV) radiation at wavelengths in the range 10–20 nm with a pulse duration of about 40 ns (FWHM). This plasma is formed via both photoionization by the high-energy EUV photons and by the secondary photoelectrons emitted from the hydrogen molecules and the irradiated surface. The latter process can be enhanced by the external electric field that accelerates the electrons. In order to establish a base for our model so as to obtain accurate results, we record a temporally-resolved series of current–voltage characteristics for a small probing electrode inserted into EUV-induced hydrogen plasma. We then resort to simulating this plasma in the same geometry with the probe in our model which we validate by matching its results to the experimentally measured dynamics of the probe current–voltage curves. Having validated the model this way, we use this model as an independent instrument capable of obtaining the spatiotemporal picture of EUV-induced plasma evolution. We use this instrument to study the plasma formation during the EUV pulse and point out the processes that take part in forming this plasma, such as impact ionization and direct ionization by EUV photons.

  19. On the Mechanisms of Hydrogen Implantation Induced Silicon Surface Layer Cleavage

    SciTech Connect

    Hochbauer, Tobias Franz

    2002-08-01

    The “Ion-Cut”, a layer splitting process by hydrogen ion implantation and subsequent annealing is a versatile and efficient technique of transferring thin silicon surface layers from bulk substrates onto other substrates, thus enabling the production of silicon-oninsulator (SOI) materials. Cleavage is induced by the coalescence of the highly pressurized sub-surface H2-gas bubbles, which form upon thermal annealing. A fundamental understanding of the basic mechanisms on how the cutting process occurs is still unclear, inhibiting further optimization of the Ion-Cut process. This work elucidates the physical mechanisms behind the Ion-Cut process in hydrogen-implanted silicon. The investigation of the cleavage process reveals the cut to be largely controlled by the lattice damage, generated by the hydrogen ion irradiation process, and its effects on the local stress field and the fracture toughness within the implantation zone rather than by the depth of maximum H-concentration. Furthermore, this work elucidates the different kinetics in the H-complex formations in silicon crystals with different conductivity types, and examines the mechanically induced damage accumulation caused by the crack propagation through the silicon sample in the splitting step of the Ion-Cut process. Additionally, the influence of boron pre-implantation on the Ion-Cut in hydrogen implanted silicon is investigated. These studies reveal, that both, the atomic interaction between the boron implant and the hydrogen implant and the shift of the Fermi level due to the electrical activation of the implanted boron have a tremendous enhancing effect on the Ion-Cut process.

  20. A Hydrogen-Induced Decohesion Model for Treating Cold Dwell Fatigue in Titanium-Based Alloys

    NASA Astrophysics Data System (ADS)

    Chan, Kwai S.; Moody, Jonathan

    2016-05-01

    Cold dwell fatigue in near-alpha Ti alloys is a time-dependent fracture process at ambient temperature that involves fatigue in the presence of creep to produce cracking on low-energy fracture ( e.g., cleavage) facets in hard alpha grains. In this article, cold dwell fatigue is treated as a hydrogen-induced decohesion process by using a nonlinear cohesive stress-strain relation to describe the decrease in the cohesive strength with increasing local hydrogen contents. It is postulated that during cold dwell fatigue, time-dependent deformation occurs by < a> slip that results in dislocation pileups in soft alpha grains. The stress and dilatational fields of the dislocation pileups assist the transport of internal hydrogen atoms from soft grains to neighboring hard grains. The accumulation of internal hydrogen atoms at the trap sites leads to decohesion along crystallographic planes, which can be slip or hydride habit planes. The decohesion model is applied to treat cold dwell fatigue in Ti-6Al-4V with a basal-transverse texture by modeling the effects of hydrogen-induced decohesion on the stress-fatigue life ( S- N f) response, the time-dependent crack growth response (d a/d t), and the fracture toughness ( K c) as functions of grain orientation. A probabilistic time-dependent fatigue crack growth analysis is then performed to assess the influence of microtexture on the dwell fatigue life of a Ti-6Al-4V ring disk subjected to a long-duration hold at the peak stress of the loading cycle. The results of the probabilistic life computations indicate that dwell fatigue resistance in Ti-6Al-4V may be improved and the risk of disk fracture may be reduced significantly by controlling the microtexture or reducing the size and volume fraction of hard alpha grains in the microstructure.

  1. On the Mechanisms of Hydrogen Implantation Induced Silicon Surface Layer Cleavage

    SciTech Connect

    Hochbauer, Tobias

    2001-11-01

    The “Ion-Cut”, a layer splitting process by hydrogen ion implantation and subsequent annealing is a versatile and efficient technique of transferring thin silicon surface layers from bulk substrates onto other substrates, thus enabling the production of silicon-oninsulator (SOI) materials. Cleavage is induced by the coalescence of the highly pressurized sub-surface H2-gas bubbles, which form upon thermal annealing. A fundamental understanding of the basic mechanisms on how the cutting process occurs is still unclear, inhibiting further optimization of the Ion-Cut process. This work elucidates the physical mechanisms behind the Ion-Cut process in hydrogen-implanted silicon. The investigation of the cleavage process reveals the cut to be largely controlled by the lattice damage, generated by the hydrogen ion irradiation process, and its effects on the local stress field and the fracture toughness within the implantation zone rather than by the depth of maximum H-concentration. Furthermore, this work elucidates the different kinetics in the H-complex formations in silicon crystals with different conductivity types, and examines the mechanically induced damage accumulation caused by the crack propagation through the silicon sample in the splitting step of the Ion-Cut process. Additionally, the influence of boron pre-implantation on the Ion-Cut in hydrogen implanted silicon is investigated. These studies reveal, that both, the atomic interaction between the boron implant and the hydrogen implant and the shift of the Fermi level due to the electrical activation of the implanted boron have a tremendous enhancing effect on the Ion-Cut process.

  2. Photocatalytic C-C Bond Cleavage and Amination of Cycloalkanols by Cerium(III) Chloride Complex.

    PubMed

    Guo, Jing-Jing; Hu, Anhua; Chen, Yilin; Sun, Jianfeng; Tang, Haoming; Zuo, Zhiwei

    2016-12-05

    A general strategy for the cleavage and amination of C-C bonds of cycloalkanols has been achieved through visible-light-induced photoredox catalysis utilizing a cerium(III) chloride complex. This operationally simple methodology has been successfully applied to a wide array of unstrained cyclic alcohols, and represents the first example of catalytic C-C bond cleavage and functionalization of unstrained secondary cycloalkanols.

  3. Probiotics ameliorate the hydrogen peroxide-induced epithelial barrier disruption by a PKC- and MAP kinase-dependent mechanism.

    PubMed

    Seth, A; Yan, Fang; Polk, D Brent; Rao, R K

    2008-04-01

    Probiotics promote intestinal epithelial integrity and reduce infection and diarrhea. We evaluated the effect of Lactobacillus rhamnosus GG-produced soluble proteins (p40 and p75) on the hydrogen peroxide-induced disruption of tight junctions and barrier function in Caco-2 cell monolayers. Pretreatment of cell monolayers with p40 or p75 attenuated the hydrogen peroxide-induced decrease in transepithelial resistance and increase in inulin permeability in a time- and dose-dependent manner. p40 and p75 also prevented hydrogen peroxide-induced redistribution of occludin, ZO-1, E-cadherin, and beta-catenin from the intercellular junctions and their dissociation from the detergent-insoluble fractions. Both p40 and p75 induced a rapid increase in the membrane translocation of PKCbetaI and PKCepsilon. The attenuation of hydrogen peroxide-induced inulin permeability and redistribution of tight junction proteins by p40 and p75 was abrogated by Ro-32-0432, a PKC inhibitor. p40 and p75 also rapidly increased the levels of phospho-ERK1/2 in the detergent-insoluble fractions. U0126 (a MAP kinase inhibitor) attenuated the p40- and p75-mediated reduction of hydrogen peroxide-induced tight junction disruption and inulin permeability. These studies demonstrate that probiotic-secretory proteins protect the intestinal epithelial tight junctions and the barrier function from hydrogen peroxide-induced insult by a PKC- and MAP kinase-dependent mechanism.

  4. Probiotics ameliorate the hydrogen peroxide-induced epithelial barrier disruption by a PKC- and MAP kinase-dependent mechanism

    PubMed Central

    Seth, A.; Yan, Fang; Polk, D.Brent; Rao, R. K.

    2009-01-01

    Probiotics promote intestinal epithelial integrity and reduce infection and diarrhea. We evaluated the effect of Lactobacillus rhamnosus GG-produced soluble proteins (p40 and p75) on the hydrogen peroxide-induced disruption of tight junctions and barrier function in Caco-2 cell monolayers. Pretreatment of cell monolayers with p40 or p75 attenuated the hydrogen peroxide-induced decrease in transepithelial resistance and increase in inulin permeability in a time- and dose-dependent manner. p40 and p75 also prevented hydrogen peroxide-induced redistribution of occludin, ZO-1, E-cadherin, and β-catenin from the intercellular junctions and their dissociation from the detergent-insoluble fractions. Both p40 and p75 induced a rapid increase in the membrane translocation of PKCβI and PKCε. The attenuation of hydrogen peroxide-induced inulin permeability and redistribution of tight junction proteins by p40 and p75 was abrogated by Ro-32-0432, a PKC inhibitor. p40 and p75 also rapidly increased the levels of phospho-ERK1/2 in the detergent-insoluble fractions. U0126 (a MAP kinase inhibitor) attenuated the p40- and p75-mediated reduction of hydrogen peroxide-induced tight junction disruption and inulin permeability. These studies demonstrate that probiotic-secretory proteins protect the intestinal epithelial tight junctions and the barrier function from hydrogen peroxide-induced insult by a PKC- and MAP kinase-dependent mechanism. PMID:18292183

  5. Hydrogen peroxide-induced renal injury. A protective role for pyruvate in vitro and in vivo.

    PubMed Central

    Salahudeen, A K; Clark, E C; Nath, K A

    1991-01-01

    Hydrogen peroxide (H2O2) contributes to renal cellular injury. alpha-Keto acids nonenzymatically reduce H2O2 to water while undergoing decarboxylation at the 1-carbon (1-C) position. We examined, in vitro and in vivo, the protective role of sodium pyruvate in H2O2-induced renal injury. Pyruvate effectively scavenged H2O2 in vitro, and suppressed H2O2-induced renal lipid peroxidation. Injury to LLC-PK1 cells induced by hydrogen peroxide was attenuated by pyruvate to an extent comparable to that seen with catalase. Studies utilizing [1-14C]pyruvate further demonstrated 1-C decarboxylation concurrent with cytoprotection by pyruvate from H2O2-induced injury. Pyruvate was also protective in vivo. Infusion of pyruvate before and during the intrarenal infusion of H2O2 attenuated H2O2-induced proteinuria. Systemic administration of pyruvate was also protective in the glycerol model of acute renal failure, a model also characterized by increased generation of H2O2. These findings indicate that pyruvate, a ubiquitous alpha-keto acid, scavenges H2O2 and protects renal tissue in vitro and in vivo from H2O2-mediated injury. These data suggest a potential therapeutic role for pyruvate in diseases in which increased generation of H2O2 is incriminated in renal damage. Images PMID:1752950

  6. Ion effects in hydrogen-induced blistering of Mo/Si multilayers

    SciTech Connect

    Kuznetsov, A. S.; Gleeson, M. A.; Bijkerk, F.

    2013-09-21

    The role that energetic (>800 eV) hydrogen ions play in inducing and modifying the formation of blisters in nanoscale Mo/Si multilayer samples is investigated. Such samples are confirmed to be susceptible to blistering by two separate mechanisms. The first is attributed to the segregation of H atoms to voids and vacancies associated with the outermost Mo layer, driving blister formation in the form of H{sub 2} filled bubbles. This process can occur in the absence of ions. A second blister distribution emerges when energetic ions are present in the irradiating flux. This is attributed to an ion-induced vacancy clustering mechanism that produces void blisters. The defects and strained states associated with the Mo-on-Si interfaces provide the preferred nucleation points for blistering in both cases. The effects of ions are ascribed to promotion of hydrogen uptake and mobility, in particular through the Si layers; to the generation of additional mobile species in the Si and Mo layers; and to the creation of new blister nucleation points. In addition to directly stimulating blistering via vacancy clustering, ions modify the development of H{sub 2}-filled blisters. This is most evident in the formation of multi-component structures due to overlapping delaminations at different layer interfaces. This affect is attributed to the introduction of active transport of hydrogen from the H{sub 2} filled blisters across the outermost Mo-on-Si interface to the underlying layers. Ion-induced variations in hydrogen uptake and distribution and in the rates of blister nucleation and growth produce lateral differences in blister size and areal number density that create a macroscopic concentric pattern across the surface.

  7. Fluctuations of electrical and mechanical properties of diamond induced by interstitial hydrogen

    NASA Astrophysics Data System (ADS)

    Zhuang, Chun-Qiang; Liu, Lei

    2015-01-01

    While experimental evidence demonstrates that the presence of hydrogen (H) impurities in diamond films plays a significant role in determining their physical properties, the small radius of the H atom makes detecting such impurities quite a challenging task. In the present work, first-principles calculations were employed to provide an insight into the effects of the interstitial hydrogen on the electrical and mechanical properties of diamond crystals at the atomic level. The migrated pathways of the interstitial hydrogen are dictated by energetic considerations. Some new electronic states are formed near the Fermi level. The interstitial hydrogen markedly narrows the bandgap of the diamond and weakens the diamond crystal. The obvious decrement of the critical strain clearly implies the presence of an H-induced embrittlement effect. Project supported by the Project of Construction of Innovative Teams and Teacher Career Development for Universities and Colleges under Beijing Municipality, China (Grant No. IDHT20140504), the National Natural Science Foundation of China (Grant No. 51402009), and the Foundation for Young Scholars of Beijing University of Technology, China.

  8. Simulations of collision-induced absorption of hydrogen on Ni(111)

    NASA Astrophysics Data System (ADS)

    Kindt, James T.; Tully, John C.

    1999-12-01

    Experiments by Ceyer and co-workers [Faraday Discuss. Chem. Soc. 91, 437 (1991)] have demonstrated that hydrogen atoms adsorbed on the Ni(111) surface can be driven below the surface under the impact of a hyperthermal (>2 eV) rare gas atom beam. We have modeled these experiments using classical molecular dynamics (MD) simulations, with the goal of elucidating the mechanism of this collision-induced absorption (CIA) process. The simulations favor a mechanism involving direct impact of the rare gas atom with an adsorbed hydrogen atom. The MD results are consistent with experiment in showing that the CIA efficiency increases with rare gas atomic mass for Ar, Kr, and Xe; interestingly, they predict a reversal of this trend when the rare gas is changed from Ne to He. These results are interpreted in terms of a crossover from a light collider regime of very efficient direct impulsive collisions to a massive collider regime of direct collisions strongly coupled to substrate dynamics and relaxation. The simulated CIA cross sections scaled approximately with normal incident collision energy, consistent with experiment. A hydrogen isotope effect, in which CIA was enhanced for deuterium with respect to hydrogen, was found in the simulations where none was observed experimentally. We show that this discrepancy may come from quantum effects, due to zero-point energies and to energy dissipation by electron-hole pair excitations, which tend to counteract and approximately cancel the isotopic difference observed in a purely classical simulation.

  9. Cationic mononuclear ruthenium carboxylates as catalyst prototypes for self-induced hydrogenation of carboxylic acids.

    PubMed

    Naruto, Masayuki; Saito, Susumu

    2015-08-28

    Carboxylic acids are ubiquitous in bio-renewable and petrochemical sources of carbon. Hydrogenation of carboxylic acids to yield alcohols produces water as the only byproduct, and thus represents a possible next generation, sustainable method for the production of these alternative energy carriers/platform chemicals on a large scale. Reported herein are molecular insights into cationic mononuclear ruthenium carboxylates ([Ru(OCOR)](+)) as prototypical catalysts for the hydrogenation of carboxylic acids. The substrate-derived coordinated carboxylate was found to function initially as a proton acceptor for the heterolytic cleavage of dihydrogen, and subsequently also as an acceptor for the hydride from [Ru-H](+), which was generated in the first step (self-induced catalysis). The hydrogenation proceeded selectively and at high levels of functional group tolerance, a feature that is challenging to achieve with existing heterogeneous/homogeneous catalyst systems. These fundamental insights are expected to significantly benefit the future development of metal carboxylate-catalysed hydrogenation processes of bio-renewable resources.

  10. Protection against hydrogen peroxide induced oxidative damage in rat erythrocytes by Mangifera indica L. peel extract.

    PubMed

    Ajila, C M; Prasada Rao, U J S

    2008-01-01

    Phytochemicals such as polyphenols and carotenoids are gaining importance because of their contribution to human health and their multiple biological effects such as antioxidant, antimutagenic, anticarcinogenic and cytoprotective activities and other therapeutic properties. Mango peel is a major by-product in pulp industry and it contains various bioactive compounds like polyphenols, carotenoids and others. In the present study, the protective effect of peel extracts of unripe and ripe mango fruits of two varieties namely, Raspuri and Badami on hydrogen peroxide induced hemolysis, lipid peroxidation, degradation of membrane proteins and its morphological changes are reported. The oxidative hemolysis of rat erythrocytes by hydrogen peroxide was inhibited by mango peel extract in a dose dependent manner. The IC(50) value for lipid peroxidation inhibition on erythrocyte ghost membrane was found to be in the range of 4.5-19.3 microg gallic acid equivalents. The mango peel extract showed protection against membrane protein degradation caused by hydrogen peroxide. Morphological changes to erythrocyte membrane caused by hydrogen peroxide were protected by mango peel extract. The results demonstrated that mango peel extracts protected erythrocytes against oxidative stress and may impart health benefits and it could be used as a valuable food ingredient or a nutraceutical product.

  11. Investigation on Hydrogen-Induced Delayed Fracture of Cold-Rolled DP980 Steels

    NASA Astrophysics Data System (ADS)

    Han, Yun; Chen, Liang; Kuang, Shuang; Xie, Chunqian

    2017-05-01

    In this study, the phenomenon of hydrogen-induced delayed fracture of two cold-rolled DP980 steels with different chemical compositions was studied. The results show that the microstructure of both steels is composed of ferrite matrix, martensite-austenite islands and small amount of bainite. DP980-1 having higher contents of C and Si exhibits higher tensile strength, lower yield strength and higher elongation in comparison with DP980-2 having lower contents of C and Si. According to the results of slow strain rate tensile tests, the tensile strength of DP980-1 after hydrogen charging is reduced by 20.8%, while it is just 5.4% for DP980-2. Moreover, very fine dimples can still be observed in the fracture surface of DP980-2 after hydrogen charging, which indicates a good ductile. The main reasons leading to the better delayed fracture resistance of DP980-2 are the lower volume fraction of martensite-austenite islands, lower content of diffusible hydrogen and the grain refinement effects.

  12. Cationic mononuclear ruthenium carboxylates as catalyst prototypes for self-induced hydrogenation of carboxylic acids

    PubMed Central

    Naruto, Masayuki; Saito, Susumu

    2015-01-01

    Carboxylic acids are ubiquitous in bio-renewable and petrochemical sources of carbon. Hydrogenation of carboxylic acids to yield alcohols produces water as the only byproduct, and thus represents a possible next generation, sustainable method for the production of these alternative energy carriers/platform chemicals on a large scale. Reported herein are molecular insights into cationic mononuclear ruthenium carboxylates ([Ru(OCOR)]+) as prototypical catalysts for the hydrogenation of carboxylic acids. The substrate-derived coordinated carboxylate was found to function initially as a proton acceptor for the heterolytic cleavage of dihydrogen, and subsequently also as an acceptor for the hydride from [Ru–H]+, which was generated in the first step (self-induced catalysis). The hydrogenation proceeded selectively and at high levels of functional group tolerance, a feature that is challenging to achieve with existing heterogeneous/homogeneous catalyst systems. These fundamental insights are expected to significantly benefit the future development of metal carboxylate-catalysed hydrogenation processes of bio-renewable resources. PMID:26314266

  13. Prompt repair of hydrogen peroxide-induced DNA lesions prevents catastrophic chromosomal fragmentation.

    PubMed

    Mahaseth, Tulip; Kuzminov, Andrei

    2016-05-01

    Iron-dependent oxidative DNA damage in vivo by hydrogen peroxide (H2O2, HP) induces copious single-strand(ss)-breaks and base modifications. HP also causes infrequent double-strand DNA breaks, whose relationship to the cell killing is unclear. Since hydrogen peroxide only fragments chromosomes in growing cells, these double-strand breaks were thought to represent replication forks collapsed at direct or excision ss-breaks and to be fully reparable. We have recently reported that hydrogen peroxide kills Escherichia coli by inducing catastrophic chromosome fragmentation, while cyanide (CN) potentiates both the killing and fragmentation. Remarkably, the extreme density of CN+HP-induced chromosomal double-strand breaks makes involvement of replication forks unlikely. Here we show that this massive fragmentation is further amplified by inactivation of ss-break repair or base-excision repair, suggesting that unrepaired primary DNA lesions are directly converted into double-strand breaks. Indeed, blocking DNA replication lowers CN+HP-induced fragmentation only ∼2-fold, without affecting the survival. Once cyanide is removed, recombinational repair in E. coli can mend several double-strand breaks, but cannot mend ∼100 breaks spread over the entire chromosome. Therefore, double-strand breaks induced by oxidative damage happen at the sites of unrepaired primary one-strand DNA lesions, are independent of replication and are highly lethal, supporting the model of clustered ss-breaks at the sites of stable DNA-iron complexes. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Molecular hydrogen in drinking water protects against neurodegenerative changes induced by traumatic brain injury.

    PubMed

    Dohi, Kenji; Kraemer, Brian C; Erickson, Michelle A; McMillan, Pamela J; Kovac, Andrej; Flachbartova, Zuzana; Hansen, Kim M; Shah, Gul N; Sheibani, Nader; Salameh, Therese; Banks, William A

    2014-01-01

    Traumatic brain injury (TBI) in its various forms has emerged as a major problem for modern society. Acute TBI can transform into a chronic condition and be a risk factor for neurodegenerative diseases such as Alzheimer's and Parkinson's diseases, probably through induction of oxidative stress and neuroinflammation. Here, we examined the ability of the antioxidant molecular hydrogen given in drinking water (molecular hydrogen water; mHW) to alter the acute changes induced by controlled cortical impact (CCI), a commonly used experimental model of TBI. We found that mHW reversed CCI-induced edema by about half, completely blocked pathological tau expression, accentuated an early increase seen in several cytokines but attenuated that increase by day 7, reversed changes seen in the protein levels of aquaporin-4, HIF-1, MMP-2, and MMP-9, but not for amyloid beta peptide 1-40 or 1-42. Treatment with mHW also reversed the increase seen 4 h after CCI in gene expression related to oxidation/carbohydrate metabolism, cytokine release, leukocyte or cell migration, cytokine transport, ATP and nucleotide binding. Finally, we found that mHW preserved or increased ATP levels and propose a new mechanism for mHW, that of ATP production through the Jagendorf reaction. These results show that molecular hydrogen given in drinking water reverses many of the sequelae of CCI and suggests that it could be an easily administered, highly effective treatment for TBI.

  15. Multiple Dirac Points and Hydrogenation-Induced Magnetism of Germanene Layer on Al (111) Surface.

    PubMed

    Liu, G; Liu, S B; Xu, B; Ouyang, C Y; Song, H Y; Guan, S; Yang, Shengyuan A

    2015-12-17

    A continuous germanene layer grown on the Al (111) surface has recently been achieved in experiment. In this work, we investigate its structural, electronic, and hydrogenation-induced properties through first-principles calculations. We find that despite having a different lattice structure from its free-standing form, germanene on Al (111) still possesses Dirac points at high-symmetry K and K' points. More importantly, there exist another three pairs of Dirac points on the K(K')-M high-symmetry lines, which have highly anisotropic dispersions due to the reduced symmetry. These massless Dirac Fermions become massive when spin-orbit coupling is included. Hydrogenation of the germanene layer strongly affects its structural and electronic properties. Particularly, when not fully hydrogenated, ferromagnetism can be induced due to unpaired local orbitals from the unsaturated Ge atoms. Remarkably, we discover that the one-side semihydrogenated germanene turns out to be a two-dimensional half-semimetal, representing a novel state of matter that is simultaneously a half-metal and a semimetal.

  16. Hydrogen induced fracture characteristics of single crystal nickel-based superalloys

    NASA Technical Reports Server (NTRS)

    Chen, Po-Shou; Wilcox, Roy C.

    1990-01-01

    A stereoscopic method for use with x ray energy dispersive spectroscopy of rough surfaces was adapted and applied to the fracture surfaces single crystals of PWA 1480E to permit rapid orientation determinations of small cleavage planes. The method uses a mathematical treatment of stereo pair photomicrographs to measure the angle between the electron beam and the surface normal. One reference crystal orientation corresponding to the electron beam direction (crystal growth direction) is required to perform this trace analysis. The microstructure of PWA 1480E was characterized before fracture analysis was performed. The fracture behavior of single crystals of the PWA 1480E nickel-based superalloy was studied. The hydrogen-induced fracture behavior of single crystals of the PWA 1480E nickel-based superalloy was also studied. In order to understand the temperature dependence of hydrogen-induced embrittlement, notched single crystals with three different crystal growth orientations near zone axes (100), (110), and (111) were tensile tested at 871 C (1600 F) in both helium and hydrogen atmospheres at 34 MPa. Results and conclusions are given.

  17. Protective effect of hydrogen sulfide on hyperbaric hyperoxia-induced lung injury in a rat model.

    PubMed

    Liu, Wenwu; Liu, Kehuan; Ma, Chunqing; Yu, Jiangang; Peng, Zhaoyun; Huang, Guoyang; Cai, Zhiyu; Li, Runping; Xu, Weigang; Sun, Xuejun; Liu, Kan; Zheng, Juan

    2014-01-01

    Hyperbaric oxygen therapy is one of the most widely used clinical interventions to counteract insufficient pulmonary oxygen delivery in patients with severe lung injury. However, prolonged exposure to hyperoxia leads to inflammation and acute lung injury. This study aimed to investigate the protective effect of hydrogen sulfide on hyperbaric hyperoxia-induced lung injury. Rats were intraperitoneally treated with sodium hydrosulphide (NaHS) at 28 μmol/kg immediately before hyperoxia exposure and then exposed to pure oxygen at 2.5 atmospheres absolute (atm abs) with continuous ventilation for six hours, Immediately after hyperoxia exposure, rats were sacrificed via anesthesia. The bronchoalveolar lavage fluid (BALF) was harvested for the detection of protein concentration and IL-1 content, and the lungs were collected for HE staining, TUNEL staining and detection of wet/dry weight ratio. Our results showed hyperbaric hyperoixa exposure could significantly damage the lung (HE staining), increase the protein and IL-13 in the BALF, elevate the wet/dry Weight ratio and raise the TUNEL positive cells. However, pre-treatment with hydrogen sulfide improved the lung morphology, reduced the TUNEL positive cells and attenuated the lung inflammation (reduction in IL-13 of BALF and HE staining). Taken together, our findings indicate that hydrogen sulfide pretreatment may exert protective effects on hyperbaric hyperoxia-induced lung injury.

  18. Molecular Hydrogen in Drinking Water Protects against Neurodegenerative Changes Induced by Traumatic Brain Injury

    PubMed Central

    Dohi, Kenji; Kraemer, Brian C.; Erickson, Michelle A.; McMillan, Pamela J.; Kovac, Andrej; Flachbartova, Zuzana; Hansen, Kim M.; Shah, Gul N.; Sheibani, Nader; Salameh, Therese; Banks, William A.

    2014-01-01

    Traumatic brain injury (TBI) in its various forms has emerged as a major problem for modern society. Acute TBI can transform into a chronic condition and be a risk factor for neurodegenerative diseases such as Alzheimer’s and Parkinson’s diseases, probably through induction of oxidative stress and neuroinflammation. Here, we examined the ability of the antioxidant molecular hydrogen given in drinking water (molecular hydrogen water; mHW) to alter the acute changes induced by controlled cortical impact (CCI), a commonly used experimental model of TBI. We found that mHW reversed CCI-induced edema by about half, completely blocked pathological tau expression, accentuated an early increase seen in several cytokines but attenuated that increase by day 7, reversed changes seen in the protein levels of aquaporin-4, HIF-1, MMP-2, and MMP-9, but not for amyloid beta peptide 1–40 or 1–42. Treatment with mHW also reversed the increase seen 4 h after CCI in gene expression related to oxidation/carbohydrate metabolism, cytokine release, leukocyte or cell migration, cytokine transport, ATP and nucleotide binding. Finally, we found that mHW preserved or increased ATP levels and propose a new mechanism for mHW, that of ATP production through the Jagendorf reaction. These results show that molecular hydrogen given in drinking water reverses many of the sequelae of CCI and suggests that it could be an easily administered, highly effective treatment for TBI. PMID:25251220

  19. The kinetic and mechanical aspects of hydrogen-induced failure in metals. Ph.D. Thesis, 1971

    NASA Technical Reports Server (NTRS)

    Nelson, H. G.

    1972-01-01

    Premature hydrogen-induced failure observed to occur in many metal systems involves three stages of fracture: (1) crack initiation, (2) stable slow crack growth, and (3) unstable rapid crack growth. The presence of hydrogen at some critical location on the metal surface or within the metal lattice was shown to influence one or both of the first two stages of brittle fracture but has a negligible effect on the unstable rapid crack growth stage. The relative influence of the applied parameters of time, temperature, etc., on the propensity of a metal to exhibit hydrogen induced premature failure was investigated.

  20. Quenching of tryptophan (1)(pi,pi*) fluorescence induced by intramolecular hydrogen abstraction via an aborted decarboxylation mechanism.

    PubMed

    Blancafort, Lluís; González, David; Olivucci, Massimo; Robb, Michael A

    2002-06-05

    CASSCF computations show that the hydrogen-transfer-induced fluorescence quenching of the (1)(pi,pi*) excited state of zwitterionic tryptophan occurs in three steps: (1) formation of an intramolecular excited-state complex, (2) hydrogen transfer from the amino acid side chain to the indole chromophore, and (3) radiationless decay through a conical intersection, where the reaction path bifurcates to a photodecarboxylation and a phototautomerization route. We present a general model for fluorescence quenching by hydrogen donors, where the radiationless decay occurs at a conical intersection (real state crossing). At the intersection, the reaction responsible for the quenching is aborted, because the reaction path bifurcates and can proceed forward to the products or backward to the reactants. The position of the intersection along the quenching coordinate depends on the nature of the states and, in turn, affects the formation of photoproducts during the quenching. For a (1)(n,pi*) model system reported earlier (Sinicropi, A.; Pogni, R.; Basosi, R.; Robb, M. A.; Gramlich, G.; Nau, W. M.; Olivucci, M. Angew. Chem., Int. Ed. 2001, 40, 4185-4189), the ground and the excited state of the chromophore are hydrogen acceptors, and the excited-state hydrogen transfer is nonadiabatic and leads directly to the intersection point. There, the hydrogen transfer is aborted, and the reaction can return to the reactant pair or proceed further to the hydrogen-transfer products. In the tryptophan case, the ground state is not a hydrogen acceptor, and the excited-state hydrogen transfer is an adiabatic, sequential proton and electron transfer. The decay to the ground state occurs along a second reaction coordinate associated with decarboxylation of the amino acid side chain and the corresponding aborted conical intersection. The results show that, for (1)(pi,pi*) states, the hydrogen transfer alone is not sufficient to induce the quenching, and explain why fluorescence quenching induced

  1. Hydrogen Gas Inhalation Attenuates Seawater Instillation-Induced Acute Lung Injury via the Nrf2 Pathway in Rabbits.

    PubMed

    Diao, Mengyuan; Zhang, Sheng; Wu, Lifeng; Huan, Le; Huang, Fenglou; Cui, Yunliang; Lin, Zhaofen

    2016-12-01

    Seawater instillation-induced acute lung injury involves oxidative stress and apoptosis. Although hydrogen gas inhalation is reportedly protective in multiple types of lung injury, the effect of hydrogen gas inhalation on seawater instillation-induced acute lung injury remains unknown. This study investigated the effect of hydrogen gas on seawater instillation-induced acute lung injury and explored the mechanisms involved. Rabbits were randomly assigned to control, hydrogen (2 % hydrogen gas inhalation), seawater (3 mL/kg seawater instillation), and seawater + hydrogen (3 mL/kg seawater instillation + 2 % hydrogen gas inhalation) groups. Arterial partial oxygen pressure and lung wet/dry weight ratio were detected. Protein content in bronchoalveolar lavage fluid (BALF) and serum as well as tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 levels were determined. Hematoxylin-eosin staining was used to monitor changes in lung specimens, and malondialdehyde (MDA) content and myeloperoxidase (MPO) activity were assayed. In addition, NF-E2-related factor (Nrf) 2 and heme oxygenase (HO)-1 mRNA and protein expression were measured, and apoptosis was assessed by measuring caspase-3 expression and using terminal deoxy-nucleotidyl transferase dUTP nick end-labeling (TUNEL) staining. Hydrogen gas inhalation markedly improved lung endothelial permeability and decreased both MDA content and MPO activity in lung tissue; these changes were associated with decreases in TNF-α, IL-1β, and IL-6 in BALF. Hydrogen gas also alleviated histopathological changes and cell apoptosis. Moreover, Nrf2 and HO-1 expressions were significantly activated and caspase-3 expression was inhibited. These results demonstrate that hydrogen gas inhalation attenuates seawater instillation-induced acute lung injury in rabbits and that the protective effects observed may be related to the activation of the Nrf2 pathway.

  2. Protective effect of geranylgeranylacetone against hydrogen peroxide-induced oxidative stress in human neuroblastoma cells.

    PubMed

    Kim, Yun Ji; Kim, Joo Youn; Kang, Sang Wook; Chun, Gae Sig; Ban, Ju Yeon

    2015-06-15

    Heat shock protein 70 (HSP70), one of the major HSPs, has been reported to suppress apoptosis and formation of pathogenic proteins in neurodegenerative disorders. Geranylgeranylacetone (GGA), an anti-ulcer drug, induces HSP70 and thereby protects against cellular damage in various diseases. We investigated the effect of GGA on hydrogen peroxide (H2O2)-induced neurotoxicity in human neuroblastoma SH-SY5Y cells. H2O2-induced neuronal toxicity was measured by a CCK-8 assay and Hoechst 33342 staining. We also assessed oxidative stress and apoptosis by measuring reactive oxygen species (ROS) generation with 2′,7′-dichlorofluorescein diacetate (DCFH-DA), caspase-3 activity, and mitogen-activated protein kinase (MAPK) pathway. GGA showed a concentration-dependent inhibition on H2O2-induced apoptotic cell death. H2O2-induced induction of HSP70 was enhanced by GGA pretreatment. GGA effectively suppressed the up-regulation of Bax and down-regulation of Bcl-2. GGA also blocked the H2O2-induced phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2). In addition, GGA attenuated H2O2-induced ROS generation and caspase-3 activity. These results demonstrate that GGA protects SH-SY5Y cells from H2O2-induced apoptosis, at least in part by enhancing HSP70 production. Neuroprotective properties of GGA indicate that this compound may be a potential therapeutic agent for the treatment and prevention of neurodegenerative diseases.

  3. Nitric oxide is required for hydrogen gas-induced adventitious root formation in cucumber.

    PubMed

    Zhu, Yongchao; Liao, Weibiao; Wang, Meng; Niu, Lijuan; Xu, Qingqing; Jin, Xin

    2016-05-20

    Hydrogen gas (H2) is involved in plant development and stress responses. Cucumber explants were used to study whether nitric oxide (NO) is involved in H2-induced adventitious root development. The results revealed that 50% and 100% hydrogen-rich water (HRW) apparently promoted the development of adventitious root in cucumber. While, the responses of HRW-induced adventitious rooting were blocked by a specific NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide potassium salt (cPTIO), NO synthase (NOS) enzyme inhibitor N(G)-nitro-l-arginine methylester hydrochloride (l-NAME) and nitrate reductase (NR) inhibitor NaN3. HRW also increased NO content and NOS and NR activity both in a dose- and time-dependent fashion. Moreover, molecular evidence showed that HRW up-regulated NR genes expression in explants. The results indicate the importance of NOS and NR enzymes, which might be responsible for NO production in explants during H2-induced root organogenesis. Additionally, peroxidase (POD) and indoleacetic acid oxidase (IAAO) activity was significantly decreased in the explants treated with HRW, while HRW treatment significantly increased polyphenol oxidase (PPO) activity. In addition, cPTIO, l-NAME and NaN3 inhibited the actions of HRW on the activity of these enzymes. Together, NO may be involved in H2-induced adventitious rooting, and NO may be acting downstream in plant H2 signaling cascade.

  4. Study of defect-induced ferromagnetism in hydrogenated anatase TiO2:Co

    NASA Astrophysics Data System (ADS)

    Singhal, R. K.; Samariya, Arvind; Kumar, Sudhish; Xing, Y. T.; Jain, D. C.; Dolia, S. N.; Deshpande, U. P.; Shripathi, T.; Saitovitch, Elisa B.

    2010-06-01

    Electronic and magnetic properties of Co-doped TiO2 polycrystalline pellets (Ti0.95Co0.05O2) have been investigated using x-ray diffraction, x-ray photoemission, magnetization, and resistance measurements. The as-synthesized and hydrogenated specimens crystallize in the anatase type tetragonal structure containing very small (˜4.4%) rutile phase. The dopant ions of Co are found to be divalent and well incorporated into TiO2 lattice, substituting the Ti site within the anatase phase, with no evidence of metallic Co or any other oxides of Co. The Co doping induces a weak ferromagnetic ordering in the diamagnetic TiO2 host matrix. Interestingly, when the Co-doped TiO2 is annealed in hydrogen atmosphere, it shows a giant enhancement in magnetization. However, an extended reheating in air causes this H-induced magnetization to vanish and the sample regains the as-prepared status. Our findings indicate that ferromagnetism originates from the doped matrix rather than any magnetic clusters and strongly correlated with oxygen vacancies in the doped TiO2. The induced ferromagnetic ordering is found to be a reversible process with regard to oxygen vacancy defects that could be induced or removed, respectively, upon introduction or removal of these defects.

  5. Cystathionine beta synthase deficiency induces catalase-mediated hydrogen peroxide detoxification in mice liver.

    PubMed

    Hamelet, Julien; Seltzer, Virginie; Petit, Emile; Noll, Christophe; Andreau, Karine; Delabar, Jean M; Janel, Nathalie

    2008-01-01

    Cystathionine beta synthase deficiency induces hyperhomocysteinemia which is considered as a risk factor for vascular diseases. Studies underlined the importance of altered cellular redox reactions in hyperhomocysteinemia-induced vascular pathologies. Nevertheless, hyperhomocysteinemia also induces hepatic dysfunction which may accelerate the development of vascular pathologies by modifying cholesterol homeostasis. The aim of the present study was to analyze the modifications of redox state in the liver of heterozygous cystathionine beta synthase-deficient mice, a murine model of hyperhomocysteinemia. In this purpose, we quantified levels of reactive oxygen and nitrogen species and we assayed activities of main antioxidant enzymes. We found that cystathionine beta synthase deficiency induced NADPH oxidase activation. However, there was no accumulation of reactive oxygen (superoxide anion, hydrogen peroxide) and nitrogen (nitrite, peroxynitrite) species. On the contrary, hepatic hydrogen peroxide level was decreased independently of an activation of glutathione-dependent mechanisms. In fact, cystathionine beta synthase deficiency had no effect on glutathione peroxidase, glutathione reductase and glutathione S-transferase activities. However, we found a 50% increase in hepatic catalase activity without any variation of expression. These findings demonstrate that cystathionine beta synthase deficiency initiates redox disequilibrium in the liver. However, the activation of catalase attenuates oxidative impairments.

  6. Lens Endogenous Peptide αA66-80 Generates Hydrogen Peroxide and Induces Cell Apoptosis

    PubMed Central

    Raju, Murugesan; Santhoshkumar, Puttur; Sharma, K. Krishna

    2017-01-01

    In previous studies, we reported the presence of a large number of low-molecular-weight (LMW) peptides in aged and cataract human lens tissues. Among the LMW peptides, a peptide derived from αA-crystallin, αA66-80, was found in higher concentration in aged and cataract lenses. Additional characterization of the αA66-80 peptide showed beta sheet signature, and it formed well-defined unbranched fibrils. Further experimental data showed that αA66-80 peptide binds α-crystallin, impairs its chaperone function, and attracts additional crystallin proteins to the peptide α-crystallin complex, leading to the formation of larger light scattering aggregates. It is well established that Aβ peptide exhibits cell toxicity by the generation of hydrogen peroxide. The αA66-80 peptide shares the principal properties of Aβ peptide. Therefore, the present study was undertaken to determine whether the fibril-forming peptide αA66-80 has the ability to generate hydrogen peroxide. The results show that the αA66-80 peptide generates hydrogen peroxide, in the amount of 1.2 nM H2O2 per µg of αA66-80 peptide by incubation at 37°C for 4h. We also observed cytotoxicity and apoptotic cell death in αA66-80 peptide-transduced Cos7 cells. As evident, we found more TUNEL-positive cells in αA66-80 peptide transduced Cos7 cells than in control cells, suggesting peptide-mediated cell apoptosis. Additional immunohistochemistry analysis showed the active form of caspase-3, suggesting activation of the caspase-dependent pathway during peptide-induced cell apoptosis. These results confirm that the αA66-80 peptide generates hydrogen peroxide and promotes hydrogen peroxide-mediated cell apoptosis. PMID:28203481

  7. Lens Endogenous Peptide αA66-80 Generates Hydrogen Peroxide and Induces Cell Apoptosis.

    PubMed

    Raju, Murugesan; Santhoshkumar, Puttur; Sharma, K Krishna

    2017-02-01

    In previous studies, we reported the presence of a large number of low-molecular-weight (LMW) peptides in aged and cataract human lens tissues. Among the LMW peptides, a peptide derived from αA-crystallin, αA66-80, was found in higher concentration in aged and cataract lenses. Additional characterization of the αA66-80 peptide showed beta sheet signature, and it formed well-defined unbranched fibrils. Further experimental data showed that αA66-80 peptide binds α-crystallin, impairs its chaperone function, and attracts additional crystallin proteins to the peptide α-crystallin complex, leading to the formation of larger light scattering aggregates. It is well established that Aβ peptide exhibits cell toxicity by the generation of hydrogen peroxide. The αA66-80 peptide shares the principal properties of Aβ peptide. Therefore, the present study was undertaken to determine whether the fibril-forming peptide αA66-80 has the ability to generate hydrogen peroxide. The results show that the αA66-80 peptide generates hydrogen peroxide, in the amount of 1.2 nM H2O2 per µg of αA66-80 peptide by incubation at 37°C for 4h. We also observed cytotoxicity and apoptotic cell death in αA66-80 peptide-transduced Cos7 cells. As evident, we found more TUNEL-positive cells in αA66-80 peptide transduced Cos7 cells than in control cells, suggesting peptide-mediated cell apoptosis. Additional immunohistochemistry analysis showed the active form of caspase-3, suggesting activation of the caspase-dependent pathway during peptide-induced cell apoptosis. These results confirm that the αA66-80 peptide generates hydrogen peroxide and promotes hydrogen peroxide-mediated cell apoptosis.

  8. Stress Induce Martensitic Transformations in Hydrogen Embrittlement of Austenitic Stainless Steels

    NASA Astrophysics Data System (ADS)

    Rozenak, Paul

    2013-04-01

    In austenitic type stainless steels, hydrogen concentration gradients formed during electrochemical charging and followed by hydrogen loss during aging, at room temperature, surface stresses, and martensitic phases α'-BCC and ɛ-HCP developed. The basic relationship between the X-ray diffraction peak broadening and the hydrogen gradients, formed during charging and aging at room temperature in such austenitic stainless steels, were analyzed. The results demonstrate that the impact of stresses must be considered in the discussion of phase transformations due to hydrogenation. Austenitic stainless steels based on iron-nickel-chromium, have relatively low stacking fault energy γSFE and undergo: quenching to low temperatures, plastic deformation, sensitization heat treatments, high pressure (≥3-5 × 109 Pa) by hydrogen or other gases, electrochemical charging (when the sample is cathode) and when is irradiation by various ions the samples in vacuum. All the above mentioned induce formation of ɛ and α' in the face-centered cubic (FCC) austenite γ matrix. The highest stresses cause formation of mainly α' phase and ɛ-martensite, and both are involved in plastic deformation processes and promoting crack propagation at the surface. In 310 steel, the crack propagation is based on deformation processes following ɛ-martensitic formation only. Formations of ɛ- and α'-martensites were noted along the fracture surfaces and ahead of the crack tip. The cracks propagated through the ɛ-martensitic plates, which formed along the active slip planes, while α' phase was always found in the high-stress region on the ends of the ligaments from both sides of the crack surfaces undergoing propagation.

  9. Stress Induce Martensitic Transformations in Hydrogen Embrittlement of Austenitic Stainless Steels

    NASA Astrophysics Data System (ADS)

    Rozenak, Paul

    2014-01-01

    In austenitic type stainless steels, hydrogen concentration gradients formed during electrochemical charging and followed by hydrogen loss during aging, at room temperature, surface stresses, and martensitic phases α'-BCC and ɛ-HCP developed. The basic relationship between the X-ray diffraction peak broadening and the hydrogen gradients, formed during charging and aging at room temperature in such austenitic stainless steels, were analyzed. The results demonstrate that the impact of stresses must be considered in the discussion of phase transformations due to hydrogenation. Austenitic stainless steels based on iron-nickel-chromium, have relatively low stacking fault energy γSFE and undergo: quenching to low temperatures, plastic deformation, sensitization heat treatments, high pressure (≥3-5 × 109 Pa) by hydrogen or other gases, electrochemical charging (when the sample is cathode) and when is irradiation by various ions the samples in vacuum. All the above mentioned induce formation of ɛ and α' in the face-centered cubic (FCC) austenite γ matrix. The highest stresses cause formation of mainly α' phase and ɛ-martensite, and both are involved in plastic deformation processes and promoting crack propagation at the surface. In 310 steel, the crack propagation is based on deformation processes following ɛ-martensitic formation only. Formations of ɛ- and α'-martensites were noted along the fracture surfaces and ahead of the crack tip. The cracks propagated through the ɛ-martensitic plates, which formed along the active slip planes, while α' phase was always found in the high-stress region on the ends of the ligaments from both sides of the crack surfaces undergoing propagation.

  10. A tunable azine covalent organic framework platform for visible light-induced hydrogen generation

    NASA Astrophysics Data System (ADS)

    Vyas, Vijay S.; Haase, Frederik; Stegbauer, Linus; Savasci, Gökcen; Podjaski, Filip; Ochsenfeld, Christian; Lotsch, Bettina V.

    2015-09-01

    Hydrogen evolution from photocatalytic reduction of water holds promise as a sustainable source of carbon-free energy. Covalent organic frameworks (COFs) present an interesting new class of photoactive materials, which combine three key features relevant to the photocatalytic process, namely crystallinity, porosity and tunability. Here we synthesize a series of water- and photostable 2D azine-linked COFs from hydrazine and triphenylarene aldehydes with varying number of nitrogen atoms. The electronic and steric variations in the precursors are transferred to the resulting frameworks, thus leading to a progressively enhanced light-induced hydrogen evolution with increasing nitrogen content in the frameworks. Our results demonstrate that by the rational design of COFs on a molecular level, it is possible to precisely adjust their structural and optoelectronic properties, thus resulting in enhanced photocatalytic activities. This is expected to spur further interest in these photofunctional frameworks where rational supramolecular engineering may lead to new material applications.

  11. A tunable azine covalent organic framework platform for visible light-induced hydrogen generation.

    PubMed

    Vyas, Vijay S; Haase, Frederik; Stegbauer, Linus; Savasci, Gökcen; Podjaski, Filip; Ochsenfeld, Christian; Lotsch, Bettina V

    2015-09-30

    Hydrogen evolution from photocatalytic reduction of water holds promise as a sustainable source of carbon-free energy. Covalent organic frameworks (COFs) present an interesting new class of photoactive materials, which combine three key features relevant to the photocatalytic process, namely crystallinity, porosity and tunability. Here we synthesize a series of water- and photostable 2D azine-linked COFs from hydrazine and triphenylarene aldehydes with varying number of nitrogen atoms. The electronic and steric variations in the precursors are transferred to the resulting frameworks, thus leading to a progressively enhanced light-induced hydrogen evolution with increasing nitrogen content in the frameworks. Our results demonstrate that by the rational design of COFs on a molecular level, it is possible to precisely adjust their structural and optoelectronic properties, thus resulting in enhanced photocatalytic activities. This is expected to spur further interest in these photofunctional frameworks where rational supramolecular engineering may lead to new material applications.

  12. Laser-induced fluorescence diagnostic for temperature and velocity measurements in a hydrogen arcjet plume.

    PubMed

    Liebeskind, J G; Hanson, R K; Cappelli, M A

    1993-10-20

    A diagnostic has been developed to measure velocity and translational temperature in the plume of a 1-kW-class arcjet thruster operating on hydrogen. Laser-induced fluorescence with a narrow-band cw laser is used to probe the Balmer α transition of excited atomic hydrogen. The velocity is determined from the Doppler shift of the fluorescence excitation spectrum, whereas the temperature is inferred from the lineshape. Analysis shows that although Doppler broadening is the only significant broadening mechanism, the fine structure of the transition must be taken into account. Near the exit plane, axial velocities vary from 4 to 14 km/s, radial velocities vary from 0 to 4 km/s, and swirl velocities are shown to be relatively small. Temperatures from 1000 to 5000 K indicate high dissociation fractions.

