Science.gov

Sample records for hydrogen sorption kinetics

  1. Hydrogen Sorption and Transport

    NASA Astrophysics Data System (ADS)

    McNeece, C. J.; Hesse, M. A.

    2015-12-01

    Hydrogen is unique among aqueous ions, both in its importance for geochemical reactions, and in its complex transport behavior through reactive media. The structure of hydrogen reaction fronts can be analyzed in the advective limit of the transport equation. At local chemical equilibrium, sorption of hydrogen onto the media surface (sorption isotherm) controls reaction front morphology. Transport modeling thus necessitates accurate knowledge of surface chemistry. Though motivated by transport, sorption models are often parameterized against batch titration experiments. The validity of these parameterizations, in a transport setting, are seldom tested. The analytic solution to the transport equation gives an algebraic relationship between concentration velocity and equilibrium sorption behavior. In this study, we conduct a suite of column flow experiments through quartz sand. Hydrogen concentration breakthrough curves at the column outlet are used to infer the "transport sorption isotherm." These results are compared to the batch titration derived sorption isotherm. We find excellent agreement between the datasets. Our findings suggest that, for aqueous hydrogen, local chemical equilibrium is a valid assumption. With the goal of a predictive transport model, we parameterize various sorption models against this dataset. Models which incorporate electrostatic effects at the surface predict transport well. Nonelectrostatic models such as the Kd, Langmuir, and Freundlich models fail. These results are particularly compelling as nonelectrostatic models are often employed to predict hydrogen transport in many reactive transport code.

  2. Influence of aluminum location on hydrogen sorption kinetics of magnesium-based materials

    NASA Astrophysics Data System (ADS)

    Zhou, Shixue; Zhang, Tonghuan; Wang, Naifei; Li, Tao; Niu, Haili; Yu, Hao; Liu, Di

    2014-03-01

    Hydrogen storage materials from Mg-Al alloy and Mg+Al mixture were prepared by reactive milling under H2 atmosphere with carbonized anthracite as milling aid. The crystal structure of the materials and influence of Al location on hydrogen absorption/desorption kinetics were investigated. Results show that Mg partly got hydrided into β-MgH2 and γ-MgH2 during reactive milling. The average crystallite sizes of β-MgH2 in the as-milled Mg-Al alloy and Mg+Al mixture were calculated by Scherrer equation to be 10 nm and 17 nm, respectively. In the process of hydrogen desorption, the catalytic ability of Al in Mg crystal lattice was not as effective as that on particle surface. The apparent activation energies for hydrogen desorption of the two materials were estimated by Kissinger equation to be 112.2 kJ/mol and 63.7 kJ/mol, respectively. Mg17Al12 reacted with H2 to convert into MgH2 and elemental Al during static hydrogenation at 300°C. For the hydrogenated Mg+Al mixture, the obvious increase of crystallite size resulted in a low rate of hydrogen absorption and a high temperature for hydrogen desorption.

  3. Hydrogen-bonded porous coordination polymers: structural transformation, sorption properties, and particle size from kinetic studies.

    PubMed

    Uemura, Kazuhiro; Saito, Kazuya; Kitagawa, Susumu; Kita, Hidetoshi

    2006-12-20

    Three new coordination polymers, [CoCl2(4-pmna)2]n (1), {[Co(NCS)2(4-pmna)2].2Me2CO}n (2 superset 2Me2CO), and {[Co(4-pmna)2(H2O)2](NO3)2.2CH3OH}n (3 superset 2H2O.2MeOH) (4-pmna = N-(pyridin-4-ylmethyl)nicotinamide), have been synthesized and characterized using single-crystal X-ray diffraction. The cobalt(II) atoms are bridged by 4-pmna ligands in all three compounds to form double-stranded one-dimensional "repeated rhomboid-type" chains with rectangular-shaped cavities. In 1, each chain slips and obstructs the neighboring cavities so that there are no guest-incorporated pores. Both 2 superset 2Me2CO and 3 superset 2H2O.2MeOH do not have such a staggered arrangement and have pores that can be filled with a guest molecule. Compound 3 superset 2H2O.2MeOH traps guest molecules with multiple hydrogen bonds and shows a reversible structural rearrangement during adsorption and desorption. The new crystalline compound, 3, is stabilized by forming hydrogen bonds with the amide moieties of the 4-pmna ligands and was characterized using infrared spectroscopy. The clathration enthalpy of the reaction 3 + 2H2O(l) + 2MeOH(l) <==> 3 superset 2H2O.2MeOH (approximately 35 kJ/mol) was estimated from differential scanning calorimetry data by considering the vaporization enthalpies of H2O and MeOH. The desorption process of 3 superset 2H2O.2MeOH --> 3 follows a single zero-order reaction mechanism under isothermal conditions. The activation energy of ca. 100 kJ/mol was obtained by plotting the logarithm of the reaction time for the same reacted fraction versus the reciprocal of the temperature. Moreover, the distribution of the one-dimensional channels in 3 superset 2H2O.2MeOH was estimated using the observation that the reaction rate is directly proportional to the total sectional area.

  4. Sorption kinetics of ofloxacin in soils and mineral particles.

    PubMed

    Pan, Bo; Wang, Peng; Wu, Min; Li, Jing; Zhang, Di; Xiao, Di

    2012-12-01

    The environmental behavior of antibiotics is not well known and the precise environmental risk assessment is not practical. This study investigated the sorption kinetics of ofloxacin, a widely used antibiotics, on soil particles with different organic carbon contents as well as soil components (a humic acid, ferric oxide and kaolinite). Two-compartment sorption kinetics were mathematically recognized (except ferric oxide because of its very fast sorption). The apparent sorption rate and the contribution of fast sorption compartment decreased with the increased organic carbon content with the exception of humic acid, suggesting that the slow sorption sites were partially located in organo-mineral complex. The OFL concentration-dependent sorption kinetics suggested that the slow sorption compartment was not controlled by diffusion process as indicated by slower sorption at higher OFL loading. The difference between OFL sorption kinetics and those of hydrophobic organic contaminants was discussed and possible mechanism of OFL two-compartment sorption was proposed.

  5. Hydrogen peroxide modified sodium titanates with improved sorption capabilities

    DOEpatents

    Nyman, May D [Albuquerque, NM; Hobbs, David T [North Augusta, SC

    2009-02-24

    The sorption capabilities (e.g., kinetics, selectivity, capacity) of the baseline monosodium titanate (MST) sorbent material currently being used to sequester Sr-90 and alpha-emitting radioisotopes at the Savannah River Site are significantly improved when treated with hydrogen peroxide; either during the original synthesis of MST, or, as a post-treatment step after the MST has been synthesized. It is expected that these peroxide-modified MST sorbent materials will have significantly improved sorption capabilities for non-radioactive cations found in industrial processes and waste streams.

  6. Hydrogen Sorption Kinetics on Bare and Platinum-Modified Palladium Nanofilms, Grown by Electrochemical Atomic Layer Deposition (E-ALD)

    SciTech Connect

    Jagannathan, Kaushik; Benson, David M.; Robinson, David B.; Stickney, John L.

    2016-01-01

    Nanofilms of Pd were grown using an electrochemical form of atomic layer deposition (E-ALD) on 100 nm evaporated Au films on glass. Multiple cycles of surface-limited redox replacement (SLRR) were used to grow deposits. Each SLRR involved the underpotential deposition (UPD) of a Cu atomic layer, followed by open circuit replacement via redox exchange with tetrachloropalladate, forming a Pd atomic layer: one E-ALD deposition cycle. That cycle was repeated in order to grow deposits of a desired thickness. 5 cycles of Pd deposition were performed on the Au on glass substrates, resulting in the formation of 2.5 monolayers of Pd. Those Pd films were then modified with varying coverages of Pt, also formed using SLRR. The amount of Pt was controlled by changing the potential for Cu UPD, and by increasing the number of Pt deposition cycles. Hydrogen absorption was studied using coulometry and cyclic voltammetry in 0.1 M H2SO4 as a function of Pt coverage. The presence of even a small fraction of a Pt monolayer dramatically increased the rate of hydrogen desorption. However, this did not reduce the films’ hydrogen storage capacity. The increase in desorption rate in the presence of Pt was over an order of magnitude.

  7. Hydrogen Sorption Kinetics on Bare and Platinum-Modified Palladium Nanofilms, Grown by Electrochemical Atomic Layer Deposition (E-ALD)

    DOE PAGES

    Jagannathan, Kaushik; Benson, David M.; Robinson, David B.; ...

    2016-01-01

    Nanofilms of Pd were grown using an electrochemical form of atomic layer deposition (E-ALD) on 100 nm evaporated Au films on glass. Multiple cycles of surface-limited redox replacement (SLRR) were used to grow deposits. Each SLRR involved the underpotential deposition (UPD) of a Cu atomic layer, followed by open circuit replacement via redox exchange with tetrachloropalladate, forming a Pd atomic layer: one E-ALD deposition cycle. That cycle was repeated in order to grow deposits of a desired thickness. 5 cycles of Pd deposition were performed on the Au on glass substrates, resulting in the formation of 2.5 monolayers of Pd.more » Those Pd films were then modified with varying coverages of Pt, also formed using SLRR. The amount of Pt was controlled by changing the potential for Cu UPD, and by increasing the number of Pt deposition cycles. Hydrogen absorption was studied using coulometry and cyclic voltammetry in 0.1 M H2SO4 as a function of Pt coverage. The presence of even a small fraction of a Pt monolayer dramatically increased the rate of hydrogen desorption. However, this did not reduce the films’ hydrogen storage capacity. The increase in desorption rate in the presence of Pt was over an order of magnitude.« less

  8. Fast hydrogen sorption from MgH2-VO2(B) composite materials

    NASA Astrophysics Data System (ADS)

    Milošević, Sanja; Kurko, Sandra; Pasquini, Luca; Matović, Ljiljana; Vujasin, Radojka; Novaković, Nikola; Novaković, Jasmina Grbović

    2016-03-01

    The hydrogen sorption kinetics of MgH2‒VO2(B) composites synthesised by mechanical milling have been studied. The microstructural properties of composites were characterized by means of X-ray diffraction (XRD), Raman spectroscopy, Scanning electron microscopy (SEM), Particle size analysis (PSD), while sorption behaviour was followed by differential scanning calorimetry (DSC) and Sievert measurements. Results have shown that although desorption temperature reduction is moderate; there is a substantial improvement in hydrogen sorption kinetics. The complete desorption of pure MgH2 at elevated temperature takes place in more than 30 min while the composite fully desorbs in less than 2 min even at lower temperatures. It has been shown that the metastable γ-MgH2 phase and the point defects have a decisive role in desorption process only in the first sorption cycle, while the second and the subsequent sorption cycles are affected by microstructural and morphological characteristics of the composite.

  9. Sorption Enhanced Reaction Process (SERP) for production of hydrogen

    SciTech Connect

    Anand, M.; Hufton, J.; Mayorga, S.

    1996-10-01

    Sorption Enhanced Reaction Process (SERP) is a novel process that is being developed for the production of lower cost hydrogen by steam-methane reforming (SMR). In this process the reaction of methane with steam is carried out in the presence of an admixture of a catalyst and a selective adsorbent for carbon dioxide. The key consequences of SERP are: (i) reformation reaction is carried out at a significantly lower temperature (300-500{degrees}C) than that in a conventional SMR reactor (800-1100{degrees}C), while achieving the same conversion of methane to hydrogen, (ii) the product hydrogen is obtained at reactor pressure (200-400 psig) and at 98+% purity directly from the reactor (compared to only 70-75% H{sub 2} from conventional SMR reactor), (iii) downstream hydrogen purification step is either eliminated or significantly reduced in size. The first phase of the program has focused on the development of a sorbent for CO{sub 2} which has (a) reversible CO{sub 2} capacity >0.3 mmol/g at low partial pressures of CO{sub 2} (0.1 - 1.0 atm) in the presence of excess steam (pH{sub 2}O/pCO{sub 2}>20) at 400-500{degrees}C and (b) fast sorption-desorption kinetics for CO{sub 2}, at 400-500{degrees}C. Several families of supported sorbents have been identified that meet the target CO{sub 2} capacity. A few of these sorbents have been tested under repeated sorption/desorption cycles and extended exposure to high pressure steam at 400-500{degrees}C. One sorbent has been scaled up to larger quantities (2-3 kg) and tested in the laboratory process equipment for sorption and desorption kinetics of CO{sub 2}. The CO{sub 2}, sorption and desorption kinetics are desirably fast. This was a critical path item for the first phase of the program and now has been successfully demonstrated. A reactor has been designed that will allow nearly isothermal operation for SERP-SMR. This reactor was integrated into an overall process flow diagram for the SERP-SMR process.

  10. Isotherm, kinetic, and thermodynamic study of ciprofloxacin sorption on sediments.

    PubMed

    Mutavdžić Pavlović, Dragana; Ćurković, Lidija; Grčić, Ivana; Šimić, Iva; Župan, Josip

    2017-04-01

    In this study, equilibrium isotherms, kinetics and thermodynamics of ciprofloxacin on seven sediments in a batch sorption process were examined. The effects of contact time, initial ciprofloxacin concentration, temperature and ionic strength on the sorption process were studied. The K d parameter from linear sorption model was determined by linear regression analysis, while the Freundlich and Dubinin-Radushkevich (D-R) sorption models were applied to describe the equilibrium isotherms by linear and nonlinear methods. The estimated K d values varied from 171 to 37,347 mL/g. The obtained values of E (free energy estimated from D-R isotherm model) were between 3.51 and 8.64 kJ/mol, which indicated a physical nature of ciprofloxacin sorption on studied sediments. According to obtained n values as measure of intensity of sorption estimate from Freundlich isotherm model (from 0.69 to 1.442), ciprofloxacin sorption on sediments can be categorized from poor to moderately difficult sorption characteristics. Kinetics data were best fitted by the pseudo-second-order model (R (2) > 0.999). Thermodynamic parameters including the Gibbs free energy (ΔG°), enthalpy (ΔH°) and entropy (ΔS°) were calculated to estimate the nature of ciprofloxacin sorption. Results suggested that sorption on sediments was a spontaneous exothermic process.

  11. PCB congener sorption to carbonaceous sediment components: Macroscopic comparison and characterization of sorption kinetics and mechanism.

    PubMed

    Choi, Hyeok; Al-Abed, Souhail R

    2009-06-15

    Sorption of polychlorinated biphenyls (PCBs) to sediment is a key process in determining their mobility, bioavailability, and chemical decomposition in aquatic environments. In order to examine the validity of currently used interpretation approaches for PCBs sorption, comparative results on 2-chlorobiphenyl sorption to carbonaceous components in sediments (activated carbon, carbon black, coal, soot, graphite, flyash, wood) were macroscopically correlated with the structural, morphological, crystallographic, and compositional properties of the carbonaceous components. Since the Freundlich sorption constant, K(F) (Lkg(-1)) spanned several orders of magnitude, ranging from logK(F) of 6.13-5.27 for activated carbon, 5.04 for carbon black, 3.83 for coal to 3.08 for wood, organic carbon partitioning approach should be more specifically categorized, considering the various forms, nature and origins of organic carbon in sediment. Sorption rate constants and fraction parameters, which were numerically defined from empirical kinetic model with fast and slow sorption fractions, were closely related to the physicochemical properties of the carbonaceous components. Sorption interpretation approaches with a specific property and viewpoint, such as organic carbon partitioning, soot carbon distribution, or surface area correlation, did not properly explain the overall results on sorption capacity, fast and slow sorption kinetics, and partitioning coefficient. It is also important to emphasize the heterogeneous nature of sediment and the difficulties of encompassing the partitioning among its carbonaceous components.

  12. Sorption kinetics, isotherms and mechanisms of PFOS on soils with different physicochemical properties.

    PubMed

    Wei, Changlong; Song, Xin; Wang, Qing; Hu, Zhihao

    2017-08-01

    Perfluorooctane sulfonate (PFOS), an emerging contaminant, is environmentally persistent, bioaccumulative and toxic to human health and ecosystems. It has been widely detected in groundwater, surface water, soil and sediment. So far, very few research has reported on the PFOS sorption behaviors onto soils, one of the primary processes that influence its fate and transport in the subsurface. In this study, the sorption and desorption of PFOS onto six soils with different physicochemical properties were investigated. Kinetic and equilibrium studies of PFOS sorption onto six soils were carried out in batch experiment. The sorption kinetics of PFOS on the six soils demonstrated that PFOS sorption reached equilibrium within 48h, and the well-fitted pseudo-second-order kinetic model to experimental data suggested that chemisorption was involved in PFOS sorption on soils. The intraparticle diffusion model results indicated that both film diffusion and intraparticle diffusion were the rate-limiting steps for five of the six soil samples, while the intraparticle diffusion was the only limiting step in the PFOS sorption on the sixth soil. PFOS sorption isotherms can be described by the Freundlich model well for all six soils (R(2)=0.979-0.999). The correlation analysis between KF of PFOS and the physicochemical properties of the soils showed that a positive correlation between KF and Al2O3, SOC and Fe2O3. The FTIR data demonstrated hydrophobic interaction, ion exchange, surface complexing and hydrogen bonding might all play a role in the PFOS sorption onto soil samples. PFOS sorption onto soil minerals, especially iron oxide minerals, needs to be further explored in future. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Kinetics and reversibility of micropollutant sorption in sludge.

    PubMed

    Barret, Maialen; Carrère, Hélène; Patau, Mathieu; Patureau, Dominique

    2011-10-01

    The fate of micropollutants throughout wastewater treatment systems is highly dependent on their sorption interactions with sludge matter. In this study, both the sorption and desorption kinetics of polycyclic aromatic hydrocarbons (PAHs) in activated sludge were shown to be very rapid in comparison to biodegradation kinetics. It was concluded that PAH transfer does not limit their biodegradation and that their fate is governed by the sorption/desorption equilibrium state. The effect of contact time between sludge and PAHs was also investigated. It was shown that aging did not influence the sorption/desorption equilibrium although PAH losses during aging suggest that sequestration phenomena had occurred. This implies that for PAH sorption assessment within treatment processes there is no need to include a contact time dimension. As a consequence, thanks to an innovative approach taking into account sorption equilibria and sequestration, this work has demonstrated that studies in the literature which, in main, deal with micropollutant sorption in sewage sludge with only a short contact time can be extrapolated to real systems in which sorption, desorption and aging occur.

  14. Effect of sorption on flocculation kinetics: Experimental studies

    SciTech Connect

    Subramaniam, K.; Yiacoumi, S.; Tsouris, C.

    1997-11-01

    Sorption of copper and cadmium ions from aqueous solutions by ferric oxide particles was studied using batch equilibrium and kinetic experiments. The sorption process was found to be pH dependent, with the uptake increasing at high pH values. An increase in equilibrium pH was observed when the initial pH was in the acidic range and a decrease from initial values was observed in the basic range, in the case of both copper and cadmium sorption. The former phenomenon is due to competition between metal and proton binding and the latter is due to precipitation mechanisms at high initial pH values. A large increase in the zeta potential of the particles from baseline values was observed during equilibrium sorption. This increase occurs as a result of surface charge neutralization due to metal ion uptake. Particle destabilization appears to occur as a result of metal ion sorption. Kinetic experiments indicate that the uptake of copper by ferric oxide particles is a slow process. pH histories were similar to those obtained in the sorption equilibrium experiments. Changes in the size distribution of the ferric oxide particles due to aggregate formation during uptake of ions is observed in the kinetic studies. These findings indicate a potential role of metal ion uptake in particle flocculation kinetics through alteration of the surface electrostatic potential.

  15. Kinetics of the sorption of triterpene saponin by hypercrosslinked polystyrene

    NASA Astrophysics Data System (ADS)

    Mironenko, N. V.; Brezhneva, T. A.; Selemenev, V. F.

    2013-03-01

    The kinetics of sorption of triterpene saponin by the polymer sorbent NM-200 is considered. The influence of the surface activity of glycoside on the rate of formation and structure of the adsorption layer on the sorbent's surface is established. The rate-determining step of sorption is found to be diffusion into the sorbent grain. The value of the activation energy demonstrates the determining role of dispersion forces in the interaction between triterpene saponin and the polymer sorbent MN-200.

  16. Incorporation of aqueous reaction and sorption kinetics andbiodegradation into TOUGHREACT

    SciTech Connect

    Xu, Tianfu

    2006-04-17

    The needs for considering aqueous and sorption kinetics and microbiological processes arises in many subsurface problems, such as environmental and acid mine remediation. A general rate expression has been implemented into TOUGHREACT, which considers multiple mechanisms(pathways) and includes multiple product, Monod, and inhibition terms. In this paper, the formulation for incorporating kinetic rates among primary species into the mass balance equations is presented. A batch sulfide oxidation problem is simulated. The resulting concentrations are consistent with simple hand calculations. A 1-D reactive transport problem with kinetic biodegradation and sorption was investigated, which models the processes when a pulse of water containing NTA (nitrylotriacetate) and cobalt is injected into a column. The problem has several interacting chemical processes that are common to many environmental problems: biologically-mediated degradation of an organic substrate, bacterial cell growth and decay, metal sorption and aqueous speciation including metal-ligand complexation. The TOUGHREACT simulation results agree very well with those obtained with other simulators.

  17. Dependence of methane sorption kinetics on coal structure

    SciTech Connect

    B. Kovaleva; E.A. Solov'eva

    2006-01-15

    The data of experimental laboratory studies into the methane sorption kinetics in samples of mineral coals of different metamorphism grade and petrographic composition are presented. Their relation to the character of gas emission from gas-saturated coal seams is considered. The dependence of the gas emission type on the size of undisturbed fragment of coal and methane diffusion coefficient is revealed.

  18. Kinetics of plutonium and americium sorption to natural clay.

    PubMed

    Lujanienė, Galina; Beneš, Petr; Štamberg, Karel; Ščiglo, Tomas

    2012-06-01

    Kinetics of Pu(IV) and Am(III) sorption from natural groundwater to three types of clays were studied at trace concentrations of the elements. Higher K(d) values were determined for sorption of Pu than of Am, and no clear dependence of the K(d) values and the kinetic coefficients on the composition of the clays can be deduced. Kinetic data evaluated by models for six different control processes indicated a sorption mechanism controlled by Pu or Am diffusion in the inert layer on the surface of the clays. Apart from the kinetics of the elements sorption, time-dependent changes in their bonding nature were also studied using a sequential extraction. It was found that Pu(IV) was predominantly associated with amorphous and crystalline Fe oxides as well as natural organic matter sites on the clays, whereas in the case of Am(III) the exchangeable and carbonate sites played the principal role. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Long term sorption kinetics of phenanthrene in aquifer materials

    SciTech Connect

    Ruegner, H.; Kleineidam, S.; Grathwohl, P.

    1999-05-15

    Most aquifer materials are heterogeneous in terms of grain size distribution and petrography. To understand sorption kinetics, homogeneous subfractions, either separated from heterogeneous sands and gravels or fragments of fresh rocks, have to be studied. In this paper the authors present data on long-term sorption kinetics of phenanthrene for homogeneous samples consisting of one type of lithocomponents or fresh rock fragments in different grain sizes. Diffusion rate constants were determined in batch experiments using a/ numerical model for retarded intraparticle pore diffusion and correlated to grain size and intraparticle porosity of the lithocomponents. Sorption isotherms were nonlinear for all samples investigated. The numerical model described the sorption kinetics very well for coarse sand and gravels. Tortuosity factors, which were obtained as final fitting factors, agreed with Archie`s law predictions based on the intraparticle porosity. The dependency of sorptive uptake on grain size revealed that for smaller grains intrasorbent diffusion may become significant. This is attributed to relatively large particulate organic matter (POM) within the sedimentary rock fragments. Specifically, charcoal and coal particles, which were found in some of the sandstones, controlled the sorptive uptake rates.

  20. Model colloid system for interfacial sorption kinetics

    NASA Astrophysics Data System (ADS)

    Salipante, Paul; Hudson, Steven

    2014-11-01

    Adsorption kinetics of nanometer scale molecules, such as proteins at interfaces, is usually determined through measurements of surface coverage. Their small size limits the ability to directly observe individual molecule behavior. To better understand the behavior of nanometer size molecules and the effect on interfacial kinetics, we use micron size colloids with a weak interfacial interaction potential as a model system. Thus, the interaction strength is comparable to many nanoscale systems (less than 10 kBT). The colloid-interface interaction potential is tuned using a combination of depletion, electrostatic, and gravitational forces. The colloids transition between an entropically trapped adsorbed state and a desorbed state through Brownian motion. Observations are made using an LED-based Total Internal Reflection Microscopy (TIRM) setup. The observed adsorption and desorption rates are compared theoretical predictions based on the measured interaction potential and near wall particle diffusivity. This experimental system also allows for the study of more complex dynamics such as nonspherical colloids and collective effects at higher concentrations.

  1. Sorption kinetics of PAHs in methanol water systems

    NASA Astrophysics Data System (ADS)

    Bouchard, D. C.

    1998-10-01

    The objectives of this study were to evaluate the relationships between the equilibrium sorption constant ( Kp), the first-order desorption rate coefficient ( k2), and the volumetric fraction of water miscible solvent ( fc); and to utilize SPARC-calculated (SPARC Performs Automatic Reasoning in Chemistry) solubility and partitioning parameters with empirical measurements for a priori prediction of solute sorption kinetics in aqueous and mixed solvent systems. Soil column miscible displacement experiments were performed using naphthalene, phenanthrene, anthracene, pyrene and benzo(a)pyrene over an fc range from 0.0 to 0.8. Data from the miscible displacement studies were analyzed using a two-domain first-order mass transfer model to obtain Kp and k2. Results corroborated and extended the range of the validity of the log-log linear relationship between k2 and Kp and log-linear relationship between k2 and fc for mixed solvent systems. In addition, the slope of the log k2-log Kp relationship was found to be relatively solute independent. Predicted values of k2 in aqueous systems agreed well with experimentally measured values, thus, indicating the general applicability of the predictive approaches for predicting the sorption kinetics of hydrophobic organic compounds.

  2. The catalyzed hydrogen sorption mechanism in alkali alanates.

    PubMed

    Kocabas Atakli, Züleyha Özlem; Callini, Elsa; Kato, Shunsuke; Mauron, Philippe; Orimo, Shin-Ichi; Züttel, Andreas

    2015-08-28

    The hydrogen sorption pathways of alkali alanates were analyzed and a mechanism for the catalytic hydrogen sorption was developed. Gibbs free energy values of selected intermediate steps were calculated based on experimentally determined thermodynamic data (enthalpies and entropies) of individual hydrides: MAlH4, M3AlH6, and MH. The values of the activation energies, based on the intermediates M(+), H(-), MH, and AlH3, were obtained. The mechanism of the catalytic activity of Ti is finally clarified: we present an atomistic model, where MAlH4 desorbs hydrogen through the intermediates M(+), H(-), MH, and AlH3 to the hexahydride M3AlH6 and finally the elemental hydride MH. The catalyst acts as a bridge to transfer M(+) and H(-) from MAlH4(-) to the neighboring AlH4(-), forming AlH6(3-) and finally isolated MH, leaving AlH3 behind, which spontaneously desorbs hydrogen to give Al and 1.5H2. The proposed mechanism is symmetric in the direction of hydrogen desorption as well as readsorption processes.

  3. Sorption kinetics and breakthrough curves for pepsin and chymosin using pepstatin A affinity membranes.

    PubMed

    Suen, S Y; Etzel, M R

    1994-12-02

    Isotherms and kinetic parameters for pepsin and chymosin sorption to immobilized pepstatin A were measured in batch experiments. The measured single-solute parameters were used in an affinity-membrane model which included competitive sorption kinetics, axial diffusion and dead volume mixing. The predictions made using the affinity-membrane model matched the experimental breakthrough curves, whereas predictions made using local-equilibrium theory were a distinct mismatch. The performance of affinity-membrane separations was dominated by slow sorption kinetics.

  4. Development of a 15 K Hydrogen-Based Sorption Cooler

    NASA Astrophysics Data System (ADS)

    Burger, J. F.; Holland, H. J.; Meijer, R. J.; Linder, M.; ter Brake, H. J. M.

