Science.gov

Sample records for hydrogen recombination spectrum

  1. Spectrum Recombination.

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    1984-01-01

    Describes several methods of executing lecture demonstrations involving the recombination of the spectrum. Groups the techniques into two general classes: bringing selected portions of the spectrum together using lenses or mirrors and blurring the colors by rapid movement or foreshortening. (JM)

  2. Spectrum Recombination.

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    1984-01-01

    Describes several methods of executing lecture demonstrations involving the recombination of the spectrum. Groups the techniques into two general classes: bringing selected portions of the spectrum together using lenses or mirrors and blurring the colors by rapid movement or foreshortening. (JM)

  3. Hydrogen recombination at high optical depth and the spectrum of SN 1987A

    NASA Technical Reports Server (NTRS)

    Xu, Yueming; Mccray, Richard; Oliva, Ernesto; Randich, Sofia

    1992-01-01

    A general theory is presented for hydrogen recombination line formation in an expanding medium in which some of the lines are optically thick. This theory is used to calculate the time evolution of the hydrogen lines of SN 1987A at t equal to or greater than 150 days, assuming that the supernova envelope is a homologously expanding uniform sphere. The theoretical luminosities and ratios of the recombination lines agree remarkably well with the observations. For the first 2 yr, the supernova envelope is optically thick to Balmer continuum. For t equal to or less than 400 days, hydrogen is ionized primarily from the n = 2 level by Balmer continuum photons, which are provided partly by the two-photon decay of the 2s state and partly by emission lines of heavy elements.

  4. Radiative transfer effects in primordial hydrogen recombination

    SciTech Connect

    Ali-Haiemoud, Yacine; Hirata, Christopher M.; Grin, Daniel

    2010-12-15

    The calculation of a highly accurate cosmological recombination history has been the object of particular attention recently, as it constitutes the major theoretical uncertainty when predicting the angular power spectrum of cosmic microwave background anisotropies. Lyman transitions, in particular the Lyman-{alpha} line, have long been recognized as one of the bottlenecks of recombination, due to their very low escape probabilities. The Sobolev approximation does not describe radiative transfer in the vicinity of Lyman lines to a sufficient degree of accuracy, and several corrections have already been computed in other works. In this paper, we compute the impact of some radiative transfer effects that were previously ignored, or for which previous treatments were incomplete. First, the effect of Thomson scattering in the vicinity of the Lyman-{alpha} line is evaluated, using a full redistribution kernel incorporated into a radiative transfer code. The effect of feedback of distortions generated by the optically thick deuterium Lyman-{alpha} line blueward of the hydrogen line is investigated with an analytic approximation. It is shown that both effects are negligible during cosmological hydrogen recombination. Second, the importance of high-lying, nonoverlapping Lyman transitions is assessed. It is shown that escape from lines above Ly{gamma} and frequency diffusion in Ly{beta} and higher lines can be neglected without loss of accuracy. Third, a formalism generalizing the Sobolev approximation is developed to account for the overlap of the high-lying Lyman lines, which is shown to lead to negligible changes to the recombination history. Finally, the possibility of a cosmological hydrogen recombination maser is investigated. It is shown that there is no such maser in the purely radiative treatment presented here.

  5. Recombination-pumped triatomic hydrogen infrared lasers

    NASA Astrophysics Data System (ADS)

    Saykally, R. J.; Michael, E. A.; Wang, J.; Greene, Chris H.

    2010-12-01

    Mid-infrared laser lines observed in hydrogen/rare gas discharges are assigned to three-body recombination processes involving an electron, a rare gas (He or Ne) atom, and the triatomic hydrogen ion (H3+). Calculations of radiative transitions between neutral H3 Rydberg states support this interpretation, and link it to recent results for hydrogenic/rare gas afterglow plasmas. A mechanism for the population inversion is proposed, and the potential generality and astrophysical implications of such molecular recombination laser systems are briefly discussed.

  6. Electron Recombination in a Dense Hydrogen Plasma

    SciTech Connect

    Jana, M.R.; Johnstone, C.; Kobilarcik, T.; Koizumi, G.M.; Moretti, A.; Popovic, M.; Tollestrup, A.V.; Yonehara, K.; Leonova, M.A.; Schwarz, T.A.; Chung, M.; /Unlisted /IIT, Chicago /Fermilab /MUONS Inc., Batavia /Turin Polytechnic

    2012-05-01

    A high pressure hydrogen gas filled RF cavity was subjected to an intense proton beam to study the evolution of the beam induced plasma inside the cavity. Varying beam intensities, gas pressures and electric fields were tested. Beam induced ionized electrons load the cavity, thereby decreasing the accelerating gradient. The extent and duration of this degradation has been measured. A model of the recombination between ionized electrons and ions is presented, with the intent of producing a baseline for the physics inside such a cavity used in a muon accelerator. Analysis of the data taken during the summer of 2011 shows that self recombination takes place in pure hydrogen gas. The decay of the number of electrons in the cavity once the beam is turned off indicates self recombination rather than attachment to electronegative dopants or impurities. The cross section of electron recombination grows for larger clusters of hydrogen and so at the equilibrium of electron production and recombination in the cavity, processes involving H{sub 5}{sup +} or larger clusters must be taking place. The measured recombination rates during this time match or exceed the analytic predicted values. The accelerating gradient in the cavity recovers fully in time for the next beam pulse of a muon collider. Exactly what the recombination rate is and how much the gradient degrades during the 60 ns muon collider beam pulse will be extrapolated from data taken during the spring of 2012.

  7. Cosmological hydrogen recombination: populations of the high-level substates

    NASA Astrophysics Data System (ADS)

    Chluba, J.; Rubiño-Martín, J. A.; Sunyaev, R. A.

    2007-02-01

    We present results for the spectral distortions of the cosmic microwave background (CMB) arising due to bound-bound transitions during the epoch of cosmological hydrogen recombination at frequencies down to ν ~100MHz. We extend our previous treatment of the recombination problem now including the main collisional processes and following the evolution of all the hydrogen angular momentum substates for up to 100 shells. We show that, due to the low baryon density of the Universe, even within the highest considered shell full statistical equilibrium (SE) is not reached and that at low frequencies the recombination spectrum is significantly different when assuming full SE for n > 2. We also directly compare our results for the ionization history to the output of the RECFAST code, showing that especially at low redshifts rather big differences arise. In the vicinity of the Thomson visibility function the electron fraction differs by roughly -0.6 per cent which affects the temperature and polarization power spectra by <~ 1 per cent. Furthermore, we shortly discuss the influence of free-free absorption and line broadening due to electron scattering on the bound-bound recombination spectrum and the generation of CMB angular fluctuations due to scattering of photons within the high shells.

  8. Recombinations to the Rydberg states of hydrogen and their effect during the cosmological recombination epoch

    NASA Astrophysics Data System (ADS)

    Chluba, J.; Vasil, G. M.; Dursi, L. J.

    2010-09-01

    In this paper we discuss the effect of recombinations to highly excited states (n > 100) in hydrogen during the cosmological recombination epoch. For this purpose, we developed a new ordinary differential equation solver for the recombination problem, based on an implicit Gear's method. This solver allows us to include up to 350 l-resolved shells or ~61000 separate levels in the hydrogen model and to solve the recombination problem for one cosmology in ~27 h. This is a huge improvement in performance over our previous recombination code, for which a 100-shell computation (5050 separate states) already required ~150 h on a single processor. We show that for 350 shells down to redshift z ~ 200, the results for the free electron fraction have practically converged. The final modification in the free electron fraction at z ~ 200 decreases from about ΔNe/Ne ~ 2.8 per cent for 100 shells to ΔNe/Ne ~ 1.6 per cent for 350 shells. However, the associated changes in the cosmic microwave background power spectra at large multipoles l are rather small, so that for accurate computations in connection with the analysis of Planck data already ~100 shells are expected to be sufficient. Nevertheless, the total value of τ could still be affected at a significant level. We also briefly investigate the effect of collisions on the recombination dynamics. With our current estimates for the collisional rates we find a correction of ΔNe/Ne ~ -8.8 × 10-4 at z ~ 700, which is mainly caused by l-changing collisions with protons. Furthermore, we present results on the cosmological recombination spectrum, showing that at low frequencies collisional processes are important. However, the current accuracy of collisional rates is insufficient for precise computations of templates for the recombination spectrum at ν <~ 1GHz, and also the effect of collisions on the recombination dynamics suffers from the uncertainty in these rates. Improvements in collisional rates will therefore become

  9. Hydrogen recombiner catalyst test supporting data

    SciTech Connect

    Britton, M.D.

    1995-01-19

    This is a data package supporting the Hydrogen Recombiner Catalyst Performance and Carbon Monoxide Sorption Capacity Test Report, WHC-SD-WM-TRP-211, Rev 0. This report contains 10 appendices which consist of the following: Mass spectrometer analysis reports: HRC samples 93-001 through 93-157; Gas spectrometry analysis reports: HRC samples 93-141 through 93-658; Mass spectrometer procedure PNL-MA-299 ALO-284; Alternate analytical method for ammonia and water vapor; Sample log sheets; Job Safety analysis; Certificate of mixture analysis for feed gases; Flow controller calibration check; Westinghouse Standards Laboratory report on Bois flow calibrator; and Sorption capacity test data, tables, and graphs.

  10. Two-photon transitions in primordial hydrogen recombination

    NASA Astrophysics Data System (ADS)

    Hirata, Christopher M.

    2008-07-01

    The subject of cosmological hydrogen recombination has received much attention recently because of its importance to predictions for and cosmological constraints from cosmic microwave background observations. While the central role of the two-photon decay 2s→1s has been recognized for many decades, high-precision calculations require us to consider two-photon decays from the higher states ns, nd→1s (n≥3). Simple attempts to include these processes in recombination calculations with an effective two-photon decay coefficient analogous to the 2s decay coefficient Λ2s=8.22s-1 have suffered from physical problems associated with the existence of kinematically allowed sequences of one-photon decays, e.g. 3d→2p→1s, that technically also produce two photons. These correspond to resonances in the two-photon spectrum that are optically thick to two-photon absorption, necessitating a radiative transfer calculation. We derive the appropriate equations, develop a numerical code to solve them, and verify the results by finding agreement with analytic approximations to the radiative transfer equation. The related processes of Raman scattering and two-photon recombination are included using similar machinery. Our results show that early in recombination the two-photon decays act to speed up recombination, reducing the free electron abundance by 1.3% relative to the standard calculation at z=1300. However, we find that some photons between Lyα and Lyβ are produced, mainly by 3d→1s two-photon decay and 2s→1s Raman scattering. At later times, these photons redshift down to Lyα, excite hydrogen atoms, and act to slow recombination. Thus, the free electron abundance is increased by 1.3% relative to the standard calculation at z=900. Our calculation involves a very different physical argument than the recent studies of Wong and Scott and Chluba and Sunyaev, and produces a much larger effect on the ionization history. The implied correction to the cosmic microwave

  11. Lyman-{alpha} transfer in primordial hydrogen recombination

    SciTech Connect

    Hirata, Christopher M.; Forbes, John

    2009-07-15

    Cosmological constraints from the cosmic microwave background (CMB) anisotropies rely on accurate theoretical calculations of the cosmic recombination history. Recent work has emphasized the importance of radiative transfer calculations due to the high optical depth in the H i Lyman lines. Transfer in the Ly{alpha} line is dominated by true emission and absorption, Hubble expansion, and resonant scattering. Resonant scattering causes photons to diffuse in frequency due to random kicks from the thermal velocities of hydrogen atoms, and also to drift toward lower frequencies due to energy loss via atomic recoil. Past analyses of Ly{alpha} transfer during the recombination era have either considered a subset of these processes, ignored time dependence, or incorrectly assumed identical emission and absorption profiles. We present here a fully time-dependent radiative transfer calculation of the Ly{alpha} line including all of these processes, and compare it to previous results that ignored the resonant scattering. We find a faster recombination due to recoil enhancement of the Ly{alpha} escape rate, leading to a reduction in the free electron density of 0.45% at z=900. This results in an increase in the small-scale CMB power spectrum that is negligible for the current data but will be a 0.9{sigma} correction for Planck. We discuss the reasons why we find a smaller correction than some other recent computations.

  12. Hydrogen production by recombinant Escherichia coli strains

    PubMed Central

    Maeda, Toshinari; Sanchez‐Torres, Viviana; Wood, Thomas K.

    2012-01-01

    Summary The production of hydrogen via microbial biotechnology is an active field of research. Given its ease of manipulation, the best‐studied bacterium Escherichia coli has become a workhorse for enhanced hydrogen production through metabolic engineering, heterologous gene expression, adaptive evolution, and protein engineering. Herein, the utility of E. coli strains to produce hydrogen, via native hydrogenases or heterologous ones, is reviewed. In addition, potential strategies for increasing hydrogen production are outlined and whole‐cell systems and cell‐free systems are compared. PMID:21895995

  13. Magnetic field spectrum at cosmological recombination revisited

    NASA Astrophysics Data System (ADS)

    Saga, Shohei; Ichiki, Kiyotomo; Takahashi, Keitaro; Sugiyama, Naoshi

    2015-06-01

    If vector type perturbations are present in the primordial plasma before recombination, the generation of magnetic fields is known to be inevitable through the Harrison mechanism. In the context of the standard cosmological perturbation theory, nonlinear couplings of first-order scalar perturbations create second-order vector perturbations, which generate magnetic fields. Here we reinvestigate the generation of magnetic fields at second-order in cosmological perturbations on the basis of our previous study, and extend it by newly taking into account the time evolution of purely second-order vector perturbations with a newly developed second-order Boltzmann code. We confirm that the amplitude of magnetic fields from the product-terms of the first-order scalar modes is consistent with the result in our previous study. However, we find, both numerically and analytically, that the magnetic fields from the purely second-order vector perturbations partially cancel out the magnetic fields from one of the product-terms of the first-order scalar modes, in the tight coupling regime in the radiation dominated era. Therefore, the amplitude of the magnetic fields on small scales, k ≳10 h Mpc-1 , is smaller than the previous estimates. The amplitude of the generated magnetic fields at cosmological recombination is about Brec=5.0 ×10-24 Gauss on k =5.0 ×10-1 h Mpc-1 . Finally, we discuss the reason for the discrepancies that exist in estimates of the amplitude of magnetic fields among other authors.

  14. Oxygen recombination in individual pressure vessel nickel-hydrogen batteries

    NASA Technical Reports Server (NTRS)

    Smithrick, J. J. (Inventor)

    1986-01-01

    A metal-hydrogen cell is described which avoids damage and retards flooding of the hydrogen electrodes by providing for chemical recombination of oxygen and hydrogen in areas or sites remote from the hydrogen electrodes. In the metal-hydrogen cell, a plurality of electrical cell units are place in a back to back relationship. The cells may be lined with a wick, having one or more catalyzed sites on the inner surface of the cell. Separators disposed between the respective metal and hydrogen electrodes of each cell unit are provided with gas directing notches around their peripheries to facilitate the desired movement of gasses within the metal-hydrogen cell. Any two metal electrodes separated by a gas screen are provided with gas tight sealing means between the electrodes at each aperature. The sealing means may be a fing of rubber or elastomeric material which is somewhat compressible but nonreactive with other materials in the cell.

  15. Recombination line intensities for hydrogenic ions. III - Effects of finite optical depth and dust

    NASA Technical Reports Server (NTRS)

    Hummer, D. G.; Storey, P. J.

    1992-01-01

    The effect on the recombination spectrum of hydrogen arising from: (1) finite optical thickness in the Lyman lines; (2) the overlapping of Lyman lines near the series limit; (3) the absorption of Lyman lines by dust or photoionization, and (4) the long-wave radiation emitted by dust is examined. Full account is taken of electron and heavy particle collisions in redistributing energy and angular momentum. It is seen that each of these deviations from the classical Case B leads to observable effects, and that dust influences the recombination spectrum in characteristic ways that may make possible new observational constraints on dust properties in nebulosities. On the basis of these calculations it is believed that the uncertainty in the determination of the helium-to-hydrogen abundance ratio in the universe may be larger than currently claimed.

  16. Recombination of hydrogen atoms on fine-grain graphite

    NASA Astrophysics Data System (ADS)

    Drenik, Aleksander; Vesel, Alenka; Kreter, Arkadi; Mozetič, Miran

    2011-04-01

    The probability of recombination of hydrogen atoms on surfaces of fine-grain graphite EK98 was investigated as a function of surface roughness. The source of hydrogen atoms used in this experiment was weakly ionised plasma created with an inductively coupled radiofrequency generator at pressures from 30 Pa to 175 Pa in hydrogen. Hydrogen atom density was measured by means of fibre optic catalytic probes. The recombination coefficient of the graphite samples was determined by observing their impact on the spatial distribution of the atom density in a closed side-arm of the reactor. Smith's diffusion model was used to calculate the values of the recombination coefficient. The measured recombination coefficient was found to increase much faster than the measured effective surface. This discrepancy is explained by the fact that on a surface which is not perfectly flat, there is a finite probability for multiple collisions. Impinging atoms collide more than once with the surface before they are reflected into the surface, which results in a larger probability of recombination.

  17. Quasi-steady laser oscillation in the recombining hydrogen plasma

    NASA Astrophysics Data System (ADS)

    Hara, T.; Kodera, K.; Hamagaki, M.; Dote, T.; Matsunaga, K.; Inutake, M.

    1980-10-01

    A quasi-steady laser oscillation at 1.88 microns has been observed in a pure hydrogen plasma. The high density plasma produced by a high power quasi-steady MPD arc-jet operating at 8.1 kA of the discharge current and 0.1 g/s of hydrogen flow is cooled by expanding itself into the vacuum chamber. Experimental results confirm that some population inversions occur as a consequence of recombination and subsequent electron thermalization.

  18. Effective conductance method for the primordial recombination spectrum

    NASA Astrophysics Data System (ADS)

    Ali-Haïmoud, Yacine

    2013-01-01

    As atoms formed for the first time during primordial recombination, they emitted bound-bound and free-bound radiation leading to spectral distortions to the cosmic microwave background. These distortions might become observable in the future with high-sensitivity spectrometers, and provide a new window into physical conditions in the early universe. The standard multilevel atom method habitually used to compute the recombination spectrum is computationally expensive, impeding a detailed quantitative exploration of the information contained in spectral distortions thus far. In this work it is shown that the emissivity in optically thin allowed transitions can be factored into a computationally expensive but cosmology-independent part and a computationally cheap, cosmology-dependent part. The slow part of the computation consists in pre-computing temperature-dependent effective “conductances,” linearly relating line or continuum intensity to departures from Saha equilibrium of the lowest-order excited states (2s and 2p), that can be seen as “voltages.” The computation of these departures from equilibrium as a function of redshift is itself very fast, thanks to the effective multilevel atom method introduced in an earlier work. With this factorization, the recurring cost of a single computation of the recombination spectrum is only a fraction of a second on a standard laptop, more than four orders of magnitude shorter than standard computations. The spectrum from helium recombination can be efficiently computed in an identical way, and a fast code computing the full primordial recombination spectrum with this method will be made publicly available soon.

  19. In-tank hydrogen-ferric ion recombination

    NASA Astrophysics Data System (ADS)

    Selverston, S.; Savinell, R. F.; Wainright, J. S.

    2016-08-01

    An H2sbnd Fe3+ recombination method is being developed for all-iron flow batteries. Working principles are described and a proof-of-concept in-tank reactor is demonstrated. A membrane-less galvanic reactor is characterized using potential, polarization and impedance measurements at hydrogen partial pressures ranging from 0.3 to 11.3 psig. Through a vertical reactor geometry, hydrogen recombination rates of up to 60 mA cm-2 were measured at PH2 = 4.5 psig for a reactor with a platinum loading of 3.2 mg cm-2, based on the geometric catalyzed area. This is equivalent to over 375 mA cm-2 with respect to the cross sectional area of the reactor at the waterline. This rate is sufficient that the reactor will readily fit inside the positive reservoir of a flow battery. The reactor was found to be resistant to degradation by flooding or catalyst loss.

  20. High-n Hydrogen Recombination Lines from the First Galaxies

    NASA Astrophysics Data System (ADS)

    Rule, Evan; Strelnitski, V.; Loeb, A.

    2013-01-01

    High-n Hydrogen Recombination Lines from the First Galaxies Evan Rule (John Hopkins U. & Maria Mitchell Obs.), Abraham Loeb (Harvard U.), & Vladimir Strelnitski (Maria Mitchell Obs.) We investigate the prospects of a blind search for high-n hydrogen recombination lines from the first generation of galaxies formed within cold dark matter halos at z ≤ 30. Our basic model considers optically thin spontaneous emission from a fully ionized galaxy with smooth distribution of interstellar gas and a negligible portion of the gas bound in stars. This model predicts considerable numbers of galaxies detectable in cm and mm domains with the detectability thresholds achievable by the best existing and forthcoming radio-astronomical facilities, such as ALMA and SKA. The predicted numbers can be reduced by the clumpiness of the interstellar gas, its incomplete ionization, and the finite time of the bursts of star formation, if this time is considerably shorter than the Hubble time. These downgrading factors may however be mitigated by the maser amplification of some lines. We come to the conclusion that blind searches for the first galaxies via their high-n hydrogen recombination lines, falling, after redshift, into short wavelength radio domain, are already justified for modern interferometric facilities. This project was supported by NSF/REU grant AST-0851892 and the Nantucket Maria Mitchell Association.

  1. Cosmological recombination: feedback of helium photons and its effect on the recombination spectrum

    NASA Astrophysics Data System (ADS)

    Chluba, J.; Sunyaev, R. A.

    2010-02-01

    In this paper, we consider the reprocessing of high-frequency photons emitted by HeII and HeI during the epoch of cosmological recombination by HeI and HI. We demonstrate that, in comparison to computations which neglect all feedback processes, the number of cosmological recombination photons that are related to the presence of helium in the early Universe could be increased by ~40-70 per cent. Our computations imply that per helium nucleus ~3-6 additional photons could be produced. Therefore, a total of ~12-14 helium-related photons per helium atom are emitted during cosmological recombination. This is an important addition to cosmological recombination spectrum which in the future may render it slightly easier to determine the primordial abundance of helium using differential measurements of the cosmic microwave background (CMB) energy spectrum. Also, since these photons are the only witnesses of the feedback process at high redshift, observing them in principle offers a way to check our understanding of the recombination physics. Here, most interestingly, the feedback of HeII photons on HeI leads to the appearance of several additional, rather narrow spectral features in the HeI recombination spectrum at low frequencies. Consequently, the signatures of helium-related features in the CMB spectral distortion from cosmological recombination at some given frequency can exceed the average level of ~17 per cent several times. We find that in particular the bands around ν ~ 10, ~35, ~80 and ~200GHz seem to be affected strongly. In addition, we computed the changes in the cosmological ionization history, finding that only the feedback of primary HeI photons on the dynamics of HeII -> HeI recombination has an effect, producing a change of ΔNe/Ne ~ +0.17 per cent at z ~ 2300. This result seems to be ~2-3 times smaller than the one obtained in earlier computations for this process, however, the difference will not be very important for the analysis of future CMB data.

  2. Prediction and assignment of the FIR spectrum of hydrogen peroxide

    NASA Technical Reports Server (NTRS)

    Helminger, P.; Messer, J. K.; De Lucia, F. C.; Bowman, W. C.

    1984-01-01

    Millimeter and submillimeter microwave studies are used to predict and assign the FIR rotational-torsional spectrum of hydrogen peroxide. Special attention is given to the strong Q-branch features that have recently been used by Traub and Chance to place an upper limit on the atmospheric abundance of hydrogen peroxide. In addition, 67 new transitions are reported in the 400-1000 GHz region.

  3. HIGH-n HYDROGEN RECOMBINATION LINES FROM THE FIRST GALAXIES

    SciTech Connect

    Rule, E.; Loeb, A.; Strelnitski, V. S.

    2013-09-20

    We investigate the prospects of blind and targeted searches in the radio domain (10 MHz to 1 THz) for high-n hydrogen recombination lines from the first generation of galaxies, at z ∼< 10. The expected optically thin spontaneous α-line luminosities are calculated as a function of the absolute AB magnitude of a galaxy at 1500 Å. For a blind search, semi-empirical luminosity functions are used to calculate the number of galaxies whose expected flux densities exceed an assumed detectability threshold. Plots of the minimum sky area, within which at least one detectable galaxy is expected at a given observing frequency, in the fiducial instantaneous passband of 10{sup 4} km s{sup –1}, allow us to assess the blind search time necessary for detection by a given facility. We show that the chances for detection are the highest in the millimeter and submillimeter domains, but finding spontaneous emission in a blind search, especially from redshifts z >> 1, is a challenge even with powerful facilities, such as the Actama Large Millimeter/Submillimeter Array and Square Kilometre Array. The probability of success is higher for a targeted search of lines with principal quantum number n ∼ 10 in Lyman-break galaxies amplified by gravitational lensing. Detection of more than one hydrogen line in such a galaxy will allow for line identification and a precise determination of the galaxy's redshift.

  4. H, He-like recombination spectra - I. l-changing collisions for hydrogen

    NASA Astrophysics Data System (ADS)

    Guzmán, F.; Badnell, N. R.; Williams, R. J. R.; van Hoof, P. A. M.; Chatzikos, M.; Ferland, G. J.

    2016-07-01

    Hydrogen and helium emission lines in nebulae form by radiative recombination. This is a simple process which, in principle, can be described to very high precision. Ratios of He I and H I emission lines can be used to measure the He+/H+ abundance ratio to the same precision as the recombination rate coefficients. This paper investigates the controversy over the correct theory to describe dipole l-changing collisions (nl → nl' = l ± 1) between energy-degenerate states within an n-shell. The work of Pengelly & Seaton has, for half-a-century, been considered the definitive study which `solved' the problem. Recent work by Vrinceanu et al. recommended the use of rate coefficients from a semiclassical approximation which are nearly an order of magnitude smaller than those of Pengelly & Seaton, with the result that significantly higher densities are needed for the nl populations to come into local thermodynamic equilibrium. Here, we compare predicted H I emissivities from the two works and find widespread differences, of up to ≈10 per cent. This far exceeds the 1 per cent precision required to obtain the primordial He/H abundance ratio from observations so as to constrain big bang cosmologies. We recommend using the rate coefficients of Pengelly & Seaton for l-changing collisions, to describe the H recombination spectrum, based-on their quantum mechanical representation of the long-range dipole interaction.

  5. Carbon and hydrogen radio recombination lines from the cold clouds towards Cassiopeia A

    NASA Astrophysics Data System (ADS)

    Oonk, J. B. R.; van Weeren, R. J.; Salas, P.; Salgado, F.; Morabito, L. K.; Toribio, M. C.; Tielens, A. G. G. M.; Röttgering, H. J. A.

    2017-02-01

    We use the Low Frequency Array to perform a systematic high spectral resolution investigation of the low-frequency 33-78 MHz spectrum along the line of sight to Cassiopeia A. We complement this with a 304-386 MHz Westerbork Synthesis Radio Telescope observation. In this first paper, we focus on the carbon radio recombination lines. We detect Cnα lines at -47 and -38 km s-1 in absorption for quantum numbers n = 438-584 and in emission for n = 257-278 with a high signal-to-noise ratio. These lines are associated with cold clouds in the Perseus spiral arm component. Hnα lines are detected in emission for n = 257-278. In addition, we also detect Cnα lines at 0 km s-1 associated with the Orion arm. We analyse the optical depth of these transitions and their linewidth. Our models show that the carbon line components in the Perseus arm are best fitted with an electron temperature of 85 K and an electron density of 0.04 cm-3 and can be constrained to within 15 per cent. The electron pressure is constrained to within 20 per cent. We argue that most of these carbon radio recombination lines arise in the CO-dark surface layers of molecular clouds, where most of the carbon is ionized, but hydrogen has made the transition from atomic to molecular. The hydrogen lines are clearly associated with the carbon line emitting clouds, but the low-frequency upper limits indicate that they likely do not trace the same gas. Combining the hydrogen and carbon results, we arrive at a firm lower limit to the cosmic-ray ionization rate of 2.5 × 10-18 s-1, but the actual value is likely much larger.

  6. Effects of wall coatings and temperature on hydrogen atom surface recombination

    NASA Technical Reports Server (NTRS)

    Wong, E. L.; Baker, C. E.

    1973-01-01

    The efficiency of various surface coatings and materials toward inhibiting hydrogen atom surface recombination was investigated over a temperature range of 77 to 298 K. A flow discharge, mass spectrometer technique was used to make the experimental measurements. Hydrogen atoms were monitored directly, and these measurements were expressed as ratios of mass spectrometer peak heights for atomic and molecular hydrogen. Several of the surface coatings studied were efficient at reducing hydrogen atom surface recombination at room temperature. However, as the temperature was lowered, this efficiency was drastically reduced. Calibration of the mass spectrometer for atomic and molecular hydrogen indicated that mass spectrometer discrimination against hydrogen atoms was severe. Mass spectrometer sensitivity for hydrogen atoms was only about one-sixth of that for molecular hydrogen.

  7. Hydrogen recombination in the early Universe in the presence of a magnetic field

    SciTech Connect

    Agasian, N. O.; Fedorov, S. M.

    2016-03-15

    Hydrogen recombination in the earlyUniverse in the presence of amagnetic field is studied. An equation for the recombination temperature in the presence of a magnetic field is obtained. The limiting cases of weak and strong magnetic fields are examined. A critical field above which the system being considered is in the atomic-hydrogen phase at any temperature is shown to exist. The relative shift of the recombination temperature in a magnetic field is estimated, and it is shown that this shift is small.

  8. Hydrogen-atom spectrum under a minimal-length hypothesis

    SciTech Connect

    Benczik, Sandor; Chang, Lay Nam; Minic, Djordje; Takeuchi, Tatsu

    2005-07-15

    The energy spectrum of the Coulomb potential with minimal length commutation relations [X{sub i},P{sub j}]=i({Dirac_h}/2{pi}){l_brace}{delta}{sub ij}(1+{beta}P{sup 2})+{beta}{sup '}P{sub i}P{sub j}{r_brace} is determined both numerically and perturbatively for arbitrary values of {beta}{sup '}/{beta} and angular momenta l. The constraint on the minimal length scale from precision hydrogen spectroscopy data is of the order of a few GeV{sup -1}, weaker than previously claimed.

  9. Hearing the music in the spectrum of hydrogen

    NASA Astrophysics Data System (ADS)

    LoPresto, Michael C.

    2016-03-01

    Throughout a general education course on sound and light aimed at music and art students, analogies between subjective perceptions of objective properties of sound and light waves are a recurring theme. Demonstrating that the pitch and loudness of musical sounds are related to the frequency and intensity of a sound wave is simple and students are easily able to draw the analogies with the color and brightness of light. When considering an entire spectrum, the presence of multiple frequencies and wavelengths of different intensities is perceived by the ear as sound quality, or musical timbre, while the perception of the eye is the tone or hue of a color. What follows is a description of a demonstration that draws the analogy between musical sound quality and the tone or hue of light in which the emission spectrum of hydrogen is considered and actually played as a musical chord.

  10. Calculations of Electron Attachment and Recombination in a Hydrogen Plasma.

    DTIC Science & Technology

    1991-02-01

    two beams is measured at two places in the interaction region and the effective collision area , F, is determined. The cross section for recombination...electron beam currents and velocities respectively, L is the length of the interaction region and F is the effective collision area . The energy in the...is also of consider- 120 able practical importance in areas such as combustion,’ extraterrestrial atmospheres, 2 vacuum-uv laser sources, 3 laser-based

  11. Hydrocarbon rate coefficients for proton and electron impact ionization, dissociation, and recombination in a hydrogen plasma.

    SciTech Connect

    Alman, D.A.; Brooks, J.N.; Ruzic, D.N.; Wang, Z.

    1999-07-21

    We estimate cross sections and rate coefficients for proton and electron impact ionization, dissociation, and recombination of neutral and ionized hydrocarbon molecules and fragments of the form C{sub x}H{sub y}{sup k}, x = 1-3, y = 1-6, k = 0,1 in a thermalized hydrogen-electron plasma.

  12. Selective vibrational pumping of molecular hydrogen via gas phase atomic recombination.

    PubMed

    Esposito, Fabrizio; Capitelli, Mario

    2009-12-31

    Formation of rovibrational excited molecular hydrogen from atomic recombination has been computationally studied using three body dynamics and orbiting resonance theory. Each of the two methods in the frame of classical mechanics, that has been used for all of the calculations, appear complementary rather than complete, with similar values in the low temperature region, and predominance of three body dynamics for temperatures higher than about 1000 K. The sum of the two contributions appears in fairly good agreement with available data from the literature. Dependence of total recombination on the temperature over pressure ratio is stressed. Detailed recombination toward rovibrational states is presented, with large evidence of importance of rotation in final products. Comparison with gas-surface recombination implying only physiadsorbed molecules shows approximate similarities at T = 5000 K, being on the contrary different at lower temperature.

  13. Adsorption, diffusion, and recombination of hydrogen on pure and boron-doped graphite surfaces.

    PubMed

    Ferro, Y; Marinelli, F; Jelea, A; Allouche, A

    2004-06-22

    Boron inserted as impurity by substitution of carbon atoms in graphite is known to modify the reactivity of the surface in interaction with hydrogen. Boron induces a better H retention capability in graphite while it makes easier the recombination into molecular hydrogen under heating in thermal-desorption experimental conditions. It has already been calculated that boron modifies the electronic structure of the surface, which results in an increase of the adsorption energy for H. This result seems in good agreement with the better retention for H in doped graphite, but contradictory with the easier recombination observed. The aim of this work is to dismiss this contradiction by elucidating the modifications induced by boron in the recombination mechanism. We studied the diffusion of H on pure and boron-doped graphite in the density functional theory framework. We determined a diffusionlike mechanism leading to molecular hydrogen formation. Finally, we have shown the fundamental modifications induced by boron on the [0001] graphite surface reactivity. From these calculations it stands out that recombination is the result of desorption on pure graphite and diffusion on B-doped surfaces, while the activation energy for the rate limiting step is half reduced by boron. The results are compared to experimental observations. The connection between the cluster and periodic quantum modes for graphite is also discussed. (c) 2004 American Institute of Physics.

  14. COSMOSPEC: fast and detailed computation of the cosmological recombination radiation from hydrogen and helium

    NASA Astrophysics Data System (ADS)

    Chluba, Jens; Ali-Haïmoud, Yacine

    2016-03-01

    We present the first fast and detailed computation of the cosmological recombination radiation released during the hydrogen (redshift z ≃1300) and helium (z ≃2500 and 6000) recombination epochs, introducing the code COSMOSPEC. Our computations include important radiative transfer effects, 500-shell bound-bound and free-bound emission for all three species, the effects of electron scattering and free-free absorption as well as interspecies (He II⇒ He I⇒ H I) photon feedback. The latter effect modifies the shape and amplitude of the recombination radiation and COSMOSPEC improves significantly over previous treatments of it. Utilizing effective multilevel atom and conductance approaches, one calculation takes only ≃15 s on a standard laptop as opposed to days for previous computations. This is an important step towards detailed forecasts and feasibility studies considering the detection of the cosmological recombination lines and what one may hope to learn from the ≃6.1 photons emitted per hydrogen atom in the three recombination eras. We briefly illustrate some of the parameter dependences and discuss remaining uncertainties in particular related to collisional processes and the neutral helium atom model.

  15. Adsorption and recombination of hydrogen atoms on a model graphite surface. [in interstellar space

    NASA Technical Reports Server (NTRS)

    Aronowitz, S.; Chang, S.

    1985-01-01

    The adsorption and recombination of atomic hydrogen on a model graphite grain have been examined in a series of calculations in which a modified, iterative, extended Hueckel program was used. The hydrogen atom is found to be chemisorbed at a site with a zero-point binding energy of 0.7 eV and at an equilibrium distance of 2.25 A above the site. Despite a barrier of about 0.4 eV between adjacent sites, calculations suggest that at temperatures as low as 10 K, an H atom will tunnel through to adjacent sites in less than one nanosecond. However, a potential barrier to the recombination of two hydrogen atoms has been found which displays high sensitivity to the mutual arrangement of the two hydrogen atoms with respect to the graphite surface. Results show that at very low temperatures, recombinations can occur only by tunneling. Consistent with experiment, the region in which H2 begins to form exhibits a repulsive potential with respect to possible chemisorption of the incipient H2 entity.

  16. Hydrogen from Water in a Novel Recombinant Cyanobacterial System

    SciTech Connect

    Weyman, Philip D; Smith, Hamillton O.

    2014-12-03

    Photobiological processes are attractive routes to renewable H2 production. With the input of solar energy, photosynthetic microbes such as cyanobacteria and green algae carry out oxygenic photosynthesis, using sunlight energy to extract protons and high energy electrons from water. These protons and high energy electrons can be fed to a hydrogenase system yielding H2. However, most hydrogen-evolving hydrogenases are inhibited by O2, which is an inherent byproduct of oxygenic photosynthesis. The rate of H2 production is thus limited. Certain photosynthetic bacteria are reported to have an O2-tolerant evolving hydrogenase, yet these microbes do not split water, and require other more expensive feedstocks. To overcome these difficulties, the goal of this work has been to construct novel microbial hybrids by genetically transferring O2-tolerant hydrogenases from other bacteria into a class of photosynthetic bacteria called cyanobacteria. These hybrid organisms will use the photosynthetic machinery of the cyanobacterial hosts to perform the water-oxidation reaction with the input of solar energy, and couple the resulting protons and high energy electrons to the O2-tolerant bacterial hydrogenase, all within the same microbe (Fig. 1). The ultimate goal of this work has been to overcome the sensitivity of the hydrogenase enzyme to O2 and address one of the key technological hurdles to cost-effective photobiological H2 production which currently limits the production of hydrogen in algal systems. In pursuit of this goal, work on this project has successfully completed many subtasks leading to a greatly increased understanding of the complicated [NiFe]-hydrogenase enzymes. At the beginning of this project, [NiFe] hydrogenases had never been successfully moved across wide species barriers and had never been heterologously expressed in cyanobacteria. Furthermore, the idea that whole, functional genes could be extracted from complicated, mixed-sequence meta-genomes was not

  17. Mid Infrared Hydrogen Recombination Line Emission from the Maser Star MWC 349A

    NASA Technical Reports Server (NTRS)

    Smith, Howard A.; Strelnitski, V.; Miles, J. W.; Kelly, D. M.; Lacy, J. H.

    1997-01-01

    We have detected and spectrally resolved the mid-IR hydrogen recombination lines H6(alpha)(12.372 micrometers), H7(alpha)(19.062 micrometers), H7(beta)(l1.309 micrometers) and H8(gamma)(12.385 micrometers) from the star MWC349A. This object has strong hydrogen maser emission (reported in the millimeter and submillimeter hydrogen recombination lines from H36(alpha) to H21(alpha)) and laser emission (reported in the H15(alpha), H12(alpha) and H10(alpha) lines). The lasers/masers are thought to arise predominantly in a Keplerian disk around the star. The mid-IR lines do not show evident signs of lasing, and can be well modeled as arising from the strong stellar wind, with a component arising from a quasi-static atmosphere around the disk, similar to what is hypothesized for the near IR (less than or equal to 4 micrometers) recombination lines. Since populations inversions in the levels producing these mid-IR transitions are expected at densities up to approximately 10(exp 11)/cu cm, these results imply either that the disk does not contain high-density ionized gas over long enough path lengths to produce a gain approximately 1, and/or that any laser emission from such regions is small compared to the spontaneous background emission from the rest of the source as observed with a large beam. The results reinforce the interpretation of the far-IR lines as true lasers.

  18. Reduction in Recombination Current Density in Boron Doped Silicon Using Atomic Hydrogen

    NASA Astrophysics Data System (ADS)

    Young, Matthew Garett

    The solar industry has grown immensely in recent years and has reached a point where solar energy has now become inexpensive enough that it is starting to emerge as a mainstream electrical generation source. However, recent economic analysis has suggested that for solar to become a truly wide spread source of electricity, the costs still need to plummet by a factor of 8x. This demands new and innovative concepts to help lower such cost. In pursuit of this goal, this dissertation examines the use of atomic hydrogen to lessen the recombination current density in the boron doped region of n-type silicon solar cells. This required the development of a boron diffusion process that maintained the bulk lifetime of n-type silicon such that the recombination current density could be extracted by photoconductance spectroscopy. It is demonstrated that by hydrogenating boron diffusions, the majority carrier concentration can be controlled. By using symmetrically diffused test structures with quinhydrone-methanol surface passivation the recombination current density of a hydrogenated boron profile is shown to be less than that of a standard boron profile, by as much as 30%. This is then applied to a modified industrial silicon solar cell process to demonstrate an efficiency enhancement of 0.4%.

  19. Perturbation hydrogen-atom spectrum in deformed space with minimal length

    SciTech Connect

    Stetsko, M. M.; Tkachuk, V. M.

    2006-07-15

    We studied energy spectrum for the hydrogen atom with deformed Heisenberg algebra leading to the minimal length. We developed the correct perturbation theory free of divergences. It gives a possibility to calculate analytically in the three-dimensional case the corrections to s levels of the hydrogen atom caused by the minimal length. Comparing our results with the experimental data from precision hydrogen spectroscopy an upper bound for the minimal length is obtained.

  20. [Study on the Emission Spectrum of Hydrogen Production with Microwave Discharge Plasma in Ethanol Solution].

    PubMed

    Sun, Bing; Wang, Bo; Zhu, Xiao-mei; Yan, Zhi-yu; Liu, Yong-jun; Liu, Hui

    2016-03-01

    Hydrogen is regarded as a kind of clean energy with high caloricity and non-pollution, which has been studied by many experts and scholars home and abroad. Microwave discharge plasma shows light future in the area of hydrogen production from ethanol solution, providing a new way to produce hydrogen. In order to further improve the technology and analyze the mechanism of hydrogen production with microwave discharge in liquid, emission spectrum of hydrogen production by microwave discharge plasma in ethanol solution was being studied. In this paper, plasma was generated on the top of electrode by 2.45 GHz microwave, and the spectral characteristics of hydrogen production from ethanol by microwave discharge in liquid were being studied using emission spectrometer. The results showed that a large number of H, O, OH, CH, C2 and other active particles could be produced in the process of hydrogen production from ethanol by microwave discharge in liquid. The emission spectrum intensity of OH, H, O radicals generated from ethanol is far more than that generated from pure water. Bond of O-H split by more high-energy particles from water molecule was more difficult than that from ethanol molecule, so in the process of hydrogen production by microwave discharge plasma in ethanol solution; the main source of hydrogen was the dehydrogenation and restructuring of ethanol molecules instead of water decomposition. Under the definite external pressure and temperature, the emission spectrum intensity of OH, H, O radicals increased with the increase of microwave power markedly, but the emission spectrum intensity of CH, C2 active particles had the tendency to decrease with the increase of microwave power. It indicated that the number of high energy electrons and active particles high energy electron energy increased as the increase of microwave power, so more CH, C2 active particles were split more thoroughly.

  1. Hydrogen atom spectrum and the lamb shift in noncommutative QED.

    PubMed

    Chaichian, M; Sheikh-Jabbari, M M; Tureanu, A

    2001-03-26

    We have calculated the energy levels of the hydrogen atom as well as the Lamb shift within the noncommutative quantum electrodynamics theory. The results show deviations from the usual QED both on the classical and the quantum levels. On both levels, the deviations depend on the parameter of space/space noncommutativity.

  2. Infrared recombination lines of hydrogen from young objects in the southern Galactic plane

    NASA Technical Reports Server (NTRS)

    Beck, Sara C.; Fischer, Jacqueline; Smith, Howard A.

    1991-01-01

    Near infrared recombination lines of hydrogen are observed in twelve young objects in the southern Galactic plane. The sample includes Herbig-Haro objects and IRAS dark-cloud point sources from the 1987 catalog of Persson and Campbell. In four of the IRAS sources two or three infrared lines are measured, and their intensity ratios are consistent with models of optically thick ionized winds. The intrinsic line shapes, retrieved from maximum-entropy deconvolutions, indicate gas velocities of 100 km/s or more as expected from ionized winds. These sources are apparently embedded pre-main-sequence objects with outflows. They include some of the brightest known YSOs.

  3. Infrared recombination lines of hydrogen from young objects in the southern Galactic plane

    NASA Technical Reports Server (NTRS)

    Beck, Sara C.; Fischer, Jacqueline; Smith, Howard A.

    1991-01-01

    Near infrared recombination lines of hydrogen are observed in twelve young objects in the southern Galactic plane. The sample includes Herbig-Haro objects and IRAS dark-cloud point sources from the 1987 catalog of Persson and Campbell. In four of the IRAS sources two or three infrared lines are measured, and their intensity ratios are consistent with models of optically thick ionized winds. The intrinsic line shapes, retrieved from maximum-entropy deconvolutions, indicate gas velocities of 100 km/s or more as expected from ionized winds. These sources are apparently embedded pre-main-sequence objects with outflows. They include some of the brightest known YSOs.

  4. Recombination of Hydrogen-Air Combustion Products in an Exhaust Nozzle

    NASA Technical Reports Server (NTRS)

    Lezberg, Erwin A.; Lancashire, Richard B.

    1961-01-01

    Thrust losses due to the inability of dissociated combustion gases to recombine in exhaust nozzles are of primary interest for evaluating the performance of hypersonic ramjets. Some results for the expansion of hydrogen-air combustion products are described. Combustion air was preheated up to 33000 R to simulate high-Mach-number flight conditions. Static-temperature measurements using the line reversal method and wall static pressures were used to indicate the state of the gas during expansion. Results indicated substantial departure from the shifting equilibrium curve beginning slightly downstream of the nozzle throat at stagnation pressures of 1.7 and 3.6 atmospheres. The results are compared with an approximate method for determining a freezing point using an overall rate equation for the oxidation of hydrogen.

  5. The infrared spectrum of matrix isolated hydrogen and deuterium

    NASA Technical Reports Server (NTRS)

    Warren, J. A.; Smith, G. R.; Guillory, W. A.

    1980-01-01

    The induced infrared spectra of H2 and D2, trapped in matrices of Ar, Kr, N2, CO, have been investigated. It is found that in Ar and Kr, the pure rotation spectrum is always readily observable. Portions of the fundamental region, however, are induced by impurities, while the entire spectrum is impurity induced in N2 matrices. These results are discussed in light of a recent Raman study of this system, and in comparison with several single crystal studies. Effective rotational and vibrational constants for matrix isolated H2 are also given.

  6. Measurements of the hydrogenic recombination coefficient for the TFTR vacuum vessel

    SciTech Connect

    Dylla, H.F.; Cecchi, J.L.; Knize, R.J.

    1983-12-01

    Characteristic values of the recombination rate coefficient for hydrogen and deuterium in stainless steel have been measured for the inner wall of the TFTR vacuum vessel for vessel temperatures of 25 to 100 C. In situ measurements of k/sub r/ are important for predicting the hydrogen isotope retention in the wall as a function of time, temperature, and discharge exposure, particularly because existing laboratory measurements of k/sub r/ for stainless steel span a range of four orders of magnitude. The measurement technique involved the observation of the decrease in hydrogen pressure during a glow discharge in the TFTR vacuum vessel with an initial static gas fill. The resulting values of k/sub r/ at 25 C are in the range of (0.4 to 4) x 10/sup -27/cm/sup 4/-s/sup -1/ assuming a value of the hydrogenic diffusivity of 2 x 10/sup -12/cm/sup 2/-s/sup -1/ at room temperature. No significant isotopic dependence was observed and the temperature dependence of k/sub r/ is consistent with the literature value (0.5 eV) of the activation energy. The implications of this range of values of k/sub r/, for the estimation of the in-vessel tritium inventory following D-T operation in TFTR are discussed.

  7. Ultraviolet absorption spectrum of hydrogen peroxide vapor. [for atmospheric abundances

    NASA Technical Reports Server (NTRS)

    Molina, L. T.; Schinke, S. D.; Molina, M. J.

    1977-01-01

    The ultraviolet absorption cross sections of hydrogen peroxide vapor have been determined over the wavelength range 210 to 350 nm at 296 K. At the longer wavelengths, the gas phase absorptivities are significantly larger than the corresponding values in condensed phase. The atmospheric H2O2 photodissociation rate for overhead sun at the earth's surface is estimated to be about 1.3 x 10 to the -5th/sec.

  8. Reconstruction of the electron spectrum in a metal hydrogen sulfide

    NASA Astrophysics Data System (ADS)

    Kudryashov, N. A.; Kutukov, A. A.; Mazur, E. A.

    2017-01-01

    Generalized Eliashberg theory of the normal properties of a metal electron-phonon system with a non constant electron density of states has been used to study the effect of the conduction band reconstruction. The electron density of states of the metallic phase of the hydrogen sulfide renormalized by the strong electron-phonon coupling at a pressure of P = 225 GPa has been calculated. It has been found that the reconstructed conduction band contains a series of narrow energy pockets.

  9. A new spin on primordial hydrogen recombination and a refined model for spinning dust radiation

    NASA Astrophysics Data System (ADS)

    Ali-Haimoud, Yacine

    2011-08-01

    This thesis describes theoretical calculations in two subjects: the primordial recombination of the electron-proton plasma about 400,000 years after the Big Bang and electric dipole radiation from spinning dust grains in the present-day interstellar medium. Primordial hydrogen recombination has recently been the subject of a renewed attention because of the impact of its theoretical uncertainties on predicted cosmic microwave background (CMB) anisotropy power spectra. The physics of the primordial recombination problem can be divided into two qualitatively different aspects. On the one hand, a detailed treatment of the non-thermal radiation field in the optically thick Lyman lines is required for an accurate recombination history near the peak of the visibility function. On the other hand, stimulated recombinations and out-of equilibrium effects are important at late times and a multilevel calculation is required to correctly compute the low-redshift end of the ionization history. Another facet of the problem is the requirement of computational efficiency, as a large number of recombination histories must be evaluated in Markov chains when analyzing CMB data. In this thesis, an effective multilevel atom method is presented, that speeds up multilevel atom computations by more than 5 orders of magnitude. The impact of previously ignored radiative transfer effects is quantified, and explicitly shown to be negligible. Finally, the numerical implementation of a fast and highly accurate primordial recombination code partly written by the author is described. The second part of this thesis is devoted to one of the potential galactic foregrounds for CMB experiments: the rotational emission from small dust grains. The rotational state of dust grains is described, first classically, and assuming that grains are rotating about their axis of greatest inertia. This assumption is then lifted, and a quantum-mechanical calculation is presented for disk-like grains with a

  10. Nonperturbative relativistic calculation of the muonic hydrogen spectrum

    SciTech Connect

    Carroll, J. D.; Thomas, A. W.; Rafelski, J.; Miller, G. A.

    2011-07-15

    We investigate the muonic hydrogen 2P{sub 3/2}{sup F=2} to 2S{sub 1/2}{sup F=1} transition through a precise, nonperturbative numerical solution of the Dirac equation including the finite-size Coulomb force and finite-size vacuum polarization. The results are compared with earlier perturbative calculations of (primarily) [E. Borie, Phys. Rev. A 71, 032508 (2005); E. Borie and G. A. Rinker, Rev. Mod. Phys. 54, 67 (1982); E. Borie, Z. Phys. A 275, 347 (1975) and A. P. Martynenko, Phys. Rev. A 71, 022506 (2005); A. Martynenko, Phys. At. Nucl. 71, 125 (2008), and K. Pachucki, Phys. Rev. A 53, 2092 (1996)] and experimental results recently presented by Pohl et al.[Nature (London) 466, 213 (2010)], in which this very comparison is interpreted as requiring a modification of the proton charge radius from that obtained in electron scattering and electronic hydrogen analyses. We find no significant discrepancy between the perturbative and nonperturbative calculations, and we present our results as confirmation of the perturbative methods.

  11. Broad Spectrum Photoelectrochemical Diodes for Solar Hydrogen Generation

    SciTech Connect

    Grimes, Craig A.

    2014-11-26

    Under program auspices we have investigated material chemistries suitable for the solar generation of hydrogen by water photoelectrolysis. We have built upon, and extended, our knowledge base on the synthesis and application of TiO2 nanotube arrays, a material architecture that appears ideal for water photoelectrolysis. To date we have optimized, refined, and greatly extended synthesis techniques suitable for achieving highly ordered TiO2 nanotube arrays of given length, wall thickness, pore diameter, and tube-to-tube spacing for use in water photoelectrolysis. We have built upon this knowledge based to achieve visible light responsive, photocorrosion stable n-type and p-type ternary oxide nanotube arrays for use in photoelectrochemical diodes.

  12. The charge spectrum of positive ions in a hydrogen aurora

    NASA Technical Reports Server (NTRS)

    Lynch, J.; Pulliam, D.; Leach, R.; Scherb, F.

    1976-01-01

    An auroral ion charge spectrometer was flown into a hydrogen aurora on a Javelin sounding rocket launched from Churchill, Manitoba. The instrument contained an electrostatic analyzer which selected particles with incident energy per unit charge up to 20 keV/charge and an 80-kV power supply which accelerated these ions onto an array of solid state detectors. Ions tentatively identified as H(+), He(+2), and O(+) were detected from 225 to 820 km in altitude. The experiment did not discriminate between H(+) and He(+), or between O(+), N(+), and C(+). Upper limits of highly charged heavy ion abundances have been set at 20% of the He(+2) and 0.15% of the H(+). It is concluded that both terrestrial and solar wind sources play significant roles in auroral ion precipitation.

  13. The charge spectrum of positive ions in a hydrogen aurora

    NASA Technical Reports Server (NTRS)

    Lynch, J.; Pulliam, D.; Leach, R.; Scherb, F.

    1976-01-01

    An auroral ion charge spectrometer was flown into a hydrogen aurora on a Javelin sounding rocket launched from Churchill, Manitoba. The instrument contained an electrostatic analyzer which selected particles with incident energy per unit charge up to 20 keV/charge and an 80-kV power supply which accelerated these ions onto an array of solid state detectors. Ions tentatively identified as H(+), He(+2), and O(+) were detected from 225 to 820 km in altitude. The experiment did not discriminate between H(+) and He(+), or between O(+), N(+), and C(+). Upper limits of highly charged heavy ion abundances have been set at 20% of the He(+2) and 0.15% of the H(+). It is concluded that both terrestrial and solar wind sources play significant roles in auroral ion precipitation.

  14. Nonperturbative Calculation of Born-Infeld Effects on the Schroedinger Spectrum of the Hydrogen Atom

    SciTech Connect

    Carley, Holly; Kiessling, Michael K.-H.

    2006-01-27

    We present the first nonperturbative calculations of the nonrelativistic hydrogen spectrum as predicted by first-quantized nonlinear Maxwell-Born-Infeld electrodynamics with point charges. Judged against empirical data our results significantly restrict the range of viable values of the new electromagnetic constant {beta} introduced by Born. We assess Born's own proposal for the value of {beta}.

  15. The Role of Hydrogen in Small Amorphous Carbon Grains: The IR Spectrum

    NASA Technical Reports Server (NTRS)

    Mennella, V.; Colangeli, L.; Pestellini, C. Cecchi; Palomba, E.; Palumbo, P.; Rotundi, A.; Bussoletti, E.

    1996-01-01

    Preliminary results on the evolution of the IR spectrum of hydrogenated carbon grains as a function of heat treatment are presented. The transformation of C-H and C-C bonding configurations is considered and the correlation with other properties of grains, such as their microstructure, is analyzed.

  16. A Guided-Inquiry Lab for the Analysis of the Balmer Series of the Hydrogen Atomic Spectrum

    ERIC Educational Resources Information Center

    Bopegedera, A. M. R. P.

    2011-01-01

    A guided-inquiry lab was developed to analyze the Balmer series of the hydrogen atomic spectrum. The emission spectrum of hydrogen was recorded with a homemade benchtop spectrophotometer. By drawing graphs and a trial-and-error approach, students discover the linear relationship presented in the Rydberg formula and connect it with the Bohr model…

  17. A Guided-Inquiry Lab for the Analysis of the Balmer Series of the Hydrogen Atomic Spectrum

    ERIC Educational Resources Information Center

    Bopegedera, A. M. R. P.

    2011-01-01

    A guided-inquiry lab was developed to analyze the Balmer series of the hydrogen atomic spectrum. The emission spectrum of hydrogen was recorded with a homemade benchtop spectrophotometer. By drawing graphs and a trial-and-error approach, students discover the linear relationship presented in the Rydberg formula and connect it with the Bohr model…

  18. Ionizing radiation from hydrogen recombination strongly suppresses the lithium scattering signature in the CMB

    SciTech Connect

    Switzer, Eric R.; Hirata, Christopher M.

    2005-10-15

    It has been suggested that secondary CMB anisotropies generated by neutral lithium could open a new observational window into the universe around the redshift z{approx}400, and permit a determination of the primordial lithium abundance. The effect is due to resonant scattering in the allowed Li i doublet (2s{sup 2}S{sub 1/2}-2p{sup 2}P{sub 1/2,3/2}), so its observability depends on the formation history of neutral lithium. Here we show that the ultraviolet photons produced during hydrogen recombination are sufficient to keep lithium in the Li ii ionization stage in the relevant redshift range and suppress the neutral fraction by {approx}3 orders of magnitude from previous calculations, making the lithium signature unobservable.

  19. New Phases and Dissociation-Recombination of Hydrogen Deuteride to 3.4 Mbar

    NASA Astrophysics Data System (ADS)

    Dias, Ranga P.; Noked, Ori; Silvera, Isaac F.

    2016-04-01

    We present infrared absorption studies of solid hydrogen deuteride to pressures as high as 340 GPa (100 GPa =1 Mbar ) in a diamond anvil cell and temperatures in the range 5-295 K. Above 198 GPa the HD sample transforms to a mixture of HD, H2 , and D2 , interpreted as a process of dissociation and recombination. Three new phase lines are observed, two of which differ remarkably from those of the high-pressure homonuclear species, but none are metallic. The time-dependent spectral changes are analyzed to determine the molecular concentrations as a function of time; the nucleon exchange achieves steady state concentrations in ˜20 h at ˜200 GPa .

  20. Improving 3'-Hydroxygenistein Production in Recombinant Pichia pastoris Using Periodic Hydrogen Peroxide-Shocking Strategy.

    PubMed

    Wang, Tzi-Yuan; Tsai, Yi-Hsuan; Yu, I-Zen; Chang, Te-Sheng

    2016-03-01

    3'-Hydroxygenistein can be obtained from the biotransformation of genistein by the engineered Pichia pastoris X-33 strain, which harbors a fusion gene composed of CYP57B3 from Aspergillus oryzae and a cytochrome P450 oxidoreductase gene (sCPR) from Saccharomyces cerevisiae. P. pastoris X-33 mutants with higher 3'-hydroxygenistein production were selected using a periodic hydrogen peroxide-shocking strategy. One mutant (P2-D14-5) produced 23.0 mg/l of 3'-hydroxygenistein, representing 1.87-fold more than that produced by the recombinant X-33. When using a 5 L fermenter, the P2-D14-5 mutant produced 20.3 mg/l of 3'- hydroxygenistein, indicating a high potential for industrial-scale 3'-hydroxygenistein production.

  1. Modelling of hydrogen thermal desorption spectrum in nonlinear dynamical boundary-value problem

    NASA Astrophysics Data System (ADS)

    Kostikova, E. K.; Zaika, Yu V.

    2016-11-01

    One of the technological challenges for hydrogen materials science (including the ITER project) is the currently active search for structural materials with various potential applications that will have predetermined limits of hydrogen permeability. One of the experimental methods is thermal desorption spectrometry (TDS). A hydrogen-saturated sample is degassed under vacuum and monotone heating. The desorption flux is measured by mass spectrometer to determine the character of interactions of hydrogen isotopes with the solid. We are interested in such transfer parameters as the coefficients of diffusion, dissolution, desorption. The paper presents a distributed boundary-value problem of thermal desorption and a numerical method for TDS spectrum simulation, where only integration of a nonlinear system of low order (compared with, e.g., the method of lines) ordinary differential equations (ODE) is required. This work is supported by the Russian Foundation for Basic Research (project 15-01-00744).

  2. Hydrogen abstraction from metal surfaces: when electron-hole pair excitations strongly affect hot-atom recombination.

    PubMed

    Galparsoro, Oihana; Pétuya, Rémi; Busnengo, Fabio; Juaristi, Joseba Iñaki; Crespos, Cédric; Alducin, Maite; Larregaray, Pascal

    2016-11-23

    Using molecular dynamics simulations, we predict that the inclusion of nonadiabatic electronic excitations influences the dynamics of preadsorbed hydrogen abstraction from the W(110) surface by hydrogen scattering. The hot-atom recombination, which involves hyperthermal diffusion of the impinging atom on the surface, is significantly affected by the dissipation of energy mediated by electron-hole pair excitations at low coverage and low incidence energy. This issue is of importance as this abstraction mechanism is thought to largely contribute to molecular hydrogen formation from metal surfaces.

  3. NEBULAR: A Simple Synthesis Code for the Hydrogen and Helium Nebular Spectrum

    NASA Astrophysics Data System (ADS)

    Schirmer, Mischa

    2016-11-01

    NEBULAR is a lightweight code to synthesize the spectrum of an ideal, mixed hydrogen and helium gas in ionization equilibrium, over a useful range of densities, temperatures and wavelengths. Free-free, free-bound and two-photon continua are included as well as parts of the H i, He i and He ii line series. NEBULAR interpolates over publicly available data tables; it can be used to easily extract information from these tables without prior knowledge about their data structure. The resulting spectra can be used to e.g., determine equivalent line widths, constrain the contribution of the nebular continuum to a bandpass, and for educational purposes. NEBULAR can resample the spectrum on a user-defined wavelength grid for direct comparison with an observed spectrum; however, it can not be used to fit an observed spectrum.