  13. Electron density and temperature diagnostics in laser-induced hydrogen plasma

    NASA Astrophysics Data System (ADS)

    Gautam, G.; Parigger, C. G.

    2017-02-01

    Laser-induced optical breakdown is achieved by using Q-switched, Nd:YAG radiation focused into ultra-high-purity (UHP) hydrogen gas at a pressure of 1.08 ± 0.03 × 105 Pa inside a cell. The plasma emission spectra are dispersed by a Czerny-Turner type spectrometer and detected with an intensified charge-coupled device (ICCD). Stark-broadened hydrogen Balmer series H α and Hβ line profiles are used as a spectroscopic tool for the determination of electron density and excitation temperature. Spatial variation of electron density and temperature at 0.40 µs are extracted from the recorded intensities of H α and Hβ lines. Temporal variations of electron density and excitation temperature are also presented for the time delay range of 0.15 µs to 1.4 µs.

  14. A tunable azine covalent organic framework platform for visible light-induced hydrogen generation

    PubMed Central

    Vyas, Vijay S.; Haase, Frederik; Stegbauer, Linus; Savasci, Gökcen; Podjaski, Filip; Ochsenfeld, Christian; Lotsch, Bettina V.

    2015-01-01

    Hydrogen evolution from photocatalytic reduction of water holds promise as a sustainable source of carbon-free energy. Covalent organic frameworks (COFs) present an interesting new class of photoactive materials, which combine three key features relevant to the photocatalytic process, namely crystallinity, porosity and tunability. Here we synthesize a series of water- and photostable 2D azine-linked COFs from hydrazine and triphenylarene aldehydes with varying number of nitrogen atoms. The electronic and steric variations in the precursors are transferred to the resulting frameworks, thus leading to a progressively enhanced light-induced hydrogen evolution with increasing nitrogen content in the frameworks. Our results demonstrate that by the rational design of COFs on a molecular level, it is possible to precisely adjust their structural and optoelectronic properties, thus resulting in enhanced photocatalytic activities. This is expected to spur further interest in these photofunctional frameworks where rational supramolecular engineering may lead to new material applications. PMID:26419805

  15. Microstructure and yield strength effects on hydrogen and tritium induced cracking in HERF (high-energy-rate-forged) stainless steel

    SciTech Connect

    Morgan, M J; Tosten, M H

    1989-01-01

    Rising-load J-integral measurements and falling-load threshold stress intensity measurements were used to characterize hydrogen and tritium induced cracking in high-energy-rate-forged (HERF) 21-6-9 stainless steel. Samples having yield strengths in the range 517--930 MPa were thermally charged with either hydrogen or tritium and tested at room temperature in either air or high-pressure hydrogen gas. In general, the hydrogen isotopes reduced the fracture toughness by affecting the fracture process. Static recrystallization in the HERF microstructures affected the material's fracture toughness and its relative susceptibility to hydrogen and tritium induced fracture. In hydrogen-exposed samples, the reduction in fracture toughness was primarily dependent on the susceptibility of the microstructure to intergranular fracture and only secondarily affected by strength in the range of 660 to 930 MPa. Transmission-electron microscopy observations revealed that the microstructures least susceptible to hydrogen-induced intergranular cracking contained patches of fully recrystallized grains. These grains are surrounded by highly deformed regions containing a high number density of dislocations. The microstructure can best be characterized as duplex'', with soft recrystallized grains embedded in a hard, deformed matrix. The microstructures most susceptible to hydrogen-induced intergranular fracture showed no well-developed recrystallized grains. The patches of recrystallized grains seemed to act as crack barriers to hydrogen-induced intergranular fracture. In tritium-exposed-and-aged samples, the amount of static recrystallization also affected the fracture toughness properties but to a lesser degree. 7 refs., 25 figs.

  16. Hypoxia induces Wee1 expression and attenuates hydrogen peroxide-induced endothelial damage in MS1 cells

    PubMed Central

    Hong, Ki-Sun; Kim, Hyeon-Soo; Kim, Se-Hoon; Lim, Dong-Jun; Park, Jung-Yul

    2011-01-01

    In an oxygen-depleted environment, endothelial cells initiate an adaptive pattern of synthesis, which may enable them to survive hypoxic crises. Using high-resolution two-dimensional gel electrophoresis in conjunction with mass spectroscopy, we obtained a 24 differential display of proteins in the pancreatic endothelial cell line, MS-1, at four time points following induction of hypoxia. The induction of Wee1 under hypoxia was confirmed both at the mRNA and protein levels. The phosphorylation of cell division cycle 2, which is downstream of Wee1, was also increased after hypoxic exposure. In addition, pre-exposure to hypoxia attenuated a decrease in hydrogen peroxide-induced cell number. The induction of bax (a pro-apoptotic protein) and reduction of bcl (an anti-apoptotic protein) after hypoxia stimulus were also attenuated by hypoxic pre-exposure. Moreover, hydrogen peroxide-induced morphologic damage did not appear in the wild-type Wee1-expressing cells. Taken together, our results suggest that Wee1 may have important role in hypoxia-induced pathophysiological situations in endothelial cells. PMID:21918363

  17. A film-rupture model of hydrogen-induced, slow crack growth in alpha-beta titanium

    NASA Technical Reports Server (NTRS)

    Nelson, H. G.

    1975-01-01

    The appearance of the terrace like fracture morphology of gaseous hydrogen induced crack growth in acicular alpha-beta titanium alloys is discussed as a function of specimen configuration, magnitude of applied stress intensity, test temperature, and hydrogen pressure. Although the overall appearance of the terrace structure remained essentially unchanged, a distinguishable variation is found in the size of the individual terrace steps, and step size is found to be inversely dependent upon the rate of hydrogen induced slow crack growth. Additionally, this inverse relationship is independent of all the variables investigated. These observations are quantitatively discussed in terms of the formation and growth of a thin hydride film along the alpha-beta boundaries and a qualitative model for hydrogen induced slow crack growth is presented, based on the film-rupture model of stress corrosion cracking.

  18. Temperature dependencies of hydrogen-induced blistering of thin film multilayers

    SciTech Connect

    Kuznetsov, A. S.; Gleeson, M. A.; Bijkerk, F.

    2014-05-07

    We report on the influence of sample temperature on the development of hydrogen-induced blisters in Mo/Si thin-film multilayers. In general, the areal number density of blisters decreases with increasing exposure temperature, whereas individual blister size increases with exposure temperatures up to ∼200 °C but decreases thereafter. Comparison as a function of sample temperature is made between exposures to a flux containing both hydrogen ions and neutrals and one containing only neutrals. In the case of the neutral-only flux, blistering is observed for exposure temperatures ≥90 °C. The inclusion of ions promotes blister formation at <90 °C, while retarding their growth at higher temperatures. In general, ion-induced effects become less evident with increasing exposure temperature. At 200 °C, the main effect discernable is reduced blister size as compared with the equivalent neutral-only exposure. The temperature during exposure is a much stronger determinant of the blistering outcome than either pre- or post-annealing of the sample. The trends observed for neutral-only exposures are attributed to competing effects of defect density thermal equilibration and H-atom induced modification of the Si layers. Energetic ions modify the blistering via (temperature dependent) enhancement of H-mobility and re-crystallization of amorphous Si.

  19. Impact-induced devolatilization and hydrogen isotopic fractionation of serpentine: Implications for planetary accretion

    NASA Technical Reports Server (NTRS)

    Tyburczy, James A.; Krishnamurthy, R. V.; Epstein, Samuel; Ahrens, Thomas J.

    1988-01-01

    Impact-induced devolatilization of porous serpentine was investigated using two independent experimental methods, the gas recovery and the solid recovery method, each yielding nearly identical results. For shock pressures near incipient devolatilization, the hydrogen isotopic composition of the evolved H2O is very close to that of the starting material. For shock pressures at which up to 12 percent impact-induced devolatilization occurs, the bulk evolved gas is significantly lower in deuterium than the starting material. There is also significant reduction of H2O to H2 in gases recovered at these higher shock pressures, probably caused by reaction of evolved H2O with the metal gas recovery fixture. Gaseous H2O-H2 isotopic fractionation suggests high temperature isotopic equilibrium between the gaseous species, indicating initiation of devolatilization at sites of greater than average energy deposition. Bulk gas-residual solid isotopic fractionations indicate nonequilibrium, kinetic control of gas-solid isotopic ratios. Impact-induced hydrogen isotopic fractionation of hydrous silicates during accretion can strongly affect the long-term planetary isotopic ratios of planetary bodies, leaving the interiors enriched in deuterium. Depending on the model used for extrapolation of the isotopic fractionation to devolatilization fractions greater than those investigated experimentally can result from this process.

  20. Novel hydrogen sulfide-releasing compound, S-propargyl-cysteine, prevents STZ-induced diabetic nephropathy

    SciTech Connect

    Qian, Xin; Li, Xinghui; Ma, Fenfen; Luo, Shanshan; Ge, Ruowen; Zhu, Yizhun

    2016-05-13

    In this work, we demonstrated for the first time that S-propargyl-cysteine (SPRC, also named as ZYZ-802), a novel hydrogen sulfide (H{sub 2}S)-releasing compound, had renoprotective effects on streptozotocin (STZ)-induced diabetic kidney injury. SPRC treatment significantly reduced the level of creatinine, kidney to body weight ratio and in particular, markedly decreased 24-h urine microalbuminuria excretion. SPRC suppressed the mRNA expression of fibronectin and type IV collagen. In vitro, SPRC inhibited mesangial cells over-proliferation and hypertrophy induced by high glucose. Additionally, SPRC attenuated inflammation in diabetic kidneys. SPRC also reduced transforming growth factor β1 (TGF-β1) signaling and expression of phosphorylated Smad3 (p-Smad3) pathway. Moreover, SPRC inhibited phosphorylation of ERK, p38 protein. Taken together, SPRC was demonstrated to be a potential therapeutic candidate to suppress diabetic nephropathy. - Highlights: • We synthesized a novel hydrogen sulfide-releasing compound, S-propargyl-cysteine (SPRC). • SPRC was preliminarily demonstrated to prevent STZ-induced diabetic nephropathy (DN). • SPRC may exert potential therapeutic candidate to suppress DN.

  1. Failure of reciprocity in light-induced changes in hydrogenated amorphous silicon alloys

    SciTech Connect

    Guha, S.

    1984-09-01

    From a study of the effect of light exposure on photoconductivity and solar cell performance of hydrogenated amorphous silicon alloys for different exposure time and intensity, we show that the light-induced changes do not obey reciprocity. Degradation is larger at high intensity light exposure for a shorter time than at low intensity exposure for a longer time even though the product of the exposure time and light intensity is kept a constant. A model that can explain the failure of reciprocity is discussed.

  2. Hydrogen plasma induced photoelectron emission from low work function cesium covered metal surfaces

    NASA Astrophysics Data System (ADS)

    Laulainen, J.; Aleiferis, S.; Kalvas, T.; Koivisto, H.; Kronholm, R.; Tarvainen, O.

    2017-10-01

    Experimental results of hydrogen plasma induced photoelectron emission from cesium covered metal surfaces under ion source relevant conditions are reported. The transient photoelectron current during the Cs deposition process is measured from Mo, Al, Cu, Ta, Y, Ni, and stainless steel (SAE 304) surfaces. The photoelectron emission is 2-3.5 times higher at optimal Cs layer thickness in comparison to the clean substrate material. Emission from the thick layer of Cs is found to be 60%-80% lower than the emission from clean substrates.

  3. Grain boundary segregation and hydrogen-induced fracture in 7050 aluminium alloy

    SciTech Connect

    Song, R.G.; Tseng, M.K.; Zhang, B.J.; Liu, J.; Jin, Z.H.; Shin, K.S.

    1996-08-01

    The relationships between grain boundary segregation and crack growth of stress corrosion and corrosion fatigue in 7050 aluminium alloy have been investigated under various aging conditions; the effects of grain boundary segregation on intergranular fracture work have been calculated using a quasichemical approach. The results show that the hydrogen content at the crack tip and the crack growth rate increase with the concentration of solid solution Mg on increasing grain boundary; both Mg and H segregation induce the intergranular fracture work to decrease. Mg segregation accelerates H enriching and crack propagation. It is indicated that a Mg-H interaction occurs in the processes of corrosion fatigue as well as stress corrosion.

  4. NMR at earth's magnetic field using para-hydrogen induced polarization.

    PubMed

    Hamans, Bob C; Andreychenko, Anna; Heerschap, Arend; Wijmenga, Sybren S; Tessari, Marco

    2011-09-01

    A method to achieve NMR of dilute samples in the earth's magnetic field by applying para-hydrogen induced polarization is presented. Maximum achievable polarization enhancements were calculated by numerically simulating the experiment and compared to the experimental results and to the thermal equilibrium in the earth's magnetic field. Simultaneous 19F and 1H NMR detection on a sub-milliliter sample of a fluorinated alkyne at millimolar concentration (∼10(18) nuclear spins) was realized with just one single scan. A highly resolved spectrum with a signal/noise ratio higher than 50:1 was obtained without using an auxiliary magnet or any form of radio frequency shielding.

  5. Stacking fault energy decrease in austenitic stainless steels induced by hydrogen pairs formation

    SciTech Connect

    Hermida, J.D.; Roviglione, A.

    1998-09-15

    The decrease of the Stacking Fault Energy (SFE), induced by hydrogen in austenitic stainless steels, was always invoked to explain the formation of {epsilon}-martensite at room temperature during cathodic charging of hydrogen. Pontini and Hermida measured by XRD a reduction of 37 pct of the SPE of an AISI 304 steel at room temperature, in the presence of only 274 ppm of hydrogen. However, the nature of this phenomenon is still unknown. Recently, Obiol et a., using the Atoms Superposition and Electron Delocalization-Molecular Obital (ASED-MO) method, calculated the binding energy for H-H pair formation in the faulted zone of an FCC iron matrix. It was shown that, the H-H pair formation is more likely to occur along directions connecting octahedral interstices of the HCP stacking sequence and that are normal to the {l_brace}111{r_brace} planes. The binding energy found was {minus}5.75 eV, being this value significantly larger than the corresponding one for vacuum: {minus}4.75 eV. In this work, an explanation of the SFE decrease is developed on the basis of this previous result.

  6. Stark broadening corrections to laser-induced fluorescence temperature measurements in a hydrogen arcjet plume.

    PubMed

    Storm, P V; Cappelli, M A

    1996-08-20

    Laser-induced fluorescence of the H(α) transition of atomic hydrogen has previously been performed in the plume of a hydrogen arcjet thruster. Measurements of plasma velocity and temperature, based on the Doppler shift and broadening of the H(α) line shape, were previously published [Appl. Opt. 32, 6117 (1993)]. In that paper the Stark broadening of the H(α) transition was estimated from static-ion calculations performed in the early 1970's and found to be negligible in comparison with the Doppler broadening. However, more recent dynamic-ion calculations have shown the Stark broadening to be considerably larger than was previously assumed, resulting in inaccurate temperature measurements. We present a reanalysis of the fluorescence data, taking into account the improved Stark broadening calculations. The correct atomic hydrogen translation temperature and electron number density are obtained from the Doppler and Stark broadening components of the measured line shape. The results indicate a substantial drop in temperature from those previously reported.

  7. Hydrogen plasma induced modification of photoluminescence from a-SiNx:H thin films

    NASA Astrophysics Data System (ADS)

    Bommali, R. K.; Ghosh, S.; Vijaya Prakash, G.; Gao, K.; Zhou, S.; Khan, S. A.; Srivastava, P.

    2014-02-01

    Low temperature (250-350 °C) hydrogen plasma annealing (HPA) treatments have been performed on amorphous hydrogenated silicon nitride (a-SiNx:H) thin films having a range of compositions and subsequent modification of photoluminescence (PL) is investigated. The PL spectral shape and peak positions for the as deposited films could be tuned with composition and excitation energies. HPA induced modification of PL of these films is found to depend on the N/Si ratio (x). Upon HPA, the PL spectra show an emergence of a red emission band for x ≤ 1, whereas an overall increase of intensity without change in the spectral shape is observed for x > 1. The emission observed in the Si rich films is attributed to nanoscale a-Si:H inclusions. The enhancement is maximum for off-stoichiometric films (x ˜ 1) and decreases as the compositions of a-Si (x = 0) and a-Si3N4 (x = 1.33) are approached, implying high density of non-radiative defects around x = 1. The diffusion of hydrogen in these films is also analyzed by Elastic Recoil Detection Analysis technique.

  8. Pressure-induced chemistry in a nitrogen-hydrogen host-guest structure

    NASA Astrophysics Data System (ADS)

    Spaulding, Dylan K.; Weck, Gunnar; Loubeyre, Paul; Datchi, Fréderic; Dumas, Paul; Hanfland, Michael

    2014-12-01

    New topochemistry in simple molecular systems can be explored at high pressure. Here we examine the binary nitrogen/hydrogen system using Raman spectroscopy, synchrotron X-ray diffraction, synchrotron infrared microspectroscopy and visual observation. We find a eutectic-type binary phase diagram with two stable high-pressure van der Waals compounds, which we identify as (N2)6(H2)7 and N2(H2)2. The former represents a new type of van der Waals host-guest compound in which hydrogen molecules are contained within channels in a nitrogen lattice. This compound shows evidence for a gradual, pressure-induced change in bonding from van der Waals to ionic interactions near 50 GPa, forming an amorphous dinitrogen network containing ionized ammonia in a room-temperature analogue of the Haber-Bosch process. Hydrazine is recovered on decompression. The nitrogen-hydrogen system demonstrates the potential for new pressure-driven chemistry in high-pressure structures and the promise of tailoring molecular interactions for materials synthesis.

  9. Inhibition of hydrogen peroxide induced injuring on human skin fibroblast by Ulva prolifera polysaccharide.

    PubMed

    Cai, Chuner; Guo, Ziye; Yang, Yayun; Geng, Zhonglei; Tang, Langlang; Zhao, Minglin; Qiu, Yuyan; Chen, Yifan; He, Peimin

    2016-10-01

    Ulva prolifera can protect human skin fibroblast from being injured by hydrogen peroxide. This work studied the composition of Ulva prolifera polysaccharide and identified its physicochemical properties. The results showed that the cell proliferation of 0.5mg/mL crude polysaccharide was 154.4% of that in negative control group. Moreover, ROS detection indices, including DCFH-DA, GSH-PX, MDA and CAT, indicated that crude polysaccharide could improve cellular ability to scavenge free radical and decrease the injury on human skin fibroblast by hydrogen peroxide. In purified polysaccharide, the activity of fraction P1-1 was the highest, with 174.6% of that in negative control group. The average molecular weight of P1-1 was 137kD with 18.0% of sulfate content. This work showed the inhibition of hydrogen peroxide induced injuries on human skin fibroblast by Ulva prolifera polysaccharide, which may further evaluate the application of U. prolifera on cosmetics. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Experimental Investigation of Jet-Induced Mixing of a Large Liquid Hydrogen Storage Tank

    NASA Technical Reports Server (NTRS)

    Lin, C. S.; Hasan, M. M.; Vandresar, N. T.

    1994-01-01

    Experiments have been conducted to investigate the effect of fluid mixing on the depressurization of a large liquid hydrogen storage tank. The test tank is approximately ellipsoidal, having a volume of 4.89 m(exp 3) and an average wall heat flux of 4.2 W/m(exp 2) due to external heat input. A mixer unit was installed near the bottom of the tank to generate an upward directed axial jet flow normal to the liquid-vapor interface. Mixing tests were initiated after achieving thermally stratified conditions in the tank either by the introduction of hydrogen gas into the tank or by self-pressurization due to ambient heat leak through the tank wall. The subcooled liquid jet directed towards the liquid-vapor interface by the mixer induced vapor condensation and caused a reduction in tank pressure. Tests were conducted at two jet submergence depths for jet Reynolds numbers from 80,000 to 495,000 and Richardson numbers from 0.014 to 0.52. Results show that the rate of tank pressure change is controlled by the competing effects of subcooled jet flow and the free convection boundary layer flow due to external tank wall heating. It is shown that existing correlations for mixing time and vapor condensation rate based on small scale tanks may not be applicable to large scale liquid hydrogen systems.

  11. Yield from Proton-Induced Reaction on Light Element Isotopes in the Hydrogen Plasma Focus

    NASA Astrophysics Data System (ADS)

    Udovičić, V.; Dragić, A.; Banjanac, R.; Joković, D.; Veselinović, N.; Aničin, I.; Savić, M.; Puzović, J.

    2011-12-01

    The high Q-value of some (p,α) fusion reactions is very important in the investigation that can lead to power production with controlled fusion using advanced fuels (hydrogen-lithium-7, hydrogen-boron-11). For this reason, it is crucial to know the rates of these fusion reactions. Unfortunately, in the fusion machines such as plasma focus device, the interaction energy is usually far below the Coulomb barrier. Because of that, direct measurements of the relevant reaction cross sections are practically impossible. A few different indirect approaches have been proposed. In this work the Trojan Horse Method (THM) will be described. On the basis of the results obtained from the THM method and data, which are well-known from our previous work (Banjanac et al. in Radiat Meas 40:483-485, 2005), the reaction rate for proton-induced reaction 7Li(p,α)α produced in the hydrogen plasma focus is calculated. This calculation will be compared with the measurements of α particles production rate using CR-39 detectors.

  12. Transcriptome and Metabolite Changes during Hydrogen Cyanamide-Induced Floral Bud Break in Sweet Cherry

    PubMed Central

    Ionescu, Irina A.; López-Ortega, Gregorio; Burow, Meike; Bayo-Canha, Almudena; Junge, Alexander; Gericke, Oliver; Møller, Birger L.; Sánchez-Pérez, Raquel

    2017-01-01

    Release of bud dormancy in perennial woody plants is a temperature-dependent process and thus flowering in these species is heavily affected by climate change. The lack of cold winters in temperate growing regions often results in reduced flowering and low fruit yields. This is likely to decrease the availability of fruits and nuts of the Prunus spp. in the near future. In order to maintain high yields, it is crucial to gain detailed knowledge on the molecular mechanisms controlling the release of bud dormancy. Here, we studied these mechanisms using sweet cherry (Prunus avium L.), a crop where the agrochemical hydrogen cyanamide (HC) is routinely used to compensate for the lack of cold winter temperatures and to induce flower opening. In this work, dormant flower buds were sprayed with hydrogen cyanamide followed by deep RNA sequencing, identifying three main expression patterns in response to HC. These transcript level results were validated by quantitative real time polymerase chain reaction and supported further by phytohormone profiling (ABA, SA, IAA, CK, ethylene, JA). Using these approaches, we identified the most up-regulated pathways: the cytokinin pathway, as well as the jasmonate and the hydrogen cyanide pathway. Our results strongly suggest an inductive effect of these metabolites in bud dormancy release and provide a stepping stone for the characterization of key genes in bud dormancy release. PMID:28769948

  13. Chloride channels involve in hydrogen peroxide-induced apoptosis of PC12 cells.

    PubMed

    Zuo, Wanhong; Zhu, Linyan; Bai, Zhiquan; Zhang, Haifeng; Mao, Jianwen; Chen, Lixin; Wang, Liwei

    2009-10-02

    Chloride channel activity is one of the critical factors responsible for cell apoptotic volume decrease (AVD). However, the roles of chloride channels in apoptosis have not been fully understood. In the current study, we assessed the role of chloride channels in hydrogen peroxide (H(2)O(2))-induced apoptosis of pheochromocytoma cells (PC12). Extracellular application of H(2)O(2) activated a chloride current and induced cell volume decrease in a few minutes. Incubation of cells with H(2)O(2) elevated significantly the membrane permeability to the DNA dye Hoechst 33258 in 1h and induced apoptosis of most PC12 cells tested in 24h. The chloride channel blocker NPPB (5-nitro-2-(3-phenylpropylamino)-benzoate) prevented appearance of H(2)O(2)-induced high membrane permeability and cell shrinkage, suppressed H(2)O(2)-activated chloride currents and protected PC12 cells from apoptosis induced by H(2)O(2). The results suggest that chloride channels may contribute to H(2)O(2)-induced apoptosis by ways of elevation of membrane permeability and AVD in PC12 cells.

  14. Lactulose mediates suppression of dextran sodium sulfate-induced colon inflammation by increasing hydrogen production.

    PubMed

    Chen, Xiao; Zhai, Xiao; Shi, Jiazi; Liu, Wen Wu; Tao, Hengyi; Sun, Xuejun; Kang, Zhimin

    2013-06-01

    Molecular hydrogen (H2) is a potent antioxidant and able to protect organs from oxidative stress injuries. Orally administered lactulose, a potent H2 inducer, is digested by colon microflora and significantly increases H2 production, indicating its potential anti-inflammatory action. To evaluate the anti-inflammatory effects of lactulose on dextran sodium sulfate (DSS)-induced colitis in mice. Mice were randomly assigned into seven groups, receiving regular distilled water, H2-rich saline (peritoneal injection), DSS, oral lactulose (0.1, 0.15, 0.2 ml/10 g, respectively), and lactulose (0.2 ml/10 g) + oral antibiotics. The mouse model of human ulcerative colitis was established by supplying mice with water containing DSS. The H2 breath test was used to determine the exhaled H2 concentration. Body weight, colitis score, colon length, pathological features and tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), maleic dialdehyde (MDA) and marrow peroxidase (MPO) levels in colon lesions were evaluated. After 7 days, DSS-induced loss of body weight, increase of colitis score, shortening of colon length, pathological changes and elevated levels of TNF-α, IL-1β, MDA, and MPO in colon lesions, were significantly suppressed by oral lactulose administration and intraperitoneally injected H2-rich saline. Ingestion of antibiotics significantly compromised the anti-inflammatory effects of lactulose. The H2 breath test showed that lactulose administration significantly induced hydrogen production and that antibiotics administration could inhibit H2 production. Lactulose can prevent the development of DSS-induced colitis and alleviate oxidative stress in the colon, as measured by MDA and MPO, probably by increasing endogenous H2 production.

  15. Thioamides: versatile bonds to induce directional and cooperative hydrogen bonding in supramolecular polymers.

    PubMed

    Mes, Tristan; Cantekin, Seda; Balkenende, Dirk W R; Frissen, Martijn M M; Gillissen, Martijn A J; De Waal, Bas F M; Voets, Ilja K; Meijer, E W; Palmans, Anja R A

    2013-06-24

    The amide bond is a versatile functional group and its directional hydrogen-bonding capabilities are widely applied in, for example, supramolecular chemistry. The potential of the thioamide bond, in contrast, is virtually unexplored as a structuring moiety in hydrogen-bonding-based self-assembling systems. We report herein the synthesis and characterisation of a new self-assembling motif comprising thioamides to induce directional hydrogen bonding. N,N',N''-Trialkylbenzene-1,3,5-tris(carbothioamide)s (thioBTAs) with either achiral or chiral side-chains have been readily obtained by treating their amide-based precursors with P2S5. The thioBTAs showed thermotropic liquid crystalline behaviour and a columnar mesophase was assigned. IR spectroscopy revealed that strong, three-fold, intermolecular hydrogen-bonding interactions stabilise the columnar structures. In apolar alkane solutions, thioBTAs self-assemble into one-dimensional, helical supramolecular polymers stabilised by three-fold hydrogen bonding. Concentration- and temperature-dependent self-assembly studies performed by using a combination of UV and CD spectroscopy demonstrated a cooperative supramolecular polymerisation mechanism and a strong amplification of supramolecular chirality. The high dipole moment of the thioamide bond in combination with the anisotropic shape of the resulting cylindrical aggregate gives rise to sufficiently strong depolarised light scattering to enable depolarised dynamic light scattering (DDLS) experiments in dilute alkane solution. The rotational and translational diffusion coefficients, D(trans) and D(rot), were obtained from the DDLS measurements, and the average length, L, and diameter, d, of the thioBTA aggregates were derived (L = 490 nm and d = 3.6 nm). These measured values are in good agreement with the value L(w) = 755 nm obtained from fitting the temperature-dependent CD data by using a recently developed equilibrium model. This experimental verification

  16. AN EVALUATION OF HYDROGEN INDUCED CRACKING SUSCEPTIBILITY OF TITANIUM ALLOYS IN US HIGH-LEVEL NUCLEAR WASTE REPOSITORY ENVIRONMENTS

    SciTech Connect

    G. De; K. Mon; G. Gordon; D. Shoesmith; F. Hua

    2006-02-21

    This paper evaluates hydrogen-induced cracking (HIC) susceptibility of titanium alloys in environments anticipated in the Yucca Mountain nuclear waste repository with particular emphasis on the. effect of the oxide passive film on the hydrogen absorption process of titanium alloys being evaluated. The titanium alloys considered in this review include Ti 2, 5 , 7, 9, 11, 12, 16, 17, 18, 24 and 29. In general, the concentration of hydrogen in a titanium alloy can increase due to absorption of atomic hydrogen produced from passive general corrosion of that alloy or galvanic coupling of it to a less noble metal. It is concluded that under the exposure conditions anticipated in the Yucca Mountain repository, the HIC of titanium drip shield will not occur because there will not be sufficient hydrogen in the metal even after 10,000 years of emplacement. Due to the conservatisms adopted in the current evaluation, this assessment is considered very conservative.

  17. The effect of hydrogen in the mechanism of aluminum-induced crystallization of sputtered amorphous silicon using scanning auger microanalysis

    SciTech Connect

    Hossain, Maruf; Meyer III, Harry M; Abu-Safe, Husam H; Naseem, Hameed; Brown, Walter D

    2006-01-01

    The metal-induced crystallization (MIC) of hydrogenated sputtered amorphous silicon (a-Si:H) using aluminum has been investigated using Xray diffraction (XRD) and scanning Auger microanalysis (SAM). Hydrogenated, as well as non-hydrogenated, amorphous silicon (a-Si) films were sputtered on glass substrates, then capped with a thin layer of Al. Following the depositions, the samples were annealed in the temperature range 200 C to 400 C for varying periods of time. Crystallization of the samples was confirmed by XRD. Non-hydrogenated films started to crystallize at 350 C. On the other hand, crystallization of the samples with the highest hydrogen (H2) content initiated at 225 C. Thus, the crystallization temperature is affected by the H2 content of the a-Si. Material structure following annealing was confirmed by SAM. In this paper, a comprehensive model for MIC of a-Si is developed based on these experimental results.

  18. Hydrogen sulfide enhances nitric oxide-induced tolerance of hypoxia in maize (Zea mays L.).

    PubMed

    Peng, Renyi; Bian, Zhiyuan; Zhou, Lina; Cheng, Wei; Hai, Na; Yang, Changquan; Yang, Tao; Wang, Xinyu; Wang, Chongying

    2016-11-01

    Our data present H 2 S in a new role, serving as a multi-faceted transducer to different response mechanisms during NO-induced acquisition of tolerance to flooding-induced hypoxia in maize seedling roots. Nitric oxide (NO), serving as a secondary messenger, modulates physiological processes in plants. Recently, hydrogen sulfide (H2S) has been demonstrated to have similar signaling functions. This study focused on the effects of treatment with H2S on NO-induced hypoxia tolerance in maize seedlings. The results showed that treatment with the NO donor sodium nitroprusside (SNP) enhanced survival rate of submerged maize roots through induced accumulation of endogenous H2S. The induced H2S then enhanced endogenous Ca(2+) levels as well as the Ca(2+)-dependent activity of alcohol dehydrogenase (ADH), improving the capacity for antioxidant defense and, ultimately, the hypoxia tolerance in maize seedlings. In addition, NO induced the activities of key enzymes in H2S biosynthesis, such as L-cysteine desulfhydrases (L-CDs), O-acetyl-L-serine (thiol)lyase (OAS-TL), and β-Cyanoalanine Synthase (CAS). SNP-induced hypoxia tolerance was enhanced by the application of NaHS, but was eliminated by the H2S-synthesis inhibitor hydroxylamine (HA) and the H2S-scavenger hypotaurine (HT). H2S concurrently enhanced the transcriptional levels of relative hypoxia-induced genes. Together, our findings indicated that H2S serves as a multi-faceted transducer that enhances the nitric oxide-induced hypoxia tolerance in maize (Zea mays L.).

  19. Gardenia jasminoides extract-capped gold nanoparticles reverse hydrogen peroxide-induced premature senescence.

    PubMed

    Chae, Seon Yeong; Park, Sun Young; Park, Jin Oh; Lee, Kyu Jin; Park, Geuntae

    2016-11-01

    This study reports a green approach for synthesis of gold nanoparticles using Gardenia jasminoides extract, and specifically, can potentially enhance anti senescence activity. Biological synthesis of gold nanoparticles is ecofriendly and effective for the development of environmentally sustainable nanoparticles compared with existing methods. Here, we developed a simple, fast, efficient, and ecofriendly approach to the synthesis of gold nanoparticles by means of a Gardenia jasminoides extract. These G. jasminoides extract-capped gold nanoparticles (GJ-GNPs) were characterized by UV-vis, high resolution transmission electron microscopy (HR-TEM), X-ray diffraction (XRD), and Furrier transform infrared spectroscopy (FT-IR). The synthesized GJ-GNPs turned red and showed maximal absorbance at 540nm. Thus, GJ-GNPs were synthesized successfully. We hypothesized that GJ-GNPs would protect ARPE19 cells from hydrogen peroxide-induced premature senescence. SA-β-gal activity was elevated in hydrogen peroxide-treated cells, however, this effect was attenuated by GJ-GNP treatment. Moreover, compared with the normal control, hydrogen peroxide treatment significantly increased lysosome content of the cells and production of reactive oxygen species (ROS). GJ-GNPs effectively attenuated the increase in lysosome content and ROS production in these senescent cells. According to cell cycle analysis, G2/M arrest was promoted by hydrogen peroxide treatment in ARPE19 cells, however, this change was reversed by GJ-GNPs. Western blot analysis showed that treatment with GJ-GNPs increased the expression of p53, p21, SIRT3, HO-1, and NQO1 in senescent cells. Our findings should advance the understanding of premature senescence and may lead to therapeutic use of GJ-GNPs in retina-related regenerative medicine.

  20. [RAD18 gene product of yeast Saccharomyces cerevisiae controls mutagenesis induced by hydrogen peroxide].

    PubMed

    Kozhina, T N; Korolev, V G

    2012-04-01

    Within eukaryotes, tolerance to DNA damage is determined primarily by the repair pathway controlled by the members of the RAD6 epistasis group. Genetic studies on a yeast Saccharomyces cerevisiae model showed that the initial stage of postreplication repair (PRR), i.e., initiation of replication through DNA damage, is controlled by Rad6-Rad18 ubiquitin-conjugating enzyme complex. Mutants of these genes are highly sensitive to various genotoxic agents and reduce the level of induced mutagenesis. In this case, the efficiency of mutagenesis suppression depends on the type of damage. In this study we showed that DNA damage induced by hydrogen peroxide at the same mutagen doses causes significantly more mutations and lethal events in the rad18 mutant cells compared to control wild-type cells.

  1. Estrogens protect against hydrogen peroxide and arachidonic acid induced DNA damage.

    PubMed

    Tang, M; Subbiah, M T

    1996-01-19

    The ability of estrogens to protect against DNA damage induced by either hydrogen peroxide or arachidonic acid alone or in combination with Cu2+ was investigated. DNA strand breaks were determined by conversion of double stranded supercoiled OX-174 RFI DNA to double stranded open circular DNA and linear single stranded DNA. Estradiol-17 beta significantly decreased the formation of single and double strand breaks in DNA induced by H2O2 alone or with Cu2+. Equilin (an equine estrogen) was more effective than estradiol-17 beta at the doses tested. Arachidonic acid in the presence of Cu2+ caused the formation of high levels of linear DNA which was protected by estrogen with equilen being more effective. These studies suggest that estrogens through this protective effect on DNA damage might contribute to cardioprotection.

  2. Hydrogen broadening and collision-induced line shifts of methane at 4200/cm

    NASA Technical Reports Server (NTRS)

    Margolis, Jack S.

    1993-01-01

    Many of the lines of the nu1 + nu4 and nu3 + nu4 bands of methane in the vicinity of 4200/cm have been assigned and are reported in the HITRAN data-base which is commonly used for atmospheric transmission calculations in the IR. The collision-induced broadening coefficients of hydrogen for more than 200 of these lines are reported. Also, by using the water-vapor lines which occur in the spectra as calibration marks, the frequencies of the broadened lines are determined. This permitted the collision-induced line shifts to be measured for lines sufficiently isolated from interfering blends: all of the shifts which could be reliably determined in this way were negative.

  3. White-light emission from solid carbon in aqueous solution during hydrogen generation induced by nanosecond laser pulse irradiation

    NASA Astrophysics Data System (ADS)

    Akimoto, Ikuko; Yamamoto, Shota; Maeda, Kosuke

    2016-07-01

    We previously discovered a novel method of hydrogen generation from high-grade charcoal in an aqueous solution using nanosecond laser pulse irradiation. In this paper, white-light emission during this reaction is reported: A broad spectrum over the visible range is observed above a threshold excitation energy density. The white-light emission is a simultaneous product of the hydrogen generation reaction and is attributed to blackbody radiation in accordance with Planck's Law at a temperature above 3800 K. Consequently, we propose that hydrogen generation induced by laser irradiation proceeds similarly to classical coal gasification, which features reactions at high pressure and high temperature.

  4. Quantitative two-photon laser-induced fluorescence of hydrogen atoms in a 1 kW arcjet thruster

    NASA Astrophysics Data System (ADS)

    Wysong, I. J.; Pobst, J. A.

    1998-08-01

    Quantitative measurements of atomic hydrogen are reported for an arcjet thruster using two-photon laser-induced fluorescence. Number density, axial and radial velocity, and temperature of ground state atomic hydrogen are obtained at the nozzle exit plane and in the downstream plume of a 1 kW arcjet operating on hydrogen propellant. Details of the technique and data analysis are provided. Comparisons with other related available data are made, as well as with several computational models. The observed dissociation fraction of 31ᆢ %is significantly higher than predicted by the models.

  5. Interaction-induced localisation of protons in hydrogen bonds at superfluid helium temperatures

    NASA Astrophysics Data System (ADS)

    Walewski, Łukasz; Forbert, Harald; Marx, Dominik

    2013-09-01

    It is common wisdom to expect that protons are more delocalised than much heavier nuclei due to quantum effects, for instance, in hydrogen bonds D-H⋆ ṡ ṡ ṡ A, where the shared proton H⋆ is suspended in between the donor and acceptor heavy sites. Here, we demonstrate that this simple quasi-classical perspective fails at sufficiently low temperatures as a result of intramolecular covalent bonding accompanied by the non-covalent intermolecular interactions which induce strong localisation in the deep quantum regime. Using the water dimer as well as H2O ṡ ṡ ṡ HCl as generic models, path integral simulations at temperatures characteristic to superfluid helium conditions (about 1 K) reveal that the shared proton in such hydrogen bonds gets extremely confined to a spatial region that is comparable to - or even smaller than - that of the heavy atoms. This counter-intuitive so-called interaction-induced localisation phenomenon is also effective for the heavier nuclei, although to a much lesser extent. It is the elevated temperature (about 100 K) that restores the familiar quasi-classical picture, in which atomic spread follows the usual mass dependence of de Broglie wavelength.

  6. Mesons from Laser-Induced Processes in Ultra-Dense Hydrogen H(0)

    PubMed Central

    2017-01-01

    Large signals of charged light mesons are observed in the laser-induced particle flux from ultra-dense hydrogen H(0) layers. The mesons are formed in such layers on metal surfaces using < 200 mJ laser pulse-energy. The time variation of the signal to metal foil collectors and the magnetic deflection to a movable pin collector are now studied. Relativistic charged particles with velocity up to 500 MeV u-1 thus 0.75 c are observed. Characteristic decay time constants for meson decay are observed, for charged and neutral kaons and also for charged pions. Magnetic deflections agree with charged pions and kaons. Theoretical predictions of the decay chains from kaons to muons in the particle beam agree with the results. Muons are detected separately by standard scintillation detectors in laser-induced processes in ultra-dense hydrogen H(0) as published previously. The muons formed do not decay appreciably within the flight distances used here. Most of the laser-ejected particle flux with MeV energy is not deflected by the magnetic fields and is thus neutral, either being neutral kaons or the ultra-dense HN(0) precursor clusters. Photons give only a minor part of the detected signals. PACS: 67.63.Gh, 14.40.-n, 79.20.Ds, 52.57.-z. PMID:28081199

  7. Mesons from Laser-Induced Processes in Ultra-Dense Hydrogen H(0).

    PubMed

    Holmlid, Leif

    2017-01-01

    Large signals of charged light mesons are observed in the laser-induced particle flux from ultra-dense hydrogen H(0) layers. The mesons are formed in such layers on metal surfaces using < 200 mJ laser pulse-energy. The time variation of the signal to metal foil collectors and the magnetic deflection to a movable pin collector are now studied. Relativistic charged particles with velocity up to 500 MeV u-1 thus 0.75 c are observed. Characteristic decay time constants for meson decay are observed, for charged and neutral kaons and also for charged pions. Magnetic deflections agree with charged pions and kaons. Theoretical predictions of the decay chains from kaons to muons in the particle beam agree with the results. Muons are detected separately by standard scintillation detectors in laser-induced processes in ultra-dense hydrogen H(0) as published previously. The muons formed do not decay appreciably within the flight distances used here. Most of the laser-ejected particle flux with MeV energy is not deflected by the magnetic fields and is thus neutral, either being neutral kaons or the ultra-dense HN(0) precursor clusters. Photons give only a minor part of the detected signals. PACS: 67.63.Gh, 14.40.-n, 79.20.Ds, 52.57.-z.

  8. Ethylene-induced stomatal closure in Arabidopsis occurs via AtrbohF-mediated hydrogen peroxide synthesis.

    PubMed

    Desikan, Radhika; Last, Kathryn; Harrett-Williams, Rhian; Tagliavia, Cecilia; Harter, Klaus; Hooley, Richard; Hancock, John T; Neill, Steven J

    2006-09-01

    Ethylene is a plant hormone that regulates many aspects of growth and development. Despite the well-known association between ethylene and stress signalling, its effects on stomatal movements are largely unexplored. Here, genetic and physiological data are provided that position ethylene into the Arabidopsis guard cell signalling network, and demonstrate a functional link between ethylene and hydrogen peroxide (H(2)O(2)). In wild-type leaves, ethylene induces stomatal closure that is dependent on H(2)O(2) production in guard cells, generated by the nicotinamide adenine dinucleotide phosphate hydrogen (NADPH) oxidase AtrbohF. Ethylene-induced closure is inhibited by the ethylene antagonists 1-MCP and silver. The ethylene receptor mutants etr1-1 and etr1-3 are insensitive to ethylene in terms of stomatal closure and H(2)O(2) production. Stomata of the ethylene signalling ein2-1 and arr2 mutants do not close in response to either ethylene or H(2)O(2) but do generate H(2)O(2) following ethylene challenge. Thus, the data indicate that ethylene and H(2)O(2) signalling in guard cells are mediated by ETR1 via EIN2 and ARR2-dependent pathway(s), and identify AtrbohF as a key mediator of stomatal responses to ethylene.

  9. Double hydrogen bonded ferroelectric liquid crystals: A study of field induced transition (FiT)

    NASA Astrophysics Data System (ADS)

    Vijayakumar, V. N.; Madhu Mohan, M. L. N.

    2009-12-01

    A novel series of chiral hydrogen bonded liquid crystals have been isolated. Hydrogen bond was formed between chiral nonmesogen ingredient levo tartaric acid and mesogenic p-n-alkoxybenzoic acids. Phase diagram was constructed from the transition temperatures obtained by DSC and polarizing optical microscopic (POM) studies. Thermal and electrical properties exhibited by three complexes namely LTA+8BA, LTA+7BA and LTA+5BA were discussed. Salient feature of the present work was the observation of a reentrant smectic ordering in LTA+8BA complex designated as C r∗ phase. This reentrant phenomenon was confirmed by DSC thermograms, optical textures of POM and temperature variation of capacitance and dielectric loss studies. Tilt angle was measured in smectic C ∗ and reentrant smectic C r∗ phases. Another interesting feature of the present investigation was the observation of a field induced transition (FiT) in the LTA+ nBA homologous series. Three threshold field values were noticed which give rise to two new phases (E 1 and E 2) induced by electric field and on further enhancement of the applied field the mesogen behaves like an optical shutter. FiT is reversible in the sense that when applied field is removed the original texture was restored.

  10. Hydrogen sulfide alleviates hypoxia-induced root tip death in Pisum sativum.

    PubMed

    Cheng, Wei; Zhang, Liang; Jiao, Chengjin; Su, Miao; Yang, Tao; Zhou, Lina; Peng, Renyi; Wang, Ranran; Wang, Chongying

    2013-09-01

    Flooding of soils often results in hypoxic conditions surrounding plant roots, which is a harmful abiotic stress to crops. Hydrogen sulfide (H2S) is a highly diffusible, gaseous molecule that modulates cell signaling and is involved in hypoxia signaling in animal cells. However, there have been no previous studies of H2S in plant cells in response to hypoxia. The effects of H2S on hypoxia-induced root tip death were studied in pea (Pisum sativum) via analysis of endogenous H2S and reactive oxygen species (ROS) levels. The activities of key enzymes involved in antioxidative and H2S metabolic pathways were determined using spectrophotometric assays. Ethylene was measured by gas chromatography. We found that exogenous H2S pretreatment dramatically alleviated hypoxia-induced root tip death by protecting root tip cell membranes from ROS damage induced by hypoxia and by stimulating a quiescence strategy through inhibiting ethylene production. Conversely, root tip death induced by hypoxia was strongly enhanced by inhibition of the key enzymes responsible for endogenous H2S biosynthesis. Our results demonstrated that exogenous H2S pretreatment significantly alleviates hypoxia-induced root tip death in pea seedlings and, therefore, enhances the tolerance of the plant to hypoxic stress. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  11. Protective effect of butylated hydroxylanisole against hydrogen peroxide-induced apoptosis in primary cultured mouse hepatocytes.

    PubMed

    Hwang, Geun Hye; Jeon, Yu Jin; Han, Ho Jae; Park, Soo Hyun; Baek, Kyoung Min; Chang, Woochul; Kim, Joong Sun; Kim, Lark Kyun; Lee, You-Mie; Lee, Sangkyu; Bae, Jong-Sup; Jee, Jun-Goo; Lee, Min Young

    2015-01-01

    Butylated hydroxyanisole (BHA) is a synthetic phenolic compound consisting of a mixture of two isomeric organic compounds: 2-tert-butyl-4-hydroxyanisole and 3-tert-butyl-4-hydroxyanisole. We examined the effect of BHA against hydrogen peroxide (H2O2)-induced apoptosis in primary cultured mouse hepatocytes. Cell viability was significantly decreased by H2O2 in a dose-dependent manner. Additionally, H2O2 treatment increased Bax, decreased Bcl-2, and promoted PARP-1 cleavage in a dose-dependent manner. Pretreatment with BHA before exposure to H2O2 significantly attenuated the H2O2-induced decrease of cell viability. H2O2 exposure resulted in an increase of intracellular reactive oxygen species (ROS) generation that was significantly inhibited by pretreatment with BHA or N-acetyl-cysteine (NAC, an ROS scavenger). H2O2-induced decrease of cell viability was also attenuated by pretreatment with BHA and NAC. Furthermore, H2O2-induced increase of Bax, decrease of Bcl-2, and PARP-1 cleavage was also inhibited by BHA. Taken together, results of this investigation demonstrated that BHA protects primary cultured mouse hepatocytes against H2O2-induced apoptosis by inhibiting ROS generation.

  12. Ferricytochrome c protects mitochondrial cytochrome c oxidase against hydrogen peroxide-induced oxidative damage.

    PubMed

    Sedlák, Erik; Fabian, Marian; Robinson, Neal C; Musatov, Andrej

    2010-11-30

    An excess of ferricytochrome c protects purified mitochondrial cytochrome c oxidase and bound cardiolipin from hydrogen peroxide-induced oxidative modification. All of the peroxide-induced changes within cytochrome c oxidase, such as oxidation of Trp(19,IV) and Trp(48,VIIc), partial dissociation of subunits VIa and VIIa, and generation of cardiolipin hydroperoxide, no longer take place in the presence of ferricytochrome c. Furthermore, ferricytochrome c suppresses the yield of H(2)O(2)-induced free radical detectable by electron paramagnetic resonance spectroscopy within cytochrome c oxidase. These protective effects are based on two mechanisms. The first involves the peroxidase/catalase-like activity of ferricytochrome c, which results in the decomposition of H(2)O(2), with the apparent bimolecular rate constant of 5.1±1.0M(-1)s(-1). Although this value is lower than the rate constant of a specialized peroxidase, the activity is sufficient to eliminate H(2)O(2)-induced damage to cytochrome c oxidase in the presence of an excess of ferricytochrome c. The second mechanism involves ferricytochrome c-induced quenching of free radicals generated within cytochrome c oxidase. These results suggest that ferricytochrome c may have an important role in protection of cytochrome c oxidase and consequently the mitochondrion against oxidative damage.

  13. [Experiment study of blackcurrant on vascular endothelial cells injury induced by hydrogen peroxide].

