Science.gov

Sample records for hydrogen infrastructure networks

  1. California Hydrogen Infrastructure Project

    SciTech Connect

    Heydorn, Edward C

    2013-03-12

    Air Products and Chemicals, Inc. has completed a comprehensive, multiyear project to demonstrate a hydrogen infrastructure in California. The specific primary objective of the project was to demonstrate a model of a real-world retail hydrogen infrastructure and acquire sufficient data within the project to assess the feasibility of achieving the nation's hydrogen infrastructure goals. The project helped to advance hydrogen station technology, including the vehicle-to-station fueling interface, through consumer experiences and feedback. By encompassing a variety of fuel cell vehicles, customer profiles and fueling experiences, this project was able to obtain a complete portrait of real market needs. The project also opened its stations to other qualified vehicle providers at the appropriate time to promote widespread use and gain even broader public understanding of a hydrogen infrastructure. The project engaged major energy companies to provide a fueling experience similar to traditional gasoline station sites to foster public acceptance of hydrogen. Work over the course of the project was focused in multiple areas. With respect to the equipment needed, technical design specifications (including both safety and operational considerations) were written, reviewed, and finalized. After finalizing individual equipment designs, complete station designs were started including process flow diagrams and systems safety reviews. Material quotes were obtained, and in some cases, depending on the project status and the lead time, equipment was placed on order and fabrication began. Consideration was given for expected vehicle usage and station capacity, standard features needed, and the ability to upgrade the station at a later date. In parallel with work on the equipment, discussions were started with various vehicle manufacturers to identify vehicle demand (short- and long-term needs). Discussions included identifying potential areas most suited for hydrogen fueling stations

  2. Geographically Based Hydrogen Demand & Infrastructure Analysis (Presentation)

    SciTech Connect

    Melendez, M.

    2006-05-18

    Presentation given at the 2006 DOE Hydrogen, Fuel Cells & Infrastructure Technologies Program Annual Merit Review in Washington, D.C., May 16-19, 2006, discusses potential future hydrogen demand and the infrastructure needed to support hydrogen vehicles.

  3. HYDROGEN DELIVERY: INFRASTRUCTURE, CHALLENGES, AND MATERIALS NEEDS

    SciTech Connect

    Pawel, Steven J; Gardiner, Monterey

    2009-01-01

    Current domestic energy policy is aimed at encouraging the development of alternative fuels such as hydrogen for use as a renewable and environmentally-friendly alternative to traditional petroleum-based fuels for transportation and stationary power. The purpose of the Hydrogen Delivery Technical Team is to provide insight and input on hydrogen delivery infrastructure research. Ongoing research has identified materials R&D challenges required to support this infrastructure. A few of these challenges are summarized with emphasis placed on materials.

  4. Hydrogen Distribution and Delivery Infrastructure

    SciTech Connect

    2008-11-01

    This 2-page fact sheet provides a brief introduction to hydrogen delivery technologies. Intended for a non-technical audience, it explains how hydrogen is transported and delivered today, the challenges to delivering hydrogen for use as a widespread energy carrier, and the research goals for hydrogen delivery.

  5. CU-ICAR Hydrogen Infrastructure Final Report

    SciTech Connect

    Robert Leitner; David Bodde; Dennis Wiese; John Skardon; Bethany Carter

    2011-09-28

    The goal of this project was to establish an innovation center to accelerate the transition to a 'hydrogen economy' an infrastructure of vehicles, fuel resources, and maintenance capabilities based on hydrogen as the primary energy carrier. The specific objectives of the proposed project were to: (a) define the essential attributes of the innovation center; (b) validate the concept with potential partners; (c) create an implementation plan; and (d) establish a pilot center and demonstrate its benefits via a series of small scale projects.

  6. Controlled Hydrogen Fleet and Infrastructure Demonstration Project

    SciTech Connect

    Dr. Scott Staley

    2010-03-31

    This program was undertaken in response to the US Department of Energy Solicitation DE-PS30-03GO93010, resulting in this Cooperative Agreement with the Ford Motor Company and BP to demonstrate and evaluate hydrogen fuel cell vehicles and required fueling infrastructure. Ford initially placed 18 hydrogen fuel cell vehicles (FCV) in three geographic regions of the US (Sacramento, CA; Orlando, FL; and southeast Michigan). Subsequently, 8 advanced technology vehicles were developed and evaluated by the Ford engineering team in Michigan. BP is Ford's principal partner and co-applicant on this project and provided the hydrogen infrastructure to support the fuel cell vehicles. BP ultimately provided three new fueling stations. The Ford-BP program consists of two overlapping phases. The deliverables of this project, combined with those of other industry consortia, are to be used to provide critical input to hydrogen economy commercialization decisions by 2015. The program's goal is to support industry efforts of the US President's Hydrogen Fuel Initiative in developing a path to a hydrogen economy. This program was designed to seek complete systems solutions to address hydrogen infrastructure and vehicle development, and possible synergies between hydrogen fuel electricity generation and transportation applications. This project, in support of that national goal, was designed to gain real world experience with Hydrogen powered Fuel Cell Vehicles (H2FCV) 'on the road' used in everyday activities, and further, to begin the development of the required supporting H2 infrastructure. Implementation of a new hydrogen vehicle technology is, as expected, complex because of the need for parallel introduction of a viable, available fuel delivery system and sufficient numbers of vehicles to buy fuel to justify expansion of the fueling infrastructure. Viability of the fuel structure means widespread, affordable hydrogen which can return a reasonable profit to the fuel provider, while

  7. Geographically Based Hydrogen Consumer Demand and Infrastructure Analysis: Final Report

    SciTech Connect

    Melendez, M.; Milbrandt, A.

    2006-10-01

    In FY 2004 and 2005, NREL developed a proposed minimal infrastructure to support nationwide deployment of hydrogen vehicles by offering infrastructure scenarios that facilitated interstate travel. This report identifies key metropolitan areas and regions on which to focus infrastructure efforts during the early hydrogen transition.

  8. Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project

    SciTech Connect

    Stottler, Gary

    2012-02-08

    General Motors, LLC and energy partner Shell Hydrogen, LLC, deployed a system of hydrogen fuel cell electric vehicles integrated with a hydrogen fueling station infrastructure to operate under real world conditions as part of the U.S. Department of Energy's Controlled Hydrogen Fleet and Infrastructure Validation and Demonstration Project. This technical report documents the performance and describes the learnings from progressive generations of vehicle fuel cell system technology and multiple approaches to hydrogen generation and delivery for vehicle fueling.

  9. Hydrogen Infrastructure Market Readiness: Opportunities and Potential for Near-term Cost Reductions; Proceedings of the Hydrogen Infrastructure Market Readiness Workshop and Summary of Feedback Provided through the Hydrogen Station Cost Calculator

    SciTech Connect

    Melaina, M. W.; Steward, D.; Penev, M.; McQueen, S.; Jaffe, S.; Talon, C.

    2012-08-01

    Recent progress with fuel cell electric vehicles (FCEVs) has focused attention on hydrogen infrastructure as a critical commercialization barrier. With major automakers focused on 2015 as a target timeframe for global FCEV commercialization, the window of opportunity is short for establishing a sufficient network of hydrogen stations to support large-volume vehicle deployments. This report describes expert feedback on the market readiness of hydrogen infrastructure technology from two activities.

  10. Recovery of infrastructure networks after localised attacks

    NASA Astrophysics Data System (ADS)

    Hu, Fuyu; Yeung, Chi Ho; Yang, Saini; Wang, Weiping; Zeng, An

    2016-04-01

    The stability of infrastructure network is always a critical issue studied by researchers in different fields. A lot of works have been devoted to reveal the robustness of the infrastructure networks against random and malicious attacks. However, real attack scenarios such as earthquakes and typhoons are instead localised attacks which are investigated only recently. Unlike previous studies, we examine in this paper the resilience of infrastructure networks by focusing on the recovery process from localised attacks. We introduce various preferential repair strategies and found that they facilitate and improve network recovery compared to that of random repairs, especially when population size is uneven at different locations. Moreover, our strategic repair methods show similar effectiveness as the greedy repair. The validations are conducted on simulated networks, and on real networks with real disasters. Our method is meaningful in practice as it can largely enhance network resilience and contribute to network risk reduction.

  11. Recovery of infrastructure networks after localised attacks.

    PubMed

    Hu, Fuyu; Yeung, Chi Ho; Yang, Saini; Wang, Weiping; Zeng, An

    2016-01-01

    The stability of infrastructure network is always a critical issue studied by researchers in different fields. A lot of works have been devoted to reveal the robustness of the infrastructure networks against random and malicious attacks. However, real attack scenarios such as earthquakes and typhoons are instead localised attacks which are investigated only recently. Unlike previous studies, we examine in this paper the resilience of infrastructure networks by focusing on the recovery process from localised attacks. We introduce various preferential repair strategies and found that they facilitate and improve network recovery compared to that of random repairs, especially when population size is uneven at different locations. Moreover, our strategic repair methods show similar effectiveness as the greedy repair. The validations are conducted on simulated networks, and on real networks with real disasters. Our method is meaningful in practice as it can largely enhance network resilience and contribute to network risk reduction.

  12. Recovery of infrastructure networks after localised attacks

    PubMed Central

    Hu, Fuyu; Yeung, Chi Ho; Yang, Saini; Wang, Weiping; Zeng, An

    2016-01-01

    The stability of infrastructure network is always a critical issue studied by researchers in different fields. A lot of works have been devoted to reveal the robustness of the infrastructure networks against random and malicious attacks. However, real attack scenarios such as earthquakes and typhoons are instead localised attacks which are investigated only recently. Unlike previous studies, we examine in this paper the resilience of infrastructure networks by focusing on the recovery process from localised attacks. We introduce various preferential repair strategies and found that they facilitate and improve network recovery compared to that of random repairs, especially when population size is uneven at different locations. Moreover, our strategic repair methods show similar effectiveness as the greedy repair. The validations are conducted on simulated networks, and on real networks with real disasters. Our method is meaningful in practice as it can largely enhance network resilience and contribute to network risk reduction. PMID:27075559

  13. Recovery of infrastructure networks after localised attacks.

    PubMed

    Hu, Fuyu; Yeung, Chi Ho; Yang, Saini; Wang, Weiping; Zeng, An

    2016-01-01

    The stability of infrastructure network is always a critical issue studied by researchers in different fields. A lot of works have been devoted to reveal the robustness of the infrastructure networks against random and malicious attacks. However, real attack scenarios such as earthquakes and typhoons are instead localised attacks which are investigated only recently. Unlike previous studies, we examine in this paper the resilience of infrastructure networks by focusing on the recovery process from localised attacks. We introduce various preferential repair strategies and found that they facilitate and improve network recovery compared to that of random repairs, especially when population size is uneven at different locations. Moreover, our strategic repair methods show similar effectiveness as the greedy repair. The validations are conducted on simulated networks, and on real networks with real disasters. Our method is meaningful in practice as it can largely enhance network resilience and contribute to network risk reduction. PMID:27075559

  14. Modelling of hydrogen infrastructure for vehicle refuelling in London

    NASA Astrophysics Data System (ADS)

    Joffe, D.; Hart, D.; Bauen, A.

    One of the principal barriers to the widespread use of hydrogen as a road transport fuel is the need for a refuelling infrastructure to be established. The lack of an adequate refuelling infrastructure would severely inhibit an uptake of hydrogen vehicles. On the other hand, without significant penetration of these vehicles, the demand for hydrogen would be insufficient to make a widespread conventional refuelling infrastructure economic. The infrastructure is likely to develop initially in cities, due to the high concentration of vehicles and the anticipated air quality benefits of a switch to hydrogen as a road transport fuel. While trial schemes such as the Clean Urban Transport for Europe (CUTE) bus project will establish initial hydrogen refuelling sites, it is not clear how a transition to a widespread refuelling infrastructure will occur. Indeed, the number of possible different ways and scales of producing and distributing hydrogen means that the possible configurations for such an infrastructure are almost endless. Imperial College London is examining transition strategies for a hydrogen infrastructure for vehicle refuelling in London under a project funded by the UK Engineering and Physical Sciences Research Council (EPSRC). Imperial has five project partners from industry and local government to assist in this study: the Greater London Authority (GLA), BP, BOC, BMW and Air Products. This paper presents initial results from technical modelling of hydrogen infrastructure technologies and how they could be deployed to provide an initial facility for the refuelling of hydrogen fuel-cell buses in London. The results suggest that the choice of H 2 production technology can have significant effects on when the infrastructure would be installed, and the timing of hydrogen production, and bus refuelling.

  15. Wireless intelligent network: infrastructure before services?

    NASA Astrophysics Data System (ADS)

    Chu, Narisa N.

    1996-01-01

    The Wireless Intelligent Network (WIN) intends to take advantage of the Advanced Intelligent Network (AIN) concepts and products developed from wireline communications. However, progress of the AIN deployment has been slow due to the many barriers that exist in the traditional wireline carriers' deployment procedures and infrastructure. The success of AIN has not been truly demonstrated. The AIN objectives and directions are applicable to the wireless industry although the plans and implementations could be significantly different. This paper points out WIN characteristics in architecture, flexibility, deployment, and value to customers. In order to succeed, the technology driven AIN concept has to be reinforced by the market driven WIN services. An infrastructure suitable for the WIN will contain elements that are foreign to the wireline network. The deployment process is expected to seed with the revenue generated services. Standardization will be achieved by simplifying and incorporating the IS-41C, AIN, and Intelligent Network CS-1 recommendations. Integration of the existing and future systems impose the biggest challenge of all. Service creation has to be complemented with service deployment process which heavily impact the carriers' infrastructure. WIN deployment will likely start from an Intelligent Peripheral, a Service Control Point and migrate to a Service Node when sufficient triggers are implemented in the mobile switch for distributed call control. The struggle to move forward will not be based on technology, but rather on the impact to existing infrastructure.

  16. Polymers for hydrogen infrastructure and vehicle fuel systems :

    SciTech Connect

    Barth, Rachel Reina; Simmons, Kevin L.; San Marchi, Christopher W.

    2013-10-01

    This document addresses polymer materials for use in hydrogen service. Section 1 summarizes the applications of polymers in hydrogen infrastructure and vehicle fuel systems and identifies polymers used in these applications. Section 2 reviews the properties of polymer materials exposed to hydrogen and/or high-pressure environments, using information obtained from published, peer-reviewed literature. The effect of high pressure on physical and mechanical properties of polymers is emphasized in this section along with a summary of hydrogen transport through polymers. Section 3 identifies areas in which fuller characterization is needed in order to assess material suitability for hydrogen service.

  17. Electrolytic hydrogen production infrastructure options evaluation. Final subcontract report

    SciTech Connect

    Thomas, C.E.; Kuhn, I.F. Jr.

    1995-09-01

    Fuel-cell electric vehicles have the potential to provide the range, acceleration, rapid refueling times, and other creature comforts associated with gasoline-powered vehicles, but with virtually no environmental degradation. To achieve this potential, society will have to develop the necessary infrastructure to supply hydrogen to the fuel-cell vehicles. Hydrogen could be stored directly on the vehicle, or it could be derived from methanol or other hydrocarbon fuels by on-board chemical reformation. This infrastructure analysis assumes high-pressure (5,000 psi) hydrogen on-board storage. This study evaluates one approach to providing hydrogen fuel: the electrolysis of water using off-peak electricity. Other contractors at Princeton University and Oak Ridge National Laboratory are investigating the feasibility of producing hydrogen by steam reforming natural gas, probably the least expensive hydrogen infrastructure alternative for large markets. Electrolytic hydrogen is a possible short-term transition strategy to provide relatively inexpensive hydrogen before there are enough fuel-cell vehicles to justify building large natural gas reforming facilities. In this study, the authors estimate the necessary price of off-peak electricity that would make electrolytic hydrogen costs competitive with gasoline on a per-mile basis, assuming that the electrolyzer systems are manufactured in relatively high volumes compared to current production. They then compare this off-peak electricity price goal with actual current utility residential prices across the US.

  18. Controlled Hydrogen Fleet and Infrastructure Analysis (Presentation)

    SciTech Connect

    Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.; Ainscough, C.; Saur, G.

    2012-05-01

    This is a presentation about the Fuel Cell Electric Vehicle Learning Demo, a 7-year project and the largest single FCEV and infrastructure demonstration in the world to date. Information such as its approach, technical accomplishments and progress; collaborations and future work are discussed.

  19. Reliable Communication Models in Interdependent Critical Infrastructure Networks

    SciTech Connect

    Lee, Sangkeun; Chinthavali, Supriya; Shankar, Mallikarjun

    2016-01-01

    Modern critical infrastructure networks are becoming increasingly interdependent where the failures in one network may cascade to other dependent networks, causing severe widespread national-scale failures. A number of previous efforts have been made to analyze the resiliency and robustness of interdependent networks based on different models. However, communication network, which plays an important role in today's infrastructures to detect and handle failures, has attracted little attention in the interdependency studies, and no previous models have captured enough practical features in the critical infrastructure networks. In this paper, we study the interdependencies between communication network and other kinds of critical infrastructure networks with an aim to identify vulnerable components and design resilient communication networks. We propose several interdependency models that systematically capture various features and dynamics of failures spreading in critical infrastructure networks. We also discuss several research challenges in building reliable communication solutions to handle failures in these models.

  20. SITRUS: Semantic Infrastructure for Wireless Sensor Networks.

    PubMed

    Bispo, Kalil A; Rosa, Nelson S; Cunha, Paulo R F

    2015-01-01

    Wireless sensor networks (WSNs) are made up of nodes with limited resources, such as processing, bandwidth, memory and, most importantly, energy. For this reason, it is essential that WSNs always work to reduce the power consumption as much as possible in order to maximize its lifetime. In this context, this paper presents SITRUS (semantic infrastructure for wireless sensor networks), which aims to reduce the power consumption of WSN nodes using ontologies. SITRUS consists of two major parts: a message-oriented middleware responsible for both an oriented message communication service and a reconfiguration service; and a semantic information processing module whose purpose is to generate a semantic database that provides the basis to decide whether a WSN node needs to be reconfigurated or not. In order to evaluate the proposed solution, we carried out an experimental evaluation to assess the power consumption and memory usage of WSN applications built atop SITRUS.

  1. SITRUS: Semantic Infrastructure for Wireless Sensor Networks.

    PubMed

    Bispo, Kalil A; Rosa, Nelson S; Cunha, Paulo R F

    2015-01-01

    Wireless sensor networks (WSNs) are made up of nodes with limited resources, such as processing, bandwidth, memory and, most importantly, energy. For this reason, it is essential that WSNs always work to reduce the power consumption as much as possible in order to maximize its lifetime. In this context, this paper presents SITRUS (semantic infrastructure for wireless sensor networks), which aims to reduce the power consumption of WSN nodes using ontologies. SITRUS consists of two major parts: a message-oriented middleware responsible for both an oriented message communication service and a reconfiguration service; and a semantic information processing module whose purpose is to generate a semantic database that provides the basis to decide whether a WSN node needs to be reconfigurated or not. In order to evaluate the proposed solution, we carried out an experimental evaluation to assess the power consumption and memory usage of WSN applications built atop SITRUS. PMID:26528974

  2. SITRUS: Semantic Infrastructure for Wireless Sensor Networks

    PubMed Central

    Bispo, Kalil A.; Rosa, Nelson S.; Cunha, Paulo R. F.

    2015-01-01

    Wireless sensor networks (WSNs) are made up of nodes with limited resources, such as processing, bandwidth, memory and, most importantly, energy. For this reason, it is essential that WSNs always work to reduce the power consumption as much as possible in order to maximize its lifetime. In this context, this paper presents SITRUS (semantic infrastructure for wireless sensor networks), which aims to reduce the power consumption of WSN nodes using ontologies. SITRUS consists of two major parts: a message-oriented middleware responsible for both an oriented message communication service and a reconfiguration service; and a semantic information processing module whose purpose is to generate a semantic database that provides the basis to decide whether a WSN node needs to be reconfigurated or not. In order to evaluate the proposed solution, we carried out an experimental evaluation to assess the power consumption and memory usage of WSN applications built atop SITRUS. PMID:26528974

  3. Network and computing infrastructure for scientific applications in Georgia

    NASA Astrophysics Data System (ADS)

    Kvatadze, R.; Modebadze, Z.

    2016-09-01

    Status of network and computing infrastructure and available services for research and education community of Georgia are presented. Research and Educational Networking Association - GRENA provides the following network services: Internet connectivity, network services, cyber security, technical support, etc. Computing resources used by the research teams are located at GRENA and at major state universities. GE-01-GRENA site is included in European Grid infrastructure. Paper also contains information about programs of Learning Center and research and development projects in which GRENA is participating.

  4. HYDROGEN PRODUCTION AND DELIVERY INFRASTRUCTURE AS A COMPLEX ADAPTIVE SYSTEM

    SciTech Connect

    Tolley, George S

    2010-06-29

    An agent-based model of the transition to a hydrogen transportation economy explores influences on adoption of hydrogen vehicles and fueling infrastructure. Attention is given to whether significant penetration occurs and, if so, to the length of time required for it to occur. Estimates are provided of sensitivity to numerical values of model parameters and to effects of alternative market and policy scenarios. The model is applied to the Los Angeles metropolitan area In the benchmark simulation, the prices of hydrogen and non-hydrogen vehicles are comparable. Due to fuel efficiency, hydrogen vehicles have a fuel savings advantage of 9.8 cents per mile over non-hydrogen vehicles. Hydrogen vehicles account for 60% of new vehicle sales in 20 years from the initial entry of hydrogen vehicles into show rooms, going on to 86% in 40 years and reaching still higher values after that. If the fuel savings is 20.7 cents per mile for a hydrogen vehicle, penetration reaches 86% of new car sales by the 20th year. If the fuel savings is 0.5 cents per mile, market penetration reaches only 10% by the 20th year. To turn to vehicle price difference, if a hydrogen vehicle costs $2,000 less than a non-hydrogen vehicle, new car sales penetration reaches 92% by the 20th year. If a hydrogen vehicle costs $6,500 more than a non-hydrogen vehicle, market penetration is only 6% by the 20th year. Results from other sensitivity runs are presented. Policies that could affect hydrogen vehicle adoption are investigated. A tax credit for the purchase of a hydrogen vehicle of $2,500 tax credit results in 88% penetration by the 20th year, as compared with 60% in the benchmark case. If the tax credit is $6,000, penetration is 99% by the 20th year. Under a more modest approach, the tax credit would be available only for the first 10 years. Hydrogen sales penetration then reach 69% of sales by the 20th year with the $2,500 credit and 79% with the $6,000 credit. A carbon tax of $38 per metric ton is not

  5. Modern International Research Groups: Networks and Infrastructure

    NASA Astrophysics Data System (ADS)

    Katehi, Linda

    2009-05-01

    In a globalized economy, education and research are becoming increasing international in content and context. Academic and research institutions worldwide try to internationalize their programs by setting formal or informal collaborations. An education that is enhanced by international experiences leads to mobility of the science and technology workforce. Existing academic cultures and research structures are at odds with efforts to internationalize education. For the past 20-30 years, the US has recognized the need to improve the abroad experience of our scientists and technologists: however progress has been slow. Despite a number of both federally and privately supported programs, efforts to scale up the numbers of participants have not been satisfactory. The exchange is imbalanced as more foreign scientists and researchers move to the US than the other way around. There are a number of issues that contribute to this imbalance but we could consider the US academic career system, as defined by its policies and practices, as a barrier to internationalizing the early career faculty experience. Strict curricula, pre-tenure policies and financial commitments discourage students, post doctoral fellows and pre-tenure faculty from taking international leaves to participate in research abroad experiences. Specifically, achieving an international experience requires funding that is not provided by the universities. Furthermore, intellectual property requirements and constraints in pre-tenure probationary periods may discourage students and faculty from collaborations with peers across the Atlantic or Pacific or across the American continent. Environments that support early career networking are not available. This presentation will discuss the increasing need for international collaborations and will explore the need for additional programs, more integration, better conditions and improved infrastructures that can encourage and support mobility of scientists. In addition

  6. Appendix G - GPRA06 hydrogen, fuel cells, and infrastructure technologies (HFCIT) program

    SciTech Connect

    None, None

    2009-01-18

    The target markets for the Office of Hydrogen, Fuel Cells, and Infrastructure Technologies (HFCIT) program include transportation (cars and light trucks) and stationary (particularly residential and commercial) applications.

  7. Powering the Network: The Forgotten Infrastructure.

    ERIC Educational Resources Information Center

    Learn, Larry L., Ed.

    1995-01-01

    Discusses systems that power the telecommunications infrastructure. Highlights include power for central telephone company offices; private branch exchange systems; power interruptions and power irregularities; uninterruptible power systems; problems in the systems; and photovoltaic systems. (LRW)

  8. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen; Workshop Proceedings

    SciTech Connect

    Melaina, M. W.; McQueen, S.; Brinch, J.

    2008-07-01

    DOE sponsored the Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen workshop to understand how lessons from past experiences can inform future efforts to commercialize hydrogen vehicles. This report contains the proceedings from the workshop.

  9. Explorations Around "Graceful Failure" in Transportation Infrastructure: Lessons Learned By the Infrastructure and Climate Network (ICNet)

    NASA Astrophysics Data System (ADS)

    Jacobs, J. M.; Thomas, N.; Mo, W.; Kirshen, P. H.; Douglas, E. M.; Daniel, J.; Bell, E.; Friess, L.; Mallick, R.; Kartez, J.; Hayhoe, K.; Croope, S.

    2014-12-01

    Recent events have demonstrated that the United States' transportation infrastructure is highly vulnerable to extreme weather events which will likely increase in the future. In light of the 60% shortfall of the $900 billion investment needed over the next five years to maintain this aging infrastructure, hardening of all infrastructures is unlikely. Alternative strategies are needed to ensure that critical aspects of the transportation network are maintained during climate extremes. Preliminary concepts around multi-tier service expectations of bridges and roads with reference to network capacity will be presented. Drawing from recent flooding events across the U.S., specific examples for roads/pavement will be used to illustrate impacts, disruptions, and trade-offs between performance during events and subsequent damage. This talk will also address policy and cultural norms within the civil engineering practice that will likely challenge the application of graceful failure pathways during extreme events.

  10. Infrastructure Requirements for Practice-Based Research Networks

    PubMed Central

    Green, Lee A.; White, Linda L.; Barry, Henry C.; Nease, Donald E.; Hudson, Brenda L.

    2005-01-01

    BACKGROUND The practice-based research network (PBRN) is the basic laboratory for primary care research. Although most PBRNs include some common elements, their infrastructures vary widely. We offer suggestions for developing and supporting infrastructures to enhance PBRN research success. METHODS Information was compiled based on published articles, the PBRN Resource Center survey of 2003, our PBRN experiences, and discussions with directors and coordinators from other PBRNs. RESULTS PBRN research ranges from observational studies, through intervention studies, clinical trials, and quality of care research, to large-scale practice change interventions. Basic infrastructure elements such as a membership roster, a board, a director, a coordinator, a news-sharing function, a means of addressing requirements of institutional review boards and the Health Insurance Portability and Accountability Act, and a network meeting must exist to support these initiatives. Desirable elements such as support staff, electronic medical records, multiuser databases, mentoring and development programs, mock study sections, and research training are costly and difficult to sustain through project grant funds. These infrastructure elements must be selected, configured, and sized according to the PBRN’s self-defined research mission. Annual infrastructure costs are estimated to range from $69,700 for a basic network to $287,600 for a moderately complex network. CONCLUSIONS Well-designed and properly supported PBRN infrastructures can support a wide range of research of great direct value to patients and society. Increased and more consistent infrastructure support could generate an explosion of pragmatic, generalizable knowledge about currently understudied populations, settings, and health care problems. PMID:15928219

  11. Spatial risk assessment for critical network infrastructure using sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Möderl, Michael; Rauch, Wolfgang

    2011-12-01

    The presented spatial risk assessment method allows for managing critical network infrastructure in urban areas under abnormal and future conditions caused e.g., by terrorist attacks, infrastructure deterioration or climate change. For the spatial risk assessment, vulnerability maps for critical network infrastructure are merged with hazard maps for an interfering process. Vulnerability maps are generated using a spatial sensitivity analysis of network transport models to evaluate performance decrease under investigated thread scenarios. Thereby parameters are varied according to the specific impact of a particular threat scenario. Hazard maps are generated with a geographical information system using raster data of the same threat scenario derived from structured interviews and cluster analysis of events in the past. The application of the spatial risk assessment is exemplified by means of a case study for a water supply system, but the principal concept is applicable likewise to other critical network infrastructure. The aim of the approach is to help decision makers in choosing zones for preventive measures.

  12. Robustness and Recovery of Lifeline Infrastructure and Ecosystem Networks

    NASA Astrophysics Data System (ADS)

    Bhatia, U.; Ganguly, A. R.

    2015-12-01

    Disruptive events, both natural and man-made, can have widespread impacts on both natural systems and lifeline infrastructure networks leading to the loss of biodiversity and essential functionality, respectively. Projected sea-level rise and climate change can further increase the frequency and severity of large-scale floods on urban-coastal megacities. Nevertheless, Failure in infrastructure systems can trigger cascading impacts on dependent ecosystems, and vice-versa. An important consideration in the behavior of the isolated networks and inter-connected networks following disruptive events is their resilience, or the ability of the network to "bounce back" to a pre-disaster state. Conventional risk analysis and subsequent risk management frameworks have focused on identifying the components' vulnerability and strengthening of the isolated components to withstand these disruptions. But high interconnectedness of these systems, and evolving nature of hazards, particularly in the context of climate extremes, make the component level analysis unrealistic. In this study, we discuss the complex network-based resilience framework to understand fragility and recovery strategies for infrastructure systems impacted by climate-related hazards. We extend the proposed framework to assess the response of ecological networks to multiple species loss and design the restoration management framework to identify the most efficient restoration sequence of species, which can potentially lead to disproportionate gains in biodiversity.

  13. Neural Network Based Intrusion Detection System for Critical Infrastructures

    SciTech Connect

    Todd Vollmer; Ondrej Linda; Milos Manic

    2009-07-01

    Resiliency and security in control systems such as SCADA and Nuclear plant’s in today’s world of hackers and malware are a relevant concern. Computer systems used within critical infrastructures to control physical functions are not immune to the threat of cyber attacks and may be potentially vulnerable. Tailoring an intrusion detection system to the specifics of critical infrastructures can significantly improve the security of such systems. The IDS-NNM – Intrusion Detection System using Neural Network based Modeling, is presented in this paper. The main contributions of this work are: 1) the use and analyses of real network data (data recorded from an existing critical infrastructure); 2) the development of a specific window based feature extraction technique; 3) the construction of training dataset using randomly generated intrusion vectors; 4) the use of a combination of two neural network learning algorithms – the Error-Back Propagation and Levenberg-Marquardt, for normal behavior modeling. The presented algorithm was evaluated on previously unseen network data. The IDS-NNM algorithm proved to be capable of capturing all intrusion attempts presented in the network communication while not generating any false alerts.

  14. Real Time Gnss-Sp Network: a Multipurpose Infrastructure

    NASA Astrophysics Data System (ADS)

    Monico, J. G.; Camargo, P. D.; Alves, D. B.; Sapucci, L. F.; Grupo de Estudos em Geodésia Espacial

    2013-05-01

    São Paulo State GNSS Network (GNSS-SP) is one of the densest networks at South Hemisphere. Most of the stations is equipped with meteorological PTU devices. Nowadays it is streaming real time GNSS data, providing support to RTK Network applications, real time TEC (Total Electron Contents) and ZTD/IWV (Zenithal Tropospheric Delay/Integrated Water Vapor) computations. Few stations also provide data to the IGS real time (IGSRT) service. Therefore, such network is characterized as a multipurpose infrastructure, having its data being used either for research in the field of Geodesy or Atmosphere, as well as to support operational applications. In the field of Geodesy it provides support for research related to positioning and reference system realization, detection of deformation, etc. Concerning the atmosphere, fields like Space Weather and Meteorology can take advantage of the derived TEC and ZTD/IWV products. In this presentation, we will show the status of the network, few results concerning the products provided by such infrastructure, besides the plans for the future of the network.

  15. [Life cycle assessment of the infrastructure for hydrogen sources of fuel cell vehicles].

    PubMed

    Feng, Wen; Wang, Shujuan; Ni, Weidou; Chen, Changhe

    2003-05-01

    In order to promote the application of life cycle assessment and provide references for China to make the project of infrastructure for hydrogen sources of fuel cell vehicles in the near future, 10 feasible plans of infrastructure for hydrogen sources of fuel cell vehicles were designed according to the current technologies of producing, storing and transporting hydrogen. Then life cycle assessment was used as a tool to evaluate the environmental performances of the 10 plans. The standard indexes of classified environmental impacts of every plan were gotten and sensitivity analysis for several parameters were carried out. The results showed that the best plan was that hydrogen will be produced by natural gas steam reforming in central factory, then transported to refuelling stations through pipelines, and filled to fuel cell vehicles using hydrogen gas at last.

  16. European network infrastructures of observatories for terrestrial Global Change research

    NASA Astrophysics Data System (ADS)

    Vereecken, H.; Bogena, H.; Lehning, M.

    2009-04-01

    The earth's climate is significantly changing (e.g. IPCC, 2007) and thus directly affecting the terrestrial systems. The number and intensity hydrological extremes, such as floods and droughts, are continually increasing, resulting in major economical and social impacts. Furthermore, the land cover in Europe has been modified fundamentally by conversions for agriculture, forest and for other purposes such as industrialisation and urbanisation. Additionally, water resources are more than ever used for human development, especially as a key resource for agricultural and industrial activities. As a special case, the mountains of the world are of significant importance in terms of water resources supply, biodiversity, economy, agriculture, traffic and recreation but particularly vulnerable to environmental change. The Alps are unique because of the pronounced small scale variability they contain, the high population density they support and their central position in Europe. The Alps build a single coherent physical and natural environment, artificially cut by national borders. The scientific community and governmental bodies have responded to these environmental changes by performing dedicated experiments and by establishing environmental research networks to monitor, analyse and predict the impact of Global Change on different terrestrial systems of the Earths' environment. Several European network infrastructures for terrestrial Global Change research are presently immerging or upgrading, such as ICOS, ANAEE, LifeWatch or LTER-Europe. However, the strongest existing networks are still operating on a regional or national level and the historical growth of such networks resulted in a very heterogeneous landscape of observation networks. We propose therefore the establishment of two complementary networks: The NetwOrk of Hydrological observAtories, NOHA. NOHA aims to promote the sustainable management of water resources in Europe, to support the prediction of

  17. Architecture, Infrastructure, and Broadband Civic Network Design: An Institutional View

    NASA Astrophysics Data System (ADS)

    Venkatesh, Murali; Chango, Mawaki

    Cultural values frame architectures, and architectures motivate infrastructures — by which we mean the foundational telecommunications and Internet access services that software applications depend on. Design is the social process that realizes architectural elements in an infrastructure. This process is often a conflicted one where transformative visions confront the realities of entrenched power, where innovation confronts pressure from institutionalized interests and practices working to resist change and reproduce the status quo in the design outcome. We use this viewpoint to discuss design aspects of the Urban-net, a broadband civic networking case. Civic networks are embodiments of distinctive technological configurations and forms of social order. In choosing some technological configurations over others, designers are favoring some social structural configurations over alternatives. To the extent that a civic network sets out to reconfigure the prevailing social order (as was the case in the Urban-net project considered here), the design process becomes the arena where challengers of the prevailing order encounter its defenders. In this case, the defenders prevailed and the design that emerged was conservative and reproduced the status quo. What steps can stakeholders take so that the project’s future development is in line with the original aim of structural change? We outline two strategies. We argue the importance of articulating cultural desiderata in an architecture that stakeholders can use to open up the infrastructure to new constituents and incremental change. Next, we argue the importance of designing the conditions of design. The climate in which social interactions occur can powerfully shape design outcomes, but this does not usually figure in stakeholders’ design concerns.

  18. Cyber-physical networking for wireless mesh infrastructures

    NASA Astrophysics Data System (ADS)

    Mannweiler, C.; Lottermann, C.; Klein, A.; Schneider, J.; Schotten, H. D.

    2012-09-01

    This paper presents a novel approach for cyber-physical network control. "Cyber-physical" refers to the inclusion of different parameters and information sources, ranging from physical sensors (e.g. energy, temperature, light) to conventional network information (bandwidth, delay, jitter, etc.) to logical data providers (inference systems, user profiles, spectrum usage databases). For a consistent processing, collected data is represented in a uniform way, analyzed, and provided to dedicated network management functions and network services, both internally and, through an according API, to third party services. Specifically, in this work, we outline the design of sophisticated energy management functionalities for a hybrid wireless mesh network (WLAN for both backhaul traffic and access, GSM for access only), disposing of autonomous energy supply, in this case solar power. Energy consumption is optimized under the presumption of fluctuating power availability and considerable storage constraints, thus influencing, among others, handover and routing decisions. Moreover, advanced situation-aware auto-configuration and self-adaptation mechanisms are introduced for an autonomous operation of the network. The overall objective is to deploy a robust wireless access and backbone infrastructure with minimal operational cost and effective, cyber-physical control mechanisms, especially dedicated for rural or developing regions.

  19. Analysis of the cost of hydrogen infrastructure for buses in London

    NASA Astrophysics Data System (ADS)

    Shayegan, S.; Hart, D.; Pearson, P.; Joffe, D.

    The use of hydrogen (H 2) as transport fuel is often said to suffer from the 'chicken and egg' problem: vehicles that depend on H 2 cannot go on the roads due to the lack of an adequate infrastructure, and the almost non-existent fleet of H 2 vehicles on the roads makes it economically unsound to build a H 2 infrastructure. Although both hydrogen vehicles (fuel cell and internal combustion engine) and the related infrastructure have been (and are being) developed and some are commercially available, cost is seen as a major barrier. With today's technologies, H 2 only becomes competitive with petrol and diesel when produced at large quantities, suitable for supplying e.g. thousands of H 2 buses. The question is, how might this point be reached, and are there least cost infrastructural pathways to reach it. This paper tries to address the latter question, using the early development of a H 2 infrastructure for buses in London as a case study. The paper presents some of the analyses and results from a Ph.D. project (in progress) being undertaken at Imperial College London, funded by EPSRC (Grant GR/R50790/01). The results presented here illustrate that cost of hydrogen production and delivery vary mainly with levels of hydrogen demand and delivery distances, as well as other logistic criteria; least cost production-delivery pathways have been identified for various hydrogen demand scenarios and refuelling station set-ups. Another important conclusion is that the pattern of converting a group of refuelling stations to hydrogen (e.g. a group of refuelling stations for buses in London) has a significant effect on the unit cost of hydrogen.

  20. Tera-node Network Technology (TASK 4) Network Infrastructure Activities (NIA) final report

    SciTech Connect

    Postel, John; Bannister, Joe

    2000-03-15

    The TNT project developed software technologies in scalable personal telecommunications (SPT), Reservation Protocol 2 (RSVP2), Scalable Computing Infrastructure (SCOPE), and Network Infrastructure Activities (NIA). SPT = developed many innovative protocols to support the use of videoconferencing applications on the Internet. RSVP2 = developed a new reference model and further standardization of RSVP. SCOPE = developed dynamic resource discovery techniques and distributed directory services in support of resource allocation for large distributed systems and computations. NIA = provided policy, operational, and support to the transitioning Internet.

  1. United States National Hydrogen Fuel Cell Vehicle and Infrastructure Learning Demonstration - Status and Results (Presentation)

    SciTech Connect

    Wipke,K.; Sprik, S.; Kurtz, J.; Ramsden, T.; Garbak, J.

    2009-03-06

    This presentation provides status and results for the United States National Hydrogen Fuel Cell Vehicle Learning Demonstration, including project objectives, partners, the National Renewable Energy Laboratory's role in the project and methodology, how to access complete results, and results of vehicle and infrastructure analysis.

  2. Determining air quality and greenhouse gas impacts of hydrogen infrastructure and fuel cell vehicles.

    PubMed

    Stephens-Romero, Shane; Carreras-Sospedra, Marc; Brouwer, Jacob; Dabdub, Donald; Samuelsen, Scott

    2009-12-01

    Adoption of hydrogen infrastructure and hydrogen fuel cell vehicles (HFCVs) to replace gasoline internal combustion engine (ICE) vehicles has been proposed as a strategy to reduce criteria pollutant and greenhouse gas (GHG) emissions from the transportation sector and transition to fuel independence. However, it is uncertain (1) to what degree the reduction in criteria pollutants will impact urban air quality, and (2) how the reductions in pollutant emissions and concomitant urban air quality impacts compare to ultralow emission gasoline-powered vehicles projected for a future year (e.g., 2060). To address these questions, the present study introduces a "spatially and temporally resolved energy and environment tool" (STREET) to characterize the pollutant and GHG emissions associated with a comprehensive hydrogen supply infrastructure and HFCVs at a high level of geographic and temporal resolution. To demonstrate the utility of STREET, two spatially and temporally resolved scenarios for hydrogen infrastructure are evaluated in a prototypical urban airshed (the South Coast Air Basin of California) using geographic information systems (GIS) data. The well-to-wheels (WTW) GHG emissions are quantified and the air quality is established using a detailed atmospheric chemistry and transport model followed by a comparison to a future gasoline scenario comprised of advanced ICE vehicles. One hydrogen scenario includes more renewable primary energy sources for hydrogen generation and the other includes more fossil fuel sources. The two scenarios encompass a variety of hydrogen generation, distribution, and fueling strategies. GHG emissions reductions range from 61 to 68% for both hydrogen scenarios in parallel with substantial improvements in urban air quality (e.g., reductions of 10 ppb in peak 8-h-averaged ozone and 6 mug/m(3) in 24-h-averaged particulate matter concentrations, particularly in regions of the airshed where concentrations are highest for the gasoline scenario

  3. Determining air quality and greenhouse gas impacts of hydrogen infrastructure and fuel cell vehicles.

    PubMed

    Stephens-Romero, Shane; Carreras-Sospedra, Marc; Brouwer, Jacob; Dabdub, Donald; Samuelsen, Scott

    2009-12-01

    Adoption of hydrogen infrastructure and hydrogen fuel cell vehicles (HFCVs) to replace gasoline internal combustion engine (ICE) vehicles has been proposed as a strategy to reduce criteria pollutant and greenhouse gas (GHG) emissions from the transportation sector and transition to fuel independence. However, it is uncertain (1) to what degree the reduction in criteria pollutants will impact urban air quality, and (2) how the reductions in pollutant emissions and concomitant urban air quality impacts compare to ultralow emission gasoline-powered vehicles projected for a future year (e.g., 2060). To address these questions, the present study introduces a "spatially and temporally resolved energy and environment tool" (STREET) to characterize the pollutant and GHG emissions associated with a comprehensive hydrogen supply infrastructure and HFCVs at a high level of geographic and temporal resolution. To demonstrate the utility of STREET, two spatially and temporally resolved scenarios for hydrogen infrastructure are evaluated in a prototypical urban airshed (the South Coast Air Basin of California) using geographic information systems (GIS) data. The well-to-wheels (WTW) GHG emissions are quantified and the air quality is established using a detailed atmospheric chemistry and transport model followed by a comparison to a future gasoline scenario comprised of advanced ICE vehicles. One hydrogen scenario includes more renewable primary energy sources for hydrogen generation and the other includes more fossil fuel sources. The two scenarios encompass a variety of hydrogen generation, distribution, and fueling strategies. GHG emissions reductions range from 61 to 68% for both hydrogen scenarios in parallel with substantial improvements in urban air quality (e.g., reductions of 10 ppb in peak 8-h-averaged ozone and 6 mug/m(3) in 24-h-averaged particulate matter concentrations, particularly in regions of the airshed where concentrations are highest for the gasoline scenario).

  4. Environmental Monitoring using Measurements from Cellular Network Infrastructure

    NASA Astrophysics Data System (ADS)

    David, N.; Gao, O. H.

    2015-12-01

    atmospheric phenomena using current and future planned frequencies of cellular network infrastructure will be introduced.

  5. A Data Scheduling and Management Infrastructure for the TEAM Network

    NASA Astrophysics Data System (ADS)

    Andelman, S.; Baru, C.; Chandra, S.; Fegraus, E.; Lin, K.; Unwin, R.

    2009-04-01

    currently partnering with the San Diego Super Computer Center to build the data management infrastructure. Data collected from the three core protocols as well as others are currently made available through the TEAM Network portal, which provides the content management framework, the data scheduling and management framework, an administrative framework to implement and manage TEAM sites, collaborative tools and a number of tools and applications utilizing Google Map and Google Earth products. A critical element of the TEAM Network data management infrastructure is to make the data publicly available in as close to real-time as possible (the TEAM Network Data Use Policy: http://www.teamnetwork.org/en/data/policy). This requires two essential tasks to be accomplished, 1) A data collection schedule has to be planned, proposed and approved for a given TEAM site. This is a challenging process since TEAM sites are geographically distributed across the tropics and hence have different seasons where they schedule field sampling for the different TEAM protocols. Capturing this information and ensuring that TEAM sites follow the outlined legal contract is key to the data collection process and 2) A stream-lined and efficient information management system to ensure data collected from the field meet the minimum data standards (i.e. are of the highest scientific quality) and are securely transferred, archived, processed and be rapidly made publicaly available, as a finished consumable product via the TEAM Network portal. The TEAM Network is achieving these goals by implementing an end-to-end framework consisting of the Sampling Scheduler application and the Data Management Framework. Sampling Scheduler The Sampling Scheduler is a project management, calendar based portal application that will allow scientists at a TEAM site to schedule field sampling for each of the TEAM protocols implemented at that site. The sampling scheduler addresses the specific requirements established in the

  6. Network Randomization and Dynamic Defense for Critical Infrastructure Systems

    SciTech Connect

    Chavez, Adrian R.; Martin, Mitchell Tyler; Hamlet, Jason; Stout, William M.S.; Lee, Erik

    2015-04-01

    Critical Infrastructure control systems continue to foster predictable communication paths, static configurations, and unpatched systems that allow easy access to our nation's most critical assets. This makes them attractive targets for cyber intrusion. We seek to address these attack vectors by automatically randomizing network settings, randomizing applications on the end devices themselves, and dynamically defending these systems against active attacks. Applying these protective measures will convert control systems into moving targets that proactively defend themselves against attack. Sandia National Laboratories has led this effort by gathering operational and technical requirements from Tennessee Valley Authority (TVA) and performing research and development to create a proof-of-concept solution. Our proof-of-concept has been tested in a laboratory environment with over 300 nodes. The vision of this project is to enhance control system security by converting existing control systems into moving targets and building these security measures into future systems while meeting the unique constraints that control systems face.

  7. Charge-Assisted Hydrogen-Bonded Networks

    NASA Astrophysics Data System (ADS)

    Ward, Michael D.

    The importance of hydrogen bonds is widely recognized because of their role in defining the structure and properties of many compounds, including water, proteins, DNA, and polymers. Hydrogen bonding also has emerged as a critical tool in solid-state chemistry, in which the versatility of organic synthesis has been combined with the structure-directing properties of hydrogen-bond donor-acceptor pairs to steer molecular assembly into networks that reflect the symmetries of their molecular constituents. Although these efforts have been largely empirical, the dominance of hydrogen bonding among the multitude of intermolecular forces often leads to predictable control of crystal structure. Although charge-assisted hydrogen bonds (donors and acceptors with ionic character that reinforce the electrostatic character of the hydrogen bond) have been recognized for decades, their use in network design, particularly for “crystal engineering,” has grown substantially in the past decade. The evidence suggests that charge-assisted hydrogen bonds introduce extraordinary robustness to molecular networks that reflects a combination of strong intermolecular forces and structural compliance, thus facilitating design of organic solid-state materials.

  8. A toolkit for integrated deterministic and probabilistic assessment for hydrogen infrastructure.

    SciTech Connect

    Groth, Katrina M.; Tchouvelev, Andrei V.

    2014-03-01

    There has been increasing interest in using Quantitative Risk Assessment [QRA] to help improve the safety of hydrogen infrastructure and applications. Hydrogen infrastructure for transportation (e.g. fueling fuel cell vehicles) or stationary (e.g. back-up power) applications is a relatively new area for application of QRA vs. traditional industrial production and use, and as a result there are few tools designed to enable QRA for this emerging sector. There are few existing QRA tools containing models that have been developed and validated for use in small-scale hydrogen applications. However, in the past several years, there has been significant progress in developing and validating deterministic physical and engineering models for hydrogen dispersion, ignition, and flame behavior. In parallel, there has been progress in developing defensible probabilistic models for the occurrence of events such as hydrogen release and ignition. While models and data are available, using this information is difficult due to a lack of readily available tools for integrating deterministic and probabilistic components into a single analysis framework. This paper discusses the first steps in building an integrated toolkit for performing QRA on hydrogen transportation technologies and suggests directions for extending the toolkit.

  9. Co-location and Self-Similar Topologies of Urban Infrastructure Networks

    NASA Astrophysics Data System (ADS)

    Klinkhamer, Christopher; Zhan, Xianyuan; Ukkusuri, Satish; Elisabeth, Krueger; Paik, Kyungrock; Rao, Suresh

    2016-04-01

    The co-location of urban infrastructure is too obvious to be easily ignored. For reasons of practicality, reliability, and eminent domain, the spatial locations of many urban infrastructure networks, including drainage, sanitary sewers, and road networks, are well correlated. However, important questions dealing with correlations in the network topologies of differing infrastructure types remain unanswered. Here, we have extracted randomly distributed, nested subnets from the urban drainage, sanitary sewer, and road networks in two distinctly different cities: Amman, Jordan; and Indianapolis, USA. Network analyses were performed for each randomly chosen subnet (location and size), using a dual-mapping approach (Hierarchical Intersection Continuity Negotiation). Topological metrics for each infrastructure type were calculated and compared for all subnets in a given city. Despite large differences in the climate, governance, and populace of the two cities, and functional properties of the different infrastructure types, these infrastructure networks are shown to be highly spatially homogenous. Furthermore, strong correlations are found between topological metrics of differing types of surface and subsurface infrastructure networks. Also, the network topologies of each infrastructure type for both cities are shown to exhibit self-similar characteristics (i.e., power law node-degree distributions, [p(k) = ak-γ]. These findings can be used to assist city planners and engineers either expanding or retrofitting existing infrastructure, or in the case of developing countries, building new cities from the ground up. In addition, the self-similar nature of these infrastructure networks holds significant implications for the vulnerability of these critical infrastructure networks to external hazards and ways in which network resilience can be improved.

  10. Final Technical Report: Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project

    SciTech Connect

    Ronald Grasman

    2011-12-31

    This report summarizes the work conducted under U.S. Department of Energy (DOE) under contract DE-FC36-04GO14285 by Mercedes-Benz & Research Development, North America (MBRDNA), Chrysler, Daimler, Mercedes Benz USA (MBUSA), BP, DTE Energy and NextEnergy to validate fuel cell technologies for infrastructure, transportation as well as assess technology and commercial readiness for the market. The Mercedes Team, together with its partners, tested the technology by operating and fueling hydrogen fuel cell vehicles under real world conditions in varying climate, terrain and driving conditions. Vehicle and infrastructure data was collected to monitor the progress toward the hydrogen vehicle and infrastructure performance targets of $2.00 to 3.00/gge hydrogen production cost and 2,000-hour fuel cell durability. Finally, to prepare the public for a hydrogen economy, outreach activities were designed to promote awareness and acceptance of hydrogen technology. DTE, BP and NextEnergy established hydrogen filling stations using multiple technologies for on-site hydrogen generation, storage and dispensing. DTE established a hydrogen station in Southfield, Michigan while NextEnergy and BP worked together to construct one hydrogen station in Detroit. BP constructed another fueling station in Burbank, California and provided a full-time hydrogen trailer at San Francisco, California and a hydrogen station located at Los Angeles International Airport in Southern, California. Stations were operated between 2005 and 2011. The Team deployed 30 Gen I Fuel Cell Vehicles (FCVs) in the beginning of the project. While 28 Gen I F-CELLs used the A-Class platform, the remaining 2 were Sprinter delivery vans. Fuel cell vehicles were operated by external customers for real-world operations in various regions (ecosystems) to capture various driving patterns and climate conditions (hot, moderate and cold). External operators consisted of F-CELL partner organizations in California and Michigan

  11. Sensor network infrastructure for a home care monitoring system.

    PubMed

    Palumbo, Filippo; Ullberg, Jonas; Stimec, Ales; Furfari, Francesco; Karlsson, Lars; Coradeschi, Silvia

    2014-02-25

    This paper presents the sensor network infrastructure for a home care system that allows long-term monitoring of physiological data and everyday activities. The aim of the proposed system is to allow the elderly to live longer in their home without compromising safety and ensuring the detection of health problems. The system offers the possibility of a virtual visit via a teleoperated robot. During the visit, physiological data and activities occurring during a period of time can be discussed. These data are collected from physiological sensors (e.g., temperature, blood pressure, glucose) and environmental sensors (e.g., motion, bed/chair occupancy, electrical usage). The system can also give alarms if sudden problems occur, like a fall, and warnings based on more long-term trends, such as the deterioration of health being detected. It has been implemented and tested in a test environment and has been deployed in six real homes for a year-long evaluation. The key contribution of the paper is the presentation of an implemented system for ambient assisted living (AAL) tested in a real environment, combining the acquisition of sensor data, a flexible and adaptable middleware compliant with the OSGistandard and a context recognition application. The system has been developed in a European project called GiraffPlus.

  12. Sensor Network Infrastructure for a Home Care Monitoring System

    PubMed Central

    Palumbo, Filippo; Ullberg, Jonas; Štimec, Ales; Furfari, Francesco; Karlsson, Lars; Coradeschi, Silvia

    2014-01-01

    This paper presents the sensor network infrastructure for a home care system that allows long-term monitoring of physiological data and everyday activities. The aim of the proposed system is to allow the elderly to live longer in their home without compromising safety and ensuring the detection of health problems. The system offers the possibility of a virtual visit via a teleoperated robot. During the visit, physiological data and activities occurring during a period of time can be discussed. These data are collected from physiological sensors (e.g., temperature, blood pressure, glucose) and environmental sensors (e.g., motion, bed/chair occupancy, electrical usage). The system can also give alarms if sudden problems occur, like a fall, and warnings based on more long-term trends, such as the deterioration of health being detected. It has been implemented and tested in a test environment and has been deployed in six real homes for a year-long evaluation. The key contribution of the paper is the presentation of an implemented system for ambient assisted living (AAL) tested in a real environment, combining the acquisition of sensor data, a flexible and adaptable middleware compliant with the OSGistandard and a context recognition application. The system has been developed in a European project called GiraffPlus. PMID:24573309

  13. DOE Hydrogen, Fuel Cells and Infrastructure Technologies Program Integrated Hydrogen Production, Purification and Compression System

    SciTech Connect

    Tamhankar, Satish; Gulamhusein, Ali; Boyd, Tony; DaCosta, David; Golben, Mark

    2011-06-30

    The project was started in April 2005 with the objective to meet the DOE target of delivered hydrogen of <$1.50/gge, which was later revised by DOE to $2-$3/gge range for hydrogen to be competitive with gasoline as a fuel for vehicles. For small, on-site hydrogen plants being evaluated at the time for refueling stations (the 'forecourt'), it was determined that capital cost is the main contributor to the high cost of delivered hydrogen. The concept of this project was to reduce the cost by combining unit operations for the entire generation, purification, and compression system (refer to Figure 1). To accomplish this, the Fluid Bed Membrane Reactor (FBMR) developed by MRT was used. The FBMR has hydrogen selective, palladium-alloy membrane modules immersed in the reformer vessel, thereby directly producing high purity hydrogen in a single step. The continuous removal of pure hydrogen from the reformer pushes the equilibrium 'forward', thereby maximizing the productivity with an associated reduction in the cost of product hydrogen. Additional gains were envisaged by the integration of the novel Metal Hydride Hydrogen Compressor (MHC) developed by Ergenics, which compresses hydrogen from 0.5 bar (7 psia) to 350 bar (5,076 psia) or higher in a single unit using thermal energy. Excess energy from the reformer provides up to 25% of the power used for driving the hydride compressor so that system integration improved efficiency. Hydrogen from the membrane reformer is of very high, fuel cell vehicle (FCV) quality (purity over 99.99%), eliminating the need for a separate purification step. The hydride compressor maintains hydrogen purity because it does not have dynamic seals or lubricating oil. The project team set out to integrate the membrane reformer developed by MRT and the hydride compression system developed by Ergenics in a single package. This was expected to result in lower cost and higher efficiency compared to conventional hydrogen production technologies. The

  14. Hydrogen bonded network properties in liquid formamide.

    PubMed

    Bakó, Imre; Megyes, Tünde; Bálint, Szabolcs; Chihaia, Viorel; Bellissent-Funel, Marie-Claire; Krienke, Hartmut; Kopf, Andreas; Suh, Soong-Hyuck

    2010-01-01

    Molecular dynamics simulations have been performed for liquid formamide using two different types of potential model (OPLS, Cordeiro). The structural results obtained from simulation were compared to experimental (x-ray and neutron diffraction measurements) outcomes. A generally good agreement for both models examined has been found, but in the hydrogen bonded region (2.9 A) the Cordeiro model shows a slightly better fit. Besides the evaluation of partial radial distribution functions, orientational correlation functions and energy distribution functions, describing the hydrogen bonded structure, have been calculated based on the statistical analysis of configurations, resulting into a new insight in the clustering properties and topology of hydrogen bonded network. It has been shown that in liquid formamide exists a continuous hydrogen bonded network and from the analysis of the distribution of small rings revealed the ring size distribution in liquid formamide. Our study resulted that the ring size distribution of the hydrogen bonded liquid formamide shows a broad distribution with a maximum around 11. It has been found that the topology in formamide is significantly different than in water.

  15. Making Infrastructure Visible: A Case Study of Home Networking

    ERIC Educational Resources Information Center

    Chetty, Marshini

    2011-01-01

    Technological infrastructure is often taken for granted in our day to day lives until it breaks down, usually because it invisibly supports tasks otherwise. Previous work in HCI has focused on how people react and deal with breaks in infrastructure as well as how to help people to fix or exploit these breaks. However, few have sought to understand…

  16. Introduction to the U.S. Department of Energy's Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project

    SciTech Connect

    Wipke, K.; Welch, C.; Gronich, S.; Garbak, J.; Hooker, D.

    2006-05-01

    Early in 2003, the U.S. Department of Energy (DOE) initiated the ''Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project'' solicitation. The purpose of this project is to examine the impact and performance of fuel cell vehicles and the requisite hydrogen infrastructure in real-world applications. The integrated nature of the project enables DOE to work with industry to test, demonstrate, and validate optimal system solutions. Information learned from the vehicles and infrastructure will be fed back into DOE's R&D program to guide and refocus future research as needed, making this project truly a ''learning demonstration''.

  17. Scalable Architecture for Federated Translational Inquiries Network (SAFTINet) Technology Infrastructure for a Distributed Data Network

    PubMed Central

    Schilling, Lisa M.; Kwan, Bethany M.; Drolshagen, Charles T.; Hosokawa, Patrick W.; Brandt, Elias; Pace, Wilson D.; Uhrich, Christopher; Kamerick, Michael; Bunting, Aidan; Payne, Philip R.O.; Stephens, William E.; George, Joseph M.; Vance, Mark; Giacomini, Kelli; Braddy, Jason; Green, Mika K.; Kahn, Michael G.

    2013-01-01

    Introduction: Distributed Data Networks (DDNs) offer infrastructure solutions for sharing electronic health data from across disparate data sources to support comparative effectiveness research. Data sharing mechanisms must address technical and governance concerns stemming from network security and data disclosure laws and best practices, such as HIPAA. Methods: The Scalable Architecture for Federated Translational Inquiries Network (SAFTINet) deploys TRIAD grid technology, a common data model, detailed technical documentation, and custom software for data harmonization to facilitate data sharing in collaboration with stakeholders in the care of safety net populations. Data sharing partners host TRIAD grid nodes containing harmonized clinical data within their internal or hosted network environments. Authorized users can use a central web-based query system to request analytic data sets. Discussion: SAFTINet DDN infrastructure achieved a number of data sharing objectives, including scalable and sustainable systems for ensuring harmonized data structures and terminologies and secure distributed queries. Initial implementation challenges were resolved through iterative discussions, development and implementation of technical documentation, governance, and technology solutions. PMID:25848567

  18. Literature Review for the Baseline Knowledge Assessment of the Hydrogen, Fuel Cells, and Infrastructure Technologies Program

    SciTech Connect

    Truett, L.F.

    2003-12-10

    The purpose of the Hydrogen, Fuel Cells, and Infrastructure Technologies (HFCIT) Program Baseline Knowledge Assessment is to measure the current level of awareness and understanding of hydrogen and fuel cell technologies and the hydrogen economy. This information will be an asset to the HFCIT program in formulating an overall education plan. It will also provide a baseline for comparison with future knowledge and opinion surveys. To assess the current understanding and establish the baseline, the HFCIT program plans to conduct scientific surveys of four target audience groups--the general public, the educational community, governmental agencies, and potential large users. The purpose of the literature review is to examine the literature and summarize the results of surveys that have been conducted in the recent past concerning the existing knowledge and attitudes toward hydrogen. This literature review covers both scientific and, to a lesser extent, non-scientific polls. Seven primary data sources were reviewed, two of which were studies based in Europe. Studies involved both closed-end and open-end questions; surveys varied in length from three questions to multi-page interviews. Populations involved in the studies were primarily adults, although one study involved students. The number of participants ranged from 13 to over 16,000 per study. In addition to the primary surveys, additional related studies were mined for pertinent information. The primary conclusions of the surveys reviewed are that the public knows very little about hydrogen and fuel cell technologies but is generally accepting of the potential for hydrogen use. In general, respondents consider themselves as environmentally conscious. The public considers safety as the primary issue surrounding hydrogen as a fuel. Price, performance, and convenience are also considerations that will have major impacts on purchase decisions.

  19. Alternative transportation fuels: Infrastructure requirements and environmental impacts for ethanol and hydrogen

    NASA Astrophysics Data System (ADS)

    Wakeley, Heather L.

    Alternative fuels could replace a significant portion of the 140 billion gallons of annual US gasoline use. Considerable attention is being paid to processes and technologies for producing alternative fuels, but an enormous investment in new infrastructure will be needed to have substantial impact on the demand for petroleum. The economics of production, distribution, and use, along with environmental impacts of these fuels, will determine the success or failure of a transition away from US petroleum dependence. This dissertation evaluates infrastructure requirements for ethanol and hydrogen as alternative fuels. It begins with an economic case study for ethanol and hydrogen in Iowa. A large-scale linear optimization model is developed to estimate average transportation distances and costs for nationwide ethanol production and distribution systems. Environmental impacts of transportation in the ethanol life cycle are calculated using the Economic Input-Output Life Cycle Assessment (EIO-LCA) model. An EIO-LCA Hybrid method is developed to evaluate impacts of future fuel production technologies. This method is used to estimate emissions for hydrogen production and distribution pathways. Results from the ethanol analyses indicate that the ethanol transportation cost component is significant and is the most variable. Costs for ethanol sold in the Midwest, near primary production centers, are estimated to be comparable to or lower than gasoline costs. Along with a wide range of transportation costs, environmental impacts for ethanol range over three orders of magnitude, depending on the transport required. As a result, intensive ethanol use should be encouraged near ethanol production areas. Fossil fuels are likely to remain the primary feedstock sources for hydrogen production in the near- and mid-term. Costs and environmental impacts of hydrogen produced from natural gas and transported by pipeline are comparable to gasoline. However, capital costs are prohibitive and

  20. Retail Infrastructure Costs Comparison for Hydrogen and Electricity for Light-Duty Vehicles: Preprint

    SciTech Connect

    Melaina, M.; Sun, Y.; Bush, B.

    2014-08-01

    Both hydrogen and plug-in electric vehicles offer significant social benefits to enhance energy security and reduce criteria and greenhouse gas emissions from the transportation sector. However, the rollout of electric vehicle supply equipment (EVSE) and hydrogen retail stations (HRS) requires substantial investments with high risks due to many uncertainties. We compare retail infrastructure costs on a common basis - cost per mile, assuming fueling service to 10% of all light-duty vehicles in a typical 1.5 million person city in 2025. Our analysis considers three HRS sizes, four distinct types of EVSE and two distinct EVSE scenarios. EVSE station costs, including equipment and installation, are assumed to be 15% less than today's costs. We find that levelized retail capital costs per mile are essentially indistinguishable given the uncertainty and variability around input assumptions. Total fuel costs per mile for battery electric vehicle (BEV) and plug-in hybrid vehicle (PHEV) are, respectively, 21% lower and 13% lower than that for hydrogen fuel cell electric vehicle (FCEV) under the home-dominant scenario. Including fuel economies and vehicle costs makes FCEVs and BEVs comparable in terms of costs per mile, and PHEVs are about 10% less than FCEVs and BEVs. To account for geographic variability in energy prices and hydrogen delivery costs, we use the Scenario Evaluation, Regionalization and Analysis (SERA) model and confirm the aforementioned estimate of cost per mile, nationally averaged, but see a 15% variability in regional costs of FCEVs and a 5% variability in regional costs for BEVs.

  1. Toward Information Infrastructure Studies: Ways of Knowing in a Networked Environment

    NASA Astrophysics Data System (ADS)

    Bowker, Geoffrey C.; Baker, Karen; Millerand, Florence; Ribes, David

    This article presents Information Infrastructure Studies, a research area that takes up some core issues in digital information and organization research. Infrastructure Studies simultaneously addresses the technical, social, and organizational aspects of the development, usage, and maintenance of infrastructures in local communities as well as global arenas. While infrastructure is understood as a broad category referring to a variety of pervasive, enabling network resources such as railroad lines, plumbing and pipes, electrical power plants and wires, this article focuses on information infrastructure, such as computational services and help desks, or federating activities such as scientific data repositories and archives spanning the multiple disciplines needed to address such issues as climate warming and the biodiversity crisis. These are elements associated with the internet and, frequently today, associated with cyberinfrastructure or e-science endeavors. We argue that a theoretical understanding of infrastructure provides the context for needed dialogue between design, use, and sustainability of internet-based infrastructure services. This article outlines a research area and outlines overarching themes of Infrastructure Studies. Part one of the paper presents definitions for infrastructure and cyberinfrastructure, reviewing salient previous work. Part two portrays key ideas from infrastructure studies (knowledge work, social and political values, new forms of sociality, etc.). In closing, the character of the field today is considered.

  2. Advanced Decentralized Water/Energy Network Design for Sustainable Infrastructure

    EPA Science Inventory

    In order to provide a water infrastructure that is more sustainable into and beyond the 21st century, drinking water distribution systems and wastewater collection systems must account for our diminishing water supply, increasing demands, climate change, energy cost and availabil...

  3. Hydrogen Scenario Analysis Summary Report: Analysis of the Transition to Hydrogen Fuel Cell Vehicles and the Potential Hydrogen Energy Infrastructure Requirements

    SciTech Connect

    Greene, David L; Leiby, Paul Newsome; James, Brian; Perez, Julie; Melendez, Margo; Milbrandt, Anelia; Unnasch, Stefan; Rutherford, Daniel; Hooks, Matthew

    2008-03-01

    Achieving a successful transition to hydrogen-powered vehicles in the U.S. automotive market will require strong and sustained commitment by hydrogen producers, vehicle manufacturers, transporters and retailers, consumers, and governments. The interaction of these agents in the marketplace will determine the real costs and benefits of early market transformation policies, and ultimately the success of the transition itself. The transition to hydrogen-powered transportation faces imposing economic barriers. The challenges include developing and refining a new and different power-train technology, building a supporting fuel infrastructure, creating a market for new and unfamiliar vehicles, and achieving economies of scale in vehicle production while providing an attractive selection of vehicle makes and models for car-buyers. The upfront costs will be high and could persist for a decade or more, delaying profitability until an adequate number of vehicles can be produced and moved into consumer markets. However, the potential rewards to the economy, environment, and national security are immense. Such a profound market transformation will require careful planning and strong, consistent policy incentives. Section 811 of the Energy Policy Act (EPACT) of 2005, Public Law 109-59 (U.S. House, 2005), calls for a report from the Secretary of Energy on measures to support the transition to a hydrogen economy. The report was to specifically address production and deployment of hydrogen-fueled vehicles and the hydrogen production and delivery infrastructure needed to support those vehicles. In addition, the 2004 report of the National Academy of Sciences (NAS, 2004), The Hydrogen Economy, contained two recommendations for analyses to be conducted by the U.S. Department of Energy (DOE) to strengthen hydrogen energy transition and infrastructure planning for the hydrogen economy. In response to the EPACT requirement and NAS recommendations, DOE's Hydrogen, Fuel Cells and

  4. A comparison of hydrogen, methanol and gasoline as fuels for fuel cell vehicles: implications for vehicle design and infrastructure development

    NASA Astrophysics Data System (ADS)

    Ogden, Joan M.; Steinbugler, Margaret M.; Kreutz, Thomas G.

    All fuel cells currently being developed for near term use in electric vehicles require hydrogen as a fuel. Hydrogen can be stored directly or produced onboard the vehicle by reforming methanol, or hydrocarbon fuels derived from crude oil (e.g., gasoline, diesel, or middle distillates). The vehicle design is simpler with direct hydrogen storage, but requires developing a more complex refueling infrastructure. In this paper, we present modeling results comparing three leading options for fuel storage onboard fuel cell vehicles: (a) compressed gas hydrogen storage, (b) onboard steam reforming of methanol, (c) onboard partial oxidation (POX) of hydrocarbon fuels derived from crude oil. We have developed a fuel cell vehicle model, including detailed models of onboard fuel processors. This allows us to compare the vehicle performance, fuel economy, weight, and cost for various vehicle parameters, fuel storage choices and driving cycles. The infrastructure requirements are also compared for gaseous hydrogen, methanol and gasoline, including the added costs of fuel production, storage, distribution and refueling stations. The delivered fuel cost, total lifecycle cost of transportation, and capital cost of infrastructure development are estimated for each alternative. Considering both vehicle and infrastructure issues, possible fuel strategies leading to the commercialization of fuel cell vehicles are discussed.

  5. Anti-social networking: crowdsourcing and the cyber defence of national critical infrastructures.

    PubMed

    Johnson, Chris W

    2014-01-01

    We identify four roles that social networking plays in the 'attribution problem', which obscures whether or not cyber-attacks were state-sponsored. First, social networks motivate individuals to participate in Distributed Denial of Service attacks by providing malware and identifying potential targets. Second, attackers use an individual's social network to focus attacks, through spear phishing. Recipients are more likely to open infected attachments when they come from a trusted source. Third, social networking infrastructures create disposable architectures to coordinate attacks through command and control servers. The ubiquitous nature of these architectures makes it difficult to determine who owns and operates the servers. Finally, governments recruit anti-social criminal networks to launch attacks on third-party infrastructures using botnets. The closing sections identify a roadmap to increase resilience against the 'dark side' of social networking. PMID:23826703

  6. Anti-social networking: crowdsourcing and the cyber defence of national critical infrastructures.

    PubMed

    Johnson, Chris W

    2014-01-01

    We identify four roles that social networking plays in the 'attribution problem', which obscures whether or not cyber-attacks were state-sponsored. First, social networks motivate individuals to participate in Distributed Denial of Service attacks by providing malware and identifying potential targets. Second, attackers use an individual's social network to focus attacks, through spear phishing. Recipients are more likely to open infected attachments when they come from a trusted source. Third, social networking infrastructures create disposable architectures to coordinate attacks through command and control servers. The ubiquitous nature of these architectures makes it difficult to determine who owns and operates the servers. Finally, governments recruit anti-social criminal networks to launch attacks on third-party infrastructures using botnets. The closing sections identify a roadmap to increase resilience against the 'dark side' of social networking.

  7. Health care network communications infrastructure: an engineering design for the Military Health Service System.

    PubMed

    Hoffman, P; Kline, E; George, L; Price, K; Clark, M; Walasin, R

    1995-01-01

    The Military Health Service System (MHSS) provides health care for the Department of Defense (DOD). This system operates on an annual budget of $15 Billion, supports 127 medical treatment facilities (MTFs) and 500 clinics, and provides support to 8.7 million beneficiaries worldwide. To support these facilities and their patients, the MHSS uses more than 125 different networked automated medical systems. These systems rely on a heterogeneous telecommunications infrastructure for data communications. With the support of the Defense Medical Information Management (DMIM) Program Office, our goal was to identify the network requirements for DMIM migration and target systems and design a communications infrastructure to support all systems with an integrated network. This work used tools from Business Process Reengineering (BPR) and applied it to communications infrastructure design for the first time. The methodology and results are applicable to any health care enterprise, military or civilian.