    2010-04-01

    At the University of Twente, a 15 K hydrogen-based sorption cooler is under development, which has no moving parts and, therefore, is essentially vibration-free. Moreover, it has the potential of a very long life. Although the cooler may operate standalone, it is designed to precool a helium-based sorption cooler thats establishes 5 mW at 4.5 K, requiring a cooling power of 25 mW at the hydrogen stage. Both coolers use microporous activated carbon as the adsorption material. The combination of these two cooler stages needs a total of 5.4 W of input power and is heat sunk at two passive radiators at temperatures of about 50 K and 90 K (1.9 W and 3.5 W, respectively). We developed and built a demonstrator of the helium cooler under a previous ESA-TRP contract, and in 2008 we started a new ESA-sponsored project aiming at the development of the hydrogen stage. In the paper, the preliminary design of this hydrogen-cooler is presented, along with introductory experiments on its Joule-Thomson cold stage.

  5. Application of green seaweed biomass for MoVI sorption from contaminated waters. Kinetic, thermodynamic and continuous sorption studies.

    PubMed

    Bertoni, Fernando A; Medeot, Anabela C; González, Juan C; Sala, Luis F; Bellú, Sebastián E

    2015-05-15

    Spongomorpha pacifica biomass was evaluated as a new sorbent for Mo(VI) removal from aqueous solution. The maximum sorption capacity was found to be 1.28×10(6)±1×10(4) mg kg(-1) at 20°C and pH 2.0. Sorption kinetics and equilibrium studies followed pseudo-first order and Langmuir adsorption isotherm models, respectively. FTIR analysis revealed that carboxyl and hydroxyl groups were mainly responsible for the sorption of Mo(VI). SEM images show that morphological changes occur at the biomass surface after Mo(VI) sorption. Activation parameters and mean free energies obtained with Dubinin-Radushkevich isotherm model demonstrate that the mechanism of sorption process was chemical sorption. Thermodynamic parameters demonstrate that the sorption process was spontaneous, endothermic and the driven force was entropic. The isosteric heat of sorption decreases with surface loading, indicating that S. pacifica has an energetically non-homogeneous surface. Experimental breakthrough curves were simulated by Thomas and modified dose-response models. The bed depth service time (BDST) model was employed to scale-up the continuous sorption experiments. The critical bed depth, Z0 was determined to be 1.7 cm. S.pacifica biomass showed to be a good sorbent for Mo(VI) and it can be used in continuous treatment of effluent polluted with molybdate ions.

  6. Molecular hydrogen sorption capacity of D-shwarzites

    NASA Astrophysics Data System (ADS)

    Krasnov, Pavel O.; Shkaberina, Guzel S.; Kuzubov, Alexander A.; Kovaleva, Evgenia A.

    2017-09-01

    Schwarzites are one of the most well-known forms of nanoporous carbon. High porosity and large surface area of these materials make them promising candidates for molecular hydrogen storage. Quantum-chemical modeling showed that hydrogen weight fraction inside D-schwarzite structure depends on the number of atoms per unit cell that determines its size and morphology. D480 schwarzite has demonstrated the largest value of hydrogen sorption capacity amongst the structures considered in this work. It reaches 7.65% at the technologically acceptable values of temperature and pressure (300 K and 10 MPa). Though being lower than that required by DOE (9%), this amount can be increased by using schwarzites with larger unit cell corresponding to the larger surface area.

  7. Kinetic Study of Denatonium Sorption to Smectite Clay Minerals.

    PubMed

    Crosson, Garry S; Sandmann, Emily

    2013-06-01

    The denatonium cation, as a benzoate salt, is the most bitter cation known to modern society and is frequently added to consumer products to reduce accidental and intentional consumption by humans and animals. Denatonium can enter the environment by accidental discharges, potentially rendering water supplies undrinkable. Interactions of denatonium with soil components (i.e., smectite minerals) ultimately control the environmental fate of denatonium, but the current literature is devoid of studies that evaluate denatonium sorption to smectite minerals. This study investigated the mechanism and kinetics of denatonium sorption to smectite clay minerals as a function of smectite type, temperature, pH and ionic strength. Uptake by synthetic mica montmorillonite (Syn-1), Wyoming montmorillonite (SWy-2), and Texas montmorillonite (STx-1b) at 305K was rapid, with equilibrium being reached within 2 min for all clays. Complete removal of denatonium was observed for STx-1b at pH 6.9, while partial removal was observed for Syn-1 and SWy-2. Kinetic behavior of SWy-2 and Syn-1 is consistent with a pseudo-second-order model at 305K. An activation energy of +25.9 kJ/mol was obtained for sorption to Syn-1 and was independent of temperature between 286K and 338K. Activation-free energy (ΔG*), activation enthalpy (ΔH*), and activation entropy (ΔS*) for Syn-1 were found to be +62.91 kJ/mol, +23.36 kJ/mol, and -0.130 kJ/(K·mol), respectively. Sorption capacities at pH 3.6, 6.9, and 8.2 were constant at 1.3×10(-2) g denatonium/g clay; however, the kinetic rate constant increased by 56%, going from acidic to basic solution conditions. Distribution coefficients were negatively correlated with ionic strength, suggesting cation exchange. Collectively, results suggested that smectite minerals can serve as efficient sinks for denatonium cations. This is much-needed information for agencies developing regulations regarding denatonium usage and for water treatment professionals who may

  8. Kinetic Study of Denatonium Sorption to Smectite Clay Minerals

    PubMed Central

    Crosson, Garry S.; Sandmann, Emily

    2013-01-01

    Abstract The denatonium cation, as a benzoate salt, is the most bitter cation known to modern society and is frequently added to consumer products to reduce accidental and intentional consumption by humans and animals. Denatonium can enter the environment by accidental discharges, potentially rendering water supplies undrinkable. Interactions of denatonium with soil components (i.e., smectite minerals) ultimately control the environmental fate of denatonium, but the current literature is devoid of studies that evaluate denatonium sorption to smectite minerals. This study investigated the mechanism and kinetics of denatonium sorption to smectite clay minerals as a function of smectite type, temperature, pH and ionic strength. Uptake by synthetic mica montmorillonite (Syn-1), Wyoming montmorillonite (SWy-2), and Texas montmorillonite (STx-1b) at 305K was rapid, with equilibrium being reached within 2 min for all clays. Complete removal of denatonium was observed for STx-1b at pH 6.9, while partial removal was observed for Syn-1 and SWy-2. Kinetic behavior of SWy-2 and Syn-1 is consistent with a pseudo–second-order model at 305K. An activation energy of +25.9 kJ/mol was obtained for sorption to Syn-1 and was independent of temperature between 286K and 338K. Activation-free energy (ΔG*), activation enthalpy (ΔH*), and activation entropy (ΔS*) for Syn-1 were found to be +62.91 kJ/mol, +23.36 kJ/mol, and −0.130 kJ/(K·mol), respectively. Sorption capacities at pH 3.6, 6.9, and 8.2 were constant at 1.3×10−2 g denatonium/g clay; however, the kinetic rate constant increased by 56%, going from acidic to basic solution conditions. Distribution coefficients were negatively correlated with ionic strength, suggesting cation exchange. Collectively, results suggested that smectite minerals can serve as efficient sinks for denatonium cations. This is much-needed information for agencies developing regulations regarding denatonium usage and for water treatment

  9. Kinetics and Equilibrium Sorption Models: Fitting Plutonium, Strontium, Uranium and Neptunium Loading on Monosodium Titanate (MST)

    SciTech Connect

    Fondeur, F

    2006-03-08

    The Dubinin-Astashov (DA) isotherm parameters for U, Pu, Sr and Np have been updated to include additional data obtained since the original derivation. The DA isotherms were modified to include a kinetic function derived by Rahn to describe sorbate loading from the beginning of sorption up to steady state. The final functions describe both kinetic and thermodynamic sorption.

  10. AFFECTS OF MECHANICAL MILLING AND METAL OXIDE ADDITIVES ON SORPTION KINETICS OF 1:1 LiNH2/MgH2 MIXTURE

    SciTech Connect

    Erdy, C.; Anton, D.; Gray, J.

    2010-12-08

    The destabilized complex hydride system composed of LiNH{sub 2}:MgH{sub 2} (1:1 molar ratio) is one of the leading candidates of hydrogen storage with a reversible hydrogen storage capacity of 8.1 wt%. A low sorption enthalpy of {approx}32 kJ/mole H{sub 2} was first predicted by Alapati et al. utilizing first principle density function theory (DFT) calculations and has been subsequently confirmed empirically by Lu et al. through differential thermal analysis (DTA). This enthalpy suggests that favorable sorption kinetics should be obtainable at temperatures in the range of 160 C to 200 C. Preliminary experiments reported in the literature indicate that sorption kinetics are substantially lower than expected in this temperature range despite favorable thermodynamics. Systematic isothermal and isobaric sorption experiments were performed using a Sievert's apparatus to form a baseline data set by which to compare kinetic results over the pressure and temperature range anticipated for use of this material as a hydrogen storage media. Various material preparation methods and compositional modifications were performed in attempts to increase the kinetics while lowering the sorption temperatures. This paper outlines the results of these systematic tests and describes a number of beneficial additions which influence kinetics as well as NH{sub 3} formation.

  11. Sorption kinetics considered as a renormalized diffusion process

    SciTech Connect

    Ravera, F.; Liggieri, L. ); Steinchen, A. )

    1993-03-01

    A theoretical study, of the sorption kinetics is performed by using a new approach in which the adsorption-desorption process is considered as an extended diffusion process with a renormalized diffusion coefficient taking into account an interfacial potential barrier. This model allows one to describe the time dependence of the process by considering both the crossing of an interfacial potential barrier and the diffusion in the neighboring phase. This model leads one to write an expression for the surface concentration as a function of the time, in terms of the molecular activation energies of adsorption and desorption. The possibility of using this theoretical approach to interpret experimental data of dynamic interfacial tension during the absorption at liquid-liquid and liquid-gas interfaces is discussed.

  12. PCB Congener Sorption To Carbonaceous Sediment Components: Macroscopic Comparison And Characterization Of Sorption Kinetics And Mechanism

    EPA Science Inventory

    Sorption of polychlorinated biphenyls (PCBs) to sediment is a key process in determining their mobility, bioavailability, and chemical decomposition in aquatic environments. In order to examine the validity of currently used interpretation approaches for PCBs sorption, comparati...

  13. PCB Congener Sorption To Carbonaceous Sediment Components: Macroscopic Comparison And Characterization Of Sorption Kinetics And Mechanism

    EPA Science Inventory

    Sorption of polychlorinated biphenyls (PCBs) to sediment is a key process in determining their mobility, bioavailability, and chemical decomposition in aquatic environments. In order to examine the validity of currently used interpretation approaches for PCBs sorption, comparati...

  14. Sorption enhanced reaction process (SERP) for production of hydrogen

    SciTech Connect

    Sircar, S.; Anand, M.; Carvill, B.

    1995-09-01

    Sorption Enhanced Reaction (SER) is a novel process that is being developed for the production of lower cost hydrogen by steam-methane reforming (SMR). In this process, the reaction of methane with steam is carried out in the presence of an admixture of a catalyst and a selective adsorbent for carbon dioxide. The consequences of SER are: (1) reformation reaction at a significantly lower temperature (300-500{degrees}C) than conventional SMR (800-1100{degrees}C), while achieving the same conversion of methane to hydrogen, (2) the product hydrogen is obtained at reactor pressure (200-400 psig) and at 99+% purity directly from the reactor (compared to only 70-75% H{sub 2} from conventional SMR reactor), (3) downstream hydrogen purification step is either eliminated or significantly reduced in size. The early focus of the program will be on the identification of an adsorbent/chemisorbent for CO{sub 2} and on the demonstration of the SER concept for SMR in our state-of-the-art bench scale process. In the latter stages, a pilot plant will be built to scale-up the technology and to develop engineering data. The program has just been initiated and no significant results for SMR will be reported. However, results demonstrating the basic principles and process schemes of SER technology will be presented for reverse water gas shift reaction as the model reaction. If successful, this technology will be commercialized by Air Products and Chemicals, Inc. (APCI) and used in its existing hydrogen business. APCI is the world leader in merchant hydrogen production for a wide range of industrial applications.

  15. Mechanism and kinetics of aluminum dissolution during copper sorption by acidity paddy soil in South China.

    PubMed

    Liu, Peiya; Li, Yujiao; Wen, Qinliang; Dong, Changxun; Pan, Genxing

    2015-08-01

    Soil aggregates were prepared from a bulk soil collected from paddy soil in the Taihu Lake region and aluminum (Al) dissolution, solution pH changes during copper (Cu(2+)) sorption were investigated with static sorption and magnetic stirring. Kinetics of Cu(2+) sorption and Al dissolution were also studied by magnetic stirring method. No Al dissolution was observed until Cu(2+) sorption was greater than a certain value, which was 632, 450, 601 and 674 mg/kg for sand, clay, silt, and coarse silt fractions, respectively. Aluminum dissolution increased with increasing Cu(2+) sorption and decreasing solution pH. An amount of dissolved Al showed a significant positive correlation with non-specific sorption of Cu(2+) (R(2)>0.97), and it was still good under different pH values (R(2)>0.95). Copper sorption significantly decreased solution pH. The magnitude of solution pH decline increased as Cu(2+) sorption and Al dissolution increased. The sand and clay fraction had a less Al dissolution and pH drop due to the higher ferric oxide, Al oxide and organic matter contents. After sorption reaction for half an hour, the Cu(2+) sorption progress reached more than 90% while the Al dissolution progress was only 40%, and lagged behind the Cu(2+) sorption. It indicated that aluminum dissolution is associated with non-specific sorption.

  16. Concurrent Co2+ and Sr2+ sorption from binary mixtures using aluminum industry waste: Kinetic study

    NASA Astrophysics Data System (ADS)

    Milenković, A.; Smičiklas, I.; Šljivić-Ivanović, M.; Vukelić, N.

    2015-12-01

    Multi-component sorption studies are essential to identify the applicability of red mud as a lowcost sorbent for the simultaneous removal of metal ions from wastewaters. Sorption kinetics of Co2+ and Sr2+ ions was investigated, at different total concentrations of mixtures and different molar ratios of two cations. Kinetics of metal sorption from binary systems was found to be well described by pseudo-second order rate model. Equilibrium sorbed amounts and equilibrium times for Co2+ sorption increased with the increase of its total concentration in the mixture, whereas pseudo-second order rate constants exhibited the opposite trend. Sr2+ sorption was strongly suppressed in the presence of Co2+ ions, and the removal efficiency decreased with increasing concentration and mole fraction of Co2+. Red mud can be used for simultaneous Co2+ and Sr2+ removal from mixtures of lower initial concentration, otherwise Co2+ sorption is dominant.

  17. [Investigation of intermetalloid hydrogen sorption-desorption in physical-chemical life support system].

    PubMed

    Klimarev, S I

    2007-01-01

    A hydrogen accumulating alloy was tested for safe sorption and storage of electrolyzed hydrogen within life support system. The alloy of choice was intermetalloid LaNi5 absorbing and desorbing hydrogen at approximately room temperature and pressure A of 20 atm. Sorption was evaluated at hydrogen pressure A of 0.1; 0.2 and 0.3 atm. The rate of desorption was controlled at 2.0 l/min to maintain the standard carbon dioxide and hydrogen feed into the processor. Results of the investigation lead to the main conclusion that the hydrogen accumulating alloy can be an integral component of a new generation of life support systems.

  18. Kinetic and equilibrium characteristics of sorption of saponin of Quillaja Saponaria Molina on chitosan

    NASA Astrophysics Data System (ADS)

    Mironenko, N. V.; Smuseva, S. O.; Brezhneva, T. A.; Selemenev, V. F.

    2016-12-01

    The equilibrium and kinetic curves of the sorption of saponin of Quillaja saponaria molina on chitosan were analyzed. The inner diffusion was found to be limiting, and its coefficients were calculated. It was found that the form of the curves of the sorption isotherms of saponin is determined by the competing processes of association in solution and absorption by chitosan.

  19. INFLUENCE OF ORGANIC COSOLVENTS ON THE SORPTION KINETICS OF HYDROPHOBIC ORGANIC CHEMICALS

    EPA Science Inventory

    A quantitative examination of the kinetics of sorption of hydrophobic organic chemicals by soils from mixed solvents reveals that the reverse sorption rate constant (k2) increases log-linearly with increasing volume fraction of organic cosolvent (fc). This relationship was expec...

  20. INFLUENCE OF ORGANIC COSOLVENTS ON THE SORPTION KINETICS OF HYDROPHOBIC ORGANIC CHEMICALS

    EPA Science Inventory

    A quantitative examination of the kinetics of sorption of hydrophobic organic chemicals by soils from mixed solvents reveals that the reverse sorption rate constant (k2) increases log-linearly with increasing volume fraction of organic cosolvent (fc). This relationship was expec...

  1. Optimization of Nano-Carbon Materials for Hydrogen Sorption

    SciTech Connect

    Yakobson, Boris I

    2013-08-02

    Research undertaken has added to the understanding of several critical areas, by providing both negative answers (and therefore eliminating expensive further studies of unfeasible paths) and positive feasible options for storage. Theoretical evaluation of the early hypothesis of storage on pure carbon single wall nanotubes (SWNT) has been scrutinized with the use of comprehensive computational methods (and experimental tests by the Center partners), and demonstrated that the fundamentally weak binding energy of hydrogen is not sufficiently enhanced by the SWNT curvature or even defects, which renders carbon nanotubes not practical media. More promising direction taken was towards 3-dimensional architectures of high porosity where concurrent attraction of H2 molecule to surrounding walls of nano-scale cavities can double or even triple the binding energy and therefore make hydrogen storage feasible even at ambient or somewhat lower temperatures. An efficient computational tool has been developed for the rapid capacity assessment combining (i) carbon-foam structure generation, (ii) accurate empirical force fields, with quantum corrections for the lightweight H2, and (iii) grand canonical Monte Carlo simulation. This made it possible to suggest optimal designs for carbon nanofoams, obtainable via welding techniques from SWNT or by growth on template-zeolites. As a precursor for 3D-foams, we have investigated experimentally the synthesis of VANTA (Vertically Aligned NanoTube Arrays). This can be used for producing nano-foams. On the other hand, fluorination of VANTA did not show promising increase of hydrogen sorption in several tests and may require further investigation and improvements. Another significant result of this project was in developing a fundamental understanding of the elements of hydrogen spillover mechanisms. The benefit of developed models is the ability to foresee possible directions for further improvement of the spillover mechanism.

  2. Sorption kinetics of uranium-238 and neptunium-237 on a glacial sediment

    NASA Astrophysics Data System (ADS)

    Braithwaite, A.; Richardson, S.; Moyes, L. N.; Livens, F. R.; Bunker, D. J.; Hughes, C. R.; Smith, J. T.; Hilton, J.

    2000-02-01

    Studies of uptake of radionuclides by natural materials have shown that sorption may occur via fast equilibrium exchange and/or slow kinetic processes, which can be described using a series of box models. This paper describes the use of such models to evaluate the solid-solution partitioning of 238U and 237Np on a clay rich sediment. Experimental data are obtained using the batch sorption technique, which are then analysed using 1, 2, and 3 box kinetic models. Uptake of 238U is initially rapid, with approximately 90% sorbed within the first 30 minutes. Sorption continues, but at a slower rate. Uptake of 237Np is initially slower than U, with approximately 30% sorbed within the first 30 minutes. Sorption again continues, at a slower rate. Analysis of the experimental data indicates that sorption can be described using 2 and 3 box kinetic models. The results demonstrate that sorption of uranium and neptunium on clay rich sediments occurs via equilibrium and kinetically controlled pathways, with neptunium being controlled by kinetics to a greater extent than uranium. The 2 or 3 box model can describe sorption of neptunium, uranium requires the 3 box model.

  3. Kinetic analysis of strontium and potassium sorption onto sands and gravels in a natural channel.

    USGS Publications Warehouse

    Bencala, K.E.; Jackman, A.P.; Kennedy, V.C.; Avanzino, R.J.; Zellweger, G.W.

    1983-01-01

    A kinetic, first-order mass transfer model was used to describe the sorption of strontium onto sand-and gravel-sized streambed sediments. Rate parameters, empirically determined for strontium, allowed for the prediction of potassium sorption with moderate success. The model parameters varied significantly with particle size. The sorption data were collected during an experimental injection of several elements into a small mountain pool-and- riffle stream. The sorption process onto sand- and gravel-sized sediment was relatively slow compared to changes in the dissolved concentrations. -Authors

  4. Materials Down Select Decisions Made Within the Department of Energy Hydrogen Sorption Center of Excellence

    SciTech Connect

    Simpson, Lin

    2009-11-30

    Technical report describing DOE's Hydrogen Sorption Center of Excellence investigation into various adsorbent and chemisorption materials and progress towards meeting DOE's hydrogen storage targets. The report presents a review of the material status as related to DOE hydrogen storage targets and explains the basis for the down select decisions.

  5. Kinetic modeling of antimony(III) oxidation and sorption in soils.

    PubMed

    Cai, Yongbing; Mi, Yuting; Zhang, Hua

    2016-10-05

    Kinetic batch and saturated column experiments were performed to study the oxidation, adsorption and transport of Sb(III) in two soils with contrasting properties. Kinetic and column experiment results clearly demonstrated the extensive oxidation of Sb(III) in soils, and this can in return influence the adsorption and transport of Sb. Both sorption capacity and kinetic oxidation rate were much higher in calcareous Huanjiang soil than in acid red Yingtan soil. The results indicate that soil serve as a catalyst in promoting oxidation of Sb(III) even under anaerobic conditions. A PHREEQC model with kinetic formulations was developed to simulate the oxidation, sorption and transport of Sb(III) in soils. The model successfully described Sb(III) oxidation and sorption data in kinetic batch experiment. It was less successful in simulating the reactive transport of Sb(III) in soil columns. Additional processes such as colloid facilitated transport need to be quantified and considered in the model.

  6. Liquefaction chemistry and kinetics: Hydrogen utilization studies

    SciTech Connect

    Rothenberger, K.S.; Warzinski, R.P.; Cugini, A.V.

    1995-12-31

    The objectives of this project are to investigate the chemistry and kinetics that occur in the initial stages of coal liquefaction and to determine the effects of hydrogen pressure, catalyst activity, and solvent type on the quantity and quality of the products produced. The project comprises three tasks: (1) preconversion chemistry and kinetics, (2) hydrogen utilization studies, and (3) assessment of kinetic models for liquefaction. The hydrogen utilization studies work will be the main topic of this report. However, the other tasks are briefly described.

  7. Impacts of heterogeneous organic matter on phenanthrene sorption--Equilibrium and kinetic studies with aquifer material

    USGS Publications Warehouse

    Karapanagioti, Hrissi K.; Kleineidam, Sybille; Sabatini, David A.; Grathwohl, Peter; Ligouis, Bertrand

    2000-01-01

    Sediment organic matter heterogeneity in sediments is shown to impact the sorption behavior of contaminants. We investigated the sorptive properties as well as the composition of organic matter in different subsamples (mainly grain size fractions) of the Canadian River Alluvium (CRA). Organic petrography was used as a new tool to describe and characterize the organic matter in the subsamples. The samples studied contained many different types of organic matter including bituminous coal particles. Differences in sorption behavior were explained based on these various types of organic matter. Subsamples containing predominately coaly, particulate organic matter showed the highest Koc, the highest nonlinearity of sorption isotherms and the slowest sorption kinetics. Soil subsamples with organic matter present as organic coatings around the quartz grains evidenced the lowest Koc, the most linear sorption isotherms and the fastest sorption kinetics, which was not limited by slow intraparticle diffusion. Due to the high sorption capacity of the coaly particles even when it is present as only a small fraction of the composite organic content (<3%) causes Koc values which are much higher than expected for soil organic matter (e.g. Koc − Kow relationships). The results show that the identification and quantification of the coaly particles within a sediment or soil sample is a prerequisite in order to understand or predict sorption behavior of organic pollutants.

  8. Kinetics of neptunium(V) sorption and desorption on goethite: An experimental and modeling study

    NASA Astrophysics Data System (ADS)

    Tinnacher, Ruth M.; Zavarin, Mavrik; Powell, Brian A.; Kersting, Annie B.

    2011-11-01

    Various sorption phenomena, such as aging, hysteresis and irreversible sorption, can cause differences between contaminant (ad)sorption and desorption behavior and lead to apparent sorption 'asymmetry'. We evaluate the relevance of these characteristics for neptunium(V) (Np(V)) sorption/desorption on goethite using a 34-day flow-cell experiment and kinetic modeling. Based on experimental results, the Np(V) desorption rate is much slower than the (ad)sorption rate, and appears to decrease over the course of the experiment. The best model fit with a minimum number of fitting parameters was achieved with a multi-reaction model including (1) an equilibrium Freundlich site (site 1), (2) a kinetically-controlled, consecutive, first-order site (site 2), and (3) a parameter ψ, which characterizes the desorption rate on site 2 based on a concept related to transition state theory (TST). This approach allows us to link differences in adsorption and desorption kinetics to changes in overall reaction pathways, without assuming different adsorption and desorption affinities (hysteresis) or irreversible sorption behavior a priori. Using modeling as a heuristic tool, we determined that aging processes are relevant. However, hysteresis and irreversible sorption behavior can be neglected within the time-frame (desorption over 32 days) and chemical solution conditions evaluated in the flow-cell experiment. In this system, desorption reactions are very slow, but they are not irreversible. Hence, our data do not justify an assumption of irreversible Np(V) sorption to goethite in transport models, which effectively limits the relevance of colloid-facilitated Np(V) transport to near-field environments. However, slow Np(V) desorption behavior may also lead to a continuous contaminant source term when metals are sorbed to bulk mineral phases. Additional long-term experiments are recommended to definitely rule out irreversible Np(V) sorption behavior at very low surface loadings and

  9. Kinetics of sorption of lead on bed sediments of River Hindon, India.

    PubMed

    Sharma, M K; Jain, C K; Singhal, D C; Choubey, V K

    2009-10-01

    A number of low cost waste sorbent have been used for removal of heavy metals, however, few studies have been carried out on the sorption process on riverbed sediments in their natural state of occurrence. Stream sediments adsorb certain solutes from streams, thereby significantly changing the solute composition, but little is known about quantitatively describing sorption phenomena and rates of these processes. In the present investigation, sorption of lead ions on river bed sediments of river Hindon, a tributary of river Yamuna, India has been studied to demonstrate the role of bed sediments in controlling metal pollution. The effect of various operating variables, viz., initial concentration, solution pH, sediment dose, contact time and particle size has been studied. The sorption of lead ions increased with respect to pH and sorbent dose and decreased with sorbent particle size. Two important geochemical phases, iron and manganese oxide, also play important role in the sorption process. The sorption data were analysed using Langmuir and Freundlich isotherm models to determine the mechanistic parameters related to the sorption process. Further, although lead ions have more affinity for the fine fraction of the sediment, but the overall contribution of coarser fraction to sorption is more as compared to clay and silt fraction. The kinetic data suggest that the sorption of lead on bed sediments is an endothermic process, which is spontaneous at low temperature. The uptake of lead is controlled by both bulk and intraparticle diffusion mechanism.

  10. Effect of dissolved organic matter on ammonium sorption kinetics and equilibrium to Chinese clinoptilolite.

    PubMed

    Zhang, Ying; Bi, Erping

    2012-01-01

    In the in-situ remediation of ammonium (NH4+) in groundwater by a sequential reactive barrier filled with zeolite, it is of great importance to understand the mechanisms of NH4+ sorption to zeolite. In this study, the effect of dissolved natural organic matter on NH4+ sorption to natural Chinese clinoptilolite was studied by batch experiments taking humic acid (HA) as a model substance. The surface of clinoptilolite was characterized by scanning electronic microscopy (SEM). A needle cluster of sorbed HA could be observed on the surface of the clinoptilolite. The negative effect of HA on NH4+ sorption is thought to be their competition for sorption sites, the surface coverage and blockage of the pores of clinoptilolite by HA. The fitting results of kinetic sorption data indicated that the rate-controlling step for NH4+ sorption by clinoptilolite in both NH4+ and NH4+ + HA systems is the heterogeneous chemisorption. The existence of HA (10 mg/L) significantly reduced the initial sorption rate of NH4+, but the effect of a further concentration increase of HA was slight. The effect of HA on maximum sorption capacity was found to be insignificant in the experiments. A high aqueous Ca2+ concentration can decrease the negative effect of HA on NH4+ sorption by precipitation of calcium humate.