    PubMed

    Li, Li; Zhao, Xiaoguo; Ma, Long; Re, Ziya; Gu, Yajing; Tu, Erxunjiang

    2009-09-01

    To study the effect of Blackcurrant on human umbilical vein endothelial ECV-304 cells injury induced by hydrogen peroxide (H2O2). The H2O2 damaged model was established. The effect of Blackcurrant on injury of ECV-304 activity induced by H2O2 was determined by MTT assay. The levels of MDA, NO, ET, PGI2 and LDH activity in cell homogenate were measured with corresponding. Observed the influence of black currant extracts apoptosis induced the ECV-304 by H2O2 by flow cytometry. Blackcurrant could inhibit the hypoxia induced ECV-304 reduction (P < 0.05), decrease LDH activity (P < 0.05), reduce the MDA and ET production (P < 0.05), and increased the contents of nitric oxide (NO) and PGI2 (P < 0.05). The apoptosis rate and total apoptosis rate of blackcurrant extracts groups/positive control group/control group are obvious lower than H2O2 model group (P < 0.05). The blackcurrant ethyl acetate extract can protect HUVEC damaged by H2O2, the mechanism maybe related to antioxidant. And it can decrease the apoptosis rate and total apoptosis rate of ECV-304 apoptosis induced by H2O2 in order to protect ECV-304.

  14. Protective effect of butylated hydroxylanisole against hydrogen peroxide-induced apoptosis in primary cultured mouse hepatocytes

    PubMed Central

    Hwang, Geun Hye; Jeon, Yu Jin; Han, Ho Jae; Park, Soo Hyun; Baek, Kyoung Min; Chang, Woochul; Kim, Joong Sun; Kim, Lark Kyun; Lee, You-Mie; Lee, Sangkyu; Bae, Jong-Sup; Jee, Jun-Goo

    2015-01-01

    Butylated hydroxyanisole (BHA) is a synthetic phenolic compound consisting of a mixture of two isomeric organic compounds: 2-tert-butyl-4-hydroxyanisole and 3-tert-butyl-4-hydroxyanisole. We examined the effect of BHA against hydrogen peroxide (H2O2)-induced apoptosis in primary cultured mouse hepatocytes. Cell viability was significantly decreased by H2O2 in a dose-dependent manner. Additionally, H2O2 treatment increased Bax, decreased Bcl-2, and promoted PARP-1 cleavage in a dose-dependent manner. Pretreatment with BHA before exposure to H2O2 significantly attenuated the H2O2-induced decrease of cell viability. H2O2 exposure resulted in an increase of intracellular reactive oxygen species (ROS) generation that was significantly inhibited by pretreatment with BHA or N-acetyl-cysteine (NAC, an ROS scavenger). H2O2-induced decrease of cell viability was also attenuated by pretreatment with BHA and NAC. Furthermore, H2O2-induced increase of Bax, decrease of Bcl-2, and PARP-1 cleavage was also inhibited by BHA. Taken together, results of this investigation demonstrated that BHA protects primary cultured mouse hepatocytes against H2O2-induced apoptosis by inhibiting ROS generation. PMID:25798044

  15. Hydrogen sulfide inhibits rotenone-induced apoptosis via preservation of mitochondrial function.

    PubMed

    Hu, Li-Fang; Lu, Ming; Wu, Zhi-Yuan; Wong, Peter T-H; Bian, Jin-Song

    2009-01-01

    Hydrogen sulfide (H(2)S) has been proposed as a novel neuromodulator, which plays critical roles in the central nervous system affecting both neurons and glial cells. However, its relationship with neurodegenerative diseases is unexplored. The present study was undertaken to investigate the effects of H(2)S on cell injury induced by rotenone, a commonly used toxin in establishing in vivo and in vitro Parkinson's disease (PD) models, in human-derived dopaminergic neuroblastoma cell line (SH-SY5Y). We report here that sodium hydrosulfide (NaHS), an H(2)S donor, concentration-dependently suppressed rotenone-induced cellular injury and apoptotic cell death. NaHS also prevented rotenone-induced p38- and c-Jun NH(2)-terminal kinase (JNK)-mitogen-activated protein kinase (MAPK) phosphorylation and rotenone-mediated changes in Bcl-2/Bax levels, mitochondrial membrane potential (DeltaPsi(m)) dissipation, cytochrome c release, caspase-9/3 activation and poly(ADP-ribose) polymerase cleavage. Furthermore, 5-hydroxydecanoate, a selective blocker of mitochondrial ATP-sensitive potassium (mitoK(ATP)) channel, attenuated the protective effects of NaHS against rotenone-induced cell apoptosis. Thus, we demonstrated for the first time that H(2)S inhibited rotenone-induced cell apoptosis via regulation of mitoK(ATP) channel/p38- and JNK-MAPK pathway. Our data suggest that H(2)S may have potential therapeutic value for neurodegenerative diseases, such as PD.

  16. Guard cell hydrogen peroxide and nitric oxide mediate elevated CO2 -induced stomatal movement in tomato.

    PubMed

    Shi, Kai; Li, Xin; Zhang, Huan; Zhang, Guanqun; Liu, Yaru; Zhou, Yanhong; Xia, Xiaojian; Chen, Zhixiang; Yu, Jingquan

    2015-10-01

    Climate change as a consequence of increasing atmospheric CO2 influences plant photosynthesis and transpiration. Although the involvement of stomata in plant responses to elevated CO2 has been well established, the underlying mechanism of elevated CO2 -induced stomatal movement remains largely unknown. We used diverse techniques, including laser scanning confocal microscopy, transmission electron microscopy, biochemical methodologies and gene silencing to investigate the signaling pathway for elevated CO2 -induced stomatal movement in tomato (Solanum lycopersicum). Elevated CO2 -induced stomatal closure was dependent on the production of RESPIRATORY BURST OXIDASE 1 (RBOH1)-mediated hydrogen peroxide (H2 O2 ) and NITRATE REDUCTASE (NR)-mediated nitric oxide (NO) in guard cells in an abscisic acid (ABA)-independent manner. Silencing of OPEN STOMATA 1 (OST1) compromised the elevated CO2 -induced accumulation of H2 O2 and NO, upregulation of SLOW ANION CHANNEL ASSOCIATED 1 (SLAC1) gene expression and reduction of stomatal aperture, whereas silencing of RBOH1 or NR had no effects on the expression of OST1. Our results demonstrate that as critical signaling molecules, RBOH1-dependent H2 O2 and NR-dependent NO act downstream of OST1 that regulate SLAC1 expression and elevated CO2 -induced stomatal movement. This information is crucial to deepen the understanding of CO2 signaling pathway in guard cells.

  17. Iron prevents ascorbic acid (vitamin C) induced hydrogen peroxide accumulation in copper contaminated drinking water.

    PubMed

    Jansson, Patric J; Lindqvist, Christer; Nordström, Tommy

    2005-11-01

    Ascorbic acid (vitamin C) induced hydrogen peroxide (H(2)O(2)) formation was measured in household drinking water and metal supplemented Milli-Q water by using the FOX assay. Here we show that ascorbic acid readily induces H(2)O(2) formation in Cu(II) supplemented Milli-Q water and poorly buffered household drinking water. In contrast to Cu(II), iron was not capable to support ascorbic acid induced H(2)O(2) formation during acidic conditions (pH: 3.5-5). In 12 out of the 48 drinking water samples incubated with 2 mM ascorbic acid, the H(2)O(2) concentration exceeded 400 microM. However, when trace amounts of Fe(III) (0.2 mg/l) was present during incubation, the ascorbic acid/Cu(II)-induced H(2)O(2) accumulation was totally blocked. Of the other common divalent or trivalent metal ions tested, that are normally present in drinking water (calcium, magnesium, zinc, cobalt, manganese or aluminum), only calcium and magnesium displayed a modest inhibitory activity on the ascorbic acid/Cu(II)-induced H(2)O(2) formation. Oxalic acid, one of the degradation products from ascorbic acid, was confirmed to actively participate in the iron induced degradation of H(2)O(2). Ascorbic acid/Cu(II)-induced H(2)O(2) formation during acidic conditions, as demonstrated here in poorly buffered drinking water, could be of importance in host defense against bacterial infections. In addition, our findings might explain the mechanism for the protective effect of iron against vitamin C induced cell toxicity.

  18. Hydrogen sulphide induces vasoconstriction of rat coronary artery via activation of Ca(2+) influx.

    PubMed

    Ping, N-N; Li, S; Mi, Y-N; Cao, L; Cao, Y-X

    2015-05-01

    Hydrogen sulphide (H2S) exhibits a dual modulation of isolated artery tension. This study investigated the vasoconstrictive effect of sulphur sodium hydride (NaHS), a donor of gaseous H2S, on rat coronary artery. The contractile response of isolated arteries was recorded using a wire myograph. Fluo-3/AM was used to load vascular smooth muscle, and intracellular calcium was determined using confocal laser microscopy. The protein expression of Rho kinase was examined using Western blot. NaHS induced concentration-dependent contractions of rat coronary artery, and the contraction reached approx. 65% of 60 mm KCl-induced contraction. The NaHS-induced contraction was elevated following the removal of endothelium or the use of the nitric oxide synthase inhibitor L-NAME. The cyclooxygenase inhibitor indomethacin reduced NaHS-induced contraction. The Rho kinase inhibitor Y-27632 significantly attenuated NaHS-induced vasoconstriction. Furthermore, NaHS elevated the protein expression of Rho kinase. NaHS-induced contraction was completely abolished in a Ca(2+)-free solution and suppressed by the Ca(2+) influx blocker nifedipine (100 nm). NaHS also significantly increased the change rate of Ca(2+) fluorescence intensity. However, treatment with a Cl(-)/HCO(3-) exchanger blocker, K(+) channel blockers, the mitogen-activated protein kinase inhibitor U-0126 or cyclic adenosine monophosphate did not affect contraction. Species-dependent differences in NaHS-induced vasoconstriction were observed because these effects were only modest in dog coronary artery and absent in rabbit coronary artery. NaHS induces the contraction of rat coronary artery, which is dependent on the activation of Ca(2+) influx. Rho kinase likely participates in the vasoconstriction. © 2015 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  19. Suspended animation inducer hydrogen sulfide is protective in an in vivo model of ventilator-induced lung injury

    PubMed Central

    Aslami, Hamid; Heinen, André; Roelofs, Joris J. T. H.; Zuurbier, Coert J.; Schultz, Marcus J.

    2010-01-01

    Purpose Acute lung injury is characterized by an exaggerated inflammatory response and a high metabolic demand. Mechanical ventilation can contribute to lung injury, resulting in ventilator-induced lung injury (VILI). A suspended-animation-like state induced by hydrogen sulfide (H2S) protects against hypoxia-induced organ injury. We hypothesized that suspended animation is protective in VILI by reducing metabolism and thereby CO2 production, allowing for a lower respiratory rate while maintaining adequate gas exchange. Alternatively, H2S may reduce inflammation in VILI. Methods In mechanically ventilated rats, VILI was created by application of 25 cmH2O positive inspiratory pressure (PIP) and zero positive end-expiratory pressure (PEEP). Controls were lung-protective mechanically ventilated (13 cmH2O PIP, 5 cmH2O PEEP). H2S donor NaHS was infused continuously; controls received saline. In separate control groups, hypothermia was induced to reproduce the H2S-induced fall in temperature. In VILI groups, respiratory rate was adjusted to maintain normo-pH. Results NaHS dose-dependently and reversibly reduced body temperature, heart rate, and exhaled amount of CO2. In VILI, NaHS reduced markers of pulmonary inflammation and improved oxygenation, an effect which was not observed after induction of deep hypothermia that paralleled the NaHS-induced fall in temperature. Both NaHS and hypothermia allowed for lower respiratory rates while maintaining gas exchange. Conclusions NaHS reversibly induced a hypometabolic state in anesthetized rats and protected from VILI by reducing pulmonary inflammation, an effect that was in part independent of body temperature. Electronic supplementary material The online version of this article (doi:10.1007/s00134-010-2022-2) contains supplementary material, which is available to authorized users. PMID:20721529

  20. Hydrogen-saturated saline protects intensive narrow band noise-induced hearing loss in guinea pigs through an antioxidant effect.

    PubMed

    Chen, Liwei; Yu, Ning; Lu, Yan; Wu, Longjun; Chen, Daishi; Guo, Weiwei; Zhao, Lidong; Liu, Mingbo; Yang, Shiming; Sun, Xuejun; Zhai, Suoqiang

    2014-01-01

    The purpose of the current study was to evaluate hydrogen-saturated saline protecting intensive narrow band noise-induced hearing loss. Guinea pigs were divided into three groups: hydrogen-saturated saline; normal saline; and control. For saline administration, the guinea pigs were given daily abdominal injections (1 ml/100 g) 3 days before and 1 h before narrow band noise exposure (2.5-3.5 kHz 130 dB SPL, 1 h). The guinea pigs in the control group received no treatment. The hearing function was assessed by the auditory brainstem response (ABR) and distortion product otoacoustic emission (DPOAE) recording. The changes of free radicals in the cochlea before noise exposure, and immediately and 7 days after noise exposure were also examined. By Scanning electron microscopy and succinate dehydrogenase staining, we found that pre-treatment with hydrogen-saturated saline significantly reduced noise-induced hair cell damage and hearing loss. We also found that the malondialdehyde, lipid peroxidation, and hydroxyl levels were significantly lower in the hydrogen-saturated saline group after noise trauma, indicating that hydrogen-saturated saline can decrease the amount of harmful free radicals caused by noise trauma. Our findings suggest that hydrogen-saturated saline is effective in preventing intensive narrow band noise-induced hearing loss through the antioxidant effect.

  1. Hydrogen-Saturated Saline Protects Intensive Narrow Band Noise-Induced Hearing Loss in Guinea Pigs through an Antioxidant Effect

    PubMed Central

    Chen, Liwei; Yu, Ning; Lu, Yan; Wu, Longjun; Chen, Daishi; Guo, Weiwei; Zhao, Lidong; Liu, Mingbo; Yang, Shiming; Sun, Xuejun; Zhai, Suoqiang

    2014-01-01

    The purpose of the current study was to evaluate hydrogen-saturated saline protecting intensive narrow band noise-induced hearing loss. Guinea pigs were divided into three groups: hydrogen-saturated saline; normal saline; and control. For saline administration, the guinea pigs were given daily abdominal injections (1 ml/100 g) 3 days before and 1 h before narrow band noise exposure (2.5–3.5 kHz 130 dB SPL, 1 h). The guinea pigs in the control group received no treatment. The hearing function was assessed by the auditory brainstem response (ABR) and distortion product otoacoustic emission (DPOAE) recording. The changes of free radicals in the cochlea before noise exposure, and immediately and 7 days after noise exposure were also examined. By Scanning electron microscopy and succinate dehydrogenase staining, we found that pre-treatment with hydrogen-saturated saline significantly reduced noise-induced hair cell damage and hearing loss. We also found that the malondialdehyde, lipid peroxidation, and hydroxyl levels were significantly lower in the hydrogen-saturated saline group after noise trauma, indicating that hydrogen-saturated saline can decrease the amount of harmful free radicals caused by noise trauma. Our findings suggest that hydrogen-saturated saline is effective in preventing intensive narrow band noise-induced hearing loss through the antioxidant effect. PMID:24945316

  2. Amide-directed photoredox-catalysed C-C bond formation at unactivated sp(3) C-H bonds.

    PubMed

    Chu, John C K; Rovis, Tomislav

    2016-11-10

    Carbon-carbon (C-C) bond formation is paramount in the synthesis of biologically relevant molecules, modern synthetic materials and commodity chemicals such as fuels and lubricants. Traditionally, the presence of a functional group is required at the site of C-C bond formation. Strategies that allow C-C bond formation at inert carbon-hydrogen (C-H) bonds enable access to molecules that would otherwise be inaccessible and the development of more efficient syntheses of complex molecules. Here we report a method for the formation of C-C bonds by directed cleavage of traditionally non-reactive C-H bonds and their subsequent coupling with readily available alkenes. Our methodology allows for amide-directed selective C-C bond formation at unactivated sp(3) C-H bonds in molecules that contain many such bonds that are seemingly indistinguishable. Selectivity arises through a relayed photoredox-catalysed oxidation of a nitrogen-hydrogen bond. We anticipate that our findings will serve as a starting point for functionalization at inert C-H bonds through a strategy involving hydrogen-atom transfer.

  3. Amide-directed photoredox-catalysed C-C bond formation at unactivated sp3 C-H bonds

    NASA Astrophysics Data System (ADS)

    Chu, John C. K.; Rovis, Tomislav

    2016-11-01

    Carbon-carbon (C-C) bond formation is paramount in the synthesis of biologically relevant molecules, modern synthetic materials and commodity chemicals such as fuels and lubricants. Traditionally, the presence of a functional group is required at the site of C-C bond formation. Strategies that allow C-C bond formation at inert carbon-hydrogen (C-H) bonds enable access to molecules that would otherwise be inaccessible and the development of more efficient syntheses of complex molecules. Here we report a method for the formation of C-C bonds by directed cleavage of traditionally non-reactive C-H bonds and their subsequent coupling with readily available alkenes. Our methodology allows for amide-directed selective C-C bond formation at unactivated sp3 C-H bonds in molecules that contain many such bonds that are seemingly indistinguishable. Selectivity arises through a relayed photoredox-catalysed oxidation of a nitrogen-hydrogen bond. We anticipate that our findings will serve as a starting point for functionalization at inert C-H bonds through a strategy involving hydrogen-atom transfer.

  4. Understanding Rotation about a C=C Double Bond

    ERIC Educational Resources Information Center

    Barrows, Susan E.; Eberlein, Thomas H.

    2005-01-01

    The study focuses on the process and energetic cost of twisting around a C=C double bond and provides instructors with a simple vehicle for rectifying the common misrepresentation of C=C double bonds as rigid and inflexible. Discussions of cis and trans isomers of cycloalkenes are a good entry point for introducing students to the idea of a…

  5. Understanding Rotation about a C=C Double Bond

    NASA Astrophysics Data System (ADS)

    Barrows, Susan E.; Eberlein, Thomas H.

    2005-09-01

    In this article, twisting about the C=C double bond and the consequential pyramidalization of sp 2 carbon atoms in alkenes were examined in a molecular modeling study using trans -2-butene as a model system. According to our trans -2-butene model and other similar work, most of the strength of a π bond is retained upon twisting, even for remarkably large C C=C C dihedral angles (up to 90°). The phenomenon of sp 2 carbon atom pyramidalization and preservation of π bond strength upon twisting a C=C double bond is well established in the literature, but is rarely discussed in introductory textbooks. This absence is noteworthy because profound manifestations of this effect do occur in compounds that are covered in an introductory organic chemistry curriculum. We present a simple method of introducing the concept of a flexible C=C π bond into beginning organic chemistry courses. We report the energetic demands of partial twisting about the C=C bond in 2-butene as calculated using DFT, LMP2, and MCSCF methods. Finally, using the results of these calculations, we assessed the degree of strain introduced by the twisted nature of the C=C bond in trans cycloalkenes.

  6. Understanding Rotation about a C=C Double Bond

    ERIC Educational Resources Information Center

    Barrows, Susan E.; Eberlein, Thomas H.

    2005-01-01

    The study focuses on the process and energetic cost of twisting around a C=C double bond and provides instructors with a simple vehicle for rectifying the common misrepresentation of C=C double bonds as rigid and inflexible. Discussions of cis and trans isomers of cycloalkenes are a good entry point for introducing students to the idea of a…

  7. Hydrogen-rich saline protects retina against glutamate-induced excitotoxic injury in guinea pig.

    PubMed

    Wei, Lihua; Ge, Li; Qin, Shucun; Shi, Yunzhi; Du, Changqing; Du, Hui; Liu, Liwei; Yu, Yang; Sun, Xuejun

    2012-01-01

    Molecular hydrogen (H(2)) is an efficient antioxidant that can selectively reduce hydroxyl radicals and inhibit oxidative stress-induced injuries. We investigated the protective effects and mechanism of hydrogen-rich saline in a glutamate-induced retinal injury model. Retinal excitotoxicity was induced in healthy guinea pigs by injecting glutamate into the vitreous cavity. After 30 min, hydrogen-rich saline was injected into the vitreous cavity, the peritoneal cavity or both. Seven days later, the retinal stress response was evaluated by examining the stress biomarkers, inducible nitric-oxide synthase (iNOS) and glucose-regulated protein 78 (GRP78). The impaired glutamate uptake was assessed by the expression of the excitatory amino acid transporter 1(EAAT-1). The retinal histopathological changes were investigated, focusing on the thicknesses of the entire retina and its inner layer, the number of cells in the retinal ganglion cell layer (GCL) and the ultrastructure of the retinal ganglion cells (RGCs) and glial cells. Compared with the glutamate-induced injury group, the hydrogen-rich saline treatment reduced the loss of cells in the GCL and thinning of the retina and attenuated cellular morphological damage. These improvements were greatest in animals that received H(2) injections into both the vitreous and the peritoneal cavities. The hydrogen-rich saline also inhibited the expression of glial fibrillary acidic protein (GFAP) in Müller cells, CD11b in microglia, and iNOS and GRP78 in glial cells. Moreover, the hydrogen-rich saline increased the expression of EAAT-1. In conclusion, the administration of hydrogen-rich saline through the intravitreal or/and intraperitoneal routes could reduce the retinal excitotoxic injury and promote retinal recovery. This result likely occurs by inhibiting the activation of glial cells, decreasing the production of the iNOS and GRP78 and promoting glutamate clearance.

  8. Benzene-Induced Uncoupling of Naphthalene Dioxygenase Activity and Enzyme Inactivation by Production of Hydrogen Peroxide

    PubMed Central

    Lee, Kyoung

    1999-01-01

    Naphthalene dioxygenase (NDO) is a multicomponent enzyme system that oxidizes naphthalene to (+)-cis-(1R,2S)-1,2-dihydroxy-1,2-dihydronaphthalene with consumption of O2 and two electrons from NAD(P)H. In the presence of benzene, NADH oxidation and O2 utilization were partially uncoupled from substrate oxidation. Approximately 40 to 50% of the consumed O2 was detected as hydrogen peroxide. The rate of benzene-dependent O2 consumption decreased with time, but it was partially increased by the addition of catalase in the course of the O2 consumption by NDO. Detailed experiments showed that the total amount of O2 consumed and the rate of benzene-induced O2 consumption increased in the presence of hydrogen peroxide-scavenging agents, and further addition of the terminal oxygenase component (ISPNAP) of NDO. Kinetic studies showed that ISPNAP was irreversibly inactivated in the reaction that contained benzene, but the inactivation was relieved to a high degree in the presence of catalase and partially relieved in the presence of 0.1 mM ferrous ion. Benzene- and naphthalene-reacted ISPNAP gave almost identical visible absorption spectra. In addition, hydrogen peroxide added at a range of 0.1 to 0.6 mM to the reaction mixtures inactivated the reduced ISPNAP containing mononuclear iron. These results show that hydrogen peroxide released during the uncoupling reaction acts both as an inhibitor of benzene-dependent O2 consumption and as an inactivator of ISPNAP. It is proposed that the irreversible inactivation of ISPNAP occurs by a Fenton-type reaction which forms a strong oxidizing agent, hydroxyl radicals (·OH), from the reaction of hydrogen peroxide with ferrous mononuclear iron at the active site. Furthermore, when [14C]benzene was used as the substrate, cis-benzene 1,2-dihydrodiol formed by NDO was detected. This result shows that NDO also couples a trace amount of benzene to both O2 consumption and NADH oxidation. PMID:10217759

  9. Protection of Bovine Mammary Epithelial Cells from Hydrogen Peroxide-Induced Oxidative Cell Damage by Resveratrol.

    PubMed

    Jin, Xiaolu; Wang, Kai; Liu, Hongyun; Hu, Fuliang; Zhao, Fengqi; Liu, Jianxin

    2016-01-01

    The mammary epithelial cells (MECs) of high-producing dairy cows are likely to be subject to oxidative stress (OS) due to the intensive cell metabolism. The objectives of this study were to investigate the cytoprotective effects of resveratrol against hydrogen peroxide- (H2O2-) induced OS in cultured bovine MECs (MAC-T). Pretreatment of MAC-T cells with resveratrol could rescue the decrease in cell viability and resulted in lower intracellular reactive oxygen species (ROS) accumulation after H2O2 exposure. Resveratrol helped MAC-T cells to prevent H2O2-induced endoplasmic reticulum stress and mitochondria-related cell apoptosis. Moreover, resveratrol induced mRNA expression of multiple antioxidant defense genes in MAC-T cells under normal/oxidative conditions. Nuclear factor erythroid 2-related factor 2 (Nrf2) was required for the cytoprotective effects on MAC-T cells by resveratrol, as knockdown of Nrf2 significantly abolished resveratrol-induced cytoprotective effects against OS. In addition, by using selective inhibitors, we further confirmed that the induction of Nrf2 by resveratrol was mediated through the prolonged activation of PI3K/Akt and ERK/MAPK pathways but negatively regulated by p38/MAPK pathway. Overall, resveratrol has beneficial effects on bovine MECs redox balance and may be potentially used as a therapeutic medicine against oxidative insult in lactating animals.

  10. 8-Mercapto-Cyclic GMP Mediates Hydrogen Sulfide-Induced Stomatal Closure in Arabidopsis.

    PubMed

    Honda, Kenji; Yamada, Naotake; Yoshida, Riichiro; Ihara, Hideshi; Sawa, Tomohiro; Akaike, Takaaki; Iwai, Sumio

    2015-08-01

    Plants are exposed to hydrogen sulfide (H2S) both exogenously, as it exists as a pollutant gas in the environment, and endogenously, as it is synthesized in cells. H2S has recently been found to function as a gaseous signaling molecule, but its signaling cascade remains unknown. Here, we examined H2S-mediated guard cell signaling in Arabidopsis. The H2S donor GYY4137 (morpholin-4-ium-4-methoxyphenyl [morpholino] phosphinodithioate) induced stomatal closure, which peaked after 150 min at 1 µM or after 90 min at 10 and 100 µM. After reaching maximal closure, stomatal apertures gradually increased in size in response to further exposure to GYY4137. GYY4137 induced nitric oxide (NO) generation in guard cells, and GYY4137-induced stomatal closure was reduced by an NO scavenger and inhibitors of NO-producing enzymes. Mass spectrometry analyses showed that GYY4137 induces the synthesis of 8-nitro-cGMP and 8-mercapto-cGMP and that this synthesis is mediated by NO. In addition, 8-mercapto-cGMP triggered stomatal closure. Moreover, inhibitor and genetic studies showed that calcium, cADP ribose and slow anion channel 1 act downstream of 8-mercapto-cGMP. This study therefore demonstrates that 8-mercapto-cGMP mediates the H2S signaling cascade in guard cells.

  11. Hydrogen peroxide induces p16(INK4a) through an AUF1-dependent manner.

    PubMed

    Guo, Gai E; Ma, Li Wei; Jiang, Bin; Yi, Jie; Tong, Tan Jun; Wang, Wen Gong

    2010-04-01

    Elevation of p16(INK4a) has been described as an important mechanism for hydrogen peroxide (H2O2)-induced replicative senescence. However, the mechanisms underlying remain unknown. In this study, we demonstrate an important role of RNA-binding protein AUF1-mediated mRNA turnover in H2O2-induced p16(INK4a) expression. The induction of p16 by H2O2 was accompanied with declined cytoplasmic AUF1 level. Accordingly, exposure of cells to H2O2 remarkably reduced the binding of AUF1 to p16 3'UTR and increased the half-life of an EGFP-p16-3'UTR chimeric transcript. In AUF1-silenced cells, the effect of H2O2 on p16 induction was abolished. Furthermore, in cells co-transfected with vectors expressing AUF1s, treatment with H2O2 failed to significantly reduce the expression of AUF1 and subsequently elevate the levels of p16. Moreover, HeLa cells overexpressing AUF1s were resistant to H2O2-induced senescence. Our results indicate that AUF1 is critical for H2O2-induced p16 expression and cellular senescence. Copyright 2010 Wiley-Liss, Inc.

  12. Protection of Bovine Mammary Epithelial Cells from Hydrogen Peroxide-Induced Oxidative Cell Damage by Resveratrol

    PubMed Central

    Jin, Xiaolu; Wang, Kai; Liu, Hongyun; Hu, Fuliang; Zhao, Fengqi; Liu, Jianxin

    2016-01-01

    The mammary epithelial cells (MECs) of high-producing dairy cows are likely to be subject to oxidative stress (OS) due to the intensive cell metabolism. The objectives of this study were to investigate the cytoprotective effects of resveratrol against hydrogen peroxide- (H2O2-) induced OS in cultured bovine MECs (MAC-T). Pretreatment of MAC-T cells with resveratrol could rescue the decrease in cell viability and resulted in lower intracellular reactive oxygen species (ROS) accumulation after H2O2 exposure. Resveratrol helped MAC-T cells to prevent H2O2-induced endoplasmic reticulum stress and mitochondria-related cell apoptosis. Moreover, resveratrol induced mRNA expression of multiple antioxidant defense genes in MAC-T cells under normal/oxidative conditions. Nuclear factor erythroid 2-related factor 2 (Nrf2) was required for the cytoprotective effects on MAC-T cells by resveratrol, as knockdown of Nrf2 significantly abolished resveratrol-induced cytoprotective effects against OS. In addition, by using selective inhibitors, we further confirmed that the induction of Nrf2 by resveratrol was mediated through the prolonged activation of PI3K/Akt and ERK/MAPK pathways but negatively regulated by p38/MAPK pathway. Overall, resveratrol has beneficial effects on bovine MECs redox balance and may be potentially used as a therapeutic medicine against oxidative insult in lactating animals. PMID:26962394

  13. Epidermal growth factor-induced hydrogen peroxide production is mediated by dual oxidase 1.

    PubMed

    Sirokmány, Gábor; Pató, Anna; Zana, Melinda; Donkó, Ágnes; Bíró, Adrienn; Nagy, Péter; Geiszt, Miklós

    2016-08-01

    Stimulation of mammalian cells by epidermal growth factor (EGF) elicits complex signaling events, including an increase in hydrogen peroxide (H2O2) production. Understanding the significance of this response is limited by the fact that the source of EGF-induced H2O2 production is unknown. Here we show that EGF-induced H2O2 production in epidermal cell lines is dependent on the agonist-induced calcium signal. We analyzed the expression of NADPH oxidase isoforms and found both A431 and HaCaT cells to express the calcium-sensitive NADPH oxidase, Dual oxidase 1 (Duox1) and its protein partner Duox activator 1 (DuoxA1). Inhibition of Duox1 expression by small interfering RNAs eliminated EGF-induced H2O2 production in both cell lines. We also demonstrate that H2O2 production by Duox1 leads to the oxidation of thioredoxin-1 and the cytosolic peroxiredoxins. Our observations provide evidence for a new signaling paradigm in which changes of intracellular calcium concentration are transformed into redox signals through the calcium-dependent activation of Duox1. Copyright © 2016. Published by Elsevier Inc.

  14. Role of mitochondrial hydrogen peroxide induced by intermittent hypoxia in airway epithelial wound repair in vitro.

    PubMed

    Hamada, Satoshi; Sato, Atsuyasu; Hara-Chikuma, Mariko; Satooka, Hiroki; Hasegawa, Koichi; Tanimura, Kazuya; Tanizawa, Kiminobu; Inouchi, Morito; Handa, Tomohiro; Oga, Toru; Muro, Shigeo; Mishima, Michiaki; Chin, Kazuo

    2016-05-15

    The airway epithelium acts as a frontline barrier against various environmental insults and its repair process after airway injury is critical for the lung homeostasis restoration. Recently, the role of intracellular reactive oxygen species (ROS) as transcription-independent damage signaling has been highlighted in the wound repair process. Both conditions of continuous hypoxia and intermittent hypoxia (IH) induce ROS. Although IH is important in clinical settings, the roles of IH-induced ROS in the airway repair process have not been investigated. In this study, we firstly showed that IH induced mitochondrial hydrogen peroxide (H2O2) production and significantly decreased bronchial epithelial cell migration, prevented by catalase treatment in a wound scratch assay. RhoA activity was higher during repair process in the IH condition compared to in the normoxic condition, resulting in the cellular morphological changes shown by immunofluorescence staining: round cells, reduced central stress fiber numbers, pronounced cortical actin filament distributions, and punctate focal adhesions. These phenotypes were replicated by exogenous H2O2 treatment under the normoxic condition. Our findings confirmed the transcription-independent role of IH-induced intracellular ROS in the bronchial epithelial cell repair process and might have significant implications for impaired bronchial epithelial cell regeneration.

  15. Protective effects of benidipine on hydrogen peroxide-induced injury in rat isolated hearts.

    PubMed

    Yao, Kozo; Ina, Yasuhiro; Sonoda, Rie; Nagashima, Ken; Ohmori, Kenji; Ohno, Tetsuji

    2003-01-01

    We investigated the effects of benidipine (hydrochloride), a calcium antagonist, on hydrogen peroxide (H(2)O(2))-induced injury in Langendorff-perfused rat hearts. The hearts were aerobically perfused at a constant flow and exposed to H(2)O(2) (600 micromol L(-1)) for 4 min, resulting in the oxidative stress-induced myocardial dysfunction (e.g., decrease in the left ventricular developed pressure) and myocardial cell injury (e.g., increase in the release of lactate dehydrogenase). Pretreatment of the hearts with benidipine or nifedipine was performed for 20 min until the start of H(2)O(2) exposure. Benidipine at 1 nmol L(-1) and nifedipine at 10 nmol L(-1) decreased the myocardial contractility and perfusion pressure to a similar degree in the hearts under normal conditions. Benidipine (1 nmol L(-1)) significantly reduced the H(2)O(2)-induced myocardial damage. Nifedipine (10 nmol L(-1)) also tended to exhibit similar effects. Benidipine inhibited the increase in tissue lipid peroxidation induced by H(2)O(2). The results suggest that, in addition to the calcium antagonism, benidipine possesses other actions responsible for the cardioprotective effects, to which the antioxidant activity of benidipine may partly contribute.

  16. Date seed oil inhibits hydrogen peroxide-induced oxidative stress in human epidermal keratinocytes.

    PubMed

    Ines, Dammak; Sonia, Boudaya; Fatma, Ben Abdallah; Souhail, Besbes; Hamadi, Attia; Hamida, Turki; Basma, Hentati

    2010-03-01

    Oxidative stress has been implicated in various skin diseases through the generation of reactive oxygen species and the depletion of endogenous antioxidant systems. The administration of antioxidants is reportedly helpful, notably to enhance the healing process. To protect the skin against oxidative damages, we have studied the effect of new oil: "date seed oil" (DSO). This oil, may serve as a potential source of natural antioxidants such as phenols and tocopherols. Here, we report the protective effect of DSO against hydrogen peroxide (H(2)O(2))-induced oxidative stress in terms of lipid peroxidation, depletion of endogenous antioxidant defense enzymes such as superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) using normal human epidermal keratinocytes (NHEK). In the investigated model system, DSO has significant chemoprotective effect, by inhibition of damage caused by H(2)O(2) compared with cells without such addition endowing with a radical scavenging ability. Treatment of NHEK with DSO inhibited H(2)O(2)-induced lipid peroxidation. In addition, this oil inhibited H(2)O(2)-induced depletion of antioxidant defense components, such as SOD, CAT and GPx. Our findings demonstrate that DSO is an efficient extract that is able to prevent keratinocytes oxidative damage induced by H(2)O(2) exposure and may thus be a potential promising candidate, as a chemopreventive agent, in the development of keratinocytes-related pathologies.

  17. Collision-Induced Infrared Absorption by Hydrogen-Helium gas mixtures at Thousands of Kelvin

    NASA Astrophysics Data System (ADS)

    Abel, Martin; Frommhold, Lothar; Li, Xiaoping; Hunt, Katharine L. C.

    2010-10-01

    The interaction-induced absorption by collisional pairs of H2 molecules is an important opacity source in the atmospheres of the outer planets and cool stars ^[1]. The emission spectra of cool white dwarf stars differ significantly in the infrared from the expected blackbody spectra of their cores, which is largely due to absorption by collisional H2--H2, H2--He, and H2--H complexes in the stellar atmospheres. Using quantum-chemical methods we compute the atmospheric absorption from hundreds to thousands of kelvin ^[2]. Laboratory measurements of interaction-induced absorption spectra by H2 pairs exist only at room temperature and below. We show that our results reproduce these measurements closely ^[2], so that our computational data permit reliable modeling of stellar atmosphere opacities even for the higher temperatures ^[2]. [1] L. Frommhold, Collision-Induced Absorption in Gases, Cambridge University Press, Cambridge, New York, 1993 and 2006 [2] Xiaoping Li, Katharine L. C. Hunt, Fei Wang, Martin Abel, and Lothar Frommhold, ``Collision-Induced Infrared Absorption by Molecular Hydrogen Pairs at Thousands of Kelvin'', International Journal of Spectroscopy, vol. 2010, Article ID 371201, 11 pages, 2010. doi: 10.1155/2010/371201

  18. Potential for hydrogen production with inducible chloroplast gene expression in Chlamydomonas

    PubMed Central

    Surzycki, Raymond; Cournac, Laurent; Peltier, Gilles; Rochaix, Jean-David

    2007-01-01

    An inducible chloroplast gene expression system was developed in Chlamydomonas reinhardtii by taking advantage of the properties of the copper-sensitive cytochrome c6 promoter and of the nucleus-encoded Nac2 chloroplast protein. This protein is specifically required for the stable accumulation of the chloroplast psbD RNA and acts on its 5′ UTR. A construct containing the Nac2 coding sequence fused to the cytochrome c6 promoter was introduced into the nac2-26 mutant strain deficient in Nac2. In this transformant, psbD is expressed in copper-depleted but not in copper-replete medium. Because psbD encodes the D2 reaction center polypeptide of photosystem II (PSII), the repression of psbD leads to the loss of PSII. We have tested this system for hydrogen production. Upon addition of copper to cells pregrown in copper-deficient medium, PSII levels declined to a level at which oxygen consumption by respiration exceeded oxygen evolution by PSII. The resulting anaerobic conditions led to the induction of hydrogenase activity. Because the Cyc6 promoter is also induced under anaerobic conditions, this system opens possibilities for sustained cycling hydrogen production. Moreover, this inducible gene expression system is applicable to any chloroplast gene by replacing its 5′ UTR with the psbD 5′ UTR in the same genetic background. To make these strains phototrophic, the 5′ UTR of the psbD gene was replaced by the petA 5′ UTR. As an example, we show that the reporter gene aadA driven by the psbD 5′ UTR confers resistance to spectinomycin in the absence of copper and sensitivity in its presence in the culture medium. PMID:17951433

  19. Nitric oxide protects macrophages from hydrogen peroxide-induced apoptosis by inducing the formation of catalase.

    PubMed

    Yoshioka, Yasuhiro; Kitao, Tatsuya; Kishino, Takashi; Yamamuro, Akiko; Maeda, Sadaaki

    2006-04-15

    We investigated the cytoprotective effect of NO on H2O2-induced cell death in mouse macrophage-like cell line RAW264. H2O2-treated cells showed apoptotic features, such as activation of caspase-9 and caspase-3, nuclear fragmentation, and DNA fragmentation. These apoptotic features were significantly inhibited by pretreatment for 24 h with NO donors, sodium nitroprusside and 1-hydroxy-2-oxo-3,3-bis-(2-aminoethyl)-1-triazene, at a low nontoxic concentration. The cytoprotective effect of NO was abrogated by the catalase inhibitor 3-amino-1,2,4-triazole but was not affected by a glutathione synthesis inhibitor, L-buthionine-(S,R)-sulfoximine. NO donors increased the level of catalase and its activity in a concentration-dependent manner. Cycloheximide, a protein synthesis inhibitor, inhibited both the NO-induced increase in the catalase level and the cytoprotective effect of NO. These results indicate that NO at a low concentration protects macrophages from H2O2-induced apoptosis by inducing the production of catalase.

  20. Suggestion for search of cyclopropenone (c-C3H2O) in a cosmic object

    NASA Astrophysics Data System (ADS)

    Sharma, M. K.; Sharma, M.; Chandra, S.

    2017-03-01

    Following Minimum Energy Principle, out of the three isomers of chemical formula C3H2O, the cyclopropenone (c-C3H2O) is the most stable and therefore may be the most abundant and easily detectable in a cosmic object. The cyclopropenone is detected in Sgr B2(N). Owing to half-spin of each of two hydrogen atoms, the c-C3H2O has two distinct ortho and para species. Using the rotational and centrifugal distortion constants along with the electric dipole moment, we have calculated energies of 100 rotational levels of each of the ortho and para species of c-C3H2O and the Einstein A-coefficients for radiative transitions between the levels. The values of Einstein A-coefficients along with the scaled values for collisional rate coefficients are used for solving a set of statistical equilibrium equations coupled with the equations of radiative transfer. Brightness temperatures of seven rotational transitions of each of the ortho and para species of c-C3H2O are investigated. Out of fourteen transitions, seven are found to show anomalous absorption and rest seven are found to show emission feature. We find that the transitions 110 -111 (1.544 GHz) may play important role in identification of cyclopropenone in a cosmic object.

  1. Differential roles of hydrogen peroxide and hydroxyl radical in cisplatin-induced cell death in renal proximal tubular epithelial cells.

    PubMed

    Baek, Su Mi; Kwon, Chae Hwa; Kim, Jae Ho; Woo, Jae Suk; Jung, Jin Sup; Kim, Yong Keun

    2003-09-01

    Reactive oxygen species (ROS) have been suggested as important mediators of cisplatin-induced acute renal failure in vivo. However, our previous studies have shown that cisplatin-induced cell death in vitro could not be prevented by scavengers of hydrogen peroxide and hydroxyl radical in rabbit renal cortical slices. This discrepancy may be attributed to differential roles of ROS in necrotic and apoptotic cell death. We therefore examined, in this study, the roles of ROS in necrosis and apoptosis induced by cisplatin in primary cultured rabbit proximal tubule. Cisplatin induced necrosis at high concentrations over a few hours and apoptosis at much lower concentrations over longer periods. Necrosis induced by high concentration of cisplatin was prevented by a cell-permeable superoxide scavenger (tiron), hydrogen peroxide scavengers (catalase and pyruvate), and antioxidants (Trolox and deferoxamine), whereas hydroxyl radical scavengers (dimethythiourea and thiourea) did not affect the cisplatin-induced necrosis. However, apoptosis induced by lower concentration of cisplatin was partially prevented by tiron and hydroxyl radical scavengers but not by hydrogen peroxide scavengers and antioxidants. Cisplatin-induced apoptosis was mediated by the signaling pathway that is associated with cytochrome c release from mitochondria and caspase-3 activation. These effects were prevented by tiron and dimethylthiourea but not by catalase. Dimethylthiourea produced a significant protection against cisplatin-induced acute renal failure, and the effect was associated with an inhibition of apoptosis. These results suggest that hydrogen peroxide is involved in the cisplatin-induced necrosis, whereas hydroxyl radical is responsible for the cisplatin-induced apoptosis. The protective effects of hydroxyl radical scavengers are associated with an inhibition of cytochrome c release and caspase activation.

  2. Hydrogen sulphide induces μ opioid receptor-dependent analgesia in a rodent model of visceral pain

    PubMed Central

    2010-01-01

    Background Hydrogen sulphide (H2S) is a gaseous neuro-mediator that exerts analgesic effects in rodent models of visceral pain by activating KATP channels. A body of evidence support the notion that KATP channels interact with endogenous opioids. Whether H2S-induced analgesia involves opioid receptors is unknown. Methods The perception of painful sensation induced by colorectal distension (CRD) in conscious rats was measured by assessing the abdominal withdrawal reflex. The contribution of opioid receptors to H2S-induced analgesia was investigated by administering rats with selective μ, κ and δ opioid receptor antagonists and antisenses. To investigate whether H2S causes μ opioid receptor (MOR) transactivation, the neuronal like cells SKNMCs were challenged with H2S in the presence of MOR agonist (DAMGO) or antagonist (CTAP). MOR activation and phosphorylation, its association to β arrestin and internalization were measured. Results H2S exerted a potent analgesic effects on CRD-induced pain. H2S-induced analgesia required the activation of the opioid system. By pharmacological and molecular analyses, a robust inhibition of H2S-induced analgesia was observed in response to central administration of CTAP and MOR antisense, while κ and δ receptors were less involved. H2S caused MOR transactivation and internalization in SKNMCs by a mechanism that required AKT phosphorylation. MOR transactivation was inhibited by LY294002, a PI3K inhibitor, and glibenclamide, a KATP channels blocker. Conclusions This study provides pharmacological and molecular evidence that antinociception exerted by H2S in a rodent model of visceral pain is modulated by the transactivation of MOR. This observation provides support for development of new pharmacological approaches to visceral pain. PMID:20540729

  3. Hydrogen-peroxide-induced heme degradation in red blood cells: the protective roles of catalase and glutathione peroxidase.

    PubMed

    Nagababu, Enika; Chrest, Francis J; Rifkind, Joseph M

    2003-03-17

    Catalase and glutathione peroxidase (GSHPX) react with red cell hydrogen peroxide. A number of recent studies indicate that catalase is the primary enzyme responsible for protecting the red cell from hydrogen peroxide. We have used flow cytometry in intact cells as a sensitive measure of the hydrogen-peroxide-induced formation of fluorescent heme degradation products. Using this method, we have been able to delineate a unique role for GSHPX in protecting the red cell from hydrogen peroxide. For extracellular hydrogen peroxide, catalase completely protected the cells, while the ability of GSHPX to protect the cells was limited by the availability of glutathione. The effect of endogenously generated hydrogen peroxide in conjunction with hemoglobin autoxidation was investigated by in vitro incubation studies. These studies indicate that fluorescent products are not formed during incubation unless the glutathione is reduced to at least 40% of its initial value as a result of incubation or by reacting the glutathione with iodoacetamide. Reactive catalase only slows down the depletion of glutathione, but does not directly prevent the formation of these fluorescent products. The unique role of GSHPX is attributed to its ability to react with hydrogen peroxide generated in close proximity to the red cell membrane in conjunction with the autoxidation of membrane-bound hemoglobin.

  4. The Binary Collision-Induced Second Overtone Band of Gaseous Hydrogen: Modelling and Laboratory Measurements

    NASA Technical Reports Server (NTRS)

    Brodbeck, C.; Bouanich, J.-P.; Nguyen, Van Thanh; Borysow, Aleksandra

    1999-01-01

    Collision-induced absorption (CIA) is the major source of the infrared opacity of dense planetary atmospheres which are composed of nonpolar molecules. Knowledge of CIA absorption spectra of H2-H2 pairs is important for modelling the atmospheres of planets and cold stars that are mainly composed of hydrogen. The spectra of hydrogen in the region of the second overtone at 0.8 microns have been recorded at temperatures of 298 and 77.5 K for gas densities ranging from 100 to 800 amagats. By extrapolation to zero density of the absorption coefficient measured every 10 cm(exp -1) in the spectral range from 11100 to 13800 cm(exp -1), we have determined the binary absorption coefficient. These extrapolated measurements are compared with calculations based on a model that was obtained by using simple computer codes and lineshape profiles. In view of the very weak absorption of the second overtone band, we find the agreement between results of the model and experiment to be reasonable.

  5. Hydrogen sulfide ameliorates the kidney dysfunction and damage in cisplatin-induced nephrotoxicity in rat

    PubMed Central

    Ahangarpour, Akram; Abdollahzade Fard, Amin; Gharibnaseri, Mohammad Kazem; Jalali, Taha; Rashidi, Iran

    2014-01-01

    Hydrogen Sulfide (H2S) prevents and treats a variety of disorders via its cytoprotective effects. However, the effects of H2S on rats with cisplatin (CP) nephrotoxicity are unclear. The aim was to study the effects of H2S on rats with CP nephrotoxicity. Thirty male Sprague-Dawley rats were divided into three groups: control group, nephrotoxic group received single dose of CP (6 mg kg-1) and nephrotoxic groups that received single dose 100 µmol kg-1 NaHS. On fifth day after injection, urine of each rat was collected over a 24-hr period. Animals were sacrificed 6 days after CP (or vehicle) treatment, and blood, urine, and kidneys were obtained, prepared for light microscopy evaluation, lipid peroxidation content and laboratory analysis. The results showed that plasma urea (226%), creatinine (271%), renal lipid peroxidation content (151%), Na and K fractional excretion, urine protein, volume and kidney weight in CP nephrotoxic rats were significantly higher and urine osmolarity and creatinine clearance lower than in controls. Increases of the proximal tubular cells apoptosis and mesangial matrix in CP nephrotoxicity group rats were observed. Hydrogen sulfide reversed the CP-induced changes in the experimental rats H2S prevented the progression of CP nephrotoxicity in rats possibly through its cytoprotective effects such as antioxidant properties. PMID:25568705

  6. Energetic multifunctionalized nitraminopyrazoles and their ionic derivatives: ternary hydrogen-bond induced high energy density materials.

    PubMed

    Yin, Ping; Parrish, Damon A; Shreeve, Jean'ne M

    2015-04-15

    Diverse functionalization was introduced into the pyrazole framework giving rise to a new family of ternary hydrogen-bond induced high energy density materials. By incorporating extended cationic interactions, nitramine-based ionic derivatives exhibit good energetic performance and enhanced molecular stability. Performance parameters including heats of formation and detonation properties were calculated by using Gaussian 03 and EXPLO5 v6.01 programs, respectively. It is noteworthy to find that 5-nitramino-3,4-dinitropyrazole, 4, has a remarkable measured density of 1.97 g cm(-3) at 298 K, which is consistent with its crystal density (2.032 g cm(-3), 150 K), and ranks highest among azole-based CHNO compounds. Energetic evaluation indicates that, in addition to the molecular compound 4, some ionic derivatives, 9, 11, 12, 17, 19, and 22, also have high densities (1.83-1.97 g cm(-3)), excellent detonation pressures and velocities (P, 35.6-41.6 GPa; vD, 8880-9430 m s(-1)), as well as acceptable impact and friction sensitivities (IS, 4-30 J; FS, 40-240 N). These attractive features highlight the application potential of nitramino hydrogen-bonded interactions in the design of advanced energetic materials.