  4. Relativistic spectrum of hydrogen atom in the space-time non-commutativity

    SciTech Connect

    Moumni, Mustafa; BenSlama, Achour; Zaim, Slimane

    2012-06-27

    We study space-time non-commutativity applied to the hydrogen atom and its phenomenological effects. We find that it modifies the Coulomb potential in the Hamiltonian and add an r{sup -3} part. By calculating the energies from Dirac equation using perturbation theory, we study the modifications to the hydrogen spectrum. We find that it removes the degeneracy with respect to the total angular momentum quantum number and acts like a Lamb shift. Comparing the results with experimental values from spectroscopy, we get a new bound for the space-time non-commutative parameter.

  5. Atomic and ionic spectrum lines below 2000A: hydrogen through argon

    SciTech Connect

    Kelly, R.L.

    1982-10-01

    A critical tabulation of observed spectral lines below 2000 angstroms has been prepared from the published literature up to July 1978. It is intended principally as an aid to those physicists and astronomers who deal with the spectra of highly stripped atoms. This report includes the first 18 elements, from hydrogen (including deuterium) through argon. The tabulation is divided into two main sections: the spectrum lines by spectrum, and a finding list. The entries for each element give the ionization species, ground state term, and ionization potential, as well as the best values of vacuum wavelength, intensity, and classification. A list of the pertinent references is appended at the end.

  6. Very deep spectroscopy of the bright Saturn nebula NGC 7009 - II. Analysis of the rich optical recombination spectrum

    NASA Astrophysics Data System (ADS)

    Fang, X.; Liu, X.-W.

    2013-03-01

    In Paper I, we presented a deep, long-slit spectrum of the bright Saturn nebula NGC 7009. Numerous permitted lines emitted by the C+, N+, O+ and Ne+ ions were detected. Gaussian profile fitting to the spectrum yielded more than 1000 lines, the majority of which are optical recombination lines (ORLs) of heavy-element ions. In the current paper, we present a critical analysis of the rich optical recombination spectrum of NGC 7009, in the context of the bi-abundance nebular model proposed by Liu et al. Transitions from individual multiplets are checked carefully for potential blended lines. The observed relative intensities are compared with the theoretical predictions based on high-quality effective recombination coefficients, now available for the recombination line spectrum of a number of heavy-element ions. The possibility of plasma diagnostics using the ORLs of various heavy-element ions is discussed in detail. The line ratios that can be used to determine electron temperature are presented for each ion, although there is still a lack of adequate atomic data and some of the lines are still not detected in the spectrum of NGC 7009 due to weakness and/or line blending. Plasma diagnostics based on the N II and O II recombination spectra both yield electron temperatures close to 1000 K, which is lower than those derived from the collisionally excited line (CEL) ratios (e.g. the [O III] and [N II] nebular-to-auroral line ratios; see Paper I for details) by nearly one order of magnitude. The very low temperatures yielded by the O II and N II ORLs indicate that they originate from very cold regions. The C2+/H+, N2+/H+, O2+/H+ and Ne2+/H+ ionic abundance ratios derived from ORLs are consistently higher, by about a factor of 5, than the corresponding values derived from CELs. In calculating the ORL ionic abundance ratios, we have used the newly available high-quality effective recombination coefficients, and adopted an electron temperature of ˜1000 K, as given by the ORL

  7. Using Hydrogen Recombination Masers to Study Disk and Wind Kinematics in MWC 349A

    NASA Astrophysics Data System (ADS)

    Emery, Deanna Lily; Zhang, Qizhou

    2017-06-01

    The kinematics of circumstellar disks and disk winds are poorly understood due to the difficulty of producing well resolved observational data. The bright hydrogen recombination-line maser emission originating from the circumstellar disk of MWC 349A offers a unique opportunity to study the disk at milli-arcsecond precision. Using high angular resolution observations of the maser emission from MWC 349A carried out by the SMA, we were able to produce and analyze rotation curves for the H26α, H30α, and H31α transitions. We found that maser features originating from the disk follow Keplerian motion. Furthermore, the H31α masers in the disk appear to form in a narrow annulus at a fixed radius from the star, consistent with previous studies of the H30α and H26α masers. Based on analysis of the rotation curves for the three maser transitions, we determined that maser transitions for lower quantum numbers occur in the inner and denser regions of the disk than the higher quantum transitions. Additionally, we derived the density distribution within the disk, which follows the relation ne ~ R-4.9 ± 0.6. Finally, we found that a stellar mass of M = 10 ± 3 M⊙ was most consistent with the kinematics of the maser features originating from the Keplerian disk.

  8. The development of microstructure during hydrogenation-disproportionation-desorption-recombination treatment of sintered neodymium-iron-boron-type magnets

    NASA Astrophysics Data System (ADS)

    Sheridan, R. S.; Harris, I. R.; Walton, A.

    2016-03-01

    The hydrogen absorption and desorption characteristics of the hydrogenation disproportionation desorption and recombination (HDDR) process on scrap sintered neodymium-iron-boron (NdFeB) type magnets have been investigated. At each stage of the process, the microstructural changes have been studied using high resolution scanning electron microscopy. It was found that the disproportionation reaction initiates at grain boundaries and triple points and then propagates towards the centre of the matrix grains. This process was accelerated at particle surfaces and at free surfaces produced by any cracks in the powder particles. However, the recombination reaction appeared to initiate randomly throughout the particles with no apparent preference for particle surfaces or internal cracks. During the hydrogenation of the grain boundaries and triple junctions, the disproportionation reaction was, however, affected by the much higher oxygen content of the sintered NdFeB compared with that of the as-cast NdFeB alloys. Throughout the entire HDDR reaction the oxidised triple junctions (from the sintered structure) remained unreacted and hence, remained in their original form in the fine recombined microstructure. This resulted in a very significant reduction in the proportion of cavitation in the final microstructure and this could lend to improved consolidation in the recycled magnets.

  9. Competing hydrogen bonding in methoxyphenols: The rotational spectrum of o-vanillin

    NASA Astrophysics Data System (ADS)

    Cocinero, Emilio J.; Lesarri, Alberto; Écija, Patricia; Basterretxea, Francisco; Fernández, José A.; Castaño, Fernando

    2011-05-01

    The conformational preferences of o-vanillin have been investigated in a supersonic jet expansion using Fourier transform microwave (FT-MW) spectroscopy. Three molecular conformations were derived from the rotational spectrum. The two most stable structures are characterized by a moderate O sbnd H···O dbnd C hydrogen bond between the aldehyde and the hydroxyl groups, with the methoxy side chain either in plane (global minimum a- cis-trans) or out of plane (a- cis-gauche) with respect to the aromatic ring. In the third conformer the aldehyde group is rotated by ca. 180°, forming a O sbnd H···O hydrogen bond between the methoxy and hydroxyl groups (s- trans-trans). Rotational parameters and relative populations are provided for the three conformations, which are compared with the results of ab initio (MP2) and density-functional (B3LYP, M05-2X) theoretical predictions.

  10. Degradation of metallic surfaces under space conditions, with particular emphasis on Hydrogen recombination processes

    NASA Astrophysics Data System (ADS)

    Sznajder, Maciej; Geppert, Ulrich; Dudek, Mirosław

    2015-07-01

    The widespread use of metallic structures in space technology brings risk of degradation which occurs under space conditions. New types of materials dedicated for space applications, that have been developed in the last decade, are in majority not well tested for different space mission scenarios. Very little is known how material degradation may affect the stability and functionality of space vehicles and devices during long term space missions. Our aim is to predict how the solar wind and electromagnetic radiation degrade metallic structures. Therefore both experimental and theoretical studies of material degradation under space conditions have been performed. The studies are accomplished at German Aerospace Center (DLR) in Bremen (Germany) and University of Zielona Góra (Poland). The paper presents the results of the theoretical part of those studies. It is proposed that metal bubbles filled with Hydrogen molecular gas, resulting from recombination of the metal free electrons and the solar protons, are formed on the irradiated surfaces. A thermodynamic model of bubble formation has been developed. We study the creation process of H2 -bubbles as function of, inter alia, the metal temperature, proton dose and energy. Our model has been verified by irradiation experiments completed at the DLR facility in Bremen. Consequences of the bubble formation are changes of the physical and thermo-optical properties of such degraded metals. We show that a high surface density of bubbles (up to 108cm-2) with a typical bubble diameter of ∼ 0.4 μm will cause a significant increase of the metallic surface roughness. This may have serious consequences to any space mission. Changes in the thermo-optical properties of metallic foils are especially important for the solar sail propulsion technology because its efficiency depends on the effective momentum transfer from the solar photons onto the sail structure. This transfer is proportional to the reflectivity of a sail. Therefore

  11. Excitonic Effects and the Optical Absorption Spectrum of Hydrogenated Si Clusters

    SciTech Connect

    Rohlfing, M.; Louie, S.G. |

    1998-04-01

    We calculate the optical absorption spectrum of hydrogen-terminated silicon clusters by solving the Bethe-Salpeter equation for the two-particle Green{close_quote}s function using an {ital ab initio} approach. The one-particle Green{close_quote}s function and the electron-hole interaction kernel are calculated within the GW approximation for the electron self-energy operator. Very large exciton binding energies are observed. Our results for the one-particle properties and the optical absorption spectra of the clusters are in very good agreement with available experimental data. {copyright} {ital 1998} {ital The American Physical Society}

  12. Factors Affecting VUV Emission Spectrum near Lyman-{alpha} from a Hydrogen Plasma Source

    SciTech Connect

    Ogino, K.; Kasuya, T.; Shimamoto, S.; Wada, M.; Kimura, Y.; Nishiura, M.

    2011-09-26

    Vacuum ultra violet (VUV) emission spectra from plasmas near walls of different metallic materials were measured to estimate the effect upon the local production rate of vibrational excited hydrogen molecules due to plasma wall interaction. Among Cu, Mo, Ni, Ta and Ti, the intensity of band spectrum around Lyman-{alpha} had become the largest when Cu wall was used while it was the smallest for Ti. The role of particle reflection from the plasma electrode surface upon the H{sup -} production by a pure electron volume process is discussed.

  13. Recombination efficiency of molecular hydrogen on interstellar grains and its effect on pro duction of H2

    NASA Astrophysics Data System (ADS)

    Acharyya, K.; Chakrabarti, Sandip K.

    2005-12-01

    We study the efficiency of molecular hydrogen recombination on grain surfaces using both the rate equation (which tracks the average number of species) and the master equation (which tracks the expectation values of the species). We have incorporated Langmuir-Hinselwood rejection term in obtaining the efficiency. We use this result to compute H2 production rates as a function of the grain temperature and accretion rate of atomic hydrogen. Our general conclusion is that the H2 formation efficiency is very much dependent on the grain temperature and the accretion rate of the atomic hydrogen on grains. We provide tables of H2 production rates which could be readily used for future calculation of production of more complex molecules in the gas phase.

  14. Recombinant Sox Enzymes from Paracoccus pantotrophus Degrade Hydrogen Sulfide, a Major Component of Oral Malodor

    PubMed Central

    Ramadhani, Atik; Kawada-Matsuo, Miki; Komatsuzawa, Hitoshi; Oho, Takahiko

    2017-01-01

    Hydrogen sulfide (H2S) is emitted from industrial activities, and several chemotrophs possessing Sox enzymes are used for its removal. Oral malodor is a common issue in the dental field and major malodorous components are volatile sulfur compounds (VSCs), including H2S and methyl mercaptan. Paracoccus pantotrophus is an aerobic, neutrophilic facultatively autotrophic bacterium that possesses sulfur-oxidizing (Sox) enzymes in order to use sulfur compounds as an energy source. In the present study, we cloned the Sox enzymes of P. pantotrophus GB17 and evaluated their VSC-degrading activities for the prevention of oral malodor. Six genes, soxX, soxY, soxZ, soxA, soxB, and soxCD, were amplified from P. pantotrophus GB17. Each fragment was cloned into a vector for the expression of 6×His-tagged fusion proteins in Escherichia coli. Recombinant Sox (rSox) proteins were purified from whole-cell extracts of E. coli using nickel affinity chromatography. The enzyme mixture was investigated for the degradation of VSCs using gas chromatography. Each of the rSox enzymes was purified to apparent homogeneity, as confirmed by SDS-PAGE. The rSox enzyme mixture degraded H2S in dose- and time-dependent manners. All rSox enzymes were necessary for degrading H2S. The H2S-degrading activities of rSox enzymes were stable at 25–80°C, and the optimum pH was 7.0. The amount of H2S produced by periodontopathic bacteria or oral bacteria collected from human subjects decreased after an incubation with rSox enzymes. These results suggest that the combination of rSox enzymes from P. pantotrophus GB17 is useful for the prevention of oral malodor. PMID:28260736

  15. Recombinant Sox Enzymes from Paracoccus pantotrophus Degrade Hydrogen Sulfide, a Major Component of Oral Malodor.

    PubMed

    Ramadhani, Atik; Kawada-Matsuo, Miki; Komatsuzawa, Hitoshi; Oho, Takahiko

    2017-03-31

    Hydrogen sulfide (H2S) is emitted from industrial activities, and several chemotrophs possessing Sox enzymes are used for its removal. Oral malodor is a common issue in the dental field and major malodorous components are volatile sulfur compounds (VSCs), including H2S and methyl mercaptan. Paracoccus pantotrophus is an aerobic, neutrophilic facultatively autotrophic bacterium that possesses sulfur-oxidizing (Sox) enzymes in order to use sulfur compounds as an energy source. In the present study, we cloned the Sox enzymes of P. pantotrophus GB17 and evaluated their VSC-degrading activities for the prevention of oral malodor. Six genes, soxX, soxY, soxZ, soxA, soxB, and soxCD, were amplified from P. pantotrophus GB17. Each fragment was cloned into a vector for the expression of 6×His-tagged fusion proteins in Escherichia coli. Recombinant Sox (rSox) proteins were purified from whole-cell extracts of E. coli using nickel affinity chromatography. The enzyme mixture was investigated for the degradation of VSCs using gas chromatography. Each of the rSox enzymes was purified to apparent homogeneity, as confirmed by SDS-PAGE. The rSox enzyme mixture degraded H2S in dose- and time-dependent manners. All rSox enzymes were necessary for degrading H2S. The H2S-degrading activities of rSox enzymes were stable at 25-80°C, and the optimum pH was 7.0. The amount of H2S produced by periodontopathic bacteria or oral bacteria collected from human subjects decreased after an incubation with rSox enzymes. These results suggest that the combination of rSox enzymes from P. pantotrophus GB17 is useful for the prevention of oral malodor.

  16. Impurity-Induced Layer Disordering and Hydrogenation in the Indium Aluminum Gallium Phosphide Material System: Visible-Spectrum Semiconductor Lasers.

    NASA Astrophysics Data System (ADS)

    Dallesasse, John Michael

    1991-02-01

    temperature under pulsed excitation (lambda ~ 6395 A) and cw at -47 ^circC (lambda ~ 6255 A). Finally, hydrogenation is examined in the rm In_{1-y} (Al_{x} Ga_{1-x}) _{y}P material system. This technique allows the construction of gain-guided single- and multiple-stripe lasers. The effect of hydrogen plasma exposure at elevated temperatures on the fundamental material properties is first examined. Photoluminescence is used to examine recombination efficiency, electrochemical carrier concentration profiling is used to examine carrier passivation, and scanning electron microscopy is used to look at surface degradation. Hydrogenation is then applied to the construction of single-stripe gain-guided lasers. These devices operate cw room temperature at a wavelength of 6395 A.

  17. Experimental inelastic neutron scattering spectrum of hydrogen hexagonal clathrate-hydrate compared with rigorous quantum simulations

    NASA Astrophysics Data System (ADS)

    Celli, Milva; Powers, Anna; Colognesi, Daniele; Xu, Minzhong; Bačić, Zlatko; Ulivi, Lorenzo

    2013-10-01

    We have performed high-resolution inelastic neutron scattering (INS) measurements on binary hydrogen clathrate hydrates exhibiting the hexagonal structure (sH). Two samples, differing only in the ortho/para fraction of hydrogen, were prepared using heavy water and methyl tert-butyl ether as the promoter in its perdeuterated form. The INS spectrum of the translation-rotation (TR) excitations of the guest H2 molecule was obtained by subtracting the very weak signal due to the D2O lattice modes. By means of a subtraction procedure, it has been possible to obtain separately the spectra of caged p-H2 and o-H2. sH clathrates are comprised of three distinct types of cages, two of which, differing in shape and size, are each occupied by one H2 molecule only. Both contribute to the measured INS spectrum which is, therefore, rather complex and challenging to assign unambiguously. To assist with the interpretation, the INS spectra are calculated accurately utilizing the quantum methodology which incorporates the coupled five-dimensional TR energy levels and wave functions of the H2 molecule confined in each type of nanocage. The computed INS spectra are highly realistic and reflect the complexity of the coupled TR dynamics of the guest H2 in the anisotropic confining environment. The simulated INS spectra of p-H2 and o-H2 in the small and medium cages are compared with the experimental data, and are indispensable for their interpretation.

  18. Recombination Population of Excited States of the Hydrogen Atom in an He-H{sub 2} Plasma

    SciTech Connect

    Ivanov, V.A.; Skoblo, Yu.E.

    2005-06-15

    The population of excited states of the hydrogen atom in an afterglow plasma produced by a pulsed discharge in helium (40 Torr) with a small admixture of hydrogen ([H{sub 2}] {approx_equal} 10{sup 12} cm{sup -3}) has been studied spectroscopically. The contribution from electron-ion recombination {gamma}{sup rec}{sub 3} to the production rate of atoms H(n = 3) has been separated. On the basis of an experiment in which the response of the spectral line intensities to the perturbation of the electron temperature in the afterglow phase was observed, the dependence {gamma}{sup rec}{sub 3}(T{sub e}) {approx} T{sub e}{sup -(0.9-1.0)} has been obtained in the region kT{sub e} = 0.026-0.064 eV.

  19. Properties of hydrogenation-disproportionation-desorption-recombination NdFeB powders prepared from recycled sintered magnets

    NASA Astrophysics Data System (ADS)

    Périgo, E. A.; da Silva, S. C.; Martin, R. V.; Takiishi, H.; Landgraf, F. J. G.

    2012-04-01

    The effects of the hydrogenation-disproportionation-desorption-recombination (HDDR) processing conditions on the microstructure and magnetic properties of NdFeB powders prepared from recycling sintered N42 grade magnets were evaluated. Temperatures below 840 oC and above 900 oC are deleterious to HDDR powders' properties. The hydrogen pressure, ranging from 60 to 135 kPa, has a major influence on the remanence compared to that on the intrinsic coercivity. The best magnetic properties (Jr = 0.58 T and μ0Hc = 1.15 T) were obtained with Trecomb = 860 °C, PH2 = 135 kPa, and trecomb = 330 s. Such coercivity value corresponds to 93% of the starting material, not achieved yet by optimizing the HDDR process and without using Dy.

  20. Oligomers Based on a Weak Hydrogen Bond Network: the Rotational Spectrum of the Tetramer of Difluoromethane

    NASA Astrophysics Data System (ADS)

    Feng, Gang; Evangelisti, Luca; Caminati, Walther; Cacelli, Ivo; Carbonaro, Laura; Prampolini, Giacomo

    2013-06-01

    Following the investigation of the rotational spectra of three conformers (so-called ``book'', ``prism'' and ``cage'') of the water hexamer, and of some other water oligomers, we report here the rotational spectrum of the tetramer of a freon molecule. The pulse jet Fourier transform microwave (pj-FTMW) spectrum of an isomer of the difluoromethane tetramer has been assigned. This molecular system is made of units of a relatively heavy asymmetric rotor, held together by a network of weak hydrogen bonds. The search of the rotational spectrum has been based on a high-level reference method, the CCSD(T)/CBS protocol. It is interesting to outline that the rotational spectrum of the water tetramer was not observed, probably because the minimum energy structures of this oligomer is effectively nonpolar in its ground states, or because of high energy tunnelling splittings. The rotational spectra of the monomer, dimer, trimer and tetramer of difluoromethane have been assigned in 1952, 1999, 2007, and 2013 (present work), with a decreasing time spacing between the various steps, looking then promising for a continuous and rapid extension of the size limits of molecular systems accessible to MW spectroscopy. C. Pérez, M. T. Muckle, D. P. Zaleski, N. A. Seifert, B. Temelso, G. C. Shields, Z. Kisiel, B. H. Pate, Science {336} (2012) 897. D. R. Lide, Jr., J. Am. Chem. Soc. {74} (1952) 3548. W. Caminati, S. Melandri, P. Moreschini, P. G. Favero, Angew. Chem. Int. Ed. {38} (1999) 2924. S. Blanco, S. Melandri, P. Ottaviani, W. Caminati, J. Am. Chem. Soc. {129} (2007) 2700.

  1. Doppler shift measurement of Balmer-alpha line spectrum emission from a plasma in a negative hydrogen ion source

    SciTech Connect

    Wada, M. Doi, K.; Kisaki, M.; Nakano, H.; Tsumori, K.; Nishiura, M.

    2015-04-08

    Balmer-α light emission from the extraction region of the LHD one-third ion source has shown a characteristic Doppler broadening in the wavelength spectrum detected by a high resolution spectrometer. The spectrum resembles Gaussian distribution near the wavelength of the intensity peak, while it has an additional component of a broader foot. The measured broadening near the wavelength of the intensity peak corresponds to 0.6 eV hydrogen atom temperature. The spectrum exhibits a larger expansion in the blue wing which becomes smaller when the line of sight is tilted toward the driver region from the original observation axis parallel to the plasma grid. A surface collision simulation model predicts the possibility of hydrogen reflection at the plasma grid surface to form a broad Balmer-α light emission spectrum.

  2. Microwave Spectrum of Hydrogen Bonded HEXAFLUOROISOPROPANOL•••WATER Complex

    NASA Astrophysics Data System (ADS)

    Shahi, Abhishek; Arunan, Elangannan

    2014-06-01

    Stabilizing α-helical structure of protein and dissolving a hard to dissolve polymer, polythene terphthalete, are some of the unique properties of the organic solvent Hexafluoroisopropanol (HFIP). After determining the complete microwave spectrum of HFIP monomer, we have recorded the spectrum of HFIP***H_2O complex. Ab initio calculations were used to optimize three different possible structures. The global minimum, structure 1, had HFIP as proton donor. Another promising structure, Structure 2, has been obtained from a molecular dynamic study. A total of 46 observed lines have been fitted well for obtaining the rotational and distortion constants within experimental uncertainty. The observed rotational constants are A = 1134.53898(77) MHz, B = 989.67594(44) MHz and C = 705.26602(20) MHz. Interestingly, the rotational constants of structure 1, structure 2 and experiments were very close. Experimentally observed distortion constants were close to structure 1. b-type transitions were stronger than c-type which is also consistent with the calculated dipole moment components of structure 1. Calculations predict a non-zero a-dipole moment but experimentally a-type transitions were absent. Microwave spectra of two of the deuterium isotopologues of this complex i.e. HFIP***D_2O (30 transitions) and HFIP***HOD (33 transitions) have been also observed. Search for other isotopologues are in progress. To characterize the nature of hydrogen bonding, Atoms in Molecules and Natural Bond Orbital theoretical analysis have been done. Experimental structure and these theoretical analyses indicate that the hydrogen bonding in HFIP***H_2O complex is stronger than that in water dimer. A. Shahi and E. Arunan, Talk number RK16, 68th International Symposium on Molecular Spectroscopy 2013, Ohio, USA. Yamaguchi, T.; Imura, S.; Kai, T.; Yoshida, K. Zeitschrift für Naturforsch. A 2013, 68a, 145.

  3. Oscillator strength spectrum of hydrogen in strong magnetic and electric fields with arbitrary mutual orientation

    SciTech Connect

    Guan Xiaoxu

    2006-08-15

    We present oscillator strength spectra of the hydrogen Balmer {alpha} series in crossed strong magnetic and electric fields. Field strength regimes of interest ({gamma}{<=}0.02 a.u. and F{<=}1x10{sup 8} V/m) are the characteristic strengths observed on the surface of white dwarf stars. Based on the pseudospectral discretization technique, two independent methods have been developed to achieve reliable oscillator strengths in crossed fields. The effect of relative orientation between the magnetic and electric fields is clarified. Compared to the parallel configuration, we have observed that for the field strength regimes of interest, the perpendicular component of electric fields only results in a weaker coupling between the states belonging to the different subspaces of magnetic quantum numbers. This observation explains why the spectrum of oscillator strengths in crossed electric and magnetic fields with arbitrary mutual orientation shows similar behavior compared to that in parallel fields. However, a careful analysis shows that the two stronger transition lines at 5546 and 5620 A ring previously attributed to the Balmer {alpha} series are now identified to belong to the Balmer {beta} series. An effective scheme has also been suggested to calculate the bound-free opacities of hydrogen atoms in crossed fields.

  4. Sticking and recombination of the SiH 3 radical on hydrogenated amorphous silicon: The catalytic effect of diborane

    NASA Astrophysics Data System (ADS)

    Perrin, Jérôme; Takeda, Yoshihiko; Hirano, Naoto; Takeuchi, Yoshiaki; Matsuda, Akihisa

    1989-03-01

    The deposition rate of hydrogenated amorphous silicon films in SiH 4 glow-discharge is drastically enhanced upon addition of B 2H 6 when the gas-phase concentration exceeds 10 -4. This cannot be attributed to gas-phase reactions and must be interpreted as an increase of the sticking probability of the dominant SiH 3 radical. However, the total surface loss probability ( β) of SiH 3 which includes both sticking ( s) and recombination ( γ) increases only above 10 -2 B 2H 6 concentration, which reveals that between 10 -4 and 10 -2 the ratio {s}/{β} increases. A precursor-state model is proposed in which SiH 3 first physisorbs on the H-covered surface and migrates until it recombines, or chemisorbs on a free dangling bond site. At a typical deposition temperature of 200° C, the only mechanism of creation of dangling bonds in the absence of B 2H 6 is precisely the recombination of SiH 3 as SiH 4 by H abstraction, which limits the sticking probability to a fraction of β. This restriction is overcome with the help of hydroboron radicals, presumably BH 3, which catalyze H 2 desorption.

  5. Quantitative X-ray - UV Line and Continuum Spectroscopy with Application to AGN: State-Specific Hydrogenic Recombination Cooling Coefficients for a Wide Range of Conditions

    NASA Technical Reports Server (NTRS)

    LaMothe, J.; Ferland, Gary J.

    2002-01-01

    Recombination cooling, in which a free electron emits light while being captured to an ion, is an important cooling process in photoionized clouds that are optically thick or have low metallicity. State specific rather than total recombination cooling rates are needed since the hydrogen atom tends to become optically thick in high-density regimes such as Active Galactic Nuclei. This paper builds upon previous work to derive the cooling rate over the full temperature range where the process can be a significant contributor in a photoionized plasma. We exploit the fact that the recombination and cooling rates are given by intrinsically similar formulae to express the cooling rate in terms of the closely related radiative recombination rate. We give an especially simple but accurate approximation that works for any high hydrogenic level and can be conveniently employed in large-scale numerical simulations.

  6. The energetics of hydrogen atom recombination - Analysis, experiments, and modeling. [in electrothermal propulsion system

    NASA Technical Reports Server (NTRS)

    Filpus, J. W.; Hawley, M. C.

    1984-01-01

    A theoretical investigation of the effect of the microscopic energetics of the recombination reaction on the performance of a microwave-plasma electrothermal propulsion system is described, and the results of the analysis are presented. A series of experiments to test the concept is described and analyzed by comparison with a computer model of the recombination reaction. It is concluded that internal energy considerations are not likely to significantly affect the design of a microwave-plasma electrothermal rocket. The experimental results indicate that the microwave power is far higher than the capacity of the gas to absorb it; the cooling needed to control the energy dominates the experimental results.

  7. Merged Beam Studies into the Mechanisms of Hydrogen Molecular Ion Recombination

    DTIC Science & Technology

    1989-09-30

    of about xl0-8 cm 3sec- I at 300K in agreement with the original published values of Adams et al 2 ), measured using the Flowing Afterglow Langmuir ... Probe , (FALP), technique. Adams and Smith (3 ) have however recalibrated their apparatus and now claim that the rate coefficient for the recombination

  8. Hydrogen from Water in a Novel Recombinant Oxygen-Tolerant Cyanobacterial System (Presentation)

    SciTech Connect

    Xu, Q.; Smith, H. O.; Maness, P.-C.

    2007-05-01

    The objective of this report is to develop an O{sub 2}-tolerant cyanobacterial system for continuous light-driven H{sub 2} production from water. The overall goal is to produce a cyanobacterial recombinant to produce H{sub 2} continuously.

  9. Formate production through carbon dioxide hydrogenation with recombinant whole cell biocatalysts.

    PubMed

    Alissandratos, Apostolos; Kim, Hye-Kyung; Easton, Christopher J

    2014-07-01

    The biological conversion of CO2 and H2 into formate offers a sustainable route to a valuable commodity chemical through CO2 fixation, and a chemical form of hydrogen fuel storage. Here we report the first example of CO2 hydrogenation utilising engineered whole-cell biocatalysts. Escherichia coli JM109(DE3) cells transformed for overexpression of either native formate dehydrogenase (FDH), the FDH from Clostridium carboxidivorans, or genes from Pyrococcus furiosus and Methanobacterium thermoformicicum predicted to express FDH based on their similarity to known FDH genes were all able to produce levels of formate well above the background, when presented with H2 and CO2, the latter in the form of bicarbonate. In the case of the FDH from P. furiosus the yield was highest, reaching more than 1 g L(-1)h(-1) when a hydrogen-sparging reactor design was used.

  10. Recombinant N-Domain of Pregnancy-Specific Glycoprotein from E. coli Cells: Analysis of the Spectrum of Polyclonal Antibodies.

    PubMed

    Prokopenko, P G; Shkoporov, A N; Petrenko, O Yu; Efimov, B A; Negrebetskii, V V; Terent'ev, A A

    2015-11-01

    We studied antibody spectrum in antisera to IgG-like recombinant N-domain of pregnancyspecific glycoprotein-1 (rPSG-N) from E. coli cells. In three experimental series, the fraction of IgG antibodies from anti-rPSG-N sera was immobilized on 3 immunoadsorbents: by polymerization with glutaraldehyde, on glutaraldehyde activated biogel P-300, and on commercial CNBr-activated 4B sepharose. Retroplacental serum was incubated with immobilized antibodies to rPSG1-N, protein was eluted and tested in the precipitation test in standard test systems with PSG1, IgG, and human serum albumin. Three proteins were eluted from all 3 immunoadsorbents: PSG1, IgG, and human serum albumin, which demonstrated the spectrum of antibodies to 3 proteins present also in natural serum PSG1 complex. The proportions of PSG1 and IgG obtained in these experiments were similar to those in natural serum PSG1 complex, while the level of human serum albumin was significantly higher in natural PSG1 complex. Thus, we failed to obtain PSG1 monoprotein free from IgG and human serum albumin. Antigenic mosaicism of the polypeptide chain of IgG-like rPSG1-N relative to the antigenic polyvalence of the complex of three proteins present in bioactive preparation of natural serum PSG1 was discussed.

  11. Magnetization processes in two different types of anisotropic, fully dense NdFeB hydrogenation, disproportionation, desorption, and recombination magnets

    NASA Astrophysics Data System (ADS)

    Gutfleisch, O.; Eckert, D.; Schäfer, R.; Müller, K. H.; Panchanathan, V.

    2000-05-01

    Two types of textured, fully dense NdFeB hydrogenation, disproportionation, desorption, and recombination (HDDR) magnets were produced. The first type was produced by hot pressing isotropic HDDR powder followed by die upsetting; the second, by hot pressing prealigned, anisotropic HDDR powder (MQA-T). Studies of the magnetization processes revealed that for isotropic HDDR powder and its hot pressed and die-upset magnets a much larger initial susceptibility is found after thermal demagnetization than after reverse dc-field demagnetization. Prealigned, hot pressed magnets made from MQA-T material showed a different virgin magnetization curve, indicating a unique coercivity mechanism. Interaction domains larger than the average grain size can be observed in both cases by Kerr microscopy, with the MQA-T type showing significantly broader interaction domains.

  12. Mechanism of inhibition by hydrogen sulfide of native and recombinant BKCa channels.

    PubMed

    Telezhkin, Vsevolod; Brazier, Stephen P; Cayzac, Sebastien H; Wilkinson, William J; Riccardi, Daniela; Kemp, Paul J

    2010-07-31

    Recent evidence suggests that H(2)S contributes to activation of the carotid body by hypoxia by inhibiting K(+) channels. Here, we determine both the molecular identity of the K(+) channel target within the carotid body and the biophysical characteristics of the H(2)S-evoked inhibition by analyzing native rat and human recombinant BK(Ca) channel activity in voltage-clamped, inside-out membrane patches. Rat glomus cells express the enzymes necessary for the endogenous generation of H(2)S, cystathionine-beta-synthase and cystathionine-gamma-lyase. H(2)S inhibits native carotid body and human recombinant BK(Ca) channels with IC(50) values of around 275 microM. Inhibition by H(2)S is rapid and reversible, works by a mechanism which is distinct from that suggested for CO gas regulation of this channel and does not involve an interaction with either the "Ca bowl" or residues distal to this Ca(2+)-sensing domain. These data show that BK(Ca) is a K(+) channel target of H(2)S, and suggest a mechanism to explain the H(2)S-dependent component of O(2) sensing in the carotid body.

  13. Hydrogenated graphene on Ir(111): A high-resolution electron energy loss spectroscopy study of the vibrational spectrum

    NASA Astrophysics Data System (ADS)

    Kyhl, Line; Balog, Richard; Angot, Thierry; Hornekær, Liv; Bisson, Régis

    2016-03-01

    Hydrogen atom adsorption on high-quality graphene on Ir(111) [gr/Ir(111)] is investigated using high-resolution electron energy loss spectroscopy. The evolution of the vibrational spectrum, up to 400 meV, of gr/Ir(111) upon increasing hydrogen atom exposures is measured. The two dominant binding configurations of atomic hydrogen are identified as (1) graphanelike hydrogen clusters on the parts of the graphene more strongly interacting with the Ir(111) surface and (2) dimers bound more weakly to the freestanding parts of the graphene. The graphanelike surface structures lead to increased corrugation of the graphene sheet, yielding graphane-related phonon components. Additionally, a recent theoretical prediction of the existence of a bending character for a LO/TO graphane chair phonon mode is experimentally verified. No clear evidence was found for hydrogen bound on both sides of a high-quality graphene sheet and phonon features strongly suggest interactions between graphanelike hydrogen clusters and Ir atoms in the substrate.

  14. Measurement and calculation of the differential reflectance spectrum of hydrogen-terminated silicon surfaces having different crystal orientations.

    PubMed

    Inagaki, K; Okada, N; Noda, T; Endo, K; Hirose, K

    2007-09-12

    The differential reflectance spectrum between the (001) and the (111) hydrogen-terminated Si surfaces without native oxidation is investigated. Careful measurements using developed apparatus and an ultra-clean process are performed. The measured spectrum is compared with the reported one (Chongsawangvirod and Irene 1991 J. Electrochem. Soc. 138 1748-52), and is shown to be roughly identical even though a native oxidation effect exists. The theoretical calculation based on density-functional theory (DFT) and local density approximation (LDA) is also performed. The peak positions in the calculated and the measured spectra are in good accordance with each other, while the magnitudes of the peaks are in relatively worse agreement. Although the inclusion of advanced approximations would provide more accurate results, a qualitative reproduction is achieved in this study as well. It is concluded that the origin of the spectrum is mainly in the deformation of the bulk states induced by surface perturbation.

  15. Pressure effect on hydrogen tunneling and vibrational spectrum in α-Mn

    SciTech Connect

    Kolesnikov, Alexander I; Podlesnyak, Andrey A; Sadykov, Ravil A.; Antonov, Vladimir E.; Kuzovnikov, Michael; Ehlers, Georg; Granroth, Garrett E

    2016-10-03

    Here in this paper, the pressure effect on the tunneling mode and vibrational spectra of hydrogen in α-MnH0.07 has been studied by inelastic neutron scattering. Applying hydrostatic pressure of up to 30 kbar is shown to shift both the hydrogen optical modes and the tunneling peak to higher energies. First-principles calculations show that the potential for hydrogen in α-Mn becomes overall steeper with increasing pressure. At the same time, the barrier height and its extent in the direction of tunneling decrease and the calculations predict significant changes of the dynamics of hydrogen in α-Mn at 100 kbar, when the estimated tunneling splitting of the hydrogen ground state exceeds the barrier height.

  16. Pressure effect on hydrogen tunneling and vibrational spectrum in α-Mn

    SciTech Connect

    Kolesnikov, Alexander I; Podlesnyak, Andrey A; Sadykov, Ravil A.; Antonov, Vladimir E.; Kuzovnikov, Michael; Ehlers, Georg; Granroth, Garrett E

    2016-10-03

    Here in this paper, the pressure effect on the tunneling mode and vibrational spectra of hydrogen in α-MnH0.07 has been studied by inelastic neutron scattering. Applying hydrostatic pressure of up to 30 kbar is shown to shift both the hydrogen optical modes and the tunneling peak to higher energies. First-principles calculations show that the potential for hydrogen in α-Mn becomes overall steeper with increasing pressure. At the same time, the barrier height and its extent in the direction of tunneling decrease and the calculations predict significant changes of the dynamics of hydrogen in α-Mn at 100 kbar, when the estimated tunneling splitting of the hydrogen ground state exceeds the barrier height.

  17. Pressure effect on hydrogen tunneling and vibrational spectrum in α-Mn

    DOE PAGES

    Kolesnikov, Alexander I; Podlesnyak, Andrey A; Sadykov, Ravil A.; ...

    2016-10-03

    Here in this paper, the pressure effect on the tunneling mode and vibrational spectra of hydrogen in α-MnH0.07 has been studied by inelastic neutron scattering. Applying hydrostatic pressure of up to 30 kbar is shown to shift both the hydrogen optical modes and the tunneling peak to higher energies. First-principles calculations show that the potential for hydrogen in α-Mn becomes overall steeper with increasing pressure. At the same time, the barrier height and its extent in the direction of tunneling decrease and the calculations predict significant changes of the dynamics of hydrogen in α-Mn at 100 kbar, when the estimatedmore » tunneling splitting of the hydrogen ground state exceeds the barrier height.« less

  18. Analyzing Hydrogen Recombination Lines in the Infrared and Optical to Determine Extinction and SFRs of Local LIRGs

    NASA Astrophysics Data System (ADS)

    Payne, Anna; Inami, Hanae

    2015-01-01

    We report on measurements for dust extinction and star formation rates (SFRs) for luminous infrared galaxies (LIRGs). We utilized the hydrogen recombination lines Brα, Hα, and Hβ observed in the infrared and optical wavelengths with AKARI and the Lick Observatory's Kast Double spectrograph to produce spectra. By calculating Brα/Hα ratios for the target galaxies, extinction is estimated. A possible correlation between higher LIR, IR/UV, specific SFRs and higher Brα/Hα has been found. Through comparisons with Hα/Hβ, it may be possible to determine if Hα is, in fact, underestimating extinction, since Hα is more strongly affected by extinction compared to longer wavelengths such as Brα. The accuracy of using Hα in extinction corrections is important for SFR studies, and, thus, one goal is to find a more accurate reddening correction factor. Payne was supported by the NOAO/KPNO Research Experiences for Undergraduates (REU) Program which is funded by the National Science Foundation Research Experiences for Undergraduates Program (AST-1262829).

  19. ALMA observations of the submillimetre hydrogen recombination line from the type 2 active nucleus of NGC 1068

    NASA Astrophysics Data System (ADS)

    Izumi, Takuma; Nakanishi, Kouichiro; Imanishi, Masatoshi; Kohno, Kotaro

    2016-07-01

    Hydrogen recombination lines at the submillimetre band (submm-RLs) can serve as probes of ionized gas without dust extinction. One therefore expects to probe the broad-line region (BLR) of an obscured (type 2) active galactic nucleus (AGN) with those lines. However, admitting the large uncertainty in the continuum level, here we report on the non-detection of both broad and narrow H26 α emission line (rest frequency = 353.62 GHz) towards the prototypical type 2 AGN of NGC 1068 with the Atacama Large Millimeter/submillimeter Array (ALMA). We also investigate the nature of BLR clouds that can potentially emit submm-RLs with model calculations. As a result, we suggest that clouds with an electron density (Ne) of ˜109 cm-3 can mainly contribute to broad submm-RLs in terms of the line flux. On the other hand, line flux from other density clouds would be insignificant considering their too large or too small line optical depths. However, even for the case of Ne ˜ 109 cm-3 clouds, we also suggest that the expected line flux is extremely low, which is impractical to detect even with ALMA.

  20. Promotion of atomic hydrogen recombination as an alternative to electron trapping for the role of metals in the photocatalytic production of H2

    PubMed Central

    Joo, Ji Bong; Dillon, Robert; Lee, Ilkeun; Yin, Yadong; Bardeen, Christopher J.; Zaera, Francisco

    2014-01-01

    The production of hydrogen from water with semiconductor photocatalysts can be promoted by adding small amounts of metals to their surfaces. The resulting enhancement in photocatalytic activity is commonly attributed to a fast transfer of the excited electrons generated by photon absorption from the semiconductor to the metal, a step that prevents deexcitation back to the ground electronic state. Here we provide experimental evidence that suggests an alternative pathway that does not involve electron transfer to the metal but requires it to act as a catalyst for the recombination of the hydrogen atoms made via the reduction of protons on the surface of the semiconductor instead. PMID:24843154

  1. Promotion of atomic hydrogen recombination as an alternative to electron trapping for the role of metals in the photocatalytic production of H2.

    PubMed

    Joo, Ji Bong; Dillon, Robert; Lee, Ilkeun; Yin, Yadong; Bardeen, Christopher J; Zaera, Francisco

    2014-06-03

    The production of hydrogen from water with semiconductor photocatalysts can be promoted by adding small amounts of metals to their surfaces. The resulting enhancement in photocatalytic activity is commonly attributed to a fast transfer of the excited electrons generated by photon absorption from the semiconductor to the metal, a step that prevents deexcitation back to the ground electronic state. Here we provide experimental evidence that suggests an alternative pathway that does not involve electron transfer to the metal but requires it to act as a catalyst for the recombination of the hydrogen atoms made via the reduction of protons on the surface of the semiconductor instead.

  2. Gas phase recombination of hydrogen and deuterium atoms. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Trainor, D. W.; Ham, D. O.; Kaufman, F.

    1973-01-01

    Rate constants for the reaction H + H + M - H2 + M, with M = H2, He, and Ar were measured over the temperature range 77 to 298 K. Hydrogen atoms were produced by thermal dissociation and absolute atom concentrations were measured through use of self-balancing, isothermal catalytic probe detector. The specific rate constants were 8.1 + or - 0.4 x 10 to the minus 33rd power, 7.0 + or - 0.4 x 10 to the minus 33rd power, and 9.2 + or - 0.6 x at 298 K for M = H2, He, and Ar respectively; these values rising to 18.5 + or - 2.2 x 10 to the minus 33rd power, 12.0 + or - 1.5 x 10 to the minus 33rd power, and 27.4 + or - 4.6 x 10 to the minus 33rd power cm to the 6th power/molecules sq/sec at 77 K. for the equivalent deuterium atom process with D2 as the third body, the rate constants are 6.1 + or - 0.3 x 10 to the minus 33rd power cm to the 6th power/molecules sq/sec at 298 K and 15.1 + or - 1.0 x 10 to the minus 33rd power cm to the 6th power/molecules sq/sec at 77 K. These values are compared with previous experimental measurements and with recent theoretical calculations.

  3. Does atomic polarizability play a role in hydrogen radio recombination spectra from Galactic H II regions?

    NASA Astrophysics Data System (ADS)

    Hey, J. D.

    2013-09-01

    Since highly excited atoms, which contribute to the radio recombination spectra from Galactic H II regions, possess large polarizabilities, their lifetimes are influenced by ion (proton)-induced dipole collisions. It is shown that, while these ion-radiator collisional processes, if acting alone, would effectively limit the upper principal quantum number attainable for given plasma parameters, their influence is small relative to that of electron impacts within the framework of line broadening theory. The present work suggests that ion-permanent dipole interactions (Hey et al 2004 J. Phys. B: At. Mol. Opt. Phys. 37 2543) would also be of minor importance in limiting the occupation of highly excited states. On the other hand, the ion-induced dipole collisions are essential for ensuring equipartition of energy between atomic and electron kinetic distributions (Hey et al 1999 J. Phys. B: At. Mol. Opt. Phys. 32 3555; 2005 J. Phys. B: At. Mol. Opt. Phys. 38 3517), without which Voigt profile analysis to extract impact broadening widths would not be possible. Electron densities deduced from electron impact broadening of individual lines (Griem 1967 Astrophys. J. 148 547; Watson 2006 J. Phys. B: At. Mol. Opt. Phys. 39 1889) may be used to check the significance of the constraints arising from the present analysis. The spectra of Bell et al (2000 Publ. Astron. Soc. Pac. 112 1236; 2011 Astrophys. Space Sci. 333 377; 2011 Astrophys. Space Sci. 335 451) for Orion A and W51 in the vicinity of 6.0 and 17.6 GHz are examined in this context, and also in terms of a possible role of the background ion microfield in reducing the near-elastic contributions to the electron impact broadening below the predictions of theory (Hey 2012 J. Phys. B: At. Mol. Opt. Phys. 45 065701). These spectra are analysed, subject to the constraint that calculated relative intensities of lines, arising from upper states in collisional-radiative equilibrium, should be consistent with those obtained from

  4. The influence of the EUV spectrum on plasma induced by EUV radiation in argon and hydrogen gas

    NASA Astrophysics Data System (ADS)

    van der Horst, R. M.; Osorio, E. A.; Banine, V. Y.; Beckers, J.

    2016-02-01

    Plasmas induced by EUV radiation are scarcely investigated, although they are unique since they are created without any discharge. These plasmas are also of interest from an applicational point of view, since they are related to the lifetime of optics in EUV lithography tools. In order to assess this impact, it is essential to characterize and understand EUV-induced plasma. In this contribution the influence of the background gas (argon and hydrogen) in the lithography tool and the spectrum of the illumination source on the electron density of EUV-induced plasma is investigated using microwave cavity resonance spectroscopy. The experimental results showed that out-of-band radiation (>20 nm) is the main contributor to EUV-induced plasma in both argon and hydrogen. In hydrogen, this contribution is relatively more important than in argon due to the stronger wavelength dependence of the photoionization cross section of hydrogen than of argon. Furthermore, the production of electrons by out-of-band radiation lasts longer than the production by in-band radiation (10-20 nm) due to the longer temporal width of out-of-band radiation. Finally, the obtained results correspond reasonably well with estimates from a simplified absorption model.

  5. Simulations of the THz spectrum of liquid water incorporating the effects of intermolecular charge fluxes through hydrogen bonds

    SciTech Connect

    Torii, Hajime

    2015-12-31

    The intensity of the band at ∼200 cm{sup −1} (∼6 THz) in the Terahertz spectrum of liquid water mainly arises from the modulations of the extent of intermolecular charge transfer through hydrogen bonds, called intermolecular charge fluxes, occurring upon molecular translations along the O…H hydrogen bonds. To obtain reasonable spectral profiles from simulations, it is necessary to effectively incorporate the effects of those intermolecular charge fluxes, but apparently it is not possible by simple classical molecular dynamics simulations with fixed atomic partial charges even if they are amended by molecular induced dipoles due to intermolecular electrostatic interactions. The present paper shows how we can do reasonably correct spectral simulations, without resorting to fully ab initio molecular dynamics.

  6. Promoted photoelectrocatalytic hydrogen evolution of a type II structure via an Al2O3 recombination barrier layer deposited using atomic layer deposition.

    PubMed

    Wang, Yajun; Bai, Weikun; Wang, Haiquan; Jiang, Yao; Han, Shanlei; Sun, Huaqian; Li, Yuming; Jiang, Guiyuan; Zhao, Zhen; Huan, Qing

    2017-08-15

    Constructing a semiconductor type II structure is an effective way to enhance the photogenerated charge separation efficiency. The separation and migration of interfacial photogenerated carriers is a key factor, which influences the photocatalytic activity. In this study, a conformal Al2O3 recombination barrier layer was introduced at the interface between TiO2 nanowires and CdSe nanoparticles, and the application of this composite in photoelectrocatalytic (PEC) hydrogen production was explored. Under visible-light irradiation, the photocurrent response and PEC hydrogen evolution performance increased step-by-step from TiO2 to the Al2O3/TiO2 and CdSe/Al2O3/TiO2 nanowire arrays. Moreover, the H2 evolution rate of CdSe/Al2O3/TiO2 was much higher than that of a different configuration, Al2O3/CdSe/TiO2. The enhanced PEC hydrogen evolution performance was attributed to the prevention of the interfacial charge recombination caused by the Al2O3 recombination barrier layer. Our results may shed new light on developing novel and highly efficient photocatalysts using rational interface design.

  7. Texture in a ternary Nd 16.2Fe 78.2B 5.6 powder using a modified hydrogenation-disproportionation-desorption-recombination process

    NASA Astrophysics Data System (ADS)

    Gutfleisch, O.; Gebel, B.; Mattern, N.

    2000-02-01

    A modified hydrogenation-disproportionation desorption-recombination (HDDR) process consisting of (i) solid disproportionation and (ii) slow recombination under partial hydrogen pressure has been applied to a Nd 16.2Fe 78.2B 5.6 alloy. Scanning electron microscopy shows that an initially fine rod-like structure of NdH 2± x and Fe observed after 15 min of hydrogenation at 900°C is transformed into a granular morphology with prolonged annealing. Simultaneously, finely dispersed tetragonal Fe 3B particles of 10-50 nm diameter exist. XRD studies show that this metastable Fe 3B phase is transformed to Fe 2B and Fe on further annealing. Short solid-disproportionation times result in a higher degree of anisotropy after recombination, whereas long annealing times and conventional processing lead to isotropic material. It is concluded that the formation of the intermediate tetragonal Fe 3B phase after solid disproportionation is pivotal for the inducement of texture in HDDR processed ternary NdFeB-type alloys.

  8. Sum rules and the role of pressure on the excitation spectrum of a confined hydrogen atom by a spherical cavity

    NASA Astrophysics Data System (ADS)

    Cabrera-Trujillo, R.

    2017-08-01

    Sum rule relations over the excitation spectrum of a quantum system contain information about both the energy spectrum and eigenfunctions of the system in a compact form, particularly regarding closure relations. In this work, the effects of pressure induced by a spherical cavity on an atomic hydrogen impurity on the dipole oscillator strength (DOS) sum rule, S k , and its logarithmic version, L k , are studied by means of a numerical approach based on a finite-difference solution to the Schrödinger equation. Pressure effects are accounted for by means of a spherical cavity of radius R 0 immersed in a medium characterized by a penetrable potential height V 0. The DOS sum rules S k and L k are investigated as a function of these cavity parameters and thus directly related to the impurity static pressure and surrounding material. One finds that the sum rules are fulfilled within the numerical precision for low pressure conditions. However, when the barrier height is large or infinite (a non-penetrable cavity), the sum rule, for positive k, differs from its closure relation. One finds that this occurs for a cavity radius {R}0< 6 au, corresponding to a pressure such that the first p-state that contributes to the sum rule has positive energy and it is due to the fact that the spherical confinement cavity potential dominates over the Coulombic interaction for the hydrogenic impurity. Thus, as pressure increases, the excitation spectrum approaches that of a particle confined by a spherical cavity while the ground state is slightly affected by the cavity and more closely resembles a hydrogenic atom. Therefore, the sum rule over the excitation spectrum tends to a particle confined by a spherical cavity, while the closure relation gives that of a confined hydrogen atom in the ground state. For negative k, low excitations are the most important and this behavior is not presented. As the {S}-2 sum rule is the static dipole polarizability, the results are compared to available

  9. Large-scale Map of Millimeter-wavelength Hydrogen Radio Recombination Lines around a Young Massive Star Cluster

    NASA Astrophysics Data System (ADS)

    Nguyen-Luong, Q.; Anderson, L. D.; Motte, F.; Kim, Kee-Tae; Schilke, P.; Carlhoff, P.; Beuther, H.; Schneider, N.; Didelon, P.; Kramer, C.; Louvet, F.; Nony, T.; Bihr, S.; Rugel, M.; Soler, J.; Wang, Y.; Bronfman, L.; Simon, R.; Menten, K. M.; Wyrowski, F.; Walmsley, C. M.

    2017-08-01

    We report the first map of large-scale (10 pc in length) emission of millimeter-wavelength hydrogen recombination lines (mm-RRLs) toward the giant H ii region around the W43-Main young massive star cluster (YMC). Our mm-RRL data come from the IRAM 30 m telescope and are analyzed together with radio continuum and cm-RRL data from the Karl G. Jansky Very Large Array and HCO+ 1-0 line emission data from the IRAM 30 m. The mm-RRLs reveal an expanding wind-blown ionized gas shell with an electron density ˜70-1500 cm-3 driven by the WR/OB cluster, which produces a total Lyα photon flux of 1.5× {10}50 s-1. This shell is interacting with the dense neutral molecular gas in the W43-Main dense cloud. Combining the high spectral and angular resolution mm-RRL and cm-RRL cubes, we derive the two-dimensional relative distributions of dynamical and pressure broadening of the ionized gas emission and find that the RRL line shapes are dominated by pressure broadening (4-55 {km} {{{s}}}-1) near the YMC and by dynamical broadening (8-36 {km} {{{s}}}-1) near the shell’s edge. Ionized gas clumps hosting ultra-compact H ii regions found at the edge of the shell suggest that large-scale ionized gas motion triggers the formation of new star generation near the periphery of the shell.

  10. One-pion-exchange effect in the energy spectrum of muonic hydrogen

    NASA Astrophysics Data System (ADS)

    Zhou, Hai-Qing; Pang, Hou-Rong

    2015-09-01

    In this work, the effects from one-pion exchange in e p and μ p bound states by two-photon coupling are discussed. We at first calculate the effective couplings of a pion with a lepton (electron or muon) by two-photon coupling and the corresponding effective nonrelativistic potential. Then we calculate its corrections to the hyperfine structure of 2 S and 2 P states. We find that the corrections to the hyperfine structures of electronic hydrogen's 2 S and 2 P states and muonic hydrogen's 2 P state are small and can be neglected, while the correction to the hyperfine structure of muonic hydrogen's 2 S state Δ EHFS2S(F =1 ,μ p ) is about 0.0028 meV. And after some further discussion we suggest that the similar exchange of a scalar meson such as σ between μ p by two-photon coupling may give a much larger contribution to the Lamb shift of muonic hydrogen.

  11. Vibration-rotation-translation spectrum of molecular hydrogen in fullerite lattices around 80 K

    NASA Astrophysics Data System (ADS)

    Herman, Roger M.; Lewis, John Courtenay

    2009-05-01

    Calculations are presented for the fundamental vibration-rotation spectrum of H2 in fcc C60 (fullerite) lattices near 80 K using the approach and the parameters used by Herman and Lewis [Phys. Rev. B 73 (2006) 155408; in: E. Oks, M. Pindzola (Eds.) Spectral Line Shapes, AIP Conference Proceedings, No. 874, American Institute of Physics, 2006, pp. 162-176 (Proceedings of the 18th ICSLS)] at 293 K. Good agreement is found with recent DRIFT spectra of FitzGerald et al. [Personal communication, 2006]. It is argued that our approach cannot be extended to the 10 K spectrum without significant modification.

  12. Human recombinant [C22A] FK506-binding protein amide hydrogen exchange rates from mass spectrometry match and extend those from NMR.

    PubMed Central

    Zhang, Z.; Li, W.; Logan, T. M.; Li, M.; Marshall, A. G.

    1997-01-01

    Hydrogen/deuterium exchange behavior of human recombinant [C22A] FK506 binding protein (C22A FKBP) has been determined by protein fragmentation, combined with electrospray Fourier transform ion cyclotron resonance mass spectrometry (MS). After a specified period of H/D exchange in solution, C22A FKBP was digested by pepsin under slow exchange conditions (pH 2.4, 0 degree C), and then subjected to on-line HPLC/MS for deuterium analysis of each proteolytic peptide. The hydrogen exchange rate of each individual amide hydrogen was then determined independently by heteronuclear two-dimensional NMR on 15N-enriched C22A FKBP. A maximum entropy method (MEM) algorithm makes it possible to derive the distributions of hydrogen exchange rate constants from the MS-determined deuterium exchange-in curves in either the holoprotein or its proteolytic segments. The MEM-derived rate constant distributions of C22A FKBP and different segments of C22A FKBP are compared to the rate constants determined by NMR for individual amide protons. The rate constant distributions determined by both methods are consistent and complementary, thereby validating protein fragmentation/mass spectrometry as a reliable measure of hydrogen exchange in proteins. PMID:9336843

  13. Effect of Rashba type spin-orbit interaction on the electronic spectrum of graphene in the presence of a hydrogenic impurity

    NASA Astrophysics Data System (ADS)

    Gökçek, N.

    2017-08-01

    The effect of Rashba spin-orbit interaction on the electronic spectrum of gapped graphene with a hydrogenic impurity in the presence of topological defects is analyzed analytically. Degenerate perturbation theory is used to investigate the dependence of electronic spectrum of gapped graphene on the strengths of impurity and Rashba spin-orbit coupling. The results show that, as the strength of Rashba spin-orbit coupling increases, pseudo-Zeeman splitting of energy levels induced by topological defects is enhanced. Therefore, it is possible to tune this pseudo-Zeeman splitting through the strength of Rashba spin-orbit coupling and of the strength of hydrogenic impurity.

  14. THE TURBULENCE VELOCITY POWER SPECTRUM OF NEUTRAL HYDROGEN IN THE SMALL MAGELLANIC CLOUD

    SciTech Connect

    Chepurnov, A.; Lazarian, A.; Stanimirovic, S.; Burkhart, B.

    2015-09-01

    We present the results of the Velocity Coordinate Spectrum (VCS) technique to calculate the velocity power spectrum of turbulence in the Small Magellanic Cloud (SMC) in 21 cm emission. We present an updated version of the VCS technique that takes into account regular motions, which is an important factor in our SMC VCS analysis. We have obtained a velocity spectral index of −3.85, a cold phase sonic Mach number of 5.6, and an injection scale of 2.3 kpc. The spectral index is steeper than the Kolmogorov index, which is expected for shock-dominated turbulence. The injection scale of 2.3 kpc suggests that HI supershells or tidal interactions with the Large Magellanic Cloud are the dominant drivers of turbulence in this dwarf galaxy. This implies that turbulence may be driven by multiple mechanisms in galaxies and that galaxy–galaxy interactions may play an important role in addition to supernova feedback.

  15. Energy Spectrum Measurements of Cosmic-Ray Hydrogen and Helium Isotopes with the BESS-Polar II Instrument

    NASA Astrophysics Data System (ADS)

    Picot-Clemente, Nicolas

    2014-03-01

    The Balloon-Borne Experiment with a Superconducting Spectrometer (BESS-Polar II) flew successfully over Antarctica during 24.5 days in December 2007 through January 2008 during a period of minimum solar activity. The long duration of the flight, and the good stability of the detectors, improved by a factor of 5 the number of cosmic-ray events previously recorded with BESS-Polar I, reaching about 4.7 billion collected particles. Energy spectrum of cosmic-ray hydrogen and helium isotopes have been measured with the instrument from 0.2 to about 1.5 GeV/n, with unprecedented accuracy. These new flux and ratio measurements provide important information to better understand the propagation history of cosmic rays in the Galaxy. The results obtained with the BESS-Polar II instrument will be presented and compared with different propagation models.

  16. Efficient Suppression of Electron-Hole Recombination in Oxygen-Deficient Hydrogen-Treated TiO2 Nanowires for Photoelectrochemical Water Splitting.

    PubMed

    Pesci, Federico M; Wang, Gongming; Klug, David R; Li, Yat; Cowan, Alexander J

    2013-12-05

    There is an increasing level of interest in the use of black TiO2 prepared by thermal hydrogen treatments (H:TiO2) due to the potential to enhance both the photocatalytic and the light-harvesting properties of TiO2. Here, we examine oxygen-deficient H:TiO2 nanotube arrays that have previously achieved very high solar-to-hydrogen (STH) efficiencies due to incident photon-to-current efficiency (IPCE) values of >90% for photoelectrochemical water splitting at only 0.4 V vs RHE under UV illumination. Our transient absorption (TA) mechanistic study provides strong evidence that the improved electrical properties of oxygen-deficient TiO2 enables remarkably efficient spatial separation of electron-hole pairs on the submicrosecond time scale at moderate applied bias, and this coupled to effective suppression of microsecond to seconds charge carrier recombination is the primary factor behind the dramatically improved photoelectrochemical activity.

  17. Energy Spectrum and Time Variations of Cosmic-Ray Hydrogen and Helium Isotopes with BESS-Polar II

    NASA Astrophysics Data System (ADS)

    Picot-Clemente, Nicolas

    The Balloon-Borne Experiment with a Superconducting Spectrometer (BESS-Polar II) flew successfully over Antarctica for 24.5 days in December 2007 through January 2008 during a period of minimum solar activity. BESS-Polar II is configured with a solenoidal superconducting magnet and a suite of precision particle detectors. It can accurately identify hydrogen and helium isotopes among the incoming cosmic-ray nuclei with energies from 0.2 up to about 1.5 GeV/n. The long duration of the flight, and the good stability of the detectors increased the number of cosmic-ray events previously recorded with BESS-Polar I by a factor of 5, reaching about 4.7 billion collected particles. This allows to study and measure energy spectrum and time variations of hydrogen and helium isotope fluxes with unprecedented precision. The isotope flux and ratio measurements with BESS-Polar II will be presented and compared to various propagation models. The time variations will also be presented along with the corresponding solar activity during the data taking period.