  11. Sorption kinetics and mechanism of various oils into kapok assembly.

    PubMed

    Dong, Ting; Wang, Fumei; Xu, Guangbiao

    2015-02-15

    Sorption rates of kapok fibers on different oils, such as diesel, cooking oil, used motor oil, and motor oil, were quantitatively evaluated by using a wicking method. Kapok fibers absorbing different oils exhibited large differences in terms sorption coefficients. Microscopic observations of oil wetting on a single kapok showed that the four oils had varying wettability and adhesiveness to kapok, but that all of them penetrated into kapok lumens quickly because of the fiber's low surface energy, which was 40.64 mN/m, and extreme hydrophobicity, with a water contact angle up to 151°. After treatment with chloroform, there were slight changes in oil absorbencies to kapok, but the sorption coefficients for the four oils increased markedly. SEM demonstrated that chloroform treatments caused the smooth surface of the kapok fibers to become highly roughened, with densely vertical grooves that provided more available surface and a larger driving force for oil sorption through the fiber assembly.

  12. Mg-based nanocomposites with high capacity and fast kinetics for hydrogen storage.

    PubMed

    Yao, Xiangdong; Wu, Chengzhang; Du, Aijun; Lu, Gao Qing; Cheng, Huiming; Smith, Sean C; Zou, Jin; He, Yinghe

    2006-06-22

    Magnesium and its alloys have shown a great potential in effective hydrogen storage due to their advantages of high volumetric/gravimetric hydrogen storage capacity and low cost. However, the use of these materials in fuel cells for automotive applications at the present time is limited by high hydrogenation temperature and sluggish sorption kinetics. This paper presents the recent results of design and development of magnesium-based nanocomposites demonstrating the catalytic effects of carbon nanotubes and transition metals on hydrogen adsorption in these materials. The results are promising for the application of magnesium materials for hydrogen storage, with significantly reduced absorption temperatures and enhanced ab/desorption kinetics. High level Density Functional Theory calculations support the analysis of the hydrogenation mechanisms by revealing the detailed atomic and molecular interactions that underpin the catalytic roles of incorporated carbon and titanium, providing clear guidance for further design and development of such materials with better hydrogen storage properties.

  13. Hydrogen sorption in titanium alloys with a symmetric {Sigma}5(310) tilt grain boundary and a (310) surface

    SciTech Connect

    Kulkova, S. E.; Bakulin, A. V.; Kulkov, S. S.; Hocker, S.; Schmauder, S.

    2012-09-15

    The hydrogen sorption in intermetallic B2 TiM (M = Ni, Co, Pd) with a symmetric {Sigma}5(310) tilt grain boundary and a (310) surface is studied by density functional theory methods. The effect of hydrogen on the electronic characteristics of the alloys is analyzed as a function of a sorption position at the interfaces. The hydrogen sorption energy is shown to depend on the local environment of hydrogen; on the whole, hydrogen at the interfaces prefers titanium-rich positions. The hydrogen sorption energy in metal-rich positions decreases when the d shell of the second alloy component is filled with electrons. The grain-boundary energy, the surface energy, and the hydrogen segregation energies to the interfaces are calculated. Hydrogen sorption in titanium alloys is shown to decrease Griffith work and to favor brittle fracture along tilt grain boundaries.

  14. Sorption kinetics of ethanol/water solution by dimethacrylate-based dental resins and resin composites.

    PubMed

    Sideridou, Irini D; Achilias, Dimitris S; Karabela, Maria M

    2007-04-01

    In the present investigation the sorption-desorption kinetics of 75 vol % ethanol/water solution by dimethacrylate-based dental resins and resin composites was studied in detail. The resins examined were made by light-curing of bisphenol A glycol dimethacrylate (Bis-GMA), triethylene glycol dimethacrylate (TEGDMA), urethane dimethacrylate (UDMA), bisphenol A ethoxylated dimethacrylate (Bis-EMA), and mixtures of these monomers. The resin composites were prepared from two commercial light-cured restorative materials (Z100 MP and Filtek Z250), the resin matrix of which is based on copolymers of the above-mentioned monomers. Ethanol/water sorption/desorption was examined in both equilibrium and dynamic conditions in two adjacent sorption-desorption cycles. For all the materials studied, it was found that the amount of ethanol/water sorbed or desorbed was always larger than the corresponding one reported in literature in case of water immersion. It was also observed that the chemical structure of the monomers used for the preparation of the resins directly affects the amount of solvent sorbed or desorbed, as well as sorption kinetics, while desorption rate was nearly unaffected. In the case of composites studied, it seems that the sorption/desorption process is not influenced much by the presence of filler. Furthermore, diffusion coefficients calculated for the resins were larger than those of the composites and were always higher during desorption than during sorption. Finally, an interesting finding concerning the rate of ethanol/water sorption was that all resins and composites followed Fickian diffusion kinetics during almost the whole sorption curve; however, during desorption the experimental data were overestimated by the theoretical model. Instead, it was found that a dual diffusion-relaxation model was able to accurately predict experimental data during the whole desorption curve. Kinetic relaxation parameters, together with diffusion coefficients, are reported

  15. Sorption enhanced reaction process (SERP) for the production of hydrogen

    SciTech Connect

    Hufton, J.; Mayorga, S.; Gaffney, T.; Nataraj, S.; Rao, M.; Sircar, S.

    1998-08-01

    The novel Sorption Enhanced Reaction Process has the potential to decrease the cost of hydrogen production by steam methane reforming. Current effort for development of this technology has focused on adsorbent development, experimental process concept testing, and process development and design. A preferred CO{sub 2} adsorbent, K{sub 2}CO{sub 3} promoted hydrotalcite, satisfies all of the performance targets and it has been scaled up for process testing. A separate class of adsorbents has been identified which could potentially improve the performance of the H{sub 2}-SER process. Although this material exhibits improved CO{sub 2} adsorption capacity compared to the HTC adsorbent, its hydrothermal stability must be improved. Single-step process experiments (not cyclic) indicate that the H{sub 2}-SER reactor performance during the reaction step improves with decreasing pressure and increasing temperature and steam to methane ratio in the feed. Methane conversion in the H{sub 2}-SER reactor is higher than for a conventional catalyst-only reactor operated at similar temperature and pressure. The reactor effluent gas consists of 90+% H{sub 2}, balance CH{sub 4}, with only trace levels (< 50 ppm) of carbon oxides. A best-case process design (2.5 MMSCFD of 99.9+% H{sub 2}) based on the HTC adsorbent properties and a revised SER process cycle has been generated. Economic analysis of this design indicates the process has the potential to reduce the H{sub 2} product cost by 25--31% compared to conventional steam methane reforming.

  16. Equilibrium, kinetics and thermodynamic studies for sorption of chlorobenzenes on CTMAB modified bentonite and kaolinite.

    PubMed

    Shu, Yuehong; Li, Laisheng; Zhang, Qiuyun; Wu, Honghai

    2010-01-15

    The sorption of chlorobenzenes (CBs) by cetyltrimethylammonium bromide (CTMAB) modified bentonite and kaolinite was investigated. The sorption isotherms for CBs were nearly linear, suggesting that sorption could be described by a distribution process. The distribution coefficient (K(d)) was primarily affected by the amount of sorbed surfactant. The organic carbon normalized sorption coefficient (K(oc)), however, was particularly dependent on arrangement of the surfactant cations. The K(d) of CBs was larger for CTMAB-bentonites than that for CTMAB-kaolinites, while the case for K(oc) was opposite. Thus, the clay mineral structure and morphology had a considerable influence on the surfactant arrangement, which was responsible for the partitioning of CBs. The sorption of CBs onto both CTMAB-bentonites and CTMAB-kaolinites followed pseudo-second-order kinetics. The intra-particle diffusion model for sorption was also investigated and compared to identify sorption mechanism. The sorption of CBs both on CTMAB-bentonites and CTMAB-kaolinites was exothermic in nature and accompanied by an increase in entropy and a decrease in Gibbs energy in the temperature range of 15-35 degrees C. The results indicated that CBs strongly interacted with CTMAB modified bentonite and kaolinite.

  17. Effect of γ-ray irradiation on the sorption of hydrogen by nanoporous carbon materials

    NASA Astrophysics Data System (ADS)

    Dolbin, A. V.; Manzhelii, V. G.; Esel'son, V. B.; Gavrilko, V. G.; Vinnikov, N. A.; Basnukaeva, R. M.; Khlistyuck, M. V.; Maletskii, V. P.; Nikolaev, V. G.; Kudriachenko, E. V.; Uvarova, I. Yu.; Tripachko, N. A.; Koda, V. Yu.

    2015-04-01

    The effects of radiation exposure in a hydrogen atmosphere on hydrogen sorption by a synthetic porous carbon nanosorbent, SCN (spherical carbonite saturated). The exposure was created by γ-rays from cobalt-60 (photon energy 1.2 MeV, irradiation dose 4.8 × 107 rad) in a normal hydrogen atmosphere at a pressure of 1 atm and a temperature of 300 K. The processes of hydrogen sorption-desorption by SCN samples before and after irradiation were studied in a temperature interval of 15-1173 K. It was found that the irradiation of SCN in a hydrogen atmosphere significantly increased the amount hydrogen sorbed in the sample. We conducted a comparison with the results of earlier studies investigating the influence of irradiation on the sorption of hydrogen by single-walled carbon nanotubes. The amount of physically sorbed hydrogen in the synthetic SCN sorbent that was irradiated in the hydrogen atmosphere, is four times greater than the amount of hydrogen that was physically sorbed by the single-walled carbon nanotubes that were irradiated under similar conditions. At a temperature below 25 K, the hydrogen diffusion in the SCN was almost temperature independent for the porous subsystem with the highest diffusion coefficients, which is typical for cases when the tunnel diffusion mechanism dominates the thermodynamic mechanism.

  18. SORPTION KINETICS OF PAHS IN METHANOL-WATER SYSTEMS

    EPA Science Inventory

    The objectives of this study were to evaluate the relationships between the equilibrium sorption constant (Kp), the first-order desorption rate coefficient (k2), and the volumetric fraction of water miscible solvent (fc); and to utilize SPARC-calculated (SPARC Performs Automatic ...

  19. SORPTION KINETICS OF PAHS IN METHANOL-WATER SYSTEMS

    EPA Science Inventory

    The objectives of this study were to evaluate the relationships between the equilibrium sorption constant (Kp), the first-order desorption rate coefficient (k2), and the volumetric fraction of water miscible solvent (fc); and to utilize SPARC-calculated (SPARC Performs Automatic ...

  20. Abamectin in soils: Analytical methods, kinetics, sorption and dissipation.

    PubMed

    Dionisio, Andreza Camilotti; Rath, Susanne

    2016-05-01

    Abamectin is a broad-spectrum antiparasitic agent that has been widely employed in veterinary medicine and has also been used as a pesticide in agriculture. Veterinary drugs may reach the soil and may be transported to surface and ground waters, posing risks to terrestrial and aquatic organisms. Sorption, transformation and transport processes are primarily responsible for the fate of these substances in the environment. In this study, the sorption and the aerobic dissipation of abamectin in Brazilian soils (sand, clay and sandy-clay) were evaluated. For sorption studies, batch equilibrium experiments were performed. Sorption and desorption isotherms were fitted to the Freundlich model. Abamectin showed a high affinity to soil particles, with Freundlich sorption and desorption coefficients ranging from 44 to 138 μg(1-1/n) (cm(3))(1/n) g(-1) and from 89 to 236 μg(1-1/n) (cm(3))(1/n) g(-1), respectively. Dissipation of abamectin was evaluated in sterile and non-sterile soils in an aerobic and dark environment under controlled temperature and humidity. The time required for a 50% reduction of the amount of abamectin present in non-sterile soils was up to 4 days, and the time period for 90% dissipation was up to 12 days. In sterilized soils, there was no reduction in the concentration of abamectin over 37 days of exposure, suggesting that aerobic microbial degradation must have been the primary mechanism responsible for the dissipation of abamectin in soils. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Chemical Kinetic Modeling of Hydrogen Combustion Limits

    SciTech Connect

    Pitz, W J; Westbrook, C K

    2008-04-02

    A detailed chemical kinetic model is used to explore the flammability and detonability of hydrogen mixtures. In the case of flammability, a detailed chemical kinetic mechanism for hydrogen is coupled to the CHEMKIN Premix code to compute premixed, laminar flame speeds. The detailed chemical kinetic model reproduces flame speeds in the literature over a range of equivalence ratios, pressures and reactant temperatures. A series of calculation were performed to assess the key parameters determining the flammability of hydrogen mixtures. Increased reactant temperature was found to greatly increase the flame speed and the flammability of the mixture. The effect of added diluents was assessed. Addition of water and carbon dioxide were found to reduce the flame speed and thus the flammability of a hydrogen mixture approximately equally well and much more than the addition of nitrogen. The detailed chemical kinetic model was used to explore the detonability of hydrogen mixtures. A Zeldovich-von Neumann-Doring (ZND) detonation model coupled with detailed chemical kinetics was used to model the detonation. The effectiveness on different diluents was assessed in reducing the detonability of a hydrogen mixture. Carbon dioxide was found to be most effective in reducing the detonability followed by water and nitrogen. The chemical action of chemical inhibitors on reducing the flammability of hydrogen mixtures is discussed. Bromine and organophosphorus inhibitors act through catalytic cycles that recombine H and OH radicals in the flame. The reduction in H and OH radicals reduces chain branching in the flame through the H + O{sub 2} = OH + O chain branching reaction. The reduction in chain branching and radical production reduces the flame speed and thus the flammability of the hydrogen mixture.

  2. Kinetic studies on phosphorus sorption by selected soil amendments for septic tank effluent renovation.

    PubMed

    Cheung, K C; Venkitachalam, T H

    2006-01-01

    A systematic kinetic study of phosphorus (P) sorption by various materials in the soil infiltration system of septic tanks was undertaken by following the time course of P sorption by sorbents in contact with various P solutions over periods up to 360 days. Uptake of P seemed to consist of two distinct stages. Initial uptake was very rapid and this phase was completed in 4 days or less. A slower removal stage followed for some materials over many months. Phosphorus sorption during the fast reaction stage appeared to be associated with the soluble Ca content of the materials. The fast reaction of calcareous materials accounted for the bulk (>70%) of the total P removed. Merribrook loamy sand exhibited the highest proportion of P sorption during the slow phase. It should be noted, however, that for solution P concentrations in the range found in typical effluents (approximately 20 mg L(-1)) the fast reaction phase seemed to be responsible for virtually all P removed. None of the six kinetic formulae examined possessed the sophistication and detail needed to portray accurately the time course of P sorption for all the sorbents investigated. The Elovich equation and the kinetic modification of the Freundlich isotherm expression appeared to provide a reasonable fit of the experimental data.

  3. Kinetic Desorption and Sorption of U(VI) During Reactive Transport in a Contaminated Hanford Sediment

    SciTech Connect

    Qafoku, Nik; Zachara, John M.; Liu, Chongxuan; Gassman, Paul L.; Qafoku, Odeta; Smith, Steven C.

    2005-05-12

    Column experiments were conducted to investigate U(VI) desorption and sorption kinetics in a sand-textured, contaminated (22.7 µmol kg-1) capillary fringe sediment that had experienced long-term exposure to U(VI). The clay fraction mineralogy of the sediment was dominated by montmorillonite, muscovite, vermiculite, and chlorite. Saturated column experiments were performed under mildly alkaline/calcareous conditions representative of the Hanford site where uranyl–carbonate and calcium–uranyl–carbonate complexes dominate aqueous speciation. A U(VI) free solution was used to study U(VI) desorption in columns where different flow rates were applied. Uranium(VI) sorption was studied after the desorption of labile contaminant U(VI) using different U(VI) concentrations in the leaching solution. Strong kinetic behavior was observed for both U(VI) desorption and sorption. Although U(VI) is semi–mobile in mildly alkaline, calcareous subsurface environments, our results showed substantial U(VI) sorption, significant retardation during transport, and atypical breakthrough curves with extended tailing. A distributed rate model was applied to describe the effluent data and to allow comparisons between the desorption rate of contaminant U(VI) with the rate of short-term U(VI) sorption. Desorption was the slower process. Our results suggest that U(VI) release and transport in the vadose zone and aquifer system from which the sediment was obtained are kinetically controlled.

  4. Tuning hydrogen sorption properties of metal-organic frameworks by postsynthetic covalent modification.

    PubMed

    Wang, Zhenqiang; Tanabe, Kristine K; Cohen, Seth M

    2010-01-04

    Postsynthetic modification is presented as a means to tune the hydrogen adsorption properties of a series of metal-organic frameworks (MOFs). IRMOF-3 (isoreticular metal-organic framework), UMCM-1-NH(2) (University of Michigan crystalline material), and DMOF-1-NH(2) (DABCO metal-organic framework) have been covalently modified with a series of anhydrides or isocyanates and the hydrogen sorption properties have been studied. Both the storage capacities and isosteric heats of adsorption clearly show that covalent postsynthetic modification can significantly enhance the sorption affinity of MOFs with hydrogen and in some cases increase both gravimetric and volumetric uptake of the gas as much as 40 %. The significance of the present study is illustrated by: 1) the nature of the substituents introduced by postsynthetic modification result in different effects on the binding of hydrogen; 2) the covalent postsynthetic modification approach allows for systematic modulation of hydrogen sorption properties; and 3) the ease of postsynthetic modification of MOFs allows a direct evaluation of the interplay between MOF structure, hydrogen uptake, and heat of adsorption. The findings presented herein show that postsynthetic modification is a powerful method to manipulate and better understand the gas sorption properties of MOFs.

  5. Kinetics of Ni Sorption in Soils: Roles of Soil Organic Matter and Ni Precipitation

    SciTech Connect

    Shi, Zhenqing; Peltier, Edward; Sparks, Donald L.

    2012-12-10

    The kinetics of Ni sorption to two Delaware agricultural soils were studied to quantitatively assess the relative importance of Ni adsorption on soil organic matter (SOM) and the formation of Ni layered double hydroxide (Ni-LDH) precipitates using both experimental studies and kinetic modeling. Batch sorption kinetic experiments were conducted with both soils at pH 6.0, 7.0, and 7.5 from 24 h up to 1 month. Time-resolved Ni speciation in soils was determined by X-ray absorption spectroscopy (XAS) during the kinetic experiments. A kinetics model was developed to describe Ni kinetic reactions under various reaction conditions and time scales, which integrated Ni adsorption on SOM with Ni-LDH precipitation in soils. The soil Ni speciation (adsorbed phases and Ni-LDH) calculated using the kinetics model was consistent with that obtained through XAS analysis during the sorption processes. Under our experimental conditions, both modeling and XAS results demonstrated that Ni adsorption on SOM was dominant in the short term and the formation of Ni-LDH precipitates accounted for the long-term Ni sequestration in soils, and, more interestingly, that the adsorbed Ni may slowly transfer to Ni-LDH phases with longer reaction times.

  6. Kinetics of Ni sorption in soils: roles of soil organic matter and Ni precipitation.

    PubMed

    Shi, Zhenqing; Peltier, Edward; Sparks, Donald L

    2012-02-21

    The kinetics of Ni sorption to two Delaware agricultural soils were studied to quantitatively assess the relative importance of Ni adsorption on soil organic matter (SOM) and the formation of Ni layered double hydroxide (Ni-LDH) precipitates using both experimental studies and kinetic modeling. Batch sorption kinetic experiments were conducted with both soils at pH 6.0, 7.0, and 7.5 from 24 h up to 1 month. Time-resolved Ni speciation in soils was determined by X-ray absorption spectroscopy (XAS) during the kinetic experiments. A kinetics model was developed to describe Ni kinetic reactions under various reaction conditions and time scales, which integrated Ni adsorption on SOM with Ni-LDH precipitation in soils. The soil Ni speciation (adsorbed phases and Ni-LDH) calculated using the kinetics model was consistent with that obtained through XAS analysis during the sorption processes. Under our experimental conditions, both modeling and XAS results demonstrated that Ni adsorption on SOM was dominant in the short term and the formation of Ni-LDH precipitates accounted for the long-term Ni sequestration in soils, and, more interestingly, that the adsorbed Ni may slowly transfer to Ni-LDH phases with longer reaction times.

  7. Hydrogen adsorption in a highly stable porous rare-earth metal-organic framework: sorption properties and neutron diffraction studies.

    PubMed

    Luo, Junhua; Xu, Hongwu; Liu, Yun; Zhao, Yusheng; Daemen, Luke L; Brown, Craig; Timofeeva, Tatiana V; Ma, Shengqian; Zhou, Hong-Cai

    2008-07-30

    A highly stable porous lanthanide metal-organic framework, Y(BTC)(H2O).4.3H2O (BTC = 1,3,5-benzenetricarboxylate), with pore size of 5.8 A has been constructed and investigated for hydrogen storage. Gas sorption measurements show that this porous MOF exhibits highly selective sorption behaviors of hydrogen over nitrogen gas molecules and can take up hydrogen of about 2.1 wt % at 77 K and 10 bar. Difference Fourier analysis of neutron powder diffraction data revealed four distinct D2 sites that are progressively filled within the nanoporous framework. Interestingly, the strongest adsorption sites identified are associated with the aromatic organic linkers rather than the open metal sites, as occurred in previously reported MOFs. Our results provide for the first time direct structural evidence demonstrating that optimal pore size (around 6 A, twice the kinetic diameter of hydrogen) strengthens the interactions between H2 molecules and pore walls and increases the heat of adsorption, which thus allows for enhancing hydrogen adsorption from the interaction between hydrogen molecules with the pore walls rather than with the normally stronger adsorption sites (the open metal sites) within the framework. At high concentration H2 loadings (5.5 H2 molecules (3.7 wt %) per Y(BTC) formula), H2 molecules form highly symmetric novel nanoclusters with relatively short H2-H2 distances compared to solid H2. These observations are important and hold the key to optimizing this new class of rare metal-organic framework (RMOF) materials for practical hydrogen storage applications.

  8. Kinetic characteristic of phenanthrene sorption in aged soil amended with biochar

    NASA Astrophysics Data System (ADS)

    Kim, Chanyang; Kim, Yong-Seong; Hyun, Seunghun

    2015-04-01

    Biochar has been recently highlighted as an amendment that affects yield of the crops by increasing pH, cation exchange capacity and water retention, and reduces the lability of contaminants by increasing sorption capacity in the soil system. Biochar's physico-chemical properties, high CEC, surfaces containing abundant micropores and macropores, and various types of functional groups, play important roles in enhancing sorption capacity of contaminants. Aging through a natural weathering process might change physico-chemical properties of biochar amended in soils, which can affect the sorption behavior of contaminants. Thus, in this study, the sorption characteristics of phenanthrene (PHE) on biochar-amended soils were studied with various types of chars depending on aging time. To do this, 1) soil was amended with sludge waste char (SWC), wood char (WC), and municipal waste char (MWC) during 0, 6, and 12 month. Chars were applied to soil at 1% and 2.5% (w/w) ratio. 2) Several batch kinetic and equilibrium studies were conducted. One-compartment first order and two-compartment first order model apportioning the fraction of fast and slow sorbing were selected for kinetic models. Where, qt is PHE concentration in biochar-amended soils at each time t, qeis PHE concentration in biochar-amended soils at equilibrium. ff is fastly sorbing fraction and (1-ff) is slowly sorbing fraction. k is sorption rate constant from one-compartment first order model, k1 and k2 are sorption rate constant from two-compartment first order model, t is time (hr). The equilibrium sorption data were fitted with Fruendlich and Langmuir equation. 3) Change in physico-chemical properties of biochar-amended soils was investigated with aging time. Batch equilibrium sorption results suggested that sorbed amount of PHE on WC was greater than SWC and MWC. The more char contents added to soil, the greater sorption capacity of PHE. Sorption equilibrium was reached after 4 hours and equilibrium pH ranged

  9. Heavy metal adsorption by humic umbrisols: selectivity sequences and competitive sorption kinetics.

    PubMed

    Covelo, E F; Andrade, M L; Vega, F A

    2004-12-01

    This work examines sorption kinetics of Cd, Cr, Cu, Ni, Pb, and Zn adsorbed simultaneously by four humic umbrisols, as well as the influence of the soil components on the adsorption rate. Starting from the value of K(d), the metals most adsorbed by the soils are Cu, Cr, and Pb. The soils that adsorb the largest amounts of metals have also the highest organic matter, oxide, and clay content. In general, the most common selectivity sequence of adsorption is Pb > Cr > Cu > Cd approximately Ni approximately Zn. Sorption kinetics is rapid for Cr, Cu, and Pb in all the soils studied and competes favorably for the adsorption sites with Cd, Ni, and Zn. Various rate equations (zero-order, first-order, second-order, Elovich, and power function) were applied to the kinetic data to obtain the corresponding rate coefficients. A second-order reaction best represents the kinetic data for Cr in most of the soils.

  10. Effect of fulvic acid surface coatings on plutonium sorption and desorption kinetics on goethite.

    PubMed

    Tinnacher, Ruth M; Begg, James D; Mason, Harris; Ranville, James; Powell, Brian A; Wong, Jennifer C; Kersting, Annie B; Zavarin, Mavrik

    2015-03-03

    The rates and extent of plutonium (Pu) sorption and desorption onto mineral surfaces are important parameters for predicting Pu mobility in subsurface environments. The presence of natural organic matter, such as fulvic acid (FA), may influence these parameters. We investigated the effects of FA on Pu(IV) sorption/desorption onto goethite in two scenarios: when FA was (1) initially present in solution or (2) found as organic coatings on the mineral surface. A low pH was used to maximize FA coatings on goethite. Experiments were combined with kinetic modeling and speciation calculations to interpret variations in Pu sorption rates in the presence of FA. Our results indicate that FA can change the rates and extent of Pu sorption onto goethite at pH 4. Differences in the kinetics of Pu sorption were observed as a function of the concentration and initial form of FA. The fraction of desorbed Pu decreased in the presence of FA, indicating that organic matter can stabilize sorbed Pu on goethite. These results suggest that ternary Pu-FA-mineral complexes could enhance colloid-facilitated Pu transport. However, more representative natural conditions need to be investigated to quantify the relevance of these findings.

  11. Effect of fulvic acid surface coatings on plutonium sorption and desorption kinetics on goethite

    SciTech Connect

    Tinnacher, Ruth M.; Begg, James D.; Mason, Harris; Ranville, James; Powell, Brian A.; Wong, Jennifer C.; Kersting, Annie B.; Zavarin, Mavrik

    2015-01-21

    The rates and extent of plutonium (Pu) sorption and desorption onto mineral surfaces are important parameters for predicting Pu mobility in subsurface environments. The presence of natural organic matter, such as fulvic acid (FA), may influence these parameters. We investigated the effects of FA on Pu(IV) sorption/desorption onto goethite in two scenarios: when FA was (1) initially present in solution or (2) found as organic coatings on the mineral surface. A low pH was used to maximize FA coatings on goethite. Experiments were combined with kinetic modeling and speciation calculations to interpret variations in Pu sorption rates in the presence of FA. Our results indicate that FA can change the rates and extent of Pu sorption onto goethite at pH 4. Differences in the kinetics of Pu sorption were observed as a function of the concentration and initial form of FA. The fraction of desorbed Pu decreased in the presence of FA, indicating that organic matter can stabilize sorbed Pu on goethite. These results suggest that ternary Pu–FA–mineral complexes could enhance colloid-facilitated Pu transport. In conclusion, more representative natural conditions need to be investigated to quantify the relevance of these findings.

  12. Effect of fulvic acid surface coatings on plutonium sorption and desorption kinetics on goethite

    DOE PAGES

    Tinnacher, Ruth M.; Begg, James D.; Mason, Harris; ...