  7. Raman spectra from Symmetric Hydrogen Bonds in Water by High-intensity Laser-induced Breakdown

    PubMed Central

    Men, Zhiwei; Fang, Wenhui; Li, Dongfei; Li, Zhanlong; Sun, Chenglin

    2014-01-01

    Raman spectra of ice VII and X were investigated using strong plasma shockwave generated by laser-induced breakdown (LIB) in liquid water. Simultaneously, the occurrence of the hydrogen emission lines of 656 nm (Hα), 486 nm (Hβ), 434 nm (Hγ) and 410 nm (Hδ) was observed. At 5 × 1012 W/cm2 optical power density, the O-H symmetric stretching, translational and librational modes of ice VII and a single peak at 785 cm−1 appeared in the spectra. The band was assigned to the Raman-active O-O mode of the monomolecular phase, which was the symmetric hydrogen bond of cuprite ice X. The spectra indicated that ice VII and X structure were formed, as the trajectory of the strong plasma shockwave passes through the stable Pressure-Temperature range of ice VII and X. The shockwave temperature and pressure were calculated by the Grüneisen model. PMID:24709652

  8. Hydrogen-bonding-induced polymorphous phase transitions in 2D organic nanostructures.

    PubMed

    Xu, Li; Miao, Xinrui; Zha, Bao; Deng, Wenli

    2013-05-01

    The 2D self-assembly of various 2-hydroxy-7-alkoxy-9-fluorenone (HAF) molecules has been investigated by scanning tunneling microscopy (STM) at the liquid/solid interface. A systematic study revealed that HAF molecules with different numbers of carbon atoms in their alkoxy chains could form two or three different kinds of nanostructures, that is, less-ordered, flower-like, and zig-zag patterns, owing to the formation of different types of intermolecular hydrogen bonds. The observed structural transition was found to be driven by molecular thermodynamics, surface diffusion, and the voltage pulse that was applied to the STM tip. The zig-zag pattern was the most stable of these configurations. An odd-even effect on the flower-like structure, as induced by the odd and even number of carbon atoms in the side chain, was observed by STM. The influence of the odd-even effect on the melting point has a close relationship with the molecular self-assembled pattern. Our results are significant for understanding the influence of hydrogen-bonding interactions on the dominant adsorption behavior on the surface and provide a new visual approach for observing the influence of the odd-even effect on the phase transition.

  9. Hydrogen-induced cold cracking in heat-affected zone of low-carbon high-strength steel

    NASA Astrophysics Data System (ADS)

    Lan, Liangyun; Kong, Xiangwei; Hu, Zhiyong; Qiu, Chunlin

    2014-12-01

    The Y-groove cracking test by submerged arc welding was employed to study the susceptibility of a low-carbon high-strength steel to hydrogen-induced cold cracking (HICC). The morphology of hydrogen cracks was observed using an electron probe microscope. The results showed that the heat-affected zone (HAZ) has a higher susceptibility to HICC than the weld metal and that increasing heat input can improve the HICC resistance of the weldment. The intergranular microcracking is the main HICC mode at the lowest heat input condition, accompanied with some transgranular microcracks attached to complex inclusions. In combination with phase transformation behaviour in sub-zones, the effect of the phase transformation sequence is proposed to try to illustrate the fact that the fine-grained HAZ has higher probability of hydrogen cracking than the coarse-grained HAZ owing to the occurrence of hydrogen enrichment in the fine-grained HAZ after the transformation.

  10. The study on space-flight induced DNA damage in Arabidopsis thaliana and the protective effect of hydrogen

    NASA Astrophysics Data System (ADS)

    Sun, Qiao; Liu, Min; Zhao, Hui

    2016-07-01

    Ionizing radiation (IR) is a known mutagen responsible for causing DNA strand breaks in all living organisms. Strand breaks thus created can be repaired by different mechanisms, including homologous recombination (HR), one of the key mechanisms maintaining genome stability. Here, we used previously generated Arabidopsis thaliana, transgenic for homologous recombination reporter system, in which homologous recombination frequency(HRF) was used as mutagenic end points. Based on the system, effect of DNA damage by space-flight during the Shenzhou-9 mission was investigated and the results showed that 13 days space-flight exposure of seedlings induced a significant increase in HRF compared with its ground-base three-dimensional clinostat controls and ground 1g controls. We also observed three-dimensional clinostat induced a significant increase in HRF compared with ground 1g controls. Molecular hydrogen (H2) has antioxidant activities by selectively reducing hydroxylradical ( •OH) and peroxynitrite(ONOO-), so we investigated the effect of hydrogen on IR-induced HRF. Treatment with hydrogen-rich water dramatically reduced the HR frequency induced by exposure of seedlings to 0 to 80 Gy 60Co radiation , suggesting that hydrogen represents a potentially novel preventative strategy for radiation-induced DNA damage in plants.

  11. Regulating energy transfer of excited carriers and the case for excitation-induced hydrogen dissociation on hydrogenated graphene

    SciTech Connect

    Bang, Junhyeok; Meng, Sheng; Sun, Yi-Yang; West, Damien; Wang, Zhiguo; Gao, Fei; Zhang, Shengbai

    2013-01-15

    Understanding and controlling of excited carrier dynamics is of fundamental and practical importance, particularly in photochemistry and solar energy applications. However, theory of energy relaxation of excited carriers is still in its early stage. Here, using ab-initio molecular dynamics (MD) coupled with time-dependent density functional theory, we show a coverage-dependent energy transfer of photoexcited carriers in hydrogenated graphene, giving rise to distinctively different ion dynamics. Graphene with sparsely populated H is difficult to dissociate due to inefficient transfer of the excitation energy into kinetic energy of the H. In contrast, H can easily desorb from fully hydrogenated graphane. The key is to bring down the H antibonding state to the conduction band minimum as the band gap increases. These results can be contrasted to those of standard ground-state MD which predicts H in the sparse case should be much less stable than that in fully hydrogenated graphane. Our findings thus signify the importance of carrying out explicit electronic dynamics in excited-state simulations.

  12. Regulating energy transfer of excited carriers and the case for excitation-induced hydrogen dissociation on hydrogenated graphene

    PubMed Central

    Bang, Junhyeok; Meng, Sheng; Sun, Yi-Yang; West, Damien; Wang, Zhiguo; Gao, Fei; Zhang, S. B.

    2013-01-01

    Understanding and controlling of excited carrier dynamics is of fundamental and practical importance, particularly in photochemistry and solar energy applications. However, theory of energy relaxation of excited carriers is still in its early stage. Here, using ab initio molecular dynamics (MD) coupled with time-dependent density functional theory, we show a coverage-dependent energy transfer of photoexcited carriers in hydrogenated graphene, giving rise to distinctively different ion dynamics. Graphene with sparsely populated H is difficult to dissociate due to inefficient transfer of the excitation energy into kinetic energy of the H. In contrast, H can easily desorb from fully hydrogenated graphane. The key is to bring down the H antibonding state to the conduction band minimum as the band gap increases. These results can be contrasted to those of standard ground-state MD that predict H in the sparse case should be much less stable than that in fully hydrogenated graphane. Our findings thus signify the importance of carrying out explicit electronic dynamics in excited-state simulations. PMID:23277576

  13. Regulating energy transfer of excited carriers and the case for excitation-induced hydrogen dissociation on hydrogenated graphene.

    PubMed

    Bang, Junhyeok; Meng, Sheng; Sun, Yi-Yang; West, Damien; Wang, Zhiguo; Gao, Fei; Zhang, S B

    2013-01-15

    Understanding and controlling of excited carrier dynamics is of fundamental and practical importance, particularly in photochemistry and solar energy applications. However, theory of energy relaxation of excited carriers is still in its early stage. Here, using ab initio molecular dynamics (MD) coupled with time-dependent density functional theory, we show a coverage-dependent energy transfer of photoexcited carriers in hydrogenated graphene, giving rise to distinctively different ion dynamics. Graphene with sparsely populated H is difficult to dissociate due to inefficient transfer of the excitation energy into kinetic energy of the H. In contrast, H can easily desorb from fully hydrogenated graphane. The key is to bring down the H antibonding state to the conduction band minimum as the band gap increases. These results can be contrasted to those of standard ground-state MD that predict H in the sparse case should be much less stable than that in fully hydrogenated graphane. Our findings thus signify the importance of carrying out explicit electronic dynamics in excited-state simulations.

  14. Pressure-induced phase transition in solid hydrogen sulfide at 11 GPa

    NASA Astrophysics Data System (ADS)

    Shimizu, H.; Nakamichi, Y.; Sasaki, S.

    1991-08-01

    The Raman spectra of hydrogen-bonded molecular solid H2S have been measured up to 23 GPa at 300 K in a gasketed diamond-anvil cell. In the orientationally disordered phase I between 0.47 and 11 GPa, the symmetric stretching mode ν1 shows a red-shift in frequency (dν1/dP=-10.1 cm-1/GPa ) and a dramatic broadening with pressure. At about 11 GPa, the antisymmetric stretching band ν3 appears at the higher-frequency side of ν1. Near this same pressure five low-frequency vibrational modes also appear and show pressure-sensitive features. These results indicate a pressure-induced phase transition near 11 GPa. This new solid phase, which persists to at least 23 GPa at 300 K, seems to be the same phase as previously found above 3.3 GPa at 25 K.

  15. Shark-cartilage containing preparation protects cells against hydrogen peroxide induced damage and mutagenesis.

    PubMed

    Gomes, E M; Souto, P R; Felzenszwalb, I

    1996-04-06

    Natural products from flora and fauna are frequently used as nutritional supplements and medicaments. Two short-term assays were carried out and negative results were obtained for shark-cartilage containing preparation. The tests employed were the Salmonella/mammalian microsome assay using tester strains TA97, TA98, TA100, TA102 and TA1535 with or without S9 mix and the SOS-Chromotest with Escherichia coli strain PQ37. Evidence for shark-cartilage containing preparation functioning as an antimutagen was detected. Using bacterial survival assays with Escherichia coli fpg (BH20) and xthA (BW9091), we investigated the putative role of shark-cartilage containing preparation in protecting cells against lesions induced by hydrogen peroxide in normal and low iron level conditions. Our data suggest that shark-cartilage containing preparation can play a scavenger role for reactive oxygen species and protect against DNA lesions in both conditions.

  16. Hydrogen Sulfide Induced Carbon Dioxide Activation by Metal-Free Dual Catalysis.

    PubMed

    Kumar, Manoj; Francisco, Joseph S

    2016-03-18

    The role of metal free dual catalysis in the hydrogen sulfide (H2S)-induced activation of carbon dioxide (CO2) and subsequent decomposition of resulting monothiolcarbonic acid in the gas phase has been explored. The results suggest that substituted amines and monocarboxylic type organic or inorganic acids via dual activation mechanisms promote both activation and decomposition reactions, implying that the judicious selection of a dual catalyst is crucial to the efficient C-S bond formation via CO2 activation. Considering that our results also suggest a new mechanism for the formation of carbonyl sulfide from CO2 and H2S, these new insights may help in better understanding the coupling between the carbon and sulfur cycles in the atmospheres of Earth and Venus.

  17. Hydrogen-induced program threshold voltage degradation analysis in SONOS wafer

    NASA Astrophysics Data System (ADS)

    Lin, Qing; Zhao, Crystal; Sheng, Nan

    2016-02-01

    This paper studies the hydrogen-induced program state threshold voltage degradation in SONOS wafers, which ultimately impacts wafer sort test yield. During wafer sort step, all individual integrated circuits noted as die are tested for functional defects by applying special test patterns to them. The proportion between the passing die (good die) and the non-passing die (bad die) is sort yield. The different N2/H2 ratio in IMD1 alloy process yields differently at flash checkerboard test. And the SIMS curves were also obtained to depict the distribution profile of H+ in SONOS ONO stack structure. It is found that, the H+ accumulated in the interface between the Tunnel oxide and Si layer, contributes the charge loss in Oxynitride layer, which leads to the program threshold voltage degradation and even fall below lower specification limit, and then impacts the sort yield of SONOS wafers.

  18. Improvement of resistance to hydrogen induced cracking in electric resistance welded pipes fabricated with slit coils

    NASA Astrophysics Data System (ADS)

    Hong, Hyun Uk; Lee, Jong Bong; Choi, Ho Jin

    2009-02-01

    The optimization of electric resistance welding (ERW) conditions was studied to improve the resistance to hydrogen induced cracking (HIC) at the bondline in small diameter API X60 ERW pipes fabricated with slit coils. The results show that HIC is initiated preferentially at the elongated Si, Mn and Al-rich oxide inclusions, normally known as a penetrator on the bondline. However, no evidence was found of any centerline segregation effect. The HIC ratio increases with the fraction of penetrators at the bondline, regardless of the degrees of center segregation. Furthermore, for a satisfactory level of HIC resistance, the fraction of penetrators must be less than 0.03 % and most of the penetrators should be circular-shaped. The design of experimental (DOE) method was used to determine the optimum ERW condition for minimization of the penetrator ratio. Finally, guideline is suggested for the optimum ERW condition for achieving excellent HIC resistance.

  19. Fingerprints of two distinct defects causing light-induced photoconductivity degradation in hydrogenated amorphous silicon

    NASA Astrophysics Data System (ADS)

    Heck, Stephan; Branz, Howard M.

    2001-11-01

    We find distinct experimental fingerprints of two metastable defects created during illumination of hydrogenated amorphous silicon. The well-studied threefold-coordinated silicon dangling bond defect has an anneal activation energy near 1.1 eV and dominates annealing experiments above about 110 °C. The second defect created by illumination is the "primary recombination" (pr) center, which causes most of the light-induced photoconductivity decrease and dominates annealing experiments below about 110 °C. Because the pr centers are created in linear proportion to the dangling bond defects, they are difficult to distinguish during degradation. However, we observe clear fingerprints of the pr center during their low T annealing: (1) an anneal activation energy of 0.85 eV; (2) a sharp increase in photoconductivity; and (3) a surprising increase in hν⩽1.1 eV optical absorption.

  20. Magnetically Induced Continuous CO2 Hydrogenation Using Composite Iron Carbide Nanoparticles of Exceptionally High Heating Power.

    PubMed

    Bordet, Alexis; Lacroix, Lise-Marie; Fazzini, Pier-Francesco; Carrey, Julian; Soulantica, Katerina; Chaudret, Bruno

    2016-12-19

    The use of magnetic nanoparticles to convert electromagnetic energy into heat is known to be a key strategy for numerous biomedical applications but is also an approach of growing interest in the field of catalysis. The heating efficiency of magnetic nanoparticles is limited by the poor magnetic properties of most of them. Here we show that the new generation of iron carbide nanoparticles of controlled size and with over 80 % crystalline Fe2.2 C leads to exceptional heating properties, which are much better than the heating properties of currently available nanoparticles. Associated to catalytic metals (Ni, Ru), iron carbide nanoparticles submitted to magnetic excitation very efficiently catalyze CO2 hydrogenation in a dedicated continuous-flow reactor. Hence, we demonstrate that the concept of magnetically induced heterogeneous catalysis can be successfully applied to methanation of CO2 and represents an approach of strategic interest in the context of intermittent energy storage and CO2 recovery.

  1. Two Photon Absorption Laser Induced Fluorescence for Neutral Hydrogen Profile Measurements

    SciTech Connect

    Scime, Earl E.

    2016-09-23

    The magnitude and spatial dependence of neutral density in magnetic confinement fusion experiments is a key physical parameter, particularly in the plasma edge. Modeling codes require precise measurements of the neutral density to calculate charge-exchange power losses and drag forces on rotating plasmas. However, direct measurements of the neutral density are problematic. In this work, we proposed to construct a laser-based diagnostic capable of providing spatially resolved measurements of the neutral density in the edge of plasma in the DIII-D tokamak. The diagnostic concept is based on two-photon absorption laser induced fluorescence (TALIF). By injecting two beams of 205 nm light (co or counter propagating), ground state hydrogen (or deuterium or tritium) can be excited from the n = 1 level to the n = 3 level at the location where the two beams intersect. Individually, the beams experience no absorption, and therefore have no difficulty penetrating even dense plasmas. After excitation, a fraction of the hydrogen atoms decay from the n = 3 level to the n = 2 level and emit photons at 656 nm (the Hα line). Calculations based on the results of previous TALIF experiments in magnetic fusion devices indicated that a laser pulse energy of approximately 3 mJ delivered in 5 ns would provide sufficient signal-to-noise for detection of the fluorescence. In collaboration with the DIII-D engineering staff and experts in plasma edge diagnostics for DIII-D from Oak Ridge National Laboratory (ORNL), WVU researchers designed a TALIF system capable of providing spatially resolved measurements of neutral deuterium densities in the DIII-D edge plasma. The laser systems were specified, purchased, and assembled at WVU. The TALIF system was tested on a low-power hydrogen discharge at WVU and the plan was to move the instrument to DIII-D for installation in collaboration with ORNL researchers. After budget cuts at DIII-D, the DIII-D facility declined to support

  2. Hydrogen sulfide modulates cadmium-induced physiological and biochemical responses to alleviate cadmium toxicity in rice

    PubMed Central

    Mostofa, Mohammad Golam; Rahman, Anisur; Ansary, Md. Mesbah Uddin; Watanabe, Ayaka; Fujita, Masayuki; Phan Tran, Lam-Son

    2015-01-01

    We investigated the physiological and biochemical mechanisms by which H2S mitigates the cadmium stress in rice. Results revealed that cadmium exposure resulted in growth inhibition and biomass reduction, which is correlated with the increased uptake of cadmium and depletion of the photosynthetic pigments, leaf water contents, essential minerals, water-soluble proteins, and enzymatic and non-enzymatic antioxidants. Excessive cadmium also potentiated its toxicity by inducing oxidative stress, as evidenced by increased levels of superoxide, hydrogen peroxide, methylglyoxal and malondialdehyde. However, elevating endogenous H2S level improved physiological and biochemical attributes, which was clearly observed in the growth and phenotypes of H2S-treated rice plants under cadmium stress. H2S reduced cadmium-induced oxidative stress, particularly by enhancing redox status and the activities of reactive oxygen species and methylglyoxal detoxifying enzymes. Notably, H2S maintained cadmium and mineral homeostases in roots and leaves of cadmium-stressed plants. By contrast, adding H2S-scavenger hypotaurine abolished the beneficial effect of H2S, further strengthening the clear role of H2S in alleviating cadmium toxicity in rice. Collectively, our findings provide an insight into H2S-induced protective mechanisms of rice exposed to cadmium stress, thus proposing H2S as a potential candidate for managing toxicity of cadmium, and perhaps other heavy metals, in rice and other crops. PMID:26361343

  3. Hydrogen sulfide modulates cadmium-induced physiological and biochemical responses to alleviate cadmium toxicity in rice.

    PubMed

    Mostofa, Mohammad Golam; Rahman, Anisur; Ansary, Md Mesbah Uddin; Watanabe, Ayaka; Fujita, Masayuki; Tran, Lam-Son Phan

    2015-09-11

    We investigated the physiological and biochemical mechanisms by which H2S mitigates the cadmium stress in rice. Results revealed that cadmium exposure resulted in growth inhibition and biomass reduction, which is correlated with the increased uptake of cadmium and depletion of the photosynthetic pigments, leaf water contents, essential minerals, water-soluble proteins, and enzymatic and non-enzymatic antioxidants. Excessive cadmium also potentiated its toxicity by inducing oxidative stress, as evidenced by increased levels of superoxide, hydrogen peroxide, methylglyoxal and malondialdehyde. However, elevating endogenous H2S level improved physiological and biochemical attributes, which was clearly observed in the growth and phenotypes of H2S-treated rice plants under cadmium stress. H2S reduced cadmium-induced oxidative stress, particularly by enhancing redox status and the activities of reactive oxygen species and methylglyoxal detoxifying enzymes. Notably, H2S maintained cadmium and mineral homeostases in roots and leaves of cadmium-stressed plants. By contrast, adding H2S-scavenger hypotaurine abolished the beneficial effect of H2S, further strengthening the clear role of H2S in alleviating cadmium toxicity in rice. Collectively, our findings provide an insight into H2S-induced protective mechanisms of rice exposed to cadmium stress, thus proposing H2S as a potential candidate for managing toxicity of cadmium, and perhaps other heavy metals, in rice and other crops.

  4. Hydrogen Sulfide Delays LPS-Induced Preterm Birth in Mice via Anti-Inflammatory Pathways

    PubMed Central

    Liu, Weina; Xu, Chen; You, Xingji; Olson, David M.; Chemtob, Sylvain; Gao, Lu; Ni, Xin

    2016-01-01

    A major cause of preterm labor in pregnant women is intra-amniotic infection, which is mediated by an inflammatory process. Hydrogen sulfide (H2S), a gaseous transmitter, has been implicated to be involved in inflammatory responses. We sought to investigate whether H2S affects infectious preterm birth using the mouse model of lipopolysaccharides (LPS)-induced preterm birth. Administration of LPS at 0.4 mg/kg with two injections intraperitoneally (i.p.) on gestational day 14.5 induced preterm labor. LPS significantly increased leukocyte infiltration in uterus, stimulated the expression of pro-inflammatory cytokines interleukin 1β (IL-1β), IL-6, tumor necrosis factor α (TNF-α), CCL2 and CXCL15 in myometrium. Administration of NaHS (i.p.) delayed the onset of labor induced by LPS in a dose-dependent manner. NaHS prevented leukocyte infiltration into intrauterine tissues and inhibited the production of pro-inflammatory cytokines in myometrium and decreased the levels of these cytokines in maternal circulation. H2S also decreased LPS-activated extracellular signal-regulated kinase (ERK) 1/2/ nuclear factor (NF)-κB signaling pathways in myometrium. This study provides new in vivo evidence for the roles of H2S in attenuating inflammation, and a potential novel therapeutic strategy for infection-related preterm labor. PMID:27035826

  5. Ganglioside GT1b protects human spermatozoa from hydrogen peroxide-induced DNA and membrane damage.

    PubMed

    Gavella, Mirjana; Garaj-Vrhovac, Verica; Lipovac, Vaskresenija; Antica, Mariastefania; Gajski, Goran; Car, Nikica

    2010-06-01

    We have reported previously that various gangliosides, the sialic acid containing glycosphingolipids, provide protection against sperm injury caused by reactive oxygen species (ROS). In this study, we investigated the effect of treatment of human spermatozoa with ganglioside GT1b on hydrogen peroxide (H(2)O(2))-induced DNA fragmentation and plasma membrane damage. Single-cell gel electrophoresis (Comet assay) used in the assessment of sperm DNA integrity showed that in vitro supplemented GT1b (100 microm) significantly reduced DNA damage induced by H(2)O(2) (200 microm) (p < 0.05). Measurements of Annexin V binding in combination with the propidium iodide vital dye labelling demonstrated that the spermatozoa pre-treated with GT1b exhibited a significant increase (p < 0.05) in the percentage of live cells with intact membrane and decreased phosphatidylserine translocation after exposure to H(2)O(2). Flow cytometry using the intracellular ROS-sensitive fluorescence dichlorodihydrofluorescein diacetate dye employed to investigate the transport of the extracellularly supplied H(2)O(2) into the cell interior revealed that ganglioside GT1b completely inhibited the passage of H(2)O(2) through the sperm membrane. These results suggest that ganglioside GT1b may protect human spermatozoa from H(2)O(2)-induced damage by rendering sperm membrane more hydrophobic, thus inhibiting the diffusion of H(2)O(2) across the membrane.

  6. Hydrogen sulfide alleviates diabetic nephropathy in a streptozotocin-induced diabetic rat model.

    PubMed

    Zhou, Xiang; Feng, Yu; Zhan, Zhoubing; Chen, Jianchang

    2014-10-17

    Accumulating evidence has demonstrated that hydrogen sulfide (H2S) plays critical roles in the pathogenesis of chronic kidney diseases. This study was designed to investigate whether H2S has protective effects against diabetic nephropathy. Diabetic rats were induced by intraperitoneal injection of streptozotocin and administrated with H2S donor NaHS for 12 weeks. Rat glomerular mesangial cells were pretreated with NaHS or MAPK inhibitors (U0126, SP600125, and SB203580) prior to high glucose exposure, and cell proliferation was determined. Our findings suggest that H2S can improve renal function and attenuate glomerular basement membrane thickening, mesangial matrix deposition, and renal interstitial fibrosis in diabetic rats. H2S was found to reduce high glucose-induced oxidative stress by activating the Nrf2 antioxidant pathway and to exert anti-inflammatory effects by inhibiting NF-κB signaling. In addition, H2S reduced high glucose-induced mesangial cell proliferation by blockade of MAPK signaling pathways. Moreover, H2S was also found to inhibit the renin-angiotensin system in diabetic kidney. In conclusion, our study demonstrates that H2S alleviates the development of diabetic nephropathy by attenuating oxidative stress and inflammation, reducing mesangial cell proliferation, and inhibiting renin-angiotensin system activity.

  7. [Role of polymorphonuclear neutrophil in exogenous hydrogen sulfide attenuating endotoxin-induced acute lung injury].

    PubMed

    Huang, Xin-Li; Zhou, Xiao-Hong; Zhou, Jun-Lin; Ding, Chun-Hua; Xian, Xiao-Hui

    2009-08-25

    The animal model of acute lung injury (ALI) caused by intravenous injection of lipopolysaccharides (LPS) and cultured human peripheral blood polymorphonuclear neutrophil (PMN) were used to study the effects of sodium hydrosulfide (NaHS), hydrogen sulfide (H2S) donor, on LPS-induced PMN accumulation, microvascular permeability and PMN apoptosis. Control group, NaHS group, LPS group and LPS + NaHS group were established both in in vivo and in vitro studies. Microvascular permeability, PMN accumulation in lung and apoptosis of PMN were detected. The results showed that: (1) In in vivo study, PMN accumulation in lung, the protein content in bronchoalveolar lavage fluid (BALF) and the Evans blue dye in lung tissue of LPS group were markedly higher than those of both sham operation group and LPS + NaHS group (P<0.05, P<0.01); (2) In in vitro study, the apoptotic rates of PMN in LPS group and NaHS group were significantly higher than that in control group (P<0.01), while compared with LPS group, LPS + NaHS group showed significantly higher apoptotic rate (P<0.01). These results suggest that NaHS attenuates LPS-induced microvascular permeability and alleviates ALI. PMN apoptosis induced by NaHS is possibly one of the potential mechanisms underlying the decrease of PMN accumulation in lung tissue.

  8. Hydrogen Sulfide Delays LPS-Induced Preterm Birth in Mice via Anti-Inflammatory Pathways.

    PubMed

    Liu, Weina; Xu, Chen; You, Xingji; Olson, David M; Chemtob, Sylvain; Gao, Lu; Ni, Xin

    2016-01-01

    A major cause of preterm labor in pregnant women is intra-amniotic infection, which is mediated by an inflammatory process. Hydrogen sulfide (H2S), a gaseous transmitter, has been implicated to be involved in inflammatory responses. We sought to investigate whether H2S affects infectious preterm birth using the mouse model of lipopolysaccharides (LPS)-induced preterm birth. Administration of LPS at 0.4 mg/kg with two injections intraperitoneally (i.p.) on gestational day 14.5 induced preterm labor. LPS significantly increased leukocyte infiltration in uterus, stimulated the expression of pro-inflammatory cytokines interleukin 1β (IL-1β), IL-6, tumor necrosis factor α (TNF-α), CCL2 and CXCL15 in myometrium. Administration of NaHS (i.p.) delayed the onset of labor induced by LPS in a dose-dependent manner. NaHS prevented leukocyte infiltration into intrauterine tissues and inhibited the production of pro-inflammatory cytokines in myometrium and decreased the levels of these cytokines in maternal circulation. H2S also decreased LPS-activated extracellular signal-regulated kinase (ERK) 1/2/ nuclear factor (NF)-κB signaling pathways in myometrium. This study provides new in vivo evidence for the roles of H2S in attenuating inflammation, and a potential novel therapeutic strategy for infection-related preterm labor.

  9. Protective effects of hydrogen sulfide anions against acetaminophen-induced hepatotoxicity in mice.

    PubMed

    Ishii, Isao; Kamata, Shotaro; Hagiya, Yoshifumi; Abiko, Yumi; Kasahara, Tadashi; Kumagai, Yoshito

    2015-12-01

    The key mechanism for hepatotoxicity resulting from acetaminophen (APAP) overdose is cytochrome P450-dependent formation of N-acetyl-p-benzoquinone imine (NAPQI), a potent electrophilic metabolite that forms protein adducts. The fundamental roles of glutathione in the effective conjugation/clearance of NAPQI have been established, giving a molecular basis for the clinical use of N-acetylcysteine as a sole antidote. Recent evidence from in vitro experiments suggested that sulfide anions (S(2-)) to yield hydrogen sulfide anions (HS(-)) under physiological pH could effectively react with NAPQI. This study evaluated the protective roles of HS(-) against APAP-induced hepatotoxicity in mice. We utilized cystathionine γ-lyase-deficient (Cth(-/-)) mice that are highly sensitive to acetaminophen toxicity. Intraperitoneal injection of acetaminophen (150 mg/kg) into Cth(-/-) mice resulted in highly elevated levels of serum alanine/aspartate aminotransferases and lactate dehydrogenase associated with marked increases in oncotic hepatocytes; all of which were significantly inhibited by intraperitoneal preadministration of sodium hydrosulfide (NaHS). NaHS preadministration significantly suppressed APAP-induced serum malondialdehyde level increases without abrogating APAP-induced rapid depletion of hepatic glutathione. These results suggest that exogenous HS(-) protects hepatocytes by directly scavenging reactive NAPQI rather than by increasing cystine uptake and thereby elevating intracellular glutathione levels, which provides a novel therapeutic approach against acute APAP poisoning.

  10. Hydrogen sulphide induces mouse paw oedema through activation of phospholipase A2

    PubMed Central

    di Villa Bianca, Roberta d'Emmanuele; Coletta, Ciro; Mitidieri, Emma; De Dominicis, Gianfranco; Rossi, Antonietta; Sautebin, Lidia; Cirino, Giuseppe; Bucci, Mariarosaria; Sorrentino, Raffaella

    2010-01-01

    BACKGROUND AND PURPOSE Hydrogen sulphide (H2S), considered as a novel gas transmitter, is produced endogenously in mammalian tissue from L-cysteine by two enzymes, cystathionine β-synthase and cystathionine γ-lyase. Recently, it has been reported that H2S contributes to the local and systemic inflammation in several experimental animal models. We conducted this study to investigate on the signalling involved in H2S-induced inflammation. EXPERIMENTAL APPROACH L-cysteine or sodium hydrogen sulphide (NaHS) was injected into the mouse hind paw and oedema formation was evaluated for 60 min. In order to investigate H2S-induced oedema formation, we used 5-HT and histamine receptor antagonists, and inhibitors of KATP channels or arachidonic acid cascade. Prostaglandin levels were determined in hind paw exudates by radioimmunoassay. Paws injected with L-cysteine or NaHS were examined by histological methods. KEY RESULTS Both NaHS and L-cysteine caused oedema characterized by a fast onset which peaked at 30 min. This oedematogenic action was not associated with histamine or 5-HT release or KATP channel activation. However, oedema formation was significantly inhibited by the inhibition of cyclooxygenases and selective inhibition of phospholipase A2. Prostaglandin levels were significantly increased in exudates of hind paw injected with NaHS or L-cysteine. The histological examination clearly showed an inflammatory state with a loss of tissue organization following NaHS or L-cysteine injection. CONCLUSIONS AND IMPLICATIONS Phospholipase A2 and prostaglandin production are involved in pro-inflammatory effects of H2S in mouse hind paws. The present study contributes to the understanding of the role of L-cysteine/H2S pathway in inflammatory disease. PMID:20825409

  11. Protective effect of hydrogen-rich saline against radiation-induced immune dysfunction.

    PubMed

    Zhao, Sanhu; Yang, Yanyong; Liu, Wen; Xuan, Zhiqiang; Wu, Shouming; Yu, Shunfei; Mei, Ke; Huang, Yijuan; Zhang, Pei; Cai, Jianming; Ni, Jin; Zhao, Yaoxian

    2014-05-01

    Recent studies showed that hydrogen can be used as an effective radioprotective agent through scavenging free radicals. This study was undertaken to evaluate the radioprotective effects of hydrogen on immune system in mice. H(2) was dissolved in physiological saline using an apparatus produced by our department. Spleen index and histological analysis were used to evaluate the splenic structural damage. Spleen superoxide dismutase, GSH, MDA were measured to appraise the antioxidant capacity and a DCF assay for the measurement of radical oxygen species. Cell apoptosis was evaluated by an Annexin V-FITC and propidium iodide staining method as well as the apoptotic proteins such as Bcl-2, Bax, caspase-3 and c-caspase-3. CD4+ and CD8+ T cells subtypes were detected by flow cytometry with FITC-labelled antimouse CD4 and PE antimouse CD8 staining. Real-time PCR was utilized to determine the CD4+ T cell subtypes and related cytokines. Our study demonstrated that pre-treatment with H(2) could increase the spleen index and attenuate the radiation damage on splenic structure. Radical oxygen species level was also reduced by H(2) treatment. H(2) also inhibited radiation-induced apoptosis in splenocytes and down-regulated pro-apoptotic proteins in living mice. Radiation-induced imbalance of T cells was attenuated by H(2). Finally, we found that H(2) could regulate the polarization of CD4+ T cells and the level of related cytokines. This study suggests H(2) as an effective radioprotective agent on immune system by scavenging reactive oxygen species.

  12. Hydrogen sulfide decreases the plasma lipid peroxidation induced by homocysteine and its thiolactone.

    PubMed

    Olas, Beata; Kontek, Bogdan

    2015-06-01

    Hydrogen sulfide (H2S) has been investigated widely in recent years. H2S plays a variety of roles in different biological systems, including cardiovascular system. It is the final product of amino acids metabolism, which contains sulfur-cysteine and homocysteine (Hcy). In human plasma, there are several various forms of homocysteine: free Hcy, protein-bound Hcy (S-linked, and N-linked), and homocysteine thiolactone (HTL). Our previous works have shown that both Hcy in the reduced form and its thiolactone may modify fibrinolysis, coagulation process, and biological activity of blood platelets. Moreover, we have observed that HTL, like its precursor-Hcy stimulated the generation of superoxide anion radicals (O 2 (-•) ) in blood platelets. The aim of our study in vitro was to establish the influence of sodium hydrosulfide (NaHS, as a fast-releasing H2S donor; at tested concentrations: 10-1000 µM) on the plasma lipid peroxidation induced by the reduced Hcy (at final concentrations of 0.01-1 mM) and HTL (at final concentrations of 0.1-1 µM). Our results indicate that 10 and 100 µM NaHS decreased the lipid peroxidation in plasma treated with 1 mM Hcy or 1 µM HTL (when NaHS and Hcy/HTL were added to plasma together). The protective effect of 10 and 100 µM NaHS against the lipid peroxidation in plasma preincubated with 1 mM Hcy or 1 µM HTL was also observed. Considering the data presented in this study, we suggest that the lipid peroxidation (induced by different forms of homocysteine) may be reduced by hydrogen sulfide.

  13. Protective effect of hydrogen-rich saline against radiation-induced immune dysfunction

    PubMed Central

    Zhao, Sanhu; Yang, Yanyong; Liu, Wen; Xuan, Zhiqiang; Wu, Shouming; Yu, Shunfei; Mei, Ke; Huang, Yijuan; Zhang, Pei; Cai, Jianming; Ni, Jin; Zhao, Yaoxian

    2014-01-01

    Recent studies showed that hydrogen can be used as an effective radioprotective agent through scavenging free radicals. This study was undertaken to evaluate the radioprotective effects of hydrogen on immune system in mice. H2 was dissolved in physiological saline using an apparatus produced by our department. Spleen index and histological analysis were used to evaluate the splenic structural damage. Spleen superoxide dismutase, GSH, MDA were measured to appraise the antioxidant capacity and a DCF assay for the measurement of radical oxygen species. Cell apoptosis was evaluated by an Annexin V-FITC and propidium iodide staining method as well as the apoptotic proteins such as Bcl-2, Bax, caspase-3 and c-caspase-3. CD4+ and CD8+ T cells subtypes were detected by flow cytometry with FITC-labelled antimouse CD4 and PE antimouse CD8 staining. Real-time PCR was utilized to determine the CD4+ T cell subtypes and related cytokines. Our study demonstrated that pre-treatment with H2 could increase the spleen index and attenuate the radiation damage on splenic structure. Radical oxygen species level was also reduced by H2 treatment. H2 also inhibited radiation-induced apoptosis in splenocytes and down-regulated pro-apoptotic proteins in living mice. Radiation-induced imbalance of T cells was attenuated by H2. Finally, we found that H2 could regulate the polarization of CD4+ T cells and the level of related cytokines. This study suggests H2 as an effective radioprotective agent on immune system by scavenging reactive oxygen species. PMID:24618260

  14. Hydrogen Peroxide Is Involved in Abscisic Acid-Induced Stomatal Closure in Vicia faba1

    PubMed Central

    Zhang, Xiao; Zhang, Lin; Dong, Facai; Gao, Junfeng; Galbraith, David W.; Song, Chun-Peng

    2001-01-01

    One of the most important functions of the plant hormone abscisic acid (ABA) is to induce stomatal closure by reducing the turgor of guard cells under water deficit. Under environmental stresses, hydrogen peroxide (H2O2), an active oxygen species, is widely generated in many biological systems. Here, using an epidermal strip bioassay and laser-scanning confocal microscopy, we provide evidence that H2O2 may function as an intermediate in ABA signaling in Vicia faba guard cells. H2O2 inhibited induced closure of stomata, and this effect was reversed by ascorbic acid at concentrations lower than 10−5 m. Further, ABA-induced stomatal closure also was abolished partly by addition of exogenous catalase (CAT) and diphenylene iodonium (DPI), which are an H2O2 scavenger and an NADPH oxidase inhibitor, respectively. Time course experiments of single-cell assays based on the fluorescent probe dichlorofluorescein showed that the generation of H2O2 was dependent on ABA concentration and an increase in the fluorescence intensity of the chloroplast occurred significantly earlier than within the other regions of guard cells. The ABA-induced change in fluorescence intensity in guard cells was abolished by the application of CAT and DPI. In addition, ABA microinjected into guard cells markedly induced H2O2 production, which preceded stomatal closure. These effects were abolished by CAT or DPI micro-injection. Our results suggest that guard cells treated with ABA may close the stomata via a pathway with H2O2 production involved, and H2O2 may be an intermediate in ABA signaling. PMID:11500543

  15. Hydrogen Sulfide Inhibits Transforming Growth Factor-β1-Induced EMT via Wnt/Catenin Pathway.

    PubMed

    Guo, Lin; Peng, Wen; Tao, Jie; Lan, Zhen; Hei, Hongya; Tian, Lulu; Pan, Wanma; Wang, Li; Zhang, Xuemei

    2016-01-01

    Hydrogen sulfide (H2S) has anti-fibrotic potential in lung, kidney and other organs. The exogenous H2S is released from sodium hydrosulfide (NaHS) and can influence the renal fibrosis by blocking the differentiation of quiescent renal fibroblasts to myofibroblasts. But whether H2S affects renal epithelial-to-mesenchymal transition (EMT) and the underlying mechanisms remain unknown. Our study is aimed at investigating the in vitro effects of H2S on transforming growth factor-β1 (TGF-β1)-induced EMT in renal tubular epithelial cells (HK-2 cells) and the associated mechanisms. The induced EMT is assessed by Western blotting analysis on the expressions of α-SMA, E-cadherin and fibronectin. HK-2 cells were treated with NaHS before incubating with TGF-β1 to investigate its effect on EMT and the related molecular mechanism. Results demonstrated that NaHS decreased the expression of α-SMA and fibronectin, and increased the expression of E-cadherin. NaHS reduced the expression of TGF-β receptor type I (TβR I) and TGF-β receptor type II (TβR II). In addition, NaHS attenuated TGF-β1-induced increase of β-catenin expression and ERK phosphorylation. Moreover, it inhibited the TGF-β1-induced nuclear translocation of ββ-catenin. These effects of NaHS on fibronectin, E-cadherin and TβR I were abolished by the ERK inhibitor U0126 or β-catenin inhibitor XAV939, or β-catenin siRNA interference. We get the conclusion that NaHS attenuated TGF-β1-induced EMT in HK-2 cells through both ERK-dependent and β-catenin-dependent pathways.

  16. Auxin-induced hydrogen sulfide generation is involved in lateral root formation in tomato.

    PubMed

    Fang, Tao; Cao, Zeyu; Li, Jiale; Shen, Wenbiao; Huang, Liqin

    2014-03-01

    Similar to auxin, hydrogen sulfide (H2S), mainly produced by l-cysteine desulfhydrase (DES; EC 4.4.1.1) in plants, could induce lateral root formation. The objective of this study was to test whether H2S is also involved in auxin-induced lateral root development in tomato (Solanum lycopersicum L.) seedlings. We observed that auxin depletion-induced down-regulation of transcripts of SlDES1, decreased DES activity and endogenous H2S contents, and the inhibition of lateral root formation were rescued by sodium hydrosulfide (NaHS, an H2S donor). However, No additive effects were observed when naphthalene acetic acid (NAA) was co-treated with NaHS (lower than 10 mM) in the induction of lateral root formation. Subsequent work revealed that a treatment with NAA or NaHS could simultaneously induce transcripts of SlDES1, DES activity and endogenous H2S contents, and thereafter the stimulation of lateral root formation. It was further confirmed that H2S or HS(-), not the other sulfur-containing components derived from NaHS, was attributed to the stimulative action. The inhibition of lateral root formation and decreased of H2S metabolism caused by an H2S scavenger hypotaurine (HT) were reversed by NaHS, but not NAA. Molecular evidence revealed that both NaHS- or NAA-induced modulation of some cell cycle regulatory genes, including the up-regulation of SlCDKA;1, SlCYCA2;1, together with simultaneous down-regulation of SlKRP2, were differentially reversed by HT pretreatment. To summarize, above results clearly suggested that H2S might, at least partially, act as a downstream component of auxin signaling to trigger lateral root formation. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  17. Neuroprotective effect of didymin on hydrogen peroxide-induced injury in the neuronal membrane system.

    PubMed

    Morelli, Sabrina; Piscioneri, Antonella; Salerno, Simona; Al-Fageeh, Mohamed B; Drioli, Enrico; De Bartolo, Loredana

    2014-01-01

    In this study, the flavonoid didymin was administered in vitro in neuronal cells after hydrogen peroxide (H2O2)-induced injury (neurorescue) in order to investigate the effects of this natural molecule on cell damage in a neuronal membrane system. The results showed the effects of didymin in neuronal cells by using a polycaprolactone biodegradable membrane system as an in vitro model. Two major findings are presented in this study: first is the antioxidant property of didymin and, second, for the first time we provide evidence concerning its ability to rescue neuronal cells from oxidative damage. Didymin showed radical scavenging activities and it protected the neuronal cells against H2O2-induced neurotoxicity. Didymin increased cell viability, decreased intracellular reactive oxygen species generation, stimulated superoxide dismutase, catalase and glutathione peroxidase activity in neuronal cells which were previously insulted with H2O2. In addition, didymin strikingly inhibited H2O2-induced mitochondrial dysfunctions in terms of reduction of mitochondria membrane potential and the activation of cleaved caspase-3, and also decreased dramatically the H2O2-induced phosphorylation of c-Jun N-terminal kinase. Therefore, this molecule is capable of inducing recovery from oxidative damage, and promoting and/or restoring normal cellular conditions. Moreover, the mechanism underlying the protective effects of didymin in H2O2-injured neuronal cells might be related to the activation of antioxidant defense enzymes as well as to the inhibition of apoptotic features, such as p-JNK and caspase-3 activation. These data suggest that didymin may be a potential therapeutic molecule for the treatment of neurodegenerative disorders associated with oxidative stress.

  18. 7. Historic American Buildings Survey, C. C. Adams, Photographer August ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Historic American Buildings Survey, C. C. Adams, Photographer August 1931, SEED PACKING ROOM, Gift of New York State Department of Education. - Shaker North Family Washhouse (first), Shaker Road, New Lebanon, Columbia County, NY

  19. Evaluation of Heat-affected Zone Hydrogen-induced Cracking in High-strength Steels

    NASA Astrophysics Data System (ADS)

    Yue, Xin

    Shipbuilding is heavily reliant on welding as a primary fabrication technique. Any high performance naval steel must also possess good weldability. It is therefore of great practical importance to conduct weldability testing of naval steels. Among various weldability issues of high-strength steels, hydrogen-induced cracking (HIC) in the heat-affected zone (HAZ) following welding is one of the biggest concerns. As a result, in the present work, research was conducted to study the HAZ HIC susceptibility of several naval steels. Since the coarse-grained heat-affected zone (CGHAZ) is generally known to be the most susceptible to HIC in the HAZ region, the continuous cooling transformation (CCT) behavior of the CGHAZ of naval steels HSLA-65, HSLA-100, and HY-100 was investigated. The CGHAZ microstructure over a range of cooling rates was characterized, and corresponding CCT diagrams were constructed. It was found that depending on the cooling rate, martensite, bainite, ferrite and pearlite can form in the CGHAZ of HSLA-65. For HSLA-100 and HY-100, only martensite and bainite formed over the range of cooling rates that were simulated. The constructed CCT diagrams can be used as a reference to select welding parameters to avoid the formation of high-hardness martensite in the CGHAZ, in order to ensure resistance to hydrogen-induced cracking. Implant testing was conducted on the naval steels to evaluate their susceptibility to HAZ HIC. Stress vs. time to failure curves were plotted, and the lower critical stress (LCS), normalized critical stress ratio (NCSR) and embrittlement index (EI) for each steel were determined, which were used to quantitatively compare HIC susceptibility. The CGHAZ microstructure of the naval steels was characterized, and the HIC fracture behavior was studied. Intergranular (IG), quasi-cleavage (QC) and microvoid coalescence (MVC) fracture modes were found to occur in sequence during the crack initiation and propagation process. This was

  20. Effects of hydrogen atoms on surface conductivity of diamond film

    SciTech Connect

    Liu, Fengbin Cui, Yan; Qu, Min; Di, Jiejian

    2015-04-15

    To investigate the effects of surface chemisorbed hydrogen atoms and hydrogen atoms in the subsurface region of diamond on surface conductivity, models of hydrogen atoms chemisorbed on diamond with (100) orientation and various concentrations of hydrogen atoms in the subsurface layer of the diamond were built. By using the first-principles method based on density functional theory, the equilibrium geometries and densities of states of the models were studied. The results showed that the surface chemisorbed hydrogen alone could not induce high surface conductivity. In addition, isolated hydrogen atoms in the subsurface layer of the diamond prefer to exist at the bond centre site of the C-C bond. However, such a structure would induce deep localized states, which could not improve the surface conductivity. When the hydrogen concentration increases, the C-H-C-H structure and C-3H{sub bc}-C structure in the subsurface region are more stable than other configurations. The former is not beneficial to the increase of the surface conductivity. However, the latter would induce strong surface states near the Fermi level, which would give rise to high surface conductivity. Thus, a high concentration of subsurface hydrogen atoms in diamond would make significant contributions to surface conductivity.

  1. Atomic hydrogen emission induced by TEA CO(2) laser bombardment on solid samples at low pressure and its analytical application.

    PubMed

    Idris, Nasrullah; Terai, Sumito; Lie, Tjung Jie; Kurniawan, Hendrik; Kobayashi, Takao; Maruyama, Tadashi; Kagawa, Kiichiro

    2005-01-01

    Hydrogen emission has been studied in laser plasmas by focusing a TEA CO(2) laser (10.6 microm, 500 mJ, 200 ns) on various types of samples, such as glass, quartz, black plastic sheet, and oil on copper plate sub-target. It was found that H(alpha) emission with a narrow spectral width occurs with high efficiency when the laser plasma is produced in the low-pressure region. On the contrary, the conventional well-known laser-induced breakdown spectroscopy (LIBS), which is usually carried out at atmospheric air pressure, cannot be applied to the analysis of hydrogen as an impurity. By combining low-pressure laser-induced plasma spectroscopy with laser surface cleaning, a preliminary quantitative analysis was made on zircaloy pipe samples intentionally doped with hydrogen. As a result, a good linear relationship was obtained between H(alpha) emission intensity and its concentration.

  2. Hydrogen-Induced Delayed Cracking in TRIP-Aided Lean-Alloyed Ferritic-Austenitic Stainless Steels.

    PubMed

    Papula, Suvi; Sarikka, Teemu; Anttila, Severi; Talonen, Juho; Virkkunen, Iikka; Hänninen, Hannu

    2017-06-03

    Susceptibility of three lean-alloyed ferritic-austenitic stainless steels to hydrogen-induced delayed cracking was examined, concentrating on internal hydrogen contained in the materials after production operations. The aim was to study the role of strain-induced austenite to martensite transformation in the delayed cracking susceptibility. According to the conducted deep drawing tests and constant load tensile testing, the studied materials seem not to be particularly susceptible to delayed cracking. Delayed cracks were only occasionally initiated in two of the materials at high local stress levels. However, if a delayed crack initiated in a highly stressed location, strain-induced martensite transformation decreased the crack arrest tendency of the austenite phase in a duplex microstructure. According to electron microscopy examination and electron backscattering diffraction analysis, the fracture mode was predominantly cleavage, and cracks propagated along the body-centered cubic (BCC) phases ferrite and α'-martensite. The BCC crystal structure enables fast diffusion of hydrogen to the crack tip area. No delayed cracking was observed in the stainless steel that had high austenite stability. Thus, it can be concluded that the presence of α'-martensite increases the hydrogen-induced cracking susceptibility.