  18. The constitution of the atmospheric layers and the extreme ultraviolet spectrum of hot hydrogen-rich white dwarfs

    NASA Technical Reports Server (NTRS)

    Vennes, Stephane

    1992-01-01

    An analysis is presented of the atmospheric properties of hot, H-rich, DA white dwarfs that is based on optical, UV, and X-ray observations aimed at predicting detailed spectral properties of these stars in the range 80-800 A. The divergences between observations from a sample of 15 hot DA white dwarfs emitting in the EUV/soft X-ray range and pure H synthetic spectra calculated from a grid of model atmospheres characterized by Teff and g are examined. Seven out of 15 DA stars are found to consistently exhibit pure hydrogen atmospheres, the remaining seven stars showing inconsistency between FUV and EUV/soft X-ray data that can be explained by the presence of trace EUV/soft X-ray absorbers. Synthetic data are computed assuming two other possible chemical structures: photospheric traces of radiatively levitated heavy elements and a stratified hydrogen/helium distribution. Predictions about forthcoming medium-resolution observations of the EUV spectrum of selected hot H-rich white dwarfs are made.

  19. The constitution of the atmospheric layers and the extreme ultraviolet spectrum of hot hydrogen-rich white dwarfs

    NASA Technical Reports Server (NTRS)

    Vennes, Stephane

    1992-01-01

    An analysis is presented of the atmospheric properties of hot, H-rich, DA white dwarfs that is based on optical, UV, and X-ray observations aimed at predicting detailed spectral properties of these stars in the range 80-800 A. The divergences between observations from a sample of 15 hot DA white dwarfs emitting in the EUV/soft X-ray range and pure H synthetic spectra calculated from a grid of model atmospheres characterized by Teff and g are examined. Seven out of 15 DA stars are found to consistently exhibit pure hydrogen atmospheres, the remaining seven stars showing inconsistency between FUV and EUV/soft X-ray data that can be explained by the presence of trace EUV/soft X-ray absorbers. Synthetic data are computed assuming two other possible chemical structures: photospheric traces of radiatively levitated heavy elements and a stratified hydrogen/helium distribution. Predictions about forthcoming medium-resolution observations of the EUV spectrum of selected hot H-rich white dwarfs are made.

  20. Intramolecular hydrogen bonding in 5-nitrosalicylaldehyde: IR spectrum and quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Moosavi-Tekyeh, Zainab; Taherian, Fatemeh; Tayyari, Sayyed Faramarz

    2016-05-01

    The structural parameters, and vibrational frequencies of 5-nitrosalicylaldehyde (5NSA) were studied by the FT-IR and Raman spectra and the quantum chemical calculations carried out at the B3LYP/6-311++G(d,p) level of theory in order to investigate the intramolecular hydrogen bonding (IHB) present in its structure. The strength and nature of IHB in the optimized structure of 5NSA were studied in detail by means of the atoms in molecules (AIM) and the natural bond orbital (NBO) approaches. The results obtained were then compared with the corresponding data for its parent molecule, salicylaldehyde (SA). Comparisons made between the geometrical structures for 5NSA and SA, their OH/OD stretching and out-of-plane bending modes, their enthalpies for the hydrogen bond, and their AIM parameters demonstrated a stronger H-bonding in 5NSA compared with that in SA. The calculated binding enthalpy (ΔHbind) for 5NSA was -10.92 kcal mol-1. The observed νOH and γOH appeared at about 3120 cm-1 and 786 cm-1 respectively. The stretching frequency shift of H-bond formation was 426 cm-1 which is consistent with ΔHbind and the strength of H-bond in 5NSA. The delocalization energies and electron delocalization indices derived by the NBO and AIM approaches indicate that the resonance effects were responsible for the stronger IHB in 5NSA than in SA.

  1. Cloning and expression of synthetic genes encoding the broad antimicrobial spectrum bacteriocins SRCAM 602, OR-7, E-760, and L-1077, by recombinant Pichia pastoris.

    PubMed

    Arbulu, Sara; Jiménez, Juan J; Gútiez, Loreto; Cintas, Luis M; Herranz, Carmen; Hernández, Pablo E

    2015-01-01

    We have evaluated the cloning and functional expression of previously described broad antimicrobial spectrum bacteriocins SRCAM 602, OR-7, E-760, and L-1077, by recombinant Pichia pastoris. Synthetic genes, matching the codon usage of P. pastoris, were designed from the known mature amino acid sequence of these bacteriocins and cloned into the protein expression vector pPICZαA. The recombinant derived plasmids were linearized and transformed into competent P. pastoris X-33, and the presence of integrated plasmids into the transformed cells was confirmed by PCR and sequencing of the inserts. The antimicrobial activity, expected in supernatants of the recombinant P. pastoris producers, was purified using a multistep chromatographic procedure including ammonium sulfate precipitation, desalting by gel filtration, cation exchange-, hydrophobic interaction-, and reverse phase-chromatography (RP-FPLC). However, a measurable antimicrobial activity was only detected after the hydrophobic interaction and RP-FPLC steps of the purified supernatants. MALDI-TOF MS analysis of the antimicrobial fractions eluted from RP-FPLC revealed the existence of peptide fragments of lower and higher molecular mass than expected. MALDI-TOF/TOF MS analysis of selected peptides from eluted RP-FPLC samples with antimicrobial activity indicated the presence of peptide fragments not related to the amino acid sequence of the cloned bacteriocins.

  2. Hydrogen sensor

    DOEpatents

    Duan, Yixiang; Jia, Quanxi; Cao, Wenqing

    2010-11-23

    A hydrogen sensor for detecting/quantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites hydrogen from a gas sample and produces light emission from excited hydrogen. A power supply provides power to the microplasma generator, and a spectrometer generates an emission spectrum from the light emission. A programmable computer is adapted for determining whether or not the gas sample includes hydrogen, and for quantitating the amount of hydrogen and/or hydrogen isotopes are present in the gas sample.

  3. Hydrogen

    PubMed Central

    Bockris, John O’M.

    2011-01-01

    The idea of a “Hydrogen Economy” is that carbon containing fuels should be replaced by hydrogen, thus eliminating air pollution and growth of CO2 in the atmosphere. However, storage of a gas, its transport and reconversion to electricity doubles the cost of H2 from the electrolyzer. Methanol made with CO2 from the atmosphere is a zero carbon fuel created from inexhaustible components from the atmosphere. Extensive work on the splitting of water by bacteria shows that if wastes are used as the origin of feed for certain bacteria, the cost for hydrogen becomes lower than any yet known. The first creation of hydrogen and electricity from light was carried out in 1976 by Ohashi et al. at Flinders University in Australia. Improvements in knowledge of the structure of the semiconductor-solution system used in a solar breakdown of water has led to the discovery of surface states which take part in giving rise to hydrogen (Khan). Photoelectrocatalysis made a ten times increase in the efficiency of the photo production of hydrogen from water. The use of two electrode cells; p and n semiconductors respectively, was first introduced by Uosaki in 1978. Most photoanodes decompose during the photoelectrolysis. To avoid this, it has been necessary to create a transparent shield between the semiconductor and its electronic properties and the solution. In this way, 8.5% at 25 °C and 9.5% at 50 °C has been reached in the photo dissociation of water (GaP and InAs) by Kainthla and Barbara Zeleney in 1989. A large consortium has been funded by the US government at the California Institute of Technology under the direction of Nathan Lewis. The decomposition of water by light is the main aim of this group. Whether light will be the origin of the post fossil fuel supply of energy may be questionable, but the maximum program in this direction is likely to come from Cal. Tech. PMID:28824125

  4. Chromospheric Line Blanketing and the Hydrogen Spectrum of dM Stars

    NASA Astrophysics Data System (ADS)

    Short, C. I.; Doyle, J. G.

    1996-12-01

    We present non-LTE calculations of the Hi spectrum in a grid of chromospheric models that represents a dM0 star in which the activity level ranges from quiescent to very active. We investigate three different treatments of the background opacity: 1) continuous opacity only, 2) blanketing due to lines that form in the photosphere below Tmin, and 3) blanketing by lines that form throughout the entire outer atmosphere. We show that the predicted W_lambda of Lyalpha in all models, and of Hα in very active (dMe) stars, is reduced by as much as a factor of ~ 4 by the inclusion of background line opacity. A consistent treatment of line blanketing that includes the effect of the chromospheric and transition region temperature structure in the calculation of background line opacity is necessary for the accurate calculation of Lyalpha , and in some cases Hα , in thes e stars. The Hα line in less active models, and the Pabeta line in all models, is negligibly affected by the treatment of background opacity. We also show that the broad-band continuum flux in regions where lambda < 2000 A is increased by as much as a factor of ~ 3 in some models by the inclusion of chromospheric line blanketing.

  5. The rotational spectrum, geometry, and intermolecular force constant of the heterodimer of hydrogen cyanide and fluoroform

    NASA Astrophysics Data System (ADS)

    Goodwin, Elizabeth J.; Legon, A. C.

    1986-02-01

    The ground-state rotational spectra of six isotopic species of an intermolecular complex formed by hydrogen cyanide and fluoroform have been measured using the pulsed-nozzle, Fourier-transform microwave technique. The rotational constant B0, the centrifugal distortion constants DJ,DJK,HJ, HJK, and HKJ, and, where appropriate, the nuclear quadrupole coupling constants χ(14N) and χ(D) have been determined for each of the species HC14NṡṡṡHCF3, DC14NṡṡṡHCF3, HC14ṡṡṡDCF3, HC15NṡṡṡHCF3, HC15NṡṡṡDCF3, and DC15NṡṡṡHCF3. For HC14NṡṡṡHCF3 the values are as follows: B0=1151.2991(4) MHz, DJ=1.91(1) kHz, DJK=282.75(6) kHz, HJ=-0.1(1) Hz, HJK=44.3(5) Hz, HKJ=53(5) Hz, and χ(14N)=3.948(8) MHz. The form of the spectra and magnitudes of the rotational constants allow the conclusion that the geometry of the complex is of C3V symmetry with the nuclei in the order HCNṡṡṡHCF3 and lead to r(NṡṡṡC)=3.489(2) Å for HCF3 species but 3.483(1) Å for DCF3 species. The intermolecular stretching force constant determined from DJ is kσ=3.52 N m-1.

  6. Variability of Hell and hydrogen line profiles in the spectrum of HD 93521

    NASA Astrophysics Data System (ADS)

    Rzaev, A. Kh.; Panchuk, V. E.

    2008-03-01

    We have studied the variability of the Hell λλ 4686 and 5411 Å H β, and H α lines in the spectrum of the pulsating star HD 93521. All these line profiles display the same variability pattern relative to the average profiles: a sinusoidal wave that moves systematically from the short-to the long-wavelength wing of the profile. This variability is due to non-radial pulsations. To study the pulsation movements and stratification of the radial velocity in the atmosphere of HD 93521, we analyzed the variability of the radial velocities measured individually for the blue and red halves of the absorption profile at the half-level of the line intensity. The periods and amplitudes of this radial-velocity variability are different for different lines and are well correlated with their central depths. In the transition from weak to strong lines (i.e., from lower to upper layers of the atmosphere), the period of the radial-velocity variations measured using both halves of the absorption profile increases, while its amplitude decreases. When the morphology and variability of photospheric and wind-driven lines are compared, it is clear that the variability of their absorption components is due to the same process—non-radial pulsations. In this way, the non-radial pulsations partly affect the variability of the stellar wind. The effect of the stellar wind on the profiles of strong lines is observed as a variable absorption feature that moves along the profiles synchronous with the axial rotation of the star.

  7. High resolution spectral signatures of X-ray emission following charge exchange recombination between highly charged iron and neutral helium, molecular hydrogen and molecular nitrogen: A comparison between theory and experiment

    NASA Astrophysics Data System (ADS)

    Brown, Gregory V.; Cumbee, Renata; Gu, Liyi; Kelley, Richard L.; Kilbourne, Caroline; Leutenegger, Maurice A.; Porter, Frederick S.; Beiersdorfer, Peter

    2017-08-01

    We have used the LLNL electron beam ion trap EBIT-I and a NASA/GSFC quantum microcalorimeter to measure the X-ray emission following charge exchange recombination between highly charged Fe25+ and Fe 26+ and neutral helium, molecular hydrogen, and molecular nitrogen. The ~ 5 eV energy resolution of the microcalorimeter has made it possible to measure and resolve n to 1 K-shell transitions from up to n = 14. We compare the measurements to a model based on the Landau-Zener theory and also the models found in SPEX and APEC. Our results include relative intensities of the 1P1 resonance line to the 3S1 forbidden line, commonly referred to as lines w and z. These results are especially useful for interpreting spectra from celestial sources measured with XARM's Resolve and ATHENA's X-IFU. These data have also proved useful in the interpretation of Hitomi's SXS spectrum of the Perseus cluster.Part of this work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  8. Enhanced co-production of hydrogen and poly-(R)-3-hydroxybutyrate by recombinant PHB producing E. coli over-expressing hydrogenase 3 and acetyl-CoA synthetase.

    PubMed

    Wang, Rui-Yan; Shi, Zhen-Yu; Chen, Jin-Chun; Wu, Qiong; Chen, Guo-Qiang

    2012-09-01

    Recombinant Escherichia coli was constructed for co-production of hydrogen and polyhydroxybutyrate (PHB) due to its rapid growth and convenience of genetic manipulation. In particular, anaerobic metabolic pathways dedicated to co-production of hydrogen and PHB were established due to the advantages of directing fluxes away from toxic compounds such as formate and acetate to useful products. Here, recombinant E. coli expressing hydrogenase 3 and/or acetyl-CoA synthetase showed improved PHB and hydrogen production when grown with or without acetate as a carbon source. When hydrogenase 3 was over-expressed, hydrogen yield was increased from 14 to 153 mmol H(2)/mol glucose in a mineral salt (MS) medium with glucose as carbon source, accompanied by an increased PHB yield from 0.55 to 5.34 mg PHB/g glucose in MS medium with glucose and acetate as carbon source.

  9. Hydrogen and the First Stars: First Results from the SCI-HI 21-cm all-sky spectrum experiment

    NASA Astrophysics Data System (ADS)

    Voytek, Tabitha; Peterson, Jeffrey; Lopez-Cruz, Omar; Jauregui-Garcia, Jose-Miguel; SCI-HI Experiment Team

    2015-01-01

    The 'Sonda Cosmologica de las Islas para la Deteccion de Hidrogeno Neutro' (SCI-HI) experiment is an all-sky 21-cm brightness temperature spectrum experiment studying the cosmic dawn (z~15-35). The experiment is a collaboration between Carnegie Mellon University (CMU) and Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE) in Mexico. Initial deployment of the SCI-HI experiment occurred in June 2013 on Guadalupe; a small island about 250 km off of the Pacific coast of Baja California in Mexico. Preliminary measurements from this deployment have placed the first observational constraints on the 21-cm all-sky spectrum around 70 MHz (z~20), see Voytek et al (2014).Neutral Hydrogen (HI) is found throughout the universe in the cold gas that makes up the intergalactic medium (IGM). HI can be observed through the spectral line at 21 cm (1.4 GHz) due to hyperfine structure. Expansion of the universe causes the wavelength of this spectral line to stretch at a rate defined by the redshift z, leading to a signal which can be followed through time.Now the strength of the 21-cm signal in the IGM is dependent only on a small number of variables; the temperature and density of the IGM, the amount of HI in the IGM, the UV energy density in the IGM, and the redshift. This means that 21-cm measurements teach us about the history and structure of the IGM. The SCI-HI experiment focuses on the spatially averaged 21-cm spectrum, looking at the temporal evolution of the IGM during the cosmic dawn before reionization.Although the SCI-HI experiment placed first constraints with preliminary data, this data was limited to a narrow frequency regime around 60-85 MHz. This limitation was caused by instrumental difficulties and the presence of residual radio frequency interference (RFI) in the FM radio band (~88-108 MHz). The SCI-HI experiment is currently undergoing improvements and we plan to have another deployment soon. This deployment would be to Socorro and Clarion, two

  10. High-Resolution Electron-Impact Study of the Far-Ultraviolet Emission Spectrum of Molecular Hydrogen

    NASA Technical Reports Server (NTRS)

    Liu, Xian-Ming; Ahmed, Syed M.; Multari, Rosalie A.; James, Geoffrey K.; Ajello, Joseph M.

    1995-01-01

    The emission spectrum of molecular hydrogen produced by electron-impact excitation at 100 eV has been measured in the wavelength range 1140-1690 A. High-resolution, optically thin spectra (delta(lambda) = 0.136 A) of the far-ultraviolet (FUV) Lyman and Werner band systems have been obtained with a newly constructed 3 m spectrometer. Synthetic spectral intensities based on the transition probabilities calculated by Abgrall et al. are in very good agreement with experimentally observed intensities. Previous modeling that utilized Allison & Daigarno band transition probabilities with Hoenl-London factors breaks down when the transition moment has significant J dependence or when ro-vibrational coupling is significant. Ro-vibrational perturbation between upsilon = 14 of the B(sup 1)Sigma(sup +, sub u) state and upsilon = 3 of the C(sup 1)Pi(sub u) state and the rotational dependence of the transition moment in the bands of the Lyman system are examined. Complete high-resolution experimental reference FUV spectra, together with the model synthetic spectra based on the Abgrall transition probabilities, are presented. An improved calibration standard is obtained, and an accurate calibration of the 3 m spectrometer has been achieved.

  11. Couplings Across the Vibrational Spectrum Caused by Strong Hydrogen Bonds: A Continuum 2D IR Study of the 7-Azaindole-Acetic Acid Heterodimer.

    PubMed

    Stingel, Ashley M; Petersen, Poul B

    2016-10-11

    Strongly hydrogen-bonded motifs provide structural stability and can act as proton transfer relays to drive chemical processes in biological and chemical systems. However, structures with medium and strong hydrogen bonds are difficult to study due to their characteristically broad vibrational bands and large anharmonicity. This is further complicated by strong interactions between the high-frequency hydrogen-bonded vibrational modes, fingerprint modes, and low-frequency intradimer modes that modulate the hydrogen-bonding. Understanding these structures and their associated dynamics requires studying much of the vibrational spectrum. Here, mid-IR continuum spectroscopy of the cyclic 7-azaindole-acetic acid (7AI-AcOH) heterodimer reveals the vibrational relaxation dynamics and couplings of this complex hydrogen-bonded system. Within this dimer, the NH bond of 7AI exhibits a band at 3250 cm(-1) caused by a medium strength hydrogen bond, while the strongly hydrogen-bonded OH modes of acetic acid exhibit a broad double-peaked vibrational feature spanning 1750 to 2750 cm(-1). Transient IR and 2D IR experiments were performed using three excitation frequencies, centered on the high-frequency OH and NH modes, and probed with a mid-IR continuum to measure the spectral response from 1000 to 3500 cm(-1). While the NH stretch is observed to relax in 300 fs, the strongly hydrogen-bonded OH modes relax within the time resolution of the experiment (sub-100 fs). The difference in the strength of the hydrogen bonds is also reflected in the coupling pattern in the fingerprint region observed with 2D IR spectroscopy. Here the NH is strongly coupled to fingerprint modes involving the 7AI monomer, while the OH vibrations are strongly coupled to vibrational modes across the entire dimer. Together, the results show strong coupling and rapid energy transfer across the hydrogen-bonded interface and through the structure of the 7-azaindole-acetic acid heterodimer, highlighting the need to

  12. Level-mixing effect induced by blackbody radiation and its influence on the cosmological hydrogen recombination problem

    NASA Astrophysics Data System (ADS)

    Zalialiutdinov, T.; Solovyev, D.; Labzowsky, L.; Plunien, G.

    2017-07-01

    Two different effects of the blackbody-radiation-induced atomic line broadening are compared. The first one (stimulated Raman scattering) has been discussed by many authors; the second one (quadratic level mixing) was discussed in our previous work. It is shown that the mixing effect gives the most significant contribution to the line broadening and it is indicated how to distinguish these two effects in laboratory experiments. The influence of the level mixing on the recombination history of primordial plasma is also discussed.

  13. A theoretical prediction of hydrogen molecule dissociation-recombination rates including an accurate treatment of internal state nonequilibrium effects

    NASA Technical Reports Server (NTRS)

    Schwenke, David W.

    1990-01-01

    The dissociation and recombination of H2 over the temperature range 1000-5000 K are calculated in a nonempirical manner. The computation procedure involves the calculation of the state-to-state energy transfer rate coefficients, the solution of the 349 coupled equations which form the master equation, and the determination of the phenomenological rate coefficients. The nonempirical results presented here are in good agreement with experimental data at 1000 and 3000 K.

  14. A theoretical prediction of hydrogen molecule dissociation-recombination rates including an accurate treatment of internal state nonequilibrium effects

    NASA Technical Reports Server (NTRS)

    Schwenke, David W.

    1990-01-01

    The dissociation and recombination of H2 over the temperature range 1000-5000 K are calculated in a nonempirical manner. The computation procedure involves the calculation of the state-to-state energy transfer rate coefficients, the solution of the 349 coupled equations which form the master equation, and the determination of the phenomenological rate coefficients. The nonempirical results presented here are in good agreement with experimental data at 1000 and 3000 K.

  15. Efficient Suppression of Electron–Hole Recombination in Oxygen-Deficient Hydrogen-Treated TiO2 Nanowires for Photoelectrochemical Water Splitting

    PubMed Central

    2013-01-01

    There is an increasing level of interest in the use of black TiO2 prepared by thermal hydrogen treatments (H:TiO2) due to the potential to enhance both the photocatalytic and the light-harvesting properties of TiO2. Here, we examine oxygen-deficient H:TiO2 nanotube arrays that have previously achieved very high solar-to-hydrogen (STH) efficiencies due to incident photon-to-current efficiency (IPCE) values of >90% for photoelectrochemical water splitting at only 0.4 V vs RHE under UV illumination. Our transient absorption (TA) mechanistic study provides strong evidence that the improved electrical properties of oxygen-deficient TiO2 enables remarkably efficient spatial separation of electron–hole pairs on the submicrosecond time scale at moderate applied bias, and this coupled to effective suppression of microsecond to seconds charge carrier recombination is the primary factor behind the dramatically improved photoelectrochemical activity. PMID:24376902

  16. Excitation of Molecular Hydrogen in the Orion Bar Photodissociation Region from a Deep Near-infrared IGRINS Spectrum

    NASA Astrophysics Data System (ADS)

    Kaplan, Kyle F.; Dinerstein, Harriet L.; Oh, Heeyoung; Mace, Gregory N.; Kim, Hwihyun; Sokal, Kimberly R.; Pavel, Michael D.; Lee, Sungho; Pak, Soojong; Park, Chan; Sok Oh, Jae; Jaffe, Daniel T.

    2017-04-01

    We present a deep near-infrared spectrum of the Orion Bar Photodissociation Region (PDR) taken with the Immersion Grating INfrared Spectrometer (IGRINS) on the 2.7 m telescope at the McDonald Observatory. IGRINS has high spectral resolution (R˜ {{45,000}}) and instantaneous broad wavelength coverage (1.45-2.45 μm), enabling us to detect 87 emission lines from rovibrationally excited molecular hydrogen (H2) that arise from transitions out of 69 upper rovibration levels of the electronic ground state. These levels cover a large range of rotational and vibrational quantum numbers and excitation energies, making them excellent probes of the excitation mechanisms of H2 and physical conditions within the PDR. The Orion Bar PDR is thought to consist of cooler high density clumps or filaments (T=50{--}250 K, {n}H={10}5{--}{10}7 cm-3) embedded in a warmer lower density medium (T=250{--}1000 K, {n}H={10}4{--}{10}5 cm-3). We fit a grid of constant temperature and density Cloudy models, which recreate the observed H2 level populations well, to constrain the temperature to a range of 600-650 K and the density to {n}H=2.5× {10}3{--}{10}4 cm-3. The best-fit model gives T = 625 K and {n}H=5× {10}3 cm-3. This well-constrained warm temperature is consistent with kinetic temperatures found by other studies for the Orion Bar’s lower density medium. However, the range of densities well fit by the model grid is marginally lower than those reported by other studies. We could be observing lower density gas than the surrounding medium, or perhaps a density-sensitive parameter in our models is not properly estimated.

  17. Water Masers in the Andromeda Galaxy. I. A Survey for Water Masers, Ammonia, and Hydrogen Recombination Lines

    NASA Astrophysics Data System (ADS)

    Darling, Jeremy; Gerard, Benjamin; Amiri, Nikta; Lawrence, Kelsey

    2016-07-01

    We report the results of a Green Bank Telescope survey for water masers, ammonia (1, 1) and (2, 2), and the H66α recombination line toward 506 luminous compact 24 μm emitting regions in the Andromeda Galaxy (M31). We include the 206 sources observed in the Darling water maser survey for completeness. The survey was sensitive enough to detect any maser useful for ˜10 μas yr-1 astrometry. No new water masers, ammonia lines, or H66α recombination lines were detected individually or in spectral stacks reaching rms noise levels of ˜3 mJy and ˜0.2 mJy, respectively, in 3.1-3.3 km s-1 channels. The lack of detections in individual spectra and in the spectral stacks is consistent with Galactic extrapolations. Contrary to previous assertions, there do not seem to be any additional bright water masers to be found in M31. The strong variability of water masers may enable new maser detections in the future, but variability may also limit the astrometric utility of known (or future) masers because flaring masers must also fade.

  18. Intramolecular competition between n-pair and π-pair hydrogen bonding: Microwave spectrum and internal dynamics of the pyridine-acetylene hydrogen-bonded complex

    NASA Astrophysics Data System (ADS)

    Mackenzie, Rebecca B.; Dewberry, Christopher T.; Coulston, Emma; Cole, George C.; Legon, Anthony C.; Tew, David P.; Leopold, Kenneth R.

    2015-09-01

    a-type rotational spectra of the hydrogen-bonded complex formed from pyridine and acetylene are reported. Rotational and 14N hyperfine constants indicate that the complex is planar with an acetylenic hydrogen directed toward the nitrogen. However, unlike the complexes of pyridine with HCl and HBr, the acetylene moiety in HCCH—NC5H5 does not lie along the symmetry axis of the nitrogen lone pair, but rather, forms an average angle of 46° with the C2 axis of the pyridine. The a-type spectra of HCCH—NC5H5 and DCCD—NC5H5 are doubled, suggesting the existence of a low lying pair of tunneling states. This doubling persists in the spectra of HCCD—NC5H5, DCCH—NC5H5, indicating that the underlying motion does not involve interchange of the two hydrogens of the acetylene. Single 13C substitution in either the ortho- or meta-position of the pyridine eliminates the doubling and gives rise to separate sets of spectra that are well predicted by a bent geometry with the 13C on either the same side ("inner") or the opposite side ("outer") as the acetylene. High level ab initio calculations are presented which indicate a binding energy of 1.2 kcal/mol and a potential energy barrier of 44 cm-1 in the C2v configuration. Taken together, these results reveal a complex with a bent hydrogen bond and large amplitude rocking of the acetylene moiety. It is likely that the bent equilibrium structure arises from a competition between a weak hydrogen bond to the nitrogen (an n-pair hydrogen bond) and a secondary interaction between the ortho-hydrogens of the pyridine and the π electron density of the acetylene.

  19. Human Recombinant Cytochrome P450 Enzymes Display Distinct Hydrogen Peroxide Generating Activities During Substrate Independent NADPH Oxidase Reactions

    PubMed Central

    Mishin, Vladimir; Heck, Diane E.; Laskin, Debra L.; Laskin, Jeffrey D.

    2014-01-01

    Microsomal enzymes generate H2O2 in the presence of NADPH. In this reaction, referred to as “oxidase” activity, H2O2 is generated directly or indirectly via the formation of superoxide anion. In the presence of redox active transition metals, H2O2 can form highly toxic hydroxyl radicals and, depending on the “oxidase” activity of individual cytochrome P450 isoenzymes, this can compromise cellular functioning and contribute to tissue injury. In the present studies, we compared the initial rates of H2O2 generating activity of microsomal preparations containing various human recombinant cytochromes P450s. In the absence of cytochrome P450s the human recombinant NADPH cytochrome P450 reductase (CPR) generated low, but detectable amounts of H2O2 (∼0.04 nmol H2O2/min/100 units of reductase). Significantly greater activity was detected in preparations containing individual cytochrome P450s coexpressed with CPR (from 6.0 nmol H2O2/min/nmol P450 to 0.2 nmol/min/nmol P450); CYP1A1 was the most active, followed by CYP2D6, CYP3A4, CYP2E1, CYP4A11, CYP1A2, and CYP2C subfamily enzymes. H2O2 generating activity of the cytochrome P450s was independent of the ratio of CYP/CPR. Thus, similar H2O2 generating activity was noted with the same cytochrome P450s (CYP3A4, CYP2E1, and CYP2C9) expressed at or near the ratio of CYP/CPR in human liver microsomes (5–7), and when CPR was present in excess (CYP/CPR = 0.2–0.3). Because CYP3A4/5/7 represent up to 40% of total cytochrome P450 in the liver, these data indicate that these enzymes are the major source of H2O2 in human liver microsomes. PMID:25061110

  20. Hot-atom versus Eley-Rideal dynamics in hydrogen recombination on Ni(100). I. The single-adsorbate case.

    PubMed

    Martinazzo, R; Assoni, S; Marinoni, G; Tantardini, G F

    2004-05-08

    We compare the efficiency of the Eley-Rideal (ER) reaction with the formation of hot-atom (HA) species in the simplest case, i.e., the scattering of a projectile off a single adsorbate, considering the Hydrogen and Hydrogen-on-Ni(100) system. We use classical mechanics and the accurate embedded diatomics-in-molecules potential to study the collision system over a wide range of collision energies (0.10-1.50 eV), both with a rigid and a nonrigid Ni substrate and for impact on the occupied and neighboring empty cells. In the rigid model metastable and truly bound hot-atoms occur and we find that the cross section for the formation of bound hot-atoms is considerably higher than that for the ER reaction over the whole range of collision energies examined. Metastable hot-atoms form because of the inefficient energy transfer to the adsorbate and have lifetimes of the order 0.1-0.7 ps, depending on the collision energy. When considering the effects of lattice vibrations we find, on average, a consistent energy transfer to the substrate, say 0.1-0.2 eV, which forced us to devise a two-step dynamical model to get rid of the problems associated with the use of periodic boundary conditions. Results for long-lived HA formation due to scattering on the occupied cell at a surface temperature of 120 K agree well with those of the rigid model, suggesting that in the above process the substrate plays only a secondary role and further calculations at surface temperatures of 50 and 300 K are in line with these findings. However, considerably high cross sections for formation of long-lived hot-atoms result also from scattering off the neighboring cells where the energy transfer to the lattice cannot be neglected. Metastable hot-atoms are reduced in number and have usually lifetimes shorter than those of the rigid-model, say less than 0.3 ps. In addition, ER cross sections are only slightly affected by the lattice motion and show a little temperature dependence. Finally, we find also

  1. Intramolecular competition between n-pair and π-pair hydrogen bonding: Microwave spectrum and internal dynamics of the pyridine–acetylene hydrogen-bonded complex

    SciTech Connect

    Mackenzie, Rebecca B.; Dewberry, Christopher T.; Leopold, Kenneth R. E-mail: david.tew@bristol.ac.uk; Coulston, Emma; Cole, George C.; Legon, Anthony C. E-mail: david.tew@bristol.ac.uk Tew, David P. E-mail: david.tew@bristol.ac.uk

    2015-09-14

    a-type rotational spectra of the hydrogen-bonded complex formed from pyridine and acetylene are reported. Rotational and {sup 14}N hyperfine constants indicate that the complex is planar with an acetylenic hydrogen directed toward the nitrogen. However, unlike the complexes of pyridine with HCl and HBr, the acetylene moiety in HCCH—NC{sub 5}H{sub 5} does not lie along the symmetry axis of the nitrogen lone pair, but rather, forms an average angle of 46° with the C{sub 2} axis of the pyridine. The a-type spectra of HCCH—NC{sub 5}H{sub 5} and DCCD—NC{sub 5}H{sub 5} are doubled, suggesting the existence of a low lying pair of tunneling states. This doubling persists in the spectra of HCCD—NC{sub 5}H{sub 5}, DCCH—NC{sub 5}H{sub 5}, indicating that the underlying motion does not involve interchange of the two hydrogens of the acetylene. Single {sup 13}C substitution in either the ortho- or meta-position of the pyridine eliminates the doubling and gives rise to separate sets of spectra that are well predicted by a bent geometry with the {sup 13}C on either the same side (“inner”) or the opposite side (“outer”) as the acetylene. High level ab initio calculations are presented which indicate a binding energy of 1.2 kcal/mol and a potential energy barrier of 44 cm{sup −1} in the C{sub 2v} configuration. Taken together, these results reveal a complex with a bent hydrogen bond and large amplitude rocking of the acetylene moiety. It is likely that the bent equilibrium structure arises from a competition between a weak hydrogen bond to the nitrogen (an n-pair hydrogen bond) and a secondary interaction between the ortho-hydrogens of the pyridine and the π electron density of the acetylene.

  2. Vibrational spectrum of condensed H2O in hydrogen-bonding environment: an ab initio simulation study

    NASA Astrophysics Data System (ADS)

    Sun, Yan-Yun; Liu, Fu-Sheng; Xu, Li-Hua; Liu, Qi-Jun; Ma, Xiao-Juan; Cai, Ling-Cang

    2015-01-01

    Local hydrogen-bonding environments have important influences on the intra-molecular O-H stretchings of H2O molecules. The relationship between the contributions of intra-molecular O-H stretching and the local hydrogen-bonding environments is investigated using ab initio simulation for a condensed H2O system at 300 K, 1.7 g/cm3, and calculated/estimated pressure of approximately 9 GPa. The calculation results demonstrate that the local hydrogen-bonding environments around the two intra-molecular hydrogen atoms are not always similar. The existence of asymmetric local hydrogen environments will result in decoupling of the intra-molecular O-H stretchings in the molecule; thus, the broad O-H stretching band may be decomposed into a sum that includes isolated intra-molecular O-H stretchings but not symmetric stretching and asymmetric stretching. This research serves as a reminder to pay attention to the influence of an asymmetric local hydrogen-bonding environment on the vibrational details of the H2O molecular system and will facilitate the interpretation of measurements of the infrared and Raman spectra of the condensed H2O systems.

  3. ATLASGAL-selected massive clumps in the inner Galaxy. IV. Millimeter hydrogen recombination lines from associated H II regions

    NASA Astrophysics Data System (ADS)

    Kim, W.-J.; Wyrowski, F.; Urquhart, J. S.; Menten, K. M.; Csengeri, T.

    2017-06-01

    Aims: Observations of millimeter wavelength radio recombination lines (mm-RRLs) are used to search for H ii regions in an unbiased way that is complementary to many of the more traditional methods previously used (e.g., radio continuum, far-infrared colors, maser emission). The mm-RRLs can be used to derive physical properties of H ii regions and to provide velocity information of ionized gas. Methods: We carried out targeted mm-RRL observations (39 ≤ principal quantum number (n) ≤ 65 and Δn = 1, 2, 3, and 4, named Hnα, Hnβ, Hnγ, and Hnδ) using the IRAM 30 m and Mopra 22 m telescopes. In total, we observed 976 compact dust clumps selected from a catalog of 10 000 sources identified by the APEX Telescope Large Area Survey of the Galaxy (ATLASGAL). The sample was selected to ensure a representative mix of star-forming and quiescent clumps such that a variety of different evolutionary stages is represented. Approximately half of the clumps are mid-infrared quiet while the other half are mid-infrared bright. Results: We detected Hnα mm-RRL emission toward 178 clumps; Hnβ, Hnγ, and Hnδ were also detected toward 65, 23, and 22 clumps, respectively. This is the largest sample of mm-RRLs detections published to date. Comparing the positions of these clumps with radio continuum surveys we identified compact radio counterparts for 134 clumps, confirming their association with known H ii regions. The nature of the other 44 detections is unclear, but 8 detections are thought to be potentially new H ii regions while the mm-RRL emission from the others may be due to contamination from nearby evolved H ii regions. Broad linewidths are seen toward nine clumps (linewidth > 40 km s-1) revealing significant turbulent motions within the ionized gas; in the past, such wide linewidths were found toward very compact and dense H ii regions. We find that the systemic velocity of the associated dense molecular gas, traced by H13CO+(1-0), is consistent with the mm-RRL velocities

  4. Charge exchange recombination spectroscopy on a diagnostic hydrogen beam—measuring impurity rotation and radial electric field at the tokamak TEXTOR

    NASA Astrophysics Data System (ADS)

    Coenen, J. W.; Schweer, B.; Clever, M.; Freutel, S.; Schmitz, O.; Stoschus, H.; Samm, U.; Unterberg, B.

    2010-07-01

    In this work we present an overview on the charge exchange recombination spectroscopy (CXRS) diagnostic operated with the modulated diagnostic hydrogen beam at the tokamak TEXTOR. The diagnostic setup combines two observation systems used for the measurement of the poloidal (vpol) and the toroidal (vtor) ion velocity component. At TEXTOR a differential Doppler spectroscopy approach (accurate absolute rotation scale) is combined with the high intensity and spatial resolution of a direct imaging system necessary for accurate poloidal rotation measurements on a shot-by-shot basis. This setup allows the full utilization of a 2D CCD detector in the spectral and radial direction. In the case of the poloidal system this allows spatial resolution in the range of mm to cm depending on the intensity requirements for the velocity. The toroidal system comprises a fibre-optic array. The combination of the two measurements with a low-power diagnostic beam can in principle be operated during any available heating scenario without interfering with the discharge. Time resolution is limited by the necessary averaging process; typically a stable plateau of 3 s during a TETXOR pulse is used. The TEXTOR tokamak has the ability to apply momentum input with two tangential neutral beam heating injectors, allowing for measurements under various heating and momentum input scenarios. With the presented diagnostic half the plasma minor radius at a spatial resolution of {\\sim} 1\\,\\rm cm is covered. With the CVI line at 529.053 nm an accuracy of 0.7\\, \\rm km\\,s^{-1} for the poloidal and ~5 \\rm km\\,s^{-1} for the toroidal system is given. The temperature is measured with an accuracy of a few eV. The presented work illustrates the capability of the system during a toroidal momentum scan, showing the self-consistent determination of the radial electric field from experimental CXRS data based on the radial force balance.

  5. Infrared Spectrum of N-Oxidohydroxylamine [ONH(OH)] Produced in Reaction H + Hono in Solid Para-Hydrogen

    NASA Astrophysics Data System (ADS)

    Haupa, Karolina Anna; Lee, Yuan-Pern

    2017-06-01

    Hydrogenation reactions in the N/O chemical network are important for an understanding of the mechanism of formation of organic molecules in dark interstellar clouds, but many reactions remain unknown. We present the results of the reaction H + HONO in solid {para}-hydrogen ({p}-H_{2}) at 3.3 K investigated with infrared spectra. Two methods that produced hydrogen atoms were the irradiation of HONO molecules in {p}-H_{2} at 365 nm to produce OH radicals that reacted readily with nearby H_{2} to produce mobile H atoms, and irradiation of Cl_{2} molecules (co-deposited with HONO) in {p}-H_{2} at 405 nm to produce Cl atoms that reacted readily with nearby H_{2} to produce mobile H atoms. In both experiments, we assigned IR lines at 3549.6 (νb{1}), 1465.0 (νb{3}), 1372.2 (νb{4}), 895.6/898.5 (νb{6}), and 630.9 (νb{7}) \\wn to N-oxidohydroxylamine [ONH(OH)], the primary product of HONO hydrogenation. The assignments were derived according to the consideration of possible reactions and comparison of observed vibrational wavenumbers and their IR intensities with values predicted with the B3LYP/aug-cc-pVTZ method of quantum-chemical calculations. The agreement between observed and calculated D/H- and ^{15}N/^{14}N-isotopic ratios further supports these assignments. The role of this reaction in the N/O chemical network in dark interstellar clouds is discussed.

  6. Effects of deuteration of the methyl and phenyl hydrogens on the rotational spectrum of anisole-water

    NASA Astrophysics Data System (ADS)

    Giuliano, Barbara M.; Melandri, Sonia; Caminati, Walther

    2017-07-01

    The role of non-covalent interactions in determining the structure of the 1:1 anisole-water molecular complex has been investigated by the analysis of the rotational spectra of the complex formed by the C6H5OCD3 and C6D5OCH3 deuterated species of anisole recorded with pulsed jet Fourier transform microwave spectroscopy. The deuteration of the methyl and phenyl hydrogens does not affect the structure and the internal dynamics of the complex, differently from the deuteration of the water moiety, which leads to large isotopic effects (Giuliano et al., 2005).

  7. Vacuum ultraviolet emission spectrum measurement of a microwave-discharge hydrogen-flow lamp in several configurations: Application to photodesorption of CO ice

    SciTech Connect

    Chen, Y.-J.; Wu, C.-Y. R.; Chuang, K.-J.; Chu, C.-C.; Yih, T.-S.; Muñoz Caro, G. M.; Nuevo, M.; Ip, W.-H.

    2014-01-20

    We report measurements of the vacuum ultraviolet (VUV) emission spectra of a microwave-discharge hydrogen-flow lamp (MDHL), a common tool in astrochemistry laboratories working on ice VUV photoprocessing. The MDHL provides hydrogen Ly-α (121.6 nm) and H{sub 2} molecular emission in the 110-180 nm range. We show that the spectral characteristics of the VUV light emitted in this range, in particular the relative proportion of Ly-α to molecular emission bands, strongly depend on the pressure of H{sub 2} inside the lamp, the lamp geometry (F type versus T type), the gas used (pure H{sub 2} versus H{sub 2} seeded in He), and the optical properties of the window used (MgF{sub 2} versus CaF{sub 2}). These different configurations are used to study the VUV irradiation of CO ice at 14 K. In contrast to the majority of studies dedicated to the VUV irradiation of astrophysical ice analogs, which have not taken into consideration the emission spectrum of the MDHL, our results show that the processes induced by photons in CO ice from a broad energy range are different and more complex than the sum of individual processes induced by monochromatic sources spanning the same energy range, as a result of the existence of multistate electronic transitions and discrepancy in absorption cross sections between parent molecules and products in the Ly-α and H{sub 2} molecular emission ranges.

  8. Vacuum Ultraviolet Emission Spectrum Measurement of a Microwave-discharge Hydrogen-flow Lamp in Several Configurations: Application to Photodesorption of CO Ice

    NASA Astrophysics Data System (ADS)

    Chen, Y.-J.; Chuang, K.-J.; Muñoz Caro, G. M.; Nuevo, M.; Chu, C.-C.; Yih, T.-S.; Ip, W.-H.; Wu, C.-Y. R.

    2014-01-01

    We report measurements of the vacuum ultraviolet (VUV) emission spectra of a microwave-discharge hydrogen-flow lamp (MDHL), a common tool in astrochemistry laboratories working on ice VUV photoprocessing. The MDHL provides hydrogen Ly-α (121.6 nm) and H2 molecular emission in the 110-180 nm range. We show that the spectral characteristics of the VUV light emitted in this range, in particular the relative proportion of Ly-α to molecular emission bands, strongly depend on the pressure of H2 inside the lamp, the lamp geometry (F type versus T type), the gas used (pure H2 versus H2 seeded in He), and the optical properties of the window used (MgF2 versus CaF2). These different configurations are used to study the VUV irradiation of CO ice at 14 K. In contrast to the majority of studies dedicated to the VUV irradiation of astrophysical ice analogs, which have not taken into consideration the emission spectrum of the MDHL, our results show that the processes induced by photons in CO ice from a broad energy range are different and more complex than the sum of individual processes induced by monochromatic sources spanning the same energy range, as a result of the existence of multistate electronic transitions and discrepancy in absorption cross sections between parent molecules and products in the Ly-α and H2 molecular emission ranges.

  9. Molecular structure and effects of intermolecular hydrogen bonding on the vibrational spectrum of trifluorothymine, an antitumor and antiviral agent.

    PubMed

    Cırak, Cağrı; Koç, Nurettin

    2012-09-01

    In the present work, the experimental and the theoretical vibrational spectra of trifluorothymine were investigated. The FT-IR (400-4000 cm(-1)) and μ-Raman spectra (100-4000 cm(-1)) of trifluorothymine in the solid phase were recorded. The geometric parameters (bond lengths and bond angles) and vibrational frequencies of the title molecule in the ground state were calculated using ab initio Hartree-Fock (HF) method and density functional theory (B3LYP) method with the 6-31++G(d,p) and 6-311++G(d,p) basis sets for the first time. The optimized geometric parameters and the theoretical vibrational frequencies were found to be in good agreement with the corresponding experimental data and with results found in the literature. Vibrational frequencies were assigned based on the potential energy distribution using the VEDA 4 program. The dimeric form of trifluorothymine was also simulated to evaluate the effect of intermolecular hydrogen bonding on the vibrational frequencies. It was observed that the stretching modes shifted to lower frequencies, while the in-plane and out-of-plane bending modes shifted to higher frequencies due to the intermolecular N-H⋯O hydrogen bonds.

  10. Effects of Antenna Beam Chromaticity on Redshifted 21 cm Power Spectrum and Implications for Hydrogen Epoch of Reionization Array

    NASA Astrophysics Data System (ADS)

    Thyagarajan, Nithyanandan; Parsons, Aaron R.; DeBoer, David R.; Bowman, Judd D.; Ewall-Wice, Aaron M.; Neben, Abraham R.; Patra, Nipanjana

    2016-07-01

    Unaccounted for systematics from foregrounds and instruments can severely limit the sensitivity of current experiments from detecting redshifted 21 cm signals from the Epoch of Reionization (EoR). Upcoming experiments are faced with a challenge to deliver more collecting area per antenna element without degrading the data with systematics. This paper and its companions show that dishes are viable for achieving this balance using the Hydrogen Epoch of Reionization Array (HERA) as an example. Here, we specifically identify spectral systematics associated with the antenna power pattern as a significant detriment to all EoR experiments which causes the already bright foreground power to leak well beyond ideal limits and contaminate the otherwise clean EoR signal modes. A primary source of this chromaticity is reflections in the antenna-feed assembly and between structures in neighboring antennas. Using precise foreground simulations taking wide-field effects into account, we provide a generic framework to set cosmologically motivated design specifications on these reflections to prevent further EoR signal degradation. We show that HERA will not be impeded by such spectral systematics and demonstrate that even in a conservative scenario that does not perform removal of foregrounds, HERA will detect the EoR signal in line-of-sight k-modes, {k}\\parallel ≳ 0.2 h Mpc-1, with high significance. Under these conditions, all baselines in a 19-element HERA layout are capable of detecting EoR over a substantial observing window on the sky.

  11. Hydrogen/deuterium exchange and mass spectrometric analysis of a protein containing multiple disulfide bonds: Solution structure of recombinant macrophage colony stimulating factor-beta (rhM-CSFbeta).

    PubMed

    Yan, Xuguang; Zhang, Heidi; Watson, Jeffrey; Schimerlik, Michael I; Deinzer, Max L

    2002-09-01

    Studies with the homodimeric recombinant human macrophage colony-stimulating factor beta (rhM-CSFbeta), show for the first time that a large number (9) of disulfide linkages can be reduced after amide hydrogen/deuterium (H/D) exchange, and the protein digested and analyzed successfully for the isotopic composition by electrospray mass spectrometry. Analysis of amide H/D after exchange-in shows that in solution the conserved four-helix bundle of (rhM-CSFbeta) has fast and moderately fast exchangeable sections of amide hydrogens in the alphaA helix, and mostly slow exchanging sections of amide hydrogens in the alphaB, alphaC, and alphaD helices. Most of the amide hydrogens in the loop between the beta1 and beta4 sheets exhibited fast or moderately fast exchange, whereas in the amino acid 63-67 loop, located at the interface of the two subunits, the exchange was slow. Solvent accessibility as measured by H/D exchange showed a better correlation with the average depth of amide residues calculated from reported X-ray crystallographic data for rhM-CSFalpha than with the average B-factor. The rates of H/D exchange in rhM-CSFbeta appear to correlate well with the exposed surface calculated for each amino acid residue in the crystal structure except for the alphaD helix. Fast hydrogen isotope exchange throughout the segment amino acids 150-221 present in rhM-CSFbeta, but not rhM-CSFalpha, provides evidence that the carboxy-terminal region is unstructured. It is, therefore, proposed that the anomalous behavior of the alphaD helix is due to interaction of the carboxy-terminal tail with this helical segment.

  12. On the spatial distribution of neutral hydrogen in the Universe: bias and shot-noise of the H I power spectrum

    NASA Astrophysics Data System (ADS)

    Castorina, Emanuele; Villaescusa-Navarro, Francisco

    2017-10-01

    The spatial distribution of neutral hydrogen (H i) in the Universe contains a wealth of cosmological information. The 21-cm emission line can be used to map the H I up to very high redshift and therefore reveal us something about the evolution of the large-scale structures in the Universe. However, little is known about the abundance and clustering properties of the H I over cosmic time. Motivated by this, we build an analytic framework where the relevant parameters that govern how the H I is distributed among dark matter haloes can be fixed using observations. At the same time, we provide tools to study the column density distribution function of the H I absorbers together with their clustering properties. Our formalism is the first one able to account for all observations at a single redshift, z = 2.3. The linear bias of the H I and the mean number density of H I sources, two main ingredients in the calculation of the signal-to-noise ratio of a cosmological survey, are then discussed in detail, also extrapolating the results to low and high redshift. We find that H I bias is relatively higher than the value reported in similar studies, but the shot noise level is always sub-dominant, making the H I power spectrum always a high signal-to-noise measurement up to z ≃ 5 in the limit of no instrumental noise and foreground contamination.

  13. Norovirus recombination.

    PubMed

    Bull, Rowena A; Tanaka, Mark M; White, Peter A

    2007-12-01

    RNA recombination is a significant driving force in viral evolution. Increased awareness of recombination within the genus Norovirus of the family Calicivirus has led to a rise in the identification of norovirus (NoV) recombinants and they are now reported at high frequency. Currently, there is no classification system for recombinant NoVs and a widely accepted recombinant genotyping system is still needed. Consequently, there is duplication in reporting of novel recombinants. This has led to difficulties in defining the number and types of recombinants in circulation. In this study, 120 NoV nucleotide sequences were compiled from the current GenBank database and published literature. NoV recombinants and their recombination breakpoints were identified using three methods: phylogenetic analysis, SimPlot analysis and the maximum chi2 method. A total of 20 NoV recombinant types were identified in circulation worldwide. The recombination point is the ORF1/2 overlap in all isolates except one, which demonstrated a double recombination event within the polymerase region.

  14. Determining interstellar hydrogen and deuterium column densities by means of the Lyman channel of the SPECTRUM UV Rowland spectrograph: a pre-launch feasibility study

    NASA Astrophysics Data System (ADS)

    Franchini, Mariagrazia; Morossi, Carlo; Vladilo, G.

    1996-10-01

    approximately 0.1 dex accuracy in the `observed' column densities, were derived by varying the input interstellar hydrogen column density. As a result, we show that the Lyman channel of the SPECTRUM UV Rowland spectrograph is up to the task of deriving accurate H and D column densities of low and medium column density interstellar clouds while it fails for N(HI) >= 10(superscript 21) atoms cm(superscript -2).

  15. The role of N-H complexes in the control of localized center recombination in hydrogenated GaInNAs (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Whiteside, Vincent R.; Fukuda, Miwa; Estes, Nicholas J.; Wang, Bin; Brown, Collin R.; Hossain, Khalid; Golding, Terry D.; Leroux, Mathieu; Al Khalfioui, Mohamed; Tischler, Joseph G.; Ellis, Chase T.; Glaser, Evan R.; Sellers, Ian R.

    2017-04-01

    A significant improvement in the quality of dilute nitrides has recently led to the ability to reveal depletion widths in excess of 1 μm at 1 eV [1]. The real viability of dilute nitrides for PV has been recently demonstrated with the reporting of a record efficiency of 43.5% from a 4J MJSC including GaInNAs(Sb) [2]. Despite the progress made, these materials remain poorly understood and work continues to improve their lifetime and reproducibility. We have investigated the possibility of improving the functionality of GaInNAs using hydrogenation to selectively passivate mid-gap defects, while preserving the substitutional nitrogen. Temperature dependent photoluminescence measurements of the intrinsic region of a GaInNAs p-i-n solar cell show a classic "s-shape" associated with localization prior to hydrogenation. No sign of this "s-shape" is evident after hydrogenation, despite the retention of substitutional nitrogen as evidenced by the band absorption of 1 eV. The absence of an "s-shape" at low-temperature in hydrogenated GaInNAs is rather curious since, even in high quality nitrides this behavior is due to the emission of isoelectronic centers created via N-As substitution [3]. The potential origins of this behavior will be discussed. The promise of this process for GaInNAs solar cells was demonstrated by a three-fold improvement in the performance of a hydrogenated device with respect to an as-grown reference [4]. [1] "Wide-depletion width GaInNAs solar cells by thermal annealing," I. R. Sellers, W-S. Tan, K. Smith, S. Hooper, S. Day and M. Kauer, Applied Physics Letters 99, 151111 (2011) [2] "43.5% efficient lattice matched solar cells," M. Wiemer, V. Sabnis, and H. Yuen, Proc. SPIE 8108, 810804 (2011) [3]"Probing the nature of carrier localization in GaInNAs, epilayers using optical methods," T. Ysai, B. Barman, T. Scarce, G. Lindberg, M. Fukuda, V. R. Whiteside, J. C. Keay, M. B. Johnson, I. R. Sellers, M. Al Khalfioui, M. Leroux, B. A. Weinstein and A

  16. High level extracellular production of a recombinant alkaline catalase in E. coli BL21 under ethanol stress and its application in hydrogen peroxide removal after cotton fabrics bleaching.

    PubMed

    Yu, Zhenxiao; Zheng, Hongchen; Zhao, Xingya; Li, Shufang; Xu, Jianyong; Song, Hui

    2016-08-01

    The effects of induction parameters, osmolytes and ethanol stress on the productivity of the recombinant alkaline catalase (KatA) in Escherichia coli BL21 (pET26b-KatA) were investigated. The yield of soluble KatA was significantly enhanced by 2% ethanol stress. And a certain amount of Triton X-100 supplementation could markedly improved extracellular ratio of KatA. A total soluble catalase activity of 78,762U/mL with the extracellular ratio of 92.5% was achieved by fed-batch fermentation in a 10L fermentor, which was the highest yield so far. The purified KatA showed high stability at 50°C and pH 6-10. Application of KatA for elimination of H2O2 after cotton fabrics bleaching led to less consumption of water, steam and electric power by 25%, 12% and 16.7% respectively without productivity and quality losing of cotton fabrics. Thus, the recombinant KatA is a promising candidate for industrial production and applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Atomic hydrogen rocket engine

    NASA Technical Reports Server (NTRS)

    Etters, R. D.; Flurchick, K.

    1981-01-01

    A rocket using atomic hydrogen propellant is discussed. An essential feature of the proposed engine is that the atomic hydrogen fuel is used as it is produced, thus eliminating the necessity of storage. The atomic hydrogen flows into a combustion chamber and recombines, producing high velocity molecular hydrogen which flows out an exhaust port. Standard thermodynamics, kinetic theory and wall recombination cross-sections are used to predict a thrust of approximately 1.4 N for a RF hydrogen flow rate of 4 x 10 to the 22nd/sec. Specific impulses are nominally from 1000 to 2000 sec. It is predicted that thrusts on the order of one Newton and specific impulses of up to 2200 sec are attainable with nominal RF discharge fluxes on the order of 10 to the 22nd atoms/sec; further refinements will probably not alter these predictions by more than a factor of two.

  18. Genetic Recombination

    ERIC Educational Resources Information Center

    Whitehouse, H. L. K.

    1973-01-01

    Discusses the mechanisms of genetic recombination with particular emphasis on the study of the fungus Sordaria brevicollis. The study of recombination is facilitated by the use of mutants of this fungus in which the color of the ascospores is affected. (JR)

  19. Genetic Recombination

    ERIC Educational Resources Information Center

    Whitehouse, H. L. K.

    1973-01-01

    Discusses the mechanisms of genetic recombination with particular emphasis on the study of the fungus Sordaria brevicollis. The study of recombination is facilitated by the use of mutants of this fungus in which the color of the ascospores is affected. (JR)

  20. Hydrogenated TiO2 nanobelts as highly efficient photocatalytic organic dye degradation and hydrogen evolution photocatalyst.

    PubMed

    Tian, Jian; Leng, Yanhua; Cui, Hongzhi; Liu, Hong

    2015-12-15

    TiO2 nanobelts have gained increasing interest because of its outstanding properties and promising applications in a wide range of fields. Here we report the facile synthesis of hydrogenated TiO2 (H-TiO2) nanobelts, which exhibit excellent UV and visible photocatalytic decomposing of methyl orange (MO) and water splitting for hydrogen production. The improved photocatalytic property can be attributed to the Ti(3+) ions and oxygen vacancies in TiO2 nanobelts created by hydrogenation. Ti(3+) ions and oxygen vacancies can enhance visible light absorption, promote charge carrier trapping, and hinder the photogenerated electron-hole recombination. This work offers a simple strategy for the fabrication of a wide solar spectrum of active photocatalysts, which possesses significant potential for more efficient photodegradation, photocatalytic water splitting, and enhanced solar cells using sunlight as light source.

  1. Radiofrequency recombination lines from the interstellar medium

    NASA Technical Reports Server (NTRS)

    Dupree, A. K.

    1971-01-01

    Observations of recombination lines form normal H II regions, extended H II regions, nonthermal sources, and the H I medium are discussed. Detection of recombination lines from elements other than hydrogen may provide a means of identifying fossil Stromgren spheres at high temperature.

  2. Hydrogen from solar energy

    SciTech Connect

    Nix, R.G.

    1984-07-01

    This paper describes those portions of the Photo/Thermochemical Research Program that possibly apply to the production of hydrogen from sources such as water or hydrogen sulfide. That research centers around understanding high flux solids decomposition reactions and how to best exploit photoreactions so the energy contained in the entire solar spectrum is used. 2 references, 4 figures.

  3. Hydrogen peroxide vapor room disinfection and hand hygiene improvements reduce Clostridium difficile infection, methicillin-resistant Staphylococcus aureus, vancomycin-resistant enterococci, and extended-spectrum β-lactamase.

    PubMed

    Horn, Kim; Otter, Jonathan A

    2015-12-01

    We report a statistically significant reduction in Clostridium difficile infection (from 1.38 to 0.90 cases per 1,000 patient days), vancomycin-resistant enterococci (from 0.21 to 0.01 cases per 1,000 patient days), and extended-spectrum β-lactamase-producing gram-negative bacteria (from 0.16 to 0.01 cases per 1,000 patient days) associated with the introduction of hydrogen peroxide vapor for terminal decontamination of patient rooms and improvements in hand hygiene compliance.

  4. The thermal Sunyaev-Zeldovich effect of primordial recombination radiation

    NASA Astrophysics Data System (ADS)

    Kholupenko, E. E.; Balashev, S. A.; Ivanchik, A. V.; Varshalovich, D. A.

    2015-02-01

    It is well known that recombination radiation of primordial hydrogen-helium plasma leads to the distortions of the Planckian spectrum shape of the cosmic microwave background (CMB) radiation. We discuss the thermal Sunyaev-Zeldovich (SZ) effect with taking into account primordial recombination radiation (PRR). Since in the thermal SZ effect the redistribution of the photons depends on the derivatives of the spectrum, the value of relative correction to SZ effect due to PRR is significantly larger than relative corrections due to PRR to the initial spectrum. Calculations of corrections to the thermal SZ effect due to PRR show that depending on the cluster parameters: (1) In the range of frequencies ν = 0.3-700 GHz, where CMB dominates and spectrum is very close to the Planckian one, the relative corrections due to PRR have an order of 10-9-10-6 of classical SZ effect (i.e. SZ effect for Planckian CMB spectrum). The difference of temperature deviations arising due to PRR coming from different directions (through intracluster and near intercluster medium) reaches values up to 7.6 nKcmb at ν ≃ 0.307 GHz (maximum in considered range). (2) In the range of frequencies ν = 700-5000 GHz, where cosmic infrared background (CIB) becomes significant or even dominates, the relative corrections due to PRR can reach 10-8-10-5 of main SZ effect (i.e. SZ effect for CIB). Corresponding intensity difference reaches values up to 25 mJy sr-1 (at ν ≃ 1700 GHz). In addition we suggest a modification of the method of electron gas temperature determination using corrections of the SZ effect due to PRR. Such modification allows one to simplify the determination of the cluster electron gas temperature in comparison with known methods.

  5. Recombination device for storage batteries

    DOEpatents

    Kraft, H.; Ledjeff, K.

    1984-01-01

    A recombination device including a gas-tight enclosure connected to receive the discharge gases from a rechargeable storage battery. Catalytic material for the recombination of hydrogen and oxygen to form water is supported within the enclosure. The enclosure is sealed from the atmosphere by a liquid seal including two vertical chambers interconnected with an inverted U-shaped overflow tube. The first chamber is connected at its upper portion to the enclosure and the second chamber communicates at its upper portion with the atmosphere. If the pressure within the enclosure differs as overpressure or vacuum by more than the liquid level, the liquid is forced into one of the two chambers and the overpressure is vented or the vacuum is relieved. The recombination device also includes means for returning recombined liquid to the battery and for absorbing metal hydrides.

  6. Recombination device for storage batteries

    DOEpatents

    Kraft, Helmut; Ledjeff, Konstantin

    1985-01-01

    A recombination device including a gas-tight enclosure connected to receive he discharge gases from a rechargeable storage battery. Catalytic material for the recombination of hydrogen and oxygen to form water is supported within the enclosure. The enclosure is sealed from the atmosphere by a liquid seal including two vertical chambers interconnected with an inverted U-shaped overflow tube. The first chamber is connected at its upper portion to the enclosure and the second chamber communicates at its upper portion with the atmosphere. If the pressure within the enclosure differs as overpressure or vacuum by more than the liquid level, the liquid is forced into one of the two chambers and the overpressure is vented or the vacuum is relieved. The recombination device also includes means for returning recombined liquid to the battery and for absorbing metal hydrides.