    2015-01-21

    The rates and extent of plutonium (Pu) sorption and desorption onto mineral surfaces are important parameters for predicting Pu mobility in subsurface environments. The presence of natural organic matter, such as fulvic acid (FA), may influence these parameters. We investigated the effects of FA on Pu(IV) sorption/desorption onto goethite in two scenarios: when FA was (1) initially present in solution or (2) found as organic coatings on the mineral surface. A low pH was used to maximize FA coatings on goethite. Experiments were combined with kinetic modeling and speciation calculations to interpret variations in Pu sorption rates in the presencemore » of FA. Our results indicate that FA can change the rates and extent of Pu sorption onto goethite at pH 4. Differences in the kinetics of Pu sorption were observed as a function of the concentration and initial form of FA. The fraction of desorbed Pu decreased in the presence of FA, indicating that organic matter can stabilize sorbed Pu on goethite. These results suggest that ternary Pu–FA–mineral complexes could enhance colloid-facilitated Pu transport. In conclusion, more representative natural conditions need to be investigated to quantify the relevance of these findings.« less

  13. Sorption and desorption kinetics of diuron, fluometuron, prometryn and pyrithiobac sodium in soils.

    PubMed

    Baskaran, S; Kennedy, I R

    1999-11-01

    The sorption and desorption characteristics of four herbicides (diuron, fluometuron, prometryn and pyrithiobac-sodium) in three different cotton growing soils of Australia was investigated. Kinetics and equilibrium sorption and desorption isotherms were determined using the batch equilibrium technique. Sorption was rapid (> 80% in 2 h) and sorption equilibrium was achieved within a short period of time (ca 4 h) for all herbicides. Sorption isotherms of the four herbicides were described by Freundlich equation with an r2 value > 0.98. The herbicide sorption as measured by the distribution coefficient (Kd) values ranged from 3.24 to 5.71 L/kg for diuron, 0.44 to 1.13 L/kg for fluometuron, 1.78 to 6.04 L/kg for prometryn and 0.22 to 0.59 L/kg for pyrithiobac-sodium. Sorption of herbicides was higher in the Moree soil than in Narrabri and Wee Waa soils. When the Kd values were normalised to organic carbon content of the soils (Koc), it suggested that the affinity of the herbicides to the organic carbon increased in the order: pyrithiobac-sodium < fluometuron < prometryn < or = diuron. The desorption isotherms were also adequately described by the Freundlich equation. For desorption, all herbicides exhibited hysteresis and the hysteresis was stronger for highly sorbed herbicides (diuron and prometryn) than the weakly sorbed herbicides (fluometuron and pyrithiobac-sodium). Hysteresis was also quantified as the percentage of sorbed herbicides which is not released during the desorption step (omega = [nad/nde - 1] x 100). Soil type and initial concentration had significant effect on omega. The effect of sorption and desorption properties of these four herbicides on the off-site transport to contaminate surface and groundwater are also discussed in this paper.

  14. Sorption kinetics of zinc and nickel on modified chitosan.

    PubMed

    Tripathi, Nimisha; Choppala, Girish; Singh, Raj S; Srivastava, Prashant; Seshadri, Balaji

    2016-09-01

    This study was conducted to evaluate the effect of equilibration time on adsorption of zinc [Zn(II)] and nickel [Ni(II)] on pure and modified chitosan beads. The initial adsorption of Zn(II) was high on molybdenum (Mo)-impregnated chitosan beads (MoCB) during the initial 60 min. However, after 240 min, Zn(II) adsorption occurred more on single super phosphate chitosan beads (SSPCB), followed by monocalcium phosphate chitosan beads (MCPCB), untreated pure chitosan beads (UCB), and MoCB. Similarly, Ni(II) adsorption was greatest on MoCB during the initial 60 min. At the conclusion of the experiment (at 240 min), the greatest adsorption was occurred on MCPCB, followed by MoCB, UCB, and SSPCB. Chemical sorption and intra-particle diffusion were probably the dominant processes responsible for Zn(II) and Ni(II) sorption onto chitosan beads. The results demonstrated that modified chitosan beads were effective in adsorbing Zn and Ni and hence, could be used for the removal of these toxic metals from soil.

  15. THE EFFECTS OF HALIDE MODIFIERS ON THE SORPTION KINETICS OF THE LI-MG-N-H SYSTEM

    SciTech Connect

    Anton, D.; Gray, J.; Price, C.; Lascola, R.

    2011-07-20

    The effects of different transition metal halides (TiCl{sub 3}, VCl{sub 3}, ScCl{sub 3} and NiCl{sub 2}) on the sorption properties of the 1:1 molar ratio of LiNH{sub 2} to MgH{sub 2} are investigated. The modified mixtures were found to contain LiNH{sub 2}, MgH{sub 2} and LiCl. TGA results showed that the hydrogen desorption temperature was reduced with the modifier addition in this order: TiCl{sub 3} > ScCl{sub 3} > VCl{sub 3} > NiCL{sub 2}. Ammonia release was not significantly reduced resulting in a weight loss greater than the theoretical hydrogen storage capacity of the material. The isothermal sorption kinetics of the modified systems showed little improvement after the first dehydrogenation cycle over the unmodified system but showed drastic improvement in rehydrogenation cycles. X-ray diffraction and Raman spectroscopy identified the cycled material to be composed of LiH, MgH{sub 2}, Mg(NH{sub 2}){sub 2} and Mg{sub 3}N{sub 2}.

  16. THE AFFECTS OF HALIDE MODIFIERS ON THE SORPTION KINETICS OF THE LI-MG-N-H SYSTEM

    SciTech Connect

    Erdy, C.; Gray, J.; Lascola, R.; Anton, D.

    2010-12-16

    In this present work, the affects of different transition metal halides (TiCl{sub 3}, VCl{sub 3}, ScCl{sub 3} and NiCl{sub 2}) on the sorption properties of the 1:1 molar ratio of LiNH{sub 2} to MgH{sub 2} are investigated. The modified mixtures were found to contain LiNH{sub 2}, MgH{sub 2} and LiCl. TGA results showed that the hydrogen desorption temperature was reduced with the modifier addition in this order: TiCl{sub 3}>ScCl{sub 3}>VCl{sub 3}>NiCl{sub 2}. Ammonia release was not significantly reduced resulting in a weight loss greater than the theoretical hydrogen storage capacity of the material. The isothermal sorption kinetics of the modified systems showed little improvement after the first dehydrogenation cycle over the unmodified system but showed drastic improvement in rehydrogenation cycles. XRD and Raman spectroscopy identified the cycled material to be composed of LiH, MgH{sub 2}, Mg(NH{sub 2}){sub 2} and Mg{sub 3}N{sub 2}.

  17. Kinetics and thermodynamics of basic dye sorption on phosphoric acid esterifying soybean hull with solid phase preparation technique.

    PubMed

    Gong, Renmin; Sun, Jin; Zhang, Demin; Zhong, Keding; Zhu, Guoping

    2008-07-01

    In this paper, the solid phase preparation method of a cationic sorbent, which bears hydroxyl groups of phosphoric acid derived from esterified soybean hull (ESH), was reported. The sorption kinetics and thermodynamics of two basic dyes, acridine orange (AO) and malachite green (MG), from aqueous solution onto ESH were investigated with a batch system. The isothermal data of dye sorptions followed the Langmuir model better than the Freundlich model. The maximum sorption capacity (Q(m)) of ESH for AO and MG was 238.1 mg/g and 178.57 mg/g, respectively. The dye sorption processes could be described by the pseudo-second-order kinetic model. The thermodynamic study indicated that the dye sorptions were spontaneous and exothermic. Lower temperatures were favorable for the sorption processes.

  18. Moisture sorption kinetics of switchgrass, big bluestem, and bromegrass biomass

    USDA-ARS?s Scientific Manuscript database

    Moisture status in biomass is the most influential factor of biomass storage, and hydration kinetics control the dynamic moisture condition of the biomass, thus affecting biomass storage and processing operations and final utilization applications. Moisture hydration characteristics of switchgrass, ...

  19. Influence of phosphorus on Cu sorption kinetics: stirred flow chamber experiments.

    PubMed

    Pérez-Novo, C; Fernández-Calviño, D; Bermúdez-Couso, A; López-Periago, J E; Arias-Estévez, M

    2011-01-15

    A stirred flow reactor was used to study the influence of phosphorus on the adsorption and desorption kinetics of copper in two acid soils on granite and amphibolite. The presence of P was found to significantly increase Cu adsorption in both soils, albeit at different types of sites (mainly in slow adsorption sites in the soil on granite, and both in fast and slow adsorption sites in that on amphibolite). The increased Cu sorption at fast sites in the amphibolite soil was due to its high content in Fe oxyhydroxides, which bound P and released OH(-) as a result, thereby raising the pH and leading to a higher sorption capacity during fast reactions. On the other hand, the increased Cu sorption at slow adsorption sites was due to Cu(2+) acting as a bridging element between P and organic matter.

  20. Influence of nonlinear sorption kinetics on the slow-desorbing organic contaminant fraction in soil

    SciTech Connect

    Schlebaum, W.; Schraa, G.; Van Riemsdijk, W.H.

    1999-05-01

    Release rates of hydrophobic organic compounds (HOCs) from the soil matrix influence the availability of HOCs in soils or sediments for microbial degradation or removal by physical means (e.g., soil washing or soil venting). In this study it was shown that the initial contaminant concentration influences the desorption rate. This was attributed to the presence of a limited number of high affinity sites that cause nonlinear sorption behavior. The experimental results could be described with a kinetic model composed of two separate compartments. One compartment was described with a Freundlich isotherm and corresponding kinetics and was assumed to represent sorption to high affinity sites. The second compartment was described with a linear sorption isotherm and first-order kinetics. The model was used to simulate the influence of purging strategies on removal of QCB. The simulations showed that after removal of a fast-desorbing fraction, the slow-desorbing fraction could be efficiently removed at very low purging rates. Intermittent purging reduced the total purging time but the simulations showed large fluctuations in the aqueous pentachlorobenzene concentration. For each subsequent purging interval, the purging efficiency decreased due to the nonlinear desorption kinetics of the slow-desorbing fraction of pentachlorobenzene.

  1. Sorption kinetics of arsenic on laterite soil in aqueous medium.

    PubMed

    Maji, Sanjoy K; Pal, Anjali; Pal, Tarasankar; Adak, Asok

    2007-06-01

    The efficiency of a locally available laterite soil in removing both arsenite and arsenate from aqueous medium by adsorption was evaluated. It was observed that in batch experiment conducted at 0.5 mg/L initial concentration of arsenic, laterite soil could remove up to 98% of arsenite and 95% of arsenate under optimized conditions. The kinetic profiles under various conditions were developed. Both arsenite and arsenate removal followed pseudo--second order reaction kinetic model. Pore and film diffusion coefficients were determined from the half-time equation and film diffusion appeared to be the rate-limiting. This was further supported by multiple interruption tests.

  2. Carbon and hydrogen isotope fractionation of benzene and toluene during hydrophobic sorption in multistep batch experiments.

    PubMed

    Imfeld, G; Kopinke, F-D; Fischer, A; Richnow, H-H

    2014-07-01

    The application of compound-specific stable isotope analysis (CSIA) for evaluating degradation of organic pollutants in the field implies that other processes affecting pollutant concentration are minor with respect to isotope fractionation. Sorption is associated with minor isotope fractionation and pollutants may undergo successive sorption-desorption steps during their migration in aquifers. However, little is known about isotope fractionation of BTEX compounds after consecutive sorption steps. Here, we show that partitioning of benzene and toluene between water and organic sorbents (i.e. 1-octanol, dichloromethane, cyclohexane, hexanoic acid and Amberlite XAD-2) generally exhibits very small carbon and hydrogen isotope effects in multistep batch experiments. However, carbon and hydrogen isotope fractionation was observed for the benzene-octanol pair after several sorption steps (Δδ(13)C=1.6 ± 0.3‰ and Δδ(2)H=88 ± 3‰), yielding isotope fractionation factors of αC=1.0030 ± 0.0005 and αH=1.195 ± 0.026. Our results indicate that the cumulative effect of successive hydrophobic partitioning steps in an aquifer generally results in insignificant isotope fractionation for benzene and toluene. However, significant carbon and hydrogen isotope fractionation cannot be excluded for specific sorbate-sorbent pairs, such as sorbates with π-electrons and sorbents with OH-groups. Consequently, functional groups of sedimentary organic matter (SOM) may specifically interact with BTEX compounds migrating in an aquifer, thereby resulting in potentially relevant isotope fractionation.

  3. Sorption of norfloxacin in soils: analytical method, kinetics and Freundlich isotherms.

    PubMed

    Peruchi, Livia Maniero; Fostier, Anne Hélène; Rath, Susanne

    2015-01-01

    Fluoroquinolones are potent antibacterial agents that are active against a wide range of pathogenic organisms and are widely used in veterinary medicine. Fluoroquinolones and their metabolites may reach the soil through animal excreta or manure and may contaminate water and soils. The degree of sorption of these antimicrobials to soils varies widely, as does the mobility of these drugs. In the present study, sorption of norfloxacin in four soils of the state of São Paulo was investigated with batch equilibrium experiments. A strong matrix effect on the chromatographic determination of norfloxacin was verified. Sorption kinetics were best fit by a pseudo second-order model (r>0.99), and sorption/desorption isotherms were well fit by the Freundlich model in log form (r>0.97). Norfloxacin showed high affinity for soil particles, with KF sorption values ranging from 643 to 2410 μg(1-1/n)(cm(3))(1/n)g(-1) and KF desorption values ranging from 686 to 2468 μg(1-1/n)(cm(3))(1/n)g(-1). The high desorption KF values indicate that norfloxacin is highly immobile in the evaluated soils.

  4. Catalytic mechanism of transition-metal compounds on Mg hydrogen sorption reaction.

    PubMed

    Barkhordarian, Gagik; Klassen, Thomas; Bormann, Rüdiger

    2006-06-08

    The catalytic mechanisms of transition-metal compounds during the hydrogen sorption reaction of magnesium-based hydrides were investigated through relevant experiments. Catalytic activity was found to be influenced by four distinct physico-thermodynamic properties of the transition-metal compound: a high number of structural defects, a low stability of the compound, which however has to be high enough to avoid complete reduction of the transition metal under operating conditions, a high valence state of the transition-metal ion within the compound, and a high affinity of the transition-metal ion to hydrogen. On the basis of these results, further optimization of the selection of catalysts for improving sorption properties of magnesium-based hydrides is possible. In addition, utilization of transition-metal compounds as catalysts for other hydrogen storage materials is considered.

  5. Relation of organic contaminant equilibrium sorption and kinetic uptake in plants

    USGS Publications Warehouse

    Li, H.; Sheng, G.; Chiou, C.T.; Xu, O.

    2005-01-01

    Plant uptake is one of the environmental processes that influence contaminant fate. Understanding the magnitude and rate of plant uptake is critical to assessing potential crop contamination and the development of phytoremediation technologies. We determined (1) the partition-dominated equilibrium sorption of lindane (LDN) and hexachlorobenzene (HCB) by roots and shoots of wheat seedlings, (2) the kinetic uptake of LDN and HCB by roots and shoots of wheat seedlings, (3) the kinetic uptake of HCB, tetrachloroethylene (PCE), and trichloroethylene (TCE) by roots and shoots of ryegrass seedlings, and (4) the lipid, carbohydrate, and water contents of the plants. Although the determined sorption and the plant composition together suggest the predominant role of plant lipids for the sorption of LDN and HCB, the predicted partition with lipids of LDN and HCB using the octanol-water partition coefficients is notably lower than the measured sorption, due presumably to underestimation of the plant lipid contents and to the fact that octanol is less effective as a partition medium than plant lipids. The equilibrium sorption or the estimated partition can be viewed as the kinetic uptake limits. The uptakes of LDN, PCE, and TCE from water at fixed concentrations increased with exposure time in approach to steady states. The uptake of HCB did not reach a plateau within the tested time because of its exceptionally high partition coefficient. In all of the cases, the observed uptakes were lower than their respective limits, due presumably to contaminant dissipation in and limited water transpiration by the plants. ?? 2005 American Chemical Society.

  6. Metal-anion sorption by chitosan beads: Equilibrium and kinetic studies

    SciTech Connect

    Guibal, E.; Milot, C.; Tobin, J.M.

    1998-04-01

    Chitosan is a well-known biopolymer, whose high nitrogen content confers remarkable ability for the sorption of metal ions from dilute effluents. However, its sorption performance in both equilibrium and kinetic terms is controlled by diffusion processes. Gel bead formation allows an expansion of the polymer network, which improves access to the internal sorption sites and enhances diffusion mechanisms. Molybdate and vanadate recovery using glutaraldehyde cross-linked chitosan beads reaches uptake capacities as high as 7--8 mmol/g, depending on the pH. The optimum pH (3--3.5) corresponded to the predominance range of hydrolyzed polynuclear metal forms and optimum electrostatic attraction. While for beads, particle size does not influence equilibrium, for flakes, increasing sorbent radius significantly decreases uptake capacities to 1.5 mmol/g. Sorption kinetics are mainly controlled by intraparticle diffusion for beads, while for flakes the controlling mechanisms are both external and intraparticle diffusion. The gel conditioning increases the intraparticle diffusivity by 3 orders of magnitude: intraparticle diffusivities range between 10{sup {minus}13} and 10{sup {minus}10} m{sup 2}/min, depending on the sorbent size and the conditioning.

  7. Kinetic studies on sorption of basic dye using Eichhornia crassipes.

    PubMed

    Renganathan, S; Venkatakrishnan, R; Venkataramana, S; Kumar, M Dharmendira; Deepak, S; Miranda, Lima Rose; Velan, M

    2008-10-01

    Sorption capacity of different parts of Eichhornia crassipes, such as rhizome, root, lamina and petiole on basic aurophine-o was studied in a batch system. The equilibrium uptake capacity was observed as 13.65 mg/g (using root), 13.5 mg/g (using lamina), 12.9 mg/g (using rhizome) and 12.75 mg/g (using petiole). It was observed that the equilibrium dye uptake capacity using root was found to be more when compared to all other E. crassipes parts used in the present investigation. The shortcut equations developed are accurate and can be used in the place of experimental data. The shortcut equations form the basis for further research. The intra particle diffusion coefficient (K(i)) and effective diffusion coefficient (D(i)) were evaluated for the removal of dye using root, which were found to be more when compared to all other parts of E. crassipes studied such as, lamina, rhizome and petiole.

  8. Molecularly Imprinted Polymers: Thermodynamic and Kinetic Considerations on the Specific Sorption and Molecular Recognition.

    PubMed

    Li, Songjun; Huang, Xing; Zheng, Mingxia; Li, Wuke; Tong, Kejun

    2008-04-23

    This article presents a work aiming at thermodynamically and kinetically interpreting the specific sorption and recognition by a molecularly imprinted polymer. Using Boc-L-Phe-OH as a template, the imprinted material was prepared. The result indicates that the prepared polymer can well discriminate the imprint species from its analogue (Boc-D-Phe-OH), so as to adsorb more for the former but less for the latter. Kinetic analysis indicates that this specific sorption, in nature, can be a result of a preferential promotion. The imprint within the polymer causes a larger adsorption rate for the template than for the analogue. Thermodynamic study also implies that the molecular induction from the specific imprint to the template is larger than to the analogue, which thus makes the polymer capable of preferentially alluring the template to bind.

  9. The kinetics of fluoride sorption by zeolite: Effects of cadmium, barium and manganese.

    PubMed

    Cai, Qianqian; Turner, Brett D; Sheng, Daichao; Sloan, Scott

    2015-01-01

    Industrial wastewaters often consist of a complex chemical cocktail with treatment of target contaminants complicated by adverse chemical reactions. The impact of metal ions (Cd(2+), Ba(2+) and Mn(2+)) on the kinetics of fluoride removal from solution by natural zeolite was investigated. In order to better understand the kinetics, the pseudo-second order (PSO), Hill (Hill 4 and Hill 5) and intra-particle diffusion (IPD) models were applied. Model fitting was compared using the Akaike Information Criterion (AIC) and the Schwarz Bayesian Information Criterion (BIC). The Hill models (Hill 4 and Hill 5) were found to be superior in describing the fluoride removal processes due to the sigmoidal nature of the kinetics. Results indicate that the presence of Mn (100 mg L(-1)) and Cd (100 mg L(-1)) respectively increases the rate of fluoride sorption by a factor of ~28.3 and ~10.9, the maximum sorption capacity is increased by ~2.2 and ~1.7. The presence of Ba (100 mg L(-1)) initially inhibited fluoride removal and very poor fits were obtained for all models. Fitting was best described with a biphasic sigmoidal model with the degree of inhibition decreasing with increasing temperature suggesting that at least two processes are involved with fluoride sorption onto natural zeolite in the presence of Ba.

  10. The kinetics of fluoride sorption by zeolite: Effects of cadmium, barium and manganese

    NASA Astrophysics Data System (ADS)

    Cai, Qianqian; Turner, Brett D.; Sheng, Daichao; Sloan, Scott

    2015-06-01

    Industrial wastewaters often consist of a complex chemical cocktail with treatment of target contaminants complicated by adverse chemical reactions. The impact of metal ions (Cd2 +, Ba2 + and Mn2 +) on the kinetics of fluoride removal from solution by natural zeolite was investigated. In order to better understand the kinetics, the pseudo-second order (PSO), Hill (Hill 4 and Hill 5) and intra-particle diffusion (IPD) models were applied. Model fitting was compared using the Akaike Information Criterion (AIC) and the Schwarz Bayesian Information Criterion (BIC). The Hill models (Hill 4 and Hill 5) were found to be superior in describing the fluoride removal processes due to the sigmoidal nature of the kinetics. Results indicate that the presence of Mn (100 mg L- 1) and Cd (100 mg L- 1) respectively increases the rate of fluoride sorption by a factor of 28.3 and 10.9, the maximum sorption capacity is increased by 2.2 and 1.7. The presence of Ba (100 mg L- 1) initially inhibited fluoride removal and very poor fits were obtained for all models. Fitting was best described with a biphasic sigmoidal model with the degree of inhibition decreasing with increasing temperature suggesting that at least two processes are involved with fluoride sorption onto natural zeolite in the presence of Ba.

  11. Sorption kinetics of Cs and Sr in sediments of a Savannah River Site reservoir

    SciTech Connect

    Stephens, J.A.

    1997-07-01

    Laboratory measurements of the sorption and desorption of {sup 134}Cs and {sup 85}Sr to sediments were conducted. These sediments were sampled from the profundal zone of Par Pond at the Savannah River Site, Aiken, South Carolina. The isotopes {sup 134}Cs and {sup 85}Sr were used to trace the sorption properties of the main contaminants found in the reservoir which are {sup 137}Cs and {sup 90}Sr respectively. The sorption behavior of these two elements was studied using spiked sediment/water slurries of a known mass to volume ratio. The results reveal that Sr undergoes significant reversible sorption while a fraction of Cs irreversibly sorbs to the sediment. The calculated distribution coefficient Kd at equilibrium was (3 {+-} 0.6) x 10{sup 3} for {sup 134}Cs after 60 d and (1 {+-} 0.2) x 10{sup 3} for {sup 85}Sr after 7 d at pH {approx} 6 and slurry ratio of 1:1000 g/ml. The K{sub d} for {sup 134}Cs ranged from 2 x 10{sup 2} to 3 x 10{sup 4} depending on pH and conductivity. The {sup 85}Sr reached equilibrium in a few days, while {sup 134}Cs reached an apparent equilibrium in 1--2 months. The K{sub d} for {sup 134}Cs was a function of the slurry ratio, pH, conductivity, and contact time. These factors were interrelated since the sediments released ions to the slurry mixture which decreased the pH and increased the conductivity. A sorption isotherm measured for {sup 134}Cs was linear at water concentrations from 60 mBq/ml to 20 Bq/ml. A kinetic model was proposed to describe the basic sorption of {sup 134}Cs to Par Pond sediments under homogeneous laboratory conditions.

  12. Mechanisms and Kinetics for Sorption of CO2 on Bicontinuous Mesoporous Silica Modified with n-Propylamine

    PubMed Central

    2011-01-01

    We studied equilibrium adsorption and uptake kinetics and identified molecular species that formed during sorption of carbon dioxide on amine-modified silica. Bicontinuous silicas (AMS-6 and MCM-48) were postsynthetically modified with (3-aminopropyl)triethoxysilane or (3-aminopropyl)methyldiethoxysilane, and amine-modified AMS-6 adsorbed more CO2 than did amine-modified MCM-48. By in situ FTIR spectroscopy, we showed that the amine groups reacted with CO2 and formed ammonium carbamate ion pairs as well as carbamic acids under both dry and moist conditions. The carbamic acid was stabilized by hydrogen bonds, and ammonium carbamate ion pairs formed preferably on sorbents with high densities of amine groups. Under dry conditions, silylpropylcarbamate formed, slowly, by condensing carbamic acid and silanol groups. The ratio of ammonium carbamate ion pairs to silylpropylcarbamate was higher for samples with high amine contents than samples with low amine contents. Bicarbonates or carbonates did not form under dry or moist conditions. The uptake of CO2 was enhanced in the presence of water, which was rationalized by the observed release of additional amine groups under these conditions and related formation of ammonium carbamate ion pairs. Distinct evidence for a fourth and irreversibly formed moiety was observed under sorption of CO2 under dry conditions. Significant amounts of physisorbed, linear CO2 were detected at relatively high partial pressures of CO2, such that they could adsorb only after the reactive amine groups were consumed. PMID:21774480

  13. Sorption enhanced reaction process for production of hydrogen. Phase 1 final report

    SciTech Connect

    Mayorga, S.G.; Hufton, J.R.; Sircar, S.; Gaffney, T.R.

    1997-07-01

    Hydrogen is one of the most suitable energy sources from both technological and environmental perspectives for the next century, especially in the context of a sustainable global energy economy. The most common industrial process to produce high-purity (99.99+ mol%) hydrogen is to reform natural gas by a catalytic reaction with steam at a high temperature. Conventional steam-methane reforming (SMR) contributed to approximately 2.4 billion standard cubic feet per day (SCFD) of hydrogen production in the US. By 1998, the growth of SMR-produced hydrogen in the US is expected to reach 3.4 billion SCFD, with the increased demand attributed to hydrogen`s use in reformulated gasolines required by the Clean Air Act. The goal of this work is to develop an even more efficient process for reforming steam and methane to hydrogen product than the conventional SMR process. The application of Sorption Enhanced Reaction (SER) technology to SMR has the potential to markedly reduce the cost of hydrogen through lower capital and energy requirements. The development of a more cost-effective route to hydrogen production based on natural gas as the primary energy source will accelerate the transition to a more hydrogen-based economy in the future. The paper describes the process, which includes a sorbent for CO{sub 2} removal, and the various tasks involved in its development.

  14. Kinetic modeling of pH-dependent antimony (V) sorption and transport in iron oxide-coated sand.

    PubMed

    Cai, Yongbing; Li, Lulu; Zhang, Hua

    2015-11-01

    Understanding the mechanisms and kinetics controlling the retention and transport of antimony (Sb) is prerequisite for evaluating the risk of groundwater contamination by the toxic element. In this study, kinetic batch and saturated miscible displacement experiments were performed to investigate effects of protonation-deprotonation reactions on sorption-desorption and transport of Sb(V) in iron oxide-coated sand (IOCS). Results clearly demonstrated that Sb(V) sorption was highly nonlinear and time dependent, where both sorption capacity and kinetic rates decreased with increasing solution pH. Breakthrough curves (BTCs) obtained at different solution pH exhibited that mobility of Sb(V) were higher under neutral to alkaline condition than under acidic condition. Because of the nonlinear and non-equilibrium nature of Sb(V) retention and transport, multi-reaction models (MRM) with equilibrium and kinetic sorption expressions were utilized successfully to simulate the experiment data. Equilibrium distribution coefficient (Ke) and reversible kinetic retention parameters (k1 and k2) of both kinetic sorption and transport experiment showed marked decrease as pH increased from 4.0 to 7.5. Surface complexation is suggested as the dominant mechanism for the observed pH-dependent phenomena, which need to be incorporated into the kinetic models to accurately simulate the reactive transport of Sb(V) in vadose zone and aquifers. Copyright © 2015. Published by Elsevier Ltd.