  3. Photo-induced hydrogen production in a helical peptide incorporating a [FeFe] hydrogenase active site mimic.

    PubMed

    Roy, Anindya; Madden, Christopher; Ghirlanda, Giovanna

    2012-10-11

    There is growing interest in the development of hydrogenase mimics for solar fuel production. Here, we present a bioinspired mimic designed by anchoring a diiron hexacarbonyl cluster to a model helical peptide via an artificial dithiol amino acid. The [FeFe]-peptide complex catalyses photo-induced production of hydrogen in water.

  4. Hydrogen-Induced Delayed Cracking in TRIP-Aided Lean-Alloyed Ferritic-Austenitic Stainless Steels

    PubMed Central

    Papula, Suvi; Sarikka, Teemu; Anttila, Severi; Talonen, Juho; Virkkunen, Iikka; Hänninen, Hannu

    2017-01-01

    Susceptibility of three lean-alloyed ferritic-austenitic stainless steels to hydrogen-induced delayed cracking was examined, concentrating on internal hydrogen contained in the materials after production operations. The aim was to study the role of strain-induced austenite to martensite transformation in the delayed cracking susceptibility. According to the conducted deep drawing tests and constant load tensile testing, the studied materials seem not to be particularly susceptible to delayed cracking. Delayed cracks were only occasionally initiated in two of the materials at high local stress levels. However, if a delayed crack initiated in a highly stressed location, strain-induced martensite transformation decreased the crack arrest tendency of the austenite phase in a duplex microstructure. According to electron microscopy examination and electron backscattering diffraction analysis, the fracture mode was predominantly cleavage, and cracks propagated along the body-centered cubic (BCC) phases ferrite and α’-martensite. The BCC crystal structure enables fast diffusion of hydrogen to the crack tip area. No delayed cracking was observed in the stainless steel that had high austenite stability. Thus, it can be concluded that the presence of α’-martensite increases the hydrogen-induced cracking susceptibility. PMID:28772975

  5. The influence of the EUV spectrum on plasma induced by EUV radiation in argon and hydrogen gas

    NASA Astrophysics Data System (ADS)

    van der Horst, R. M.; Osorio, E. A.; Banine, V. Y.; Beckers, J.

    2016-02-01

    Plasmas induced by EUV radiation are scarcely investigated, although they are unique since they are created without any discharge. These plasmas are also of interest from an applicational point of view, since they are related to the lifetime of optics in EUV lithography tools. In order to assess this impact, it is essential to characterize and understand EUV-induced plasma. In this contribution the influence of the background gas (argon and hydrogen) in the lithography tool and the spectrum of the illumination source on the electron density of EUV-induced plasma is investigated using microwave cavity resonance spectroscopy. The experimental results showed that out-of-band radiation (>20 nm) is the main contributor to EUV-induced plasma in both argon and hydrogen. In hydrogen, this contribution is relatively more important than in argon due to the stronger wavelength dependence of the photoionization cross section of hydrogen than of argon. Furthermore, the production of electrons by out-of-band radiation lasts longer than the production by in-band radiation (10-20 nm) due to the longer temporal width of out-of-band radiation. Finally, the obtained results correspond reasonably well with estimates from a simplified absorption model.

  6. Kinetic model for photoinduced and thermally induced creation and annihilation of metastable defects in hydrogenated amorphous silicon

    NASA Astrophysics Data System (ADS)

    Abdulhalim, I.

    1995-03-01

    A microscopic many-body model is proposed for the kinetics of metastable defects (MSDs) in hydrogenated amorphous silicon (a-Si:H). It is based on the existence of short-lived large energy fluctuations which induce transient traps for carriers that release their energy and enhance the creation or annihilation of MSDs. The expressions found for the photoinduced and thermally induced creation and annihilation rates' coefficients explain the dependence on the variety of parameters.

  7. Protective effect of oat bran extracts on human dermal fibroblast injury induced by hydrogen peroxide.

    PubMed

    Feng, Bing; Ma, Lai-ji; Yao, Jin-jing; Fang, Yun; Mei, Yan-ai; Wei, Shao-min

    2013-02-01

    Oat contains different components that possess antioxidant properties; no study to date has addressed the antioxidant effect of the extract of oat bran on the cellular level. Therefore, the present study focuses on the investigation of the protective effect of oat bran extract by enzymatic hydrolysates on human dermal fibroblast injury induced by hydrogen peroxide (H(2)O(2)). Kjeldahl determination, phenol-sulfuric acid method, and high-performance liquid chromatography (HPLC) analysis indicated that the enzymatic products of oat bran contain a protein amount of 71.93%, of which 97.43% are peptides with a molecular range from 438.56 to 1301.01 Da. Assays for 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity indicate that oat peptide-rich extract has a direct and concentration-dependent antioxidant activity. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) colorimetric assay and the TdT-mediated digoxigenin-dUTP nick-end labeling (TUNEL) assay for apoptosis showed that administration of H(2)O(2) in human dermal fibroblasts caused cell damage and apoptosis. Pre-incubation of human dermal fibroblasts with the Oatp for 24 h markedly inhibited human dermal fibroblast injury induced by H(2)O(2), but application oat peptides with H(2)O(2) at same time did not. Pre-treatment of human dermal fibroblasts with Oatp significantly reversed the H(2)O(2)-induced decrease of superoxide dismutase (SOD) and the inhibition of malondialdehyde (MDA). The results demonstrate that oat peptides possess antioxidant activity and are effective against H(2)O(2)-induced human dermal fibroblast injury by the enhanced activity of SOD and decrease in MDA level. Our results suggest that oat bran will have the potential to be further explored as an antioxidant functional food in the prevention of aging-related skin injury.

  8. Intravenous hydrogen sulfide does not induce hypothermia or improve survival from hemorrhagic shock in pigs.

    PubMed

    Drabek, Tomas; Kochanek, Patrick M; Stezoski, Jason; Wu, Xianren; Bayir, Hülya; Morhard, Ryan C; Stezoski, S William; Tisherman, Samuel A

    2011-01-01

    Several laboratory studies suggested that induced hypothermia during hemorrhagic shock improves survival. Inhaled hydrogen sulfide (H2S) induced hypothermia and decreased metabolism in mice and rats but not in piglets. We tested the hypothesis that i.v. H2S will induce hypothermia, reduce oxygen consumption (VO2), and improve outcome in prolonged hemorrhagic shock in pigs. We also assessed markers of organ injury (alanine aminotransferase, aspartate aminotransferase, creatine phosphokinase, creatinine, and troponin) and level of protein thiols to monitor H2S metabolism. In a prospective randomized study, pigs were subjected to volume-controlled hemorrhagic shock with limited fluid resuscitation to maintain MAP 30 mmHg or greater. The study group received infusion of H2S at 5 mg·kg·h; the control group received vehicle (n = 8 per group). Dose was based on the highest tolerated dose in pilot studies. Full resuscitation was initiated after 3 h. There were no differences in survival at 24 h between groups (2/8 in H2S vs. 3/8 in control group). Heart rate increased similarly during hemorrhagic shock in both groups. Cardiac output was better preserved in the delayed phase of hemorrhagic shock in the control group. Temperature and VO2 were similar in both groups during hemorrhagic shock and resuscitation. Markers of organ injury and protein thiols markedly increased in both groups with no differences between groups. In conclusion, we were not able to demonstrate the hypothermia-inducing effect or a reduction in VO2 from H2S infusion in our model of hemorrhagic shock in pigs. Our data mirror those seen in piglets and provide additional evidence of difficulty in translating the hypothermia effect of H2S to large animals in a clinically relevant postinsult paradigm.

  9. MicroRNA-135a Regulates Apoptosis Induced by Hydrogen Peroxide in Rat Cardiomyoblast Cells

    PubMed Central

    Liu, Ning; Shi, Yong-Feng; Diao, Hong-Ying; Li, Yang-Xue; Cui, Yan; Song, Xian-Jing; Tian, Xin; Li, Tian-Yi; Liu, Bin

    2017-01-01

    Oxidative stress and apoptosis are the most important pathologic features of ischemic heart disease. Recent research has indicated that microRNAs (miRs) play an essential role in apoptosis. However, whether miRs might regulate B cell lymphoma-2 (Bcl-2) protein in apoptosis during ischemic heart disease is still unclear. The aim of this study, therefore, was to confirm the regulation of microRNA-135a (miR-135a) in oxidative stress injuries induced by hydrogen peroxide (H2O2) in rat cardiomyoblast cells H9c2. To this end, we analyzed the effects of H2O2 treatment on miR-135a expression in rat cardiomyocytes. Furthermore, we upregulated and inhibited miR-135a using mimics and inhibitors, respectively, and examined the effects on cell viability and apoptosis-related proteins. We observed that miR-135a was markedly up-regulated under H2O2 treatment in rat cardiomyoblast cells. Overexpression of miR-135a blocked the Bcl-2 protein and enhanced the apoptosis induced by H2O2, and miR-135a inhibition restored Bcl-2 protein expression. Interestingly, miR-135a inhibition did not attenuate H2O2-induced apoptosis with Bcl-2 knockdown. The results of the present study indicate that miR-135a regulates H2O2-induced apoptosis in H9c2 cells via targeting Bcl-2, and that miR-135a may be a novel therapeutic target for ischemic heart disease. PMID:28123342

  10. Pro-inflammatory effects of hydrogen sulphide on substance P in caerulein-induced acute pancreatitis.

    PubMed

    Bhatia, Madhav; Sidhapuriwala, Jenab N; Ng, Siaw Wei; Tamizhselvi, Ramasamy; Moochhala, Shabbir M

    2008-04-01

    Hydrogen sulphide (H(2)S), a novel gasotransmitter, has been recognized to play an important role in inflammation. Cystathionine-gamma-lyase (CSE) is a major H(2)S synthesizing enzyme in the cardiovascular system and DL-propargylglycine (PAG) is an irreversible inhibitor of CSE. Substance P (SP), a product of preprotachykinin-A (PPT-A) gene, is a well-known pro-inflammatory mediator which acts principally through the neurokinin-1 receptor (NK-1R). We have shown an association between H(2)S and SP in pulmonary inflammation as well as a pro-inflammatory role of H(2)S and SP in acute pancreatitis. The present study was aimed to investigate the interplay between pro-inflammatory effects of H(2)S and SP in a murine model of caerulein-induced acute pancreatitis. Acute pancreatitis was induced in mice by 10 hourly intraperitoneal injections of caerulein (50 (g/kg). PAG (100 mg/kg, i.p.) was administered either 1 hr before (prophylactic) or 1 hr after (therapeutic) the first caerulein injection. PAG, given prophylactically as well as therapeutically, significantly reduced plasma H(2)S levels and pancreatic H(2)S synthesizing activities as well as SP concentrations in plasma, pancreas and lung compared with caerulein-induced acute pancreatitis. Furthermore, prophylactic as well as therapeutic administration of PAG significantly reduced PPT-A mRNA expression and NK-1R mRNA expression in both pancreas and lung when compared with caerulein-induced acute pancreatitis. These results suggest that the pro-inflammatory effects of H(2)S may be mediated by SP-NK-1R pathway in acute pancreatitis.

  11. A hydrogen peroxide-generating agent, 6-formylpterin, enhances heat-induced apoptosis.

    PubMed

    Wada, S; Cui, Z-G; Kondo, T; Zhao, Q-L; Ogawa, R; Shoji, M; Arai, T; Makino, K; Furuta, I

    2005-05-01

    The enhancement of heat-induced apoptosis by 6-formylpterin, an intra-cellular generator of hydrogen peroxide (H2O2), was examined in human myelomonocytic lymphoma U937 cells. The cells were treated with either 6-formylpterin alone at a nontoxic concentration of 300 microM (37 degrees C), heat shock (44 degrees C per 20 min) alone or a combination of the two, then incubated at 37 degrees C for 6 h. Assessments of apoptosis, mitochondrial membrane potential and caspase-3 activation were performed by flow cytometry. Moreover, caspase-8 activation and changes in the intra-cellular Ca2+ concentration ([Ca2+]i) were examined. Bax, Bcl-2, Bcl-XL, Bid, cytochrome c and PKCd were detected by Western blotting. The induction of heat-induced apoptosis evaluated by morphological observation and DNA fragmentation were promoted by the addition of 6-formylpterin. Mitochondrial membrane potential was decreased and the activation of caspase-3 and -8 was enhanced in the cells treated with the combination. A decreased-expression of Bid was noted, although no significant changes in Bax, Bcl-2 and Bcl-XL expression were observed after the combined treatment. Furthermore, both the release of cytochrome c from mitochondria to cytosol and the translocation of PKCd from cytosol to mitochondria, which were induced by heat shock, were enhanced by the addition of 6-formylpterin. The number of cells with a higher [Ca2+]i was also increased by the addition of 6-formylpterin. These findings suggest that the increase in [Ca2+]i, the activation of the mitochondria-caspase dependent pathway and the translocation of PKCd to mitochondria play principal roles in the enhancement of heat-induced apoptosis by 6-FP.

  12. Geraniol attenuates hydrogen peroxide-induced liver fatty acid alterations in male rats

    PubMed Central

    Ozkaya, Ahmet; Sahin, Zafer; Gorgulu, Ahmet Orhan; Yuce, Abdurrauf; Celik, Sait

    2017-01-01

    Background: Hydrogen peroxide (H2O2) is an oxidant agent and this molecule naturally occurs in the body as a product of aerobic metabolism. Geraniol is a plant-derived natural antioxidant. The aim of this study was to determine the role of geraniol on hepatic fatty acids alterations following H2O2-induced oxidative stress in male rats. Methods: After randomization, male Wistar rats were divided into four groups (n = 7 each group). Geraniol (50 mg/kg, dissolved in corn oil) and H2O2 (16 mg/kg, dissolved in distilled water) were administered by an intraperitoneal injection. Administrations were performed during 30 days with 1-day interval. Results: Administration of H2O2 resulted with a significant increase in malondialdehyde (MDA) and a significant decrease in glutathione (GSH) peroxidase glutathione level; geraniol restored its effects on liver. However, hepatic catalase (CAT) activities were significantly higher in H2O2, geraniol, and geraniol+H2O2 groups than control group. The ratio of hepatic total saturated fatty acids increased in H2O2-treated animals compared with control. In addition, hepatic total unsaturated fatty acids reduced in H2O2 group compared with control. The percentages of both hepatic total saturated and unsaturated fatty acids were not different between geraniol+H2O2 and control groups. Conclusions: H2O2-induced oxidative stress may affect fatty acid composition in liver and body. Geraniol can partly restore oxidative hepatic damage because it cannot completely reverse the H2O2-induced increase in hepatic CAT activities. Moreover, this natural compound can regulate hepatic total saturated and unsaturated fatty acids percentages against H2O2-induced alterations. PMID:28163957

  13. Hydrogen peroxide inducible clone-5 mediates reactive oxygen species signaling for hepatocellular carcinoma progression

    PubMed Central

    Wu, Jia-Ru; Hu, Chi-Tan; You, Ren-In; Pan, Siou-Mei; Cheng, Chuan-Chu; Lee, Ming-Che; Wu, Chao-Chuan; Chang, Yao-Jen; Lin, Shu-Chuan; Chen, Chang-Shan; Lin, Teng-Yi; Wu, Wen-Sheng

    2015-01-01

    One of the signaling components involved in hepatocellular carcinoma (HCC) progression is the focal adhesion adaptor paxillin. Hydrogen peroxide inducible clone-5 (Hic-5), one of the paralogs of paxillin, exhibits many biological functions distinct from paxillin, but may cooperate with paxillin to trigger tumor progression. Screening of Hic-5 in 145 surgical HCCs demonstrated overexpression of Hic-5 correlated well with intra- and extra-hepatic metastasis. Hic-5 highly expressed in the patient derived HCCs with high motility such as HCC329 and HCC353 but not in the HCCs with low motility such as HCC340. Blockade of Hic-5 expression prevented constitutive migration of HCC329 and HCC353 and HGF-induced cell migration of HCC340. HCC329Hic-5(−), HCC353Hic-5(−), HCC372Hic-5(−), the HCCs stably depleted of Hic-5, exhibited reduced motility compared with each HCC expressing Scramble shRNA. Moreover, intra/extrahepatic metastasis of HCC329Hic-5(−) in SCID mice greatly decreased compared with HCC329Scramble. On the other hand, ectopic Hic-5 expression in HCC340 promoted its progression. Constitutive and HGF-induced Hic-5 expression in HCCs were suppressed by the reactive oxygen species (ROS) scavengers catalase and dithiotheritol and c-Jun N-terminal kinase (JNK) inhibitor SP600125. On the contrary, depletion of Hic-5 blocked constitutive and HGF-induced ROS generation and JNK phosphorylation in HCCs. Also, ectopic expression of Hic-5 enhanced ROS generation and JNK phosphorylation. These highlighted that Hic-5 plays a central role in the positive feedback ROS-JNK signal cascade. Finally, the Chinese herbal derived anti-HCC peptide LZ-8 suppressed constitutive Hic-5 expression and JNK phosphorylation. In conclusion, Hic-5 mediates ROS-JNK signaling and may serve as a therapeutic target for prevention of HCC progression. PMID:26416447

  14. Inhalation of hydrogen gas attenuates left ventricular remodeling induced by intermittent hypoxia in mice.

    PubMed

    Hayashi, Tetsuya; Yoshioka, Toshitaka; Hasegawa, Kenichi; Miyamura, Masatoshi; Mori, Tatsuhiko; Ukimura, Akira; Matsumura, Yasuo; Ishizaka, Nobukazu

    2011-09-01

    Sleep apnea syndrome increases the risk of cardiovascular morbidity and mortality. We previously reported that intermittent hypoxia increases superoxide production in a manner dependent on nicotinamide adenine dinucleotide phosphate and accelerates adverse left ventricular (LV) remodeling. Recent studies have suggested that hydrogen (H(2)) may have an antioxidant effect by reducing hydroxyl radicals. In this study, we investigated the effects of H(2) gas inhalation on lipid metabolism and LV remodeling induced by intermittent hypoxia in mice. Male C57BL/6J mice (n = 62) were exposed to intermittent hypoxia (repetitive cycle of 1-min periods of 5 and 21% oxygen for 8 h during daytime) for 7 days. H(2) gas (1.3 vol/100 vol) was given either at the time of reoxygenation, during hypoxic conditions, or throughout the experimental period. Mice kept under normoxic conditions served as controls (n = 13). Intermittent hypoxia significantly increased plasma levels of low- and very low-density cholesterol and the amount of 4-hydroxy-2-nonenal-modified protein adducts in the LV myocardium. It also upregulated mRNA expression of tissue necrosis factor-α, interleukin-6, and brain natriuretic peptide, increased production of superoxide, and induced cardiomyocyte hypertrophy, nuclear deformity, mitochondrial degeneration, and interstitial fibrosis. H(2) gas inhalation significantly suppressed these changes induced by intermittent hypoxia. In particular, H(2) gas inhaled at the timing of reoxygenation or throughout the experiment was effective in preventing dyslipidemia and suppressing superoxide production in the LV myocardium. These results suggest that inhalation of H(2) gas was effective for reducing oxidative stress and preventing LV remodeling induced by intermittent hypoxia relevant to sleep apnea.

  15. Interaction between hydrogen sulfide-induced sulfhydration and tyrosine nitration in the KATP channel complex

    PubMed Central

    Kang, Minho; Hashimoto, Atsushi; Gade, Aravind

    2014-01-01

    Hydrogen sulfide (H2S) is an endogenous gaseous mediator affecting many physiological and pathophysiological conditions. Enhanced expression of H2S and reactive nitrogen/oxygen species (RNS/ROS) during inflammation alters cellular excitability via modulation of ion channel function. Sulfhydration of cysteine residues and tyrosine nitration are the posttranslational modifications induced by H2S and RNS, respectively. The objective of this study was to define the interaction between tyrosine nitration and cysteine sulfhydration within the ATP-sensitive K+ (KATP) channel complex, a significant target in experimental colitis. A modified biotin switch assay was performed to determine sulfhydration of the KATP channel subunits, Kir6.1, sulphonylurea 2B (SUR2B), and nitrotyrosine measured by immunoblot. NaHS (a donor of H2S) significantly enhanced sulfhydration of SUR2B but not Kir6.1 subunit. 3-Morpholinosydnonimine (SIN-1) (a donor of peroxynitrite) induced nitration of Kir6.1 subunit but not SUR2B. Pretreatment with NaHS reduced the nitration of Kir6.1 by SIN-1 in Chinese hamster ovary cells cotransfected with the two subunits, as well as in enteric glia. Two specific mutations within SUR2B, C24S, and C1455S prevented sulfhydration by NaHS, and these mutations prevented NaHS-induced reduction in tyrosine nitration of Kir6.1. NaHS also reversed peroxynitrite-induced inhibition of smooth muscle contraction. These studies suggest that posttranslational modifications of the two subunits of the KATP channel interact to alter channel function. The studies described herein demonstrate a unique mechanism by which sulfhydration of one subunit modifies tyrosine nitration of another subunit within the same channel complex. This interaction provides a mechanistic insight on the protective effects of H2S in inflammation. PMID:25552582

  16. Strain energy density: Distance criterion for the initiation of hydrogen-induced cracking of Alloy X-750

    SciTech Connect

    Hall, M.M. Jr.; Symons, D.M.; Kearns, J.J.

    1991-12-31

    A criterion for initiation of subcritical crack growth at blunt notches and sharp defects was developed and applied to hydrogen- induced cracking of the Ni-base superalloy X-750. Onset of crack growth is shown to occur when a critical strain energy density is attained at a distance from the notch and crack tips characteristic of the microstructure along the prospective crack path. Rising load crack growth initiation data were obtained using homogeneous hydrogen precharged notched and fatigue precracked bend specimens. Notch root radius, grain size and hydrogen concentration were varied. Crack growth initiation loads were dependent on both notch root radius and bulk precharged hydrogen concentration. These data were shown to be correlated using a critical strain energy at-a-distance (SEDAD) criterion. Furthermore, an elastic-plastic analysis of the strain energy distributions showed that the critical strain energy density value is attained at one grain diameter from the notch and fatigue precrack tips. Mechanical and microstructural aspects of crack growth process and relevance to hydrogen-induced cracking are discussed.

  17. Genetic Targets of Hydrogen Sulfide in Ventilator-Induced Lung Injury – A Microarray Study

    PubMed Central

    Spassov, Sashko; Pfeifer, Dietmar; Strosing, Karl; Ryter, Stefan; Hummel, Matthias; Faller, Simone; Hoetzel, Alexander

    2014-01-01

    Recently, we have shown that inhalation of hydrogen sulfide (H2S) protects against ventilator-induced lung injury (VILI). In the present study, we aimed to determine the underlying molecular mechanisms of H2S-dependent lung protection by analyzing gene expression profiles in mice. C57BL/6 mice were subjected to spontaneous breathing or mechanical ventilation in the absence or presence of H2S (80 parts per million). Gene expression profiles were determined by microarray, sqRT-PCR and Western Blot analyses. The association of Atf3 in protection against VILI was confirmed with a Vivo-Morpholino knockout model. Mechanical ventilation caused a significant lung inflammation and damage that was prevented in the presence of H2S. Mechanical ventilation favoured the expression of genes involved in inflammation, leukocyte activation and chemotaxis. In contrast, ventilation with H2S activated genes involved in extracellular matrix remodelling, angiogenesis, inhibition of apoptosis, and inflammation. Amongst others, H2S administration induced Atf3, an anti-inflammatory and anti-apoptotic regulator. Morpholino mediated reduction of Atf3 resulted in elevated lung injury despite the presence of H2S. In conclusion, lung protection by H2S during mechanical ventilation is associated with down-regulation of genes related to oxidative stress and inflammation and up-regulation of anti-apoptotic and anti-inflammatory genes. Here we show that Atf3 is clearly involved in H2S mediated protection. PMID:25025333

  18. Hydrogen sulfide lowers proliferation and induces protective autophagy in colon epithelial cells.

    PubMed

    Wu, Ya C; Wang, Xiao J; Yu, Le; Chan, Francis K L; Cheng, Alfred S L; Yu, Jun; Sung, Joseph J Y; Wu, William K K; Cho, Chi H

    2012-01-01

    Hydrogen sulfide (H(2)S) is a gaseous bacterial metabolite that reaches high levels in the large intestine. In the present study, the effect of H(2)S on the proliferation of normal and cancerous colon epithelial cells was investigated. An immortalized colon epithelial cell line (YAMC) and a panel of colon cancer cell lines (HT-29, SW1116, HCT116) were exposed to H(2)S at concentrations similar to those found in the human colon. H(2)S inhibited normal and cancerous colon epithelial cell proliferation as measured by MTT assay. The anti-mitogenic effect of H(2)S was accompanied by G(1)-phase cell cycle arrest and the induction of the cyclin-dependent kinase inhibitor p21(Cip). Moreover, exposure to H(2)S led to features characteristic of autophagy, including increased formation of LC3B(+) autophagic vacuoles and acidic vesicular organelles as determined by immunofluorescence and acridine orange staining, respectively. Abolition of autophagy by RNA interference targeting Vps34 or Atg7 enhanced the anti-proliferative effect of H(2)S. Further mechanistic investigation revealed that H(2)S stimulated the phosphorylation of AMP-activated protein kinase (AMPK) and inhibited the phosphorylation of mammalian target of rapamycin (mTOR) and S6 kinase. Inhibition of AMPK significantly reversed H(2)S-induced autophagy and inhibition of cell proliferation. Collectively, we demonstrate that H(2)S inhibits colon epithelial cell proliferation and induces protective autophagy via the AMPK pathway.

  19. Influence of pressure on ion energy distribution functions in EUV-induced hydrogen plasmas

    NASA Astrophysics Data System (ADS)

    van de Ven, T. H. M.; Reefman, P.; de Meijere, C. A.; Banine, V. Y.; Beckers, J.

    2016-09-01

    Next-generation lithography tools currently use Extreme Ultraviolet (EUV) radiation to create even smaller features on computer chips. The high energy photons (92 eV) induce a plasma in the low pressure background gas by photoionization. Industries have realized that these plasmas are of significant importance with respect to machine lifetime because impacting ions affect exposed surfaces. The mass resolved ion energy distribution function (IEDF) is therefore one of the main plasma parameters of interest. In this research an ion mass spectrometer is used to investigate IEDFs of ions impacting on surfaces in EUV-induced plasmas. EUV radiation is focused into a vessel with a low pressure hydrogen environment. Here, photoionization creates free electrons with energies up to 76 eV, which further ionize the background gas. The influence of the pressure on plasma composition and IEDFs has been investigated in the range 0.1-10 Pa. In general the ion fluxes towards the surface increase with pressure. However, above 5 Pa the flux of H2+ is not affected by the increase in pressure due to the balance between the creation of H2+ and the conversion of H2+ to H3+. These results will be used to benchmark plasma scaling models and verify numerical simulations.

  20. Effects of hydrogen sulfide on high glucose-induced glomerular podocyte injury in mice.

    PubMed

    Liu, Ye; Zhao, Huichen; Qiang, Ye; Qian, Guanfang; Lu, Shengxia; Chen, Jicui; Wang, Xiangdong; Guan, Qingbo; Liu, Yuantao; Fu, Yuqin

    2015-01-01

    The aim of this study was to assess the effects of hydrogen sulfide on high glucose-induced mouse podocyte (MPC) injury and the underlying mechanisms. Mouse podocytes were randomly divided into 4 groups, including high glucose (HG), normal glucose (NG), normal glucose + DL-propargylglycine (PPG), and high glucose + NaHS (HG + NaHS) groups for treatment. Then, ZO-2, nephrin, β-catenin, and cystathionine γ-lyase (CSE) protein expression levels were determined by western blot. We found that high glucose significantly reduced nephrin, ZO-2, and CSE expression levels (P<0.05), and overtly elevated β-catenin amounts (P<0.05), in a time-dependent manner. Likewise, PPG at different concentrations in normal glucose resulted in significantly lower CSE, ZO-2, and nephrin levels (P<0.05), and increased β-catenin amounts (P<0.05). Interestingly, significantly increased ZO-2 and nephrin levels, and overtly reduced β-catenin amounts were observed in the HG + NaHS group compared with HG treated cells (P<0.01). Compared with NG treated cells, decreased ZO-2 and nephrin levels and higher β-catenin amounts were obtained in the HG + NaHS group. In conclusion,CSE downregulation contributes to hyperglycemia induced podocyte injury, which is alleviated by exogenous H2S possibly through ZO-2 upregulation and the subsequent suppression of Wnt/β-catenin pathway.

  1. Effect of vitamin C administration on hydrogen peroxide-induced cytotoxicity in periodontal ligament cells.

    PubMed

    Wu, Wenlei; Yang, Nanfei; Feng, Xiujing; Sun, Tingzhe; Shen, Pingping; Sun, Weibin

    2015-01-01

    Periodontitis is a disease, which is associated with chronic inflammation and leads to significant destruction of periodontal tissues. Periodontal ligament cells (PDLCs) constitute the largest cell population in PDL tissues and a considerable body of evidence has demonstrated an association between oxidative stress and the progression of periodontitis. However, the effects on PDLCs exposed to hydrogen peroxide (H2O2) and the molecular mechanisms by which H2O2 affects periodontitis remain to be elucidated. In the present study, the potential cytotoxic effect of H2O2 and the antioxidative function of vitamin C (Vc) in PDLCs were investigated. The results demonstrated that H2O2 treatment decreased the viability of PDLCs. The decreased PDLC viability was primarily induced by apoptosis, which was evidenced by cleaved caspases-3, caspases-9 and poly (ADP-ribose) polymerase. Following optimal Vc addition, the proapoptotic effects of H2O2 were partially antagonized. Taken together, the present study demonstrated that H2O2 primarily induced the apoptosis of PDLCs and that these adverse effects were partially rescued following treatment with Vc. These results revealed how H2O2 promotes the progression of periodontitis and provide an improved understanding of the reversal effect of antioxidant treatment. Therefore, optimal Vc administration may provide a potentially effective technique in periodontal therapy.

  2. Exploring the electron density in plasma induced by EUV radiation: I. Experimental study in hydrogen

    NASA Astrophysics Data System (ADS)

    van der Horst, R. M.; Beckers, J.; Osorio, E. A.; Astakhov, D. I.; Goedheer, W. J.; Lee, C. J.; Ivanov, V. V.; Krivtsum, V. M.; Koshelev, K. N.; Lopaev, D. V.; Bijkerk, F.; Banine, V. Y.

    2016-04-01

    Plasmas induced by EUV radiation are unique since they are created without the need of any discharge. Moreover, it is essential to characterize these plasmas to understand and predict their long term impact on highly delicate optics in EUV lithography tools. In this paper we study plasmas induced by 13.5 nm EUV radiation in hydrogen gas. The electron density is measured temporally resolved using a non-invasive technique known as microwave cavity resonance spectroscopy. The influence of the EUV pulse energy and gas pressure on the temporal evolution of the electron density has been explored over a parameter range relevant for industry. Our experimental results show that the maximum electron density is in the order of 1014 m-3 and depends linearly on the EUV pulse energy. Furthermore, the maximum electron density depends quadratically on the pressure; the linear term is caused by photoionization and the quadratic term by subsequent electron impact ionization. The decay of the plasma is governed by ambipolar diffusion and, hence, becomes slower at elevated pressures. Similarities and differences of the same processes in argon are highlighted in this paper.

  3. Hydrogen sulfide attenuates ferric chloride-induced arterial thrombosis in rats.

    PubMed

    Qin, Yi-Ren; You, Shou-Jiang; Zhang, Yan; Li, Qian; Wang, Xian-Hui; Wang, Fen; Hu, Li-Fang; Liu, Chun-Feng

    2016-06-01

    Hydrogen sulfide (H2S) is a novel gaseous transmitter, regulating a multitude of biological processes in the cardiovascular and other systems. However, it remains unclear whether it exerts any effect on arterial thrombosis. In this study, we examined the effect of H2S on ferric chloride (FeCl3)-induced thrombosis in the rat common carotid artery (CCA). The results revealed a decrease of the H2S-producing enzyme cystathionine γ-lyase (CSE) expression and H2S production that persisted until 48 h after FeCl3 application. Intriguingly, administration with NaHS at appropriate regimen reduced the thrombus formation and enhanced the blood flow, accompanied with the alleviation of CSE and CD31 downregulation, and endothelial cell apoptosis in the rat CCA following FeCl3 application. Moreover, the antithrombotic effect of H2S was also observed in Rose Bengal photochemical model in which the development of thrombosis is contributed by oxidative injury to the endothelium. The in vitro study demonstrated that the mRNA and protein expression of CSE, as well as H2S production, was decreased in hydrogen peroxide (H2O2)-treated endothelial cells. Exogenous supplement of NaHS and CSE overexpression consistently alleviated the increase of cleaved caspase-3 and endothelial cell damage caused by H2O2. Taken together, our findings suggest that endogenous H2S generation in the endothelium may be impaired during arterial thrombosis and that modulation of H2S, either exogenous supplement or boost of endogenous production, may become a potential venue for arterial thrombosis therapy.

  4. Consumption of molecular hydrogen prevents the stress-induced impairments in hippocampus-dependent learning tasks during chronic physical restraint in mice.

    PubMed

    Nagata, Kazufumi; Nakashima-Kamimura, Naomi; Mikami, Toshio; Ohsawa, Ikuroh; Ohta, Shigeo

    2009-01-01

    We have reported that hydrogen (H(2)) acts as an efficient antioxidant by gaseous rapid diffusion. When water saturated with hydrogen (hydrogen water) was placed into the stomach of a rat, hydrogen was detected at several microM level in blood. Because hydrogen gas is unsuitable for continuous consumption, we investigated using mice whether drinking hydrogen water ad libitum, instead of inhaling hydrogen gas, prevents cognitive impairment by reducing oxidative stress. Chronic physical restraint stress to mice enhanced levels of oxidative stress markers, malondialdehyde and 4-hydroxy-2-nonenal, in the brain, and impaired learning and memory, as judged by three different methods: passive avoidance learning, object recognition task, and the Morris water maze. Consumption of hydrogen water ad libitum throughout the whole period suppressed the increase in the oxidative stress markers and prevented cognitive impairment, as judged by all three methods, whereas hydrogen water did not improve cognitive ability when no stress was provided. Neural proliferation in the dentate gyrus of the hippocampus was suppressed by restraint stress, as observed by 5-bromo-2'-deoxyuridine incorporation and Ki-67 immunostaining, proliferation markers. The consumption of hydrogen water ameliorated the reduced proliferation although the mechanistic link between the hydrogen-dependent changes in neurogenesis and cognitive impairments remains unclear. Thus, continuous consumption of hydrogen water reduces oxidative stress in the brain, and prevents the stress-induced decline in learning and memory caused by chronic physical restraint. Hydrogen water may be applicable for preventive use in cognitive or other neuronal disorders.

  5. Induced Circular Dichroism in Phosphine Gold(I) Aryl Acetylide Urea Complexes through Hydrogen-Bonded Chiral Co-Assemblies.

    PubMed

    Dubarle-Offner, Julien; Moussa, Jamal; Amouri, Hani; Jouvelet, Benjamin; Bouteiller, Laurent; Raynal, Matthieu

    2016-03-14

    Phosphine gold(I) aryl acetylide complexes equipped with a central bis(urea) moiety form 1D hydrogen-bonded polymeric assemblies in solution that do not display any optical activity. Chiral co-assemblies are formed by simple addition of an enantiopure (metal-free) complementary monomer. Although exhibiting an intrinsically achiral linear geometry, the gold(I) aryl acetylide fragment is located in the chiral environment displayed by the hydrogen-bonded co-assemblies, as demonstrated by induced circular dichroism (ICD). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Internal friction and gas desorption of {C}/{C} composites

    NASA Astrophysics Data System (ADS)

    Serizawa, H.; Sato, S.; Kohyama, A.

    1994-09-01

    {C}/{C} composites are the most promising candidates as high heat flux component materials, where temperature dependence of mechanical properties and gas desorption behavior at elevated temperature are important properties. At the beginning, the newly developed internal friction measurement apparatus, which enables the accurate measurement of dynamic elastic properties up to 1373 K along with the measurement of gas desorption behavior, was used. The materials studied were unidirectional (UD) {C}/{C} composites reinforced with mesophase pitch-based carbon fibers, which were heat treated at temperatures ranging from 1473 to 2773 K which produced a variety of graphitized microstructures. Two-dimensional (2D) {C}/{C} composites reinfored with flat woven fabrics of PAN type carbon fibers were also studied. These materials were heat treated at 1873 K. From the temperature spectrum of internal friction of 2D {C}/{C} composites, these internal friction peaks were detected and were related to gas desorption. Also the temperature dependence of Young's modulus of UD {C}/{C} composites, negative and positive dependence of Young's modulus were observed reflecting microstructure changes resulting from the heat treatments.

  7. Hydrogen induced cracking tests of high strength steels and nickel-iron base alloys using the bolt-loaded specimen

    SciTech Connect

    Vigilante, G.N.; Underwood, J.H.; Crayon, D.; Tauscher, S.; Sage, T.; Troiano, E.

    1997-12-31

    Hydrogen induced cracking tests were conducted on high strength steels and nickel-iron base alloys using the constant displacement bolt-loaded compact specimen. The bolt-loaded specimen was subjected to both acid and electrochemical cell environments in order to produce hydrogen. The materials tested were A723, Maraging 200, PH 13-8 Mo, Alloy 718, Alloy 706, and A286, and ranged in yield strength from 760--1400 MPa. The effects of chemical composition, refinement, heat treatment, and strength on hydrogen induced crack growth rates and thresholds were examined. In general, all high strength steels tested exhibited similar crack growth rates and thresholds were examined. In general, all high strength steels tested exhibited similar crack growth rates and threshold levels. In comparison, the nickel-iron base alloys tested exhibited up to three orders of magnitude lower crack growth rates than the high strength steels tested. It is widely known that high strength steels and nickel base alloys exhibit different crack growth rates, in part, because of their different crystal cell structure. In the high strength steels tested, refinement and heat treatment had some effect on hydrogen induced cracking, though strength was the predominant factor influencing susceptibility to cracking. When the yield strength of one of the high strength steels tested was increased moderately, from 1130 MPa to 1275 MPa, the incubation times decreased by over two orders of magnitude, the crack growth rates increased by an order of magnitude, and the threshold stress intensity was slightly lower.

  8. Guanine nucleotide induced conformational change of Cdc42 revealed by hydrogen/deuterium exchange mass spectrometry.

    PubMed

    Yang, Sheng-Wei; Ting, Hsiu-Chi; Lo, Yi-Ting; Wu, Ting-Yuan; Huang, Hung-Wei; Yang, Chia-Jung; Chan, Jui-Fen Riva; Chuang, Min-Chieh; Hsu, Yuan-Hao Howard

    2016-01-01

    Cdc42 regulates pathways related to cell division. Dysregulation of Cdc42 can lead to cancer, cardiovascular diseases and neurodegenerative diseases. GTP induced activation mechanism plays an important role in the activity and biological functions of Cdc42. P-loop, Switch I and Switch II are critical regions modulating the enzymatic activity of Cdc42. We applied amide hydrogen/deuterium exchange coupled with liquid chromatography mass spectrometry (HDXMS) to investigate the dynamic changes of apo-Cdc42 after GDP, GTP and GMP-PCP binding. The natural substrate GTP induced significant decreases of deuteration in P-loop and Switch II, moderate changes of deuteration in Switch I and significant changes of deuteration in the α7 helix, a region far away from the active site. GTP binding induced similar effects on H/D exchange to its non-hydrolysable analog, GMP-PCP. HDXMS results indicate that GTP binding blocked the solvent accessibility in the active site leading to the decrease of H/D exchange rate surrounding the active site, and further triggered a conformational change resulting in the drastic decrease of H/D exchange rate at the remote α7 helix. Comparing the deuteration levels in three activation states of apo-Cdc42, Cdc42-GDP and Cdc42-GMP-PCP, the apo-Cdc42 has the most flexible structure, which can be stabilized by guanine nucleotide binding. The rates of H/D exchange of Cdc42-GDP are between the GMP-PCP-bound and the apo form, but more closely to the GMP-PCP-bound form. Our results show that the activation of Cdc42 is a process of conformational changes involved with P-loop, Switch II and α7 helix for structural stabilization.

  9. Simulations of a Liquid Hydrogen Inducer at Low-Flow Off-Design Flow Conditions

    NASA Technical Reports Server (NTRS)

    Hosangadi, A.; Ahuja, V.; Ungewitter, R. J.

    2005-01-01

    The ability to accurately model details of inlet back flow for inducers operating a t low-flow, off-design conditions is evaluated. A sub-scale version of a three-bladed liquid hydrogen inducer tested in water with detailed velocity and pressure measurements is used as a numerical test bed. Under low-flow, off-design conditions the length of the separation zone as well as the swirl velocity magnitude was under predicted with a standard k-E model. When the turbulent viscosity coefficient was reduced good comparison was obtained a t all the flow conditions examined with both the magnitude and shape of the profile matching well with the experimental data taken half a diameter upstream of the leading edge. The velocity profiles and incidence angles a t the leading edge itself were less sensitive to the back flow length predictions indicating that single-phase performance predictions may be well predicted even if the details of flow separation modeled are incorrect. However, for cavitating flow situations the prediction of the correct swirl in the back flow and the pressure depression in the core becomes critical since it leads to vapor formation. The simulations have been performed using the CRUNCH CFD(Registered Trademark) code that has a generalized multi-element unstructured framework and a n advanced multi-phase formulation for cryogenic fluids. The framework has been validated rigorously for predictions of temperature and pressure depression in cryogenic fluid cavities and has also been shown to predict the cavitation breakdown point for inducers a t design conditions.

  10. Hydrogen peroxide-induced calcium influx in lung microvascular endothelial cells involves TRPV4

    PubMed Central

    Suresh, Karthik; Servinsky, Laura; Reyes, Jose; Baksh, Syeda; Undem, Clark; Caterina, Michael; Pearse, David B.

    2015-01-01

    In acute respiratory distress syndrome, both reactive oxygen species (ROS) and increased intracellular calcium ([Ca2+]i) are thought to play important roles in promoting endothelial paracellular permeability, but the mechanisms linking ROS and [Ca2+]i in microvascular endothelial cells are not known. In this study, we assessed the effect of hydrogen peroxide (H2O2) on [Ca2+]i in mouse and human lung microvascular endothelial cells (MLMVEC and HLMVEC, respectively). We found that in both MLMVECs and HLMVECs, exogenously applied H2O2 increased [Ca2+]i through Ca2+ influx and that pharmacologic inhibition of the calcium channel transient receptor potential vanilloid 4 (TRPV4) attenuated the H2O2-induced Ca2+ influx. Additionally, knockdown of TRPV4 in HLMVEC also attenuated calcium influx following H2O2 challenge. Administration of H2O2 or TRPV4 agonists decreased transmembrane electrical resistance (TER), suggesting increased barrier permeability. To explore the regulatory mechanisms underlying TRPV4 activation by ROS, we examined H2O2-induced Ca2+ influx in MLMVECs and HLMVECs with either genetic deletion, silencing, or pharmacologic inhibition of Fyn, a Src family kinase. In both MLMVECs derived from mice deficient for Fyn and HLMVECs treated with either siRNA targeted to Fyn or the Src family kinase inhibitor SU-6656 for 24 or 48 h, the H2O2-induced Ca2+ influx was attenuated. Treatment with SU-6656 decreased the levels of phosphorylated, but not total, TRPV4 protein and had no effect on TRPV4 response to the external agonist, GSK1016790A. In conclusion, our data suggest that application of exogenous H2O2 increases [Ca2+]i and decreases TER in microvascular endothelial cells via activation of TRPV4 through a mechanism that requires the Src kinase Fyn. PMID:26453519

  11. Streptococcus oralis Induces Lysosomal Impairment of Macrophages via Bacterial Hydrogen Peroxide

    PubMed Central

    Okahashi, Nobuo; Kuwata, Hirotaka; Kawabata, Shigetada

    2016-01-01

    Streptococcus oralis, an oral commensal, belongs to the mitis group of streptococci and occasionally causes opportunistic infections, such as bacterial endocarditis and bacteremia. Recently, we found that the hydrogen peroxide (H2O2) produced by S. oralis is sufficient to kill human monocytes and epithelial cells, implying that streptococcal H2O2 is a cytotoxin. In the present study, we investigated whether streptococcal H2O2 impacts lysosomes, organelles of the intracellular digestive system, in relation to cell death. S. oralis infection induced the death of RAW 264 macrophages in an H2O2-dependent manner, which was exemplified by the fact that exogenous H2O2 also induced cell death. Infection with either a mutant lacking spxB, which encodes pyruvate oxidase responsible for H2O2 production, or Streptococcus mutans, which does not produce H2O2, showed less cytotoxicity. Visualization of lysosomes with LysoTracker revealed lysosome deacidification after infection with S. oralis or exposure to H2O2, which was corroborated by acridine orange staining. Similarly, fluorescent labeling of lysosome-associated membrane protein-1 gradually disappeared during infection with S. oralis or exposure to H2O2. The deacidification and the following induction of cell death were inhibited by chelating iron in lysosomes. Moreover, fluorescent staining of cathepsin B indicated lysosomal destruction. However, treatment of infected cells with a specific inhibitor of cathepsin B had negligible effects on cell death; instead, it suppressed the detachment of dead cells from the culture plates. These results suggest that streptococcal H2O2 induces cell death with lysosomal destruction and then the released lysosomal cathepsins contribute to the detachment of the dead cells. PMID:27113357

  12. Hydrogen peroxide-induced calcium influx in lung microvascular endothelial cells involves TRPV4.

    PubMed

    Suresh, Karthik; Servinsky, Laura; Reyes, Jose; Baksh, Syeda; Undem, Clark; Caterina, Michael; Pearse, David B; Shimoda, Larissa A

    2015-12-15

    In acute respiratory distress syndrome, both reactive oxygen species (ROS) and increased intracellular calcium ([Ca(2+)]i) are thought to play important roles in promoting endothelial paracellular permeability, but the mechanisms linking ROS and [Ca(2+)]i in microvascular endothelial cells are not known. In this study, we assessed the effect of hydrogen peroxide (H2O2) on [Ca(2+)]i in mouse and human lung microvascular endothelial cells (MLMVEC and HLMVEC, respectively). We found that in both MLMVECs and HLMVECs, exogenously applied H2O2 increased [Ca(2+)]i through Ca(2+) influx and that pharmacologic inhibition of the calcium channel transient receptor potential vanilloid 4 (TRPV4) attenuated the H2O2-induced Ca(2+) influx. Additionally, knockdown of TRPV4 in HLMVEC also attenuated calcium influx following H2O2 challenge. Administration of H2O2 or TRPV4 agonists decreased transmembrane electrical resistance (TER), suggesting increased barrier permeability. To explore the regulatory mechanisms underlying TRPV4 activation by ROS, we examined H2O2-induced Ca(2+) influx in MLMVECs and HLMVECs with either genetic deletion, silencing, or pharmacologic inhibition of Fyn, a Src family kinase. In both MLMVECs derived from mice deficient for Fyn and HLMVECs treated with either siRNA targeted to Fyn or the Src family kinase inhibitor SU-6656 for 24 or 48 h, the H2O2-induced Ca(2+) influx was attenuated. Treatment with SU-6656 decreased the levels of phosphorylated, but not total, TRPV4 protein and had no effect on TRPV4 response to the external agonist, GSK1016790A. In conclusion, our data suggest that application of exogenous H2O2 increases [Ca(2+)]i and decreases TER in microvascular endothelial cells via activation of TRPV4 through a mechanism that requires the Src kinase Fyn. Copyright © 2015 the American Physiological Society.

  13. Sailuotong Prevents Hydrogen Peroxide (H₂O₂)-Induced Injury in EA.hy926 Cells.

    PubMed

    Seto, Sai Wang; Chang, Dennis; Ko, Wai Man; Zhou, Xian; Kiat, Hosen; Bensoussan, Alan; Lee, Simon M Y; Hoi, Maggie P M; Steiner, Genevieve Z; Liu, Jianxun

    2017-01-05

    Sailuotong (SLT) is a standardised three-herb formulation consisting of Panax ginseng, Ginkgo biloba, and Crocus sativus designed for the management of vascular dementia. While the latest clinical trials have demonstrated beneficial effects of SLT in vascular dementia, the underlying cellular mechanisms have not been fully explored. The aim of this study was to assess the ability and mechanisms of SLT to act against hydrogen peroxide (H₂O₂)-induced oxidative damage in cultured human vascular endothelial cells (EAhy926). SLT (1-50 µg/mL) significantly suppressed the H₂O₂-induced cell death and abolished the H₂O₂-induced reactive oxygen species (ROS) generation in a concentration-dependent manner. Similarly, H₂O₂ (0.5 mM; 24 h) caused a ~2-fold increase in lactate dehydrogenase (LDH) release from the EA.hy926 cells which were significantly suppressed by SLT (1-50 µg/mL) in a concentration-dependent manner. Incubation of SLT (50 µg/mL) increased superoxide dismutase (SOD) activity and suppressed the H₂O₂-enhanced Bax/Bcl-2 ratio and cleaved caspase-3 expression. In conclusion, our results suggest that SLT protects EA.hy916 cells against H₂O₂-mediated injury via direct reduction of intracellular ROS generation and an increase in SOD activity. These protective effects are closely associated with the inhibition of the apoptotic death cascade via the suppression of caspase-3 activation and reduction of Bax/Bcl-2 ratio, thereby indicating a potential mechanism of action for the clinical effects observed.