  7. Probing the global potential energy minimum of (CH2O)2: THz absorption spectrum of (CH2O)2 in solid neon and para-hydrogen.

    PubMed

    Andersen, J; Voute, A; Mihrin, D; Heimdal, J; Berg, R W; Torsson, M; Wugt Larsen, R

    2017-06-28

    The true global potential energy minimum configuration of the formaldehyde dimer (CH2O)2, including the presence of a single or a double weak intermolecular CH⋯O hydrogen bond motif, has been a long-standing subject among both experimentalists and theoreticians as two different energy minima conformations of Cs and C2h symmetry have almost identical energies. The present work demonstrates how the class of large-amplitude hydrogen bond vibrational motion probed in the THz region provides excellent direct spectroscopic observables for these weak intermolecular CH⋯O hydrogen bond motifs. The combination of concentration dependency measurements, observed isotopic spectral shifts associated with H/D substitutions and dedicated annealing procedures, enables the unambiguous assignment of three large-amplitude infrared active hydrogen bond vibrational modes for the non-planar Cs configuration of (CH2O)2 embedded in cryogenic neon and enriched para-hydrogen matrices. A (semi)-empirical value for the change of vibrational zero-point energy of 5.5 ± 0.3 kJ mol(-1) is proposed for the dimerization process. These THz spectroscopic observations are complemented by CCSD(T)-F12/aug-cc-pV5Z (electronic energies) and MP2/aug-cc-pVQZ (force fields) electronic structure calculations yielding a (semi)-empirical value of 13.7 ± 0.3 kJ mol(-1) for the dissociation energy D0 of this global potential energy minimum.

  8. Probing the global potential energy minimum of (CH2O)2: THz absorption spectrum of (CH2O)2 in solid neon and para-hydrogen

    NASA Astrophysics Data System (ADS)

    Andersen, J.; Voute, A.; Mihrin, D.; Heimdal, J.; Berg, R. W.; Torsson, M.; Wugt Larsen, R.

    2017-06-01

    The true global potential energy minimum configuration of the formaldehyde dimer (CH2O)2, including the presence of a single or a double weak intermolecular CH⋯O hydrogen bond motif, has been a long-standing subject among both experimentalists and theoreticians as two different energy minima conformations of Cs and C2h symmetry have almost identical energies. The present work demonstrates how the class of large-amplitude hydrogen bond vibrational motion probed in the THz region provides excellent direct spectroscopic observables for these weak intermolecular CH⋯O hydrogen bond motifs. The combination of concentration dependency measurements, observed isotopic spectral shifts associated with H/D substitutions and dedicated annealing procedures, enables the unambiguous assignment of three large-amplitude infrared active hydrogen bond vibrational modes for the non-planar Cs configuration of (CH2O)2 embedded in cryogenic neon and enriched para-hydrogen matrices. A (semi)-empirical value for the change of vibrational zero-point energy of 5.5 ± 0.3 kJ mol-1 is proposed for the dimerization process. These THz spectroscopic observations are complemented by CCSD(T)-F12/aug-cc-pV5Z (electronic energies) and MP2/aug-cc-pVQZ (force fields) electronic structure calculations yielding a (semi)-empirical value of 13.7 ± 0.3 kJ mol-1 for the dissociation energy D0 of this global potential energy minimum.

  9. On the Detection of Spectral Ripples from the Recombination Epoch

    NASA Astrophysics Data System (ADS)

    Sathyanarayana Rao, Mayuri; Subrahmanyan, Ravi; Udaya Shankar, N.; Chluba, Jens

    2015-09-01

    Photons emitted during cosmological hydrogen (500≲ z≲ 1600) and helium recombination (1600≲ z≲ 3500 for He ii \\to He i, 5000≲ z≲ 8000 for He iii \\to He ii) are predicted to appear as broad, weak spectral distortions of the cosmic microwave background. We present a feasibility study for a ground-based detection of these recombination lines, which would uniquely probe astrophysical cosmology beyond the last scattering surface and provide observational constraints on the thermal history of the universe. We find that including sufficient signal spectral structure and maximizing signal-to-noise ratio, an octave band in the 2-6 GHz window is optimal; in this band the predicted signal appears as an additive quasi-sinusoidal component with amplitude about 8 nK embedded in a sky spectrum some nine orders of magnitude brighter. We discuss algorithms to detect these tiny spectral fluctuations in the sky spectrum by foreground modeling and introduce a maximally smooth function capable of describing the foreground spectrum and distinguishing the signal of interest. We conclude that detection is in principle feasible in realistic observing times provided that radio frequency interference and instrument bandpass calibration are controlled in this band at the required level; using Bayesian tests and mock data, we show that 90% confidence detection is possible with an array of 128 radiometers observing for 255 days of effective integration time. We propose APSERa—Array of Precision Spectrometers for the Epoch of Recombination—a dedicated radio telescope to detect these recombination lines.

  10. A continuum and recombination line study of the Cep IV star formation region

    NASA Technical Reports Server (NTRS)

    Rosano, G. S.; Angerhofer, P. E.; Grayzeck, E. J.

    1980-01-01

    The Cep IV star formation region consists of the Cep IV OB association, the H II regions W 1 and NGC 7822, and an extensive fragmented dust cloud complex. Six- and nine-cm radio continuum observations and 6-cm hydrogen recombination line observations show that all of the emission nebulosity in this region, which includes a large loop-type structure suggested by Herbst and Assousa (1977) to be a supernova remnant, has a thermal spectrum. The two components of W 1 have been detected at H 110 alpha and are found to be kinematically distinct.

  11. Kinetics and mechanism of the reaction of recombination of vinyl and hydroxyl radicals

    NASA Astrophysics Data System (ADS)

    Knyazev, Vadim D.

    2017-10-01

    The recombination of the vinyl (C2H3) and the hydroxyl (OH) radicals was studied computationally using quantum chemistry and master equation/RRKM. The reaction mechanism includes the initial addition, several isomerization steps, and decomposition via seven different channels. The spectrum of products demonstrates temperature dependence in the 300-3000 K range. At low temperatures (below 1600 K), CH3 + HCO products are dominant but at elevated temperatures vinoxy radical (CH2CHO) and hydrogen atom become more important. The acetyl (CH3CO) + H products and formation of vinylidene (CH2C:) and water products are minor but non-negligible.

  12. A mixed quantum-classical molecular dynamics study of the hydroxyl stretch in methanol/carbon tetrachloride mixtures: equilibrium hydrogen-bond structure and dynamics at the ground state and the infrared absorption spectrum.

    PubMed

    Kwac, Kijeong; Geva, Eitan

    2011-07-28

    We present a mixed quantum-classical molecular dynamics study of the structure and dynamics of the hydroxyl stretch in methanol/carbon tetrachloride mixtures. One of the methanol molecules is tagged, and its hydroxyl stretch is treated quantum-mechanically, while the remaining degrees of freedom are treated classically. The adiabatic Hamiltonian of the quantum-mechanical hydroxyl is diagonalized on-the-fly to obtain the corresponding adiabatic energy levels and wave functions which depend parametrically on the instantaneous configuration of the classical degrees of freedom. The dynamics of the classical degrees of freedom are in turn affected by the quantum-mechanical state of the tagged hydroxyl stretch via the corresponding Hellmann-Feynman forces. The ability of five different force-field combinations to reproduce the experimental absorption infrared spectrum of the hydroxyl stretch is examined for different isotopomers and on a wide range of compositions. It is found that, in addition to accounting for the anharmonic nature of the hydroxyl stretch, one also has to employ polarizable force fields and account for the damping of the polarizability at short distances. The equilibrium ground-state hydrogen-bonding structure and dynamics is analyzed, and its signature on the absorption infrared spectrum of the hydroxyl stretch is investigated in detail. Five different hydroxyl stretch subpopulations are identified and spectrally assigned: monomers (α), hydrogen-bond acceptors (β), hydrogen-bond donors (γ), simultaneous hydrogen-bond donors and acceptors (δ), and simultaneous hydrogen-bond donors and double-acceptors (ε). The fundamental transition frequencies of the α and β subpopulations are found to be narrowly distributed and to overlap, thereby giving rise to a single narrow band whose intensity is significantly diminished by rotational relaxation. The fundamental transition frequency distributions of the γ, δ, and ε subpopulations are found to be

  13. Recombinant allergens

    PubMed Central

    Jutel, Marek; Solarewicz-Madejek, Katarzyna; Smolinska, Sylwia

    2012-01-01

    Allergen specific immunotherapy (SIT) is the only known causative treatment of allergic diseases. Recombinant allergen-based vaccination strategies arose from a strong need to both to improve safety and enhance efficacy of SIT. In addition, new vaccines can be effective in allergies including food allergy or atopic dermatitis, which poorly respond to the current treatment with allergen extracts. A number of successful clinical studies with both wild-type and hypoallergenic derivatives of recombinant allergens vaccines have been reported for the last decade. They showed high efficacy and safety profile as well as very strong modulation of T and B cell responses to specific allergens. PMID:23095874

  14. Recombinant gonadotropins.

    PubMed

    Lathi, R B; Milki, A A

    2001-10-01

    Recombinant DNA technology makes it possible to produce large amounts of human gene products for pharmacologic applications, supplanting the need for human tissues. The genes for the alpha and beta subunits of follicle-stimulating hormone (FSH), luteinizing hormone (LH), and human chorionic gonadotropin (hCG) have been characterized and cloned. Recombinant FSH (rFSH) has been shown to be safe and effective in the treatment of fertility disorders. In comparison with the urinary gonadotropin products, human menopausal gonadotropins (HMG), and urinary follitropins (uFSH), rFSH is more potent and better tolerated by patients. Recombinant HCG appears to be as efficacious as urinary HCG with the benefit of improved local tolerance. Recombinant LH (rLH) is likely to be recommended as a supplement to rFSH for ovulation induction in hypogonadotropic women. It may also benefit in vitro fertilization patients undergoing controlled ovarian hyperstimulation with rFSH combined with pituitary suppression, with a gonadotropin-releasing hormone agonist or antagonist.

  15. The recombination epoch revisited

    NASA Technical Reports Server (NTRS)

    Krolik, Julian H.

    1989-01-01

    Previous studies of cosmological recombination have shown that this process produces as a by-product a highly superthermal population of Ly-alpha photons which retard completion of recombination. Cosmological redshifting was thought to determine the frequency distribution of the photons, while two-photon decay of hydrogen's 2s state was thought to control their numbers. It is shown here that frequency diffusion due to photon scattering dominate the cosmological redshift in the frequency range near line center which fixes the ratio of ground state to excited state population, while incoherent scattering into the far-red damping wing effectively destroys Ly-alpha photons as a rate which is competitive with two-photon decay. The former effect tends to hold back recombination, while the latter tends to accelerate it; the net results depends on cosmological parameters, particularly the combination Omega(b) h/sq rt (2q0), where Omega(b) is the fraction of the critical density provided by baryons.

  16. Hydrogen Fire Spectroscopy Issues Project

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C. (Compiler)

    2014-01-01

    The detection of hydrogen fires is important to the aerospace community. The National Aeronautics and Space Administration (NASA) has devoted significant effort to the development, testing, and installation of hydrogen fire detectors based on ultraviolet, near-infrared, mid-infrared, andor far-infrared flame emission bands. Yet, there is no intensity calibrated hydrogen-air flame spectrum over this range in the literature and consequently, it can be difficult to compare the merits of different radiation-based hydrogen fire detectors.

  17. RECOMBINATION RATE COEFFICIENTS OF Be-LIKE Si

    SciTech Connect

    Orban, I.; Boehm, S.; Schuch, R.; Loch, S. D.

    2010-10-01

    Recombination of Be-like Si{sup 10+} over the 0-43 eV electron-ion energy range is measured at the CRYRING electron cooler. In addition to radiative and dielectronic recombination, the recombination spectrum also shows strong contributions from trielectronic recombination. Below 100 meV, several very strong resonances associated with a spin-flip of the excited electron dominate the spectrum and also dominate the recombination in the photoionized plasma. The resonant plasma rate coefficients corrected for the experimental field ionization are in good agreement with calculated results by Gu and with AUTOSTRUCTURE calculations. All other calculations significantly underestimate the plasma rate coefficients at low temperatures.

  18. Biomimetic Production of Hydrogen

    NASA Astrophysics Data System (ADS)

    Gust, Devens

    2004-03-01

    The basic reaction for hydrogen generation is formation of molecular hydrogen from two electrons and two protons. Although there are many possible sources for the protons and electrons, and a variety of mechanisms for providing the requisite energy for hydrogen synthesis, the most abundant and readily available source of protons and electrons is water, and the most attractive source of energy for powering the process is sunlight. Not surprisingly, living systems have evolved to take advantage of these sources for materials and energy. Thus, biology provides paradigms for carrying out the reactions necessary for hydrogen production. Photosynthesis in green plants uses sunlight as the source of energy for the oxidation of water to give molecular oxygen, protons, and reduction potential. Some photosynthetic organisms are capable of using this reduction potential, in the form of the reduced redox protein ferredoxin, to reduce protons and produce molecular hydrogen via the action of an hydrogenase enzyme. A variety of other organisms metabolize the reduced carbon compounds that are ultimately the major products of photosynthesis to produce molecular hydrogen. These facts suggest that it might be possible to use light energy to make molecular hydrogen via biomimetic constructs that employ principles similar to those used by natural organisms, or perhaps with hybrid "bionic" systems that combine biomimetic materials with natural enzymes. It is now possible to construct artificial photosynthetic systems that mimic some of the major steps in the natural process.(1) Artificial antennas based on porphyrins, carotenoids and other chromophores absorb light at various wavelengths in the solar spectrum and transfer the harvested excitation energy to artificial photosynthetic reaction centers.(2) In these centers, photoinduced electron transfer uses the energy from light to move an electron from a donor to an acceptor moiety, generating a high-energy charge-separated state

  19. Dielectronic recombination resonances in Na8+

    NASA Astrophysics Data System (ADS)

    Nikolić, D.; Lindroth, E.; Kieslich, S.; Brandau, C.; Schippers, S.; Shi, W.; Müller, A.; Gwinner, G.; Schnell, M.; Wolf, A.

    2004-12-01

    The electron-ion recombination spectrum of the Li-like Na8+ ion in the energy range 0.0-0.5eV is presented. Experimental results obtained by storage-ring techniques are compared with a calculated spectrum, based on a combination of relativistic many-body methods and complex rotation, and the agreement is found to be very good. The deviations between measured and calculated dielectronic recombination resonance energies are usually below about 2meV with a maximum difference at 5.5meV , while the theoretical cross sections deviate by at most 20% from the experiment. The recombination spectrum in the investigated energy region is determined by the 2pj7ℓj' Rydberg manifold of dielectronic recombination resonances, comprising 61 states within half an eV above the ground state of Na8+ . The theoretical resonance parameters of all contributing states are provided.

  20. Fission Spectrum

    DOE R&D Accomplishments Database

    Bloch, F.; Staub, H.

    1943-08-18

    Measurements of the spectrum of the fission neutrons of 25 are described, in which the energy of the neutrons is determined from the ionization produced by individual hydrogen recoils. The slow neutrons producing fission are obtained by slowing down the fast neutrons from the Be-D reaction of the Stanford cyclotron. In order to distinguish between fission neutrons and the remaining fast cyclotron neutrons both the cyclotron current and the pusle amplifier are modulated. A hollow neutron container, in which slow neutrons have a lifetime of about 2 milliseconds, avoids the use of large distances. This method results in much higher intensities than the usual modulation arrangement. The results show a continuous distribution of neutrons with a rather wide maximum at about 0.8 MV falling off to half of its maximum value at 2.0 MV. The total number of netrons is determined by comparison with the number of fission fragments. The result seems to indicate that only about 30% of the neutrons have energies below .8 MV. Various tests are described which were performed in order to rule out modification of the spectrum by inelastic scattering. Decl. May 4, 1951

  1. Reverse engineering a spectrum: using fluorescent spectra of molecular hydrogen to recreate the missing Lyman-α line of pre-main sequence stars

    NASA Astrophysics Data System (ADS)

    Linsky, J. L.; Herczeg, G.; Wood, B. E.

    2008-12-01

    The hydrogen Lyman-α (Lyα) line, a major source of ionization of metals in the circumstellar disks of pre-main sequence (PMS) stars, is usually not observed due to absorption by interstellar and circumstellar hydrogen. We have developed a technique to reconstruct the intrinsic Lyα line using the observed emission in the H2 B-X lines that are fluoresced by Lyα. We describe this technique and the subsequent analysis of the ultraviolet (UV) spectra of the TW Hya, RU Lupi and other PMS stars. We find that the reconstructed Lyα lines are indeed far brighter than any other feature in the UV spectra of these stars and therefore play an important role in the ionization and heating of the outer layers of circumstellar disks.

  2. Enhanced Hydrogen Evolution in the Presence of Plasmonic Au-Photo-Sensitized g-C3N4 with an Extended Absorption Spectrum from 460 to 640 nm

    PubMed Central

    Xie, Lihong; Ai, Zhuyu; Zhang, Meng; Sun, Runze; Zhao, Weirong

    2016-01-01

    Extensively spectral-responsive photocatalytic hydrogen production was achieved over g-C3N4 photo-sensitized by Au nanoparticles. The photo-sensitization, which was achieved by a facile photo-assisted reduction route, resulted in an extended spectral range of absorption from 460 to 640 nm. The photo-sensitized g-C3N4 (Au/g-C3N4) photocatalysts exhibit significantly enhanced photocatalytic hydrogen evolution with a TOF value of 223 μmol g-1 h-1, which is a 130-fold improvement over g-C3N4. The hydrogen production result confirms that Au nanoparticles are effective photo-sensitizers for the visible light-responsive substrate g-C3N4. UV–vis diffuse reflection spectra (DRS), photoluminescence spectra (PL), electron spin resonance (ESR), and electrochemical measurements were used to investigate the transfer process of photogenerated electrons. The optimal Au/g-C3N4 photocatalyst displays the lowest charge transfer resistance of 18.45 Ω cm-2 and a high electron transfer efficiency, as determined by electrochemical impedance spectroscopy (EIS). The photo-sensitized g-C3N4 shows a broad range of response to visible light (400–640 nm), with significantly high incident photon-to-current efficiency (IPCE) values of 14.52%, 2.9%, and 0.74% under monochromatic light irradiation of 400, 550, and 640 nm, respectively. ESR characterization suggests that Au nanoparticles are able to absorb visible light of wavelengths higher than 460 nm and to generate hot electrons due to the SPR effect. PMID:27575246

  3. Enhanced Hydrogen Evolution in the Presence of Plasmonic Au-Photo-Sensitized g-C3N4 with an Extended Absorption Spectrum from 460 to 640 nm.

    PubMed

    Xie, Lihong; Ai, Zhuyu; Zhang, Meng; Sun, Runze; Zhao, Weirong

    2016-01-01

    Extensively spectral-responsive photocatalytic hydrogen production was achieved over g-C3N4 photo-sensitized by Au nanoparticles. The photo-sensitization, which was achieved by a facile photo-assisted reduction route, resulted in an extended spectral range of absorption from 460 to 640 nm. The photo-sensitized g-C3N4 (Au/g-C3N4) photocatalysts exhibit significantly enhanced photocatalytic hydrogen evolution with a TOF value of 223 μmol g-1 h-1, which is a 130-fold improvement over g-C3N4. The hydrogen production result confirms that Au nanoparticles are effective photo-sensitizers for the visible light-responsive substrate g-C3N4. UV-vis diffuse reflection spectra (DRS), photoluminescence spectra (PL), electron spin resonance (ESR), and electrochemical measurements were used to investigate the transfer process of photogenerated electrons. The optimal Au/g-C3N4 photocatalyst displays the lowest charge transfer resistance of 18.45 Ω cm-2 and a high electron transfer efficiency, as determined by electrochemical impedance spectroscopy (EIS). The photo-sensitized g-C3N4 shows a broad range of response to visible light (400-640 nm), with significantly high incident photon-to-current efficiency (IPCE) values of 14.52%, 2.9%, and 0.74% under monochromatic light irradiation of 400, 550, and 640 nm, respectively. ESR characterization suggests that Au nanoparticles are able to absorb visible light of wavelengths higher than 460 nm and to generate hot electrons due to the SPR effect.

  4. Measurement of the 1s2l3l’ Dielectronic Recombination Emission Line in Li-Like Ar and Its Contribution to the Faint X-Ray Feature Found in the Stacked Spectrum of Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Gall, Amy Christina; Silwal, Roshani; Dreiling, Joan; Borovik, Alexander; Ajello, Marco; Gillaspy, John; Kilgore, Ethan; Ralchenko, Yuri; Takacs, Endre

    2016-06-01

    Driven by the recent detection of an unidentified emission line previously reported at 3.55-3.57 keV in a stacked spectrum of galaxy clusters, we investigated the resonant DR process in Li-like Ar as a possible source of, or contributor to, the emission line. The Li-like transition 1s22l-1s2l3l’ was suggested to produce a 3.62 keV photon [1] near the unidentified line at 3.57 keV and was the primary focus of our investigation. Apart from the mentioned transitions, we have found other features that can be possible contributors to the emission in this region. The Electron Beam Ion Trap at NIST was used to produce and trap the highly-charged ions of argon. The energy of the quasi-monoenergetic electron beam was incremented in steps of 15 eV to scan over all of the Li-like Ar DR resonances. A Johann-type crystal spectrometer and a solid-state germanium detector were used to take x-ray measurements perpendicular to the electron beam. The DR cross sections were measured and normalized to the well-known photoionization cross sections using radiative recombination peaks in the measured spectra. Corrections for different instrument and method related effects such as charge state balance, electron beam space charge, and charge exchange have been considered. Our high-resolution crystal spectra allowed the experimental separation of features that are less than 2 eV apart. We have used a collisional radiative model NOMAD [2] aided by atomic data calculations by FAC [3] to interpret our observations and account for the corrections and uncertainties. Experimental results were compared to the AtomDB theoretical emission lines used to fit the galaxy cluster spectra containing the unidentified 3.57 keV line. These data points can be added benchmarks in the database and used to accurately interpret spectra from current x-ray satellites, including Hitomi, Chandra, and XMM-Newton x-ray observatories.[1] Bulbul E. et al., 2014, ApJ, 789, 13[2] Ralchenko Yu. et al., 2014, JQSRT, 71

  5. Measurement of Anomalously Strong Emission from the 1s-9p Transition in the Spectrum of H-like Phosphorus Following Charge Exchange with Molecular Hydrogen

    NASA Technical Reports Server (NTRS)

    Leutenegger, M. A.; Beiersdorfer, P.; Brown, G. V.; Kelley, R. L.; Porter, F. S.

    2010-01-01

    We have measured K-shell x-ray spectra of highly ionized argon and phosphorus following charge exchange with molecular hydrogen at low collision energy in an electron beam ion trap using an x-ray calorimeter array with approx.6 eV resolution. We find that the emission at the high-end of the Lyman series is greater by a factor of two for phosphorus than for argon, even though the measurement was performed concurrently and the atomic numbers are similar. This does not agree with current theoretical models and deviates from the trend observed in previous measurements.

  6. A Dynamic Equilibrium of Three Hydrogen-Bond Conformers Explains the NMR Spectrum of the Active Site of Photoactive Yellow Protein.

    PubMed

    Taenzler, Phillip Johannes; Sadeghian, Keyarash; Ochsenfeld, Christian

    2016-10-11

    A theoretical study on the NMR shifts of the hydrogen bond network around the chromophore, para-coumaric acid (pCA), of photoactive yellow protein (PYP) is presented. Previous discrepancies between theoretical and experimental studies are resolved by our findings of a previously unknown rapid conformational exchange near the active site of PYP. This exchange caused by the rotation of Thr50 takes place in the ground state of PYP's active site and results in three effectively energetically equal conformations characterized by the formation of new hydrogen bonds, all of which contribute to the overall NMR signals of the investigated protons. In light of these findings, we are able to successfully explain the experimental results and provide valuable insight into the behavior of PYP in solution. We further investigated related PYP mutants (T50V, E46Q, and Y42F), and found the same conformational exchange in E46Q and Y42F to be responsible for the experimentally observed NMR and UV/vis spectra.

  7. Hydrogen production

    NASA Technical Reports Server (NTRS)

    England, C.; Chirivella, J. E.; Fujita, T.; Jeffe, R. E.; Lawson, D.; Manvi, R.

    1975-01-01

    The state of hydrogen production technology is evaluated. Specific areas discussed include: hydrogen production fossil fuels; coal gasification processes; electrolysis of water; thermochemical production of hydrogen; production of hydrogen by solar energy; and biological production of hydrogen. Supply options are considered along with costs of hydrogen production.

  8. Hydrogen production

    NASA Technical Reports Server (NTRS)

    England, C.; Chirivella, J. E.; Fujita, T.; Jeffe, R. E.; Lawson, D.; Manvi, R.

    1975-01-01

    The state of hydrogen production technology is evaluated. Specific areas discussed include: hydrogen production fossil fuels; coal gasification processes; electrolysis of water; thermochemical production of hydrogen; production of hydrogen by solar energy; and biological production of hydrogen. Supply options are considered along with costs of hydrogen production.

  9. Surface-state hydrogen maser

    SciTech Connect

    Maan, A.C.; Verhaar, B.J.; Stoof, H.T.C. ); Silvera, I.F. )

    1993-11-01

    We describe a hydrogen maser operating at very low temperatures in which most of the hydrogen atoms are condensed on a superfluid helium surface in long-lived states. This proposed maser can be used to obtain information on the properties of the hydrogen--liquid-helium-surface system. In addition, it promises to be an interesting system from the point of view of nonlinear dynamics. It is found that the surface recombination to molecular hydrogen, which might be considered as undesirable, is actually necessary to achieve the masing conditions. We develop the maser equations and consider a number of realistic conditions for operation.

  10. Neutral Hydrogen in the Universe

    NASA Astrophysics Data System (ADS)

    Briggs, F. H.

    2005-06-01

    Neutral atomic hydrogen is an endangered species at the present age of the Universe. When hydrogen is dispersed at low density in the intergalactic medium, the gas is vulnerable to photoionization, and once ionized, the time for recombination exceeds the Hubble time. If hydrogen clouds are confined to sufficient density that they are self-shielding to the ionizing background, they are vulnerable to instability, collapse and star formation, which over time, locks the hydrogen into long lived stars. When neutral clouds do exist after the Epoch of Reionization, they associate closely with galaxies; in these locations, they provide valuable kinematical tracers of the gravitational potentials that bind galaxies and groups.

  11. Hydrogen systems

    SciTech Connect

    Veziroglu, T.N.; Zhu, Y.; Bao, D.

    1985-01-01

    This book presents the papers given at a symposium on hydrogen fuels. Topics considered at the symposium included hydrogen from fossil fuels, electrolysis, photolytic hydrogen generation, thermochemical and photochemical methods of hydrogen production, catalysts, hydrogen biosynthesis, novel and hybrid methods of hydrogen production, storage and handling, metal hydrides and their characteristics, utilization, hydrogen fueled internal combustion engines, hydrogen gas turbines, hydrogen flow and heat transfer, fuel cells, synthetic hydrocarbon fuels, thermal energy transfer, hydrogen purification, research programs, economics, primary energy sources, environmental impacts, and safety.

  12. Hydrogen Filling Station

    SciTech Connect

    Boehm, Robert F; Sabacky, Bruce; Anderson II, Everett B; Haberman, David; Al-Hassin, Mowafak; He, Xiaoming; Morriseau, Brian

    2010-02-24

    future. Project partners also conducted a workshop on hydrogen safety and permitting. This provided an opportunity for the various permitting agencies and end users to gather to share experiences and knowledge. As a result of this workshop, the permitting process for the hydrogen filling station on the Las Vegas Valley Water District’s land was done more efficiently and those who would be responsible for the operation were better educated on the safety and reliability of hydrogen production and storage. The lessons learned in permitting the filling station and conducting this workshop provided a basis for future hydrogen projects in the region. Continuing efforts to increase the working pressure of electrolysis and efficiency have been pursued. Research was also performed on improving the cost, efficiency and durability of Proton Exchange Membrane (PEM) hydrogen technology. Research elements focused upon PEM membranes, electrodes/catalysts, membrane-electrode assemblies, seals, bipolar plates, utilization of renewable power, reliability issues, scale, and advanced conversion topics. Additionally, direct solar-to-hydrogen conversion research to demonstrate stable and efficient photoelectrochemistry (PEC) hydrogen production systems based on a number of optional concepts was performed. Candidate PEC concepts included technical obstacles such as inefficient photocatalysis, inadequate photocurrent due to non-optimal material band gap energies, rapid electron-hole recombination, reduced hole mobility and diminished operational lifetimes of surface materials exposed to electrolytes. Project Objective 1: Design, build, operate hydrogen filling station Project Objective 2: Perform research and development for utilizing solar technologies on the hydrogen filling station and convert two utility vehicles for use by the station operators Project Objective 3: Increase capacity of hydrogen filling station; add additional vehicle; conduct safety workshop; develop a roadmap for

  13. Effect of hydrogen defects on nanocrystallite layers of Si solar cells by hydrogen implantation

    NASA Astrophysics Data System (ADS)

    Palei, Srikanta; Lim, Gyoungho; Parida, Bhaskar; Choi, Jaeho; Kim, Keunjoo

    2015-11-01

    The Si solar cells were irradiated with high energy hydrogen ions of 10, 30, 60 and 120 keV at the dose rate of 1017 H+ ions (proton)/cm2. The structural, optical and electrical properties of the implanted samples and fabricated cells were studied. The implantation induced defects bringing structural changes before and after annealing was evidenced by the transmission electron microscopy. The Raman spectrum showed a change of crystalline to amorphous state at 480 cm-1 when the sample was implanted by hydrogen ion of 30 keV energy. Formation of nanocrystallite layers were observed after annealing. The electroluminescence images showed that hydrogen-related defect centers were involved in the emission mechanism. The photoluminescence emission from the implanted cells was attributed to nanocrystallite layers. From current-voltage measurements, the conversion efficiencies of implanted Si solar cells were found lower than the un-implanted reference cell. The ion implantation did not passivate the defects rather acted as recombination centers.

  14. The central role of Gln63 for the hydrogen bonding network and UV-visible spectrum of the AppA BLUF domain.

    PubMed

    Hsiao, Ya-Wen; Götze, Jan P; Thiel, Walter

    2012-07-19

    In blue-light sensing using flavin (BLUF) domains, the side-chain orientation of key residues close to the flavin chromophore is still under debate. We report quantum refinements of the wild-type AppA BLUF protein from Rhodobacter sphaeroides starting from two published X-ray structures (1YRX and 2IYG) with different arrangements of the residues around the chromophore. Quantum refinement uses the same experimental X-ray raw data as conventional refinement, but includes data from quantum mechanics/molecular mechanics (QM/MM) calculations as restraints, which is expected to be more reliable than the normally employed MM data. In addition to quantum refinement, pure QM/MM geometry optimizations are performed for the 1YRX and 2IYG structures and for five models derived therefrom. Vertical excitation energies are computed at the QM(DFT/MRCI)/MM level to assess the resulting structures. The experimental absorption maximum of the dark state of wild-type AppA is well reproduced for structures that contain the Gln63 residue in 1YRX-type orientation. The computed excitation energies are red-shifted for structures with a flipped Gln63 residue in 2IYG-type orientation. The calculated 1YRX- and 2IYG-type hydrogen-bonding networks are discussed in detail, particularly with regard to the orientation of the chromophore and the Gln63, Trp104, and Met106 residues.

  15. Recombination of H and He in Yang-Mills Gravity

    NASA Astrophysics Data System (ADS)

    Katz, Daniel

    2015-07-01

    We investigate some aspects of the thermal history of the early universe according to Yang-Mills Gravity (YMG); a gauge theory of gravity set in flat space-time. Specifically, equations for the ionization fractions of hydrogen and singly ionized helium during the recombination epoch are deduced analytically and then solved numerically. By considering several approximations, we find that the presence of primordial helium and its interaction with Lyman series photons has a much stronger effect on the overall free electron density in YMG than it does in the standard, General Relativity (GR)-based, model. Compared to the standard model, recombination happens over a much larger range of temperatures, although there is still a very sharp temperature of last scattering around 2000 K. The ionization history of the universe is not directly observable, but knowledge of it is necessary for CMB power spectrum calculations. Such calculations will provide another rigorous test of YMG and will be explored in detail in an upcoming paper.

  16. Video System Highlights Hydrogen Fires

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C.; Gleman, Stuart M.; Moerk, John S.

    1992-01-01

    Video system combines images from visible spectrum and from three bands in infrared spectrum to produce color-coded display in which hydrogen fires distinguished from other sources of heat. Includes linear array of 64 discrete lead selenide mid-infrared detectors operating at room temperature. Images overlaid on black and white image of same scene from standard commercial video camera. In final image, hydrogen fires appear red; carbon-based fires, blue; and other hot objects, mainly green and combinations of green and red. Where no thermal source present, image remains in black and white. System enables high degree of discrimination between hydrogen flames and other thermal emitters.

  17. Video System Highlights Hydrogen Fires

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C.; Gleman, Stuart M.; Moerk, John S.

    1992-01-01

    Video system combines images from visible spectrum and from three bands in infrared spectrum to produce color-coded display in which hydrogen fires distinguished from other sources of heat. Includes linear array of 64 discrete lead selenide mid-infrared detectors operating at room temperature. Images overlaid on black and white image of same scene from standard commercial video camera. In final image, hydrogen fires appear red; carbon-based fires, blue; and other hot objects, mainly green and combinations of green and red. Where no thermal source present, image remains in black and white. System enables high degree of discrimination between hydrogen flames and other thermal emitters.

  18. CATALYTIC RECOMBINATION OF RADIOLYTIC GASES IN THORIUM OXIDE SLURRIES

    DOEpatents

    Morse, L.E.

    1962-08-01

    A method for the coinbination of hydrogen and oxygen in aqueous thorium oxide-uranium oxide slurries is described. A small amount of molybdenum oxide catalyst is provided in the slurry. This catalyst is applicable to the recombination of hydrogen and/or deuterium and oxygen produced by irradiation of the slurries in nuclear reactors. (AEC)

  19. DISCOVERY OF CARBON RADIO RECOMBINATION LINES IN M82

    SciTech Connect

    Morabito, Leah K.; Oonk, J. B. R.; Salgado, Francisco; Röttgering, H. J. A.; Tielens, A. G. G. M.; Haverkorn, Marijke; Toribio, M. Carmen; Heald, George; Beck, Rainer; Adebahr, Björn; Best, Philip; Beswick, Robert; Bonafede, Annalisa; Brüggen, Marcus; Brunetti, Gianfranco; Chyży, Krzysztof T.; Conway, J. E.; Horellou, Cathy; Van Driel, Wim; Gregson, Jonathan; and others

    2014-11-10

    Carbon radio recombination lines (RRLs) at low frequencies (≲ 500 MHz) trace the cold, diffuse phase of the interstellar medium, which is otherwise difficult to observe. We present the detection of carbon RRLs in absorption in M82 with the Low Frequency Array in the frequency range of 48-64 MHz. This is the first extragalactic detection of RRLs from a species other than hydrogen, and below 1 GHz. Since the carbon RRLs are not detected individually, we cross-correlated the observed spectrum with a template spectrum of carbon RRLs to determine a radial velocity of 219 km s{sup –1}. Using this radial velocity, we stack 22 carbon-α transitions from quantum levels n = 468-508 to achieve an 8.5σ detection. The absorption line profile exhibits a narrow feature with peak optical depth of 3 × 10{sup –3} and FWHM of 31 km s{sup –1}. Closer inspection suggests that the narrow feature is superimposed on a broad, shallow component. The total line profile appears to be correlated with the 21 cm H I line profile reconstructed from H I absorption in the direction of supernova remnants in the nucleus. The narrow width and centroid velocity of the feature suggests that it is associated with the nuclear starburst region. It is therefore likely that the carbon RRLs are associated with cold atomic gas in the direction of the nucleus of M82.

  20. Discovery of Carbon Radio Recombination Lines in M82

    NASA Astrophysics Data System (ADS)

    Morabito, Leah K.; Oonk, J. B. R.; Salgado, Francisco; Toribio, M. Carmen; Röttgering, H. J. A.; Tielens, A. G. G. M.; Beck, Rainer; Adebahr, Björn; Best, Philip; Beswick, Robert; Bonafede, Annalisa; Brunetti, Gianfranco; Brüggen, Marcus; Chyży, Krzysztof T.; Conway, J. E.; van Driel, Wim; Gregson, Jonathan; Haverkorn, Marijke; Heald, George; Horellou, Cathy; Horneffer, Andreas; Iacobelli, Marco; Jarvis, Matt J.; Marti-Vidal, Ivan; Miley, George; Mulcahy, D. D.; Orrú, Emanuela; Pizzo, Roberto; Scaife, A. M. M.; Varenius, Eskil; van Weeren, Reinout J.; White, Glenn J.; Wise, Michael W.

    2014-11-01

    Carbon radio recombination lines (RRLs) at low frequencies (lsim 500 MHz) trace the cold, diffuse phase of the interstellar medium, which is otherwise difficult to observe. We present the detection of carbon RRLs in absorption in M82 with the Low Frequency Array in the frequency range of 48-64 MHz. This is the first extragalactic detection of RRLs from a species other than hydrogen, and below 1 GHz. Since the carbon RRLs are not detected individually, we cross-correlated the observed spectrum with a template spectrum of carbon RRLs to determine a radial velocity of 219 km s-1. Using this radial velocity, we stack 22 carbon-α transitions from quantum levels n = 468-508 to achieve an 8.5σ detection. The absorption line profile exhibits a narrow feature with peak optical depth of 3 × 10-3 and FWHM of 31 km s-1. Closer inspection suggests that the narrow feature is superimposed on a broad, shallow component. The total line profile appears to be correlated with the 21 cm H I line profile reconstructed from H I absorption in the direction of supernova remnants in the nucleus. The narrow width and centroid velocity of the feature suggests that it is associated with the nuclear starburst region. It is therefore likely that the carbon RRLs are associated with cold atomic gas in the direction of the nucleus of M82.

  1. Hydrogenation apparatus

    DOEpatents

    Friedman, Joseph [Encino, CA; Oberg, Carl L [Canoga Park, CA; Russell, Larry H [Agoura, CA

    1981-01-01

    Hydrogenation reaction apparatus comprising a housing having walls which define a reaction zone and conduits for introducing streams of hydrogen and oxygen into the reaction zone, the oxygen being introduced into a central portion of the hydrogen stream to maintain a boundary layer of hydrogen along the walls of the reaction zone. A portion of the hydrogen and all of the oxygen react to produce a heated gas stream having a temperature within the range of from 1100.degree. to 1900.degree. C., while the boundary layer of hydrogen maintains the wall temperature at a substantially lower temperature. The heated gas stream is introduced into a hydrogenation reaction zone and provides the source of heat and hydrogen for a hydrogenation reaction. There also is provided means for quenching the products of the hydrogenation reaction. The present invention is particularly suitable for the hydrogenation of low-value solid carbonaceous materials to provide high yields of more valuable liquid and gaseous products.

  2. Zellweger Spectrum

    MedlinePlus

    ... Resources Conference News Contact Us Donate The Zellweger Spectrum Zellweger Syndrome, Neonatal Adrenoleukodystrophy (NALD), and Infantile Refsum’s ... of severity of disease. What causes the Zellweger spectrum of diseases? As we mentioned, disorders of the ...

  3. Thin film atomic hydrogen detectors

    NASA Technical Reports Server (NTRS)

    Gruber, C. L.

    1977-01-01

    Thin film and bead thermistor atomic surface recombination hydrogen detectors were investigated both experimentally and theoretically. Devices were constructed on a thin Mylar film substrate. Using suitable Wheatstone bridge techniques sensitivities of 80 microvolts/2x10 to the 13th power atoms/sec are attainable with response time constants on the order of 5 seconds.

  4. Atomic hydrogen storage method and apparatus

    NASA Technical Reports Server (NTRS)

    Woollam, J. A. (Inventor)

    1980-01-01

    Atomic hydrogen, for use as a fuel or as an explosive, is stored in the presence of a strong magnetic field in exfoliated layered compounds such as molybdenum disulfide or an elemental layer material such as graphite. The compounds maintained at liquid helium temperatures and the atomic hydrogen is collected on the surfaces of the layered compound which are exposed during delamination (exfoliation). The strong magnetic field and the low temperature combine to prevent the atoms of hydrogen from recombining to form molecules.

  5. Observation of Plasma Recombination with the Negative Ions in Detached Plasma

    NASA Astrophysics Data System (ADS)

    Tonegawa, Akira; Shirota, Isao; Yoshida, Kenichi; Sugimoto, Tatunori; Kawamura, Kazutaka; Watanabe, Tsuguhiro; Ohyabu, Nobuyoshi; Takayama, Kazuo

    2000-10-01

    Detached divertors regimes are characterized by a low temperature (few eV) and high density plasma near the divertor plates. Recently, a new recombination process associated with excited hydrogen molecule, that is, molecular activated recombination (MAR), is expected to lead to an enhancement of the reduction of ion particle flux, and to modify the structure of detached recombining plasmas. In particular, negative ions play a key role in detached divertors regimes in charge exchange recombination of MAR. We present the experimental investigation of effects of the negative ions on detached plasma with MAR in the linear divertor plasma simulator, TPDSHEET-IV (Test Plasma produced by Directed current for SHEET plasma) device. The hydrogen plasma were generated with the hydrogen gas flow of 100 sccm at the discharge current of 50 A and the magnetic field of 0.7 kG. The negative ion density of hydrogen atom was measure by a probe-assisted laser photodetachment method. The reduction of the heat load to the target plate was clearly observed in hydrogen plasma with the hydrogen gas puff. At the same time, negative ions of hydrogen atom are localized in the region of cold electrons (2 eV) of the circumference of the sheet plasma. The charge exchange recombination rate of MAR is about 4 times of magnitude larger than three body recombination rate coefficients at this temperature. These experimental results suggest that the plasma recombination process comes from the negative ion of hydrogen atom.

  6. Oxygen related recombination defects in Ta{sub 3}N{sub 5} water splitting photoanode

    SciTech Connect

    Fu, Gao; Yu, Tao E-mail: yutao@nju.edu.cn; Zou, Zhigang; Yan, Shicheng E-mail: yutao@nju.edu.cn

    2015-10-26

    A key route to improving the performance of Ta{sub 3}N{sub 5} photoelectrochemical film devices in solar driving water splitting to hydrogen is to understand the nature of the serious recombination of photo-generated carriers. Here, by using the temperature-dependent photoluminescence (PL) spectrum, we confirmed that for the Ta{sub 3}N{sub 5} films prepared by nitriding Ta{sub 2}O{sub 5} precursor, one PL peak at 561 nm originates from deep-level defects recombination of the oxygen-enriched Ta{sub 3}N{sub 5} phases, and another one at 580 nm can be assigned to band recombination of Ta{sub 3}N{sub 5} itself. Both of the two bulk recombination processes may decrease the photoelectrochemical performance of Ta{sub 3}N{sub 5}. It was difficult to remove the oxygen-enriched impurities in Ta{sub 3}N{sub 5} films by increasing the nitriding temperatures due to their high thermodynamically stability. In addition, a broadening PL peak between 600 and 850 nm resulting from oxygen related surface defects was observed by the low-temperature PL measurement, which may induce the surface recombination of photo-generated carriers and can be removed by increasing the nitridation temperature. Our results provided direct experimental evidence to understand the effect of oxygen-related crystal defects in Ta{sub 3}N{sub 5} films on its photoelectric performance.

  7. Reactions between atomic chlorine and pyridine in solid para-hydrogen: Infrared spectrum of the 1-chloropyridinyl (C{sub 5}H{sub 5}N-Cl) radical

    SciTech Connect

    Das, Prasanta; Bahou, Mohammed; Lee, Yuan-Pern

    2013-02-07

    With infrared absorption spectra we investigated the reaction between Cl atom and pyridine (C{sub 5}H{sub 5}N) in a para-hydrogen (p-H{sub 2}) matrix. Pyridine and Cl{sub 2} were co-deposited with p-H{sub 2} at 3.2 K; a planar C{sub 5}H{sub 5}N-Cl{sub 2} complex was identified from the observed infrared spectrum of the Cl{sub 2}/C{sub 5}H{sub 5}N/p-H{sub 2} matrix. Upon irradiation at 365 nm to generate Cl atom in situ and annealing at 5.1 K for 3 min to induce secondary reaction, the 1-chloropyridinyl radical (C{sub 5}H{sub 5}N-Cl) was identified as the major product of the reaction Cl + C{sub 5}H{sub 5}N in solid p-H{sub 2}; absorption lines at 3075.9, 1449.7, 1200.6, 1148.8, 1069.3, 1017.4, 742.9, and 688.7 cm{sup -1} were observed. The assignments are based on comparison of observed vibrational wavenumbers and relative IR intensities with those predicted using the B3PW91/6-311++G(2d, 2p) method. The observation of the preferential addition of Cl to the N-site of pyridine to form C{sub 5}H{sub 5}N-Cl radical but not 2-, 3-, or 4-chloropyridine (ClC{sub 5}H{sub 5}N) radicals is consistent with the reported theoretical prediction that formation of the former proceeds via a barrierless path.

  8. Atomic hydrogen as a launch vehicle propellant

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan A.

    1990-01-01

    An analysis of several atomic hydrogen launch vehicles was conducted. A discussion of the facilities and the technologies that would be needed for these vehicles is also presented. The Gross Liftoff Weights (GLOW) for two systems were estimated; their specific impulses (I sub sp) were 750 and 1500 lb (sub f)/s/lb(sub m). The atomic hydrogen launch vehicles were also compared to the currently planned Advanced Launch System design concepts. Very significant GLOW reductions of 52 to 58 percent are possible over the Advanced Launch System designs. Applying atomic hydrogen propellants to upper stages was also considered. Very high I(sub sp) (greater than 750 1b(sub f)/s/lb(sub m) is needed to enable a mass savings over advanced oxygen/hydrogen propulsion. Associated with the potential benefits of high I(sub sp) atomic hydrogen are several challenging problems. Very high magnetic fields are required to maintain the atomic hydrogen in a solid kilogauss (3 Tesla). Also the storage temperature of the propellant is 4 K. This very low temperature will require a large refrigeration facility for the launch vehicle. The design considerations for a very high recombination rate for the propellant are also discussed. A recombination rate of 210 cm/s is predicted for atomic hydrogen. This high recombination rate can produce very high acceleration for the launch vehicle. Unique insulation or segmentation to inhibit the propellant may be needed to reduce its recombination rate.

  9. Sources of Shockley-Read-Hall recombination in III-nitride light emitters

    NASA Astrophysics Data System (ADS)

    Dreyer, Cyrus E.; Alkauskas, Audrius; Lyons, John L.; Speck, James S.; van de Walle, Chris G.

    Group-III nitrides are the key materials for high efficiency light-emitting diodes in the blue part of the visible spectrum, and a large research effort is aimed at extending this success to the green and the yellow range, where nitride LEDs are significantly less efficient. Though it has been noted that the efficiency of III-nitride devices may be limited by Shockley-Read-Hall recombination at point defects, the microscopic mechanism and defects responsible are unknown. Based on first-principles calculations of defect formation energies, charge-state transition levels, and nonradiative capture coefficients, we describe a mechanism by which complexes between gallium vacancies and oxygen and/or hydrogen can act as efficient channels for nonradiative recombination in InGaN alloys. The dependence of these quantities on alloy composition is analyzed. We find that modest concentrations of the proposed defect complexes, around 1016cm-3, can give rise to Shockley-Read-Hall coefficients A = (107 -109) s-1. The resulting nonradiative recombination can significantly reduce the internal quantum efficiency of optoelectronic devices. This work was supported by DOE and by EU Marie Sklodowska-Curie Action.

  10. Recombinant expression and biochemical characterization of an NADPH:flavin oxidoreductase from Entamoeba histolytica.

    PubMed Central

    Bruchhaus, I; Richter, S; Tannich, E

    1998-01-01

    The gene encoding a putative NADPH:flavin oxidoreductase of the protozoan parasite Entamoeba histolytica (Eh34) was recombinantly expressed in Escherichia coli. The purified recombinant protein (recEh34) has a molecular mass of about 35 kDa upon SDS/PAGE analysis, exhibits a flavoprotein-like absorption spectrum and contains 1 mol of non-covalently bound FMN per mol of protein. RecEh34 reveals two different enzymic activities. It catalyses the NADPH-dependent reduction of oxygen to hydrogen peroxide (H2O2), as well as of disulphides such as 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) and cystine. The disulphide reductase but not the H2O2-forming NADPH oxidase activity is inhibitable by sulphydryl-active compounds, indicating that a thiol component is part of the active site for the disulphide reductase activity, whereas for the H2O2-forming NADPH oxidase activity only the flavin is required. Compared with the recombinant protein, similar activities are present in amoebic extracts. Native Eh34 is active in a monomeric as well as in a dimeric state. In contrast to recEh34, no flavin was associated with the native protein. However, both NADPH oxidase as well as DTNB reductase activity were found to be dependent on the addition of FAD or FMN. PMID:9494088

  11. CosmoRec: Cosmological Recombination code

    NASA Astrophysics Data System (ADS)

    Chluba, Jens; Thomas, Rajat Mani

    2013-04-01

    CosmoRec solves the recombination problem including recombinations to highly excited states, corrections to the 2s-1s two-photon channel, HI Lyn-feedback, n>2 two-photon profile corrections, and n≥2 Raman-processes. The code can solve the radiative transfer equation of the Lyman-series photon field to obtain the required modifications to the rate equations of the resolved levels, and handles electron scattering, the effect of HeI intercombination transitions, and absorption of helium photons by hydrogen. It also allows accounting for dark matter annihilation and optionally includes detailed helium radiative transfer effects.

  12. Use of low energy hydrogen ion implants in high efficiency crystalline silicon solar cells

    NASA Technical Reports Server (NTRS)

    Fonash, S. J.; Singh, R.

    1985-01-01

    This program is a study of the use of low energy hydrogen ion implantation for high efficiency crystalline silicon solar cells. The first quarterly report focuses on two tasks of this program: (1) an examination of the effects of low energy hydrogen implants on surface recombination speed; and (2) an examination of the effects of hydrogen on silicon regrowth and diffusion in silicon. The first part of the project focussed on the measurement of surface properties of hydrogen implanted silicon. Low energy hydrogen ions when bombarded on the silicon surface will create structural damage at the surface, deactivate dopants and introduce recombination centers. At the same time the electrically active centers such as dangling bonds will be passivated by these hydrogen ions. Thus hydrogen is expected to alter properties such as the surface recombination velocity, dopant profiles on the emitter, etc. In this report the surface recombination velocity of a hydrogen emplanted emitter was measured.

  13. Recombination studies in a He-Ar-H2 plasma

    NASA Astrophysics Data System (ADS)

    Glosík, J.; Plasil, R.; Pysanenko, A.; Novotný, O.; Hlavenka, P.; Macko, P.; Bánó, G.

    2005-01-01

    The recombination of H+3 ions with electrons has been studied in afterglow plasma in three different experiments. In two experiments, using the Variable Temperature Stationary Afterglow (VT-AISA) and the Variable Temperature Flowing Afterglow (VT-FALP) techniques, a decay of the electron number density was measured by an electrostatic Langmuir probe to determine the recombination rate coefficient. In the third experiment a near infrared Cavity Ring-Down Absorption Spectrometer (CRDS) was used to monitor the decay of the H+3 (v = 0) ion density during the afterglow. Measurements were carried out in helium buffer gas with small admixtures of argon and hydrogen at total pressures ranging from 150 up to 1200 Pa and at buffer gas temperatures ranging from 100 up to 330 K. In the experiments the partial number density of hydrogen was varied from 5 × 1010 up to 1 × 1016 cm-3 and for this broad range of hydrogen number densities effective recombination rate coefficients were obtained, which varied over three orders of magnitude from 2 × 10-9 cm3s-1 at [H2] = 5 × 1010 cm-3 up to 3 × 10-6 cm3s-1 at [H2] = 1 × 1016 cm-3. Using our experimental results we discuss possible mechanisms of recombination in hydrogen plasma in a very broad range of several parameters: buffer gas pressure, temperature, electron number density, hydrogen number density and internal excitation of recombining ions.

  14. Hydrogen generator

    SciTech Connect

    Adlhart, O. J.

    1985-04-23

    This disclosure relates to a replaceable cartridge hydrogen generator of the type which relies at least partially on the process of anodic corrosion to produce hydrogen. A drum contains a plurality of the cartridges.

  15. Discrete breathers in hydrogenated graphene

    NASA Astrophysics Data System (ADS)

    Liu, Bo; Baimova, Julia A.; Dmitriev, Sergey V.; Wang, Xu; Zhu, Hongwei; Zhou, Kun

    2013-07-01

    Discrete breathers (DBs) in graphane (fully hydrogenated graphene) are investigated using molecular dynamics simulations. It is found that the DB can be excited by applying an out-of-plane displacement on a single hydrogen atom of graphane. The vibration frequency of the DB lies either within the gap of the phonon spectrum of graphane or beyond its upper spectrum bound. Both soft and hard types of anharmonicity of the DB, which have not been found in the same system, are observed in graphane. The study shows that the DB is robust and its lifetime is affected by various factors including its anharmonicity type, its amplitude and frequency, and the force on the hydrogen atom that forms it, whose competition results in a complex mechanism for the lifetime determination. The investigation of the maximum kinetic energy of DBs reveals that they may function to activate or accelerate dehydrogenation of hydrogenated graphene at high temperatures.

  16. Therapeutic Recombinant Monoclonal Antibodies

    ERIC Educational Resources Information Center

    Bakhtiar, Ray

    2012-01-01

    During the last two decades, the rapid growth of biotechnology-derived techniques has led to a myriad of therapeutic recombinant monoclonal antibodies with significant clinical benefits. Recombinant monoclonal antibodies can be obtained from a number of natural sources such as animal cell cultures using recombinant DNA engineering. In contrast to…

  17. Therapeutic Recombinant Monoclonal Antibodies

    ERIC Educational Resources Information Center

    Bakhtiar, Ray

    2012-01-01

    During the last two decades, the rapid growth of biotechnology-derived techniques has led to a myriad of therapeutic recombinant monoclonal antibodies with significant clinical benefits. Recombinant monoclonal antibodies can be obtained from a number of natural sources such as animal cell cultures using recombinant DNA engineering. In contrast to…

  18. Hydrogen Generator

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A unit for producing hydrogen on site is used by a New Jersey Electric Company. The hydrogen is used as a coolant for the station's large generator; on-site production eliminates the need for weekly hydrogen deliveries. High purity hydrogen is generated by water electrolysis. The electrolyte is solid plastic and the control system is electronic. The technology was originally developed for the Gemini spacecraft.

  19. Hydrogen Production

    SciTech Connect

    2014-09-01

    This 2-page fact sheet provides a brief introduction to hydrogen production technologies. Intended for a non-technical audience, it explains how different resources and processes can be used to produce hydrogen. It includes an overview of research goals as well as “quick facts” about hydrogen energy resources and production technologies.

  20. Hydrogen Storage

    SciTech Connect

    2008-11-01

    This 2-page fact sheet provides a brief introduction to hydrogen storage technologies. Intended for a non-technical audience, it explains the different ways in which hydrogen can be stored, as well as the technical challenges and research goals for storing hydrogen on board a vehicle.

  1. Rotational spectrum of tryptophan

    SciTech Connect

    Sanz, M. Eugenia Cabezas, Carlos Mata, Santiago Alonso, Josè L.

    2014-05-28

    The rotational spectrum of the natural amino acid tryptophan has been observed for the first time using a combination of laser ablation, molecular beams, and Fourier transform microwave spectroscopy. Independent analysis of the rotational spectra of individual conformers has conducted to a definitive identification of two different conformers of tryptophan, with one of the observed conformers never reported before. The analysis of the {sup 14}N nuclear quadrupole coupling constants is of particular significance since it allows discrimination between structures, thus providing structural information on the orientation of the amino group. Both observed conformers are stabilized by an O–H···N hydrogen bond in the side chain and a N–H···π interaction forming a chain that reinforce the strength of hydrogen bonds through cooperative effects.

  2. Hydrogenated Amorphous Silicon

    NASA Astrophysics Data System (ADS)

    Street, R. A.

    1991-08-01

    Divided roughly into two parts, the book describes the physical properties and device applications of hydrogenated amorphous silicon. The first section is concerned with the atomic and electronic structure, and covers growth defects and doping and defect reactions. The emphasis is on the optical and electronic properties that result from the disordered structure. The second part of the book describes electronic conduction, recombination, interfaces, and multilayers. The special attribute of a-Si:H which makes it useful is the ability to deposit the material inexpensively over large areas, while retaining good semiconducting properties, and the final chapter discusses various applications and devices.

  3. PHOTOBIOLOGICAL HYDROGEN RESEARCH

    SciTech Connect

    Philippidis, George; Tek, Vekalet

    2009-07-01

    The project objectives are to develop bio-hydrogen production by: Cloning the structural and subunit genes (cooKMUX and cooLH resp.) of the O{sub 2}- tolerant NiFe-hydrogenase from the photosynthetic bacterium Rubrivivax gelatinosus CBS strain in collaboration with NREL. Cloning the active site maturation genes (hypA-F) of the CBS hydrogenase in collaboration with NREL. Transforming the structural and subunits genes, along with the maturation genes, into E. coli and determining the minimum number of genes required for expression of a functional hydrogenase. Upon expression of a functional hydrogenase, purifying and characterizing the recombinant hydrogenase from E. coli and performing bioreactor studies to optimize hydrogen production by E. coli.

  4. Photoionization and Recombination

    NASA Technical Reports Server (NTRS)

    Nahar, Sultana N.

    2000-01-01

    Theoretically self-consistent calculations for photoionization and (e + ion) recombination are described. The same eigenfunction expansion for the ion is employed in coupled channel calculations for both processes, thus ensuring consistency between cross sections and rates. The theoretical treatment of (e + ion) recombination subsumes both the non-resonant recombination ("radiative recombination"), and the resonant recombination ("di-electronic recombination") processes in a unified scheme. In addition to the total, unified recombination rates, level-specific recombination rates and photoionization cross sections are obtained for a large number of atomic levels. Both relativistic Breit-Pauli, and non-relativistic LS coupling, calculations are carried out in the close coupling approximation using the R-matrix method. Although the calculations are computationally intensive, they yield nearly all photoionization and recombination parameters needed for astrophysical photoionization models with higher precision than hitherto possible, estimated at about 10-20% from comparison with experimentally available data (including experimentally derived DR rates). Results are electronically available for over 40 atoms and ions. Photoionization and recombination of He-, and Li-like C and Fe are described for X-ray modeling. The unified method yields total and complete (e+ion) recombination rate coefficients, that can not otherwise be obtained theoretically or experimentally.

  5. Hydrogenation apparatus

    DOEpatents

    Friedman, J.; Oberg, C. L.; Russell, L. H.

    1981-06-23

    Hydrogenation reaction apparatus is described comprising a housing having walls which define a reaction zone and conduits for introducing streams of hydrogen and oxygen into the reaction zone, the oxygen being introduced into a central portion of the hydrogen stream to maintain a boundary layer of hydrogen along the walls of the reaction zone. A portion of the hydrogen and all of the oxygen react to produce a heated gas stream having a temperature within the range of from 1,100 to 1,900 C, while the boundary layer of hydrogen maintains the wall temperature at a substantially lower temperature. The heated gas stream is introduced into a hydrogenation reaction zone and provides the source of heat and hydrogen for a hydrogenation reaction. There also is provided means for quenching the products of the hydrogenation reaction. The present invention is particularly suitable for the hydrogenation of low-value solid carbonaceous materials to provide high yields of more valuable liquid and gaseous products. 2 figs.

  6. Multiple geminate ligand recombinations in human hemoglobin.

    PubMed Central

    Esquerra, R M; Goldbeck, R A; Reaney, S H; Batchelder, A M; Wen, Y; Lewis, J W; Kliger, D S

    2000-01-01

    The geminate ligand recombination reactions of photolyzed carbonmonoxyhemoglobin were studied in a nanosecond double-excitation-pulse time-resolved absorption experiment. The second laser pulse, delayed by intervals as long as 400 ns after the first, provided a measure of the geminate kinetics by rephotolyzing ligands that have recombined during the delay time. The peak-to-trough magnitude of the Soret band photolysis difference spectrum measured as a function of the delay between excitation pulses showed that the room temperature kinetics of geminate recombination in adult human hemoglobin are best described by two exponential processes, with lifetimes of 36 and 162 ns. The relative amounts of bimolecular recombination to T- and R-state hemoglobins and the temperature dependence of the submicrosecond kinetics between 283 and 323 K are also consistent with biexponential kinetics for geminate recombination. These results are discussed in terms of two models: geminate recombination kinetics modulated by concurrent protein relaxation and heterogeneous kinetics arising from alpha and beta chain differences. PMID:10827999

  7. Hydrogen Absorption into Austenitic Stainless Steels Under High-Pressure Gaseous Hydrogen and Cathodic Charge in Aqueous Solution

    NASA Astrophysics Data System (ADS)

    Enomoto, Masato; Cheng, Lin; Mizuno, Hiroyuki; Watanabe, Yoshinori; Omura, Tomohiko; Sakai, Jun'ichi; Yokoyama, Ken'ichi; Suzuki, Hiroshi; Okuma, Ryuji

    2014-12-01

    Type 316L and Type 304 austenitic stainless steels, both deformed and non-deformed, were hydrogen charged cathodically in an aqueous solution as well as by exposure to high-pressure gaseous hydrogen in an attempt to identify suitable conditions of cathodic charge for simulating hydrogen absorption from gaseous hydrogen environments. Thermal desorption analysis (TDA) was conducted, and the amount of absorbed hydrogen and the spectrum shape were compared between the two charging methods. Simulations were performed by means of the McNabb-Foster model to analyze the spectrum shape and peak temperature, and understand the effects of deformation on the spectra. It was revealed that the spectrum shape and peak temperature were dependent directly upon the initial distribution of hydrogen within the specimen, which varied widely according to the hydrogen charge condition. Deformation also had a marked effect on the amount of absorbed hydrogen in Type 304 steel due to the strain-induced martensitic transformation.