  15. Equilibrium and kinetic studies of methyl violet sorption by agricultural waste.

    PubMed

    Hameed, B H

    2008-06-15

    In this work, sunflower (Helianthus annuus L.) seed hull (SSH), an agricultural waste, was evaluated for its ability to remove methyl violet (MV) from aqueous solutions. Sorption isotherm of MV onto the SSH was determined at 30 degrees C with the initial concentrations of MV in the range of 25-300 mg/L. The equilibrium data were analyzed using the Langmuir, Freundlich and Temkin isotherm models. The equilibrium process was described well by the Freundlich isotherm model. The maximum SSH sorption capacity was found to be 92.59 mg/L at 30 degrees C. The kinetic data were studied in terms of the pseudo-first-order, pseudo-second-order and intraparticle diffusion kinetic models. The pseudo-second-order model best described the sorption process. A single-stage batch-adsorber design of the adsorption of MV onto SSH was studied based on the Freundlich isotherm equation. The results indicated that sunflower seed hull was an attractive candidate for removing methyl violet from aqueous solution.

  16. The kinetics of water sorption in Nafion membranes: a small-angle neutron scattering study.

    PubMed

    Gebel, Gérard; Lyonnard, Sandrine; Mendil-Jakani, Hakima; Morin, Arnaud

    2011-06-15

    The optimization of the water management in proton exchange membrane fuel cells is a major issue for the large-scale development of this technology. In addition to the operating conditions, the membrane water sorption and transport processes obviously control the water management. The main objective of this work is to provide new experimental evidence based on the use of the small-angle neutron scattering (SANS) technique in order to allow a better understanding of water sorption processes. SANS spectra were recorded for membranes equilibrated with either water vapor or liquid. Sorption kinetics data were determined and the SANS spectra were analyzed using the method developed for extracting water concentration profiles across the membrane in operating fuel cells. The water concentration profiles across the membrane are completely flat, which indicates that the water diffusion within the membrane is not the limiting process. This result provides new insight into the numerous data published on these properties. For the first time, the swelling kinetics of a Nafion membrane immersed in liquid water is studied and a complete swelling is obtained in less than 1 min.

  17. Synthesis and characterization of MnPS{sub 3} for hydrogen sorption

    SciTech Connect

    Ismail, N.; Temerk, Y.M.; El-Meligi, A.A.; Badr, M.A.; Madian, M.

    2010-05-15

    Single phase MnPS{sub 3} powder was prepared by solid state reaction between Mn, S and P carried out at 650 deg. C in evacuated silica tube. The structure, morphology and sorption characteristics of the prepared solid were investigated. The results revealed that the obtained MnPS{sub 3} compound was capable of adsorbing 3.5 wt% hydrogen at -193 deg. C and a pressure of 30 bar. Little amount of hydrogen (0.07 wt%) was adsorbed at room temperature. The hydrogen adsorption/desorption cycles at various temperatures did not result in irreversible chemical structural changes of the MnPS{sub 3} compound, but the microstructure after hydrogen cycling diminished and became finer. - Graphical abstract: Atomic building of MPS{sub 3}

  18. Significance of Kinetics for Sorption on Inorganic Colloids: Modeling and Data Interpretation Issues

    NASA Astrophysics Data System (ADS)

    Painter, S.; Cvetkovic, V.; Pickett, D.; Turner, D.

    2001-12-01

    Irreversible or slowly reversible attachment to inorganic colloids is a process that may enhance radionuclide transport in the environment. An understanding of sorption kinetics is critical in evaluating this process. A two-site kinetic model for sorption on inorganic colloids is developed and used to evaluate laboratory data. This model was developed as an alternative to the equilibrium colloid sorption model employed by the U.S. Department of Energy (DOE) in their performance assessment for the proposed repository for high-level nuclear waste at Yucca Mountain, Nevada. The model quantifies linear first-order sorption on two types of hypothetical sites (fast and slow) characterized by two pairs of rates (forward and reverse). We use the model to explore data requirements for long-term predictive calculations and to evaluate laboratory kinetic sorption data of Lu et al. Five batch sorption data sets are considered with Pu(V) as the tracer and montmorillonite, hematite, silica, and smectite as colloids. Using asymptotic results applicable on the 240 hour time-scale of the experiments, a robust estimation procedure is developed for the fast-site partitioning coefficient and the slow forward rate. The estimated range for the partition coefficient is 1.1-76 L/g; the range for the slow forward rate is 0.0017-0.02 L/h. Comparison of one-site and two-site sorption interpretations reveals the difficulty in discriminating between the two models for montmorillonite and to a lesser extent for hematite. For silica and smectite the two-site model clearly provides a better representation of the data as compared with a single site model. Kinetic data for silica are available for different colloid concentrations (0.2 g/L and 1.0 g/L). For the range of experimental conditions considered, the forward rate appears to be independent of the colloid concentration. The slow reverse rate cannot be estimated on the time scale of the experiments; we estimate the detection limits for the

  19. Sorption kinetics of Zn (II) ion by thermally treated rice husk

    NASA Astrophysics Data System (ADS)

    Ong, K. K.; Tarmizi, A. F. A.; Wan Yunus W. M., Z.; Safidin, K. M.; Fitrianto, A.; Hussin, A. G. A.; Azmi, F. M.

    2015-05-01

    Agricultural wastes such as orange peels, tea leave waste, rice husk and corn cobs have been widely studied as sorbents for heavy metal ion removal from various wastewaters. In order to understand their sorption mechanism, the adsorption kinetics is studied. This report describes the kinetics study of a thermally treated rice husk to adsorb Zn (II) ion from an aqueous solution. The adsorbent was obtained by heating the rice husk in a furnace at 500°C for two hours. Increase the contact period improved percentage of the removal of Zn (II) ion until an equilibrium was reached. The data obtained showed that the adsorption of Zn (II) ion by thermally treated rice husk obeyed pseudo-second order kinetics model, which is in agreement with chemisorption as the rate limiting mechanism.

  20. Kinetics of catalytic transfer hydrogenation of soybean lecithin

    SciTech Connect

    Naglic, M.; Smidovnik, A.; Koloini, T.

    1997-12-01

    Catalytic transfer hydrogenation of soybean lecithin has been studied using aqueous sodium formate solution as hydrogen donor and palladium on carbon as catalyst. Kinetic constants and selectivity have been determined at intensive stirring. Hydrogenation reactions followed the first-order kinetics with respect to fatty acids. In addition to short reaction time, this method offers safe and easy handling. Hydrogenated soybean lecithin provides products with increased stability with respect to oxidation.

  1. Hydrogen desorption kinetics for aqueous hydrogen fluoride and remote hydrogen plasma processed silicon (001) surfaces

    SciTech Connect

    King, Sean W. Davis, Robert F.; Carter, Richard J.; Schneider, Thomas P.; Nemanich, Robert J.

    2015-09-15

    The desorption kinetics of molecular hydrogen (H{sub 2}) from silicon (001) surfaces exposed to aqueous hydrogen fluoride and remote hydrogen plasmas were examined using temperature programmed desorption. Multiple H{sub 2} desorption states were observed and attributed to surface monohydride (SiH), di/trihydride (SiH{sub 2/3}), and hydroxide (SiOH) species, subsurface hydrogen trapped at defects, and hydrogen evolved during the desorption of surface oxides. The observed surface hydride species were dependent on the surface temperature during hydrogen plasma exposure with mono, di, and trihydride species being observed after low temperature exposure (150 °C), while predominantly monohydride species were observed after higher temperature exposure (450 °C). The ratio of surface versus subsurface H{sub 2} desorption was also found to be dependent on the substrate temperature with 150 °C remote hydrogen plasma exposure generally leading to more H{sub 2} evolved from subsurface states and 450 °C exposure leading to more H{sub 2} desorption from surface SiH{sub x} species. Additional surface desorption states were observed, which were attributed to H{sub 2} desorption from Si (111) facets formed as a result of surface etching by the remote hydrogen plasma or aqueous hydrogen fluoride treatment. The kinetics of surface H{sub 2} desorption were found to be in excellent agreement with prior investigations of silicon surfaces exposed to thermally generated atomic hydrogen.

  2. Effect of TiO2 nanoparticles on the hydrogen sorption characteristics of magnesium hydride.

    PubMed

    Pandey, Sunita K; Bhatnagar, Ashish; Shahi, Rohit R; Hudson, M Sterlin Leo; Singh, Milind K; Srivastava, O N

    2013-08-01

    The present paper explores the enhancement in hydrogen sorption behavior of MgH2 with TiO2 nanoparticles. The catalytic effect of TiO2 nanoparticles with different sizes (7, 25, 50, 100 and 250 nm) were used for improving the sorption characteristics of MgH2. The MgH2 catalyzed with 50 nm of TiO2 exhibited the optimum catalytic effect for hydrogen sorption behavior. The desorption temperature of MgH2 catalyzed through 50 nm TiO2 was found to be 310 degrees C. This is 80 degrees C lower as compared to MgH2 having a desorption temperature of 390 degrees C. It was noticed that the dehydrogenated MgH2 catalyzed with 50 nm TiO2 reabsorbed 5.1 wt% of H2 within 6 minutes at temperature and pressure of 250 degrees C and 50 atm, respectively. The 50 nm TiO2 catalyst lowered the absorption activation energy of MgH2 from - 92 to - 52.7 kJ mol(-1).

  3. Sorption of sunset yellow dye by weak base anion exchanger-kinetic and equilibrium studies.

    PubMed

    Wawrzkiewicz, Monika

    2011-01-01

    The sorption equilibrium and kinetics of Sunset Yellow dye in aqueous solutions on the weak base anion exchange resin Amberlite FPA51 were examined in this paper. The influences of phase contact time, solution pH, initial dye concentration and temperature were studied by the batch method. The amounts of dye sorbed at equilibrium changed from 9.9 to 48.7 mg/g with increasing initial dye concentration in the range 100-500 mg/L. The experimental data were analysed by the Langmuir, Freundlich, Temkin and Dubinin-Radushkevich models of adsorption. The maximum monolayer capacity was 130.6 mg/g. The sorption free energy was equal to 14.6 kJ/mol and revealed the nature of the ion exchange mechanism in this system. The kinetic data were modelled using the pseudo-first-order, pseudo-second-order (types 1-5) and intraparticle diffusion equations. The experimental data were well described by types 1-3 of the pseudo-second-order kinetic model.

  4. Kinetics of lead and copper removal from oil-field brine by potential sorption.

    PubMed

    Nourafkan, E; Asachi, M; Marandi, R

    2014-01-01

    The present study investigates the kinetics of lead and copper removal from oil-field brine by potential sorption. A population balance equation, coupled with a mass balance equation, was used in the estimation of kinetic parameters. Metal removal was performed by potential sorption of lead and copper through CaCO3 precipitates induced by the reaction of Na2CO3 and CaCl2. The oil-field brine was selected from an oil well in Gachsaran, Iran. The crystal size distribution of the solid phase was measured by dynamic laser scattering analyzer, and the liquor phase was analyzed using atomic adsorption. The morphology of calcium carbonate particles was illustrated using scanning electron microscopy and X-ray diffraction. The results showed that the presence of copper and lead decreases the average size distribution of calcium carbonate particles by influencing the kinetic parameters. Lead and copper concentrations were reduced from 2.911 to 0.127 ppm (95.63% removal) and 0.476 to 0.025 ppm (94.74% removal), respectively, in exchange for 12 g CaCO3 consumption per 100 ml oil-field brine.

  5. Kinetics studies of uranium sorption by powdered corn cob in batch and fixed bed system

    PubMed Central

    Mahmoud, Mohamed A.

    2015-01-01

    Sorption of uranium (VI) from aqueous solution onto powdered corn cob has been carried out using batch and fixed-bed technique. The experimental results in batch technique were fitted well with pseudo second-order kinetics model. In the fixed bed technique, Thomas and Bohart–Adams models were evaluated by linear regression analysis for U(VI) uptake in different flow rates, bed heights and initial concentrations. The column experimental data were fitted well with Thomas mode (r2 = 0.999), but the Bohart–Adams model (r2 = 0.911), predicted poor performance of fixed-bed column. PMID:26843973

  6. Biodegradation kinetic constants and sorption coefficients of micropollutants in membrane bioreactors.

    PubMed

    Fernandez-Fontaina, Eduardo; Pinho, Ines; Carballa, Marta; Omil, Francisco; Lema, Juan M

    2013-04-01

    In order to elucidate the capability of biomass developed in membrane bioreactors (MBR) to degrade and sorb emerging micropollutants, biodegradation (kbiol) and sorption (ksor) kinetic constants as well as solid-liquid partition coefficients (Kd) of 13 selected pharmaceutical and personal care products (PPCPs) were determined with MBR heterotrophic biomass adding a pulse (100 ppb of each compound) and following the liquid and solid phase concentrations over time. The results obtained were compared to literature data referring to conventional activated sludge (CAS) systems. Two experiments were performed: one in the MBR itself and the second one in a batch reactor with the same type and concentration of biomass as in the MBR. Overall, both biodegradation and sorption coefficients were in the same range as previously reported by other studies in CAS systems, indicating that MBR biomass does not show better capabilities for the biological degradation and/or sorption of PPCPs compared to the biomass developed in CAS reactors. Therefore, the higher PPCPs removal efficiencies found in MBRs are explained by the high biomass concentrations obtained at the long sludge retention times at which this type of reactors are usually operated.

  7. Hydrogen storage materials discovery via high throughput ball milling and gas sorption.

    PubMed

    Li, Bin; Kaye, Steven S; Riley, Conor; Greenberg, Doron; Galang, Daniel; Bailey, Mark S

    2012-06-11

    The lack of a high capacity hydrogen storage material is a major barrier to the implementation of the hydrogen economy. To accelerate discovery of such materials, we have developed a high-throughput workflow for screening of hydrogen storage materials in which candidate materials are synthesized and characterized via highly parallel ball mills and volumetric gas sorption instruments, respectively. The workflow was used to identify mixed imides with significantly enhanced absorption rates relative to Li2Mg(NH)2. The most promising material, 2LiNH2:MgH2 + 5 atom % LiBH4 + 0.5 atom % La, exhibits the best balance of absorption rate, capacity, and cycle-life, absorbing >4 wt % H2 in 1 h at 120 °C after 11 absorption-desorption cycles.

  8. Hydrogen sorption characteristics of nanostructured Pd–10Rh processed by cryomilling

    DOE PAGES

    Yang, Nancy; Yee, Joshua K.; Zhang, Zhihui; ...

    2014-10-03

    Palladium and its alloys are model systems for studying solid-state storage of hydrogen. Mechanical milling is commonly used to process complex powder systems for solid-state hydrogen storage; however, milling can also be used to evolve nanostructured powder to modify hydrogen sorption characteristics. In the present study, cryomilling (mechanical attrition milling in a cryogenic liquid) is used to produce nanostructured palladium-rhodium alloy powder. Characterization of the cryomilled Pd-10Rh using electron microscopy, X-ray diffraction, and surface area analysis reveals that (i) particle morphology evolves from spherical to flattened disk-like particles; while the (ii) crystallite size decreases from several microns to less thanmore » 100 nm and (iii) dislocation density increases with increased cryomilling time. Hydrogen absorption and desorption isotherms as well as the time scales for absorption were measured for cryomilled Pd-10Rh, and correlated with observed microstructural changes induced by the cryomilling process. In short, as the microstructure of the Pd-10Rh alloy is refined by cryomilling: (i) the maximum hydrogen concentration in the α-phase increases, (ii) the pressure plateau becomes flatter, and (iii) the equilibrium hydrogen capacity at 760 Torr increases. In addition, the rate of hydrogen absorption was reduced by an order of magnitude compared to non-cryomilled (atomized) powder.« less

  9. Hydrogen sorption characteristics of nanostructured Pd–10Rh processed by cryomilling

    SciTech Connect

    Yang, Nancy; Yee, Joshua K.; Zhang, Zhihui; Kurmanaeva, Lilia; Cappillino, Patrick; Stavila, Vitalie; Lavernia, Enrique J.; San Marchi, Chris

    2014-10-03

    Palladium and its alloys are model systems for studying solid-state storage of hydrogen. Mechanical milling is commonly used to process complex powder systems for solid-state hydrogen storage; however, milling can also be used to evolve nanostructured powder to modify hydrogen sorption characteristics. In the present study, cryomilling (mechanical attrition milling in a cryogenic liquid) is used to produce nanostructured palladium-rhodium alloy powder. Characterization of the cryomilled Pd-10Rh using electron microscopy, X-ray diffraction, and surface area analysis reveals that (i) particle morphology evolves from spherical to flattened disk-like particles; while the (ii) crystallite size decreases from several microns to less than 100 nm and (iii) dislocation density increases with increased cryomilling time. Hydrogen absorption and desorption isotherms as well as the time scales for absorption were measured for cryomilled Pd-10Rh, and correlated with observed microstructural changes induced by the cryomilling process. In short, as the microstructure of the Pd-10Rh alloy is refined by cryomilling: (i) the maximum hydrogen concentration in the α-phase increases, (ii) the pressure plateau becomes flatter, and (iii) the equilibrium hydrogen capacity at 760 Torr increases. In addition, the rate of hydrogen absorption was reduced by an order of magnitude compared to non-cryomilled (atomized) powder.

  10. In-situ Hydrogen Sorption 2D-ACAR Facility for the Study of Metal Hydrides for Hydrogen Storage

    NASA Astrophysics Data System (ADS)

    Legerstee, W. J.; de Roode, J.; Anastasopol, A.; Falub, C. V.; Eijt, S. W. H.

    We developed a dedicated hydrogen sorption setup coupled to a positron 2D-ACAR (two-dimensional Angular Correlation of Annihilation Radiation) setup employing a 22Na-source, which will enable to collect 2D-ACAR momentum distributions in-situ as a function of temperature, hydrogen pressure and hydrogen content. In parallel, a dedicated glovebox was constructed for handling air-sensitive metal and metal hydride samples, with a special entrance for the 2D-ACAR sample insert. The 2D-ACAR setup was tested in first measurements on a Pd0.75Ag0.25 foil and on a ball-milled MgH2 powder in both the hydrogen loaded and desorbed states. The hydrogen loaded Pd0.75Ag0.25Hx sample was kept under a 1 bar hydrogen pressure to prevent partial desorption during measurements at room temperature. The collected 2D-ACAR distributions of Pd0.75Ag0.25 and Pd0.75Ag0.25Hx showed similar features as observed in previous studies. The broadening of the ACAR distributions observed for the Mg to MgH2 metal-insulator transition was compared in a quantitative manner to ab-initio calculations reported in the literature.

  11. Understanding hydrogen sorption in a polar metal-organic framework with constricted channels.

    PubMed

    Stern, Abraham C; Belof, Jonathan L; Eddaoudi, Mohamed; Space, Brian

    2012-01-21

    A high fidelity molecular model is developed for a metal-organic framework (MOF) with narrow (approximately 7.3 Å) nearly square channels. MOF potential models, both with and neglecting explicit polarization, are constructed. Atomic partial point charges for simulation are derived from both fragment-based and fully periodic electronic structure calculations. The molecular models are designed to accurately predict and retrodict material gas sorption properties while assessing the role of induction for molecular packing in highly restricted spaces. Thus, the MOF is assayed via grand canonical Monte Carlo (GCMC) for its potential in hydrogen storage. The confining channels are found to typically accommodate between two to three hydrogen molecules in close proximity to the MOF framework at or near saturation pressures. Further, the net attractive potential energy interactions are dominated by van der Waals interactions in the highly polar MOF - induction changes the structure of the sorbed hydrogen but not the MOF storage capacity. Thus, narrow channels, while providing reasonably promising isosteric heat values, are not the best choice of topology for gas sorption applications from both a molecular and gravimetric perspective. © 2012 American Institute of Physics

  12. Understanding hydrogen sorption in a polar metal-organic framework with constricted channels

    NASA Astrophysics Data System (ADS)

    Stern, Abraham C.; Belof, Jonathan L.; Eddaoudi, Mohamed; Space, Brian

    2012-01-01

    A high fidelity molecular model is developed for a metal-organic framework (MOF) with narrow (approximately 7.3 Å) nearly square channels. MOF potential models, both with and neglecting explicit polarization, are constructed. Atomic partial point charges for simulation are derived from both fragment-based and fully periodic electronic structure calculations. The molecular models are designed to accurately predict and retrodict material gas sorption properties while assessing the role of induction for molecular packing in highly restricted spaces. Thus, the MOF is assayed via grand canonical Monte Carlo (GCMC) for its potential in hydrogen storage. The confining channels are found to typically accommodate between two to three hydrogen molecules in close proximity to the MOF framework at or near saturation pressures. Further, the net attractive potential energy interactions are dominated by van der Waals interactions in the highly polar MOF - induction changes the structure of the sorbed hydrogen but not the MOF storage capacity. Thus, narrow channels, while providing reasonably promising isosteric heat values, are not the best choice of topology for gas sorption applications from both a molecular and gravimetric perspective.

  13. Hydrogen reduction kinetics of electrometallurgical slime

    NASA Astrophysics Data System (ADS)

    Teplov, O. A.; Voropaev, I. G.; Dyubanov, V. G.; Leont'ev, L. I.

    2007-08-01

    The interaction of hydrogen with the zinc-containing electrometallurgical slime of the Severstal’ metallurgical works has been studied. The sequence of transformations in the slime heated to 1100°C in hydrogen or air has been established. The experimental and calculated weight losses coincide. Some of the carbonates are shown to decompose in the temperature range 300 700°C, and most iron and zinc oxides are reduced to a metal. In the temperature range 650 850°C, zinc is almost completely sublimated. At temperatures above 800°C, complex oxides are reduced and calcium and magnesium carbonates and sulfates are likely to decompose. Experimental digital data on the zinc sublimation rate are processed by the least squares method with approximating equations used in thermal analysis. The kinetics of nonisothermal zinc sublimation is comprehensively analyzed using a unique procedure developed for taking into account the background of a peak and the effect of accompanying processes. An equation for the calculation of the zinc sublimation rate under experimental conditions (fluidized bed) is given and tested.

  14. Hydrogen atom kinetics in capacitively coupled plasmas

    NASA Astrophysics Data System (ADS)

    Nunomura, Shota; Katayama, Hirotaka; Yoshida, Isao

    2017-05-01

    Hydrogen (H) atom kinetics has been investigated in capacitively coupled very high frequency (VHF) discharges at powers of 16-780 mW cm-2 and H2 gas pressures of 0.1-2 Torr. The H atom density has been measured using vacuum ultra violet absorption spectroscopy (VUVAS) with a micro-discharge hollow cathode lamp as a VUV light source. The measurements have been performed in two different electrode configurations of discharges: conventional parallel-plate diode and triode with an intermediate mesh electrode. We find that in the triode configuration, the H atom density is strongly reduced across the mesh electrode. The H atom density varies from ˜1012 cm-3 to ˜1010 cm-3 by crossing the mesh with 0.2 mm in thickness and 36% in aperture ratio. The fluid model simulations for VHF discharge plasmas have been performed to study the H atom generation, diffusion and recombination kinetics. The simulations suggest that H atoms are generated in the bulk plasma, by the electron impact dissociation (e + H2 \\to e + 2H) and the ion-molecule reaction (H2 + + H2 \\to {{{H}}}3+ + H). The diffusion of H atoms is strongly limited by a mesh electrode, and thus the mesh geometry influences the spatial distribution of the H atoms. The loss of H atoms is dominated by the surface recombination.

  15. Engineering and characterization of high surface area graphitic carbon nitrides for hydrogen sorption

    NASA Astrophysics Data System (ADS)

    Stalla, David; Seydel, Florian; Gillespie, Andrew; Lam, Thomas; Sweany, Mark; Lee, Mark; Pfeifer, Peter

    Theoretical calculations predict graphitic carbon nitride to produce a binding energy to hydrogen (6.4 kJ/mol) which is greater than that of pure graphene, making it attractive as a storage medium. However, the prohibitively small surface areas characteristic of g-CN materials dramatically limit H2 uptake. We discuss efforts to increase surface areas through physical/chemical exfoliation and templating. N2 sorption directly determines improvements to surface area, EF/TEM maps the thickness of aggregated planes, powder XRD indicates a novel, 2-phase structure, and XPS quantifies in-plane chemistry largely independent of the literature, which fails in a consensus regarding binding energy assignments.

  16. Hydrogen sorption behavior of CaAl1.5Li0.5

    NASA Astrophysics Data System (ADS)

    Bereznitsky, Matvey; Mogilyanski, Dmitry; Jacob, Isaac

    2016-04-01

    The hydrogen sorption properties of an alloy with nominal composition CaAl1.5Li0.5 have been investigated in a pursuit for hydrogen-absorbing Li-containing intermetallics. X-ray analysis of the original alloy indicated a coexistence of three closely related Laves phases. The maximum hydrogen capacity, recorded at about 6 MPa and 300 °C, was approximately 2.5 H atoms per formula unit (f.u.). Pressure-composition (p-c) isotherm measurements were taken in the temperature range between 350 and 450 °C up to pressures of 133 kPa. Thermodynamic parameters are derived for two plateau regions in the p-c isotherms. Analysis of these parameters and supporting evidence from X-ray patterns of hydrogenated and dehydrogenated samples suggest: (a) an initial irreversible disproportionation of the original alloy and (b) subsequent reversible hydrogenations, featuring reversible disproportionations of CaAl2 and LiAl intermetallic compounds. Attempts to form additional Li-containing intermetallics, namely CaAlLi, TiMn2- x Li x (x = 0.2, 0.3, 0.4, 0.6) and TiAl2- x Li x (x = 0.3, 0.5), and to hydrogenate them, are reported in brief.

  17. Sorption capacity and sorption kinetic measurements of CO{sub 2} and CH{sub 4} in confined and unconfined bituminous coal

    SciTech Connect

    J. Denis N. Pone; Phillip M. Halleck; Jonathan P. Mathews

    2009-09-15

    Carbon dioxide injection into coal formations provides an opportunity to sequester carbon while simultaneously enhancing methane recovery. Although powdered coal samples provide a quick indication of the gas sorption capacity, underground storage takes place within compact coal monoliths, and therefore, it may be necessary to account for in situ conditions, specifically confining stress, for meaningful estimates. This study presents the sorption rates and sorption capacities of CO{sub 2} and CH{sub 4} for a bituminous coal sample in a whole sample and in pulverized form. The impact of confining stress on these sorption capacities of coal cores is evaluated with a multiple-point isotherm over a prolonged time period. The kinetics of the complex, heterogeneous processes occurring in a bituminous coal sample are quantified while under confining stress. Sorption capacities for a powdered sample are 1.17 and 0.66 mmol/g for CO{sub 2} and CH{sub 4}, respectively. The application of 6.9 and 13.8 MPa of confining stress contributed to 39 and 64% CO{sub 2} sorption capacity reduction. Similarly, 85 and 91% CH{sub 4} uptake capacity reduction is observed at those confining stresses. The time-dependent gas diffusion parameters are quantified using the volumetric method with a mathematical analysis of the pressure-decay data. Carbon dioxide diffused through the coal faster than CH{sub 4}. Initial exposure over a few days showed a rapid reduction in diffusion presumably as the macro- and mesopores filled. With longer exposure, 10 additional days, a steady slower diffusion is observed for CO{sub 2}. The steady-state slower diffusion is achieved within a few days for CH{sub 4}. It was found that the overall gas movement, specifically diffusion, is hindered by confining stresses and takes place at rates significantly less than in unconfined powder coal.

  18. Gravimetric and Spectroscopic Studies of Reversible Hydrogen Sorption on Nanoporous Clinoptilolite

    NASA Astrophysics Data System (ADS)

    Lesnicenoks, P.; Grinberga, L.; Kleperis, J.