  8. Health care network communications infrastructure: an engineering design for the Military Health Service System.

    PubMed Central

    Hoffman, P.; Kline, E.; George, L.; Price, K.; Clark, M.; Walasin, R.

    1995-01-01

    The Military Health Service System (MHSS) provides health care for the Department of Defense (DOD). This system operates on an annual budget of $15 Billion, supports 127 medical treatment facilities (MTFs) and 500 clinics, and provides support to 8.7 million beneficiaries worldwide. To support these facilities and their patients, the MHSS uses more than 125 different networked automated medical systems. These systems rely on a heterogeneous telecommunications infrastructure for data communications. With the support of the Defense Medical Information Management (DMIM) Program Office, our goal was to identify the network requirements for DMIM migration and target systems and design a communications infrastructure to support all systems with an integrated network. This work used tools from Business Process Reengineering (BPR) and applied it to communications infrastructure design for the first time. The methodology and results are applicable to any health care enterprise, military or civilian. PMID:8563346

  9. Pathways to Commercial Success: Technologies and Products Supported by the Hydrogen, Fuel Cells and Infrastructure Technologies Program

    SciTech Connect

    none,

    2009-08-01

    This report documents the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Hydrogen, Fuel Cells and Infrastructure Technologies Program and its predecessor programs within DOE's Office of Energy Efficiency and Renewable Energy.

  10. Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project Final Technical Report

    SciTech Connect

    Verma, Puneet; Casey, Dan

    2011-03-29

    This report summarizes the work conducted under U.S. Department of Energy (US DOE) contract DE-FC36-04GO14286 by Chevron Technology Ventures (CTV, a division of Chevron U.S.A., Inc.), Hyundai Motor Company (HMC), and UTC Power (UTCP, a United Technologies company) to validate hydrogen (H2) infrastructure technology and fuel cell hybrid vehicles. Chevron established hydrogen filling stations at fleet operator sites using multiple technologies for on-site hydrogen generation, storage, and dispensing. CTV constructed five demonstration stations to support a vehicle fleet of 33 fuel cell passenger vehicles, eight internal combustion engine (ICE) vehicles, three fuel cell transit busses, and eight internal combustion engine shuttle busses. Stations were operated between 2005 and 2010. HMC introduced 33 fuel cell hybrid electric vehicles (FCHEV) in the course of the project. Generation I included 17 vehicles that used UTCP fuel cell power plants and operated at 350 bar. Generation II included 16 vehicles that had upgraded UTC fuel cell power plants and demonstrated options such as the use of super-capacitors and operation at 700 bar. All 33 vehicles used the Hyundai Tucson sports utility vehicle (SUV) platform. Fleet operators demonstrated commercial operation of the vehicles in three climate zones (hot, moderate, and cold) and for various driving patterns. Fleet operators were Southern California Edison (SCE), AC Transit (of Oakland, California), Hyundai America Technical Center Inc. (HATCI), and the U.S. Army Tank Automotive Research, Development and Engineering Center (TARDEC, in a site agreement with Selfridge Army National Guard Base in Selfridge, Michigan).

  11. Network Computing Infrastructure to Share Tools and Data in Global Nuclear Energy Partnership

    NASA Astrophysics Data System (ADS)

    Kim, Guehee; Suzuki, Yoshio; Teshima, Naoya

    CCSE/JAEA (Center for Computational Science and e-Systems/Japan Atomic Energy Agency) integrated a prototype system of a network computing infrastructure for sharing tools and data to support the U.S. and Japan collaboration in GNEP (Global Nuclear Energy Partnership). We focused on three technical issues to apply our information process infrastructure, which are accessibility, security, and usability. In designing the prototype system, we integrated and improved both network and Web technologies. For the accessibility issue, we adopted SSL-VPN (Security Socket Layer-Virtual Private Network) technology for the access beyond firewalls. For the security issue, we developed an authentication gateway based on the PKI (Public Key Infrastructure) authentication mechanism to strengthen the security. Also, we set fine access control policy to shared tools and data and used shared key based encryption method to protect tools and data against leakage to third parties. For the usability issue, we chose Web browsers as user interface and developed Web application to provide functions to support sharing tools and data. By using WebDAV (Web-based Distributed Authoring and Versioning) function, users can manipulate shared tools and data through the Windows-like folder environment. We implemented the prototype system in Grid infrastructure for atomic energy research: AEGIS (Atomic Energy Grid Infrastructure) developed by CCSE/JAEA. The prototype system was applied for the trial use in the first period of GNEP.

  12. Low power wireless sensor networks for infrastructure monitoring

    NASA Astrophysics Data System (ADS)

    Ghaed, Mohammad Hassan; Ghahramani, Mohammad Mahdi; Chen, Gregory; Fojtik, Matthew; Blaauw, David; Flynn, Michael P.; Sylvester, Dennis

    2012-04-01

    Sensors with long lifetimes are ideal for infrastructure monitoring. Miniaturized sensor systems are only capable of storing small amounts of energy. Prior work has increased sensor lifetime through the reduction of supply voltage , necessitating voltage conversion from storage elements such as batteries. Sensor lifetime can be further extended by harvesting from solar, vibrational, or thermal energy. Since harvested energy is sporadic, it must be detected and stored. Harvesting sources do not provide voltage levels suitable for secondary power sources, necessitating DC-DC upconversion. We demonstrate a 8.75mm3 sensor system with a near-threshold ARM microcontroller, custom 3.3fW/bit SRAM, two 1mm2 solar cells, a thin-film Li-ion battery, and integrated power management unit. The 7.7μW system enters a 550pW data-retentive sleep state between measurements and harvests solar energy to enable energy autonomy. Our receiver and transmitter architectures benefit from a design strategy that employs mixed signal and digital circuit schemes that perform well in advanced CMOS integrated circuit technologies. A prototype transmitter implemented in 0.13μm CMOS satisfies the requirements for Zigbee, but consumes far less power consumption than state-of-the-art commercial devices.

  13. Low-Cost, Robust, Threat-aware Wireless Sensor Network for Assuring the Nation's Energy Infrastructure

    SciTech Connect

    Carlos H. Rentel

    2007-03-31

    The objective of this project was to create a low-cost, robust anticipatory wireless sensor network (A-WSN) to ensure the security and reliability of the United States energy infrastructure. This document highlights Eaton Corporation's plan to bring these technologies to market.

  14. Time-Varying, Multi-Scale Adaptive System Reliability Analysis of Lifeline Infrastructure Networks

    SciTech Connect

    Gearhart, Jared Lee; Kurtz, Nolan Scot

    2014-09-01

    The majority of current societal and economic needs world-wide are met by the existing networked, civil infrastructure. Because the cost of managing such infrastructure is high and increases with time, risk-informed decision making is essential for those with management responsibilities for these systems. To address such concerns, a methodology that accounts for new information, deterioration, component models, component importance, group importance, network reliability, hierarchical structure organization, and efficiency concerns has been developed. This methodology analyzes the use of new information through the lens of adaptive Importance Sampling for structural reliability problems. Deterioration, multi-scale bridge models, and time-variant component importance are investigated for a specific network. Furthermore, both bridge and pipeline networks are studied for group and component importance, as well as for hierarchical structures in the context of specific networks. Efficiency is the primary driver throughout this study. With this risk-informed approach, those responsible for management can address deteriorating infrastructure networks in an organized manner.

  15. Body area network--a key infrastructure element for patient-centered telemedicine.

    PubMed

    Norgall, Thomas; Schmidt, Robert; von der Grün, Thomas

    2004-01-01

    The Body Area Network (BAN) extends the range of existing wireless network technologies by an ultra-low range, ultra-low power network solution optimised for long-term or continuous healthcare applications. It enables wireless radio communication between several miniaturised, intelligent Body Sensor (or actor) Units (BSU) and a single Body Central Unit (BCU) worn at the human body. A separate wireless transmission link from the BCU to a network access point--using different technology--provides for online access to BAN components via usual network infrastructure. The BAN network protocol maintains dynamic ad-hoc network configuration scenarios and co-existence of multiple networks.BAN is expected to become a basic infrastructure element for electronic health services: By integrating patient-attached sensors and mobile actor units, distributed information and data processing systems, the range of medical workflow can be extended to include applications like wireless multi-parameter patient monitoring and therapy support. Beyond clinical use and professional disease management environments, private personal health assistance scenarios (without financial reimbursement by health agencies / insurance companies) enable a wide range of applications and services in future pervasive computing and networking environments.

  16. Sensing Models and Sensor Network Architectures for Transport Infrastructure Monitoring in Smart Cities

    NASA Astrophysics Data System (ADS)

    Simonis, Ingo

    2015-04-01

    Transport infrastructure monitoring and analysis is one of the focus areas in the context of smart cities. With the growing number of people moving into densely populated urban metro areas, precise tracking of moving people and goods is the basis for profound decision-making and future planning. With the goal of defining optimal extensions and modifications to existing transport infrastructures, multi-modal transport has to be monitored and analysed. This process is performed on the basis of sensor networks that combine a variety of sensor models, types, and deployments within the area of interest. Multi-generation networks, consisting of a number of sensor types and versions, are causing further challenges for the integration and processing of sensor observations. These challenges are not getting any smaller with the development of the Internet of Things, which brings promising opportunities, but is currently stuck in a type of protocol war between big industry players from both the hardware and network infrastructure domain. In this paper, we will highlight how the OGC suite of standards, with the Sensor Web standards developed by the Sensor Web Enablement Initiative together with the latest developments by the Sensor Web for Internet of Things community can be applied to the monitoring and improvement of transport infrastructures. Sensor Web standards have been applied in the past to pure technical domains, but need to be broadened now in order to meet new challenges. Only cross domain approaches will allow to develop satisfying transport infrastructure approaches that take into account requirements coming form a variety of sectors such as tourism, administration, transport industry, emergency services, or private people. The goal is the development of interoperable components that can be easily integrated within data infrastructures and follow well defined information models to allow robust processing.

  17. Body Area Network BAN--a key infrastructure element for patient-centered medical applications.

    PubMed

    Schmidt, Robert; Norgall, Thomas; Mörsdorf, Joachim; Bernhard, Josef; von der Grün, Thomas

    2002-01-01

    The Body Area Network (BAN) concept enables wireless communication between several miniaturized, intelligent Body Sensor (or actor) Units (BSU) and a single Body Central Unit (BCU) worn at the human body. A separate wireless transmission link from the BCU to a network access point--using different technology--provides for online access to BAN data via usual network infrastructure. BAN is expected to become a basic infrastructure element for service-based electronic health assistance: By integrating patient-attached sensors and control of mobile dedicated actor units, the range of medical workflow can be extended by wireless patient monitoring and therapy support. Beyond clinical use, professional disease management environments, and private personal health assistance scenarios (without financial reimbursement by health agencies/insurance companies), BAN enables a wide range of health care applications and related services.

  18. Assessing urban strategies for reducing the impacts of extreme weather on infrastructure networks.

    PubMed

    Pregnolato, Maria; Ford, Alistair; Robson, Craig; Glenis, Vassilis; Barr, Stuart; Dawson, Richard

    2016-05-01

    Critical infrastructure networks, including transport, are crucial to the social and economic function of urban areas but are at increasing risk from natural hazards. Minimizing disruption to these networks should form part of a strategy to increase urban resilience. A framework for assessing the disruption from flood events to transport systems is presented that couples a high-resolution urban flood model with transport modelling and network analytics to assess the impacts of extreme rainfall events, and to quantify the resilience value of different adaptation options. A case study in Newcastle upon Tyne in the UK shows that both green roof infrastructure and traditional engineering interventions such as culverts or flood walls can reduce transport disruption from flooding. The magnitude of these benefits depends on the flood event and adaptation strategy, but for the scenarios considered here 3-22% improvements in city-wide travel times are achieved. The network metric of betweenness centrality, weighted by travel time, is shown to provide a rapid approach to identify and prioritize the most critical locations for flood risk management intervention. Protecting just the top ranked critical location from flooding provides an 11% reduction in person delays. A city-wide deployment of green roofs achieves a 26% reduction, and although key routes still flood, the benefits of this strategy are more evenly distributed across the transport network as flood depths are reduced across the model domain. Both options should form part of an urban flood risk management strategy, but this method can be used to optimize investment and target limited resources at critical locations, enabling green infrastructure strategies to be gradually implemented over the longer term to provide city-wide benefits. This framework provides a means of prioritizing limited financial resources to improve resilience. This is particularly important as flood management investments must typically exceed

  19. Assessing urban strategies for reducing the impacts of extreme weather on infrastructure networks.

    PubMed

    Pregnolato, Maria; Ford, Alistair; Robson, Craig; Glenis, Vassilis; Barr, Stuart; Dawson, Richard

    2016-05-01

    Critical infrastructure networks, including transport, are crucial to the social and economic function of urban areas but are at increasing risk from natural hazards. Minimizing disruption to these networks should form part of a strategy to increase urban resilience. A framework for assessing the disruption from flood events to transport systems is presented that couples a high-resolution urban flood model with transport modelling and network analytics to assess the impacts of extreme rainfall events, and to quantify the resilience value of different adaptation options. A case study in Newcastle upon Tyne in the UK shows that both green roof infrastructure and traditional engineering interventions such as culverts or flood walls can reduce transport disruption from flooding. The magnitude of these benefits depends on the flood event and adaptation strategy, but for the scenarios considered here 3-22% improvements in city-wide travel times are achieved. The network metric of betweenness centrality, weighted by travel time, is shown to provide a rapid approach to identify and prioritize the most critical locations for flood risk management intervention. Protecting just the top ranked critical location from flooding provides an 11% reduction in person delays. A city-wide deployment of green roofs achieves a 26% reduction, and although key routes still flood, the benefits of this strategy are more evenly distributed across the transport network as flood depths are reduced across the model domain. Both options should form part of an urban flood risk management strategy, but this method can be used to optimize investment and target limited resources at critical locations, enabling green infrastructure strategies to be gradually implemented over the longer term to provide city-wide benefits. This framework provides a means of prioritizing limited financial resources to improve resilience. This is particularly important as flood management investments must typically exceed

  20. Assessing urban strategies for reducing the impacts of extreme weather on infrastructure networks

    PubMed Central

    Pregnolato, Maria; Ford, Alistair; Robson, Craig; Glenis, Vassilis; Barr, Stuart; Dawson, Richard

    2016-01-01

    Critical infrastructure networks, including transport, are crucial to the social and economic function of urban areas but are at increasing risk from natural hazards. Minimizing disruption to these networks should form part of a strategy to increase urban resilience. A framework for assessing the disruption from flood events to transport systems is presented that couples a high-resolution urban flood model with transport modelling and network analytics to assess the impacts of extreme rainfall events, and to quantify the resilience value of different adaptation options. A case study in Newcastle upon Tyne in the UK shows that both green roof infrastructure and traditional engineering interventions such as culverts or flood walls can reduce transport disruption from flooding. The magnitude of these benefits depends on the flood event and adaptation strategy, but for the scenarios considered here 3–22% improvements in city-wide travel times are achieved. The network metric of betweenness centrality, weighted by travel time, is shown to provide a rapid approach to identify and prioritize the most critical locations for flood risk management intervention. Protecting just the top ranked critical location from flooding provides an 11% reduction in person delays. A city-wide deployment of green roofs achieves a 26% reduction, and although key routes still flood, the benefits of this strategy are more evenly distributed across the transport network as flood depths are reduced across the model domain. Both options should form part of an urban flood risk management strategy, but this method can be used to optimize investment and target limited resources at critical locations, enabling green infrastructure strategies to be gradually implemented over the longer term to provide city-wide benefits. This framework provides a means of prioritizing limited financial resources to improve resilience. This is particularly important as flood management investments must typically

  1. Monitoring the US ATLAS Network Infrastructure with perfSONAR-PS

    NASA Astrophysics Data System (ADS)

    McKee, Shawn; Lake, Andrew; Laurens, Philippe; Severini, Horst; Wlodek, Tomasz; Wolff, Stephen; Zurawski, Jason

    2012-12-01

    Global scientific collaborations, such as ATLAS, continue to push the network requirements envelope. Data movement in this collaboration is routinely including the regular exchange of petabytes of datasets between the collection and analysis facilities in the coming years. These requirements place a high emphasis on networks functioning at peak efficiency and availability; the lack thereof could mean critical delays in the overall scientific progress of distributed data-intensive experiments like ATLAS. Network operations staff routinely must deal with problems deep in the infrastructure; this may be as benign as replacing a failing piece of equipment, or as complex as dealing with a multi-domain path that is experiencing data loss. In either case, it is crucial that effective monitoring and performance analysis tools are available to ease the burden of management. We will report on our experiences deploying and using the perfSONAR-PS Performance Toolkit at ATLAS sites in the United States. This software creates a dedicated monitoring server, capable of collecting and performing a wide range of passive and active network measurements. Each independent instance is managed locally, but able to federate on a global scale; enabling a full view of the network infrastructure that spans domain boundaries. This information, available through web service interfaces, can easily be retrieved to create customized applications. The US ATLAS collaboration has developed a centralized “dashboard” offering network administrators, users, and decision makers the ability to see the performance of the network at a glance. The dashboard framework includes the ability to notify users (alarm) when problems are found, thus allowing rapid response to potential problems and making perfSONAR-PS crucial to the operation of our distributed computing infrastructure.

  2. Networking for large-scale science: infrastructure, provisioning, transport and application mapping

    NASA Astrophysics Data System (ADS)

    Rao, Nageswara S.; Carter, Steven M.; Wu, Qishi; Wing, William R.; Zhu, Mengxia; Mezzacappa, Anthony; Veeraraghavan, Malathi; Blondin, John M.

    2005-01-01

    Large-scale science computations and experiments require unprecedented network capabilities in the form of large bandwidth and dynamically stable connections to support data transfers, interactive visualizations, and monitoring and steering operations. A number of component technologies dealing with the infrastructure, provisioning, transport and application mappings must be developed and/or optimized to achieve these capabilities. We present a brief account of the following technologies that contribute toward achieving these network capabilities: (a) DOE UltraScienceNet and NSF CHEETAH network testbeds that provide on-demand and scheduled dedicated network connections; (b) experimental results on transport protocols that achieve close to 100% utilization on dedicated 1Gbps wide-area channels; (c) a scheme for optimally mapping a visualization pipeline onto a network to minimize the end-to-end delays; and (d) interconnect configuration and protocols that provides multiple Gbps flows from Cray X1 to external hosts.

  3. Texas Hydrogen Highway Fuel Cell Hybrid Bus and Fueling Infrastructure Technology Showcase - Final Scientific/Technical Report

    SciTech Connect

    Hitchcock, David

    2012-06-29

    The Texas Hydrogen Highway project has showcased a hydrogen fuel cell transit bus and hydrogen fueling infrastructure that was designed and built through previous support from various public and private sector entities. The aim of this project has been to increase awareness among transit agencies and other public entities on these transportation technologies, and to place such technologies into commercial applications, such as a public transit agency. The initial project concept developed in 2004 was to show that a skid-mounted, fully-integrated, factory-built and tested hydrogen fueling station could be used to simplify the design, and lower the cost of fueling infrastructure for fuel cell vehicles. The approach was to design, engineer, build, and test the integrated fueling station at the factory then install it at a site that offered educational and technical resources and provide an opportunity to showcase both the fueling station and advanced hydrogen vehicles. The two primary technology components include: Hydrogen Fueling Station: The hydrogen fueling infrastructure was designed and built by Gas Technology Institute primarily through a funding grant from the Texas Commission on Environmental Quality. It includes hydrogen production, clean-up, compression, storage, and dispensing. The station consists of a steam methane reformer, gas clean-up system, gas compressor and 48 kilograms of hydrogen storage capacity for dispensing at 5000 psig. The station is skid-mounted for easy installation and can be relocated if needed. It includes a dispenser that is designed to provide temperaturecompensated fills using a control algorithm. The total station daily capacity is approximately 50 kilograms. Fuel Cell Bus: The transit passenger bus built by Ebus, a company located in Downey, CA, was commissioned and acquired by GTI prior to this project. It is a fuel cell plug-in hybrid electric vehicle which is ADA compliant, has air conditioning sufficient for Texas operations

  4. Deployment of a WLCG network monitoring infrastructure based on the perfSONAR-PS technology

    NASA Astrophysics Data System (ADS)

    Campana, S.; Brown, A.; Bonacorsi, D.; Capone, V.; De Girolamo, D.; Casani, A. F.; Flix, J.; Forti, A.; Gable, I.; Gutsche, O.; Hesnaux, A.; Liu, S.; Lopez Munoz, F.; Magini, N.; McKee, S.; Mohammed, K.; Rand, D.; Reale, M.; Roiser, S.; Zielinski, M.; Zurawski, J.

    2014-06-01

    The WLCG infrastructure moved from a very rigid network topology, based on the MONARC model, to a more relaxed system, where data movement between regions or countries does not necessarily need to involve T1 centres. While this evolution brought obvious advantages, especially in terms of flexibility for the LHC experiment's data management systems, it also opened the question of how to monitor the increasing number of possible network paths, in order to provide a global reliable network service. The perfSONAR network monitoring system has been evaluated and agreed as a proper solution to cover the WLCG network monitoring use cases: it allows WLCG to plan and execute latency and bandwidth tests between any instrumented endpoint through a central scheduling configuration, it allows archiving of the metrics in a local database, it provides a programmatic and a web based interface exposing the tests results; it also provides a graphical interface for remote management operations. In this contribution we will present our activity to deploy a perfSONAR based network monitoring infrastructure, in the scope of the WLCG Operations Coordination initiative: we will motivate the main choices we agreed in terms of configuration and management, describe the additional tools we developed to complement the standard packages and present the status of the deployment, together with the possible future evolution.

  5. Network Corrected Real-Time Kinematic - Infrastructure Partnering betwen Industry and Earth Sciences

    NASA Astrophysics Data System (ADS)

    Schrock, Gavin

    2010-05-01

    The rapid deployment of GNSS sensors in the form of continuously operating reference stations (CORS) both as stand-alone CORS and as networks of CORS grouped by function or administration provides a tremendous opportunity for partnering and development of joint resources for science and industry. The drivers for development of early GNSS networks and the funding thereof typically came from specific user segments like surveying, mapping, construction, public safety, structural integrity monitoring, precision agriculture, science and academia, often developed and operated centrally via a single entity. Such an approach would often result in duplicity of effort and limited utility for expanded or enhanced uses. The more recent trend is towards serving multiple user segments both in design and administration as cooperative networks. Implementation and utilization of GNSS networks has a longer history in geophysical sciences of academia and federal geodetic services than in the surveying, construction and mapping sectors, and only of late in more commercial and consumer level ventures. Such legacy infrastructure is more typically utilized in a post-processed mode. The more recent boom in the development of CORS has been in support of real-time kinematics uses like surveying, mapping, and construction. Network corrected real-time infrastructure, more commonly referred to as RTN (real-time networks) applies multiple scientific approaches in providing sub-centimetre 3D positions for mobile users (rovers) and even tighter results for server-side motion-engine processing.

  6. The DARHTAcquisition, Archival, Analysis, And Instrument Control System (DAAAC), And Network Infrastructure

    SciTech Connect

    Archuleta, Rita Denise; Sanchez, Lawrence

    2008-01-01

    The Dual Axis Radiographic Hydrodynamic Test Facility (DARHT) at Los Alamos National Laboratory is the world's most advanced weapons test facility. DARHT contains two linear accelerators for producing flash radiographs of hydrodynamic experiments. High-speed electronics and optical instrumentation are used for triggering the accelerators and collecting accelerator data. Efficient and effective diagnostics provide basic information needed to routinely tune the accelerators for peak radiographic performance, and to successfully monitor the accelerators performance. DARHT's server and network infrastructure is a key element in providing shot related data storage and retrieval for successfully executing radiographic experiments. This paper will outline the elaborate Data Acquisition, Archival, Analysis, and Instrument Control System (DAAAC), as well as the server and network infrastructure for both accelerators.

  7. Effective Utilization of Resources and Infrastructure for a Spaceport Network Architecture

    NASA Technical Reports Server (NTRS)

    Gill, Tracy; Larson, Wiley; Mueller, Robert; Roberson, Luke

    2012-01-01

    Providing routine, affordable access to a variety of orbital and deep space destinations requires an intricate network of ground, planetary surface, and space-based spaceports like those on Earth (land and sea), in various Earth orbits, and on other extraterrestrial surfaces. Advancements in technology and international collaboration are critical to establish a spaceport network that satisfies the requirements for private and government research, exploration, and commercial objectives. Technologies, interfaces, assembly techniques, and protocols must be adapted to enable mission critical capabilities and interoperability throughout the spaceport network. The conceptual space mission architecture must address the full range of required spaceport services, from managing propellants for a variety of spacecraft to governance structure. In order to accomplish affordability and sustainability goals, the network architecture must consider deriving propellants from in situ planetary resources to the maximum extent possible. Water on the Moon and Mars, Mars' atmospheric CO2, and O2 extracted from lunar regolith are examples of in situ resources that could be used to generate propellants for various spacecraft, orbital stages and trajectories, and the commodities to support habitation and human operations at these destinations. The ability to use in-space fuel depots containing in situ derived propellants would drastically reduce the mass required to launch long-duration or deep space missions from Earth's gravity well. Advances in transformative technologies and common capabilities, interfaces, umbilicals, commodities, protocols, and agreements will facilitate a cost-effective, safe, reliable infrastructure for a versatile network of Earth- and extraterrestrial spaceports. Defining a common infrastructure on Earth, planetary surfaces, and in space, as well as deriving propellants from in situ planetary resources to construct in-space propellant depots to serve the spaceport

  8. The framework for simulation of bioinspired security mechanisms against network infrastructure attacks.

    PubMed

    Shorov, Andrey; Kotenko, Igor

    2014-01-01

    The paper outlines a bioinspired approach named "network nervous system" and methods of simulation of infrastructure attacks and protection mechanisms based on this approach. The protection mechanisms based on this approach consist of distributed procedures of information collection and processing, which coordinate the activities of the main devices of a computer network, identify attacks, and determine necessary countermeasures. Attacks and protection mechanisms are specified as structural models using a set-theoretic approach. An environment for simulation of protection mechanisms based on the biological metaphor is considered; the experiments demonstrating the effectiveness of the protection mechanisms are described.

  9. The Framework for Simulation of Bioinspired Security Mechanisms against Network Infrastructure Attacks

    PubMed Central

    Kotenko, Igor

    2014-01-01

    The paper outlines a bioinspired approach named “network nervous system" and methods of simulation of infrastructure attacks and protection mechanisms based on this approach. The protection mechanisms based on this approach consist of distributed prosedures of information collection and processing, which coordinate the activities of the main devices of a computer network, identify attacks, and determine nessesary countermeasures. Attacks and protection mechanisms are specified as structural models using a set-theoretic approach. An environment for simulation of protection mechanisms based on the biological metaphor is considered; the experiments demonstrating the effectiveness of the protection mechanisms are described. PMID:25254229

  10. Scalable Tool Infrastructure for the Cray XT Using Tree-Based Overlay Networks

    SciTech Connect

    Roth, Philip C; Vetter, Jeffrey S

    2009-01-01

    Performance, debugging, and administration tools are critical for the effective use of parallel computing platforms, but traditional tools have failed to overcome several problems that limit their scalability, such as communication between a large number of tool processes and the management and processing of the volume of data generated on a large number of compute nodes. A tree-based overlay network has proven effective for overcoming these challenges. In this paper, we present our experiences in bringing our MRNet tree-based overlay network infrastructure to the Cray XT platform, including a description of proof-of-concept tools that use MRNet on the Cray XT.

  11. Hydrogen Bond Nanoscale Networks Showing Switchable Transport Performance

    NASA Astrophysics Data System (ADS)

    Long, Yong; Hui, Jun-Feng; Wang, Peng-Peng; Xiang, Guo-Lei; Xu, Biao; Hu, Shi; Zhu, Wan-Cheng; Lü, Xing-Qiang; Zhuang, Jing; Wang, Xun

    2012-08-01

    Hydrogen bond is a typical noncovalent bond with its strength only one-tenth of a general covalent bond. Because of its easiness to fracture and re-formation, materials based on hydrogen bonds can enable a reversible behavior in their assembly and other properties, which supplies advantages in fabrication and recyclability. In this paper, hydrogen bond nanoscale networks have been utilized to separate water and oil in macroscale. This is realized upon using nanowire macro-membranes with pore sizes ~tens of nanometers, which can form hydrogen bonds with the water molecules on the surfaces. It is also found that the gradual replacement of the water by ethanol molecules can endow this film tunable transport properties. It is proposed that a hydrogen bond network in the membrane is responsible for this switching effect. Significant application potential is demonstrated by the successful separation of oil and water, especially in the emulsion forms.

  12. The spatial data infrastructure for the European Seas Observatory Network (ESONET)

    NASA Astrophysics Data System (ADS)

    Huber, Robert; Diepenbroek, Michael

    2010-05-01

    ESONET is a Multidisciplinary European Network of Excellence (NoE) in which scientists and engineers from 50 partners and 14 countries cooperate in building the infrastructure for a lasting integration of research and development in deep sea observatories in Europe. This NoE aims to develop strong links between regional nodes of a European network of sub sea observatories and to promote multidiciplinarity and transnationality within each node. Essential for these goals is the provision of an effective data and knowledge infrastructure for both, management and archiving of observatory data as well as knowledge and data sharing among network participants. The ESONET data infrastructure roughly consists of four major components: data policies a common agreement on the data management procedures and prerequisites, data acquisition technologies serve to collect data directly from ESONET observatories, data archives care for long term data management of collected ESONET data and data integration and portal tools which ensure harmonisation of collected data and allow access to the data in a common way. Most critical for ESONET was the development of a spatial data infrastructure (SDI) by using standardised protocols to directly access observatory data in its spatial and temporal context. The ESONET SDI provides means to either access data in quasi real time or harvest locally stored data in order to transfer it to a long term data archive. ESONET SDI largely builds upon the OGC Sensor Web Enablement (SWE) suite of standards. Among those, the Sensor Observation Service (SOS), the Observations & Measurements (O&M), Sensor Markup Language (SensorML) are especially important for the integration of observatory data as well as for the contribution of ESONET data to GEOSS.

  13. Analysis of the Transition to Hydrogen Fuel Cell Vehicles and the Potential Hydrogen Energy Infrastructure Requirements, March 2008

    SciTech Connect

    Greene, David L.; Leiby, Paul N.; James, Brian; Perez, Julie; Melendez, Margo; Milbrandt, Anelia; Unnash, Stefan; Rutherford, Daniel; Hooks, Matthew

    2008-03-14

    Achieving a successful transition to hydrogen-powered vehicles in the U.S. automotive market will require strong and sustained commitment by hydrogen producers, vehicle manufacturers, transporters and retailers, consumers, and governments. The interaction of these agents in the marketplace will determine the real costs and benefits of early market transformation policies, and ultimately the success of the transition itself.

  14. ENES the European Network for Earth System modelling and its infrastructure projects IS-ENES

    NASA Astrophysics Data System (ADS)

    Guglielmo, Francesca; Joussaume, Sylvie; Parinet, Marie

    2016-04-01

    The scientific community working on climate modelling is organized within the European Network for Earth System modelling (ENES). In the past decade, several European university departments, research centres, meteorological services, computer centres, and industrial partners engaged in the creation of ENES with the purpose of working together and cooperating towards the further development of the network, by signing a Memorandum of Understanding. As of 2015, the consortium counts 47 partners. The climate modelling community, and thus ENES, faces challenges which are both science-driven, i.e. analysing of the full complexity of the Earth System to improve our understanding and prediction of climate changes, and have multi-faceted societal implications, as a better representation of climate change on regional scales leads to improved understanding and prediction of impacts and to the development and provision of climate services. ENES, promoting and endorsing projects and initiatives, helps in developing and evaluating of state-of-the-art climate and Earth system models, facilitates model inter-comparison studies, encourages exchanges of software and model results, and fosters the use of high performance computing facilities dedicated to high-resolution multi-model experiments. ENES brings together public and private partners, integrates countries underrepresented in climate modelling studies, and reaches out to different user communities, thus enhancing European expertise and competitiveness. In this need of sophisticated models, world-class, high-performance computers, and state-of-the-art software solutions to make efficient use of models, data and hardware, a key role is played by the constitution and maintenance of a solid infrastructure, developing and providing services to the different user communities. ENES has investigated the infrastructural needs and has received funding from the EU FP7 program for the IS-ENES (InfraStructure for ENES) phase I and II

  15. Status and Prospects of the Global Automotive Fuel Cell Industry and Plans for Deployment of Fuel Cell Vehicles and Hydrogen Refueling Infrastructure

    SciTech Connect

    Greene, David L; Duleep, Gopal

    2013-06-01

    Automobile manufacturers leading the development of mass-market fuel cell vehicles (FCVs) were interviewed in Japan, Korea, Germany and the United States. There is general agreement that the performance of FCVs with respect to durability, cold start, packaging, acceleration, refueling time and range has progressed to the point where vehicles that could be brought to market in 2015 will satisfy customer expectations. However, cost and the lack of refueling infrastructure remain significant barriers. Costs have been dramatically reduced over the past decade, yet are still about twice what appears to be needed for sustainable market success. While all four countries have plans for the early deployment of hydrogen refueling infrastructure, the roles of government, industry and the public in creating a viable hydrogen refueling infrastructure remain unresolved. The existence of an adequate refueling infrastructure and supporting government policies are likely to be the critical factors that determine when and where hydrogen FCVs are brought to market.

  16. Infrastructure sensing.

    PubMed

    Soga, Kenichi; Schooling, Jennifer

    2016-08-01

    Design, construction, maintenance and upgrading of civil engineering infrastructure requires fresh thinking to minimize use of materials, energy and labour. This can only be achieved by understanding the performance of the infrastructure, both during its construction and throughout its design life, through innovative monitoring. Advances in sensor systems offer intriguing possibilities to radically alter methods of condition assessment and monitoring of infrastructure. In this paper, it is hypothesized that the future of infrastructure relies on smarter information; the rich information obtained from embedded sensors within infrastructure will act as a catalyst for new design, construction, operation and maintenance processes for integrated infrastructure systems linked directly with user behaviour patterns. Some examples of emerging sensor technologies for infrastructure sensing are given. They include distributed fibre-optics sensors, computer vision, wireless sensor networks, low-power micro-electromechanical systems, energy harvesting and citizens as sensors. PMID:27499845

  17. Infrastructure sensing.

    PubMed

    Soga, Kenichi; Schooling, Jennifer

    2016-08-01

    Design, construction, maintenance and upgrading of civil engineering infrastructure requires fresh thinking to minimize use of materials, energy and labour. This can only be achieved by understanding the performance of the infrastructure, both during its construction and throughout its design life, through innovative monitoring. Advances in sensor systems offer intriguing possibilities to radically alter methods of condition assessment and monitoring of infrastructure. In this paper, it is hypothesized that the future of infrastructure relies on smarter information; the rich information obtained from embedded sensors within infrastructure will act as a catalyst for new design, construction, operation and maintenance processes for integrated infrastructure systems linked directly with user behaviour patterns. Some examples of emerging sensor technologies for infrastructure sensing are given. They include distributed fibre-optics sensors, computer vision, wireless sensor networks, low-power micro-electromechanical systems, energy harvesting and citizens as sensors.

  18. Equipment Management for Sensor Networks: Linking Physical Infrastructure and Actions to Observational Data

    NASA Astrophysics Data System (ADS)

    Jones, A. S.; Horsburgh, J. S.; Matos, M.; Caraballo, J.

    2015-12-01

    Networks conducting long term monitoring using in situ sensors need the functionality to track physical equipment as well as deployments, calibrations, and other actions related to site and equipment maintenance. The observational data being generated by sensors are enhanced if direct linkages to equipment details and actions can be made. This type of information is typically recorded in field notebooks or in static files, which are rarely linked to observations in a way that could be used to interpret results. However, the record of field activities is often relevant to analysis or post-processing of the observational data. We have developed an underlying database schema and deployed a web interface for recording and retrieving information on physical infrastructure and related actions for observational networks. The database schema for equipment was designed as an extension to the Observations Data Model 2 (ODM2), a community-developed information model for spatially discrete, feature based earth observations. The core entities of ODM2 describe location, observed variable, and timing of observations, and the equipment extension contains entities to provide additional metadata specific to the inventory of physical infrastructure and associated actions. The schema is implemented in a relational database system for storage and management with an associated web interface. We designed the web-based tools for technicians to enter and query information on the physical equipment and actions such as site visits, equipment deployments, maintenance, and calibrations. These tools were implemented for the iUTAH (innovative Urban Transitions and Aridregion Hydrosustainability) ecohydrologic observatory, and we anticipate that they will be useful for similar large-scale monitoring networks desiring to link observing infrastructure to observational data to increase the quality of sensor-based data products.

  19. Slow poisoning and destruction of networks: Edge proximity and its implications for biological and infrastructure networks

    NASA Astrophysics Data System (ADS)

    Banerjee, Soumya Jyoti; Sinha, Saptarshi; Roy, Soumen

    2015-02-01

    We propose a network metric, edge proximity, Pe, which demonstrates the importance of specific edges in a network, hitherto not captured by existing network metrics. The effects of removing edges with high Pe might initially seem inconspicuous but are eventually shown to be very harmful for networks. Compared to existing strategies, the removal of edges by Pe leads to a remarkable increase in the diameter and average shortest path length in undirected real and random networks till the first disconnection and well beyond. Pe can be consistently used to rupture the network into two nearly equal parts, thus presenting a very potent strategy to greatly harm a network. Targeting by Pe causes notable efficiency loss in U.S. and European power grid networks. Pe identifies proteins with essential cellular functions in protein-protein interaction networks. It pinpoints regulatory neural connections and important portions of the neural and brain networks, respectively. Energy flow interactions identified by Pe form the backbone of long food web chains. Finally, we scrutinize the potential of Pe in edge controllability dynamics of directed networks.

  20. Opportunities for Condensed Matter Research at the National Nanotechnology Infrastructure Network (http://www.nnin.org)

    NASA Astrophysics Data System (ADS)

    Tiwari, Sandip

    2004-03-01

    A major challenge in science and engineering research at the nano-scale, and particularly for condensed matter, is the availability of infrastructure that can allow easy and quick implementation of structures, devices, or more complex systems necessary for making rigorous measurements or for other exploratory directions of interest. The experiments connect across length scales - nanometer and up, employ a variety of materials and techniques of assembly and patterning, and require a complex knowledge-mix derived from other research areas and tools that require skill and are hard to access. The National Nanotechnology Infrastructure Network (NNIN; www.nnin.org) is an NSF-funded infrastructure of open shared facilities across the country that enables the national community to pursue research and technology development that can benefit from nanotechnology. The NNIN provides easy hands-on access to external users, remote usage, staff support, low cost usage, knowledge infrastructure, and brings together an extensive coordinated array of instruments for fabrication, synthesis, and characterization together with other infrastructure. Particularly relevant to condensed matter physics (e.g., in experiments involving single-electron transistor or its use in ultra-sensitive measurements, or measurements across a single nano-scale structure such as a molecule or a nanocrystal, development of new apparatus that allows X-ray measurements of soft materials, etc.) is the ability to integrate the small length scale through synthesis and electron-beam lithography, growth and deposition of a variety materials with controlled properties, patterning of complex shapes in the three-dimensions, connecting such structures, characterization, and the ability to achieve this quickly and at low cost. NNIN tool resources that span focused-ion beam, electron microscopy, spectroscopic techniques, etc. for characterization; synthesis, growth, deposition, etc. for assembling; lithography, etching

  1. Assessing needs and assets for building a regional network infrastructure to reduce cancer related health disparities.

    PubMed

    Wells, Kristen J; Lima, Diana S; Meade, Cathy D; Muñoz-Antonia, Teresita; Scarinci, Isabel; McGuire, Allison; Gwede, Clement K; Pledger, W Jack; Partridge, Edward; Lipscomb, Joseph; Matthews, Roland; Matta, Jaime; Flores, Idhaliz; Weiner, Roy; Turner, Timothy; Miele, Lucio; Wiese, Thomas E; Fouad, Mona; Moreno, Carlos S; Lacey, Michelle; Christie, Debra W; Price-Haywood, Eboni G; Quinn, Gwendolyn P; Coppola, Domenico; Sodeke, Stephen O; Green, B Lee; Lichtveld, Maureen Y

    2014-06-01

    Significant cancer health disparities exist in the United States and Puerto Rico. While numerous initiatives have been implemented to reduce cancer disparities, regional coordination of these efforts between institutions is often limited. To address cancer health disparities nation-wide, a series of regional transdisciplinary networks through the Geographic Management Program (GMaP) and the Minority Biospecimen/Biobanking Geographic Management Program (BMaP) were established in six regions across the country. This paper describes the development of the Region 3 GMaP/BMaP network composed of over 100 investigators from nine institutions in five Southeastern states and Puerto Rico to develop a state-of-the-art network for cancer health disparities research and training. We describe a series of partnership activities that led to the formation of the infrastructure for this network, recount the participatory processes utilized to develop and implement a needs and assets assessment and implementation plan, and describe our approach to data collection. Completion, by all nine institutions, of the needs and assets assessment resulted in several beneficial outcomes for Region 3 GMaP/BMaP. This network entails ongoing commitment from the institutions and institutional leaders, continuous participatory and engagement activities, and effective coordination and communication centered on team science goals.

  2. Interactions among human behavior, social networks, and societal infrastructures: A Case Study in Computational Epidemiology

    NASA Astrophysics Data System (ADS)

    Barrett, Christopher L.; Bisset, Keith; Chen, Jiangzhuo; Eubank, Stephen; Lewis, Bryan; Kumar, V. S. Anil; Marathe, Madhav V.; Mortveit, Henning S.

    Human behavior, social networks, and the civil infrastructures are closely intertwined. Understanding their co-evolution is critical for designing public policies and decision support for disaster planning. For example, human behaviors and day to day activities of individuals create dense social interactions that are characteristic of modern urban societies. These dense social networks provide a perfect fabric for fast, uncontrolled disease propagation. Conversely, people’s behavior in response to public policies and their perception of how the crisis is unfolding as a result of disease outbreak can dramatically alter the normally stable social interactions. Effective planning and response strategies must take these complicated interactions into account. In this chapter, we describe a computer simulation based approach to study these issues using public health and computational epidemiology as an illustrative example. We also formulate game-theoretic and stochastic optimization problems that capture many of the problems that we study empirically.

  3. HyPro: A Financial Tool for Simulating Hydrogen Infrastructure Development, Final Report

    SciTech Connect

    Brian D. James, Peter O. Schmidt, Julie Perez

    2008-12-01

    This report summarizes a multi-year Directed Technologies Inc. (DTI) project to study the build-out of hydrogen production facilities during the transition from gasoline internal combustion engine vehicle to hydrogen fuel cell vehicles. The primary objectives of the project are to develop an enhanced understanding of hydrogen production issues during the transition period (out to 2050) and to develop recommendations for the DOE on areas of further study. These objectives are achieved by conducting economic and scenario analysis to predict how industry would provide the hydrogen production, delivery and dispensing capabilities necessary to satisfy increased hydrogen demand. The primary tool used for the analysis is a custom created MatLab simulation tool entitled HyPro (short for Hydrogen Production). This report describes the calculation methodology used in HyPro, the baseline assumptions, the results of the baseline analysis and several corollary studies. The appendices of this report included a complete listing of model assumptions (capital costs, efficiencies, feedstock prices, delivery distances, etc.) and a step-by-step manual on the specific operation of the HyPro program. This study was made possible with funding from the U.S. Department of Energy (DOE).

  4. A European Network for Atmospheric Hydrogen observations and studies: EUROHYDROS

    NASA Astrophysics Data System (ADS)

    Werner, A.; Engel, A.

    2008-12-01

    and the EuroHydros team In a future energy supply chain, molecular hydrogen is expected to play an increasingly important role as a carrier of energy for mobile applications, in particular in the automotive sector. Such an increased use of molecular hydrogen is prone to lead to additional emissions into the atmosphere, due to leakages in the supply chain. While molecular hydrogen does not influence the radiation budget of the atmosphere directly, it affects its oxidation capacity, through reaction with the OH radical. This in turn leads to an increased atmospheric lifetime of many atmospheric constituents (e.g. Methane), making H2 an indirect greenhouse gas. An increase of molecular hydrogen in the atmosphere also leads to increasing H2O in the stratosphere, influencing the radiation budget of the atmosphere and ozone chemistry. In the light of these uncertainties, a thorough understanding of hydrogen in the atmosphere is necessary, and, most notably, a good understanding of the present day global distribution and budget of atmospheric hydrogen. The EU funded project Eurohydros aims at improving the understanding of the budget of molecular hydrogen in the atmosphere through a combination of atmospheric monitoring, source-sink studies and modelling work. In this presentation we focus on the observational network, showing first results from different European and Global sites, from the calibration of the data sets and a first intercomparison experiment.

  5. Blending Hydrogen into Natural Gas Pipeline Networks. A Review of Key Issues

    SciTech Connect

    Melaina, M. W.; Antonia, O.; Penev, M.

    2013-03-01

    This study assesses the potential to deliver hydrogen through the existing natural gas pipeline network as a hydrogen and natural gas mixture to defray the cost of building dedicated hydrogen pipelines. Blending hydrogen into the existing natural gas pipeline network has also been proposed as a means of increasing the output of renewable energy systems such as large wind farms.

  6. The U.S. national nanotechnology infrastructure network and support of photonics research and development

    NASA Astrophysics Data System (ADS)

    Tiwari, Sandip

    2006-04-01

    A major challenge in science and engineering research and development at the nano-scale, and particularly for photonics, is the availability of infrastructure that allows easy and quick implementation of structures, devices, or more complex systems necessary for making rigorous measurements, other exploratory directions of interest, and building of assemblies that utilize techniques from multiple disciplines. The experiments connect across length scales - nanometers and up, employ a variety of materials and techniques of assembly and patterning, and require a complex mix of knowledge that are derived from other research areas and tools that are demanding in skills and are hard to access. The National Nanotechnology Infrastructure Network (NNIN; www.nnin.org) is funded by the National Science Foundation and is a partnership of open shared facilities across the country that enables the national community to pursue research and technology development that can benefit from nanotechnology. The NNIN provides easy hands-on access to external users, remote usage, staff support, low cost usage, knowledge infrastructure, and brings together an extensive coordinated array of instruments for fabrication, synthesis, and characterization together with other infrastructure resources. Particularly relevant to photonics is the ability to combine optical quality materials and fabrication techniques with ultra-sensitive characterization and application to biology, fluidics, and problems of interest in optical and electronic communication. Integration to the smallest length scales through synthesis and electron-beam lithography, growth and deposition of a variety materials with controlled properties, patterning of complex shapes in the three-dimensions, connecting such structures, characterization, and the ability to achieve this quickly and at low cost is essential to successful university research and industrial innovation. NNIN tool resources that span focused-ion beam, electron

  7. Noise-tolerant inverse analysis models for nondestructive evaluation of transportation infrastructure systems using neural networks

    NASA Astrophysics Data System (ADS)

    Ceylan, Halil; Gopalakrishnan, Kasthurirangan; Birkan Bayrak, Mustafa; Guclu, Alper

    2013-09-01

    The need to rapidly and cost-effectively evaluate the present condition of pavement infrastructure is a critical issue concerning the deterioration of ageing transportation infrastructure all around the world. Nondestructive testing (NDT) and evaluation methods are well-suited for characterising materials and determining structural integrity of pavement systems. The falling weight deflectometer (FWD) is a NDT equipment used to assess the structural condition of highway and airfield pavement systems and to determine the moduli of pavement layers. This involves static or dynamic inverse analysis (referred to as backcalculation) of FWD deflection profiles in the pavement surface under a simulated truck load. The main objective of this study was to employ biologically inspired computational systems to develop robust pavement layer moduli backcalculation algorithms that can tolerate noise or inaccuracies in the FWD deflection data collected in the field. Artificial neural systems, also known as artificial neural networks (ANNs), are valuable computational intelligence tools that are increasingly being used to solve resource-intensive complex engineering problems. Unlike the linear elastic layered theory commonly used in pavement layer backcalculation, non-linear unbound aggregate base and subgrade soil response models were used in an axisymmetric finite element structural analysis programme to generate synthetic database for training and testing the ANN models. In order to develop more robust networks that can tolerate the noisy or inaccurate pavement deflection patterns in the NDT data, several network architectures were trained with varying levels of noise in them. The trained ANN models were capable of rapidly predicting the pavement layer moduli and critical pavement responses (tensile strains at the bottom of the asphalt concrete layer, compressive strains on top of the subgrade layer and the deviator stresses on top of the subgrade layer), and also pavement

  8. Quantifying the Digital Divide: A Scientific Overview of Network Connectivity and Grid Infrastructure in South Asian Countries

    SciTech Connect

    Khan, Shahryar Muhammad; Cottrell, R.Les; Kalim, Umar; Ali, Arshad; /NUST, Rawalpindi

    2007-10-30

    The future of Computing in High Energy Physics (HEP) applications depends on both the Network and Grid infrastructure. South Asian countries such as India and Pakistan are making significant progress by building clusters as well as improving their network infrastructure However to facilitate the use of these resources, they need to manage the issues of network connectivity to be among the leading participants in Computing for HEP experiments. In this paper we classify the connectivity for academic and research institutions of South Asia. The quantitative measurements are carried out using the PingER methodology; an approach that induces minimal ICMP traffic to gather active end-to-end network statistics. The PingER project has been measuring the Internet performance for the last decade. Currently the measurement infrastructure comprises of over 700 hosts in more than 130 countries which collectively represents approximately 99% of the world's Internet-connected population. Thus, we are well positioned to characterize the world's connectivity. Here we present the current state of the National Research and Educational Networks (NRENs) and Grid Infrastructure in the South Asian countries and identify the areas of concern. We also present comparisons between South Asia and other developing as well as developed regions. We show that there is a strong correlation between the Network performance and several Human Development indices.

  9. Quantifying the digital divide: a scientific overview of network connectivity and grid infrastructure in South Asian countries

    NASA Astrophysics Data System (ADS)

    Khan, S. M.; Cottrell, R. L.; Kalim, U.; Ali, A.

    2008-07-01

    The future of Computing in High Energy Physics (HEP) applications depends on both the Network and Grid infrastructure. South Asian countries such as India and Pakistan are making significant progress by building clusters as well as improving their network infrastructure However to facilitate the use of these resources, they need to manage the issues of network connectivity to be among the leading participants in Computing for HEP experiments. In this paper we classify the connectivity for academic and research institutions of South Asia. The quantitative measurements are carried out using the PingER methodology; an approach that induces minimal ICMP traffic to gather active end-to-end network statistics. The PingER project has been measuring the Internet performance for the last decade. Currently the measurement infrastructure comprises of over 700 hosts in more than 130 countries which collectively represents approximately 99% of the world's Internet-connected population. Thus, we are well positioned to characterize the world's connectivity. Here we present the current state of the National Research and Educational Networks (NRENs) and Grid Infrastructure in the South Asian countries and identify the areas of concern. We also present comparisons between South Asia and other developing as well as developed regions. We show that there is a strong correlation between the Network performance and several Human Development indices.

  10. Using Wireless Sensor Networks and Trains as Data Mules to Monitor Slab Track Infrastructures

    PubMed Central

    Cañete, Eduardo; Chen, Jaime; Díaz, Manuel; Llopis, Luis; Reyna, Ana; Rubio, Bartolomé

    2015-01-01

    Recently, slab track systems have arisen as a safer and more sustainable option for high speed railway infrastructures, compared to traditional ballasted tracks. Integrating Wireless Sensor Networks within these infrastructures can provide structural health related data that can be used to evaluate their degradation and to not only detect failures but also to predict them. The design of such systems has to deal with a scenario of large areas with inaccessible zones, where neither Internet coverage nor electricity supply is guaranteed. In this paper we propose a monitoring system for slab track systems that measures vibrations and displacements in the track. Collected data is transmitted to passing trains, which are used as data mules to upload the information to a remote control center. On arrival at the station, the data is stored in a database, which is queried by an application in order to detect and predict failures. In this paper, different communication architectures are designed and tested to select the most suitable system meeting such requirements as efficiency, low cost and data accuracy. In addition, to ensure communication between the sensing devices and the train, the communication system must take into account parameters such as train speed, antenna coverage, band and frequency. PMID:26131668

  11. Using Wireless Sensor Networks and Trains as Data Mules to Monitor Slab Track Infrastructures.

    PubMed

    Cañete, Eduardo; Chen, Jaime; Díaz, Manuel; Llopis, Luis; Reyna, Ana; Rubio, Bartolomé

    2015-06-26

    Recently, slab track systems have arisen as a safer and more sustainable option for high speed railway infrastructures, compared to traditional ballasted tracks. Integrating Wireless Sensor Networks within these infrastructures can provide structural health related data that can be used to evaluate their degradation and to not only detect failures but also to predict them. The design of such systems has to deal with a scenario of large areas with inaccessible zones, where neither Internet coverage nor electricity supply is guaranteed. In this paper we propose a monitoring system for slab track systems that measures vibrations and displacements in the track. Collected data is transmitted to passing trains, which are used as data mules to upload the information to a remote control center. On arrival at the station, the data is stored in a database, which is queried by an application in order to detect and predict failures. In this paper, different communication architectures are designed and tested to select the most suitable system meeting such requirements as efficiency, low cost and data accuracy. In addition, to ensure communication between the sensing devices and the train, the communication system must take into account parameters such as train speed, antenna coverage, band and frequency.

  12. Using Wireless Sensor Networks and Trains as Data Mules to Monitor Slab Track Infrastructures.

    PubMed

    Cañete, Eduardo; Chen, Jaime; Díaz, Manuel; Llopis, Luis; Reyna, Ana; Rubio, Bartolomé

    2015-01-01

    Recently, slab track systems have arisen as a safer and more sustainable option for high speed railway infrastructures, compared to traditional ballasted tracks. Integrating Wireless Sensor Networks within these infrastructures can provide structural health related data that can be used to evaluate their degradation and to not only detect failures but also to predict them. The design of such systems has to deal with a scenario of large areas with inaccessible zones, where neither Internet coverage nor electricity supply is guaranteed. In this paper we propose a monitoring system for slab track systems that measures vibrations and displacements in the track. Collected data is transmitted to passing trains, which are used as data mules to upload the information to a remote control center. On arrival at the station, the data is stored in a database, which is queried by an application in order to detect and predict failures. In this paper, different communication architectures are designed and tested to select the most suitable system meeting such requirements as efficiency, low cost and data accuracy. In addition, to ensure communication between the sensing devices and the train, the communication system must take into account parameters such as train speed, antenna coverage, band and frequency. PMID:26131668

  13. IT Infrastructure for Merging Data from Different Clinical Trials and Across Independent Research Networks.

    PubMed

    Hayn, Dieter; Falgenhauer, Markus; Kropf, Martin; Nitzlnader, Michael; Welte, Stefan; Ebner, Hubert; Ladenstein, Ruth; Schleiermacher, Gudrun; Hero, Barbara; Schreier, Günter

    2016-01-01

    Opsoclonus Myoclonus Syndrome (OMS) is a rare disease in children which is often associated with neuroblastoma and, therefore, requires treatment by pediatric neurologists and oncologists. The ongoing OMS trial investigates questions related to OMS and potentially underlying neuroblastomas. To support this trial with an adequate IT infrastructure, linkage of neuroblastoma research databases with the OMS electronic data capture (EDC) system was required. Therefore, an EDC system for the OMS trial was developed and integrated into the research infrastructure of the European Network for Cancer Research in Children and Adolescents (ENCCA) project. Application of ENNCA's pseudonymization concept enabled linkage of the OMS trial with neuroblastoma trials from two different scientific societies, while being compliant with current data protection regulations. Linkage of the neurological and the oncological domain could successfully be demonstrated and a promising concept for secondary use of the data of both domains has been developed, proofing the broad potential of the concepts for cross-domain research as promoted in the ENCCA project. PMID:27577389

  14. The construction of a public key infrastructure for healthcare information networks in Japan.

    PubMed

    Sakamoto, N

    2001-01-01

    The digital signature is a key technology in the forthcoming Internet society for electronic healthcare as well as for electronic commerce. Efficient exchanges of authorized information with a digital signature in healthcare information networks require a construction of a public key infrastructure (PKI). In order to introduce a PKI to healthcare information networks in Japan, we proposed a development of a user authentication system based on a PKI for user management, user authentication and privilege management of healthcare information systems. In this paper, we describe the design of the user authentication system and its implementation. The user authentication system provides a certification authority service and a privilege management service while it is comprised of a user authentication client and user authentication serves. It is designed on a basis of an X.509 PKI and is implemented with using OpenSSL and OpenLDAP. It was incorporated into the financial information management system for the national university hospitals and has been successfully working for about one year. The hospitals plan to use it as a user authentication method for their whole healthcare information systems. One implementation of the system is free to the national university hospitals with permission of the Japanese Ministry of Education, Culture, Sports, Science and Technology. Another implementation is open to the other healthcare institutes by support of the Medical Information System Development Center (MEDIS-DC). We are moving forward to a nation-wide construction of a PKI for healthcare information networks based on it. PMID:11604934

  15. The construction of a public key infrastructure for healthcare information networks in Japan.

    PubMed

    Sakamoto, N

    2001-01-01

    The digital signature is a key technology in the forthcoming Internet society for electronic healthcare as well as for electronic commerce. Efficient exchanges of authorized information with a digital signature in healthcare information networks require a construction of a public key infrastructure (PKI). In order to introduce a PKI to healthcare information networks in Japan, we proposed a development of a user authentication system based on a PKI for user management, user authentication and privilege management of healthcare information systems. In this paper, we describe the design of the user authentication system and its implementation. The user authentication system provides a certification authority service and a privilege management service while it is comprised of a user authentication client and user authentication serves. It is designed on a basis of an X.509 PKI and is implemented with using OpenSSL and OpenLDAP. It was incorporated into the financial information management system for the national university hospitals and has been successfully working for about one year. The hospitals plan to use it as a user authentication method for their whole healthcare information systems. One implementation of the system is free to the national university hospitals with permission of the Japanese Ministry of Education, Culture, Sports, Science and Technology. Another implementation is open to the other healthcare institutes by support of the Medical Information System Development Center (MEDIS-DC). We are moving forward to a nation-wide construction of a PKI for healthcare information networks based on it.

  16. Towards Resilient Critical Infrastructures: Application of Type-2 Fuzzy Logic in Embedded Network Security Cyber Sensor

    SciTech Connect

    Ondrej Linda; Todd Vollmer; Jim Alves-Foss; Milos Manic

    2011-08-01

    Resiliency and cyber security of modern critical infrastructures is becoming increasingly important with the growing number of threats in the cyber-environment. This paper proposes an extension to a previously developed fuzzy logic based anomaly detection network security cyber sensor via incorporating Type-2 Fuzzy Logic (T2 FL). In general, fuzzy logic provides a framework for system modeling in linguistic form capable of coping with imprecise and vague meanings of words. T2 FL is an extension of Type-1 FL which proved to be successful in modeling and minimizing the effects of various kinds of dynamic uncertainties. In this paper, T2 FL provides a basis for robust anomaly detection and cyber security state awareness. In addition, the proposed algorithm was specifically developed to comply with the constrained computational requirements of low-cost embedded network security cyber sensors. The performance of the system was evaluated on a set of network data recorded from an experimental cyber-security test-bed.

  17. The Navajo Learning Network and the NASA Life Sciences/AFOSR Infrastructure Development Project

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The NSF-funded Navajo Learning Network project, with help from NASA Life Sciences and AFOSR, enabled Dine College to take a giant leap forward technologically - in a way that could never had been possible had these projects been managed separately. The combination of these and other efforts created a network of over 500 computers located at ten sites across the Navajo reservation. Additionally, the college was able to install a modern telephone system which shares network data, and purchase a new higher education management system. The NASA Life Sciences funds further allowed the college library system to go online and become available to the entire campus community. NSF, NASA and AFOSR are committed to improving minority access to higher education opportunities and promoting faculty development and undergraduate research through infrastructure support and development. This project has begun to address critical inequalities in access to science, mathematics, engineering and technology for Navajo students and educators. As a result, Navajo K-12 education has been bolstered and Dine College will therefore better prepare students to transfer successfully to four-year institutions. Due to the integration of the NSF and NASA/AFOSR components of the project, a unified project report is appropriate.

  18. Hydrogen based global renewable energy network

    SciTech Connect

    Akai, Makoto

    1993-12-31

    In the last quarter of this century, global environmental problem has emerged as a major scientific, political and social issue. Specific Problems include: depletion of ozone layer by chlorofluorocarbons (CFCs), acid rain, destruction of tropical forests and desertification, pollution of the sea and global wanning due to the greenhouse effect by carbon dioxide and others. Among these problems, particular attention of the world has been focused on the global warming because it has direct linkage to energy consumption which our economic development depends on so far. On the other hand, the future program of The Sunshine Project for alternative energy technology R&D, The Moonlight Project for energy conservation technology R&D, and The Global Environmental Technology Program for environmental problem mitigating technology R&D which are Japan`s national projects being promoted by their Agency of Industrial Science and Technology (AIST) in the Ministry of International Trade and Industry have been reexamined in view of recent changes in the situations surrounding new energy technology. In this regard, The New Sunshine Program will be established by integrating these three activities to accelerate R&D in the field of energy and environmental technologies. In the reexamination, additional stress has been laid on the contribution to solving global environmental problem through development of clean renewable energies which constitute a major part of the {open_quotes}New Earth 21{close_quotes}, a comprehensive, long-term and international cooperative program proposed by MITI. The present paper discusses the results of feasibility study on hydrogen energy system leading to the concept of WE-NET following a brief summary on R&D status on solar and wind energy in Japan.

  19. IS-ENES: The Infrastructure for the European Network for Earth System modelling

    NASA Astrophysics Data System (ADS)

    Joussaume, Sylvie

    2013-04-01

    IS-ENES is the distributed e-infrastructure of models, model data and metadata of the European Network for Earth System Modelling (ENES). This network gathers together the European climate modelling community working on understanding and predicting climate variability and change. It organizes and supports European contributions to international experiments used in assessments of the Intergovernmental Panel on Climate Change, such as the Fifth Coupled Model Intercomparison Project (CMIP5) and the Coordinated regional Climate Downscaling Experiments (CORDEX). IS-ENES is supported by FP7 and is entering its second 4-year phase (http://is.enes.org). IS-ENES integrates the European climate modelling community, stimulates common developments of software for models and their environments, fosters the execution and exploitation of high-end simulations, in particular using the European PRACE facilities, and supports the dissemination of model results to the climate research and climate impact communities. The central point of entry to IS-ENES services, the ENES Portal (http://enes.org), integrates information on the European climate models and provides access to models and software environments needed to run and exploit model simulations, such as the climate data operators, as well as to simulation data, metadata and processing utilities. IS-ENES supports the European contribution to the international Earth System Grid Federation data distribution for CMIP5 and CORDEX. In order to help the use of climate model results for impact studies, e.g. in water management, a prototype portal climate4impact (http://www.climate4impact.eu) has been developed providing access to guidance on how to use global climate model results through documentation of use cases, and will be further developed in IS-ENES2. Adaptation to climate change requires strengthening the integration between the climate and hydro-meteorological communities and the e-infrastructure IS-ENES2 might contribute to this

  20. Liquid state of hydrogen bond network in ice

    NASA Astrophysics Data System (ADS)

    Ryzhkin, M. I.; Klyuev, A. V.; Sinitsyn, V. V.; Ryzhkin, I. A.

    2016-08-01

    Here we theoretically show that the Coulomb interaction between violations of the Bernal-Fowler rules leads to a temperature induced step-wise increase in their concentration by 6-7 orders of magnitude. This first-order phase transition is accompanied by commensurable decrease in the relaxation time and can be interpreted as melting of the hydrogen bond network. The new phase with the melted hydrogen lattice and survived oxygen one is unstable in the bulk of ice, and further drastic increase in the concentrations of oxygen interstitials and vacancies accomplishes the ice melting. The fraction of broken hydrogen bonds immediately after the melting is about 0.07 of their total number that implies an essential conservation of oxygen lattice in water.

  1. Nano-scale hydrogen-bond network improves the durability of greener cements

    PubMed Central

    Jacobsen, Johan; Rodrigues, Michelle Santos; Telling, Mark T. F.; Beraldo, Antonio Ludovico; Santos, Sérgio Francisco; Aldridge, Laurence P.; Bordallo, Heloisa N.

    2013-01-01

    More than ever before, the world's increasing need for new infrastructure demands the construction of efficient, sustainable and durable buildings, requiring minimal climate-changing gas-generation in their production. Maintenance-free “greener” building materials made from blended cements have advantages over ordinary Portland cements, as they are cheaper, generate less carbon dioxide and are more durable. The key for the improved performance of blends (which substitute fine amorphous silicates for cement) is related to their resistance to water penetration. The mechanism of this water resistance is of great environmental and economical impact but is not yet understood due to the complexity of the cement's hydration reactions. Using neutron spectroscopy, we studied a blend where cement was replaced by ash from sugar cane residuals originating from agricultural waste. Our findings demonstrate that the development of a distinctive hydrogen bond network at the nano-scale is the key to the performance of these greener materials. PMID:24036676

  2. Nano-scale hydrogen-bond network improves the durability of greener cements.

    PubMed

    Jacobsen, Johan; Rodrigues, Michelle Santos; Telling, Mark T F; Beraldo, Antonio Ludovico; Santos, Sérgio Francisco; Aldridge, Laurence P; Bordallo, Heloisa N

    2013-01-01

    More than ever before, the world's increasing need for new infrastructure demands the construction of efficient, sustainable and durable buildings, requiring minimal climate-changing gas-generation in their production. Maintenance-free "greener" building materials made from blended cements have advantages over ordinary Portland cements, as they are cheaper, generate less carbon dioxide and are more durable. The key for the improved performance of blends (which substitute fine amorphous silicates for cement) is related to their resistance to water penetration. The mechanism of this water resistance is of great environmental and economical impact but is not yet understood due to the complexity of the cement's hydration reactions. Using neutron spectroscopy, we studied a blend where cement was replaced by ash from sugar cane residuals originating from agricultural waste. Our findings demonstrate that the development of a distinctive hydrogen bond network at the nano-scale is the key to the performance of these greener materials. PMID:24036676

  3. Cyber-Physical Systems for Critical Infrastructure Protection: A Wireless Sensor Network Application for Electric Grid Monitoring

    NASA Astrophysics Data System (ADS)

    Saint, Martin

    Critical infrastructure includes resources which are essential to the function of society. Despite an increased focus on protecting U.S. critical infrastructure, some sectors including the electric grid are more vulnerable than ever. Existing critical infrastructure protection (CIP) regulations and the monitoring and control systems used to achieve them have not met performance expectations. This indicates that the next generation of grid control should explore new architectures. This thesis explores the question of whether a cyber-physical system in the form of wireless sensor networks can be used to improve CIP. We examine efforts by others to design a wireless sensor module for monitoring transmission and distribution lines, and note that this work includes little information about the performance of the communications subsystem. Laboratory testing of throughput and reliability for one example communication network are undertaken here, along with consideration of the short message service as one alternative for backhauling sensor data.

  4. Low-Cost, Robust, Threat-Aware Wireless Sensor Network for Assuring the Nation's Energy Infrastructure

    SciTech Connect

    Carols H. Rentel

    2007-03-31

    Eaton, in partnership with Oak Ridge National Laboratory and the Electric Power Research Institute (EPRI) has completed a project that applies a combination of wireless sensor network (WSN) technology, anticipatory theory, and a near-term value proposition based on diagnostics and process uptime to ensure the security and reliability of critical electrical power infrastructure. Representatives of several Eaton business units have been engaged to ensure a viable commercialization plan. Tennessee Valley Authority (TVA), American Electric Power (AEP), PEPCO, and Commonwealth Edison were recruited as partners to confirm and refine the requirements definition from the perspective of the utilities that actually operate the facilities to be protected. Those utilities have cooperated with on-site field tests as the project proceeds. Accomplishments of this project included: (1) the design, modeling, and simulation of the anticipatory wireless sensor network (A-WSN) that will be used to gather field information for the anticipatory application, (2) the design and implementation of hardware and software prototypes for laboratory and field experimentation, (3) stack and application integration, (4) develop installation and test plan, and (5) refinement of the commercialization plan.

  5. Virtualization in network and servers infrastructure to support dynamic system reconfiguration in ALMA

    NASA Astrophysics Data System (ADS)

    Shen, Tzu-Chiang; Ovando, Nicolás.; Bartsch, Marcelo; Simmond, Max; Vélez, Gastón; Robles, Manuel; Soto, Rubén.; Ibsen, Jorge; Saldias, Christian

    2012-09-01

    ALMA is the first astronomical project being constructed and operated under industrial approach due to the huge amount of elements involved. In order to achieve the maximum through put during the engineering and scientific commissioning phase, several production lines have been established to work in parallel. This decision required modification in the original system architecture in which all the elements are controlled and operated within a unique Standard Test Environment (STE). The advance in the network industry and together with the maturity of virtualization paradigm allows us to provide a solution which can replicate the STE infrastructure without changing their network address definition. This is only possible with Virtual Routing and Forwarding (VRF) and Virtual LAN (VLAN) concepts. The solution allows dynamic reconfiguration of antennas and other hardware across the production lines with minimum time and zero human intervention in the cabling. We also push the virtualization even further, classical rack mount servers are being replaced and consolidated by blade servers. On top of them virtualized server are centrally administrated with VMWare ESX. Hardware costs and system administration effort will be reduced considerably. This mechanism has been established and operated successfully during the last two years. This experience gave us confident to propose a solution to divide the main operation array into subarrays using the same concept which will introduce huge flexibility and efficiency for ALMA operation and eventually may simplify the complexity of ALMA core observing software since there will be no need to deal with subarrays complexity at software level.

  6. Research Networking Systems: The State of Adoption at Institutions Aiming to Augment Translational Research Infrastructure

    PubMed Central

    Obeid, Jihad S; Johnson, Layne M; Stallings, Sarah; Eichmann, David

    2015-01-01

    Fostering collaborations across multiple disciplines within and across institutional boundaries is becoming increasingly important with the growing emphasis on translational research. As a result, Research Networking Systems that facilitate discovery of potential collaborators have received significant attention by institutions aiming to augment their research infrastructure. We have conducted a survey to assess the state of adoption of these new tools at the Clinical and Translational Science Award (CTSA) funded institutions. Survey results demonstrate that most CTSA funded institutions have either already adopted or were planning to adopt one of several available research networking systems. Moreover a good number of these institutions have exposed or plan to expose the data on research expertise using linked open data, an established approach to semantic web services. Preliminary exploration of these publically-available data shows promising utility in assessing cross-institutional collaborations. Further adoption of these technologies and analysis of the data are needed, however, before their impact on cross-institutional collaboration in research can be appreciated and measured. PMID:26491707

  7. The potential of cellular network infrastructures for sudden rainfall monitoring in dry climate regions

    NASA Astrophysics Data System (ADS)

    David, N.; Alpert, P.; Messer, H.

    2013-09-01

    Monitoring of precipitation and in particular sudden rain, in rural dry climate regions, is a subject of great significance in several weather related processes such as soil erosion, flash flooding, triggering epidemics and more. The rainfall monitoring facilities in these regions and as a result precipitation data are, however, commonly, severely lacking. As was recently shown, cellular networks infrastructures supply high resolution precipitation measurements at ground level while often being situated in dry areas, covering large parts of these climatic zones. The potential found in these systems to provide early monitoring and essential precipitation information, directly from arid regions, based on standard measurements of commercial microwave links, is exemplified here over the Negev and the Southern Judean desert, South Israel. We present the results of two different rainfall events occurred in these regions. It is shown that the microwave system measured precipitation between at least 50 min (in case 1) and at least 1 h and 40 min (in case 2) before each of the sparse rain gauges. During each case, the radar system, located relatively far from the arid sites, provided measurements from heights of at least 1500 m and 2000 m above surface, respectively. A third case study demonstrates a relative advantage of microwave links to measure precipitation intensity with respect to the radar system, over an area of complex topography located in northeastern Israel, which is relatively far (~ 150 km) from the radar.