  8. Hydrogen Embrittlement

    NASA Technical Reports Server (NTRS)

    Woods, Stephen; Lee, Jonathan A.

    2016-01-01

    Hydrogen embrittlement (HE) is a process resulting in a decrease in the fracture toughness or ductility of a metal due to the presence of atomic hydrogen. In addition to pure hydrogen gas as a direct source for the absorption of atomic hydrogen, the damaging effect can manifest itself from other hydrogen-containing gas species such as hydrogen sulfide (H2S), hydrogen chloride (HCl), and hydrogen bromide (HBr) environments. It has been known that H2S environment may result in a much more severe condition of embrittlement than pure hydrogen gas (H2) for certain types of alloys at similar conditions of stress and gas pressure. The reduction of fracture loads can occur at levels well below the yield strength of the material. Hydrogen embrittlement is usually manifest in terms of singular sharp cracks, in contrast to the extensive branching observed for stress corrosion cracking. The initial crack openings and the local deformation associated with crack propagation may be so small that they are difficult to detect except in special nondestructive examinations. Cracks due to HE can grow rapidly with little macroscopic evidence of mechanical deformation in materials that are normally quite ductile. This Technical Memorandum presents a comprehensive review of experimental data for the effects of gaseous Hydrogen Environment Embrittlement (HEE) for several types of metallic materials. Common material screening methods are used to rate the hydrogen degradation of mechanical properties that occur while the material is under an applied stress and exposed to gaseous hydrogen as compared to air or helium, under slow strain rates (SSR) testing. Due to the simplicity and accelerated nature of these tests, the results expressed in terms of HEE index are not intended to necessarily represent true hydrogen service environment for long-term exposure, but rather to provide a practical approach for material screening, which is a useful concept to qualitatively evaluate the severity of

  9. Exploratory observations of random telegraphic signals and noise in homogeneous hydrogenated amorphous silicon

    NASA Astrophysics Data System (ADS)

    Choi, W. K.; Owen, A. E.; LeComber, P. G.; Rose, M. J.

    1990-07-01

    Noise measurements on unhydrogenated and hydrogenated rf sputtered intrinsic amorphous silicon reported by D'Amico, Fortunato, and Van Vliet [Solid-State Electron. 28, 837 (1985)] have 1/f and Lorentzian spectra, respectively. Similar noise measurements on glow-discharge deposited hydrogenated amorphous intrinsic silicon reported by Bathaei and Anderson [Philos. Mag. B 55, 87 (1987)] gave a 1/f m spectrum with 0.7spectrum. In this paper the first observation of random telegraph signals in notionally homogeneous heavily doped (p+) glow-discharged-deposited amorphous silicon is reported. It was found that the current passing through the sample fluctuates between two easily identifiable levels with the periods of fluctuations separated by a quiescent period. The occurrence of these fluctuations is unpredictable but the current noise spectrum obtained during quiescent periods is Lorentzian, probably indicative of a generation-recombination process. Noise measurements are not possible at higher biases (>105 V/cm) as the current fluctuates chaotically and this is also the prebreakdown regime of the sample.

  10. Hydrogen Generator

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Another spinoff from spacecraft fuel cell technology is the portable hydrogen generator shown. Developed by General Electric Company, it is an aid to safer operation of systems that use hydrogen-for example, gas chromatographs, used in laboratory analysis of gases. or flame ionization detectors used as $ollution monitors. The generator eliminates the need for high-pressure hydrogen storage bottles, which can be a safety hazard, in laboratories, hospitals and industrial plants. The unit supplies high-purity hydrogen by means of an electrochemical process which separates the hydrogen and oxygen in distilled water. The oxygen is vented away and the hydrogen gas is stored within the unit for use as needed. GE's Aircraft Equipment Division is producing about 1,000 of the generators annually.

  11. Hydrogen energy progress 5678

    SciTech Connect

    Veziroglu, T.N. )

    1990-01-01

    This book covers the proceedings of the 8th World Hydrogen Energy Conference, and includes: international hydrogen energy programs; hydrogen production; storage of hydrogen; hydrogen transmission and distribution; combustion systems/hydrogen engines; fuel cells; and synfuel production.

  12. Recombination of cluster ions

    NASA Technical Reports Server (NTRS)

    Johnsen, Rainer

    1993-01-01

    Some of our recent work on molecular band emissions from recombination of molecular dimer ions (N4(+) and CO(+) CO) is discussed. Much of the experimental work was done by Y. S. Cao; the results on N4(+) recombination have been published. A brief progress report is given on our ongoing measurements of neutral products of recombination using the flowing-afterglow Langmuir-probe technique in conjunction with laser-induced fluorescence.

  13. Hydrogen generator

    SciTech Connect

    Hansen, J.R.

    1984-06-19

    A hydrogen generator decomposes water into hydrogen and oxygen, and includes an induction coil which is electrically heated to a temperature sufficient to decompose water passing therethrough. A generator coil is connected in communicating relation to the induction coil, and is positioned in a fire resistant crucible containing ferrous oxide pellets. Oxygen and hydrogen produced by decomposition of water pass through the ferrous oxide pellets where the oxygen reacts with the ferrous oxide and the hydrogen is burned to produce heat for heating a building, such as a conventional home.

  14. Detection of interstellar recombination lines from emitters of intermediate mass.

    NASA Technical Reports Server (NTRS)

    Chaisson, E. J.; Black, J. H.; Dupree, A. K.; Cesarsky, D. A.

    1972-01-01

    The 18-cm microwave spectra of Orion B and W3A show evidence of an emission feature to the high-frequency side of the carbon recombination line. Observations at different frequencies establish that this feature results from electronic recombination. In addition, theoretical considerations, results of 21-cm observations, and computer-simulated spectra suggest that the new feature originates in a predominantly neutral hydrogen region and can be explained by a superposition of recombination lines from any or all of the following elements: Mg-24, Si-28, S-32, and Fe-56.

  15. Freezing Hydrogen

    NASA Image and Video Library

    2009-11-17

    An engineer loads hydrogen gas into the Wide-Field Infrared Survey Explorer in a clean room at the Vandenberg Air Force Base, Calif. The hydrogen is cooled and frozen inside a Thermos-like bottle, called the cryostat, which keeps the science instrument

  16. Hydrogen Bibliography

    SciTech Connect

    Not Available

    1991-12-01

    The Hydrogen Bibliography is a compilation of research reports that are the result of research funded over the last fifteen years. In addition, other documents have been added. All cited reports are contained in the National Renewable Energy Laboratory (NREL) Hydrogen Program Library.

  17. Atomic hydrogen as a launch vehicle propellant

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan A.

    1990-01-01

    An analysis of several atomic hydrogen launch vehicles was conducted. A discussion of the facilities and the technologies that would be needed for these vehicles is also presented. The Gross Liftoff Weights (GLOW) for two systems were estimated; their specific impulses (I sub sp) were 750 and 1500 lb(sub f)/s/lb(sub m). The atomic hydrogen launch vehicles were also compared to the currently planned Advanced Launch System design concepts. Very significant GLOW reductions of 52 to 58 percent are possible over the Advanced Launch System designs. Applying atomic hydrogen propellants to upper stages was also considered. Very high I(sub sp) (greater than 750 lb(sub f)/s/lb(sub m)) is needed to enable a mass savings over advanced oxygen/hydrogen propulsion. Associated with the potential benefits of high I(sub sp) atomic hydrogen are several challenging problems. Very high magnetic fields are required to maintain the atomic hydrogen in a solid hydrogen matrix. The magnetic field strength was estimated to be 30 kilogauss (3 Tesla). Also the storage temperature of the propellant is 4 K. This very low temperature will require a large refrigeration facility for the launch vehicle. The design considerations for a very high recombination rate for the propellant are also discussed. A recombination rate of 210 cm/s is predicted for atomic hydrogen. This high recombination rate can produce very high acceleration for the launch vehicle. Unique insulation or segmentation to inhibit the propellant may be needed to reduce its recombination rate.

  18. Atomic hydrogen as a launch vehicle propellant

    SciTech Connect

    Palaszewski, B.A.

    1990-01-01

    An analysis of several atomic hydrogen launch vehicles was conducted. A discussion of the facilities and the technologies that would be needed for these vehicles is also presented. The Gross Liftoff Weights (GLOW) for two systems were estimated; their specific impulses (I{sub sp}) were 750 and 1500 lb{sub f}/s/lb{sub m}. The atomic hydrogen launch vehicles were also compared to the currently planned Advanced Launch System design concepts. Very significant GLOW reductions of 52 to 58 percent are possible over the Advanced Launch System designs. Applying atomic hydrogen propellants to upper stages was also considered. Very high I{sub sp} (greater than 750 lb{sub f}/s/lb{sub m}) is needed to enable a mass savings over advanced oxygen/hydrogen propulsion. Associated with the potential benefits of high I(sub sp) atomic hydrogen are several challenging problems. Very high magnetic fields are required to maintain the atomic hydrogen in a solid hydrogen matrix. The magnetic field strength was estimated to be 30 kilogauss (3 Tesla). Also the storage temperature of the propellant is 4 K. This very low temperature will require a large refrigeration facility for the launch vehicle. The design considerations for a very high recombination rate for the propellant are also discussed. A recombination rate of 210 cm/s is predicted for atomic hydrogen. This high recombination rate can produce very high acceleration for the launch vehicle. Unique insulation or segmentation to inhibit the propellant may be needed to reduce its recombination rate.

  19. Hydrogen passivation of silicon nanowire structures

    NASA Astrophysics Data System (ADS)

    Aouida, S.; Benabderrahmane Zaghouani, R.; Bachtouli, N.; Bessais, B.

    2016-05-01

    In this work, we focus on hydrogen passivation of silicon nanowire structures (SiNWs) obtained by metal assisted chemical etching (MACE) intended to be used in silicon-based solar cells. SiNWs present high surface defects density causing the minority carrier lifetime reduction. Our results show that hydrogen passivation of SiNWs ameliorates minority carrier lifetime by reducing the dangling bonds and then the surface recombination velocity. This enhancement is limited by SiNWs distribution.

  20. Hydrogen carriers

    NASA Astrophysics Data System (ADS)

    He, Teng; Pachfule, Pradip; Wu, Hui; Xu, Qiang; Chen, Ping

    2016-12-01

    Hydrogen has the potential to be a major energy vector in a renewable and sustainable future energy mix. The efficient production, storage and delivery of hydrogen are key technical issues that require improvement before its potential can be realized. In this Review, we focus on recent advances in materials development for on-board hydrogen storage. We highlight the strategic design and optimization of hydrides of light-weight elements (for example, boron, nitrogen and carbon) and physisorbents (for example, metal-organic and covalent organic frameworks). Furthermore, hydrogen carriers (for example, NH3, CH3OH-H2O and cycloalkanes) for large-scale distribution and for on-site hydrogen generation are discussed with an emphasis on dehydrogenation catalysts.

  1. Recombinant Baculovirus Isolation.

    PubMed

    King, Linda A; Hitchman, Richard; Possee, Robert D

    2016-01-01

    Although there are several different methods available of making recombinant baculovirus expression vectors (reviewed in Chapter 3 ), all require a stage in which insect cells are transfected with either the virus genome alone (Bac-to-Bac(®) or BaculoDirect™, Invitrogen) or virus genome and transfer vector. In the latter case, this allows the natural process of homologous recombination to transfer the foreign gene, under control of the polyhedrin or other baculovirus gene promoter, from the transfer vector to the virus genome to create the recombinant virus. Previously, many methods required a plaque-assay to separate parental and recombinant virus prior to amplification and use of the recombinant virus. Fortunately, this step is no longer required for most systems currently available. This chapter provides an overview of the historical development of increasingly more efficient systems for the isolation of recombinant baculoviruses (Chapter 3 provides a full account of the different systems and transfer vectors available). The practical details cover: transfection of insect cells with either virus DNA or virus DNA and plasmid transfer vector; a reliable plaque-assay method that can be used to separate recombinant virus from parental (nonrecombinant) virus where this is necessary; methods for the small-scale amplification of recombinant virus; and subsequent titration by plaque-assay or real-time polymerase chain reaction (PCR). Methods unique to the Bac-to-Bac(®) system are also covered and include the transformation of bacterial cells and isolation of bacmid DNA ready for transfection of insect cells.

  2. The Richness and Beauty of the Physics of Cosmological Recombination

    NASA Astrophysics Data System (ADS)

    Sunyaev, Rashid

    2009-01-01

    In our Universe the initial temperature of radiation was very high and hydrogen and helium were completely ionized. At redshifts z 1400 the temperature dropped to 3800 K and, according to the Saha equation, the recombination of hydrogen should occur. In reality this process is strongly delayed and some frozen amount of electrons should be present till the reionization of the Universe at z 10. Process of recombination defines the position and the width of the last scattering surface which is crucial for the formation of the observed angular fluctuations of cosmic microwave background radiation (CMB), acoustic peaks and barionic oscillations in the distribution of galaxies and clusters of galaxies in space. The recombination of hydrogen occurs under conditions of very low density and in the presence of black body radiation. As a result, usually insignificant atomic processes begin to play a role. They influence the shape of acoustic peaks at a level which will be detectable by the Planck Surveyor spacecraft and we should take them into account when estimating the key parameters of the Universe from CMB data. The recombination of hydrogen and helium leads to the appearance of recombinational lines in centimeter and decimeter spectral bands. Observations of these lines will make it possible to check the predictions of the big bang recombination theory and will open a possibility to measure directly the density of barions, the CMB monopole temperature and specific entropy of the Universe. Observations of helium recombination lines originated at redshifts 6000 and 2500 will open a way to measure the prestellar abundance of helium in the Universe.

  3. Graded recombination layers for multijunction photovoltaics.

    PubMed

    Koleilat, Ghada I; Wang, Xihua; Sargent, Edward H

    2012-06-13

    Multijunction devices consist of a stack of semiconductor junctions having bandgaps tuned across a broad spectrum. In solar cells this concept is used to increase the efficiency of photovoltaic harvesting, while light emitters and detectors use it to achieve multicolor and spectrally tunable behavior. In series-connected current-matched multijunction devices, the recombination layers must allow the hole current from one cell to recombine, with high efficiency and low voltage loss, with the electron current from the next cell. We recently reported a tandem solar cell in which the recombination layer was implemented using a progression of n-type oxides whose doping densities and work functions serve to connect, with negligible resistive loss at solar current densities, the constituent cells. Here we present the generalized conditions for design of efficient graded recombination layer solar devices. We report the number of interlayers and the requirements on work function and doping of each interlayer, to bridge an work function difference as high as 1.6 eV. We also find solutions that minimize the doping required of the interlayers in order to minimize optical absorption due to free carriers in the graded recombination layer (GRL). We demonstrate a family of new GRL designs experimentally and highlight the benefits of the progression of dopings and work functions in the interlayers.

  4. Spectrum Certification

    DTIC Science & Technology

    2010-03-01

    components on a platform, especially for an Unmanned Aerial System (UAS) • Note-To-Holders (NTH) is easier to go through the spectrum certification process... Unmanned Aerial System (UAS) • Application for Equipment Frequency Allocation is required for each RF component i e command and control (C2) link video

  5. Spectrum Management

    NASA Astrophysics Data System (ADS)

    Ghosh, Tapasi

    2002-12-01

    Present day life without the use of radio frequencies is totally unimaginable. The mode of usage of the different frequency bands is diverse and ever-changing with constant development of newer technology. In the midst of all this, there is a minority group of spectrum users who are labeled ``passive''. Radio astronomy and remote sensing groups come under this title, having no control over the signal they try to receive, they are often most vulnerable to interference from man-made radio waves. However, through constant need to develop new techniques to detect very week signal, the research done by these passive users of spectrum often benefits the commercial users. It is therefore of utmost importance that both the active and the passive users of radio spectrum may survive and grow together in a manner of peaceful coexistence. This is the goal of spectrum management. As radio waves ``do not know'' of any national boundaries, such management issues have to be agreed upon globally. The mechanisms that have been set up for such purposes with global and national counterparts is explained. How, as a minority, the interests of radio astronomy may be best served now and in future is also discussed.

  6. Metallic Hydrogen

    NASA Astrophysics Data System (ADS)

    Silvera, Isaac F.; Dias, Ranga; Noked, Ori; Salamat, Ashkan; Zaghoo, Mohamed

    2017-04-01

    One of the great challenges in condensed matter physics has been to produce metallic hydrogen (MH) in the laboratory. There are two approaches: solid molecular hydrogen can be compressed to high density at extreme pressures of order 5-6 megabars. The transition to MH should take place at low temperatures and is expected to occur as a structural first-order phase transition with dissociation of molecules into atoms, rather than the closing of a gap. A second approach is to produce dense molecular hydrogen at pressures of order 1-2 megabars and heat the sample. With increasing temperature, it was predicted that molecular hydrogen first melts and then dissociates to atomic metallic liquid hydrogen as a first-order phase transition. We have observed this liquid-liquid phase transition to metallic hydrogen, also called the plasma phase transition. In low-temperature studies, we have pressurized HD to over 3 megabars and observed two new phases. Molecular hydrogen has been pressurized to 4.2 megabars. A new phase transition has been observed at 3.55 megabars, but it is not yet metallic.

  7. Hyperfine interaction in hydrogenated graphene

    NASA Astrophysics Data System (ADS)

    Garcia, Noel; Melle, Manuel; Fernandez-Rossier, Joaquin

    We study the hyperfine interaction of Hydrogen chemisorbed in graphene nanostructures with a gap in their spectrum, such as islands and ribbons. Chemisorption of Hydrogen on graphene results in a bound in-gap state that hosts a single electron localized around the adatom. Using both density functional theory and a four-orbital tight-binding model we study the hyperfine interaction between the hydrogen nuclear spin and the conduction electrons in graphene. We find that the strength of the hyperfine interaction decreases for larger nanostructures for which the energy gap is smaller. We then compare the results of the hyperfine interaction for large nanostructures with those of graphene 2D crystal with a periodic arrangement of chemisorbed Hydrogen atoms, obtaining very similar results. The magnitude of the hyperfine interaction is about 150 MHz, in line with that of Si:P. We acknowledge financial support by Marie-Curie-ITN 607904-SPINOGRAPH.

  8. A mixed quantum-classical molecular dynamics study of anti-tetrol and syn-tetrol dissolved in liquid chloroform: hydrogen-bond structure and its signature on the infrared absorption spectrum.

    PubMed

    Kwac, Kijeong; Geva, Eitan

    2013-12-27

    The intramolecular hydrogen-bond structure of stereoselectively synthesized syn-tetrol and anti-tetrol dissolved in deuterated chloroform is investigated via a mixed quantum-classical molecular dynamics simulation. An extensive conformational analysis is performed in order to determine the dominant conformations, the distributions among them, and their sensitivity to the method for assigning partial charges (RESP vs AM1-BCC). The signature of the conformational distribution and method of assigning partial charges on the infrared absorption spectra is analyzed in detail. The relationship between the spectra and the underlying hydrogen-bond structure is elucidated.

  9. The passive autocatalytic recombiner test program at Sandia National Laboratories

    SciTech Connect

    Blanchat, T.K.; Malliakos, A.

    1997-10-01

    Passive autocatalytic recombiners (PARs) are being considered by the nuclear power industry as a combustible gas control system in operating plants and advanced light water reactor (ALWR) containments for design basis events. Sandia National Laboratories (SNL) has developed systems and methodologies to measure the amount of hydrogen that can be depleted in a containment by a PAR. Experiments were performed that determined the hydrogen depletion rate of a PAR in the presence of steam and also evaluated the effect of scale (number of cartridges) on the PAR performance at both low and high hydrogen concentrations.

  10. Radiofrequency recombination lines as diagnostics of the cool interstellar medium.

    NASA Technical Reports Server (NTRS)

    Dupree, A. K.

    1971-01-01

    Quantitative details are given of a new diagnostic technique for the carbon and hydrogen (H I) recombination lines. Theoretical results are presented for conditions expected in H I clouds, and are compared with available observations for Orion A and NGC 2024.

  11. Recombination and Replication

    PubMed Central

    Syeda, Aisha H.; Hawkins, Michelle; McGlynn, Peter

    2014-01-01

    The links between recombination and replication have been appreciated for decades and it is now generally accepted that these two fundamental aspects of DNA metabolism are inseparable: Homologous recombination is essential for completion of DNA replication and vice versa. This review focuses on the roles that recombination enzymes play in underpinning genome duplication, aiding replication fork movement in the face of the many replisome barriers that challenge genome stability. These links have many conserved features across all domains of life, reflecting the conserved nature of the substrate for these reactions, DNA. PMID:25341919

  12. Dissociative recombination in aeronomy

    NASA Technical Reports Server (NTRS)

    Fox, J. L.

    1989-01-01

    The importance of dissociative recombination in planetary aeronomy is summarized, and two examples are discussed. The first is the role of dissociative recombination of N2(+) in the escape of nitrogen from Mars. A previous model is updated to reflect new experimental data on the electronic states of N produced in this process. Second, the intensity of the atomic oxygen green line on the nightside of Venus is modeled. Use is made of theoretical rate coefficients for production of O (1S) in dissociative recombination from different vibrational levels of O2(+).

  13. Atomic hydrogen storage method and apparatus

    NASA Technical Reports Server (NTRS)

    Woollam, J. A. (Inventor)

    1978-01-01

    Atomic hydrogen, for use as a fuel or as an explosive, is stored in the presence of a strong magnetic field in exfoliated layered compounds such as molybdenum disulfide or an elemental layer material such as graphite. The compound is maintained at liquid helium temperatures and the atomic hydrogen is collected on the surfaces of the layered compound which are exposed during delamination (exfoliation). The strong magnetic field and the low temperature combine to prevent the atoms of hydrogen from recombining to form molecules.

  14. On quantum effects on the surface of solid hydrogen

    SciTech Connect

    Marchenko, V. I.

    2013-10-15

    The low-frequency spectrum of hypothetical superfluidity on the free surface of a quantum crystal of hydrogen is determined. In the quantum-rough state of the surface, crystallization waves with a quadratic spectrum should propagate. In the atomically smooth state, the spectrum is linear. Crystallization waves propagating along elementary steps are also considered.

  15. Microwave plasma generation of hydrogen atoms for rocket propulsion

    NASA Technical Reports Server (NTRS)

    Chapman, R.; Filpus, J.; Morin, T.; Snellenberger, R.; Asmussen, J.; Hawley, M.; Kerber, R.

    1981-01-01

    A flow microwave plasma reaction system is used to study the conversion of hydrogen to hydrogen atoms as a function of pressure, power density, cavity tuning, cavity mode, and time in the plasma zone. Hydrogen atom concentration is measured down-stream from the plasma by NOCl titration. Extensive modeling of the plasma and recombination zones is performed with the plasma zone treated as a backmix reaction system and the recombination zone treated as a plug flow. The thermodynamics and kinetics of the recombination process are examined in detail to provide an understanding of the conversion of recombination energy to gas kinetic energy. It is found that cavity tuning, discharge stability, and optimum power coupling are critically dependent on the system pressure, but nearly independent of the flow rate.

  16. Microwave plasma generation of hydrogen atoms for rocket propulsion

    NASA Technical Reports Server (NTRS)

    Chapman, R.; Filpus, J.; Morin, T.; Snellenberger, R.; Asmussen, J.; Hawley, M.; Kerber, R.

    1981-01-01

    A flow microwave plasma reaction system is used to study the conversion of hydrogen to hydrogen atoms as a function of pressure, power density, cavity tuning, cavity mode, and time in the plasma zone. Hydrogen atom concentration is measured down-stream from the plasma by NOCl titration. Extensive modeling of the plasma and recombination zones is performed with the plasma zone treated as a backmix reaction system and the recombination zone treated as a plug flow. The thermodynamics and kinetics of the recombination process are examined in detail to provide an understanding of the conversion of recombination energy to gas kinetic energy. It is found that cavity tuning, discharge stability, and optimum power coupling are critically dependent on the system pressure, but nearly independent of the flow rate.

  17. CATALYTIC RECOMBINER FOR A NUCLEAR REACTOR

    DOEpatents

    King, L.D.P.

    1960-07-01

    A hydrogen-oxygen recombiner is described for use with water-boiler type reactors. The catalyst used is the wellknown platinized alumina, and the novelty lies in the structural arrangement used to prevent flashback through the gas input system. The recombiner is cylindrical, the gases at the input end being deflected by a baffle plate through a first flashback shield of steel shot into an annular passage adjacent to and extending the full length of the housing. Below the baffle plate the gases flow first through an outer annular array of alumina pellets which serve as a second flashback shield, a means of distributing the flowing gases evenly and as a means of reducing radiation losses to the walls. Thereafter the gases flow inio the centrally disposed catalyst bed where recombination is effected. The steam and uncombined gases flow into a centrally disposed cylindrical passage inside the catalyst bod and thereafter out through the exit port. A high rate of recombination is effected.

  18. Surface recombination in semiconductors

    SciTech Connect

    Langer, J.M.; Walukiewicz, W.

    1995-07-01

    We propose two general criteria for a surface defect state to act as an efficient, nonradiative recombination center. The first is that the thermal ionization energy should not deviate from the mid-gap energy by more than the relaxation energy of the defect, In this case the activation energy for the recombination is given by the barrier for the capture of the first carrier, whereas the second carrier is captured athermally. The second citerion is related to the position of the average dangling bond energy relative to the band edges. If, as in the cases of InP or InAs, it is located close to a band edge, a low surface recombination velocity is expected. However a much faster recombination is predicated and experimentally observed in the materials with the average dangling bond energy located close to the mid-gap. The relevance of these criteria for the novel wide-gap optoelectronic materials is discussed.

  19. Atomic hydrogen storage. [cryotrapping and magnetic field strength

    NASA Technical Reports Server (NTRS)

    Woollam, J. A. (Inventor)

    1980-01-01

    Atomic hydrogen, for use as a fuel or as an explosive, is stored in the presence of a strong magnetic field in exfoliated layered compounds such as molybdenum disulfide or an elemental layer material such as graphite. The compound is maintained at liquid temperatures and the atomic hydrogen is collected on the surfaces of the layered compound which are exposed during delamination (exfoliation). The strong magnetic field and the low temperature combine to prevent the atoms of hydrogen from recombining to form molecules.

  20. Multiphoton Assisted Recombination

    NASA Astrophysics Data System (ADS)

    Shuman, E. S.; Jones, R. R.; Gallagher, T. F.

    2008-12-01

    We have observed multiphoton assisted recombination in the presence of a 38.8 GHz microwave field. Stimulated emission of up to ten microwave photons results in energy transfer from continuum electrons, enabling recombination. The maximum electron energy loss is far greater than the 2Up predicted by the standard “simpleman’s” model. The data are well reproduced by both an approximate analytic expression and numerical simulations in which the combined Coulomb and radiation fields are taken into account.

  1. Activated recombinant adenovirus proteinases

    DOEpatents

    Anderson, C.W.; Mangel, W.F.

    1999-08-10

    This application describes methods and expression constructs for producing activatable recombinant adenovirus proteinases. Purified activatable recombinant adenovirus proteinases and methods of purification are described. Activated adenovirus proteinases and methods for obtaining activated adenovirus proteinases are further included. Isolated peptide cofactors of adenovirus proteinase activity, methods of purifying and identifying peptide cofactors are also described. Antibodies immunoreactive with adenovirus proteinases, immunospecific antibodies, and methods for preparing them are also described. Other related methods and materials are also described. 29 figs.

  2. Activated recombinant adenovirus proteinases

    DOEpatents

    Anderson, Carl W.; Mangel, Walter F.

    1999-08-10

    This application describes methods and expression constructs for producing activatable recombinant adenovirus proteinases. Purified activatable recombinant adenovirus proteinases and methods of purification are described. Activated adenovirus proteinases and methods for obtaining activated adenovirus proteinases are further included. Isolated peptide cofactors of adenovirus proteinase activity, methods of purifying and identifying said peptide cofactors are also described. Antibodies immunoreactive with adenovirus proteinases, immunospecific antibodies, and methods for preparing them are also described. Other related methods and materials are also described.

  3. Microwave Spectrum of Hexafluoroisopropanol

    NASA Astrophysics Data System (ADS)

    Shahi, Abhishek; Mani, Devendra; Arunan, E.

    2012-06-01

    Hexafluoroisopropanol (HFIP) is an important organic solvent and probably the only solvent which can dissolve polythene. IR studies, on this molecule confirm the existence of antiperiplanar (ap) and synclinical (sc) conformers. We have observed pure rotational spectrum of this molecule and the fitted rotational constants (A= 2105.1208(11) MHz, B= 1053.9942(3) MHz, C= 932.3398(3) MHz) confirm the presence of ap conformer. There are many other observed lines which most probably corresponds to sc structure and due to the large amplitude motion of H-atom, some of these transitions show tunneling splitting. Work is in progress for the deuterated (OD) and C-13 isotopologues of the monomer. HFIP is expected to exhibit interesting hydrogen bonding properties and we are planning to investigate them by studying its complex with water. The results will be presented in this talk. H. Schaal, T. Höber, and M. A. Suhm, J. Phys. Chem. A 104, 265 (2000).

  4. Recombination and chromosome segregation.

    PubMed Central

    Sherratt, David J; Søballe, Britta; Barre, François-Xavier; Filipe, Sergio; Lau, Ivy; Massey, Thomas; Yates, James

    2004-01-01

    The duplication of DNA and faithful segregation of newly replicated chromosomes at cell division is frequently dependent on recombinational processes. The rebuilding of broken or stalled replication forks is universally dependent on homologous recombination proteins. In bacteria with circular chromosomes, crossing over by homologous recombination can generate dimeric chromosomes, which cannot be segregated to daughter cells unless they are converted to monomers before cell division by the conserved Xer site-specific recombination system. Dimer resolution also requires FtsK, a division septum-located protein, which coordinates chromosome segregation with cell division, and uses the energy of ATP hydrolysis to activate the dimer resolution reaction. FtsK can also translocate DNA, facilitate synapsis of sister chromosomes and minimize entanglement and catenation of newly replicated sister chromosomes. The visualization of the replication/recombination-associated proteins, RecQ and RarA, and specific genes within living Escherichia coli cells, reveals further aspects of the processes that link replication with recombination, chromosome segregation and cell division, and provides new insight into how these may be coordinated. PMID:15065657

  5. The 21-cm Signal from the cosmological epoch of recombination

    SciTech Connect

    Fialkov, A.; Loeb, A. E-mail: aloeb@cfa.harvard.edu

    2013-11-01

    The redshifted 21-cm emission by neutral hydrogen offers a unique tool for mapping structure formation in the early universe in three dimensions. Here we provide the first detailed calculation of the 21-cm emission signal during and after the epoch of hydrogen recombination in the redshift range of z ∼ 500–1,100, corresponding to observed wavelengths of 100–230 meters. The 21-cm line deviates from thermal equilibrium with the cosmic microwave background (CMB) due to the excess Lyα radiation from hydrogen and helium recombinations. The resulting 21-cm signal reaches a brightness temperature of a milli-Kelvin, orders of magnitude larger than previously estimated. Its detection by a future lunar or space-based observatory could improve dramatically the statistical constraints on the cosmological initial conditions compared to existing two-dimensional maps of the CMB anisotropies.

  6. Surface and bulk-loss reduction research by low-energy hydrogen doping

    NASA Technical Reports Server (NTRS)

    Fonash, S.

    1985-01-01

    Surface and bulk loss reduction by low energy hydrogen doping of silicon solar cells was examined. Hydrogen ions provided a suppression of space charge recombination currents. Implantation of hydrogen followed by the anneal cycle caused more redistribution of boron than the anneal which could complicate processing. It was demonstrated that passivation leads to space charge current reduction.

  7. Recombinant expression and characterization of a L-amino acid oxidase from the fungus Rhizoctonia solani.

    PubMed

    Hahn, Katharina; Neumeister, Katrin; Mix, Andreas; Kottke, Tilman; Gröger, Harald; Fischer von Mollard, Gabriele

    2017-04-01

    L-Amino acid oxidases (L-AAOs) catalyze the oxidative deamination of L-amino acids to the corresponding α-keto acids, ammonia, and hydrogen peroxide. L-AAOs are homodimeric enzymes with FAD as a non-covalently bound cofactor. They are of potential interest for biotechnological applications. However, heterologous expression has not succeeded in producing large quantities of active recombinant L-AAOs with a broad substrate spectrum so far. Here, we report the heterologous expression of an active L-AAO from the fungus Rhizoctonia solani in Escherichia coli as a fusion protein with maltose-binding protein (MBP) as a solubility tag. After purification, it was possible to remove the MBP-tag proteolytically without influencing the enzyme activity. MBP-rsLAAO1 and 9His-rsLAAO1 converted basic and large hydrophobic L-amino acids as well as methyl esters of these L-amino acids. The progress of the conversion of L-phenylalanine and L-leucine into the corresponding α-keto acids was determined by HPLC and (1)H-NMR analysis of reaction mixtures, respectively. Enzymatic activity was stimulated 50-100-fold by SDS treatment. K m values ranging from 0.9-10 mM and v max values from 3 to 10 U mg(-1) were determined after SDS activation of 9His-rsLAAO1 for the best substrates. The enzyme displayed a broad pH optimum between pH 7.0 and 9.5. In summary, a successful overexpression of recombinant L-AAO in E. coli was established that results in a promising enzymatic activity and a broad substrate spectrum for biotechnological application.

  8. Storing Hydrogen

    SciTech Connect

    Kim, Hyun Jeong; Karkamkar, Abhijeet J.; Autrey, Thomas; Chupas, Peter; Proffen, Thomas E.

    2010-05-31

    Researchers have been studying mesoporous materials for almost two decades with a view to using them as hosts for small molecules and scaffolds for molding organic compounds into new hybrid materials and nanoparticles. Their use as potential storage systems for large quantities of hydrogen has also been mooted. Such systems that might hold large quantities of hydrogen safely and in a very compact volume would have enormous potential for powering fuel cell vehicles, for instance. A sponge-like form of silicon dioxide, the stuff of sand particles and computer chips, can soak up and store other compounds including hydrogen. Studies carried out at the XOR/BESSRC 11-ID-B beamline at the APS have revealed that the nanoscopic properties of the hydrogenrich compound ammonia borane help it store hydrogen more efficiently than usual. The material may have potential for addressing the storage issues associated with a future hydrogen economy. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  9. Population inversion in a stationary recombining plasma

    SciTech Connect

    Otsuka, M.

    1980-12-01

    Population inversion, which occurs in a recombining plasma when a stationary He plasma is brought into contact with a neutral gas, is examined. With hydrogen as a contact gas, noticeable inversion between low-lying levels of H as been found. The overpopulation density is of the order of 10/sup 8/ cm/sup -3/, which is much higher then that (approx. =10/sup 5/ cm/sup -3/) obtained previously with He as a contact gas. Relations between these experimental results and the conditions for population inversion are discussed with the CR model.

  10. Hydrogen program overview

    SciTech Connect

    Gronich, S.

    1997-12-31

    This paper consists of viewgraphs which summarize the following: Hydrogen program structure; Goals for hydrogen production research; Goals for hydrogen storage and utilization research; Technology validation; DOE technology validation activities supporting hydrogen pathways; Near-term opportunities for hydrogen; Market for hydrogen; and List of solicitation awards. It is concluded that a full transition toward a hydrogen economy can begin in the next decade.

  11. Hydrogen gas purification apparatus

    SciTech Connect

    Yanagihara, N.; Gamo, T.; Iwaki, T.; Moriwaki, Y.

    1984-04-24

    A hydrogen gas purification apparatus which includes at least one set of two hydrogen purification containers coupled to each other for heat exchanging therebetween, each of the hydrogen purification containers containing a hydrogen absorbing alloy. The hydrogen gas purification apparatus is so arranged as to cause hydrogen gas to be selectively desorbed from and absorbed into the hydrogen absorbing alloy by the amount of heat produced when the hydrogen gas is selectively absorbed into and desorbed from the hydrogen absorbing alloy.

  12. Regulation of Meiotic Recombination

    SciTech Connect

    Gregory p. Copenhaver

    2011-11-09

    Meiotic recombination results in the heritable rearrangement of DNA, primarily through reciprocal exchange between homologous chromosome or gene conversion. In plants these events are critical for ensuring proper chromosome segregation, facilitating DNA repair and providing a basis for genetic diversity. Understanding this fundamental biological mechanism will directly facilitate trait mapping, conventional plant breeding, and development of genetic engineering techniques that will help support the responsible production and conversion of renewable resources for fuels, chemicals, and the conservation of energy (1-3). Substantial progress has been made in understanding the basal recombination machinery, much of which is conserved in organisms as diverse as yeast, plants and mammals (4, 5). Significantly less is known about the factors that regulate how often and where that basal machinery acts on higher eukaryotic chromosomes. One important mechanism for regulating the frequency and distribution of meiotic recombination is crossover interference - or the ability of one recombination event to influence nearby events. The MUS81 gene is thought to play an important role in regulating the influence of interference on crossing over. The immediate goals of this project are to use reverse genetics to identify mutants in two putative MUS81 homologs in the model plant Arabidopsis thaliana, characterize those mutants and initiate a novel forward genetic screen for additional regulators of meiotic recombination. The long-term goal of the project is to understand how meiotic recombination is regulated in higher eukaryotes with an emphasis on the molecular basis of crossover interference. The ability to monitor recombination in all four meiotic products (tetrad analysis) has been a powerful tool in the arsenal of yeast geneticists. Previously, the qrt mutant of Arabidopsis, which causes the four pollen products of male meiosis to remain attached, was developed as a facile system

  13. Recombination at textured silicon surfaces passivated with silicon dioxide

    NASA Astrophysics Data System (ADS)

    McIntosh, Keith R.; Johnson, Luke P.

    2009-06-01

    The surfaces of solar cells are often textured to increase their capacity to absorb light. This optical benefit is partially offset, however, by an increase in carrier recombination at or near the textured surface. A review of past work shows that the additional recombination invoked by a textured surface varies greatly from one experiment to another. For example, in the most commonly investigated structure—pyramidal textured silicon diffused with phosphorus and passivated with a hydrogenated oxide—recombination ranges from being 1-12 times more than in an equivalently prepared planar {100} surface. Examination of these experiments reveals consistent trends: small increases in recombination occur when the surface is very heavily diffused and dominated by Auger recombination, while larger increases in recombination occur when the surface is lightly diffused and dominated by Shockley-Read-Hall recombination at the surface, making the latter depend critically on surface area and the density of surface states. Comparisons of pyramidal and planar {100} surfaces indicate that when lightly diffused, the difference in recombination is substantially greater than the difference in surface area (1.73) and it is regularly attributed to the pyramid facets having {111} orientations—well known for their higher density of dangling bonds than {100} orientations. This high dangling-bond density makes recombination at pyramidal facets strongly dependent on the passivation scheme, and it is variations in these schemes that led to the wide range of results observed in experimental studies. In addition to surface area and crystal orientation, some experiments suggest a third mechanism that enhances recombination on oxide-passivated pyramids. With capacitance-voltage and photoconductance measurements, we confirm this speculation, showing that oxide-passivated pyramidal textured silicon has a higher density of interface states than can be accounted for by surface area and

  14. Hydrogen chloride

    Integrated Risk Information System (IRIS)

    Hydrogen chloride ; CASRN 7647 - 01 - 0 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogeni

  15. Hydrogen technologies

    SciTech Connect

    Not Available

    1992-05-01

    To the non-nonsense engineer, any talk of a hydrogen economy may seem like so much hot air. This paper reports that as legislative, safety and environmental issues continue to tighten, they're promoting hydrogen's chances as an energy source and, more immediately, its prospects as a chemical feedstock. Paradoxically, the environmental demands that are stimulating hydrogen demand are also inhibiting the gas's production. Previously, gasoline was made with benzene, which means that H{sub 2} was rejected. But now that the laws mandate lower aromatic and higher oxygenate levels in gasolines, there's less H{sub 2} available as byproduct. At the same time, H{sub 2} demand is rising in hydrodesulfurization units, since the same laws require refiners to cut sulfur levels in fuels. Supplementary sources for the gas are also shrinking. In the chlor-alkali industry, H{sub 2} output is dropping, as demand for its coproduct chlorine weakens. At the same time, H{sub 2} demand for the making of hydrogen peroxide is growing, as that environmentally safer bleach gains chlorine's market share.

  16. Hydrogen sulfide

    Integrated Risk Information System (IRIS)

    EPA / 635 / R - 03 / 005 www.epa.gov / iris TOXICOLOGICAL REVIEW OF HYDROGEN SULFIDE ( CAS No . 7783 - 06 - 4 ) In Support of Summary Information on the Integrated Risk Information System ( IRIS ) June 2003 U.S . Environmental Protection Agency Washington , DC DISCLAIMER This document has been

  17. Solid Hydrogen Formed for Atomic Propellants

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan A.

    2000-01-01

    Several experiments on the formation of solid hydrogen particles in liquid helium were recently conducted at the NASA Glenn Research Center at Lewis Field. The solid hydrogen experiments are the first step toward seeing these particles and determining their shape and size. The particles will ultimately store atoms of boron, carbon, or hydrogen, forming an atomic propellant. Atomic propellants will allow rocket vehicles to carry payloads many times heavier than possible with existing rockets or allow them to be much smaller and lighter. Solid hydrogen particles are preferred for storing atoms. Hydrogen is generally an excellent fuel with a low molecular weight. Very low temperature hydrogen particles (T < 4 K) can prevent the atoms from recombining, making it possible for their lifetime to be controlled. Also, particles that are less than 1 mm in diameter are preferred because they can flow easily into a pipe when suspended in liquid helium. The particles and atoms must remain at this low temperature until the fuel is introduced into the engine combustion (or recombination) chamber. Experiments were, therefore, planned to look at the particles and observe their formation and any changes while in liquid helium.

  18. The mechanism of electron-cation geminate recombination in liquid isooctane

    NASA Astrophysics Data System (ADS)

    Zhang, Tieqiao; Lee, Young Jong; Kee, Tak W.; Barbara, Paul F.

    2005-02-01

    Electron-cation geminate recombination in isooctane has been reinvestigated by femtosecond spectroscopy. The observed recombination kinetics are well-fit by a single exponential decay ( τ = 400 ± 40 fs) and exhibit a significant hydrogen/deuterium kinetic isotope effect. The kinetics are not affected by varying the incident intensity or by exciting the recombining electrons with a high power 800 nm pulse. These observations strongly suggest that the recombination rate is not limited by diffusive motion of the ions to form a contact ion pair, but rather by the electron transfer reaction rate between the ions in a contact ion pair.

  19. Metallic Hydrogen

    NASA Astrophysics Data System (ADS)

    Silvera, Isaac; Zaghoo, Mohamed; Salamat, Ashkan

    2015-03-01

    Hydrogen is the simplest and most abundant element in the Universe. At high pressure it is predicted to transform to a metal with remarkable properties: room temperature superconductivity, a metastable metal at ambient conditions, and a revolutionary rocket propellant. Both theory and experiment have been challenged for almost 80 years to determine its condensed matter phase diagram, in particular the insulator-metal transition. Hydrogen is predicted to dissociate to a liquid atomic metal at multi-megabar pressures and T =0 K, or at megabar pressures and very high temperatures. Thus, its predicted phase diagram has a broad field of liquid metallic hydrogen at high pressure, with temperatures ranging from thousands of degrees to zero Kelvin. In a bench top experiment using static compression in a diamond anvil cell and pulsed laser heating, we have conducted measurements on dense hydrogen in the region of 1.1-1.7 Mbar and up to 2200 K. We observe a first-order phase transition in the liquid phase, as well as sharp changes in optical transmission and reflectivity when this phase is entered. The optical signature is that of a metal. The mapping of the phase line of this transition is in excellent agreement with recent theoretical predictions for the long-sought plasma phase transition to metallic hydrogen. Research supported by the NSF, Grant DMR-1308641, the DOE Stockpile Stewardship Academic Alliance Program, Grant DE-FG52-10NA29656, and NASA Earth and Space Science Fellowship Program, Award NNX14AP17H.

  20. Hydrogen Storage and Production Project

    SciTech Connect

    Bhattacharyya, Abhijit; Biris, A. S.; Mazumder, M. K.; Karabacak, T.; Kannarpady, Ganesh; Sharma, R.

    2011-07-31

    This is the final technical report. This report is a summary of the project. The goal of our project is to improve solar-to-hydrogen generation efficiency of the PhotoElectroChemical (PEC) conversion process by developing photoanodes with high absorption efficiency in the visible region of the solar radiation spectrum and to increase photo-corrosion resistance of the electrode for generating hydrogen from water. To meet this goal, we synthesized nanostructured heterogeneous semiconducting photoanodes with a higher light absorption efficiency compared to that of TiO2 and used a corrosion protective layer of TiO2. While the advantages of photoelectrochemical (PEC) production of hydrogen have not yet been realized, the recent developments show emergence of new nanostructural designs of photoanodes and choices of materials with significant gains in photoconversion efficiency.

  1. Nanobodies and recombinant binders in cell biology.

    PubMed

    Helma, Jonas; Cardoso, M Cristina; Muyldermans, Serge; Leonhardt, Heinrich

    2015-06-08

    Antibodies are key reagents to investigate cellular processes. The development of recombinant antibodies and binders derived from natural protein scaffolds has expanded traditional applications, such as immunofluorescence, binding arrays, and immunoprecipitation. In addition, their small size and high stability in ectopic environments have enabled their use in all areas of cell research, including structural biology, advanced microscopy, and intracellular expression. Understanding these novel reagents as genetic modules that can be integrated into cellular pathways opens up a broad experimental spectrum to monitor and manipulate cellular processes. © 2015 Helma et al.

  2. Nanobodies and recombinant binders in cell biology

    PubMed Central

    Helma, Jonas; Cardoso, M. Cristina; Muyldermans, Serge

    2015-01-01

    Antibodies are key reagents to investigate cellular processes. The development of recombinant antibodies and binders derived from natural protein scaffolds has expanded traditional applications, such as immunofluorescence, binding arrays, and immunoprecipitation. In addition, their small size and high stability in ectopic environments have enabled their use in all areas of cell research, including structural biology, advanced microscopy, and intracellular expression. Understanding these novel reagents as genetic modules that can be integrated into cellular pathways opens up a broad experimental spectrum to monitor and manipulate cellular processes. PMID:26056137

  3. Optical and Phototransport Properties of Hydrogenated Amorphous Semiconductors

    NASA Astrophysics Data System (ADS)

    Li, Yuan-Min

    1990-01-01

    A study of the optical and phototransport properties of hydrogenated, tetrahedrally bonded amorphous semiconductor films produced by the radio frequency glow discharge technique is presented. The first part of this thesis reports an extensive investigation of hydrogenated and hydrogenated -fluorinated amorphous Si-Ge alloys, a-Si_{1-x}Ge_{x}:H and a-Si_{1-x}Ge_ {x}:H:F. The optical and vibrational properties of the two sets of alloys are described and compared. The photoconductivity of these materials is discussed with focus on the following two questions: (1) the drastic deterioration of the photoconductivity of a -Si_{1-x}Ge_{x }:H with increasing x; (2) the improved photoconductive response etamutau (quantum efficiency-mobility-lifetime product) in the fluoride {SiF_4 + GeF_4 + H_2 } derived alloys over that of the hydride {SiH_4 + GeH_4} derived alloys of roughly 50 at.% Ge, or with a bandgap near 1.4 eV. The phototransport properties of a-Si_ {1-x}Ge_{x}:H and a-Si _{1-x}Ge_{x }:H:F are analyzed in light of information provided by various types of electronic and structural characterization. Some specific models for the electronic band structure, charge transport, and recombination are probed. It is concluded that a uniform increase in the gap density of states can only partially account for the severe quality degradation of a a-Si_ {1-x}Ge_{x}:H(:F) relative to a-Si:H. The inferior photosensitivity of a-SiGe:H(:F) is caused, in part, by an increase in structural heterogeneity. Possible enhancement of recombination of excess carriers in the alloys due to clustered and/or charged defects, tunneling recombination, and reduced bandgap is assessed. The efficacy of hydrogen and fluorine in determining the properties of a-SiGe alloys is evaluated. It is found that the replacement of hydrogen by fluorine in a-SiGe can not be responsible for the observed improvement of etamu tau in the fluoride-derived a-Si_{0.5}Ge_{0.5}:H:F over the hydride-derived a-Si_ {0.5}Ge_{0

  4. Hydrogen peroxide poisoning

    MedlinePlus

    Hydrogen peroxide is used in these products: Hydrogen peroxide Hair bleach Some contact lens cleaners Note: Household hydrogen peroxide has a 3% concentration. That means it contains 97% water and 3% hydrogen peroxide. Hair ...

  5. Observation of molecular assisted recombination in the magnetized sheet plasma

    NASA Astrophysics Data System (ADS)

    Tonegawa, Akira; Ogawa, Hironori; Yazawa, Hiroyuki; Ono, Masataka; Kawamura, Kazutaka

    2003-10-01

    Molecular assisted recombination (MAR) with vibrational hydorogen molecular has been observed to enhance the reduction of ion particle flux in a high density magnetized sheet plasma device (TPDSHEET-IV). There are two main paths for MAR: (1) H2(v) + e=> H- + H (dissociated attachment) followed by H- + H+ =>H + H (mutual neutralization), and (2) H2(v) + A+ => (AH)+ + H (ion conversion) followed by (AH)+ + e => A + H (dissociative recombination) , where A+(A) is a hydrogen or an impurity ion (atom) existing in the plasma. The value of H+, H2+ and H3+ are observed in the mid-plane region with hot electron(Te= 10-15 eV) by a mass-analyzer. On the other hand, negative ions of hydrogen atom H- is localized in the circumference of existing cold electrons (Te= 3-5 eV) by a probe assisted laser photodetachment method. A small amount of secondary hydrogen gas puffing into a hydrogen plasma decreased gradually the density of H2+, H3+ and increased rapidly H- in the plasma, while the conventional radiation and three-body recombination (EIR) processes were disappeared. These results can be well explained by taking the MAR in the plasma into account.

  6. Optical spectrum of the planetary nebula M 2-24

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Liu, X.-W.

    2003-06-01

    We have obtained medium-resolution, deep optical long-slit spectra of the bulge planetary nebula (PN) M 2-24. The spectrum covers the wavelength range from 3610-7330 Å. Over two hundred emission lines have been detected. The spectra show a variety of optical recombination lines (ORLs) from C, N, O and Ne ions. The diagnostic diagram shows significant density and temperature variations across the nebula. Our analysis suggests that the nebula has a dense central emission core. The nebula was thus studied by dividing it into two regions: 1) a high ionization region characterized by an electron temperature of Te=16 300 K and a density of log Ne(cm-3) = 6.3; and 2) a low ionization region represented by Te=11 400 K and log Ne(cm-3) = 3.7. A large number of ORLs from C, N, O and Ne ions have been used to determine the abundances of these elements relative to hydrogen. In general, the resultant abundances are found to be higher than the corresponding values deduced from collisionally excited lines (CELs). This bulge PN is found to have large enhancements in two alpha -elements, magnesium and neon. Full Table 2 is available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.126.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/404/545

  7. Hydrogen forming reaction process

    SciTech Connect

    Marianowski, L.G.; Fleming, D.K.

    1989-03-07

    A hydrogen forming process is described, comprising: conducting in a hydrogen production zone a chemical reaction forming mixed gases comprising molecular hydrogen; contacting one side of a hydrogen ion porous and molecular gas nonporous metallic foil with the mixed gases in the hydrogen production zone; dissociating the molecular hydrogen to ionic hydrogen on the one side of the metallic foil; passing the ionic hydrogen through the metallic foil to its other side; and withdrawing hydrogen from the other side of the metallic foil, thereby removing hydrogen from the hydrogen production zone.

  8. Photoionization and electron-ion recombination of P II

    NASA Astrophysics Data System (ADS)

    Nahar, Sultana N.

    2017-08-01

    A study of the inverse processes of photoionization and electron-ion recombination of P ii is reported. Phosphorus, a little studied cosmic element, requires atomic parameters such as those presented here for spectral analysis. The unified method of Nahar and Pradhan, which incorporates two methods of recombination - radiative recombination (RR) and dielectronic recombination (DR) - and the interference between them, is used to obtain the total electron-ion recombination. This method implements the framework of the {R}-matrix close-coupling approximation. The present results include the partial photoionization cross-sections σPI(Jπ) leaving the residual ion in the ground level and level-specific recombination rate coefficients, αRC(Jπ), of 475 fine-structure levels of P ii with n ≤10. In photoionization of the ground and many excited levels, a sharp resonance is found to form at the ionization threshold from couplings of relativistic fine-structure channels. These, with other resonances in the near-threshold energy region, yield a slight curvature, in contrast to typical smooth decay, at a very low temperature of about 330 K in the total recombination rate coefficient αRC. The presence of other Rydberg and Seaton resonances in the photoionization cross-section introduces features in the level-specific recombination rate coefficients and a DR bump at high temperature at 105 K for the total recombination rate coefficient. Considerable interference between RR and DR is noted around 6700 K. The recombination spectrum with respect to photoelectron energy αRC(E) is also presented. The results are expected to provide accurate models for astrophysical plasmas up to ∼1 MK.

  9. Car-Parrinello simulation of the vibrational spectrum of a medium strong hydrogen bond by two-dimensional quantization of the nuclear motion: application to 2-hydroxy-5-nitrobenzamide.

    PubMed

    Brela, Mateusz; Stare, Jernej; Pirc, Gordana; Sollner-Dolenc, Marija; Boczar, Marek; Wójcik, Marek J; Mavri, Janez

    2012-04-19

    The nature of medium strong intra- and intermolecular hydrogen bonding in 2-hydroxy-5-nitrobenzamide in the crystal phase was examined by infrared spectroscopy and Car-Parrinello molecular dynamics simulation. The focal point of our study was the part of the infrared spectra associated with the O-H and N-H stretching modes that are very sensitive to the strength of hydrogen bonding. For spectra calculations we used an isolated dimer and the fully periodic crystal environment. We calculated the spectra by using harmonic approximation, the time course of the dipole moment function as obtained from the Car-Parrinello simulation, and the quantization of the nuclear motion of the proton for an instantaneous snapshot of the structures in one and two dimensions. Although quantitative assessment of the agreement between the computed and experimental band contour is difficult due to the fact that the experimental band is very broad, we feel that the most reasonable qualitative agreement with the experiment is obtained from snapshot structures and two-dimensional quantization of the proton motion. We have also critically examined the methods of constructing the one-dimensional proton potential. Perspectives are given for the treatment of nuclear quantum effects in biocatalysis.

  10. Hydrogen environment embrittlement.

    NASA Technical Reports Server (NTRS)

    Gray, H. R.

    1972-01-01

    Hydrogen embrittlement is classified into three types: internal reversible hydrogen embrittlement, hydrogen reaction embrittlement, and hydrogen environment embrittlement. Characteristics of and materials embrittled by these types of hydrogen embrittlement are discussed. Hydrogen environment embrittlement is reviewed in detail. Factors involved in standardizing test methods for detecting the occurrence of and evaluating the severity of hydrogen environment embrittlement are considered. The effects of test technique, hydrogen pressure, purity, strain rate, stress concentration factor, and test temperature are discussed.

  11. Recombinant renewable polyclonal antibodies.

    PubMed

    Ferrara, Fortunato; D'Angelo, Sara; Gaiotto, Tiziano; Naranjo, Leslie; Tian, Hongzhao; Gräslund, Susanne; Dobrovetsky, Elena; Hraber, Peter; Lund-Johansen, Fridtjof; Saragozza, Silvia; Sblattero, Daniele; Kiss, Csaba; Bradbury, Andrew R M

    2015-01-01

    Only a small fraction of the antibodies in a traditional polyclonal antibody mixture recognize the target of interest, frequently resulting in undesirable polyreactivity. Here, we show that high-quality recombinant polyclonals, in which hundreds of different antibodies are all directed toward a target of interest, can be easily generated in vitro by combining phage and yeast display. We show that, unlike traditional polyclonals, which are limited resources, recombinant polyclonal antibodies can be amplified over one hundred million-fold without losing representation or functionality. Our protocol was tested on 9 different targets to demonstrate how the strategy allows the selective amplification of antibodies directed toward desirable target specific epitopes, such as those found in one protein but not a closely related one, and the elimination of antibodies recognizing common epitopes, without significant loss of diversity. These recombinant renewable polyclonal antibodies are usable in different assays, and can be generated in high throughput. This approach could potentially be used to develop highly specific recombinant renewable antibodies against all human gene products.

  12. The dissociative recombination of ?

    NASA Astrophysics Data System (ADS)

    Laubé, S.; Lehfaoui, L.; Rowe, B. R.; Mitchell, J. B. A.

    1998-09-01

    The dissociative recombination rate coefficient for 0953-4075/31/18/016/img2 has been measured at 300 K using a flowing afterglow Langmuir probe-mass spectrometer apparatus. A value of 0953-4075/31/18/016/img3 has been found.

  13. Introduction to dissociative recombination

    NASA Technical Reports Server (NTRS)

    Guberman, Steven L.; Mitchell, J. Brian A.

    1989-01-01

    Dissociative recombination (DR) of molecular ions with electrons has important consequences in many areas of physical science. Ab-initio calculations coupled with resonant scattering theory and multichannel quantum defect studies have produced detailed results illuminating the role of ion vibrational excitation, the quantum yields of the DR products, and the role of Rydberg states. The theoretical and experimental results are discussed.

  14. Recombinant renewable polyclonal antibodies

    PubMed Central

    Ferrara, Fortunato; D’Angelo, Sara; Gaiotto, Tiziano; Naranjo, Leslie; Tian, Hongzhao; Gräslund, Susanne; Dobrovetsky, Elena; Hraber, Peter; Lund-Johansen, Fridtjof; Saragozza, Silvia; Sblattero, Daniele; Kiss, Csaba; Bradbury, Andrew RM

    2015-01-01

    Only a small fraction of the antibodies in a traditional polyclonal antibody mixture recognize the target of interest, frequently resulting in undesirable polyreactivity. Here, we show that high-quality recombinant polyclonals, in which hundreds of different antibodies are all directed toward a target of interest, can be easily generated in vitro by combining phage and yeast display. We show that, unlike traditional polyclonals, which are limited resources, recombinant polyclonal antibodies can be amplified over one hundred million-fold without losing representation or functionality. Our protocol was tested on 9 different targets to demonstrate how the strategy allows the selective amplification of antibodies directed toward desirable target specific epitopes, such as those found in one protein but not a closely related one, and the elimination of antibodies recognizing common epitopes, without significant loss of diversity. These recombinant renewable polyclonal antibodies are usable in different assays, and can be generated in high throughput. This approach could potentially be used to develop highly specific recombinant renewable antibodies against all human gene products. PMID:25530082

  15. Recombinant DNA for Teachers.

    ERIC Educational Resources Information Center

    Duvall, James G., III

    1992-01-01

    A science teacher describes his experience at a workshop to learn to teach the Cold Spring Harbor DNA Science Laboratory Protocols. These protocols lead students through processes for taking E. coli cells and transforming them into a new antibiotic resistant strain. The workshop featured discussions of the role of DNA recombinant technology in…

  16. Recombineering linear BACs.

    PubMed

    Chen, Qingwen; Narayanan, Kumaran

    2015-01-01

    Recombineering is a powerful genetic engineering technique based on homologous recombination that can be used to accurately modify DNA independent of its sequence or size. One novel application of recombineering is the assembly of linear BACs in E. coli that can replicate autonomously as linear plasmids. A circular BAC is inserted with a short telomeric sequence from phage N15, which is subsequently cut and rejoined by the phage protelomerase enzyme to generate a linear BAC with terminal hairpin telomeres. Telomere-capped linear BACs are protected against exonuclease attack both in vitro and in vivo in E. coli cells and can replicate stably. Here we describe step-by-step protocols to linearize any BAC clone by recombineering, including inserting and screening for presence of the N15 telomeric sequence, linearizing BACs in vivo in E. coli, extracting linear BACs, and verifying the presence of hairpin telomere structures. Linear BACs may be useful for functional expression of genomic loci in cells, maintenance of linear viral genomes in their natural conformation, and for constructing innovative artificial chromosome structures for applications in mammalian and plant cells.

  17. Recombinant DNA for Teachers.

    ERIC Educational Resources Information Center

    Duvall, James G., III

    1992-01-01

    A science teacher describes his experience at a workshop to learn to teach the Cold Spring Harbor DNA Science Laboratory Protocols. These protocols lead students through processes for taking E. coli cells and transforming them into a new antibiotic resistant strain. The workshop featured discussions of the role of DNA recombinant technology in…

  18. Conceptual Launch Vehicles Using Metallic Hydrogen Propellant

    NASA Astrophysics Data System (ADS)

    Cole, John W.; Silvera, Isaac F.; Foote, John P.

    2008-01-01

    Solid molecular hydrogen is predicted to transform into an atomic solid with metallic properties under pressures >4.5 Mbar. Atomic metallic hydrogen is predicted to be metastable, limited by some critical temperature and pressure, and to store very large amounts of energy. Experiments may soon determine the critical temperature, critical pressure, and specific energy availability. It is useful to consider the feasibility of using metastable atomic hydrogen as a rocket propellant. If one assumes that metallic hydrogen is stable at usable temperatures and pressures, and that it can be affordably produced, handled, and stored, then it may be a useful rocket propellant. Assuming further that the available specific energy can be determined from the recombination of the atoms into molecules (216 MJ/kg), then conceptual engines and launch vehicle concepts can be developed. Under these assumptions, metallic hydrogen would be a revolutionary new rocket fuel with a theoretical specific impulse of 1700 s at a chamber pressure of 100 atm. A practical problem that arises is that rocket chamber temperatures may be too high for the use of this pure fuel. This paper examines an engine concept that uses liquid hydrogen or water as a diluent coolant for the metallic hydrogen to reduce the chamber temperature to usable values. Several launch vehicles are then conceptually developed. Results indicate that if metallic hydrogen is experimentally found to have the properties assumed in this analysis, then there are significant benefits. These benefits become more attractive as the chamber temperatures increase.