  14. Sailuotong Prevents Hydrogen Peroxide (H2O2)-Induced Injury in EA.hy926 Cells

    PubMed Central

    Seto, Sai Wang; Chang, Dennis; Ko, Wai Man; Zhou, Xian; Kiat, Hosen; Bensoussan, Alan; Lee, Simon M. Y.; Hoi, Maggie P. M.; Steiner, Genevieve Z.; Liu, Jianxun

    2017-01-01

    Sailuotong (SLT) is a standardised three-herb formulation consisting of Panax ginseng, Ginkgo biloba, and Crocus sativus designed for the management of vascular dementia. While the latest clinical trials have demonstrated beneficial effects of SLT in vascular dementia, the underlying cellular mechanisms have not been fully explored. The aim of this study was to assess the ability and mechanisms of SLT to act against hydrogen peroxide (H2O2)-induced oxidative damage in cultured human vascular endothelial cells (EAhy926). SLT (1–50 µg/mL) significantly suppressed the H2O2-induced cell death and abolished the H2O2-induced reactive oxygen species (ROS) generation in a concentration-dependent manner. Similarly, H2O2 (0.5 mM; 24 h) caused a ~2-fold increase in lactate dehydrogenase (LDH) release from the EA.hy926 cells which were significantly suppressed by SLT (1–50 µg/mL) in a concentration-dependent manner. Incubation of SLT (50 µg/mL) increased superoxide dismutase (SOD) activity and suppressed the H2O2-enhanced Bax/Bcl-2 ratio and cleaved caspase-3 expression. In conclusion, our results suggest that SLT protects EA.hy916 cells against H2O2-mediated injury via direct reduction of intracellular ROS generation and an increase in SOD activity. These protective effects are closely associated with the inhibition of the apoptotic death cascade via the suppression of caspase-3 activation and reduction of Bax/Bcl-2 ratio, thereby indicating a potential mechanism of action for the clinical effects observed. PMID:28067784

  15. Hydrogen sulfide upregulates heme oxygenase-1 expression in rats with volume overload-induced heart failure

    PubMed Central

    ZHANG, CHAO-YING; LI, XIAO-HUI; ZHANG, TING; FU, JIN; CUI, XIAO-DAI

    2013-01-01

    The present study investigated the role of hydrogen sulfide (H2S), a novel gaseous transmitter, in chronic heart failure (CHF) induced by left-to-right shunt, leading to volume overload. Thirty male Sprague-Dawley rats were randomly divided into four groups: the shunt group, the sham group, the shunt + sodium hydrosulfide (NaHS) group and the sham + NaHS group. CHF was induced in the rats by abdominal aorta-inferior vena cava shunt operation. Rats in the shunt + NaHS and sham + NaHS groups were injected intraperitoneally with NaHS (H2S donor). Haemodynamic parameters were measured 8 weeks after surgery. In addition, left ventricular heme oxygenase (HO)-1 mRNA expression was measured by real-time PCR. Protein expression of HO-1 was evaluated by western blot analysis. Eight weeks after surgery, compared to the sham group, the left ventricular systolic pressure (LVSP) and left ventricular peak rate of contraction and relaxation (LV±dp/dtmax) were significantly reduced; the left ventricular end-diastolic pressure (LVEDP) was significantly increased in the shunt group (all P<0.05). However, NaHS increased LVSP and LV±dp/dtmax (all P<0.05) and decreased LVEDP (P<0.05). Protein expression of HO-1 was significantly decreased in the shunt group compared to that in the sham group (P<0.05). NaHS increased protein expression of HO-1 compared to that in the shunt group (P<0.05). HO-1 mRNA expression was significantly increased in the shunt + NaHS group compared to that in the shunt group (P<0.01). The present study demonstrated that H2S may play a protective role in volume overload-induced CHF by upregulating protein and mRNA expression of HO-1. PMID:24648967

  16. Relevance of apple consumption for protection against oxidative damage induced by hydrogen peroxide in human lymphocytes.

    PubMed

    Maffei, Francesca; Tarozzi, Andrea; Carbone, Fabio; Marchesi, Alessandra; Hrelia, Silvana; Angeloni, Cristina; Forti, Giorgio Cantelli; Hrelia, Patrizia

    2007-05-01

    In a single-dosing crossover study, we investigated the ability of apple fruit consumption to protect human lymphocytes against peroxide-induced damage to DNA. Six healthy, non-smoking male volunteers were placed for 2d on an antioxidant-poor (AP) diet. After 48h of AP diet, the volunteers were required to consume a homogenate obtained from 600g of red delicious unpeeled apples or water (500 ml); blood samples were collected 0, 3, 6 and 24 h post-consumption. To evaluate whether the apple intake was sufficient to restore resistance of DNA to oxidative damage, for each subject at any time point the plasma total antioxidant activity, reactive oxygen species (ROS) formation and induction of micronuclei (MN) in isolated lymphocytes following hydrogen peroxide (H2O2) treatment were measured. Results indicated a significant inhibition (58%, P <0.05) of H2O2-induced MN frequency in the plasma samples collected at 3 h after apple consumption, as compared with plasma samples collected at 0 h (4.17 (SD 1.83) v. 9.85 (SD 1.87) MN/1000 binucleated (BN) cells, respectively). A gradual return towards the value observed at 0 h was recorded starting from 6 to 24 h. MN frequency induced by H2O2 was significantly influenced by plasma total antioxidant activity (r = -0.95, P <0.05) and by the increase of intracellular ROS formation (r = 0.88, P <0.05). These findings suggest that the consumption of whole apple provides a useful dietary source of active scavengers to protect cells and tissue from oxidative stress and related DNA injury.

  17. Blackbody-induced decay, excitation and ionization rates for Rydberg states in hydrogen and helium atoms

    NASA Astrophysics Data System (ADS)

    Glukhov, I. L.; Nekipelov, E. A.; Ovsiannikov, V. D.

    2010-06-01

    New features of the blackbody-induced radiation processes on Rydberg atoms were discovered on the basis of numerical data for the blackbody-induced decay Pdnl(T), excitation Penl(T) and ionization Pionnl(T) rates of nS, nP and nD Rydberg states calculated together with the spontaneous decay rates Pspnl in neutral hydrogen, and singlet and triplet helium atoms for some values of the principal quantum number n from 10 to 500 at temperatures from T = 100 K to 2000 K. The fractional rates Rd(e, ion)nl(T) = Pnld(e, ion)(T)/Pspnl equal to the ratio of the induced decay (excitation, ionization) rates to the rate of spontaneous decay were determined as functions of T and n in every series of states with a given angular momentum l = 0, 1, 2. The calculated data reveal an essential difference between the asymptotic dependence of the ionization rate Pionnl(T) and the rates of decay and excitation Pd(e)nl(T)~T/n2. The departures appear in each Rydberg series for n > 100 and introduce appreciable corrections to the formula of Cooke and Gallagher. Two different approximation formulae are proposed on the basis of the numerical data, one for Rd(e)nl(T) and another one for Rionnl(T), which reproduce the calculated values in wide ranges of principal quantum number from n = 10 to 1000 and temperatures between T = 100 K and T = 2000 K with an accuracy of 2% or better. Modified Fues' model potential approach was used for calculating matrix elements of bound-bound and bound-free radiation transitions in helium.

  18. Protective effect of Phyllanthus emblica fruit extract against hydrogen peroxide-induced endothelial cell death.

    PubMed

    Wongpradabchai, Sudjai; Chularojmontri, Linda; Phornchirasilp, Srichan; Wattanapitayakul, Suvara K

    2013-01-01

    Numerous antioxidants from natural products have been shown to lower ROS levels and enhance vascular endothelial function. The fruits of Phyllanthus emblica are well-known in possessing antioxidative properties but its role and mechanisms in the protection of vascular endothelial cells from ROS damage have not yet been established. The present study was aimed to determine the possible protective effect of P. emblica fruit extract (PE) on human EA.hy926 endothelial cell death induced by hydrogen peroxide (H2O2) and PE protective mechanisms. Following incubation of endothelial cells with 300 microM H2O2 for 2 h, cell viability was decreased to 50.65 +/- 0.94% and intracellular ROS levels was increased to 159.01% +/- 6.27% as measured by MTT assay and DCF fluorescent intensity, respectively. Cytotoxic effect of PE was not observed in the range of 0.1 to 100 microM Pretreatment with PE (20 to 100 microg/mL) for 48 h significantly ameliorated the cytotoxic effect of H2O2 and attenuated the excessive intracellular ROS formation in endothelial cells. In addition, western blot analysis revealed that PE pretreatment (40 microg/L) induced Akt phosphorylation but did not activate NF-kappaB pathway. These findings suggest that PE could effectively protect human endothelial cell death induced by H2O2 via modification of ROS-related mechanism along with activation of PI3K/Akt pathway. However the value of this plant in vivo needs further investigations in supporting them to be developed as nutraceuticals for cardiovascular disease prevention.

  19. d-Amino acid oxidase-mediated increase in spinal hydrogen peroxide is mainly responsible for formalin-induced tonic pain

    PubMed Central

    Lu, Jin-Miao; Gong, Nian; Wang, Yan-Chao; Wang, Yong-Xiang

    2012-01-01

    BACKGROUND AND PURPOSE Spinal reactive oxygen species (ROS) are critically involved in chronic pain. d-Amino acid oxidase (DAAO) oxidizes d-amino acids such as d-serine to form the byproduct hydrogen peroxide without producing other ROS. DAAO inhibitors are specifically analgesic in tonic pain, neuropathic pain and cancer pain. This study examined the role of spinal hydrogen peroxide in pain and the mechanism of the analgesic effects of DAAO inhibitors. EXPERIMENTAL APPROACH Formalin-induced pain behaviours and spinal hydrogen peroxide levels were measured in rodents. KEY RESULTS Formalin injected into the paw increased spinal hydrogen peroxide synchronously with enhanced tonic pain; both were effectively prevented by i.t. fluorocitrate, a selective astrocyte metabolic inhibitor. Given systemically, the potent DAAO inhibitor CBIO (5-chloro-benzo[d]isoxazol-3-ol) blocked spinal DAAO enzymatic activity and specifically prevented formalin-induced tonic pain in a dose-dependent manner. Although CBIO maximally inhibited tonic pain by 62%, it completely prevented the increase in spinal hydrogen peroxide. I.t. catalase, an enzyme specific for decomposition of hydrogen peroxide, completely depleted spinal hydrogen peroxide and prevented formalin-induced tonic pain by 65%. Given systemically, the ROS scavenger PBN (phenyl-N-tert-butylnitrone) also inhibited formalin-induced tonic pain and increase in spinal hydrogen peroxide. Formalin-induced tonic pain was potentiated by i.t. exogenous hydrogen peroxide. CBIO did not increase spinal d-serine level, and i.t. d-serine did not alter either formalin-induced tonic pain or CBIO's analgesic effect. CONCLUSIONS AND IMPLICATIONS Spinal hydrogen peroxide is specifically and largely responsible for formalin-induced pain, and DAAO inhibitors produce analgesia by blocking spinal hydrogen peroxide production rather than interacting with spinal d-serine. PMID:21950354

  20. Alkali metal mediated C-C bond coupling reaction

    NASA Astrophysics Data System (ADS)

    Tachikawa, Hiroto

    2015-02-01

    Metal catalyzed carbon-carbon (C-C) bond formation is one of the important reactions in pharmacy and in organic chemistry. In the present study, the electron and hole capture dynamics of a lithium-benzene sandwich complex, expressed by Li(Bz)2, have been investigated by means of direct ab-initio molecular dynamics method. Following the electron capture of Li(Bz)2, the structure of [Li(Bz)2]- was drastically changed: Bz-Bz parallel form was rapidly fluctuated as a function of time, and a new C-C single bond was formed in the C1-C1' position of Bz-Bz interaction system. In the hole capture, the intermolecular vibration between Bz-Bz rings was only enhanced. The mechanism of C-C bond formation in the electron capture was discussed on the basis of theoretical results.

  1. Alkali metal mediated C-C bond coupling reaction.

    PubMed

    Tachikawa, Hiroto

    2015-02-14

    Metal catalyzed carbon-carbon (C-C) bond formation is one of the important reactions in pharmacy and in organic chemistry. In the present study, the electron and hole capture dynamics of a lithium-benzene sandwich complex, expressed by Li(Bz)2, have been investigated by means of direct ab-initio molecular dynamics method. Following the electron capture of Li(Bz)2, the structure of [Li(Bz)2](-) was drastically changed: Bz-Bz parallel form was rapidly fluctuated as a function of time, and a new C-C single bond was formed in the C1-C1' position of Bz-Bz interaction system. In the hole capture, the intermolecular vibration between Bz-Bz rings was only enhanced. The mechanism of C-C bond formation in the electron capture was discussed on the basis of theoretical results.

  2. Detection of Interstellar Ethylene Oxide (c-C2H4O)

    NASA Astrophysics Data System (ADS)

    Dickens, J. E.; Irvine, W. M.; Ohishi, M.; Ikeda, M.; Ishikawa, S.; Nummelin, A.; Hjalmarson, Å.

    1997-11-01

    We report the identification of 10 transitions that support the detection of the small cyclic molecule ethylene oxide (c-C2H4O) in Sgr B2N. Although one of these transitions is severely blended, so that an accurate intensity and line width could not be determined, and two other lines are only marginally detected, we have done Gaussian fits to the remaining seven lines and have performed a rotation diagram analysis. Our results indicate a rotation temperature Trot = 18 K and a molecular column density N(c-C2H4O) = 3.3 × 1014 cm-2, corresponding to a fractional abundance relative to molecular hydrogen of order 6 × 10-11. This is a factor of more than 200 higher than the abundance for this molecule suggested by the ``new standard'' chemistry model of Lee, Bettens, & Herbst. This result suggests that grain chemistry might play an effective role in the production of c-C2H4O. No transitions of this molecule were detected in either Sgr B2M or Sgr B2NW.

  3. Detection of Interstellar Ethylene Oxide (c-C2H4O)

    NASA Astrophysics Data System (ADS)

    Dickens, J. E.; Irvine, W. M.; Ohishi, M.; Ikeda, M.; Ishikawa, S.; Nummelin, A.; Hjalmarson, A.

    1997-01-01

    We report the identification of 10 transitions which support the detection of the small cyclic molecule ethylene oxide (c-C2H40) in SgrB2(N). Although one of these transitions is severely blended, such that an accurate intensity and linewidth could not be determined, and two other lines are only marginally detected, we have done gaussian fits to the remaining 7 lines and have performed a rotation diagram analysis. Our results indicate a rotation temperature, Trot = 18 K, and a molecular column density, N(c-C2H40) = 3.3 x 1014cm-2, corresponding to a fractional abundance relative to molecular hydrogen of order 6 x 10exp -11). This is a factor of more than 200 higher than the abundance for this molecule suggested by the "new standard" chemistry model of Lee, Bettens, & Herbst (1996). This result suggests that grain chemistry might play an effective role in the production Of c-C2H40. No transitions of this molecule were detected in either SgrB2(M) or SgrB2(NW).

  4. A mouse kidney cell line with a G:C --> C:G transversion mutator phenotype.

    PubMed

    Shin, Chi Y; Ponomareva, Olga N; Connolly, Lanelle; Turker, Mitchell S

    2002-06-19

    We report the identification of a mouse kidney epithelial cell line (K435) in which G:C-->C:G transversion mutations occur at an elevated rate and are the predominant spontaneous events observed at the selectable Aprt locus. Of three genotoxins tested, ultraviolet radiation (UV), ionizing radiation, and hydrogen peroxide, only UV exposure was able to alter the spectrum of small mutational events. To determine if the G:C-->C:G mutator phenotype was due to a deficiency in the mismatch repair pathway, the K435 cells were tested for resistance to 6-thioguanine, cisplatin, and MNNG. Although the K435 cells were as resistant to 6-thioguanine and cisplatin as Pms2 and Mlh1 null kidney cells, they were hypersensitive to MNNG. Moreover, the K435 cells do not exhibit microsatellite instability, a hallmark of mismatch repair deficiency. These results suggest that a novel mechanism, which does not include a classical deficiency in mismatch repair, accounts for the G:C-->C:G mutator phenotype.

  5. Hydrogen sulfide ameliorates tobacco smoke-induced oxidative stress and emphysema in mice.

    PubMed

    Han, Weihong; Dong, Zheng; Dimitropoulou, Christiana; Su, Yunchao

    2011-10-15

    The mutual interactions between reactive oxygen species, airway inflammation, and alveolar cell death play crucial role in the pathogenesis of chronic obstructive pulmonary disease (COPD). In the present study, we investigated the possibility that hydrogen sulfide (H(2)S) donor sodium hydrosulfide (NaHS) might be a novel option for intervention in COPD. We used a mouse model of tobacco smoke (TS)-induced emphysema. Mice were injected with H(2)S donor NaHS (50 μmol/kg in 0.25 ml phosphate buffer saline, intraperitoneally) or vehicle daily before exposed to TS for 1 h/day, 5 days/week for 12 and 24 weeks. We found that NaHS ameliorated TS-induced increase in mean linear intercepts, the thickness of bronchial walls, and the numbers of total cell counts as well as neutrophils, monocytes, and tumor necrosis factor α in bronchial alveolar lavage. Moreover, NaHS reduced increases in right ventricular systolic pressure, the thickness of pulmonary vascular walls, and the ratio of RV/LV+S in TS-exposed mice. Further, TS exposure for 12 and 24 weeks reduced the protein contents of cystathionine γ-lyase (CGL), cystathionine β-synthetase (CBS), nuclear erythroid-related factor 2 (Nrf2), P(ser473)-Akt, as well as glutathione/oxidized glutathione ratio in the lungs. TS-exposed lungs exhibited large amounts of 8-hydroxyguanine-positive and terminal deoxynucleotidyl transferase dUTP nick end labeling-positive cells. Treatment with NaHS increased P(ser473)-Akt and attenuated TS-induced reduction of CGL, CBS, and Nrf2 as well as glutathione/oxidized glutathione ratio in the lungs. NaHS also reduced amounts of 8-hydroxyguanine-positive, terminal deoxynucleotidyl transferase dUTP nick end labeling-positive cells and active caspase-3 in TS-exposed lungs. Additionally, knocking-down Akt protein abolished the protective effects of NaHS against TS-induced apoptosis and downregulation of Nrf2, CGL, and CBS in pulmonary artery endothelial cells. These results indicate that NaHS protects

  6. Heterotrimeric G protein mediates ethylene-induced stomatal closure via hydrogen peroxide synthesis in Arabidopsis.

    PubMed

    Ge, Xiao-Min; Cai, Hong-Li; Lei, Xue; Zhou, Xue; Yue, Ming; He, Jun-Min

    2015-04-01

    Heterotrimeric G proteins function as key players in hydrogen peroxide (H2O2) production in plant cells, but whether G proteins mediate ethylene-induced H2O2 production and stomatal closure are not clear. Here, evidences are provided to show the Gα subunit GPA1 as a missing link between ethylene and H2O2 in guard cell ethylene signalling. In wild-type leaves, ethylene-triggered H2O2 synthesis and stomatal closure were dependent on activation of Gα. GPA1 mutants showed the defect of ethylene-induced H2O2 production and stomatal closure, whereas wGα and cGα overexpression lines showed faster stomatal closure and H2O2 production in response to ethylene. Ethylene-triggered H2O2 generation and stomatal closure were impaired in RAN1, ETR1, ERS1 and EIN4 mutants but not impaired in ETR2 and ERS2 mutants. Gα activator and H2O2 rescued the defect of RAN1 and EIN4 mutants or etr1-3 in ethylene-induced H2O2 production and stomatal closure, but only rescued the defect of ERS1 mutants or etr1-1 and etr1-9 in ethylene-induced H2O2 production. Stomata of CTR1 mutants showed constitutive H2O2 production and stomatal closure, but which could be abolished by Gα inhibitor. Stomata of EIN2, EIN3 and ARR2 mutants did not close in responses to ethylene, Gα activator or H2O2, but do generate H2O2 following challenge of ethylene or Gα activator. The data indicate that Gα mediates ethylene-induced stomatal closure via H2O2 production, and acts downstream of RAN1, ETR1, ERS1, EIN4 and CTR1 and upstream of EIN2, EIN3 and ARR2. The data also show that ETR1 and ERS1 mediate both ethylene and H2O2 signalling in guard cells.

  7. Hydrogen Sulfide Ameliorates Tobacco Smoke-Induced Oxidative Stress and Emphysema in Mice

    PubMed Central

    Han, Weihong; Dong, Zheng; Dimitropoulou, Christiana

    2011-01-01

    Abstract Aims The mutual interactions between reactive oxygen species, airway inflammation, and alveolar cell death play crucial role in the pathogenesis of chronic obstructive pulmonary disease (COPD). In the present study, we investigated the possibility that hydrogen sulfide (H2S) donor sodium hydrosulfide (NaHS) might be a novel option for intervention in COPD. Results We used a mouse model of tobacco smoke (TS)-induced emphysema. Mice were injected with H2S donor NaHS (50 μmol/kg in 0.25 ml phosphate buffer saline, intraperitoneally) or vehicle daily before exposed to TS for 1 h/day, 5 days/week for 12 and 24 weeks. We found that NaHS ameliorated TS-induced increase in mean linear intercepts, the thickness of bronchial walls, and the numbers of total cell counts as well as neutrophils, monocytes, and tumor necrosis factor α in bronchial alveolar lavage. Moreover, NaHS reduced increases in right ventricular systolic pressure, the thickness of pulmonary vascular walls, and the ratio of RV/LV+S in TS-exposed mice. Further, TS exposure for 12 and 24 weeks reduced the protein contents of cystathionine γ-lyase (CGL), cystathionine β-synthetase (CBS), nuclear erythroid-related factor 2 (Nrf2), Pser473-Akt, as well as glutathione/oxidized glutathione ratio in the lungs. TS-exposed lungs exhibited large amounts of 8-hydroxyguanine-positive and terminal deoxynucleotidyl transferase dUTP nick end labeling-positive cells. Treatment with NaHS increased Pser473-Akt and attenuated TS-induced reduction of CGL, CBS, and Nrf2 as well as glutathione/oxidized glutathione ratio in the lungs. NaHS also reduced amounts of 8-hydroxyguanine-positive, terminal deoxynucleotidyl transferase dUTP nick end labeling-positive cells and active caspase-3 in TS-exposed lungs. Additionally, knocking-down Akt protein abolished the protective effects of NaHS against TS-induced apoptosis and downregulation of Nrf2, CGL, and CBS in pulmonary artery endothelial cells. Conclusion These

  8. The effect of pearlite on the hydrogen-induced ductility loss in ductile cast irons

    NASA Astrophysics Data System (ADS)

    Matsuo, T.

    2017-05-01

    Hydrogen energy systems, such as a hydrogen fuel cell vehicle and a hydrogen station, are rapidly developing to solve global environmental problems and resource problems. The available structural materials used for hydrogen equipments have been limited to only a few relatively expensive metallic materials that are tolerant for hydrogen embrittlement. Therefore, for the realization of a hydrogen society, it is important to expand the range of materials available for hydrogen equipment and thereby to enable the use of inexpensive common materials. Therefore, ductile cast iron was, in this study, focused as a structural material that could contribute to cost reduction of hydrogen equipment, because it is a low-cost material having good mechanical property comparable to carbon steels in addition to good castability and machinability. The strength and ductility of common ductile cast irons with a ferritic-pearlitic matrix can be controlled by the volume fraction of pearlitic phase. In the case of carbon steels, the susceptibility to hydrogen embrittlement increases with increase in the pearlite fraction. Toward the development of ferritic-pearlitic ductile cast iron with reasonable strength for hydrogen equipment, it is necessary to figure out the effect of pearlite on the hydrogen embrittlement of this cast iron. In this study, the tensile tests were conducted using hydrogen-precharged specimens of three kinds of ferritic-pearlitic ductile cast irons, JIS-FCD400, JIS-FCD450 and JIS-FCD700. Based on the results, the role of pearlite in characterizing the hydrogen embrittlement of ductile cast iron was discussed.

  9. Direct observation of surface potential change due to hydrogen termination of CVD diamond surface by metastable-induced electron spectroscopy

    NASA Astrophysics Data System (ADS)

    Watanabe, A.; Nishioka, S.; Shirouzu, Y.; Yamada, K.; Naitoh, M.; Nishigaki, S.

    2006-09-01

    Metastable-induced electron spectroscopy (MIES) together with ultraviolet photoemission spectroscopy (UPS) was applied to the analysis of the surface electronic structure of chemical-vapor-deposited diamond films. The films were grown in a microwave plasma, and their surfaces were terminated by hydrogen. The MIES spectrum measured at an as-deposited surface contains peaks due to adsorbates. When this surface was annealed at 400 °C, those peaks were depressed, and the spectrum showed a similar structure to that of UPS. Once the surface was re-hydrogenated, the MIES spectrum rose up at lower energies than the UPS spectrum did for surfaces annealed at lower temperatures. Finally after annealing at 1000 °C, the cutoff energies of MIES and UPS converged at nearly the same values. The result demonstrates that the MIES detects a surface potential which changes locally at the hydrogen-terminated surfaces.

  10. Microstructure and hydrogen induced failure mechanisms in iron-nickel weldments

    NASA Astrophysics Data System (ADS)

    Fenske, Jamey Alan

    A recent series of inexplicable catastrophic failures of specific subsea dissimilar metal Fe-Ni butter welds has illuminated a fundamental lack of understanding of both the microstructure created along the fusion line as well as its impact on the hydrogen susceptibility of these interfaces. In order to remedy this, the present work compares and contrasts the microstructure and hydrogen-induced fracture morphology of AISI 8630-IN 625 and F22-IN 625 dissimilar metal weld interfaces as a function of post-weld heat treatment duration. A variety of techniques were used to study details of both the microstructure and fracture morphology including optical microscopy, scanning electron microscopy, secondary ion mass spectrometry, transmission electron microscopy, electron backscatter diffraction, and energy dispersive x-ray spectroscopy. For both systems, the microstructure along the weld interface consisted of a coarse grain heat-affected zone in the Fe-base metal followed by discontinuous martensitic partially-mixed zones and a continuous partially-mixed zone on the Ni-side of the fusion line. Within the partially mixed zone on the Ni-side there exists a 200 nm-wide transition zone within a 20 mum-wide planar solidification region followed by a cellular dendritic region with Nb-Mo rich carbides decorating the dendrite boundaries. The size, area fraction and composition of the discontinuous PMZ were determined to be controlled by uneven mixing in the liquid weld pool influenced by convection currents produced from the welding procedure. The virgin martensitic microstructure produced in these regions is formed as consequence of a both the local composition and the post-weld heat treatment. The local higher Ni content results in these regions being retransformed into austenite during the post-weld heat treatment and then virgin martensite while cooling to room temperature. Although there were differences in the volume of the discontinuous partially mixed-zones, the major

  11. Utilization of Hyperbaric Oxygen Therapy and Induced Hypothermia After Hydrogen Sulfide Exposure

    PubMed Central

    Asif, Mir J.; Exline, Matthew C.

    2013-01-01

    Hydrogen sulfide is a toxic gas produced as a byproduct of organic waste and many industrial processes. Hydrogen sulfide exposure symptoms may vary from mild (dizziness, headaches, nausea) to severe lactic acidosis via its inhibition of oxidative phosphorylation, leading to cardiac arrhythmias and death. Treatment is generally supportive. We report the case of a patient presenting with cardiac arrest secondary to hydrogen sulfide exposure treated with both hyperbaric oxygen therapy and therapeutic hypothermia with great improvement in neurologic function. PMID:22004989

  12. Hydrogenation-induced edge magnetization in armchair MoS{sub 2} nanoribbon and electric field effects

    SciTech Connect

    Ouyang, Fangping; Yang, Zhixiong; Wu, Nannan; Chen, Yu; Ni, Xiang; Xiong, Xiang

    2014-02-17

    We performed density functional theory study on the electronic and magnetic properties of armchair MoS{sub 2} nanoribbons (AMoS{sub 2}NR) with different edge hydrogenation. Although bare and fully passivated AMoS{sub 2}NRs are nonmagnetic semiconductors, it was found that hydrogenation in certain patterns can induce localized ferromagnetic edge state in AMoS{sub 2}NRs and make AMoS{sub 2}NRs become antiferromagnetic semiconductors or ferromagnetic semiconductors. Electric field effects on the bandgap and magnetic moment of AMoS{sub 2}NRs were investigated. Partial edge hydrogenation can change a small-sized AMoS{sub 2}NR from semiconductor to metal or semimetal under a moderate transverse electric field. Since the rate of edge hydrogenation can be controlled experimentally via the temperature, pressure and concentration of H{sub 2}, our results suggest edge hydrogenation is a useful method to engineer the band structure of AMoS{sub 2}NRs.

  13. Damage cross-sections for MeV energy He ion induced hydrogen ejection in polymers-material structure effects

    NASA Astrophysics Data System (ADS)

    Salah, H.; Touchrift, B.

    2004-03-01

    Using the elastic recoil detection analysis (ERDA) method for hydrogen analysis, a He-4(+) ion beam was used simultaneously for irradiating samples and as a tool to measure the hydrogen desorption yield as a function of irradiation dose. The influence of molecular structure on helium-induced desorption is studied for different polymers. The dose-response curves of hydrogen released from irradiated structures are presented and used to determine the damage cross-sections. The deduced desorption extent for a single impact is of the order of a few Angstroms, revealing localized regions of desorption. Hydrogen desorption is found to be sensitive to chemical composition of the target. The overall experimental data of the hydrogen desorption yield are described by the same function of the type Y(phi) = (C/phi(n) ) exp (-sigma phi) where phi is the irradiation dose and C and n are a fitting parameter. The first part of the function describes 'prompt ejection', predominant at lower irradiation dose where the created latent tracks remain separated. The exponential term accounts for the 'thermal ejection' process activated by ion-track overlapping involved at higher irradiation doses. A threshold dose is found that separates the two regimes and above which the overlapping tracks form a highly heated condensed gas and activate chemical processes. Chemical modifications have been studied using infrared-absorption spectroscopy, which reveal the formation of stable molecules that could desorb intact.

  14. Study of Hydrogen and Oxygen and Its Reaction With Host Elements in Sandstone by Laser-Induced Breakdown Spectroscopy (LIBS)

    NASA Astrophysics Data System (ADS)

    Suyanto, Hery

    2017-05-01

    A study of hydrogen and oxygen and its reaction with host elements in a sandstone has been done by laser-induced breakdown spectroscopy (LIBS). The sandstone was irradiated by Nd-YAG laser (1064 nm, 7 ns) with varied energy of 60 mJ till 140 mJ in surrounding air gas pressure of 1 atm and produced plasma. The emission intensities of hydrogen H I 656.2 nm and oxygen O I 777.2 nm in the plasma were captured by HR 2500+ spectrometer and displayed in intensity as a function of wavelength. The data show that the emission intensities of hydrogen and oxygen increase with increasing laser energy at a gradient of 5.4 and 11.8 respectively every increasing laser energy of 20 mJ. To characterize the reaction process between hydrogen and oxygen with the host elements of the sandstone, a 0.2 ml demineralized water was dropped on the sandstone surface and was analyzed as a function of delay time reaction and temperature. The data show that the oxidation reaction between host elements and oxygen occurred after 25 minutes that the oxygen emission intensity increases and the hydrogen emission intensity decreases. Another data also show that the increasing temperature of sandstone until 80 C increased intermolecular bond between oxygen and host element and dehydrogenation took place after reaching this temperature

  15. The Beneficial Effect of Ginsenoside Rg1 on Schwann Cells Subjected to Hydrogen Peroxide Induced Oxidative Injury

    PubMed Central

    Ma, Junxiong; Liu, Jun; Wang, Qi; Yu, Hailong; Chen, Yu; Xiang, Liangbi

    2013-01-01

    Ginsenoside Rg1 (GRg1) has been considered to have therapeutic potential in promoting peripheral nerve regeneration and functional recovery after sciatic nerve injuries. However, the mechanism underlying the beneficial effect of GRg1 on peripheral nerve regeneration is currently unclear. The possible effect of GRg1 on Schwann cells (SCs), which were subjected to oxidative injury after nerve injury, might contribute to the beneficial effect of GRg1 on nerve regeneration. The present study was designed to investigate the potential beneficial effect of GRg1 on SCs exposed to oxidative injury. The oxidative injury to SCs was induced by hydrogen peroxide. The effect of GRg1 (50 μM) on SCs exposed to oxidative injury was measured by the levels of malondialdehyde (MDA), superoxide dismutase (SOD), glutathione (GSH) and catalase (CAT) in SCs. The cell number and cell viability of SCs were evaluated through fluorescence observation and MTT assay. The apoptosis of SCs induced by oxidative injury was evaluated by an apoptosis assay. The expression and secretion of nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) were evaluated using RT-PCR, Western blotting, and an ELISA method. We found that GRg1 significantly up-regulated the level of SOD, GSH and CAT, and decreased the level of MDA in SCs treated with hydrogen peroxide. In addition, GRg1 has been shown to be able to inhibit the proapoptotic effect of hydrogen peroxide, as well as inhibit the detrimental effect of hydrogen peroxide on cell number and cell viability. Furthermore, GRg1 also increased the mRNA levels, protein levels and secretion of NGF and BDNF in SCs after incubation of hydrogen peroxide. Further study showed that preincubation with H89 (a PKA inhibitor) significantly inhibited the effects induced by hydrogen peroxide, indicating that the PKA pathway might be involved in the antioxidant effect and neurotrophic factors (NTFs) promoting effect of GRg1. In addition, a short-term in vivo

  16. Protective Effects of Costunolide against Hydrogen Peroxide-Induced Injury in PC12 Cells.

    PubMed

    Cheong, Chong-Un; Yeh, Ching-Sheng; Hsieh, Yi-Wen; Lee, Ying-Ray; Lin, Mei-Ying; Chen, Chung-Yi; Lee, Chien-Hsing

    2016-07-09

    Oxidative stress-mediated cellular injury has been considered as a major cause of neurodegenerative diseases including Alzheimer's and Parkinson's diseases. The scavenging of reactive oxygen species (ROS) mediated by antioxidants may be a potential strategy for retarding the diseases' progression. Costunolide (CS) is a well-known sesquiterpene lactone, used as a popular herbal remedy, which possesses anti-inflammatory and antioxidant activity. This study aimed to investigate the protective role of CS against the cytotoxicity induced by hydrogen peroxide (H₂O₂) and to elucidate potential protective mechanisms in PC12 cells. The results showed that the treatment of PC12 cells with CS prior to H₂O₂ exposure effectively increased the cell viability. Furthermore, it decreased the intracellular ROS, stabilized the mitochondria membrane potential (MMP), and reduced apoptosis-related protein such as caspase 3. In addition, CS treatment attenuated the cell injury by H₂O₂ through the inhibition of phosphorylation of p38 and the extracellular signal-regulated kinase (ERK). These results demonstrated that CS is promising as a potential therapeutic candidate for neurodegenerative diseases resulting from oxidative damage and further research on this topic should be encouraged.

  17. Efficient near ultraviolet light induced formation of hydrogen by ferrous hydroxide. [in primitive earth

    NASA Technical Reports Server (NTRS)

    Borowska, Zofia K.; Mauzerall, David C.

    1987-01-01

    A possible origin of early hydrogen by UV-induced photoreduction of ferrous ions was investigated by measuring the rate of H2 formation from irradiated FeSO4 solutions as a function of pH and the range of UV sources. It was found that, in addition to the known reaction in acid solution which decreases in yield with increasing pH and requires far-UV light, there is an efficient reaction occurring between pH 6 and 9 which utilizes near-UV light (of a 200-W mercury arc lamp). This latter reaction is a linear function of both the concentration of Fe(2+) and the light intensity. These results support the suggestion of Braterman et al. (1983) that the near-UV-driven photooxidation of ferrous ions may be responsible for the origin of the banded iron formations on the early earth. The efficient photoreaction could also explain the source of reducing equivalents for CO2 reduction.

  18. Contraction-Induced Changes in Hydrogen Bonding of Muscle Hydration Water

    PubMed Central

    2015-01-01

    Protein–water interaction plays a crucial role in protein dynamics and hence function. To study the chemical environment of water and proteins with high spatial resolution, synchrotron radiation-Fourier transform infrared (SR-FTIR) spectromicroscopy was used to probe skeletal muscle myofibrils. Observing the OH stretch band showed that water inside of relaxed myofibrils is extensively hydrogen-bonded with little or no free OH. In higher-resolution measurements obtained with single isolated myofibrils, the water absorption peaks were relatively higher within the center region of the sarcomere compared to those in the I-band region, implying higher hydration capacity of thick filaments compared to the thin filaments. When specimens were activated, changes in the OH stretch band showed significant dehydrogen bonding of muscle water; this was indicated by increased absorption at ∼3480 cm–1 compared to relaxed myofibrils. These contraction-induced changes in water were accompanied by splitting of the amide I (C=O) peak, implying that muscle proteins transition from α-helix to β-sheet-rich structures. Hence, muscle contraction can be characterized by a loss of order in the muscle–protein complex, accompanied by a destructuring of hydration water. The findings shed fresh light on the molecular mechanism of muscle contraction and motor protein dynamics. PMID:24803993

  19. Hydrogen peroxide induces a rapid production of nitric oxide in mung bean (Phaseolus aureus).

    PubMed

    Lum, H K; Butt, Y K C; Lo, S C L

    2002-03-01

    Nitric oxide (NO) has recently been identified as an important signaling molecule in plant immune response. The present study aims to investigate the signaling pathway that leads to NO production. Using the NO specific fluorescent dye DAF-2DA, we observed rapid production of NO in mung bean leaves after the addition of 10 mM hydrogen peroxide (H(2)O(2)). NO was probably produced by a NOS-like enzyme in plants, as the NO production was inhibited by l-NAME, a NOS inhibitor. The NOS-like activity in the total leaf protein preparation of mung bean (Phaseolus aureus) was elevated 8.3-fold after 10 mM H(2)O(2) treatment, as demonstrated using the chemiluminescence NOS assay. The NOS-like activity was BH(4) dependent: omitting BH(4) in the reaction mixture of NOS assay reduced the NOS activity by 76%. We also found that the H(2)O(2) induced NO production was mediated via calcium ion flux, as it was blocked in the presence of a calcium ion channel blocker, verapamil. Results from the present study identified H(2)O(2) as an upstream signal that leads to NO production in plants. H(2)O(2) and NO, besides acting as two independent signaling molecules in plant immune response, may interrelate to form an oxidative cell death (OCD) cycle.

  20. Salicylic acid-induced superoxide generation catalyzed by plant peroxidase in hydrogen peroxide-independent manner.

    PubMed

    Kimura, Makoto; Kawano, Tomonori

    2015-01-01

    It has been reported that salicylic acid (SA) induces both immediate spike and long lasting phases of oxidative burst represented by the generation of reactive oxygen species (ROS) such as superoxide anion radical (O2(•-)). In general, in the earlier phase of oxidative burst, apoplastic peroxidase are likely involved and in the late phase of the oxidative burst, NADPH oxidase is likely involved. Key signaling events connecting the 2 phases of oxidative burst are calcium channel activation and protein phosphorylation events. To date, the known earliest signaling event in response to exogenously added SA is the cell wall peroxidase-catalyzed generation of O2(•-) in a hydrogen peroxide (H2O2)-dependent manner. However, this model is incomplete since the source of the initially required H2O2 could not be explained. Based on the recently proposed role for H2O2-independent mechanism for ROS production catalyzed by plant peroxidases (Kimura et al., 2014, Frontiers in Plant Science), we hereby propose a novel model for plant peroxidase-catalyzed oxidative burst fueled by SA.

  1. Acute hydrogen sulfide-induced neuropathology and neurological sequelae: challenges for translational neuroprotective research.

    PubMed

    Rumbeiha, Wilson; Whitley, Elizabeth; Anantharam, Poojya; Kim, Dong-Suk; Kanthasamy, Arthi

    2016-08-01

    Hydrogen sulfide (H2 S), the gas with the odor of rotten eggs, was formally discovered in 1777, over 239 years ago. For many years, it was considered an environmental pollutant and a health concern only in occupational settings. Recently, however, it was discovered that H2 S is produced endogenously and plays critical physiological roles as a gasotransmitter. Although at low physiological concentrations it is physiologically beneficial, exposure to high concentrations of H2 S is known to cause brain damage, leading to neurodegeneration and long-term neurological sequelae or death. Neurological sequelae include motor, behavioral, and cognitive deficits, which are incapacitating. Currently, there are concerns about accidental or malicious acute mass civilian exposure to H2 S. There is a major unmet need for an ideal neuroprotective treatment, for use in the field, in the event of mass civilian exposure to high H2 S concentrations. This review focuses on the neuropathology of high acute H2 S exposure, knowledge gaps, and the challenges associated with development of effective neuroprotective therapy to counteract H2 S-induced neurodegeneration.

  2. Efficient near ultraviolet light induced formation of hydrogen by ferrous hydroxide. [in primitive earth

    NASA Technical Reports Server (NTRS)

    Borowska, Zofia K.; Mauzerall, David C.

    1987-01-01

    A possible origin of early hydrogen by UV-induced photoreduction of ferrous ions was investigated by measuring the rate of H2 formation from irradiated FeSO4 solutions as a function of pH and the range of UV sources. It was found that, in addition to the known reaction in acid solution which decreases in yield with increasing pH and requires far-UV light, there is an efficient reaction occurring between pH 6 and 9 which utilizes near-UV light (of a 200-W mercury arc lamp). This latter reaction is a linear function of both the concentration of Fe(2+) and the light intensity. These results support the suggestion of Braterman et al. (1983) that the near-UV-driven photooxidation of ferrous ions may be responsible for the origin of the banded iron formations on the early earth. The efficient photoreaction could also explain the source of reducing equivalents for CO2 reduction.

  3. LabVIEW-based control software for para-hydrogen induced polarization instrumentation

    SciTech Connect

    Agraz, Jose Grunfeld, Alexander; Li, Debiao; Cunningham, Karl; Willey, Cindy; Pozos, Robert; Wagner, Shawn

    2014-04-15

    The elucidation of cell metabolic mechanisms is the modern underpinning of the diagnosis, treatment, and in some cases the prevention of disease. Para-Hydrogen induced polarization (PHIP) enhances magnetic resonance imaging (MRI) signals over 10 000 fold, allowing for the MRI of cell metabolic mechanisms. This signal enhancement is the result of hyperpolarizing endogenous substances used as contrast agents during imaging. PHIP instrumentation hyperpolarizes Carbon-13 ({sup 13}C) based substances using a process requiring control of a number of factors: chemical reaction timing, gas flow, monitoring of a static magnetic field (B{sub o}), radio frequency (RF) irradiation timing, reaction temperature, and gas pressures. Current PHIP instruments manually control the hyperpolarization process resulting in the lack of the precise control of factors listed above, resulting in non-reproducible results. We discuss the design and implementation of a LabVIEW based computer program that automatically and precisely controls the delivery and manipulation of gases and samples, monitoring gas pressures, environmental temperature, and RF sample irradiation. We show that the automated control over the hyperpolarization process results in the hyperpolarization of hydroxyethylpropionate. The implementation of this software provides the fast prototyping of PHIP instrumentation for the evaluation of a myriad of {sup 13}C based endogenous contrast agents used in molecular imaging.

  4. Resveratrol attenuates L-DOPA-induced hydrogen peroxide toxicity in neuronal cells.

    PubMed

    Peritore, Carina S; Ho, Angela; Yamamoto, Bryan K; Schaus, Scott E

    2012-12-05

    A variety of polyphenol antioxidant compounds derived from natural products have demonstrated neuroprotective activity against neuronal cell death. The objective of this study was to investigate the effect of resveratrol (RESV) and bioflavonoids in attenuating hydrogen peroxide (H(2)O(2))-induced oxidative stress in neuronal cells. H2O2 levels were increased by the addition of L-3,4-dihydroxyphenylalanine (L-DOPA) to cultured dopaminergic SKNSH cells. H(2)O(2) was monitored by peroxyfluor-1, a selective H(2)O(2) optical probe. To examine the neuroprotective effects of RESV and bioflavonoids against L-DOPA, we cotreated RESV, quercetin, or (-) epigallocatechin gallate with L-DOPA and monitored for H(2)O(2) levels. The combination of RESV and L-DOPA was 50% more effective at reducing H(2)O(2) levels than the combination of quercetin or epigallocatechin gallate with L-DOPA. However, the combination of each antioxidant with L-DOPA was effective at preserving cell viability.

  5. UV-induces formation of hydrogen peroxide based on the photochemistry of ketoprofen.

    PubMed

    Radschuweit, A; Rüttinger, H H; Nuhn, P; Wohlrab, W; Huschka, C

    2001-02-01

    Ketoprofen (KP) is a potent nonsteroidal anti-inflammatory drug. However, application to the skin is problematic because the photosensitizing properties of the benzophenone moiety may cause phototoxic effects when the treated skin region is exposed to UVA light. Using capillary electrophoresis with electrochemical detection we are able to differentiate the peroxides formed during illumination of KP-containing solutions of linoleic acid. Contrary to other profens a high amount of hydrogen peroxide was found among the reaction products. For investigation of the skin damaging effect human keratinocytes were used as models. Cell viability, DNA synthesis efficiency and intracellular concentration of peroxides were determined. Viability and proliferation behavior was not altered under the influence of KP. While lower concentrations of KP (10-100 nM) led to a protection against the UVA-induced (8 J/cm2) cell proliferation damage, higher concentrations (10-100 microM) led to an amplification of the proliferation decrease. With UVB irradiation at relevant doses the effects were lower than using UVA. Furthermore, intracellular peroxide content was increased after UV irradiation and KP addition. In conclusion some efforts have to be done to avoid these side effects in the use of KP for topical or transdermal application.

  6. Acute hydrogen sulfide–induced neuropathology and neurological sequelae: challenges for translational neuroprotective research

    PubMed Central

    Whitley, Elizabeth; Anantharam, Poojya; Kim, Dong‐Suk; Kanthasamy, Arthi

    2016-01-01

    Hydrogen sulfide (H2S), the gas with the odor of rotten eggs, was formally discovered in 1777, over 239 years ago. For many years, it was considered an environmental pollutant and a health concern only in occupational settings. Recently, however, it was discovered that H2S is produced endogenously and plays critical physiological roles as a gasotransmitter. Although at low physiological concentrations it is physiologically beneficial, exposure to high concentrations of H2S is known to cause brain damage, leading to neurodegeneration and long‐term neurological sequelae or death. Neurological sequelae include motor, behavioral, and cognitive deficits, which are incapacitating. Currently, there are concerns about accidental or malicious acute mass civilian exposure to H2S. There is a major unmet need for an ideal neuroprotective treatment, for use in the field, in the event of mass civilian exposure to high H2S concentrations. This review focuses on the neuropathology of high acute H2S exposure, knowledge gaps, and the challenges associated with development of effective neuroprotective therapy to counteract H2S‐induced neurodegeneration. PMID:27442775

  7. Delineation of subsurface hydrocarbon contamination at a former hydrogenation plant using spectral induced polarization imaging.

    PubMed

    Flores Orozco, Adrián; Kemna, Andreas; Oberdörster, Christoph; Zschornack, Ludwig; Leven, Carsten; Dietrich, Peter; Weiss, Holger

    2012-08-01

    Broadband spectral induced polarization (SIP) measurements were conducted at a former hydrogenation plant in Zeitz (NE Germany) to investigate the potential of SIP imaging to delineate areas with different BTEX (benzene, toluene, ethylbenzene, and xylene) concentrations. Conductivity images reveal a poor correlation with the distribution of contaminants; whereas phase images exhibit two main anomalies: low phase shift values (<5 mrad) for locations with high BTEX concentrations, including the occurrence of free-phase product (BTEX concentrations >1.7 g/l), and higher phase values for lower BTEX concentrations. Moreover, the spectral response of the areas with high BTEX concentration and free-phase products reveals a flattened spectrum in the low frequencies (<40 Hz), while areas with lower BTEX concentrations exhibit a response characterized by a frequency peak. The SIP response was modelled using a Debye decomposition to compute images of the median relaxation-time. Consistent with laboratory studies, we observed an increase in the relaxation-time associated with an increase in BTEX concentrations. Measurements were also collected in the time domain (TDIP), revealing imaging results consistent with those obtained for frequency domain (SIP) measurements. Results presented here demonstrate the potential of the SIP imaging method to discriminate source and plume of dissolved contaminants at BTEX contaminated sites.