  8. Case studies: Application of SEA in provincial level expressway infrastructure network planning in China - Current existing problems

    SciTech Connect

    Zhou Kaiyi; Sheate, William R.

    2011-11-15

    Since the Law of the People's Republic of China on Environmental Impact Assessment was enacted in 2003 and Huanfa 2004 No. 98 was released in 2004, Strategic Environmental Assessment (SEA) has been officially being implemented in the expressway infrastructure planning field in China. Through scrutinizing two SEA application cases of China's provincial level expressway infrastructure (PLEI) network plans, it is found that current SEA practice in expressway infrastructure planning field has a number of problems including: SEA practitioners do not fully understand the objective of SEA; its potential contributions to strategic planning and decision-making is extremely limited; the employed application procedure and prediction and assessment techniques are too simple to bring objective, unbiased and scientific results; and no alternative options are considered. All these problems directly lead to poor quality SEA and consequently weaken SEA's effectiveness.

  9. Stakeholder analysis combined with social network analysis provides fine-grained insights into water infrastructure planning processes.

    PubMed

    Lienert, Judit; Schnetzer, Florian; Ingold, Karin

    2013-08-15

    Environmental policy and decision-making are characterized by complex interactions between different actors and sectors. As a rule, a stakeholder analysis is performed to understand those involved, but it has been criticized for lacking quality and consistency. This lack is remedied here by a formal social network analysis that investigates collaborative and multi-level governance settings in a rigorous way. We examine the added value of combining both elements. Our case study examines infrastructure planning in the Swiss water sector. Water supply and wastewater infrastructures are planned far into the future, usually on the basis of projections of past boundary conditions. They affect many actors, including the population, and are expensive. In view of increasing future dynamics and climate change, a more participatory and long-term planning approach is required. Our specific aims are to investigate fragmentation in water infrastructure planning, to understand how actors from different decision levels and sectors are represented, and which interests they follow. We conducted 27 semi-structured interviews with local stakeholders, but also cantonal and national actors. The network analysis confirmed our hypothesis of strong fragmentation: we found little collaboration between the water supply and wastewater sector (confirming horizontal fragmentation), and few ties between local, cantonal, and national actors (confirming vertical fragmentation). Infrastructure planning is clearly dominated by engineers and local authorities. Little importance is placed on longer-term strategic objectives and integrated catchment planning, but this was perceived as more important in a second analysis going beyond typical questions of stakeholder analysis. We conclude that linking a stakeholder analysis, comprising rarely asked questions, with a rigorous social network analysis is very fruitful and generates complementary results. This combination gave us deeper insight into the

  10. 3D mapping of buried underworld infrastructure using dynamic Bayesian network based multi-sensory image data fusion

    NASA Astrophysics Data System (ADS)

    Dutta, Ritaban; Cohn, Anthony G.; Muggleton, Jen M.

    2013-05-01

    The successful operation of buried infrastructure within urban environments is fundamental to the conservation of modern living standards. In this paper a novel multi-sensor image fusion framework has been proposed and investigated using dynamic Bayesian network for automatic detection of buried underworld infrastructure. Experimental multi-sensors images were acquired for a known buried plastic water pipe using Vibro-acoustic sensor based location methods and Ground Penetrating Radar imaging system. Computationally intelligent conventional image processing techniques were used to process three types of sensory images. Independently extracted depth and location information from different images regarding the target pipe were fused together using dynamic Bayesian network to predict the maximum probable location and depth of the pipe. The outcome from this study was very encouraging as it was able to detect the target pipe with high accuracy compared with the currently existing pipe survey map. The approach was also applied successfully to produce a best probable 3D buried asset map.

  11. An open, component-based information infrastructure for integrated health information networks.

    PubMed

    Tsiknakis, Manolis; Katehakis, Dimitrios G; Orphanoudakis, Stelios C

    2002-12-18

    A fundamental requirement for achieving continuity of care is the seamless sharing of multimedia clinical information. Different technological approaches can be adopted for enabling the communication and sharing of health record segments. In the context of the emerging global information society, the creation of and access to the integrated electronic health record (I-EHR) of a citizen has been assigned high priority in many countries. This requirement is complementary to an overall requirement for the creation of a health information infrastructure (HII) to support the provision of a variety of health telematics and e-health services. In developing a regional or national HII, the components or building blocks that make up the overall information system ought to be defined and an appropriate component architecture specified. This paper discusses current international priorities and trends in developing the HII. It presents technological challenges and alternative approaches towards the creation of an I-EHR, being the aggregation of health data created during all interactions of an individual with the healthcare system. It also presents results from an ongoing Research and Development (R&D) effort towards the implementation of the HII in HYGEIAnet, the regional health information network of Crete, Greece, using a component-based software engineering approach. Critical design decisions and related trade-offs, involved in the process of component specification and development, are also discussed and the current state of development of an I-EHR service is presented. Finally, Human Computer Interaction (HCI) and security issues, which are important for the deployment and use of any I-EHR service, are considered. PMID:12467787

  12. A simple grid implementation with Berkeley Open Infrastructure for Network Computing using BLAST as a model

    PubMed Central

    Pinthong, Watthanai; Muangruen, Panya

    2016-01-01

    Development of high-throughput technologies, such as Next-generation sequencing, allows thousands of experiments to be performed simultaneously while reducing resource requirement. Consequently, a massive amount of experiment data is now rapidly generated. Nevertheless, the data are not readily usable or meaningful until they are further analysed and interpreted. Due to the size of the data, a high performance computer (HPC) is required for the analysis and interpretation. However, the HPC is expensive and difficult to access. Other means were developed to allow researchers to acquire the power of HPC without a need to purchase and maintain one such as cloud computing services and grid computing system. In this study, we implemented grid computing in a computer training center environment using Berkeley Open Infrastructure for Network Computing (BOINC) as a job distributor and data manager combining all desktop computers to virtualize the HPC. Fifty desktop computers were used for setting up a grid system during the off-hours. In order to test the performance of the grid system, we adapted the Basic Local Alignment Search Tools (BLAST) to the BOINC system. Sequencing results from Illumina platform were aligned to the human genome database by BLAST on the grid system. The result and processing time were compared to those from a single desktop computer and HPC. The estimated durations of BLAST analysis for 4 million sequence reads on a desktop PC, HPC and the grid system were 568, 24 and 5 days, respectively. Thus, the grid implementation of BLAST by BOINC is an efficient alternative to the HPC for sequence alignment. The grid implementation by BOINC also helped tap unused computing resources during the off-hours and could be easily modified for other available bioinformatics software. PMID:27547555

  13. A simple grid implementation with Berkeley Open Infrastructure for Network Computing using BLAST as a model.

    PubMed

    Pinthong, Watthanai; Muangruen, Panya; Suriyaphol, Prapat; Mairiang, Dumrong

    2016-01-01

    Development of high-throughput technologies, such as Next-generation sequencing, allows thousands of experiments to be performed simultaneously while reducing resource requirement. Consequently, a massive amount of experiment data is now rapidly generated. Nevertheless, the data are not readily usable or meaningful until they are further analysed and interpreted. Due to the size of the data, a high performance computer (HPC) is required for the analysis and interpretation. However, the HPC is expensive and difficult to access. Other means were developed to allow researchers to acquire the power of HPC without a need to purchase and maintain one such as cloud computing services and grid computing system. In this study, we implemented grid computing in a computer training center environment using Berkeley Open Infrastructure for Network Computing (BOINC) as a job distributor and data manager combining all desktop computers to virtualize the HPC. Fifty desktop computers were used for setting up a grid system during the off-hours. In order to test the performance of the grid system, we adapted the Basic Local Alignment Search Tools (BLAST) to the BOINC system. Sequencing results from Illumina platform were aligned to the human genome database by BLAST on the grid system. The result and processing time were compared to those from a single desktop computer and HPC. The estimated durations of BLAST analysis for 4 million sequence reads on a desktop PC, HPC and the grid system were 568, 24 and 5 days, respectively. Thus, the grid implementation of BLAST by BOINC is an efficient alternative to the HPC for sequence alignment. The grid implementation by BOINC also helped tap unused computing resources during the off-hours and could be easily modified for other available bioinformatics software.

  14. Feasibility of a Networked Air Traffic Infrastructure Validation Environment for Advanced NextGen Concepts

    NASA Technical Reports Server (NTRS)

    McCormack, Michael J.; Gibson, Alec K.; Dennis, Noah E.; Underwood, Matthew C.; Miller,Lana B.; Ballin, Mark G.

    2013-01-01

    Abstract-Next Generation Air Transportation System (NextGen) applications reliant upon aircraft data links such as Automatic Dependent Surveillance-Broadcast (ADS-B) offer a sweeping modernization of the National Airspace System (NAS), but the aviation stakeholder community has not yet established a positive business case for equipage and message content standards remain in flux. It is necessary to transition promising Air Traffic Management (ATM) Concepts of Operations (ConOps) from simulation environments to full-scale flight tests in order to validate user benefits and solidify message standards. However, flight tests are prohibitively expensive and message standards for Commercial-off-the-Shelf (COTS) systems cannot support many advanced ConOps. It is therefore proposed to simulate future aircraft surveillance and communications equipage and employ an existing commercial data link to exchange data during dedicated flight tests. This capability, referred to as the Networked Air Traffic Infrastructure Validation Environment (NATIVE), would emulate aircraft data links such as ADS-B using in-flight Internet and easily-installed test equipment. By utilizing low-cost equipment that is easy to install and certify for testing, advanced ATM ConOps can be validated, message content standards can be solidified, and new standards can be established through full-scale flight trials without necessary or expensive equipage or extensive flight test preparation. This paper presents results of a feasibility study of the NATIVE concept. To determine requirements, six NATIVE design configurations were developed for two NASA ConOps that rely on ADS-B. The performance characteristics of three existing in-flight Internet services were investigated to determine whether performance is adequate to support the concept. Next, a study of requisite hardware and software was conducted to examine whether and how the NATIVE concept might be realized. Finally, to determine a business case

  15. A simple grid implementation with Berkeley Open Infrastructure for Network Computing using BLAST as a model.

    PubMed

    Pinthong, Watthanai; Muangruen, Panya; Suriyaphol, Prapat; Mairiang, Dumrong

    2016-01-01

    Development of high-throughput technologies, such as Next-generation sequencing, allows thousands of experiments to be performed simultaneously while reducing resource requirement. Consequently, a massive amount of experiment data is now rapidly generated. Nevertheless, the data are not readily usable or meaningful until they are further analysed and interpreted. Due to the size of the data, a high performance computer (HPC) is required for the analysis and interpretation. However, the HPC is expensive and difficult to access. Other means were developed to allow researchers to acquire the power of HPC without a need to purchase and maintain one such as cloud computing services and grid computing system. In this study, we implemented grid computing in a computer training center environment using Berkeley Open Infrastructure for Network Computing (BOINC) as a job distributor and data manager combining all desktop computers to virtualize the HPC. Fifty desktop computers were used for setting up a grid system during the off-hours. In order to test the performance of the grid system, we adapted the Basic Local Alignment Search Tools (BLAST) to the BOINC system. Sequencing results from Illumina platform were aligned to the human genome database by BLAST on the grid system. The result and processing time were compared to those from a single desktop computer and HPC. The estimated durations of BLAST analysis for 4 million sequence reads on a desktop PC, HPC and the grid system were 568, 24 and 5 days, respectively. Thus, the grid implementation of BLAST by BOINC is an efficient alternative to the HPC for sequence alignment. The grid implementation by BOINC also helped tap unused computing resources during the off-hours and could be easily modified for other available bioinformatics software. PMID:27547555

  16. TRANSVAC research infrastructure - Results and lessons learned from the European network of vaccine research and development.

    PubMed

    Geels, Mark J; Thøgersen, Regitze L; Guzman, Carlos A; Ho, Mei Mei; Verreck, Frank; Collin, Nicolas; Robertson, James S; McConkey, Samuel J; Kaufmann, Stefan H E; Leroy, Odile

    2015-10-01

    TRANSVAC was a collaborative infrastructure project aimed at enhancing European translational vaccine research and training. The objective of this four year project (2009-2013), funded under the European Commission's (EC) seventh framework programme (FP7), was to support European collaboration in the vaccine field, principally through the provision of transnational access (TNA) to critical vaccine research and development (R&D) infrastructures, as well as by improving and harmonising the services provided by these infrastructures through joint research activities (JRA). The project successfully provided all available services to advance 29 projects and, through engaging all vaccine stakeholders, successfully laid down the blueprint for the implementation of a permanent research infrastructure for early vaccine R&D in Europe.

  17. Blending Hydrogen into Natural Gas Pipeline Networks: A Review of Key Issues

    SciTech Connect

    Melaina, M. W.; Antonia, O.; Penev, M.

    2013-03-01

    The United States has 11 distinct natural gas pipeline corridors: five originate in the Southwest, four deliver natural gas from Canada, and two extend from the Rocky Mountain region. This study assesses the potential to deliver hydrogen through the existing natural gas pipeline network as a hydrogen and natural gas mixture to defray the cost of building dedicated hydrogen pipelines.

  18. A network-based framework for assessing infrastructure resilience: a case study of the London metro system.

    PubMed

    Chopra, Shauhrat S; Dillon, Trent; Bilec, Melissa M; Khanna, Vikas

    2016-05-01

    Modern society is increasingly dependent on the stability of a complex system of interdependent infrastructure sectors. It is imperative to build resilience of large-scale infrastructures like metro systems for addressing the threat of natural disasters and man-made attacks in urban areas. Analysis is needed to ensure that these systems are capable of withstanding and containing unexpected perturbations, and develop heuristic strategies for guiding the design of more resilient networks in the future. We present a comprehensive, multi-pronged framework that analyses information on network topology, spatial organization and passenger flow to understand the resilience of the London metro system. Topology of the London metro system is not fault tolerant in terms of maintaining connectivity at the periphery of the network since it does not exhibit small-world properties. The passenger strength distribution follows a power law, suggesting that while the London metro system is robust to random failures, it is vulnerable to disruptions on a few critical stations. The analysis further identifies particular sources of structural and functional vulnerabilities that need to be mitigated for improving the resilience of the London metro network. The insights from our framework provide useful strategies to build resilience for both existing and upcoming metro systems. PMID:27146689

  19. A network-based framework for assessing infrastructure resilience: a case study of the London metro system.

    PubMed

    Chopra, Shauhrat S; Dillon, Trent; Bilec, Melissa M; Khanna, Vikas

    2016-05-01

    Modern society is increasingly dependent on the stability of a complex system of interdependent infrastructure sectors. It is imperative to build resilience of large-scale infrastructures like metro systems for addressing the threat of natural disasters and man-made attacks in urban areas. Analysis is needed to ensure that these systems are capable of withstanding and containing unexpected perturbations, and develop heuristic strategies for guiding the design of more resilient networks in the future. We present a comprehensive, multi-pronged framework that analyses information on network topology, spatial organization and passenger flow to understand the resilience of the London metro system. Topology of the London metro system is not fault tolerant in terms of maintaining connectivity at the periphery of the network since it does not exhibit small-world properties. The passenger strength distribution follows a power law, suggesting that while the London metro system is robust to random failures, it is vulnerable to disruptions on a few critical stations. The analysis further identifies particular sources of structural and functional vulnerabilities that need to be mitigated for improving the resilience of the London metro network. The insights from our framework provide useful strategies to build resilience for both existing and upcoming metro systems.

  20. Hydrogen adsorption and desorption with 3D silicon nanotube-network and film-network structures: Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Li, Ming; Huang, Xiaobo; Kang, Zhan

    2015-08-01

    Hydrogen is clean, sustainable, and renewable, thus is viewed as promising energy carrier. However, its industrial utilization is greatly hampered by the lack of effective hydrogen storage and release method. Carbon nanotubes (CNTs) were viewed as one of the potential hydrogen containers, but it has been proved that pure CNTs cannot attain the desired target capacity of hydrogen storage. In this paper, we present a numerical study on the material-driven and structure-driven hydrogen adsorption of 3D silicon networks and propose a deformation-driven hydrogen desorption approach based on molecular simulations. Two types of 3D nanostructures, silicon nanotube-network (Si-NN) and silicon film-network (Si-FN), are first investigated in terms of hydrogen adsorption and desorption capacity with grand canonical Monte Carlo simulations. It is revealed that the hydrogen storage capacity is determined by the lithium doping ratio and geometrical parameters, and the maximum hydrogen uptake can be achieved by a 3D nanostructure with optimal configuration and doping ratio obtained through design optimization technique. For hydrogen desorption, a mechanical-deformation-driven-hydrogen-release approach is proposed. Compared with temperature/pressure change-induced hydrogen desorption method, the proposed approach is so effective that nearly complete hydrogen desorption can be achieved by Si-FN nanostructures under sufficient compression but without structural failure observed. The approach is also reversible since the mechanical deformation in Si-FN nanostructures can be elastically recovered, which suggests a good reusability. This study may shed light on the mechanism of hydrogen adsorption and desorption and thus provide useful guidance toward engineering design of microstructural hydrogen (or other gas) adsorption materials.

  1. Hydrogen adsorption and desorption with 3D silicon nanotube-network and film-network structures: Monte Carlo simulations

    SciTech Connect

    Li, Ming; Kang, Zhan; Huang, Xiaobo

    2015-08-28

    Hydrogen is clean, sustainable, and renewable, thus is viewed as promising energy carrier. However, its industrial utilization is greatly hampered by the lack of effective hydrogen storage and release method. Carbon nanotubes (CNTs) were viewed as one of the potential hydrogen containers, but it has been proved that pure CNTs cannot attain the desired target capacity of hydrogen storage. In this paper, we present a numerical study on the material-driven and structure-driven hydrogen adsorption of 3D silicon networks and propose a deformation-driven hydrogen desorption approach based on molecular simulations. Two types of 3D nanostructures, silicon nanotube-network (Si-NN) and silicon film-network (Si-FN), are first investigated in terms of hydrogen adsorption and desorption capacity with grand canonical Monte Carlo simulations. It is revealed that the hydrogen storage capacity is determined by the lithium doping ratio and geometrical parameters, and the maximum hydrogen uptake can be achieved by a 3D nanostructure with optimal configuration and doping ratio obtained through design optimization technique. For hydrogen desorption, a mechanical-deformation-driven-hydrogen-release approach is proposed. Compared with temperature/pressure change-induced hydrogen desorption method, the proposed approach is so effective that nearly complete hydrogen desorption can be achieved by Si-FN nanostructures under sufficient compression but without structural failure observed. The approach is also reversible since the mechanical deformation in Si-FN nanostructures can be elastically recovered, which suggests a good reusability. This study may shed light on the mechanism of hydrogen adsorption and desorption and thus provide useful guidance toward engineering design of microstructural hydrogen (or other gas) adsorption materials.

  2. Systematic analysis of natural hazards along infrastructure networks using a GIS-tool for risk assessment

    NASA Astrophysics Data System (ADS)

    Baruffini, Mirko

    2010-05-01

    GIS-based system can be for effective and efficient disaster response management. In the coming years our GIS application will be a data base containing all information needed for the evaluation of risk sites along the Gotthard line. Our GIS application can help the technical management to decide about protection measures because of, in addition to the visualisation, tools for spatial data analysis will be available. REFERENCES Bründl M. (Ed.) 2009 : Risikokonzept für Naturgefahren - Leitfaden. Nationale Plattform für Naturgefahren PLANAT, Bern. 416 S. BUWAL 1999: Risikoanalyse bei gravitativen Naturgefahren - Methode, Fallbeispiele und Daten (Risk analyses for gravitational natural hazards). Bundesamt für Umwelt, Wald und Landschaft (BUWAL). Umwelt-Materialen Nr. 107, 1-244. Loat, R. & Zimmermann, M. 2004: La gestion des risques en Suisse (Risk Management in Switzerland). In: Veyret, Y., Garry, G., Meschinet de Richemont, N. & Armand Colin (eds) 2002: Colloque Arche de la Défense 22-24 octobre 2002, dans Risques naturels et aménagement en Europe, 108-120. Maggi R. et al, 2009: Evaluation of the optimal resilience for vulnerable infrastructure networks. An interdisciplinary pilot study on the transalpine transportation corridors, NRP 54 "Sustainable Development of the Built Environment", Projekt Nr. 405 440, Final Scientific Report, Lugano

  3. Quantum effects of hydrogen atoms on the dynamical rearrangement of hydrogen-bond networks in liquid water.

    PubMed

    Hyeon-Deuk, Kim; Ando, Koji

    2010-04-28

    Quantum effects such as zero-point energy and delocalization of wave packets (WPs) representing water hydrogen atoms are essential to understand anomalous energetics and dynamics in water. Since quantum calculations of many-body dynamics are highly complicated, no one has yet directly viewed the quantum WP dynamics of hydrogen atoms in liquid water. Our semiquantum molecular dynamics simulation made it possible to observe the hydrogen WP dynamics in liquid water. We demonstrate that the microscopic WP dynamics are closely correlated with and actually play key roles in the dynamical rearrangement in the hydrogen-bond network (HBN) of bulk water. We found the quantum effects of hydrogen atoms on liquid water dynamics such as the rearrangement of HBN and the concomitant fluctuation and relaxation. Our results provide new physical insights on HBN dynamics in water whose significance is not limited to pure liquid dynamics but also a greater understanding of chemical and biological reactions in liquid water.

  4. Towards Networked Knowledge: The Learning Registry, an Infrastructure for Sharing Online Learning Resources

    ERIC Educational Resources Information Center

    Lee, Ashley; Hobson, Joe; Bienkowski, Marie; Midgley, Steve; Currier, Sarah; Campbell, Lorna M.; Novoselova, Tatiana

    2012-01-01

    In this article, the authors describe an open-source, open-data digital infrastructure for sharing information about open educational resources (OERs) across disparate systems and platforms. The Learning Registry, which began as a project funded by the U.S. Departments of Education and Defense, currently has an active international community…

  5. IPHE Infrastructure Workshop Proceedings

    SciTech Connect

    2010-02-01

    This proceedings contains information from the IPHE Infrastructure Workshop, a two-day interactive workshop held on February 25-26, 2010, to explore the market implementation needs for hydrogen fueling station development.

  6. Smart Valley Infrastructure.

    ERIC Educational Resources Information Center

    Maule, R. William

    1994-01-01

    Discusses prototype information infrastructure projects in northern California's Silicon Valley. The strategies of the public and private telecommunications carriers vying for backbone services and industries developing end-user infrastructure technologies via office networks, set-top box networks, Internet multimedia, and "smart homes" are…

  7. The Patient-Centered Outcomes Research Network: a national infrastructure for comparative effectiveness research.

    PubMed

    Califf, Robert M

    2014-01-01

    The current clinical research system does not produce high-quality evidence quickly enough to support health care decision making. The Patient-Centered Outcomes Research Network (PCORnet) embodies a novel strategy for creating a national "network of networks" that is capable of significantly accelerating evidence generation to support a learning health system.

  8. Rotational Spectra of Hydrogen Bonded Networks of Amino Alcohols

    NASA Astrophysics Data System (ADS)

    Zhang, Di; Zwier, Timothy S.

    2014-06-01

    The rotational spectra of several different amino alcohols including D/L-allo-threoninol, 2-amino-1,3-propanediol and 1,3-diamino-2-propanol over the 6.5-18.5 GHz range have been investigated under jet-cooled conditions using chirped-pulsed Fourier transform microwave spectroscopy. Despite the small size of these molecules, a great variety of conformations have been observed in the molecular expansion. While the NH2 group is typically thought of as a H-bond acceptor, it often acts both as acceptor and donor in forming H-bonded networks. With three adjacent H-bonding substituents (a combination of OH and NH2 groups), many different hydrogen bonding patterns are possible, including H-bonded chains and H-bonded cycles. Since many of these structures differ primarily by the relative orientation of the H-atoms, the analysis of these rotational spectra are challenging. Only through an exhaustive conformational search and the comparison with the experimental rotational constants, nuclear quadrupolar splittings, and line strengths are we able to understand the complex nature of these interactions. The ways in which the presence and number of NH2 groups affects the relative energies, and distorts the structures will be explored.

  9. A network of field test sites as a platform for research on engineering and management of the highway transportation infrastructure

    NASA Astrophysics Data System (ADS)

    Aktan, A. Emin; Frangopol, Dan M.; Ghasemi, Hamid; Shenton, Harry W.; Shinozuka, Masanobu; Madanat, Samar

    2004-07-01

    An effort is currently underway to create an Engineering Research Consortium Initiative (ERCI) focused on engineering and management of the highway transportation infrastructure. The goal of the ERCI will be to provide administrative and logistical support for a coordinated, problem-focused research program on the highway transportation infrastructure system. The cornerstone of the initiative will be field test-sites. Example sites might include major long span bridges, sample populations of operating bridges, decommissioned bridges, a regional network of highways and bridges, various types of pavement and geotechnical structures, or a major transportation hub serving a metropolitan area. Sites would be instrumented to collect a broad range of engineering (structural, geotechnical, hydraulic), human (traffic) and natural (climatological, seismological) response data. The field sites would be networked to provide real-time access to test facilities across the country; a secure central repository would be established for collecting data from the sites. The data and information gathered from these sites would be used by engineers and scientists to study the complex interactions and cause-and-effect relations of the various engineered, human and natural components of the highway hyper-system. A major research thrust of the ERCI will be security of the highway infrastructure system, with particular emphasis on bridges. The National Science Foundation and the Federal Highway Administration are expected to provide funding for the program through a joint agency initiative. Two workshops were recently held with experts from around the world to discuss the plans for the ERCI. The paper provides more details on the ERCI and the status of the effort to date.

  10. Towards a Scalable and Reliable Real Time In-Network Data Analysis Infrastructure

    SciTech Connect

    Ciraci, Selim; Yin, Jian

    2011-12-01

    The smart grid applications requires real time analysis, response within the order of milliseconds and high-reliability because of the mission critical structure of the power grid system. The only way to satisfy these requirements is in network data analysis and build-in redundancy routing for failures. To achieve this, we propose a data dissemination system that builds routes using network flow algorithms, have in network processing of the data and utilize data encoding to cope with high latencies.

  11. Test Plan of the Anticipatory Wirelss Sensor Network for the Critical Energy Infrastructure

    SciTech Connect

    Carlos Rentel

    2006-09-01

    The test plan for the performance of the Anticipatory Wireless Sensor Network (A-WSN) is presented. The results of the test campaigns will be obtained after actual measurements are taken in the field with the Wireless Sensor Network developed by The Innovation Center-Eaton Corp., and the Anticipatory algorithms developed by ORNL.

  12. Boosting Bandwidth: Colleges Are Upgrading Their Network Infrastructure to Support Next-Generation Technologies

    ERIC Educational Resources Information Center

    Wong, Wylie

    2014-01-01

    In October 2013, nearly half of U.S. community colleges--46.2 percent-- said upgrading their campus networks is a "very important priority" within the next three years, according to The Campus Computing Project, a survey of 94 community colleges. More robust networks are needed to support a host of new wireless access points and the…

  13. Design and initial deployment of the wireless local area networking infrastructure at Sandia National Laboratories.

    SciTech Connect

    Long, John P.; Hamill, Michael J.; Mitchell, M. G.; Miller, Marc M.; Witzke, Edward L.; Wiener, Dallas J

    2006-11-01

    A major portion of the Wireless Networking Project at Sandia National Laboratories over the last few years has been to examine IEEE 802.11 wireless networking for possible use at Sandia and if practical, introduce this technology. This project team deployed 802.11a, b, and g Wireless Local Area Networking at Sandia. This report examines the basics of wireless networking and captures key results from project tests and experiments. It also records project members thoughts and designs on wireless LAN architecture and security issues. It documents some of the actions and milestones of this project, including pilot and production deployment of wireless networking equipment, and captures the team's rationale behind some of the decisions made. Finally, the report examines lessons learned, future directions, and conclusions.

  14. Critical Infrastructure Modeling: An Approach to Characterizing Interdependencies of Complex Networks & Control Systems

    SciTech Connect

    Stuart Walsh; Shane Cherry; Lyle Roybal

    2009-05-01

    Critical infrastructure control systems face many challenges entering the 21st century, including natural disasters, cyber attacks, and terrorist attacks. Revolutionary change is required to solve many existing issues, including gaining greater situational awareness and resiliency through embedding modeling and advanced control algorithms in smart sensors and control devices instead of in a central controller. To support design, testing, and component analysis, a flexible simulation and modeling capability is needed. Researchers at Idaho National Laboratory are developing and evaluating such a capability through their CIPRsim modeling and simulation framework.

  15. IAS telecommunication infrastructure and value added network services provided by IASNET

    NASA Astrophysics Data System (ADS)

    Smirnov, Oleg L.; Marchenko, Sergei

    The topology of a packet switching network for the Soviet National Centre for Automated Data Exchange with Foreign Computer Networks and Databanks (NCADE) based on a design by the Institute for Automated Systems (IAS) is discussed. NCADE has partners all over the world: it is linked to East European countries via telephone lines while satellites are used for communication with remote partners, such as Cuba, Mongolia, and Vietnam. Moreover, there is a connection to the Austrian, British, Canadian, Finnish, French, U.S. and other western networks through which users can have access to databases on each network. At the same time, NCADE provides western customers with access to more than 70 Soviet databases. Software and hardware of IASNET use data exchange recommendations agreed with the International Standard Organization (ISO) and International Telegraph and Telephone Consultative Committee (CCITT). Technical parameters of IASNET are compatible with the majority of foreign networks such as DATAPAK, TRANSPAC, TELENET, and others. By means of IASNET, the NCADE provides connection of Soviet and foreign users to information and computer centers around the world on the basis of the CCITT X.25 and X.75 recommendations. Any information resources of IASNET and value added network services, such as computer teleconferences, E-mail, information retrieval system, intelligent support of access to databanks and databases, and others are discussed. The topology of the ACADEMNET connected to IASNET over an X.25 gateway is also discussed.

  16. Bandwidth provisioning in infrastructure-based wireless networks employing directional antennas

    SciTech Connect

    Hasiviswanthan, Shiva; Zhao, Bo; Vasudevan, Sudarshan; Yrgaonkar, Bhuvan

    2009-01-01

    Motivated by the widespread proliferation of wireless networks employing directional antennas, we study the problem of provisioning bandwidth in such networks. Given a set of subscribers and one or more access points possessing directional antennas, we formalize the problem of orienting these antennas in two fundamental settings: (1) subscriber-centric, where the objective is to fairly allocate bandwidth among the subscribers and (2) provider-centric, where the objective is to maximize the revenue generated by satisfying the bandwidth requirements of subscribers. For both the problems, we first design algorithms for a network with only one access point working under the assumption that the number of antennas does not exceed the number of noninterfering channels. Using the well-regarded lexicographic max-min fair allocation as the objective for a subscriber-centric network, we present an optimum dynamic programming algorithm. For a provider-centric network, the allocation problem turns out to be NP-hard. We present a greedy heuristic based algorithm that guarantees almost half of the optimum revenue. We later enhance both these algorithms to operate in more general networks with multiple access points and no restrictions on the relative numbers of antennas and channels. A simulation-based evaluation using OPNET demonstrates the efficacy of our approaches and provides us further in insights into these problems.

  17. The Program for Climate Model Diagnosis and Intercomparison (PCMDI) Software Development: Applications, Infrastructure, and Middleware/Networks

    SciTech Connect

    Williams, Dean N.

    2011-06-30

    The status of and future plans for the Program for Climate Model Diagnosis and Intercomparison (PCMDI) hinge on software that PCMDI is either currently distributing or plans to distribute to the climate community in the near future. These software products include standard conventions, national and international federated infrastructures, and community analysis and visualization tools. This report also mentions other secondary software not necessarily led by or developed at PCMDI to provide a complete picture of the overarching applications, infrastructures, and middleware/networks. Much of the software described anticipates the use of future technologies envisioned over the span of next year to 10 years. These technologies, together with the software, will be the catalyst required to address extreme-scale data warehousing, scalability issues, and service-level requirements for a diverse set of well-known projects essential for predicting climate change. These tools, unlike the previous static analysis tools of the past, will support the co-existence of many users in a productive, shared virtual environment. This advanced technological world driven by extreme-scale computing and the data it generates will increase scientists’ productivity, exploit national and international relationships, and push research to new levels of understanding.

  18. Expanding the Usefulness of Existing Data-Collection Infrastructure with Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Kennedy, J.

    2009-12-01

    Throughout the world, considerable effort has been expended to construct data collection networks with real-time data collection. The U.S. Geological Survey’s streamflow-gaging stations compose one such network, with over 7,000 stations providing hourly data nationwide primarily via GOES satellite telemetry. Real-time telemetry is a critical component of a robust data collection protocol, allowing problems to be identified as they occur. These existing data collection networks offer a significant opportunity for expansion with wireless sensor networks. Common to nearly every USGS gaging station, and many other real-time networks, is a data logger with an SDI-12 interface for connecting sensors. SDI-12 is an ASCII text-based serial protocol that provides a standardized method for data loggers to communicate with sensors (www.sdi-12.org). A hardware/firmware module recently developed at USGS bridges this SDI-12 interface on data loggers with commercially available wireless sensor network hardware, such as Crossbow MICA2 motes or ZigBee mesh radios. The module appears as a single SDI-12 sensor to the data logger. With each measurement command from the data logger to the module, a request for data is sent out to each node in the wireless sensor network. These data are then formatted into the appropriate SDI-12 response from the module to the data logger, with tags identifying the measurement node. The combined data from all sensors is then transmitted by the data logger to the USGS National Water Information System database, where it is parsed and stored under the appropriate sensor location. The main advantages of bridging the SDI-12 interface with wireless sensor networks are (1) sensors can be deployed in the general vicinity of gaging stations or other platforms, to take advantage of existing real-time telemetry, without being constrained by physical cabling, (2) the wireless sensor network is seen as a single SDI-12 sensor at the data logger, with consequent

  19. The Blood and Marrow Transplant Clinical Trials Network: An Effective Infrastructure for Addressing Important Issues in Hematopoietic Cell Transplantation.

    PubMed

    2016-10-01

    Hematopoietic cell transplantation (HCT) is a rapidly evolving field with active preclinical and clinical development of new strategies for patient assessment, graft selection and manipulation, and pre- and post-transplantation drug and cell therapy. New strategies require evaluation in definitive clinical trials; however, HCT trials face unique challenges, including the relatively small number of transplantations performed at any single center, the diverse indications for HCT requiring dissimilar approaches, the complex nature of the intervention itself, the risk of multiple complications in the immediate post-transplantation period, and the risk of important, though infrequent, late effects. The Blood and Marrow Transplant Clinical Trials Network (BMT CTN) was established by the US National Heart Lung and Blood Institute and the National Cancer Institute to meet these challenges. In its 15 years as a network, the BMT CTN has proven to be a successful infrastructure for planning, implementing, and completing such trials and for providing definitive answers to questions leading to improvements in the understanding and practice of HCT. It has opened 37 trials, about one-half phase 2 and one-half phase 3, enrolled more than 8000 patients, and published 57 papers addressing important issues in the treatment of patients with life-threatening malignant and nonmalignant blood disorders. This review describes the network's accomplishments, key components of its success, lessons learned over the past 15 years, and challenges for the future.

  20. Collaborative-Hybrid Multi-Layer Network Control for Emerging Cyber-Infrastructures

    SciTech Connect

    Lehman, Tom; Ghani, Nasir; Boyd, Eric

    2010-08-31

    At a high level, there were four basic task areas identified for the Hybrid-MLN project. They are: o Multi-Layer, Multi-Domain, Control Plane Architecture and Implementation, including OSCARS layer2 and InterDomain Adaptation, Integration of LambdaStation and Terapaths with Layer2 dynamic provisioning, Control plane software release, Scheduling, AAA, security architecture, Network Virtualization architecture, Multi-Layer Network Architecture Framework Definition; o Heterogeneous DataPlane Testing; o Simulation; o Project Publications, Reports, and Presentations.

  1. Architectural and Mobility Management Designs in Internet-Based Infrastructure Wireless Mesh Networks

    ERIC Educational Resources Information Center

    Zhao, Weiyi

    2011-01-01

    Wireless mesh networks (WMNs) have recently emerged to be a cost-effective solution to support large-scale wireless Internet access. They have numerous applications, such as broadband Internet access, building automation, and intelligent transportation systems. One research challenge for Internet-based WMNs is to design efficient mobility…

  2. The RITMARE coastal radar network and applications to monitor marine transport infrastructures

    NASA Astrophysics Data System (ADS)

    Carrara, Paola; Corgnati, Lorenzo; Cosoli, Simone; Griffa, Annalisa; Kalampokis, Alkiviadis; Mantovani, Carlo; Oggioni, Alessandro; Pepe, Monica; Raffa, Francesco; Serafino, Francesco; Uttieri, Marco; Zambianchi, Enrico

    2014-05-01

    Coastal radars provide information on the environmental state of oceans, namely maps of surface currents at time intervals of the order of one hour with spatial coverage of the order of several km, depending on the transmission frequency. The observations are of crucial importance for monitoring ports and ship tracks close to the coast, providing support for safe navigation in densely operated areas and fast response in case of accidents at sea, such as oil spill or search and rescue. Besides these applications, coastal radar observations provide fundamental support in MPAs surveillance, connectivity and marine population circulation. In the framework of the Italian RITMARE flagship project coordinated by CNR (Consiglio Nazionale delle Ricerche), a coastal radar network has been designed and implemented with a number of innovative characteristics. The network includes both HF and X-band radars, allowing coverage of wide areas with different spatial and temporal resolutions. HF radars cover up to 80 km with a spatial resolution ranging between 1 and 5 km, while X-band radars provide 5 km coverage with a spatial resolution of 10 m. Joining these two capabilities, the RITMARE coastal radar network enables both a highly effective coverage of wide coastal areas and integrated monitoring of different phenomena, thus allowing the collection of current and wave parameters and detection of bathymetries of both open sea and coastal areas. A dedicated action to foster interoperability among data providers has been undertaken within RITMARE; an IT framework is under development to provide software tools for data collection and data sharing. It suggests standard, data format definitions, Quality Control strategies, data management and dissemination policies. In particular, the implementation of tools exploits both standards of OGC (Open Geospatial Consortium) and web services offered to manage, access and deliver geospatial data. Radar data produced in RITMARE by the coastal

  3. Towards a unified description of the hydrogen bond network of liquid water: A dynamics based approach

    SciTech Connect

    Ozkanlar, Abdullah Zhou, Tiecheng; Clark, Aurora E.

    2014-12-07

    The definition of a hydrogen bond (H-bond) is intimately related to the topological and dynamic properties of the hydrogen bond network within liquid water. The development of a universal H-bond definition for water is an active area of research as it would remove many ambiguities in the network properties that derive from the fixed definition employed to assign whether a water dimer is hydrogen bonded. This work investigates the impact that an electronic-structure based definition, an energetic, and a geometric definition of the H-bond has upon both topological and dynamic network behavior of simulated water. In each definition, the use of a cutoff (either geometric or energetic) to assign the presence of a H-bond leads to the formation of transiently bonded or broken dimers, which have been quantified within the simulation data. The relative concentration of transient species, and their duration, results in two of the three definitions sharing similarities in either topological or dynamic features (H-bond distribution, H-bond lifetime, etc.), however no two definitions exhibit similar behavior for both classes of network properties. In fact, two networks with similar local network topology (as indicated by similar average H-bonds) can have dramatically different global network topology (as indicated by the defect state distributions) and altered H-bond lifetimes. A dynamics based correction scheme is then used to remove artificially transient H-bonds and to repair artificially broken bonds within the network such that the corrected network exhibits the same structural and dynamic properties for two H-bond definitions (the properties of the third definition being significantly improved). The algorithm described represents a significant step forward in the development of a unified hydrogen bond network whose properties are independent of the original hydrogen bond definition that is employed.

  4. Towards a unified description of the hydrogen bond network of liquid water: a dynamics based approach.

    PubMed

    Ozkanlar, Abdullah; Zhou, Tiecheng; Clark, Aurora E

    2014-12-01

    The definition of a hydrogen bond (H-bond) is intimately related to the topological and dynamic properties of the hydrogen bond network within liquid water. The development of a universal H-bond definition for water is an active area of research as it would remove many ambiguities in the network properties that derive from the fixed definition employed to assign whether a water dimer is hydrogen bonded. This work investigates the impact that an electronic-structure based definition, an energetic, and a geometric definition of the H-bond has upon both topological and dynamic network behavior of simulated water. In each definition, the use of a cutoff (either geometric or energetic) to assign the presence of a H-bond leads to the formation of transiently bonded or broken dimers, which have been quantified within the simulation data. The relative concentration of transient species, and their duration, results in two of the three definitions sharing similarities in either topological or dynamic features (H-bond distribution, H-bond lifetime, etc.), however no two definitions exhibit similar behavior for both classes of network properties. In fact, two networks with similar local network topology (as indicated by similar average H-bonds) can have dramatically different global network topology (as indicated by the defect state distributions) and altered H-bond lifetimes. A dynamics based correction scheme is then used to remove artificially transient H-bonds and to repair artificially broken bonds within the network such that the corrected network exhibits the same structural and dynamic properties for two H-bond definitions (the properties of the third definition being significantly improved). The algorithm described represents a significant step forward in the development of a unified hydrogen bond network whose properties are independent of the original hydrogen bond definition that is employed.

  5. Hydrogen bond network topology in liquid water and methanol: a graph theory approach.

    PubMed

    Bakó, Imre; Bencsura, Akos; Hermannson, Kersti; Bálint, Szabolcs; Grósz, Tamás; Chihaia, Viorel; Oláh, Julianna

    2013-09-28

    Networks are increasingly recognized as important building blocks of various systems in nature and society. Water is known to possess an extended hydrogen bond network, in which the individual bonds are broken in the sub-picosecond range and still the network structure remains intact. We investigated and compared the topological properties of liquid water and methanol at various temperatures using concepts derived within the framework of graph and network theory (neighbour number and cycle size distribution, the distribution of local cyclic and local bonding coefficients, Laplacian spectra of the network, inverse participation ratio distribution of the eigenvalues and average localization distribution of a node) and compared them to small world and Erdős-Rényi random networks. Various characteristic properties (e.g. the local cyclic and bonding coefficients) of the network in liquid water could be reproduced by small world and/or Erdős-Rényi networks, but the ring size distribution of water is unique and none of the studied graph models could describe it. Using the inverse participation ratio of the Laplacian eigenvectors we characterized the network inhomogeneities found in water and showed that similar phenomena can be observed in Erdős-Rényi and small world graphs. We demonstrated that the topological properties of the hydrogen bond network found in liquid water systematically change with the temperature and that increasing temperature leads to a broader ring size distribution. We applied the studied topological indices to the network of water molecules with four hydrogen bonds, and showed that at low temperature (250 K) these molecules form a percolated or nearly-percolated network, while at ambient or high temperatures only small clusters of four-hydrogen bonded water molecules exist.

  6. Wiring the HIV/AIDS system: building interorganizational infrastructure to link people, sites, and networks.

    PubMed

    Indyk, Debbie; Rier, David A

    2006-01-01

    This paper presents a case example of the new "geometry of care" (Rier and Indyk, this volume), by examining selected examples from five facets of a program developed by the lead author and in operation since 1989. This program is designed to understand, build, revise, and maintain the organizational infrastructure with which to link diverse players and sites, and combine these into a web for producing, assessing, and exchanging the information needed to combat HIV/AIDS. Each example demonstrates how opportunities were exploited for developing and linking resources within and between systems of care and prevention. The program began as an iterative and systems approach to improve access of high-risk, hard-to-reach inner city New York populations to HIV/AIDS services, treatment, and research. The approach is also currently being further elaborated and applied in Argentina and India (see Boylan et al., this volume), and is adaptable to other local and global public health challenges (see Indyk & Rier, this volume).

  7. Cooperating Mobile GIS and Wireless Sensor Networks for Managing Transportation Infrastructures in Urban areas

    NASA Astrophysics Data System (ADS)

    Shad, R.; Abazari, N.; Alizadeh, A.; Choghooni, M.

    2013-10-01

    Time management is a major subject which, in order to optimize trip conditions, emphasizes on interpreting processes and classifying individual's information. In this paper, with the aim of providing an optimal system for urban commuting in proper time in Mashhad, each user using SMS and introducing some of his/her mental priorities to the system, will be able to select the best option depending on the timing of movement of the available public transport system. The present study adopts a newly developed method of time management which is evaluated for urban transportation considering dynamic conditions of a spatial database. For this purpose, regarding time management, processed data such as bus lines, taxi networks, and the subway system are combined in a spatial framework of a designed Mobile GIS based on a wireless network. So, multiple potential paths which end to a desirable destination.

  8. Systematic analysis of natural hazards along infrastructure networks using a GIS-tool for risk assessment

    NASA Astrophysics Data System (ADS)

    Baruffini, Mirko

    2010-05-01

    Due to the topographical conditions in Switzerland, the highways and the railway lines are frequently exposed to natural hazards as rockfalls, debris flows, landslides, avalanches and others. With the rising incidence of those natural hazards, protection measures become an important political issue. However, they are costly, and maximal protection is most probably not economically feasible. Furthermore risks are distributed in space and time. Consequently, important decision problems to the public sector decision makers are derived. This asks for a high level of surveillance and preservation along the transalpine lines. Efficient protection alternatives can be obtained consequently considering the concept of integral risk management. Risk analysis, as the central part of risk management, has become gradually a generally accepted approach for the assessment of current and future scenarios (Loat & Zimmermann 2004). The procedure aims at risk reduction which can be reached by conventional mitigation on one hand and the implementation of land-use planning on the other hand: a combination of active and passive mitigation measures is applied to prevent damage to buildings, people and infrastructures. With a Geographical Information System adapted to run with a tool developed to manage Risk analysis it is possible to survey the data in time and space, obtaining an important system for managing natural risks. As a framework, we adopt the Swiss system for risk analysis of gravitational natural hazards (BUWAL 1999). It offers a complete framework for the analysis and assessment of risks due to natural hazards, ranging from hazard assessment for gravitational natural hazards, such as landslides, collapses, rockfalls, floodings, debris flows and avalanches, to vulnerability assessment and risk analysis, and the integration into land use planning at the cantonal and municipality level. The scheme is limited to the direct consequences of natural hazards. Thus, we develop a

  9. A Preorganized Hydrogen Bond Network and Its Effect on Anion Stability

    SciTech Connect

    Samet, Masoud; Wang, Xue B.; Kass, Steven R.

    2014-08-07

    Rigid tricyclic locked in all axial 1,3,5-cyclohexanetriol derivatives with 0–3 trifluoromethyl groups were synthesized and photoelectron spectra of their conjugate bases and chloride anion clusters are reported along with density functional computations. The resulting vertical and adiabatic detachment energies provide measures of the anion stabilization due to the hydrogen bond network and inductive effects. The latter mechanism is found to be transmitted through space via hydrogen bonds

  10. Alignment of paired molecules of C60 within a hexagonal platform networked through hydrogen-bonds.

    PubMed

    Hisaki, Ichiro; Nakagawa, Shoichi; Sato, Hiroyasu; Tohnai, Norimitsu

    2016-07-28

    We demonstrate, for the first time, that a hydrogen-bonded low-density organic framework can be applied as a platform to achieve periodic alignment of paired molecules of C60, which is the smallest example of a finite-numbered cluster of C60. The framework is a layered assembly of a hydrogen-bonded 2D hexagonal network (LA-H-HexNet) composed of dodecadehydrotribenzo[18]annulene derivatives. PMID:27417325

  11. Virtual machine-based simulation platform for mobile ad-hoc network-based cyber infrastructure

    DOE PAGESBeta

    Yoginath, Srikanth B.; Perumalla, Kayla S.; Henz, Brian J.

    2015-09-29

    In modeling and simulating complex systems such as mobile ad-hoc networks (MANETs) in de-fense communications, it is a major challenge to reconcile multiple important considerations: the rapidity of unavoidable changes to the software (network layers and applications), the difficulty of modeling the critical, implementation-dependent behavioral effects, the need to sustain larger scale scenarios, and the desire for faster simulations. Here we present our approach in success-fully reconciling them using a virtual time-synchronized virtual machine(VM)-based parallel ex-ecution framework that accurately lifts both the devices as well as the network communications to a virtual time plane while retaining full fidelity. At themore » core of our framework is a scheduling engine that operates at the level of a hypervisor scheduler, offering a unique ability to execute multi-core guest nodes over multi-core host nodes in an accurate, virtual time-synchronized manner. In contrast to other related approaches that suffer from either speed or accuracy issues, our framework provides MANET node-wise scalability, high fidelity of software behaviors, and time-ordering accuracy. The design and development of this framework is presented, and an ac-tual implementation based on the widely used Xen hypervisor system is described. Benchmarks with synthetic and actual applications are used to identify the benefits of our approach. The time inaccuracy of traditional emulation methods is demonstrated, in comparison with the accurate execution of our framework verified by theoretically correct results expected from analytical models of the same scenarios. In the largest high fidelity tests, we are able to perform virtual time-synchronized simulation of 64-node VM-based full-stack, actual software behaviors of MANETs containing a mix of static and mobile (unmanned airborne vehicle) nodes, hosted on a 32-core host, with full fidelity of unmodified ad-hoc routing protocols, unmodified

  12. Virtual machine-based simulation platform for mobile ad-hoc network-based cyber infrastructure

    SciTech Connect

    Yoginath, Srikanth B.; Perumalla, Kayla S.; Henz, Brian J.

    2015-09-29

    In modeling and simulating complex systems such as mobile ad-hoc networks (MANETs) in de-fense communications, it is a major challenge to reconcile multiple important considerations: the rapidity of unavoidable changes to the software (network layers and applications), the difficulty of modeling the critical, implementation-dependent behavioral effects, the need to sustain larger scale scenarios, and the desire for faster simulations. Here we present our approach in success-fully reconciling them using a virtual time-synchronized virtual machine(VM)-based parallel ex-ecution framework that accurately lifts both the devices as well as the network communications to a virtual time plane while retaining full fidelity. At the core of our framework is a scheduling engine that operates at the level of a hypervisor scheduler, offering a unique ability to execute multi-core guest nodes over multi-core host nodes in an accurate, virtual time-synchronized manner. In contrast to other related approaches that suffer from either speed or accuracy issues, our framework provides MANET node-wise scalability, high fidelity of software behaviors, and time-ordering accuracy. The design and development of this framework is presented, and an ac-tual implementation based on the widely used Xen hypervisor system is described. Benchmarks with synthetic and actual applications are used to identify the benefits of our approach. The time inaccuracy of traditional emulation methods is demonstrated, in comparison with the accurate execution of our framework verified by theoretically correct results expected from analytical models of the same scenarios. In the largest high fidelity tests, we are able to perform virtual time-synchronized simulation of 64-node VM-based full-stack, actual software behaviors of MANETs containing a mix of static and mobile (unmanned airborne vehicle) nodes, hosted on a 32-core host, with full fidelity of unmodified ad-hoc routing protocols, unmodified application

  13. Teledesic Global Wireless Broadband Network: Space Infrastructure Architecture, Design Features and Technologies

    NASA Technical Reports Server (NTRS)

    Stuart, James R.

    1995-01-01

    The Teledesic satellites are a new class of small satellites which demonstrate the important commercial benefits of using technologies developed for other purposes by U.S. National Laboratories. The Teledesic satellite architecture, subsystem design features, and new technologies are described. The new Teledesic satellite manufacturing, integration, and test approaches which use modern high volume production techniques and result in surprisingly low space segment costs are discussed. The constellation control and management features and attendant software architecture features are addressed. After briefly discussing the economic and technological impact on the USA commercial space industries of the space communications revolution and such large constellation projects, the paper concludes with observations on the trend toward future system architectures using networked groups of much smaller satellites.

  14. Hydrogen-Bond Networks: Strengths of Different Types of Hydrogen Bonds and An Alternative to the Low Barrier Hydrogen-Bond Proposal

    SciTech Connect

    Shokri, Alireza; Wang, Yanping; O'Doherty, George A.; Wang, Xue B.; Kass, Steven R.

    2013-11-27

    We report quantifying the strengths of different types of hydrogen bonds in hydrogen bond networks (HBNs) via measurement of the adiabatic electron detachment energy of the conjugate base of a small covalent polyol model compound (i.e., (HOCH2CH2CH(OH)CH2)2CHOH) in the gas phase and the pKa of the corresponding acid in DMSO. The latter result reveals that the hydrogen bonds to the charged center and those that are one solvation shell further away (i.e., primary and secondary) provide 5.3 and 2.5 pKa units of stabilization per hydrogen bond in DMSO. Computations indicate that these energies increase to 8.4 and 3.9 pKa units in benzene and that the total stabilizations are 16 (DMSO) and 25 (benzene) pKa units. Calculations on a larger linear heptaol (i.e., (HOCH2CH2CH(OH)CH2CH(OH)CH2)2CHOH) reveal that the terminal hydroxyl groups each contribute 0.6 pKa units of stabilization in DMSO and 1.1 pKa units in benzene. All of these results taken together indicate that the presence of a charged center can provide a powerful energetic driving force for enzyme catalysis and conformational changes such as in protein folding due to multiple hydrogen bonds in a HBN.

  15. An infrastructure with a unified control plane to integrate IP into optical metro networks to provide flexible and intelligent bandwidth on demand for cloud computing

    NASA Astrophysics Data System (ADS)

    Yang, Wei; Hall, Trevor

    2012-12-01

    The Internet is entering an era of cloud computing to provide more cost effective, eco-friendly and reliable services to consumer and business users and the nature of the Internet traffic will undertake a fundamental transformation. Consequently, the current Internet will no longer suffice for serving cloud traffic in metro areas. This work proposes an infrastructure with a unified control plane that integrates simple packet aggregation technology with optical express through the interoperation between IP routers and electrical traffic controllers in optical metro networks. The proposed infrastructure provides flexible, intelligent, and eco-friendly bandwidth on demand for cloud computing in metro areas.

  16. Caltech/USGS Southern California Seismic Network (SCSN): Infrastructure upgrade to support Earthquake Early Warning (EEW)

    NASA Astrophysics Data System (ADS)

    Bhadha, R. J.; Hauksson, E.; Boese, M.; Felizardo, C.; Thomas, V. I.; Yu, E.; Given, D. D.; Heaton, T. H.; Hudnut, K. W.

    2013-12-01

    The SCSN is the modern digital ground motion seismic network in Southern California and performs the following tasks: 1) Operates remote seismic stations and the central data processing systems in Pasadena; 2) Generates and reports real-time products including location, magnitude, ShakeMap, aftershock probabilities and others; 3) Responds to FEMA, CalOES, media, and public inquiries about earthquakes; 4) Manages the production, archival, and distribution of waveforms, phase picks, and other data at the SCEDC; 5) Contributes to development and implementation of the demonstration EEW system called CISN ShakeAlert. Initially, the ShakeAlert project was funded through the US Geological Survey (USGS) and in early 2012, the Gordon and Betty Moore Foundation provided three years of new funding for EEW research and development for the US west coast. Recently, we have also received some Urban Areas Security Initiative (UASI) funding to enhance the EEW capabilities for the local UASI region by making our system overall faster, more reliable and redundant than the existing system. The additional and upgraded stations will be capable of decreasing latency and ensuring data delivery by using more reliable and redundant telemetry pathways. Overall, this will enhance the reliability of the earthquake early warnings by providing denser station coverage and more resilient data centers than before. * Seismic Datalogger upgrade: replaces existing dataloggers with modern equipment capable of sending one-second uncompressed packets and utilizing redundant Ethernet telemetry. * GPS upgrade: replaces the existing GPS receivers and antennas, especially at "zipper array" sites near the major faults, with receivers that perform on-board precise point positioning to calculate position and velocity in real time and stream continuous data for use in EEW calculations. * New co-located seismic/GPS stations: increases station density and reduces early warning delays that are incurred by travel

  17. Compassionate use of interventions: results of a European Clinical Research Infrastructures Network (ECRIN) survey of ten European countries

    PubMed Central

    2010-01-01

    Background 'Compassionate use' programmes allow medicinal products that are not authorised, but are in the development process, to be made available to patients with a severe disease who have no other satisfactory treatment available to them. We sought to understand how such programmes are regulated in ten European Union countries. Methods The European Clinical Research Infrastructures Network (ECRIN) conducted a comprehensive survey on clinical research regulatory requirements, including questions on regulations of 'compassionate use' programmes. Ten European countries, covering approximately 70% of the EU population, were included in the survey (Austria, Denmark, France, Germany, Hungary, Ireland, Italy, Spain, Sweden, and the UK). Results European Regulation 726/2004/EC is clear on the intentions of 'compassionate use' programmes and aimed to harmonise them in the European Union. The survey reveals that different countries have adopted different requirements and that 'compassionate use' is not interpreted in the same way across Europe. Four of the ten countries surveyed have no formal regulatory system for the programmes. We discuss the need for 'compassionate use' programmes and their regulation where protection of patients is paramount. Conclusions 'Compassionate use' is a misleading term and should be replaced with 'expanded access'. There is a need for expanded access programmes in order to serve the interests of seriously ill patients who have no other treatment options. To protect these patients, European legislation needs to be more explicit and informative with regard to the regulatory requirements, restrictions, and responsibilities in expanded access programmes. PMID:21073691

  18. The Irpinia Seismic Network (ISN): a new Monitoring Infrastructure for Seismic Alert Management in Campania Region, Southern Italy

    NASA Astrophysics Data System (ADS)

    Iannaccone, G.; Satriano, C.; Weber, E.; Cantore, L.; Corciulo, M.; Romano, L.; Martino, C.; Dicrosta, M.; Zollo, A.

    2005-12-01

    The Irpinia Seismic Network is an high dynamics, high density seismographic network under development in the Southern Apenninic chain. It is deployed in the area stroken by several destructive earthquakes during last centuries. In its final configuration the network will consist of more than fourty high dynamic seismic stations subdivided in physical subnetworks inter-connected by a robust data transmission system. The system is being designed with two primary targets: -Monitoring and analysis of background seismic activity produced by the active fault system which is the cause for large earthquakes in the past, included the 1980, Irpinia earthquake (Ms=6.9) - Development and experimentation of a prototype system for seismic early and post-event warning to be used for protecting public infrastructures and buildings of strategic relevance of the Regione Campania The seismic network will be completed in two stages: 1 - Deployment of 30 seismic stations along the Campania-Lucania Apenninic chain (to date almost completed) 2 - Setting up radio communication system for data transmission. Installation of 12 additional seismic stations (end of year 2006) To ensure an high dynamic recording range each site is equipped with two type of sensors: 30 force-balance accelerometer (model Guralp CMG5-T) and a velocimeter. In particular, 25 sites with short period three components instrument (model Geotech S13-J) and 5 with broad-band sensor (Nanometrics Trillium, with frequency response in the 0.033-50 Hz band). The used data logger is the Osiris-6 model produced by Agecodagis whose main features are: six channels, O/N 24 bit A/D converter, ARM processor with embedded Linux and open source software, two PCMCIA slots (used for two 5GB microdrive or one disk and wi-fi card), Ethernet, wi-fi and serial communication, low power cosumption (~1 W). Power is ensured by two 120 W solar panels and two 130 Ah gel batteries. Each recording site is equipped with a control/alarm system through

  19. Integration in primary community care networks (PCCNs): examination of governance, clinical, marketing, financial, and information infrastructures in a national demonstration project in Taiwan

    PubMed Central

    Lin, Blossom Yen-Ju

    2007-01-01

    Background Taiwan's primary community care network (PCCN) demonstration project, funded by the Bureau of National Health Insurance on March 2003, was established to discourage hospital shopping behavior of people and drive the traditional fragmented health care providers into cooperate care models. Between 2003 and 2005, 268 PCCNs were established. This study profiled the individual members in the PCCNs to study the nature and extent to which their network infrastructures have been integrated among the members (clinics and hospitals) within individual PCCNs. Methods The thorough questionnaire items, covering the network working infrastructures – governance, clinical, marketing, financial, and information integration in PCCNs, were developed with validity and reliability confirmed. One thousand five hundred and fifty-seven clinics that had belonged to PCCNs for more than one year, based on the 2003–2005 Taiwan Primary Community Care Network List, were surveyed by mail. Nine hundred and twenty-eight clinic members responded to the surveys giving a 59.6 % response rate. Results Overall, the PCCNs' members had higher involvement in the governance infrastructure, which was usually viewed as the most important for establishment of core values in PCCNs' organization design and management at the early integration stage. In addition, it found that there existed a higher extent of integration of clinical, marketing, and information infrastructures among the hospital-clinic member relationship than those among clinic members within individual PCCNs. The financial infrastructure was shown the least integrated relative to other functional infrastructures at the early stage of PCCN formation. Conclusion There was still room for better integrated partnerships, as evidenced by the great variety of relationships and differences in extent of integration in this study. In addition to provide how the network members have done for their initial work at the early stage of network

  20. The Seamount Catalog: Creating a Data Infrastructure for the Seamount Biogeoscience Network (SBN)

    NASA Astrophysics Data System (ADS)

    Staudigel, H.; Koppers, A. A.; Minett, R.; Staudigel, D.; Konter, J.; Martin, P.

    2006-12-01

    The Seamount Biogeoscience Network (SBN), an international and interdisciplinary association of seamount scientists, argues that seamount research can fundamentally benefit from promoting collaboration and improved data sharing between seamount science disciplines. Seamount scientists cover a wide range of biological sciences, geochemistry, geophysics, geology and physical oceanography. An effective SBN data resource has to be capable of helping access a wide range of disciplinary data relevant to all these fields, but the need for bathymetry data is common to all disciplines. The SBN has used the Seamount Catalog (SC) as its main data portal with a capability of carrying any data, but focusing on bathymetry. Recent SC developments aimed atfacilitating interoperability with other data bases, expanding its contents, and creating an interface that is easy to use on almost any expert level, similarly useful for specialists and interdisciplinary scientists, as well as educational users. Key to interoperability is our choice of giving each seamount an identifier that is made up by an alphanumeric combination of the latitude and longitude values (of the midpoint of the seamount). This identifier serves as a unique name, but it may also be parsed into its geospatial information. Data contents of the SC have now grown to more than 2,500 seamounts worldwide, with a cumulative data inventory of 800 Gb. A variety of search methods are offered by name or location, whereby the latter includes a recent application of "Google Maps" as a particularly promising method of visualizing available information in the user's browser. On the Seamount Catalog website seamounts can be compared or quickly identified through thumbnails and an "index card" with a tabulated description of its size and some vital statistics (size, volume, shape) and a listing of files that can be viewed and/or downloaded from the SC. These files may include any type of data, but the SC focus currently is on

  1. Correlation of structural order, anomalous density, and hydrogen bonding network of liquid water.

    PubMed

    Bandyopadhyay, Dibyendu; Mohan, S; Ghosh, S K; Choudhury, Niharendu

    2013-07-25

    We use extensive molecular dynamics simulations employing different state-of-the-art force fields to find a common framework for comparing structural orders and density anomalies as obtained from different water models. It is found that the average number of hydrogen bonds correlates well with various order parameters as well as the temperature of maximum densities across the different models, unifying apparently disparate results from different models and emphasizing the importance of hydrogen bonding in determining anomalous properties and the structure of water. A deeper insight into the hydrogen bond network of water reveals that the solvation shell of a water molecule can be defined by considering only those neighbors that are hydrogen-bonded to it. On the basis of this view, the origin of the appearance of a non-tetrahedral peak at a higher temperature in the distribution of tetrahedral order parameters has been explained. It is found that a neighbor that is hydrogen-bonded to the central molecule is tetrahedrally coordinated even at higher temperatures. The non-tetrahedral peak at a higher temperature arises due to the strained orientation of the neighbors that are non-hydrogen-bonded to the central molecule. With the new definition of the solvation shell, liquid water can be viewed as an instantaneously changing random hydrogen-bonded network consisting of differently coordinated hydrogen-bonded molecules with their distinct solvation shells. The variation of the composition of these hydrogen-bonded molecules against temperature accounts for the density anomaly without introducing the concept of large-scale structural polyamorphism in water.

  2. Pressure-induced localisation of the hydrogen-bond network in KOH-VI

    SciTech Connect

    Hermann, Andreas Nelmes, Richard J.; Loveday, John S.; Guthrie, Malcolm

    2015-12-28

    Using a combination of ab initio crystal structure prediction and neutron diffraction techniques, we have solved the full structure of KOH-VI at 7 GPa. Rather than being orthorhombic and proton-ordered as had previously be proposed, we find that this high-pressure phase of potassium hydroxide is tetragonal (space group I4/mmm) and proton disordered. It has an unusual hydrogen bond topology, where the hydroxyl groups form isolated hydrogen-bonded square planar (OH){sub 4} units. This structure is stable above 6.5 GPa and, despite being macroscopically proton-disordered, local ice rules enforce microscopic order of the hydrogen bonds. We suggest the use of this novel type of structure to study concerted proton tunneling in the solid state, while the topology of the hydrogen bond network could conceivably be exploited in data storage applications based solely on the manipulations of hydrogen bonds. The unusual localisation of the hydrogen bond network under applied pressure is found to be favored by a more compact packing of the constituents in a distorted cesium chloride structure.

  3. Hydrogen gas sensing with networks of ultra-small palladium nanowires formed on filtration membranes.

    SciTech Connect

    Zeng, X. Q.; Latimer, M. L.; Xiao, Z. L.; Panuganti, S.; Welp, U.; Kwok, W. K.; Xu, T.

    2010-11-29

    Hydrogen sensors based on single Pd nanowires show promising results in speed, sensitivity, and ultralow power consumption. The utilization of single Pd nanowires, however, face challenges in nanofabrication, manipulation, and achieving ultrasmall transverse dimensions. We report on hydrogen sensors that take advantage of single palladium nanowires in high speed and sensitivity and that can be fabricated conveniently. The sensors are based on networks of ultrasmall (<10 nm) palladium nanowires deposited onto commercially available filtration membranes. We investigated the sensitivities and response times of these sensors as a function of the thickness of the nanowires and also compared them with a continuous reference film. The superior performance of the ultrasmall Pd nanowire network based sensors demonstrates the novelty of our fabrication approach, which can be directly applied to palladium alloy and other hydrogen sensing materials.

  4. Hydrogen gas sensing with networks of ultrasmall palladium nanowires formed on filtration membranes.

    PubMed

    Zeng, X Q; Latimer, M L; Xiao, Z L; Panuganti, S; Welp, U; Kwok, W K; Xu, T

    2011-01-12

    Hydrogen sensors based on single Pd nanowires show promising results in speed, sensitivity, and ultralow power consumption. The utilization of single Pd nanowires, however, face challenges in nanofabrication, manipulation, and achieving ultrasmall transverse dimensions. We report on hydrogen sensors that take advantage of single palladium nanowires in high speed and sensitivity and that can be fabricated conveniently. The sensors are based on networks of ultrasmall (<10 nm) palladium nanowires deposited onto commercially available filtration membranes. We investigated the sensitivities and response times of these sensors as a function of the thickness of the nanowires and also compared them with a continuous reference film. The superior performance of the ultrasmall Pd nanowire network based sensors demonstrates the novelty of our fabrication approach, which can be directly applied to palladium alloy and other hydrogen sensing materials.

  5. Community-Based Soil Quality Assessment As a Tool for Designing an Urban Green Infrastructure Network to Manage Runoff.

    NASA Astrophysics Data System (ADS)

    Klimas, C.; Montgomery, J.

    2014-12-01

    Green infrastructure (GI) may be the most practical approach for reducing contaminated runoff, providing ecosystem services, mitigating food deserts and creating community open spaces in urban areas. This project was funded by the USEPA's People-Prosperity-Planet (P3) program and was a partnership between a team of DePaul University undergraduates (the P3 team) and high school interns (Green Teens) and staff from the Gary Comer Youth Center (GCYC). GCYC is located in a low-income African-American community on Chicago's south side characterized by high crime, abandoned buildings, lack of green space and a food desert. The overaching project goal was to develop a network of Green Teens qualified to conduct soil quality assessment using USDA-NRCS protocols in order to let them develop GI plans to minimize storm water runoff and contaminant loadings, improve community and environmental health, and provide more equitable access to green space. Working with a USDA-ARS soil scientist from Washington State University, the P3 team conducted soil quality assessment on 116 soil samples collected among four abandoned residential lots owned by GCYC. Analytes included infiltration, bulk density, texture, pH, conductivity, aggregate stability, available nutrients, and total and bioavailable (PBET) lead. Soil pH on all lots is greater than 8.0, are low in organic matter, have little microbial respiration activity, are enriched in available phosphorus, and have average total lead values ranging from 24-2,700 mg/kg. PBET lead was less than 40% on most lots. Regardless, these soils will need to be remediated by adding carbon-rich materials such as biosolids prior to GI installation. Students enrolled in a landscape design course at DePaul developed 3-D models representing potential GI designs for one of the vacant lots that include strategies for immobilizing heavy metals, reducing runoff, and which are tied into an educational module for neighborhood school children.

  6. Bioengineering and Coordination of Regulatory Networks and Intracellular Complexes to Maximize Hydrogen Production by Phototrophic Microorganisms

    SciTech Connect

    Tabita, F. Robert

    2013-07-30

    In this study, the Principal Investigator, F.R. Tabita has teemed up with J. C. Liao from UCLA. This project's main goal is to manipulate regulatory networks in phototrophic bacteria to affect and maximize the production of large amounts of hydrogen gas under conditions where wild-type organisms are constrained by inherent regulatory mechanisms from allowing this to occur. Unrestrained production of hydrogen has been achieved and this will allow for the potential utilization of waste materials as a feed stock to support hydrogen production. By further understanding the means by which regulatory networks interact, this study will seek to maximize the ability of currently available “unrestrained” organisms to produce hydrogen. The organisms to be utilized in this study, phototrophic microorganisms, in particular nonsulfur purple (NSP) bacteria, catalyze many significant processes including the assimilation of carbon dioxide into organic carbon, nitrogen fixation, sulfur oxidation, aromatic acid degradation, and hydrogen oxidation/evolution. Moreover, due to their great metabolic versatility, such organisms highly regulate these processes in the cell and since virtually all such capabilities are dispensable, excellent experimental systems to study aspects of molecular control and biochemistry/physiology are available.

  7. [Biobanks European infrastructure].

    PubMed

    Kinkorová, Judita; Topolčan, Ondřej

    2016-01-01

    Biobanks are structured repositories of human tissue samples connected with specific information. They became an integral part of personalized medicine in the new millennium. At the European research area biobanks are isolated not well coordinated and connected to the network. European commission supports European infrastructure BBMRI-ERIC (Biobanks and Biomolecular Resources Research Infrastructure European Research Infrastructure Consortium), consortium of 54 members with more than 225 associated organizations, largely biobanks from over 30 countries. The aim is to support biomedical research using stored samples. Czech Republic is a member of the consortium as a national node BBMRI_CZ, consisting of five partners.

  8. Water formation at low temperatures by surface O2 hydrogenation II: The reaction network.

    PubMed

    Cuppen, H M; Ioppolo, S; Romanzin, C; Linnartz, H

    2010-10-14

    Water is abundantly present in the Universe. It is the main component of interstellar ice mantles and a key ingredient for life. Water in space is mainly formed through surface reactions. Three formation routes have been proposed in the past: hydrogenation of surface O, O(2), and O(3). In a previous paper [Ioppolo et al., Astrophys. J., 2008, 686, 1474] we discussed an unexpected non-standard zeroth-order H(2)O(2) production behaviour in O(2) hydrogenation experiments, which suggests that the proposed reaction network is not complete, and that the reaction channels are probably more interconnected than previously thought. In this paper we aim to derive the full reaction scheme for O(2) surface hydrogenation and to constrain the rates of the individual reactions. This is achieved through simultaneous H-atom and O(2) deposition under ultra-high vacuum conditions for astronomically relevant temperatures. Different H/O(2) ratios are used to trace different stages in the hydrogenation network. The chemical changes in the forming ice are followed by means of reflection absorption infrared spectroscopy (RAIRS). New reaction paths are revealed as compared to previous experiments. Several reaction steps prove to be much more efficient (H + O(2)) or less efficient (H + OH and H(2) + OH) than originally thought. These are the main conclusions of this work and the extended network concluded here will have profound implications for models that describe the formation of water in space.