  19. Hydrogen scavengers

    SciTech Connect

    Carroll, David W.; Salazar, Kenneth V.; Trkula, Mitchell; Sandoval, Cynthia W.

    2002-01-01

    There has been invented a codeposition process for fabricating hydrogen scavengers. First, a .pi.-bonded allylic organometallic complex is prepared by reacting an allylic transition metal halide with an organic ligand complexed with an alkali metal; and then, in a second step, a vapor of the .pi.-bonded allylic organometallic complex is combined with the vapor of an acetylenic compound, irradiated with UV light, and codeposited on a substrate.

  20. Genomic homologous recombination in planta.

    PubMed Central

    Gal, S; Pisan, B; Hohn, T; Grimsley, N; Hohn, B

    1991-01-01

    A system for monitoring intrachromosomal homologous recombination in whole plants is described. A multimer of cauliflower mosaic virus (CaMV) sequences, arranged such that CaMV could only be produced by recombination, was integrated into Brassica napus nuclear DNA. This set-up allowed scoring of recombination events by the appearance of viral symptoms. The repeated homologous regions were derived from two different strains of CaMV so that different recombinant viruses (i.e. different recombination events) could be distinguished. In most of the transgenic plants, a single major virus species was detected. About half of the transgenic plants contained viruses of the same type, suggesting a hotspot for recombination. The remainder of the plants contained viruses with cross-over sites distributed throughout the rest of the homologous sequence. Sequence analysis of two recombinant molecules suggest that mismatch repair is linked to the recombination process. Images PMID:2026150

  1. Two-Band Pyrometers Detect Hydrogen Fires

    NASA Technical Reports Server (NTRS)

    Collins, J. David; Youngquist, Robert C.; Simmons, Stephen M.

    1993-01-01

    Two-band infrared pyrometers detect small hydrogen fires at greater distances in full daylight being developed. Detectors utilize part of infrared spectrum in which signals from hydrogen flames 10 to the 3rd power to 10 to the 4th power times as intense as ultraviolet region of current detectors. Utilize low-loss infrared lenses for focusing and for limiting fields of view to screen out spurious signals from nearby sources. Working distances of as much as 100 meters possible. Portable, battery-powered unit gives audible alarm, in form of increase in frequency of tone, when aimed at hydrogen fire.

  2. Hydrogen environment embrittlement

    NASA Technical Reports Server (NTRS)

    Gray, H. R.

    1972-01-01

    Hydrogen embrittlement is classified into three types: internal reversible hydrogen embrittlement, hydrogen reaction embrittlement, and hydrogen environment embrittlement. Characteristics of and materials embrittled by these types of hydrogen embrittlement are discussed. Hydrogen environment embrittlement is reviewed in detail. Factors involved in standardizing test methods for detecting the occurrence of and evaluating the severity of hydrogen environment embrittlement are considered. The effect of test technique, hydrogen pressure, purity, strain rate, stress concentration factor, and test temperature are discussed. Additional research is required to determine whether hydrogen environment embrittlement and internal reversible hydrogen embrittlement are similar or distinct types of embrittlement.

  3. Polymer formulation for removing hydrogen and liquid water from an enclosed space

    DOEpatents

    Shepodd, Timothy J.

    2006-02-21

    This invention describes a solution to the particular problem of liquid water formation in hydrogen getters exposed to quantities of oxygen. Water formation is usually desired because the recombination reaction removes hydrogen without affecting gettering capacity and the oxygen removal reduces the chances for a hydrogen explosion once free oxygen is essentially removed. The present invention describes a getter incorporating a polyacrylate compound that can absorb up to 500% of its own weight in liquid water without significantly affecting its hydrogen gettering/recombination properties, but that also is insensitive to water vapor.

  4. Nascent Vibrational/Rotational Distribution Produced by Hydrogen Atom Recombination.

    DTIC Science & Technology

    1988-02-01

    12. PERSONAL AUTHOR(S) WoiAn0 13a.TYP OF E OT 13b. TIME COVERED , 14. PA.TE OF REPORT (~r, Month, Day) i5P4Ca COUNT 13.TP F EOT - FROM TO / Albury10 I...UNCLASSIFIED V%-’.- . ~ -d,𔃿.. 5. 5 ~ ~ .2-~’~- ’~ ~% %J’ % ’ ’ P ’.k PREFACE I This program was initiated with support from J. Pollard and R. Cohen. L. Friesen ...Probabilities for Final Vibrational/Rotational State Formed from Initial ’Resonance State v - 13, J - 8 for Initial E /k - 50 K ......... 16 2

  5. Use of low-energy hydrogen ion implants in high-efficiency crystalline-silicon solar cells

    NASA Technical Reports Server (NTRS)

    Fonash, S. J.; Sigh, R.; Mu, H. C.

    1986-01-01

    The use of low-energy hydrogen implants in the fabrication of high-efficiency crystalline silicon solar cells was investigated. Low-energy hydrogen implants result in hydrogen-caused effects in all three regions of a solar cell: emitter, space charge region, and base. In web, Czochralski (Cz), and floating zone (Fz) material, low-energy hydrogen implants reduced surface recombination velocity. In all three, the implants passivated the space charge region recombination centers. It was established that hydrogen implants can alter the diffusion properties of ion-implanted boron in silicon, but not ion-implated arsenic.

  6. Hydrogenation of Dislocation-Limited Heteroepitaxial Silicon Solar Cells: Preprint

    SciTech Connect

    Bolen, M. L.; Grover, S.; Teplin, C. W.; Bobela, D.; Branz, H. M.; Stradins, P.

    2012-06-01

    Post-deposition hydrogenation by remote plasma significantly improves performance of heteroepitaxial silicon solar cells. Heteroepitaxial deposition of thin crystal silicon on sapphire for photovoltaics (PV) is an excellent model system for the study and improvement of deposition on inexpensive Al2O3-coated (100) biaxially-textured metal foils. Without hydrogenation, PV conversion efficiencies are less than 1% on our model system. Performance is limited by carrier recombination at electrically active dislocations that result from lattice mismatch, and other defects. We find that low-temperature hydrogenation at 350 degrees C is more effective than hydrogenation at 610 degrees C. In this work, we use measurements such as spectral quantum efficiency, secondary ion mass spectrometry (SIMS), and vibrational Si-H spectroscopies to understand the effects of hydrogenation on the materials and devices. Quantum efficiency increases most at red and green wavelengths, indicating hydrogenation is affecting the bulk more than the surface of the cells. SIMS shows there are 100X more hydrogen atoms in our cells than dangling bonds along dislocations. Yet, Raman spectroscopy indicates that only low temperature hydrogenation creates Si-H bonds; trapped hydrogen does not stably passivate dangling-bond recombination sites at high temperatures.

  7. Site directed recombination

    DOEpatents

    Jurka, Jerzy W.

    1997-01-01

    Enhanced homologous recombination is obtained by employing a consensus sequence which has been found to be associated with integration of repeat sequences, such as Alu and ID. The consensus sequence or sequence having a single transition mutation determines one site of a double break which allows for high efficiency of integration at the site. By introducing single or double stranded DNA having the consensus sequence flanking region joined to a sequence of interest, one can reproducibly direct integration of the sequence of interest at one or a limited number of sites. In this way, specific sites can be identified and homologous recombination achieved at the site by employing a second flanking sequence associated with a sequence proximal to the 3'-nick.

  8. Measurements of recombination of electrons with HCO(plus) ions

    NASA Technical Reports Server (NTRS)

    Leu, M. T.; Biondi, M. A.; Johnsen, R.

    1973-01-01

    Recombination coefficients of electrons with HCO(+) ions were determined with a microwave afterglow/mass spectrometer apparatus. Afterglow measurements of electron density decays in neon-hydrogen-carbon monoxide mixtures are correlated with the decay of mass-identified ion currents to the wall of the microwave cavity. At the appropriate partial pressures of hydrogen and carbon monoxide in the mixture, the ion HCO(+) dominates the ion composition and its wall current approximately tracks the electron density decay curve. From recombination controlled electron density decay curves, the values alpha (HCO(+)) = (3.3 + or - 0.5) and (2.0 + or - 0.3) 0.0000001 cu cm/sec are obtained at 205 and 300 K, respectively. The implications of these results for models of polyatomic molecule formation in dense interstellar clouds are briefly discussed.

  9. Hydrogen detector

    DOEpatents

    Kanegae, Naomichi; Ikemoto, Ichiro

    1980-01-01

    A hydrogen detector of the type in which the interior of the detector is partitioned by a metal membrane into a fluid section and a vacuum section. Two units of the metal membrane are provided and vacuum pipes are provided independently in connection to the respective units of the metal membrane. One of the vacuum pipes is connected to a vacuum gauge for static equilibrium operation while the other vacuum pipe is connected to an ion pump or a set of an ion pump and a vacuum gauge both designed for dynamic equilibrium operation.

  10. Recombinant human milk proteins.

    PubMed

    Lönnerdal, Bo

    2006-01-01

    Human milk provides proteins that benefit newborn infants. They not only provide amino acids, but also facilitate the absorption of nutrients, stimulate growth and development of the intestine, modulate immune function, and aid in the digestion of other nutrients. Breastfed infants have a lower prevalence of infections than formula-fed infants. Since many women in industrialized countries choose not to breastfeed, and an increasing proportion of women in developing countries are advised not to breastfeed because of the risk of HIV transmission, incorporation of recombinant human milk proteins into infant foods is likely to be beneficial. We are expressing human milk proteins known to have anti-infective activity in rice. Since rice is a normal constituent of the diet of infants and children, limited purification of the proteins is required. Lactoferrin has antimicrobial and iron-binding activities. Lysozyme is an enzyme that is bactericidal and also acts synergistically with lactoferrin. These recombinant proteins have biological activities identical to their native counterparts. They are equally resistant to heat processing, which is necessary for food applications, and to acid and proteolytic enzymes which are needed to maintain their biological activity in the gastrointestinal tract of infants. These recombinant human milk proteins may be incorporated into infant formulas, baby foods and complementary foods, and used with the goal to reduce infectious diseases.

  11. The simplicity of perfect atoms: Degeneracies in supersymmetric hydrogen

    SciTech Connect

    Rube, Tomas; Wacker, Jay G.

    2011-06-15

    Supersymmetric QED hydrogen-like bound states are remarkably similar to nonsupersymmetric hydrogen, including an accidental degeneracy of the fine structure and is broken by the Lamb shift. This article classifies the states, calculates the leading order spectrum, and illustrates the results in several limits. The relation to other nonrelativistic bound states is explored.

  12. The simplicity of perfect atoms: Degeneracies in supersymmetric hydrogen

    DOE PAGES

    Rube, Tomas; Wacker, Jay G.

    2011-06-07

    In this study, supersymmetric QED hydrogen-like bound states are remarkably similar to nonsupersymmetric hydrogen, including an accidental degeneracy of the fine structure and is broken by the Lamb shift. This article classifies the states, calculates the leading order spectrum, and illustrates the results in several limits. The relation to other nonrelativistic bound states is explored.

  13. Cell biology of mitotic recombination.

    PubMed

    Lisby, Michael; Rothstein, Rodney

    2015-03-02

    Homologous recombination provides high-fidelity DNA repair throughout all domains of life. Live cell fluorescence microscopy offers the opportunity to image individual recombination events in real time providing insight into the in vivo biochemistry of the involved proteins and DNA molecules as well as the cellular organization of the process of homologous recombination. Herein we review the cell biological aspects of mitotic homologous recombination with a focus on Saccharomyces cerevisiae and mammalian cells, but will also draw on findings from other experimental systems. Key topics of this review include the stoichiometry and dynamics of recombination complexes in vivo, the choreography of assembly and disassembly of recombination proteins at sites of DNA damage, the mobilization of damaged DNA during homology search, and the functional compartmentalization of the nucleus with respect to capacity of homologous recombination.

  14. Cell Biology of Mitotic Recombination

    PubMed Central

    Lisby, Michael; Rothstein, Rodney

    2015-01-01

    Homologous recombination provides high-fidelity DNA repair throughout all domains of life. Live cell fluorescence microscopy offers the opportunity to image individual recombination events in real time providing insight into the in vivo biochemistry of the involved proteins and DNA molecules as well as the cellular organization of the process of homologous recombination. Herein we review the cell biological aspects of mitotic homologous recombination with a focus on Saccharomyces cerevisiae and mammalian cells, but will also draw on findings from other experimental systems. Key topics of this review include the stoichiometry and dynamics of recombination complexes in vivo, the choreography of assembly and disassembly of recombination proteins at sites of DNA damage, the mobilization of damaged DNA during homology search, and the functional compartmentalization of the nucleus with respect to capacity of homologous recombination. PMID:25731763

  15. METHOD OF COMBINING HYDROGEN AND OXYGEN

    DOEpatents

    McBride, J.P.

    1962-02-27

    A method is given for the catalytic recombination of radiolytic hydrogen and/or deulerium and oxygen resulting from the subjection or an aqueous thorium oxide or thorium oxide-uranium oxide slurry to ionizing radiation. An improved catalyst is prepared by providing paliadium nitrate in an aqueous thorium oxide sol at a concentration of at least 0.05 grams per gram of thorium oxide and contacting the sol with gaseous hydrogen to form flocculated solids. The solids are then recovered and added to the slurry to provide a palladium concentration of 100 to 1000 parts per million. Recombination is effected by the calalyst at a rate sufficient to support high nuclear reactor power densities. (AEC)

  16. Rotational Spectrum of Saccharine

    NASA Astrophysics Data System (ADS)

    Alonso, Elena R.; Mata, Santiago; Alonso, José L.

    2017-06-01

    A significant step forward in the structure-activity relationships of sweeteners was the assignment of the AH-B moiety in sweeteners by Shallenberger and Acree. They proposed that all sweeteners contain an AH-B moiety, known as glucophore, in which A and B are electronegative atoms separated by a distance between 2.5 to 4 Å. H is a hydrogen atom attached to one of the electronegative atom by a covalent bond. For saccharine, one of the oldest artificial sweeteners widely used in food and drinks, two possible B moieties exist ,the carbonyl oxygen atom and the sulfoxide oxygen atom although there is a consensus of opinion among scientists over the assignment of AH-B moieties to HN-SO. In the present work, the solid of saccharine (m.p. 220°C) has been vaporized by laser ablation (LA) and its rotational spectrum has been analyzed by broadband CP-FTMW and narrowband MB-FTMW Fourier transform microwave techniques. The detailed structural information extracted from the rotational constants and ^{14}N nuclear quadrupole coupling constants provided enough information to ascribe the glucophore's AH and B sites of saccharine. R. S. Shallenberger, T. E. Acree. Nature 216, 480-482 Nov 1967. R. S. Shallenberger. Taste Chemistry; Blackie Academic & Professional, London, (1993).

  17. Graphane and hydrogenated graphene.

    PubMed

    Pumera, Martin; Wong, Colin Hong An

    2013-07-21

    Graphane, the fully hydrogenated analogue of graphene, and its partially hydrogenated counterparts are attracting increasing attention. We review here its structure and predicted material properties, as well as the current methods of preparation. Graphane and hydrogenated graphenes are far more complex materials than graphene, expected to have a tuneable band gap via the extent of hydrogenation, as well as exhibit ferromagnetism. The methods for hydrogenated graphene characterization are discussed. We show that hydrogenation methods based on low or high pressure gas hydrogenation lead to less hydrogen saturation than wet chemistry methods based on variations of Birch reduction. The special cases of patterning of hydrogenated graphene strips in a graphene lattice are discussed.

  18. Mechanochemical hydrogenation of coal

    DOEpatents

    Yang, Ralph T.; Smol, Robert; Farber, Gerald; Naphtali, Leonard M.

    1981-01-01

    Hydrogenation of coal is improved through the use of a mechanical force to reduce the size of the particulate coal simultaneously with the introduction of gaseous hydrogen, or other hydrogen donor composition. Such hydrogen in the presence of elemental tin during this one-step size reduction-hydrogenation further improves the yield of the liquid hydrocarbon product.

  19. Recombination of H3+ Ions with Electrons in Afterglow Plasmas

    NASA Astrophysics Data System (ADS)

    Johnsen, Rainer; Glosik, Juraj; Dohnal, Petr; Rubovic, Peter; Kalosi, Abel; Plasil, Radek

    2015-09-01

    Our past and ongoing flowing and stationary afterglow experiments at temperatures from 60-340 K have resulted in a more complete picture of the plasma recombination of H3+ ions: (1) Optical absorption studies indicate that at T = 300 K both para and ortho H3+ ions recombine with nearly the same binary coefficient αbin ~ 0.6 × 10-7 cm3/s. However, at T = 60 K para H3+ recombines faster by about a factor of ~10 than does ortho H3+.(2) Earlier discrepancies between data obtained in plasmas and those obtained in merged-beam or storage-rings have been traced to ternary recombination due to ambient helium atoms and/or hydrogen molecules. Ternary recombination of H3+ due to He or H2 is more efficient by factors ~ 102 or 105, respectively, than expected from the theoretical model of Bates and Khare for atomic ions. (3) The ternary processes enhance recombination at low third-body densities (1017 cm-3) but then level off (``saturate'') when their contribution approaches ~ 1.5 × 10-7 cm3/s. This saturation can lead to the false inference that the overall recombination is binary, resulting in a recombination coefficient that is about 3 times too large. (4) A tentative complex model has been developed that rationalizes the observed effects. This work was partly supported by Czech Science Foundation projects GACR 14-14649P and GACR 15-15077S and by Charles University in Prague projects GAUK 692214, GAUK 572214, UNCE 204020/2012 and SVV 260.

  20. Recombination sources in p-type high performance multicrystalline silicon

    NASA Astrophysics Data System (ADS)

    Cheong Sio, Hang; Pheng Phang, Sieu; Zheng, Peiting; Wang, Quanzhi; Chen, Wei; Jin, Hao; Macdonald, Daniel

    2017-08-01

    This paper presents a comprehensive assessment of the electronic properties of an industrially grown p-type high performance multicrystalline silicon ingot. Wafers from different positions of the ingot are analysed in terms of their material quality before and after phosphorus diffusion and hydrogenation, as well as their final cell performance. In addition to lifetime measurements, we apply a recently developed technique for imaging the recombination velocity of structural defects. Our results show that phosphorus gettering benefits the intra-grain regions but also activates the grain boundaries, resulting in a reduction in the average lifetimes. Hydrogenation can significantly improve the overall lifetimes, predominantly due to its ability to passivate grain boundaries. Dislocation clusters remain strongly recombination active after all processes. It is found that the final cell efficiency coincides with the varying material quality along the ingot. Wafers toward the ingot top are more influenced by carrier recombination at dislocation clusters, whereas wafers near the bottom are more affected by a combination of their lower intra-grain lifetimes and a greater density of recombination active grain boundaries.

  1. Orientation Dependence in Homologous Recombination

    PubMed Central

    Yamamoto, K.; Takahashi, N.; Fujitani, Y.; Yoshikura, H.; Kobayashi, I.

    1996-01-01

    Homologous recombination was investigated in Escherichia coli with two plasmids, each carrying the homologous region (two defective neo genes, one with an amino-end deletion and the other with a carboxyl-end deletion) in either direct or inverted orientation. Recombination efficiency was measured in recBC sbcBC and recBC sbcA strains in three ways. First, we measured the frequency of cells carrying neo(+) recombinant plasmids in stationary phase. Recombination between direct repeats was much more frequent than between inverted repeats in the recBC sbcBC strain but was equally frequent in the two substrates in the recBC sbcA strain. Second, the fluctuation test was used to exclude bias by a rate difference between the recombinant and parental plasmids and led to the same conclusion. Third, direct selection for recombinants just after transformation with or without substrate double-strand breaks yielded essentially the same results. Double-strand breaks elevated recombination in both the strains and in both substrates. These results are consistant with our previous findings that the major route of recombination in recBC sbcBC strains generates only one recombinant DNA from two DNAs and in recBC sbcA strains generates two recombinant DNAs from two DNAs. PMID:8722759

  2. Metallic Hydrogen Propelled Launch Vehicles for Lunar Missions

    NASA Astrophysics Data System (ADS)

    Cole, John W.; Silvera, Isaac F.

    2009-03-01

    Atomic metallic hydrogen is predicted to be metastable, limited by some critical temperature and pressure, and to store very large amounts of energy. Experiments may soon produce enough metallic hydrogen to determine if it is indeed metastable and, if so, the critical temperature, critical pressure, and specific energy availability. Above the critical temperature the atoms recombine into molecules releasing 216 MJ/kg. Assuming that metallic hydrogen is stable at usable temperatures and pressures, and that it can be affordably produced, handled, and stored, then it may be a useful rocket propellant when mixed with some appropriate diluting material to control the chamber temperature. This paper provides a status of the metallic hydrogen research at Harvard, and examines potential lunar mission vehicles using metallic hydrogen with liquid hydrogen or water as a diluant coolant.

  3. Recombinant Collagenlike Proteins

    NASA Technical Reports Server (NTRS)

    Fertala, Andzej

    2007-01-01

    A group of collagenlike recombinant proteins containing high densities of biologically active sites has been invented. The method used to express these proteins is similar to a method of expressing recombinant procollagens and collagens described in U. S. Patent 5,593,859, "Synthesis of human procollagens and collagens in recombinant DNA systems." Customized collagenous proteins are needed for biomedical applications. In particular, fibrillar collagens are attractive for production of matrices needed for tissue engineering and drug delivery. Prior to this invention, there was no way of producing customized collagenous proteins for these and other applications. Heretofore, collagenous proteins have been produced by use of such biological systems as yeasts, bacteria, and transgenic animals and plants. These products are normal collagens that can also be extracted from such sources as tendons, bones, and hides. These products cannot be made to consist only of biologically active, specific amino acid sequences that may be needed for specific applications. Prior to this invention, it had been established that fibrillar collagens consist of domains that are responsible for such processes as interaction with cells, binding of growth factors, and interaction with a number of structural proteins present in the extracellular matrix. A normal collagen consists of a sequence of domains that can be represented by a corresponding sequence of labels, e.g., D1D2D3D4. A collagenlike protein of the present invention contains regions of collagen II that contain multiples of a single domain (e.g., D1D1D1D1 or D4D4D4D4) chosen for its specific biological activity. By virtue of the multiplicity of the chosen domain, the density of sites having that specific biological activity is greater than it is in a normal collagen. A collagenlike protein according to this invention can thus be made to have properties that are necessary for tissue engineering.

  4. The Functional Quality of Soluble Recombinant Polypeptides Produced in Escherichia coli Is Defined by a Wide Conformational Spectrum▿

    PubMed Central

    Martínez-Alonso, Mónica; González-Montalbán, Nuria; García-Fruitós, Elena; Villaverde, Antonio

    2008-01-01

    We have observed that a soluble recombinant green fluorescent protein produced in Escherichia coli occurs in a wide conformational spectrum. This results in differently fluorescent protein fractions in which morphologically diverse soluble aggregates abound. Therefore, the functional quality of soluble versions of aggregation-prone recombinant proteins is defined statistically rather than by the prevalence of a canonical native structure. PMID:18836021

  5. Photoinduced adsorption of hydrogen and methane on gamma-alumina. the photoinduced chesorluminescence (PhICL) effect.

    PubMed

    Andreev, N S; Emeline, A V; Polikhova, S V; Ryabchuk, V K; Serpone, N

    2004-01-06

    Adsorption of hydrogen and methane on a preirradiated surface of gamma-Al2O3 produces an afterglow, which has been described as a photoinduced chesorluminescence (PhICL), whose spectral features identify with the intrinsic photoluminescence of alumina. The emission spectrum consists of at least four overlapping single emission bands. For methane adsorption, the PhICL phenomenon is seen only if the solid is preirradiated in the presence of oxygen. Emission decay kinetics of the PhICL effect for gamma-Al2O3 reveal two wavelength regimes: a short wavelength regime at lambda = 300-370 nm (decay time tau = 1.1 +/- 0.2 s; signal width = 2.8 s), and a longer wavelength regime at lambda = 380-700 nm (decay time tau = 2.1 +/- 0.1 s; signal width = 4.3 s). A model is proposed in which there exist two different emission centers and, thus, two different pathways for emission decay. In the first, emission originates with electron trapping by such deep energy traps as anion vacancies {e- + Va --> F+ + hv1} to yield electron F-type color centers, whereas in the second, emission originates from electron/trapped hole recombination {e- + Os*- --> Os2- + hv2}. The first common step of the pathways is homolytic dissociative chemisorption of hydrogen and methane upon interaction with surface-active hole centers Os*-, produced upon preirradiation of alumina, to give atomic hydrogen H* and methyl radicals CH3*. Thermoprogrammed desorption spectra of photoadsorbed or postsorbed oxygen show that adsorbed oxygen interacts with atomic hydrogen and methyl radicals. The products of thermodesorption were H2O for hydrogen and H2O, CO2, and CH3CH3 for methane. The Solonitsyn memory effect coefficient was also evaluated for oxygen photoadsorption.

  6. Hydrogen heat treatment of hydrogen absorbing materials

    NASA Astrophysics Data System (ADS)

    Park, Choong-Nyeon

    2000-12-01

    This study introduces the hydrogen heat treatment of hydrogen absorbing materials and its applicability for practical use. This treatment is somewhat different from normal heat treatment because of the interaction between metal atoms and hydrogen. Since hydrogen can be removed very fast by pumping it out the hydrogen-induced new lattice phase which can not be obtained without hydrogen can be preserved in a meta-stable state. A thermodynamic interpretation of the hydrogen heat treatment established previously was reformulated for graphical and analytical methods and applied to Pd-Pt-H and Pd-Ag-H alloy systems and a fair correlation between the calculation and experimental results was shown. The feasibility of applying the thermodynamic interpretation to intermetallic compounds-hydrogen systems was also discussed.

  7. Making recombinant extracellular matrix proteins.

    PubMed

    Ruggiero, Florence; Koch, Manuel

    2008-05-01

    A variety of approaches to understand extracellular matrix protein structure and function require production of recombinant proteins. Moreover, the expression of heterologous extracellular matrix proteins, in particular collagens, using the recombinant technology is of major interest to the biomedical industry. Although extracellular matrix proteins are large, modular and often multimeric, most of them have been successfully produced in various expression systems. This review provides important factors, including the design of the construct, the cloning strategies, the expression vectors, the transfection method and the host cell systems, to consider in choosing a reliable and cost-effective way to make recombinant extracellular matrix proteins. Advantages and drawbacks of each system have been appraised. Protocols that may ease efficient recombinant production of extracellular matrix are described. Emphasis is placed on the recombinant collagen production. Members of the collagen superfamily exhibit specific structural features and generally require complex post-translational modifications to retain full biological activity that make more arduous their recombinant production.

  8. Hydrogen Permeation Barrier Coatings

    SciTech Connect

    Henager, Charles H.

    2008-01-01

    Gaseous hydrogen, H2, has many physical properties that allow it to move rapidly into and through materials, which causes problems in keeping hydrogen from materials that are sensitive to hydrogen-induced degradation. Hydrogen molecules are the smallest diatomic molecules, with a molecular radius of about 37 x 10-12 m and the hydrogen atom is smaller still. Since it is small and light it is easily transported within materials by diffusion processes. The process of hydrogen entering and transporting through a materials is generally known as permeation and this section reviews the development of hydrogen permeation barriers and barrier coatings for the upcoming hydrogen economy.

  9. Rotational spectrum of cis-cis HOONO

    NASA Astrophysics Data System (ADS)

    Drouin, Brian J.; Fry, Juliane L.; Miller, Charles E.

    2004-03-01

    The pure rotational spectrum of cis-cis peroxynitrous acid, HOONO, has been observed. Over 220 transitions, sampling states up to J'=67 and Ka'=31, have been fitted with an rms uncertainty of 48.4 kHz. The experimentally determined rotational constants agree well with ab initio values for the cis-cis conformer, a five-membered ring formed by intramolecular hydrogen bonding. The small, positive inertial defect Δ=0.075667(60) amu Å2 and lack of any observable torsional splittings in the spectrum indicate that cis-cis HOONO exists in a well-defined planar structure at room temperature.

  10. Expression of recombinant antibodies.

    PubMed

    Frenzel, André; Hust, Michael; Schirrmann, Thomas

    2013-01-01

    Recombinant antibodies are highly specific detection probes in research, diagnostics, and have emerged over the last two decades as the fastest growing class of therapeutic proteins. Antibody generation has been dramatically accelerated by in vitro selection systems, particularly phage display. An increasing variety of recombinant production systems have been developed, ranging from Gram-negative and positive bacteria, yeasts and filamentous fungi, insect cell lines, mammalian cells to transgenic plants and animals. Currently, almost all therapeutic antibodies are still produced in mammalian cell lines in order to reduce the risk of immunogenicity due to altered, non-human glycosylation patterns. However, recent developments of glycosylation-engineered yeast, insect cell lines, and transgenic plants are promising to obtain antibodies with "human-like" post-translational modifications. Furthermore, smaller antibody fragments including bispecific antibodies without any glycosylation are successfully produced in bacteria and have advanced to clinical testing. The first therapeutic antibody products from a non-mammalian source can be expected in coming next years. In this review, we focus on current antibody production systems including their usability for different applications.

  11. Dissociative recombination of HCl+

    NASA Astrophysics Data System (ADS)

    Larson, Åsa; Fonseca dos Santos, Samantha; E. Orel, Ann

    2017-08-01

    The dissociative recombination of HCl+, including both the direct and indirect mechanisms, is studied. For the direct process, the relevant electronic states are calculated ab initio by combining electron scattering calculations to obtain resonance positions and autoionization widths with multi-reference configuration interaction calculations of the ion and Rydberg states. The cross section for the direct dissociation along electronic resonant states is computed by solution of the time-dependent Schrödinger equation. For the indirect process, an upper bound value for the cross section is obtained using a vibrational frame transformation of the elements of the scattering matrix at energies just above the ionization threshold. Vibrational excitations of the ionic core from the ground vibrational state, v = 0 , to the first three excited vibrational states, v = 1 , v = 2 , and v = 3 , are considered. Autoionization is neglected and the effect of the spin-orbit splitting of the ionic potential energy upon the indirect dissociative recombination cross section is considered. The calculated cross sections are compared to measurements.

  12. Recombinant electric storage battery

    SciTech Connect

    Flicker, R.P.; Fenstermacher, S.

    1989-10-10

    This patent describes a recombinant storage battery. It comprises: a plurality of positive plates containing about 2 to 4 percent of antimony based upon the total weight of the alloy and positive active material, and essentially antimony free negative plates in a closed case; a fibrous sheet plate separator between adjacent ones of the plates, and a body of an electrolyte to which the sheet separators are inert absorbed by each of the separators and maintained in contact with each of the adjacent ones of the plates. Each of the separator sheets comprising first fibers which impart to the sheet a given absorbency greater than 90 percent relative to the electrolyte and second fibers which impart to the sheet a different absorbency less than 80 percent relative to the electrolyte. The first and second fibers being present in such proportions that each of the sheet separators has an absorbency with respect to the electrolyte of from 75 to 95 percent and the second fibers being present in such proportions that the battery has a recombination rate adequate to compensate for gassing.

  13. Expression of Recombinant Antibodies

    PubMed Central

    Frenzel, André; Hust, Michael; Schirrmann, Thomas

    2013-01-01

    Recombinant antibodies are highly specific detection probes in research, diagnostics, and have emerged over the last two decades as the fastest growing class of therapeutic proteins. Antibody generation has been dramatically accelerated by in vitro selection systems, particularly phage display. An increasing variety of recombinant production systems have been developed, ranging from Gram-negative and positive bacteria, yeasts and filamentous fungi, insect cell lines, mammalian cells to transgenic plants and animals. Currently, almost all therapeutic antibodies are still produced in mammalian cell lines in order to reduce the risk of immunogenicity due to altered, non-human glycosylation patterns. However, recent developments of glycosylation-engineered yeast, insect cell lines, and transgenic plants are promising to obtain antibodies with “human-like” post-translational modifications. Furthermore, smaller antibody fragments including bispecific antibodies without any glycosylation are successfully produced in bacteria and have advanced to clinical testing. The first therapeutic antibody products from a non-mammalian source can be expected in coming next years. In this review, we focus on current antibody production systems including their usability for different applications. PMID:23908655

  14. Hydrogen embrittlement in nickel-hydrogen cells

    NASA Technical Reports Server (NTRS)

    Gross, Sidney

    1989-01-01

    It was long known that many strong metals can become weakened and brittle as the result of the accumulation of hydrogen within the metal. When the metal is stretched, it does not show normal ductile properties, but fractures prematurely. This problem can occur as the result of a hydrogen evolution reaction such as corrosion or electroplating, or due to hydrogen in the environment at the metal surface. High strength alloys such as steels are especially susceptible to hydrogen embrittlement. Nickel-hydrogen cells commonly use Inconel 718 alloy for the pressure container, and this also is susceptible to hydrogen embrittlement. Metals differ in their susceptibility to embrittlement. Hydrogen embrittlement in nickel-hydrogen cells is analyzed and the reasons why it may or may not occur are discussed. Although Inconel 718 can display hydrogen embrittlement, experience has not identified any problem with nickel-hydrogen cells. No hydrogen embrittlement problem is expected with the 718 alloy pressure container used in nickel-hydrogen cells.

  15. Storage and recombination of atomic H in solid H2

    NASA Technical Reports Server (NTRS)

    Rosen, G.

    1976-01-01

    A phenomenological rate process theory is developed for the storage and rapid recombination of atomic hydrogen free radicals in a crystalline molecular hydrogen solid at temperatures in the range of about 0.1-4 K. It is shown that such a theory can account quantitatively for the recently observed dependence of the storage time on the storage temperature, for the maximum concentration of trapped H atoms, and for the time duration of the energy release in the tritium decay experiments of Webeler. The theory predicts that maximum atomic hydrogen concentrations of the order 10 to the 20th per cu cm are realizable for storage temperatures in the vicinity of 0.14 K.

  16. Storage and recombination of atomic H in solid H2

    NASA Technical Reports Server (NTRS)

    Rosen, G.

    1976-01-01

    A phenomenological rate process theory is developed for the storage and rapid recombination of atomic hydrogen free radicals in a crystalline molecular hydrogen solid at temperatures in the range of about 0.1-4 K. It is shown that such a theory can account quantitatively for the recently observed dependence of the storage time on the storage temperature, for the maximum concentration of trapped H atoms, and for the time duration of the energy release in the tritium decay experiments of Webeler. The theory predicts that maximum atomic hydrogen concentrations of the order 10 to the 20th per cu cm are realizable for storage temperatures in the vicinity of 0.14 K.

  17. Hydrogen behavior in ice condenser containments

    SciTech Connect

    Lundstroem, P.; Hongisto, O.; Theofanous, T.G.

    1995-09-01

    A new hydrogen management strategy is being developed for the Loviisa ice condenser containment. The strategy relies on containment-wide natural circulations that develop, once the ice condenser doors are forced open, to effectively produce a well-mixed behavior, and a correspondingly slow rise in hydrogen concentration. Levels can then be kept low by a distributed catalytic recombiner system, and (perhaps) an igniter system as a backup, while the associated energy releases can be effectively dissipated in the ice bed. Verification and fine-tuning of the approach is carried out experimentally in the VICTORIA facility and by associated scaling/modelling studies. VICTORIA represents an 1/15th scale model of the Loviisa containment, hydrogen is simulated by helium, and local concentration measurements are obtained by a newly developed instrument specifically for this purpose, called SPARTA. This paper is focused on experimental results from several key experiments that provide a first delineation of key behaviors.

  18. Energy storage possibilities of atomic hydrogen

    NASA Technical Reports Server (NTRS)

    Etters, R. D.; Dugan, J. V., Jr.; Palmer, R.

    1976-01-01

    Several recent experiments designed to produce and store macroscopic quantities of atomic hydrogen are discussed. The bulk, ground state properties of atomic hydrogen, deuterium, and tritium systems are calculated assuming that all pair interactions occur via the atomic triplet potential. The conditions required to obtain this system, including inhibition of recombination through the energetically favorable singlet interaction, are discussed. The internal energy, pressure, and compressibility are calculated applying the Monte Carlo technique with a quantum mechanical variational wavefunction. The system studied consisted of 32 atoms in a box with periodic boundary conditions. Results show that atomic triplet hydrogen and deuterium remain gaseous at 0 K; i.e., the internal energy is positive at all molar volumes considered.

  19. Energy storage possibilities of atomic hydrogen

    NASA Technical Reports Server (NTRS)

    Etters, R. D.; Dugan, J. V., Jr.; Palmer, R.

    1976-01-01

    Several recent experiments designed to produce and store macroscopic quantities of atomic hydrogen are discussed. The bulk, ground state properties of atomic hydrogen, deuterium, and tritium systems are calculated assuming that all pair interactions occur via the atomic triplet potential. The conditions required to obtain this system, including inhibition of recombination through the energetically favorable singlet interaction, are discussed. The internal energy, pressure, and compressibility are calculated applying the Monte Carlo technique with a quantum mechanical variational wavefunction. The system studied consisted of 32 atoms in a box with periodic boundary conditions. Results show that atomic triplet hydrogen and deuterium remain gaseous at 0 K; i.e., the internal energy is positive at all molar volumes considered.

  20. Hydrogen supply system

    SciTech Connect

    Teitel, R.J.

    1981-11-24

    A system for supplying hydrogen to an apparatus which utilizes hydrogen contains a metal hydride hydrogen supply component and a microcavity hydrogen storage hydrogen supply component which in tandem supply hydrogen for the apparatus. The metal hydride hydrogen supply component includes a first storage tank filled with a composition which is capable of forming a metal hydride of such a nature that the hydride will release hydrogen when heated but will absorb hydrogen when cooled. This first storage tank is equipped with a heat exchanger for both adding heat to and extracting heat from the composition to regulate the absorption/deabsorption of hydrogen from the composition. The microcavity hydrogen storage hydrogen supply component includes a second tank containing the microcavity hydrogen supply. The microcavity hydrogen storage contains hydrogen held under high pressure within individual microcavities. The hydrogen is released from the microcavities by heating the cavities. This heating is accomplished by including within the tank for the microcavity hydrogen storage a heating element.

  1. Hydrogen sulphide.

    PubMed

    Guidotti, T L

    1996-10-01

    Hydrogen sulphide (H2S) is the primary chemical hazard in natural gas production in 'sour' gas fields. It is also a hazard in sewage treatment and manure-containment operations, construction in wetlands, pelt processing, certain types of pulp and paper production, and any situation in which organic material decays or inorganic sulphides exist under reducing conditions. H2S dissociates into free sulphide in the circulation. Sulphide binds to many macromolecules, among them cytochrome oxidase. Although this is undoubtedly an important mechanism of toxicity due to H2S, there may be others H2S provides little opportunity for escape at high concentrations because of the olfactory paralysis it causes, the steep exposure-response relationships, and the characteristically sudden loss of consciousness it can cause which is colloquially termed 'knockdown.' Other effects may include mucosal irritation, which is associated at lower concentrations with a keratoconjunctivitis called 'gas eye' and at higher concentrations with risk of pulmonary oedema. Chronic central nervous system sequelae may possibly follow repeated knockdowns: this is controversial and the primary effects of H2S may be confounded by anoxia or head trauma. Treatment is currently empirical, with a combination of nitrite and hyperbaric oxygen preferred. The treatment regimen is not ideal and carries some risk.

  2. Recombineering: A Homologous Recombination-Based Method of Genetic Engineering

    PubMed Central

    Sharan, Shyam K.; Thomason, Lynn C.; Kuznetsov, Sergey G.; Court, Donald L.

    2009-01-01

    Recombineering is an efficient method of in vivo genetic engineering applicable to chromosomal as well as episomal replicons in E. coli. This method circumvents the need for most standard in vitro cloning techniques. Recombineering allows construction of DNA molecules with precise junctions without constraints being imposed by restriction enzyme site location. Bacteriophage homologous recombination proteins catalyze these recombineering reactions using double- and single-strand linear DNA substrates, so-called targeting constructs, introduced by electroporation. Gene knockouts, deletions and point mutations are readily made, gene tags can be inserted, and regions of bacterial artificial chromosomes (BACs) or the E. coli genome can be subcloned by gene retrieval using recombineering. Most of these constructs can be made within about a week's time. PMID:19180090

  3. H2-assisted ternary recombination of H3+ with electrons at 300 K

    NASA Astrophysics Data System (ADS)

    Dohnal, Petr; Rubovič, Peter; Kálosi, Ábel; Hejduk, Michal; Plašil, Radek; Johnsen, Rainer; Glosík, Juraj

    2014-10-01

    Stationary afterglow measurements in conjunction with near-infrared absorption spectroscopy show that the recombination of the H3+ ion with electrons in ionized gas mixtures of He, Ar, and H2 at 300 K is strongly enhanced by neutral helium and by molecular hydrogen. The H2-assisted ternary recombination coefficient KH2=(8.7±1.5)×10-23cm6s-1 substantially exceeds the value measured for H3+ in ambient helium (KHe˜10-25cm6s-1) or predicted by the generally accepted classical theory of Bates and Khare (˜10-27cm6s-1) for atomic ions. Because of the extremely large value of KH2 in a hydrogen plasma the ternary recombination dominates over binary recombination already at pressures above 3 Pa. This can have consequences in plasma physics, astrophysics, recombination pumped lasers, plasma spectroscopy, plasmatic technologies, etc. The ternary processes provide a plausible explanation for the discrepancies between many earlier experimental results on H3+ recombination. The observation that the ternary process saturates at high He and H2 densities suggests that recombination proceeds by a two-step process: formation of a long-lived complex [with a rate coefficient αF=(1.5±0.1)×10-7cm3s-1] followed by collisional stabilization.

  4. HYDROGEN-BONDED DIMERS OF ADENINE AND URACIL DERIVATIVES.

    PubMed

    HAMLIN, R M; LORD, R C; RICH, A

    1965-06-25

    In concentrated solutions of either 9-ethyladenine or 1-cyclohexyluracil in deuterochloroform, absorption bands in the infrared spectrum demonstrate hydrogen bonding of the adenine and uracil derivatives with themselves. In dilute solutions, there is very little hydrogen bonding. However, when dilute solutions of 9-ethyladenine and 1-cyclohexyluracil are mixed, a series of bands appear which show that these molecules are hydrogen-bonding with each other much more strongly than with themselves. A study of the stoichiometry of this association indicates formation of 1:1 hydrogen-bonded pairs in solution.

  5. Primordial magnetogenesis before recombination

    NASA Astrophysics Data System (ADS)

    Fabre, Ophélia; Shankaranarayanan, S.

    2016-04-01

    The origin of large magnetic fields in the Universe remains currently unknown. We investigate here a mechanism before recombination based on known physics. The source of the vorticity is due to the changes in the photon distribution function caused by the fluctuations in the background photons. We show that the magnetic field generated in the MHD limit, due to the Coulomb scattering, is of the order 10-49 G on a coherence scale of 10 kpc. We explicitly show that the magnetic fields generated from this process are sustainable and are not erased by resistive diffusion. We compare the results with current observations and discuss the implications. Our seed magnetic fields are generated on small scales whereas the main mechanisms studied in the literature are on scale bigger than 1 Mpc. However, compared to more exotic theories generating seed magnetic fields on similar scales, the strength of our fields are generally smaller.

  6. Demystified...recombinant antibodies.

    PubMed

    Smith, K A; Nelson, P N; Warren, P; Astley, S J; Murray, P G; Greenman, J

    2004-09-01

    Recombinant antibodies are important tools for biomedical research and are increasingly being used as clinical diagnostic/therapeutic reagents. In this article, a background to humanized antibodies is given, together with details of the generation of antibody fragments--for example, single chain Fv fragments. Phage antibody fragments are fast becoming popular and can be generated by simple established methods of affinity enrichment from libraries derived from immune cells. Phage display methodology can also be used for the affinity enrichment of existing antibody fragments to provide a reagent with a higher affinity. Here, phage antibodies are demystified to provide a greater understanding of the potential of these reagents and to engage clinicians and biomedical scientists alike to think about potential applications in pathology and clinical settings.

  7. Recombinant glucose uptake system

    DOEpatents

    Ingrahm, Lonnie O.; Snoep, Jacob L.; Arfman, Nico

    1997-01-01

    Recombinant organisms are disclosed that contain a pathway for glucose uptake other than the pathway normally utilized by the host cell. In particular, the host cell is one in which glucose transport into the cell normally is coupled to PEP production. This host cell is transformed so that it uses an alternative pathway for glucose transport that is not coupled to PEP production. In a preferred embodiment, the host cell is a bacterium other than Z. mobilis that has been transformed to contain the glf and glk genes of Z. mobilis. By uncoupling glucose transport into the cell from PEP utilization, more PEP is produced for synthesis of products of commercial importance from a given quantity of biomass supplied to the host cells.

  8. Concept study of a hydrogen containment process during nuclear thermal engine ground testing

    NASA Astrophysics Data System (ADS)

    Wang, Ten-See; Stewart, Eric T.; Canabal, Francisco

    A new hydrogen containment process was proposed for ground testing of a nuclear thermal engine. It utilizes two thermophysical steps to contain the hydrogen exhaust. First, the decomposition of hydrogen through oxygen-rich combustion at higher temperature; second, the recombination of remaining hydrogen with radicals at low temperature. This is achieved with two unit operations: an oxygen-rich burner and a tubular heat exchanger. A computational fluid dynamics methodology was used to analyze the entire process on a three-dimensional domain. The computed flammability at the exit of the heat exchanger was less than the lower flammability limit, confirming the hydrogen containment capability of the proposed process.

  9. The recombination of genetic material

    SciTech Connect

    Low, K.B.

    1988-01-01

    Genetic recombination is the major mechanism by which new arrangements of genetic elements are produced in all living organisms, from the simplest bacterial viruses to humans. This volume presents an overview of the types of recombination found in prokaryotes and eukaryotes.

  10. Composition for absorbing hydrogen

    DOEpatents

    Heung, L.K.; Wicks, G.G.; Enz, G.L.

    1995-05-02

    A hydrogen absorbing composition is described. The composition comprises a porous glass matrix, made by a sol-gel process, having a hydrogen-absorbing material dispersed throughout the matrix. A sol, made from tetraethyl orthosilicate, is mixed with a hydrogen-absorbing material and solidified to form a porous glass matrix with the hydrogen-absorbing material dispersed uniformly throughout the matrix. The glass matrix has pores large enough to allow gases having hydrogen to pass through the matrix, yet small enough to hold the particles dispersed within the matrix so that the hydrogen-absorbing particles are not released during repeated hydrogen absorption/desorption cycles.

  11. Composition for absorbing hydrogen

    DOEpatents

    Heung, Leung K.; Wicks, George G.; Enz, Glenn L.

    1995-01-01

    A hydrogen absorbing composition. The composition comprises a porous glass matrix, made by a sol-gel process, having a hydrogen-absorbing material dispersed throughout the matrix. A sol, made from tetraethyl orthosilicate, is mixed with a hydrogen-absorbing material and solidified to form a porous glass matrix with the hydrogen-absorbing material dispersed uniformly throughout the matrix. The glass matrix has pores large enough to allow gases having hydrogen to pass through the matrix, yet small enough to hold the particles dispersed within the matrix so that the hydrogen-absorbing particles are not released during repeated hydrogen absorption/desorption cycles.

  12. Microwave Spectrum of the Isopropanol-Water Dimer

    NASA Astrophysics Data System (ADS)

    Mead, Griffin; Finneran, Ian A.; Carroll, Brandon; Blake, Geoffrey

    2016-06-01

    Microwave spectroscopy provides a unique opportunity to study model non-covalent interactions. Of particular interest is the hydrogen bonding of water, whose various molecular properties are influenced by both strong and weak intermolecular forces. More specifically, measuring the hydrogen bonded structures of water-alcohol dimers investigates both strong (OH ··· OH) and weak (CH ··· OH) hydrogen bond interactions. Recently, we have measured the pure rotational spectrum of the isopropanol-water dimer using chirped-pulse Fourier transform microwave spectroscopy (CP-FTMW) between 8-18 GHz. Here, we present the spectrum of this dimer and elaborate on the structure's strong and weak hydrogen bonding.

  13. Auger recombination in sodium iodide

    NASA Astrophysics Data System (ADS)

    McAllister, Andrew; Kioupakis, Emmanouil; Åberg, Daniel; Schleife, André

    2014-03-01

    Scintillators are an important tool used to detect high energy radiation - both in the interest of national security and in medicine. However, scintillator detectors currently suffer from lower energy resolutions than expected from basic counting statistics. This has been attributed to non-proportional light yield compared to incoming radiation, but the specific mechanism for this non-proportionality has not been identified. Auger recombination is a non-radiative process that could be contributing to the non-proportionality of scintillating materials. Auger recombination comes in two types - direct and phonon-assisted. We have used first-principles calculations to study Auger recombination in sodium iodide, a well characterized scintillating material. Our findings indicate that phonon-assisted Auger recombination is stronger in sodium iodide than direct Auger recombination. Computational resources provided by LLNL and NERSC. Funding provided by NA-22.

  14. Bimolecular Recombination in Organic Photovoltaics

    NASA Astrophysics Data System (ADS)

    Lakhwani, Girish; Rao, Akshay; Friend, Richard H.

    2014-04-01

    The recombination of electrons and holes is a major loss mechanism in photovoltaic devices that controls their performance. We review scientific literature on bimolecular recombination (BR) in bulk heterojunction organic photovoltaic devices to bring forward existing ideas on the origin and nature of BR and highlight both experimental and theoretical work done to quantify its extent. For these systems, Langevin theory fails to explain BR, and recombination dynamics turns out to be dependent on mobility, temperature, electric field, charge carrier concentration, and trapped charges. Relationships among the photocurrent, open-circuit voltage, fill factor, and morphology are discussed. Finally, we highlight the recent emergence of a molecular-level picture of recombination, taking into account the spin and delocalization of charges. Together with the macroscopic picture of recombination, these new insights allow for a comprehensive understanding of BR and provide design principles for future materials and devices.

  15. Theoretical modeling of the absorption spectrum of aqueous riboflavin

    NASA Astrophysics Data System (ADS)

    Zanetti-Polzi, Laura; Aschi, Massimiliano; Daidone, Isabella; Amadei, Andrea

    2017-02-01

    In this study we report the modeling of the absorption spectrum of riboflavin in water using a hybrid quantum/classical mechanical approach, the MD-PMM methodology. By means of MD-PMM calculations, with which the effect of riboflavin internal motions and of solvent interactions on the spectroscopic properties can be explicitly taken into account, we obtain an absorption spectrum in very good agreement with the experimental spectrum. In particular, the calculated peak maxima show a consistent improvement with respect to previous computational approaches. Moreover, the calculations show that the interaction with the environment may cause a relevant recombination of the gas-phase electronic states.

  16. Catalytic efficiency of Nb and Nb oxides for hydrogen dissociation

    NASA Astrophysics Data System (ADS)

    Isobe, Shigehito; Kudoh, Katsuhiro; Hino, Satoshi; Hara, Kenji; Hashimoto, Naoyuki; Ohnuki, Somei

    2015-08-01

    In this letter, catalytic efficiency of Nb, NbO, Nb2O3, NbO2, and Nb2O5 for dissociation and recombination of hydrogen were experimentally investigated. On the surface of Nb and Nb oxides in a gas mixture of H2 and D2, H2 and D2 molecules can be dissociated to H and D atoms; then, H2, D2, and HD molecules can be produced according to the law of probability. With increase of frequency of the dissociation and recombination, HD ratio increases. The ratio of H2 and HD gas was analyzed by quadrupole mass spectrometry. As a result, NbO showed the highest catalytic activity towards hydrogen dissociation and recombination.

  17. Catalytic efficiency of Nb and Nb oxides for hydrogen dissociation

    SciTech Connect

    Isobe, Shigehito; Kudoh, Katsuhiro; Hino, Satoshi; Hashimoto, Naoyuki; Ohnuki, Somei; Hara, Kenji

    2015-08-24

    In this letter, catalytic efficiency of Nb, NbO, Nb{sub 2}O{sub 3}, NbO{sub 2}, and Nb{sub 2}O{sub 5} for dissociation and recombination of hydrogen were experimentally investigated. On the surface of Nb and Nb oxides in a gas mixture of H{sub 2} and D{sub 2}, H{sub 2} and D{sub 2} molecules can be dissociated to H and D atoms; then, H{sub 2}, D{sub 2}, and HD molecules can be produced according to the law of probability. With increase of frequency of the dissociation and recombination, HD ratio increases. The ratio of H{sub 2} and HD gas was analyzed by quadrupole mass spectrometry. As a result, NbO showed the highest catalytic activity towards hydrogen dissociation and recombination.

  18. Immunoglobulin class-switch recombination deficiencies.

    PubMed

    Durandy, Anne; Kracker, Sven

    2012-07-30

    Immunoglobulin class-switch recombination deficiencies (Ig-CSR-Ds) are rare primary immunodeficiencies characterized by defective switched isotype (IgG/IgA/IgE) production. Depending on the molecular defect in question, the Ig-CSR-D may be combined with an impairment in somatic hypermutation (SHM). Some of the mechanisms underlying Ig-CSR and SHM have been described by studying natural mutants in humans. This approach has revealed that T cell-B cell interaction (resulting in CD40-mediated signaling), intrinsic B-cell mechanisms (activation-induced cytidine deaminase-induced DNA damage), and complex DNA repair machineries (including uracil-N-glycosylase and mismatch repair pathways) are all involved in class-switch recombination and SHM. However, several of the mechanisms required for full antibody maturation have yet to be defined. Elucidation of the molecular defects underlying the diverse set of Ig-CSR-Ds is essential for understanding Ig diversification and has prompted better definition of the clinical spectrum of diseases and the development of increasingly accurate diagnostic and therapeutic approaches.

  19. Chemical Kinetic Modeling of Hydrogen Combustion Limits

    SciTech Connect

    Pitz, W J; Westbrook, C K

    2008-04-02

    A detailed chemical kinetic model is used to explore the flammability and detonability of hydrogen mixtures. In the case of flammability, a detailed chemical kinetic mechanism for hydrogen is coupled to the CHEMKIN Premix code to compute premixed, laminar flame speeds. The detailed chemical kinetic model reproduces flame speeds in the literature over a range of equivalence ratios, pressures and reactant temperatures. A series of calculation were performed to assess the key parameters determining the flammability of hydrogen mixtures. Increased reactant temperature was found to greatly increase the flame speed and the flammability of the mixture. The effect of added diluents was assessed. Addition of water and carbon dioxide were found to reduce the flame speed and thus the flammability of a hydrogen mixture approximately equally well and much more than the addition of nitrogen. The detailed chemical kinetic model was used to explore the detonability of hydrogen mixtures. A Zeldovich-von Neumann-Doring (ZND) detonation model coupled with detailed chemical kinetics was used to model the detonation. The effectiveness on different diluents was assessed in reducing the detonability of a hydrogen mixture. Carbon dioxide was found to be most effective in reducing the detonability followed by water and nitrogen. The chemical action of chemical inhibitors on reducing the flammability of hydrogen mixtures is discussed. Bromine and organophosphorus inhibitors act through catalytic cycles that recombine H and OH radicals in the flame. The reduction in H and OH radicals reduces chain branching in the flame through the H + O{sub 2} = OH + O chain branching reaction. The reduction in chain branching and radical production reduces the flame speed and thus the flammability of the hydrogen mixture.

  20. Autism spectrum disorder

    MedlinePlus

    Autism spectrum disorder (ASD) is a developmental disorder. It often appears in the first 3 years of life. ASD ... better diagnosis and newer definitions of ASD. Autism spectrum disorder now includes syndromes that used to be ...

  1. Autism Spectrum Disorder

    MedlinePlus

    Autism spectrum disorder (ASD) is a neurological and developmental disorder that begins early in childhood and lasts throughout a ... and pervasive developmental disorders. It is called a "spectrum" disorder because people with ASD can have a ...

  2. Autism Spectrum Disorder (ASD)

    MedlinePlus

    ... Spanish) Recommend on Facebook Tweet Share Compartir Autism spectrum disorder (ASD) is a developmental disability that can ... that may put children at risk for autism spectrum disorder (ASD) and other developmental disabilities. More E- ...

  3. HOT HYDROGEN IN DIFFUSE CLOUDS

    SciTech Connect

    Cecchi-Pestellini, Cesare; Duley, Walt W.; Williams, David A. E-mail: wwduley@uwaterloo.ca

    2012-08-20

    Laboratory evidence suggests that recombination of adsorbed radicals may cause an abrupt temperature excursion of a dust grain to about 1000 K. One consequence of this is the rapid desorption of adsorbed H{sub 2} molecules with excitation temperatures of this magnitude. We compute the consequences of injection of hot H{sub 2} into cold diffuse interstellar gas at a rate of 1% of the canonical H{sub 2} formation rate. We find that the level populations of H{sub 2} in J = 3, 4, and 5 are close to observed values, and that the abundances of CH{sup +} and OH formed in reactions with hot hydrogen are close to the values obtained from observations of diffuse clouds.

  4. A Few Facts about Hydrogen [and] Hydrogen Bibliography.

    ERIC Educational Resources Information Center

    Hinds, H. Roger

    Divided into two sections, this publication presents facts about and the characteristics of hydrogen and a bibliography on hydrogen. The first section lists nine facts on what hydrogen is, four on where hydrogen is found, nine on how hydrogen is used, nine on how hydrogen can be used, and 14 on how hydrogen is made. Also included are nine…

  5. Identify bipolar spectrum disorders.

    PubMed

    Mynatt, Sarah; Cunningham, Patricia; Manning, J Sloan

    2002-06-01

    Patients with bipolar spectrum disorders commonly present with depressive symptoms to primary care clinicians. This article details bipolar spectrum disorder assessment, treatment, and treatment response. By intervening early in the course of depressive and hypomanic episodes, you can help decrease the morbidity and suffering associated with bipolar spectrum disorders.

  6. Study on Hydrogen Storage Materials

    NASA Astrophysics Data System (ADS)

    Sugiyama, Jun

    2016-09-01

    Complex hydrides have been heavily investigated as a hydrogen storage material, particularly for future vehicular applications. The present major problem of such complex hydrides is their relatively high hydrogen desorption temperature (Td). In order to find a predominant parameter for determining Td, we have investigated internal nuclear magnetic fields in several complex hydrides, such as, lithium and sodium alanates, borohydrides, and magnesium hydrides, with a muon spin rotation and relaxation (μ+SR) technique. At low temperatures, the μ+SR spectrum obtained in a zero external field (ZF) exhibits a clear oscillation due to the formation of a three spin 1/2 system, HμH, besides Mg(BH4)2 and Sc(BH4)2. Such oscillatory signal becomes weaker and weaker with increasing temperature, and finally disappears above around room temperature. However, the volume fraction of the HμH signal to the whole asymmetry at 5 K is found to be a good indicator for Td in borohydrides. At high temperatures, on the contrary, the ZF-spectrum for MgH2 shows a Kubo-Toyabe like relaxation due to a random nuclear magnetic field of 1H. Such nuclear magnetic field becomes dynamic well below Td in the milled MgH2, indicating a significant role on H-diffusion in solids for determining Td.

  7. The near-infrared structure and spectra of the bipolar nebulae M2-9 and AFGL 2688: The role of ultraviolet pumping and shocks in molecular hydrogen excitation

    NASA Technical Reports Server (NTRS)

    Hora, Joseph L.; Latter, William B.

    1994-01-01

    High-resolution near-infrared images and moderate resolution spectra were obtained of the bipolar nebulae M2-9 and AFGL 2688. The ability to spatially and spectrally resolve the various components of the nebulae has proved to be important in determining their physical structure and characteristics. In M2-9, the lobes are found to have a double-shell structure. The inner shell is dominated by emission from hydrogen recombination lines, and the outer shell is primarily emission from H2 lines in teh 2-2.5 micron region. Analysis of H2 line ratios indicates that the H2 emission is radiatively excited. A well-resolved photodissociation region is observed in the lobes. The spectrum of the central source is dominated by H recombination lines and a strong continuum rising toward longer wavelengths consistent with a T = 795 K blackbody. Also present are lines of He I and Fe II. In contrast, the N knot and E lobe of M2-9 show little continuum emission. The N knot spectrum consists of lines of (Fe II) and hydrogen recombination lines. In AGFL 2688, the emission from the bright lobes is mainly continuum reflected from the central star. Several molecular features from C2 and CN are present. In the extreme end of the N lobe and in the E equatorial region, the emission is dominated by lines of H2 in the 2-2.5 region. The observed H2 line ratios indicate that the emission is collisionally excited, with an excitation temperature T(sub ex) approixmately = 1600 +/- 100 K.

  8. Helium-ion-induced release of hydrogen from graphite

    SciTech Connect

    Langley, R.A.

    1987-01-01

    The ion-induced release of hydrogen from AXF-5Q graphite was studied for 350-eV helium ions. The hydrogen was implanted into the graphite with a low energy (approx.200 eV) and to a high fluence. This achieved a thin (approx.10-nm), saturated near-surface region. The release of hydrogen was measured as a function of helium fluence. A model that includes ion-induced detrapping, retrapping, and surface recombination was used to analyze the experimental data. A value of (1.65 +- 0.2) x 10/sup -16/ cm/sup 2/ was obtained from the detrapping cross section, and a value of (0.5 to 4) x 10/sup -14/ cm/sup 4//atoms was obtained for the recombination coefficient. 11 refs., 4 figs.