    2014-06-01

    Large surface aluminosilicate compounds such as zeolites are not the best option for hydrogen storage due to their low hydrogen sorption capacity above cryogenic temperatures. However, the known crystal structure and easy ion exchange allows considering zeolites as easily tuneable media that with a little effort can be changed to suitable porous media for hydrogen sorption. Metal (Li, Mg) and ammonia ion exchange is performed in natural clinoptilolite samples with the aim to increase the amount of adsorbed hydrogen. The Fourier transform infrared spectroscopy of the prepared samples is used to study sorption of hydrogen molecules in the vicinity of light metal ions. An original thermogravimetric method is applied to characterise the amount of sorbed hydrogen. Our experiments show that the highest hydrogen uptake (~ 6.2 wt%) is for a clinoptilolite sample treated in acid. The cation exchange did not provide the expected hydrogen sorption capability; however, the amount of sorbed hydrogen exceeded that for the initial material. Lielas virsmas alumosilikāta savienojumi, piemēram, ceolīti, nav labākais risinājums ūdeņraža uzglabāšanai, ņemot vērā to niecīgo sorbētā ūdeņraža daudzumu temperatūrā, kas augstāka par kriogēno. Tomēr zināmā kristāla struktūra un vieglā jonu apmaiņas iespēja paver iespēju izmantot ceolītus kā viegli pielāgojamu materiālu, kuru ar nelielām modifikācijām var pārveidot par piemērotu vidi ūdeņraža sorbcijai. Darbā metālu (Li, Mg) un amonjaka jonu apmaiņa tiek veikta dabīgā klinoptilolīta paraugos ar mērķi palielināt sorbētā ūdeņraža daudzumu materiālā. Furjē infrasarkanā spektroskopija tiek izmantota, lai pētītu ūdeņraža molekulas sorbciju vieglo metālu jonu tuvumā. Oriģināla termogravimetrijas metode tiek pielietota, lai raksturotu uzkrātā ūdeņraža daudzumu paraugos. Eksperimentālie rezultāti liecina, ka vislielākais uzkrātā ūdeņraža daudzums (~6,2 masas%) ir ar

  19. Sorption kinetics and isotherm modelling of imidacloprid on bentonite and organobentonites.

    PubMed

    Jain, Shailesh K; Shakil, Najam A; Dutta, Anirban; Kumar, Jitendra; Saini, Mukesh K

    2017-02-22

    Bentonite was modified by quaternary ammonium cations viz. cetytrimethylammonium (CTA), cetylpyridinium (CP), rioctylmethylammonium (TOM) and pcholine (PTC) at 100% cation exchange capacity of bentonite and was characterized by X-ray diffraction, CHNS elemental analyser and Fourier transform infrared spectroscopy. The sorption of imidacloprid on organobentonites/bentonite was studied by batch method. Normal bentonite could adsorb imidacloprid only upto 19.31-22.18% while all organobentonites except PTC bentonite (PTCB), enhanced its adsorption by three to four times. Highest adsorption was observed in case of TOM bentonite (TOMB) (76.94-83.16%). Adsorption kinetic data were fitted to pseudo-first-order, pseudo-second-order and intraparticle diffusion models. For normal bentonite data were best fitted to pseudo-first-order kinetic, while for organobentonites fitted to pseudo-second-order kinetics. Sorption data were analysed using Freundlich, Langmuir, Temkin and Dubinin-Radushkevich isotherm models. Data were well fitted to Freundlich adsorption isotherm. Product of Freundlich adsorption constant and heterogeneity parameter (Kf.1/n) was in following order: TOMB (301.87) > CTA bentonite (CTAB) (152.12) > CP bentonite (CPB) (92.58) > bentonite (27.25). Desorption study confirmed hysteresis and concentration dependence. The present study showed that the organobentonite could be a good sorbent for removal of imidacloprid from natural water sample also. Percentage adsorption and Distribution coefficient (mL g(-1)) value of different adsorbent was in following order: TOMB (74.85% and 297.54) > CTAB (55.78% and 126.15) > CPB (45.81% and 84.55) > bentonite (10.65% and 11.92).

  20. Thermodynamic, kinetic and conformational analysis of proteins diffusion-sorption on a solid surface.

    PubMed

    Sanfeld, Albert; Royer, Catherine; Steinchen, Annie

    2015-08-01

    In this paper we examine particularly some of the more fundamental properties of protein conformational changes at a solid surface coupled with diffusion from the bulk of an aqueous solution and with the adsorption-desorption processes. We focus our attention on adsorbed protein monolayers upon a solid surface using a thermodynamic and kinetic analytical development. Account is also taken of the effects on the overall rate of the conformational change on a solid surface of deviation from ideality, of protein flexibility, of surface free energy and of interaction with reactive solid sites. Our theory applied to steady states is illustrated by examples such as folding-misfolding-unfolding of RNase and SNase on a solid surface after diffusion and adsorption from an aqueous solution. For this purpose, we put forward the determining steps which shall lead to the steady state. The existence of three situations is highlighted according to the values of the typical constants relevant for the protein considered: reaction rate determining step, diffusion and sorption determining steps, mixed adsorption diffusion and reaction rate. Finally, we have tried to link the developments of our theories to a large literature based on experimental results encountered during proteins diffusion-sorption-reaction processes, fundamental topics that has been since long investigated by Miller's team in MPKG.

  1. Sorption of methylene blue on treated agricultural adsorbents: equilibrium and kinetic studies

    NASA Astrophysics Data System (ADS)

    Tiwari, D. P.; Singh, S. K.; Sharma, Neetu

    2015-03-01

    Agricultural adsorbents are reported to have a remarkable performance for adsorption of dyes. In the present study, formaldehyde and sulphuric acid treated two agricultural adsorbents; potato peel and neem bark are used to adsorb methylene blue. On the whole, the acid-treated adsorbents are investigated to have high sorption efficiency compared to HCHO treated adsorbents. The percentage removal efficiency of H2SO4 treated potato peel (APP) increases considerably high from 75 to 100 % with increase in adsorbent dose, whereas the removal efficiency of H2SO4 treated neem bark (ANB) is found to be 98 % after adding the first dose only. The monolayer sorption behaviour of HCHO treated potato peel (PP) and APP is well defined by Langmuir, whereas the chemisorptions behaviour of HCHO treated neem bark (NB) and ANB is suggested by Temkin's isotherm model. The maximum adsorption capacity measured is highest in ANB followed by NB, PP and APP with the values of 1000, 90, 47.62 and 40.0 mg/g, respectively. The pseudo-second-order kinetic model fitted well with the observed data of all the four adsorbents. The results obtained reveal that NB and ANB both are good adsorbents compared to PP and APP.

  2. Hydrogen production from glucose and sorbitol by sorption-enhanced steam reforming: challenges and promises.

    PubMed

    He, Li; Chen, De

    2012-03-12

    Concerning energy and environmental sustainability, it is appealing to produce hydrogen from sugars or sugar alcohols that are readily obtained from the hydrolysis of cellulosic biomass. Nevertheless, the conversion of such compounds for hydrogen production poses great technical challenges. In this paper, we report that hydrogen purity and yield can be significantly improved by integrating in situ CO(2) capture into the steam reforming reaction of the model compounds-glucose and sorbitol. The experimental assessment was conducted at a steam-to-carbon ratio of 1.8 for sorbitol and 6 for glucose from 450-625 °C. As predicted by thermodynamic analysis, combining CO(2) capture and reforming reactions at favorable operating conditions yielded very high purity hydrogen, for instance, 98.8 mol % from sorbitol and 99.9 mol % from glucose. However, there are trade-offs between hydrogen purity and yield in practice. The lower operating temperatures in the examined range helped to increase the hydrogen purity and reduce the CO content in the gas product, whereas a high hydrogen yield was more likely to be obtained at higher temperatures. Coupling CO(2) capture lowered the risk of coke formation during the steam reforming of glucose. Coke accumulated in the reactor for the sorption-enhanced steam reforming of glucose was mostly from the slow pyrolysis of glucose before it came into contact with the catalyst-acceptor bed. This problem may be solved by improving heat transfer or reconstructing the reactor, for instance, by using a fluidized-bed reactor.

  3. Moisture sorption kinetics for water-soluble substances. IV: Studies with mixtures of solids.

    PubMed

    Kontny, M J; Zografi, G

    1985-02-01

    This paper extends earlier work from this laboratory concerning the sorption kinetics of water vapor on deliquescent water-soluble substances to mixtures of these solids. A theoretical model, based on heat transport control, excellently predicted a priori the rate of water uptake by a variety of binary mixtures of alkali halides and sugars. The rates for mixtures containing highly water-soluble quaternary ammonium salts, as either one or both of the components, were less successfully predicted as the combined water solubilities of the two components increased. It is concluded that water-soluble deliquescent substances, normally encountered in pharmaceutical dosage forms, rapidly form saturated aqueous solutions in the aqueous film formed as water vapor uptake proceeds, and that the water uptake rate can be predicted a priori from known and experimentally determinable parameters using the heat transport model.

  4. Capturing hormones and bisphenol A from water via sustained hydrogen bond driven sorption in polyamide microfiltration membranes.

    PubMed

    Han, Jie; Meng, Suwan; Dong, Yue; Hu, Jiangyong; Gao, Wei

    2013-01-01

    This work investigates the distinct sorption properties of polyamide 66 (PA) microfiltration membranes for estrogenic compounds in water. Four representative estrogenic endocrine disruptors, namely estrone (E1), 17β-estradiol (E2), 17α-ethynylestradiol (EE2) and bisphenol A (BPA), were readily captured from water via sustained sorption in PA microfiltration membranes during crossflow filtration. Such significant sorption was only observed on PA membranes among seven polymeric membrane materials tested, including polyethersulfone (PES), cellulose acetate (CA), mixed nitrocellulose (MCE), polyester (PETE), regenerated cellulose (RC), polycarbonate (PC), and PA. The strong binding affinity originates from the hydrogen bonding interactions between PA amide groups and the proton-donating moieties of the target compound molecules. For hormone compounds, a correlation was further identified between their proton-donating moieties and sorption capacities in PA membranes. Using 0.2 μM (46-59 μg L(-1)) compound spiked solutions, the 0.2-μm PA membrane exhibited a sorption capacity of 81 L m(-2) (0.44 μg cm(-2)) for E1, 150 L m(-2) (0.82 μg cm(-2)) for E2, 208 L m(-2) (1.23 μg cm(-2)) for EE2, and 69 L m(-2) (0.32 μg cm(-2)) for BPA. The sorption capacity of PA membrane was largely unaffected by membrane flux or the co-presence of multiple target compounds or humic acid, but showed strong dependence on the membrane surface area and the compound concentration. The hydrogen bond driven sorption is a reversible process and desorption was effected by contacting exhausted PA membranes with 0.4 wt.% caustic solution at room temperature. The PA membrane exhibited consistent sorption capacities for the four target compounds in water through three cycles of reuse.

  5. Sorption kinetics of TNT and RDX in anaerobic freshwater and marine sediments: Batch studies.

    PubMed

    Ariyarathna, Thivanka; Vlahos, Penny; Tobias, Craig; Smith, Richard

    2016-01-01

    Examination of the partitioning of explosives onto sediment in marine environments is critical to predict the toxicological impacts of worldwide explosive-contaminated sites adjacent to estuaries, wetlands, and the coastal ocean. Marine sediments have been identified as sites of enhanced munitions removal, yet most studies addressing these interactions focus on soils and freshwater sediments. The present study measured the kinetics of 2,4,6-trinitrotoluene (TNT) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) sorption onto 2 marine sediments of varying grain sizes (silt vs sand) and organic carbon (OC) content. Abiotic sediment sorption tests were performed at 23 °C, 15 °C, and 4 °C by spiking TNT and RDX solutions directly into anaerobic sediment slurries. Marine sediments showed significantly higher compound uptake rates (0.30-0.80 h(-1) ) than freshwater silt (0.0046-0.0065 h(-1) ) for both compounds, probably because of lower compound solubilities and a higher pH in marine systems. Equilibrium partition constants are on the same order of magnitude for marine silt (1.1-2.0 L kg(-1) sediment) and freshwater silt (1.4-3.1 L kg(-1) sediment) but lower for marine sand (0.72-0.92 L kg(-1) sediment). Total organic carbon content in marine sediments varied linearly with equilibrium partition constants for TNT and was moderately linear for RDX. Uptake rates and equilibrium constants of explosives are inversely correlated to temperature regardless of sediment type because of kinetic barriers associated with low temperatures. © 2015 SETAC.

  6. Sorption kinetics of polycyclic aromatic hydrocarbons removal using granular activated carbon: intraparticle diffusion coefficients.

    PubMed

    Valderrama, C; Gamisans, X; de las Heras, X; Farrán, A; Cortina, J L

    2008-09-15

    Granular activated carbon (GAC) was evaluated as a suitable sorbent for polycyclic aromatic hydrocarbons (PAHs) removal from aqueous solutions. For this purpose, kinetic measurements on the extraction of a family of six PAHs were taken. A morphology study was performed by means of a scanning electron microscopy (SEM) analysis of GAC samples. Analyses of the batch rate data for each PAH were carried out using two kinetic models: the homogenous particle diffusion model (HPDM) and the shell progressive model (SPM). The process was controlled by diffusion rate the solutes (PAHs) that penetrated the reacted layer at PAH concentrations in the range of 0.2-10 mg L(-1). The effective particle diffusion coefficients (D(eff)) derived from the two models were determined from the batch rate data. The Weber and Morris intraparticle diffusion model made a double contribution to the surface and pore diffusivities in the sorption process. The D(eff) values derived from both the HPMD and SPM equations varied from 1.1 x 10(-13) to 6.0 x 10(-14) m(2) s(-1). The simplest model, the pore diffusion model, was applied first for data analysis. The model of the next level of complexity, the surface diffusion model, was applied in order to gain a deeper understanding of the diffusion process. This model is able to explain the data, and the apparent surface diffusivities are in the same order of magnitude as the values for the sorption of functionalized aromatic hydrocarbons (phenols and sulphonates) that are described in the literature.

  7. Influence of hydrogen oxidation kinetics on hydrogen environment embrittlement

    NASA Technical Reports Server (NTRS)

    Walter, R. J.; Kendig, M. W.; Meisels, A. P.

    1992-01-01

    Results are presented from experiments performed to determine the roles of hydrogen absorption and hydrogen electron transfer on the susceptibility of Fe- and Ni-base alloys to ambient-temperature hydroen embrittlement. An apparent independence is noted between hydrogen environment embrittlement and internal hydrogen embrittlement. The experiments were performed on Inconel 718, Incoloy 903, and A286. The electrochemical results obtained indicate that Inconel 718 either adsorbs hydrogen more rapidly and/or the electrochemical oxidation of the adsorbed hydrogen occurred more rapidly than in the other two materials.

  8. Synthesis of small metallic Mg-based nanoparticles confined in porous carbon materials for hydrogen sorption.

    PubMed

    Zlotea, Claudia; Chevalier-César, Clotaire; Léonel, Eric; Leroy, Eric; Cuevas, Fermin; Dibandjo, Philippe; Vix-Guterl, Cathie; Martens, Thierry; Latroche, Michel

    2011-01-01

    MgH2, Mg-Ni-H and Mg-Fe-H nanoparticles inserted into ordered mesoporous carbon templates have been synthesized by decomposition of organometallic precursors under hydrogen atmosphere and mild temperature conditions. The hydrogen desorption properties of the MgH2 nanoparticles are studied by thermo-desorption spectroscopy. The particle size distribution of MgH2, as determined by TEM, is crucial for understanding the desorption properties. The desorption kinetics are significantly improved by downsizing the particle size below 10 nm. Isothermal absorption/desorption cycling of the MgH2 nanoparticles shows a stable capacity over 13 cycles. The absorption kinetics are unchanged though the desorption kinetics are slower on cycling.

  9. Kinetics and Mechanism of the Sorption of Some Aromatic Amines onto Amberlite IRA-904 Anion-Exchange Resin.

    PubMed

    Zaki; El-Sheikh; Evans; El-Safty

    2000-01-01

    The kinetics of the sorption of aromatic amines such as o-aminophenol (o-AP), o-phenylenediamine (o-PDA), and p-phenylenediamine (p-PDA) onto Amberlite anion-exchange resin in chloride form was investigated in batch experiments spectrophotometrically at different temperatures. The sorption rate is zero order in all amines sorbed, increasing directly in the order: p-PDAsorption interactions. The attainment of sorption equilibrium of aromatic amines is seen to be similar. The diffusion coefficients (D) have been calculated by using Fick's equation from the second portions of the sorption/desorption curves; D values ranged from 0.7 to 2.8x10(-9) cm(2)/s. These results, reflecting the diffusion mechanism, were ascribed to intraparticle diffusion. Arrhenius parameters for the diffusion process and the thermodynamic quantities for the process of equilibrium sorption have been estimated. The effect of a chemical oxidation reaction on intraparticle diffusion was investigated by measuring the intraparticle diffusion of amines during the redox reaction. Copyright 2000 Academic Press.

  10. Isotherms and Kinetics of Water Vapor Sorption/Desorption for Surface Films of Polyion-Surfactant Ion Complex Salts.

    PubMed

    Gustavsson, Charlotte; Piculell, Lennart

    2016-07-14

    Thin films of "complex salts" (CS = ionic surfactants with polymeric counterions) have recently been shown to respond to humidity changes in ambient air by changing their liquid crystalline structure. We here report isotherms and kinetics of water sorption/desorption for ∼10-100 μm films of alkyltrimethylammonium polyacrylate CS, measured in a dynamic gravimetric vapor sorption instrument over a 0-95% relative humidity (RH) range. The sorption per ion pair was similar to that observed for common ionomers. A kinetic model for the water exchange is presented, assuming that the "external" transport between the vapor reservoir and the film surface is rate-determining. The model predicts that the water content, after a small stepwise change of the reservoir RH, should vary exponentially with time, with a time constant proportional to both the slope of the sorption isotherm and the film thickness. These predictions were confirmed for our films over large RH ranges, and the external mass transfer coefficient in our setup was calculated from the experimental data. Expressions derived for the Biot number (ratio of characteristic times for internal and external water transport) for the considered limiting case strongly indicate that external water transport should quite generally affect, or even dominate, the measured kinetics for similarly thin hydrated films.

  11. Kinetics of quinoline biodegradation, sorption and desorption in a clay-coated model soil containing a quinoline-degrading bacterium

    NASA Astrophysics Data System (ADS)

    McBride, J. F.; Brockman, F. J.; Szecsody, J. E.; Streile, G. P.

    1992-01-01

    Kinetics of quinoline biodegradation, sorption and desorption in a clay-coated model soil containing a quinoline-degrading bacterium. Studies were initiated to compare the kinetics of quinoline sorption/desorption and biodegradation in order to predict the relative importance of abiotic and biotic processes in the transport of quinoline in columns containing a model soil. Initial biodegradation studies were conducted in a 1-cm-long column containing a quinoline-degrading bacterium (10 9 colony-forming units g -1 porous medium) attached to 100- to 150-μm-diameter glass beads that did not sorb quinoline. At a 155-nmol mL -1 quinoline influent concentration, the maximum consumption rate was 104.7 nmol quinoline min -1 cm -3 pore volume. In contrast, the maximum consumption rate of the first metabolite ( 2-hydroxyquinoline) was 24.8 nmol mL -1 cm -3 pore volume. In a second experiment, bacteria were mixed with a model soil, consisting of montmorillonite bound to alumina particles (75- to 180-μm diameter). In a 1-cm-long column of the model soil, the quinoline consumption rate at a 155-nmol mL -1 quinoline influent concentration was similar to that obtained in the glass-bead column, showing that the clay does not substantially affect quinoline biodegradation at equilibrium conditions. In a third series of experiments, sorption to the model soil was examined in the absence of microorganisms. The observed desorption rate coefficient for quinoline averaged 1.1·10 -3 s -1, which was one to three orders of magnitude smaller than was observed for 45Ca. The slow ion exchange of quinoline on the clay surface is controlled by a site-specific quinoline/montmorillonite interaction and not a larger-scale physical step (i.e. interparticle diffusion). Equilibrium first-order forward (sorption) and reverse (desorption) mass fluxes were 1160 nmol cm -1 cm -3 pore volume with a 155-nmol mL -1 quinoline influent concentration. The initial quinoline mass flux to the clay was estimated

  12. Hydrogen diffusion kinetics and structural integrity of superhigh pressure Mg-5 wt%Ni alloys with dendrite interface

    NASA Astrophysics Data System (ADS)

    Fu, Hui; Wu, Wenshi; Dou, Yang; Liu, Baozhong; Li, Hanning; Peng, Qiuming

    2016-07-01

    A strategy of low-angle orientation dendrite interface-high index planes-which prepared by super-high pressure (SHP) technique, is proposed and successfully improved the hydrogen storage properties of Mg based materials for the first time, wherein a simple binary Mg-Ni alloy is used as a sample to elucidate its related mechanisms. The phase composition, morphology variation and hydrogen storage properties of the as-cast and SHP Mg-5Ni alloys in the temperature range of 1100-1600 °C are systemically investigated. The reversible hydrogen storage capacities and plateau hydrogen pressure of the as-cast and SHP alloys are close due to the same hydrogen storage phases (Mg and Mg2Ni). Note that although SHP treatment at 1600 °C has a large weight fraction of Mg6Ni compound, it still effectively reduces the onset temperature of dehydriding (∼262 °C), as well as improves the hydrogen desorption kinetics at low temperatures and structural integrity. The low onset temperature and outstanding hydrogen sorption/desorption kinetics are mainly associated with the formation of a large number of dendrite interface, in which the hydrogen atoms readily occur "zig-zag" jumps along {11-20} prismatic planes. This dendrite interface of high index planes which prepared by SHP technique paves a new pathway to enhance the hydrogen storage performances of magnesium based alloys.

  13. Sorption potential of rice husk for the removal of 2,4-dichlorophenol from aqueous solutions: kinetic and thermodynamic investigations.

    PubMed

    Akhtar, Mubeena; Bhanger, M I; Iqbal, Shahid; Hasany, S Moosa

    2006-01-16

    The sorption potential of chemically and thermally treated rice husk (RHT) for the removal of 2,4-dichlorophenol (DCP) from aqueous solutions has been investigated. Sorption of DCP by rice husk was observed over a wide pH range of 1-10. The effect of contact time between liquid and solid phases, sorbent dose, pH, concentration of sorbate and temperature on the sorption of DCP onto rice husk has been studied. The pore area and average pore diameter of RHT by BET method are calculated to be 17+/-0.6 m2g-1 and 51.3+/-1.5 nm, respectively. Maximum sorption (98+/-1.2%) was achieved for RHT from 6.1x10(-5) moldm(-3) of sorbate solution using 0.1g of rice husk for 10 min agitation time at pH 6 and 303K, which is comparable to activated carbon commercial (ACC) 96.6+/-1.2%, but significantly higher than chemically treated rice husk (RHCT) 65+/-1.6% and rice husk untreated (RHUT) 41+/-2.3%. The sorption data obtained at optimized conditions was subjected to Freundlich, Langmuir and Dubinin-Radushkevich (D-R) isotherms. Sorption intensity 1/n (0.31+/-0.01) and sorption capacity multilayer C(m) (12.0+/-1.6 mmolg(-1)) have been evaluated using Freundlich sorption isotherm, whereas the values of sorption capacity monolayer Q (0.96+/-0.03 mmolg(-1)) and binding energy, b, (4.5+/-1.0)x10(4)dm(3)mol(-1) have been estimated by Langmuir isotherm. The Langmuir constant, b, was also used to calculate the dimensionless factor, R(L), in the concentration range (0.6-6.1)x10(-4) moldm(-3), suggesting greater sorption at low concentration. D-R sorption isotherm was employed to calculate sorption capacity X(m) (2.5+/-0.07 mmolg(-1)) and sorption energy E (14.7+/-0.13 kJmol(-1)). Lagergren and Morris-Weber equations were employed to study kinetics of sorption process using 0.2g of RHT, 25 cm(3) of 0.61x10(-4)moldm(-3) sorbate concentration at pH 6, giving values of first-order rate constant, k, and rate constant of intraparticle transport, R(id), (0.48+/-0.04 min(-1) and 6.8+/-0.8 nmolg(-1

  14. Kinetics of sorption of Cu(II)-ethylenediaminetetraacetic acid chelated anions on cross-linked, polyaminated chitosan beads

    SciTech Connect

    Juang, R.S.; Ju, C.Y.

    1998-08-01

    Rates of sorption of Cu(II)-ethylenediaminetetraacetic acid (EDTA) chelated anions from aqueous solutions on cross-linked, poly(ethylenimine) (PEI)-modified chitosan beads were measured in a batch stirred vessel. All experiments were carried out in an equimolar solution of Cu(II) and EDTA (0.47--3.15 mol/m{sup 3}). It was shown that the rates of sorption increased with an increase in the initial concentration of Cu(II), pH, and temperature but decreased with an increase in the molecular weight of PEI introduced in the beads. The widely used homogeneous diffusion model based on Fick`s law and the shrinking core model cannot describe the sorption process. On the contrary, the kinetic data were well fit by the Elovich equation. The apparent activation energies evaluated (3.5--8.4 kcal/mol at pH 3) indicated the combined film and particle diffusion mechanism.

  15. Kinetics of hydrogen release from lunar soil

    NASA Technical Reports Server (NTRS)

    Bustin, Roberta

    1990-01-01

    With increasing interest in a lunar base, there is a need for extensive examination of possible lunar resources. Hydrogen will be needed on a lunar base for many activities including providing fuel, making water, and serving as a reducing agent in the extraction of oxygen from its ores. Previous studies have shown the solar wind has implanted hydrogen in the lunar regolith and that hydrogen is present not only in the outer layer of soil but to considerable depths, depending on the sampling site. If this hydrogen is to be mined and used on the lunar surface, a number of questions need to be answered. How much energy must be expended in order to release the hydrogen from the soil. What temperatures must be attained, and how long must the soil be heated. This study was undertaken to provide answers to practical questions such as these. Hydrogen was determined using a Pyrolysis/GC technique in which hydrogen was released by heating the soil sample contained in a quartz tube in a resistance wire furnace, followed by separation and quantitative determination using a gas chromatograph with a helium ionization detector. Heating times and temperatures were varied, and particle separates were studied in addition to bulk soils. The typical sample size was 10 mg of lunar soil. All of the soils used were mature soils with similar hydrogen abundances. Pre-treatments with air and steam were used in an effort to find a more efficient way of releasing hydrogen.

  16. Competitive sorption kinetics of inhibited endo- and exoglucanases on a model cellulose substrate.

    PubMed

    Maurer, Samuel A; Bedbrook, Claire N; Radke, Clayton J

    2012-10-16

    For the first time, the competitive adsorption of inhibited cellobiohydrolase I (Cel7A, an exoglucanase) and endoglucanase I (Cel7B) from T. longibrachiatum is studied on cellulose. Using quartz crystal microgravimetry (QCM), sorption histories are measured for individual types of cellulases and their mixtures adsorbing to and desorbing from a model cellulose surface. We find that Cel7A has a higher adsorptive affinity for cellulose than does Cel7B. The adsorption of both cellulases becomes irreversible on time scales of 30-60 min, which are much shorter than those typically used for industrial cellulose hydrolysis. A multicomponent Langmuir kinetic model including first-order irreversible binding is proposed. Although adsorption and desorption rate constants differ between the two enzymes, the rate at which each surface enzyme irreversibly binds is identical. Because of the higher affinity of Cel7A for the cellulose surface, when Cel7A and Cel7B compete for surface sites, a significantly higher bulk concentration of Cel7B is required to achieve comparable surface enzyme concentrations. Because cellulose deconstruction benefits significantly from the cooperative activity of endoglucanases and cellobiohydrolases on the cellulose surface, accounting for competitive adsorption is crucial to developing effective cellulase mixtures.

  17. Effect of coke in the equilibrium and kinetics of sorption on 5A molecular sieve zeolites

    SciTech Connect

    Silva, J.A.C.; Mata, V.G.; Dias, M.M.; Lopes, J.C.B.; Rodrigues, A.E.

    2000-04-01

    Porosimetric, gravimetric, zero length column (ZLC), and fixed-bed studies on coked pellets of 5A molecular sieve zeolites were performed. From porosimetric studies it seems that the coke is located in the microporous structure of 5A zeolite or any layers covering all crystals. The gravimetric studies between 473 and 573 K using n-pentane as a probe molecule show that Henry's constants in coked pellets are much smaller than those in fresh ones. The kinetics of sorption measured by the ZLC technique is also significantly modified. The results show that the system changes from a macropore control resistance with the reciprocal of time constant D{sub p}/R{sub p}{sup 2}(1 + K) on the order of 0.002--0.02 x{sup {minus}1} in fresh pellets to a micropore control resistance system with reciprocal time constant D{sub c}/r{sub c}{sup 2} 1 order of magnitude lower in coked pellets. The effect of temperature on the behavior of a fixed bed is also shown. A simple mathematical model with equilibrium and diffusivity parameters obtained from independent experiments predicts with good accuracy all fixed-bed adsorption and desorption runs.