  9. Tyrosine B10 triggers a heme propionate hydrogen bonding network loop with glutamine E7 moiety

    SciTech Connect

    Ramos-Santana, Brenda J.; Lopez-Garriga, Juan

    2012-08-10

    Highlights: Black-Right-Pointing-Pointer H-bonding network loop by PheB10Tyr mutation is proposed. Black-Right-Pointing-Pointer The propionate group H-bonding network restricted the flexibility of the heme. Black-Right-Pointing-Pointer The hydrogen bonding interaction modulates the electron density of the iron. Black-Right-Pointing-Pointer Propionate H-bonding network loop explains the heme-ligand stabilization. -- Abstract: Propionates, as peripheral groups of the heme active center in hemeproteins have been described to contribute in the modulation of heme reactivity and ligand selection. These electronic characteristics prompted the question of whether the presence of hydrogen bonding networks between propionates and distal amino acids present in the heme ligand moiety can modulate physiological relevant events, like ligand binding association and dissociation activities. Here, the role of these networks was evaluated by NMR spectroscopy using the hemoglobin I PheB10Tyr mutant from Lucina pectinata as model for TyrB10 and GlnE7 hemeproteins. {sup 1}H-NMR results for the rHbICN PheB10Tyr derivative showed chemical shifts of TyrB10 OH{eta} at 31.00 ppm, GlnE7 N{sub {epsilon}1}H/N{sub {epsilon}2}H at 10.66 ppm/-3.27 ppm, and PheE11 C{sub {delta}}H at 11.75 ppm, indicating the presence of a crowded, collapsed, and constrained distal pocket. Strong dipolar contacts and inter-residues crosspeaks between GlnE7/6-propionate group, GlnE7/TyrB10 and TyrB10/CN suggest that this hydrogen bonding network loop between GlnE7, TyrB10, 6-propionate group, and the heme ligand contribute significantly to the modulation of the heme iron electron density as well as the ligand stabilization mechanism. Therefore, the network loop presented here support the fact that the electron withdrawing character of the hydrogen bonding is controlled by the interaction of the propionates and the nearby electronic environments contributing to the modulation of the heme electron density state. Thus

  10. Metal complexes with varying intramolecular hydrogen bonding networks

    PubMed Central

    Lacy, David C.; Mukherjee, Jhumpa; Lucas, Robie L.; Day, Victor W.; Borovik, A.S.

    2013-01-01

    Alfred Werner described the attributes of the primary and secondary coordination spheres in his development of coordination chemistry. To examine the effects of the secondary coordination sphere on coordination chemistry, a series of tripodal ligands containing differing numbers of hydrogen bond (H-bond) donors were used to examine the effects of H-bonds on Fe(II), Mn(II)–acetato, and Mn(III)–OH complexes. The ligands containing varying numbers of urea and amidate donors allowed for systematic changes in the secondary coordination spheres of the complexes. Two of the Fe(II) complexes that were isolated as their Bu4N+ salts formed dimers in the solid-state as determined by X-ray diffraction methods, which correlates with the number of H-bonds present in the complexes (i.e., dimerization is favored as the number of H-bond donors increases). Electron paramagnetic resonance (EPR) studies suggested that the dimeric structures persist in acetonitrile. The Mn(II) complexes were all isolated as their acetato adducts. Furthermore, the synthesis of a rare Mn(III)–OH complex via dioxygen activation was achieved that contains a single intramolecular H-bond; its physical properties are discussed within the context of other Mn(III)–OH complexes. PMID:24904193

  11. Dissecting Proton Delocalization in an Enzyme's Hydrogen Bond Network with Unnatural Amino Acids.

    PubMed

    Wu, Yufan; Fried, Stephen D; Boxer, Steven G

    2015-12-01

    Extended hydrogen bond networks are a common structural motif of enzymes. A recent analysis proposed quantum delocalization of protons as a feature present in the hydrogen bond network spanning a triad of tyrosines (Y(16), Y(32), and Y(57)) in the active site of ketosteroid isomerase (KSI), contributing to its unusual acidity and large isotope shift. In this study, we utilized amber suppression to substitute each tyrosine residue with 3-chlorotyrosine to test the delocalization model and the proton affinity balance in the triad. X-ray crystal structures of each variant demonstrated that the structure, notably the O-O distances within the triad, was unaffected by 3-chlorotyrosine substitutions. The changes in the cluster's acidity and the acidity's isotope dependence in these variants were assessed via UV-vis spectroscopy and the proton sharing pattern among individual residues with (13)C nuclear magnetic resonance. Our data show pKa detuning at each triad residue alters the proton delocalization behavior in the H-bond network. The extra stabilization energy necessary for the unusual acidity mainly comes from the strong interactions between Y(57) and Y(16). This is further enabled by Y(32), which maintains the right geometry and matched proton affinity in the triad. This study provides a rich picture of the energetics of the hydrogen bond network in enzymes for further model refinement. PMID:26571340

  12. Dissecting Proton Delocalization in an Enzyme's Hydrogen Bond Network with Unnatural Amino Acids.

    PubMed

    Wu, Yufan; Fried, Stephen D; Boxer, Steven G

    2015-12-01

    Extended hydrogen bond networks are a common structural motif of enzymes. A recent analysis proposed quantum delocalization of protons as a feature present in the hydrogen bond network spanning a triad of tyrosines (Y(16), Y(32), and Y(57)) in the active site of ketosteroid isomerase (KSI), contributing to its unusual acidity and large isotope shift. In this study, we utilized amber suppression to substitute each tyrosine residue with 3-chlorotyrosine to test the delocalization model and the proton affinity balance in the triad. X-ray crystal structures of each variant demonstrated that the structure, notably the O-O distances within the triad, was unaffected by 3-chlorotyrosine substitutions. The changes in the cluster's acidity and the acidity's isotope dependence in these variants were assessed via UV-vis spectroscopy and the proton sharing pattern among individual residues with (13)C nuclear magnetic resonance. Our data show pKa detuning at each triad residue alters the proton delocalization behavior in the H-bond network. The extra stabilization energy necessary for the unusual acidity mainly comes from the strong interactions between Y(57) and Y(16). This is further enabled by Y(32), which maintains the right geometry and matched proton affinity in the triad. This study provides a rich picture of the energetics of the hydrogen bond network in enzymes for further model refinement.

  13. Large research infrastructure for Earth-Ocean Science: Challenges of multidisciplinary integration across hardware, software, and people networks

    NASA Astrophysics Data System (ADS)

    Best, M.; Barnes, C. R.; Johnson, F.; Pautet, L.; Pirenne, B.; Founding Scientists Of Neptune Canada

    2010-12-01

    nutrient and cross-shelf sediment transport around the shelf/slope break and through the canyon to the deep sea. There and north along the mid-continental slope, instruments on exposed and shallowly buried gas hydrates allow monitoring of changes in their distribution, structure, and venting, particularly related to earthquakes, slope failures and regional plate motions. Circulation obviation retrofit kits (CORKs) at mid-plate ODP 1026-7 monitor real-time changes in crustal temperature and pressure, particularly as they relate to events such as earthquakes, hydrothermal convection or regional plate strain. At Endeavour Ridge, complex interactions among volcanic, tectonic, hydrothermal and biological processes are quantified at the western edge of the Juan de Fuca plate. Across the network, high resolution seismic information elucidates tectonic processes such as earthquakes, and a tsunami system allows determination of open ocean tsunami amplitude, propagation direction, and speed. The infrastructure has further capacity for experiments to expand from this initial suite. Further information and opportunities can be found at http://www.neptunecanada.ca

  14. Nature of the asymmetry in the hydrogen-bond networks of hexagonal ice and liquid water.

    PubMed

    Kühne, Thomas D; Khaliullin, Rustam Z

    2014-03-01

    The interpretation of the X-ray spectra of water as evidence for its asymmetric structure has challenged the traditional nearly tetrahedral model and initiated an intense debate about the order and symmetry of the hydrogen-bond network in water. Here, we present new insights into the nature of local interactions in ice and liquid water obtained using a first-principle energy decomposition method. A comparative analysis shows that the majority of molecules in liquid water in our simulation exhibit hydrogen-bonding energy patterns similar to those in ice and retain the four-fold coordination with only moderately distorted tetrahedral configurations. Although this result indicates that the traditional description of liquid water is fundamentally correct, our study also demonstrates that for a significant fraction of molecules the hydrogen-bonding environments are highly asymmetric with extremely weak and distorted bonds.

  15. Plasticity of hydrogen bond networks regulates mechanochemistry of cell adhesion complexes

    PubMed Central

    Chakrabarti, Shaon; Hinczewski, Michael; Thirumalai, D.

    2014-01-01

    Mechanical forces acting on cell adhesion receptor proteins regulate a range of cellular functions by formation and rupture of noncovalent interactions with ligands. Typically, force decreases the lifetimes of intact complexes (“slip bonds”), making the discovery that these lifetimes can also be prolonged (“catch bonds”) a surprise. We created a microscopic analytic theory by incorporating the structures of selectin and integrin receptors into a conceptual framework based on the theory of stochastic equations, which quantitatively explains a wide range of experimental data (including catch bonds at low forces and slip bonds at high forces). Catch bonds arise due to force-induced remodeling of hydrogen bond networks, a finding that also accounts for unbinding in structurally unrelated integrin–fibronectin and actomyosin complexes. For the selectin family, remodeling of hydrogen bond networks drives an allosteric transition resulting in the formation of the maximum number of hydrogen bonds determined only by the structure of the receptor and independent of the ligand. A similar transition allows us to predict the increase in the number of hydrogen bonds in a particular allosteric state of α5β1 integrin–fibronectin complex, a conformation which is yet to be crystallized. We also make a testable prediction that a single point mutation (Tyr51Phe) in the ligand associated with selectin should dramatically alter the nature of the catch bond compared with the wild type. Our work suggests that nature uses a ductile network of hydrogen bonds to engineer function over a broad range of forces. PMID:24927549

  16. N-doped carbon networks: alternative materials tracing new routes for activating molecular hydrogen.

    PubMed

    Cortese, Remedios; Ferrante, Francesco; Roggan, Stefan; Duca, Dario

    2015-02-23

    The fragmentation of molecular hydrogen on N-doped carbon networks was investigated by using molecular (polyaromatic macrocycles) as well as truncated and periodic (carbon nanotubes) models. The computational study was focused on the ergonicity analysis of the reaction and on the properties of the transition states involved when constellations of three or four pyridinic nitrogen atom defects are present in the carbon network. Calculations show that whenever N-defects are embedded in species characterized by large conjugated π-systems, either in polyaromatic macrocycles or carbon nanotubes, the corresponding H2 bond cleavage is largely exergonic. The fragmentation Gibbs free energy is affected by the final arrangement of the hydrogen atoms on the defect and by the extension of the π-electron cloud, but it is not influenced by the curvature of the system.

  17. Hydrogen-bonded network in the salt 4-methyl-1H-imidazol-3-ium picrate

    PubMed Central

    Song, Xue-gang; Su, Ping; Xu, Xing-man

    2016-01-01

    In the title molecular salt, C4H7N2 +·C6H2N3O7 −, the phenolic proton of the starting picric acid has been transferred to the imidazole N atom. The nitro groups are twisted away from the benzene ring plane, making dihedral angles of 12.8 (2), 9.2 (4) and 29.3 (2)°. In the crystal, the component ions are linked into chains along [010] via N—H⋯O and bifurcated N—H⋯(O,O) hydrogen bonds. These chains are further linked by weak C—H⋯O hydrogen bonds into a three-dimensional network. The complex three-dimensional network can be topologically simplified into a 4-connected uninodal net with the point symbol {4.85}. PMID:27308039

  18. Structure and energetics of hydrogen-bonded networks of methanol on close packed transition metal surfaces

    NASA Astrophysics Data System (ADS)

    Murphy, Colin J.; Carrasco, Javier; Lawton, Timothy J.; Liriano, Melissa L.; Baber, Ashleigh E.; Lewis, Emily A.; Michaelides, Angelos; Sykes, E. Charles H.

    2014-07-01

    Methanol is a versatile chemical feedstock, fuel source, and energy storage material. Many reactions involving methanol are catalyzed by transition metal surfaces, on which hydrogen-bonded methanol overlayers form. As with water, the structure of these overlayers is expected to depend on a delicate balance of hydrogen bonding and adsorbate-substrate bonding. In contrast to water, however, relatively little is known about the structures methanol overlayers form and how these vary from one substrate to another. To address this issue, herein we analyze the hydrogen bonded networks that methanol forms as a function of coverage on three catalytically important surfaces, Au(111), Cu(111), and Pt(111), using a combination of scanning tunneling microscopy and density functional theory. We investigate the effect of intermolecular interactions, surface coverage, and adsorption energies on molecular assembly and compare the results to more widely studied water networks on the same surfaces. Two main factors are shown to direct the structure of methanol on the surfaces studied: the surface coverage and the competition between the methanol-methanol and methanol-surface interactions. Additionally, we report a new chiral form of buckled hexamer formed by surface bound methanol that maximizes the interactions between methanol monomers by sacrificing interactions with the surface. These results serve as a direct comparison of interaction strength, assembly, and chirality of methanol networks on Au(111), Cu(111), and Pt(111) which are catalytically relevant for methanol oxidation, steam reforming, and direct methanol fuel cells.

  19. Structure and energetics of hydrogen-bonded networks of methanol on close packed transition metal surfaces.

    PubMed

    Murphy, Colin J; Carrasco, Javier; Lawton, Timothy J; Liriano, Melissa L; Baber, Ashleigh E; Lewis, Emily A; Michaelides, Angelos; Sykes, E Charles H

    2014-07-01

    Methanol is a versatile chemical feedstock, fuel source, and energy storage material. Many reactions involving methanol are catalyzed by transition metal surfaces, on which hydrogen-bonded methanol overlayers form. As with water, the structure of these overlayers is expected to depend on a delicate balance of hydrogen bonding and adsorbate-substrate bonding. In contrast to water, however, relatively little is known about the structures methanol overlayers form and how these vary from one substrate to another. To address this issue, herein we analyze the hydrogen bonded networks that methanol forms as a function of coverage on three catalytically important surfaces, Au(111), Cu(111), and Pt(111), using a combination of scanning tunneling microscopy and density functional theory. We investigate the effect of intermolecular interactions, surface coverage, and adsorption energies on molecular assembly and compare the results to more widely studied water networks on the same surfaces. Two main factors are shown to direct the structure of methanol on the surfaces studied: the surface coverage and the competition between the methanol-methanol and methanol-surface interactions. Additionally, we report a new chiral form of buckled hexamer formed by surface bound methanol that maximizes the interactions between methanol monomers by sacrificing interactions with the surface. These results serve as a direct comparison of interaction strength, assembly, and chirality of methanol networks on Au(111), Cu(111), and Pt(111) which are catalytically relevant for methanol oxidation, steam reforming, and direct methanol fuel cells.

  20. Structure and energetics of hydrogen-bonded networks of methanol on close packed transition metal surfaces.

    PubMed

    Murphy, Colin J; Carrasco, Javier; Lawton, Timothy J; Liriano, Melissa L; Baber, Ashleigh E; Lewis, Emily A; Michaelides, Angelos; Sykes, E Charles H

    2014-07-01

    Methanol is a versatile chemical feedstock, fuel source, and energy storage material. Many reactions involving methanol are catalyzed by transition metal surfaces, on which hydrogen-bonded methanol overlayers form. As with water, the structure of these overlayers is expected to depend on a delicate balance of hydrogen bonding and adsorbate-substrate bonding. In contrast to water, however, relatively little is known about the structures methanol overlayers form and how these vary from one substrate to another. To address this issue, herein we analyze the hydrogen bonded networks that methanol forms as a function of coverage on three catalytically important surfaces, Au(111), Cu(111), and Pt(111), using a combination of scanning tunneling microscopy and density functional theory. We investigate the effect of intermolecular interactions, surface coverage, and adsorption energies on molecular assembly and compare the results to more widely studied water networks on the same surfaces. Two main factors are shown to direct the structure of methanol on the surfaces studied: the surface coverage and the competition between the methanol-methanol and methanol-surface interactions. Additionally, we report a new chiral form of buckled hexamer formed by surface bound methanol that maximizes the interactions between methanol monomers by sacrificing interactions with the surface. These results serve as a direct comparison of interaction strength, assembly, and chirality of methanol networks on Au(111), Cu(111), and Pt(111) which are catalytically relevant for methanol oxidation, steam reforming, and direct methanol fuel cells. PMID:25005297

  1. Quantitative Tools for Dissection of Hydrogen-Producing Metabolic Networks-Final Report

    SciTech Connect

    Rabinowitz, Joshua D.; Dismukes, G.Charles.; Rabitz, Herschel A.; Amador-Noguez, Daniel

    2012-10-19

    During this project we have pioneered the development of integrated experimental-computational technologies for the quantitative dissection of metabolism in hydrogen and biofuel producing microorganisms (i.e. C. acetobutylicum and various cyanobacteria species). The application of these new methodologies resulted in many significant advances in the understanding of the metabolic networks and metabolism of these organisms, and has provided new strategies to enhance their hydrogen or biofuel producing capabilities. As an example, using mass spectrometry, isotope tracers, and quantitative flux-modeling we mapped the metabolic network structure in C. acetobutylicum. This resulted in a comprehensive and quantitative understanding of central carbon metabolism that could not have been obtained using genomic data alone. We discovered that biofuel production in this bacterium, which only occurs during stationary phase, requires a global remodeling of central metabolism (involving large changes in metabolite concentrations and fluxes) that has the effect of redirecting resources (carbon and reducing power) from biomass production into solvent production. This new holistic, quantitative understanding of metabolism is now being used as the basis for metabolic engineering strategies to improve solvent production in this bacterium. In another example, making use of newly developed technologies for monitoring hydrogen and NAD(P)H levels in vivo, we dissected the metabolic pathways for photobiological hydrogen production by cyanobacteria Cyanothece sp. This investigation led to the identification of multiple targets for improving hydrogen production. Importantly, the quantitative tools and approaches that we have developed are broadly applicable and we are now using them to investigate other important biofuel producers, such as cellulolytic bacteria.

  2. Neural network retrieval of deuterium to hydrogen ratio in atmosphere from IMG/ADEOS spectra

    NASA Astrophysics Data System (ADS)

    Gribanov, Konstantin G.; Imasu, Ryoichi; Schmidt, Gavin A.; Toptygin, Alexander Y.; Zakharov, Vyacheslav I.

    2005-01-01

    A feedforward neural network has been developed for retrieval of the Deuterium to Hydrogen ratio (D/H) in atmospheric water vapour from high resolution atmospheric radiances observed from space. The learning and test sets for the neural network training were created by forward simulation of atmospheric emission spectra using FIRE - ARMS for a large set of given temperature, humidity and D/H vertical profiles. The D/H profiles were generated using output from an atmospheric GCM including isotope tracers. The developed neural network was applied for retrieval of total atmospheric column D/H from IMG/ADEOS data over the ocean. A latitudinal distribution of D/H was obtained. The results are in agreement with latitudinal distribution of D/H in the atmosphere obtained from the IMG/ADEOS data earlier by using conventional retrieval methodology. However, the neural network has better accuracy. The stability of the neural network retrieval scheme with di«erent noise levels of the sensor is investigated, and we discuss the possibility of applying the neural network technique to the retrieval of D/H vertical profiles from TES/AURA spectra.

  3. Layered vanadyl (IV) nitroprusside: Magnetic interaction through a network of hydrogen bonds

    NASA Astrophysics Data System (ADS)

    Gil, D. M.; Osiry, H.; Pomiro, F.; Varetti, E. L.; Carbonio, R. E.; Alejandro, R. R.; Ben Altabef, A.; Reguera, E.

    2016-07-01

    The hydrogen bond and π-π stacking are two non-covalent interactions able to support cooperative magnetic ordering between paramagnetic centers. This contribution reports the crystal structure and related magnetic properties for VO[Fe(CN)5NO]·2H2O, which has a layered structure. This solid crystallizes with an orthorhombic unit cell, in the Pna21 space group, with cell parameters a=14.1804(2), b=10.4935(1), c=7.1722(8) Å and four molecules per unit cell (Z=4). Its crystal structure was solved and refined from powder X-ray diffraction data. Neighboring layers remain linked through a network of hydrogen bonds involving a water molecule coordinated to the axial position for the V atom and the unbridged axial NO and CN ligands. An uncoordinated water molecule is found forming a triple bridge between these last two ligands and the coordinated water molecule. The magnetic measurements, recorded down to 2 K, shows a ferromagnetic interaction between V atoms located at neighboring layers, with a Curie-Weiss constant of 3.14 K. Such ferromagnetic behavior was interpreted as resulting from a superexchange interaction through the network of strong OH····OH2O, OH····NCN, and OH····ONO hydrogen bonds that connects neighboring layers. The interaction within the layer must be of antiferromagnetic nature and it was detected close to 2 K.

  4. Infrastructure Standardization.

    ERIC Educational Resources Information Center

    Yow, Donna

    2002-01-01

    Describes the development of technological design standards for a 35-school construction/renovation effort by Guilford County Schools in North Carolina. The standards encompassed the physical infrastructure, telephone systems, and paging systems. (EV)

  5. Green Infrastructure

    EPA Science Inventory

    Large paved surfaces keep rain from infiltrating the soil and recharging groundwater supplies. Alternatively, Green infrastructure uses natural processes to reduce and treat stormwater in place by soaking up and storing water. These systems provide many environmental, social, an...

  6. MFC Communications Infrastructure Study

    SciTech Connect

    Michael Cannon; Terry Barney; Gary Cook; George Danklefsen, Jr.; Paul Fairbourn; Susan Gihring; Lisa Stearns

    2012-01-01

    Unprecedented growth of required telecommunications services and telecommunications applications change the way the INL does business today. High speed connectivity compiled with a high demand for telephony and network services requires a robust communications infrastructure.   The current state of the MFC communication infrastructure limits growth opportunities of current and future communication infrastructure services. This limitation is largely due to equipment capacity issues, aging cabling infrastructure (external/internal fiber and copper cable) and inadequate space for telecommunication equipment. While some communication infrastructure improvements have been implemented over time projects, it has been completed without a clear overall plan and technology standard.   This document identifies critical deficiencies with the current state of the communication infrastructure in operation at the MFC facilities and provides an analysis to identify needs and deficiencies to be addressed in order to achieve target architectural standards as defined in STD-170. The intent of STD-170 is to provide a robust, flexible, long-term solution to make communications capabilities align with the INL mission and fit the various programmatic growth and expansion needs.

  7. Leaf water and plant wax hydrogen isotopes in a European sample network

    NASA Astrophysics Data System (ADS)

    Nelson, D. B.; Kahmen, A.

    2014-12-01

    The hydrogen isotopic composition of plant waxes in sediments is now routinely used as a hydroclimate proxy. This application is based largely on empirical calibrations that have demonstrated continental-scale correlations between source water and lipid hydrogen isotope values. But at smaller spatial scales and for individual locations it is increasingly recognized that factors that modify apparent fractionation between source water and leaf lipid hydrogen isotope values must also be considered. Isotopic enrichment of leaf water during transpiration is key among these secondary factors, and is itself sensitive to changes in hydroclimate. Leaf water enrichment also occurs prior to photosynthetic water uptake, and is therefore independent from cellular-level biomarker synthesis. Recent advances in theory have permitted mechanistic models to be developed that can be used to predict the mean leaf water hydrogen and oxygen isotope composition from readily available meteorological variables. This permits global-scale isoscape maps of leaf water isotopic composition and enrichment above source water to be generated, but these models have not been widely validated at continental spatial scales. We have established a network of twenty-one sites across Europe where we are sampling for leaf-, xylem-, and soil-water isotopes (H and O) at approximately 5-week intervals over the summer growing season. We augment the sample set with weekly to monthly precipitation samples and early- and late-season plant wax lipid samples. Collaborators at each site are conducting the sampling, and most sites are members of the FLUXNET tower network that also record high-resolution meteorological data. We present information on the implementation of the network and preliminary results from the 2014 summer season. The complete dataset will be used to track the evolution of water isotopes from source to leaf water and from leaf water to lipid hydrogen across diverse environments. This will provide

  8. Large scale silver nanowires network fabricated by MeV hydrogen (H+) ion beam irradiation

    NASA Astrophysics Data System (ADS)

    Honey, S.; Naseem, S.; Ishaq, A.; Maaza, M.; Bhatti, M. T.; Wan, D.

    2016-04-01

    A random two-dimensional large scale nano-network of silver nanowires (Ag-NWs) is fabricated by MeV hydrogen (H+) ion beam irradiation. Ag-NWs are irradiated under H+ ion beam at different ion fluences at room temperature. The Ag-NW network is fabricated by H+ ion beam-induced welding of Ag-NWs at intersecting positions. H+ ion beam induced welding is confirmed by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Moreover, the structure of Ag NWs remains stable under H+ ion beam, and networks are optically transparent. Morphology also remains stable under H+ ion beam irradiation. No slicings or cuttings of Ag-NWs are observed under MeV H+ ion beam irradiation. The results exhibit that the formation of Ag-NW network proceeds through three steps: ion beam induced thermal spikes lead to the local heating of Ag-NWs, the formation of simple junctions on small scale, and the formation of a large scale network. This observation is useful for using Ag-NWs based devices in upper space where protons are abandoned in an energy range from MeV to GeV. This high-quality Ag-NW network can also be used as a transparent electrode for optoelectronics devices. Project supported by the National Research Foundation of South Africa (NRF), the French Centre National pour la Recherche Scientifique, iThemba-LABS, the UNESCO-UNISA Africa Chair in Nanosciences & Nanotechnology, the Third World Academy of Science (TWAS), Organization of Women in Science for the Developing World (OWSDW), the Abdus Salam ICTP via the Nanosciences African Network (NANOAFNET), and the Higher Education Commission (HEC) of Pakistan.

  9. Final Project Report: DOE Award FG02-04ER25606 Overlay Transit Networking for Scalable, High Performance Data Communication across Heterogeneous Infrastructure

    SciTech Connect

    Beck, Micah; Moore, Terry

    2007-08-31

    As the flood of data associated with leading edge computational science continues to escalate, the challenge of supporting the distributed collaborations that are now characteristic of it becomes increasingly daunting. The chief obstacles to progress on this front lie less in the synchronous elements of collaboration, which have been reasonably well addressed by new global high performance networks, than in the asynchronous elements, where appropriate shared storage infrastructure seems to be lacking. The recent report from the Department of Energy on the emerging 'data management challenge' captures the multidimensional nature of this problem succinctly: Data inevitably needs to be buffered, for periods ranging from seconds to weeks, in order to be controlled as it moves through the distributed and collaborative research process. To meet the diverse and changing set of application needs that different research communities have, large amounts of non-archival storage are required for transitory buffering, and it needs to be widely dispersed, easily available, and configured to maximize flexibility of use. In today's grid fabric, however, massive storage is mostly concentrated in data centers, available only to those with user accounts and membership in the appropriate virtual organizations, allocated as if its usage were non-transitory, and encapsulated behind legacy interfaces that inhibit the flexibility of use and scheduling. This situation severely restricts the ability of application communities to access and schedule usable storage where and when they need to in order to make their workflow more productive. (p.69f) One possible strategy to deal with this problem lies in creating a storage infrastructure that can be universally shared because it provides only the most generic of asynchronous services. Different user communities then define higher level services as necessary to meet their needs. One model of such a service is a Storage Network, analogous to

  10. Hydrogen isotopes from source water to leaf lipid in a continental-scale sample network

    NASA Astrophysics Data System (ADS)

    Nelson, Daniel; Kahmen, Ansgar

    2015-04-01

    Sedimentary plant waxes are useful paleoclimate proxies because they are preserved in depositional settings on geologic timescales and the isotopic composition of the hydrogen in these molecules reflects that of the source water available during biosynthesis. This application is based largely on empirical calibrations that have demonstrated continental-scale correlations between source water and lipid hydrogen isotope values. However, the importance of variable net isotopic fractionation between source water and lipid for different species and environmental conditions is increasingly recognized. Isotopic enrichment of leaf water during transpiration is key among these secondary factors, and is itself sensitive to changes in hydroclimate. Leaf water enrichment also occurs prior to photosynthetic water uptake, and is therefore independent from cellular-level biomarker synthesis. Mechanistic models can predict the mean leaf water hydrogen isotope composition from readily available meteorological variables. This permits global-scale isoscape maps of leaf water isotopic composition and enrichment above source water to be generated, but these models have not been widely validated at continental spatial scales. We have established a network of twenty-one sites across Europe where we are sampling for leaf-, xylem-, and soil-water isotopes (H and O) at approximately 5-week intervals over the summer growing season. We augment the sample set with weekly to monthly precipitation samples and early- and late-season plant wax lipid samples. Collaborators at each site are conducting the sampling, and most sites are members of the FLUXNET tower network that also record high-resolution meteorological data. We present information on the implementation of the network and preliminary results from the 2014 summer season. The complete dataset will be used to track the evolution of water isotopes from source to leaf water and from leaf water to lipid hydrogen across diverse environments

  11. Water-containing hydrogen-bonding network in the active center of channelrhodopsin.

    PubMed

    Ito, Shota; Kato, Hideaki E; Taniguchi, Reiya; Iwata, Tatsuya; Nureki, Osamu; Kandori, Hideki

    2014-03-01

    Channelrhodopsin (ChR) functions as a light-gated ion channel in Chlamydomonas reinhardtii. Passive transport of cations by ChR is fundamentally different from the active transport by light-driven ion pumps such as archaerhodopsin, bacteriorhodopsin, and halorhodopsin. These microbial rhodopsins are important tools for optogenetics, where ChR is used to activate neurons by light, while the ion pumps are used for neural silencing. Ion-transport functions by these rhodopsins strongly depend on the specific hydrogen-bonding networks containing water near the retinal chromophore. In this work, we measured protein-bound water molecules in a chimeric ChR protein of ChR1 (helices A to E) and ChR2 (helices F and G) of Chlamydomonas reinhardtii using low-temperature FTIR spectroscopy at 77 K. We found that the active center of ChR possesses more water molecules (9 water vibrations) than those of other microbial (2-6 water vibrations) and animal (6-8 water vibrations) rhodopsins. We conclude that the protonated retinal Schiff base interacts with the counterion (Glu162) directly, without the intervening water molecule found in proton-pumping microbial rhodopsins. The present FTIR results and the recent X-ray structure of ChR reveal a unique hydrogen-bonding network around the active center of this light-gated ion channel. PMID:24512107

  12. Two mononuclear octahedral complexes with benzimidazole-2-carboxylate: supramolecular networks constructed by hydrogen bonds.

    PubMed

    Fan, Jun; Cai, Song-Liang; Zheng, Sheng-Run; Zhang, Wei-Guang

    2011-11-01

    The title compounds, trans-bis(1H-benzimidazole-2-carboxylato-κ(2)N(3),O)bis(ethanol-κO)cadmium(II), [Cd(C(8)H(5)N(2)O(2))(2)(C(2)H(6)O)(2)], (I), and trans-bis(1H-benzimidazole-κN(3))bis(1H-benzimidazole-2-carboxylato-κ(2)N(3),O)nickel(II), [Ni(C(8)H(5)N(2)O(2))(2)(C(7)H(6)N(2))(2)], (II), are hydrogen-bonded supramolecular complexes. In (I), the Cd(II) ion is six-coordinated by two O atoms from two ethanol molecules, and by two O and two N atoms from two bidentate benzimidazole-2-carboxylate (HBIC) ligands, giving a distorted octahedral geometry. The combination of O-H···O and N-H···O hydrogen bonds results in two-dimensional layers parallel to the ab plane. In (II), the six-coordinated Ni(II) atom, which lies on an inversion centre, shows a similar distorted octahedral geometry to the Cd(II) ion in (I); two benzimidazole molecules occupy the axial sites and the equatorial plane contains two chelating HBIC ligands. Pairs of N-H···O hydrogen bonds between pairs of HBIC anions connect adjacent Ni(II) coordination units to form a one-dimensional chain parallel to the a axis. Moreover, these one-dimensional chains are further linked via N-H···O hydrogen bonds between HBIC anions and benzimidazole molecules to generate a three-dimensional supramolecular framework. The two compounds show quite different supramolecular networks, which may be explained by the fact that different co-ligands occupy the axial sites in the coordination units.

  13. Communications infrastructure requirements for telemedicine/telehealth in the context of planning for and responding to natural disasters: Considering the need for shared regional networks

    NASA Technical Reports Server (NTRS)

    Scott, John Carver

    1991-01-01

    During the course of recent years the frequency and magnitude of major disasters - of natural, technological, or ecological origin - have made the world community dramatically aware of the immense losses of human life and economic resources that are caused regularly by such calamities. Particularly hard hit are developing countries, for whom the magnitude of disasters frequently outstrips the ability of the society to cope with them. In many cases this situation can be prevented, and the recent trend in disaster management has been to emphasize the importance of preparedness and mitigation as a means of prevention. In cases of disaster, a system is needed to respond to relief requirements, particularly the delivery of medical care. There is no generic telecommunications infrastructure appropriate for the variety of applications in medical care and disaster management. The need to integrate telemedicine/telehealth into shared regional disaster management telecommunications networks is discussed. Focus is on the development of infrastructure designed to serve the needs of disaster prone regions of the developing world.

  14. Hydration and hydrogen bond network of water around hydrophobic surface investigated by terahertz spectroscopy.

    PubMed

    Shiraga, K; Suzuki, T; Kondo, N; Ogawa, Y

    2014-12-21

    Water conformation around hydrophobic side chains of four amino acids (glycine, L-alanine, L-aminobutyric acid, and L-norvaline) was investigated via changes in complex dielectric constant in the terahertz (THz) region. Each of these amino acids has the same hydrophilic backbone, with successive additions of hydrophobic straight methylene groups (-CH2-) to the side chain. Changes in the degree of hydration (number of dynamically retarded water molecules relative to bulk water) and the structural conformation of the water hydrogen bond (HB) network related to the number of methylene groups were quantitatively measured. Since dielectric responses in the THz region represent water relaxations and water HB vibrations at a sub-picosecond and picosecond timescale, these measurements characterized the water relaxations and HB vibrations perturbed by the methylene apolar groups. We found each successive straight -CH2- group on the side chain restrained approximately two hydrophobic hydration water molecules. Additionally, the number of non-hydrogen-bonded (NHB) water molecules increased slightly around these hydrophobic side chains. The latter result seems to contradict the iceberg model proposed by Frank and Evans, where water molecules are said to be more ordered around apolar surfaces. Furthermore, we compared the water-hydrophilic interactions of the hydrophilic amino acid backbone with those with the water-hydrophobic interactions around the side chains. As the hydrophobicity of the side chain increased, the ordering of the surrounding water HB network was altered from that surrounding the hydrophilic amino acid backbone, thereby diminishing the fraction of NHB water and ordering the surrounding tetrahedral water HB network.

  15. C₅-symmetric chiral corannulenes: desymmetrization of bowl inversion equilibrium via "intramolecular" hydrogen-bonding network.

    PubMed

    Kang, Jiheong; Miyajima, Daigo; Itoh, Yoshimitsu; Mori, Tadashi; Tanaka, Hiroki; Yamauchi, Masahito; Inoue, Yoshihisa; Harada, Soichiro; Aida, Takuzo

    2014-07-30

    Because of a rapid conformational inversion, bowl-shaped C5-symmetric corannulenes, though geometrically chiral, have not been directly resolved into their enantiomers. However, if this inversion equilibrium can be desymmetrized, chiral corannulenes enriched in either enantiomer can be obtained. We demonstrated this possibility using pentasubstituted corannulenes 4 and 5 carrying amide-appended thioalkyl side chains. Compound 4 displays chiroptical activity in a chiral hydrocarbon such as limonene. Because compound 5 carries a chiral center in the side chains, its enantiomers 5R and 5S show chiroptical activity even in achiral solvents such as CHCl3 and methylcyclohexane. In sharp contrast, when the side chains bear no amide functionality (1 and 2R), no chiroptical activity emerges even in limonene or with a chiral center in the side chains. Detailed investigations revealed that the peripheral amide units in 4 and 5 are hydrogen-bonded only "intramolecularly" along the corannulene periphery, affording cyclic amide networks with clockwise and anticlockwise geometries. Although this networking gives rise to four stereoisomers, only two, which are enantiomeric to one another, are suggested computationally to exist in the equilibrated system. In a chiral environment (chiral solvent or side chain), their thermodynamic stabilities are certainly unequal, so the bowl-inversion equilibrium can be desymmetrized. However, this is not the case when the system contains a protic solvent that can deteriorate the hydrogen-bonding network. When the enantiomeric purity of limonene as the solvent is varied, the chiroptical activity of the corannulene core changes nonlinearly with its enantiomeric excess (majority rule). PMID:25046475

  16. Hydration and hydrogen bond network of water around hydrophobic surface investigated by terahertz spectroscopy

    NASA Astrophysics Data System (ADS)

    Shiraga, K.; Suzuki, T.; Kondo, N.; Ogawa, Y.

    2014-12-01

    Water conformation around hydrophobic side chains of four amino acids (glycine, L-alanine, L-aminobutyric acid, and L-norvaline) was investigated via changes in complex dielectric constant in the terahertz (THz) region. Each of these amino acids has the same hydrophilic backbone, with successive additions of hydrophobic straight methylene groups (-CH2-) to the side chain. Changes in the degree of hydration (number of dynamically retarded water molecules relative to bulk water) and the structural conformation of the water hydrogen bond (HB) network related to the number of methylene groups were quantitatively measured. Since dielectric responses in the THz region represent water relaxations and water HB vibrations at a sub-picosecond and picosecond timescale, these measurements characterized the water relaxations and HB vibrations perturbed by the methylene apolar groups. We found each successive straight -CH2- group on the side chain restrained approximately two hydrophobic hydration water molecules. Additionally, the number of non-hydrogen-bonded (NHB) water molecules increased slightly around these hydrophobic side chains. The latter result seems to contradict the iceberg model proposed by Frank and Evans, where water molecules are said to be more ordered around apolar surfaces. Furthermore, we compared the water-hydrophilic interactions of the hydrophilic amino acid backbone with those with the water-hydrophobic interactions around the side chains. As the hydrophobicity of the side chain increased, the ordering of the surrounding water HB network was altered from that surrounding the hydrophilic amino acid backbone, thereby diminishing the fraction of NHB water and ordering the surrounding tetrahedral water HB network.

  17. The thermodynamic properties of 2-aminobiphenyl (an intermediate in the carbazole/hydrogen reaction network)

    SciTech Connect

    Steele, W.V.; Chirico, R.D.; Knipmeyer, S.E.; Nguyen, A.

    1990-12-01

    Catalytic hydrodenitrogenation (HDN) is a key step in upgrading processes for conversion of heavy petroleum, shale oil, tar sands, and the products of the liquefaction of coal to economically viable products. This research program provides accurate experimental thermochemical and thermophysical properties for key organic nitrogen-containing compounds present in the range of alternative feedstocks, and applies the experimental information to thermodynamic analyses of key HDN reaction networks. This report is the first in a series that will lead to an analysis of a three-ring HDN system; the carbazole/hydrogen reaction network. 2-Aminobiphenyl is the initial intermediate in the HDN pathway for carbazole, which consumes the least hydrogen possible. Measurements leading to the calculation of the ideal-gas thermodynamic properties for 2-aminobiphenyl are reported. Experimental methods included combustion calorimetry, adiabatic heat-capacity calorimetry, comparative ebulliometry, inclined-piston gauge manometry, and differential-scanning calorimetry (d.s.c). Entropies, enthalpies, and Gibbs energies of formation were derived for the ideal gas for selected temperatures between 298.15 K and 820 K. The critical temperature and critical density were determined for 2-aminobiphenyl with the d.s.c., and the critical pressure was derived. The Gibbs energies of formation are used in thermodynamic calculations to compare the feasibility of the initial hydrogenolysis step in the carbazole/H{sub 2} network with that of its hydrocarbon and oxygen-containing analogous; i.e., fluorene/H{sub 2} and dibenzofuran/H{sub 2}. Results of the thermodynamic calculations are compared with those of batch-reaction studies reported in the literature. 57 refs., 8 figs., 18 tabs.

  18. COCONet (Continuously Operating Caribbean GPS Observational Network) - A multihazard GPS/Met observatory: Enhancing geodetic infrastructure and the scientific community in the Caribbean

    NASA Astrophysics Data System (ADS)

    Feaux, K.; Braun, J. J.; Calais, E.; Mattioli, G. S.; Miller, M. M.; Normandeau, J.; Sandru, J.; Wang, G.

    2013-05-01

    The COCONet (Continuously Operating Caribbean GPS Observational Network) project was funded by the National Science Foundation (NSF) with the aim of developing a large-scale geodetic and atmospheric infrastructure in the Caribbean that will form the backbone for a broad range of geoscience, atmospheric, and sea-level investigations and enable research on process-oriented science questions with direct relevance to geohazards. The current COCONet network construction plan consists of the installation of 47 new GPS and meteorological stations throughout the Caribbean region, 21 existing stations refurbished with new receivers, antennas, and meteorological instruments, and will also incorporate data from at least 61 existing operational GPS stations. COCONet engineers will also install 2 new collocated GPS and tide gauge sites and GPS instruments at two existing tide gauge sites in the Caribbean region. In October 2012, the third COCONet workshop was held in Tulum, Mexico in which a number of recommendations were made concerning capacity building in the region, network sustainability, high-rate data, and developing a data center in the Caribbean region. We present the status of the construction phase of the project to date, as well as the status of some of the recommendations from the third COCONet workshop focusing on capacity building and outreach elements of the project.

  19. Optimization of active distribution networks: Design and analysis of significative case studies for enabling control actions of real infrastructure

    NASA Astrophysics Data System (ADS)

    Moneta, Diana; Mora, Paolo; Viganò, Giacomo; Alimonti, Gianluca

    2014-12-01

    The diffusion of Distributed Generation (DG) based on Renewable Energy Sources (RES) requires new strategies to ensure reliable and economic operation of the distribution networks and to support the diffusion of DG itself. An advanced algorithm (DISCoVER - DIStribution Company VoltagE Regulator) is being developed to optimize the operation of active network by means of an advanced voltage control based on several regulations. Starting from forecasted load and generation, real on-field measurements, technical constraints and costs for each resource, the algorithm generates for each time period a set of commands for controllable resources that guarantees achievement of technical goals minimizing the overall cost. Before integrating the controller into the telecontrol system of the real networks, and in order to validate the proper behaviour of the algorithm and to identify possible critical conditions, a complete simulation phase has started. The first step is concerning the definition of a wide range of "case studies", that are the combination of network topology, technical constraints and targets, load and generation profiles and "costs" of resources that define a valid context to test the algorithm, with particular focus on battery and RES management. First results achieved from simulation activity on test networks (based on real MV grids) and actual battery characteristics are given, together with prospective performance on real case applications.

  20. From hydrogen bonding to metal coordination and back: Porphyrin-based networks on Ag(111)

    SciTech Connect

    Studener, F. Müller, K.; Stöhr, M.; Marets, N.; Bulach, V. Hosseini, M. W.

    2015-03-14

    The self-assembly of a metal-free porphyrin bearing two pyridyl coordinating sites and two pentyl chains at trans meso positions was investigated under ultrahigh vacuum on a Ag(111) surface by scanning tunneling microscopy (STM). The STM measurements revealed a well-ordered close-packed structure with a rhombic unit cell for coverages ≤1 monolayer with their molecular plane parallel to the surface. The growth direction of the molecular islands is aligned along the step edges, which are restructured due to molecule-substrate interactions. The shorter unit cell vector of the molecular superstructure follows the 〈1-10〉 direction of the Ag(111) substrate. Hydrogen bonds between pyridyl and pyrrole groups of neighboring molecules as well as weak van der Waals forces between the pentyl chains stabilize the superstructure. Deposition of cobalt atoms onto the close-packed structure at room temperature leads to the formation of a hexagonal porous network stabilized by metal-ligand bonding between the pyridyl ligands and the cobalt atoms. Thermal annealing of the Co-coordination network at temperatures >450 K results in the transformation of the hexagonal network into a second close-packed structure. Changes in the molecule-substrate interactions due to metalation of the porphyrin core with Co as well as intermolecular interactions can explain the observed structural transformations.

  1. Prediction on the seasonal behavior of hydrogen sulfide using a neural network model.

    PubMed

    Kim, Byungwhan; Lee, Joogong; Jang, Jungyoung; Han, Dongil; Kim, Ki-Hyun

    2011-05-05

    Models to predict seasonal hydrogen sulfide (H2S) concentrations were constructed using neural networks. To this end, two types of generalized regression neural networks and radial basis function networks are considered and optimized. The input data for H2S were collected from August 2005 to Fall 2006 from a huge industrial complex located in Ansan City, Korea. Three types of seasonal groupings were prepared and one optimized model is built for each dataset. These optimized models were then used for the analysis of the sensitivity and main effect of the parameters. H2S was noted to be very sensitive to rainfall during the spring and summer. In the autumn, its sensitivity showed a strong dependency on wind speed and pressure. Pressure was identified as the most influential parameter during the spring and summer. In the autumn, relative humidity overwhelmingly affected H2S. It was noted that H2S maintained an inverse relationship with a number of parameters (e.g., radiation, wind speed, or dew-point temperature). In contrast, it exhibited a declining trend with a decrease in pressure. An increase in radiation was likely to decrease during spring and summer, but the opposite trend was predicted for the autumn. The overall results of this study thus suggest that the behavior of H2S can be accounted for by a diverse combination of meteorological parameters across seasons.

  2. Effect of hydrogen bond networks on the nucleation mechanism of protein folding

    NASA Astrophysics Data System (ADS)

    Djikaev, Y. S.; Ruckenstein, Eli

    2009-12-01

    We have recently developed a kinetic model for the nucleation mechanism of protein folding (NMPF) in terms of ternary nucleation by using the first passage time analysis. A protein was considered as a random heteropolymer consisting of hydrophobic, hydrophilic (some of which are negatively or positively ionizable), and neutral beads. The main idea of the NMPF model consisted of averaging the dihedral potential in which a selected residue is involved over all possible configurations of all neighboring residues along the protein chain. The combination of the average dihedral, effective pairwise (due to Lennard-Jones-type and electrostatic interactions), and confining (due to the polymer connectivity constraint) potentials gives rise to an overall potential around the cluster that, as a function of the distance from the cluster center, has a double-well shape. This allows one to evaluate the protein folding time. In the original NMPF model hydrogen bonding was not taken into account explicitly. To improve the NMPF model and make it more realistic, in this paper we modify our (previously developed) probabilistic hydrogen bond model and combine it with the former. Thus, a contribution due to the disruption of hydrogen bond networks around the interacting particles (cluster of native residues and residue in the protein unfolded part) appears in the overall potential field around a cluster. The modified model is applied to the folding of the same model proteins that were examined in the original model: a short protein consisting of 124 residues (roughly mimicking bovine pancreatic ribonuclease) and a long one consisting of 2500 residues (as a representative of large proteins with superlong polypeptide chains), at pH=8.3 , 7.3, and 6.3. The hydrogen bond contribution now plays a dominant role in the total potential field around the cluster (except for very short distances thereto where the repulsive energy tends to infinity). It is by an order of magnitude stronger for

  3. Engineering and Coordination of Regulatory Networks and Intracellular Complexes to Maximize Hydrogen Production by Phototrophic Microorganisms

    SciTech Connect

    James C. Liao

    2012-05-22

    This project is a collaboration with F. R. Tabita of Ohio State. Our major goal is to understand the factors and regulatory mechanisms that influence hydrogen production. The organisms to be utilized in this study, phototrophic microorganisms, in particular nonsulfur purple (NSP) bacteria, catalyze many significant processes including the assimilation of carbon dioxide into organic carbon, nitrogen fixation, sulfur oxidation, aromatic acid degradation, and hydrogen oxidation/evolution. Our part of the project was to develop a modeling technique to investigate the metabolic network in connection to hydrogen production and regulation. Organisms must balance the pathways that generate and consume reducing power in order to maintain redox homeostasis to achieve growth. Maintaining this homeostasis in the nonsulfur purple photosynthetic bacteria is a complex feat with many avenues that can lead to balance, as these organisms possess versatile metabolic capabilities including anoxygenic photosynthesis, aerobic or anaerobic respiration, and fermentation. Growth is achieved by using H{sub 2} as an electron donor and CO{sub 2} as a carbon source during photoautotrophic and chemoautotrophic growth, where CO{sub 2} is fixed via the Calvin-Benson-Bassham (CBB) cycle. Photoheterotrophic growth can also occur when alternative organic carbon compounds are utilized as both the carbon source and electron donor. Regardless of the growth mode, excess reducing equivalents generated as a result of oxidative processes, must be transferred to terminal electron acceptors, thus insuring that redox homeostasis is maintained in the cell. Possible terminal acceptors include O{sub 2}, CO{sub 2}, organic carbon, or various oxyanions. Cells possess regulatory mechanisms to balance the activity of the pathways which supply energy, such as photosynthesis, and those that consume energy, such as CO{sub 2} assimilation or N{sub 2} fixation. The major route for CO{sub 2} assimilation is the CBB

  4. Transparent Pd Wire Network-Based Areal Hydrogen Sensor with Inherent Joule Heater.

    PubMed

    Walia, Sunil; Gupta, Ritu; Rao, K D M; Kulkarni, Giridhar U

    2016-09-01

    A high degree of transparency in devices is considered highly desirable for futuristic technology. This demands that both the active material and the electrodes are made of transparent materials. In this work, a transparent Pd wire network (∼1 cm(2)), fabricated using crackle lithography technique with sheet resistance and transmittance of ∼200 Ohm per square and ∼80%, respectively, serves multiple roles; besides being an electrode, it acts as an active material for H2 sensing as well as an in-built electrothermal heater. The sensor works over a wide range of hydrogen (H2) concentration down to 0.02% with a response time of ∼41 s, which could be improved to ∼13 s by in situ Joule heating to ∼75 °C. Importantly, the device has the potential of scale-up to a window size transparent panel and to be flexible when desired. PMID:27533025

  5. The Other Infrastructure: Distance Education's Digital Plant.

    ERIC Educational Resources Information Center

    Boettcher, Judith V.; Kumar, M. S. Vijay

    2000-01-01

    Suggests a new infrastructure--the digital plant--for supporting flexible Web campus environments. Describes four categories which make up the infrastructure: personal communication tools and applications; network of networks for the Web campus; dedicated servers and software applications; software applications and services from external…

  6. Conformational changes in the archaerhodopsin-3 proton pump: detection of conserved strongly hydrogen bonded water networks.

    PubMed

    Clair, Erica C Saint; Ogren, John I; Mamaev, Sergey; Kralj, Joel M; Rothschild, Kenneth J

    2012-01-01

    Archaerhodopsin-3 (AR3) is a light-driven proton pump from Halorubrum sodomense, but little is known about its photocycle. Recent interest has focused on AR3 because of its ability to serve both as a high-performance, genetically-targetable optical silencer of neuronal activity and as a membrane voltage sensor. We examined light-activated structural changes of the protein, retinal chromophore, and internal water molecules during the photocycle of AR3. Low-temperature and rapid-scan time-resolved FTIR-difference spectroscopy revealed that conformational changes during formation of the K, M, and N photocycle intermediates are similar, although not identical, to bacteriorhodopsin (BR). Positive/negative bands in the region above 3,600 cm( - 1), which have previously been assigned to structural changes of weakly hydrogen bonded internal water molecules, were substantially different between AR3 and BR. This included the absence of positive bands recently associated with a chain of proton transporting water molecules in the cytoplasmic channel and a weakly hydrogen bonded water (W401), which is part of a hydrogen-bonded pentagonal cluster located near the retinal Schiff base. However, many of the broad IR continuum absorption changes below 3,000 cm( - 1) assigned to networks of water molecules involved in proton transport through cytoplasmic and extracellular portions in BR were very similar in AR3. This work and subsequent studies comparing BR and AR3 structural changes will help identify conserved elements in BR-like proton pumps as well as bioengineer AR3 to optimize neural silencing and voltage sensing. PMID:23277676

  7. The role of hydrogen bond networks in the barrierless thermal denaturation of a native protein.

    PubMed

    Djikaev, Y S; Ruckenstein, Eli

    2009-07-28

    Using the mean first passage time analysis, we have recently developed a kinetic model for the thermal unfolding of a native protein in a barrierless way. A protein was considered as a random heteropolymer consisting of hydrophobic and hydrophilic beads with all the bonds and bond angles equal and constant. As a crucial idea of the model the overall potential around a folded part (cluster) of the protein in which a protein residue performs a chaotic motion was considered to be a combination of three potentials: effective pairwise, average dihedral, and confining. However, the hydrogen bonding of water molecules was not taken into account explicitly. In this paper we improve that model by combining it with a probabilistic approach to water hydrogen bonding. Thus, an additional contribution due to the disruption of hydrogen bond networks around the interacting particles (a cluster of native residues and a residue in the protein unfolded part) appears in the overall potential field around a cluster. The overall potential as a function of the distance from the cluster center has a double well shape. This allows one to determine the rates with which the cluster emits and absorbs residues by using the mean first passage time analysis. Due to a sufficiently large temperature increase or decrease, the emission rate becomes larger than the absorption rate in the whole range of cluster sizes. This leads to the unfolding of the protein in a barrierless way reminiscent of spinodal decomposition. Knowing the cluster emission and absorption rates as functions of temperature and cluster size, one can find the threshold temperatures of cold and hot barrierless denaturation as well as the corresponding unfolding times. The extended model is then applied to the unfolding of bovine pancreatic ribonuclease, consisting of 124 residues whereof 43 are hydrophobic (neutral beads are considered to be hydrophobic as well) and 81 hydrophilic.

  8. Supramolecular hydrogen-bonding network in 1-(diaminomethylene)thiouron-1-ium 4-hydroxybenzenesulfonate crystal

    NASA Astrophysics Data System (ADS)

    Perpétuo, Genivaldo J.; Gonçalves, Rafael S.; Janczak, Jan

    2015-09-01

    The single crystals of 1-(diaminomethylene)thiouron-1-ium 4-hydroxybenzenesulfonate were grown using a solution growth technique. The compound crystallises in the centrosymmetric P21/c space group of the monoclinic system. The conformation of the 1-(diaminomethylene)thiouron-1-ium cation is not strictly planar, but twisted. Both arms of the cation are oppositely rotated by 8.5(1)° around the Csbnd N bonds involving the central N atom. The arrangement of oppositely charged components, i.e. 1-(diaminomethylene)thiouron-1-ium cations and 4-hydroxybenzenesulfonate anions in the crystal is mainly determined by ionic and hydrogen-bonding interactions forming supramolecular network. The possible hydrogen-bonding interactions between cation and anion units were analysed on the basis of molecular orbital calculations. The obtained deuterated analogue crystallises similar as H-compound in the monoclinic system (P21/c) with quite similar lattice parameters. The compound was also characterised by the FT-IR and Raman spectroscopies. The characteristic bands of the functional and skeletal groups of the protiated and deuterated analogue of 1-(diaminomethylene)thiouron-1-ium 4-hydroxybenzenesulfonate are discussed.

  9. De novo design of protein homo-oligomers with modular hydrogen-bond network-mediated specificity.

    PubMed

    Boyken, Scott E; Chen, Zibo; Groves, Benjamin; Langan, Robert A; Oberdorfer, Gustav; Ford, Alex; Gilmore, Jason M; Xu, Chunfu; DiMaio, Frank; Pereira, Jose Henrique; Sankaran, Banumathi; Seelig, Georg; Zwart, Peter H; Baker, David

    2016-05-01

    In nature, structural specificity in DNA and proteins is encoded differently: In DNA, specificity arises from modular hydrogen bonds in the core of the double helix, whereas in proteins, specificity arises largely from buried hydrophobic packing complemented by irregular peripheral polar interactions. Here, we describe a general approach for designing a wide range of protein homo-oligomers with specificity determined by modular arrays of central hydrogen-bond networks. We use the approach to design dimers, trimers, and tetramers consisting of two concentric rings of helices, including previously not seen triangular, square, and supercoiled topologies. X-ray crystallography confirms that the structures overall, and the hydrogen-bond networks in particular, are nearly identical to the design models, and the networks confer interaction specificity in vivo. The ability to design extensive hydrogen-bond networks with atomic accuracy enables the programming of protein interaction specificity for a broad range of synthetic biology applications; more generally, our results demonstrate that, even with the tremendous diversity observed in nature, there are fundamentally new modes of interaction to be discovered in proteins. PMID:27151862

  10. De novo design of protein homo-oligomers with modular hydrogen-bond network-mediated specificity.

    PubMed

    Boyken, Scott E; Chen, Zibo; Groves, Benjamin; Langan, Robert A; Oberdorfer, Gustav; Ford, Alex; Gilmore, Jason M; Xu, Chunfu; DiMaio, Frank; Pereira, Jose Henrique; Sankaran, Banumathi; Seelig, Georg; Zwart, Peter H; Baker, David

    2016-05-01

    In nature, structural specificity in DNA and proteins is encoded differently: In DNA, specificity arises from modular hydrogen bonds in the core of the double helix, whereas in proteins, specificity arises largely from buried hydrophobic packing complemented by irregular peripheral polar interactions. Here, we describe a general approach for designing a wide range of protein homo-oligomers with specificity determined by modular arrays of central hydrogen-bond networks. We use the approach to design dimers, trimers, and tetramers consisting of two concentric rings of helices, including previously not seen triangular, square, and supercoiled topologies. X-ray crystallography confirms that the structures overall, and the hydrogen-bond networks in particular, are nearly identical to the design models, and the networks confer interaction specificity in vivo. The ability to design extensive hydrogen-bond networks with atomic accuracy enables the programming of protein interaction specificity for a broad range of synthetic biology applications; more generally, our results demonstrate that, even with the tremendous diversity observed in nature, there are fundamentally new modes of interaction to be discovered in proteins.

  11. The dispersion correction and weak-hydrogen-bond network in low-frequency vibration of solid-state salicylic acid

    NASA Astrophysics Data System (ADS)

    Takahashi, Masae; Ishikawa, Yoichi; Ito, Hiromasa

    2012-04-01

    We perform the dispersion-corrected first-principles calculations of vibrational absorption and the far-infrared (terahertz) spectroscopic experiments at different temperature to examine the effect of weak-hydrogen-bond network on the low-frequency vibrations of solid-state salicylic acid. By dispersion correction, calculated frequencies improve especially in the intermonomer torsion and interdimer translational modes which are closely related to the weak hydrogen bonds. The calculated frequencies and their relative intensities reproduce the observed spectrum in the accuracy of 10 cm-1 or less. Weak-hydrogen-bond network causes a large frequency shift of out-of-plane intermonomer modes and enhances interdimer translational modes accompanied by the O⋯H stretching vibrations.

  12. NanoCapillary Network Proton Conducting Membranes for High Temperature Hydrogen/Air Fuel Cells

    SciTech Connect

    Pintauro, Peter

    2012-07-09

    The objective of this proposal is to fabricate and characterize a new class of NanoCapillary Network (NCN) proton conducting membranes for hydrogen/air fuel cells that operate under high temperature, low humidity conditions. The membranes will be intelligently designed, where a high density interconnecting 3-D network of nm-diameter electrospun proton conducting polymer fibers is embedded in an inert (uncharged) water/gas impermeable polymer matrix. The high density of fibers in the resulting mat and the high ion-exchange capacity of the fiber polymer will ensure high proton conductivity. To further enhance water retention, molecular silica will be added to the sulfonated polymer fibers. The uncharged matrix material will control water swelling of the high ion-exchange capacity proton conducting polymer fibers and will impart toughness to the final nanocapillary composite membrane. Thus, unlike other fuel cell membranes, the role of the polymer support matrix will be decoupled from that of the proton-conducting channels. The expected final outcome of this 5-year project is the fabrication of fuel cell membranes with properties that exceed the DOE’s technical targets, in particular a proton conductivity of 0.1 S/cm at a temperature less than or equal to120°C and 25-50% relative humidity.

  13. Network of Research Infrastructures for European Seismology (NERIES) - Web Portal Developments for Interactive Access to Earthquake Data on a European Scale

    NASA Astrophysics Data System (ADS)

    Spinuso, A.; Trani, L.; Rives, S.; Thomy, P.; Euchner, F.; Schorlemmer, D.; Saul, J.; Heinloo, A.; Bossu, R.; van Eck, T.

    2008-12-01

    The Network of Research Infrastructures for European Seismology (NERIES) is European Commission (EC) project whose focus is networking together seismological observatories and research institutes into one integrated European infrastructure that provides access to data and data products for research. Seismological institutes and organizations in European and Mediterranean countries maintain large, geographically distributed data archives, therefore this scenario suggested a design approach based on the concept of an internet service oriented architecture (SOA) to establish a cyberinfrastructure for distributed and heterogeneous data streams and services. Moreover, one of the goals of NERIES is to design and develop a Web portal that acts as the uppermost layer of the infrastructure and provides rendering capabilities for the underlying sets of data The Web services that are currently being designed and implemented will deliver data that has been adopted to appropriate formats. The parametric information about a seismic event is delivered using a seismology- specific Extensible mark-up Language(XML) format called QuakeML (https://quake.ethz.ch/quakeml), which has been formalized and implemented in coordination with global earthquake-information agencies. Uniform Resource Identifiers (URIs) are used to assign identifiers to (1) seismic-event parameters described by QuakeML, and (2) generic resources, for example, authorities, locations providers, location methods, software adopted, and so on, described by use of a data model constructed with the resource description framework (RDF) and accessible as a service. The European-Mediterranean Seismological Center (EMSC) has implemented a unique event identifier (UNID) that will create the seismic event URI used by the QuakeML data model. Access to data such as broadband waveform, accelerometric data and stations inventories will be also provided through a set of Web services that will wrap the middleware used by the

  14. Network of Research Infrastructures for European Seismology (NERIES)-Web Portal Developments for Interactive Access to Earthquake Data on a European Scale

    NASA Astrophysics Data System (ADS)

    Spinuso, A.; Trani, L.; Rives, S.; Thomy, P.; Euchner, F.; Schorlemmer, D.; Saul, J.; Heinloo, A.; Bossu, R.; van Eck, T.

    2009-04-01

    The Network of Research Infrastructures for European Seismology (NERIES) is European Commission (EC) project whose focus is networking together seismological observatories and research institutes into one integrated European infrastructure that provides access to data and data products for research. Seismological institutes and organizations in European and Mediterranean countries maintain large, geographically distributed data archives, therefore this scenario suggested a design approach based on the concept of an internet service oriented architecture (SOA) to establish a cyberinfrastructure for distributed and heterogeneous data streams and services. Moreover, one of the goals of NERIES is to design and develop a Web portal that acts as the uppermost layer of the infrastructure and provides rendering capabilities for the underlying sets of data The Web services that are currently being designed and implemented will deliver data that has been adopted to appropriate formats. The parametric information about a seismic event is delivered using a seismology-specific Extensible mark-up Language(XML) format called QuakeML (https://quake.ethz.ch/quakeml), which has been formalized and implemented in coordination with global earthquake-information agencies. Uniform Resource Identifiers (URIs) are used to assign identifiers to (1) seismic-event parameters described by QuakeML, and (2) generic resources, for example, authorities, locations providers, location methods, software adopted, and so on, described by use of a data model constructed with the resource description framework (RDF) and accessible as a service. The European-Mediterranean Seismological Center (EMSC) has implemented a unique event identifier (UNID) that will create the seismic event URI used by the QuakeML data model. Access to data such as broadband waveform, accelerometric data and stations inventories will be also provided through a set of Web services that will wrap the middleware used by the

  15. Cryogenic hydrogen release research.

    SciTech Connect

    LaFleur, Angela Christine

    2015-12-01

    The objective of this project was to devolop a plan for modifying the Turbulent Combustion Laboratory (TCL) with the necessary infrastructure to produce a cold (near liquid temperature) hydrogen jet. The necessary infrastructure has been specified and laboratory modifications are currently underway. Once complete, experiments from this platform will be used to develop and validate models that inform codes and standards which specify protection criteria for unintended releases from liquid hydrogen storage, transport, and delivery infrastructure.

  16. Making green infrastructure healthier infrastructure.

    PubMed

    Lõhmus, Mare; Balbus, John

    2015-01-01

    Increasing urban green and blue structure is often pointed out to be critical for sustainable development and climate change adaptation, which has led to the rapid expansion of greening activities in cities throughout the world. This process is likely to have a direct impact on the citizens' quality of life and public health. However, alongside numerous benefits, green and blue infrastructure also has the potential to create unexpected, undesirable, side-effects for health. This paper considers several potential harmful public health effects that might result from increased urban biodiversity, urban bodies of water, and urban tree cover projects. It does so with the intent of improving awareness and motivating preventive measures when designing and initiating such projects. Although biodiversity has been found to be associated with physiological benefits for humans in several studies, efforts to increase the biodiversity of urban environments may also promote the introduction and survival of vector or host organisms for infectious pathogens with resulting spread of a variety of diseases. In addition, more green connectivity in urban areas may potentiate the role of rats and ticks in the spread of infectious diseases. Bodies of water and wetlands play a crucial role in the urban climate adaptation and mitigation process. However, they also provide habitats for mosquitoes and toxic algal blooms. Finally, increasing urban green space may also adversely affect citizens allergic to pollen. Increased awareness of the potential hazards of urban green and blue infrastructure should not be a reason to stop or scale back projects. Instead, incorporating public health awareness and interventions into urban planning at the earliest stages can help insure that green and blue infrastructure achieves full potential for health promotion. PMID:26615823

  17. Making green infrastructure healthier infrastructure

    PubMed Central

    Lõhmus, Mare; Balbus, John

    2015-01-01

    Increasing urban green and blue structure is often pointed out to be critical for sustainable development and climate change adaptation, which has led to the rapid expansion of greening activities in cities throughout the world. This process is likely to have a direct impact on the citizens’ quality of life and public health. However, alongside numerous benefits, green and blue infrastructure also has the potential to create unexpected, undesirable, side-effects for health. This paper considers several potential harmful public health effects that might result from increased urban biodiversity, urban bodies of water, and urban tree cover projects. It does so with the intent of improving awareness and motivating preventive measures when designing and initiating such projects. Although biodiversity has been found to be associated with physiological benefits for humans in several studies, efforts to increase the biodiversity of urban environments may also promote the introduction and survival of vector or host organisms for infectious pathogens with resulting spread of a variety of diseases. In addition, more green connectivity in urban areas may potentiate the role of rats and ticks in the spread of infectious diseases. Bodies of water and wetlands play a crucial role in the urban climate adaptation and mitigation process. However, they also provide habitats for mosquitoes and toxic algal blooms. Finally, increasing urban green space may also adversely affect citizens allergic to pollen. Increased awareness of the potential hazards of urban green and blue infrastructure should not be a reason to stop or scale back projects. Instead, incorporating public health awareness and interventions into urban planning at the earliest stages can help insure that green and blue infrastructure achieves full potential for health promotion. PMID:26615823

  18. Making green infrastructure healthier infrastructure.

    PubMed

    Lõhmus, Mare; Balbus, John

    2015-01-01

    Increasing urban green and blue structure is often pointed out to be critical for sustainable development and climate change adaptation, which has led to the rapid expansion of greening activities in cities throughout the world. This process is likely to have a direct impact on the citizens' quality of life and public health. However, alongside numerous benefits, green and blue infrastructure also has the potential to create unexpected, undesirable, side-effects for health. This paper considers several potential harmful public health effects that might result from increased urban biodiversity, urban bodies of water, and urban tree cover projects. It does so with the intent of improving awareness and motivating preventive measures when designing and initiating such projects. Although biodiversity has been found to be associated with physiological benefits for humans in several studies, efforts to increase the biodiversity of urban environments may also promote the introduction and survival of vector or host organisms for infectious pathogens with resulting spread of a variety of diseases. In addition, more green connectivity in urban areas may potentiate the role of rats and ticks in the spread of infectious diseases. Bodies of water and wetlands play a crucial role in the urban climate adaptation and mitigation process. However, they also provide habitats for mosquitoes and toxic algal blooms. Finally, increasing urban green space may also adversely affect citizens allergic to pollen. Increased awareness of the potential hazards of urban green and blue infrastructure should not be a reason to stop or scale back projects. Instead, incorporating public health awareness and interventions into urban planning at the earliest stages can help insure that green and blue infrastructure achieves full potential for health promotion.

  19. Strength of hydrogen bond network takes crucial roles in the dissociation process of inhibitors from the HIV-1 protease binding pocket.

    PubMed

    Li, Dechang; Ji, Baohua; Hwang, Keh-Chih; Huang, Yonggang

    2011-01-01

    To understand the underlying mechanisms of significant differences in dissociation rate constant among different inhibitors for HIV-1 protease, we performed steered molecular dynamics (SMD) simulations to analyze the entire dissociation processes of inhibitors from the binding pocket of protease at atomistic details. We found that the strength of hydrogen bond network between inhibitor and the protease takes crucial roles in the dissociation process. We showed that the hydrogen bond network in the cyclic urea inhibitors AHA001/XK263 is less stable than that of the approved inhibitor ABT538 because of their large differences in the structures of the networks. In the cyclic urea inhibitor bound complex, the hydrogen bonds often distribute at the flap tips and the active site. In contrast, there are additional accessorial hydrogen bonds formed at the lateral sides of the flaps and the active site in the ABT538 bound complex, which take crucial roles in stabilizing the hydrogen bond network. In addition, the water molecule W301 also plays important roles in stabilizing the hydrogen bond network through its flexible movement by acting as a collision buffer and helping the rebinding of hydrogen bonds at the flap tips. Because of its high stability, the hydrogen bond network of ABT538 complex can work together with the hydrophobic clusters to resist the dissociation, resulting in much lower dissociation rate constant than those of cyclic urea inhibitor complexes. This study may provide useful guidelines for design of novel potent inhibitors with optimized interactions.

  20. Overview of NASA communications infrastructure

    NASA Technical Reports Server (NTRS)

    Arnold, Ray J.; Fuechsel, Charles

    1991-01-01

    The infrastructure of NASA communications systems for effecting coordination across NASA offices and with the national and international research and technological communities is discussed. The offices and networks of the communication system include the Office of Space Science and Applications (OSSA), which manages all NASA missions, and the Office of Space Operations, which furnishes communication support through the NASCOM, the mission critical communications support network, and the Program Support Communications network. The NASA Science Internet was established by OSSA to centrally manage, develop, and operate an integrated computer network service dedicated to NASA's space science and application research. Planned for the future is the National Research and Education Network, which will provide communications infrastructure to enhance science resources at a national level.

  1. Real-Time Earthquake Risk Mitigation Of Infrastructures Using Istanbul Earthquake Early Warning and Rapid Response Network

    NASA Astrophysics Data System (ADS)

    Zulfikar, Can; Pinar, Ali; Tunc, Suleyman; Erdik, Mustafa

    2014-05-01

    The Istanbul EEW network consisting of 10 inland and 5 OBS strong motion stations located close to the Main Marmara Fault zone is operated by KOERI. Data transmission between the remote stations and the base station at KOERI is provided both with satellite and fiber optic cable systems. The continuous on-line data from these stations is used to provide real time warning for emerging potentially disastrous earthquakes. The data transmission time from the remote stations to the KOERI data center is a few milliseconds through fiber optic lines and less than a second via satellites. The early warning signal (consisting three alarm levels) is communicated to the appropriate servo shut-down systems of the receipent facilities, that automatically decide proper action based on the alarm level. Istanbul Gas Distribution Corporation (IGDAS) is one of the end users of the EEW signal. IGDAS, the primary natural gas provider in Istanbul, operates an extensive system 9,867 km of gas lines with 550 district regulators and 474,000 service boxes. State of-the-art protection systems automatically cut natural gas flow when breaks in the pipelines are detected. Since 2005, buildings in Istanbul using natural gas are required to install seismometers that automatically cut natural gas flow when certain thresholds are exceeded. IGDAS uses a sophisticated SCADA (supervisory control and data acquisition) system to monitor the state-of-health of its pipeline network. This system provides real-time information about quantities related to pipeline monitoring, including input-output pressure, drawing information, positions of station and RTU (remote terminal unit) gates, slum shut mechanism status at 581 district regulator sites. The SCADA system of IGDAŞ receives the EEW signal from KOERI and decide the proper actions according to the previously specified ground acceleration levels. Presently, KOERI sends EEW signal to the SCADA system of IGDAS Natural Gas Network of Istanbul. The EEW signal

  2. Highly sensitive hydrogen detection of catalyst-free ZnO nanorod networks suspended by lithography-assisted growth.

    PubMed

    Huh, Junghwan; Park, Jonghyurk; Kim, Gyu Tae; Park, Jeong Young

    2011-02-25

    We have successfully demonstrated a ZnO nanorod-based 3D nanostructure to show a high sensitivity and very fast response/recovery to hydrogen gas. ZnO nanorods have been synthesized selectively over the pre-defined area at relatively low temperature using a simple self-catalytic solution process assisted by a lithographic method. The conductance of the ZnO nanorod device varies significantly as the concentration of the hydrogen is changed without any additive metal catalyst, revealing a high sensitivity to hydrogen gas. Its superior performance can be explained by the porous structure of its three-dimensional network and the enhanced surface reaction of the hydrogen molecules with the oxygen defects resulting from a high surface-to-volume ratio. It was found that the change of conductance follows a power law depending on the hydrogen concentration. A Langmuir isotherm following an ideal power law and a cross-over behavior of the activation energy with respect to hydrogen concentration were observed. This is a very novel and intriguing phenomenon on nanostructured materials, which suggests competitive surface reactions in ZnO nanorod gas sensors. PMID:21242633

  3. Development of a Network-Based Information Infrastructure for Fisheries and Hydropower Information in the Columbia River Basin : Final Project Report.