  9. The spectrum of darkonium in the Sun

    SciTech Connect

    Kouvaris, Chris; Langæble, Kasper; Nielsen, Niklas Grønlund

    2016-10-10

    Dark matter that gets captured in the Sun may form positronium-like bound states if it self-interacts via light dark photons. In this case, dark matter can either annihilate to dark photons or recombine in bound states which subsequently also decay to dark photons. The fraction of the dark photons that leave the Sun without decaying to Standard Model particles have a characteristic energy spectrum which is a mixture of the direct annihilation process, the decays of ortho- and para- bound states and the recombination process. The ultimate decay of these dark photons to positron-electron pairs (via kinetic mixing) outside the Sun creates a distinct signal that can either identify or set strict constraints on dark photon models.

  10. The spectrum of darkonium in the Sun

    NASA Astrophysics Data System (ADS)

    Kouvaris, Chris; Langæble, Kasper; Grønlund Nielsen, Niklas

    2016-10-01

    Dark matter that gets captured in the Sun may form positronium-like bound states if it self-interacts via light dark photons. In this case, dark matter can either annihilate to dark photons or recombine in bound states which subsequently also decay to dark photons. The fraction of the dark photons that leave the Sun without decaying to Standard Model particles have a characteristic energy spectrum which is a mixture of the direct annihilation process, the decays of ortho- and para- bound states and the recombination process. The ultimate decay of these dark photons to positron-electron pairs (via kinetic mixing) outside the Sun creates a distinct signal that can either identify or set strict constraints on dark photon models.

  11. Delayed recombination and standard rulers

    SciTech Connect

    De Bernardis, Francesco; Melchiorri, Alessandro; Bean, Rachel; Galli, Silvia; Silk, Joseph I.; Verde, Licia

    2009-02-15

    Measurements of baryonic acoustic oscillations (BAOs) in galaxy surveys have been recognized as a powerful tool for constraining dark energy. However, this method relies on the knowledge of the size of the acoustic horizon at recombination derived from cosmic microwave background (CMB) anisotropy measurements. This estimate is typically derived assuming a standard recombination scheme; additional radiation sources can delay recombination altering the cosmic ionization history and the cosmological inferences drawn from CMB and BAO data. In this paper we quantify the effect of delayed recombination on the determination of dark energy parameters from future BAO surveys such as the Baryon Oscillation Spectroscopic Survey and the Wide-Field Multi-Object Spectrograph. We find the impact to be small but still not negligible. In particular, if recombination is nonstandard (to a level still allowed by CMB data), but this is ignored, future surveys may incorrectly suggest the presence of a redshift-dependent dark energy component. On the other hand, in the case of delayed recombination, adding to the analysis one extra parameter describing deviations from standard recombination does not significantly degrade the error bars on dark energy parameters and yields unbiased estimates. This is due to the CMB-BAO complementarity.

  12. Variation with Temperature of the Recombination of Oxygen Atoms on a Platinum Surface

    NASA Technical Reports Server (NTRS)

    Fryburg, George C.; Petrus, Helen M.

    1960-01-01

    The development of vehicles capable of flight at high Mach speeds and at extreme altitudes has re-stimulated interest in the "catalytic efficiency" of metals for recombination of atomic species of hydrogen, oxygen, and nitrogen. Most of the work to date has been of an exploratory nature, comparing the relative efficiencies of the different metals.

  13. Testing for recombinant erythropoietin.

    PubMed

    Delanghe, Joris R; Bollen, Mathieu; Beullens, Monique

    2008-03-01

    Erythropoietin (Epo) is a glycoprotein hormone that promotes the production of red blood cells. Recombinant human Epo (rhEpo) is illicitly used to improve performance in endurance sports. Doping in sports is discouraged by the screening of athletes for rhEpo. Both direct tests (indicating the presence of exogeneous Epo isoforms) and indirect tests (indicating hematological changes induced by exogenous Epo administration) can be used for Epo detection. At present, the test adopted by the World Anti Doping Agency is based on a combination of isoelectric focusing and double immunoblotting, and distinguishes between endogenous and rhEpo. However, the adopted monoclonal anti-Epo antibodies are not monospecific. Therefore, the test can occasionally lead to the false-positive detection of rhEpo (epoetin-beta) in post-exercise, protein-rich urine, or in case of contamination of the sample with microorganisms. An improved preanalytical care may counteract a lot of these problems. Adaptation of the criteria may be helpful to further refine direct Epo testing. Indirect tests have the disadvantage that they require blood instead of urine samples, but they can be applied to detect a broader range of performance improving techniques which are illicitly used in sports.

  14. Recombinant monoclonal antibody technology.

    PubMed

    Siegel, D L

    2002-01-01

    With the development of murine hybridoma technology over a quarter century ago, the ability to produce large quantities of well-characterized monoclonal antibody preparations revolutionized diagnostic and therapeutic medicine. For many applications in transfusion medicine, however, the production of serological reagents in mice has certain biological limitations relating to the difficulty in obtaining murine monoclonal antibodies specific for many human blood group antigens. Furthermore, for therapeutic purposes, the efficacy of murine-derived immunoglobulin preparations is limited by the induction of anti-mouse immune responses. Technical difficulties inherent in human hybridoma formation have led to novel molecular approaches that facilitate the isolation and production of human antibodies without the need for B-cell transformation, tissue culture, or even immunized individuals. These technologies, referred to as 'repertoire cloning' or 'Fab/phage display', involve the rapid cloning of immunoglobulin gene segments to create immune libraries from which antibodies with desired specificities can be selected. The use of such recombinant methods in transfusion medicine is anticipated to play an important role in the development and production of renewable supplies of low-cost reagents for diagnostic and therapeutic applications.

  15. Flame inhibition by hydrogen halides - Some spectroscopic measurements

    NASA Technical Reports Server (NTRS)

    Lerner, N. R.; Cagliostro, D. E.

    1973-01-01

    The far-ultraviolet absorption spectrum of an air-propane diffusion flame inhibited with hydrogen halides has been studied. Plots of the absorption of light by hydrogen halides as a function of position in the flame and also as a function of the amount of hydrogen halide added to the flame have been obtained. The hydrogen halides are shown to be more stable on the fuel side of the reaction zone than they are on the air side. Thermal diffusion is seen to be important in determining the concentration distribution of the heavier hydrogen halides in diffusion flames. The relationship between the concentration distribution of the hydrogen halides in the flame and the flame inhibition mechanism is discussed.

  16. Flame inhibition by hydrogen halides - Some spectroscopic measurements

    NASA Technical Reports Server (NTRS)

    Lerner, N. R.; Cagliostro, D. E.

    1973-01-01

    The far-ultraviolet absorption spectrum of an air-propane diffusion flame inhibited with hydrogen halides has been studied. Plots of the absorption of light by hydrogen halides as a function of position in the flame and also as a function of the amount of hydrogen halide added to the flame have been obtained. The hydrogen halides are shown to be more stable on the fuel side of the reaction zone than they are on the air side. Thermal diffusion is seen to be important in determining the concentration distribution of the heavier hydrogen halides in diffusion flames. The relationship between the concentration distribution of the hydrogen halides in the flame and the flame inhibition mechanism is discussed.

  17. Hydrogen energy systems studies

    SciTech Connect

    Ogden, J.M.; Kreutz, T.G.; Steinbugler, M.

    1996-10-01

    In this report the authors describe results from technical and economic assessments carried out during the past year with support from the USDOE Hydrogen R&D Program. (1) Assessment of technologies for small scale production of hydrogen from natural gas. Because of the cost and logistics of transporting and storing hydrogen, it may be preferable to produce hydrogen at the point of use from more readily available energy carriers such as natural gas or electricity. In this task the authors assess near term technologies for producing hydrogen from natural gas at small scale including steam reforming, partial oxidation and autothermal reforming. (2) Case study of developing a hydrogen vehicle refueling infrastructure in Southern California. Many analysts suggest that the first widespread use of hydrogen energy is likely to be in zero emission vehicles in Southern California. Several hundred thousand zero emission automobiles are projected for the Los Angeles Basin alone by 2010, if mandated levels are implemented. Assuming that hydrogen vehicles capture a significant fraction of this market, a large demand for hydrogen fuel could evolve over the next few decades. Refueling a large number of hydrogen vehicles poses significant challenges. In this task the authors assess near term options for producing and delivering gaseous hydrogen transportation fuel to users in Southern California including: (1) hydrogen produced from natural gas in a large, centralized steam reforming plant, and delivered to refueling stations via liquid hydrogen truck or small scale hydrogen gas pipeline, (2) hydrogen produced at the refueling station via small scale steam reforming of natural gas, (3) hydrogen produced via small scale electrolysis at the refueling station, and (4) hydrogen from low cost chemical industry sources (e.g. excess capacity in refineries which have recently upgraded their hydrogen production capacity, etc.).

  18. Recombineering: genetic engineering in bacteria using homologous recombination.

    PubMed

    Thomason, Lynn C; Sawitzke, James A; Li, Xintian; Costantino, Nina; Court, Donald L

    2014-04-14

    The bacterial chromosome and bacterial plasmids can be engineered in vivo by homologous recombination using PCR products and synthetic oligonucleotides as substrates. This is possible because bacteriophage-encoded recombination proteins efficiently recombine sequences with homologies as short as 35 to 50 bases. Recombineering allows DNA sequences to be inserted or deleted without regard to location of restriction sites. This unit first describes preparation of electrocompetent cells expressing the recombineering functions and their transformation with dsDNA or ssDNA. It then presents support protocols that describe several two-step selection/counter-selection methods of making genetic alterations without leaving any unwanted changes in the targeted DNA, and a method for retrieving onto a plasmid a genetic marker (cloning by retrieval) from the Escherichia coli chromosome or a co-electroporated DNA fragment. Additional protocols describe methods to screen for unselected mutations, removal of the defective prophage from recombineering strains, and other useful techniques. Copyright © 2014 John Wiley & Sons, Inc.

  19. Concentration of Hydrogen Peroxide

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde F. (Inventor)

    2006-01-01

    Methods for concentrating hydrogen peroxide solutions have been described. The methods utilize a polymeric membrane separating a hydrogen peroxide solution from a sweep gas or permeate. The membrane is selective to the permeability of water over the permeability of hydrogen peroxide, thereby facilitating the concentration of the hydrogen peroxide solution through the transport of water through the membrane to the permeate. By utilizing methods in accordance with the invention, hydrogen peroxide solutions of up to 85% by volume or higher may be generated at a point of use without storing substantial quantities of the highly concentrated solutions and without requiring temperatures that would produce explosive mixtures of hydrogen peroxide vapors.

  20. Hydrogen conference: Workshop proceedings

    SciTech Connect

    Serfass, J.; Bugel, L. )

    1989-10-01

    This meeting was designed to encourage discussion of today's US industrial, utility, space and environmental interests in hydrogen and tommorrow's use of hydrogen as an energy system. The meeting began with a general session during which speakers gave presentations on a variety of hydrogen topics. Discussion following each presentation was lively. Some of the major points of discussion were: interpretation of global warming evidence; relevance of global warming to the interest in hydrogen; cost of hydrogen derived from fossil fuels vs. nuclear vs. solar; likely future importance of hydrogen -- major energy system vs. niche player. A number of interesting points were raised and data presented by speakers and participants. Highlights are presented.

  1. Acceleration Techniques for Recombination of Gases in Electrolysis Microactuators with Nafion®-Coated Electrocatalyst.

    PubMed

    Sheybani, Roya; Meng, Ellis

    2015-12-31

    Recombination of electrolysis gases (oxidation of hydrogen and reduction of oxygen) is an important factor in operation efficiency of devices employing electrolysis such as actuators and also unitized regenerative fuel cells. Several methods of improving recombination speed and repeatability were developed for application to electrolysis microactuators with Nafion®-coated catalytic electrodes. Decreasing the electrolysis chamber volume increased the speed, consistency, and repeatability of the gas recombination rate. To further improve recombination performance, methods to increase the catalyst surface area, hydrophobicity, and availability were developed and evaluated. Of these, including in the electrolyte pyrolyzed-Nafion®-coated Pt segments contained in the actuator chamber accelerated recombination by increasing the catalyst surface area and decreasing the gas transport diffusion path. This approach also reduced variability in recombination encountered under varying actuator orientation (resulting in differing catalyst/gas bubble proximity) and increased the rate of recombination by 2.3 times across all actuator orientations. Repeatability of complete recombination for different generated gas volumes was studied through cycling.

  2. Acceleration Techniques for Recombination of Gases in Electrolysis Microactuators with Nafion®-Coated Electrocatalyst

    PubMed Central

    Sheybani, Roya; Meng, Ellis

    2015-01-01

    Recombination of electrolysis gases (oxidation of hydrogen and reduction of oxygen) is an important factor in operation efficiency of devices employing electrolysis such as actuators and also unitized regenerative fuel cells. Several methods of improving recombination speed and repeatability were developed for application to electrolysis microactuators with Nafion®-coated catalytic electrodes. Decreasing the electrolysis chamber volume increased the speed, consistency, and repeatability of the gas recombination rate. To further improve recombination performance, methods to increase the catalyst surface area, hydrophobicity, and availability were developed and evaluated. Of these, including in the electrolyte pyrolyzed-Nafion®-coated Pt segments contained in the actuator chamber accelerated recombination by increasing the catalyst surface area and decreasing the gas transport diffusion path. This approach also reduced variability in recombination encountered under varying actuator orientation (resulting in differing catalyst/gas bubble proximity) and increased the rate of recombination by 2.3 times across all actuator orientations. Repeatability of complete recombination for different generated gas volumes was studied through cycling. PMID:26251561

  3. Recombination Dynamics in Quantum Well Semiconductor Structures

    NASA Astrophysics Data System (ADS)

    Fouquet, Julie Elizabeth

    Time-resolved and time-integrated photoluminescence as a function of excitation energy density have been observed in order to study recombination dynamics in GaAs/Al(,x)Ga(,1 -x)As quantum well structures. The study of room temperature photoluminescence from the molecular beam epitaxy (MBE) -grown multiple quantum well structure and photoluminescence peak energy as a function of tem- perature shows that room temperature recombination at excitation densities above the low 10('16) cm('-3) level is due to free carriers, not excitons. This is the first study of time-resolved photoluminescence of impurities in quantum wells; data taken at different emission wave- lengths at low temperatures shows that the impurity-related states at photon energies lower than the free exciton peaks luminesce much more slowly than the free exciton states. Results from a similar structure grown by metal -organic chemical vapor deposition (MOCVD) are explained by saturation of traps. An unusual increase in decay rate observed tens of nanoseconds after excitation is probably due to carriers falling out of the trap states. Since this is the first study of time-resolved photoluminescence of MOCVD-grown quantum well structures, this unusual behavior may be realted to the MOCVD growth process. Further investigations indi- cate that the traps are not active at low temperatures; they become active at approximately 150 K. The traps are probably associated with the (hetero)interfaces rather than the bulk Al(,x)Ga(,1-x)As material. The 34 K photoluminescence spectrum of this sample revealed a peak shifted down by approximately 36 meV from the main peak. Time-resolved and time-integrated photoluminescence results here show that this peak is not a stimulated phonon emission sideband, but rather is an due to an acceptor impurity, probably carbon. Photo- luminescence for excitation above and below the barrier bandgap shows that carriers are efficiently collected in the wells in both single and multiple

  4. Coupled optical absorption, charge carrier separation, and surface electrochemistry in surface disordered/hydrogenated TiO2 for enhanced PEC water splitting reaction.

    PubMed

    Behara, Dilip Kumar; Ummireddi, Ashok Kumar; Aragonda, Vidyasagar; Gupta, Prashant Kumar; Pala, Raj Ganesh S; Sivakumar, Sri

    2016-03-28

    The central governing factors that influence the efficiency of photoelectrochemical (PEC) water splitting reaction are photon absorption, effective charge-carrier separation, and surface electrochemistry. Attempts to improve one of the three factors may debilitate other factors and we explore such issues in hydrogenated TiO2, wherein a significant increase in optical absorption has not resulted in a significant increase in PEC performance, which we attribute to the enhanced recombination rate due to the formation of amorphization/disorderness in the bulk during the hydrogenation process. To this end, we report a methodology to increase the charge-carrier separation with enhanced optical absorption of hydrogenated TiO2. Current methodology involves hydrogenation of non-metal (N and S) doped TiO2 which comprises (1) lowering of the band gap through shifting of the valence band via less electronegative non-metal N, S-doping, (2) lowering of the conduction band level and the band gap via formation of the Ti(3+) state and oxygen vacancies by hydrogenation, and (3) material processing to obtain a disordered surface structure which favors higher electrocatalytic (EC) activity. This design strategy yields enhanced PEC activity (%ABPE = 0.38) for the N-S co-doped TiO2 sample hydrogenated at 800 °C for 24 h over possible combinations of N-S co-doped TiO2 samples hydrogenated at 500 °C/24 h, 650 °C/24 h and 800 °C/72 h. This suggests that hydrogenation at lower temperatures does not result in much increase in optical absorption and prolonged hydrogenation results in an increase in optical absorption but a decrease in charge carrier separation by forming disorderness/oxygen vacancies in the bulk. Furthermore, the difference in double layer capacitance (C(dl)) calculated from electrochemical impedance spectroscopy (EIS) measurements of these samples reflects the change in the electrochemical surface area (ECSA) and facilitates assessing the key role of surface

  5. Improved Hydrogen Gas Getters for TRU Waste -- Final Report

    SciTech Connect

    Mark Stone; Michael Benson; Christopher Orme; Thomas Luther; Eric Peterson

    2005-09-01

    Alpha radiolysis of hydrogenous waste and packaging materials generates hydrogen gas in radioactive storage containers. For that reason, the Nuclear Regulatory Commission limits the flammable gas (hydrogen) concentration in the Transuranic Package Transporter-II (TRUPACT-II) containers to 5 vol% of hydrogen in air, which is the lower explosion limit. Consequently, a method is needed to prevent the build up of hydrogen to 5 vol% during the storage and transport of the TRUPACT-II containers (up to 60 days). One promising option is the use of hydrogen getters. These materials scavenge hydrogen from the gas phase and irreversibly bind it in the solid phase. One proven getter is a material called 1,4-bis (phenylethynyl) benzene, or DEB, characterized by the presence of carbon-carbon triple bonds. Carbon may, in the presence of suitable precious metal catalysts such as palladium, irreversibly react with and bind hydrogen. In the presence of oxygen, the precious metal may also eliminate hydrogen by catalyzing the formation of water. This reaction is called catalytic recombination. DEB has the needed binding rate and capacity for hydrogen that potentially could be generated in the TRUPACT II. Phases 1 and 2 of this project showed that uncoated DEB performed satisfactorily in lab scale tests. Based upon these results, Phase 3, the final project phase, included larger scale testing. Test vessels were scaled to replicate the ratio between void space in the inner containment vessel of a TRUPACT-II container and a payload of seven 55-gallon drums. The tests were run with an atmosphere of air for 63.9 days at ambient temperature (15-27°C) and a scaled hydrogen generation rate of 2.60E-07 moles per second (0.35 cc/min). A second type of getter known as VEI, a proprietary polymer hydrogen getter characterized by carbon-carbon double bonds, was also tested in Phase 3. Hydrogen was successfully “gettered” by both getter systems. Hydrogen concentrations remained below 5 vol% (in

  6. Hydrogen-surfactant-mediated epitaxy of Ge1- x Sn x layer and its effects on crystalline quality and photoluminescence property

    NASA Astrophysics Data System (ADS)

    Nakatsuka, Osamu; Fujinami, Shunsuke; Asano, Takanori; Koyama, Takeshi; Kurosawa, Masashi; Sakashita, Mitsuo; Kishida, Hideo; Zaima, Shigeaki

    2017-01-01

    The effect of hydrogen-surfactant-mediated molecular beam epitaxy (MBE) growth of Ge1- x Sn x layer on Ge(001) substrate on crystalline quality and photoluminescence (PL) property has been investigated. The effect of irradiation of atomic hydrogen (H) generated by dissociating molecular hydrogen (H2) were examined during the MBE growth. H irradiation significantly improves the surface morphology with the enhancement of the two-dimensional growth of the Ge1- x Sn x epitaxial layer. Enhanced diffuse scattering is observed in the X-ray diffraction profile, indicating a high density of point defects. In the PL spectrum of the H2-irradiated Ge1- x Sn x layer, two components are observed, suggesting the radiative recombination with both indirect and direct transitions, while one component related to the direct transition is observable in the H-irradiated sample. The postdeposition annealing in nitrogen ambient at as low as 220 °C decreases the PL intensity of the H-irradiated Ge1- x Sn x layer, although the intensity is recovered after annealing at 300 °C, suggesting the annihilation of point defects in the Ge1- x Sn x layer.

  7. Mitotic recombination is an important mutational event following oxidative damage.

    PubMed

    Turner, David R; Dreimanis, Monica; Holt, Deborah; Firgaira, Frank A; Morley, Alexander A

    2003-01-28

    The mutagenic effects of hydrogen peroxide (H(2)O(2)), a source of reactive oxygen species (ROS) have been determined in human lymphocytes. T-lymphocytes mutated at the autosomal HLA-A locus on chromosome 6 have been clonally isolated (N = 2097 clones) and the molecular basis of each clonal mutation characterised as due to intragenic, deletion or mitotic recombination mutation. H(2)O(2) caused a dose dependent increase in mutation frequency. There was no significant increase in the frequency of intragenic mutations. Mitotic recombination (MR) was responsible for 87% of the increase in mutation frequency induced by H(2)O(2) and gene deletion was responsible for 13%. MR results in loss of heterozygosity (LOH) distal to the recombination site. It is known that LOH is important in the initiation and progression of cancer. These results suggest that the biologically important consequence of some ROS may be LOH as a by-product of recombination repair. They also suggest that if our observations apply to ROS generally, then many of the mutations which accumulate with ageing or which are observed in cancer may be due to factors other than ROS. Copyright 2002 Elsevier Science B.V.

  8. Perovskite photovoltaics: Slow recombination unveiled

    NASA Astrophysics Data System (ADS)

    Moser, Jacques-E.

    2017-01-01

    One of the most salient features of hybrid lead halide perovskites is the extended lifetime of their photogenerated charge carriers. This property has now been shown experimentally to originate from a slow, thermally activated recombination process.

  9. Controlled release from recombinant polymers.

    PubMed

    Price, Robert; Poursaid, Azadeh; Ghandehari, Hamidreza

    2014-09-28

    Recombinant polymers provide a high degree of molecular definition for correlating structure with function in controlled release. The wide array of amino acids available as building blocks for these materials lend many advantages including biorecognition, biodegradability, potential biocompatibility, and control over mechanical properties among other attributes. Genetic engineering and DNA manipulation techniques enable the optimization of structure for precise control over spatial and temporal release. Unlike the majority of chemical synthetic strategies used, recombinant DNA technology has allowed for the production of monodisperse polymers with specifically defined sequences. Several classes of recombinant polymers have been used for controlled drug delivery. These include, but are not limited to, elastin-like, silk-like, and silk-elastinlike proteins, as well as emerging cationic polymers for gene delivery. In this article, progress and prospects of recombinant polymers used in controlled release will be reviewed.

  10. Three Decades of Recombinant DNA.

    ERIC Educational Resources Information Center

    Palmer, Jackie

    1985-01-01

    Discusses highlights in the development of genetic engineering, examining techniques with recombinant DNA, legal and ethical issues, GenBank (a national database of nucleic acid sequences), and other topics. (JN)

  11. Stable recombination hotspots in birds.

    PubMed

    Singhal, Sonal; Leffler, Ellen M; Sannareddy, Keerthi; Turner, Isaac; Venn, Oliver; Hooper, Daniel M; Strand, Alva I; Li, Qiye; Raney, Brian; Balakrishnan, Christopher N; Griffith, Simon C; McVean, Gil; Przeworski, Molly

    2015-11-20

    The DNA-binding protein PRDM9 has a critical role in specifying meiotic recombination hotspots in mice and apes, but it appears to be absent from other vertebrate species, including birds. To study the evolution and determinants of recombination in species lacking the gene that encodes PRDM9, we inferred fine-scale genetic maps from population resequencing data for two bird species: the zebra finch, Taeniopygia guttata, and the long-tailed finch, Poephila acuticauda. We found that both species have recombination hotspots, which are enriched near functional genomic elements. Unlike in mice and apes, most hotspots are shared between the two species, and their conservation seems to extend over tens of millions of years. These observations suggest that in the absence of PRDM9, recombination targets functional features that both enable access to the genome and constrain its evolution.

  12. Controlled Release from Recombinant Polymers

    PubMed Central

    Price, Robert; Poursaid, Azadeh; Ghandehari, Hamidreza

    2014-01-01

    Recombinant polymers provide a high degree of molecular definition for correlating structure with function in controlled release. The wide array of amino acids available as building blocks for these materials lend many advantages including biorecognition, biodegradability, potential biocompatibility, and control over mechanical properties among other attributes. Genetic engineering and DNA manipulation techniques enable the optimization of structure for precise control over spatial and temporal release. Unlike the majority of chemical synthetic strategies used, recombinant DNA technology has allowed for the production of monodisperse polymers with specifically defined sequences. Several classes of recombinant polymers have been used for controlled drug delivery. These include, but are not limited to, elastin-like, silk-like, and silk-elastinlike proteins, as well as emerging cationic polymers for gene delivery. In this article, progress and prospects of recombinant polymers used in controlled release will be reviewed. PMID:24956486

  13. Three Decades of Recombinant DNA.

    ERIC Educational Resources Information Center

    Palmer, Jackie

    1985-01-01

    Discusses highlights in the development of genetic engineering, examining techniques with recombinant DNA, legal and ethical issues, GenBank (a national database of nucleic acid sequences), and other topics. (JN)

  14. Influenza Vaccine, Inactivated or Recombinant

    MedlinePlus

    ... die from flu, and many more are hospitalized.Flu vaccine can:keep you from getting flu, make flu ... inactivated or recombinant influenza vaccine?A dose of flu vaccine is recommended every flu season. Children 6 months ...

  15. Chemical/hydrogen energy systems analysis

    NASA Astrophysics Data System (ADS)

    Beller, M.

    1982-12-01

    Four hydrogen energy technologies are addressed including: hydrogen recovery from hydrogen separation using hydride technology, photochemical hydrogen production, anode depolarization in electrolytic hydrogen production.

  16. Hydrogen speciation in synthetic quartz

    USGS Publications Warehouse

    Aines, R.D.; Kirby, S.H.; Rossman, G.R.

    1984-01-01

    The dominant hydrogen impurity in synthetic quartz is molecular H2O. H-OH groups also occur, but there is no direct evidence for the hydrolysis of Si-O-Si bonds to yield Si-OH HO-Si groups. Molecular H2O concentrations in the synthetic quartz crystals studied range from less than 10 to 3,300 ppm (H/Si), and decrease smoothly by up to an order of magnitude with distance away from the seed. OH- concentrations range from 96 to 715 ppm, and rise smoothly with distance away from the seed by up to a factor of three. The observed OH- is probably all associated with cationic impurities, as in natural quartz. Molecular H2O is the dominant initial hydrogen impurity in weak quartz. The hydrolytic weakening of quartz may be caused by the transformation H2O + Si-O-Si ??? 2SiOH, but this may be a transitory change with the SiOH groups recombining to form H2O, and the average SiOH concentration remaining very low. Synthetic quartz is strengthened when the H2O is accumulated into fluid inclusions and cannot react with the quartz framework. ?? 1984 Springer-Verlag.

  17. Enhanced hydrogen production from formic acid by formate hydrogen lyase-overexpressing Escherichia coli strains.

    PubMed

    Yoshida, Akihito; Nishimura, Taku; Kawaguchi, Hideo; Inui, Masayuki; Yukawa, Hideaki

    2005-11-01

    Genetic recombination of Escherichia coli in conjunction with process manipulation was employed to elevate the efficiency of hydrogen production in the resultant strain SR13 2 orders of magnitude above that of conventional methods. The formate hydrogen lyase (FHL)-overexpressing strain SR13 was constructed by combining FHL repressor (hycA) inactivation with FHL activator (fhlA) overexpression. Transcription of large-subunit formate dehydrogenase, fdhF, and large-subunit hydrogenase, hycE, in strain SR13 increased 6.5- and 7.0-fold, respectively, compared to the wild-type strain. On its own, this genetic modification effectively resulted in a 2.8-fold increase in hydrogen productivity of SR13 compared to the wild-type strain. Further enhancement of productivity was attained by using a novel method involving the induction of the FHL complex with high-cell-density filling of a reactor under anaerobic conditions. Continuous hydrogen production was achieved by maintaining the reactor concentration of the substrate (free formic acid) under 25 mM. An initial productivity of 23.6 g hydrogen h(-1) liter(-1) (300 liters h(-1) liter(-1) at 37 degrees C) was achieved using strain SR13 at a cell density of 93 g (dry weight) cells/liter. The hydrogen productivity reported in this work has great potential for practical application.

  18. Combinatorics in Recombinational Population Genomics

    NASA Astrophysics Data System (ADS)

    Parida, Laxmi

    The work that I will discuss is motivated by the need for understanding, and processing, the manifestations of recombination events in chromosome sequences. In this talk, we focus on two related problems. First, we explore the very general problem of reconstructability of pedigree history. How plausible is it to unravel the history of a complete unit (chromosome) of inheritance? The second problem deals with reconstructing the recombinational history of a collection of chromosomes.

  19. Gas recombination device design and cost study. Final report

    SciTech Connect

    Not Available

    1980-07-01

    Under a contract with Argonne National Laboratory, VARTA Batterie AG. conducted a design and cost study of hydrogen-oxygen recombination devices (HORD) for use with utility load-leveling lead-acid cells. Design specifications for the devices, through extensive calculation of the heat-flow conditions of the unit, were developed. Catalyst and condenser surface areas were specified. The exact dimensions can, however, be adjusted to the cell dimension and the space available above the cell. Design specifications were also developed for additional components required to ensure proper function of the recombination device, including metal hydride compound decomposer, aerosol retainer, and gas storage component. Costs for HORD were estimated to range from $4 to $10/kWh cell capacity for the production of a large number of units (greater than or equal to 10,000 units). The cost is a function of cell size and positive grid design. 21 figures, 2 tables.

  20. Structure of the Holliday junction: applications beyond recombination.

    PubMed

    Ho, P Shing

    2017-08-24

    The Holliday junction (HJ) is an essential element in recombination and related mechanisms. The structure of this four-stranded DNA assembly, which is now well-defined alone and in complex with proteins, has led to its applications in areas well outside of molecular recombination, including nanotechnology and biophysics. This minireview explores some interesting recent research on the HJ, as it has been adapted to design regular two- or three-dimensional lattices for crystal engineering, and more complex systems through DNA origami. In addition, the sequence dependence of the structure is discussed in terms how it can be applied to characterize the geometries and energies of various noncovalent interactions, including halogen bonds in oxidatively damaged (halogenated) bases and hydrogen bonds associated with the epigenetic 5-hydroxylmethylcytosine base. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  1. Recombinant protein expression in Nicotiana.

    PubMed

    Matoba, Nobuyuki; Davis, Keith R; Palmer, Kenneth E

    2011-01-01

    Recombinant protein pharmaceuticals are now widely used in treatment of chronic diseases, and several recombinant protein subunit vaccines are approved for human and veterinary use. With growing demand for complex protein pharmaceuticals, such as monoclonal antibodies, manufacturing capacity is becoming limited. There is increasing need for safe, scalable, and economical alternatives to mammalian cell culture-based manufacturing systems, which require substantial capital investment for new manufacturing facilities. Since a seminal paper reporting immunoglobulin expression in transgenic plants was published in 1989, there have been many technological advances in plant expression systems to the present time where production of proteins in leaf tissues of nonfood crops such as Nicotiana species is considered a viable alternative. In particular, transient expression systems derived from recombinant plant viral vectors offer opportunities for rapid expression screening, construct optimization, and expression scale-up. Extraction of recombinant proteins from Nicotiana leaf tissues can be achieved by collection of secreted protein fractions, or from a total protein extract after grinding the leaves with buffer. After separation from solids, the major purification challenge is contamination with elements of the photosynthetic complex, which can be solved by application of a variety of facile and proven strategies. In conclusion, the technologies required for safe, efficient, scalable manufacture of recombinant proteins in Nicotiana leaf tissues have matured to the point where several products have already been tested in phase I clinical trials and will soon be followed by a rich pipeline of recombinant vaccines, microbicides, and therapeutic proteins.

  2. Ethanol production by recombinant hosts

    DOEpatents

    Ingram, Lonnie O.; Beall, David S.; Burchhardt, Gerhard F. H.; Guimaraes, Walter V.; Ohta, Kazuyoshi; Wood, Brent E.; Shanmugam, Keelnatham T.

    1995-01-01

    Novel plasmids comprising genes which code for the alcohol dehydrogenase and pyruvate decarboxylase are described. Also described are recombinant hosts which have been transformed with genes coding for alcohol dehydrogenase and pyruvate. By virtue of their transformation with these genes, the recombinant hosts are capable of producing significant amounts of ethanol as a fermentation product. Also disclosed are methods for increasing the growth of recombinant hosts and methods for reducing the accumulation of undesirable metabolic products in the growth medium of these hosts. Also disclosed are recombinant host capable of producing significant amounts of ethanol as a fermentation product of oligosaccharides and plasmids comprising genes encoding polysaccharases, in addition to the genes described above which code for the alcohol dehydrogenase and pyruvate decarboxylase. Further, methods are described for producing ethanol from oligomeric feedstock using the recombinant hosts described above. Also provided is a method for enhancing the production of functional proteins in a recombinant host comprising overexpressing an adhB gene in the host. Further provided are process designs for fermenting oligosaccharide-containing biomass to ethanol.

  3. Ethanol production by recombinant hosts

    DOEpatents

    Fowler, David E.; Horton, Philip G.; Ben-Bassat, Arie

    1996-01-01

    Novel plasmids comprising genes which code for the alcohol dehydrogenase and pyruvate decarboxylase are described. Also described are recombinant hosts which have been transformed with genes coding for alcohol dehydrogenase and pyruvate. By virtue of their transformation with these genes, the recombinant hosts are capable of producing significant amounts of ethanol as a fermentation product. Also disclosed are methods for increasing the growth of recombinant hosts and methods for reducing the accumulation of undesirable metabolic products in the growth medium of these hosts. Also disclosed are recombinant host capable of producing significant amounts of ethanol as a fermentation product of oligosaccharides and plasmids comprising genes encoding polysaccharases, in addition to the genes described above which code for the alcohol dehydrogenase and pyruvate decarboxylase. Further, methods are described for producing ethanol from oligomeric feedstock using the recombinant hosts described above. Also provided is a method for enhancing the production of functional proteins in a recombinant host comprising overexpressing an adhB gene in the host. Further provided are process designs for fermenting oligosaccharide-containing biomass to ethanol.

  4. Delayed recombination and cosmic parameters

    SciTech Connect

    Galli, Silvia; Melchiorri, Alessandro; Bean, Rachel; Silk, Joseph

    2008-09-15

    Current cosmological constraints from cosmic microwave background anisotropies are typically derived assuming a standard recombination scheme, however additional resonance and ionizing radiation sources can delay recombination, altering the cosmic ionization history and the cosmological inferences drawn from the cosmic microwave background data. We show that for recent observations of the cosmic microwave background anisotropy, from the Wilkinson microwave anisotropy probe satellite mission (WMAP) 5-year survey and from the arcminute cosmology bolometer array receiver experiment, additional resonance radiation is nearly degenerate with variations in the spectral index, n{sub s}, and has a marked effect on uncertainties in constraints on the Hubble constant, age of the universe, curvature and the upper bound on the neutrino mass. When a modified recombination scheme is considered, the redshift of recombination is constrained to z{sub *}=1078{+-}11, with uncertainties in the measurement weaker by 1 order of magnitude than those obtained under the assumption of standard recombination while constraints on the shift parameter are shifted by 1{sigma} to R=1.734{+-}0.028. From the WMAP5 data we obtain the following constraints on the resonance and ionization sources parameters: {epsilon}{sub {alpha}}<0.39 and {epsilon}{sub i}<0.058 at 95% c.l.. Although delayed recombination limits the precision of parameter estimation from the WMAP satellite, we demonstrate that this should not be the case for future, smaller angular scales measurements, such as those by the Planck satellite mission.

  5. Hydrogenation of passivated aluminum with hydrogen fluid

    NASA Astrophysics Data System (ADS)

    Saitoh, H.; Machida, A.; Katayama, Y.; Aoki, K.

    2009-04-01

    Hydrogenation conditions of passivated aluminum were examined in a pressure and temperature range of 6-10 GPa and 300-800 °C, respectively. The relationship between the hydrogenation reaction yields and holding time was analyzed by Johnson-Mehl-Avrami equation. An Avrami exponent n of 0.3 indicated that the reaction decreased with time due to the low diffusivity of hydrogen in AlH3. The oxide layer on passivated aluminum seemed to be partly removed or modified by pressure-temperature treatment above 6 GPa and 600 °C in hydrogen fluid. The hydrogenation pressure of 9 GPa for the passivated aluminum was reduced to 6 GPa.

  6. Hearing the Music in the Spectrum of Hydrogen

    ERIC Educational Resources Information Center

    LoPresto, Michael C.

    2016-01-01

    Throughout a general education course on sound and light aimed at music and art students, analogies between subjective perceptions of objective properties of sound and light waves are a recurring theme. Demonstrating that the pitch and loudness of musical sounds are related to the frequency and intensity of a sound wave is simple and students are…

  7. Hearing the Music in the Spectrum of Hydrogen

    ERIC Educational Resources Information Center

    LoPresto, Michael C.

    2016-01-01

    Throughout a general education course on sound and light aimed at music and art students, analogies between subjective perceptions of objective properties of sound and light waves are a recurring theme. Demonstrating that the pitch and loudness of musical sounds are related to the frequency and intensity of a sound wave is simple and students are…

  8. Hydrogen Hotspots on Vesta

    NASA Image and Video Library

    2012-09-20

    This image shows that NASA Dawn mission detected abundances of hydrogen in a wide swath around the equator of the giant asteroid Vesta. The hydrogen probably exists in the form of hydroxyl or water bound to minerals in Vesta surface.

  9. Hydrogen production by Cyanobacteria.

    PubMed

    Dutta, Debajyoti; De, Debojyoti; Chaudhuri, Surabhi; Bhattacharya, Sanjoy K

    2005-12-21

    The limited fossil fuel prompts the prospecting of various unconventional energy sources to take over the traditional fossil fuel energy source. In this respect the use of hydrogen gas is an attractive alternate source. Attributed by its numerous advantages including those of environmentally clean, efficiency and renew ability, hydrogen gas is considered to be one of the most desired alternate. Cyanobacteria are highly promising microorganism for hydrogen production. In comparison to the traditional ways of hydrogen production (chemical, photoelectrical), Cyanobacterial hydrogen production is commercially viable. This review highlights the basic biology of cynobacterial hydrogen production, strains involved, large-scale hydrogen production and its future prospects. While integrating the existing knowledge and technology, much future improvement and progress is to be done before hydrogen is accepted as a commercial primary energy source.

  10. Hydrogen production by Cyanobacteria

    PubMed Central

    Dutta, Debajyoti; De, Debojyoti; Chaudhuri, Surabhi; Bhattacharya, Sanjoy K

    2005-01-01

    The limited fossil fuel prompts the prospecting of various unconventional energy sources to take over the traditional fossil fuel energy source. In this respect the use of hydrogen gas is an attractive alternate source. Attributed by its numerous advantages including those of environmentally clean, efficiency and renew ability, hydrogen gas is considered to be one of the most desired alternate. Cyanobacteria are highly promising microorganism for hydrogen production. In comparison to the traditional ways of hydrogen production (chemical, photoelectrical), Cyanobacterial hydrogen production is commercially viable. This review highlights the basic biology of cynobacterial hydrogen production, strains involved, large-scale hydrogen production and its future prospects. While integrating the existing knowledge and technology, much future improvement and progress is to be done before hydrogen is accepted as a commercial primary energy source. PMID:16371161

  11. Freezing WISE Hydrogen

    NASA Image and Video Library

    2009-11-12

    A scaffolding structure built around NASA Wide-field Infrared Survey Explorer allows engineers to freeze its hydrogen coolant. The WISE infrared instrument is kept extremely cold by a bottle-like tank filled with frozen hydrogen, called the cryostat.

  12. Hydrogen transport membranes

    DOEpatents

    Mundschau, Michael V.

    2005-05-31

    Composite hydrogen transport membranes, which are used for extraction of hydrogen from gas mixtures are provided. Methods are described for supporting metals and metal alloys which have high hydrogen permeability, but which are either too thin to be self supporting, too weak to resist differential pressures across the membrane, or which become embrittled by hydrogen. Support materials are chosen to be lattice matched to the metals and metal alloys. Preferred metals with high permeability for hydrogen include vanadium, niobium, tantalum, zirconium, palladium, and alloys thereof. Hydrogen-permeable membranes include those in which the pores of a porous support matrix are blocked by hydrogen-permeable metals and metal alloys, those in which the pores of a porous metal matrix are blocked with materials which make the membrane impervious to gases other than hydrogen, and cermets fabricated by sintering powders of metals with powders of lattice-matched ceramic.

  13. Space shuttle ram glow: Implication of NO2 recombination continuum

    NASA Technical Reports Server (NTRS)

    Swenson, G. R.; Mende, S. B.; Clifton, S.

    1985-01-01

    The ram glow data gathered to data from imaging experiments on space shuttle suggest the glow is a continuum (within 34 angstrom resolution); the continuum shape is such that the peak is near 7000 angstroms decreasing to the blue and red, and the average molecular travel leading to emission after leaving the surface is 20 cm (assuming isotropic scattering from the surface). Emission continuum is rare in molecular systems but the measured spectrum does resemble the laboratory spectrum of NO2 (B) recombination continuum. The thickness of the observed emission is consistent with the NO2 hypothesis given an exit velocity of approx. 2.5 km/sec (1.3 eV) which leaves approx. 3.7 eV of ramming OI energy available for unbonding the recombined NO2 from the surface. The NO2 is formed in a 3-body recombination of OI + NO + m = NO2 + m where OI originates from the atmosphere and NO is chemically formed on the surface from atmospheric NI and OI. The spacecraft surface then acts as the n for the reaction: Evidence exists from orbital mass spectrometer data that the NO and NO2 chemistry described in this process does occur on surfaces of spectrometer orifices in orbit. Surface temperature effects are likely a factor in the NO sticking efficiency and, therefore, glow intensities.

  14. Space shuttle Ram glow: Implication of NO2 recombination continuum

    NASA Astrophysics Data System (ADS)

    Swenson, G. R.; Mende, S. B.; Clifton, S.

    1985-09-01

    The ram glow data gathered to data from imaging experiments on space shuttle suggest the glow is a continuum (within 34 angstrom resolution); the continuum shape is such that the peak is near 7000 angstroms decreasing to the blue and red, and the average molecular travel leading to emission after leaving the surface is 20 cm (assuming isotropic scattering from the surface). Emission continuum is rare in molecular systems but the measured spectrum does resemble the laboratory spectrum of NO2 (B) recombination continuum. The thickness of the observed emission is consistent with the NO2 hypothesis given an exit velocity of approx. 2.5 km/sec (1.3 eV) which leaves approx. 3.7 eV of ramming OI energy available for unbonding the recombined NO2 from the surface. The NO2 is formed in a 3-body recombination of OI + NO + m = NO2 + m where OI originates from the atmosphere and NO is chemically formed on the surface from atmospheric NI and OI. The spacecraft surface then acts as the n for the reaction: Evidence exists from orbital mass spectrometer data that the NO and NO2 chemistry described in this process does occur on surfaces of spectrometer orifices in orbit. Surface temperature effects are likely a factor in the NO sticking efficiency and, therefore, glow intensities.

  15. Hydrogen Technologies Safety Guide

    SciTech Connect

    Rivkin, C.; Burgess, R.; Buttner, W.

    2015-01-01

    The purpose of this guide is to provide basic background information on hydrogen technologies. It is intended to provide project developers, code officials, and other interested parties the background information to be able to put hydrogen safety in context. For example, code officials reviewing permit applications for hydrogen projects will get an understanding of the industrial history of hydrogen, basic safety concerns, and safety requirements.

  16. Laboratory Synthesis of Molecular Hydrogen on Surfaces of Interstellar Dust Grain Analogues

    NASA Astrophysics Data System (ADS)

    Liu, Chi

    Molecular hydrogen is by far the most abundant molecule in space. H2 formation in the interstellar medium (ISM) is a fundamental process in astrophysics. The radiative association of two hydrogen atoms is a process too rare to be efficient because it involves forbidden roto-vibrational transitions, and gas-phase three-body reactions are rare in the diffuse ISM to explain H2 abundance. It has been recognized that H2 recombination occurs on surfaces of dust grains, where the grains act as the third body in the H + H reaction. This thesis reports on laboratory measurements of molecular hydrogen formation and recombination on surfaces of astrophysical interest. It also describes how atomic/molecular beam and surface science techniques can be used to study physical processes leading to the formation of hydrogen molecules at surfaces under conditions relevant to those encountered in the interstellar medium. Flash desorption experiments have been conducted to yield desorption energies, order of desorption kinetics and recombination efficiency (defined as the sticking probability S times the probability of recombination upon H-H encounter, γ) over a wide range of coverage. Significant recombination occurs only at the lowest temperatures (<20 K). The recombination rates are obtained as functions of surface temperature and exposure time to H and D atom beams. Our measurements give lower values for the recombination efficiency than model-based estimates. We propose that our results can be reconciled with average estimates of the recombination rate from astronomical observations, if the actual surface of an average grain is rougher, and its area bigger, than the one considered in models. On the basis of our experimental evidence, we recognize that there are two main regimes of H coverage that are of astrophysical importance; for each of them we provide an expression giving the production rate of molecular hydrogen in interstellar clouds.

  17. Photoionization of atomic hydrogen in electric field

    SciTech Connect

    Gorlov, Timofey V; Danilov, Viatcheslav V

    2010-01-01

    Laser assisted ionization of high energy hydrogen beams in magnetic fields opens wide application possibilities in accelerator physics and other fields. The key theoretical problem of the method is the calculation of the ionization probability of a hydrogen atom affected by laser and static electric fields in the particle rest frame. A method of solving this problem with the temporal Schr dinger equation including a continuum spectrum is presented in this paper in accurate form for the first time. This method allows finding the temporal evolution of the wave function of the hydrogen atom as a function of laser and static electric fields. Solving the problem of photoionization reveals quantum effects that cannot be described by the cross sectional approach. The effects play a key role in the problems of photoionization of H0 beams with the large angular or energy spread.

  18. Sensitive hydrogen leak detector

    DOEpatents

    Myneni, G.R.

    1999-08-03

    A sensitive hydrogen leak detector system is described which uses passivation of a stainless steel vacuum chamber for low hydrogen outgassing, a high compression ratio vacuum system, a getter operating at 77.5 K and a residual gas analyzer as a quantitative hydrogen sensor. 1 fig.

  19. N Reactor hydrogen control

    SciTech Connect

    Shuford, D.H.; Kripps, L.J.

    1988-08-01

    Following the accident at the Chernobyl nuclear power reactor in the Soviet Union, a number of reviews were conducted of the N Reactor. Hydrogen generation during postulates severe accidents and the possibility of resulting hydrogen deflagrations/detonations that could affect confinement integrity were issues raised in several reviews, along with recommendations for adding hydrogen mitigation features. To respond to these reviews, an N Reactor Safety Enhancement Program and a subsequent Accelerated Safety Enhancement Program were initiated to address all post-Chernobyl N Reactor review findings. The Safety Enhancement Program and Accelerated Safety Enhancement Program efforts involving hydrogen control included the following: Calculate the potential hydrogen source for a range of severe accidents at the N Reactor to establish an acceptable design basis for the hydrogen mitigation system; Analyze the N Reactor confinement hydrogen mixing capability to identify areas of concern and to the verify effectiveness of the hydrogen mitigation system; Select, design, and construct a hydrogen mitigation system to enhance the N Reactor capability to accommodate possible hydrogen generation from postulated severe accidents; Provide post-accident hydrogen monitoring as an operator aid in assessing confinement conditions. In additions, it was necessary to verify that incorporation of the hydrogen mitigation system had no adverse impact N Reactor safety (e.g., radiological consequence analyses). 77 refs., 25 figs., 10 tabs.

  20. Hydrogen from coal

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Hydrogen production from coal by hydrogasification is described. The process involves the solubilization of coal to form coal liquids, which are hydrogasified to produce synthetic pipeline gas; steam reforming this synthetic gas by a nuclear heat source produces hydrogen. A description is given of the hydrogen plant, its performance, and its effect on the environment.

  1. Purification of Hydrogen

    DOEpatents

    Newton, A S

    1950-12-05

    Disclosed is a process for purifying hydrogen containing various gaseous impurities by passing the hydrogen over a large surface of uranium metal at a temperature above the decomposition temperature of uranium hydride, and below the decomposition temperature of the compounds formed by the combination of the uranium with the impurities in the hydrogen.

  2. Flash hydrogenation of coal

    DOEpatents

    Manowitz, Bernard; Steinberg, Meyer; Sheehan, Thomas V.; Winsche, Warren E.; Raseman, Chad J.

    1976-01-01

    A process for the hydrogenation of coal comprising the contacting of powdered coal with hydrogen in a rotating fluidized bed reactor. A rotating fluidized bed reactor suitable for use in this process is also disclosed. The coal residence time in the reactor is limited to less than 5 seconds while the hydrogen contact time is not in excess of 0.2 seconds.

  3. Sensitive hydrogen leak detector

    DOEpatents

    Myneni, Ganapati Rao

    1999-01-01

    A sensitive hydrogen leak detector system using passivation of a stainless steel vacuum chamber for low hydrogen outgassing, a high compression ratio vacuum system, a getter operating at 77.5 K and a residual gas analyzer as a quantitative hydrogen sensor.

  4. Liquid metal hydrogen barriers

    DOEpatents

    Grover, George M.; Frank, Thurman G.; Keddy, Edward S.

    1976-01-01

    Hydrogen barriers which comprise liquid metals in which the solubility of hydrogen is low and which have good thermal conductivities at operating temperatures of interest. Such barriers are useful in nuclear fuel elements containing a metal hydride moderator which has a substantial hydrogen dissociation pressure at reactor operating temperatures.

  5. Biological hydrogen photoproduction

    SciTech Connect

    Nemoto, Y.

    1995-09-01

    Following are the major accomplishments of the 6th year`s study of biological hydrogen photoproduction which were supported by DOE/NREL. (1) We have been characterizing a biological hydrogen production system using synchronously growing aerobically nitrogen-fixing unicellular cyanobacterium, Synechococcus sp. Miami BG 043511. So far it was necessary to irradiate the cells to produce hydrogen. Under darkness they did not produce hydrogen. However, we found that, if the cells are incubated with oxygen, they produce hydrogen under the dark. Under 80% argon + 20% oxygen condition, the hydrogen production activity under the dark was about one third of that under the light + argon condition. (2) Also it was necessary so far to incubate the cells under argon atmosphere to produce hydrogen in this system. Argon treatment is very expensive and should be avoided in an actual hydrogen production system. We found that, if the cells are incubated at a high cell density and in a container with minimum headspace, it is not necessary to use argon for the hydrogen production. (3) Calcium ion was found to play an important role in the mechanisms of protection of nitrogenase from external oxygen. This will be a clue to understand the reason why the hydrogen production is so resistant to oxygen in this strain. (4) In this strain, sulfide can be used as electron donor for the hydrogen production. This result shows that waste water can be used for the hydrogen production system using this strain.

  6. Specificity of recombination of H and L chains from human gamma-G-myeloma proteins.

    PubMed

    Grey, H M; Mannik, M

    1965-09-01

    Dissociated H and L chains of human gammaG-myeloma proteins were recombined by removal of conditions interrupting non-covalent interactions. In the process of recombination 7S molecules were formed. It was demonstrated that the H chains from individual gammaG-myeloma proteins recombine with their own L chains but also with L chains derived from other myeloma proteins. In some instances, however, the L chains from other myeloma proteins did not recombine as avidly with the H chains as the autologous L chains. The specificity of the non-covalent interactions of H and L chains was particularly well brought out by competitive recombination experiments where an individual H chain had a choice of recombining with its own L chain or with the L chain obtained from another myeloma protein. In this manner a spectrum of affinities between individual H chains and several L chains was demonstrated. In the vast majority of recombinations there was a clearcut preference for recombination to take place between the H and L chains derived from the same protein. It is postulated that this specificity is related to differences in the primary structure, which cause differences in configuration of these homogeneous H and L chains and that these configurations then dictate on thermodynamic grounds the pairing of H chains with particular L chains.

  7. Double-strand break-induced mitotic intrachromosomal recombination in the fission yeast Schizosaccharomyces pombe

    SciTech Connect

    Osman, F.; Fortunato, E.A.; Subramani, S.

    1996-02-01

    The Saccharomyces cerevisiae HO gene and MATa cutting site were used to introduce site-specific double-strand breaks (DSBs) within intrachromosomal recombination substrates in Schizosaccharomyces pombe. The recombination substrates consisted of nontandem direct repeats of ade6 heteroalleles. DSB induction stimulated the frequency of recombinants 2000-fold. The spectrum of DSB-induced recombinants depended on whether the DSB was introduced within one of the ade6 repeats or in intervening unique DNA. When the DSB was introduced within unique DNA, over 99.8% of the recombinants lacked the intervening DNA but retained one copy of ade6 that was wild type or either one of the heteroalleles. When the DSB was located in duplicated DNA, 77% of the recombinants were similar to the deletion types described above, but the single ade6 copy was either wild type or exclusively that of the uncut repeat. The remaining 23% of the induced recombinants were gene convertants with two copies of ade6 and the intervening sequences; the ade6 heteroallele in which the DSB was induced was the recipient of genetic information. Half-sectored colonies were isolated, analyzed and interpreted as evidence of heteroduplex DNA formation. The results are discussed in terms of current models for recombination. 81 refs., 9 figs., 3 tabs.

  8. Hydrogen Embrittlement of Metals: Atomic hydrogen from a variety of sources reduces the ductility of many metals.

    PubMed

    Rogers, H C

    1968-03-08

    Hydrogen interacts with many metals to reduce their ductility (2) and frequently their strength also. It enters metals in the atomic form, diffusing very rapidly even at normal temperatures. During melting and fabrication, as well as during use, there are various ways in which metals come in contact with hydrogen and absorb it. The absorbed hydrogen may react irreversibly with oxides or carbides in some metals to produce a permanently degraded structure. It may also recombine at internal surfaces of defects of various types to form gaseous molecular hydrogen under pressures sufficiently high to form metal blisters when the recombination occurs near the outer surface. In other metals, brittle hydrides that lower the mechanical properties of the metal are formed. Another type of embrittlement is reversible, depending on the presence of hydrogen in the metal lattice during deformation for its occurrence. Under some conditions the failure may be delayed for long periods. A number of different mechanisms have been postulated to explain reversible embrittlement. According to some theories hydrogen interferes with the processes of plastic deformation in metals, while according to others it enhances the tendency for cracking.

  9. Accelerating Spectrum Sharing Technologies

    SciTech Connect

    Juan D. Deaton; Lynda L. Brighton; Rangam Subramanian; Hussein Moradi; Jose Loera

    2013-09-01

    Spectrum sharing potentially holds the promise of solving the emerging spectrum crisis. However, technology innovators face the conundrum of developing spectrum sharing technologies without the ability to experiment and test with real incumbent systems. Interference with operational incumbents can prevent critical services, and the cost of deploying and operating an incumbent system can be prohibitive. Thus, the lack of incumbent systems and frequency authorization for technology incubation and demonstration has stymied spectrum sharing research. To this end, industry, academia, and regulators all require a test facility for validating hypotheses and demonstrating functionality without affecting operational incumbent systems. This article proposes a four-phase program supported by our spectrum accountability architecture. We propose that our comprehensive experimentation and testing approach for technology incubation and demonstration will accelerate the development of spectrum sharing technologies.

  10. Recombination by grain-boundary type in CdTe

    SciTech Connect

    Moseley, John Ahrenkiel, Richard K.; Metzger, Wyatt K.; Moutinho, Helio R.; Guthrey, Harvey L.; Al-Jassim, Mowafak M.; Paudel, Naba; Yan, Yanfa

    2015-07-14

    We conducted cathodoluminescence (CL) spectrum imaging and electron backscatter diffraction on the same microscopic areas of CdTe thin films to correlate grain-boundary (GB) recombination by GB “type.” We examined misorientation-based GB types, including coincident site lattice (CSL) Σ = 3, other-CSL (Σ = 5–49), and general GBs (Σ > 49), which make up ∼47%–48%, ∼6%–8%, and ∼44%–47%, respectively, of the GB length at the film back surfaces. Statistically averaged CL total intensities were calculated for each GB type from sample sizes of ≥97 GBs per type and were compared to the average grain-interior CL intensity. We find that only ∼16%–18% of Σ = 3 GBs are active non-radiative recombination centers. In contrast, all other-CSL and general GBs are observed to be strong non-radiative centers and, interestingly, these GB types have about the same CL intensity. Both as-deposited and CdCl{sub 2}-treated films were studied. The CdCl{sub 2} treatment reduces non-radiative recombination at both other-CSL and general GBs, but GBs are still recombination centers after the CdCl{sub 2} treatment.

  11. Recombination by grain-boundary type in CdTe

    NASA Astrophysics Data System (ADS)

    Moseley, John; Metzger, Wyatt K.; Moutinho, Helio R.; Paudel, Naba; Guthrey, Harvey L.; Yan, Yanfa; Ahrenkiel, Richard K.; Al-Jassim, Mowafak M.

    2015-07-01

    We conducted cathodoluminescence (CL) spectrum imaging and electron backscatter diffraction on the same microscopic areas of CdTe thin films to correlate grain-boundary (GB) recombination by GB "type." We examined misorientation-based GB types, including coincident site lattice (CSL) Σ = 3, other-CSL (Σ = 5-49), and general GBs (Σ > 49), which make up ˜47%-48%, ˜6%-8%, and ˜44%-47%, respectively, of the GB length at the film back surfaces. Statistically averaged CL total intensities were calculated for each GB type from sample sizes of ≥97 GBs per type and were compared to the average grain-interior CL intensity. We find that only ˜16%-18% of Σ = 3 GBs are active non-radiative recombination centers. In contrast, all other-CSL and general GBs are observed to be strong non-radiative centers and, interestingly, these GB types have about the same CL intensity. Both as-deposited and CdCl2-treated films were studied. The CdCl2 treatment reduces non-radiative recombination at both other-CSL and general GBs, but GBs are still recombination centers after the CdCl2 treatment.

  12. Knowledge-based probabilistic representations of branching ratios in chemical networks: The case of dissociative recombinations

    SciTech Connect

    Plessis, Sylvain; Carrasco, Nathalie; Pernot, Pascal

    2010-10-07

    Experimental data about branching ratios for the products of dissociative recombination of polyatomic ions are presently the unique information source available to modelers of natural or laboratory chemical plasmas. Yet, because of limitations in the measurement techniques, data for many ions are incomplete. In particular, the repartition of hydrogen atoms among the fragments of hydrocarbons ions is often not available. A consequence is that proper implementation of dissociative recombination processes in chemical models is difficult, and many models ignore invaluable data. We propose a novel probabilistic approach based on Dirichlet-type distributions, enabling modelers to fully account for the available information. As an application, we consider the production rate of radicals through dissociative recombination in an ionospheric chemistry model of Titan, the largest moon of Saturn. We show how the complete scheme of dissociative recombination products derived with our method dramatically affects these rates in comparison with the simplistic H-loss mechanism implemented by default in all recent models.

  13. Recombination Drives Vertebrate Genome Contraction

    PubMed Central

    Nam, Kiwoong; Ellegren, Hans

    2012-01-01

    Selective and/or neutral processes may govern variation in DNA content and, ultimately, genome size. The observation in several organisms of a negative correlation between recombination rate and intron size could be compatible with a neutral model in which recombination is mutagenic for length changes. We used whole-genome data on small insertions and deletions within transposable elements from chicken and zebra finch to demonstrate clear links between recombination rate and a number of attributes of reduced DNA content. Recombination rate was negatively correlated with the length of introns, transposable elements, and intergenic spacer and with the rate of short insertions. Importantly, it was positively correlated with gene density, the rate of short deletions, the deletion bias, and the net change in sequence length. All these observations point at a pattern of more condensed genome structure in regions of high recombination. Based on the observed rates of small insertions and deletions and assuming that these rates are representative for the whole genome, we estimate that the genome of the most recent common ancestor of birds and lizards has lost nearly 20% of its DNA content up until the present. Expansion of transposable elements can counteract the effect of deletions in an equilibrium mutation model; however, since the activity of transposable elements has been low in the avian lineage, the deletion bias is likely to have had a significant effect on genome size evolution in dinosaurs and birds, contributing to the maintenance of a small genome. We also demonstrate that most of the observed correlations between recombination rate and genome contraction parameters are seen in the human genome, including for segregating indel polymorphisms. Our data are compatible with a neutral model in which recombination drives vertebrate genome size evolution and gives no direct support for a role of natural selection in this process. PMID:22570634

  14. Energetic hydrogen atoms in wave driven discharges

    SciTech Connect

    Felizardo, E.; Tatarova, E.; Henriques, J.; Dias, F. M.; Ferreira, C. M.; Gordiets, B.

    2011-07-25

    Doppler broadened H{sub {gamma}} emission was detected in high frequency (350 and 500 MHz) hydrogen surface wave sustained discharges, revealing the presence of fast excited H atoms with kinetic energies in the range 4-9 eV. Spatially resolved measurements of the Doppler-broadened emission indicate that these fast atoms are predominantly formed near the wall, which suggests that their generation may result from acceleration of H{sup +} ions in the radial dc space charge field followed by recombination at the wall and the return of the neutral atom to the gas phase.