  8. LabVIEW-based control software for para-hydrogen induced polarization instrumentation.

    PubMed

    Agraz, Jose; Grunfeld, Alexander; Li, Debiao; Cunningham, Karl; Willey, Cindy; Pozos, Robert; Wagner, Shawn

    2014-04-01

    The elucidation of cell metabolic mechanisms is the modern underpinning of the diagnosis, treatment, and in some cases the prevention of disease. Para-Hydrogen induced polarization (PHIP) enhances magnetic resonance imaging (MRI) signals over 10,000 fold, allowing for the MRI of cell metabolic mechanisms. This signal enhancement is the result of hyperpolarizing endogenous substances used as contrast agents during imaging. PHIP instrumentation hyperpolarizes Carbon-13 ((13)C) based substances using a process requiring control of a number of factors: chemical reaction timing, gas flow, monitoring of a static magnetic field (Bo), radio frequency (RF) irradiation timing, reaction temperature, and gas pressures. Current PHIP instruments manually control the hyperpolarization process resulting in the lack of the precise control of factors listed above, resulting in non-reproducible results. We discuss the design and implementation of a LabVIEW based computer program that automatically and precisely controls the delivery and manipulation of gases and samples, monitoring gas pressures, environmental temperature, and RF sample irradiation. We show that the automated control over the hyperpolarization process results in the hyperpolarization of hydroxyethylpropionate. The implementation of this software provides the fast prototyping of PHIP instrumentation for the evaluation of a myriad of (13)C based endogenous contrast agents used in molecular imaging.

  9. Electrochemical Impedance Spectroscopy (bio)sensing through hydrogen evolution reaction induced by gold nanoparticles.

    PubMed

    Mayorga-Martinez, Carmen C; Chamorro-Garcia, Alejandro; Merkoçi, Arben

    2015-05-15

    A new gold nanoparticle (AuNP) based detection strategy using Electrochemical Impedance Spectroscopy (EIS) through hydrogen evolution reaction (HER) is proposed. This EIS-HER method is used as an alternative to the conventional EIS based on [Fe(CN)6](3-/4-) or [Ru(NH3)6](3+/2+) indicators. The proposed method is based on the HER induced by AuNPs. EIS measurements for different amounts of AuNP are registered and the charge transfer resistance (Rct) was found to correlate and be useful for their quantification. Moreover the effect of AuNP size on electrical properties of AuNPs for HER using this sensitive technique has been investigated. Different EIS-HER signals generated in the presence of AuNPs of different sizes (2, 5, 10, 15, 20, and 50 nm) are observed, being the corresponding phenomena extendible to other nanoparticles and related catalytic reactions. This EIS-HER sensing technology is applied to a magneto-immunosandwich assay for the detection of a model protein (IgG) achieving improvements of the analytical performance in terms of a wide linear range (2-500 ng mL(-1)) with a good limit of detection (LOD) of 0.31 ng mL(-1) and high sensitivity. Moreover, with this methodology a reduction of one order of magnitude in the LOD for IgG detection, compared with a chroamperometric technique normally used was achieved.

  10. Microbial resistance in relation to catalase activity to oxidative stress induced by photolysis of hydrogen peroxide.

    PubMed

    Nakamura, Keisuke; Kanno, Taro; Mokudai, Takayuki; Iwasawa, Atsuo; Niwano, Yoshimi; Kohno, Masahiro

    2012-01-01

    The purpose of the present study was to evaluate the mechanism of microbial resistance to oxidative stress induced by photolysis of hydrogen peroxide (H(2)O(2)) in relation to microbial catalase activity. In microbicidal tests, Staphylococcus aureus and Candida albicans were killed and this was accompanied by production of hydroxyl radicals. C. albicans was more resistant to hydroxyl radicals generated by photolysis of H(2)O(2) than was S. aureus. A catalase activity assay demonstrated that C. albicans had stronger catalase activity; accordingly, catalase activity could be one of the reasons for the resistance of the fungus to photolysis of H(2)O(2). Indeed, it was demonstrated that C. albicans with strong catalase activity was more resistant to photolysis of H(2)O(2) than that with weak catalase activity. Kinetic analysis using a modified Lineweaver-Burk plot also demonstrated that the microorganisms reacted directly with hydroxyl radicals and that this was accompanied by decomposition of H(2)O(2). The results of the present study suggest that the microbicidal effects of hydroxyl radicals generated by photolysis of H(2)O(2) can be alleviated by decomposition of H(2)O(2) by catalase in microorganisms.

  11. Role of hydrogen peroxide in NF-kappaB activation: from inducer to modulator.

    PubMed

    Oliveira-Marques, Virgínia; Marinho, H Susana; Cyrne, Luísa; Antunes, Fernando

    2009-09-01

    Hydrogen peroxide (H2O2) has been implicated in the regulation of the transcription factor NF-kappaB, a key regulator of the inflammatory process and adaptive immunity. However, no consensus exists regarding the regulatory role played by H2O2. We discuss how the experimental methodologies used to expose cells to H2O2 produce inconsistent results that are difficult to compare, and how the steady-state titration with H2O2 emerges as an adequate tool to overcome these problems. The redox targets of H2O2 in the NF-kappaB pathway--from the membrane to the post-translational modifications in both NF-kappaB and histones in the nucleus--are described. We also review how H2O2 acts as a specific regulator at the level of the single gene, and briefly discuss the implications of this regulation for human health in the context of kappaB polymorphisms. In conclusion, after near 30 years of research, H2O2 emerges not as an inducer of NF-kappaB, but as an agent able to modulate the activation of the NF-kappaB pathway by other agents. This modulation is generic at the level of the whole pathway but specific at the level of the single gene. Therefore, H2O2 is a fine-tuning regulator of NF-kappaB-dependent processes, as exemplified by its dual regulation of inflammation.

  12. LabVIEW-based control software for para-hydrogen induced polarization instrumentation

    NASA Astrophysics Data System (ADS)

    Agraz, Jose; Grunfeld, Alexander; Li, Debiao; Cunningham, Karl; Willey, Cindy; Pozos, Robert; Wagner, Shawn

    2014-04-01

    The elucidation of cell metabolic mechanisms is the modern underpinning of the diagnosis, treatment, and in some cases the prevention of disease. Para-Hydrogen induced polarization (PHIP) enhances magnetic resonance imaging (MRI) signals over 10 000 fold, allowing for the MRI of cell metabolic mechanisms. This signal enhancement is the result of hyperpolarizing endogenous substances used as contrast agents during imaging. PHIP instrumentation hyperpolarizes Carbon-13 (13C) based substances using a process requiring control of a number of factors: chemical reaction timing, gas flow, monitoring of a static magnetic field (Bo), radio frequency (RF) irradiation timing, reaction temperature, and gas pressures. Current PHIP instruments manually control the hyperpolarization process resulting in the lack of the precise control of factors listed above, resulting in non-reproducible results. We discuss the design and implementation of a LabVIEW based computer program that automatically and precisely controls the delivery and manipulation of gases and samples, monitoring gas pressures, environmental temperature, and RF sample irradiation. We show that the automated control over the hyperpolarization process results in the hyperpolarization of hydroxyethylpropionate. The implementation of this software provides the fast prototyping of PHIP instrumentation for the evaluation of a myriad of 13C based endogenous contrast agents used in molecular imaging.

  13. Stark-induced adiabatic Raman ladder for preparing highly vibrationally excited quantum states of molecular hydrogen

    NASA Astrophysics Data System (ADS)

    Mukherjee, Nandini; Perreault, William E.; Zare, Richard N.

    2017-07-01

    We present a multi-color ladder excitation scheme that exploits Stark-induced adiabatic Raman passage to selectively populate a highly excited vibrational level of a molecule. We suggest that this multi-color coherent ladder excitation provides a practical way of accessing levels near the vibrational dissociation limit as well as the dissociative continuum, which would allow the generation of an entangled pair of fragments with near-zero relative kinetic energy. Specifically, we consider four- and six-photon coherent excitation of molecular hydrogen to high vibrational levels via intermediate vibrational levels, which are pairwise coupled by two-photon resonant interaction. Using a sequence of three partially overlapping, single-mode, nanosecond laser pulses we show that the sixth vibrational level of H2, which is too weakly coupled to be easily accessed by direct two-photon Raman excitation from the ground vibrational level, can be efficiently populated without leaving any population stranded in the intermediate level. Furthermore, we show that the fourteenth vibrational level of H2, which is the highest vibrational level in the ground electronic state with a binding energy of 22 meV, can be efficiently and selectively populated using a sequence of four pulses. The present technique offers the unique possibility of preparing entangled quantum states of H atoms without resorting to an ultracold system.

  14. Large-area imager of hydrogen leaks in fuel cells using laser-induced breakdown spectroscopy.

    PubMed

    Hori, M; Hayano, R S; Fukuta, M; Koyama, T; Nobusue, H; Tanaka, J

    2009-10-01

    We constructed a simple device, which utilized laser-induced breakdown spectroscopy to image H2 gas leaking from the surfaces of hydrogen fuel cells to ambient air. Nanosecond laser pulses of wavelength lambda=532 nm emitted from a neodymium-doped yttrium aluminum garnet laser were first compressed to a pulse length Deltat<1 ns using a stimulated Brillouin backscattering cell. Relay-imaging optics then focused this beam onto the H(2) leak and initiated the breakdown plasma. The Balmer-alpha (H-alpha) emission that emerged from this was collected with a 2-m-long macrolens assembly with a 90-mm-diameter image area, which covered a solid angle of approximately 1 x 10(-3)pi steradians seen from the plasma. The H-alpha light was isolated by two 100-mm-diameter interference filters with a 2 nm bandpass, and imaged by a thermoelectrically cooled charge-coupled device camera. By scanning the position of the laser focus, the spatial distribution of H2 gas over a 90-mm-diameter area was photographed with a spatial resolution of < or = 5 mm. Photoionization of the water vapor in the air caused a strong H-alpha background. By using pure N2 as a buffer gas, H2 leaks with rates of <1 cc/min were imaged. We also studied the possibilities of detecting He, Ne, or Xe gas leaks.

  15. Studies of negative ions by collision-induced decomposition and hydrogen-deuterium exchange techniques.

    PubMed Central

    Hunt, D F; Sethi, S K; Shabanowitz, J

    1980-01-01

    Development of two new techniques for studying the gas phase chemistry of negative ions is reported. Collision induced dissociation (CID) of (M-1)- ions has been accomplished in a newly constructed triple stage quadrupole mass spectrometer. This instrument was assembled by adding two additional Finnigan quadrupole mass filters to a Finnigan Model 3200 CI mass spectrometer. Generation of (M-1)- ions is accomplished by allowing OH- and sample to react under CI conditions in the ion source. The first quadrupole mass filter, Q1, is then employed to selectively pass the (M-1)- ion into a second quadrupole filter containing argon or neon at 10(-3) torr. On collision with the inert gas the (M-1)- ions dissociate into fragments which are then mass analyzed in the third quadrupole filter, CID spectra of (M-1)- ions from twelve carbonyl compounds are presented in this paper. Ion molecule isotope exchange reactions in the CI ion source can be used to count the number of hydrogen atoms in many different chemical environments. Collisions between sample (M-1)- ions and deuterium-labeled reagent gases (ND3, D2O, EtOD) facilitate incorporation of deuterium into the negative ion if the basicities of the sample and reagent anions are similar. Thus it is possible to selectively incorporate deuterium into many organic samples by controlling the exothermicity of the acid base, ion-molecule chemistry. PMID:7428745

  16. Studies of negative ions by collision-induced decomposition and hydrogen-deuterium exchange techniques.

    PubMed

    Hunt, D F; Sethi, S K; Shabanowitz, J

    1980-06-01

    Development of two new techniques for studying the gas phase chemistry of negative ions is reported. Collision induced dissociation (CID) of (M-1)- ions has been accomplished in a newly constructed triple stage quadrupole mass spectrometer. This instrument was assembled by adding two additional Finnigan quadrupole mass filters to a Finnigan Model 3200 CI mass spectrometer. Generation of (M-1)- ions is accomplished by allowing OH- and sample to react under CI conditions in the ion source. The first quadrupole mass filter, Q1, is then employed to selectively pass the (M-1)- ion into a second quadrupole filter containing argon or neon at 10(-3) torr. On collision with the inert gas the (M-1)- ions dissociate into fragments which are then mass analyzed in the third quadrupole filter, CID spectra of (M-1)- ions from twelve carbonyl compounds are presented in this paper. Ion molecule isotope exchange reactions in the CI ion source can be used to count the number of hydrogen atoms in many different chemical environments. Collisions between sample (M-1)- ions and deuterium-labeled reagent gases (ND3, D2O, EtOD) facilitate incorporation of deuterium into the negative ion if the basicities of the sample and reagent anions are similar. Thus it is possible to selectively incorporate deuterium into many organic samples by controlling the exothermicity of the acid base, ion-molecule chemistry.

  17. Effects on liver hydrogen peroxide metabolism induced by dietary selenium deficiency or excess in chickens.

    PubMed

    Xu, Jing-Xiu; Cao, Chang-Yu; Sun, Yan-Chun; Wang, Li-Li; Li, Nan; Xu, Shi-Wen; Li, Jin-Long

    2014-06-01

    To determine the relationship between dietary selenium (Se) deficiency or excess and liver hydrogen peroxide (H2O2) metabolism in chickens, 1-day-old chickens received insufficient Se (0.028 mg Se per kg of diet) or excess Se (3.0 or 5.0 mg Se per kg of diet) in their diets for 8 weeks. Body and liver weight changes, alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities, H2O2 content, and activities and mRNA levels of enzymes associated with H2O2 metabolism (catalase (CAT) and superoxide dismutase (SOD) 1-3) were determined in the liver. This study showed that Se deficiency or excess Se intake elicited relative severe changes. Se deficiency decreased growth, while Se excess promoted growth in chickens. Both diets vastly altered the liver function, but no obvious histopathological changes were observed in the liver. Se deficiency significantly lowered SOD and CAT activities, and the H2O2 content in the liver and serum increased. Se excess (3.0 mg/kg) decreased SOD and CAT activities with changes in their mRNA levels, and the H2O2 content increased. The larger Se excess (5.0 mg/kg) showed more serious effects but was not fatal. These results indicated that the H2O2 metabolism played a destructive role in the changes in bird liver function induced by Se deficiency or excess.

  18. The effect of hydrogen sulfide donors on lipopolysaccharide-induced formation of inflammatory mediators in macrophages.

    PubMed

    Whiteman, Matthew; Li, Ling; Rose, Peter; Tan, Choon-Hong; Parkinson, David B; Moore, Philip K

    2010-05-15

    The role of hydrogen sulfide (H(2)S) in inflammation is controversial, with both pro- and antiinflammatory effects documented. Many studies have used simple sulfide salts as the source of H(2)S, which give a rapid bolus of H(2)S in aqueous solutions and thus do not accurately reflect the enzymatic generation of H(2)S. We therefore compared the effects of sodium hydrosulfide and a novel slow-releasing H(2)S donor (GYY4137) on the release of pro- and antiinflammatory mediators in lipopolysaccharide (LPS)-treated murine RAW264.7 macrophages. For the first time, we show that GYY4137 significantly and concentration-dependently inhibits LPS-induced release of proinflammatory mediators such as IL-1beta, IL-6, TNF-alpha, nitric oxide (*NO), and PGE(2) but increased the synthesis of the antiinflammatory chemokine IL-10 through NF-kappaB/ATF-2/HSP-27-dependent pathways. In contrast, NaHS elicited a biphasic effect on proinflammatory mediators and, at high concentrations, increased the synthesis of IL-1beta, IL-6, NO, PGE(2) and TNF-alpha. This study clearly shows that the effects of H(2)S on the inflammatory process are complex and dependent not only on H(2)S concentration but also on the rate of H(2)S generation. This study may also explain some of the apparent discrepancies in the literature regarding the pro- versus antiinflammatory role of H(2)S.

  19. Hydrogen sulfide induces oxidative damage to RNA and DNA in a sulfide-tolerant marine invertebrate.

    PubMed

    Joyner-Matos, Joanna; Predmore, Benjamin L; Stein, Jenny R; Leeuwenburgh, Christiaan; Julian, David

    2010-01-01

    Hydrogen sulfide acts as an environmental toxin across a range of concentrations and as a cellular signaling molecule at very low concentrations. Despite its toxicity, many animals, including the mudflat polychaete Glycera dibranchiata, are periodically or continuously exposed to sulfide in their environment. We tested the hypothesis that a broad range of ecologically relevant sulfide concentrations induces oxidative stress and oxidative damage to RNA and DNA in G. dibranchiata. Coelomocytes exposed in vitro to sulfide (0-3 mmol L(-1) for 1 h) showed dose-dependent increases in oxidative stress (as 2',7'-dichlorofluorescein fluorescence) and superoxide production (as dihydroethidine fluorescence). Coelomocytes exposed in vitro to sulfide (up to 0.73 mmol L(-1) for 2 h) also acquired increased oxidative damage to RNA (detected as 8-oxo-7,8-dihydroguanosine) and DNA (detected as 8-oxo-7,8-dihydro-2'-deoxyguanosine). Worms exposed in vivo to sulfide (0-10 mmol L(-1) for 24 h) acquired elevated oxidative damage to RNA and DNA in both coelomocytes and body wall tissue. While the consequences of RNA and DNA oxidative damage are poorly understood, oxidatively damaged deoxyguanosine bases preferentially bind thymine, causing G-T transversions and potentially causing heritable point mutations. This suggests that sulfide can be an environmental mutagen in sulfide-tolerant invertebrates.

  20. Salicylic acid-induced superoxide generation catalyzed by plant peroxidase in hydrogen peroxide-independent manner

    PubMed Central

    Kimura, Makoto; Kawano, Tomonori

    2015-01-01

    It has been reported that salicylic acid (SA) induces both immediate spike and long lasting phases of oxidative burst represented by the generation of reactive oxygen species (ROS) such as superoxide anion radical (O2•−). In general, in the earlier phase of oxidative burst, apoplastic peroxidase are likely involved and in the late phase of the oxidative burst, NADPH oxidase is likely involved. Key signaling events connecting the 2 phases of oxidative burst are calcium channel activation and protein phosphorylation events. To date, the known earliest signaling event in response to exogenously added SA is the cell wall peroxidase-catalyzed generation of O2•− in a hydrogen peroxide (H2O2)-dependent manner. However, this model is incomplete since the source of the initially required H2O2 could not be explained. Based on the recently proposed role for H2O2-independent mechanism for ROS production catalyzed by plant peroxidases (Kimura et al., 2014, Frontiers in Plant Science), we hereby propose a novel model for plant peroxidase-catalyzed oxidative burst fueled by SA. PMID:26633563

  1. Electron-beam-induced information storage in hydrogenated amorphous silicon devices

    DOEpatents

    Yacobi, B.G.

    1985-03-18

    A method for recording and storing information in a hydrogenated amorphous silicon device, comprising: depositing hydrogenated amorphous silicon on a substrate to form a charge collection device; and generating defects in the hydrogenated amorphous silicon device, wherein the defects act as recombination centers that reduce the lifetime of carriers, thereby reducing charge collection efficiency and thus in the charge collection mode of scanning probe instruments, regions of the hydrogenated amorphous silicon device that contain the defects appear darker in comparison to regions of the device that do not contain the defects, leading to a contrast formation for pattern recognition and information storage.

  2. Hydrogen peroxide induces adaptive response and differential gene expression in human embryo lung fibroblast cells.

    PubMed

    Wei, Qinzhi; Huang, Haiyan; Yang, Linqing; Yuan, Jianhui; Yang, Xiaohua; Liu, Yungang; Zhuang, Zhixiong

    2014-04-01

    Hydrogen peroxide (H2 O2 ), a substance involved in cellular oxidative stress, has been observed to induce an adaptive response, which is characterized by a protection against the toxic effect of H2 O2 at higher concentrations. However, the molecular mechanism for the adaptive response remains unclear. In particular, the existing reports on H2 O2 -induced adaptive response are limited to animal cells and human tumor cells, and relatively normal human cells have never been observed for an adaptive response to H2 O2 . In this study, a human embryo lung fibroblast (MRC-5) cell line was used to model an adaptive response to H2 O2 , and the relevant differential gene expressions by using fluoro mRNA differential display RT-PCR. The results showed significant suppression of cytotoxicity of H2 O2 (1100 μM, 1 h) after pretreatment of the cells with H2 O2 at lower concentrations (0.088-8.8 μM, 24 h), as indicated by cell survival, lactate dehydrogenase release, and the rate of apoptotic cells. Totally 60 mRNA components were differentially expressed compared to untreated cells, and five of them (sizing 400-600 bp) which demonstrated the greatest increase in expression were cloned and sequenced. They showed identity with known genes, such as BCL-2, eIF3S5, NDUFS4, and RPS10. Real time RT-PCR analysis of the five genes displayed a pattern of differential expression consistent with that by the last method. These five genes may be involved in the induction of adaptive response by H2 O2 in human cells, at least in this particular cell type. Copyright © 2012 Wiley Periodicals, Inc.

  3. Protective effect of hydrogen sulfide against cold restraint stress-induced gastric mucosal injury in rats.

    PubMed

    Aboubakr, Esam M; Taye, Ashraf; El-Moselhy, Mohamed A; Hassan, Magdy K

    2013-12-01

    Hydrogen sulfide (H2S) is an endogenous gaseous mediator plays a potential role in modulating gastric inflammatory responses. However, its putative protective role remains to be defined. The present study aimed to evaluate role of the exogenously released and endogenously synthesized H2S in cold restraint stress (CRS)-induced oxidative gastric damage in rats. Rats were restrained, and maintained at 4 °C for 3 h. The H2S donor, sodium hydrosulfide (NaHS) (60 μmol/kg) was injected intraperitoneally (i.p.) before CRS. Our results revealed that NaHS pretreatment significantly attenuated ulcer index, free and total acid output, and pepsin activity in gastric juice along with decreased gastric mucosal carbonyl content and reactive oxygen species production. This was accompanied by increased gastric juice pH and mucin concentration in addition to restoring the deficits in the gastric reduced glutathione, catalase as well as superoxide dismutase enzyme activities. NaHS pretreatment markedly reduced the serum level of tumor necrosis factor (TNF-α) and myeloperoxidase activity compared to CRS-non-treated. Moreover, NaHS preadministration significantly abrogated the inflammatory and the deleterious responses of gastric mucosa in CRS. The protective effects of H2S were confirmed by gastric histopathological examination. However, pretreatment with the H2S-synthesizing enzyme, cystathionine-gamma-lyase inhibitor, beta-cyano-L-alanine (50 mg/kg, i.p.) reversed the gastroprotection afforded by the endogenous H2S. Collectively, our results suggest that H2S can protect rat gastric mucosa against CRS-induced gastric ulceration possibly through mechanisms that involve anti-oxidant and anti-inflammatory actions alongside enhancement of gastric mucosal barrier and reduction in acid secretory parameters.

  4. Protective Effects of a Diarylheptanoid from Curcuma comosa Against Hydrogen Peroxide-Induced Astroglial Cell Death.

    PubMed

    Vattanarongkup, Jaturavit; Piyachaturawat, Pawinee; Tuchinda, Patoomratana; Sanvarinda, Pimtip; Sanvarinda, Yupin; Jantaratnotai, Nattinee

    2016-11-01

    Oxidative stress is one of the major mechanisms causing neuronal and astroglial cell death in various neurological disorders such as Alzheimer's disease, Parkinson's disease, and brain ischemia. Two diarylheptanoids, (3R)-1,7-diphenyl-(4E,6E)-4,6-heptadien-3-ol (ASPP 049) and (3S)-7-(3,4-dihydroxyphenyl)-1-phenyl-(1E)-1-hepten-3-ol (ASPP 092), isolated from Curcuma comosa were investigated for cytoprotective effects on C6 astroglial cells using hydrogen peroxide (H2O2) exposure as a model of oxidative stress. ASPP 092 demonstrated free radical scavenging activity comparable to that of vitamin C, while ASPP 049 showed no antioxidant activity. Treatment with H2O2 at 400 µM for 12 h caused 79 % C6 astroglial cell death which was significantly reduced to 37 % by pretreatment with ASPP 092 (5 µM). In addition, ASPP 092 attenuated the increase in reactive oxygen species production and the decrease in total glutathione level induced by H2O2. The mechanism of ASPP 092 protection against H2O2-induced apoptotic signaling appeared to involve prevention of increase in the level of phosphorylated p53 and the Bax/Bcl-2 ratio as well as cleaved caspase-3. These findings provide new evidence that the diarylheptanoid ASPP 092 from C. comosa possesses antiapoptotic properties and could be further developed as a potential treatment for oxidative stress-related neuronal diseases. Georg Thieme Verlag KG Stuttgart · New York.

  5. Baccharin prevents genotoxic effects induced by methyl methanesulfonate and hydrogen peroxide in V79 cells.

    PubMed

    de Oliveira, Pollyanna Francielli; Leandro, Luis Fernando; Montanheiro, Giovana; Bastos, Jairo Kenupp; da Silva Filho, Ademar Alves; Tavares, Denise Crispim

    2012-08-01

    Baccharin is one of the major chemical compounds isolated from the aerial parts of Baccharis dracunculifolia DC (Asteraceae), a native plant of South America and the most important botanical source of the Brazilian green propolis that has been used in alternative medicine to treat inflammation, liver disorders, and stomach ulcers. The present study was carried out in V79 cells to determine the possible genotoxic and antigenotoxic activities of baccharin utilizing comet and micronucleus assays, where 2 known mutagenic agents with different mechanisms of DNA damage were used as positive controls. The V79 cells were treated with concentrations of baccharin (0.25, 0.5, 1.0, and 2.0 μg/mL) and for to investigate the antigenotoxicity these concentrations were associated with methyl methanesulfonate (MMS; 200 μM-comet assay and 400 μM-micronucleus assay) or hydrogen peroxide (H(2)O(2;) 50 μM-comet assay and 100 μM-micronucleus assay). Statistically significant differences in the rate of DNA damage were observed in cultures treated with the highest concentration of baccharin when compared to the control group, but this difference was not found in the micronucleus assay. The results also showed that the frequencies of DNA damage and micronuclei induced by MMS and H(2)O(2) were significantly reduced after treatment with baccharin. The baccharin showed a chemoprevention effect and can be the chemical compound responsible for the antigenotoxicity also demonstrated by the B. dracunculifolia. The antioxidant potential of baccharin may be related to its chemoprevention activity induced against both genomic and chromosomal damages. © 2012 Institute of Food Technologists®

  6. Inhibitory effect of hydrogen sulfide on ozone-induced airway inflammation, oxidative stress, and bronchial hyperresponsiveness.

    PubMed

    Zhang, Pengyu; Li, Feng; Wiegman, Coen H; Zhang, Min; Hong, Yan; Gong, Jicheng; Chang, Yan; Zhang, Junfeng Jim; Adcock, Ian; Chung, Kian Fan; Zhou, Xin

    2015-01-01

    Exposure to ozone has been associated with airway inflammation, oxidative stress, and bronchial hyperresponsiveness. The goal of this study was to examine whether these adverse effects of ozone could be prevented or reversed by hydrogen sulfide (H2S) as a reducing agent. The H2S donor sodium (NaHS) (2 mg/kg) or vehicle (PBS) was intraperitoneally injected into mice 1 hour before and after 3-hour ozone (2.5 ppm) or air exposure, and the mice were studied 24 hours later. Preventive and therapeutic treatment with NaHS reduced the ozone-induced increases in the total cells, including neutrophils and macrophages; this treatment also reduced levels of cytokines, including TNF-α, chemokine (C-X-C motif) ligand 1, IL-6, and IL-1β levels in bronchial alveolar lavage fluid; inhibited bronchial hyperresponsiveness; and attenuated ozone-induced increases in total malondialdehyde in bronchoalveolar lavage fluid and decreases in the ratio of reduced glutathione/oxidized glutathione in the lung. Ozone exposure led to decreases in the H2S production rate and in mRNA and protein levels of cystathionine-β-synthetase and cystathionine-γ-lyase in the lung. These effects were prevented and reversed by NaHS treatment. Furthermore, NaHS prevented and reversed the phosphorylation of p38 mitogen-activated protein kinase and heat shock protein 27. H2S may have preventive and therapeutic value in the treatment of airway diseases that have an oxidative stress basis.

  7. Anti-metastatic Semi-synthetic Sulfated Maltotriose C-C Linked Dimers. Synthesis and Characterisation

    PubMed Central

    Vismara, Elena; Coletti, Alessia; Valerio, Antonio; Naggi, AnnaMaria; Urso, Elena; Torri, Giangiacomo

    2013-01-01

    This manuscript describes the preparation and the spectroscopic characterisation of semi-synthetic sulfated maltotriose C-C linked dimers (SMTCs) where the natural C-O-C anomeric bond was substituted by one direct central C-C bond. This C-C bond induces conformation and flexibility changes with respect to the usual anomeric bond. SMTCs neutral precursors came from maltotriosyl bromide electroreduction through maltotriosyl radical intermediate dimerisation. The new C-C bond configuration, named for convenience α,α, α,β and β,β as the natural anomeric bond, dictated the statistic ratio formation of three diastereoisomers. They were separated by silica gel flash chromatography followed by semi preparative HPLC chromatography. Each diastereoisomer was exhaustively sulfated to afford the corresponding SMTCs. SMTCs were huge characterised by NMR spectroscopy which provided the sulfation degree, too. α,α and α,β were found quite homogeneous samples with a high degree of sulfation (85–95%). β,β appeared a non-homogeneous sample whose average sulfation degree was evaluated at around 78%. Mass spectroscopy experiments confirmed the sulfation degree range. Some considerations were proposed about SMTCs structure-biological properties. PMID:22902885

  8. The Gas Leakage Analysis in C/C Composites

    NASA Astrophysics Data System (ADS)

    Nishiyama, Yuichi; Hatta, Hiroshi; Bando, Takamasa; Sugibayashi, Toshio

    Gas leakage through carbon fiber reinforcement carbon composites, C/Cs, was discussed so as to apply C/Cs to heat exchangers in an engine system for a future space-plane. Since C/Cs include many cracks and pores, gas easily leaks through C/Cs. To predict and to prevent the gas flow through a C/C, leakage rate was measured as a function of pressure and gas flow path was identified by micro-observation of the C/C. Then, several analytical models were examined to clarify principal mechanism yielding gas flow resistance. It was found that laminar flow models gave far small flow resistance compared with experimental results, but a model based on adiabatic expansion and compression flow, used for gas leak through labyrinth seals, resulted in reasonable agreement. Finally, Si impregnation in a C/C was examined to minimize the gas leakage. This treatment was shown to be an excellent measure to reduce the gas leakage through C/C.

  9. Perspective view of the C. C. Boswell Building (Building Q), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Perspective view of the C. C. Boswell Building (Building Q), 104 A Street East, view looking northeast - Vale Commercial Historic District, A Street between Holland & Longfellow Streets, north side of B Street between Holland & Main Streets, Main Street South from A Street through B Street, & Stone House at 283 Main Street South, Vale, Malheur County, OR

  10. C-C bond-forming desulfurizations of sulfoximines.

    PubMed

    Reggelin, M; Slavik, S; Bühle, P

    2008-09-18

    Highly substituted, enantiomerically pure azaheterocyclic ring systems play an important role in medicinal chemistry as potential peptide mimetics. Metalated 2-alkenyl sulfoximines offer an efficient entry to this class of compounds. In this paper, we describe a new means to remove the sulfonimidoyl auxiliary with concomitant formation of a C-C double bond.

  11. Unveiling the Origin of Work Hardening Behavior in an Ultrafine-Grained Manganese Transformation-Induced Plasticity Steel by Hydrogen Investigation

    NASA Astrophysics Data System (ADS)

    Zhu, Xu; Li, Wei; Zhao, Hongshan; Han, Qihang; Wang, Li; Jiao, Huisheng; Jin, Xuejun

    2016-09-01

    To reveal the origin of work hardening behavior in an ultrafine-grained manganese transformation-induced plasticity (TRIP) steel, specific experiments were designed with the assistance of hydrogen. Although the effect of hydrogen on the austenite transformation was negligible, the work hardening rate ( Θ) was apparently reduced for hydrogenated samples, indicating that TRIP effect cannot account for the high Θ alone. The collaborative effect of dislocation accumulation in ferrite and austenite transformation is proposed to explain the responsible mechanism.

  12. Protective effect of docosahexaenoic acid against hydrogen peroxide-induced oxidative stress in human lymphocytes.

    PubMed

    Bechoua, S; Dubois, M; Dominguez, Z; Goncalves, A; Némoz, G; Lagarde, M; Prigent, A F

    1999-05-01

    Oxidatively stressed lymphocytes exhibit decreased proliferative response to mitogenic stimulation. Although several sensitive targets involved in lymphocyte suppression have already been identified, little is known about the influence of oxidative stress on cyclic nucleotide phosphodiesterases (PDE) (EC 3.1.4.17), thought to play a major role in the control of cyclic AMP (cAMP) level, a well-recognized negative effector of lymphoproliferation. Although the polyunsaturated fatty acid content of membrane phospholipids is thought to be directly related to the extent of oxidant-induced lipid peroxidation, some n-3 fatty acids also seem to have antioxidant effects, depending on the concentration used and the overall redox status of the cells in question. Results of the present study showed that human peripheral blood mononuclear cells (PBMC) as well as rat thymocytes were relatively resistant to a short-term exposure (10 min) to hydrogen peroxide (H2O2). Indeed, H2O2-induced lipid peroxidation, estimated by malondialdehyde (MDA) production, was only 2-fold increased by H2O2 concentrations lower than 2 mM, whereas a larger increase (10-fold) could be observed in PBMC at the highest dose (5 mM). Previous enrichment of PBMC with 5 microM docosahexaenoic acid (22:6n-3), brought to the cells as a fatty acid-albumin complex (ratio 1), significantly reduced MDA production induced by low doses of H2O2, the protective effect no longer being observed at the highest doses. In contrast, eicosapentaenoic acid (20:5n-3) did not have any protective effect. Cytosolic PDE activities of both human PBMC and rat thymocytes were significantly inhibited (40-50%) after H2O2 treatment of the cells, whereas particulate PDE activities were not modified. Different responses of PDE activities to H2O2 treatment were observed when PBMC were first enriched with 22:6n-3 prior to H2O2 addition. In 22:6n-3-treated cells, the H2O2-induced inhibition of both cAMP- and cGMP-PDE cytosolic activities was

  13. An NMR study of cobalt-catalyzed hydroformylation using para-hydrogen induced polarisation.

    PubMed

    Godard, Cyril; Duckett, Simon B; Polas, Stacey; Tooze, Robert; Whitwood, Adrian C

    2009-04-14

    The syntheses of Co(eta3-C3H5)(CO)2PR2R' (R, R' = Ph, Me; R, R' = Me, Ph; R = R' = Ph, Cy, CH2Ph) and Co(eta3-C3H5)(CO)(L) (L = dmpe and dppe) are described, and X-ray structures for Co(eta3-C3H5)(CO)(dppe) and the PPh2Me, PCy3 derivatives reported. The relative ability of Co(eta3-C3H5)(CO)2(PR2R') to exchange phosphine for CO follows the trend PMe2Ph < PPh2Me < PCy3 < P(CH2Ph)3 < PPh3. Reactions of the allyl complexes with para-hydrogen (p-H2) lead to the observation of para-hydrogen induced polarisation (PHIP) in both liberated propene and propane. Reaction of these complexes with both CO and H2 leads to the detection of linear acyl containing species Co(COCH2CH2CH3)(CO)3(PR2R') and branched acyl complexes Co(COCH(CH3)2)(CO)3(PR2R') via the PHIP effect. In the case of PPh2Me, additional signals for Co(COCH2CH2CH3)(CO)2(PPh2Me)(propene) and Co(COCH(CH3)2)(CO)2(PPh2Me)(propene) are also detected. When the reactions of H2 and diphenylacetylene are studied with the same precursor, Co(CO)3(PPh2Me)(CHPhCH2Ph) is seen. Studies on how the appearance and ratio, of the PHIP enhanced signals vary as a function of reaction temperature and H2 : CO ratio are reported. These profiles are used to learn about the mechanism of catalysis and reveal how the rates of key steps leading to linear and branched hydroformylation products vary with the phosphine. These data also reveal that the PMe2Ph and PPh2Me based systems yield the highest selectivity for linear hydroformylation products.

  14. Hydrogen-induced crystallization of amorphous Si thin films. II. Mechanisms and energetics of hydrogen insertion into Si-Si bonds

    SciTech Connect

    Valipa, Mayur S.; Sriraman, Saravanapriyan; Aydil, Eray S.; Maroudas, Dimitrios

    2006-09-01

    We report a detailed study of the mechanisms and energetics of hydrogen (H) insertion into strained Si-Si bonds during H-induced crystallization of hydrogenated amorphous Si (a-Si:H) thin films. Our analysis is based on molecular-dynamics (MD) simulations of exposure of a-Si:H films to H atoms from a H{sub 2} plasma through repeated impingement of H atoms. Hydrogen atoms insert into Si-Si bonds as they diffuse through the a-Si:H film. Detailed analyses of the evolution of Si-Si and Si-H bond lengths from the MD trajectories show that diffusing H atoms bond to one of the Si atoms of the strained Si-Si bond prior to insertion; upon insertion, a bridging configuration is formed with the H atom bonded to both Si atoms, which remain bonded to each other. After the H atom leaves the bridging configuration, the Si-Si bond is either further strained, or broken, or relaxed, restoring the Si-Si bond length closer to the equilibrium bond length in crystalline Si. In some cases, during its diffusion in the a-Si:H film, the H atom occupies a bond-center position between two Si atoms that are not bonded to each other; after the H diffuses away from this bond-center position, a Si-Si bond is formed between these previously nonbonded Si atoms. The activation energy barrier for the H insertion reaction depends linearly on both the initial strain in the corresponding Si-Si bond and a strain factor that takes into account the additional stretching of the Si-Si bond in the transition-state configuration. The role of the H insertion reactions in the structural relaxation of the a-Si:H network that results in disorder-to-order transitions is discussed.

  15. Hydrogen-inclusion-induced variation of critical current in Nb-AlOx-Nb Josephson junctions

    NASA Astrophysics Data System (ADS)

    Hinode, Kenji; Satoh, Tetsuro; Nagasawa, Shuichi; Hidaka, Mutsuo

    2008-07-01

    The critical current density (Jc) of Nb-AlOx-Nb Josephson-junction (JJ) arrays was found to depend on their wiring structure. The Jc values of all JJs wired with a niobium electrode covered with a palladium layer increased by about 20%, while the Jc values of those with electrodes without palladium coverage stayed unchanged (except for that of the two junctions directly connected to the pads of an electrical probe covered with palladium.) To explain this Jc increase, we propose a "hydrogen mechanism," that is, the hydrogen inclusion into niobium electrodes occurs during fabrication, and its desorption occurs after fabrication. Hydrogen atoms incorporated in the electrodes are thought to influence the mechanical and the electronical properties of niobium, resulting in the deviation of critical current density. Hydrogen desorption analysis and measurements on niobium-film properties verified the occurrence of hydrogen incorporation into the niobium films during the fabrication process for superconducting JJ circuits. The incorporation and desorption processes were confirmed to proceed, even in air, if the niobium film is covered with palladium. As hydrogen diffuses quickly in niobium but stops in aluminum or aluminum oxide, differences in hydrogen concentration can happen within a circuit consisting of electrically connected multiple junctions. This hydrogen concentration difference can explain the observation that two junctions with increased Jc exist in the serial junction array without palladium coverage.

  16. Hydrogen incorporation induced the octahedral symmetry variation in VO2 films

    NASA Astrophysics Data System (ADS)

    Lee, Dooyong; Kim, Hyegyeong; Kim, Ji Woong; Lee, Ik Jae; Kim, Yooseok; Yun, Hyung-Joong; Lee, Jouhahn; Park, Sungkyun

    2017-02-01

    This study examined the microscopic aspects of macroscopic physical property variations of hydrogen annealed VO2 films, deposited on Al2O3(0001) substrates by RF magnetron sputtering. The temperature-dependent electrical resistivity showed that the as-grown film exhibited a metal-insulator-transition (MIT) at 55.20 °C and 49.26 °C during heating and cooling, respectively. On the other hand, no MIT was observed for the film annealed under a hydrogen environment. Spectroscopic measurements during the in-situ hydrogenation process showed that hydrogen annealing (∼0.3 mbar, up to 300 °C) promoted the V3+ state above 100 °C. Raman spectroscopy and X-ray diffraction confirmed that the as-grown film changed from a monoclinic to rutile structure during hydrogen annealing. In addition, the shift of the (020) diffraction peak position of the hydrogen-annealed film to a lower angle compare to that of the known rutile VO2 film was attributed to the expansion of the unit cell. In addition, local structure analysis showed that an increase in octahedral symmetry after hydrogen annealing is one of the main explanations for the metallic characteristics of the hydrogen-annealed film.

  17. Hydrogen-Induced Stress Corrosion Cracking Susceptibility Analysis of Pitch Links From the AH-64 Apache Helicopter

    DTIC Science & Technology

    1992-09-01

    due to service. Retempering the HRC 52 pitch links to HRC 38 resulted in properties similar to those expected from the 4340 ESR steel directly heat...would lead to uncontrollable descent of the aircraft. A 4340 electroslag remelted ( ESR ) steel heat treated to a hardness of HRC 52 is used to manufacture...material), as well as virgin 4340 ESR steel heat treated to HRC 52 and HRC 38 harness levels (virgin material). Hydrogen-Induced Stress Corrosion

  18. Electrochemical and spectroscopic studies of ssDNA damage induced by hydrogen peroxide using graphene based nanomaterials.

    PubMed

    Berghian-Grosan, Camelia; Biris, Alexandru Radu; Coros, Maria; Pogacean, Florina; Pruneanu, Stela

    2015-06-01

    The oxidative damage of deoxyribonucleic acid (DNA) has been intensively studied due to its role in the occurrence of some diseases. The hydrogen peroxide (H2O2) is one of the reactive oxygen species (ROS). It can induce oxidation of DNA bases, sugar lesions or DNA strand breaks. The Pt/Gr-Au-3 modified electrode was employed for the analysis of four ssDNA samples: single-stranded DNA (ssDNA), ssDNA pre-treated with hydrogen peroxide (ssDNA-H2O2), ssDNA pre-treated with graphene-gold nanoparticles (ssDNA-Gr-Au) and ssDNA-Gr-Au complex pre-treated with hydrogen peroxide (ssDNA-Gr-Au-H2O2). By monitoring the changes of the purine oxidation peaks currents, we obtained valuable information about the damage induced by the hydrogen peroxide onto the un-treated or graphene pre-treated ssDNA and also about the interaction between ssDNA and graphene-based nanomaterial. The FTIR analysis has been also used to obtain information about the ssDNA damage. These findings allowed us to prove the utility of graphene-based nanomaterials (mainly Gr-Au-3) not only for the investigation of the oxidative damage induced by a non-radical oxidant, but also for the determination of the type of interaction between ssDNA and graphene surface. The stability of the ssDNA-Gr-Au-3 complex against the damage induced by H2O2, in the absence of reduced transition metals, was also established. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Argon Preconditioning Protects Airway Epithelial Cells against Hydrogen Peroxide-Induced Oxidative Stress.

    PubMed

    Hafner, Christina; Qi, Hong; Soto-Gonzalez, Lourdes; Doerr, Katharina; Ullrich, Roman; Tretter, Eva Verena; Markstaller, Klaus; Klein, Klaus Ulrich

    2016-01-01

    Oxidative stress is the predominant pathogenic mechanism of ischaemia-reperfusion (IR) injury. The noble gas argon has been shown to alleviate oxidative stress-related myocardial and cerebral injury. The risk of lung IR injury is increased in some major surgeries, reducing clinical outcome. However, no study has examined the lung-protective efficacy of argon preconditioning. The present study investigated the protective effects of argon preconditioning on airway epithelial cells exposed to hydrogen peroxide (H2O2) to induce oxidative stress. A549 airway epithelial cells were treated with a cytotoxic concentration of H2O2 after exposure to standard air or 30 or 50% argon/21% oxygen/5% carbon dioxide/rest nitrogen for 30, 45 or 180 min. Cells were stained with annexin V/propidium iodide, and apoptosis was evaluated by fluorescence-activated cell sorting. Protective signalling pathways activated by argon exposure were identified by Western blot analysis for phosphorylated candidate molecules of the mitogen-activated protein kinase and protein kinase B (Akt) pathways. Preconditioning with 50% argon for 30, 45 and 180 min and 30% argon for 180 min caused significant protection of A549 cells against H2O2-induced apoptosis, with increases in cellular viability of 5-47% (p < 0.0001). A small adverse effect was also observed, which presented as a 12-15% increase in cellular necrosis in argon-treated groups. Argon exposure resulted in early activation of c-Jun N-terminal kinase (JNK) and p38, peaking 10- 30 min after the start of preconditioning, and delayed activation of the extracellular signal-regulated kinase 1/2 (ERK1/2) pathway, peaking after 60-90 min. Argon preconditioning protects airway epithelial cells from H2O2-induced apoptotic cell death. Argon activates the JNK, p38, and ERK1/2 pathways, but not the Akt pathway. The cytoprotective properties of argon suggest possible prophylactic applications in surgery-related IR injury of the lungs. © 2016 S. Karger AG

  20. Protective role of hydrogen-rich water on aspirin-induced gastric mucosal damage in rats

    PubMed Central

    Zhang, Jing-Yao; Wu, Qi-Fei; Wan, Yong; Song, Si-Dong; Xu, Jia; Xu, Xin-Sen; Chang, Hu-Lin; Tai, Ming-Hui; Dong, Ya-Feng; Liu, Chang

    2014-01-01

    AIM: To investigate the role of the hydrogen-rich water (HRW) in the prevention of aspirin-induced gastric mucosal injury in rats. METHODS: Forty male rats were allocated into four groups: normal control group, HRW group, aspirin group, and HRW plus aspirin group. The protective efficacy was tested by determining the gastric mucosal damage score. Malondialdehyde (MDA), superoxide dismutase (SOD), myeloperoxidase (MPO), interleukin (IL)-06 and tumor necrosis factor (TNF)-α in gastric tissues were evaluated. The serum levels of IL-1β and TNF-α were also detected. Histopathology of gastric tissues and localization of Cyclooxygenase 2 (COX-2) were detected using hematoxylin and eosin staining and immunohistochemistry, respectively. RESULTS: Pretreatment with HRW obviously reduced aspirin-induced gastric damage scores (4.04 ± 0.492 vs 2.10 ± 0.437, P < 0.05). The oxidative stress levels of MDA and MPO in the gastric tissues increased significantly in the aspirin-treated group compared with the HRW group (2.43 ± 0.145 vs 1.79 ± 0.116 nmol/mg prot, P < 0.05 and 2.53 ± 0.238 vs 1.40 ± 0.208 U/g tissue, P < 0.05, respectively). HRW could obviously elevated the SOD levels in the gastric tissues (37.94 ± 8.44 vs 59.55 ± 9.02 nmol/mg prot, P < 0.05). Pretreatment with HRW significantly reduced IL-06 and TNF-α in the gastric tissues (46.65 ± 5.50 vs 32.15 ± 4.83 pg/mg, P < 0.05 and 1305.08 ± 101.23 vs 855.96 ± 93.22 pg/mg, P < 0.05), and IL-1β and TNF-α in the serum (505.38 ± 32.97 vs 343.37 ± 25.09 pg/mL, P < 0.05 and 264.53 ± 28.63 vs 114.96 ± 21.79 pg/mL, P < 0.05) compared to treatment with aspirin alone. HRW could significantly decrease the COX-2 expression in the gastric tissues (staining score: 8.4 ± 2.1 vs 2.9 ± 1.5, P < 0.05). CONCLUSION: HRW pretreatment alleviated the aspirin-induced gastric lesions by inhibiting the oxidative stress, inflammatory reaction and reducing the COX-2 in the gastric tissues. PMID:24587639

  1. Hydrogen Inhalation Protects against Ototoxicity Induced by Intravenous Cisplatin in the Guinea Pig.

    PubMed

    Fransson, Anette E; Kisiel, Marta; Pirttilä, Kristian; Pettersson, Curt; Videhult Pierre, Pernilla; Laurell, Göran F E

    2017-01-01

    Introduction: Permanent hearing loss and tinnitus as side-effects from treatment with the anticancer drug cisplatin is a clinical problem. Ototoxicity may be reduced by co-administration of an otoprotective agent, but the results in humans have so far been modest. Aim: The present preclinical in vivo study aimed to explore the protective efficacy of hydrogen (H2) inhalation on ototoxicity induced by intravenous cisplatin. Materials and Methods: Albino guinea pigs were divided into four groups. The Cispt (n = 11) and Cispt+H2 (n = 11) groups were given intravenous cisplatin (8 mg/kg b.w., injection rate 0.2 ml/min). Immediately after, the Cispt+H2 group also received gaseous H2 (2% in air, 60 min). The H2 group (n = 5) received only H2 and the Control group (n = 7) received neither cisplatin nor H2. Ototoxicity was assessed by measuring frequency specific ABR thresholds before and 96 h after treatment, loss of inner (IHCs) and outer (OHCs) hair cells, and by performing densitometry-based immunohistochemistry analysis of cochlear synaptophysin, organic transporter 2 (OCT2), and copper transporter 1 (CTR1) at 12 and 7 mm from the round window. By utilizing metabolomics analysis of perilymph the change of metabolites in the perilymph was assessed. Results: Cisplatin induced electrophysiological threshold shifts, hair cell loss, and reduced synaptophysin immunoreactivity in the synapse area around the IHCs and OHCs. H2 inhalation mitigated all these effects. Cisplatin also reduced the OCT2 intensity in the inner and outer pillar cells and in the stria vascularis as well as the CTR1 intensity in the synapse area around the IHCs, the Deiters' cells, and the stria vascularis. H2 prevented the majority of these effects. Conclusion: H2 inhalation can reduce cisplatin-induced ototoxicity on functional, cellular, and subcellular levels. It is proposed that synaptopathy may serve as a marker for cisplatin ototoxicity. The effect of H2 on the antineoplastic activity of cisplatin

  2. Hydrogen sulfide-induced vasodilation mediated by endothelial TRPV4 channels.

    PubMed

    Naik, Jay S; Osmond, Jessica M; Walker, Benjimen R; Kanagy, Nancy L

    2016-12-01

    Hydrogen sulfide (H2S) is a recently described gaseous vasodilator produced within the vasculature by the enzymes cystathionine γ-lyase and 3-mercaptopyruvate sulfurtransferase. Previous data demonstrate that endothelial cells (EC) are the source of endogenous H2S production and are required for H2S-induced dilation. However, the signal transduction pathway activated by H2S within EC has not been elucidated. TRPV4 and large-conductance Ca(2+)-activated K channels (BK channels) are expressed in EC. H2S-induced dilation is inhibited by luminal administration of iberiotoxin and disruption of the endothelium. Calcium influx through TRPV4 may activate these endothelial BK channels (eBK). We hypothesized that H2S-mediated vasodilation involves activation of TRPV4 within the endothelium. In pressurized, phenylephrine-constricted mesenteric arteries, H2S elicited a dose-dependent vasodilation blocked by inhibition of TRPV4 channels (GSK2193874A, 300 nM). H2S (1 μM) increased TRPV4-dependent (1.8-fold) localized calcium events in EC of pressurized arteries loaded with fluo-4 and Oregon Green. In pressurized EC tubes, H2S (1 μM) and the TRPV4 activator, GSK101679A (30 nM), increased calcium events 1.8- and 1.5-fold, respectively. H2S-induced an iberiotoxin-sensitive outward current measured using whole cell patch-clamp techniques in freshly dispersed EC. H2S increased K(+) currents from 10 to 30 pA/pF at +150 mV. Treatment with Na2S increased the level of sulfhydration of TRPV4 channels in aortic ECs. These results demonstrate that H2S-mediated vasodilation involves activation of TRPV4-dependent Ca(2+) influx and BK channel activation within EC. Activation of TRPV4 channels appears to cause calcium events that result in the opening of eBK channels, endothelial hyperpolarization, and subsequent vasodilation. Copyright © 2016 the American Physiological Society.