    SciTech Connect

    Scheibe, Timothy D.; Johnson, Gary E.; Perkins, Bill

    1997-05-01

    The goal of this project was to help develop technology and a unified structure to access and disseminate information related to the Bonneville Power Administration's fish and wildlife responsibility in the Pacific Northwest. BPA desires to increase access to, and exchange of, information produced by the Environment Fish, and Wildlife Group in concert with regional partners. Historically, data and information have been managed through numerous centralized, controlled information systems. Fisheries information has been fragmented and not widely exchanged. Where exchange has occurred, it often is not timely enough to allow resource managers to effectively use the information to guide planning and decision making. This project (and related projects) have successfully developed and piloted a network-based infrastructure that will serve as a vehicle to transparently connect existing information systems in a manner that makes information exchange efficient and inexpensive. This project was designed to provide a mechanism to help BPA address measures in the Northwest Power Planning Council's (NPPC) Fish and Wildlife program: 3.2H Disseminate Research and Monitoring Information and 5.1A.5 manage water supplies in accordance with the Annual Implementation Work Plan. This project also provided resources that can be used to assist monitoring and evaluation of the Program.

  4. Ion aggregation in high salt solutions. IV. Graph-theoretical analyses of ion aggregate structure and water hydrogen bonding network

    NASA Astrophysics Data System (ADS)

    Choi, Jun-Ho; Cho, Minhaeng

    2015-09-01

    Ions in high salt solutions form a variety of ion aggregates, from ion pairs to clusters and networks. Their influences on water hydrogen bonding (H-bonding) network structures have long been of great interest. Recently, we have shown that the morphological structures of ion aggregates can be analyzed by using a spectral graph analysis theory, where each ion cluster or ion network is represented by a properly defined graph with edges and vertices. Here, to further examine the network properties of ion aggregates and water H-bonding networks in high salt solutions, we consider a few representative graph-theoretical descriptors: clustering coefficient, minimum path length, global efficiency, and degree distribution of ion aggregates. From the molecular dynamics trajectories, these graph theoretical properties of ion aggregates and water structures in NaCl and kosmotropic solutions are calculated and shown to be strongly dependent on the two types of ion aggregate structures, i.e., ion cluster and ion network. Ion clusters in high NaCl solutions exhibit typical behaviors of scale free network. The corresponding graph theoretical properties of ion networks in high KSCN solutions are notably different from those of NaCl ion clusters and furthermore they are very similar to those of water hydrogen-bonding network. The present graph-theoretical analysis results indicate that the high solubility limits of KSCN and other ion-network-forming salts might originate from their ability to form a large scale morphological network that can be intertwined with co-existing water H-bonding network. Furthermore, it is shown that the graph-theoretical properties of water H-bonding network structures do not strongly depend on the nature of dissolved ions nor on the morphological structures of ion aggregates, indicating that water's H-bonding interaction and network-forming capability are highly robust. We anticipate that the present graph-theoretical analysis results of high salt

  5. Ion aggregation in high salt solutions. IV. Graph-theoretical analyses of ion aggregate structure and water hydrogen bonding network.

    PubMed

    Choi, Jun-Ho; Cho, Minhaeng

    2015-09-14

    Ions in high salt solutions form a variety of ion aggregates, from ion pairs to clusters and networks. Their influences on water hydrogen bonding (H-bonding) network structures have long been of great interest. Recently, we have shown that the morphological structures of ion aggregates can be analyzed by using a spectral graph analysis theory, where each ion cluster or ion network is represented by a properly defined graph with edges and vertices. Here, to further examine the network properties of ion aggregates and water H-bonding networks in high salt solutions, we consider a few representative graph-theoretical descriptors: clustering coefficient, minimum path length, global efficiency, and degree distribution of ion aggregates. From the molecular dynamics trajectories, these graph theoretical properties of ion aggregates and water structures in NaCl and kosmotropic solutions are calculated and shown to be strongly dependent on the two types of ion aggregate structures, i.e., ion cluster and ion network. Ion clusters in high NaCl solutions exhibit typical behaviors of scale free network. The corresponding graph theoretical properties of ion networks in high KSCN solutions are notably different from those of NaCl ion clusters and furthermore they are very similar to those of water hydrogen-bonding network. The present graph-theoretical analysis results indicate that the high solubility limits of KSCN and other ion-network-forming salts might originate from their ability to form a large scale morphological network that can be intertwined with co-existing water H-bonding network. Furthermore, it is shown that the graph-theoretical properties of water H-bonding network structures do not strongly depend on the nature of dissolved ions nor on the morphological structures of ion aggregates, indicating that water's H-bonding interaction and network-forming capability are highly robust. We anticipate that the present graph-theoretical analysis results of high salt

  6. The hydrogen-bond network of water supports propagating optical phonon-like modes

    PubMed Central

    Elton, Daniel C.; Fernández-Serra, Marivi

    2016-01-01

    The local structure of liquid water as a function of temperature is a source of intense research. This structure is intimately linked to the dynamics of water molecules, which can be measured using Raman and infrared spectroscopies. The assignment of spectral peaks depends on whether they are collective modes or single-molecule motions. Vibrational modes in liquids are usually considered to be associated to the motions of single molecules or small clusters. Using molecular dynamics simulations, here we find dispersive optical phonon-like modes in the librational and OH-stretching bands. We argue that on subpicosecond time scales these modes propagate through water's hydrogen-bond network over distances of up to 2 nm. In the long wavelength limit these optical modes exhibit longitudinal–transverse splitting, indicating the presence of coherent long-range dipole–dipole interactions, as in ice. Our results indicate the dynamics of liquid water have more similarities to ice than previously thought. PMID:26725363

  7. Investigation of optimal hydrogen sensing performance in semiconducting carbon nanotube network transistors with palladium electrodes

    NASA Astrophysics Data System (ADS)

    Choi, Bongsik; Lee, Dongil; Ahn, Jae-Hyuk; Yoon, Jinsu; Lee, Juhee; Jeon, Minsu; Kim, Dong Myong; Kim, Dae Hwan; Park, Inkyu; Choi, Yang-Kyu; Choi, Sung-Jin

    2015-11-01

    The work function of palladium (Pd) is known to be sensitive to hydrogen (H2) via the formation of a surface dipole layer or Pd hydride. One approach to detect such a change in the work function is based on the formation of a Schottky barrier between Pd and a semiconductor. Here, we demonstrate a H2 sensor operable at room temperature by assembling solution-processed, pre-separated semiconducting single-walled carbon nanotube (SWNT) network bridged by Pd source/drain (S/D) electrodes in a configuration of field-effect transistors (FETs) with a local back-gate electrode. To begin with, we observed that the H2 response of the fabricated SWNT FETs can be enhanced in the linear operating regime, where the change in the work function of the Pd S/D electrodes by H2 can be effectively detected. We also explore the H2 responses in various SWNT FETs with different physical dimensions to optimize the sensing performance.

  8. Reorganization of hydrogen bond network makes strong polyelectrolyte brushes pH-responsive

    PubMed Central

    Wu, Bo; Wang, Xiaowen; Yang, Jun; Hua, Zan; Tian, Kangzhen; Kou, Ran; Zhang, Jian; Ye, Shuji; Luo, Yi; Craig, Vincent S. J.; Zhang, Guangzhao; Liu, Guangming

    2016-01-01

    Weak polyelectrolytes have found extensive practical applications owing to their rich pH-responsive properties. In contrast, strong polyelectrolytes have long been regarded as pH-insensitive based on the well-established fact that the average degree of charging of strong polyelectrolyte chains is independent of pH. The possible applications of strong polyelectrolytes in smart materials have, thus, been severely limited. However, we demonstrate that almost all important properties of strong polyelectrolyte brushes (SPBs), such as chain conformation, hydration, stiffness, surface wettability, lubricity, adhesion, and protein adsorption are sensitive to pH. The pH response originates from the reorganization of the interchain hydrogen bond network between the grafted chains, triggered by the pH-mediated adsorption-desorption equilibrium of hydronium or hydroxide with the brushes. The reorganization process is firmly identified by advanced sum-frequency generation vibrational spectroscopy. Our findings not only provide a new understanding of the fundamental properties of SPBs but also uncover an extensive family of building blocks for constructing pH-responsive materials. PMID:27532049

  9. The hydrogen-bond network of water supports propagating optical phonon-like modes

    DOE PAGESBeta

    Elton, Daniel C.; Fernández-Serra, Marivi

    2016-01-04

    The local structure of liquid water as a function of temperature is a source of intense research. This structure is intimately linked to the dynamics of water molecules, which can be measured using Raman and infrared spectroscopies. The assignment of spectral peaks depends on whether they are collective modes or single-molecule motions. Vibrational modes in liquids are usually considered to be associated to the motions of single molecules or small clusters. Using molecular dynamics simulations, here we find dispersive optical phonon-like modes in the librational and OH-stretching bands. We argue that on subpicosecond time scales these modes propagate through water’smore » hydrogen-bond network over distances of up to 2 nm. In the long wavelength limit these optical modes exhibit longitudinal–transverse splitting, indicating the presence of coherent long-range dipole–dipole interactions, as in ice. Lastly, our results indicate the dynamics of liquid water have more similarities to ice than previously thought.« less

  10. Silicon network structure and 29Si spin-lattice relaxation in amorphous hydrogenated silicon

    NASA Astrophysics Data System (ADS)

    Cheung, Man Ken; Petrich, Mark A.

    1992-04-01

    We report a NMR study of amorphous hydrogenated silicon (a-Si:H) that measures the 29Si spin-lattice relaxation time T1. Measurements of 29Si T1 are useful in learning about the silicon network structure and the localized states within the mobility gap. Coupling to paramagnetic dangling bonds is the predominant 29Si spin-lattice relaxation mechanism in a-Si:H. Spin flipping of paramagnetic electrons, caused by coupling to the lattice, produces fluctuating local fields that stimulate nuclear spin-lattice relaxation. By comparing our experimental results with existing theory, we find that dangling bonds are randomly distributed in device-quality materials but are inhomogeneously distributed in non-device-quality materials. We also find that there are two simultaneously occurring dangling-bond spin-lattice relaxation mechanisms: one through the spin-orbit coupling modulated by thermal excitation of ``two-level systems,'' and the other through hopping conduction between localized states near the Fermi level. Simple chemical-shift measurements are also helpful in characterizing a-Si:H. We find that the 29Si resonance shifts upfield with increasing microstructure in the material.

  11. Reorganization of hydrogen bond network makes strong polyelectrolyte brushes pH-responsive.

    PubMed

    Wu, Bo; Wang, Xiaowen; Yang, Jun; Hua, Zan; Tian, Kangzhen; Kou, Ran; Zhang, Jian; Ye, Shuji; Luo, Yi; Craig, Vincent S J; Zhang, Guangzhao; Liu, Guangming

    2016-08-01

    Weak polyelectrolytes have found extensive practical applications owing to their rich pH-responsive properties. In contrast, strong polyelectrolytes have long been regarded as pH-insensitive based on the well-established fact that the average degree of charging of strong polyelectrolyte chains is independent of pH. The possible applications of strong polyelectrolytes in smart materials have, thus, been severely limited. However, we demonstrate that almost all important properties of strong polyelectrolyte brushes (SPBs), such as chain conformation, hydration, stiffness, surface wettability, lubricity, adhesion, and protein adsorption are sensitive to pH. The pH response originates from the reorganization of the interchain hydrogen bond network between the grafted chains, triggered by the pH-mediated adsorption-desorption equilibrium of hydronium or hydroxide with the brushes. The reorganization process is firmly identified by advanced sum-frequency generation vibrational spectroscopy. Our findings not only provide a new understanding of the fundamental properties of SPBs but also uncover an extensive family of building blocks for constructing pH-responsive materials. PMID:27532049

  12. Mapping the Hydrogen Bond Networks in the Catalytic Subunit of Protein Kinase A Using H/D Fractionation Factors.

    PubMed

    Li, Geoffrey C; Srivastava, Atul K; Kim, Jonggul; Taylor, Susan S; Veglia, Gianluigi

    2015-07-01

    Protein kinase A is a prototypical phosphoryl transferase, sharing its catalytic core (PKA-C) with the entire kinase family. PKA-C substrate recognition, active site organization, and product release depend on the enzyme's conformational transitions from the open to the closed state, which regulate its allosteric cooperativity. Here, we used equilibrium nuclear magnetic resonance hydrogen/deuterium (H/D) fractionation factors (φ) to probe the changes in the strength of hydrogen bonds within the kinase upon binding the nucleotide and a pseudosubstrate peptide (PKI5-24). We found that the φ values decrease upon binding both ligands, suggesting that the overall hydrogen bond networks in both the small and large lobes of PKA-C become stronger. However, we observed several important exceptions, with residues displaying higher φ values upon ligand binding. Notably, the changes in φ values are not localized near the ligand binding pockets; rather, they are radiated throughout the entire enzyme. We conclude that, upon ligand and pseudosubstrate binding, the hydrogen bond networks undergo extensive reorganization, revealing that the open-to-closed transitions require global rearrangements of the internal forces that stabilize the enzyme's fold. PMID:26030372

  13. Strongly Coupled Nafion Molecules and Ordered Porous CdS Networks for Enhanced Visible-Light Photoelectrochemical Hydrogen Evolution.

    PubMed

    Zheng, Xue-Li; Song, Ji-Peng; Ling, Tao; Hu, Zhen Peng; Yin, Peng-Fei; Davey, Kenneth; Du, Xi-Wen; Qiao, Shi-Zhang

    2016-06-01

    Strongly coupled Nafion molecules and ordered porous CdS networks are fabricated for visible-light photoelectrochemical (PEC) hydrogen evolution. The Nafion layer coating shifts the band position of CdS upward and accelerates charge transfer in the photoelectrode/electrolyte interface. It is highly expected that the strong coupling effect between organic and inorganic materials will provide new routes to advance PEC water splitting. PMID:27038367

  14. Giant Zn14 molecular building block in hydrogen-bonded network with permanent porosity for gas uptake.

    PubMed

    Mondal, Suvendu Sekhar; Bhunia, Asamanjoy; Kelling, Alexandra; Schilde, Uwe; Janiak, Christoph; Holdt, Hans-Jürgen

    2014-01-01

    In situ imidazolate-4,5-diamide-2-olate linker generation leads to the formation of a [Zn14(L2)12(O)(OH)2(H2O)4] molecular building block (MBB) with a Zn6 octahedron inscribed in a Zn8 cube. The MBBs connect by amide-amide hydrogen bonds to a 3D robust supramolecular network which can be activated for N2, CO2, CH4, and H2 gas sorption.

  15. Strongly Coupled Nafion Molecules and Ordered Porous CdS Networks for Enhanced Visible-Light Photoelectrochemical Hydrogen Evolution.

    PubMed

    Zheng, Xue-Li; Song, Ji-Peng; Ling, Tao; Hu, Zhen Peng; Yin, Peng-Fei; Davey, Kenneth; Du, Xi-Wen; Qiao, Shi-Zhang

    2016-06-01

    Strongly coupled Nafion molecules and ordered porous CdS networks are fabricated for visible-light photoelectrochemical (PEC) hydrogen evolution. The Nafion layer coating shifts the band position of CdS upward and accelerates charge transfer in the photoelectrode/electrolyte interface. It is highly expected that the strong coupling effect between organic and inorganic materials will provide new routes to advance PEC water splitting.

  16. Modifications on the hydrogen bond network by mutations of Escherichia coli copper efflux oxidase affect the process of proton transfer to dioxygen leading to alterations of enzymatic activities

    SciTech Connect

    Kajikawa, Takao; Kataoka, Kunishige; Sakurai, Takeshi

    2012-05-25

    Highlights: Black-Right-Pointing-Pointer Proton transfer pathway to dioxygen in CueO was identified. Black-Right-Pointing-Pointer Glu506 is the key amino acid to transport proton. Black-Right-Pointing-Pointer The Ala mutation at Glu506 formed a compensatory proton transfer pathway. Black-Right-Pointing-Pointer The Ile mutation at Glu506 shut down the hydrogen bond network. -- Abstract: CueO has a branched hydrogen bond network leading from the exterior of the protein molecule to the trinuclear copper center. This network transports protons in the four-electron reduction of dioxygen. We replaced the acidic Glu506 and Asp507 residues with the charged and uncharged amino acid residues. Peculiar changes in the enzyme activity of the mutants relative to the native enzyme indicate that an acidic amino acid residue at position 506 is essential for effective proton transport. The Ala mutation resulted in the formation of a compensatory hydrogen bond network with one or two extra water molecules. On the other hand, the Ile mutation resulted in the complete shutdown of the hydrogen bond network leading to loss of enzymatic activities of CueO. In contrast, the hydrogen bond network without the proton transport function was constructed by the Gln mutation. These results exerted on the hydrogen bond network in CueO are discussed in comparison with proton transfers in cytochrome oxidase.

  17. Resilience in social insect infrastructure systems.

    PubMed

    Middleton, Eliza J T; Latty, Tanya

    2016-03-01

    Both human and insect societies depend on complex and highly coordinated infrastructure systems, such as communication networks, supply chains and transportation networks. Like human-designed infrastructure systems, those of social insects are regularly subject to disruptions such as natural disasters, blockages or breaks in the transportation network, fluctuations in supply and/or demand, outbreaks of disease and loss of individuals. Unlike human-designed systems, there is no deliberate planning or centralized control system; rather, individual insects make simple decisions based on local information. How do these highly decentralized, leaderless systems deal with disruption? What factors make a social insect system resilient, and which factors lead to its collapse? In this review, we bring together literature on resilience in three key social insect infrastructure systems: transportation networks, supply chains and communication networks. We describe how systems differentially invest in three pathways to resilience: resistance, redirection or reconstruction. We suggest that investment in particular resistance pathways is related to the severity and frequency of disturbance. In the final section, we lay out a prospectus for future research. Human infrastructure networks are rapidly becoming decentralized and interconnected; indeed, more like social insect infrastructures. Human infrastructure management might therefore learn from social insect researchers, who can in turn make use of the mature analytical and simulation tools developed for the study of human infrastructure resilience. PMID:26962030

  18. Resilience in social insect infrastructure systems.

    PubMed

    Middleton, Eliza J T; Latty, Tanya

    2016-03-01

    Both human and insect societies depend on complex and highly coordinated infrastructure systems, such as communication networks, supply chains and transportation networks. Like human-designed infrastructure systems, those of social insects are regularly subject to disruptions such as natural disasters, blockages or breaks in the transportation network, fluctuations in supply and/or demand, outbreaks of disease and loss of individuals. Unlike human-designed systems, there is no deliberate planning or centralized control system; rather, individual insects make simple decisions based on local information. How do these highly decentralized, leaderless systems deal with disruption? What factors make a social insect system resilient, and which factors lead to its collapse? In this review, we bring together literature on resilience in three key social insect infrastructure systems: transportation networks, supply chains and communication networks. We describe how systems differentially invest in three pathways to resilience: resistance, redirection or reconstruction. We suggest that investment in particular resistance pathways is related to the severity and frequency of disturbance. In the final section, we lay out a prospectus for future research. Human infrastructure networks are rapidly becoming decentralized and interconnected; indeed, more like social insect infrastructures. Human infrastructure management might therefore learn from social insect researchers, who can in turn make use of the mature analytical and simulation tools developed for the study of human infrastructure resilience.

  19. Resilience in social insect infrastructure systems

    PubMed Central

    2016-01-01

    Both human and insect societies depend on complex and highly coordinated infrastructure systems, such as communication networks, supply chains and transportation networks. Like human-designed infrastructure systems, those of social insects are regularly subject to disruptions such as natural disasters, blockages or breaks in the transportation network, fluctuations in supply and/or demand, outbreaks of disease and loss of individuals. Unlike human-designed systems, there is no deliberate planning or centralized control system; rather, individual insects make simple decisions based on local information. How do these highly decentralized, leaderless systems deal with disruption? What factors make a social insect system resilient, and which factors lead to its collapse? In this review, we bring together literature on resilience in three key social insect infrastructure systems: transportation networks, supply chains and communication networks. We describe how systems differentially invest in three pathways to resilience: resistance, redirection or reconstruction. We suggest that investment in particular resistance pathways is related to the severity and frequency of disturbance. In the final section, we lay out a prospectus for future research. Human infrastructure networks are rapidly becoming decentralized and interconnected; indeed, more like social insect infrastructures. Human infrastructure management might therefore learn from social insect researchers, who can in turn make use of the mature analytical and simulation tools developed for the study of human infrastructure resilience. PMID:26962030

  20. Toward a National Learning Infrastructure.

    ERIC Educational Resources Information Center

    Graves, William H.

    1994-01-01

    Presents guidelines for a National Learning Infrastructure Initiative based on higher education's experience in national networking and telecommunications, including a systemic approach to instructional technology; precompetitive, object-oriented technologies and standards; prototypes that exhibit educational advantages; and leadership for change.…

  1. Cyber Security and Critical Energy Infrastructure

    SciTech Connect

    Onyeji, Ijeoma; Bazilian, Morgan; Bronk, Chris

    2014-03-01

    Both the number and security implications of sophisticated cyber attacks on companies providing critical energy infrastructures are increasing. As power networks and, to a certain extent, oil and gas infrastructure both upstream and downstream, are becoming increasingly integrated with information communication technology systems, they are growing more susceptible to cyber attacks.

  2. Infrastructure Commons in Economic Perspective

    NASA Astrophysics Data System (ADS)

    Frischmann, Brett M.

    This chapter briefly summarizes a theory (developed in substantial detail elsewhere)1 that explains why there are strong economic arguments for managing and sustaining infrastructure resources in an openly accessible manner. This theory facilitates a better understanding of two related issues: how society benefits from infrastructure resources and how decisions about how to manage or govern infrastructure resources affect a wide variety of public and private interests. The key insights from this analysis are that infrastructure resources generate value as inputs into a wide range of productive processes and that the outputs from these processes are often public goods and nonmarket goods that generate positive externalities that benefit society as a whole. Managing such resources in an openly accessible manner may be socially desirable from an economic perspective because doing so facilitates these downstream productive activities. For example, managing the Internet infrastructure in an openly accessible manner facilitates active citizen involvement in the production and sharing of many different public and nonmarket goods. Over the last decade, this has led to increased opportunities for a wide range of citizens to engage in entrepreneurship, political discourse, social network formation, and community building, among many other activities. The chapter applies these insights to the network neutrality debate and suggests how the debate might be reframed to better account for the wide range of private and public interests at stake.

  3. Oligomers Based on a Weak Hydrogen Bond Network: the Rotational Spectrum of the Tetramer of Difluoromethane

    NASA Astrophysics Data System (ADS)

    Feng, Gang; Evangelisti, Luca; Caminati, Walther; Cacelli, Ivo; Carbonaro, Laura; Prampolini, Giacomo

    2013-06-01

    Following the investigation of the rotational spectra of three conformers (so-called ``book'', ``prism'' and ``cage'') of the water hexamer, and of some other water oligomers, we report here the rotational spectrum of the tetramer of a freon molecule. The pulse jet Fourier transform microwave (pj-FTMW) spectrum of an isomer of the difluoromethane tetramer has been assigned. This molecular system is made of units of a relatively heavy asymmetric rotor, held together by a network of weak hydrogen bonds. The search of the rotational spectrum has been based on a high-level reference method, the CCSD(T)/CBS protocol. It is interesting to outline that the rotational spectrum of the water tetramer was not observed, probably because the minimum energy structures of this oligomer is effectively nonpolar in its ground states, or because of high energy tunnelling splittings. The rotational spectra of the monomer, dimer, trimer and tetramer of difluoromethane have been assigned in 1952, 1999, 2007, and 2013 (present work), with a decreasing time spacing between the various steps, looking then promising for a continuous and rapid extension of the size limits of molecular systems accessible to MW spectroscopy. C. Pérez, M. T. Muckle, D. P. Zaleski, N. A. Seifert, B. Temelso, G. C. Shields, Z. Kisiel, B. H. Pate, Science {336} (2012) 897. D. R. Lide, Jr., J. Am. Chem. Soc. {74} (1952) 3548. W. Caminati, S. Melandri, P. Moreschini, P. G. Favero, Angew. Chem. Int. Ed. {38} (1999) 2924. S. Blanco, S. Melandri, P. Ottaviani, W. Caminati, J. Am. Chem. Soc. {129} (2007) 2700.

  4. Ion aggregation in high salt solutions. V. Graph entropy analyses of ion aggregate structure and water hydrogen bonding network.

    PubMed

    Choi, Jun-Ho; Cho, Minhaeng

    2016-05-28

    Dissolved ions in water tend to form polydisperse ion aggregates such as ion pairs, relatively compact ion clusters, and even spatially extended ion networks with increasing salt concentration. Combining molecular dynamics simulation and graph theoretical analysis methods, we recently studied morphological structures of ion aggregates with distinctively different characteristics. They can be distinguished from each other by calculating various spectral graph theoretical properties such as eigenvalues and eigenvectors of adjacency matrices of ion aggregates and water hydrogen-bonding networks, minimum path lengths, clustering coefficients, and degree distributions. Here, we focus on percolation and graph entropic properties of ion aggregates and water hydrogen-bonding networks in high salt solutions. Ion network-forming K(+) and SCN(-) ions at high concentrations show a percolating behavior in their aqueous solutions, but ion cluster-forming ions in NaCl solutions do not show such a transition from isolated ion aggregates to percolating ion-water mixture morphology. Despite that the ion aggregate structures are strikingly different for either cluster- or network-forming ions in high salt solutions, it is interesting that the water structures remain insensitive to the electrostatic properties, such as charge densities and polydentate properties, of dissolved ions, and morphological structures of water H-bonding networks appear to be highly robust regardless of the nature and concentration of salt. We anticipate that the present graph entropy analysis results would be of use in understanding a variety of anomalous behaviors of interfacial water around biomolecules as well as electric conductivities of high electrolyte solutions.

  5. Ion aggregation in high salt solutions. V. Graph entropy analyses of ion aggregate structure and water hydrogen bonding network

    NASA Astrophysics Data System (ADS)

    Choi, Jun-Ho; Cho, Minhaeng

    2016-05-01

    Dissolved ions in water tend to form polydisperse ion aggregates such as ion pairs, relatively compact ion clusters, and even spatially extended ion networks with increasing salt concentration. Combining molecular dynamics simulation and graph theoretical analysis methods, we recently studied morphological structures of ion aggregates with distinctively different characteristics. They can be distinguished from each other by calculating various spectral graph theoretical properties such as eigenvalues and eigenvectors of adjacency matrices of ion aggregates and water hydrogen-bonding networks, minimum path lengths, clustering coefficients, and degree distributions. Here, we focus on percolation and graph entropic properties of ion aggregates and water hydrogen-bonding networks in high salt solutions. Ion network-forming K+ and SCN- ions at high concentrations show a percolating behavior in their aqueous solutions, but ion cluster-forming ions in NaCl solutions do not show such a transition from isolated ion aggregates to percolating ion-water mixture morphology. Despite that the ion aggregate structures are strikingly different for either cluster- or network-forming ions in high salt solutions, it is interesting that the water structures remain insensitive to the electrostatic properties, such as charge densities and polydentate properties, of dissolved ions, and morphological structures of water H-bonding networks appear to be highly robust regardless of the nature and concentration of salt. We anticipate that the present graph entropy analysis results would be of use in understanding a variety of anomalous behaviors of interfacial water around biomolecules as well as electric conductivities of high electrolyte solutions.

  6. Exploring Electrostatic Effects on the Hydrogen Bond Network of Liquid Water through Many-Body Molecular Dynamics.

    PubMed

    Straight, Shelby C; Paesani, Francesco

    2016-08-25

    To probe the dynamic nature of the hydrogen bond network in water, linear and nonlinear infrared spectra of dilute HOD in H2O are computed from many-body molecular dynamics simulations with the MB-pol potential, which have been shown to accurately predict the properties of water from the gas to the condensed phase. The effects of various approximations to the many-body expansion of the dipole moment surface on the OD-stretch absorption line shapes are analyzed at different levels of theory. The interplay between effects associated with the variation of the HOD dipole moment and instantaneous nuclear configurations causes qualitative differences in the absorption profiles, which are traced back to how induction contributions are treated within the many-body formalism. Further analysis of the multidimensional infrared spectra demonstrates that the spectral diffusion of the OD stretching frequencies depends explicitly on the level of truncation in the many-body expansion of the dipole moment in the short-time regime that is associated with intact hydrogen-bond dynamics. In contrast, the long-time evolution of spectral diffusion, describing collective rearrangements of the hydrogen-bond network, is effectively independent of the details with which many-body contributions to the dipole moment are represented. PMID:27109247

  7. N,P-Codoped Carbon Networks as Efficient Metal-free Bifunctional Catalysts for Oxygen Reduction and Hydrogen Evolution Reactions.

    PubMed

    Zhang, Jintao; Qu, Liangti; Shi, Gaoquan; Liu, Jiangyong; Chen, Jianfeng; Dai, Liming

    2016-02-01

    The high cost and scarcity of noble metal catalysts, such as Pt, have hindered the hydrogen production from electrochemical water splitting, the oxygen reduction in fuel cells and batteries. Herein, we developed a simple template-free approach to three-dimensional porous carbon networks codoped with nitrogen and phosphorus by pyrolysis of a supermolecular aggregate of self-assembled melamine, phytic acid, and graphene oxide (MPSA/GO). The pyrolyzed MPSA/GO acted as the first metal-free bifunctional catalyst with high activities for both oxygen reduction and hydrogen evolution. Zn-air batteries with the pyrolyzed MPSA/GO air electrode showed a high peak power density (310 W g(-1) ) and an excellent durability. Thus, the pyrolyzed MPSA/GO is a promising bifunctional catalyst for renewable energy technologies, particularly regenerative fuel cells. PMID:26709954

  8. N,P-Codoped Carbon Networks as Efficient Metal-free Bifunctional Catalysts for Oxygen Reduction and Hydrogen Evolution Reactions.

    PubMed

    Zhang, Jintao; Qu, Liangti; Shi, Gaoquan; Liu, Jiangyong; Chen, Jianfeng; Dai, Liming

    2016-02-01

    The high cost and scarcity of noble metal catalysts, such as Pt, have hindered the hydrogen production from electrochemical water splitting, the oxygen reduction in fuel cells and batteries. Herein, we developed a simple template-free approach to three-dimensional porous carbon networks codoped with nitrogen and phosphorus by pyrolysis of a supermolecular aggregate of self-assembled melamine, phytic acid, and graphene oxide (MPSA/GO). The pyrolyzed MPSA/GO acted as the first metal-free bifunctional catalyst with high activities for both oxygen reduction and hydrogen evolution. Zn-air batteries with the pyrolyzed MPSA/GO air electrode showed a high peak power density (310 W g(-1) ) and an excellent durability. Thus, the pyrolyzed MPSA/GO is a promising bifunctional catalyst for renewable energy technologies, particularly regenerative fuel cells.

  9. Networks of DNA-templated palladium nanowires: structural and electrical characterisation and their use as hydrogen gas sensors.

    PubMed

    Al-Hinai, Mariam N; Hassanien, Reda; Wright, Nicholas G; Horsfall, Alton B; Houlton, Andrew; Horrocks, Benjamin R

    2013-01-01

    Electroless templating on DNA is established as a means to prepare high aspect ratio nanowires via aqueous reactions at room temperature. In this report we show how Pd nanowires with extremely small grain sizes (< 2 nm) can be prepared by reduction of PdCl4(2-) in the presence of lambda-DNA. In AFM images the wires are smooth and uniform in appearance, but the grain size estimated by the Scherrer treatment of line broadening in X-ray diffraction is less than the diameter of the wires from AFM (of order 10 nm). Electrical characterisation of single nanowires by conductive AFM shows ohmic behaviour, but with high contact resistances and a resistivity (-10(-2) omega cm) much higher than the bulk value for Pd metal (-10(-5) cm @ 20 degrees C). These observations can be accounted for by a model of the nanowire growth mechanism which naturally leads to the formation of a granular metal. Using a simple combing technique with control of the surface hydrophilicity, DNA-templated Pd nanowires have also been prepared as networks on an Si/SiO2 substrate. These networks are highly convenient for the preparation of two-terminal electronic sensors for the detection of hydrogen gas. The response of these hydrogen sensors is presented and a model of the sensor response in terms of the diffusion of hydrogen into the nanowires is described. The granular structure of the nanowires makes them relatively poor conductors, but they retain a useful sensitivity to hydrogen gas.

  10. The Best-of-2-Worlds philosophy: developing local dismantling and global infrastructure network for sustainable e-waste treatment in emerging economies.

    PubMed

    Wang, Feng; Huisman, Jaco; Meskers, Christina E M; Schluep, Mathias; Stevels, Ab; Hagelüken, Christian

    2012-11-01

    E-waste is a complex waste category containing both hazardous and valuable substances. It demands for a cost-efficient treatment system which simultaneously liberates and refines target fractions in an environmentally sound way. In most developing countries there is a lack of systems covering all steps from disposal until final processing due to limited infrastructure and access to technologies and investment. This paper introduces the 'Best-of-2-Worlds' philosophy (Bo2W), which provides a network and pragmatic solution for e-waste treatment in emerging economies. It seeks technical and logistic integration of 'best' pre-processing in developing countries to manually dismantle e-waste and 'best' end-processing to treat hazardous and complex fractions in international state-of-the-art end-processing facilities. A series of dismantling trials was conducted on waste desktop computers, IT equipment, large and small household appliances, in order to compare the environmental and economic performances of the Bo2W philosophy with other conventional recycling scenarios. The assessment showed that the performance of the Bo2W scenario is more eco-efficient than mechanical separation scenarios and other local treatment solutions. For equipment containing substantial hazardous substances, it demands the assistance from domestic legislation for mandatory removal and safe handling of such fractions together with proper financing to cover the costs. Experience from Bo2W pilot projects in China and India highlighted key societal factors influencing successful implementation. These include market size, informal competitors, availability of national e-waste legislation, formal take-back systems, financing and trust between industrial players. The Bo2W philosophy can serve as a pragmatic and environmentally responsible transition before establishment of end-processing facilities in developing countries is made feasible. The executive models of Bo2W should be flexibly differentiated

  11. Reconstructing a hydrogen-driven microbial metabolic network in Opalinus Clay rock

    PubMed Central

    Bagnoud, Alexandre; Chourey, Karuna; Hettich, Robert L.; de Bruijn, Ino; Andersson, Anders F.; Leupin, Olivier X.; Schwyn, Bernhard; Bernier-Latmani, Rizlan

    2016-01-01

    The Opalinus Clay formation will host geological nuclear waste repositories in Switzerland. It is expected that gas pressure will build-up due to hydrogen production from steel corrosion, jeopardizing the integrity of the engineered barriers. In an in situ experiment located in the Mont Terri Underground Rock Laboratory, we demonstrate that hydrogen is consumed by microorganisms, fuelling a microbial community. Metagenomic binning and metaproteomic analysis of this deep subsurface community reveals a carbon cycle driven by autotrophic hydrogen oxidizers belonging to novel genera. Necromass is then processed by fermenters, followed by complete oxidation to carbon dioxide by heterotrophic sulfate-reducing bacteria, which closes the cycle. This microbial metabolic web can be integrated in the design of geological repositories to reduce pressure build-up. This study shows that Opalinus Clay harbours the potential for chemolithoautotrophic-based system, and provides a model of microbial carbon cycle in deep subsurface environments where hydrogen and sulfate are present. PMID:27739431

  12. Reconstructing a hydrogen-driven microbial metabolic network in Opalinus Clay rock

    NASA Astrophysics Data System (ADS)

    Bagnoud, Alexandre; Chourey, Karuna; Hettich, Robert L.; de Bruijn, Ino; Andersson, Anders F.; Leupin, Olivier X.; Schwyn, Bernhard; Bernier-Latmani, Rizlan

    2016-10-01

    The Opalinus Clay formation will host geological nuclear waste repositories in Switzerland. It is expected that gas pressure will build-up due to hydrogen production from steel corrosion, jeopardizing the integrity of the engineered barriers. In an in situ experiment located in the Mont Terri Underground Rock Laboratory, we demonstrate that hydrogen is consumed by microorganisms, fuelling a microbial community. Metagenomic binning and metaproteomic analysis of this deep subsurface community reveals a carbon cycle driven by autotrophic hydrogen oxidizers belonging to novel genera. Necromass is then processed by fermenters, followed by complete oxidation to carbon dioxide by heterotrophic sulfate-reducing bacteria, which closes the cycle. This microbial metabolic web can be integrated in the design of geological repositories to reduce pressure build-up. This study shows that Opalinus Clay harbours the potential for chemolithoautotrophic-based system, and provides a model of microbial carbon cycle in deep subsurface environments where hydrogen and sulfate are present.

  13. Hydrogen Data Book from the Hydrogen Analysis Resource Center

    DOE Data Explorer

    The Hydrogen Data Book contains a wide range of factual information on hydrogen and fuel cells (e.g., hydrogen properties, hydrogen production and delivery data, and information on fuel cells and fuel cell vehicles), and it also provides other data that might be useful in analyses of hydrogen infrastructure in the United States (e.g., demographic data and data on energy supply and/or infrastructure). ItÆs made available from the Hydrogen Analysis Resource Center along with a wealth of related information. The related information includes guidelines for DOE Hydrogen Program Analysis, various calculator tools, a hydrogen glossary, related websites, and analysis tools relevant to hydrogen and fuel cells. [From http://hydrogen.pnl.gov/cocoon/morf/hydrogen

  14. The hydrogen bond network in I β cellulose as observed by infrared spectrometry

    NASA Astrophysics Data System (ADS)

    Maréchal, Y.; Chanzy, H.

    2000-05-01

    FT-IR spectra of I β cellulose were recorded on films made of hydrothermally treated Valonia microcrystals. Polarized spectra of these not completely disordered systems allowed to define the spectra along the cellulose c chain axis as well as along a perpendicular axis which may slightly vary from one sample to another one. Weakening and ruptures of some hydrogen bonds upon heating the samples at 115°C, as well as evaporation of D 2O molecules and H/D exchanges after immersion in a D 2O vapor were followed spectroscopically. A critical analysis of the spectra allowed to propose a detailed assignment for most of the bands at wavenumbers higher than 800 cm -1. From this analysis it appeared that the majority (more than 2/3) of C2O2H alcohols were involved in weak hydrogen bonds or perhaps even not hydrogen-bonded at all. On the other hand, the minority of C2O2H established a hydrogen bond with the O6 atom of an adjacent primary alcohol of the same chain. This particular hydrogen bond was the strongest found in these crystals. With the proposed assignment, hydroxymethyl moieties were found adopting three conformations (a dominant one and two minor) allowing the formation of different hydrogen bonds on adjacent chains. These conformations corresponded to three slightly different C4-C5-C6-O6 ( χ) dihedral angles. Most probably the primary alcohols that accept a hydrogen bond from the adjacent C2O2H alcohols were not the ones which adopt the dominant conformation.

  15. Florida Hydrogen Initiative

    SciTech Connect

    Block, David L

    2013-06-30

    The Florida Hydrogen Initiative (FHI) was a research, development and demonstration hydrogen and fuel cell program. The FHI program objectives were to develop Florida?s hydrogen and fuel cell infrastructure and to assist DOE in its hydrogen and fuel cell activities The FHI program funded 12 RD&D projects as follows: Hydrogen Refueling Infrastructure and Rental Car Strategies -- L. Lines, Rollins College This project analyzes strategies for Florida's early stage adaptation of hydrogen-powered public transportation. In particular, the report investigates urban and statewide network of refueling stations and the feasibility of establishing a hydrogen rental-car fleet based in Orlando. Methanol Fuel Cell Vehicle Charging Station at Florida Atlantic University ? M. Fuchs, EnerFuel, Inc. The project objectives were to design, and demonstrate a 10 kWnet proton exchange membrane fuel cell stationary power plant operating on methanol, to achieve an electrical energy efficiency of 32% and to demonstrate transient response time of less than 3 milliseconds. Assessment of Public Understanding of the Hydrogen Economy Through Science Center Exhibits, J. Newman, Orlando Science Center The project objective was to design and build an interactive Science Center exhibit called: ?H2Now: the Great Hydrogen Xchange?. On-site Reformation of Diesel Fuel for Hydrogen Fueling Station Applications ? A. Raissi, Florida Solar Energy Center This project developed an on-demand forecourt hydrogen production technology by catalytically converting high-sulfur hydrocarbon fuels to an essentially sulfur-free gas. The removal of sulfur from reformate is critical since most catalysts used for the steam reformation have limited sulfur tolerance. Chemochromic Hydrogen Leak Detectors for Safety Monitoring ? N. Mohajeri and N. Muradov, Florida Solar Energy Center This project developed and demonstrated a cost-effective and highly selective chemochromic (visual) hydrogen leak detector for safety monitoring

  16. Integrating large-scale functional genomics data to dissect metabolic networks for hydrogen production

    SciTech Connect

    Harwood, Caroline S

    2012-12-17

    The goal of this project is to identify gene networks that are critical for efficient biohydrogen production by leveraging variation in gene content and gene expression in independently isolated Rhodopseudomonas palustris strains. Coexpression methods were applied to large data sets that we have collected to define probabilistic causal gene networks. To our knowledge this a first systems level approach that takes advantage of strain-to strain variability to computationally define networks critical for a particular bacterial phenotypic trait.

  17. The correspondence between the infrared vibrational spectra and the underlying hydrogen bonding network in aqueous clusters: caveats and tactics

    NASA Astrophysics Data System (ADS)

    Xantheas, Sotiris

    2015-03-01

    The structural - spectral correspondence relates the observed infrared (IR) vibrational spectra to the underlying molecular structure. In the case of hydrogen bonded clusters the IR ``fingerprint'' region in the 3,000 - 4,000 cm-1 spectral range provides a direct probe of the connectivity and dynamics of the cluster's hydrogen bonding network. For medium size (n 20) aqueous neutral and ionic clusters, the presence of several closely lying isomers that differ substantially in the oxygen atom network complicates both the sampling of the respective potential energy surfaces as well as the accurate determination of their energy order. Traditionally, a hierarchical procedure based on initial sampling with classical potentials and subsequent refinement with electronic structure methods has been used. We will highlight representative examples for the (H2O)20, (H2O)25 and H3O+(H2O)20 clusters where sampling with classical potentials fails to produce the most stable minima and outline approaches and strategies that are based on a combination of enhanced sampling of configurations in conjunction with electronic structure theory to obtain realistic cluster configurations that are consistent with the measured IR spectra. Work supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multi-program national laboratory operated for DOE by Battelle.

  18. Pillared Graphene: A New 3-D Innovative Network Nanostructure Augments Hydrogen Storage

    NASA Astrophysics Data System (ADS)

    Georgios, Dimitrakakis K.; Emmanuel, Tylianakis; George, Froudakis E.

    2009-08-01

    Nowadays, people have turned into finding an alternative power source for everyday applications. One of the most promising energy fuels is hydrogen. It can be used as an energy carrier at small portable devices (e.g. laptops and/or cell phones) up to larger, like cars. Hydrogen is considered as the perfect fuel. It can be burnt in combustion engines and the only by-product is water. For hydrogen-powered vehicles a big liming factor is the gas tank and is the reason for not using widely hydrogen in automobile applications. According to United States' Department of Energy (D.O.E.) the target for reversible hydrogen storage in mobile applications is 6% wt. and 45 gr. H2/L and these should be met by 2010. After their synthesis Carbon Nanotubes (CNTs) were considered as ideal candidates for hydrogen storage especially after some initially incorrect but invitingly results. As it was proven later, pristine carbon nanotubes cannot achieve D.O.E.'s targets in ambient conditions of pressure and temperature. Therefore, a way to increase their hydrogen storage capacity should be found. An attempt was done by doping CNTs with alkali metal atoms. Although the results were promising, even that increment was not enough. Consequently, new architectures were suggested as materials that could potentially enhance hydrogen storage. In this work a novel three dimensional (3-D) nanoporous carbon structure called Pillared Graphene (Figure 1) is proposed for augmented hydrogen storage in ambient conditions. Pillared Graphene consists of parallel graphene sheets and CNTs that act like pillars and support the graphene sheets. The entire structure (Figure 1) can be resembled like a building in its early stages of construction, where the floors are represented by graphene sheets and the pillars are the CNTs. As shown in Figure 1, CNTs do not penetrate the structure from top to bottom. Instead, they alternately go up and down, so that on the same plane do not exist two neighboring CNTs with the

  19. Study of the Hydrogen Bond Network in sub-and supercritical Water by Molecular Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Krishtal, S.; Kiselev, M.; Puhovski, Y.; Kerdcharoen, T.; Hannongbua, S.; Heinzinger, K.

    2001-08-01

    For 12 points along the tangent to the saturation curve at the critical point the temperature dependen­cies of the heights of the first maximum in the 0 -0 RDF, the average number of hydrogen bonds, and the self-diffusion coefficients have been calculated from MD simulations. The curves of these three properties show an inflection near the critical point. To improve the understanding of these changes in going from subcritical to supercritical water the librational spectra and the change in the fractions of wa­ter molecules with a given number of hydrogen bonds as a function of temperature have been derived from the simulations, additionally.

  20. Aging Water Infrastructure

    EPA Science Inventory

    The Aging Water Infrastructure (AWI) research program is part of EPA’s larger effort called the Sustainable Water Infrastructure (SI) initiative. The SI initiative brings together drinking water and wastewater utility managers; trade associations; local watershed protection organ...

  1. Theoretical Prediction of Hydrogen Separation Performance of Two-Dimensional Carbon Network of Fused Pentagon.

    PubMed

    Zhu, Lei; Xue, Qingzhong; Li, Xiaofang; Jin, Yakang; Zheng, Haixia; Wu, Tiantian; Guo, Qikai

    2015-12-30

    Using the van-der-Waals-corrected density functional theory (DFT) and molecular dynamic (MD) simulations, we theoretically predict the H2 separation performance of a new two-dimensional sp(2) carbon allotropes-fused pentagon network. The DFT calculations demonstrate that the fused pentagon network with proper pore sizes presents a surmountable energy barrier (0.18 eV) for H2 molecule passing through. Furthermore, the fused pentagon network shows an exceptionally high selectivity for H2/gas (CO, CH4, CO2, N2, et al.) at 300 and 450 K. Besides, using MD simulations we demonstrate that the fused pentagon network exhibits a H2 permeance of 4 × 10(7) GPU at 450 K, which is much higher than the value (20 GPU) in the current industrial applications. With high selectivity and excellent permeability, the fused pentagon network should be an excellent candidate for H2 separation. PMID:26632974

  2. Effect of hydrogen bonds on pKa values: importance of networking.

    PubMed

    Shokri, Alireza; Abedin, Azardokht; Fattahi, Alireza; Kass, Steven R

    2012-06-27

    The pK(a) of an acyclic aliphatic heptaol ((HOCH(2)CH(2)CH(OH)CH(2))(3)COH) was measured in DMSO, and its gas-phase acidity is reported as well. This tertiary alcohol was found to be 10(21) times more acidic than tert-butyl alcohol in DMSO and an order of magnitude more acidic than acetic acid (i.e., pK(a) = 11.4 vs 12.3). This can be attributed to a 21.9 kcal mol(-1) stabilization of the charged oxygen center in the conjugate base by three hydrogen bonds and another 6.3 kcal mol(-1) stabilization resulting from an additional three hydrogen bonds between the uncharged primary and secondary hydroxyl groups. Charge delocalization by both the first and second solvation shells may be used to facilitate enzymatic reactions. Acidity constants of a series of polyols were also computed, and the combination of hydrogen-bonding and electron-withdrawing substituents was found to afford acids that are predicted to be extremely acidic in DMSO (i.e., pK(a) < 0). These hydrogen bond enhanced acids represent an attractive class of Brønsted acid catalysts.

  3. Analysis of hydrogen bond energies and hydrogen bonded networks in water clusters (H2O)20 and (H2O)25 using the charge-transfer and dispersion terms.

    PubMed

    Iwata, Suehiro

    2014-06-21

    The hydrogen bonds and their networks in the water clusters (H2O)20 and (H2O)25 are characterized using the charge-transfer (E(W(a),W(d))(CT)) and dispersion (E(W(a),W(d))(Disp)) terms for every pair of water molecules (Wa, Wd) in the clusters. The terms are evaluated by the perturbation theory based on the ab initio locally projected molecular orbitals (LPMO PT) developed by the present author. The relative binding energies among the isomers evaluated by the LPMO PT agree with those of the high level ab initio wave function based theories. A strong correlation between E(W(a),W(d))(CT) and E(W(a),W(d))(Disp) for the hydrogen bonded pairs is found. The pair-wise interaction energies are characterized by the types of hydrogen-donor (Wd) and hydrogen-acceptor (Wa) water molecules. The strongest pair is that of the D2A1 water molecule as a hydrogen-acceptor and the D1A2 water molecule as a hydrogen-donor, where the DnAm water molecule implies that the water molecule has n hydrogen bonding O-H and m accepting HO. The intra-molecular deformation as well as the O···O distance is also dependent on the types of hydrogen bonded pairs. The ring structures in the cluster are classified by the pattern of alignment of the hydrogen bonds. The lengthening of the hydrogen-bonding OH of Wd is strongly correlated with the charge-transfer (E(W(a),W(d))(CT)) energy.

  4. The operational performance of hydrogen masers in the Deep Space Network (the performance of laboratory reference frequency standards in an operational environment)

    NASA Technical Reports Server (NTRS)

    Ward, S. C.

    1981-01-01

    Spacecraft navigation to the outer planets (Jupiter and beyond) places very stringent demands upon the performance of frequency and time (F&T) reference standards. The Deep Space Network (DSN) makes use of hydrogen masers as an aid in meeting the routine F&T operational requirements within the 64 m antenna network. Results as of October 1980 indicate the hydrogen masers are performing within the required specifications. Two problem areas are discussed: insufficient control over the environment in which the reference standards reside; and frequency drift.

  5. Snapshots of the fluctuating hydrogen bond network in liquid water on the sub-femtosecond timescale with vibrational resonant inelastic x-ray scattering.

    PubMed

    Pietzsch, A; Hennies, F; Miedema, P S; Kennedy, B; Schlappa, J; Schmitt, T; Strocov, V N; Föhlisch, A

    2015-02-27

    Liquid water molecules interact strongly with each other, forming a fluctuating hydrogen bond network and thereby giving rise to the anomalous phase diagram of liquid water. Consequently, symmetric and asymmetric water molecules have been found in the picosecond time average with IR and optical Raman spectroscopy. With subnatural linewidth resonant inelastic x-ray scattering (RIXS) at vibrational resolution, we take sub-femtosecond snapshots of the electronic and structural properties of water molecules in the hydrogen bond network. We derive a strong dominance of nonsymmetric molecules in liquid water in contrast to the gas phase on the sub-femtosecond timescale of RIXS and determine the fraction of highly asymmetrically distorted molecules.

  6. Neutron structure of human carbonic anhydrase II: A hydrogen bonded water network switch is observed between pH 7.8 and 10.0.

    SciTech Connect

    Fisher, Zoe; Langan, Paul; Mustyakimov, Marat; Kovalevsky, Andrey

    2011-01-01

    The neutron structure of wild type human carbonic anhydrase II at pH 7.8 has been determined to 2.0 resolution. Detailed analysis and comparison to the previous determined structure at pH 10.0 shows important differences in protonation of key catalytic residues in the active site as well as a rearrangement of the hydrogen bonded water network. For the first time, a completed hydrogen bonded network stretching from the Zn-bound solvent to the proton shuttling residue His64 has been directed observed.

  7. An authentication infrastructure for today and tomorrow

    SciTech Connect

    Engert, D.E.

    1996-06-01

    The Open Software Foundation`s Distributed Computing Environment (OSF/DCE) was originally designed to provide a secure environment for distributed applications. By combining it with Kerberos Version 5 from MIT, it can be extended to provide network security as well. This combination can be used to build both an inter and intra organizational infrastructure while providing single sign-on for the user with overall improved security. The ESnet community of the Department of Energy is building just such an infrastructure. ESnet has modified these systems to improve their interoperability, while encouraging the developers to incorporate these changes and work more closely together to continue to improve the interoperability. The success of this infrastructure depends on its flexibility to meet the needs of many applications and network security requirements. The open nature of Kerberos, combined with the vendor support of OSF/DCE, provides the infrastructure for today and tomorrow.

  8. The interplay of covalency, hydrogen bonding, and dispersion leads to a long range chiral network: The example of 2-butanol

    NASA Astrophysics Data System (ADS)

    Liriano, Melissa L.; Carrasco, Javier; Lewis, Emily A.; Murphy, Colin J.; Lawton, Timothy J.; Marcinkowski, Matthew D.; Therrien, Andrew J.; Michaelides, Angelos; Sykes, E. Charles H.

    2016-03-01

    The assembly of complex structures in nature is driven by an interplay between several intermolecular interactions, from strong covalent bonds to weaker dispersion forces. Understanding and ultimately controlling the self-assembly of materials requires extensive study of how these forces drive local nanoscale interactions and how larger structures evolve. Surface-based self-assembly is particularly amenable to modeling and measuring these interactions in well-defined systems. This study focuses on 2-butanol, the simplest aliphatic chiral alcohol. 2-butanol has recently been shown to have interesting properties as a chiral modifier of surface chemistry; however, its mode of action is not fully understood and a microscopic understanding of the role non-covalent interactions play in its adsorption and assembly on surfaces is lacking. In order to probe its surface properties, we employed high-resolution scanning tunneling microscopy and density functional theory (DFT) simulations. We found a surprisingly rich degree of enantiospecific adsorption, association, chiral cluster growth and ultimately long range, highly ordered chiral templating. Firstly, the chiral molecules acquire a second chiral center when adsorbed to the surface via dative bonding of one of the oxygen atom lone pairs. This interaction is controlled via the molecule's intrinsic chiral center leading to monomers of like chirality, at both chiral centers, adsorbed on the surface. The monomers then associate into tetramers via a cyclical network of hydrogen bonds with an opposite chirality at the oxygen atom. The evolution of these square units is surprising given that the underlying surface has a hexagonal symmetry. Our DFT calculations, however, reveal that the tetramers are stable entities that are able to associate with each other by weaker van der Waals interactions and tessellate in an extended square network. This network of homochiral square pores grows to cover the whole Au(111) surface. Our data

  9. The interplay of covalency, hydrogen bonding, and dispersion leads to a long range chiral network: The example of 2-butanol.

    PubMed

    Liriano, Melissa L; Carrasco, Javier; Lewis, Emily A; Murphy, Colin J; Lawton, Timothy J; Marcinkowski, Matthew D; Therrien, Andrew J; Michaelides, Angelos; Sykes, E Charles H

    2016-03-01

    The assembly of complex structures in nature is driven by an interplay between several intermolecular interactions, from strong covalent bonds to weaker dispersion forces. Understanding and ultimately controlling the self-assembly of materials requires extensive study of how these forces drive local nanoscale interactions and how larger structures evolve. Surface-based self-assembly is particularly amenable to modeling and measuring these interactions in well-defined systems. This study focuses on 2-butanol, the simplest aliphatic chiral alcohol. 2-butanol has recently been shown to have interesting properties as a chiral modifier of surface chemistry; however, its mode of action is not fully understood and a microscopic understanding of the role non-covalent interactions play in its adsorption and assembly on surfaces is lacking. In order to probe its surface properties, we employed high-resolution scanning tunneling microscopy and density functional theory (DFT) simulations. We found a surprisingly rich degree of enantiospecific adsorption, association, chiral cluster growth and ultimately long range, highly ordered chiral templating. Firstly, the chiral molecules acquire a second chiral center when adsorbed to the surface via dative bonding of one of the oxygen atom lone pairs. This interaction is controlled via the molecule's intrinsic chiral center leading to monomers of like chirality, at both chiral centers, adsorbed on the surface. The monomers then associate into tetramers via a cyclical network of hydrogen bonds with an opposite chirality at the oxygen atom. The evolution of these square units is surprising given that the underlying surface has a hexagonal symmetry. Our DFT calculations, however, reveal that the tetramers are stable entities that are able to associate with each other by weaker van der Waals interactions and tessellate in an extended square network. This network of homochiral square pores grows to cover the whole Au(111) surface. Our data

  10. The interplay of covalency, hydrogen bonding, and dispersion leads to a long range chiral network: The example of 2-butanol.

    PubMed

    Liriano, Melissa L; Carrasco, Javier; Lewis, Emily A; Murphy, Colin J; Lawton, Timothy J; Marcinkowski, Matthew D; Therrien, Andrew J; Michaelides, Angelos; Sykes, E Charles H

    2016-03-01

    The assembly of complex structures in nature is driven by an interplay between several intermolecular interactions, from strong covalent bonds to weaker dispersion forces. Understanding and ultimately controlling the self-assembly of materials requires extensive study of how these forces drive local nanoscale interactions and how larger structures evolve. Surface-based self-assembly is particularly amenable to modeling and measuring these interactions in well-defined systems. This study focuses on 2-butanol, the simplest aliphatic chiral alcohol. 2-butanol has recently been shown to have interesting properties as a chiral modifier of surface chemistry; however, its mode of action is not fully understood and a microscopic understanding of the role non-covalent interactions play in its adsorption and assembly on surfaces is lacking. In order to probe its surface properties, we employed high-resolution scanning tunneling microscopy and density functional theory (DFT) simulations. We found a surprisingly rich degree of enantiospecific adsorption, association, chiral cluster growth and ultimately long range, highly ordered chiral templating. Firstly, the chiral molecules acquire a second chiral center when adsorbed to the surface via dative bonding of one of the oxygen atom lone pairs. This interaction is controlled via the molecule's intrinsic chiral center leading to monomers of like chirality, at both chiral centers, adsorbed on the surface. The monomers then associate into tetramers via a cyclical network of hydrogen bonds with an opposite chirality at the oxygen atom. The evolution of these square units is surprising given that the underlying surface has a hexagonal symmetry. Our DFT calculations, however, reveal that the tetramers are stable entities that are able to associate with each other by weaker van der Waals interactions and tessellate in an extended square network. This network of homochiral square pores grows to cover the whole Au(111) surface. Our data

  11. Parallel digital forensics infrastructure.

    SciTech Connect

    Liebrock, Lorie M.; Duggan, David Patrick

    2009-10-01

    This report documents the architecture and implementation of a Parallel Digital Forensics infrastructure. This infrastructure is necessary for supporting the design, implementation, and testing of new classes of parallel digital forensics tools. Digital Forensics has become extremely difficult with data sets of one terabyte and larger. The only way to overcome the processing time of these large sets is to identify and develop new parallel algorithms for performing the analysis. To support algorithm research, a flexible base infrastructure is required. A candidate architecture for this base infrastructure was designed, instantiated, and tested by this project, in collaboration with New Mexico Tech. Previous infrastructures were not designed and built specifically for the development and testing of parallel algorithms. With the size of forensics data sets only expected to increase significantly, this type of infrastructure support is necessary for continued research in parallel digital forensics. This report documents the implementation of the parallel digital forensics (PDF) infrastructure architecture and implementation.

  12. Internet Infrastructures and Health Care Systems: a Qualitative Comparative Analysis on Networks and Markets in the British National Health Service and Kaiser Permanente

    PubMed Central

    2002-01-01

    Background The Internet and emergent telecommunications infrastructures are transforming the future of health care management. The costs of health care delivery systems, products, and services continue to rise everywhere, but performance of health care delivery is associated with institutional and ideological considerations as well as availability of financial and technological resources. Objective To identify the effects of ideological differences on health care market infrastructures including the Internet and telecommunications technologies by a comparative case analysis of two large health care organizations: the British National Health Service and the California-based Kaiser Permanente health maintenance organization. Methods A qualitative comparative analysis focusing on the British National Health Service and the Kaiser Permanente health maintenance organization to show how system infrastructures vary according to market dynamics dominated by health care institutions ("push") or by consumer demand ("pull"). System control mechanisms may be technologically embedded, institutional, or behavioral. Results The analysis suggests that telecommunications technologies and the Internet may contribute significantly to health care system performance in a context of ideological diversity. Conclusions The study offers evidence to validate alternative models of health care governance: the national constitution model, and the enterprise business contract model. This evidence also suggests important questions for health care policy makers as well as researchers in telecommunications, organizational theory, and health care management. PMID:12554552

  13. EEW Implementation into Critical Infrastructures

    NASA Astrophysics Data System (ADS)

    Zulfikar, Can; Pinar, Ali

    2016-04-01

    In FP7 MARsite project WP9, the integration algorithm of existing strong motion networks with the critical infrastructures strong motion networks have been studied. In Istanbul, the existing Istanbul Earthquake Early Warning (IEEW) strong motion network consists of 15 stations including 10 on land and 5 ocean bottom stations. The system provides continuous online data and earthquake early warning alert depending on the exceedance of the threshold levels in ground motion acceleration in certain number of station within the certain time interval. The data transmission is provided through the fiber optic cable and satellite line alternatively. The early warning alert is transmitted to the critical infrastructures of Istanbul Natural Gas distribution line and Marmaray Tube Tunnel line in order to activate the local strong motion networks for the automatic shut-off mechanism. Istanbul Natural Gas distribution line has 1.800km steel and 15.200km polyethylene in total 18.000km gas pipeline in Istanbul. There are in total 750 district regulators in the city where the gas pressure is reduced from 20bar to 4bar and from there the gas is transmitted with polyethylene lines to service boxes. Currently, Istanbul Natural Gas Distribution Company (IGDAS) has its own strong motion network with 110 strong motion stations installed at the 110 of 750 district regulators. Once the IGDAS strong motion network is activated by the IEEW network, depending on the exceedance of the ground motion parameters threshold levels the gas flow is stopped at the district regulators. Other than the Earthquake Early Warning operation in IGDAS strong motion network, having the calculated ground motion parameters in the network provides damage maps for the buildings and natural gas pipeline network. The Marmaray Tube Tunnel connects the Europe and Asian sides of Istanbul City by a rail line. The tunnel is 1.4km length and consists of 13segments. There is strong motion monitoring network in the tunnel

  14. Hydrogen powered bus

    ScienceCinema

    None

    2016-07-12

    Take a ride on a new type of bus, fueled by hydrogen. These hydrogen taxis are part of a Department of Energy-funded deployment of hydrogen powered vehicles and fueling infrastructure at nine federal facilities across the country to demonstrate this market-ready advanced technology. Produced and leased by Ford Motor Company , they consist of one 12- passenger bus and one nine-passenger bus. More information at: http://go.usa.gov/Tgr

  15. On similarity of hydrogen-bonded networks in liquid formamide and water as revealed in the static dielectric studies.

    PubMed

    Jadżyn, Jan; Świergiel, Jolanta

    2012-03-01

    The paper presents the experimental verification of the result obtained with the molecular dynamics simulation which revealed the differences in the topology of the hydrogen-bonded networks in liquid formamide and water, namely, the differences in their intermolecular cyclization process (I. Bakó, et al. J. Chem. Phys. 2010, 132, 014506). It is shown in our paper that the difference in the (simulated) size distribution of the hydrogen-bonded molecular rings in water (a relatively sharp maximum at about 6 molecules) and formamide (a broad maximum at about 11 molecules) strongly manifests itself in the experimental values of the Kirkwood correlation factor of the compounds. A much larger number of molecules included in the cyclic species (of more or less compensated dipole moment) leads to significant decrease of the Kirkwood correlation factor of formamide in comparison to that of water. Besides, as a consequence of an enhancement in formation of the cyclic multimers of formamide, one observes an essential reduction of the orientational entropy increment of that liquid, in comparison to the entropy effect related to liquid amides where the chain multimers are formed.

  16. JINR cloud infrastructure evolution

    NASA Astrophysics Data System (ADS)

    Baranov, A. V.; Balashov, N. A.; Kutovskiy, N. A.; Semenov, R. N.

    2016-09-01

    To fulfil JINR commitments in different national and international projects related to the use of modern information technologies such as cloud and grid computing as well as to provide a modern tool for JINR users for their scientific research a cloud infrastructure was deployed at Laboratory of Information Technologies of Joint Institute for Nuclear Research. OpenNebula software was chosen as a cloud platform. Initially it was set up in simple configuration with single front-end host and a few cloud nodes. Some custom development was done to tune JINR cloud installation to fit local needs: web form in the cloud web-interface for resources request, a menu item with cloud utilization statistics, user authentication via Kerberos, custom driver for OpenVZ containers. Because of high demand in that cloud service and its resources over-utilization it was re-designed to cover increasing users' needs in capacity, availability and reliability. Recently a new cloud instance has been deployed in high-availability configuration with distributed network file system and additional computing power.

  17. Stable hydrogen and oxygen isotope ratios for selected sites of the National Oceanic and Atmospheric Administration's Atmospheric Integrated Research Monitoring Network (AIRMoN)

    USGS Publications Warehouse

    Coplen, Tyler B.; Huang, Richard

    2000-01-01

    Increasingly, hydrologic studies require information on the isotopic composition of natural waters. This report presents stable hydrogen (δ2H) and oxygen isotope ratios (δ180) of precipitation samples from seven selected sites of the National Oceanic and Atmospheric Administration's Atmospheric Integrated Research Monitoring Network (AIRMoN) collected during the years 1992-1994.

  18. 47 CFR 59.2 - Terms and conditions of infrastructure sharing.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 3 2011-10-01 2011-10-01 false Terms and conditions of infrastructure sharing... SERVICES (CONTINUED) INFRASTRUCTURE SHARING § 59.2 Terms and conditions of infrastructure sharing. (a) An... to, enter into joint ownership or operation of public switched network infrastructure,...

  19. 47 CFR 59.2 - Terms and conditions of infrastructure sharing.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 3 2014-10-01 2014-10-01 false Terms and conditions of infrastructure sharing... SERVICES (CONTINUED) INFRASTRUCTURE SHARING § 59.2 Terms and conditions of infrastructure sharing. (a) An... to, enter into joint ownership or operation of public switched network infrastructure,...

  20. 47 CFR 59.2 - Terms and conditions of infrastructure sharing.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 3 2012-10-01 2012-10-01 false Terms and conditions of infrastructure sharing... SERVICES (CONTINUED) INFRASTRUCTURE SHARING § 59.2 Terms and conditions of infrastructure sharing. (a) An... to, enter into joint ownership or operation of public switched network infrastructure,...

  1. Architecture-based multiscale computational modeling of plant cell wall mechanics to examine the hydrogen-bonding hypothesis of cell wall network structure model

    SciTech Connect

    Yi, Hojae; Puri, Virendra M.

    2012-11-01

    A primary plant cell wall network was computationally modeled using the finite element approach to study the hypothesis of hemicellulose (HC) tethering with the cellulose microfibrils (CMFs) as one of the major load-bearing mechanisms of the growing cell wall. A computational primary cell wall network fragment (10 × 10 μm) comprising typical compositions and properties of CMFs and HC was modeled with well-aligned CMFs. The tethering of HC to CMFs is modeled in accordance with the strength of the hydrogen bonding by implementing a specific load-bearing connection (i.e. the joint element). The introduction of the CMF-HC interaction to the computational cell wall network model is a key to the quantitative examination of the mechanical consequences of cell wall structure models, including the tethering HC model. When the cell wall network models with and without joint elements were compared, the hydrogen bond exhibited a significant contribution to the overall stiffness of the cell wall network fragment. When the cell wall network model was stretched 1% in the transverse direction, the tethering of CMF-HC via hydrogen bonds was not strong enough to maintain its integrity. When the cell wall network model was stretched 1% in the longitudinal direction, the tethering provided comparable strength to maintain its integrity. This substantial anisotropy suggests that the HC tethering with hydrogen bonds alone does not manifest sufficient energy to maintain the integrity of the cell wall during its growth (i.e. other mechanisms are present to ensure the cell wall shape).

  2. Levoglucosan formation from crystalline cellulose: importance of a hydrogen bonding network in the reaction.

    PubMed

    Hosoya, Takashi; Sakaki, Shigeyoshi

    2013-12-01

    Levoglucosan (1,6-anhydro-β-D-glucopyranose) formation by the thermal degradation of native cellulose was investigated by MP4(SDQ)//DFT(B3LYP) and DFT(M06-2X)//DFT(B3LYP) level computations. The computational results of dimer models lead to the conclusion that the degradation occurs by a concerted mechanism similar to the degradation of methyl β-D-glucoside reported in our previous study. One-chain models of glucose hexamer, in which the interchain hydrogen bonds of real cellulose crystals are absent, do not exhibit the correct reaction behavior of levoglucosan formation; for instance, the activation enthalpy (Ea =≈38 kcal mol(-1) ) is considerably underestimated compared to the experimental value (48-60 kcal mol(-1) ). This problem is solved with the use of two-chain models that contain interchain hydrogen bonds. The theoretical study of this model clearly shows that the degradation of the internal glucosyl residue leads to the formation of a levoglucosan precursor at the chain end and levoglucosan is selectively formed from this levoglucosan end. The calculated Ea (56-62 kcal mol(-1) ) agrees well with the experimental value. The computational results of three-chain models indicate that this degradation occurs selectively on the crystalline surface. All these computational results provide a comprehensive understanding of several experimental facts, the mechanisms of which have not yet been elucidated.

  3. An insight into liquid water networks through hydrogen bonding halide anion: Stimulated Raman scattering

    NASA Astrophysics Data System (ADS)

    Wang, Shenghan; Fang, Wenhui; Li, Tianyu; Li, Fangfang; Sun, Chenglin; Li, Zuowei; Huang, Yuxin; Men, Zhiwei

    2016-04-01

    We have studied the interaction between water molecules and halide anions and acquired the influence of concentration by the spontaneous Raman spectrum. The results agreed well with the previous researches. To explore further, the stimulated Raman scattering of a halide-water binary solution is measured to study the nature of the hydrogen bonding between water molecules and halogen anions. Under the effect of laser-induced plasma, the OH stretching vibration spectra of aqueous solutions of halogen ions pretty exhibit different trend compared with that of spontaneous Raman spectrum. The frequency shifts of water OH vibration show different values and directions with adding different halide anions. The red shift of F-- and Cl--water molecule clusters is due to the process of charge transfer, whereas the blue shift of Br-- and I--water molecule cluster is due to polarization effect without charge transfer. The results demonstrate that F- and Cl- slightly weaken the hydrogen bond (HB), whereas Br- and I- enhance HB in the water cluster. The decrease of concentration of halogen ions aqueous solution can weaken the effect on the HB.

  4. Global Assessment of Hydrogen Technologies – Task 6 Report Promoting a Southeast Hydrogen Consortium

    SciTech Connect

    Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan Andrew J.

    2007-12-01

    The purpose of this project task was to establish a technical consortium to promote the deployment of hydrogen technologies and infrastructure in the Southeast. The goal was to partner with fuel cell manufacturers, hydrogen fuel infrastructure providers, electric utilities, energy service companies, research institutions, and user groups to improve education and awareness of hydrogen technologies in an area that is lagging behind other parts of the country in terms of vehicle and infrastructure demonstrations and deployments. This report documents that effort.