  18. Localized Hydration in Lyophilized Myoglobin by Hydrogen-Deuterium Exchange Mass Spectrometry. 2. Exchange Kinetics

    PubMed Central

    Sophocleous, Andreas M.; Topp, Elizabeth M.

    2012-01-01

    Solid-state hydrogen deuterium exchange with mass spectrometric analysis (ssHDX) is a promising method for characterizing proteins in amorphous solids. Though analysis of HDX kinetics is informative and well-established in solution, application of these methods to solid samples is complicated by possible heterogeneities in the solid. The studies reported here provide a detailed analysis of the kinetics of hydration and ssHDX for equine myoglobin (Mb) in solid matrices containing sucrose or mannitol. Water sorption was rapid relative to ssHDX, indicating that ssHDX kinetics was not limited by bulk water transport. Deuterium uptake in solids was well-characterized by a bi-exponential model; values for regression parameters provided insight into differences between the two solid matrices. Analysis of the widths of peptide mass envelopes revealed that in solution, an apparent EX2 mechanism prevails, consistent with native conformation of the protein. In contrast, in mannitol-containing samples, a smaller non-native subpopulation exchanges by an EX1-like mechanism. Together, the results indicate that the analysis of ssHDX kinetic data and the widths of peptide mass envelopes are useful in screening solid formulations of protein drugs for the presence of non-native species that cannot be detected by amide I FTIR. PMID:22352990

  19. In situ X-ray Raman spectroscopy study of the hydrogen sorption properties of lithium borohydride nanocomposites.

    PubMed

    Miedema, Piter S; Ngene, Peter; van der Eerden, Ad M J; Sokaras, Dimosthenis; Weng, Tsu-Chien; Nordlund, Dennis; Au, Yuen S; de Groot, Frank M F

    2014-11-07

    Nanoconfined alkali metal borohydrides are promising materials for reversible hydrogen storage applications, but the characterization of hydrogen sorption in these materials is difficult. Here we show that with in situ X-ray Raman spectroscopy (XRS) we can track the relative amounts of intermediates and final products formed during de- and re-hydrogenation of nanoconfined lithium borohydride (LiBH4) and therefore we can possibly identify the de- and re-hydrogenation pathways. In the XRS of nanoconfined LiBH4 at different points in the de- and re-hydrogenation, we identified phases that lead to the conclusion that de- and re-hydrogenation pathways in nanoconfined LiBH4 are different from bulk LiBH4: intercalated lithium (LiCx), boron and lithium hydride were formed during de-hydrogenation, but as well Li2B12H12 was observed indicating that there is possibly some bulk LiBH4 present in the nanoconfined sample LiBH4-C as prepared. Surprisingly, XRS revealed that the de-hydrogenated products of the LiBH4-C nanocomposites can be partially rehydrogenated to about 90% of Li2B12H12 and 2-5% of LiBH4 at a mild condition of 1 bar H2 and 350 °C. This suggests that re-hydrogenation occurs via the formation of Li2B12H12. Our results show that XRS is an elegant technique that can be used for in and ex situ study of the hydrogen sorption properties of nanoconfined and bulk light-weight metal hydrides in energy storage applications.

  20. A travel time-based approach to model kinetic sorption in highly heterogeneous porous media via reactive hydrofacies

    NASA Astrophysics Data System (ADS)

    Finkel, Michael; Grathwohl, Peter; Cirpka, Olaf A.

    2016-12-01

    We present a semianalytical model for the transport of solutes being subject to sorption in porous aquifers. We couple a travel time-based model of advective transport with a spherical diffusion model of kinetic sorption in nonuniform material mixtures. The model is formulated in the Laplace domain and transformed to the time domain by numerical inversion. By this, three-dimensional transport of solutes undergoing mass transfer between aqueous and solid phases can be simulated very efficiently. The model addresses both hydraulic and reactive heterogeneity of porous aquifers by means of hydrofacies, which function as homogeneous but nonuniform subunits. The total exposure time to each of these subunits controls the magnitude of sorption effects, whereas the particular sequence of facies through which the solute passes is irrelevant. We apply the model to simulate the transport of phenanthrene in a fluvio-glacial aquifer, for which the hydrofacies distribution is known at high resolution, the lithological composition of each facies has been analyzed, and sorption properties of the lithological components are available. Taking the fully resolved hydrofacies model as reference, we evaluate different approximations referring to lower information levels, reflecting shortcomings in typical modeling projects. The most important feature for a good description of both the main breakthrough and tailing of phenanthrene is the nonuniformity of the porous medium. While spatial heterogeneity of chemical properties might be neglected without introducing a large error, an approximation of the facies' composition in terms of a uniform substitute material considerably compromises the quality of the modeling result.

  1. HYGROSCOPIC MOISTURE SORPTION KINETICS MODELING OF CORN STOVER AND ITS FRACTIONS

    SciTech Connect

    Igathinathane, C.; Pordesimo, L. O.; Womac, A.R.; Sokhansanj, Shahabaddine

    2009-01-01

    Corn stover, a major crop-based lignocellulosic biomass feedstock, is required to be at an optimum moisture content for efficient bioconversion processes. Environmental conditions surrounding corn stover, as in storage facilities, affect its moisture due to hygroscopic sorption or desorption. The measurement and modeling of sorption characteristics of corn stover and its leaf, husk, and stalk fractions are useful from utilization and storage standpoints, hence investigated in this article. A benchtop low-temperature humidity chamber provided the test environments of 20 C, 30 C, and 40 C at a constant 95% relative humidity. Measured sorption characteristics with three replications for each fraction were obtained from instantaneous sample masses and initial moisture contents. Observed sorption characteristics were fitted using exponential, Page, and Peleg models. Corn stover fractions displayed a rapid initial moisture uptake followed by a slower sorption rates and eventually becoming almost asymptotic after 25 h. Sorption characteristics of all corn stover fractions were significantly different (P < 0.0001) but not the effect of temperature (P > 0.05) on these fractions. The initial 30 min of sorption was found to be critical due to peak rates of sorption from storage, handling, and processing standpoints. The Page and Peleg models had comparable performance fitting the sorption curves (R2 = 0.995), however the exponential model (R2 = 0.91) was not found suitable because of patterned residuals. The Arrhenius type relationship (P < 0.05; R2 = 0.80) explained the temperature variation of the fitted sorption model parameters. The Peleg model fitted constants, among the sorption models studied, had the best fit (R2 = 0.93) with the Arrhenius relationship. A developed method of mass proportion, involving individual corn stover fraction dry matter ratios, predicted the whole corn stover sorption characteristics from that of its individual fractions. Sorption

  2. Kinetics of front-end acetylene hydrogenation in ethylene production

    SciTech Connect

    Schbib, N.S.; Garcia, M.A.; Gigola, C.E.; Errazu, A.F.

    1996-05-01

    The kinetics of acetylene hydrogenation in the presence of a large excess of ethylene was studied in a laboratory flow reactor. Experiments were carried out using a Pd/{alpha}-Al{sub 2}O{sub 3} commercial catalyst and a simulated cracker gas mixture (H{sub 2}/C{sub 2}H{sub 2} = 50; 60% C{sub 2}H{sub 4}; 30% H{sub 2}, and traces of CO), at varying temperature (293--393 K) and pressure (2--35 atm). Competing mechanisms for acetylene and ethylene hydrogenation were formulated and the corresponding kinetic equations derived by rate-determining step methods. A criterion based upon statistical analysis was used to discriminate between rival kinetic models. The selected equations are consistent with the adsorption of C{sub 2}H{sub 2} and C{sub 2}H{sub 4} in the same active sites followed by reaction with adsorbed hydrogen atoms to form C{sub 2}H{sub 4} and C{sub 2}H{sub 6} in a one-step process. Good agreement between computed and experimental results was obtained using a nonisothermal reactor model that takes into account the existence of external temperature and concentration gradients. The derived kinetic equations together with a pseudohomogeneous model of an integral adiabatic flow reactor were employed to simulate the conversion and the temperature profiles for a commercial hydrogenation unit.

  3. Sorption of SO(2) and NO from simulated flue gas over rice husk ash (RHA)/CaO/CeO(2) sorbent: evaluation of deactivation kinetic parameters.

    PubMed

    Dahlan, Irvan; Lee, Keat Teong; Kamaruddin, Azlina Harun; Mohamed, Abdul Rahman

    2011-01-30

    In this study, the kinetic parameters of rice husk ash (RHA)/CaO/CeO(2) sorbent for SO(2) and NO sorptions were investigated in a laboratory-scale stainless steel fixed-bed reactor. Data experiments were obtained from our previous results and additional independent experiments were carried out at different conditions. The initial sorption rate constant (k(0)) and deactivation rate constant (k(d)) for SO(2)/NO sorptions were obtained from the nonlinear regression analysis of the experimental breakthrough data using deactivation kinetic model. Both the initial sorption rate constants and deactivation rate constants increased with increasing temperature, except at operating temperature of 170 °C. The activation energy and frequency factor for the SO(2) sorption were found to be 18.0 kJ/mol and 7.37 × 10(5)cm(3)/(g min), respectively. Whereas the activation energy and frequency factor for the NO sorption, were estimated to be 5.64 kJ/mol and 2.19 × 10(4)cm(3)/(g min), respectively. The deactivation kinetic model was found to give a very good agreement with the experimental data of the SO(2)/NO sorptions.

  4. Kinetics of sorption of polyaromatic hydrocarbons onto granular activated carbon and Macronet hyper-cross-linked polymers (MN200).

    PubMed

    Valderrama, C; Cortina, J L; Farran, A; Gamisans, X; Lao, C

    2007-06-01

    Polymeric supports are presented as an alternative to granular activated carbon (GAC) for organic contaminant removal from groundwater using permeable reactive barriers (PRB). The search for suitable polymeric sorbents for hydrocarbon extraction from aqueous streams has prompted the synthesis of new resins incorporating new functionalities or modifying the polymer network properties that solve many of the existing problems. Between them, the new type of polymeric sorbents Macronet Hypersol containing a styrene-divinylbenzene macroporous hyperreticulated network has been evaluated. Because of their potential sorptive properties, tests were conducted to determine the feasibility of using them as a low-cost reactive material for groundwater applications. The present work describes the sorption of six polycyclic hydrocarbons (PAHs) from aqueous solution onto both Macronet polymeric sorbent MN200 and granular activated carbon. Batch experiments were performed to determine loading rates of a family of PAHs (naphthalene, fluorene, anthracene, acenaphthene, pyrene, and fluoranthene), from a simple two-rings PAH (naphthalene) up to a four-ring PAH (pyrene). The behavior of a non-functionalized Macronet support (MN200) was compared with the behavior of a recognized material, granular activated carbon (GAC). Analyses of the respective rate data with three theoretical models (pseudo-first- and pseudo-second-order reaction models and the Elovich model) were used to describe the PAH sorption kinetics. Sorption rate constants were determined by graphical analysis of the proposed models. The study showed that sorption systems followed a pseudo-first-order reaction model, although the pseudo-second-order reaction model provides an acceptable description of the sorption process. Graphical analysis showed that the sorption process with activated carbon is a more complex process than the one observed for hyper-cross-linked polymers (MN200). A simulation of the barrier thickness needed

  5. Kinetics of Hydrogen Reduction of Chalcopyrite Concentrate

    NASA Astrophysics Data System (ADS)

    Chatterjee, Ritayan; Ghosh, Dinabandhu

    2015-12-01

    A Ghatshila chalcopyrite concentrate (average particle size, 50 μm) containing primarily CuFeS2 and SiO2 (Cu 16 pct) was reduced by a stream of hydrogen in a thermogravimetric analyzer (TGA) at selected temperatures [1173 K to 1323 K (900 °C to 1050 °C)], hydrogen flow rates, partial pressures of hydrogen (0.33 × 101.3 to 101.3 kPa), and sample bed heights. The product was a mixture of Cu (26 pct), SiO2, CuFeO2, and Fe. The rate equations for the three typical controlling mechanisms, namely, gas film diffusion (mass transfer), pore diffusion, and interfacial reaction, have been derived for the system geometry under study and applied to identify the rate-controlling steps. The first stage of the reduction, which extended up to the first 13 minutes, was rate controlled by the interfacial reaction. The last stage, which spanned over the last 60 to 120 minutes and accounted for a small percentage of reduction, was controlled by pore diffusion through the built-up Cu (and Fe) layer. The activation energy in the first stage was 101 kJ mol-1 and that in the second stage was 76 kJ mol-1. Subsequent acid leaching with 1 M HCl solution of the reduction product removed all soluble species, leaving a Cu (53.3 pct) + SiO2 mixture, with a small concentration (2.7 pct) of Cu2O in it. This result compares well with the predicted final mixture of Cu (59 pct)-SiO2 based on a mass balance on the starting concentrate. A follow-up heating at 1523 K (1250 °C) produced a sintered Cu-SiO2 composite with spherical copper particles of 400 µm diameter embedded in a silica matrix. Elemental chemical analyses were carried out by energy-dispersive X-ray spectroscopy/atomic absorption spectroscopy. The phase identification and microstructural characterization of Cu-SiO2 mixtures were carried out by X-ray powder diffraction and optical microscopy.

  6. Sorption and desorption kinetics and isotherms of volatile methylsiloxanes with atmospheric aerosols.

    PubMed

    Kim, Jaeshin; Xu, Shihe

    2016-02-01

    This study investigated sorption and desorption behaviors of airborne volatile methylsiloxanes (VMS) such as octamethylcyclotetrasiloxane (D4) and decamethylcyclopentasiloxane (D5) on nine major primary and secondary atmospheric aerosols at a relative humidity (RH) of 30%. It was found that sorption and desorption of VMS took place via a two-phase process, which included an initial rapid step, followed by slower subsequent step. The initial rapid step was favored especially at low concentrations. Equilibrium sorption isotherms were slightly better fitted to Polanyi-Manes sorption model than Langmuir model except D4 on black carbon and D5 on sea salt. Values of apparent aerosol-air partition coefficients ranged 0.09-50.4 L/m(2) for D4 and 2.1-284 L/m(2) for D5 with carbon black having the largest values. Some of aerosols such as carbon black and sea salts reversibly interacted with D4 and D5 whereas other aerosols such as kaolinite and sulfates showed highly irreversible sorption for the VMS, especially at low concentrations. As sorption density of D4 and D5 on kaolinite was decreased from 1100 to 250 µg/m(2), the irreversible fraction was increased from 27% to 80%.The mechanism responsible for these differences is essential for a better understanding and prediction of atmospheric chemistry of VMS as affected by the presence of atmospheric aerosols.

  7. Kinetics of hydrogen peroxide decomposition by catalase: hydroxylic solvent effects.

    PubMed

    Raducan, Adina; Cantemir, Anca Ruxandra; Puiu, Mihaela; Oancea, Dumitru

    2012-11-01

    The effect of water-alcohol (methanol, ethanol, propan-1-ol, propan-2-ol, ethane-1,2-diol and propane-1,2,3-triol) binary mixtures on the kinetics of hydrogen peroxide decomposition in the presence of bovine liver catalase is investigated. In all solvents, the activity of catalase is smaller than in water. The results are discussed on the basis of a simple kinetic model. The kinetic constants for product formation through enzyme-substrate complex decomposition and for inactivation of catalase are estimated. The organic solvents are characterized by several physical properties: dielectric constant (D), hydrophobicity (log P), concentration of hydroxyl groups ([OH]), polarizability (α), Kamlet-Taft parameter (β) and Kosower parameter (Z). The relationships between the initial rate, kinetic constants and medium properties are analyzed by linear and multiple linear regression.

  8. Micropore clogging by leachable pyrogenic organic carbon: A new perspective on sorption irreversibility and kinetics of hydrophobic organic contaminants to black carbon.

    PubMed

    Wang, Bingyu; Zhang, Wei; Li, Hui; Fu, Heyun; Qu, Xiaolei; Zhu, Dongqiang

    2017-01-01

    Black carbon (BC) plays a crucial role in sequestering hydrophobic organic contaminants in the environment. This study investigated key factors and mechanisms controlling nonideal sorption (e.g., sorption irreversibility and slow kinetics) of model hydrophobic organic contaminants (nitrobenzene, naphthalene, and atrazine) by rice-straw-derived BC. After removing the fraction of leachable pyrogenic organic carbon (LPyOC) (referring to composites of dissoluble non-condensed organic carbon and associated mineral components) with deionized water or 0.5 M NaOH, sorption of these sorbates to BC was enhanced. The sorption enhancement was positively correlated with sorbate molecular size in the order of atrazine > naphthalene > nitrobenzene. The removal of LPyOC also accelerated sorption kinetics and reduced sorption irreversibility. These observations were attributed to increased accessibility of BC micropores initially clogged by the LPyOC. Comparison of BC pore size distributions before and after atrazine sorption further suggested that the sorbate molecules preferred to access the micropores that were more open, and the micropore accessibility was enhanced by the removal of LPyOC. Consistently, the sorption of nitrobenzene and atrazine to template-synthesized mesoporous carbon (CMK3), a model sorbent with homogeneous pore structures, showed decreased kinetics, but increased irreversibility by impregnating sorbent pores with surface-grafted alkylamino groups and by subsequent loading of humic acid. These findings indicated an important and previously unrecognized role of LPyOC (i.e., micropore clogging) in the nonideal sorption of organic contaminants to BC.

  9. Effects and Mechanisms of Mechanical Activation on Hydrogen Sorption/ Desorption of Nanoscale Lithium Nitrides

    SciTech Connect

    Shaw, Leon, L.; Yang, Gary, Z.; Crosby, Kyle; Wwan, Xufei. Zhong, Yang; Markmaitree, Tippawan; Osborn, William; Hu, Jianzhi; Kwak, Ja Hun

    2012-04-26

    The objective of this project is to investigate and develop novel, mechanically activated, nanoscale Li3N-based and LiBH4-based materials that are able to store and release {approx}10 wt% hydrogen at temperatures near 100 C with a plateau hydrogen pressure of less than 10 bar. Four (4) material systems have been investigated in the course of this project in order to achieve the project objective. These 4 systems are (i) LiNH2+LiH, (ii) LiNH2+MgH2, (iii) LiBH4, and (iv) LiBH4+MgH2. The key findings we have obtained from these 4 systems are summarized below. *The thermodynamic driving forces for LiNH2+LiH and LiBH4 systems are not adequate to enable H2 release at temperatures < 100 C. *Hydrogen release in the solid state for all of the four systems is controlled by diffusion, and thus is a slow process. *LiNH2+MgH2 and LiBH4+MgH2 systems, although possessing proper thermodynamic driving forces to allow for H2 release at temperatures < 100 C, have sluggish reaction kinetics because of their diffusion-controlled rate-limiting steps. *Reducing particles to the nanometer length scale (< 50 nm) can improve the thermodynamic driving force to enable H2 release at near ambient temperature, while simultaneously enhancing the reaction kinetics as well as changing the diffusion-controlled rate-limiting step to gas desorption-controlled rate-limiting step. This phenomenon has been demonstrated with LiBH4 and offers the hope that further work along this direction will make one of the material systems, i.e., LiBH4, LiBH4+MgH2 and LiNH2+MgH2, possess the desired thermodynamic properties and rapid H2 uptake/release kinetics for on-board applications. Many of the findings and knowledge gained from this project have been published in archival refereed journal articles [1-15] and are accessible by general public. Thus, to avoid a bulky final report, the key findings and knowledge gained from this project will be succinctly summarized, particularly for those findings and knowledge

  10. Interaction between chitosan and uranyl ions. Role of physical and physicochemical parameters on the kinetics of sorption

    SciTech Connect

    Piron, E. |; Accominotti, M.; Domard, A.

    1997-03-19

    This work corresponds to the first part of our studies on the interactions between chitosan particles dispersed in water and uranyl ions. The measurements were obtained by ICP, and we considered the role of various physical and physicochemical parameters related to chitosan. We showed that the crystallinity, the particle dimensions, and the swelling in water of chitosan are parameters which are connected together and govern the kinetic laws of metal diffusion and sorption. The molecular mobility of the polymer chains is then essential parameter. 31 refs., 5 figs., 3 tabs.

  11. Kinetics of Platinum-Catalyzed Decomposition of Hydrogen Peroxide

    NASA Astrophysics Data System (ADS)

    Vetter, Tiffany A.; Colombo, D. Philip, Jr.

    2003-07-01

    CIBA Vision Corporation markets a contact lens cleaning system that consists of an AOSEPT disinfectant solution and an AOSEPT lens cup. The disinfectant is a buffered 3.0% m/v hydrogen peroxide solution and the cup includes a platinum-coated AOSEPT disc. The hydrogen peroxide disinfects by killing bacteria, fungi, and viruses found on the contact lenses. Because the concentration of hydrogen peroxide needed to disinfect is irritating to eyes, the hydrogen peroxide needs to be neutralized, or decomposed, before the contact lenses can be used again. A general chemistry experiment is described where the kinetics of the catalyzed decomposition of the hydrogen peroxide are studied by measuring the amount of oxygen generated as a function of time. The order of the reaction with respect to the hydrogen peroxide, the rate constant, and the energy of activation are determined. The integrated rate law is used to determine the time required to decompose the hydrogen peroxide to a concentration that is safe for eyes.

  12. The electrocatalytic hydrogenation of glucose; 1: Kinetics of hydrogen evolution and glucose hydrogenation on Raney nickel powder

    SciTech Connect

    Anantharaman, V.; Pintauro, P.N. . Dept. of Chemical Engineering)

    1994-10-01

    The kinetics of H[sub 2] evolution and glucose reduction to sorbitol was investigated using a batch slurry reactor containing Raney nickel powder catalyst. In the presence and absence of glucose, hydrogen evolution proceeds via a Volmer-Heyrovsky mechanism, with both steps simultaneously rate controlling at low overpotentials and the Volmer reaction rate limiting at high cathodic overvoltages. A kinetic model for the electrocatalytic hydrogenation of glucose with simultaneous H[sub 2] generation was developed and tested. The model contains rate equations for the individual Volmer, Heyrovsky, and glucose hydrogenation steps, a Langmuir adsorption isotherm for glucose, an equation describing the shift in open-circuit potential due to glucose adsorption on the nickel catalyst, and steady-state atomic hydrogen and charge balance relationships. The theory accurately predicted potentiostatic polarization data and glucose hydrogenation rates. The results indicate that the mechanism for sorbitol formation with electrogenerated atomic hydrogen on Raney nickel is the same as that for the high temperature and pressure chemical catalytic hydrogenation process.

  13. Chemical kinetic performance losses for a hydrogen laser thermal thruster

    NASA Technical Reports Server (NTRS)

    Mccay, T. D.; Dexter, C. E.

    1985-01-01

    Projected requirements for efficient, economical, orbit-raising propulsion systems have generated investigations into several potentially high specific impulse, moderate thrust, advanced systems. One of these systems, laser thermal propulsion, utilizes a high temperature plasma as the enthalpy source. The plasma is sustained by a focused laser beam which maintains the plasma temperature at levels near 20,000 K. Since such temperature levels lead to total dissociation and high ionization, the plasma thruster system potentially has a high specific impulse decrement due to recombination losses. The nozzle flow is expected to be sufficiently nonequilibrium to warrant concern over the achievable specific impluse. This investigation was an attempt at evaluation of those losses. The One-Dimensional Kinetics (ODK) option of the Two-Dimensional Kinetics (TDK) Computer Program was used with a chemical kinetics rate set obtained from available literature to determine the chemical kinetic energy losses for typical plasma thruster conditions. The rates were varied about the nominal accepted values to band the possible losses. Kinetic losses were shown to be highly significant for a laser thermal thruster using hydrogen. A 30 percent reduction in specific impulse is possible simply due to the inability to completely extract the molecular recombination energy.

  14. The kinetic and thermodynamic sorption and stabilization of multiwalled carbon nanotubes in natural organic matter surrogate solutions: the effect of surrogate molecular weight.

    PubMed

    Li, Tingting; Lin, Daohui; Li, Lu; Wang, Zhengyu; Wu, Fengchang

    2014-03-01

    Styrene sulfonate (SS) and polystyrene sulfonates (PSSs) were used as surrogates of natural organic matter to study the effect of molecular weight (from 206.2 to 70,000 Da) on their sorption by a multiwalled carbon nanotube (MWCNT) and an activated carbon (AC) and on their stabilization of MWCNT suspension. Results indicate that surface-diffusion through the liquid-sorbent boundary was the rate-controlling step of the kinetic sorption of both MWCNTs and AC, and surface-occupying and pore-filling mechanisms respectively dominated the thermodynamic sorption of MWCNTs and AC. Sorption rates and capacities of MWCNTs and AC in molecular concentration of SS and PSS decreased with increasing molecular weight. The PSSs but not SS facilitated the stabilization of MWCNT suspension because of the increased electrosteric repulsion. The PSSs with more monomers had greater capabilities to stabilize the MWCNT suspension, but the capabilities were comparable after being normalized by the total monomer number.

  15. Kinetic modelling of molecular hydrogen transport in microporous carbon materials.

    PubMed

    Hankel, Marlies; Zhang, Hong; Nguyen, Thanh X; Bhatia, Suresh K; Gray, Stephen K; Smith, Sean C

    2011-05-07

    The proposal of kinetic molecular sieving of hydrogen isotopes is explored by employing statistical rate theory methods to describe the kinetics of molecular hydrogen transport in model microporous carbon structures. A Lennard-Jones atom-atom interaction potential is utilized for the description of the interactions between H(2)/D(2) and the carbon framework, while the requisite partition functions describing the thermal flux of molecules through the transition state are calculated quantum mechanically in view of the low temperatures involved in the proposed kinetic molecular sieving application. Predicted kinetic isotope effects for initial passage from the gas phase into the first pore mouth are consistent with expectations from previous modeling studies, namely, that at sufficiently low temperatures and for sufficiently narrow pore mouths D(2) transport is dramatically favored over H(2). However, in contrast to expectations from previous modeling, the absence of any potential barrier along the minimum energy pathway from the gas phase into the first pore mouth yields a negative temperature dependence in the predicted absolute rate coefficients-implying a negative activation energy. In pursuit of the effective activation barrier, we find that the minimum potential in the cavity is significantly higher than in the pore mouth for nanotube-shaped models, throwing into question the common assumption that passage through the pore mouths should be the rate-determining step. Our results suggest a new mechanism that, depending on the size and shape of the cavity, the thermal activation barrier may lie in the cavity rather than at the pore mouth. As a consequence, design strategies for achieving quantum-mediated kinetic molecular sieving of H(2)/D(2) in a microporous membrane will need, at the very least, to take careful account of cavity shape and size in addition to pore-mouth size in order to ensure that the selective step, namely passage through the pore mouth, is also

  16. Kinetic modelling of molecular hydrogen transport in microporous carbon materials.

    SciTech Connect

    Hankel, M.; Zhang, H.; Nguyen, T. X.; Bhatia, S. K.; Gray, S. K.; Smith, S. C.