  3. Hydrogen Permeation Barrier Coatings

    SciTech Connect

    Henager, Charles H.

    2008-01-01

    Gaseous hydrogen, H2, has many physical properties that allow it to move rapidly into and through materials, which causes problems in keeping hydrogen from materials that are sensitive to hydrogen-induced degradation. Hydrogen molecules are the smallest diatomic molecules, with a molecular radius of about 37 x 10-12 m and the hydrogen atom is smaller still. Since it is small and light it is easily transported within materials by diffusion processes. The process of hydrogen entering and transporting through a materials is generally known as permeation and this section reviews the development of hydrogen permeation barriers and barrier coatings for the upcoming hydrogen economy.

  4. The effect of trapping on hydrogen-induced plasticity and fracture in structural alloys

    NASA Technical Reports Server (NTRS)

    Bernstein, I. M.; Dollar, M.

    1990-01-01

    It has previously been noted that, for a given alloy system, microstructural manipulation may result in large variations in hydrogen susceptibility at a given strength level; it may even be possible to obtain inversions of susceptibility in which higher strengths may be associated with greater embrittlement resistance. An examination is presently conducted of the consequences of hydrogen-heterogeneity interactions, or 'trapping', in several alloy systems; these will include both conventional ferrous and nonferrous ones, and novel alloy systems. Deleterious trapping dominates behavior in the presence of large local concentrations of hydrogen; plasticity modifications due to hydrogen exercise a dominant influence on embrittlement susceptibility when relatively weak traps are present, as well as when a more uniform distribution of hydrogen is present.

  5. Electron-beam-induced information storage in hydrogenated amorphous silicon device

    DOEpatents

    Yacobi, Ben G.

    1986-01-01

    A method for recording and storing information in a hydrogenated amorphous silicon device, comprising: depositing hydrogenated amorphous silicon on a substrate to form a charge-collection device; and generating defects in the hydrogenated amorphous silicon device, wherein the defects act as recombination centers that reduce the lifetime of carriers, thereby reducing charge-collection efficiency; and thus in the charge-collection mode of scanning probe instruments, regions of the hydrogenated amorphous silicon device that contain the defects appear darker in comparison to regions of the device that do not contain the defects, leading to a contrast formation for pattern recognition and information storage, in the device, which darkened areas can be restored to their original charge-collection efficiency by heating the hydrogenated amorphous silicon to a temperature of about 100.degree. C. to 250.degree. C. for a sufficient period of time to provide for such restoration.

  6. Hydrogen induced mobility enhancement in RF sputtered Cu2O thin films

    NASA Astrophysics Data System (ADS)

    Hering, K. P.; Kandzia, C.; Benz, J.; Kramm, B. G.; Eickhoff, M.; Klar, P. J.

    2016-11-01

    Polycrystalline Cu2O thin films were prepared on c-sapphire substrates by reactive radio-frequency sputtering at various temperatures between 500 and 925 K employing a metallic target and utilizing an argon/hydrogen/oxygen gas mixture. It is demonstrated that the use of hydrogen in the sputter deposition process beneficially affects the transport properties of the Cu2O films obtained. Correlating the amount of hydrogen incorporated into the thin films, the film morphology and the transport and luminescence properties demonstrate that in this approach hydrogen is predominantly accumulated at the grain boundaries of the polycrystalline films, leading to a lower film resistivity due to the reduction of grain boundary scattering. It is demonstrated that a suitable employment of hydrogen in the growth process of Cu2O material for solar cell applications improves the material properties significantly.

  7. Tip-induced passivation of dangling bonds on hydrogenated Si(100)-2 × 1

    NASA Astrophysics Data System (ADS)

    Pavliček, Niko; Majzik, Zsolt; Meyer, Gerhard; Gross, Leo

    2017-07-01

    Using combined low temperature scanning tunneling microscopy and atomic force microscopy (AFM), we demonstrate hydrogen passivation of individual, selected dangling bonds (DBs) on a hydrogen-passivated Si(100)-2 × 1 surface (H-Si) by atom manipulation. This method allows erasing of DBs and thus provides a promising scheme for error-correction in hydrogen lithography. Both Si-terminated tips (Si tips) for hydrogen desorption and H-terminated tips (H tips) for hydrogen passivation are created by deliberate contact to the H-Si surface and are assigned by their characteristic contrast in AFM. DB passivation is achieved by transferring the H atom that is at the apex of an H tip to the DB, reestablishing a locally defect-free H-Si surface.

  8. Spectral lineshapes of collision-induced absorption (CIA) using isotropic intermolecular potential for mixtures of molecular hydrogen with helium

    NASA Astrophysics Data System (ADS)

    El-Kader, M. S. A.; Maroulis, G.

    2017-09-01

    Quantum mechanical lineshapes of collision-induced absorption (CIA) at different temperatures for the collisional complex of a hydrogen molecule and a helium atom are computed using the numerical results of the induced dipole moment and isotropic intermolecular potential as input. Comparison with measured spectra and first three spectral moments shows good agreement over the rototranslational band in the far infrared. The quality of the present potentials have been checked by comparing between calculated and experimental thermo-physical and transport properties, which are found to be in good agreement.

  9. Modeling of pressure-induced far-infrared absorption spectra Molecular hydrogen pairs. [in outer planets atmospheres

    NASA Technical Reports Server (NTRS)

    Borysow, J.; Trafton, L.; Frommhold, L.; Birnbaum, G.

    1985-01-01

    Meyer et al. (1985) have calculated the accurate induced dipole moment function of H2-H2 from first principles, using highly correlated wave functions for the first time in such work. The present paper is concerned with the collision-induced translational-rotational absorption coefficient for molecular hydrogen pairs, taking into account computations on the basis of the fundamental theory considered by Meyer et al. Data have been obtained for temperatures in the range from 40 to 300 K. Criteria are developed for choosing among various model line shapes. It is found that certain models are capable of approximating the quantum profiles closely, with rms errors of only a few percent.

  10. Exploring the electron density in plasma induced by EUV radiation: II. Numerical studies in argon and hydrogen

    NASA Astrophysics Data System (ADS)

    Astakhov, D. I.; Goedheer, W. J.; Lee, C. J.; Ivanov, V. V.; Krivtsun, V. M.; Koshelev, K. N.; Lopaev, D. V.; van der Horst, R. M.; Beckers, J.; Osorio, E. A.; Bijkerk, F.

    2016-07-01

    We used numerical modeling to study the evolution of EUV-induced plasmas in argon and hydrogen. The results of simulations were compared to the electron densities measured by microwave cavity resonance spectroscopy. It was found that the measured electron densities can be used to derive the integral amount of plasma in the cavity. However, in some regimes, the impact of the setup geometry, EUV spectrum, and EUV induced secondary emission should be taken into account. The influence of these parameters on the generated plasma and the measured electron density is discussed.

  11. Hydrogen sulfide alleviates cadmium-induced morpho-physiological and ultrastructural changes in Brassica napus.

    PubMed

    Ali, Basharat; Gill, Rafaqat A; Yang, Su; Gill, Muhammad B; Ali, Shafaqat; Rafiq, Muhammad T; Zhou, Weijun

    2014-12-01

    In the present study, role of hydrogen sulfide (H2S) in alleviating cadmium (Cd) induced stress in oilseed rape (Brassica napus L.) was studied under greenhouse conditions. Plants were grown hydroponically under three levels (0, 100, and 500µM) of Cd and three levels (0, 100 and 200µM) of H2S donor, sodium hydrosulfide (NaHS). Results showed that application of H2S significantly improved the plant growth, root morphology, chlorophyll contents, elements uptake and photosynthetic activity in B. napus plants under Cd stress. Moreover, addition of H2S reduced the Cd concentration in the leaves and roots of B. napus plants under Cd-toxicity. Exogenously applied H2S decreased the production of malondialdehyde and reactive oxygen species in the leaves and roots by improving the enzymatic antioxidant activities under Cd stress conditions. The microscopic examination indicated that application of exogenous H2S improved the cell structures and enabled a clean mesophyll cell having a well developed chloroplast with thylakoid membranes, and a number of mitochondria could be observed in the micrographs. A number of modifications could be found in root tip cell i.e. mature mitochondria, long endoplasmic reticulum and golgibodies under combined application of H2S and Cd. On the basis of these findings, it can be concluded that application of exogenous H2S has a protective role on plant growth, photosynthetic parameters, elements uptake, antioxidants enzyme activities and ultrastructural changes in B. napus under high Cd stress conditions. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Role of Hydrogen Sulfide on Autophagy in Liver Injuries Induced by Selenium Deficiency in Chickens.

    PubMed

    Wenzhong, Wang; Tong, Zhang; Hongjin, Lin; Ying, Chang; Jun, Xing

    2017-01-01

    Selenium (Se) is an indispensable trace mineral that was associated with liver injuries in animal models. Hydrogen sulfide (H2S) is involved in many liver diseases, and autophagy can maintain liver homeostasis with a stress stimulation. However, little is known about the correlation between H2S and autophagy in the liver injury chicken models induced by Se deficiency. In this study, we aimed to investigate the correlation between H2S and autophagy in the liver injury chicken models. We randomly divided 120 1-day-old chickens into two equal groups. The control group was fed with complete food with a Se content of 0.15 mg/kg, and the Se-deficiency group (lab group) was fed with a Se-deficient diet with a Se content of 0.033 mg/kg. When the time comes to 15, 25, and 35 days, the chickens were sacrificed (20 each). The liver tissues were gathered and examined for pathological observations, the mRNA and protein levels of H2S synthases (CSE, CBS, and 3-MST) and the mRNA and protein levels of autophagy-related genes. The results showed that the expression of CSE, CBS, and 3-MST and H2S production were higher in the lab group than in the control group. Swellings, fractures, and vacuolizations were visible in the mitochondria cristae in the livers of the lab group and autophagosomes were found as well. In addition, the expression of autophagy-related genes (ATG5, LC3-I, LC3-II, Beclin1, and Dynein) was higher in the lab group than in the control group (p < 0.05) while TOR decreased significantly in the lab group (p < 0.05). The results showed that H2S and autophagy were involved in the liver injury chicken models, and H2S was correlated with autophagy.

  13. Hydrogen isotope detection in metal matrix using double-pulse laser-induced breakdown-spectroscopy

    NASA Astrophysics Data System (ADS)

    Fantoni, Roberta; Almaviva, Salvatore; Caneve, Luisa; Colao, Francesco; Maddaluno, Giorgio; Gasior, Pawel; Kubkowska, Monika

    2017-03-01

    The amount of hydrogen isotopes retained in plasma facing components (PFCs) and the determination of their surface layer composition are among the most critical issues for the next generation fusion device, ITER, under construction in Cadarache (France). Laser Induced Breakdown Spectroscopy (LIBS) is currently under evaluation as a technique suitable for quantitative, in situ, non-invasive measurements of these quantities. In order to detect traces of contaminant in metallic samples and improve its limit of detection (LOD), the Double Pulse LIBS (DP-LIBS) variant can be used instead of the standard Single Pulse LIBS (SP-LIBS), as it has been proven by several authors that DP-LIBS can considerably raise the analytical performances of the technique. In this work Mo samples coated with a 1.5-1.8 μm thick W-Al mixed layer, contaminated with co-deposited deuterium (D) were measured by SP- and DP-LIBS under vacuum (p 5 × 10- 5 mbar), with an experimental set-up simulating conditions that can be found in a real fusion device between plasma discharges. A partial Calibration Free procedure (pCF) was applied to the LIBS data in order to retrieve the relative concentration of W and Al in the mixed layer. The amount of deuterium was then inferred by using tungsten as internal standard, accounting for the intensity ratio between the Dα line and nearby W I lines. The results are in satisfactory agreement with those obtained from preliminary Ion Beam Analysis measurements performed immediately after the specimen's realization.

  14. Exenatide induces aortic vasodilation increasing hydrogen sulphide, carbon monoxide and nitric oxide production

    PubMed Central

    2014-01-01

    Background It has been reported that GLP-1 agonist exenatide (exendin-4) decreases blood pressure. The dose-dependent vasodilator effect of exendin-4 has previously been demonstrated, although the precise mechanism is not thoroughly described. Here we have aimed to provide in vitro evidence for the hypothesis that exenatide may decrease central (aortic) blood pressure involving three gasotransmitters, namely nitric oxide (NO) carbon monoxide (CO), and hydrogen sulphide (H2S). Methods We determined the vasoactive effect of exenatide on isolated thoracic aortic rings of adult rats. Two millimetre-long vessel segments were placed in a wire myograph and preincubated with inhibitors of the enzymes producing the three gasotransmitters, with inhibitors of reactive oxygen species formation, prostaglandin synthesis, inhibitors of protein kinases, potassium channels or with an inhibitor of the Na+/Ca2+-exchanger. Results Exenatide caused dose-dependent relaxation of rat thoracic aorta, which was evoked via the GLP-1 receptor and was mediated mainly by H2S but also by NO and CO. Prostaglandins and superoxide free radical also play a part in the relaxation. Inhibition of soluble guanylyl cyclase significantly diminished vasorelaxation. We found that ATP-sensitive-, voltage-gated- and calcium-activated large-conductance potassium channels are also involved in the vasodilation, but that seemingly the inhibition of the KCNQ-type voltage-gated potassium channels resulted in the most remarkable decrease in the rate of vasorelaxation. Inhibition of the Na+/Ca2+-exchanger abolished most of the vasodilation. Conclusions Exenatide induces vasodilation in rat thoracic aorta with the contribution of all three gasotransmitters. We provide in vitro evidence for the potential ability of exenatide to lower central (aortic) blood pressure, which could have relevant clinical importance. PMID:24693878

  15. Mechanisms of Sb(III) oxidation by pyrite-induced hydroxyl radicals and hydrogen peroxide.

    PubMed

    Kong, Linghao; Hu, Xingyun; He, Mengchang

    2015-03-17

    Antimony (Sb) is an element of growing interest, and its toxicity and mobility are strongly influenced by redox processes. Sb(III) oxidation mechanisms in pyrite suspensions were comprehensively investigated by kinetic measurements in oxic and anoxic conditions and simulated sunlight. Sb(III) was oxidized to Sb(V) in both solution and on pyrite surfaces in oxic conditions; the oxidation efficiency of Sb(III) was gradually enhanced with the increase of pH. The pyrite-induced hydroxyl radical (·OH) and hydrogen peroxide (H2O2) are the oxidants for Sb(III) oxidation. ·OH is the oxidant for Sb(III) oxidation in acidic solutions, and H2O2 becomes the main oxidant in neutral and alkaline solutions. ·OH and H2O2 can be generated by the reaction of previously existing FeIII(pyrite) and H2O on pyrite in anoxic conditions. The oxygen molecule is the crucial factor in continuously producing ·OH and H2O2 for Sb(III) oxidation. The efficiency of Sb(III) oxidation was enhanced in surface-oxidized pyrite (SOP) suspension, more ·OH formed through Fenton reaction in acidic solutions, but Fe(IV) and H2O2 were formed in neutral and alkaline solutions. Under the illumination of simulated sunlight, more ·OH and H2O2 were produced in the pyrite suspension, and the oxidation efficiency of Sb(III) was remarkably enhanced. In conclusion, Sb(III) can be oxidized to Sb(V) in the presence of pyrite, which will greatly influence the fate of Sb(III) in the environment.

  16. Hydrogen Sulfide Attenuates Tissue Plasminogen Activator-Induced Cerebral Hemorrhage Following Experimental Stroke.

    PubMed

    Liu, Hui; Wang, Yi; Xiao, Yunqi; Hua, Zichun; Cheng, Jian; Jia, Jia

    2016-06-01

    Tissue plasminogen activator (tPA), the only approved drug for the treatment of ischemic stroke, increases the risk of cerebral hemorrhage. Here, we investigated whether the newly identified gaso-transmitter hydrogen sulfide (H2S), when used in combination with tPA, reduced the hemorrhagic transformation following stroke. In a mouse model of middle cerebral artery occlusion (MCAO), intravenous injection of tPA enhanced cerebral hemorrhage, which was significantly attenuated by the co-administration of two structurally unrelated H2S donors, ADT-OH and NaHS. By assessing extravasation of Evans blue into the ischemic hemisphere as well as brain edema following MCAO, we further showed that a tPA-exacerbated BBB disruption was significantly ameliorated by the co-administration of ADT-OH. In the mouse MCAO model, tPA upregulated Akt activation, vascular endothelial growth factor (VEGF) expression, and metalloproteinase 9 (MMP9) activity in the ischemic brain, which was remarkably attenuated by ADT-OH. In the in vitro glucose-oxygen deprivation (OGD) model, ADT-OH markedly attenuated tPA-enhanced Akt activation and VEGF expression in brain microvascular endothelial cells. Finally, ADT-OH improved functional outcomes in mice subjected to MCAO and tPA infusion. In conclusion, H2S donors reduced tPA-induced cerebral hemorrhage by possibly inhibiting the Akt-VEGF-MMP9 cascade. Administration of H2S donors has potential as a novel modality to improve the safety of tPA following stroke.

  17. Effects of hydrogen sulfide on inflammation in caerulein-induced acute pancreatitis

    PubMed Central

    2009-01-01

    Background Hydrogen sulfide (H2S), a gaseous mediator plays an important role in a wide range of physiological and pathological processes. H2S has been extensively studied for its various roles in cardiovascular and neurological disorders. However, the role of H2S in inflammation is still controversial. The current study was aimed to investigate the therapeutic potential of sodium hydrosulfide (NaHS), an H2S donor in in vivo model of acute pancreatitis in mice. Methods Acute pancreatitis was induced in mice by hourly caerulein injections (50 μg/kg) for 10 hours. Mice were treated with different dosages of NaHS (5 mg/kg, 10 mg/kg or 15 mg/kg) or with vehicle, distilled water (DW). NaHS or DW was administered 1 h before induction of pancreatitis. Mice were sacrificed 1 h after the last caerulein injection. Blood, pancreas and lung tissues were collected and were processed to measure the plasma amylase, myeloperoxidase (MPO) activities in pancreas and lung and chemokines and adhesion molecules in pancreas and lung. Results It was revealed that significant reduction of inflammation, both in pancreas and lung was associated with NaHS 10 mg/kg. Further the anti-inflammatory effects of NaHS 10 mg/kg were associated with reduction of pancreatic and pulmonary inflammatory chemokines and adhesion molecules. NaHS 5 mg/kg did not cause significant improvement on inflammation in pancreas and associated lung injury and NaHS 15 mg/kg did not further enhance the beneficial effects seen with NaHS 10 mg/kg. Conclusion In conclusion, these data provide evidence for anti-inflammatory effects of H2S based on its dosage used. PMID:20040116

  18. The Effect of Hydrogen Sulfide Donors on Lipopolysaccharide-Induced Formation of Inflammatory Mediators in Macrophages

    PubMed Central

    Whiteman, Matthew; Li, Ling; Rose, Peter; Tan, Choon-Hong; Parkinson, David B.

    2010-01-01

    Abstract The role of hydrogen sulfide (H2S) in inflammation is controversial, with both pro- and antiinflammatory effects documented. Many studies have used simple sulfide salts as the source of H2S, which give a rapid bolus of H2S in aqueous solutions and thus do not accurately reflect the enzymatic generation of H2S. We therefore compared the effects of sodium hydrosulfide and a novel slow-releasing H2S donor (GYY4137) on the release of pro- and antiinflammatory mediators in lipopolysaccharide (LPS)-treated murine RAW264.7 macrophages. For the first time, we show that GYY4137 significantly and concentration-dependently inhibits LPS-induced release of proinflammatory mediators such as IL-1β, IL-6, TNF-α, nitric oxide (•NO), and PGE2 but increased the synthesis of the antiinflammatory chemokine IL-10 through NF-κB/ATF-2/HSP-27–dependent pathways. In contrast, NaHS elicited a biphasic effect on proinflammatory mediators and, at high concentrations, increased the synthesis of IL-1β, IL-6, NO, PGE2 and TNF-α. This study clearly shows that the effects of H2S on the inflammatory process are complex and dependent not only on H2S concentration but also on the rate of H2S generation. This study may also explain some of the apparent discrepancies in the literature regarding the pro- versus antiinflammatory role of H2S. Antioxid. Redox Signal. 12, 1147–1154. PMID:19769459

  19. The immunomodulation of inducible hydrogen sulfide in Pacific oyster Crassostrea gigas.

    PubMed

    Sun, Zhibin; Wang, Lingling; Zhang, Tao; Zhou, Zhi; Jiang, Qiufen; Yi, Qilin; Yang, Chuanyan; Qiu, Limei; Song, Linsheng

    2014-10-01

    Hydrogen sulfide (H2S) is an important gasotransmitter, which plays indispensable roles in cardiovascular, nervous and immune systems of vertebrates. However, the information about the immunomodulation of H2S in invertebrates is still very limited. In the present study, the temporal expression profile of cystathionine γ lyase in oyster Crassostrea gigas (CgCSE) was investigated after the oysters were stimulated by lipopolysaccharide. The expression levels of CgCSE mRNA transcripts in hemocytes increased significantly at 12h (1.31-fold of the PBS group, P<0.05) after LPS stimulation. The immunomodulation of inducible H2S in oyster was examined by monitoring the alterations of both cellular and humoral immune parameters in response to the stimulations of LPS, LPS+Na2S and LPS+propargylglycine (PAG). The total hemocyte counts (THC) and hemolymph PO activity increased significantly after LPS stimulation, and the increase could be further enhanced by adding PAG, while inhibited by appending Na2S. The phagocytosis activity of hemocytes was also increased firstly after LPS treatment, and the increase was enhanced by adding Na2S but inhibited after appending PAG. The anti-bacterial activity in hemolymph increased at 3h post LPS treatment, and then decreased after adding PAG. The total SOD activity of hemolymph was also elevated at 6h post LPS treatment, and the elevated activity was depressed by adding Na2S. These results collectively indicated that H2S might play crucial roles in the immune response of oyster via modulating the turnover and phagocytosis of hemocytes, and regulating the anti-bacterial activity and proPO activation in the hemolymph.

  20. Differential Gene Expression Patterns in Chicken Cardiomyocytes during Hydrogen Peroxide-Induced Apoptosis.

    PubMed

    Wan, Chunyun; Xiang, Jinmei; Li, Youwen; Guo, Dingzong

    2016-01-01

    Hydrogen peroxide (H2O2) is both an exogenous and endogenous cytotoxic agent that can reliably induce apoptosis in numerous cell types for studies on apoptosis signaling pathways. However, little is known of these apoptotic processes in myocardial cells of chicken, a species prone to progressive heart failure. Sequencing of mRNA transcripts (RNA-Seq) allows for the identification of differentially expressed genes under various physiological and pathological conditions to elucidate the molecular pathways involved, including cellular responses to exogenous and endogenous toxins. We used RNA-seq to examine genes differentially expressed during H2O2-induced apoptosis in primary cultures of embryonic chicken cardiomyocytes. Following control or H2O2 treatment, RNA was extracted and sequencing performed to identify novel transcripts up- or downregulated in the H2O2 treatment group and construct protein-protein interaction networks. Of the 19,268 known and 2,160 novel transcripts identified in both control and H2O2 treatment groups, 4,650 showed significant differential expression. Among them, 55.63% were upregulated and 44.37% downregulated. Initiation of apoptosis by H2O2 was associated with upregulation of caspase-8, caspase-9, and caspase-3, and downregulation of anti-apoptotic genes API5 and TRIA1. Many other differentially expressed genes were associated with metabolic pathways (including 'Fatty acid metabolism', 'Alanine, aspartate, and glutamate metabolism', and 'Biosynthesis of unsaturated fatty acids') and cell signaling pathways (including 'PPAR signaling pathway', 'Adipocytokine signaling pathway', 'TGF-beta signaling pathway', 'MAPK signaling pathway', and 'p53 signaling pathway'). In chicken cardiomyocytes, H2O2 alters the expression of numerous genes linked to cell signaling and metabolism as well as genes directly associated with apoptosis. In particular, H2O2 also affects the biosynthesis and processing of proteins and unsaturated fatty acids. These

  1. Hydrogen (H2) Inhibits Isoproterenol-Induced Cardiac Hypertrophy via Antioxidative Pathways

    PubMed Central

    Zhang, Yaxing; Xu, Jingting; Long, Zhiyuan; Wang, Chen; Wang, Ling; Sun, Peng; Li, Ping; Wang, Tinghuai

    2016-01-01

    Background and Purpose: Hydrogen (H2) has been shown to have a strong antioxidant effect on preventing oxidative stress-related diseases. The goal of the present study is to determine the pharmacodynamics of H2 in a model of isoproterenol (ISO)-induced cardiac hypertrophy. Methods: Mice (C57BL/6J; 8–10 weeks of age) were randomly assigned to four groups: Control group (n = 10), ISO group (n = 12), ISO plus H2 group (n = 12), and H2 group (n = 12). Mice received H2 (1 ml/100g/day, intraperitoneal injection) for 7 days before ISO (0.5 mg/100g/day, subcutaneous injection) infusion, and then received ISO with or without H2 for another 7 days. Then, cardiac function was evaluated by echocardiography. Cardiac hypertrophy was reflected by heart weight/body weight, gross morphology of hearts, and heart sections stained with hematoxylin and eosin, and relative atrial natriuretic peptide (ANP) and B-type natriuretic peptide (BNP) mRNA levels. Cardiac reactive oxygen species (ROS), 3-nitrotyrosine and p67 (phox) levels were analyzed by dihydroethidium staining, immunohistochemistry and Western blotting, respectively. For in vitro study, H9c2 cardiomyocytes were pretreated with H2-rich medium for 30 min, and then treated with ISO (10 μM) for the indicated time. The medium and ISO were re-changed every 24 h. Cardiomyocyte surface areas, relative ANP and BNP mRNA levels, the expression of 3-nitrotyrosine, and the dissipation of mitochondrial membrane potential (MMP) were examined. Moreover, the expression of extracellular signal-regulated kinase1/2 (ERK1/2), p-ERK1/2, p38, p-p38, c-Jun NH2-terminal kinase (JNK), and p-JNK were measured by Western blotting both in vivo and in vitro. Results: Intraperitoneal injection of H2 prevented cardiac hypertrophy and improved cardiac function in ISO-infused mice. H2-rich medium blocked ISO-mediated cardiomyocytes hypertrophy in vitro. H2 blocked the excessive expression of NADPH oxidase and the accumulation of ROS, attenuated the

  2. [Role of endogenous hydrogen sulfide in pulmonary hypertension induced by lipopolysaccharide].

    PubMed

    Huang, Xin-Li; Zhou, Xiao-Hong; Wei, Peng; Zhang, Xiao-Jing; Meng, Xiang-Yan; Xian, Xiao-Hui

    2008-04-25

    The purpose of the present study was to explore the role of endogenous hydrogen sulfide (H2S) in pulmonary arterial hypertension induced by endotoxin. Adult male Sprague-Dawley (SD) rats were randomly divided into four groups: Control group (0.5 mL/kg body weight of normal saline, i.v.), lipopolysaccharide (LPS)-treated group (5 mg/kg body weight of LPS, i.v.), LPS + NaHS (5 mg/kg body weight of LPS, i.v., and 28 μmol/kg body weight of NaHS, i.p.) and LPS + PPG group (5 mg/kg body weight of LPS, i.v., and 30 μmol/kg body weight of PPG, i.p.). Rats were anesthetized with 20% urethane (1 g/kg body weight, i.p.). A polyethylene catheter was inserted into the pulmonary artery through the right external jugular vein to measure the mean pulmonary arterial pressure (mPAP) for 7 h, and then the pulmonary artery was isolated rapidly by the method described previously. Pulmonary arterial activity was detected. H2S concentration and cystathionine γ-lyase (CSE) activity in pulmonary artery tissues were determined by biochemical method. CSE mRNA expression was detected by competitive reverse transcriptase-polymerase chain reaction (RT-PCR). Compared with control, LPS significantly increased mPAP [(1.82±0.29) kPa vs (1.43±0.26) kPa, P<0.01], decreased H2S production [(26.33±7.84) vs (42.92±8.73) pmol/g wet tissue per minute, P<0.01), and reduced endothelium-dependent relaxation response [(75.72±7.22)% vs (86.40±4.40) %, P<0.01) induced by ACh (1×10(-6) mol/L). These effects were partly reversed by co-administration of NaHS and enhanced by co-administration of PPG. Both CSE activity and CSE mRNA expression were consistent with H2S production. It is suggested that the inhibitory effect of LPS on endothelium-dependent relaxation results in pulmonary hypertension, which might be mediated through H(2)S.

  3. [Study on spectral emissivity of C/C composites].

    PubMed

    Zhu, Bo; Cao, Wei-Wei; Jing, Min; Dong, Xing-Guang; Wang, Cheng-Guo

    2009-11-01

    Different types of C/C composites were prepared by conventional molding, and the changes in normal spectral emissivity of samples were tested. The testing results show that spectral emissivity of C/C composite reinforced by short cut carbon fibers is generally higher than the sample reinforced by carbon cloth in the entire 2500-13000nm wavelength region. The structure of short cut carbon fibers is relatively loose and the number of material particles is less than other samples in unit volume, which increases the penetration depth of electromagnetic waves. This is the reason for higher normal spectral emissivity and better heat radiation property. Meanwhile, the test results of normal spectral emissivity for fiber perform and C/C composite samples show that the spectral emissivity of resin carbon is better than fiber carbon because of the difference in microstructure for the two kinds of carbon materials. Laser Raman spectroscopy was employed to analyze the microstructures of different carbon materials, and the results show that because sp3 and sp2 hybrid states of carbon atoms in resin carbon produced more vibration modes, the resin carbon also has higher normal spectral emissivity and better characteristics of heat radiation.

  4. Effect of carbon sources on the aggregation of photo fermentative bacteria induced by L-cysteine for enhancing hydrogen production.

    PubMed

    Xie, Guo-Jun; Liu, Bing-Feng; Ding, Jie; Wang, Qilin; Ma, Chao; Zhou, Xu; Ren, Nan-Qi

    2016-12-01

    Poor flocculation of photo fermentative bacteria resulting in continuous biomass washout from photobioreactor is a critical challenge to achieve rapid and stable hydrogen production. In this work, the aggregation of Rhodopseudomonas faecalis RLD-53 was successfully developed in a photobioreactor and the effects of different carbon sources on hydrogen production and aggregation ability were investigated. Extracellular polymeric substances (EPS) production by R. faecalis RLD-53 cultivated using different carbon sources were stimulated by addition of L-cysteine. The absolute ζ potentials of R. faecalis RLD-53 were considerably decreased with addition of L-cysteine, and aggregation barriers based on DLVO dropped to 15-43 % of that in control groups. Thus, R. faecalis RLD-53 flocculated effectively, and aggregation abilities of strain RLD-53 cultivated with acetate, propionate, lactate and malate reached 29.35, 32.34, 26.07 and 24.86 %, respectively. In the continuous test, hydrogen-producing activity was also promoted and reached 2.45 mol H2/mol lactate, 3.87 mol H2/mol propionate and 5.10 mol H2/mol malate, respectively. Therefore, the aggregation of R. faecalis RLD-53 induced by L-cysteine is independent on the substrate types, which ensures the wide application of this technology to enhance hydrogen recovery from wastewater dominated by different organic substrates.

  5. Degradation of bisphenol A and formation of hydrogen peroxide induced by glow discharge plasma in aqueous solutions.

    PubMed

    Wang, Lei; Jiang, Xuanzhen; Liu, Yongjun

    2008-06-15

    Degradation of bisphenol A (BPA) and simultaneous formation of hydrogen peroxide induced by glow discharge plasma in contact with aqueous solution were investigated. Experimental results indicated that the BPA degradation rate was higher in sodium chloride solution than that in sodium sulfate or phosphate solutions. However, the formation rates of hydrogen peroxide were on the opposite case. Both the BPA removal and the hydrogen peroxide production rates decreased in the presence of hydroxyl radical scavengers, indicating that hydroxyl radicals are the most probable oxidants responsible for BPA degradation and the precursors of hydrogen peroxide. Ferric ion showed better catalytic effect than that of ferrous ion, suggesting that the ferric ion was reduced by the intermediates formed during BPA degradation, which was confirmed by following the production of ferrous ion in the system. TOC of the solution gradually reduced with discharge time; however, without catalysts, the solution COD increased with discharge time and sharply decreased in the presence of iron salts. The major intermediate products were identified by LC/MS and the possible degradation mechanism was discussed.

  6. γ-Tocotrienol does not substantially protect DS neurons from hydrogen peroxide-induced oxidative injury.

    PubMed

    Then, Sue-Mian; Sanfeliu, Coral; Top, Gapor M; Wan Ngah, Wan Zurinah; Mazlan, Musalmah

    2012-01-05

    Down syndrome (DS) neurons are more susceptible to oxidative stress and previous studies have shown that vitamin E was able to reduce oxidative stress and improve DS neurons' viability. Therefore, this study was done to investigate the protective role of γ-tocotrienol (γT3) in DS neurons from hydrogen peroxide (H2O2) -induced oxidative stress. The pro-apoptosis tendency of γT3 was compared to α-tocopherol (αT) in non-stress condition as well. Primary culture of DS and euploid neurons were divided into six groups of treatment: control, H2O2, γT3 pre-treatment with H2O2, γT3 only, αT pre-treatment with H2O2 and αT only. The treatments were assessed by MTS assay and apoptosis assay by single-stranded DNA (ssDNA) apoptosis ELISA assay, Hoechst and Neu-N immunofluorescence staining. The cellular uptake of γT3 and αT was determined by HPLC while protein expressions were determined by Western blot. Comparison between groups was made by the Student's t test, one-way ANOVA and Bonferroni adjustment as well as two-way ANOVA for multiple comparisons. One day incubation of γT3 was able to reduced apoptosis of DS neurons by 10%, however γT3 was cytotoxic at longer incubation period (14 days) and at concentrations ≥ 100 μM. Pre-treatment of αT and γT3 only attenuate apoptosis and increase cell viability in H2O2-treated DS and euploid neurons by 10% in which the effects were minimal to maintain most of the DS cells' morphology. γT3 act as a free radical scavenger by reducing ROS generated by H2O2. In untreated controls, DS neurons showed lower Bcl-2/Bax ratio and p53 expression compared to normal neurons, while cPKC and PKC-δ expressions were higher in DS neurons. On the other hand, pre-treatment of γT3 in H2O2-treated DS neurons have reduced Bcl-2/Bax ratio, which was not shown in euploid neurons. This suggests that pre-treatment of γT3 did not promote DS cell survival. Meanwhile γT3 and αT treatments without H2O2 as well as pre-treatment of γT3 and

  7. Gamma irradiation induced disintegration of waste activated sludge for biological hydrogen production

    NASA Astrophysics Data System (ADS)

    Yin, Yanan; Wang, Jianlong

    2016-04-01

    In this paper, gamma irradiation was applied for the disintegration and dissolution of waste activated sludge produced during the biological wastewater treatment, and the solubilized sludge was used as substrate for bio-hydrogen production. The experimental results showed that the solubilization of waste activated sludge was 53.7% at 20 kGy and pH=12, and the SCOD, polysaccharides, protein, TN and TP contents in the irradiated sludge solutions was 3789.6 mg/L, 268.3 mg/L, 1881.5 mg/L, 132.3 mg/L and 80.4 mg/L, respectively. The irradiated sludge was used for fermentative hydrogen production, and the hydrogen yield was 10.5±0.7 mL/g SCODconsumed. It can be concluded that the irradiated waste activated sludge could be used as a low-cost substrate for fermentative hydrogen production.

  8. Hydrogen induced contrasting modes of initial nucleations of graphene on transition metal surfaces

    NASA Astrophysics Data System (ADS)

    Feng, Yexin; Chen, Keqiu; Li, Xin-Zheng; Wang, Enge; Zhang, Lixin

    2017-01-01

    Our first-principles calculations reveal that there exist contrasting modes of initial nucleations of graphene on transition metal surfaces, in which hydrogen plays the role. On Cu(100) and Cu(111) surfaces, an sp2-type network of carbons can be automatically formed with the help of hydrogen under very low carbon coverages. Thus, by tuning the chemical potential of hydrogen, both of the nucleation process and the following growth can be finely controlled. In contrast, on the Ni(111) surface, instead of hydrogen, the carbon coverage is the critical factor for the nucleation and growth. These findings serve as new insights for further improving the poor quality of the grown graphene on transition metal substrates.

  9. Hydrogen-bonding-induced enhancement of Fermi resonances: a linear IR and nonlinear 2D-IR study of aniline-d5.

    PubMed

    Greve, Christian; Nibbering, Erik T J; Fidder, Henk

    2013-12-12

    Hydrogen bonding of the amino group of aniline-d5 results in a huge enhancement of the NH2 bending overtone absorption strength, mainly attributed to the Fermi resonance effect. A quantitative analysis is presented, using a hybrid mode representation and encompassing experimental data on aniline with 0, 1, or 2 hydrogen bonds to dimethylsulfoxide (DMSO). Changes in enthalpy, hydrogen-bonding-induced frequency shifts, and the transition dipole moment increase of the local N-H stretching oscillator all demonstrate that the hydrogen bond is strongest in the single hydrogen-bonded complex. Linear IR overtone spectra show that the oscillator strength decreases upon hydrogen bonding for the N-H stretching overtones, which is opposite to the effect on the fundamental N-H stretching transitions. Polarization resolved 2D-IR spectra provide detailed information on the N-H stretching overtone manifold and support the relative orientations of the various IR transitions.

  10. Variable photosynthetic units, energy transfer and light-induced evolution of hydrogen in algae and bacteria.

    NASA Technical Reports Server (NTRS)

    Gaffron, H.

    1971-01-01

    The present state of knowledge regarding the truly photochemical reactions in photosynthesis is considered. Nine-tenths of the available knowledge is of a biochemical nature. Questions regarding the activities of the chlorophyll system are examined. The simplest photochemical response observed in living hydrogen-adapted algal cells is the release of molecular hydrogen, which continues even after all other known natural reactions have been eliminated either by heating or the action of poisons.

  11. Variable photosynthetic units, energy transfer and light-induced evolution of hydrogen in algae and bacteria.

    NASA Technical Reports Server (NTRS)

    Gaffron, H.

    1971-01-01

    The present state of knowledge regarding the truly photochemical reactions in photosynthesis is considered. Nine-tenths of the available knowledge is of a biochemical nature. Questions regarding the activities of the chlorophyll system are examined. The simplest photochemical response observed in living hydrogen-adapted algal cells is the release of molecular hydrogen, which continues even after all other known natural reactions have been eliminated either by heating or the action of poisons.

  12. Pressure-induced localisation of the hydrogen-bond network in KOH-VI

    SciTech Connect

    Hermann, Andreas Nelmes, Richard J.; Loveday, John S.; Guthrie, Malcolm

    2015-12-28

    Using a combination of ab initio crystal structure prediction and neutron diffraction techniques, we have solved the full structure of KOH-VI at 7 GPa. Rather than being orthorhombic and proton-ordered as had previously be proposed, we find that this high-pressure phase of potassium hydroxide is tetragonal (space group I4/mmm) and proton disordered. It has an unusual hydrogen bond topology, where the hydroxyl groups form isolated hydrogen-bonded square planar (OH){sub 4} units. This structure is stable above 6.5 GPa and, despite being macroscopically proton-disordered, local ice rules enforce microscopic order of the hydrogen bonds. We suggest the use of this novel type of structure to study concerted proton tunneling in the solid state, while the topology of the hydrogen bond network could conceivably be exploited in data storage applications based solely on the manipulations of hydrogen bonds. The unusual localisation of the hydrogen bond network under applied pressure is found to be favored by a more compact packing of the constituents in a distorted cesium chloride structure.

  13. Pressure-induced localisation of the hydrogen-bond network in KOH-VI

    NASA Astrophysics Data System (ADS)

    Hermann, Andreas; Guthrie, Malcolm; Nelmes, Richard J.; Loveday, John S.

    2015-12-01

    Using a combination of ab initio crystal structure prediction and neutron diffraction techniques, we have solved the full structure of KOH-VI at 7 GPa. Rather than being orthorhombic and proton-ordered as had previously be proposed, we find that this high-pressure phase of potassium hydroxide is tetragonal (space group I4/mmm) and proton disordered. It has an unusual hydrogen bond topology, where the hydroxyl groups form isolated hydrogen-bonded square planar (OH)4 units. This structure is stable above 6.5 GPa and, despite being macroscopically proton-disordered, local ice rules enforce microscopic order of the hydrogen bonds. We suggest the use of this novel type of structure to study concerted proton tunneling in the solid state, while the topology of the hydrogen bond network could conceivably be exploited in data storage applications based solely on the manipulations of hydrogen bonds. The unusual localisation of the hydrogen bond network under applied pressure is found to be favored by a more compact packing of the constituents in a distorted cesium chloride structure.

  14. Pressure-induced localisation of the hydrogen-bond network in KOH-VI.

    PubMed

    Hermann, Andreas; Guthrie, Malcolm; Nelmes, Richard J; Loveday, John S

    2015-12-28

    Using a combination of ab initio crystal structure prediction and neutron diffraction techniques, we have solved the full structure of KOH-VI at 7 GPa. Rather than being orthorhombic and proton-ordered as had previously be proposed, we find that this high-pressure phase of potassium hydroxide is tetragonal (space group I4/mmm) and proton disordered. It has an unusual hydrogen bond topology, where the hydroxyl groups form isolated hydrogen-bonded square planar (OH)4 units. This structure is stable above 6.5 GPa and, despite being macroscopically proton-disordered, local ice rules enforce microscopic order of the hydrogen bonds. We suggest the use of this novel type of structure to study concerted proton tunneling in the solid state, while the topology of the hydrogen bond network could conceivably be exploited in data storage applications based solely on the manipulations of hydrogen bonds. The unusual localisation of the hydrogen bond network under applied pressure is found to be favored by a more compact packing of the constituents in a distorted cesium chloride structure.

  15. Effects of Hydrogen-Rich Saline on Taurocholate-Induced Acute Pancreatitis in Rat

    PubMed Central

    Zhang, De-qing; Feng, Huang; Chen, Wei-chang

    2013-01-01

    Oxidative stress plays an important role in the pathogenesis of acute pancreatitis (AP). As an ideal exterminator of poisonous free radicals, hydrogen can clearly reduce the degree of oxidative damage caused by severe acute pancreatitis (SAP) and lessen the presence of inflammatory cytokines. The aim of this study was to investigate the effects and mechanism of hydrogen-rich saline on SAP in rats. Serum TNF-α, IL-6, and IL-18 and histopathological score in the pancreas were reduced after hydrogen-rich saline treatment. Malondialdehyde (MDA) and myeloperoxidase (MPO) contents were obviously reduced, while superoxide dismutase (SOD) and glutathione (GSH) contents were increased after hydrogen-rich saline treatment. The expression of mRNA of tumor necrosis factor-α (TNF-α) and intercellular adhesion molecule-1 (ICAM-1) in the pancreas was reduced in hydrogen-rich saline treated group. In conclusion, intravenous hydrogen-rich saline injections could attenuate the severity of AP, probably via inhibiting the oxidative stress and reducing the presence of inflammatory mediators. PMID:23983797

  16. Hydrogen Sulfide Prevents and Partially Reverses Ozone-Induced Features of Lung Inflammation and Emphysema in Mice.

    PubMed

    Li, Feng; Zhang, Pengyu; Zhang, Min; Liang, Li; Sun, Xiaoyuan; Li, Min; Tang, Yueqin; Bao, Aihua; Gong, Jicheng; Zhang, Junfeng; Adcock, Ian; Chung, Kian Fan; Zhou, Xin

    2016-07-01

    Hydrogen sulfide (H2S), a novel signaling gasotransmitter in the respiratory system, may have antiinflammatory properties in the lung. We examined the preventive and therapeutic effects of H2S on ozone-induced features of lung inflammation and emphysema. C57/BL6 mice were exposed to ozone or filtered air over 6 weeks. Sodium hydrogen sulfide (NaHS), an H2S donor, was administered to the mice either before ozone exposure (preventive effect) or after completion of 6 weeks of ozone exposure (therapeutic effect). The ozone-exposed mice developed emphysema, measured by micro-computed tomography and histology, airflow limitation, measured by the forced maneuver system, and increased lung inflammation with augmented IL-1β, IL-18, and matrix metalloproteinase-9 (MMP-9) gene expression. Ozone-induced changes were associated with increased Nod-like receptor pyrin domain containing 3 (NLRP3)-caspase-1 activation and p38 mitogen-activated protein kinase phosphorylation and decreased Akt phosphorylation. NaHS both prevented and reversed lung inflammation and emphysematous changes in alveolar space. In contrast, NaHS prevented, but did not reverse, ozone-induced airflow limitation and bronchial structural remodeling. In conclusion, NaHS administration prevented and partially reversed ozone-induced features of lung inflammation and emphysema via regulation of the NLRP3-caspase-1, p38 mitogen-activated protein kinase, and Akt pathways.

  17. Zinc carnosine protects against hydrogen peroxide-induced DNA damage in WIL2-NS lymphoblastoid cell line independent of poly (ADP-Ribose) polymerase expression.

    PubMed

    Ooi, Theng Choon; Mohammad, Nur Hafiza; Sharif, Razinah

    2014-12-01

    The aim of this study is to investigate the ability of zinc carnosine to protect the human lymphoblastoid (WIL2-NS) cell line from hydrogen peroxide-induced DNA damage. Cells were cultured with medium containing zinc carnosine at the concentrations of 0.4, 4, 16 and 32 μM for 9 days prior to treatment with 30 μM of hydrogen peroxide (30 min). Zinc carnosine at the concentration 16 μM was optimal in protecting cells from hydrogen peroxide-induced cytotoxicity and gave the lowest percentage of apoptotic and necrotic cells. Results showed that zinc carnosine was able to induce glutathione production and protect cells from hydrogen peroxide-induced oxidative stress at all concentration and the highest protection was observed at 32-μM zinc carnosine culture. Cytokinesis-block micronucleus cytome assay showed that cells cultured with 4-32 μM of zinc carnosine showed significant reduction in micronuclei formation, nucleoplasmic bridges and nuclear bud frequencies (p < 0.05), suggesting that these concentrations maybe optimal in protecting cells from hydrogen peroxide-induced DNA damage. However, after being challenged with hydrogen peroxide, no increase in poly(ADP-ribose) polymerase expression was observed. Thus, results from this study demonstrate that zinc carnosines possess antioxidant properties and are able to reduce hydrogen peroxide-induced DNA damage in vitro independent of poly(ADP-ribose) polymerase. Further studies are warranted to understand the mechanism of protection of zinc carnosine against hydrogen peroxide-induced damage.

  18. Hydrogen Sulfide-Mediated Polyamines and Sugar Changes Are Involved in Hydrogen Sulfide-Induced Drought Tolerance in Spinacia oleracea Seedlings

    PubMed Central

    Chen, Juan; Shang, Yu-Ting; Wang, Wen-Hua; Chen, Xi-Yan; He, En-Ming; Zheng, Hai-Lei; Shangguan, Zhouping

    2016-01-01

    Hydrogen sulfide (H2S) is a newly appreciated participant in physiological and biochemical regulation in plants. However, whether H2S is involved in the regulation of plant responses to drought stress remains unclear. Here, the role of H2S in the regulation of drought stress response in Spinacia oleracea seedlings is reported. First, drought stress dramatically decreased the relative water content (RWC) of leaves, photosynthesis, and the efficiency of PSII. Moreover, drought caused the accumulation of ROS and increased the MDA content. However, the application of NaHS counteracted the drought-induced changes i