  5. CIMS: A FRAMEWORK FOR INFRASTRUCTURE INTERDEPENDENCY MODELING AND ANALYSIS

    SciTech Connect

    Donald D. Dudenhoeffer; May R. Permann; Milos Manic

    2006-12-01

    Today’s society relies greatly upon an array of complex national and international infrastructure networks such as transportation, utilities, telecommunication, and even financial networks. While modeling and simulation tools have provided insight into the behavior of individual infrastructure networks, a far less understood area is that of the interrelationships among multiple infrastructure networks including the potential cascading effects that may result due to these interdependencies. This paper first describes infrastructure interdependencies as well as presenting a formalization of interdependency types. Next the paper describes a modeling and simulation framework called CIMS© and the work that is being conducted at the Idaho National Laboratory (INL) to model and simulate infrastructure interdependencies and the complex behaviors that can result.

  6. Overview of interstate hydrogen pipeline systems.

    SciTech Connect

    Gillette, J .L.; Kolpa, R. L

    2008-02-01

    . The following discussion will focus on the similarities and differences between the two pipeline networks. Hydrogen production is currently concentrated in refining centers along the Gulf Coast and in the Farm Belt. These locations have ready access to natural gas, which is used in the steam methane reduction process to make bulk hydrogen in this country. Production centers could possibly change to lie along coastlines, rivers, lakes, or rail lines, should nuclear power or coal become a significant energy source for hydrogen production processes. Should electrolysis become a dominant process for hydrogen production, water availability would be an additional factor in the location of production facilities. Once produced, hydrogen must be transported to markets. A key obstacle to making hydrogen fuel widely available is the scale of expansion needed to serve additional markets. Developing a hydrogen transmission and distribution infrastructure would be one of the challenges to be faced if the United States is to move toward a hydrogen economy. Initial uses of hydrogen are likely to involve a variety of transmission and distribution methods. Smaller users would probably use truck transport, with the hydrogen being in either the liquid or gaseous form. Larger users, however, would likely consider using pipelines. This option would require specially constructed pipelines and the associated infrastructure. Pipeline transmission of hydrogen dates back to late 1930s. These pipelines have generally operated at less than 1,000 pounds per square inch (psi), with a good safety record. Estimates of the existing hydrogen transmission system in the United States range from about 450 to 800 miles. Estimates for Europe range from about 700 to 1,100 miles (Mohipour et al. 2004; Amos 1998). These seemingly large ranges result from using differing criteria in determining pipeline distances. For example, some analysts consider only pipelines above a certain diameter as transmission lines

  7. Broadband dielectric spectroscopy of glucose aqueous solution: Analysis of the hydration state and the hydrogen bond network

    NASA Astrophysics Data System (ADS)

    Shiraga, Keiichiro; Suzuki, Tetsuhito; Kondo, Naoshi; Tajima, Takuro; Nakamura, Masahito; Togo, Hiroyoshi; Hirata, Akihiko; Ajito, Katsuhiro; Ogawa, Yuichi

    2015-06-01

    Recent studies of saccharides' peculiar anti-freezing and anti-dehydration properties point to a close association with their strong hydration capability and destructuring effect on the hydrogen bond (HB) network of bulk water. The underlying mechanisms are, however, not well understood. In this respect, examination of the complex dielectric constants of saccharide aqueous solutions, especially over a broadband frequency region, should provide interesting insights into these properties, since the dielectric responses reflect corresponding dynamics over the time scales measured. In order to do this, the complex dielectric constants of glucose solutions between 0.5 GHz and 12 THz (from the microwave to the far-infrared region) were measured. We then performed analysis procedures on this broadband spectrum by decomposing it into four Debye and two Lorentz functions, with particular attention being paid to the β relaxation (glucose tumbling), δ relaxation (rotational polarization of the hydrated water), slow relaxation (reorientation of the HB network water), fast relaxation (rotation of the non-HB water), and intermolecular stretching vibration (hindered translation of water). On the basis of this analysis, we revealed that the hydrated water surrounding the glucose molecules exhibits a mono-modal relaxational dispersion with 2-3 times slower relaxation times than unperturbed bulk water and with a hydration number of around 20. Furthermore, other species of water with distorted tetrahedral HB water structures, as well as increases in the relative proportion of non-HB water molecules which have a faster relaxation time and are not a part of the surrounding bulk water HB network, was found in the vicinity of the glucose molecules. These clearly point to the HB destructuring effect of saccharide solutes in aqueous solution. The results, as a whole, provide a detailed picture of glucose-water and water-water interactions in the vicinity of the glucose molecules at

  8. Infrastructure: A technology battlefield in the 21st century

    SciTech Connect

    Drucker, H.

    1997-12-31

    A major part of technological advancement has involved the development of complex infrastructure systems, including electric power generation, transmission, and distribution networks; oil and gas pipeline systems; highway and rail networks; and telecommunication networks. Dependence on these infrastructure systems renders them attractive targets for conflict in the twenty-first century. Hostile governments, domestic and international terrorists, criminals, and mentally distressed individuals will inevitably find some part of the infrastructure an easy target for theft, for making political statements, for disruption of strategic activities, or for making a nuisance. The current situation regarding the vulnerability of the infrastructure can be summarized in three major points: (1) our dependence on technology has made our infrastructure more important and vital to our everyday lives, this in turn, makes us much more vulnerable to disruption in any infrastructure system; (2) technologies available for attacking infrastructure systems have changed substantially and have become much easier to obtain and use, easy accessibility to information on how to disrupt or destroy various infrastructure components means that almost anyone can be involved in this destructive process; (3) technologies for defending infrastructure systems and preventing damage have not kept pace with the capability for destroying such systems. A brief review of these points will illustrate the significance of infrastructure and the growing dangers to its various elements.

  9. Green Infrastructure 101

    EPA Science Inventory

    Green Infrastructure 101 • What is it? What does it do? What doesn’t it do? • Green Infrastructure as a stormwater and combined sewer control • GI Controls and Best Management Practices that make sense for Yonkers o (Include operations and maintenance requirements for each)

  10. Infrastructure Survey 2011

    ERIC Educational Resources Information Center

    Group of Eight (NJ1), 2012

    2012-01-01

    In 2011, the Group of Eight (Go8) conducted a survey on the state of its buildings and infrastructure. The survey is the third Go8 Infrastructure survey, with previous surveys being conducted in 2007 and 2009. The current survey updated some of the information collected in the previous surveys. It also collated data related to aspects of the…

  11. A technological infrastructure to sustain Internetworked Enterprises

    NASA Astrophysics Data System (ADS)

    La Mattina, Ernesto; Savarino, Vincenzo; Vicari, Claudia; Storelli, Davide; Bianchini, Devis

    In the Web 3.0 scenario, where information and services are connected by means of their semantics, organizations can improve their competitive advantage by publishing their business and service descriptions. In this scenario, Semantic Peer to Peer (P2P) can play a key role in defining dynamic and highly reconfigurable infrastructures. Organizations can share knowledge and services, using this infrastructure to move towards value networks, an emerging organizational model characterized by fluid boundaries and complex relationships. This chapter collects and defines the technological requirements and architecture of a modular and multi-Layer Peer to Peer infrastructure for SOA-based applications. This technological infrastructure, based on the combination of Semantic Web and P2P technologies, is intended to sustain Internetworked Enterprise configurations, defining a distributed registry and enabling more expressive queries and efficient routing mechanisms. The following sections focus on the overall architecture, while describing the layers that form it.

  12. Networking strategies of the microscopy community for improved utilisation of advanced instruments: (3) Two European initiatives to support TEM infrastructures and promote electron microscopy over Europe, ESTEEM (2006-2011) and ESTEEM 2 (2012-2016)

    NASA Astrophysics Data System (ADS)

    Snoeck, Etienne; Van Tendeloo, Gustaaf

    2014-02-01

    The ESTEEM consortium of electron microscopy laboratories for materials science and solid-state physics has been created as an EU-supported delocalized infrastructure (I3) to bring together the major electron microscopy centres in Europe. Its main objectives were to develop networking, to offer transnational access to these centres with specialized and complementary techniques and skills and to upgrade in close collaboration different technical and methodological aspects such as tomography, spectroscopy, holography, detectors, and specimen holders. These efforts were aimed to strengthen the position of European microscopy and to generate new technologies potentially of high relevance in many domains identified as strategic. Following the success of the first program, ESTEEM has been reconducted in 2012 for four more years with an enlarged set of partners.

  13. Infrastructure of electronic information management

    USGS Publications Warehouse

    Twitchell, G.D.

    2004-01-01

    The information technology infrastructure of an organization, whether it is a private, non-profit, federal, or academic institution, is key to delivering timely and high-quality products and services to its customers and stakeholders. With the evolution of the Internet and the World Wide Web, resources that were once "centralized" in nature are now distributed across the organization in various locations and often remote regions of the country. This presents tremendous challenges to the information technology managers, users, and CEOs of large world-wide corporations who wish to exchange information or get access to resources in today's global marketplace. Several tools and technologies have been developed over recent years that play critical roles in ensuring that the proper information infrastructure exists within the organization to facilitate this global information marketplace Such tools and technologies as JAVA, Proxy Servers, Virtual Private Networks (VPN), multi-platform database management solutions, high-speed telecommunication technologies (ATM, ISDN, etc.), mass storage devices, and firewall technologies most often determine the organization's success through effective and efficient information infrastructure practices. This session will address several of these technologies and provide options related to those that may exist and can be readily applied within Eastern Europe. ?? 2004 - IOS Press and the authors. All rights reserved.

  14. Water in Carbon Nanotubes: The Peculiar Hydrogen Bond Network Revealed by Infrared Spectroscopy.

    PubMed

    Dalla Bernardina, Simona; Paineau, Erwan; Brubach, Jean-Blaise; Judeinstein, Patrick; Rouzière, Stéphan; Launois, Pascale; Roy, Pascale

    2016-08-24

    A groundbreaking discovery in nanofluidics was the observation of the tremendously enhanced water permeability of carbon nanotubes, those iconic objects of nanosciences. The origin of this phenomenon is still a subject of controversy. One of the proposed explanations involves dramatic modifications of the H-bond network of nanoconfined water with respect to that of bulk water. Infrared spectroscopy is an ideal technique to follow modifications of this network through the inter- and intramolecular bonds of water molecules. Here we report the first infrared study of water uptake at controlled vapor pressure in single walled carbon nanotubes with diameters ranging from 0.7 to 2.1 nm. It reveals a predominant contribution of loose H bonds even for fully hydrated states, irrespective of the nanotube size. Our results show that, while the dominating loosely bond signature is attributed to a one-dimensional chain structure for small diameter nanotubes, this feature also results from a water layer with "free" OH (dangling) bonds facing the nanotube wall for larger diameter nanotubes. These experimental findings provide a solid reference for further modeling of water behavior in hydrophobic nanochannels. PMID:27455124

  15. The operational performance of hydrogen masers in the deep space network: The performance of laboratory reference frequency standards in an operational environment

    NASA Technical Reports Server (NTRS)

    Ward, S. C.

    1981-01-01

    Hydrogen masers used as aids in meeting the routine frequency and time operational requirements within the 64 m antenna Deep Space Network. Both the operational syntonation (frequency synchronization) and the the clock (epoch) synchronization requirements were established through the use of specifically calibrated H-P E215061A flying clock. The sync/synt to UTC was maintained using LORAN and TV in simultaneous reception mode. The sync/synt within the 64 m net was maintained through the use of very long base interferometry. Results indicate that the hydrogen masers perform well within the required specifications.

  16. Modeling and simulating critical infrastructures and their interdependencies.

    SciTech Connect

    Rinaldi, Steven M.

    2003-07-01

    Our national security, economic prosperity, and national well-being are dependent upon a set of highly interdependent critical infrastructures. Examples of these infrastructures include the national electrical grid, oil and natural gas systems, telecommunication and information networks, transportation networks, water systems, and banking and financial systems. Given the importance of their reliable and secure operations, understanding the behavior of these infrastructures - particularly when stressed or under attack - is crucial. Models and simulations can provide considerable insight into the complex nature of their behaviors and operational characteristics. These models and simulations must include interdependencies among infrastructures if they are to provide accurate representations of infrastructure characteristics and operations. A number of modeling and simulation approaches under development today directly address interdependencies and offer considerable insight into the operational and behavioral characteristics of critical infrastructures.

  17. From trihydrogen interstellar ion to hydrogen-oxygen reaction networks in terrestrial middle atmosphere

    NASA Astrophysics Data System (ADS)

    Varandas, A. J. C.

    After a brief overview on the generalized Born-Oppenheimer approximation and global modelling of electronic manifolds, we focus on two case histories. In the first, we report an accurate double-sheet potential energy surface1 and ro-vibrational calculations1,2 for the H3+(3A') ion which is of relevance in interstellar and plasma chemistries. In the second, we examine odd-hydrogen systems with up to five oxygen atoms which play a crucial role in the chemistry of the middle atmosphere. The premise will then be that all processes occur adiabatically on the relevant ground state potential energy surface, with the emphasis being on our recent observation that highly vibrationally excited spaecies such as O2(v) and OH (v) can hardly thermalize at such altitudes3, thus offering4 within this situation of local thermodynamic disequilibrium a possible clue for know mesospheric mysteries such as the ``ozone deficit problem'' and ``HOx dilemma''. We conclude with some remarks on continuing challenges and planned work.

  18. Proton transfer in hydrogen-bonded network of phenol molecules: intracluster formation of water.

    PubMed

    Lengyel, Jozef; Gorejová, Radka; Herman, Zdeněk; Fárník, Michal

    2013-11-01

    Electron ionization and time-of-flight mass spectrometry was used to investigate the phenol clusters (PhOH)n of different size from single molecule to large clusters: in coexpansion with He, the dimers n = 2 are mostly generated; in Ar, large species of n ≥ 10 also occur. Besides [(PhOH)n](+•) cluster ion series, hydrated phenol cluster ions [(PhOH)n·xH2O](+•) with up to x = 3 water molecules and dehydrated phenol clusters [(PhOH)n-H2O](+•) were observed. The hydrated phenol series exhibits minima and maxima that are interpreted as evidence for proton transfer between the hydrogen bonded cluster ions of cyclic structures. The proton transfer leads to a water generation within the clusters, and subsequent elimination of the diphenyl ether molecule(s) from the cluster yields the hydrated phenol cluster ions. Alternatively, a water molecule release yields a series of dehydrated phenols, among which the diphenyl ether ion [PhOPh](+•) (n = 2) constitutes the maximum.

  19. 47 CFR 59.2 - Terms and conditions of infrastructure sharing.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    .... 59.2 Section 59.2 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER... to, enter into joint ownership or operation of public switched network infrastructure, technology... infrastructure, technology, information, or telecommunications facilities, or functions made available to...

  20. The Component Model of Infrastructure: A Practical Approach to Understanding Public Health Program Infrastructure

    PubMed Central

    Snyder, Kimberly; Rieker, Patricia P.

    2014-01-01

    Functioning program infrastructure is necessary for achieving public health outcomes. It is what supports program capacity, implementation, and sustainability. The public health program infrastructure model presented in this article is grounded in data from a broader evaluation of 18 state tobacco control programs and previous work. The newly developed Component Model of Infrastructure (CMI) addresses the limitations of a previous model and contains 5 core components (multilevel leadership, managed resources, engaged data, responsive plans and planning, networked partnerships) and 3 supporting components (strategic understanding, operations, contextual influences). The CMI is a practical, implementation-focused model applicable across public health programs, enabling linkages to capacity, sustainability, and outcome measurement. PMID:24922125

  1. Infrastructure Ecology for Sustainable and Resilient Urban Infrastructure Design

    SciTech Connect

    Jeong, Hyunju; Pandit, Arka; Crittenden, John; Xu, Ming; Perrings, Charles; Wang, Dali; Li, Ke; French, Steve

    2010-10-01

    and secondly, it also reduces the wastewater load to central facility. In addition, lesser dependency on the distribution network contributes to increased reliability and resiliency of the infrastructure. The goal of this research is to develop a framework which seeks an optimal combination of decentralized water and energy alternatives and centralized infrastructures based on physical and socio-economic environments of a region. Centralized and decentralized options related to water, wastewater and stormwater and distributed energy alternatives including photovoltaic (PV) generators, fuel cells and microturbines are investigated. In the context of the water-energy nexus, water recovery from energy alternatives and energy recovery from water alternatives are reflected. Alternatives recapturing nutrients from wastewater are also considered to conserve depleting resources. The alternatives are evaluated in terms of their life-cycle environmental impact and economic performance using a hybrid life cycle assessment (LCA) tool and cost benefit analysis, respectively. Meeting the increasing demand of a test bed, an optimal combination of the alternatives is designed to minimize environmental and economic impacts including CO2 emissions, human health risk, natural resource use, and construction and operation cost. The framework determines the optimal combination depending on urban density, transmission or conveyance distance or network, geology, climate, etc. Therefore, it will be also able to evaluate infrastructure resiliency against physical and socio-economic challenges such as population growth, severe weather, energy and water shortage, economic crisis, and so on.

  2. The ICT Infrastructure: A Driver of Change.

    ERIC Educational Resources Information Center

    Katz, Richard N.

    2002-01-01

    Explores the influence of information and communications technology (ICT) infrastructure changes on higher education. Addresses issues such as ICT hardware, networks, and leadership and skills; budgets; policy (including access to information, information privacy, information security, and ownership of faculty course materials); changes in…

  3. Privacy and the National Information Infrastructure.

    ERIC Educational Resources Information Center

    Rotenberg, Marc

    1994-01-01

    Explains the work of Computer Professionals for Social Responsibility regarding privacy issues in the use of electronic networks; recommends principles that should be adopted for a National Information Infrastructure privacy code; discusses the need for public education; and suggests pertinent legislative proposals. (LRW)

  4. Predictable and SuStainable Implementation of National Cardiovascular Registries (PASSION) infrastructure: A think tank report from Medical Device Epidemiological Network Initiative (MDEpiNet).

    PubMed

    Zeitler, Emily P; Al-Khatib, Sana M; Drozda, Joseph P; Kessler, Larry G; Kirtane, Ajay J; Kong, David F; Laschinger, John; Marinac-Dabic, Danica; Morice, Marie-Claude; Reed, Terrie; Sedrakyan, Art; Stein, Kenneth M; Tcheng, James; Krucoff, Mitchell W

    2016-01-01

    The MDEpiNet is a public-private partnership between the US Food and Drug Administration's Center for Devices and Radiological Health and participating partners. The PASSION program is an MDEpiNet-sponsored program that aims to demonstrate the goals of MDEpiNet by using cardiovascular medical device registries to bridge evidence gaps across the medical device total product life cycle. To this end, a PASSION Think Tank meeting took place in October 2014 in Silver Spring, MD, to facilitate discussion between stakeholders about the successes, challenges, and future novel applications of medical device registries, with particular emphasis on identifying pilot projects. Participants spanned a broad range of groups including patients, device manufacturers, regulators, physicians/academicians, professional societies, providers, and payers. The meeting focus included 4 areas of cardiovascular medicine intended to cultivate interest in 4 MDEpiNet disease-specific/device-specific working groups: coronary intervention, electrophysiology, valvular disease, and peripheral vascular disease. In addition, more general issues applying to registry-based infrastructure and analytical methodologies for assessing device benefit/risk were considered to provide context for the working groups as PASSION programs going forward. This article summarizes the discussions at the meeting and the future directions of the PASSION program.

  5. Predictable and SuStainable Implementation of National Cardiovascular Registries (PASSION) infrastructure: A think tank report from Medical Device Epidemiological Network Initiative (MDEpiNet).

    PubMed

    Zeitler, Emily P; Al-Khatib, Sana M; Drozda, Joseph P; Kessler, Larry G; Kirtane, Ajay J; Kong, David F; Laschinger, John; Marinac-Dabic, Danica; Morice, Marie-Claude; Reed, Terrie; Sedrakyan, Art; Stein, Kenneth M; Tcheng, James; Krucoff, Mitchell W

    2016-01-01

    The MDEpiNet is a public-private partnership between the US Food and Drug Administration's Center for Devices and Radiological Health and participating partners. The PASSION program is an MDEpiNet-sponsored program that aims to demonstrate the goals of MDEpiNet by using cardiovascular medical device registries to bridge evidence gaps across the medical device total product life cycle. To this end, a PASSION Think Tank meeting took place in October 2014 in Silver Spring, MD, to facilitate discussion between stakeholders about the successes, challenges, and future novel applications of medical device registries, with particular emphasis on identifying pilot projects. Participants spanned a broad range of groups including patients, device manufacturers, regulators, physicians/academicians, professional societies, providers, and payers. The meeting focus included 4 areas of cardiovascular medicine intended to cultivate interest in 4 MDEpiNet disease-specific/device-specific working groups: coronary intervention, electrophysiology, valvular disease, and peripheral vascular disease. In addition, more general issues applying to registry-based infrastructure and analytical methodologies for assessing device benefit/risk were considered to provide context for the working groups as PASSION programs going forward. This article summarizes the discussions at the meeting and the future directions of the PASSION program. PMID:26699602

  6. Toward Developing Genetic Algorithms to Aid in Critical Infrastructure Modeling

    SciTech Connect

    Not Available

    2007-05-01

    Today’s society relies upon an array of complex national and international infrastructure networks such as transportation, telecommunication, financial and energy. Understanding these interdependencies is necessary in order to protect our critical infrastructure. The Critical Infrastructure Modeling System, CIMS©, examines the interrelationships between infrastructure networks. CIMS© development is sponsored by the National Security Division at the Idaho National Laboratory (INL) in its ongoing mission for providing critical infrastructure protection and preparedness. A genetic algorithm (GA) is an optimization technique based on Darwin’s theory of evolution. A GA can be coupled with CIMS© to search for optimum ways to protect infrastructure assets. This includes identifying optimum assets to enforce or protect, testing the addition of or change to infrastructure before implementation, or finding the optimum response to an emergency for response planning. This paper describes the addition of a GA to infrastructure modeling for infrastructure planning. It first introduces the CIMS© infrastructure modeling software used as the modeling engine to support the GA. Next, the GA techniques and parameters are defined. Then a test scenario illustrates the integration with CIMS© and the preliminary results.

  7. Raman Spectra of Liquid Water from Ab Initio Molecular Dynamics: Vibrational Signatures of Charge Fluctuations in the Hydrogen Bond Network.

    PubMed

    Wan, Quan; Spanu, Leonardo; Galli, Giulia A; Gygi, François

    2013-09-10

    We report the first ab initio simulations of the Raman spectra of liquid water, obtained by combining first principles molecular dynamics and density functional perturbation theory. Our computed spectra are in good agreement with experiments, especially in the low frequency region. We also describe a systematic strategy to analyze the Raman intensities, which is of general applicability to molecular solids and liquids, and it is based on maximally localized Wannier functions and effective molecular polarizabilities. Our analysis revealed the presence of intermolecular charge fluctuations accompanying the hydrogen bond (HB) stretching modes at 270 cm(-1), in spite of the absence of any Raman activity in the isotropic spectrum. We also found that charge fluctuations partly contribute to the 200 cm(-1) peak in the anisotropic spectrum, thus providing insight into the controversial origin of such peak. Our results highlighted the importance of taking into account electronic effects in interpreting the Raman spectra of liquid water and the key role of charge fluctuations within the HB network; they also pointed at the inaccuracies of models using constant molecular polarizabilities to describe the Raman response of liquid water. PMID:26592405

  8. An Easily Accessible Self-Healing Transparent Film Based on a 2D Supramolecular Network of Hydrogen-Bonding Interactions between Polymeric Chains.

    PubMed

    Roy, Nabarun; Tomović, Željko; Buhler, Eric; Lehn, Jean-Marie

    2016-09-12

    Self-healing polymers hold great promise for the future, enhancing in particular the longevity of polymeric materials. We describe a self-healing covalent polymer, presenting an extensive array of hydrogen-bonding sites based on the combination of urea, urethane, and bis-acyl-hydrazine units. Solvent-cast thin-films prepared by polycondensation of a commercially available dihydrazide and a diisocyanate prepolymer exhibited excellent room temperature autonomous healing with almost full recovery of mechanical properties when two parts of a cut film were overlapped and gently pressed together. This autonomous healing upon damage may be attributed to the supramolecular dynamics of multiple lateral inter-chain hydrogen-bonding interactions between the polymer chains. The solid-state structure of a model compound incorporating the same structural backbone corroborates the existence of an extensive two-dimensional supramolecular hydrogen-bonding network. PMID:27226034

  9. Critical Infrastructure Modeling System

    2004-10-01

    The Critical Infrastructure Modeling System (CIMS) is a 3D modeling and simulation environment designed to assist users in the analysis of dependencies within individual infrastructure and also interdependencies between multiple infrastructures. Through visual cuing and textual displays, a use can evaluate the effect of system perturbation and identify the emergent patterns that evolve. These patterns include possible outage areas from a loss of power, denial of service or access, and disruption of operations. Method ofmore » Solution: CIMS allows the user to model a system, create an overlay of information, and create 3D representative images to illustrate key infrastructure elements. A geo-referenced scene, satellite, aerial images or technical drawings can be incorporated into the scene. Scenarios of events can be scripted, and the user can also interact during run time to alter system characteristics. CIMS operates as a discrete event simulation engine feeding a 3D visualization.« less

  10. A Federal Response: The President's Critical Infrastructure Protection Board.

    ERIC Educational Resources Information Center

    Schmidt, Howard

    2002-01-01

    Outlines the U.S. Critical Infrastructure Protection Board's purpose, budget, principles, and priorities. Describes the board's role in coordinating all federal activities related to protection of information systems and networks supporting critical infrastructures. Also discusses its responsibility in creating a policy and road map for government…

  11. Proton transfer reactions and hydrogen-bond networks in protein environments.

    PubMed

    Ishikita, Hiroshi; Saito, Keisuke

    2014-02-01

    In protein environments, proton transfer reactions occur along polar or charged residues and isolated water molecules. These species consist of H-bond networks that serve as proton transfer pathways; therefore, thorough understanding of H-bond energetics is essential when investigating proton transfer reactions in protein environments. When the pKa values (or proton affinity) of the H-bond donor and acceptor moieties are equal, significantly short, symmetric H-bonds can be formed between the two, and proton transfer reactions can occur in an efficient manner. However, such short, symmetric H-bonds are not necessarily stable when they are situated near the protein bulk surface, because the condition of matching pKa values is opposite to that required for the formation of strong salt bridges, which play a key role in protein-protein interactions. To satisfy the pKa matching condition and allow for proton transfer reactions, proteins often adjust the pKa via electron transfer reactions or H-bond pattern changes. In particular, when a symmetric H-bond is formed near the protein bulk surface as a result of one of these phenomena, its instability often results in breakage, leading to large changes in protein conformation.

  12. Photoelectrochemical water splitting and hydrogen generation by a spontaneously formed InGaN nanowall network

    SciTech Connect

    Alvi, N. H. E-mail: r.noetzel@isom.upm.es; Soto Rodriguez, P. E. D.; Kumar, Praveen; Gómez, V. J.; Aseev, P.; Nötzel, R. E-mail: r.noetzel@isom.upm.es; Alvi, M. A.; Willander, M.

    2014-06-02

    We investigate photoelectrochemical water splitting by a spontaneously formed In-rich InGaN nanowall network, combining the material of choice with the advantages of surface texturing for light harvesting by light scattering. The current density for the InGaN-nanowalls-photoelectrode at zero voltage versus the Ag/AgCl reference electrode is 3.4 mA cm{sup −2} with an incident-photon-to-current-conversion efficiency (IPCE) of 16% under 350 nm laser illumination with 0.075 W·cm{sup −2} power density. In comparison, the current density for a planar InGaN-layer-photoelectrode is 2 mA cm{sup −2} with IPCE of 9% at zero voltage versus the Ag/AgCl reference electrode. The H{sub 2} generation rates at zero externally applied voltage versus the Pt counter electrode per illuminated area are 2.8 and 1.61 μmol·h{sup −1}·cm{sup −2} for the InGaN nanowalls and InGaN layer, respectively, revealing ∼57% enhancement for the nanowalls.

  13. Proton transfer reactions and hydrogen-bond networks in protein environments

    PubMed Central

    Ishikita, Hiroshi; Saito, Keisuke

    2014-01-01

    In protein environments, proton transfer reactions occur along polar or charged residues and isolated water molecules. These species consist of H-bond networks that serve as proton transfer pathways; therefore, thorough understanding of H-bond energetics is essential when investigating proton transfer reactions in protein environments. When the pKa values (or proton affinity) of the H-bond donor and acceptor moieties are equal, significantly short, symmetric H-bonds can be formed between the two, and proton transfer reactions can occur in an efficient manner. However, such short, symmetric H-bonds are not necessarily stable when they are situated near the protein bulk surface, because the condition of matching pKa values is opposite to that required for the formation of strong salt bridges, which play a key role in protein–protein interactions. To satisfy the pKa matching condition and allow for proton transfer reactions, proteins often adjust the pKa via electron transfer reactions or H-bond pattern changes. In particular, when a symmetric H-bond is formed near the protein bulk surface as a result of one of these phenomena, its instability often results in breakage, leading to large changes in protein conformation. PMID:24284891

  14. Emergency navigation without an infrastructure.

    PubMed

    Gelenbe, Erol; Bi, Huibo

    2014-08-18

    Emergency navigation systems for buildings and other built environments, such as sport arenas or shopping centres, typically rely on simple sensor networks to detect emergencies and, then, provide automatic signs to direct the evacuees. The major drawbacks of such static wireless sensor network (WSN)-based emergency navigation systems are the very limited computing capacity, which makes adaptivity very difficult, and the restricted battery power, due to the low cost of sensor nodes for unattended operation. If static wireless sensor networks and cloud-computing can be integrated, then intensive computations that are needed to determine optimal evacuation routes in the presence of time-varying hazards can be offloaded to the cloud, but the disadvantages of limited battery life-time at the client side, as well as the high likelihood of system malfunction during an emergency still remain. By making use of the powerful sensing ability of smart phones, which are increasingly ubiquitous, this paper presents a cloud-enabled indoor emergency navigation framework to direct evacuees in a coordinated fashion and to improve the reliability and resilience for both communication and localization. By combining social potential fields (SPF) and a cognitive packet network (CPN)-based algorithm, evacuees are guided to exits in dynamic loose clusters. Rather than relying on a conventional telecommunications infrastructure, we suggest an ad hoc cognitive packet network (AHCPN)-based protocol to adaptively search optimal communication routes between portable devices and the network egress nodes that provide access to cloud servers, in a manner that spares the remaining battery power of smart phones and minimizes the time latency. Experimental results through detailed simulations indicate that smart human motion and smart network management can increase the survival rate of evacuees and reduce the number of drained smart phones in an evacuation process.

  15. Emergency Navigation without an Infrastructure

    PubMed Central

    Gelenbe, Erol; Bi, Huibo

    2014-01-01

    Emergency navigation systems for buildings and other built environments, such as sport arenas or shopping centres, typically rely on simple sensor networks to detect emergencies and, then, provide automatic signs to direct the evacuees. The major drawbacks of such static wireless sensor network (WSN)-based emergency navigation systems are the very limited computing capacity, which makes adaptivity very difficult, and the restricted battery power, due to the low cost of sensor nodes for unattended operation. If static wireless sensor networks and cloud-computing can be integrated, then intensive computations that are needed to determine optimal evacuation routes in the presence of time-varying hazards can be offloaded to the cloud, but the disadvantages of limited battery life-time at the client side, as well as the high likelihood of system malfunction during an emergency still remain. By making use of the powerful sensing ability of smart phones, which are increasingly ubiquitous, this paper presents a cloud-enabled indoor emergency navigation framework to direct evacuees in a coordinated fashion and to improve the reliability and resilience for both communication and localization. By combining social potential fields (SPF) and a cognitive packet network (CPN)-based algorithm, evacuees are guided to exits in dynamic loose clusters. Rather than relying on a conventional telecommunications infrastructure, we suggest an ad hoc cognitive packet network (AHCPN)-based protocol to adaptively search optimal communication routes between portable devices and the network egress nodes that provide access to cloud servers, in a manner that spares the remaining battery power of smart phones and minimizes the time latency. Experimental results through detailed simulations indicate that smart human motion and smart network management can increase the survival rate of evacuees and reduce the number of drained smart phones in an evacuation process. PMID:25196014

  16. Building safeguards infrastructure

    SciTech Connect

    Stevens, Rebecca S; Mcclelland - Kerr, John

    2009-01-01

    Much has been written in recent years about the nuclear renaissance - the rebirth of nuclear power as a clean and safe source of electricity around the world. Those who question the nuclear renaissance often cite the risk of proliferation, accidents or an attack on a facility as concerns, all of which merit serious consideration. The integration of these three areas - sometimes referred to as 3S, for safety, security and safeguards - is essential to supporting the growth of nuclear power, and the infrastructure that supports them should be strengthened. The focus of this paper will be on the role safeguards plays in the 3S concept and how to support the development of the infrastructure necessary to support safeguards. The objective of this paper has been to provide a working definition of safeguards infrastructure, and to discuss xamples of how building safeguards infrastructure is presented in several models. The guidelines outlined in the milestones document provide a clear path for establishing both the safeguards and the related infrastructures needed to support the development of nuclear power. The model employed by the INSEP program of engaging with partner states on safeguards-related topics that are of current interest to the level of nuclear development in that state provides another way of approaching the concept of building safeguards infrastructure. The Next Generation Safeguards Initiative is yet another approach that underscored five principal areas for growth, and the United States commitment to working with partners to promote this growth both at home and abroad.

  17. Hydrogen energy systems studies

    SciTech Connect

    Ogden, J.M.; Kreutz, T.G.; Steinbugler, M.

    1996-10-01

    In this report the authors describe results from technical and economic assessments carried out during the past year with support from the USDOE Hydrogen R&D Program. (1) Assessment of technologies for small scale production of hydrogen from natural gas. Because of the cost and logistics of transporting and storing hydrogen, it may be preferable to produce hydrogen at the point of use from more readily available energy carriers such as natural gas or electricity. In this task the authors assess near term technologies for producing hydrogen from natural gas at small scale including steam reforming, partial oxidation and autothermal reforming. (2) Case study of developing a hydrogen vehicle refueling infrastructure in Southern California. Many analysts suggest that the first widespread use of hydrogen energy is likely to be in zero emission vehicles in Southern California. Several hundred thousand zero emission automobiles are projected for the Los Angeles Basin alone by 2010, if mandated levels are implemented. Assuming that hydrogen vehicles capture a significant fraction of this market, a large demand for hydrogen fuel could evolve over the next few decades. Refueling a large number of hydrogen vehicles poses significant challenges. In this task the authors assess near term options for producing and delivering gaseous hydrogen transportation fuel to users in Southern California including: (1) hydrogen produced from natural gas in a large, centralized steam reforming plant, and delivered to refueling stations via liquid hydrogen truck or small scale hydrogen gas pipeline, (2) hydrogen produced at the refueling station via small scale steam reforming of natural gas, (3) hydrogen produced via small scale electrolysis at the refueling station, and (4) hydrogen from low cost chemical industry sources (e.g. excess capacity in refineries which have recently upgraded their hydrogen production capacity, etc.).

  18. Water Splitting: Strongly Coupled Nafion Molecules and Ordered Porous CdS Networks for Enhanced Visible-Light Photoelectrochemical Hydrogen Evolution (Adv. Mater. 24/2016).

    PubMed

    Zheng, Xue-Li; Song, Ji-Peng; Ling, Tao; Hu, Zhen Peng; Yin, Peng-Fei; Davey, Kenneth; Du, Xi-Wen; Qiao, Shi-Zhang

    2016-06-01

    T. Ling, X.-W. Du, S. Z. Qiao, and co-workers report strongly coupled Nafion molecules and ordered-porous CdS networks for visible-light water splitting. The image conceptually shows how the three-dimensional ordered structure effectively harvests incoming light. As described on page 4935, the inorganic CdS skeleton is homogeneously passivated by the organic Nafion molecules to facilitate hydrogen generation. PMID:27311095

  19. Water Splitting: Strongly Coupled Nafion Molecules and Ordered Porous CdS Networks for Enhanced Visible-Light Photoelectrochemical Hydrogen Evolution (Adv. Mater. 24/2016).

    PubMed

    Zheng, Xue-Li; Song, Ji-Peng; Ling, Tao; Hu, Zhen Peng; Yin, Peng-Fei; Davey, Kenneth; Du, Xi-Wen; Qiao, Shi-Zhang

    2016-06-01

    T. Ling, X.-W. Du, S. Z. Qiao, and co-workers report strongly coupled Nafion molecules and ordered-porous CdS networks for visible-light water splitting. The image conceptually shows how the three-dimensional ordered structure effectively harvests incoming light. As described on page 4935, the inorganic CdS skeleton is homogeneously passivated by the organic Nafion molecules to facilitate hydrogen generation.

  20. The Emerging National Information Infrastructure and Reference Services.

    ERIC Educational Resources Information Center

    Summerhill, Craig A.

    1994-01-01

    Discusses networked information resources used by reference librarians in research libraries. Highlights include the NREN (National Research and Education Network); the Internet; network architecture; the national information infrastructure; the effect of electronic information on reference desk transactions; the changing nature of research; the…

  1. Neuron-Inspired Interpenetrative Network Composed of Cobalt-Phosphorus-Derived Nanoparticles Embedded within Porous Carbon Nanotubes for Efficient Hydrogen Production.

    PubMed

    Shen, Juanxia; Yang, Zhi; Ge, Mengzhan; Li, Ping; Nie, Huagui; Cai, Qiran; Gu, Cancan; Yang, Keqin; Huang, Shaoming

    2016-07-13

    The ongoing search for cheap and efficient hydrogen evolution reaction (HER) electrocatalysts to replace currently used catalysts based on Pt or its alloys has been considered as an prevalent strategy to produce renewable and clean hydrogen energy. Herein, inspired by the neuron structure in biological systems, we demonstrate a novel fabrication strategy via a simple two-step method for the synthesis of a neuronlike interpenetrative nanocomposite network of Co-P embedded in porous carbon nanotubes (NIN-Co-P/PCNTs). It is found that the interpenetrative network provides a natural transport path to accelerate the hydrogen production process. The embedded-type structure improves the utilization ratio of Co-P and the hollow, tubelike, and porous structure of PCNTs further promote charge and reactant transport. These factors allow the as-prepared NIN-Co-P/PCNTs to achieve a onset potential low to 43 mV, a Tafel slope as small as 40 mV/decade, an excellent stability, and a high turnover frequency value of 3.2 s(-1) at η = 0.2 V in acidic conditions. These encouraging properties derived from the neuronlike interpenetrative network structure might offer new inspiration for the preparation of more nanocomposites for applications in other catalytic and optoelectronic field.

  2. REMO: A new protocol to refine full atomic protein models from C-alpha traces by optimizing hydrogen-bonding networks.

    PubMed

    Li, Yunqi; Zhang, Yang

    2009-08-15

    Protein structure prediction approaches usually perform modeling simulations based on reduced representation of protein structures. For biological utilizations, it is an important step to construct full atomic models from the reduced structure decoys. Most of the current full atomic model reconstruction procedures have defects which either could not completely remove the steric clashes among backbone atoms or generate final atomic models with worse topology similarity relative to the native structures than the reduced models. In this work, we develop a new protocol, called REMO, to generate full atomic protein models by optimizing the hydrogen-bonding network with basic fragments matched from a newly constructed backbone isomer library of solved protein structures. The algorithm is benchmarked on 230 nonhomologous proteins with reduced structure decoys generated by I-TASSER simulations. The results show that REMO has a significant ability to remove steric clashes, and meanwhile retains good topology of the reduced model. The hydrogen-bonding network of the final models is dramatically improved during the procedure. The REMO algorithm has been exploited in the recent CASP8 experiment which demonstrated significant improvements of the I-TASSER models in both atomic-level structural refinement and hydrogen-bonding network construction.

  3. Neuron-Inspired Interpenetrative Network Composed of Cobalt-Phosphorus-Derived Nanoparticles Embedded within Porous Carbon Nanotubes for Efficient Hydrogen Production.

    PubMed

    Shen, Juanxia; Yang, Zhi; Ge, Mengzhan; Li, Ping; Nie, Huagui; Cai, Qiran; Gu, Cancan; Yang, Keqin; Huang, Shaoming

    2016-07-13

    The ongoing search for cheap and efficient hydrogen evolution reaction (HER) electrocatalysts to replace currently used catalysts based on Pt or its alloys has been considered as an prevalent strategy to produce renewable and clean hydrogen energy. Herein, inspired by the neuron structure in biological systems, we demonstrate a novel fabrication strategy via a simple two-step method for the synthesis of a neuronlike interpenetrative nanocomposite network of Co-P embedded in porous carbon nanotubes (NIN-Co-P/PCNTs). It is found that the interpenetrative network provides a natural transport path to accelerate the hydrogen production process. The embedded-type structure improves the utilization ratio of Co-P and the hollow, tubelike, and porous structure of PCNTs further promote charge and reactant transport. These factors allow the as-prepared NIN-Co-P/PCNTs to achieve a onset potential low to 43 mV, a Tafel slope as small as 40 mV/decade, an excellent stability, and a high turnover frequency value of 3.2 s(-1) at η = 0.2 V in acidic conditions. These encouraging properties derived from the neuronlike interpenetrative network structure might offer new inspiration for the preparation of more nanocomposites for applications in other catalytic and optoelectronic field. PMID:27315228

  4. Development Model for Research Infrastructures

    NASA Astrophysics Data System (ADS)

    Wächter, Joachim; Hammitzsch, Martin; Kerschke, Dorit; Lauterjung, Jörn

    2015-04-01

    Research infrastructures (RIs) are platforms integrating facilities, resources and services used by the research communities to conduct research and foster innovation. RIs include scientific equipment, e.g., sensor platforms, satellites or other instruments, but also scientific data, sample repositories or archives. E-infrastructures on the other hand provide the technological substratum and middleware to interlink distributed RI components with computing systems and communication networks. The resulting platforms provide the foundation for the design and implementation of RIs and play an increasing role in the advancement and exploitation of knowledge and technology. RIs are regarded as essential to achieve and maintain excellence in research and innovation crucial for the European Research Area (ERA). The implementation of RIs has to be considered as a long-term, complex development process often over a period of 10 or more years. The ongoing construction of Spatial Data Infrastructures (SDIs) provides a good example for the general complexity of infrastructure development processes especially in system-of-systems environments. A set of directives issued by the European Commission provided a framework of guidelines for the implementation processes addressing the relevant content and the encoding of data as well as the standards for service interfaces and the integration of these services into networks. Additionally, a time schedule for the overall construction process has been specified. As a result this process advances with a strong participation of member states and responsible organisations. Today, SDIs provide the operational basis for new digital business processes in both national and local authorities. Currently, the development of integrated RIs in Earth and Environmental Sciences is characterised by the following properties: • A high number of parallel activities on European and national levels with numerous institutes and organisations participating

  5. Development Model for Research Infrastructures

    NASA Astrophysics Data System (ADS)

    Wächter, Joachim; Hammitzsch, Martin; Kerschke, Dorit; Lauterjung, Jörn

    2015-04-01

    Research infrastructures (RIs) are platforms integrating facilities, resources and services used by the research communities to conduct research and foster innovation. RIs include scientific equipment, e.g., sensor platforms, satellites or other instruments, but also scientific data, sample repositories or archives. E-infrastructures on the other hand provide the technological substratum and middleware to interlink distributed RI components with computing systems and communication networks. The resulting platforms provide the foundation for the design and implementation of RIs and play an increasing role in the advancement and exploitation of knowledge and technology. RIs are regarded as essential to achieve and maintain excellence in research and innovation crucial for the European Research Area (ERA). The implementation of RIs has to be considered as a long-term, complex development process often over a period of 10 or more years. The ongoing construction of Spatial Data Infrastructures (SDIs) provides a good example for the general complexity of infrastructure development processes especially in system-of-systems environments. A set of directives issued by the European Commission provided a framework of guidelines for the implementation processes addressing the relevant content and the encoding of data as well as the standards for service interfaces and the integration of these services into networks. Additionally, a time schedule for the overall construction process has been specified. As a result this process advances with a strong participation of member states and responsible organisations. Today, SDIs provide the operational basis for new digital business processes in both national and local authorities. Currently, the development of integrated RIs in Earth and Environmental Sciences is characterised by the following properties: • A high number of parallel activities on European and national levels with numerous institutes and organisations participating

  6. Guest Editorial Introduction to the Special Issue on 'Advanced Signal Processing Techniques and Telecommunications Network Infrastructures for Smart Grid Analysis, Monitoring, and Management'

    SciTech Connect

    Bracale, Antonio; Barros, Julio; Cacciapuoti, Angela Sara; Chang, Gary; Dall'Anese, Emiliano

    2015-06-10

    Electrical power systems are undergoing a radical change in structure, components, and operational paradigms, and are progressively approaching the new concept of smart grids (SGs). Future power distribution systems will be characterized by the simultaneous presence of various distributed resources, such as renewable energy systems (i.e., photovoltaic power plant and wind farms), storage systems, and controllable/non-controllable loads. Control and optimization architectures will enable network-wide coordination of these grid components in order to improve system efficiency and reliability and to limit greenhouse gas emissions. In this context, the energy flows will be bidirectional from large power plants to end users and vice versa; producers and consumers will continuously interact at different voltage levels to determine in advance the requests of loads and to adapt the production and demand for electricity flexibly and efficiently also taking into account the presence of storage systems.

  7. Guest Editorial Introduction to the Special Issue on 'Advanced Signal Processing Techniques and Telecommunications Network Infrastructures for Smart Grid Analysis, Monitoring, and Management'

    DOE PAGESBeta

    Bracale, Antonio; Barros, Julio; Cacciapuoti, Angela Sara; Chang, Gary; Dall'Anese, Emiliano

    2015-06-10

    Electrical power systems are undergoing a radical change in structure, components, and operational paradigms, and are progressively approaching the new concept of smart grids (SGs). Future power distribution systems will be characterized by the simultaneous presence of various distributed resources, such as renewable energy systems (i.e., photovoltaic power plant and wind farms), storage systems, and controllable/non-controllable loads. Control and optimization architectures will enable network-wide coordination of these grid components in order to improve system efficiency and reliability and to limit greenhouse gas emissions. In this context, the energy flows will be bidirectional from large power plants to end users andmore » vice versa; producers and consumers will continuously interact at different voltage levels to determine in advance the requests of loads and to adapt the production and demand for electricity flexibly and efficiently also taking into account the presence of storage systems.« less

  8. LNG infrastructure and equipment

    SciTech Connect

    Forgash, D.J.

    1995-12-31

    Sound engineering principals have been used by every company involved in the development of the LNG infrastructure, but there is very little that is new. The same cryogenic technology that is used in the manufacture and sale of nitrogen, argon, and oxygen infrastructure is used in LNG infrastructure. The key component of the refueling infrastructure is the LNG tank which should have a capacity of at least 15,000 gallons. These stainless steel tanks are actually a tank within a tank separated by an annular space that is void of air creating a vacuum between the inner and outer tank where superinsulation is applied. Dispensing can be accomplished by pressure or pump. Either works well and has been demonstrated in the field. Until work is complete on NFPA 57 or The Texas Railroad Commission Rules for LNG are complete, the industry is setting the standards for the safe installation of refueling infrastructure. As a new industry, the safety record to date has been outstanding.

  9. Hydrogen Technology Education Workshop Proceedings

    SciTech Connect

    2002-12-01

    This document outlines activities for educating key target audiences, as suggested by workshop participants. Held December 4-5, 2002, the Hydrogen Technology Education Workshop kicked off a new education effort coordinated by the Hydrogen, Fuel Cells, & Infrastructure Technologies Program of the Office of Energy Efficiency and Renewable Energy.

  10. Disruption of a hydrogen bond network in human versus spider monkey cytochrome c affects heme crevice stability.

    PubMed

    Goldes, Matthew E; Jeakins-Cooley, Margaret E; McClelland, Levi J; Mou, Tung-Chung; Bowler, Bruce E

    2016-05-01

    The hypothesis that the recent rapid evolution of primate cytochromes c, which primarily involves residues in the least stable Ω-loop (Ω-loop C, residues 40-57), stabilizes the heme crevice of cytochrome c relative to other mammals, is tested. To accomplish this goal, we have compared the properties of human and spider monkey cytochrome c and a set of four variants produced in the process of converting human cytochrome c into spider monkey cytochrome c. The global stability of all variants has been measured by guanidine hydrochloride denaturation. The stability of the heme crevice has been assessed with the alkaline conformational transition. Structural insight into the effects of the five amino acid substitutions needed to convert human cytochrome c into spider monkey cytochrome c is provided by a 1.15Å resolution structure of spider monkey cytochrome c. The global stability for all variants is near 9.0kcal/mol at 25°C and pH7, which is higher than that observed for other mammalian cytochromes c. The heme crevice stability is more sensitive to the substitutions required to produce spider monkey cytochrome c with decreases of up to 0.5 units in the apparent pKa of the alkaline conformational transition relative to human cytochrome c. The structure of spider monkey cytochrome c indicates that the Y46F substitution destabilizes the heme crevice by disrupting an extensive hydrogen bond network that connects three surface loops including Ω-loop D (residues 70-85), which contains the Met80 heme ligand.

  11. Hydrogen Bonding Networks Tune Proton-Coupled Redox Steps during the Enzymatic Six-Electron Conversion of Nitrite to Ammonia

    PubMed Central

    2015-01-01

    Multielectron multiproton reactions play an important role in both biological systems and chemical reactions involved in energy storage and manipulation. A key strategy employed by nature in achieving such complex chemistry is the use of proton-coupled redox steps. Cytochrome c nitrite reductase (ccNiR) catalyzes the six-electron seven-proton reduction of nitrite to ammonia. While a catalytic mechanism for ccNiR has been proposed on the basis of studies combining computation and crystallography, there have been few studies directly addressing the nature of the proton-coupled events that are predicted to occur along the nitrite reduction pathway. Here we use protein film voltammetry to directly interrogate the proton-coupled steps that occur during nitrite reduction by ccNiR. We find that conversion of nitrite to ammonia by ccNiR adsorbed to graphite electrodes is defined by two distinct phases; one is proton-coupled, and the other is not. Mutation of key active site residues (H257, R103, and Y206) modulates these phases and specifically alters the properties of the detected proton-dependent step but does not inhibit the ability of ccNiR to conduct the full reduction of nitrite to ammonia. We conclude that the active site residues examined are responsible for tuning the protonation steps that occur during catalysis, likely through an extensive hydrogen bonding network, but are not necessarily required for the reaction to proceed. These results provide important insight into how enzymes can specifically tune proton- and electron transfer steps to achieve high turnover numbers in a physiological pH range. PMID:25137350

  12. A sociotechnical framework for understanding infrastructure breakdown and repair

    SciTech Connect

    Sims, Benjamin H

    2009-01-01

    This paper looks at how and why infrastructure is repaired. With a new era of infrastructure spending underway, policymakers need to understand and anticipate the particular technical and political challenges posed by infrastructure repair. In particular, as infrastructure problems are increasingly in the public eye with current economic stimulus efforts, the question has increasingly been asked: why has it been so difficult for the United Statesto devote sustained resources to maintaining and upgrading its national infrastructure? This paper provides a sociotechnical framework for understanding the challenges of infrastructure repair, and demonstrates this framework using a case study of seismic retrofit of freeway bridges in California. The design of infrastructure is quite different from other types of design work even when new infrastructure is being designed. Infrastructure projects are almost always situated within, and must work with, existing infrastructure networks. As a result, compared to design of more discrete technological artifacts, the design of infrastructure systems requires a great deal of attention to interfaces as well as adaptation of design to the constraints imposed by existing systems. Also, because of their scale, infrastructural technologies engage with social life at a level where explicit political agendas may playa central role in the design process. The design and building of infrastructure is therefore often an enormously complex feat of sociotechnical engineering, in which technical and political agendas are negotiated together until an outcome is reached that allows the project to move forward. These sociotechnical settlements often result in a complex balancing of powerful interests around infrastructural artifacts; at the same time, less powerful interests have historically often been excluded or marginalized from such settlements.

  13. Government Services Information Infrastructure Management

    SciTech Connect

    Cavallini, J.S.; Aiken, R.J.

    1995-04-01

    The Government Services Information Infrastructure (GSII) is that portion of the NII used to link Government and its services, enables virtual agency concepts, protects privacy, and supports emergency preparedness needs. The GSII is comprised of the supporting telecommunications technologies, network and information services infrastructure and the applications that use these. The GSII is an enlightened attempt by the Clinton/Gore Administration to form a virtual government crossing agency boundaries to interoperate more closely with industry and with the public to greatly improve the delivery of government services. The GSII and other private sector efforts, will have a significant impact on the design, development, and deployment of the NII, even if only through the procurement of such services. The Federal Government must adopt new mechanisms and new paradigms for the management of the GSII, including improved acquisition and operation of GSII components in order to maximize benefits. Government requirements and applications will continue to evolv. The requirements from government services and users of form affinity groups that more accurately and effectively define these common requirements, that drive the adoption and use of industry standards, and that provide a significant technology marketplace.

  14. European Marine Infrastructures: perspectives for Marine and Earth Sciences

    NASA Astrophysics Data System (ADS)

    Favali, P.; Beranzoli, L.; Egerton, P.; Le Traon, P. Y.; Los, W.

    2009-04-01

    The European Commission (EC) is supporting a variety of Research Infrastructures in many different scientific fields: Social Sciences and Humanities, Environmental Sciences, Energy, Biological and Medical Sciences, Physical Sciences and Engineering and e-Infrastructures. All these infrastructures are included in the new report of the "European Roadmap for Research Infrastructures" published in late 2008 by ESFRI (European Strategy Forum on Research Infrastructures, http://cordis.europa.eu/esfri/). In particular, some research infrastructures for the Environmental Sciences specifically addressed to the marine environment are presented: • EMSO (European Multidisciplinary Seafloor Observatory). The development of this underwater network is being supported by several other EC initiatives, ESONET-NoE (European Seas Network), coordinated by IFREMER (http://www.esonet-emso.org/esonet-noe/). • ERICON AURORA BOREALIS (European Research Icebreaker Consortium, http://www.eri-aurora-borealis.eu/). • EURO-ARGO (Global Ocean Observing Infrastructure, http://www.euro-argo.eu/). • LIFEWATCH (E-science and technology infrastructure for biodiversity data and observatories, http://www.lifewatch.eu/). In particular through its scientific marine networks: EUR-OCEANS (European Network of Excellence for Ocean Ecosystems Analysis, http://www.eur-oceans.eu/); MARBEF-NoE (MARine Biodiversity and Ecosystem Functioning, http://www.marbef.org/ and Marine Genomics (http://www.marine-genomics-europe.org/). Possible profitable links with new research infrastructures recently included in the roadmap, such as EPOS (European Plate Observing System) and SIAEOS (Svalbard Integrated Arctic Earth Observing System) are also pointed out. The marine EC infrastructures presented constitute the fundamental tools to support the Earth Sciences, both terrestrial and marine.

  15. Topological analyses and small-world patterns of hydrogen bond networks in water + t-butanol, water + n-butanol and water + ammonia mixtures.

    PubMed

    da Silva, Juliana Angeiras Batista; Moreira, Francisco George Brady; dos Santos, Vivianni Marques Leite; Longo, Ricardo Luiz

    2014-09-28

    Cluster (or island) statistics and topological statistical mechanics based properties were employed in the analyses of hydrogen bond (H-bond) networks of t-butanol, n-butanol and ammonia aqueous solutions. These networks were generated from equilibrated Monte Carlo simulations at mixture compositions covering the entire range of miscibility and a fine grid of points around the topological transitions. We found that these H-bond networks changed from a percolation regime in water rich mixtures to a non-percolating behavior at non-aqueous component rich compositions. Topological analysis of local (clustering coefficients, average degrees) semi-global (path lengths) and global (spectral densities) properties indicated the presence of small-world patterns for the H-bond networks in mixtures at mole fraction compositions larger than ca. 0.6. These small-world patterns are characterized by highly clustered networks with small path lengths. Spectral densities show high order moment contributions that correlate with small-world patterns, thus corroborating the robustness of these statistical mechanics based topological analyses. The degree distributions of these networks were partially rationalized by the differences in the water-water and solute-solute H-bonds.

  16. Ethylene glycol revisited: Molecular dynamics simulations and visualization of the liquid and its hydrogen-bond network.

    PubMed

    Kaiser, Alexander; Ismailova, Oksana; Koskela, Antti; Huber, Stefan E; Ritter, Marcel; Cosenza, Biagio; Benger, Werner; Nazmutdinov, Renat; Probst, Michael

    2014-01-01

    Molecular dynamics simulations of liquid ethylene glycol described by the OPLS-AA force field were performed to gain insight into its hydrogen-bond structure. We use the population correlation function as a statistical measure for the hydrogen-bond lifetime. In an attempt to understand the complicated hydrogen-bonding, we developed new molecular visualization tools within the Vish Visualization shell and used it to visualize the life of each individual hydrogen-bond. With this tool hydrogen-bond formation and breaking as well as clustering and chain formation in hydrogen-bonded liquids can be observed directly. Liquid ethylene glycol at room temperature does not show significant clustering or chain building. The hydrogen-bonds break often due to the rotational and vibrational motions of the molecules leading to an H-bond half-life time of approximately 1.5 ps. However, most of the H-bonds are reformed again so that after 50 ps only 40% of these H-bonds are irreversibly broken due to diffusional motion. This hydrogen-bond half-life time due to diffusional motion is 80.3 ps. The work was preceded by a careful check of various OPLS-based force fields used in the literature. It was found that they lead to quite different angular and H-bond distributions.

  17. Infrastructure Survey 2009

    ERIC Educational Resources Information Center

    Group of Eight (NJ1), 2010

    2010-01-01

    In 2008 the Group of Eight (Go8) released a first report on the state of its buildings and infrastructure, based on a survey undertaken in 2007. A further survey was undertaken in 2009, updating some information about the assessed quality, value and condition of buildings and use of space. It also collated data related to aspects of the estate not…

  18. An Infrastructure Museum

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2013-01-01

    This article invites teachers to let their students' imaginations soar as they become part of a team that will design a whole new kind of living technological museum, a facility that celebrates the world of infrastructure. In this activity, a new two-story building will be built, occupying a vacant corner parcel of land, approximately 150…

  19. Vulnerability of network of networks

    NASA Astrophysics Data System (ADS)

    Havlin, S.; Kenett, D. Y.; Bashan, A.; Gao, J.; Stanley, H. E.

    2014-10-01

    Our dependence on networks - be they infrastructure, economic, social or others - leaves us prone to crises caused by the vulnerabilities of these networks. There is a great need to develop new methods to protect infrastructure networks and prevent cascade of failures (especially in cases of coupled networks). Terrorist attacks on transportation networks have traumatized modern societies. With a single blast, it has become possible to paralyze airline traffic, electric power supply, ground transportation or Internet communication. How, and at which cost can one restructure the network such that it will become more robust against malicious attacks? The gradual increase in attacks on the networks society depends on - Internet, mobile phone, transportation, air travel, banking, etc. - emphasize the need to develop new strategies to protect and defend these crucial networks of communication and infrastructure networks. One example is the threat of liquid explosives a few years ago, which completely shut down air travel for days, and has created extreme changes in regulations. Such threats and dangers warrant the need for new tools and strategies to defend critical infrastructure. In this paper we review recent advances in the theoretical understanding of the vulnerabilities of interdependent networks with and without spatial embedding, attack strategies and their affect on such networks of networks as well as recently developed strategies to optimize and repair failures caused by such attacks.

  20. Hydrogen cluster/network in tobermorite as studied by multiple-quantum spin counting {sup 1}H NMR

    SciTech Connect

    Mogami, Yuuki; Yamazaki, Satoru; Matsuno, Shinya; Matsui, Kunio; Noda, Yasuto; Takegoshi, K.

    2014-12-15

    Proton multiple-quantum (MQ) spin-counting experiment has been employed to study arrangement of hydrogen atoms in 9 Å/11 Å natural/synthetic tobermorites. Even though all tobermorite samples give similar characterless, broad static-powder {sup 1}H NMR spectra, their MQ spin-counting spectra are markedly different; higher quanta in 11 Å tobermorite do not grow with the MQ excitation time, while those in 9 Å one do. A statistical analysis of the MQ results recently proposed [26] is applied to show that hydrogens align in 9 Å tobermorite one dimensionally, while in 11 Å tobermorite they exist as a cluster of 5–8 hydrogen atoms.

  1. Tuning the tetrahedrality of the hydrogen-bonded network of water: Comparison of the effects of pressure and added salts

    NASA Astrophysics Data System (ADS)

    Prasad, Saurav; Chakravarty, Charusita

    2016-06-01

    Experiments and simulations demonstrate some intriguing equivalences in the effect of pressure and electrolytes on the hydrogen-bonded network of water. Here, we examine the extent and nature of equivalence effects between pressure and salt concentration using relationships between structure, entropy, and transport properties based on two key ideas: first, the approximation of the excess entropy of the fluid by the contribution due to the atom-atom pair correlation functions and second, Rosenfeld-type excess entropy scaling relations for transport properties. We perform molecular dynamics simulations of LiCl-H2O and bulk SPC/E water spanning the concentration range 0.025-0.300 molefraction of LiCl at 1 atm and pressure range from 0 to 7 GPa, respectively. The temperature range considered was from 225 to 350 K for both the systems. To establish that the time-temperature-transformation behaviour of electrolyte solutions and water is equivalent, we use the additional observation based on our simulations that the pair entropy behaves as a near-linear function of pressure in bulk water and of composition in LiCl-H2O. This allows for the alignment of pair entropy isotherms and allows for a simple mapping of pressure onto composition. Rosenfeld-scaling implies that pair entropy is semiquantitatively related to the transport properties. At a given temperature, equivalent state points in bulk H2O and LiCl-H2O (at 1 atm) are defined as those for which the pair entropy, diffusivity, and viscosity are nearly identical. The microscopic basis for this equivalence lies in the ability of both pressure and ions to convert the liquid phase into a pair-dominated fluid, as demonstrated by the O-O-O angular distribution within the first coordination shell of a water molecule. There are, however, sharp differences in local order and mechanisms for the breakdown of tetrahedral order by pressure and electrolytes. Increasing pressure increases orientational disorder within the first

  2. Tuning the tetrahedrality of the hydrogen-bonded network of water: Comparison of the effects of pressure and added salts.

    PubMed

    Prasad, Saurav; Chakravarty, Charusita

    2016-06-21

    Experiments and simulations demonstrate some intriguing equivalences in the effect of pressure and electrolytes on the hydrogen-bonded network of water. Here, we examine the extent and nature of equivalence effects between pressure and salt concentration using relationships between structure, entropy, and transport properties based on two key ideas: first, the approximation of the excess entropy of the fluid by the contribution due to the atom-atom pair correlation functions and second, Rosenfeld-type excess entropy scaling relations for transport properties. We perform molecular dynamics simulations of LiCl-H2O and bulk SPC/E water spanning the concentration range 0.025-0.300 molefraction of LiCl at 1 atm and pressure range from 0 to 7 GPa, respectively. The temperature range considered was from 225 to 350 K for both the systems. To establish that the time-temperature-transformation behaviour of electrolyte solutions and water is equivalent, we use the additional observation based on our simulations that the pair entropy behaves as a near-linear function of pressure in bulk water and of composition in LiCl-H2O. This allows for the alignment of pair entropy isotherms and allows for a simple mapping of pressure onto composition. Rosenfeld-scaling implies that pair entropy is semiquantitatively related to the transport properties. At a given temperature, equivalent state points in bulk H2O and LiCl-H2O (at 1 atm) are defined as those for which the pair entropy, diffusivity, and viscosity are nearly identical. The microscopic basis for this equivalence lies in the ability of both pressure and ions to convert the liquid phase into a pair-dominated fluid, as demonstrated by the O-O-O angular distribution within the first coordination shell of a water molecule. There are, however, sharp differences in local order and mechanisms for the breakdown of tetrahedral order by pressure and electrolytes. Increasing pressure increases orientational disorder within the first

  3. Hydrogen energy systems studies

    SciTech Connect

    Ogden, J.M.; Steinbugler, M.; Kreutz, T.

    1998-08-01

    In this progress report (covering the period May 1997--May 1998), the authors summarize results from ongoing technical and economic assessments of hydrogen energy systems. Generally, the goal of their research is to illuminate possible pathways leading from present hydrogen markets and technologies toward wide scale use of hydrogen as an energy carrier, highlighting important technologies for RD and D. Over the past year they worked on three projects. From May 1997--November 1997, the authors completed an assessment of hydrogen as a fuel for fuel cell vehicles, as compared to methanol and gasoline. Two other studies were begun in November 1997 and are scheduled for completion in September 1998. The authors are carrying out an assessment of potential supplies and demands for hydrogen energy in the New York City/New Jersey area. The goal of this study is to provide useful data and suggest possible implementation strategies for the New York City/ New Jersey area, as the Hydrogen Program plans demonstrations of hydrogen vehicles and refueling infrastructure. The authors are assessing the implications of CO{sub 2} sequestration for hydrogen energy systems. The goals of this work are (a) to understand the implications of CO{sub 2} sequestration for hydrogen energy system design; (b) to understand the conditions under which CO{sub 2} sequestration might become economically viable; and (c) to understand design issues for future low-CO{sub 2} emitting hydrogen energy systems based on fossil fuels.

  4. Cloud computing can simplify HIT infrastructure management.

    PubMed

    Glaser, John

    2011-08-01

    Software as a Service (SaaS), built on cloud computing technology, is emerging as the forerunner in IT infrastructure because it helps healthcare providers reduce capital investments. Cloud computing leads to predictable, monthly, fixed operating expenses for hospital IT staff. Outsourced cloud computing facilities are state-of-the-art data centers boasting some of the most sophisticated networking equipment on the market. The SaaS model helps hospitals safeguard against technology obsolescence, minimizes maintenance requirements, and simplifies management.

  5. Cloud computing can simplify HIT infrastructure management.

    PubMed

    Glaser, John

    2011-08-01

    Software as a Service (SaaS), built on cloud computing technology, is emerging as the forerunner in IT infrastructure because it helps healthcare providers reduce capital investments. Cloud computing leads to predictable, monthly, fixed operating expenses for hospital IT staff. Outsourced cloud computing facilities are state-of-the-art data centers boasting some of the most sophisticated networking equipment on the market. The SaaS model helps hospitals safeguard against technology obsolescence, minimizes maintenance requirements, and simplifies management. PMID:21866720

  6. Securing the United States' power infrastructure

    SciTech Connect

    Happenny, Sean F.

    2015-08-01

    The United States’ power infrastructure is aging, underfunded, and vulnerable to cyber attack. Emerging smart grid technologies may take some of the burden off of existing systems and make the grid as a whole more efficient, reliable, and secure. The Pacific Northwest National Laboratory (PNNL) is funding research into several aspects of smart grid technology and grid security, creating a software simulation tool that will allow researchers to test power distribution networks utilizing different smart grid technologies to determine how the grid and these technologies react under different circumstances. Demonstrating security in embedded systems is another research area PNNL is tackling. Many of the systems controlling the U.S. critical infrastructure, such as the power grid, lack integrated security and the networks protecting them are becoming easier to breach. Providing a virtual power substation network to each student team at the National Collegiate Cyber Defense Competition, thereby supporting the education of future cyber security professionals, is another way PNNL is helping to strengthen the security of the nation’s power infrastructure.

  7. EPA NRMRL green Infrastructure research

    EPA Science Inventory

    Green Infrastructure is an engineering approach to wet weather flow management that uses infiltration, evapotranspiration, capture and reuse to better mimic the natural drainage processes than traditional gray systems. Green technologies supplement gray infrastructure to red...

  8. Infrastructure for distributed enterprise simulation

    SciTech Connect

    Johnson, M.M.; Yoshimura, A.S.; Goldsby, M.E.

    1998-01-01

    Traditional discrete-event simulations employ an inherently sequential algorithm and are run on a single computer. However, the demands of many real-world problems exceed the capabilities of sequential simulation systems. Often the capacity of a computer`s primary memory limits the size of the models that can be handled, and in some cases parallel execution on multiple processors could significantly reduce the simulation time. This paper describes the development of an Infrastructure for Distributed Enterprise Simulation (IDES) - a large-scale portable parallel simulation framework developed to support Sandia National Laboratories` mission in stockpile stewardship. IDES is based on the Breathing-Time-Buckets synchronization protocol, and maps a message-based model of distributed computing onto an object-oriented programming model. IDES is portable across heterogeneous computing architectures, including single-processor systems, networks of workstations and multi-processor computers with shared or distributed memory. The system provides a simple and sufficient application programming interface that can be used by scientists to quickly model large-scale, complex enterprise systems. In the background and without involving the user, IDES is capable of making dynamic use of idle processing power available throughout the enterprise network. 16 refs., 14 figs.

  9. Computational infrastructure for law enforcement. Final report

    SciTech Connect

    Lades, M.; Kunz, C.; Strikos, I.

    1997-02-01

    This project planned to demonstrate the leverage of enhanced computational infrastructure for law enforcement by demonstrating the face recognition capability at LLNL. The project implemented a face finder module extending the segmentation capabilities of the current face recognition so it was capable of processing different image formats and sizes and create the pilot of a network-accessible image database for the demonstration of face recognition capabilities. The project was funded at $40k (2 man-months) for a feasibility study. It investigated several essential components of a networked face recognition system which could help identify, apprehend, and convict criminals.

  10. Performance of the MM/GBSA scoring using a binding site hydrogen bond network-based frame selection: the protein kinase case.

    PubMed

    Adasme-Carreño, Francisco; Muñoz-Gutierrez, Camila; Caballero, Julio; Alzate-Morales, Jans H

    2014-07-21

    A conformational selection method, based on hydrogen bond (Hbond) network analysis, has been designed in order to rationalize the configurations sampled using molecular dynamics (MD), which are commonly used in the estimation of the relative binding free energy of ligands to macromolecules through the MM/GBSA or MM/PBSA method. This approach makes use of protein-ligand complexes obtained from X-ray crystallographic data, as well as from molecular docking calculations. The combination of several computational approaches, like long MD simulations on protein-ligand complexes, Hbond network-based selection by scripting techniques and finally MM/GBSA, provides better statistical correlations against experimental binding data than previous similar reported studies. This approach has been successfully applied in the ranking of several protein kinase inhibitors (CDK2, Aurora A and p38), which present both diverse and related chemical structures. PMID:24901037

  11. In Situ Nuclear Characterization Infrastructure

    SciTech Connect

    James A. Smith; J. Rory Kennedy

    2011-11-01

    To be able to evolve microstructure with a prescribed in situ process, an effective measurement infrastructure must exist. This interdisciplinary infrastructure needs to be developed in parallel with in situ sensor technology. This paper discusses the essential elements in an effective infrastructure.

  12. Status of U.S. FCEV and Infrastructure Learning Demonstration Project (Presentation)

    SciTech Connect

    Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.; Ainscough, C.; Saur, G.

    2011-03-01

    Presented at the Japan Hydrogen and Fuel Cell Demonstration Project (JHFC), 1 March 2011, Tokyo, Japan. This presentation summarizes the status of U.S. fuel cell electric vehicles and infrastructure learning demonstration project.

  13. Role of Bulk Water Environment in Regulation of Functional Hydrogen-Bond Network in Photoactive Yellow Protein.

    PubMed

    Tamura, Koichi; Hayashi, Shigehiko

    2015-12-24

    Photoactive yellow protein is a soluble photoreceptor protein involved in signal transduction for phototaxis. A hydrogen-bond between the chromophore, p-coumaric acid (pCA), and a nearby carboxyl group of Glu46 at the active site is known to play a crucial role in the formation of the signaling state in the photoactivation. Since the hydrogen-bond at the active site as well as the extensive conformational changes of the protein in the formation of the signaling state are considered to be controlled by water molecules, we theoretically examined influence of bulk water environment on the functionally important hydrogen-bond by means of molecular simulations. Theoretical analysis of potential energy profiles of the proton transfer between pCA and Glu46 with quantum mechanical/molecular mechanical (QM/MM) calculations revealed critical effect of electrostatic screening of bulk water on the electronic character of the hydrogen-bond. Moreover, QM/MM free energy geometry optimizations identified the water-penetrating state where Glu46 forming a putative low-barrier hydrogen-bond with pCA is hydrated by water molecules penetrating from bulk environment in addition to the water-excluded state which corresponds to X-ray crystallographic structures. The present results suggest that the water-penetrating state is a precursory conformational substate that leads to efficient formation of the signaling state.