  15. Hydrogen separation process

    DOEpatents

    Mundschau, Michael; Xie, Xiaobing; Evenson, IV, Carl; Grimmer, Paul; Wright, Harold

    2011-05-24

    A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to a hydrogen separation membrane system comprising a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for separating a hydrogen-rich product stream from a feed stream comprising hydrogen and at least one carbon-containing gas, comprising feeding the feed stream, at an inlet pressure greater than atmospheric pressure and a temperature greater than 200.degree. C., to an integrated water gas shift/hydrogen separation membrane system wherein the hydrogen separation membrane system comprises a membrane that is selectively permeable to hydrogen, and producing a hydrogen-rich permeate product stream on the permeate side of the membrane and a carbon dioxide-rich product raffinate stream on the raffinate side of the membrane. A method for pretreating a membrane, comprising: heating the membrane to a desired operating temperature and desired feed pressure in a flow of inert gas for a sufficient time to cause the membrane to mechanically deform; decreasing the feed pressure to approximately ambient pressure; and optionally, flowing an oxidizing agent across the membrane before, during, or after deformation of the membrane. A method of supporting a hydrogen separation membrane system comprising selecting a hydrogen separation membrane system comprising one or more catalyst outer layers deposited on a hydrogen transport membrane layer and sealing the hydrogen separation membrane system to a porous support.

  16. Recombination at the DNA level. Abstracts

    SciTech Connect

    Not Available

    1984-01-01

    Abstracts of papers in the following areas are presented: (1) chromosome mechanics; (2) yeast systems; (3) mammalian homologous recombination; (4) transposons; (5) Mu; (6) plant transposons/T4 recombination; (7) topoisomerase, resolvase, and gyrase; (8) Escherichia coli general recombination; (9) recA; (10) repair; (11) eucaryotic enzymes; (12) integration and excision of bacteriophage; (13) site-specific recombination; and (14) recombination in vitro. (ACR)

  17. DNA recombination. Recombination initiation maps of individual human genomes.

    PubMed

    Pratto, Florencia; Brick, Kevin; Khil, Pavel; Smagulova, Fatima; Petukhova, Galina V; Camerini-Otero, R Daniel

    2014-11-14

    DNA double-strand breaks (DSBs) are introduced in meiosis to initiate recombination and generate crossovers, the reciprocal exchanges of genetic material between parental chromosomes. Here, we present high-resolution maps of meiotic DSBs in individual human genomes. Comparing DSB maps between individuals shows that along with DNA binding by PRDM9, additional factors may dictate the efficiency of DSB formation. We find evidence for both GC-biased gene conversion and mutagenesis around meiotic DSB hotspots, while frequent colocalization of DSB hotspots with chromosome rearrangement breakpoints implicates the aberrant repair of meiotic DSBs in genomic disorders. Furthermore, our data indicate that DSB frequency is a major determinant of crossover rate. These maps provide new insights into the regulation of meiotic recombination and the impact of meiotic recombination on genome function.

  18. Bicircular-laser-field-assisted electron-ion radiative recombination

    NASA Astrophysics Data System (ADS)

    Odžak, S.; Milošević, D. B.

    2015-11-01

    Electron-ion radiative recombination assisted by a bicircular laser field that consists of two circularly polarized fields counterrotating in the x y plane and having the frequencies r ω and s ω , which are integer multiples of the fundamental frequency ω , is considered using the S -matrix theory. The energy and polarization of soft x rays generated in this process are analyzed as functions of the incident electron energy and incident electron angle with respect to the x axis. Numerical results for the process of direct recombination of electrons with He+ ionic targets are presented. Abrupt cutoffs of the plateau structures in the emitted x-ray energy spectra are explained by classical analysis. Simpler or more complex oscillatory structures in the spectrum may appear as a result of the interference of a different number of classical orbits. Symmetry analysis and the numerical results show that the x-ray power spectrum and ellipticity are invariant with respect to a rotation of the incident electron momentum by the angle 2 π /(r +s ) . We have visualized this by presenting the logarithm of the differential power spectrum and polarization of the emitted x rays in false colors as functions of the incident electron angle and the x-ray energy. We have also shown that the change of the relative phase of the bicircular field is equivalent to the change of the incident electron angle. By controlling this relative phase it is possible to control the polarization of the emitted soft x rays.

  19. Nanoplasmonic hydrogen sensing

    NASA Astrophysics Data System (ADS)

    Wadell, Carl; Syrenova, Svetlana; Langhammer, Christoph

    2014-09-01

    In this review we discuss the evolution of surface plasmon resonance and localized surface plasmon resonance based hydrogen sensors. We put particular focus on how they are used to study metal-hydrogen interactions at the nanoscale, both at the ensemble and the single nanoparticle level. Such efforts are motivated by a fundamental interest in understanding the role of nanosizing on metal hydride formation processes. However, nanoplasmonic hydrogen sensors are not only of academic interest but may also find more practical use as all-optical gas detectors in industrial and medical applications, as well in a future hydrogen economy, where hydrogen is used as a carbon free energy carrier.

  20. Safe venting of hydrogen

    SciTech Connect

    Stewart, W.F.; Dewart, J.M.; Edeskuty, F.J.

    1990-01-01

    The disposal of hydrogen is often required in the operation of an experimental facility that contains hydrogen. Whether the vented hydrogen can be discharged to the atmosphere safely depends upon a number of factors such as the flow rate and atmospheric conditions. Calculations have been made that predict the distance a combustible mixture can extend from the point of release under some specified atmospheric conditions. Also the quantity of hydrogen in the combustible cloud is estimated. These results can be helpful in deciding of the hydrogen can be released directly to the atmosphere, or if it must be intentionally ignited. 15 refs., 5 figs., 2 tabs.

  1. Basic studies of hydrogen evolution by Escherichia coli containing a cloned Citrobacter freundii hydrogenase gene.

    PubMed

    Kanayama, H; Sode, K; Karube, I

    1987-08-01

    Citrobacter freundii genes that complemented Escherichia coli hyd-(hydrogenase activity) mutation were cloned in plasmids pCBH4 (6.2 kb) and pCBH6(5.7 kb). Hydrogen evolution by the transformant E. coli HK-8(pCBH4 or pCBH6) was investigated. The optimum culture temperature of recombinant E. coli cells for hydrogen evolution from glucose was in the neighborhood of 18 degrees C. The recombinant E. coli cells cultured at this condition showed a several-fold increase of hydrogen evolution, as compared with that of the wild-type cells. The plasmid-retention stability of this recombinant E. coli was extremely high, especially plasmid pCBH4, which was completely retained during 2 wk without any restriction. Hydrogen production by immobilized recombinant E. coli was then investigated using cells cultured at 18 degrees C. The hydrogen evolution rate from glucose and Lennox-broth were about twofold higher than that of E. coli C600, and this high hydrogen evolution rate was maintained for more than 1 mo.

  2. Electronic absorption spectra of hydrogenated protonated naphthalene and proflavine

    NASA Astrophysics Data System (ADS)

    Bonaca, A.; Bilalbegović, G.

    2011-09-01

    We study hydrogenated cations of two polycyclic hydrocarbon molecules as models of hydrogenated organic species that form in the interstellar medium. Optical spectra of the hydrogenated naphthalene cation Hn-C10H+8 for n= 1, 2 and 10, as well as the astrobiologically interesting hydrogenated proflavine cation Hn-C13H11N+3 for n= 1 and 14, are calculated. The pseudopotential time-dependent density functional theory is used. It is found that the fully hydrogenated proflavine cation H14-C13H11N+3 shows a broad spectrum in which the positions of individual lines are almost lost. The positions, shapes and intensities of lines change in hydronaphthalene and hydroproflavine cations, showing that hydrogen additions induce substantially different optical spectra in comparison with base polycyclic hydrocarbon cations. One calculated line in the visible spectrum of H10-C10H+8 and one in the visible spectrum of H-C13H11N+3 are close to the measured diffuse interstellar bands. We also present the positions of near-ultraviolet lines.

  3. Modeling of the Role of Atomic Hydrogen in Heat Transfer During Hot Filament Assisted Deposition of Diamond

    DTIC Science & Technology

    1992-05-12

    recombination of atomic hydrogen at the tip of the thermocouple in addition to the contributions of conduction , convection and radiation. Since helium is...Figure 2. Since the rate of heat transfer by conduction , convection and radiation is roughly equal in helium and hydrogen, the above evidence suggests an

  4. Superheavy hydrogen ^5H

    NASA Astrophysics Data System (ADS)

    Korsheninnikov, A. A.

    2001-10-01

    The very neutron rich nucleus ^5H having an extreme fraction of neutrons, N/Z=4, was the object for research over more than 40 years. However, until now the existence of ^5H-resonance remains unclear. We performed an experimental search for ^5H in collaboration between RIKEN(Japan), JINR(Dubna, Russia), and GANIL (France). The reaction p(^6He,^2He)^5H was chosen for the search for ^5H. It is reasonable to expect, that neutrons in the ground state of ^5H occupy the same orbitals as in ^6He. Hence, by pick-up of one proton from ^6He, we should selectively populate the ground state 1/2^+ of ^5H. The keystone of this experiment was the combination of the exotic ^6He beam provided by the fragment separator ACCULINA (Dubna), the hydrogen cryogenic target from GANIL, and the detection system based on the telescope of ring-like solid-state strip-detectors (RIKEN). The reaction p(^6He,^2He)^5H at 36A MeV was investigated by detecting the two protons emitted from the decay of ^2He. Besides protons, we also detected tritons from the decay ^5Harrowt+n+n. The excitation energy spectrum obtained for this reaction shows a peak which we interpret as a resonance ^5H at 1.7±0.3 MeV above the n+n+t threshold with a width of 1.9±0.4 MeV. The angular distribution of the p(^6He,^2He)^5H reaction was measured as well as the energy correlation of two protons. The former has a shape consistent with the angular momentum transfer l=0 expected for the population of ^5H_g.s(1/2^+), while the latter confirms the emission of the ^2He virtual state in the reaction studied.

  5. Recombinant allergens for specific immunotherapy.

    PubMed

    Cromwell, Oliver; Häfner, Dietrich; Nandy, Andreas

    2011-04-01

    Recombinant DNA technology provides the means for producing allergens that are equivalent to their natural counterparts and also genetically engineered variants with reduced IgE-binding activity. The proteins are produced as chemically defined molecules with consistent structural and immunologic properties. Several hundred allergens have been cloned and expressed as recombinant proteins, and these provide the means for making a very detailed diagnosis of a patient's sensitization profile. Clinical development programs are now in progress to assess the suitability of recombinant allergens for both subcutaneous and sublingual immunotherapy. Recombinant hypoallergenic variants, which are developed with the aim of increasing the doses that can be administered while at the same time reducing the risks for therapy-associated side effects, are also in clinical trials for subcutaneous immunotherapy. Grass and birch pollen preparations have been shown to be clinically effective, and studies with various other allergens are in progress. Personalized or patient-tailored immunotherapy is still a very distant prospect, but the first recombinant products based on single allergens or defined mixtures could reach the market within the next 5 years. Copyright © 2011 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  6. PROGENITORS OF RECOMBINING SUPERNOVA REMNANTS

    SciTech Connect

    Moriya, Takashi J.

    2012-05-01

    Usual supernova remnants have either ionizing plasma or plasma in collisional ionization equilibrium, i.e., the ionization temperature is lower than or equal to the electron temperature. However, the existence of recombining supernova remnants, i.e., supernova remnants with ionization temperature higher than the electron temperature, has been recently confirmed. One suggested way to have recombining plasma in a supernova remnant is to have a dense circumstellar medium at the time of the supernova explosion. If the circumstellar medium is dense enough, collisional ionization equilibrium can be established in the early stage of the evolution of the supernova remnant and subsequent adiabatic cooling, which occurs after the shock wave gets out of the dense circumstellar medium, makes the electron temperature lower than the ionization temperature. We study the circumstellar medium around several supernova progenitors and show which supernova progenitors can have a circumstellar medium dense enough to establish collisional ionization equilibrium soon after the explosion. We find that the circumstellar medium around red supergiants (especially massive ones) and the circumstellar medium dense enough to make Type IIn supernovae can establish collisional ionization equilibrium soon after the explosion and can evolve to become recombining supernova remnants. Wolf-Rayet stars and white dwarfs have the possibility to be recombining supernova remnants but the fraction is expected to be very small. As the occurrence rate of the explosions of red supergiants is much higher than that of Type IIn supernovae, the major progenitors of recombining supernova remnants are likely to be red supergiants.

  7. Frequency and genetic characterization of V(DD)J recombinants in the human peripheral blood antibody repertoire.

    PubMed

    Briney, Bryan S; Willis, Jordan R; Hicar, Mark D; Thomas, James W; Crowe, James E

    2012-09-01

    Antibody heavy-chain recombination that results in the incorporation of multiple diversity (D) genes, although uncommon, contributes substantially to the diversity of the human antibody repertoire. Such recombination allows the generation of heavy chain complementarity determining region 3 (HCDR3) regions of extreme length and enables junctional regions that, because of the nucleotide bias of N-addition regions, are difficult to produce through normal V(D)J recombination. Although this non-classical recombination process has been observed infrequently, comprehensive analysis of the frequency and genetic characteristics of such events in the human peripheral blood antibody repertoire has not been possible because of the rarity of such recombinants and the limitations of traditional sequencing technologies. Here, through the use of high-throughput sequencing of the normal human peripheral blood antibody repertoire, we analysed the frequency and genetic characteristics of V(DD)J recombinants. We found that these recombinations were present in approximately 1 in 800 circulating B cells, and that the frequency was severely reduced in memory cell subsets. We also found that V(DD)J recombination can occur across the spectrum of diversity genes, indicating that virtually all recombination signal sequences that flank diversity genes are amenable to V(DD)J recombination. Finally, we observed a repertoire bias in the diversity gene repertoire at the upstream (5') position, and discovered that this bias was primarily attributable to the order of diversity genes in the genomic locus.

  8. Spectrum 101: An Introduction to Spectrum Management

    DTIC Science & Technology

    2004-03-01

    This interference can come from another friendly source, a host or neighboring nation source, or an enemy jammer . The DoD has a Joint Spectrum...users, demonstrate this concept. Wireless local area networks (LANs), Bluetooth devices, cordless phones, and microwave ovens all share the same

  9. Hydrogen bonding. Part 15. Infrared study of hydrogen bonding in betaine hydrate and betaine hydrofluoride

    NASA Astrophysics Data System (ADS)

    Harmon, Kenneth M.; Avci, Günsel F.

    1984-07-01

    Infrared spectroscopy at 300 and 10 K. deuterium labeling, internal coordinate analysis, and comparison with the spectra of compounds of known structure have been used to elucidate the nature of bound water in betaine hydrate. All evidence is consonant with a structure in which two carboxylate oxygens, one from each of two betaines, are mutually bridged by two water molecules to give a dimeric water—anion unit of D2h symmetry. The infrared spectrum of betaine hydrofluoride shows the presence of a very strong OHF hydrogen bond in this compound, in contrast to the normal OH⋯Cl hydrogen bond in betaine hydrochloride.

  10. Electron-beam-induced information storage in hydrogenated amorphous silicon devices

    DOEpatents

    Yacobi, B.G.

    1985-03-18

    A method for recording and storing information in a hydrogenated amorphous silicon device, comprising: depositing hydrogenated amorphous silicon on a substrate to form a charge collection device; and generating defects in the hydrogenated amorphous silicon device, wherein the defects act as recombination centers that reduce the lifetime of carriers, thereby reducing charge collection efficiency and thus in the charge collection mode of scanning probe instruments, regions of the hydrogenated amorphous silicon device that contain the defects appear darker in comparison to regions of the device that do not contain the defects, leading to a contrast formation for pattern recognition and information storage.

  11. A Model of the Hα Transmission Spectrum of HD 189733b

    NASA Astrophysics Data System (ADS)

    Huang, Chenliang; Arras, Phil; Christie, Duncan; Li, Zhi-Yun

    2017-01-01

    The hot gas in the upper thermosphere of hot Jupiter sets the boundary condition for understanding the rate of gas escape. Among current detections, Hα transmission spectrum may play an important role in understanding the conditions in the planet's thermosphere. I present a detailed atmosphere model and comparison of Hα model transmission spectra to the data, with the goal of constraining the temperature and particle densities in the region where the absorption line is formed.A hydrostatic atmosphere is constructed over the pressure range 10-4 —10 µbar. Ionization equilibrium and balance of heating and cooling processes are enforced at each level of the atmosphere. The Lyα radiation intensity is computed using a Monte-Carlo code which includes resonant scattering, as well as photon destruction. Both the incident stellar Lyα and internal sources due to recombination cascade and collisional excitation are included. The atomic hydrogen level population is computed including both collisional and radiative transition rates.The model transmission spectra are in broad agreement with the HD 189733b observation data by Jensen et al and Cauley et al. The combination of large Lyα excitation rates and increasing hydrogen density with depth give rise to a nearly flat at n = 2 state density over two decades in pressure. This layer is optically thick to Hα, and temperature is in the range 3000 ~ 6000 K. Additional models computed for a range of stellar EUV flux find transit depth changes with EUV level, suggesting that the variability in transit depth may be due to variability in the stellar EUV. Since metal lines provide the dominant cooling of this part of the atmosphere, the atmosphere structure is sensitive to the density of species such as Mg and Na which may themselves be constrained by observations.

  12. Fetal Alcohol Spectrum Disorder

    ERIC Educational Resources Information Center

    Caley, Linda M.; Kramer, Charlotte; Robinson, Luther K.

    2005-01-01

    Fetal alcohol spectrum disorder (FASD) is a serious and widespread problem in this country. Positioned within the community with links to children, families, and healthcare systems, school nurses are a critical element in the prevention and treatment of those affected by fetal alcohol spectrum disorder. Although most school nurses are familiar…

  13. Fetal Alcohol Spectrum Disorder

    ERIC Educational Resources Information Center

    Caley, Linda M.; Kramer, Charlotte; Robinson, Luther K.

    2005-01-01

    Fetal alcohol spectrum disorder (FASD) is a serious and widespread problem in this country. Positioned within the community with links to children, families, and healthcare systems, school nurses are a critical element in the prevention and treatment of those affected by fetal alcohol spectrum disorder. Although most school nurses are familiar…

  14. Radiation detector spectrum simulator

    DOEpatents

    Wolf, M.A.; Crowell, J.M.

    1985-04-09

    A small battery operated nuclear spectrum simulator having a noise source generates pulses with a Gaussian distribution of amplitudes. A switched dc bias circuit cooperating therewith to generate several nominal amplitudes of such pulses and a spectral distribution of pulses that closely simulates the spectrum produced by a radiation source such as Americium 241.

  15. Radiation detector spectrum simulator

    DOEpatents

    Wolf, Michael A.; Crowell, John M.

    1987-01-01

    A small battery operated nuclear spectrum simulator having a noise source nerates pulses with a Gaussian distribution of amplitudes. A switched dc bias circuit cooperating therewith generates several nominal amplitudes of such pulses and a spectral distribution of pulses that closely simulates the spectrum produced by a radiation source such as Americium 241.

  16. The CMBR spectrum

    SciTech Connect

    Stebbins, A.

    1997-05-01

    Here we give an introduction to the observed spectrum of the Cosmic Microwave Background Radiation (CMBR) and discuss what can be learned about it. Particular attention will be given to how Compton scattering can distort the spectrum of the CMBR. An incomplete bibliography of relevant papers is also provided.

  17. Hydrogen storage methods.

    PubMed

    Züttel, Andreas

    2004-04-01

    Hydrogen exhibits the highest heating value per mass of all chemical fuels. Furthermore, hydrogen is regenerative and environmentally friendly. There are two reasons why hydrogen is not the major fuel of today's energy consumption. First of all, hydrogen is just an energy carrier. And, although it is the most abundant element in the universe, it has to be produced, since on earth it only occurs in the form of water and hydrocarbons. This implies that we have to pay for the energy, which results in a difficult economic dilemma because ever since the industrial revolution we have become used to consuming energy for free. The second difficulty with hydrogen as an energy carrier is its low critical temperature of 33 K (i.e. hydrogen is a gas at ambient temperature). For mobile and in many cases also for stationary applications the volumetric and gravimetric density of hydrogen in a storage material is crucial. Hydrogen can be stored using six different methods and phenomena: (1) high-pressure gas cylinders (up to 800 bar), (2) liquid hydrogen in cryogenic tanks (at 21 K), (3) adsorbed hydrogen on materials with a large specific surface area (at T<100 K), (4) absorbed on interstitial sites in a host metal (at ambient pressure and temperature), (5) chemically bonded in covalent and ionic compounds (at ambient pressure), or (6) through oxidation of reactive metals, e.g. Li, Na, Mg, Al, Zn with water. The most common storage systems are high-pressure gas cylinders with a maximum pressure of 20 MPa (200 bar). New lightweight composite cylinders have been developed which are able to withstand pressures up to 80 MPa (800 bar) and therefore the hydrogen gas can reach a volumetric density of 36 kg.m(-3), approximately half as much as in its liquid state. Liquid hydrogen is stored in cryogenic tanks at 21.2 K and ambient pressure. Due to the low critical temperature of hydrogen (33 K), liquid hydrogen can only be stored in open systems. The volumetric density of liquid hydrogen

  18. Hydrogen storage methods

    NASA Astrophysics Data System (ADS)

    Züttel, Andreas

    Hydrogen exhibits the highest heating value per mass of all chemical fuels. Furthermore, hydrogen is regenerative and environmentally friendly. There are two reasons why hydrogen is not the major fuel of today's energy consumption. First of all, hydrogen is just an energy carrier. And, although it is the most abundant element in the universe, it has to be produced, since on earth it only occurs in the form of water and hydrocarbons. This implies that we have to pay for the energy, which results in a difficult economic dilemma because ever since the industrial revolution we have become used to consuming energy for free. The second difficulty with hydrogen as an energy carrier is its low critical temperature of 33 K (i.e. hydrogen is a gas at ambient temperature). For mobile and in many cases also for stationary applications the volumetric and gravimetric density of hydrogen in a storage material is crucial. Hydrogen can be stored using six different methods and phenomena: (1) high-pressure gas cylinders (up to 800 bar), (2) liquid hydrogen in cryogenic tanks (at 21 K), (3) adsorbed hydrogen on materials with a large specific surface area (at T<100 K), (4) absorbed on interstitial sites in a host metal (at ambient pressure and temperature), (5) chemically bonded in covalent and ionic compounds (at ambient pressure), or (6) through oxidation of reactive metals, e.g. Li, Na, Mg, Al, Zn with water. The most common storage systems are high-pressure gas cylinders with a maximum pressure of 20 MPa (200 bar). New lightweight composite cylinders have been developed which are able to withstand pressures up to 80 MPa (800 bar) and therefore the hydrogen gas can reach a volumetric density of 36 kg.m-3, approximately half as much as in its liquid state. Liquid hydrogen is stored in cryogenic tanks at 21.2 K and ambient pressure. Due to the low critical temperature of hydrogen (33 K), liquid hydrogen can only be stored in open systems. The volumetric density of liquid hydrogen is

  19. The Dissociative Recombination of OH(+)

    NASA Technical Reports Server (NTRS)

    Guberman, Steven L.

    1995-01-01

    Theoretical quantum chemical calculations of the cross sections and rates for the dissociative recombination of the upsilon = 0 level of the ground state of OH(+) show that recombination occurs primarily along the 2 (2)Pi diabatic route. The products are 0((1)D) and a hot H atom with 6.1 eV kinetic energy. The coupling to the resonances is very small and the indirect recombination mechanism plays only a minor role. The recommended value for the rate coefficient is (6.3 +/- 0.7) x 10(exp -9)x (T(e)/1300)(exp -0.48) cu.cm/s for 10 less than T(e) less than 1000 K.

  20. Current Drive in Recombining Plasma

    SciTech Connect

    P.F. Schmit and N.J. Fisch

    2012-05-15

    The Langevin equations describing the average collisional dynamics of suprathermal particles in nonstationary plasma remarkably admit an exact analytical solution in the case of recombining plasma. The current density produced by arbitrary particle fluxes is derived including the effect of charge recombination. Since recombination has the effect of lowering the charge density of the plasma, thus reducing the charged particle collisional frequencies, the evolution of the current density can be modified substantially compared to plasma with fixed charge density. The current drive efficiency is derived and optimized for discrete and continuous pulses of current, leading to the discovery of a nonzero "residual" current density that persists indefinitely under certain conditions, a feature not present in stationary plasmas.

  1. DNA recombination: the replication connection.

    PubMed

    Haber, J E

    1999-07-01

    Chromosomal double-strand breaks (DSBs) arise after exposure to ionizing radiation or enzymatic cleavage, but especially during the process of DNA replication itself. Homologous recombination plays a critical role in repair of such DSBs. There has been significant progress in our understanding of two processes that occur in DSB repair: gene conversion and recombination-dependent DNA replication. Recent evidence suggests that gene conversion and break-induced replication are related processes that both begin with the establishment of a replication fork in which both leading- and lagging-strand synthesis occur. There has also been much progress in characterization of the biochemical roles of recombination proteins that are highly conserved from yeast to humans.

  2. Variation in Recombination Rate: Adaptive or Not?

    PubMed

    Ritz, Kathryn R; Noor, Mohamed A F; Singh, Nadia D

    2017-03-27

    Rates of meiotic recombination are widely variable both within and among species. However, the functional significance of this variation remains largely unknown. Is the observed within-species variation in recombination rate adaptive? Recent work has revealed new insight into the scale and scope of population-level variation in recombination rate. These data indicate that the magnitude of within-population variation in recombination is similar among taxa. The apparent similarity of the variance in recombination rate among individuals between distantly related species suggests that the relative costs and benefits of recombination that establish the upper and lower bounds may be similar across species. Here we review the current data on intraspecific variation in recombination rate and discuss the molecular and evolutionary costs and benefits of recombination frequency. We place this variation in the context of adaptation and highlight the need for more empirical studies focused on the adaptive value of variation in recombination rate.

  3. A general algorithm for calculation of recombination losses in ionization chambers exposed to ion beams.

    PubMed

    Christensen, Jeppe Brage; Tölli, Heikki; Bassler, Niels

    2016-10-01

    Dosimetry with ionization chambers in clinical ion beams for radiation therapy requires correction for recombination effects. However, common radiation protocols discriminate between initial and general recombination and provide no universal correction method for the presence of both recombination types in ion beams of charged particles heavier than protons. The advent of multiple field optimization in ion beams, allowing for complex patterns of dose delivery in both temporal and spatial domains, results in new challenges for recombination correction where the resulting recombination depends on the plan delivered. Here, the authors present the open source code IonTracks version 1.0, where the combined initial and general recombination effects in principle can be predicted for any ion beam with arbitrary particle-energy spectrum and temporal structure. IonTracks uses track structure theory to distribute the charge carriers in ion tracks. The charge carrier movements are governed by a pair of coupled differential equations, based on fundamental physical properties as charge carrier drift, diffusion, and recombination, which are solved numerically while the initial and general charge carrier recombination is computed. A space charge screening of the electric field is taken into account and the algorithm furthermore allows an inclusion of a free-electron component. The algorithm is numerically stable and in accordance with experimentally validated theories for initial recombination in heavy ion tracks and general recombination in a proton beam. Given IonTracks' ability to handle arbitrary inputs, IonTracks can in principle be applied to any complex particle field in the spatial and temporal domain. IonTracks is validated against the Jaffé's and Boag's theory of recombination in pulsed beams of multiple ion species. IonTracks is able to calculate the correction factor for initial and general recombination losses in parallel-plate ionization chambers. Even if only few

  4. Selenium incorporation using recombinant techniques

    SciTech Connect

    Walden, Helen

    2010-04-01

    An overview of techniques for recombinant incorporation of selenium and subsequent purification and crystallization of the resulting labelled protein. Using selenomethionine to phase macromolecular structures is common practice in structure determination, along with the use of selenocysteine. Selenium is consequently the most commonly used heavy atom for MAD. In addition to the well established recombinant techniques for the incorporation of selenium in prokaryal expression systems, there have been recent advances in selenium labelling in eukaryal expression, which will be discussed. Tips and things to consider for the purification and crystallization of seleno-labelled proteins are also included.

  5. Hydrogen interactions with metals

    NASA Technical Reports Server (NTRS)

    Mclellan, R. B.; Harkins, C. G.

    1975-01-01

    Review of the literature on the nature and extent of hydrogen interactions with metals and the role of hydrogen in metal failure. The classification of hydrogen-containing systems is discussed, including such categories as covalent hydrides, volatile hydrides, polymeric hydrides, and transition metal hydride complexes. The use of electronegativity as a correlating parameter in determining hydride type is evaluated. A detailed study is made of the thermodynamics of metal-hydrogen systems, touching upon such aspects as hydrogen solubility, the positions occupied by hydrogen atoms within the solvent metal lattice, the derivation of thermodynamic functions of solid solutions from solubility data, and the construction of statistical models for hydrogen-metal solutions. A number of theories of hydrogen-metal bonding are reviewed, including the rigid-band model, the screened-proton model, and an approach employing the augmented plane wave method to solve the one-electron energy band problem. Finally, the mechanism of hydrogen embrittlement is investigated on the basis of literature data concerning stress effects and the kinetics of hydrogen transport to critical sites.

  6. Ultrafine hydrogen storage powders

    DOEpatents

    Anderson, Iver E.; Ellis, Timothy W.; Pecharsky, Vitalij K.; Ting, Jason; Terpstra, Robert; Bowman, Robert C.; Witham, Charles K.; Fultz, Brent T.; Bugga, Ratnakumar V.

    2000-06-13

    A method of making hydrogen storage powder resistant to fracture in service involves forming a melt having the appropriate composition for the hydrogen storage material, such, for example, LaNi.sub.5 and other AB.sub.5 type materials and AB.sub.5+x materials, where x is from about -2.5 to about +2.5, including x=0, and the melt is gas atomized under conditions of melt temperature and atomizing gas pressure to form generally spherical powder particles. The hydrogen storage powder exhibits improved chemcial homogeneity as a result of rapid solidfication from the melt and small particle size that is more resistant to microcracking during hydrogen absorption/desorption cycling. A hydrogen storage component, such as an electrode for a battery or electrochemical fuel cell, made from the gas atomized hydrogen storage material is resistant to hydrogen degradation upon hydrogen absorption/desorption that occurs for example, during charging/discharging of a battery. Such hydrogen storage components can be made by consolidating and optionally sintering the gas atomized hydrogen storage powder or alternately by shaping the gas atomized powder and a suitable binder to a desired configuration in a mold or die.

  7. Hydrogen energy systems studies

    SciTech Connect

    Ogden, J.M.; Steinbugler, M.; Kreutz, T.

    1998-08-01

    In this progress report (covering the period May 1997--May 1998), the authors summarize results from ongoing technical and economic assessments of hydrogen energy systems. Generally, the goal of their research is to illuminate possible pathways leading from present hydrogen markets and technologies toward wide scale use of hydrogen as an energy carrier, highlighting important technologies for RD and D. Over the past year they worked on three projects. From May 1997--November 1997, the authors completed an assessment of hydrogen as a fuel for fuel cell vehicles, as compared to methanol and gasoline. Two other studies were begun in November 1997 and are scheduled for completion in September 1998. The authors are carrying out an assessment of potential supplies and demands for hydrogen energy in the New York City/New Jersey area. The goal of this study is to provide useful data and suggest possible implementation strategies for the New York City/ New Jersey area, as the Hydrogen Program plans demonstrations of hydrogen vehicles and refueling infrastructure. The authors are assessing the implications of CO{sub 2} sequestration for hydrogen energy systems. The goals of this work are (a) to understand the implications of CO{sub 2} sequestration for hydrogen energy system design; (b) to understand the conditions under which CO{sub 2} sequestration might become economically viable; and (c) to understand design issues for future low-CO{sub 2} emitting hydrogen energy systems based on fossil fuels.

  8. Investigations of recombination chambers for BNCT beam dosimetry.

    PubMed

    Tulik, P; Golnik, N; Zielczynski, M

    2007-01-01

    A set of cylindrical recombination chambers, including a tissue-equivalent chamber and three graphite chambers filled with different gases-CO(2), N(2) and (10)BF(3), was designed for the dosimetry of therapeutic neutron radiation beams used for BNCT. The separation of the dose components is based on differences of the shape of the saturation curve depending on the LET spectrum of the investigated radiation. The measurements using all the chambers were performed in a reactor beam of NRI ReZ (Czech Republic) and in the reference radiation fields of a (252)Cf radiation source free in air or in filters.

  9. Attenuation of hydrogen radicals traveling under flowing gas conditions through tubes of different materials

    SciTech Connect

    Grubbs, R.K.; George, S.M.

    2006-05-15

    Hydrogen radical concentrations traveling under flowing gas conditions through tubes of different materials were measured using a dual thermocouple probe. The source of the hydrogen radicals was a toroidal radio frequency plasma source operating at 2.0 and 3.3 kW for H{sub 2} pressures of 250 and 500 mTorr, respectively. The dual thermocouple probe was comprised of exposed and covered Pt/Pt13%Rh thermocouples. Hydrogen radicals recombined efficiently on the exposed thermocouple and the energy of formation of H{sub 2} heated the thermocouple. The second thermocouple was covered by glass and was heated primarily by the ambient gas. The dual thermocouple probe was translated and measured temperatures at different distances from the hydrogen radical source. These temperature measurements were conducted at H{sub 2} flow rates of 35 and 75 SCCM (SCCM denotes cubic centimeter per minute at STP) inside cylindrical tubes made of stainless steel, aluminum, quartz, and Pyrex. The hydrogen radical concentrations were obtained from the temperatures of the exposed and covered thermocouples. The hydrogen concentration decreased versus distance from the plasma source. After correcting for the H{sub 2} gas flow using a reference frame transformation, the hydrogen radical concentration profiles yielded the atomic hydrogen recombination coefficient, {gamma}, for the four materials. The methodology of measuring the hydrogen radical concentrations, the analysis of the results under flowing gas conditions, and the determination of the atomic hydrogen recombination coefficients for various materials will help facilitate the use of hydrogen radicals for thin film growth processes.

  10. Analysis of hydrogen isotope mixtures

    DOEpatents

    Villa-Aleman, Eliel

    1994-01-01

    An apparatus and method for determining the concentrations of hydrogen isotopes in a sample. Hydrogen in the sample is separated from other elements using a filter selectively permeable to hydrogen. Then the hydrogen is condensed onto a cold finger or cryopump. The cold finger is rotated as pulsed laser energy vaporizes a portion of the condensed hydrogen, forming a packet of molecular hydrogen. The desorbed hydrogen is ionized and admitted into a mass spectrometer for analysis.

  11. Modeling of the hydrogen maser disk in MWC 349

    NASA Technical Reports Server (NTRS)

    Ponomarev, Victor O.; Smith, Howard A.; Strelnitski, Vladimir S.

    1994-01-01

    Maser amplification in a Keplerian circumstellar disk seen edge on-the idea put forward by Gordon (1992), Martin-Pintado, & Serabyn (1992), and Thum, Martin-Pintado, & Bachiller (1992) to explain the millimeter hydrogen recombination lines in MWC 349-is further justified and developed here. The double-peaked (vs. possible triple-peaked) form of the observed spectra is explained by the reduced emission from the inner portion of the disk, the portion responsible for the central ('zero velocity') component of a triple-peaked spectrum. Radial gradient of electron density and/or free-free absorption within the disk are identified as the probable causes of this central 'hole' in the disk and of its opacity. We calculate a set of synthetic maser spectra radiated by a homogeneous Keplerian ring seen edge-on and compare them to the H30-alpha observations of Thum et al., averaged over about 1000 days. We used a simple graphical procedure to solve an inverse problem and deduced the probable values of some basic disk and maser parameters. We find that the maser is essentially unsaturated, and that the most probable values of electron temperature. Doppler width of the microturbulence, and electron density, all averaged along the amplification path are, correspondingly, T(sub e) less than or equal to 11,000 K, V(sub micro) less than or equal to 14 km/s, n(sub e) approx. = (3 +/- 2) x 10(exp 7)/cu cm. The model shows that radiation at every frequency within the spectrum arises in a monochromatic 'hot spot.' The maximum optical depth within the 'hot spot' producing radiation at the spectral peak maximum is tau(sub max) approx. = 6 +/- 1; the effective width of the masing ring is approx. = 0.4-0.7 times its outer diameter; the size of the 'hot spot' responsible for the radiation at the spectral peak frequency is approx. = 0.2-0.3 times the distance between the two 'hot spots' corresponding to two peaks. An important derivation of our model is the dynamical mass of the central star

  12. Hydrogen Permeation Resistant Coatings

    SciTech Connect

    KORINKO, PAUL; ADAMS, THAD; CREECH, GREGGORY

    2005-06-15

    As the National Hydrogen Economy continues to develop and evolve the need for structural materials that can resist hydrogen assisted degradation will become critical. To date austenitic stainless steel materials have been shown to be mildly susceptible to hydrogen attack which results in lower mechanical and fracture strengths. As a result, hydrogen permeation barrier coatings may be applied to these ferrous alloys to retard hydrogen ingress. Hydrogen is known to be very mobile in materials of construction. In this study, the permeation resistance of bare stainless steel samples and coated stainless steel samples was tested. The permeation resistance was measured using a modular permeation rig using a pressure rise technique. The coating microstructure and permeation results will be discussed in this document as will some additional testing.

  13. Hydrogenation of graphitic nanocarbons

    NASA Astrophysics Data System (ADS)

    Berber, Savas; Tománek, David; Kim, Eunja; Weck, Philippe F.; Miller, Glen P.

    2008-03-01

    We apply ab initio density functional calculations to study the hydrogenation of graphitic nanocarbons including fullerenes, onions and nanotubes using diethylenetriamine (DETA) as hydrogenation reagent. Our results indicate that transfer of atomic hydrogen from the amine end-group of chemisorbed DETA molecules to nanocarbons is an exothermic reaction. We explore the optimum pathway for the hydrogenation reaction and find the activation energy associated with sigmatropic rearrangement of chemisorbed hydrogen atoms to lie near 1 eV, thus facilitating formation of energetically favorable adsorbate structures by surface diffusion. Chemisorbed hydrogen assists in a local sp^2 to sp^3 bonding conversion of the graphitic nanocarbons, causing large-scale structural changes ranging from local relaxations in nanotubes to shell opening in multi-wall onions.

  14. Hydrogenation of carbonaceous materials

    DOEpatents

    Friedman, Joseph; Oberg, Carl L.; Russell, Larry H.

    1980-01-01

    A method for reacting pulverized coal with heated hydrogen-rich gas to form hydrocarbon liquids suitable for conversion to fuels wherein the reaction involves injection of pulverized coal entrained in a minimum amount of gas and mixing the entrained coal at ambient temperature with a separate source of heated hydrogen. In accordance with the present invention, the hydrogen is heated by reacting a small portion of the hydrogen-rich gas with oxygen in a first reaction zone to form a gas stream having a temperature in excess of about 1000.degree. C. and comprising a major amount of hydrogen and a minor amount of water vapor. The coal particles then are reacted with the hydrogen in a second reaction zone downstream of the first reaction zone. The products of reaction may be rapidly quenched as they exit the second reaction zone and are subsequently collected.

  15. Scaling Laws for Diamond Chemical Vapor Deposition. 2: Atomic Hydrogen Transport

    DTIC Science & Technology

    1993-09-15

    recombination is taken into account, there exists an optimal operating pressure. This analysis shows that a sonic flow of highly dissociated hydrogen at a...In addition, when homogeneous recombination is taken into account, there exists an optimal operating pressure. This analysis shows that a sonic flow...qualitative conclusion is in accord with much experience in diamond film growth, and with a similar analysis by Butler and Woodin 12]. Therefore, a critical

  16. Car-Parrinello simulation of hydrogen bond dynamics in sodium hydrogen bissulfate.

    PubMed

    Pirc, Gordana; Stare, Jernej; Mavri, Janez

    2010-06-14

    We studied proton dynamics of a short hydrogen bond of the crystalline sodium hydrogen bissulfate, a hydrogen-bonded ferroelectric system. Our approach was based on the established Car-Parrinello molecular dynamics (CPMD) methodology, followed by an a posteriori quantization of the OH stretching motion. The latter approach is based on snapshot structures taken from CPMD trajectory, calculation of proton potentials, and solving of the vibrational Schrodinger equation for each of the snapshot potentials. The so obtained contour of the OH stretching band has the center of gravity at about 1540 cm(-1) and a half width of about 700 cm(-1), which is in qualitative agreement with the experimental infrared spectrum. The corresponding values for the deuterated form are 1092 and 600 cm(-1), respectively. The hydrogen probability densities obtained by solving the vibrational Schrodinger equation allow for the evaluation of potential of mean force along the proton transfer coordinate. We demonstrate that for the present system the free energy profile is of the single-well type and features a broad and shallow minimum near the center of the hydrogen bond, allowing for frequent and barrierless proton (or deuteron) jumps. All the calculated time-averaged geometric parameters were in reasonable agreement with the experimental neutron diffraction data. As the present methodology for quantization of proton motion is applicable to a variety of hydrogen-bonded systems, it is promising for potential use in computational enzymology.

  17. Car-Parrinello simulation of hydrogen bond dynamics in sodium hydrogen bissulfate

    NASA Astrophysics Data System (ADS)

    Pirc, Gordana; Stare, Jernej; Mavri, Janez

    2010-06-01

    We studied proton dynamics of a short hydrogen bond of the crystalline sodium hydrogen bissulfate, a hydrogen-bonded ferroelectric system. Our approach was based on the established Car-Parrinello molecular dynamics (CPMD) methodology, followed by an a posteriori quantization of the OH stretching motion. The latter approach is based on snapshot structures taken from CPMD trajectory, calculation of proton potentials, and solving of the vibrational Schrödinger equation for each of the snapshot potentials. The so obtained contour of the OH stretching band has the center of gravity at about 1540 cm-1 and a half width of about 700 cm-1, which is in qualitative agreement with the experimental infrared spectrum. The corresponding values for the deuterated form are 1092 and 600 cm-1, respectively. The hydrogen probability densities obtained by solving the vibrational Schrödinger equation allow for the evaluation of potential of mean force along the proton transfer coordinate. We demonstrate that for the present system the free energy profile is of the single-well type and features a broad and shallow minimum near the center of the hydrogen bond, allowing for frequent and barrierless proton (or deuteron) jumps. All the calculated time-averaged geometric parameters were in reasonable agreement with the experimental neutron diffraction data. As the present methodology for quantization of proton motion is applicable to a variety of hydrogen-bonded systems, it is promising for potential use in computational enzymology.

  18. CRMAGE: CRISPR Optimized MAGE Recombineering

    PubMed Central

    Ronda, Carlotta; Pedersen, Lasse Ebdrup; Sommer, Morten O. A.; Nielsen, Alex Toftgaard

    2016-01-01

    A bottleneck in metabolic engineering and systems biology approaches is the lack of efficient genome engineering technologies. Here, we combine CRISPR/Cas9 and λ Red recombineering based MAGE technology (CRMAGE) to create a highly efficient and fast method for genome engineering of Escherichia coli. Using CRMAGE, the recombineering efficiency was between 96.5% and 99.7% for gene recoding of three genomic targets, compared to between 0.68% and 5.4% using traditional recombineering. For modulation of protein synthesis (small insertion/RBS substitution) the efficiency was increased from 6% to 70%. CRMAGE can be multiplexed and enables introduction of at least two mutations in a single round of recombineering with similar efficiencies. PAM-independent loci were targeted using degenerate codons, thereby making it possible to modify any site in the genome. CRMAGE is based on two plasmids that are assembled by a USER-cloning approach enabling quick and cost efficient gRNA replacement. CRMAGE furthermore utilizes CRISPR/Cas9 for efficient plasmid curing, thereby enabling multiple engineering rounds per day. To facilitate the design process, a web-based tool was developed to predict both the λ Red oligos and the gRNAs. The CRMAGE platform enables highly efficient and fast genome editing and may open up promising prospective for automation of genome-scale engineering. PMID:26797514

  19. Genetic recombination and molecular evolution.

    PubMed

    Charlesworth, B; Betancourt, A J; Kaiser, V B; Gordo, I

    2009-01-01

    Reduced rates of genetic recombination are often associated with reduced genetic variability and levels of adaptation. Several different evolutionary processes, collectively known as Hill-Robertson (HR) effects, have been proposed as causes of these correlates of recombination. Here, we use DNA sequence polymorphism and divergence data from the noncrossing over dot chromosome of Drosophila to discriminate between two of the major forms of HR effects: selective sweeps and background selection. This chromosome shows reduced levels of silent variability and reduced effectiveness of selection. We show that neither model fits the data on variability. We propose that, in large genomic regions with restricted recombination, HR effects among nonsynonymous mutations undermine the effective strength of selection, so that their background selection effects are weakened. This modified model fits the data on variability and also explains why variability in very large nonrecombining genomes is not completely wiped out. We also show that HR effects of this type can produce an individual selection advantage to recombination, as well as greatly reduce the mean fitness of nonrecombining genomes and genomic regions.

  20. Dissociative Recombination of Complex Ions

    NASA Astrophysics Data System (ADS)

    Mitchell, J. Brian A.

    1999-10-01

    The FALP-MS apparatus at the University of Rennes allows the measurement of rate coefficients for the recombination of molecular ions to be made (at 300K) even though several ions may be present in the afterglow. The recombination of a number of hydrocarbon ions derived from alkane ( Lehfaoui et al. J. Chem. Phys. 106, 5406, 1997.), alkene ( Rebrion-Rowe et al. J. Chem. Phys. 108, 7185, 1998.) and aromatic (Rebrion-Rowe et al. (Submitted to J. Chem. Phys.)) parent molecules has been studied. Despite the wide range of complexity of these compounds, the measured recombination rates are remarkably similar having values in the range of 4-10-7 cm^3.s-1. Plans are being laid for a new version of this apparatus that will allow pre-prepared ions to be injected into the inert buffer gas flow. This will allow reactive ions to be studied as well as halogen containing ions whose recombination rates would normally be masked by electron attachment to their parent gases in a conventional flowing afterglow apparatus. A high temperature modification to the CRESU supersonic flow apparatus (J.L. Le Garrec et al. J. Chem. Phys. 107, 54, 1997.) in our laboratory will allow electron attachment to radicals to be studied by means of the mass spectrometric detection of products, Langmuir probe measurement of the electron density in the flow and Laser Induced Fluorescent identification of the radical species. Such measurements are needed for the modeling of semiconductor processing plasmas.

  1. Improving recombinant protein purification yield

    USDA-ARS?s Scientific Manuscript database

    Production of adequate amounts of recombinant proteins is essential for antibody production, biochemical activity study, and structural determination during the post-genomic era. It’s technologically challenging and a limiting factor for tung oil research because analytical reagents such as high qua...

  2. Recombination in Hepatitis C Virus

    PubMed Central

    González-Candelas, Fernando; López-Labrador, F. Xavier; Bracho, María Alma

    2011-01-01

    Hepatitis C virus (HCV) is a Flavivirus with a positive-sense, single-stranded RNA genome of about 9,600 nucleotides. It is a major cause of liver disease, infecting almost 200 million people all over the world. Similarly to most RNA viruses, HCV displays very high levels of genetic diversity which have been used to differentiate six major genotypes and about 80 subtypes. Although the different genotypes and subtypes share basic biological and pathogenic features they differ in clinical outcomes, response to treatment and epidemiology. The first HCV recombinant strain, in which different genome segments derived from parentals of different genotypes, was described in St. Petersburg (Russia) in 2002. Since then, there have been only a few more than a dozen reports including descriptions of HCV recombinants at all levels: between genotypes, between subtypes of the same genotype and even between strains of the same subtype. Here, we review the literature considering the reasons underlying the difficulties for unequivocally establishing recombination in this virus along with the analytical methods necessary to do it. Finally, we analyze the potential consequences, especially in clinical practice, of HCV recombination in light of the coming new therapeutic approaches against this virus. PMID:22069526

  3. Recombinant expression in moderate halophiles.

    PubMed

    Tokunaga, Masao; Arakawa, Tsutomu; Tokunaga, Hiroko

    2010-04-01

    A novel expression of recombinant proteins was developed using moderate halophiles that accumulate osmolytes and hence provide cytoplasmic environments where osmolyte-driven folding can take place. Promoters and selection marker were developed for high expression of foreign proteins. Examples are given for expression of bacterial nucleoside diphosphate kinase and human serine racemase.

  4. Recombination in hepatitis C virus.

    PubMed

    González-Candelas, Fernando; López-Labrador, F Xavier; Bracho, María Alma

    2011-10-01

    Hepatitis C virus (HCV) is a Flavivirus with a positive-sense, single-stranded RNA genome of about 9,600 nucleotides. It is a major cause of liver disease, infecting almost 200 million people all over the world. Similarly to most RNA viruses, HCV displays very high levels of genetic diversity which have been used to differentiate six major genotypes and about 80 subtypes. Although the different genotypes and subtypes share basic biological and pathogenic features they differ in clinical outcomes, response to treatment and epidemiology. The first HCV recombinant strain, in which different genome segments derived from parentals of different genotypes, was described in St. Petersburg (Russia) in 2002. Since then, there have been only a few more than a dozen reports including descriptions of HCV recombinants at all levels: between genotypes, between subtypes of the same genotype and even between strains of the same subtype. Here, we review the literature considering the reasons underlying the difficulties for unequivocally establishing recombination in this virus along with the analytical methods necessary to do it. Finally, we analyze the potential consequences, especially in clinical practice, of HCV recombination in light of the coming new therapeutic approaches against this virus.

  5. National hydrogen energy roadmap

    SciTech Connect

    None, None

    2002-11-01

    This report was unveiled by Energy Secretary Spencer Abraham in November 2002 and provides a blueprint for the coordinated, long-term, public and private efforts required for hydrogen energy development. Based on the results of the government-industry National Hydrogen Energy Roadmap Workshop, held in Washington, DC on April 2-3, 2002, it displays the development of a roadmap for America's clean energy future and outlines the key barriers and needs to achieve the hydrogen vision goals defined in

  6. Hydrogen rich gas generator

    NASA Technical Reports Server (NTRS)

    Houseman, J. (Inventor)

    1976-01-01

    A process and apparatus is described for producing a hydrogen rich gas by introducing a liquid hydrocarbon fuel in the form of a spray into a partial oxidation region and mixing with a mixture of steam and air that is preheated by indirect heat exchange with the formed hydrogen rich gas, igniting the hydrocarbon fuel spray mixed with the preheated mixture of steam and air within the partial oxidation region to form a hydrogen rich gas.

  7. HYDROGEN ISOTOPE TARGETS

    DOEpatents

    Ashley, R.W.

    1958-08-12

    The design of targets for use in the investigation of nuclear reactions of hydrogen isotopes by bombardment with accelerated particles is described. The target con struction eomprises a backing disc of a metal selected from the group consisting of molybdenunn and tungsten, a eoating of condensed titaniunn on the dise, and a hydrogen isotope selected from the group consisting of deuterium and tritium absorbed in the coatiag. The proeess for preparing these hydrogen isotope targets is described.

  8. Hydrogen powered bus

    ScienceCinema

    None

    2016-07-12

    Take a ride on a new type of bus, fueled by hydrogen. These hydrogen taxis are part of a Department of Energy-funded deployment of hydrogen powered vehicles and fueling infrastructure at nine federal facilities across the country to demonstrate this market-ready advanced technology. Produced and leased by Ford Motor Company , they consist of one 12- passenger bus and one nine-passenger bus. More information at: http://go.usa.gov/Tgr

  9. HYDROGEN ATOM THERMAL PARAMETERS.

    PubMed

    JENSEN, L H; SUNDARALINGAM, M

    1964-09-11

    Isotropic hydrogen atom thermal parameters for N,N'- hexamethylenebispropionamide have been determined. They show a definite trend and vary from approximately the same as the mean thermal parameters for atoms other than hydrogen near the center of the molecule to appreciably greater for atoms near the end. The indicated trend for this compound, along with other results, provides the basis for a possible explanation of the anomolous values that have been obtained for hydrogen atom thermal parameters.

  10. Hydrogen energy systems studies

    SciTech Connect

    Ogden, J.M.; Steinbugler, M.; Dennis, E.

    1995-09-01

    For several years, researchers at Princeton University`s Center for Energy and Environmental Studies have carried out technical and economic assessments of hydrogen energy systems. Initially, we focussed on the long term potential of renewable hydrogen. More recently we have explored how a transition to renewable hydrogen might begin. The goal of our current work is to identify promising strategies leading from near term hydrogen markets and technologies toward eventual large scale use of renewable hydrogen as an energy carrier. Our approach has been to assess the entire hydrogen energy system from production through end-use considering technical performance, economics, infrastructure and environmental issues. This work is part of the systems analysis activity of the DOE Hydrogen Program. In this paper we first summarize the results of three tasks which were completed during the past year under NREL Contract No. XR-11265-2: in Task 1, we carried out assessments of near term options for supplying hydrogen transportation fuel from natural gas; in Task 2, we assessed the feasibility of using the existing natural gas system with hydrogen and hydrogen blends; and in Task 3, we carried out a study of PEM fuel cells for residential cogeneration applications, a market which might have less stringent cost requirements than transportation. We then give preliminary results for two other tasks which are ongoing under DOE Contract No. DE-FG04-94AL85803: In Task 1 we are assessing the technical options for low cost small scale production of hydrogen from natural gas, considering (a) steam reforming, (b) partial oxidation and (c) autothermal reforming, and in Task 2 we are assessing potential markets for hydrogen in Southern California.

  11. Hydrogen storage container

    DOEpatents

    Wang, Jy-An John; Feng, Zhili; Zhang, Wei

    2017-02-07

    An apparatus and system is described for storing high-pressure fluids such as hydrogen. An inner tank and pre-stressed concrete pressure vessel share the structural and/or pressure load on the inner tank. The system and apparatus provide a high performance and low cost container while mitigating hydrogen embrittlement of the metal tank. System is useful for distributing hydrogen to a power grid or to a vehicle refueling station.

  12. Hydrogen powered bus

    SciTech Connect

    2011-04-07

    Take a ride on a new type of bus, fueled by hydrogen. These hydrogen taxis are part of a Department of Energy-funded deployment of hydrogen powered vehicles and fueling infrastructure at nine federal facilities across the country to demonstrate this market-ready advanced technology. Produced and leased by Ford Motor Company , they consist of one 12- passenger bus and one nine-passenger bus. More information at: http://go.usa.gov/Tgr

  13. Conductive dense hydrogen.

    PubMed

    Eremets, M I; Troyan, I A

    2011-11-13

    Molecular hydrogen is expected to exhibit metallic properties under megabar pressures. This metal is predicted to be superconducting with a very high critical temperature, T(c), of 200-400 K, and it may acquire a new quantum state as a metallic superfluid and a superconducting superfluid. It may potentially be recovered metastably at ambient pressures. However, experiments carried out at low temperatures, T<100 K, showed that at record pressures of 300 GPa, hydrogen remains in the molecular insulating state. Here we report on the transformation of normal molecular hydrogen at room temperature (295 K) to a conductive and metallic state. At 200 GPa the Raman frequency of the molecular vibron strongly decreased and the spectral width increased, evidencing a strong interaction between molecules. Deuterium behaved similarly. Above 220 GPa, hydrogen became opaque and electrically conductive. At 260-270 GPa, hydrogen transformed into a metal as the conductance of hydrogen sharply increased and changed little on further pressurizing up to 300 GPa or cooling to at least 30 K; and the sample reflected light well. The metallic phase transformed back at 295 K into molecular hydrogen at 200 GPa. This significant hysteresis indicates that the transformation of molecular hydrogen into a metal is accompanied by a first-order structural transition presumably into a monatomic liquid state. Our findings open an avenue for detailed and comprehensive studies of metallic hydrogen.

  14. Sustainable hydrogen production

    SciTech Connect

    Block, D.L.; Linkous, C.; Muradov, N.

    1996-01-01

    This report describes the Sustainable Hydrogen Production research conducted at the Florida Solar Energy Center (FSEC) for the past year. The report presents the work done on the following four tasks: Task 1--production of hydrogen by photovoltaic-powered electrolysis; Task 2--solar photocatalytic hydrogen production from water using a dual-bed photosystem; Task 3--development of solid electrolytes for water electrolysis at intermediate temperatures; and Task 4--production of hydrogen by thermocatalytic cracking of natural gas. For each task, this report presents a summary, introduction/description of project, and results.

  15. Hydrogen diffusion fuel cell

    SciTech Connect

    Struthers, R.C.

    1987-08-04

    This patent describes a fuel cell comprising; an elongate case; a thin, flat separator part of non-porous, di-electric, hydrogen-permeable material between the ends of and extending transverse the case and defining anode and cathode chambers; a thin, flat anode part of non-porous, electric conductive, hydrogen-permeable metallic material in the anode chamber in flat contacting engagement with and co-extensive with the separator part; a flat, porous, catalytic cathode part in the cathode chamber in contacting engagement with the separator part; hydrogen supply means supplying hydrogen to the anode part within the anode chamber; oxidant gas supply means supplying oxidant gas to the cathode part within the cathode chamber; and, an external electric circuit connected with and between the anode and cathode parts. The anode part absorbs and is permeated by hydrogen supplied to it and diffuses the hydrogen to hydrogen ions and free electrons; the free electrons in the anode part are conducted from the anode part into the electric circuit to perform useful work. The hydrogen ions in the anode part move from the anode part through the separator part and into the cathode part. Free electrons are conducted by the electric circuit into the cathode part. The hydrogen ions, oxidant gas and free electrons in the cathode part react and generate waste, heat and water.

  16. Conductive dense hydrogen

    NASA Astrophysics Data System (ADS)

    Eremets, M. I.; Troyan, I. A.

    2011-12-01

    Molecular hydrogen is expected to exhibit metallic properties under megabar pressures. This metal is predicted to be superconducting with a very high critical temperature, Tc, of 200-400 K (ref. ), and it may acquire a new quantum state as a metallic superfluid and a superconducting superfluid. It may potentially be recovered metastably at ambient pressures. However, experiments carried out at low temperatures, T<100 K (refs , ), showed that at record pressures of 300 GPa, hydrogen remains in the molecular insulating state. Here we report on the transformation of normal molecular hydrogen at room temperature (295 K) to a conductive and metallic state. At 200 GPa the Raman frequency of the molecular vibron strongly decreased and the spectral width increased, evidencing a strong interaction between molecules. Deuterium behaved similarly. Above 220 GPa, hydrogen became opaque and electrically conductive. At 260-270 GPa, hydrogen transformed into a metal as the conductance of hydrogen sharply increased and changed little on further pressurizing up to 300 GPa or cooling to at least 30 K and the sample reflected light well. The metallic phase transformed back at 295 K into molecular hydrogen at 200 GPa. This significant hysteresis indicates that the transformation of molecular hydrogen into a metal is accompanied by a first-order structural transition presumably into a monatomic liquid state. Our findings open an avenue for detailed and comprehensive studies of metallic hydrogen.

  17. Hydrogen bonding and anaesthesia

    NASA Astrophysics Data System (ADS)

    Sándorfy, C.

    2004-12-01

    General anaesthetics act by perturbing intermolecular associations without breaking or forming covalent bonds. These associations might be due to a variety of van der Waals interactions or hydrogen bonding. Neurotransmitters all contain OH or NH groups, which are prone to form hydrogen bonds with those of the neurotransmitter receptors. These could be perturbed by anaesthetics. Aromatic rings in amino acids can act as weak hydrogen bond acceptors. On the other hand the acidic hydrogen in halothane type anaesthetics are weak proton donors. These two facts together lead to a probable mechanism of action for all general anaesthetics.

  18. Hydrogen energy creeps forward

    NASA Astrophysics Data System (ADS)

    Graff, G.

    1983-05-01

    There have been hopeful forecasts of a 21st centry 'hydrogen economy' in which cheap hydrogen fuel would finally end mankind's dependence on petroleum fuels. The present investigation is concerned with developments related to the possible realization of such forecasts. One vital factor involves the feasibility to provide hydrogen at competitive prices for use as a fuel. Industrial hydrogen is too expensive for applications involving a competition with currently used common fuels. A number of investigations are being conducted in the U.S. and in other countries with the aim to develop an economical process by which hydrogen can be obtained from water. There exist already a great number of feasible different approaches for obtaining hydrogen on the basis of the decomposition of the water molecule. However, problems still to be solved are related to the development of any of these approaches to the point of economic viability. Another crucial factor concerns the strorage of hydrogen. Automakers are testing hydrogen-powered cars in which hydrogen is stored in liquid form or with the aid of metal hydrides.

  19. Thin film hydrogen sensor

    DOEpatents

    Lauf, Robert J.; Hoffheins, Barbara S.; Fleming, Pamela H.

    1994-01-01

    A hydrogen sensor element comprises an essentially inert, electrically-insulating substrate having a thin-film metallization deposited thereon which forms at least two resistors on the substrate. The metallization comprises a layer of Pd or a Pd alloy for sensing hydrogen and an underlying intermediate metal layer for providing enhanced adhesion of the metallization to the substrate. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors, and at least one of the resistors is left uncovered. The difference in electrical resistances of the covered resistor and the uncovered resistor is related to hydrogen concentration in a gas to which the sensor element is exposed.

  20. Hydrogen ion microlithography

    DOEpatents

    Tsuo, Y.S.; Deb, S.K.

    1990-10-02

    Disclosed is a hydrogen ion microlithography process for use in microelectronic fabrication and semiconductor device processing. The process comprises the steps of providing a single layer of either an amorphous silicon or hydrogenated amorphous silicon material. A pattern is recorded in a selected layer of amorphous silicon or hydrogenated amorphous silicon materials by preferentially implanting hydrogen ions therein so as to permit the selected layer to serve as a mask-resist wafer suitable for subsequent development and device fabrication. The layer is developed to provide a surface pattern therein adaptable for subsequent use in microelectronic fabrication and semiconductor device processing. 6 figs.