  14. Vulnerability of critical infrastructures : identifying critical nodes.

    SciTech Connect

    Cox, Roger Gary; Robinson, David Gerald

    2004-06-01

    The objective of this research was the development of tools and techniques for the identification of critical nodes within critical infrastructures. These are nodes that, if disrupted through natural events or terrorist action, would cause the most widespread, immediate damage. This research focuses on one particular element of the national infrastructure: the bulk power system. Through the identification of critical elements and the quantification of the consequences of their failure, site-specific vulnerability analyses can be focused at those locations where additional security measures could be effectively implemented. In particular, with appropriate sizing and placement within the grid, distributed generation in the form of regional power parks may reduce or even prevent the impact of widespread network power outages. Even without additional security measures, increased awareness of sensitive power grid locations can provide a basis for more effective national, state and local emergency planning. A number of methods for identifying critical nodes were investigated: small-world (or network theory), polyhedral dynamics, and an artificial intelligence-based search method - particle swarm optimization. PSO was found to be the only viable approach and was applied to a variety of industry accepted test networks to validate the ability of the approach to identify sets of critical nodes. The approach was coded in a software package called Buzzard and integrated with a traditional power flow code. A number of industry accepted test networks were employed to validate the approach. The techniques (and software) are not unique to power grid network, but could be applied to a variety of complex, interacting infrastructures.

  15. Reaping Environmental Benefits of a Global Hydrogen Economy: How Large, Fow Soon, and at What Risks?

    NASA Astrophysics Data System (ADS)

    Dubey, M. K.; Horowitz, L. W.; Rahn, T. A.; Kinnison, D. E.

    2004-12-01

    The Western world has taken an aggressive posture to transition to a global hydrogen economy. While numerous technical challenges need to be addressed to achieve this it is timely to examine the environmental benefits and risks of this transition. Hydrogen provides an efficient energy carrier that promises to enhance urban and regional air quality that will benefit human health. It could also reduce risks of climate change if large-scale hydrogen production by renewable or nuclear energy sources becomes viable. While it is well known that the byproduct of energy produced from hydrogen is water vapor, it is not well known that the storage and transfer of hydrogen is inevitably accompanied by measurable leakage of hydrogen. Unintended consequences of hydrogen leakage include reduction in global oxidative capacity, changes in tropospheric ozone, and increase in stratospheric water that would exacerbate halogen induced ozone losses as well as impact the earth's radiation budget and climate. We construct plausible global hydrogen energy use and leak scenarios and assess their impacts using global 3-D simulations by the Model for Ozone And Related Trace species (MOZART). The hydrogen fluxes and photochemistry in our model successfully reproduce the contemporary hydrogen cycle as observed by a network of remote global stations. Our intent is to determine environmentally tolerable leak rates and also facilitate a gradual phasing in of a hydrogen economy over the next several decades as the elimination of the use of halocarbons gradually reduces halogen induced stratospheric ozone loss rates. We stress that the leak rates in global hydrogen infrastructure and the future evolution of microbial soil sink of hydrogen that determines its current lifetime (about 2 years) are principal sources of uncertainty in our assessment.

  16. Probing chiral solute-water hydrogen bonding networks by chirality transfer effects: a vibrational circular dichroism study of glycidol in water.

    PubMed

    Yang, Guochun; Xu, Yunjie

    2009-04-28

    Vibrational absorption (VA) and vibrational circular dichroism (VCD) spectra of (S)-(-)-glycidol were measured in water with a concentration of 6.0M in the 1000-1750 cm(-1) region. Prominent and complex VCD spectral features were detected at the water bending vibrational region. Our experimental results show that water molecules can become optically active through hydrogen bonding interactions with glycidol molecules. To model the glycidol-water hydrogen bonding network in the solution, molecular dynamics simulations using the AMBER9 suite of programs were carried out. Altogether, 34 conformers of the small glycidol-(water)(N) clusters with N=1, 2, 3, and 4 were considered. Geometry optimizations, harmonic frequency calculations, and the VA and VCD intensity predictions of these small glycidol-water clusters were performed at the B3LYP/6-311++G(d,p) level of theory using the GAUSSIAN 03 program package. Strong cooperative hydrogen bonding effects were detected in the larger glycidol-(water)(N) clusters. The population weighted VA and VCD spectra of each N group of glycidol (water)(N=1,2,3,4) were used to produce the simulated VA and VCD spectra, which are in good agreement with the experimental VA and VCD spectra. The study shows that all these clusters make important contributions to the observed spectra and are the most important species in the aqueous solution with complicated equilibriums among them.

  17. Probing chiral solute-water hydrogen bonding networks by chirality transfer effects: A vibrational circular dichroism study of glycidol in water

    NASA Astrophysics Data System (ADS)

    Yang, Guochun; Xu, Yunjie

    2009-04-01

    Vibrational absorption (VA) and vibrational circular dichroism (VCD) spectra of (S)-(-)-glycidol were measured in water with a concentration of 6.0M in the 1000-1750 cm-1 region. Prominent and complex VCD spectral features were detected at the water bending vibrational region. Our experimental results show that water molecules can become optically active through hydrogen bonding interactions with glycidol molecules. To model the glycidol-water hydrogen bonding network in the solution, molecular dynamics simulations using the AMBER9 suite of programs were carried out. Altogether, 34 conformers of the small glycidol-(water)N clusters with N =1, 2, 3, and 4 were considered. Geometry optimizations, harmonic frequency calculations, and the VA and VCD intensity predictions of these small glycidol-water clusters were performed at the B3LYP/6-311++G(d,p) level of theory using the GAUSSIAN 03 program package. Strong cooperative hydrogen bonding effects were detected in the larger glycidol-(water)N clusters. The population weighted VA and VCD spectra of each N group of glycidol (water)N=1,2,3,4 were used to produce the simulated VA and VCD spectra, which are in good agreement with the experimental VA and VCD spectra. The study shows that all these clusters make important contributions to the observed spectra and are the most important species in the aqueous solution with complicated equilibriums among them.

  18. Does fluoride disrupt hydrogen bond network in cationic lipid bilayer? Time-dependent fluorescence shift of Laurdan and molecular dynamics simulations.

    PubMed

    Pokorna, Sarka; Jurkiewicz, Piotr; Vazdar, Mario; Cwiklik, Lukasz; Jungwirth, Pavel; Hof, Martin

    2014-12-14

    Time-dependent fluorescence shift (TDFS) of Laurdan embedded in phospholipid bilayers reports on hydration and mobility of the phospholipid acylgroups. Exchange of H2O with D2O prolongs the lifetime of lipid-water and lipid-water-lipid interactions, which is reflected in a significantly slower TDFS kinetics. Combining TDFS measurements in H2O and D2O hydrated bilayers with atomistic molecular dynamics (MD) simulations provides a unique tool for characterization of the hydrogen bonding at the acylgroup level of lipid bilayers. In this work, we use this approach to study the influence of fluoride anions on the properties of cationic bilayers composed of trimethylammonium-propane (DOTAP). The results obtained for DOTAP are confronted with those for neutral phosphatidylcholine (DOPC) bilayers. Both in DOTAP and DOPC H2O/D2O exchange prolongs hydrogen-bonding lifetime and does not disturb bilayer structure. These results are confirmed by MD simulations. TDFS experiments show, however, that for DOTAP this effect is cancelled in the presence of fluoride ions. We interpret these results as evidence that strongly hydrated fluoride is able to steal water molecules that bridge lipid carbonyls. Consequently, when attracted to DOTAP bilayer, fluoride disrupts the local hydrogen-bonding network, and the differences in TDFS kinetics between H2O and D2O hydrated bilayers are no longer observed. A distinct behavior of fluoride is also evidenced by MD simulations, which show different lipid-ion binding for Cl(-) and F(-).

  19. The Temperature-Dependent Thermal Expansion of 2,6-Diamino-3,5-dinitropyrazine-1-oxide Effected by Hydrogen Bond Network Relaxation

    NASA Astrophysics Data System (ADS)

    Li, Jingyou; Zhang, Haobin; Wen, Maoping; Xu, Jinjiang; Liu, Xiaofeng; Sun, Jie

    2016-04-01

    The temperature-dependent thermal expansion of 2,6-diamino-3,5-dinitropyrazine-1-oxide (LLM-105) was investigated by using powder X-ray diffraction (PXRD) together with Rietveld refinement to estimate the dimension at a crystal lattice level. In the temperature range of 30-200°C, the coefficient of thermal expansion (CTE) of LLM-105 is temperature dependent, which is different from other explosives, such as hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), 2,2‧,4,4‧,6,6‧-hexanitrostilbene (HNS) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), with constant CTEs. The results of temperature-dependent infrared (IR) spectra indicated that the intermolecular hydrogen bond network relaxes with increasing temperature, which results in temperature-dependent thermal expansion. In this work, more accurate CTEs for LLM-105 crystals are obtained and the effects of the hydrogen bond network on the thermal expansion are further clarified. These results are beneficial to the design of materials with structural peculiarities and as-expected thermal expansion to satisfy different application requirements.

  20. Operational models of infrastructure resilience.

    PubMed

    Alderson, David L; Brown, Gerald G; Carlyle, W Matthew

    2015-04-01

    We propose a definition of infrastructure resilience that is tied to the operation (or function) of an infrastructure as a system of interacting components and that can be objectively evaluated using quantitative models. Specifically, for any particular system, we use quantitative models of system operation to represent the decisions of an infrastructure operator who guides the behavior of the system as a whole, even in the presence of disruptions. Modeling infrastructure operation in this way makes it possible to systematically evaluate the consequences associated with the loss of infrastructure components, and leads to a precise notion of "operational resilience" that facilitates model verification, validation, and reproducible results. Using a simple example of a notional infrastructure, we demonstrate how to use these models for (1) assessing the operational resilience of an infrastructure system, (2) identifying critical vulnerabilities that threaten its continued function, and (3) advising policymakers on investments to improve resilience.

  1. Operational models of infrastructure resilience.

    PubMed

    Alderson, David L; Brown, Gerald G; Carlyle, W Matthew

    2015-04-01

    We propose a definition of infrastructure resilience that is tied to the operation (or function) of an infrastructure as a system of interacting components and that can be objectively evaluated using quantitative models. Specifically, for any particular system, we use quantitative models of system operation to represent the decisions of an infrastructure operator who guides the behavior of the system as a whole, even in the presence of disruptions. Modeling infrastructure operation in this way makes it possible to systematically evaluate the consequences associated with the loss of infrastructure components, and leads to a precise notion of "operational resilience" that facilitates model verification, validation, and reproducible results. Using a simple example of a notional infrastructure, we demonstrate how to use these models for (1) assessing the operational resilience of an infrastructure system, (2) identifying critical vulnerabilities that threaten its continued function, and (3) advising policymakers on investments to improve resilience. PMID:25808298

  2. Infrastructure for microsystem production

    NASA Astrophysics Data System (ADS)

    van Heeren, Henne; Sanchez, Stefan; Elders, Job; Heideman, Rene G.

    1999-03-01

    Manufacturing of micro-systems differs from IC manufacturing because the market requires a diversity of products and lower volumes per product. In addition, a diversity of micro-technologies has been developed, including non-IC compatible processes and potentially IC compatible processes. An infrastructure for the production of micro- system devices is lacking. On one side the technology for MST is available at the universities and small university related companies. On the other side there are several small and medium enterprises and bigger companies wanting to implement MST devices in their products, but unwilling to be dependent on universities. Philips Electronics in the Netherlands and Twente MicroProducts realized this problem and have started a project to fill this gap. At this moment the basic of the infrastructure is available: OnStream BV, Eindhoven, The Netherlands, opened its waferfab and assembly facilities for the production of MST devices. Twente MicroProducts will take care of the design of the products and of the small-scale production. Integration of quality systems for maintenance, yield, statistical process control and production in a Manufacturing Execution System offers direct access for all people involved to all the relevant information. It also ensures quality of the products made. The available capabilities of the infrastructure in the current status are compared to the market needs. In this article, a description of a seamless Micro-System Engineering Foundry is given. A seamless organization is capable of helping the customer from design to production. Several examples are given.

  3. LHCb Silicon Tracker infrastructure

    NASA Astrophysics Data System (ADS)

    Ermoline, Yuri

    2004-02-01

    The LHCb Silicon Tracker is a vital part of the experiment. It consists of four planar stations: one trigger and three inner tracking stations. The operation of the Silicon Tracker detectors and electronics is provided by its infrastructure: cooling system, high- and low-voltage power supply systems, temperature and radiation monitoring systems. Several components of these systems are located in the experimental hall and subjected to radiation. This paper mainly concentrates on the recent development: requirements definition, evaluation of possible implementation scenarios, component choice and component radiation tests.

  4. Agile Infrastructure Monitoring

    NASA Astrophysics Data System (ADS)

    Andrade, P.; Ascenso, J.; Fedorko, I.; Fiorini, B.; Paladin, M.; Pigueiras, L.; Santos, M.

    2014-06-01

    At the present time, data centres are facing a massive rise in virtualisation and cloud computing. The Agile Infrastructure (AI) project is working to deliver new solutions to ease the management of CERN data centres. Part of the solution consists in a new "shared monitoring architecture" which collects and manages monitoring data from all data centre resources. In this article, we present the building blocks of this new monitoring architecture, the different open source technologies selected for each architecture layer, and how we are building a community around this common effort.

  5. Biased Gs versus Gq proteins and β-arrestin signaling in the NK1 receptor determined by interactions in the water hydrogen bond network.

    PubMed

    Valentin-Hansen, Louise; Frimurer, Thomas M; Mokrosinski, Jacek; Holliday, Nicholas D; Schwartz, Thue W

    2015-10-01

    X-ray structures, molecular dynamics simulations, and mutational analysis have previously indicated that an extended water hydrogen bond network between trans-membranes I-III, VI, and VII constitutes an allosteric interface essential for stabilizing different active and inactive helical constellations during the seven-trans-membrane receptor activation. The neurokinin-1 receptor signals efficiently through Gq, Gs, and β-arrestin when stimulated by substance P, but it lacks any sign of constitutive activity. In the water hydrogen bond network the neurokinin-1 has a unique Glu residue instead of the highly conserved AspII:10 (2.50). Here, we find that this GluII:10 occupies the space of a putative allosteric modulating Na(+) ion and makes direct inter-helical interactions in particular with SerIII:15 (3.39) and AsnVII:16 (7.49) of the NPXXY motif. Mutational changes in the interface between GluII:10 and AsnVII:16 created receptors that selectively signaled through the following: 1) Gq only; 2) β-arrestin only; and 3) Gq and β-arrestin but not through Gs. Interestingly, increased constitutive Gs but not Gq signaling was observed by Ala substitution of four out of the six core polar residues of the network, in particular SerIII:15. Three residues were essential for all three signaling pathways, i.e. the water-gating micro-switch residues TrpVI:13 (6.48) of the CWXP motif and TyrVII:20 (7.53) of the NPXXY motif plus the totally conserved AsnI:18 (1.50) stabilizing the kink in trans-membrane VII. It is concluded that the interface between position II:10 (2.50), III:15 (3.39), and VII:16 (7.49) in the center of the water hydrogen bond network constitutes a focal point for fine-tuning seven trans-membrane receptor conformations activating different signal transduction pathways.

  6. Hydrogen-Bonding Network and OH Stretch Vibration of Cellulose: Comparison of Computational Modeling with Polarized IR and SFG Spectra.

    PubMed

    Lee, Christopher M; Kubicki, James D; Fan, Bingxin; Zhong, Linghao; Jarvis, Michael C; Kim, Seong H

    2015-12-10

    Hydrogen bonds play critical roles in noncovalent directional interactions determining the crystal structure of cellulose. Although diffraction studies accurately determined the coordinates of carbon and oxygen atoms in crystalline cellulose, the structural information on hydrogen atoms involved in hydrogen-bonding is still elusive. This could be complemented by vibrational spectroscopy; but the assignment of the OH stretch peaks has been controversial. In this study, we performed calculations using density functional theory with dispersion corrections (DFT-D2) for the cellulose Iβ crystal lattices with the experimentally determined carbon and oxygen coordinates. DFT-D2 calculations revealed that the OH stretch vibrations of cellulose are highly coupled and delocalized through intra- and interchain hydrogen bonds involving all OH groups in the crystal. Additionally, molecular dynamics (MD) simulations of a single cellulose microfibril showed that the conformations of OH groups exposed at the microfibril surface are not well-defined. Comparison of the computation results with the experimentally determined IR dichroism of uniaxially aligned cellulose microfibrils and the peak positions of various cellulose crystals allowed unambiguous identification of OH stretch modes observed in the vibrational spectra of cellulose.

  7. Hydrogen energy systems studies

    SciTech Connect

    Ogden, J.M.; Steinbugler, M.; Dennis, E.

    1995-09-01

    For several years, researchers at Princeton University`s Center for Energy and Environmental Studies have carried out technical and economic assessments of hydrogen energy systems. Initially, we focussed on the long term potential of renewable hydrogen. More recently we have explored how a transition to renewable hydrogen might begin. The goal of our current work is to identify promising strategies leading from near term hydrogen markets and technologies toward eventual large scale use of renewable hydrogen as an energy carrier. Our approach has been to assess the entire hydrogen energy system from production through end-use considering technical performance, economics, infrastructure and environmental issues. This work is part of the systems analysis activity of the DOE Hydrogen Program. In this paper we first summarize the results of three tasks which were completed during the past year under NREL Contract No. XR-11265-2: in Task 1, we carried out assessments of near term options for supplying hydrogen transportation fuel from natural gas; in Task 2, we assessed the feasibility of using the existing natural gas system with hydrogen and hydrogen blends; and in Task 3, we carried out a study of PEM fuel cells for residential cogeneration applications, a market which might have less stringent cost requirements than transportation. We then give preliminary results for two other tasks which are ongoing under DOE Contract No. DE-FG04-94AL85803: In Task 1 we are assessing the technical options for low cost small scale production of hydrogen from natural gas, considering (a) steam reforming, (b) partial oxidation and (c) autothermal reforming, and in Task 2 we are assessing potential markets for hydrogen in Southern California.

  8. Nuclear hybrid energy infrastructure

    SciTech Connect

    Agarwal, Vivek; Tawfik, Magdy S.

    2015-02-01

    The nuclear hybrid energy concept is becoming a reality for the US energy infrastructure where combinations of the various potential energy sources (nuclear, wind, solar, biomass, and so on) are integrated in a hybrid energy system. This paper focuses on challenges facing a hybrid system with a Small Modular Reactor at its core. The core of the paper will discuss efforts required to develop supervisory control center that collects data, supports decision-making, and serves as an information hub for supervisory control center. Such a center will also be a model for integrating future technologies and controls. In addition, advanced operations research, thermal cycle analysis, energy conversion analysis, control engineering, and human factors engineering will be part of the supervisory control center. Nuclear hybrid energy infrastructure would allow operators to optimize the cost of energy production by providing appropriate means of integrating different energy sources. The data needs to be stored, processed, analyzed, trended, and projected at right time to right operator to integrate different energy sources.

  9. v9fb: a remote framebuffer infrastructure of linux

    SciTech Connect

    Kulkarni, Abhishek; Ionkov, Latchesar

    2008-01-01

    v9fb is a software infrastructure that allows extending framebufFer devices in Linux over the network by providing an abstraction to them in the form of a filesystem hierarchy. Framebuffer based graphic devices export a synthetic filesystem which offers a simple and easy-to-use interface for performing common framebuffer operations. Remote framebuffer devices could be accessed over the network using the 9P protocol support in Linux. We describe the infrastructure in detail and review some of the benefits it offers similar to Plan 9 distributed systems. We discuss the applications of this infrastructure to remotely display and run interactive applications on a terminal while ofFloading the computation to remote servers, and more importantly the flexibility it offers in driving tiled-display walls by aggregating graphic devices in the network.

  10. Space-Based Information Infrastructure Architecture for Broadband Services

    NASA Technical Reports Server (NTRS)

    Price, Kent M.; Inukai, Tom; Razdan, Rajendev; Lazeav, Yvonne M.

    1996-01-01

    This study addressed four tasks: (1) identify satellite-addressable information infrastructure markets; (2) perform network analysis for space-based information infrastructure; (3) develop conceptual architectures; and (4) economic assessment of architectures. The report concludes that satellites will have a major role in the national and global information infrastructure, requiring seamless integration between terrestrial and satellite networks. The proposed LEO, MEO, and GEO satellite systems have satellite characteristics that vary widely. They include delay, delay variations, poorer link quality and beam/satellite handover. The barriers against seamless interoperability between satellite and terrestrial networks are discussed. These barriers are the lack of compatible parameters, standards and protocols, which are presently being evaluated and reduced.

  11. Optimal recovery sequencing for critical infrastructure resilience assessment.

    SciTech Connect

    Vugrin, Eric D.; Brown, Nathanael J. K.; Turnquist, Mark Alan

    2010-09-01

    Critical infrastructure resilience has become a national priority for the U. S. Department of Homeland Security. System resilience has been studied for several decades in many different disciplines, but no standards or unifying methods exist for critical infrastructure resilience analysis. This report documents the results of a late-start Laboratory Directed Research and Development (LDRD) project that investigated the identification of optimal recovery strategies that maximize resilience. To this goal, we formulate a bi-level optimization problem for infrastructure network models. In the 'inner' problem, we solve for network flows, and we use the 'outer' problem to identify the optimal recovery modes and sequences. We draw from the literature of multi-mode project scheduling problems to create an effective solution strategy for the resilience optimization model. We demonstrate the application of this approach to a set of network models, including a national railroad model and a supply chain for Army munitions production.

  12. Medical image informatics infrastructure design and applications.

    PubMed

    Huang, H K; Wong, S T; Pietka, E

    1997-01-01

    Picture archiving and communication systems (PACS) is a system integration of multimodality images and health information systems designed for improving the operation of a radiology department. As it evolves, PACS becomes a hospital image document management system with a voluminous image and related data file repository. A medical image informatics infrastructure can be designed to take advantage of existing data, providing PACS with add-on value for health care service, research, and education. A medical image informatics infrastructure (MIII) consists of the following components: medical images and associated data (including PACS database), image processing, data/knowledge base management, visualization, graphic user interface, communication networking, and application oriented software. This paper describes these components and their logical connection, and illustrates some applications based on the concept of the MIII. PMID:9509399

  13. Michigan E85 Infrastructure

    SciTech Connect

    Sandstrom, Matthew M.

    2012-03-30

    This is the final report for a grant-funded project to financially assist and otherwise provide support to projects that increase E85 infrastructure in Michigan at retail fueling locations. Over the two-year project timeframe, nine E85 and/or flex-fuel pumps were installed around the State of Michigan at locations currently lacking E85 infrastructure. A total of five stations installed the nine pumps, all providing cost share toward the project. By using cost sharing by station partners, the $200,000 provided by the Department of Energy facilitated a total project worth $746,332.85. This project was completed over a two-year timetable (eight quarters). The first quarter of the project focused on project outreach to station owners about the incentive on the installation and/or conversion of E85 compatible fueling equipment including fueling pumps, tanks, and all necessary electrical and plumbing connections. Utilizing Clean Energy Coalition (CEC) extensive knowledge of gasoline/ethanol infrastructure throughout Michigan, CEC strategically placed these pumps in locations to strengthen the broad availability of E85 in Michigan. During the first and second quarters, CEC staff approved projects for funding and secured contracts with station owners; the second through eighth quarters were spent working with fueling station owners to complete projects; the third through eighth quarters included time spent promoting projects; and beginning in the second quarter and running for the duration of the project was spent performing project reporting and evaluation to the US DOE. A total of 9 pumps were installed (four in Elkton, two in Sebewaing, one in East Lansing, one in Howell, and one in Whitmore Lake). At these combined station locations, a total of 192,445 gallons of E85, 10,786 gallons of E50, and 19,159 gallons of E30 were sold in all reporting quarters for 2011. Overall, the project has successfully displaced 162,611 gallons (2,663 barrels) of petroleum, and reduced

  14. Green Infrastructure, Groundwater and the Sustainable City

    NASA Astrophysics Data System (ADS)

    Band, L. E.

    2014-12-01

    The management of water is among the most important attributes of urbanization. Provision of sufficient quantities and quality of freshwater, treatment and disposal of wastewater and flood protection are critical for urban sustainability. Over the last century, two major shifts in water management paradigms have occurred, the first to improve public health with the provision of infrastructure for centralized sanitary effluent collection and treatment, and the rapid drainage and routing of stormwater. A current shift in paradigm is now occurring in response to the unintended consequences of sanitary and stormwater management, which have degraded downstream water bodies and shifted flood hazard downstream. Current infrastructure is being designed and implemented to retain, rather than rapidly drain, stormwater, with a focus on infiltration based methods. In urban areas, this amounts to a shift in hydrologic behavior to depression focused recharge. While stormwater is defined as surface flow resulting from developed areas, an integrated hydrologic systems approach to urban water management requires treatment of the full critical zone. In urban areas this extends from the top of the vegetation and building canopy, to a subsurface depth including natural soils, fill, saprolite and bedrock. In addition to matric and network flow in fracture systems, an urban "karst" includes multiple generations of current and past infrastructure, which has developed extensive subsurface pipe networks for supply and drainage, enhancing surface/groundwater flows and exchange. In this presentation, Band will discuss the need to focus on the urban critical zone, and the development and adaptation of new modeling and analytical approaches to understand and plan green infrastructure based on surface/groundwater/ecosystem interactions, and implications for the restoration and new design of cities.

  15. The future of infrastructure security :

    SciTech Connect

    Garcia, Pablo; Turnley, Jessica Glicken; Parrott, Lori K.

    2013-05-01

    Sandia National Laboratories hosted a workshop on the future of infrastructure security on February 27-28, 2013, in Albuquerque, NM. The 17 participants came from backgrounds as diverse as federal policy, the insurance industry, infrastructure management, and technology development. The purpose of the workshop was to surface key issues, identify directions forward, and lay groundwork for cross-sectoral and cross-disciplinary collaborations. The workshop addressed issues such as the problem space (what is included in infrastructure problems?), the general types of threats to infrastructure (such as acute or chronic, system-inherent or exogenously imposed) and definitions of secure and resilient infrastructures. The workshop concluded with a consideration of stakeholders and players in the infrastructure world, and identification of specific activities that could be undertaken by the Department of Homeland Security (DHS) and other players.

  16. Back propagation neural network model for predicting the performance of immobilized cell biofilters handling gas-phase hydrogen sulphide and ammonia.

    PubMed

    Rene, Eldon R; López, M Estefanía; Kim, Jung Hoon; Park, Hung Suck

    2013-01-01

    Lab scale studies were conducted to evaluate the performance of two simultaneously operated immobilized cell biofilters (ICBs) for removing hydrogen sulphide (H2S) and ammonia (NH3) from gas phase. The removal efficiencies (REs) of the biofilter treating H2S varied from 50 to 100% at inlet loading rates (ILRs) varying up to 13 g H2S/m(3) ·h, while the NH3 biofilter showed REs ranging from 60 to 100% at ILRs varying between 0.5 and 5.5 g NH3/m(3) ·h. An application of the back propagation neural network (BPNN) to predict the performance parameter, namely, RE (%) using this experimental data is presented in this paper. The input parameters to the network were unit flow (per min) and inlet concentrations (ppmv), respectively. The accuracy of BPNN-based model predictions were evaluated by providing the trained network topology with a test dataset and also by calculating the regression coefficient (R (2)) values. The results from this predictive modeling work showed that BPNNs were able to predict the RE of both the ICBs efficiently.

  17. Back Propagation Neural Network Model for Predicting the Performance of Immobilized Cell Biofilters Handling Gas-Phase Hydrogen Sulphide and Ammonia

    PubMed Central

    Rene, Eldon R.; López, M. Estefanía; Kim, Jung Hoon; Park, Hung Suck

    2013-01-01

    Lab scale studies were conducted to evaluate the performance of two simultaneously operated immobilized cell biofilters (ICBs) for removing hydrogen sulphide (H2S) and ammonia (NH3) from gas phase. The removal efficiencies (REs) of the biofilter treating H2S varied from 50 to 100% at inlet loading rates (ILRs) varying up to 13 g H2S/m3·h, while the NH3 biofilter showed REs ranging from 60 to 100% at ILRs varying between 0.5 and 5.5 g NH3/m3·h. An application of the back propagation neural network (BPNN) to predict the performance parameter, namely, RE (%) using this experimental data is presented in this paper. The input parameters to the network were unit flow (per min) and inlet concentrations (ppmv), respectively. The accuracy of BPNN-based model predictions were evaluated by providing the trained network topology with a test dataset and also by calculating the regression coefficient (R2) values. The results from this predictive modeling work showed that BPNNs were able to predict the RE of both the ICBs efficiently. PMID:24307999

  18. Energy Transmission and Infrastructure

    SciTech Connect

    Mathison, Jane

    2012-12-31

    The objective of Energy Transmission and Infrastructure Northern Ohio (OH) was to lay the conceptual and analytical foundation for an energy economy in northern Ohio that will: • improve the efficiency with which energy is used in the residential, commercial, industrial, agricultural, and transportation sectors for Oberlin, Ohio as a district-wide model for Congressional District OH-09; • identify the potential to deploy wind and solar technologies and the most effective configuration for the regional energy system (i.e., the ratio of distributed or centralized power generation); • analyze the potential within the district to utilize farm wastes to produce biofuels; • enhance long-term energy security by identifying ways to deploy local resources and building Ohio-based enterprises; • identify the policy, regulatory, and financial barriers impeding development of a new energy system; and • improve energy infrastructure within Congressional District OH-09. This objective of laying the foundation for a renewable energy system in Ohio was achieved through four primary areas of activity: 1. district-wide energy infrastructure assessments and alternative-energy transmission studies; 2. energy infrastructure improvement projects undertaken by American Municipal Power (AMP) affiliates in the northern Ohio communities of Elmore, Oak Harbor, and Wellington; 3. Oberlin, OH-area energy assessment initiatives; and 4. a district-wide conference held in September 2011 to disseminate year-one findings. The grant supported 17 research studies by leading energy, policy, and financial specialists, including studies on: current energy use in the district and the Oberlin area; regional potential for energy generation from renewable sources such as solar power, wind, and farm-waste; energy and transportation strategies for transitioning the City of Oberlin entirely to renewable resources and considering pedestrians, bicyclists, and public transportation as well as drivers

  19. Improving the Resilience of Major Ports and Critical Supply Chains to Extreme Coastal Flooding: a Combined Artificial Neural Network and Hydrodynamic Simulation Approach to Predicting Tidal Surge Inundation of Port Infrastructure and Impact on Operations.

    NASA Astrophysics Data System (ADS)

    French, J.

    2015-12-01

    Ports are vital to the global economy, but assessments of global exposure to flood risk have generally focused on major concentrations of population or asset values. Few studies have examined the impact of extreme inundation events on port operation and critical supply chains. Extreme water levels and recurrence intervals have conventionally been estimated via analysis of historic water level maxima, and these vary widely depending on the statistical assumptions made. This information is supplemented by near-term forecasts from operational surge-tide models, which give continuous water levels but at considerable computational cost. As part of a NERC Infrastructure and Risk project, we have investigated the impact of North Sea tidal surges on the Port of Immingham, eastern, UK. This handles the largest volume of bulk cargo in the UK and flows of coal and biomass that are critically important for national energy security. The port was partly flooded during a major tidal surge in 2013. This event highlighted the need for improved local forecasts of surge timing in relation to high water, with a better indication of flood depth and duration. We address this problem using a combination of data-driven and numerical hydrodynamic models. An Artificial Neural Network (ANN) is first used to predict the surge component of water level from meteorological data. The input vector comprises time-series of local wind (easterly and northerly wind stress) and pressure, as well as regional pressure and pressure gradients from stations between the Shetland Islands and the Humber estuary. The ANN achieves rms errors of around 0.1 m and can generate short-range (~ 3 to 12 hour) forecasts given real-time input data feeds. It can also synthesize water level events for a wider range of tidal and meteorological forcing combinations than contained in the observational records. These are used to force Telemac2D numerical floodplain simulations using a LiDAR digital elevation model of the port

  20. Improving Antarctic infrastructure

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2012-07-01

    Noting that U.S. activities in Antarctica “are very well managed but suffer from an aging infrastructure, lack of a capital budget, and the effects of operating in an extremely unforgiving environment,” a 23 July report from the U.S. Antarctic Program Blue Ribbon Panel recommends a number of measures to improve the infrastructure, logistics, and other concerns. The panel's recommendations include continued use of the McMurdo, South Pole, and Palmer stations as the primary U.S. science and logistics hubs in Antarctica—because there are no reasonable alternatives, according to the panel—while upgrading or replacing some facilities, restoring the U.S. polar ocean feet, implementing state of-the-art logistics and transportation support, and establishing a long-term facilities capital plan and budget for the U.S. Antarctic Program. “The essence of our findings is that the lack of capital budgeting has placed operations at McMurdo, and to a somewhat lesser extent at Palmer Station, in unnecessary jeopardy—at least in terms of prolonged inefficiency due to deteriorating or otherwise inadequate physical assets,” the panel wrote in the cover letter accompanying the report entitled, More and Better Science in Antarctica Through Increased Logistical Effectiveness. “The Antarctica Blue Ribbon Panel encourages us to take a hard look at how we support Antarctic science and to make the structural changes, however difficult in the current fiscal environment, that will allow us to do more science in the future,” said U.S. National Science Foundation (NSF) Director Subra Suresh.

  1. Anion-templated supramolecular C3 assembly for efficient inclusion of charge-dispersed anions into hydrogen-bonded networks.

    PubMed

    Užarević, Krunoslav; Đilović, Ivica; Bregović, Nikola; Tomišić, Vladislav; Matković-Čalogović, Dubravka; Cindrić, Marina

    2011-09-19

    The binding properties and conformational adaptability of a known nitrate/sulfate receptor N,N'-3-azapentane-1,5-bis[3-(1-aminoethylidene)-6-methyl-3H-pyran-2,4-dione] (L) toward various charge-dispersed monoanions (HSO(3)(-), ClO(4)(-), IO(4)(-), PF(6)(-), and SbF(6)(-)) are considered. These anions template the folding of three HL(+) species through a self-assembly process into a new hollow supramolecular trication. During the self-assembly, all strong hydrogen-bond donors of the podand become coordinatively saturated by interactions with the oxo functionalities from other HL(+) molecules. In that way, only the weak hydrogen-bond-donating groups in the exterior part of the receptor are accessible for anion binding. The investigated anions are accommodated in the hydrophobic pockets of the isomorphous hydrogen-bonded frameworks, which serve as a basis for selective crystallization from the highly competitive anion/solvent systems. This behavior is discussed in terms of size and geometry of the anions as well as the receptor's coordination capabilities to provide the most favorable surroundings for guest inclusion both in solution and in the solid state.

  2. Converged Infrastructure for Emerging Regions - A Research Agenda

    NASA Astrophysics Data System (ADS)

    Chevrollier, Nicolas; Zidbeck, Juha; Ntlatlapa, Ntsibane; Simsek, Burak; Marikar, Achim

    In remote parts of Africa, the lack of energy supply, of wired infrastructure, of trained personnel and the limitation in OPEX and CAPEX impose stringent requirements on the network building blocks that support the communication infrastructure. Consequently, in this promising but untapped market, the research aims at designing and implementing energy-efficient, robust, reliable and affordable wide heterogeneous wireless mesh networks to connect geographically very large areas in a challenged environment. This paper proposes a solution that is aimed at enhancing the usability of Internet services in the harsh target environment and especially how the end-users experience the reliability of these services.

  3. Genetic Algorithms for Agent-Based Infrastructure Interdependency Modeling and Analysis

    SciTech Connect

    May Permann

    2007-03-01

    Today’s society relies greatly upon an array of complex national and international infrastructure networks such as transportation, electric power, telecommunication, and financial networks. This paper describes initial research combining agent-based infrastructure modeling software and genetic algorithms (GAs) to help optimize infrastructure protection and restoration decisions. This research proposes to apply GAs to the problem of infrastructure modeling and analysis in order to determine the optimum assets to restore or protect from attack or other disaster. This research is just commencing and therefore the focus of this paper is the integration of a GA optimization method with a simulation through the simulation’s agents.

  4. Spectral Graph Analyses of Water Hydrogen-Bonding Network and Osmolyte Aggregate Structures in Osmolyte-Water Solutions.

    PubMed

    Lee, Hochan; Choi, Jun-Ho; Verma, Pramod Kumar; Cho, Minhaeng

    2015-11-12

    Recently, it was shown that the spectral graph theory is exceptionally useful for understanding not only morphological structural differences in ion aggregates but also similarities between an ion network and a water H-bonding network in highly concentrated salt solutions. Here, we present spectral graph analysis results on osmolyte aggregates and water H-bonding network structures in aqueous renal osmolyte solutions. The quantitative analyses of the adjacency matrices that are graph-theoretical representations of aggregates of osmolyte molecules and water H-bond structures provide the ensemble average eigenvalue spectra and degree distribution. We show that urea molecules form quite different morphological structures compared to other protecting renal osmolyte molecules in water, particularly sorbitol and trimethylglycine, which are well-known protecting osmolytes, and at high concentrations exhibit a strong propensity to form morphological structures that are graph-theoretically similar to that of the water H-bond network. Conversely, urea molecules, even at similarly high concentrations, form separated clusters instead of extended osmolyte-osmolyte networks. This difference in morphological structure of osmolyte-osmolyte aggregates between protecting and destabilizing osmolytes is considered to be an important observation that led us to propose a hypothesis on the osmolyte aggregate growth mechanism via either osmolyte network formation or segregated osmolyte cluster formation. We anticipate that the present spectral graph analyses of osmolyte aggregate structures and their interplay with the water H-bond network structure in highly concentrated renal osmolyte solutions could provide important information on the osmolyte effects of not only water structures but also protein stability in biologically relevant osmolyte solutions.

  5. Free electron laser infrastructure in Europe 2012

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.

    2013-01-01

    The paper presents a digest of chosen research centers, subjects and results in the domain of free electron lasers and accelerator science and technology in Europe. Some of these issues were shown during the annual meeting of the EU FP7 project EuCARD - European Coordination of Accelerator Research and Development (2009-2013) [13-14]. The project concerns building of the research infrastructure, including in this advanced photonic and electronic systems for servicing large high energy physics and FEL experiments. There are debated a few basic groups of such infrastructures, networks and systems like: POLFEL, FLASH, SPARC, LIFE, CFEL, IRFEL, IRVUX, ELBE, FELIX, LCLS, E-XFEL along with some subsystems like seeding lasers, beam diagnostics, high field magnets, superconducting structures, multichannel measurement - control networks for FELs for large amounts of metrological data acquisition, precision photonic networks of reference time, frequency and phase distribution. A digest of references on FEL and HEP was included [1-133], with emphasis on work in Poland on the Polfel project.

  6. Infrastructure web: distributed monitoring and managing critical infrastructures

    NASA Astrophysics Data System (ADS)

    Jiang, Guofei; Cybenko, George; McGrath, Dennis

    2001-02-01

    National-scale critical infrastructure protection depends on many processes: intelligence gathering, analysis, interdiction, detection, response and recovery, to name a few. These processes are typically carried out by different individuals, agencies and industry sectors. Many new threats to national infrastructure are arising from the complex couplings that exist between advanced information technologies (telecommunications and internet), physical components (utilities), human services (health, law enforcement, emergency management) and commerce (financial services, logistics). Those threats arise and evolve at a rate governed by human intelligence and innovation, on `internet time' so to speak. The processes for infrastructure protection must operate on the same time scale to be effective. To achieve this, a new approach to integrating, coordinating and managing infrastructure protection must be deployed. To this end, we have designed an underlying web-like architecture that will serve as a platform for the decentralized monitoring and management of national critical infrastructures.

  7. Properties of subcritical water as an eluent for reversed-phase liquid chromatography--disruption of the hydrogen-bond network at elevated temperature and its consequences.

    PubMed

    Allmon, Steven D; Dorsey, John G

    2010-09-10

    The use of subcritical water as an eluent for reversed-phase liquid chromatography is further explored. Shape selectivity as well as thermodynamic values for solute transfer were measured and compared to those seen with traditional ambient methanol/water and acetonitrile/water mobile phases. Linear solvation energy analysis was also used to analyze extrapolated values of the retention factor in pure water at ambient temperatures (k'w) for subcritical water and ambient hydroorganic mobile phases. Results indicate that it is likely that a large disruption in the hydrogen-bonding network of water at high temperatures causes unique chromatographic selectivity, as well as prohibits accurate extrapolation from high temperature to ambient conditions using pure water. Additionally, subcritical water was not found to be a suitable mobile phase for determining k'w for use in estimating octanol/water partition coefficients.

  8. Does fluoride disrupt hydrogen bond network in cationic lipid bilayer? Time-dependent fluorescence shift of Laurdan and molecular dynamics simulations

    SciTech Connect

    Pokorna, Sarka; Jurkiewicz, Piotr; Hof, Martin; Vazdar, Mario; Cwiklik, Lukasz; Jungwirth, Pavel

    2014-12-14

    Time-dependent fluorescence shift (TDFS) of Laurdan embedded in phospholipid bilayers reports on hydration and mobility of the phospholipid acylgroups. Exchange of H{sub 2}O with D{sub 2}O prolongs the lifetime of lipid-water and lipid-water-lipid interactions, which is reflected in a significantly slower TDFS kinetics. Combining TDFS measurements in H{sub 2}O and D{sub 2}O hydrated bilayers with atomistic molecular dynamics (MD) simulations provides a unique tool for characterization of the hydrogen bonding at the acylgroup level of lipid bilayers. In this work, we use this approach to study the influence of fluoride anions on the properties of cationic bilayers composed of trimethylammonium-propane (DOTAP). The results obtained for DOTAP are confronted with those for neutral phosphatidylcholine (DOPC) bilayers. Both in DOTAP and DOPC H{sub 2}O/D{sub 2}O exchange prolongs hydrogen-bonding lifetime and does not disturb bilayer structure. These results are confirmed by MD simulations. TDFS experiments show, however, that for DOTAP this effect is cancelled in the presence of fluoride ions. We interpret these results as evidence that strongly hydrated fluoride is able to steal water molecules that bridge lipid carbonyls. Consequently, when attracted to DOTAP bilayer, fluoride disrupts the local hydrogen-bonding network, and the differences in TDFS kinetics between H{sub 2}O and D{sub 2}O hydrated bilayers are no longer observed. A distinct behavior of fluoride is also evidenced by MD simulations, which show different lipid-ion binding for Cl{sup −} and F{sup −}.

  9. ENDOR spectroscopy and DFT calculations: evidence for the hydrogen bond network within α2 in the PCET of E. coli ribonucleotide reductase

    PubMed Central

    Argirević, Tomislav; Riplinger, Christoph; Stubbe, JoAnne; Neese, Frank; Bennati, Marina

    2015-01-01

    E.coli class I ribonucleotide reductase (RNR) catalyzes the conversion of nucleotides to deoxynucleotides and is composed of two subunits: α2 and β2. β2 contains a stable di-iron tyrosyl radical (Y122•) cofactor required to generate a thiyl radical (C439•) in α2 over a distance of 35 Å, which in turn initiates the chemistry of the reduction process. The radical transfer process is proposed to occur by proton-coupled electron transfer (PCET) via a specific pathway: Y122 ⇆ W48[?] ⇆ Y356 in β2, across the subunit interface to Y731⇆ Y730 ⇆ C439 in α2. Within α2 a co-linear PCET model has been proposed. To obtain evidence for this model, 3-amino tyrosine (NH2Y) replaced Y730 in α2 and this mutant was incubated with β2, CDP and ATP to generate a (NH2Y730•) in D2O. [2H]-Electron-nuclear double resonance (ENDOR) spectra at 94 GHz of this intermediate were obtained and together with DFT models of α2 and quantum chemical calculations allowed assignment of the prominent ENDOR features to two hydrogen bonds likely associated with C439 and Y731. A third proton was assigned to a water molecule in close proximity (2.2 Å O-H---O distance) to residue 730. The calculations also suggest that the unusual g-values measured for NH2Y730• are consistent with the combined effect of the hydrogen bonds to Cys439 and Tyr731, both nearly perpendicular to the ring plane of NH2Y730. The results provide the first experimental evidence for the hydrogen bond network between the pathway residues in α2 of the active RNR complex, for which no structural data is available. PMID:23072506

  10. Robustness of networks of networks with degree-degree correlation

    NASA Astrophysics Data System (ADS)

    Min, Byungjoon; Canals, Santiago; Makse, Hernan

    Many real-world complex systems ranging from critical infrastructure and transportation networks to living systems including brain and cellular networks are not formed by an isolated network but by a network of networks. Randomly coupled networks with interdependency between different networks may easily result in abrupt collapse. Here, we seek a possible explanation of stable functioning in natural networks of networks including functional brain networks. Specifically, we analyze the robustness of networks of networks focused on one-to-many interconnections between different networks and degree-degree correlation. Implication of the network robustness on functional brain networks of rats is also discussed.

  11. Vibrational spectroscopy of bacteriorhodopsin mutants. Evidence that Thr-46 and Thr-89 form part of a transient network of hydrogen bonds.

    PubMed

    Rothschild, K J; He, Y W; Sonar, S; Marti, T; Khorana, H G

    1992-01-25

    The role of Thr-46 and Thr-89 in the bacteriorhodopsin photocycle has been investigated by Fourier transform infrared difference spectroscopy and time-resolved visible absorption spectroscopy of site-directed mutants. Substitutions of Thr-46 and Thr-89 reveal alterations in the chromophore and protein structure during the photocycle, relative to wild-type bacteriorhodopsin. The mutants T89D and to a lesser extent T89A display red shifts in the visible lambda max of the light-adapted states compared with wild type. During the photocycle, T89A exhibits an increased decay rate of the K intermediate, while a K intermediate is not detected in the photocycle of T89D at room temperature. In the carboxyl stretch region of the Fourier transform infrared difference spectra of T89D, a new band appears as early as K formation which is attributed to the deprotonation of Asp-89. Along with this band, an intensity increase occurs in the band assigned to the protonation of Asp-212. In the mutant T46V, a perturbation in the environment of Asp-96 is detected in the L and M intermediates which corresponds to a drop in its pK alpha. These data indicate that Thr-89 is located close to the chromophore, exerts steric constraints on it during all-trans to 13-cis isomerization, and is likely to participate in a hydrogen-bonding network that extends to Asp-212. In addition, a transient interaction between Thr-46 and Asp-96 occurs early in the photocycle. In order to explain these results, a previously proposed model of proton transport is extended to include the existence of a transient network of hydrogen-bonded residues. This model can account for the protonation changes of key amino acid residues during the photocycle of bacteriorhodopsin.

  12. A national strategy to develop pragmatic clinical trials infrastructure.

    PubMed

    Concannon, Thomas W; Guise, Jeanne-Marie; Dolor, Rowena J; Meissner, Paul; Tunis, Sean; Krishnan, Jerry A; Pace, Wilson D; Saltz, Joel; Hersh, William R; Michener, Lloyd; Carey, Timothy S

    2014-04-01

    An important challenge in comparative effectiveness research is the lack of infrastructure to support pragmatic clinical trials, which compare interventions in usual practice settings and subjects. These trials present challenges that differ from those of classical efficacy trials, which are conducted under ideal circumstances, in patients selected for their suitability, and with highly controlled protocols. In 2012, we launched a 1-year learning network to identify high-priority pragmatic clinical trials and to deploy research infrastructure through the NIH Clinical and Translational Science Awards Consortium that could be used to launch and sustain them. The network and infrastructure were initiated as a learning ground and shared resource for investigators and communities interested in developing pragmatic clinical trials. We followed a three-stage process of developing the network, prioritizing proposed trials, and implementing learning exercises that culminated in a 1-day network meeting at the end of the year. The year-long project resulted in five recommendations related to developing the network, enhancing community engagement, addressing regulatory challenges, advancing information technology, and developing research methods. The recommendations can be implemented within 24 months and are designed to lead toward a sustained national infrastructure for pragmatic trials.

  13. Openness as infrastructure

    PubMed Central

    2011-01-01

    The advent of open access to peer reviewed scholarly literature in the biomedical sciences creates the opening to examine scholarship in general, and chemistry in particular, to see where and how novel forms of network technology can accelerate the scientific method. This paper examines broad trends in information access and openness with an eye towards their applications in chemistry. PMID:21999327

  14. Distributed telemedicine for the National Information Infrastructure

    SciTech Connect

    Forslund, D.W.; Lee, Seong H.; Reverbel, F.C.

    1997-08-01

    TeleMed is an advanced system that provides a distributed multimedia electronic medical record available over a wide area network. It uses object-based computing, distributed data repositories, advanced graphical user interfaces, and visualization tools along with innovative concept extraction of image information for storing and accessing medical records developed in a separate project from 1994-5. In 1996, we began the transition to Java, extended the infrastructure, and worked to begin deploying TeleMed-like technologies throughout the nation. Other applications are mentioned.

  15. Distributed Data Integration Infrastructure

    SciTech Connect

    Critchlow, T; Ludaescher, B; Vouk, M; Pu, C

    2003-02-24

    The Internet is becoming the preferred method for disseminating scientific data from a variety of disciplines. This can result in information overload on the part of the scientists, who are unable to query all of the relevant sources, even if they knew where to find them, what they contained, how to interact with them, and how to interpret the results. A related issue is keeping up with current trends in information technology often taxes the end-user's expertise and time. Thus instead of benefiting from this information rich environment, scientists become experts on a small number of sources and technologies, use them almost exclusively, and develop a resistance to innovations that can enhance their productivity. Enabling information based scientific advances, in domains such as functional genomics, requires fully utilizing all available information and the latest technologies. In order to address this problem we are developing a end-user centric, domain-sensitive workflow-based infrastructure, shown in Figure 1, that will allow scientists to design complex scientific workflows that reflect the data manipulation required to perform their research without an undue burden. We are taking a three-tiered approach to designing this infrastructure utilizing (1) abstract workflow definition, construction, and automatic deployment, (2) complex agent-based workflow execution and (3) automatic wrapper generation. In order to construct a workflow, the scientist defines an abstract workflow (AWF) in terminology (semantics and context) that is familiar to him/her. This AWF includes all of the data transformations, selections, and analyses required by the scientist, but does not necessarily specify particular data sources. This abstract workflow is then compiled into an executable workflow (EWF, in our case XPDL) that is then evaluated and executed by the workflow engine. This EWF contains references to specific data source and interfaces capable of performing the desired

  16. Critical Infrastructure Protection II, The International Federation for Information Processing, Volume 290.

    NASA Astrophysics Data System (ADS)

    Papa, Mauricio; Shenoi, Sujeet

    The information infrastructure -- comprising computers, embedded devices, networks and software systems -- is vital to day-to-day operations in every sector: information and telecommunications, banking and finance, energy, chemicals and hazardous materials, agriculture, food, water, public health, emergency services, transportation, postal and shipping, government and defense. Global business and industry, governments, indeed society itself, cannot function effectively if major components of the critical information infrastructure are degraded, disabled or destroyed. Critical Infrastructure Protection II describes original research results and innovative applications in the interdisciplinary field of critical infrastructure protection. Also, it highlights the importance of weaving science, technology and policy in crafting sophisticated, yet practical, solutions that will help secure information, computer and network assets in the various critical infrastructure sectors. Areas of coverage include: - Themes and Issues - Infrastructure Security - Control Systems Security - Security Strategies - Infrastructure Interdependencies - Infrastructure Modeling and Simulation This book is the second volume in the annual series produced by the International Federation for Information Processing (IFIP) Working Group 11.10 on Critical Infrastructure Protection, an international community of scientists, engineers, practitioners and policy makers dedicated to advancing research, development and implementation efforts focused on infrastructure protection. The book contains a selection of twenty edited papers from the Second Annual IFIP WG 11.10 International Conference on Critical Infrastructure Protection held at George Mason University, Arlington, Virginia, USA in the spring of 2008.

  17. Education, Infrastructure and America's Future.

    ERIC Educational Resources Information Center

    Moseley-Braun, Carol

    1997-01-01

    Senator Carol Moseley-Braun, D-Ill., a recognized advocate for federal funding of educational facilities, describes the strategy of placing school infrastructure in the same category as commercial and transportation infrastructure. Three researchers in the facilities field present empirical evidence that facility conditions directly affect…

  18. Cyber and physical infrastructure interdependencies.

    SciTech Connect

    Phillips, Laurence R.; Kelic, Andjelka; Warren, Drake E.

    2008-09-01

    The goal of the work discussed in this document is to understand the risk to the nation of cyber attacks on critical infrastructures. The large body of research results on cyber attacks against physical infrastructure vulnerabilities has not resulted in clear understanding of the cascading effects a cyber-caused disruption can have on critical national infrastructures and the ability of these affected infrastructures to deliver services. This document discusses current research and methodologies aimed at assessing the translation of a cyber-based effect into a physical disruption of infrastructure and thence into quantification of the economic consequences of the resultant disruption and damage. The document discusses the deficiencies of the existing methods in correlating cyber attacks with physical consequences. The document then outlines a research plan to correct those deficiencies. When completed, the research plan will result in a fully supported methodology to quantify the economic consequences of events that begin with cyber effects, cascade into other physical infrastructure impacts, and result in degradation of the critical infrastructure's ability to deliver services and products. This methodology enables quantification of the risks to national critical infrastructure of cyber threats. The work addresses the electric power sector as an example of how the methodology can be applied.

  19. Cyberwarfare on the Electricity Infrastructure

    SciTech Connect

    Murarka, N.; Ramesh, V.C.

    2000-03-20

    The report analyzes the possibility of cyberwarfare on the electricity infrastructure. The ongoing deregulation of the electricity industry makes the power grid all the more vulnerable to cyber attacks. The report models the power system information system components, models potential threats and protective measures. It therefore offers a framework for infrastructure protection.

  20. Computational Infrastructure for Nuclear Astrophysics

    SciTech Connect

    Smith, Michael S.; Hix, W. Raphael; Bardayan, Daniel W.; Blackmon, Jeffery C.; Lingerfelt, Eric J.; Scott, Jason P.; Nesaraja, Caroline D.; Chae, Kyungyuk; Guidry, Michael W.; Koura, Hiroyuki; Meyer, Richard A.

    2006-07-12

    A Computational Infrastructure for Nuclear Astrophysics has been developed to streamline the inclusion of the latest nuclear physics data in astrophysics simulations. The infrastructure consists of a platform-independent suite of computer codes that is freely available online at nucastrodata.org. Features of, and future plans for, this software suite are given.

  1. Multi-Scale Infrastructure Assessment

    EPA Science Inventory

    The U.S. Environmental Protection Agency’s (EPA) multi-scale infrastructure assessment project supports both water resource adaptation to climate change and the rehabilitation of the nation’s aging water infrastructure by providing tools, scientific data and information to progra...

  2. Fiber optic sensor applications in transportation infrastructure protection

    NASA Astrophysics Data System (ADS)

    Krohn, David; Nicholls, Paul

    2009-05-01

    In a recent study (1) on transportation infrastructure, the results are very disturbing. It states that 83% of the United States transportation infrastructure in not capable of meeting the needs of the next 10 years. While other countries have been more aggressive in infrastructure development and monitoring, the United States is lagging behind. There are a broad range of infrastructure sensing applications in transportation that are not being met. Many of these vital assets are aging or not adequately monitored with the potential for catastrophic failure. As examples, the bridge failure in Minneapolis, Minnesota was due to a structural failure. Fire safety problems, with recent life-loss fires, in road tunnels are challenging due to specific features of their infrastructure, nature of traffic using them and insufficient safety rules on vehicles. As a result, road tunnel fire safety issues are a concern. NIST has recognized the need and is funding innovative research for the development of infrastructure monitoring and inspection technologies. Specifically, NIST through its Technology Innovation Program (TIP) will fund the development of a network of distributed, integrated sensor architectures that will monitor bridges, roadways, tunnels, dams and other critical infrastructure applications (2) Many of these applications can be facilitated by using fiber optic sensors. This paper will specifically address monitoring bridges and tunnels using distributed fiber optic sensors to monitor strain, vibration, temperature and the associated benefits.

  3. LIGA Micromachining: Infrastructure Establishment

    SciTech Connect

    Alfredo M. Morales; Barry V. Hess; Dale R. Boehme; Jill M. Hruby; John S. Krafcik; Robert H. Nilson; Stewart K. Griffiths; William D. Bonivert

    1999-02-01

    LIGA is a micromachining technology that uses high energy x-rays from a synchrotron to create patterns with small lateral dimensions in a deep, non-conducting polymeric resist. Typical dimensions for LIGA parts are microns to tens of microns in lateral size, and hundreds of microns to millimeters in depth. Once the resist is patterned, metal is electrodeposited in the features to create metal microparts, or to create a metal mold for subsequent replication. The acronym LIGA comes from the German words for lithography, electroforming, and molding, and the technology has been under worldwide development for more than a decade. over the last five years, a full-service capability to produce metal microparts using the LIGA process has been established at Sandia national Laboratories, California. This report describes the accomplishments made during the past two years in infrastructure establishment funded by a Laboratory Directed Research and Development (LDRD) project entitled ''LIGA Micromachining.'' Specific topics include photoresist processing for LIGA mask making, x-ray scanning equipment, plating bath instrumentation, plating uniformity, and software architecture.

  4. MOEMS industrial infrastructure

    NASA Astrophysics Data System (ADS)

    van Heeren, Henne; Paschalidou, Lia

    2004-08-01

    Forecasters and analysts predict the market size for microsystems and microtechnologies to be in the order of 68 billion by the year 2005 (NEXUS Market Study 2002). In essence, the market potential is likely to double in size from its 38 billion status in 2002. According to InStat/MDR the market for MOEMS (Micro Optical Electro Mechanical Systems) in optical communication will be over $1.8 billion in 2006 and WTC states that the market for non telecom MOEMS will be even larger. Underpinning this staggering growth will be an infrastructure of design houses, foundries, package/assembly providers and equipment suppliers to cater for the demand in design, prototyping, and (mass-) production. This infrastructure is needed to provide an efficient route to commercialisation. Foundries, which provide the infrastructure to prototype, fabricate and mass-produce the designs emanating from the design houses and other companies. The reason for the customers to rely on foundries can be diverse: ranging from pure economical reasons (investments, cost-price) to technical (availability of required technology). The desire to have a second source of supply can also be a reason for outsourcing. Foundries aim to achieve economies of scale by combining several customer orders into volume production. Volumes are necessary, not only to achieve the required competitive cost prices, but also to attain the necessary technical competence level. Some products that serve very large markets can reach such high production volumes that they are able to sustain dedicated factories. In such cases, captive supply is possible, although outsourcing is still an option, as can be seen in the magnetic head markets, where captive and non-captive suppliers operate alongside each other. The most striking examples are: inkjet heads (>435 million heads per year) and magnetic heads (>1.5 billion heads per year). Also pressure sensor and accelerometer producers can afford their own facilities to produce the

  5. Probing the hydrogen-bond network of water via time-resolved soft x-ray spectroscopy

    SciTech Connect

    Huse, Nils; Wen, Haidan; Nordlund, Dennis; Szilagyi, Erzsi; Daranciang, Dan; Miller, Timothy A.; Nilsson, Anders; Schoenlein, Robert W.; Lindenberg, Aaron M.

    2009-04-24

    We report time-resolved studies of hydrogen bonding in liquid H2O, in response to direct excitation of the O-H stretch mode at 3 mu m, probed via soft x-ray absorption spectroscopy at the oxygen K-edge. This approach employs a newly developed nanofluidic cell for transient soft x-ray spectroscopy in liquid phase. Distinct changes in the near-edge spectral region (XANES) are observed, and are indicative of a transient temperature rise of 10K following transient laser excitation and rapid thermalization of vibrational energy. The rapid heating occurs at constant volume and the associated increase in internal pressure, estimated to be 8MPa, is manifest by distinct spectral changes that differ from those induced by temperature alone. We conclude that the near-edge spectral shape of the oxygen K-edge is a sensitive probe of internal pressure, opening new possibilities for testing the validity of water models and providing new insight into the nature of hydrogen bonding in water.

  6. Contributions of a hydrogen bond/salt bridge network to the stability of secondary and tertiary structure in lambda repressor.

    PubMed Central

    Marqusee, S.; Sauer, R. T.

    1994-01-01

    In the N-terminal domain of lambda repressor, the Asp 14 side chain forms an intrahelical, hydrogen bond/salt bridge with the Arg 17 side chain and a tertiary hydrogen bond with the Ser 77 side chain. By measuring the stabilities to urea denaturation of the wild-type N-terminal domain and variants containing single, double, and triple alanine substitutions at positions 14, 17, and 77, the side-chain interaction energies, the coupling energy between interactions, and the intrinsic effects of each wild-type side chain on protein stability have been estimated. These studies indicate that the Asp 14-Arg 17 and Asp 14-Ser 77 interactions are stabilizing by roughly 0.8 and 1.5 kcal/mol, respectively, but that Asp 14, by itself, is destabilizing by roughly 0.9 kcal/mol. We also show that a peptide model of alpha-helix 1, which contains Asp 14 and Arg 17, forms a reasonably stable, monomeric helix in solution and responds to alanine mutations at positions 14 and 17 in the fashion expected from the intact protein studies. These studies suggest that it is possible to view the stability effects of mutations in intact proteins in a hierarchical fashion, with the stability of units of secondary structure being distinguishable from the stability of tertiary structure. PMID:7756981

  7. 2007 Annual Progress Report - DOE Hydrogen Program (CD-Rom)

    SciTech Connect

    2007-10-01

    This report summarizes the hydrogen and fuel cell R&D activities and accomplishments in FY2007 for the DOE Hydrogen Program, including the Hydrogen, Fuel Cells, and Infrastructure Technologies Program and hydrogen-related work in the Offices of Science; Fossil Energy; and Nuclear Energy, Science, and Technology. It includes reports on all of the research projects funded by the DOE Hydrogen Program between October 2006 and September 2007.

  8. Modeling, Simulation and Analysis of Public Key Infrastructure

    NASA Technical Reports Server (NTRS)

    Liu, Yuan-Kwei; Tuey, Richard; Ma, Paul (Technical Monitor)

    1998-01-01

    Security is an essential part of network communication. The advances in cryptography have provided solutions to many of the network security requirements. Public Key Infrastructure (PKI) is the foundation of the cryptography applications. The main objective of this research is to design a model to simulate a reliable, scalable, manageable, and high-performance public key infrastructure. We build a model to simulate the NASA public key infrastructure by using SimProcess and MatLab Software. The simulation is from top level all the way down to the computation needed for encryption, decryption, digital signature, and secure web server. The application of secure web server could be utilized in wireless communications. The results of the simulation are analyzed and confirmed by using queueing theory.

  9. Simulating economic effects of disruptions in the telecommunications infrastructure.

    SciTech Connect

    Cox, Roger Gary; Barton, Dianne Catherine; Reinert, Rhonda K.; Eidson, Eric D.; Schoenwald, David Alan

    2004-01-01

    CommAspen is a new agent-based model for simulating the interdependent effects of market decisions and disruptions in the telecommunications infrastructure on other critical infrastructures in the U.S. economy such as banking and finance, and electric power. CommAspen extends and modifies the capabilities of Aspen-EE, an agent-based model previously developed by Sandia National Laboratories to analyze the interdependencies between the electric power system and other critical infrastructures. CommAspen has been tested on a series of scenarios in which the communications network has been disrupted, due to congestion and outages. Analysis of the scenario results indicates that communications networks simulated by the model behave as their counterparts do in the real world. Results also show that the model could be used to analyze the economic impact of communications congestion and outages.

  10. Structural analysis of phospholipase A2 from functional perspective. 1. Functionally relevant solution structure and roles of the hydrogen-bonding network.

    PubMed

    Yuan, C; Byeon, I J; Li, Y; Tsai, M D

    1999-03-01

    Bovine pancreatic phospholipase A2 (PLA2), a small (13.8 kDa) Ca2+-dependent lipolytic enzyme, is rich in functional and structural character. In an effort to examine its detailed structure-function relationship, we determined its solution structure by multidimensional nuclear magnetic resonance (NMR) spectroscopy at a functionally relevant pH. An ensemble of 20 structures generated has an average root-mean-square deviation (RMSD) of 0.62 +/- 0.08 A for backbone (N, Calpha, C) atoms and 0.98 +/- 0.09 A for all heavy atoms. The overall structure shows several notable differences from the crystal structure: the first three residues at the N-terminus, the calcium-binding loop (Y25-T36), and the surface loop (V63-N72) appear to be flexible; the alpha-helical conformation of helix B (E17-F22) is absent; helix D appears to be shorter (D59-V63 instead of D59-D66); and the hydrogen-bonding network is less defined. These differences were analyzed in relation to the function of PLA2. We then further examined the H-bonding network, because its functional role or even its existence in solution has been in dispute recently. Our results show that part of the H-bonding network (the portion away from N-terminus) clearly exists in solution, as evidenced by direct observation (at 11.1 ppm) of a strong H-bond between Y73 and D99 and an implicated interaction between D99 and H48. Analyses of a series of mutants indicated that the existence of the Y73.D99 H-bond correlates directly with the conformational stability of the mutant. Loss of this H-bond results in a loss of 2-3 kcal/mol in the conformational stability of PLA2. The unequivocal identification and demonstration of the structural importance of a specific hydrogen bond, and the magnitude of its contribution to conformational stability, are uncommon to the best of our knowledge. Our results also suggest that, while the D99.H48 catalytic diad is the key catalytic machinery of PLA2, it also helps to maintain conformational

  11. A Science Information Infrastructure

    NASA Astrophysics Data System (ADS)

    Christian, C. A.; Hawkins, I.; Malina, R. F.; Dow, K.; Murray, S.

    1994-12-01

    We have created a partnership of science museums, research institutions, teachers, and other centers of informal science education to enable access to the rich resources of remote sensing data available from NASA and other sources and to deliver this information to the general community. We are creating science resource centers in the nation's science museums and planetarium facilities, linking them together through a national Science Information Infrastructure (SII). The SII framework is being founded on Internet connections between the resource centers, which are in turn linked to research institutions. The most up-to-date and exciting science data, related information, and interpretive material will be available from the research institutions. The science museums will present this information in appropriate ways that respond to the needs and interest of the general public and K--12 communities. The science information will be available through the World Wide Web using a Mosaic interface that individuals will use to explore the on-line materials through self-guided learning modules. K--12 teachers will have access to the materials and, in a workshop forum, learn to find and use the information to create lesson plans and curricula for their classrooms. Eventually, as the connectivity of schools and libraries improves, students and teachers will have access to the resource centers from their own locations. The core partnership of the SII includes the Center for EUV Astrophysics (CEA), and Smithsonian Astrophysical Observatory, Exploratorium, Lawrence Hall of Science, Smithsonian National Air and Space Museum, Science Museum of Virginia, New York Hall of Science, Adler Museum of Chicago, University of California Museum of Paleontology, Boston Museum of Science, and the Earth Observing Satellite Company (EOSAT). A demonstration of the application of resource center materials in the K--12 community is being conducted through the Science On-Line project at the Center

  12. Carbon emissions of infrastructure development.

    PubMed

    Müller, Daniel B; Liu, Gang; Løvik, Amund N; Modaresi, Roja; Pauliuk, Stefan; Steinhoff, Franciska S; Brattebø, Helge

    2013-10-15

    Identifying strategies for reconciling human development and climate change mitigation requires an adequate understanding of how infrastructures contribute to well-being and greenhouse gas emissions. While direct emissions from infrastructure use are well-known, information about indirect emissions from their construction is highly fragmented. Here, we estimated the carbon footprint of the existing global infrastructure stock in 2008, assuming current technologies, to be 122 (-20/+15) Gt CO2. The average per-capita carbon footprint of infrastructures in industrialized countries (53 (± 6) t CO2) was approximately 5 times larger that that of developing countries (10 (± 1) t CO2). A globalization of Western infrastructure stocks using current technologies would cause approximately 350 Gt CO2 from materials production, which corresponds to about 35-60% of the remaining carbon budget available until 2050 if the average temperature increase is to be limited to 2 °C, and could thus compromise the 2 °C target. A promising but poorly explored mitigation option is to build new settlements using less emissions-intensive materials, for example by urban design; however, this strategy is constrained by a lack of bottom-up data on material stocks in infrastructures. Infrastructure development must be considered in post-Kyoto climate change agreements if developing countries are to participate on a fair basis.

  13. National Infrastructure of Library and Information Services in Arab Countries.

    ERIC Educational Resources Information Center

    Rehman, Sajjadur

    1989-01-01

    Discusses the feasibility of a network for library and information services in the Arab world and examines existing national library and information infrastructures in the context of the status of the national library; national bibliographic control; availability of union catalogs and indexing and abstracting services; interlibrary cooperation;…

  14. Branch Campus Librarianship with Minimal Infrastructure: Rewards and Challenges

    ERIC Educational Resources Information Center

    Knickman, Elena; Walton, Kerry

    2014-01-01

    Delaware County Community College provides library services to its branch campus community members by stationing a librarian at a campus 5 to 20 hours each week, without any more library infrastructure than an Internet-enabled computer on the school network. Faculty and students have reacted favorably to the increased presence of librarians.…

  15. The Construction of Infrastructure for Library's Digital Document Telecommunications.

    ERIC Educational Resources Information Center

    Changxing, Ying; Zuzao, Lin

    This paper discusses the construction of the infrastructure for libraries' digital document telecommunications. The first section describes the topologies of the library LAN (Local Area Network) cabling system, including the main characteristics of the LAN and three classical topologies typically used with LANs, i.e., the bus, star, and ring…

  16. Benefits and challenges of linking green infrastructure and highway planning in the United States.

    PubMed

    Marcucci, Daniel J; Jordan, Lauren M

    2013-01-01

    Landscape-level green infrastructure creates a network of natural and semi-natural areas that protects and enhances ecosystem services, regenerative capacities, and ecological dynamism over long timeframes. It can also enhance quality of life and certain economic activity. Highways create a network for moving goods and services efficiently, enabling commerce, and improving mobility. A fundamentally profound conflict exists between transportation planning and green infrastructure planning because they both seek to create connected, functioning networks across the same landscapes and regions, but transportation networks, especially in the form of highways, fragment and disconnect green infrastructure networks. A key opportunity has emerged in the United States during the last ten years with the promotion of measures to link transportation and environmental concerns. In this article we examined the potential benefits and challenges of linking landscape-level green infrastructure planning and implementation with integrated transportation planning and highway project development in the United States policy context. This was done by establishing a conceptual model that identified logical flow lines from planning to implementation as well as the potential interconnectors between green infrastructure and highway infrastructure. We analyzed the relationship of these activities through literature review, policy analysis, and a case study of a suburban Maryland, USA landscape. We found that regionally developed and adopted green infrastructure plans can be instrumental in creating more responsive regional transportation plans and streamlining the project environmental review process while enabling better outcomes by enabling more targeted mitigation. In order for benefits to occur, however, landscape-scale green infrastructure assessments and plans must be in place before integrated transportation planning and highway project development occurs. It is in the transportation

  17. Benefits and Challenges of Linking Green Infrastructure and Highway Planning in the United States

    NASA Astrophysics Data System (ADS)

    Marcucci, Daniel J.; Jordan, Lauren M.

    2013-01-01

    Landscape-level green infrastructure creates a network of natural and semi-natural areas that protects and enhances ecosystem services, regenerative capacities, and ecological dynamism over long timeframes. It can also enhance quality of life and certain economic activity. Highways create a network for moving goods and services efficiently, enabling commerce, and improving mobility. A fundamentally profound conflict exists between transportation planning and green infrastructure planning because they both seek to create connected, functioning networks across the same landscapes and regions, but transportation networks, especially in the form of highways, fragment and disconnect green infrastructure networks. A key opportunity has emerged in the United States during the last ten years with the promotion of measures to link transportation and environmental concerns. In this article we examined the potential benefits and challenges of linking landscape-level green infrastructure planning and implementation with integrated transportation planning and highway project development in the United States policy context. This was done by establishing a conceptual model that identified logical flow lines from planning to implementation as well as the potential interconnectors between green infrastructure and highway infrastructure. We analyzed the relationship of these activities through literature review, policy analysis, and a case study of a suburban Maryland, USA landscape. We found that regionally developed and adopted green infrastructure plans can be instrumental in creating more responsive regional transportation plans and streamlining the project environmental review process while enabling better outcomes by enabling more targeted mitigation. In order for benefits to occur, however, landscape-scale green infrastructure assessments and plans must be in place before integrated transportation planning and highway project development occurs. It is in the transportation

  18. Benefits and challenges of linking green infrastructure and highway planning in the United States.

    PubMed

    Marcucci, Daniel J; Jordan, Lauren M

    2013-01-01

    Landscape-level green infrastructure creates a network of natural and semi-natural areas that protects and enhances ecosystem services, regenerative capacities, and ecological dynamism over long timeframes. It can also enhance quality of life and certain economic activity. Highways create a network for moving goods and services efficiently, enabling commerce, and improving mobility. A fundamentally profound conflict exists between transportation planning and green infrastructure planning because they both seek to create connected, functioning networks across the same landscapes and regions, but transportation networks, especially in the form of highways, fragment and disconnect green infrastructure networks. A key opportunity has emerged in the United States during the last ten years with the promotion of measures to link transportation and environmental concerns. In this article we examined the potential benefits and challenges of linking landscape-level green infrastructure planning and implementation with integrated transportation planning and highway project development in the United States policy context. This was done by establishing a conceptual model that identified logical flow lines from planning to implementation as well as the potential interconnectors between green infrastructure and highway infrastructure. We analyzed the relationship of these activities through literature review, policy analysis, and a case study of a suburban Maryland, USA landscape. We found that regionally developed and adopted green infrastructure plans can be instrumental in creating more responsive regional transportation plans and streamlining the project environmental review process while enabling better outcomes by enabling more targeted mitigation. In order for benefits to occur, however, landscape-scale green infrastructure assessments and plans must be in place before integrated transportation planning and highway project development occurs. It is in the transportation

  19. AFDX Based Data Infrastructures in Space

    NASA Astrophysics Data System (ADS)

    Vogel, Torsten

    2010-08-01

    An assessment on the requirements for the avionics infrastructure of future spacecraft like the Advanced Re-Entry Vehicle ARV has identified a distinctive lack of performance on the traditional MIL-STD-1553B installations and thus initiated a quest for an equally reliable but much more powerful successor. Ever increasing processing performance available for onboard computers opens opportunities for advanced applications like real time image processing for close range navigation. In a distributed data handling system these functions heavily rely on equally advanced and powerful network architecture. This paper will identify the requirements for modern avionics data-buses and evaluate the suitability of possible candidates. Subsequently a dedicated focus will be given to an Avionics Full DupleX Switched Ethernet (AFDX) infrastructure as backbone for future spacecraft control applications. A detailed section will focus on the central aspects that make AFDX an interesting choice for space network installations. It will cover specifically the enhancements of the underlying IEEE 802.3 Ethernet technology.

  20. Hydrogen and Storage Initiatives at the NASA JSC White Sands Test Facility

    NASA Technical Reports Server (NTRS)

    Maes, Miguel; Woods, Stephen S.

    2006-01-01

    NASA WSTF Hydrogen Activities: a) Aerospace Test; b) System Certification & Verification; c) Component, System, & Facility Hazard Assessment; d) Safety Training Technical Transfer: a) Development of Voluntary Consensus Standards and Practices; b) Support of National Hydrogen Infrastructure Development.

  1. 76 FR 20995 - Critical Infrastructure Partnership Advisory Council (CIPAC)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-14

    ... infrastructure protection security measures, incident response, recovery, infrastructure resilience... sharing threat, vulnerability, risk mitigation, and infrastructure continuity information....

  2. Assessing Terrorist Motivations for Attacking Critical Infrastructure

    SciTech Connect

    Ackerman, G; Abhayaratne, P; Bale, J; Bhattacharjee, A; Blair, C; Hansell, L; Jayne, A; Kosal, M; Lucas, S; Moran, K; Seroki, L; Vadlamudi, S

    2006-12-04

    Certain types of infrastructure--critical infrastructure (CI)--play vital roles in underpinning our economy, security and way of life. These complex and often interconnected systems have become so ubiquitous and essential to day-to-day life that they are easily taken for granted. Often it is only when the important services provided by such infrastructure are interrupted--when we lose easy access to electricity, health care, telecommunications, transportation or water, for example--that we are conscious of our great dependence on these networks and of the vulnerabilities that stem from such dependence. Unfortunately, it must be assumed that many terrorists are all too aware that CI facilities pose high-value targets that, if successfully attacked, have the potential to dramatically disrupt the normal rhythm of society, cause public fear and intimidation, and generate significant publicity. Indeed, revelations emerging at the time of this writing about Al Qaida's efforts to prepare for possible attacks on major financial facilities in New York, New Jersey, and the District of Columbia remind us just how real and immediate such threats to CI may be. Simply being aware that our nation's critical infrastructure presents terrorists with a plethora of targets, however, does little to mitigate the dangers of CI attacks. In order to prevent and preempt such terrorist acts, better understanding of the threats and vulnerabilities relating to critical infrastructure is required. The Center for Nonproliferation Studies (CNS) presents this document as both a contribution to the understanding of such threats and an initial effort at ''operationalizing'' its findings for use by analysts who work on issues of critical infrastructure protection. Specifically, this study focuses on a subsidiary aspect of CI threat assessment that has thus far remained largely unaddressed by contemporary terrorism research: the motivations and related factors that determine whether a terrorist

  3. Front Range Infrastructure Resources project

    USGS Publications Warehouse

    ,

    1998-01-01

    Project goal: To provide the public and decision makers with objective information about the location and characteristics of land, natural aggregate, water, and energy resources that are vital to sustaining an area and its infrastructure.

  4. Infrastructure Redesign and Instructional Reform in Mathematics: Formal Structure and Teacher Leadership

    ERIC Educational Resources Information Center

    Hopkins, Megan; Spillane, James P.; Jakopovic, Paula; Heaton, Ruth M.

    2013-01-01

    Designing infrastructures to support instruction remains a challenge in educational reform. This article reports on a study of one school system's efforts to redesign its infrastructure for mathematics instruction by promoting teacher leadership. Using social network and interview data from 12 elementary schools, we explore how the…

  5. Infrastructure dynamics: A selected bibliography

    NASA Technical Reports Server (NTRS)

    Dajani, J. S.; Bencosme, A. J.

    1978-01-01

    The term infrastructure is used to denote the set of life support and public service systems which is necessary for the development of growth of human settlements. Included are some basic references in the field of dynamic simulation, as well as a number of relevant applications in the area of infrastructure planning. The intent is to enable the student or researcher to quickly identify such applications to the extent necessary for initiating further work in the field.

  6. Comparative transcriptomic profiling of hydrogen peroxide signaling networks in zebrafish and human keratinocytes: Implications toward conservation, migration and wound healing.

    PubMed

    Lisse, Thomas S; King, Benjamin L; Rieger, Sandra

    2016-01-01

    Skin wounds need to be repaired rapidly after injury to restore proper skin barrier function. Hydrogen peroxide (H2O2) is a conserved signaling factor that has been shown to promote a variety of skin wound repair processes, including immune cell migration, angiogenesis and sensory axon repair. Despite growing research on H2O2 functions in wound repair, the downstream signaling pathways activated by this reactive oxygen species in the context of injury remain largely unknown. The goal of this study was to provide a comprehensive analysis of gene expression changes in the epidermis upon exposure to H2O2 concentrations known to promote wound repair. Comparative transcriptome analysis using RNA-seq data from larval zebrafish and previously reported microarray data from a human epidermal keratinocyte line shows that H2O2 activates conserved cell migration, adhesion, cytoprotective and anti-apoptotic programs in both zebrafish and human keratinocytes. Further assessment of expression characteristics and signaling pathways revealed the activation of three major H2O2-dependent pathways, EGF, FOXO1, and IKKα. This study expands on our current understanding of the clinical potential of low-level H2O2 for the promotion of epidermal wound repair and provides potential candidates in the treatment of wound healing deficits. PMID:26846883

  7. Comparative transcriptomic profiling of hydrogen peroxide signaling networks in zebrafish and human keratinocytes: Implications toward conservation, migration and wound healing

    PubMed Central

    Lisse, Thomas S.; King, Benjamin L.; Rieger, Sandra

    2016-01-01

    Skin wounds need to be repaired rapidly after injury to restore proper skin barrier function. Hydrogen peroxide (H2O2) is a conserved signaling factor that has been shown to promote a variety of skin wound repair processes, including immune cell migration, angiogenesis and sensory axon repair. Despite growing research on H2O2 functions in wound repair, the downstream signaling pathways activated by this reactive oxygen species in the context of injury remain largely unknown. The goal of this study was to provide a comprehensive analysis of gene expression changes in the epidermis upon exposure to H2O2 concentrations known to promote wound repair. Comparative transcriptome analysis using RNA-seq data from larval zebrafish and previously reported microarray data from a human epidermal keratinocyte line shows that H2O2 activates conserved cell migration, adhesion, cytoprotective and anti-apoptotic programs in both zebrafish and human keratinocytes. Further assessment of expression characteristics and signaling pathways revealed the activation of three major H2O2–dependent pathways, EGF, FOXO1, and IKKα. This study expands on our current understanding of the clinical potential of low-level H2O2 for the promotion of epidermal wound repair and provides potential candidates in the treatment of wound healing deficits. PMID:26846883

  8. Water Supply Infrastructure System Surety

    SciTech Connect

    EKMAN,MARK E.; ISBELL,DARYL

    2000-01-06

    The executive branch of the United States government has acknowledged and identified threats to the water supply infrastructure of the United States. These threats include contamination of the water supply, aging infrastructure components, and malicious attack. Government recognition of the importance of providing safe, secure, and reliable water supplies has a historical precedence in the water works of the ancient Romans, who recognized the same basic threats to their water supply infrastructure the United States acknowledges today. System surety is the philosophy of ''designing for threats, planning for failure, and managing for success'' in system design and implementation. System surety is an alternative to traditional compliance-based approaches to safety, security, and reliability. Four types of surety are recognized: reactive surety; proactive surety, preventative surety; and fundamental, inherent surety. The five steps of the system surety approach can be used to establish the type of surety needed for the water infrastructure and the methods used to realize a sure water infrastructure. The benefit to the water industry of using the system surety approach to infrastructure design and assessment is a proactive approach to safety, security, and reliability for water transmission, treatment, distribution, and wastewater collection and treatment.

  9. Hydrogen sensor

    DOEpatents

    Duan, Yixiang; Jia, Quanxi; Cao, Wenqing

    2010-11-23

    A hydrogen sensor for detecting/quantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites hydrogen from a gas sample and produces light emission from excited hydrogen. A power supply provides power to the microplasma generator, and a spectrometer generates an emission spectrum from the light emission. A programmable computer is adapted for determining whether or not the gas sample includes hydrogen, and for quantitating the amount of hydrogen and/or hydrogen isotopes are present in the gas sample.

  10. Development of a Turnkey Hydrogen Fueling Station Final Report

    SciTech Connect

    David E. Guro; Edward Kiczek; Kendral Gill; Othniel Brown

    2010-07-29

    The transition to hydrogen as a fuel source presents several challenges. One of the major hurdles is the cost-effective production of hydrogen in small quantities (less than 1MMscf/month). In the early demonstration phase, hydrogen can be provided by bulk distribution of liquid or compressed gas from central production plants; however, the next phase to fostering the hydrogen economy will likely include onsite generation and extensive pipeline networks to help effect a pervasive infrastructure. Providing inexpensive hydrogen at a fleet operator’s garage or local fueling station is a key enabling technology for direct hydrogen Fuel Cell Vehicles (FCVs). The objective of this project was to develop a comprehensive, turnkey, stand-alone, commercial hydrogen fueling station for FCVs with state-of-the-art technology that is cost-competitive with current hydrocarbon fuels. Such a station would promote the advent of the hydrogen fuel economy for buses, fleet vehicles, and ultimately personal vehicles. Air Products, partnering with the U.S. Department of Energy (DOE), The Pennsylvania State University, Harvest Energy Technology, and QuestAir, developed a turnkey hydrogen fueling station on the Penn State campus. Air Products aimed at designing a station that would have 65% overall station efficiency, 82% PSA (pressure swing adsorption) efficiency, and the capability of producing hydrogen at $3.00/kg (gge) H2 at mass production rates. Air Products designed a fueling station at Penn State from the ground up. This project was implemented in three phases. The first phase evaluated the various technologies available in hydrogen generation, compression, storage, and gas dispensing. In the second phase, Air Products designed the components chosen from the technologies examined. Finally, phase three entailed a several-month period of data collection, full-scale operation, maintenance of the station, and optimization of system reliability and performance. Based on field data

  11. SPRUCE experiment data infrastructure

    NASA Astrophysics Data System (ADS)

    Krassovski, M.; Hanson, P. J.; Boden, T.; Riggs, J.; Nettles, W. R.; Hook, L. A.

    2013-12-01

    The Carbon Dioxide Information Analysis Center (CDIAC) at Oak Ridge National Laboratory (ORNL), USA has provided scientific data management support for the US Department of Energy and international climate change science since 1982. Among the many data activities CDIAC performs are design and implementation of the data systems. One current example is the data system and network for SPRUCE experiment. The SPRUCE experiment (http://mnspruce.ornl.gov) is the primary component of the Terrestrial Ecosystem Science Scientific Focus Area of ORNL's Climate Change Program, focused on terrestrial ecosystems and the mechanisms that underlie their responses to climatic change. The experimental work is to be conducted in a bog forest in northern Minnesota, 40 km north of Grand Rapids, in the USDA Forest Service Marcell Experimental Forest (MEF). The site is located at the southern margin of the boreal peatland forest. Experimental work in the 8.1-ha S1 bog will be a climate change manipulation focusing on the combined responses to multiple levels of warming at ambient or elevated CO2 (eCO2) levels. The experiment provides a platform for testing mechanisms controlling the vulnerability of organisms, biogeochemical processes and ecosystems to climatic change (e.g., thresholds for organism decline or mortality, limitations to regeneration, biogeochemical limitations to productivity, the cycling and release of CO2 and CH4 to the atmosphere). The manipulation will evaluate the response of the existing biological communities to a range of warming levels from ambient to +9°C, provided via large, modified open-top chambers. The ambient and +9°C warming treatments will also be conducted at eCO2 (in the range of 800 to 900 ppm). Both direct and indirect effects of these experimental perturbations will be analyzed to develop and refine models needed for full Earth system analyses. SPRUCE provides wide range continuous and discrete measurements. To successfully manage SPRUCE data flow

  12. Purdue Hydrogen Systems Laboratory

    SciTech Connect

    Jay P Gore; Robert Kramer; Timothee L Pourpoint; P. V. Ramachandran; Arvind Varma; Yuan Zheng

    2011-12-28

    The Hydrogen Systems Laboratory in a unique partnership between Purdue University's main campus in West Lafayette and the Calumet campus was established and its capabilities were enhanced towards technology demonstrators. The laboratory engaged in basic research in hydrogen production and storage and initiated engineering systems research with performance goals established as per the USDOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program. In the chemical storage and recycling part of the project, we worked towards maximum recycling yield via novel chemical selection and novel recycling pathways. With the basic potential of a large hydrogen yield from AB, we used it as an example chemical but have also discovered its limitations. Further, we discovered alternate storage chemicals that appear to have advantages over AB. We improved the slurry hydrolysis approach by using advanced slurry/solution mixing techniques. We demonstrated vehicle scale aqueous and non-aqueous slurry reactors to address various engineering issues in on-board chemical hydrogen storage systems. We measured the thermal properties of raw and spent AB. Further, we conducted experiments to determine reaction mechanisms and kinetics of hydrothermolysis in hydride-rich solutions and slurries. We also developed a continuous flow reactor and a laboratory scale fuel cell power generation system. The biological hydrogen production work summarized as Task 4.0 below, included investigating optimal hydrogen production cultures for different substrates, reducing the water content in the substrate, and integrating results from vacuum tube solar collector based pre and post processing tests into an enhanced energy system model. An automated testing device was used to finalize optimal hydrogen production conditions using statistical procedures. A 3 L commercial fermentor (New Brunswick, BioFlo 115) was used to finalize testing of larger samples and to consider issues related to scale up. Efforts

  13. A hydrogen-bonding network is important for oxidation and isomerization in the reaction catalyzed by cholesterol oxidase

    SciTech Connect

    Lyubimov, Artem Y.; Chen, Lin; Sampson, Nicole S.; Vrielink, Alice

    2009-11-01

    The importance of active-site electrostatics for oxidative and reductive half-reactions in a redox flavoenzyme (cholesterol oxidase) have been investigated by a combination of biochemistry and atomic resolution crystallography. A detailed examination of active-site dynamics demonstrates that the oxidation of substrate and the re-oxidation of the flavin cofactor by molecular oxygen are linked by a single active-site asparagine. Cholesterol oxidase is a flavoenzyme that catalyzes the oxidation and isomerization of 3β-hydroxysteroids. Structural and mutagenesis studies have shown that Asn485 plays a key role in substrate oxidation. The side chain makes an NH⋯π interaction with the reduced form of the flavin cofactor. A N485D mutant was constructed to further test the role of the amide group in catalysis. The mutation resulted in a 1800-fold drop in the overall k{sub cat}. Atomic resolution structures were determined for both the N485L and N485D mutants. The structure of the N485D mutant enzyme (at 1.0 Å resolution) reveals significant perturbations in the active site. As predicted, Asp485 is oriented away from the flavin moiety, such that any stabilizing interaction with the reduced flavin is abolished. Met122 and Glu361 form unusual hydrogen bonds to the functional group of Asp485 and are displaced from the positions they occupy in the wild-type active site. The overall effect is to disrupt the stabilization of the reduced FAD cofactor during catalysis. Furthermore, a narrow transient channel that is shown to form when the wild-type Asn485 forms the NH⋯π interaction with FAD and that has been proposed to function as an access route of molecular oxygen, is not observed in either of the mutant structures, suggesting that the dynamics of the active site are altered.

  14. Hydrogen Research for Spaceport and Space-Based Applications: Hydrogen Production, Storage, and Transport. Part 3

    NASA Technical Reports Server (NTRS)

    Anderson, Tim; Balaban, Canan

    2008-01-01

    The activities presented are a broad based approach to advancing key hydrogen related technologies in areas such as fuel cells, hydrogen production, and distributed sensors for hydrogen-leak detection, laser instrumentation for hydrogen-leak detection, and cryogenic transport and storage. Presented are the results from research projects, education and outreach activities, system and trade studies. The work will aid in advancing the state-of-the-art for several critical technologies related to the implementation of a hydrogen infrastructure. Activities conducted are relevant to a number of propulsion and power systems for terrestrial, aeronautics and aerospace applications. Hydrogen storage and in-space hydrogen transport research focused on developing and verifying design concepts for efficient, safe, lightweight liquid hydrogen cryogenic storage systems. Research into hydrogen production had a specific goal of further advancing proton conducting membrane technology in the laboratory at a larger scale. System and process trade studies evaluated the proton conducting membrane technology, specifically, scale-up issues.

  15. Networks.

    ERIC Educational Resources Information Center

    Cerf, Vinton G.

    1991-01-01

    The demands placed on the networks transporting the information and knowledge generated by the increased diversity and sophistication of computational machinery are described. What is needed to support this increased flow, the structures already in place, and what must be built are topics of discussion. (KR)

  16. A spectroscopic and computational investigation of the conformational structural changes induced by hydrogen bonding networks in the glycidol-water complex.

    PubMed

    Conrad, A R; Teumelsan, N H; Wang, P E; Tubergen, M J

    2010-01-14

    Rotational spectra were recorded in natural abundance for the (13)C isotopomers of two conformers of glycidol. Moments of inertia from the (13)C isotopomers were used to calculate the substitution coordinates and C-C bond lengths of two glycidol monomer conformations. The structures of seven different conformational minima were found from ab initio (MP2/6-311++G(d,p)) optimizations of glycidol-water. The rotational spectrum of glycidol-water was recorded using microwave spectroscopy, and the rotational constants were determined to be A = 3902.331 (11) MHz, B = 2763.176 (3) MHz, and C = 1966.863 (3) MHz. Rotational spectra were also recorded for glycidol-H(2)(18)O, glycidol-D(b)OH, and glycidol-d(O)-D(2)O. The rotational spectra were assigned to the lowest-energy ab initio structure, and the structure was improved by fitting to the experimental moments of inertia. The best-fit structure shows evidence for structural changes in glycidol to accommodate formation of the intermolecular hydrogen bonding network: the O-C-C-O torsional angle in glycidol was found to increase from 40.8 degrees for the monomer to 49.9 degrees in the water complex.

  17. Study on dioxygen reduction by mutational modifications of the hydrogen bond network leading from bulk water to the trinuclear copper center in bilirubin oxidase

    SciTech Connect

    Morishita, Hirotoshi; Kurita, Daisuke; Kataoka, Kunishige; Sakurai, Takeshi

    2014-07-18

    Highlights: • Proton transport pathway in bilirubin oxidase was mutated. • Two intermediates in the dioxygen reduction steps were trapped and characterized. • A specific glutamate for dioxygen reduction by multicopper oxidases was identified. - Abstract: The hydrogen bond network leading from bulk water to the trinuclear copper center in bilirubin oxidase is constructed with Glu463 and water molecules to transport protons for the four-electron reduction of dioxygen. Substitutions of Glu463 with Gln or Ala were attributed to virtually complete loss or significant reduction in enzymatic activities due to an inhibition of the proton transfer steps to dioxygen. The single turnover reaction of the Glu463Gln mutant afforded the highly magnetically interacted intermediate II (native intermediate) with a broad g = 1.96 electron paramagnetic resonance signal detectable at cryogenic temperatures. Reactions of the double mutants, Cys457Ser/Glu463Gln and Cys457Ser/Glu463Ala afforded the intermediate I (peroxide intermediate) because the type I copper center to donate the fourth electron to dioxygen was vacant in addition to the interference of proton transport due to the mutation at Glu463. The intermediate I gave no electron paramagnetic resonance signal, but the type II copper signal became detectable with the decay of the intermediate I. Structural and functional similarities between multicopper oxidases are discussed based on the present mutation at Glu463 in bilirubin oxidase.

  18. Hydrogen Contractors Meeting

    SciTech Connect

    Fitzsimmons, Tim

    2006-05-16

    This volume highlights the scientific content of the 2006 Hydrogen Contractors Meeting sponsored by the Division of Materials Sciences and Engineering (DMS&E) on behalf of the Office of Basic Energy Sciences (BES) of the U. S. Department of Energy (DOE). Hydrogen Contractors Meeting held from May 16-19, 2006 at the Crystal Gateway Marriott Hotel Arlington, Virginia. This meeting is the second in a series of research theme-based Contractors Meetings sponsored by DMS&E held in conjunction with our counterparts in the Office of Energy Efficiency and Renewable Energy (EERE) and the first with the Hydrogen, Fuel Cells and Infrastructure Technologies Program. The focus of this year’s meeting is BES funded fundamental research underpinning advancement of hydrogen storage. The major goals of these research efforts are the development of a fundamental scientific base in terms of new concepts, theories and computational tools; new characterization capabilities; and new materials that could be used or mimicked in advancing capabilities for hydrogen storage.

  19. Development of a lunar infrastructure

    NASA Astrophysics Data System (ADS)

    Burke, J. D.

    If humans are to reside continuously and productively on the Moon, they must be surrounded and supported there by an infrastructure having some attributes of the support systems that have made advanced civilization possible on Earth. Building this lunar infrastructure will, in a sense, be an investment. Creating it will require large resources from Earth, but once it exists it can do much to limit the further demands of a lunar base for Earthside support. What is needed for a viable lunar infrastructure? This question can be approached from two directions. The first is to examine history, which is essentially a record of growing information structures among humans on Earth (tribes, agriculture, specialization of work, education, ethics, arts and sciences, cities and states, technology). The second approach is much less secure but may provide useful insights: it is to examine the minimal needs of a small human community - not just for physical survival but for a stable existence with a net product output. This paper presents a summary, based on present knowledge of the Moon and of the likely functions of a human community there, of some of these infrastructure requirements, and also discusses possible ways to proceed toward meeting early infrastructure needs.

  20. Hydrogen production costs -- A survey

    SciTech Connect

    Basye, L.; Swaminathan, S.

    1997-12-04

    Hydrogen, produced using renewable resources, is an environmentally benign energy carrier that will play a vital role in sustainable energy systems. The US Department of Energy (DOE) supports the development of cost-effective technologies for hydrogen production, storage, and utilization to facilitate the introduction of hydrogen in the energy infrastructure. International interest in hydrogen as an energy carrier is high. Research, development, and demonstration (RD and D) of hydrogen energy systems are in progress in many countries. Annex 11 of the International Energy Agency (IEA) facilitates member countries to collaborate on hydrogen RD and D projects. The United States is a member of Annex 11, and the US representative is the Program Manager of the DOE Hydrogen R and D Program. The Executive Committee of the Hydrogen Implementing Agreement in its June 1997 meeting decided to review the production costs of hydrogen via the currently commercially available processes. This report compiles that data. The methods of production are steam reforming, partial oxidation, gasification, pyrolysis, electrolysis, photochemical, photobiological, and photoelectrochemical reactions.

  1. Vulnerability and Mitigation Studies for Infrastructure

    SciTech Connect

    Glascoe, L; Noble, C; Morris, J

    2007-08-02

    The summary of this presentation is that: (1) We do end-to-end systems analysis for infrastructure protection; (2) LLNL brings interdisciplinary subject matter expertise to infrastructure and explosive analysis; (3) LLNL brings high-fidelity modeling capabilities to infrastructure analysis for use on high performance platforms; and (4) LLNL analysis of infrastructure provides information that customers and stakeholders act on.

  2. Agent-based modeling of complex infrastructures

    SciTech Connect

    North, M. J.

    2001-06-01

    Complex Adaptive Systems (CAS) can be applied to investigate complex infrastructures and infrastructure interdependencies. The CAS model agents within the Spot Market Agent Research Tool (SMART) and Flexible Agent Simulation Toolkit (FAST) allow investigation of the electric power infrastructure, the natural gas infrastructure and their interdependencies.

  3. Metallopeptide Based Mimics with Substituted Histidines Approximate a Key Hydrogen Bonding Network in the Metalloenzyme Nickel Superoxide Dismutase

    SciTech Connect

    Shearer, J.; Neupane, K; Callan, P

    2009-01-01

    Nickel superoxide dismutase (NiSOD) is a recently discovered superoxide dismutase that utilizes the Ni{sup III}/Ni{sup II} couple to facilitate the disproportionation of O{sub 2}{sup {sm_bullet}-} into H{sub 2}O{sub 2} and O{sub 2}. A key structural component of NiSOD is an elongated axial His-imidazole Ni{sup III} bond (2.3-2.6 {angstrom}) that is the result of a H-bonding network between His(1), Glu(17), and Arg(47). Herein we utilize metallopeptide based mimics of NiSOD with His(1) {var_epsilon}-nitrogen substituted imidazoles to approximate the electronic influence of this H-bonding network ({l_brace}Ni{sup III/II}(SOD{sup M1}-Im-X){r_brace} X = Me, H, DNP, and Tos; SOD{sup M1}-Im-X = H{prime}CDLPCGVYDPA where H{prime} is an N-substituted His). All reduced {l_brace}Ni{sup II}(SOD{sup M1}-Im-X){r_brace} are similar to one another as assessed by electronic absorption spectroscopy, circular dichroism (CD) spectroscopy, and Ni K-edge x-ray absorption (XAS). This indicates that the change in His(1) is having little influence on the square-planar Ni{sup II}N{sub 2}S{sub 2} center. In contrast, changes to the axial His(1) ligand impart differential spectroscopic properties on the oxidized {l_brace}Ni{sup III}(SOD{sup M1}-Im-X){r_brace} metallopeptides. Resonance Raman spectroscopy (405 nm excitation) in conjunction with a normal coordinate analysis indicates that as the axial His imidazole is made less Lewis basic there is an increase in Ni{sup III}-S bond strength in the equatorial plane, with force constants for the Ni-S bond trans to the amine ranging from 1.54 to 1.70 mdyn {angstrom}{sup -1}. The rhombic electron paramagnetic resonance (EPR) spectra of the four oxidized metallopeptides are all consistent with low-spin Ni{sup III} contained in a square pyramidal coordination environment, but show changes in the hyperfine coupling to {sup 14}N along g{sub z}. This is attributable to a reorientation of the g{sub z} vector in the more (along the Ni{sup III

  4. Hydrogen aircraft technology

    NASA Technical Reports Server (NTRS)

    Brewer, G. D.

    1991-01-01

    A comprehensive evaluation is conducted of the technology development status, economics, commercial feasibility, and infrastructural requirements of LH2-fueled aircraft, with additional consideration of hydrogen production, liquefaction, and cryostorage methods. Attention is given to the effects of LH2 fuel cryotank accommodation on the configurations of prospective commercial transports and military airlifters, SSTs, and HSTs, as well as to the use of the plentiful heatsink capacity of LH2 for innovative propulsion cycles' performance maximization. State-of-the-art materials and structural design principles for integral cryotank implementation are noted, as are airport requirements and safety and environmental considerations.

  5. Permafrost Hazards and Linear Infrastructure

    NASA Astrophysics Data System (ADS)

    Stanilovskaya, Julia; Sergeev, Dmitry

    2014-05-01

    The international experience of linear infrastructure planning, construction and exploitation in permafrost zone is being directly tied to the permafrost hazard assessment. That procedure should also consider the factors of climate impact and infrastructure protection. The current global climate change hotspots are currently polar and mountain areas. Temperature rise, precipitation and land ice conditions change, early springs occur more often. The big linear infrastructure objects cross the territories with different permafrost conditions which are sensitive to the changes in air temperature, hydrology, and snow accumulation which are connected to climatic dynamics. One of the most extensive linear structures built on permafrost worldwide are Trans Alaskan Pipeline (USA), Alaska Highway (Canada), Qinghai-Xizang Railway (China) and Eastern Siberia - Pacific Ocean Oil Pipeline (Russia). Those are currently being influenced by the regional climate change and permafrost impact which may act differently from place to place. Thermokarst is deemed to be the most dangerous process for linear engineering structures. Its formation and development depend on the linear structure type: road or pipeline, elevated or buried one. Zonal climate and geocryological conditions are also of the determining importance here. All the projects are of the different age and some of them were implemented under different climatic conditions. The effects of permafrost thawing have been recorded every year since then. The exploration and transportation companies from different countries maintain the linear infrastructure from permafrost degradation in different ways. The highways in Alaska are in a good condition due to governmental expenses on annual reconstructions. The Chara-China Railroad in Russia is under non-standard condition due to intensive permafrost response. Standards for engineering and construction should be reviewed and updated to account for permafrost hazards caused by the

  6. FY 2005 Annual Progress Report for the DOE Hydrogen Program

    SciTech Connect

    2005-10-01

    In cooperation with industry, academia, national laboratories, and other government agencies, the Department of Energy's Hydrogen Program is advancing the state of hydrogen and fuel cell technologies in support of the President's Hydrogen Fuel Initiative. The initiative seeks to develop hydrogen, fuel cell, and infrastructure technologies needed to make it practical and cost-effective for Americans to choose to use fuel cell vehicles by 2020. Significant progress was made in fiscal year 2005 toward that goal.

  7. Intelligent systems technology infrastructure for integrated systems

    NASA Technical Reports Server (NTRS)

    Lum, Henry, Jr.

    1991-01-01

    Significant advances have occurred during the last decade in intelligent systems technologies (a.k.a. knowledge-based systems, KBS) including research, feasibility demonstrations, and technology implementations in operational environments. Evaluation and simulation data obtained to date in real-time operational environments suggest that cost-effective utilization of intelligent systems technologies can be realized for Automated Rendezvous and Capture applications. The successful implementation of these technologies involve a complex system infrastructure integrating the requirements of transportation, vehicle checkout and health management, and communication systems without compromise to systems reliability and performance. The resources that must be invoked to accomplish these tasks include remote ground operations and control, built-in system fault management and control, and intelligent robotics. To ensure long-term evolution and integration of new validated technologies over the lifetime of the vehicle, system interfaces must also be addressed and integrated into the overall system interface requirements. An approach for defining and evaluating the system infrastructures including the testbed currently being used to support the on-going evaluations for the evolutionary Space Station Freedom Data Management System is presented and discussed. Intelligent system technologies discussed include artificial intelligence (real-time replanning and scheduling), high performance computational elements (parallel processors, photonic processors, and neural networks), real-time fault management and control, and system software development tools for rapid prototyping capabilities.

  8. A General Purpose High Performance Linux Installation Infrastructure

    SciTech Connect

    Wachsmann, Alf

    2002-06-17

    With more and more and larger and larger Linux clusters, the question arises how to install them. This paper addresses this question by proposing a solution using only standard software components. This installation infrastructure scales well for a large number of nodes. It is also usable for installing desktop machines or diskless Linux clients, thus, is not designed for cluster installations in particular but is, nevertheless, highly performant. The infrastructure proposed uses PXE as the network boot component on the nodes. It uses DHCP and TFTP servers to get IP addresses and a bootloader to all nodes. It then uses kickstart to install Red Hat Linux over NFS. We have implemented this installation infrastructure at SLAC with our given server hardware and installed a 256 node cluster in 30 minutes. This paper presents the measurements from this installation and discusses the bottlenecks in our installation.

  9. Cyberspace Policy For Critical Infrastructures

    NASA Astrophysics Data System (ADS)

    Wilkin, Dorsey; Raines, Richard; Williams, Paul; Hopkinson, Kenneth

    The first step in preparing any battlespace is to define the domain for attack and maneuver. The various military service components have directed authority to focus their efforts in specific domains of operations (e.g., naval operations are mainly in the maritime domain). However, cyberspace operations pose challenges because they span multiple operational domains. This paper focuses on U.S. cyberspace policy related to defending and exploiting critical infrastructure assets. Also, it examines the issues involved in delineating responsibility for U.S. defensive and offensive operations related to critical infrastructures.

  10. Global Assessment of Hydrogen Technologies - Executive Summary

    SciTech Connect

    Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan, Andrew J.

    2007-12-01

    This project was a collaborative effort involving researchers from the University of Alabama at Birmingham (UAB) and Argonne National Laboratory (ANL), drawing on the experience and expertise of both research organizations. The goal of this study was to assess selected hydrogen technologies for potential application to transportation and power generation. Specifically, this study evaluated scenarios for deploying hydrogen technologies and infrastructure in the Southeast. One study objective was to identify the most promising near-term and long-term hydrogen vehicle technologies based on performance, efficiency, and emissions profiles and compare them to traditional vehicle technologies. Hydrogen vehicle propulsion may take many forms, ranging from hydrogen or hythane fueled internal combustion engines (ICEs) to fuel cells and fuel cell hybrid systems. This study attempted to developed performance and emissions profiles for each type (assuming a light duty truck platform) so that effective deployment strategies can be developed. A second study objective was to perform similar cost, efficiency, and emissions analysis related to hydrogen infrastructure deployment in the Southeast. There will be many alternative approaches for the deployment of hydrogen fueling infrastructure, ranging from distributed hydrogen production to centralized production, with a similar range of delivery options. This study attempted to assess the costs and potential emissions associated with each scenario. A third objective was to assess the feasibility of using hydrogen fuel cell technologies for stationary power generation and to identify the advantages and limits of different technologies. Specific attention was given to evaluating different fuel cell membrane types. A final objective was to promote the use and deployment of hydrogen technologies in the Southeast. This effort was to include establishing partnerships with industry as well promoting educational and outreach efforts to public

  11. Analysis of combined hydrogen, heat, and power as a bridge to a hydrogen transition.

    SciTech Connect

    Mahalik, M.; Stephan, C.

    2011-01-18

    Combined hydrogen, heat, and power (CHHP) technology is envisioned as a means to providing heat and electricity, generated on-site, to large end users, such as hospitals, hotels, and distribution centers, while simultaneously producing hydrogen as a by-product. The hydrogen can be stored for later conversion to electricity, used on-site (e.g., in forklifts), or dispensed to hydrogen-powered vehicles. Argonne has developed a complex-adaptive-system model, H2CAS, to simulate how vehicles and infrastructure can evolve in a transition to hydrogen. This study applies the H2CAS model to examine how CHHP technology can be used to aid the transition to hydrogen. It does not attempt to predict the future or provide one forecast of system development. Rather, the purpose of the model is to understand how the system works. The model uses a 50- by 100-mile rectangular grid of 1-square-mile cells centered on the Los Angeles metropolitan area. The major expressways are incorporated into the model, and local streets are considered to be ubiquitous, except where there are natural barriers. The model has two types of agents. Driver agents are characterized by a number of parameters: home and job locations, income, various types of 'personalities' reflective of marketing distinctions (e.g., innovators, early adopters), willingness to spend extra money on 'green' vehicles, etc. At the beginning of the simulations, almost all driver agents own conventional vehicles. They drive around the metropolitan area, commuting to and from work and traveling to various other destinations. As they do so, they observe the presence or absence of facilities selling hydrogen. If they find such facilities conveniently located along their routes, they are motivated to purchase a hydrogen-powered vehicle when it becomes time to replace their present vehicle. Conversely, if they find that they would be inconvenienced by having to purchase hydrogen earlier than necessary or if they become worried that they

  12. Telemedicine and the National Information Infrastructure

    PubMed Central

    Jones, Mary Gardiner

    1997-01-01

    Abstract Health care is shifting from a focus on hospital-based acute care toward prevention, promotion of wellness, and maintenance of function in community and home-based facilities. Telemedicine can facilitate this shifted focus, but the bulk of the current projects emphasize academic medical center consultations to rural hospitals. Home-based projects encounter barriers of cost and inadequate infrastructure. The 1996 Telecommunications Act as implemented by the Federal Communications commission holds out significant promise to overcome these barriers, although it has serious limitations in its application to health care providers. Health care advocates must work actively on the federal, state, and local public and private sector levels to address these shortcomings and develop cost effective partnerships with other community-based organizations to build network links to facilitate telemedicine-generated services to the home, where the majority of health care decisions are made. PMID:9391928

  13. Overview of North American Hydrogen Sensor Standards

    SciTech Connect

    O'Malley, Kathleen; Lopez, Hugo; Cairns, Julie; Wichert, Richard; Rivkin, Carl; Burgess, Robert; Buttner, William

    2015-08-11

    An overview of the main North American codes and standards associated with hydrogen safety sensors is provided. The distinction between a code and a standard is defined, and the relationship between standards and codes is clarified, especially for those circumstances where a standard or a certification requirement is explicitly referenced within a code. The report identifies three main types of standards commonly applied to hydrogen sensors (interface and controls standards, shock and hazard standards, and performance-based standards). The certification process and a list and description of the main standards and model codes associated with the use of hydrogen safety sensors in hydrogen infrastructure are presented.

  14. Can Sensors Solve the Deterioration Problems of Public Infrastructure?

    NASA Astrophysics Data System (ADS)

    Miki, Chitoshi

    2014-11-01

    Various deteriorations are detected in public infrastructures, such as bridges, viaducts, piers and tunnels and caused fatal accidents in some cases. The possibility of the applications of health monitoring by using sensors is the issues of this lecture. The inspection and diagnosis are essential in the maintenance works which include appropriate rehabilitations and replacements. The introduction of monitoring system may improve accuracy and efficiency of inspection and diagnosis. This seems to be innovation of maintenance, old structures may change smart structures by the installation of nerve network and brain, specifically. Cost- benefit viewpoint is also important point, because of public infrastructures. The modes of deterioration are fatigue, corrosion, and delayed fracture in steel, and carbonization and alkali aggregate reaction in concrete. These are like adult disease in human bodies. The developments of Infrastructures in Japan were concentrated in the 1960th and 1970th. These ages are approaching 50 and deterioration due to aging has been progress gradually. The attacks of earthquakes are also a major issue. Actually, these infrastructures have been supporting economic and social activities in Japan and the deterioration of public infrastructure has become social problems. How to secure the same level of safety and security for all public infrastructures is the challenge we face now. The targets of monitoring are external disturbances such as traffic loads, earthquakes, winds, temperature, responses against external disturbances, and the changes of performances. In the monitoring of infrastructures, 3W1H(WHAT, WHERE, WHEN and HOW) are essential, that is what kind of data are necessary, where sensors place, when data are collected, and how to collect and process data. The required performances of sensors are accuracy, stability for long time. In the case of long term monitoring, the durability of systems needs more than five years, because the interval

  15. An Advanced Decision Support Tool for Electricity Infrastructure Operations

    SciTech Connect

    Chen, Yousu; Huang, Zhenyu; Wong, Pak C.; Mackey, Patrick S.; Allwardt, Craig H.; Ma, Jian; Greitzer, Frank L.

    2010-01-31

    Electricity infrastructure, as one of the most critical infrastructures in the U.S., plays an important role in modern societies. Its failure would lead to significant disruption of people’s lives, industry and commercial activities, and result in massive economic losses. Reliable operation of electricity infrastructure is an extremely challenging task because human operators need to consider thousands of possible configurations in near real-time to choose the best option and operate the network effectively. In today’s practice, electricity infrastructure operation is largely based on operators’ experience with very limited real-time decision support, resulting in inadequate management of complex predictions and the inability to anticipate, recognize, and respond to situations caused by human errors, natural disasters, or cyber attacks. Therefore, a systematic approach is needed to manage the complex operational paradigms and choose the best option in a near-real-time manner. This paper proposes an advanced decision support tool for electricity infrastructure operations. The tool has the functions of turning large amount of data into actionable information to help operators monitor power grid status in real time; performing trend analysis to indentify system trend at the regional level or system level to help the operator to foresee and discern emergencies, studying clustering analysis to assist operators to identify the relationships between system configurations and affected assets, and interactively evaluating the alternative remedial actions to aid operators to make effective and timely decisions. This tool can provide significant decision support on electricity infrastructure operations and lead to better reliability in power grids. This paper presents examples with actual electricity infrastructure data to demonstrate the capability of this tool.

  16. Photoinduced hydrogen-bonding dynamics.

    PubMed

    Chu, Tian-Shu; Xu, Jinmei

    2016-09-01

    Hydrogen bonding dynamics has received extensive research attention in recent years due to the significant advances in femtolaser spectroscopy experiments and quantum chemistry calculations. Usually, photoexcitation would cause changes in the hydrogen bonding formed through the interaction between hydrogen donor and acceptor molecules on their ground electronic states, and such transient strengthening or weakening of hydrogen bonding could be crucial for the photophysical transformations and the subsequent photochemical reactions that occurred on a time scale from tens of femtosecond to a few nanoseconds. In this article, we review the combined experimental and theoretical studies focusing on the ultrafast electronic and vibrational hydrogen bonding dynamics. Through these studies, new mechanisms and proposals and common rules have been put forward to advance our understanding of the hydrogen bondings dynamics in a variety of important photoinduced phenomena like photosynthesis, dual fluorescence emission, rotational reorientation, excited-state proton transfer and charge transfer processes, chemosensor fluorescence sensing, rearrangements of the hydrogen-bond network including forming and breaking hydrogen bond in water. Graphical Abstract We review the recent advances on exploring the photoinduced hydrogen bonding dynamics in solutions through a joint approach of laser spectroscopy and theoretical calculation. The reviewed studies have put forward a new mechanism, new proposal, and new rule for a variety of photoinduced phenomena such as photosynthesis, dual fluorescence emission, rotational reorientation, excited-state proton transfer and charge transfer, chemosensor fluorescence sensing, and rearrangements of the hydrogen-bond network in water. PMID:27491849

  17. Assessing large-scale wildlife responses to human infrastructure development.

    PubMed

    Torres, Aurora; Jaeger, Jochen A G; Alonso, Juan Carlos

    2016-07-26

    Habitat loss and deterioration represent the main threats to wildlife species, and are closely linked to the expansion of roads and human settlements. Unfortunately, large-scale effects of these structures remain generally overlooked. Here, we analyzed the European transportation infrastructure network and found that 50% of the continent is within 1.5 km of transportation infrastructure. We present a method for assessing the impacts from infrastructure on wildlife, based on functional response curves describing density reductions in birds and mammals (e.g., road-effect zones), and apply it to Spain as a case study. The imprint of infrastructure extends over most of the country (55.5% in the case of birds and 97.9% for mammals), with moderate declines predicted for birds (22.6% of individuals) and severe declines predicted for mammals (46.6%). Despite certain limitations, we suggest the approach proposed is widely applicable to the evaluation of effects of planned infrastructure developments under multiple scenarios, and propose an internationally coordinated strategy to update and improve it in the future.

  18. Assessing large-scale wildlife responses to human infrastructure development.

    PubMed

    Torres, Aurora; Jaeger, Jochen A G; Alonso, Juan Carlos

    2016-07-26

    Habitat loss and deterioration represent the main threats to wildlife species, and are closely linked to the expansion of roads and human settlements. Unfortunately, large-scale effects of these structures remain generally overlooked. Here, we analyzed the European transportation infrastructure network and found that 50% of the continent is within 1.5 km of transportation infrastructure. We present a method for assessing the impacts from infrastructure on wildlife, based on functional response curves describing density reductions in birds and mammals (e.g., road-effect zones), and apply it to Spain as a case study. The imprint of infrastructure extends over most of the country (55.5% in the case of birds and 97.9% for mammals), with moderate declines predicted for birds (22.6% of individuals) and severe declines predicted for mammals (46.6%). Despite certain limitations, we suggest the approach proposed is widely applicable to the evaluation of effects of planned infrastructure developments under multiple scenarios, and propose an internationally coordinated strategy to update and improve it in the future. PMID:27402749

  19. Managing Mission-Critical Infrastructure

    ERIC Educational Resources Information Center

    Breeding, Marshall

    2012-01-01

    In the library context, they depend on sophisticated business applications specifically designed to support their work. This infrastructure consists of such components as integrated library systems, their associated online catalogs or discovery services, and self-check equipment, as well as a Web site and the various online tools and services…

  20. The Neuronal Infrastructure of Speaking

    ERIC Educational Resources Information Center

    Menenti, Laura; Segaert, Katrien; Hagoort, Peter

    2012-01-01

    Models of speaking distinguish producing meaning, words and syntax as three different linguistic components of speaking. Nevertheless, little is known about the brain's integrated neuronal infrastructure for speech production. We investigated semantic, lexical and syntactic aspects of speaking using fMRI. In a picture description task, we…

  1. Graduates' Perceptions towards UKM's Infrastructure

    ERIC Educational Resources Information Center

    Omar, Ramli; Khoon, Koh Aik; Hamzah, Mohd Fauzi; Ahmadan, Siti Rohayu

    2009-01-01

    This paper reports on the surveys which were conducted between 2006 and 2008 on graduates' perceptions towards the infrastructure at Universiti Kebangsaan Malaysia (UKM). It covered three major aspects pertaining to learning, living and leisure on campus. Eight out of 14 components received overwhelming approval from our graduates. (Contains 1…

  2. Impact of Declining Rural Infrastructure.

    ERIC Educational Resources Information Center

    McKenzie, Fiona Haslem

    A study investigated the impact of declining rural community infrastructure on social, environmental, and economic well-being in Western Australia's central wheatbelt. Questionnaires were completed by 398 residents of the central wheatbelt, on-farm interviews were conducted with 68 respondents, and 4 focus groups were held in area towns.…

  3. 2009 Infrastructure Platform Review Report

    SciTech Connect

    Ferrell, John

    2009-12-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the U.S. Department of Energy Biomass program‘s Infrastructure platform review meeting, held on February 19, 2009, at the Marriott Residence Inn, National Harbor, Maryland.

  4. Science of Extreme Light Infrastructure

    NASA Astrophysics Data System (ADS)

    Tajima, Toshiki; Barish, Barry C.; Barty, C. P.; Bulanov, Sergei; Chen, Pisin; Feldhaus, Josef; Hajdu, Janos; Keitel, Christoph H.; Kieffer, Jean-Claude; Ko, Do-Kyeong; Leemans, Wim; Normand, Didier; Palumbo, Luigi; Rzazewski, Kazimierz; Sergeev, Alexander; Sheng, Zheng-Ming; Takasaki, Fumihiko; Teshima, Masahiro

    2010-04-01

    The infrastructure of Extreme Light Infrastructure (ELI) provides an unprecedented opportunity for a broad range of frontier science. Its highest ever intensity of lasers, as well as high fluence, high power, and/or ultrafast optical characteristics carve out new territories of discovery, ranging from attosecond science to photonuclear science, laser acceleration and associated beams, and high field science (Four Pillars of ELI). Its applications span from medicine, biology, engineering, energy, chemistry, physics, and fundamental understanding of the Universe. The relativistic optics that intense lasers have begun exploring may be extended into a new regime of ultra-relativistic regime, where even protons fly relativistically in the optical fields. ELI provides the highest intensity to date such that photon fields begin to feel even the texture of vacuum. This is a singular appeal of ELI with its relatively modest infrastructure (compared to the contemporary largest scientific infrastructures), yet provides an exceptional avenue along which the 21st Century science and society need to answer the toughest questions. The intensity frontier simultaneously brings in the energy horizon (TeV and PeV) as well as temporal frontier (attoseconds and zeptoseconds). It also turns over optics of atoms and molecules into that of nuclei with the ability to produce monoenergetic collimated γ-ray photons. As such, the ELI concept acutely demands an effort to encompass and integrate its Four Pillars.

  5. Analysis of CERN computing infrastructure and monitoring data

    NASA Astrophysics Data System (ADS)

    Nieke, C.; Lassnig, M.; Menichetti, L.; Motesnitsalis, E.; Duellmann, D.

    2015-12-01

    Optimizing a computing infrastructure on the scale of LHC requires a quantitative understanding of a complex network of many different resources and services. For this purpose the CERN IT department and the LHC experiments are collecting a large multitude of logs and performance probes, which are already successfully used for short-term analysis (e.g. operational dashboards) within each group. The IT analytics working group has been created with the goal to bring data sources from different services and on different abstraction levels together and to implement a suitable infrastructure for mid- to long-term statistical analysis. It further provides a forum for joint optimization across single service boundaries and the exchange of analysis methods and tools. To simplify access to the collected data, we implemented an automated repository for cleaned and aggregated data sources based on the Hadoop ecosystem. This contribution describes some of the challenges encountered, such as dealing with heterogeneous data formats, selecting an efficient storage format for map reduce and external access, and will describe the repository user interface. Using this infrastructure we were able to quantitatively analyze the relationship between CPU/wall fraction, latency/throughput constraints of network and disk and the effective job throughput. In this contribution we will first describe the design of the shared analysis infrastructure and then present a summary of first analysis results from the combined data sources.

  6. Volcanic ash impacts on critical infrastructure

    NASA Astrophysics Data System (ADS)

    Wilson, Thomas M.; Stewart, Carol; Sword-Daniels, Victoria; Leonard, Graham S.; Johnston, David M.; Cole, Jim W.; Wardman, Johnny; Wilson, Grant; Barnard, Scott T.

    2012-01-01

    Volcanic eruptions can produce a wide range of hazards. Although phenomena such as pyroclastic flows and surges, sector collapses, lahars and ballistic blocks are the most destructive and dangerous, volcanic ash is by far the most widely distributed eruption product. Although ash falls rarely endanger human life directly, threats to public health and disruption to critical infrastructure services, aviation and primary production can lead to significant societal impacts. Even relatively small eruptions can cause widespread disruption, damage and economic loss. Volcanic eruptions are, in general, infrequent and somewhat exotic occurrences, and consequently in many parts of the world, the management of critical infrastructure during volcanic crises can be improved with greater knowledge of the likely impacts. This article presents an overview of volcanic ash impacts on critical infrastructure, other than aviation and fuel supply, illustrated by findings from impact assessment reconnaissance trips carried out to a wide range of locations worldwide by our international research group and local collaborators. ‘Critical infrastructure’ includes those assets, frequently taken for granted, which are essential for the functioning of a society and economy. Electricity networks are very vulnerable to disruption from volcanic ash falls. This is particularly the case when fine ash is erupted because it has a greater tendency to adhere to line and substation insulators, where it can cause flashover (unintended electrical discharge) which can in turn cause widespread and disruptive outages. Weather conditions are a major determinant of flashover risk. Dry ash is not conductive, and heavy rain will wash ash from insulators, but light rain/mist will mobilise readily-soluble salts on the surface of the ash grains and lower the ash layer’s resistivity. Wet ash is also heavier than dry ash, increasing the risk of line breakage or tower/pole collapse. Particular issues for water

  7. Volcanic ash impacts on critical infrastructure

    NASA Astrophysics Data System (ADS)

    Wilson, Thomas M.; Stewart, Carol; Sword-Daniels, Victoria; Leonard, Graham S.; Johnston, David M.; Cole, Jim W.; Wardman, Johnny; Wilson, Grant; Barnard, Scott T.

    2012-01-01

    Volcanic eruptions can produce a wide range of hazards. Although phenomena such as pyroclastic flows and surges, sector collapses, lahars and ballistic blocks are the most destructive and dangerous, volcanic ash is by far the most widely distributed eruption product. Although ash falls rarely endanger human life directly, threats to public health and disruption to critical infrastructure services, aviation and primary production can lead to significant societal impacts. Even relatively small eruptions can cause widespread disruption, damage and economic loss. Volcanic eruptions are, in general, infrequent and somewhat exotic occurrences, and consequently in many parts of the world, the management of critical infrastructure during volcanic crises can be improved with greater knowledge of the likely impacts. This article presents an overview of volcanic ash impacts on critical infrastructure, other than aviation and fuel supply, illustrated by findings from impact assessment reconnaissance trips carried out to a wide range of locations worldwide by our international research group and local collaborators. ‘Critical infrastructure’ includes those assets, frequently taken for granted, which are essential for the functioning of a society and economy. Electricity networks are very vulnerable to disruption from volcanic ash falls. This is particularly the case when fine ash is erupted because it has a greater tendency to adhere to line and substation insulators, where it can cause flashover (unintended electrical discharge) which can in turn cause widespread and disruptive outages. Weather conditions are a major determinant of flashover risk. Dry ash is not conductive, and heavy rain will wash ash from insulators, but light rain/mist will mobilise readily-soluble salts on the surface of the ash grains and lower the ash layer’s resistivity. Wet ash is also heavier than dry ash, increasing the risk of line breakage or tower/pole collapse. Particular issues for water

  8. Magnetic refrigerator for hydrogen liquefaction

    NASA Astrophysics Data System (ADS)

    Numazawa, T.; Kamiya, K.; Utaki, T.; Matsumoto, K.

    2014-07-01

    This paper reviews the status of magnetic refrigeration system for hydrogen liquefaction. There is no doubt that hydrogen is one of most important energy sources in the near future. In particular, liquid hydrogen can be utilized for infrastructure construction consisting of storage and transportation. When we compare the consuming energy of hydrogen liquefaction with high pressurized hydrogen gas, FOM must be larger than 0.57 for hydrogen liquefaction. Thus, we need to develop a highly efficient liquefaction method. Magnetic refrigeration using the magneto-caloric effect has potential to realize not only the higher liquefaction efficiency >50%, but also to be environmentally friendly and cost effective. Our hydrogen magnetic refrigeration system consists of Carnot cycle for liquefaction stage and AMR (active magnetic regenerator) cycle for precooling stages. For the Carnot cycle, we develop the high efficient system with >80% liquefaction efficiency by using the heat pipe. For the AMR cycle, we studied two kinds of displacer systems, which transferred the working fluid. We confirmed the AMR effect with the cooling temperature span of 12 K for 1.8 T of the magnetic field and 6 s of the cycle. By using the simulation, we estimate the efficiency of the hydrogen liquefaction plant for 10 kg/day. A FOM of 0.47 is obtained for operation temperature between 20 K and 77 K including LN2 work input.

  9. The synthesis and characterisation of coordination and hydrogen-bonded networks based on 4-(3,5-dimethyl-1H-pyrazol-4-yl)benzoic acid.

    PubMed

    Bryant, Macguire R; Burrows, Andrew D; Fitchett, Christopher M; Hawes, Chris S; Hunter, Sally O; Keenan, Luke L; Kelly, David J; Kruger, Paul E; Mahon, Mary F; Richardson, Christopher

    2015-05-21

    the network topology is retained. Powder X-ray diffraction and microanalysis were used to characterise the bulk purity of the coordination materials 1–6 and 8. The thermal characteristics of 1–2, 4–6 and 8 were studied by TG-DTA. This led to the curious observation of small exothermic events in networks 4, 6, and 8 that appear to be linked to their decomposition. In addition, the solid state structures of H2L and that of its protonated salt, H2L·HNO3, were also determined and revealed that H2L forms a 2-D hydrogen bonded polymer incorporating helical chains formed through N–HO and O–HN interactions, and that [H3L]NO3 forms a 1-D hydrogen-bonded polymer.

  10. People at risk - nexus critical infrastructure and society

    NASA Astrophysics Data System (ADS)

    Heiser, Micha; Thaler, Thomas; Fuchs, Sven

    2016-04-01

    Strategic infrastructure networks include the highly complex and interconnected systems that are so vital to a city or state that any sudden disruption can result in debilitating impacts on human life, the economy and the society as a whole. Recently, various studies have applied complex network-based models to study the performance and vulnerability of infrastructure systems under various types of attacks and hazards - a major part of them is, particularly after the 9/11 incident, related to terrorism attacks. Here, vulnerability is generally defined as the performance drop of an infrastructure system under a given disruptive event. The performance can be measured by different metrics, which correspond to various levels of resilience. In this paper, we will address vulnerability and exposure of critical infrastructure in the Eastern Alps. The Federal State Tyrol is an international transport route and an essential component of the north-south transport connectivity in Europe. Any interruption of the transport flow leads to incommensurable consequences in terms of indirect losses, since the system does not feature redundant elements at comparable economic efficiency. Natural hazard processes such as floods, debris flows, rock falls and avalanches, endanger this infrastructure line, such as large flood events in 2005 or 2012, rock falls 2014, which had strong impacts to the critical infrastructure, such as disruption of the railway lines (in 2005 and 2012), highways and motorways (in 2014). The aim of this paper is to present how critical infrastructures as well as communities and societies are vulnerable and can be resilient against natural hazard risks and the relative cascading effects to different compartments (industrial, infrastructural, societal, institutional, cultural, etc.), which is the dominant by the type of hazard (avalanches, torrential flooding, debris flow, rock falls). Specific themes will be addressed in various case studies to allow cross

  11. Electron-Stimulated Production of Molecular Oxygen in Amorphous Solid Water on Pt(111): Precursor Transport Through the Hydrogen Bonding Network

    SciTech Connect

    Petrik, Nikolay G.; Kavetski, Alexandre G.; Kimmel, Greg A.

    2006-09-28

    The low-energy, electron-stimulated production of molecular oxygen from thin amorphous solid water (ASW) films adsorbed on Pt(111) is investigated. For ASW coverages less than {approx}60 monolayers (ML), the O2 ESD yield depends on coverage in a manner that is very similar to the H2 ESD yield. In particular, both the O2 and H2 ESD yields have a pronounced maximum at {approx}20 ML due to reactions at the Pt/water interface. The O2 yield is dose-dependent and several precursors (OH, H2O2 and HO2) are involved in the O2 production. Layered films of H216O and H218O are used to profile the spatial distribution of the electron-stimulated reactions leading to oxygen within the water films. Independent of the ASW film thickness, the final reactions leading to O2 occur at or near the ASW/vacuum interface. However for ASW coverages less than {approx}40 ML, the results indicate that dissociation of water molecules at the ASW/Pt interface contributes to the O2 production at the ASW/vacuum interface presumably via the generation of OH radicals near the Pt substrate. The OH (or possibly OH-) segregates to the vacuum interface where it contributes to the reactions at that interface. The electron-stimulated migration of precursors to the vacuum interface occurs via transport through the hydrogen bond network of the ASW without motion of the oxygen atoms. A simple kinetic model of the non-thermal reactions leading to O2, which was previously used to account for reactions in thick ASW films, is modified to account for the electron-stimulated migration of precursors.

  12. Alteration of the regiospecificity of human heme oxygenase-1 by unseating of the heme but not disruption of the distal hydrogen bonding network.

    PubMed

    Wang, Jinling; Evans, John P; Ogura, Hiroshi; La Mar, Gerd N; Ortiz de Montellano, Paul R

    2006-01-10

    Heme oxygenase regiospecifically oxidizes heme at the alpha-meso position to give biliverdin IXalpha, CO, and iron. The heme orientation within the active site, which is thought to determine the oxidation regiospecificity, is shown here for the human enzyme (hHO1) to be largely determined by interactions between the heme carboxylic acid groups and residues Arg183 and Lys18 but not Tyr134. Mutation of either Arg183 or Lys18 individually does not significantly alter the NADPH-cytochrome P450 reductase-dependent reaction regiochemistry but partially shifts the oxidation to the beta/delta-meso positions in the reaction supported by ascorbic acid. Mutation of Glu29 to a lysine, which places a positive charge where it can interact with a heme carboxyl if the heme rotates by approximately 90 degrees, causes a slight loss of regiospecificity but combined with the R183E and K18E mutations results primarily in beta/delta-meso oxidation of the heme under all conditions. NMR analysis of heme binding to the triple K18E/E29K/R183E mutant confirms rotation of the heme in the active site. Kinetic studies demonstrate that mutations of Arg183 greatly impair the rate of the P450 reductase-dependent reaction, in accord with the earlier finding that Arg183 is involved in binding of the reductase to hHO1, but have little effect on the ascorbate reaction. Mutations of Asp140 and Tyr58 that disrupt the active site hydrogen bonding network impair catalytic rates but do not influence the oxidation regiochemistry. The results indicate both that the oxidation regiochemistry is largely controlled by ionic interactions of the heme propionic acid groups with the protein and that shifts in regiospecificity involve rotation of the heme about an axis perpendicular to the heme plane. PMID:16388581

  13. FTIR studies of metal ligands, networks of hydrogen bonds, and water molecules near the active site Mn₄CaO₅ cluster in Photosystem II.

    PubMed

    Debus, Richard J

    2015-01-01

    The photosynthetic conversion of water to molecular oxygen is catalyzed by the Mn₄CaO₅ cluster in Photosystem II and provides nearly our entire supply of atmospheric oxygen. The Mn₄CaO₅ cluster accumulates oxidizing equivalents in response to light-driven photochemical events within Photosystem II and then oxidizes two molecules of water to oxygen. The Mn₄CaO₅ cluster converts water to oxygen much more efficiently than any synthetic catalyst because its protein environment carefully controls the cluster's reactivity at each step in its catalytic cycle. This control is achieved by precise choreography of the proton and electron transfer reactions associated with water oxidation and by careful management of substrate (water) access and proton egress. This review describes the FTIR studies undertaken over the past two decades to identify the amino acid residues that are responsible for this control and to determine the role of each. In particular, this review describes the FTIR studies undertaken to characterize the influence of the cluster's metal ligands on its activity, to delineate the proton egress pathways that link the Mn₄CaO₅ cluster with the thylakoid lumen, and to characterize the influence of specific residues on the water molecules that serve as substrate or as participants in the networks of hydrogen bonds that make up the water access and proton egress pathways. This information will improve our understanding of water oxidation by the Mn₄CaO₅ catalyst in Photosystem II and will provide insight into the design of new generations of synthetic catalysts that convert sunlight into useful forms of storable energy. This article is part of a Special Issue entitled: Vibrational spectroscopies and bioenergetic systems. PMID:25038513

  14. A statistical mechanical theory of proton transport kinetics in hydrogen-bonded networks based on population correlation functions with applications to acids and bases.

    PubMed

    Tuckerman, Mark E; Chandra, Amalendu; Marx, Dominik

    2010-09-28

    Extraction of relaxation times, lifetimes, and rates associated with the transport of topological charge defects in hydrogen-bonded networks from molecular dynamics simulations is a challenge because proton transfer reactions continually change the identity of the defect core. In this paper, we present a statistical mechanical theory that allows these quantities to be computed in an unbiased manner. The theory employs a set of suitably defined indicator or population functions for locating a defect structure and their associated correlation functions. These functions are then used to develop a chemical master equation framework from which the rates and lifetimes can be determined. Furthermore, we develop an integral equation formalism for connecting various types of population correlation functions and derive an iterative solution to the equation, which is given a graphical interpretation. The chemical master equation framework is applied to the problems of both hydronium and hydroxide transport in bulk water. For each case it is shown that the theory establishes direct links between the defect's dominant solvation structures, the kinetics of charge transfer, and the mechanism of structural diffusion. A detailed analysis is presented for aqueous hydroxide, examining both reorientational time scales and relaxation of the rotational anisotropy, which is correlated with recent experimental results for these quantities. Finally, for OH(-)(aq) it is demonstrated that the "dynamical hypercoordination mechanism" is consistent with available experimental data while other mechanistic proposals are shown to fail. As a means of going beyond the linear rate theory valid from short up to intermediate time scales, a fractional kinetic model is introduced in the Appendix in order to describe the nonexponential long-time behavior of time-correlation functions. Within the mathematical framework of fractional calculus the power law decay ∼t(-σ), where σ is a parameter of the

  15. Scalable Collaborative Infrastructure for a Learning Healthcare System (SCILHS): architecture.

    PubMed

    Mandl, Kenneth D; Kohane, Isaac S; McFadden, Douglas; Weber, Griffin M; Natter, Marc; Mandel, Joshua; Schneeweiss, Sebastian; Weiler, Sarah; Klann, Jeffrey G; Bickel, Jonathan; Adams, William G; Ge, Yaorong; Zhou, Xiaobo; Perkins, James; Marsolo, Keith; Bernstam, Elmer; Showalter, John; Quarshie, Alexander; Ofili, Elizabeth; Hripcsak, George; Murphy, Shawn N

    2014-01-01

    We describe the architecture of the Patient Centered Outcomes Research Institute (PCORI) funded Scalable Collaborative Infrastructure for a Learning Healthcare System (SCILHS, http://www.SCILHS.org) clinical data research network, which leverages the $48 billion dollar federal investment in health information technology (IT) to enable a queryable semantic data model across 10 health systems covering more than 8 million patients, plugging universally into the point of care, generating evidence and discovery, and thereby enabling clinician and patient participation in research during the patient encounter. Central to the success of SCILHS is development of innovative 'apps' to improve PCOR research methods and capacitate point of care functions such as consent, enrollment, randomization, and outreach for patient-reported outcomes. SCILHS adapts and extends an existing national research network formed on an advanced IT infrastructure built with open source, free, modular components.

  16. Scalable Collaborative Infrastructure for a Learning Healthcare System (SCILHS): Architecture

    PubMed Central

    Mandl, Kenneth D; Kohane, Isaac S; McFadden, Douglas; Weber, Griffin M; Natter, Marc; Mandel, Joshua; Schneeweiss, Sebastian; Weiler, Sarah; Klann, Jeffrey G; Bickel, Jonathan; Adams, William G; Ge, Yaorong; Zhou, Xiaobo; Perkins, James; Marsolo, Keith; Bernstam, Elmer; Showalter, John; Quarshie, Alexander; Ofili, Elizabeth; Hripcsak, George; Murphy, Shawn N

    2014-01-01

    We describe the architecture of the Patient Centered Outcomes Research Institute (PCORI) funded Scalable Collaborative Infrastructure for a Learning Healthcare System (SCILHS, http://www.SCILHS.org) clinical data research network, which leverages the $48 billion dollar federal investment in health information technology (IT) to enable a queryable semantic data model across 10 health systems covering more than 8 million patients, plugging universally into the point of care, generating evidence and discovery, and thereby enabling clinician and patient participation in research during the patient encounter. Central to the success of SCILHS is development of innovative ‘apps’ to improve PCOR research methods and capacitate point of care functions such as consent, enrollment, randomization, and outreach for patient-reported outcomes. SCILHS adapts and extends an existing national research network formed on an advanced IT infrastructure built with open source, free, modular components. PMID:24821734

  17. Mechanism for hydrogen diffusion in amorphous silicon

    SciTech Connect

    Biswas, R.; Li, Q.; Pan, B.C.; Yoon, Y.

    1998-01-01

    Tight-binding molecular-dynamics calculations reveal a mechanism for hydrogen diffusion in hydrogenated amorphous silicon. Hydrogen diffuses through the network by successively bonding with nearby silicons and breaking their Si{endash}Si bonds. The diffusing hydrogen carries with it a newly created dangling bond. These intermediate transporting states are densely populated in the network, have lower energies than H at the center of stretched Si{endash}Si bonds, and can play a crucial role in hydrogen diffusion. {copyright} {ital 1998} {ital The American Physical Society}

  18. Safety Training for the Hydrogen Economy

    SciTech Connect

    Fassbender, Linda L.; Kinzey, Bruce R.; Akers, Bret M.

    2006-04-11

    PNNL and the Volpentest Hazardous Materials Management and Emergency Response (HAMMER) Training and Education Center are helping to prepare emergency responders and permitting/code enforcement officials for their respective roles in the future Hydrogen Economy. Safety will be a critical component of the anticipated hydrogen transition. Public confidence goes hand in hand with perceived safety to such an extent that, without it, the envisioned transition is unlikely to occur. Stakeholders and the public must be reassured that hydrogen, although very different from gasoline and other conventional fuels, is no more dangerous. Ensuring safety in the hydrogen infrastructure will require a suitably trained emergency response force for containing the inevitable incidents as they occur, coupled with knowledgeable code officials to ensure that such incidents are kept to a minimum. PNNL and HAMMER are, therefore, designing a hydrogen safety training program, funded by DOE's Hydrogen, Fuel Cells, and Infrastructure Technologies Program, and modeled after the Occupational Safety and Health Administration’s multi-tiered approach to hazardous materials training. Capabilities under development at HAMMER include classroom and long-distance (i.e., satellite and internet broadcast) learning, as well as life-size, hands-on hydrogen burn props for “training as real as it gets.” This paper presents insights gained from the early emergency response hydrogen safety training courses held in 2005 and current plans for design and construction of a number of hydrogen burn props.

  19. Mission Critical Networking

    SciTech Connect

    Eltoweissy, Mohamed Y.; Du, David H.C.; Gerla, Mario; Giordano, Silvia; Gouda, Mohamed; Schulzrinne, Henning; Youssef, Moustafa

    2010-06-01

    Mission-Critical Networking (MCN) refers to networking for application domains where life or livelihood may be at risk. Typical application domains for MCN include critical infrastructure protection and operation, emergency and crisis intervention, healthcare services, and military operations. Such networking is essential for safety, security and economic vitality in our complex world characterized by uncertainty, heterogeneity, emergent behaviors, and the need for reliable and timely response. MCN comprise networking technology, infrastructures and services that may alleviate the risk and directly enable and enhance connectivity for mission-critical information exchange among diverse, widely dispersed, mobile users.

  20. Hydrogen: Fueling the Future

    SciTech Connect

    Leisch, Jennifer

    2007-02-27

    As our dependence on foreign oil increases and concerns about global climate change rise, the need to develop sustainable energy technologies is becoming increasingly significant. Worldwide energy consumption is expected to double by the year 2050, as will carbon emissions along with it. This increase in emissions is a product of an ever-increasing demand for energy, and a corresponding rise in the combustion of carbon containing fossil fuels such as coal, petroleum, and natural gas. Undisputable scientific evidence indicates significant changes in the global climate have occurred in recent years. Impacts of climate change and the resulting atmospheric warming are extensive, and know no political or geographic boundaries. These far-reaching effects will be manifested as environmental, economic, socioeconomic, and geopolitical issues. Offsetting the projected increase in fossil energy use with renewable energy production will require large increases in renewable energy systems, as well as the ability to store and transport clean domestic fuels. Storage and transport of electricity generated from intermittent resources such as wind and solar is central to the widespread use of renewable energy technologies. Hydrogen created from water electrolysis is an option for energy storage and transport, and represents a pollution-free source of fuel when generated using renewable electricity. The conversion of chemical to electrical energy using fuel cells provides a high efficiency, carbon-free power source. Hydrogen serves to blur the line between stationary and mobile power applications, as it can be used as both a transportation fuel and for stationary electricity generation, with the possibility of a distributed generation energy infrastructure. Hydrogen and fuel cell technologies will be presented as possible pollution-free solutions to present and future energy concerns. Recent hydrogen-related research at SLAC in hydrogen production, fuel cell catalysis, and hydrogen