    2011-01-01

    The proposal of kinetic molecular sieving of hydrogen isotopes is explored by employing statistical rate theory methods to describe the kinetics of molecular hydrogen transport in model microporous carbon structures. A Lennard-Jones atom-atom interaction potential is utilized for the description of the interactions between H{sub 2}/D{sub 2} and the carbon framework, while the requisite partition functions describing the thermal flux of molecules through the transition state are calculated quantum mechanically in view of the low temperatures involved in the proposed kinetic molecular sieving application. Predicted kinetic isotope effects for initial passage from the gas phase into the first pore mouth are consistent with expectations from previous modeling studies, namely, that at sufficiently low temperatures and for sufficiently narrow pore mouths D{sub 2} transport is dramatically favored over H{sub 2}. However, in contrast to expectations from previous modeling, the absence of any potential barrier along the minimum energy pathway from the gas phase into the first pore mouth yields a negative temperature dependence in the predicted absolute rate coefficients - implying a negative activation energy. In pursuit of the effective activation barrier, we find that the minimum potential in the cavity is significantly higher than in the pore mouth for nanotube-shaped models, throwing into question the common assumption that passage through the pore mouths should be the rate-determining step. Our results suggest a new mechanism that, depending on the size and shape of the cavity, the thermal activation barrier may lie in the cavity rather than at the pore mouth. As a consequence, design strategies for achieving quantum-mediated kinetic molecular sieving of H{sub 2}/D{sub 2} in a microporous membrane will need, at the very least, to take careful account of cavity shape and size in addition to pore-mouth size in order to ensure that the selective step, namely passage

  17. Sorption of VX to Clay Minerals and Soils: Thermodynamic and Kinetic Studies

    DTIC Science & Technology

    2012-12-01

    processed clay that is commonly used as a catalyst in organic chemistry reactions. 32–34 The exact procedure used to modify this clay is proprietary but...Buffalo River sediment (SRM 8704), San Joaquin soil (SRM 2709), and three glass sands (SRM 165a, 81A, and 1413). A second catalyst -grade...sorption of VX with Suspengel 200. It was decided to focus the definitive study on the natural clay substrate and not the highly processed catalyst

  18. Sorption of distillery spent wash onto fly ash: kinetics, mechanism, process design and factorial design.

    PubMed

    Krishna Prasad, R; Srivastava, S N

    2009-01-30

    Batch and continuous experiments were performed for the sorption of distillery spent wash onto fly ash particles. The Freundlich and pseudo-second order equation were found to fit the equilibrium data perfectly. The Weber-Morris intraparticle diffusion isotherm equation was used to predict the sorption mechanism and the predicted equation for 10% dilution of spent wash sorption is q(t)=1.1344t(0.5)+33.304. The optimization using 2(3) factorial design of experiments provides optimal removal of color of 93% for dilution (5%), dosage of adsorbent (10g) and temperature (293K). The actual color removal at optimal conditions was 92.24%, confirms close to the factorial design results. The complete error analysis using six non-linear error functions: Chi-square (chi(2)); sum of square errors (SSE); composite fractional error function (HYBRD); derivative of Marquardt's percent standard deviation (MPSD); average relative error (ARE); sum of absolute errors (EABS) were calculated. Free energy of adsorption at 293K (DeltaG(0)=-1574.67J), enthalpy change (DeltaH(0)=-32.5487KJ) and entropy change (DeltaS(0)=105J/K) were calculated to predict the nature of adsorption. Adsorption studies in a packed column were evaluated using Bed depth service time model, Thomas model and Adams-Bohart model.

  19. The role of sorption and biodegradation in the removal of acetaminophen, carbamazepine, caffeine, naproxen and sulfamethoxazole during soil contact: A kinetics study.

    PubMed

    Martínez-Hernández, Virtudes; Meffe, Raffaella; Herrera López, Sonia; de Bustamante, Irene

    2016-07-15

    In countries like Spain, where water is a limited resource, reusing effluents from wastewater treatment plants may imply the introduction of incompletely eliminated pollutants into the environment. Therefore, this work identified the role of sorption and biodegradation in attenuating pharmaceutical compounds (acetaminophen, carbamazepine, caffeine, naproxen and sulfamethoxazole) in natural soil. It also determined which sorption and removal ("sorption+biodegradation") kinetics models describe the behaviour of these substances in the water-soil system. Presence of potential transformation products (TPs) as a result of pharmaceuticals biodegradation was also studied. To this end, serial batch-type experiments were performed with a soil:water ratio of 1:4 and an initial pharmaceutical concentration of 100μgL(-1). Despite results are dependent on soil characteristics, they revealed that, for those substances with a higher affinity to the soil used (loamy sand), sorption seems to play a key role during the first 48h of contact with soil, and gives way to biodegradation afterwards. The sorption of the pharmaceuticals studied follows a pseudo second-order kinetics. Caffeine and sulfamethoxazole displayed the fastest initial sorption velocities (h=2055 and h=228μgkg(-1)h(-1), respectively). The removal kinetics experiments, satisfactorily simulated by the first-order kinetics model, indicated the presence of potential microbial adaptation to degradation. Indeed, half-lives decreased from 1.6- to 11.7-fold with respect to initial values. The microbial capacity to degrade sulfamethoxazole could be a matter of concern if bacteria have developed resistance to this antibiotic. Caffeine, acetaminophen and sulfamethoxazole were mitigated to a greater extent, whereas the removal of naproxen and carbamazepine was more limited. The appearance of epoxy-carbamazepine and N4-acetyl-sulfamethoxazole as possible TPs of carbamazepine and sulfamethoxazole, respectively, indicated that

  20. Kinetic Method for Hydrogen-Deuterium-Tritium Mixture Distillation Simulation

    SciTech Connect

    Sazonov, A.B.; Kagramanov, Z.G.; Magomedbekov, E.P.

    2005-07-15

    Simulation of hydrogen distillation plants requires mathematical procedures suitable for multicomponent systems. In most of the present-day simulation methods a distillation column is assumed to be composed of theoretical stages, or plates. However, in the case of a multicomponent mixture theoretical plate does not exist.An alternative kinetic method of simulation is depicted in the work. According to this method a system of mass-transfer differential equations is solved numerically. Mass-transfer coefficients are estimated with using experimental results and empirical equations.Developed method allows calculating the steady state of a distillation column as well as its any non-steady state when initial conditions are given. The results for steady states are compared with ones obtained via Thiele-Geddes theoretical stage technique and the necessity of using kinetic method is demonstrated. Examples of a column startup period and periodic distillation simulations are shown as well.

  1. The effects of iron(II) on the kinetics of arsenic oxidation and sorption on manganese oxides.

    PubMed

    Wu, Yun; Li, Wei; Sparks, Donald L

    2015-11-01

    In this study, As(III) oxidation kinetics by a poorly-crystalline phyllomanganate (δ-MnO2) in the presence and absence of dissolved Fe(II) was investigated using stirred-flow and batch experiments. Chemically synthetic δ-MnO2 was reacted with four influent solutions, containing the same As(III) concentration but different Fe(II) concentrations, at pH 6. The results show an initial rapid As(III) oxidation by δ-MnO2, which is followed by an appreciably slow reaction after 8h. In the presence of Fe(II), As(III) oxidation is inhibited due to the competitive oxidation of Fe(II) as well as the formation of Fe(III)-(hydr)oxides on the δ-MnO2 surface. However, the sorption of As(III), As(V) and Mn(II) are increased, for the newly formed Fe(III)-(hydr)oxides provide additional sorption sites. This study suggests that the competitive oxidation of Fe(II) and consequently the precipitation of Fe(III) compounds on the δ-MnO2 surface play an important role in As(III) oxidation and As sequestration. Understanding these processes would be helpful in developing in situ strategies for remediation of As-contaminated waters and soils.

  2. Hydrogen-rich gas production via CaO sorption-enhanced steam gasification of rice husk: a modelling study.

    PubMed

    Beheshti, Sayyed Mohsen; Ghassemi, Hojat; Shahsavan-Markadeh, Rasoul; Fremaux, Sylvain

    2015-01-01

    Gasification is a thermochemical process in which solid or liquid fuels are transformed into synthesis gas through partial oxidation. In this paper, a kinetic model of rice husk gasification has been developed, which is interesting for the applications of the syngas produced. It is a zero-dimensional, steady-state model based on global reaction kinetic, empirical correlation of pyrolysis and is capable of predicting hydrogen yield in the presence of sorbent CaO. The model can also be used as a useful tool to investigate the influence of process parameters including steam/biomass ratio, CaO/fuel ratio (CaO/Fuel), and gasification temperature on hydrogen efficiency, CO2 capture ratio (CCR), and average carbonation conversion (Save). Similar to hydrogen formation, CCR also increases with increasing CaO/Fuel, but an opposite trend is exhibited in Save. Model predictions were compared with available data from the literature, which showed fairly good agreement.

  3. Sorption kinetics and equilibrium for the removal of nickel ions from aqueous phase on calcined Bofe bentonite clay.

    PubMed

    Vieira, M G A; Neto, A F Almeida; Gimenes, M L; da Silva, M G C

    2010-05-15

    In this paper the kinetics and dynamics of nickel adsorption on calcined Bofe bentonite clay were studied. The clay was characterized through EDX, surface area (BET) and XRD analysis. The influence of parameters (pH, amount of adsorbent, adsorbate concentration and temperature) was investigated. Kinetic models were evaluated in order to identify potential adsorption process mechanisms. The Langmuir and Freundlich models were utilized for the analysis of adsorption equilibrium. Thermodynamic parameters were assessed as a function of the process temperature. The kinetics data were better represented by the second-order model. The process was found to be strongly influenced by the factors studied. The Bofe clay removed nickel with maximum adsorption capacity of 1.91 mg metal/g of clay (20 degrees C; pH 5.3) and that the thermodynamic data indicated that the adsorption reaction is spontaneous and of an exothermal nature. The Langmuir model provided the best fit for sorption isotherms. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  4. Kinetic, equilibrium and thermodynamic studies on sorption of uranium and thorium from aqueous solutions by a selective impregnated resin containing carminic acid.

    PubMed

    Rahmani-Sani, Abolfazl; Hosseini-Bandegharaei, Ahmad; Hosseini, Seyyed-Hossein; Kharghani, Keivan; Zarei, Hossein; Rastegar, Ayoob

    2015-04-09

    In this work, the removal of uranium and thorium ions from aqueous solutions was studied by solid-liquid extraction using an advantageous extractant-impregnated resin (EIR) prepared by loading carminic acid (CA) onto Amberlite XAD-16 resin beads. Batch sorption experiments using CA/XAD-16 beads for the removal of U(VI) and Th(IV) ions were carried out as a function of several parameters, like equilibration time, metal ion concentration, etc. The equilibrium data obtained from the sorption experiments were adjusted to the Langmuir isotherm model and the calculated maximum sorption capacities in terms of monolayer sorption were in agreement with those obtained from the experiments. The experimental data on the sorption behavior of both metal ions onto the EIR beads fitted well in both Bangham and intra-particle diffusion kinetic models, indicating that the intra-particle diffusion is the rate-controlling step. The thermodynamic studies at different temperatures revealed the feasibility and the spontaneous nature of the sorption process for both uranium and thorium ions.

  5. Removal of divalent heavy metals (Cd, Cu, Pb, and Zn) and arsenic(III) from aqueous solutions using scoria: kinetics and equilibria of sorption.

    PubMed

    Kwon, Jang-Soon; Yun, Seong-Taek; Lee, Jong-Hwa; Kim, Soon-Oh; Jo, Ho Young

    2010-02-15

    Kinetic and equilibrium sorption experiments were conducted on removal of divalent heavy metals (Pb(II), Cu(II), Zn(II), Cd(II)) and trivalent arsenic (As(III)) from aqueous solutions by scoria (a vesicular pyroclastic rock with basaltic composition) from Jeju Island, Korea, in order to examine its potential use as an efficient sorbent. The removal efficiencies of Pb, Cu, Zn, Cd, and As by the scoria (size=0.1-0.2mm, dose=60gL(-1)) were 94, 70, 63, 59, and 14%, respectively, after a reaction time of 24h under a sorbate concentration of 1mM and the solution pH of 5.0. A careful examination on ionic concentrations in sorption batches suggested that sorption behaviors of heavy metals onto scoria are mainly controlled by cation exchange. On the other hand, arsenic appeared to be sensitive to specific sorption onto hematite (a minor constituent of scoria). Equilibrium sorption tests indicated that the removal efficiency for heavy metals increases with increasing pH of aqueous solutions, which is resulted from precipitation as hydroxides. Similarly, multi-component systems containing heavy metals and arsenic showed that the arsenic removal increases with increasing pH of aqueous solutions, which can be attributed to coprecipitation with metal hydroxides. The empirically determined sorption kinetics were well fitted to a pseudo-second order model, while equilibrium sorption data for heavy metals and arsenic onto scoria were consistent with the Langmuir and Freundlich isotherms, respectively. Natural scoria studied in this work is an efficient sorbent for concurrent removal of divalent heavy metals and arsenic.

  6. Development and validation of a new kinetic sorption model for nonionic polymer transport in multi-dimensional porous media

    NASA Astrophysics Data System (ADS)

    Mohammadnejad, H.; Marion, B.; Han, J. J.; Pennell, K. D.; Abriola, L. M.

    2016-12-01

    The development of mathematical models capable of reliably predicting nanoparticle (NP) transport in subsurface systems is crucial to assess their environmental fate and to improve NP delivery methods. To enhance the stability of NP suspensions, production often involves the use of nonionic polymers as stabilizing agents, many of which have been shown to affect NP transport in porous media. Thus, the influence of secondary stabilizing constituents on NP deposition must be incorporated in mathematical models. This will require development and validation of a model for nonionic polymer transport and sorption in porous media. A number of experimental studies have reported that nonionic polymers form a bilayer when they adsorb onto minerals. A two-stage kinetic sorption model is presented here to describe nonionic polymer adsorption to sands of varying grain size and mineralogy. Stage one consists of polymer sorption up to monolayer coverage and stage two describes the adsorption of additional polymers to form a bilayer conformation. Here, consistent with the available experimental literature, the first stage rate is treated as fast and irreversible, while the second stage rate is assumed slow and reversible. The resulting mathematical model was validated using data from a series of experiments that involved the injection of solutions of two different nonionic stabilizing polymers, Gum Arabic and Witconol 2722, in sand columns packed with several size fractions of Ottawa sand (OS) and Crushed Berea sandstone (CSS). Following validation, the model was implemented in a multi-dimensional subsurface flow and transport framework, employing a revised version of the multi-constituent site-blocking model (MCB) first introduced by Becker, et.al. (2015). This multi-dimensional model was applied to simulate a two-dimensional aquifer cell experiment, where Gum Arabic was co injected with magnetic nanoparticle (nMag) in a heterogeneous medium. Following completion of nonreactive

  7. Kinetic effect of Pd additions on the hydrogen uptake of chemically activated, ultramicroporous carbon

    SciTech Connect

    Bhat, Vinay V; Contescu, Cristian I; Gallego, Nidia C

    2010-01-01

    The effect of mixing chemically-activated ultramicroporous carbon (UMC) with Pd nanopowder is investigated. Results show that Pd addition doubles the rate of hydrogen uptake, but does not enhance the hydrogen capacity or improve desorption kinetics. The effect of Pd on the rate of hydrogen adsorption supports the occurrence of the hydrogen spillover mechanism in the Pd - UMC system.

  8. Processes and kinetics of Cd2+ sorption by a calcareous aquifer sand

    USGS Publications Warehouse

    Fuller, C.C.; Davis, J.A.

    1987-01-01

    The rate of Cd2+ sorption by a calcareous aquifer sand was characterized by two reaction steps, with the first step reaching completion in 24 hours. The second step proceeded at a slow and nearly constant rate for at least seven days. The first step includes a fast adsorption reaction which is followed by diffusive transport into either a disordered surface film of hydrated calcium carbonate or into pore spaces. After 24 hours the rate of Cd2+ sorption was constant and controlled by the rate of surface coprecipitation, as a solid solution of CdCO3 in CaCO3 formed in recrystallizing material. Desorption of Cd2+ from the sand was slow. Clean grains of primary minerals, e.g. quartz and aluminosilicates. sorbed much less Cd2+ than grains which had surface patches of secondary minerals, e.g. carbonates, iron and manganese oxides. Calcite grains sorbed the greatest amount of Cd2+ on a weight-normalized basis despite the greater abundance of quartz. A method is illustrated for determining empirical binding constants for trace metals at in situ pH values without introducing the experimental problem of supersaturation. The binding constants are useful for solute transport models which include a computation of aqueous speciation. ?? 1987.

  9. Coupling the advection-dispersion equation with fully kinetic reversible/irreversible sorption terms to model radiocesium soil profiles in Fukushima Prefecture.

    PubMed

    Kurikami, Hiroshi; Malins, Alex; Takeishi, Minoru; Saito, Kimiaki; Iijima, Kazuki

    2017-02-17

    Radiocesium is an important environmental contaminant in fallout from nuclear reactor accidents and atomic weapons testing. A modified Diffusion-Sorption-Fixation (mDSF) model, based on the advection-dispersion equation, is proposed to describe the vertical migration of radiocesium in soils following fallout. The model introduces kinetics for the reversible binding of radiocesium. We test the model by comparing its results to depth profiles measured in Fukushima Prefecture, Japan, since 2011. The results from the mDSF model are a better fit to the measurement data (as quantified by R(2)) than results from a simple diffusion model and the original DSF model. The introduction of reversible sorption kinetics means that the exponential-shape depth distribution can be reproduced immediately following fallout. The initial relaxation mass depth of the distribution is determined by the diffusion length, which depends on the distribution coefficient, sorption rate and dispersion coefficient. The mDSF model captures the long tails of the radiocesium distribution at large depths, which are caused by different rates for kinetic sorption and desorption. The mDSF model indicates that depth distributions displaying a peak in activity below the surface are possible for soils with high organic matter content at the surface. The mDSF equations thus offers a physical basis for various types of radiocesium depth profiles observed in contaminated environments.

  10. The inverse problem of the kinetics of redox sorption taking into account the size of ultradisperse metal particles in an electron-ion exchanger

    NASA Astrophysics Data System (ADS)

    Konev, D. V.; Fertikov, V. V.; Kravchenko, T. A.; Kalinichev, A. I.

    2008-08-01

    The inverse kinetic problem of reducing sorption of molecular oxygen by a copper-containing electron-ion exchanger was formulated and solved taking into account the influence of the size of ultradisperse metal particles on the total rate of the process. These results were used to determine the inside diffusion coefficient of oxygen and rate constants for its interaction with disperse copper from the experimental kinetic curves. The diffusion coefficient obtained was compared with the result of an independent experiment. The kinetic parameters found were used to perform a theoretical analysis of the contributions of various factors influencing the rate of the process under consideration. The reason for the experimentally observed acceleration of the reducing sorption of oxygen by a high-dispersity electron-ion exchanger sample was shown to be an increase in the surface area of metal because of a decrease in the size of its particles and a comparatively high copper content in the surface layer of grains.

  11. The kinetics of hydrogen diffusion in single crystal orthopyroxene

    NASA Astrophysics Data System (ADS)

    Carpenter, Susan Jean

    The kinetics of hydrogen diffusion in single crystals of orthopyroxene were investigated parallel to the [100], [010] and [001] crystallographic directions during dehydration and hydrogenation. The two groups of samples investigated spanned a range of metal composition, most notably iron, 4.5--8.5 wt % FeO, and aluminum, 2.1--3.5 wt % Al2O3; the aluminum was bound in both regular metal sites (AlVI) and in tetrahedral sites (AlIV). Xenolithic crystals from the San Carlos, Arizona, region contain on average, about 5.3 wt % FeO and 2.4 wt % Al2O3, and the gem-quality crystals from Sri Lanka contain between 4.5 and 8.5 wt % FeO, and between 2.1 and 3.6 wt % Al 2O3. Dehydration was performed in a 1 atm gas-mixing furnace at temperatures between 800 and 1100°C, using mixtures of CO and CO 2 to maintain the oxygen fugacity at 10-14 atm, close to the nickel/nickel oxide (NNO) solid buffer. Hydrogenation was performed in a piston-cylinder apparatus at 1 GPa within the same range of temperatures, using welded platinum capsules to contain the samples, water and NNO solid buffer. After a heating event, samples were polished so that the central region of the crystal could be analyzed. Changes in hydrogen concentration as a function of heating time were plotted as hydroxyl concentration profiles across the central sections of the samples, obtained by using polarized FTIR spectroscopy with the electric vector E, oriented parallel to the c crystallographic direction, the direction in which hydroxyl dipoles in clinopyroxene are primarily oriented. Hydrogen diffusivities were obtained by fitting the hydroxyl concentration profiles to theoretical profiles generated by finite solution numerical modeling for diffusion within a finite slab to/from an infinite source. During dehydration, hydrogen diffusion was found to be anisotropic in San Carlos enstatite and isotropic in the Sri Lankan samples, with more rapid hydrogen diffusion occurring in the Sri Lankan samples that contain

  12. Catalytically Enhanced Hydrogen Sorption in Mg-MgH2 by Coupling Vanadium-Based Catalyst and Carbon Nanotubes

    PubMed Central

    Kadri, Atikah; Jia, Yi; Chen, Zhigang; Yao, Xiangdong

    2015-01-01

    Mg (MgH2)-based composites, using carbon nanotubes (CNTs) and pre-synthesized vanadium-based complex (VCat) as the catalysts, were prepared by high-energy ball milling technique. The synergistic effect of coupling CNTs and VCat in MgH2 was observed for an ultra-fast absorption rate of 6.50 wt. % of hydrogen per minute and 6.50 wt. % of hydrogen release in 10 min at 200 °C and 300 °C, respectively. The temperature programmed desorption (TPD) results reveal that coupling VCat and CNTs reduces both peak and onset temperatures by more than 60 °C and 114 °C, respectively. In addition, the presence of both VCat and CNTs reduces the enthalpy and entropy of desorption of about 7 kJ/mol H2 and 11 J/mol H2·K, respectively, as compared to those of the commercial MgH2, which ascribe to the decrease of desorption temperature. From the study of the effect of CNTs milling time, it is shown that partially destroyed CNTs (shorter milling time) are better to enhance the hydrogen sorption performance.

  13. Equilibrium, kinetics and mechanism modeling and simulation of basic and acid dyes sorption onto jute fiber carbon: Eosin yellow, malachite green and crystal violet single component systems.

    PubMed

    Porkodi, K; Vasanth Kumar, K

    2007-05-08

    Batch experiments were carried out for the sorption of eosin yellow, malachite green and crystal violet onto jute fiber carbon (JFC). The operating variables studied are the initial dye concentration, initial solution pH, adsorbent dosage and contact time. Experimental equilibrium data were fitted to Freundlich, Langmuir and Redlich-Peterson isotherm by non-linear regression method. Langmuir isotherm was found to be the optimum isotherm for eosin yellow/JFC system and Freundlich isotherm was found to be the optimum isotherm for malachite green/JFC and crystal violet/JFC system at equilibrium conditions. The sorption capacities of eosin yellow, malachite green and crystal violet onto JFC according to Langmuir isotherm were found to 31.49 mg/g, 136.58 mg/g, 27.99 mg/g, respectively. A single stage batch adsorber was designed for the adsorption of eosin yellow, malachite green and crystal violet onto JFC based on the optimum isotherm. A pseudo second order kinetic model well represented the kinetic uptake of dyes studied onto JFC. The pseudo second order kinetic model successfully simulated the kinetics of dye uptake process. The dye sorption process involves both surface and pore diffusion with predominance of surface diffusion at earlier stages. A Boyd plot confirms the external mass transfer as the rate limiting step in the dye sorption process. The influence of initial dye concentration on the dye sorption process was represented in the form of dimensionless mass transfer numbers (Sh/Sc(0.33)) and was found to be agreeing with the expression:

  14. Kinetic modeling of α-hydrogen abstractions from unsaturated and saturated oxygenate compounds by hydrogen atoms.

    PubMed

    Paraskevas, Paschalis D; Sabbe, Maarten K; Reyniers, Marie-Françoise; Papayannakos, Nikos G; Marin, Guy B

    2014-10-09

    Hydrogen-abstraction reactions play a significant role in thermal biomass conversion processes, as well as regular gasification, pyrolysis, or combustion. In this work, a group additivity model is constructed that allows prediction of reaction rates and Arrhenius parameters of hydrogen abstractions by hydrogen atoms from alcohols, ethers, esters, peroxides, ketones, aldehydes, acids, and diketones in a broad temperature range (300-2000 K). A training set of 60 reactions was developed with rate coefficients and Arrhenius parameters calculated by the CBS-QB3 method in the high-pressure limit with tunneling corrections using Eckart tunneling coefficients. From this set of reactions, 15 group additive values were derived for the forward and the reverse reaction, 4 referring to primary and 11 to secondary contributions. The accuracy of the model is validated upon an ab initio and an experimental validation set of 19 and 21 reaction rates, respectively, showing that reaction rates can be predicted with a mean factor of deviation of 2 for the ab initio and 3 for the experimental values. Hence, this work illustrates that the developed group additive model can be reliably applied for the accurate prediction of kinetics of α-hydrogen abstractions by hydrogen atoms from a broad range of oxygenates.

  15. Layer-by-layer deposition on a heterogeneous surface: Effect of sorption kinetics on the growth of polyelectrolyte multilayers.

    PubMed

    Bellanger, Hervé; Casdorff, Kirstin; Muff, Livius F; Ammann, Rebecca; Burgert, Ingo; Michen, Benjamin

    2017-08-15

    Surface functionalization by means of controlled deposition of charged polymers or nanoparticles using the layer-by-layer (LbL) approach has been used to modify mostly engineered materials with well-defined surface chemistry and morphology. In this regard, natural and inhomogeneous interfaces have gained very little attention. Furthermore, natural substrates are susceptible to alterations by factors commonly used to control the growth of multilayers, such as pH, temperature and ionic strength. Here, we study the impact of sorption kinetics of a bilayer system (Poly(diallyldimethylammonium chloride) (PDDA) and Poly(sodium 4-styrenesulfonate) (PSS)) on a natural heterogeneous wood surface at neutral pH, without salt addition, on the multilayer buildup. To overcome analytical limitations we introduce a complementary approach based on UV reflectance spectroscopy, atomic force microscopy (AFM) and zeta potential measurements. Compared to immersion times used for ideal substrates, we found that a high surface coverage requires relatively long immersion, approximately 30min, into polyelectrolyte solutions, while a sufficient removal of polyelectrolyte excess during the washing step, requires even longer, about 100min. Based on these findings, we show that film growth can be controlled kinetically. Long immersion times provide well-defined and regular multilayers. The obtained data points to specific requirements to be considered when LbL treatments are applied to rough, porous and heterogeneous surfaces, and thereby sets a basis for a successful transfer of various surface functionalization approaches already shown on ideal surfaces. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Cysteine-Functionalized Chitosan Magnetic Nano-Based Particles for the Recovery of Light and Heavy Rare Earth Metals: Uptake Kinetics and Sorption Isotherms.

    PubMed

    Galhoum, Ahmed A; Mafhouz, Mohammad G; Abdel-Rehem, Sayed T; Gomaa, Nabawia A; Atia, Asem A; Vincent, Thierry; Guibal, Eric

    2015-02-04

    Cysteine-functionalized chitosan magnetic nano-based particles were synthesized for the sorption of light and heavy rare earth (RE) metal ions (La(III), Nd(III) and Yb(III)). The structural, surface, and magnetic properties of nano-sized sorbent were investigated by elemental analysis, FTIR, XRD, TEM and VSM (vibrating sample magnetometry). Experimental data show that the pseudo second-order rate equation fits the kinetic profiles well, while sorption isotherms are described by the Langmuir model. Thermodynamic constants (ΔG°, ΔH°) demonstrate the spontaneous and endothermic nature of sorption. Yb(III) (heavy RE) was selectively sorbed while light RE metal ions La(III) and Nd(III) were concentrated/enriched in the solution. Cationic species RE(III) in aqueous solution can be adsorbed by the combination of chelating and anion-exchange mechanisms. The sorbent can be efficiently regenerated using acidified thiourea.

  17. Cysteine-Functionalized Chitosan Magnetic Nano-Based Particles for the Recovery of Light and Heavy Rare Earth Metals: Uptake Kinetics and Sorption Isotherms

    PubMed Central

    Galhoum, Ahmed A.; Mafhouz, Mohammad G.; Abdel-Rehem, Sayed T.; Gomaa, Nabawia A.; Atia, Asem A.; Vincent, Thierry; Guibal, Eric

    2015-01-01

    Cysteine-functionalized chitosan magnetic nano-based particles were synthesized for the sorption of light and heavy rare earth (RE) metal ions (La(III), Nd(III) and Yb(III)). The structural, surface, and magnetic properties of nano-sized sorbent were investigated by elemental analysis, FTIR, XRD, TEM and VSM (vibrating sample magnetometry). Experimental data show that the pseudo second-order rate equation fits the kinetic profiles well, while sorption isotherms are described by the Langmuir model. Thermodynamic constants (ΔG°, ΔH°) demonstrate the spontaneous and endothermic nature of sorption. Yb(III) (heavy RE) was selectively sorbed while light RE metal ions La(III) and Nd(III) were concentrated/enriched in the solution. Cationic species RE(III) in aqueous solution can be adsorbed by the combination of chelating and anion-exchange mechanisms. The sorbent can be efficiently regenerated using acidified thiourea. PMID:28347004

  18. Kinetics of toluene sorption and desorption in Ca- and Cu-montmorillonites investigated with Fourier transform infrared spectroscopy under two different levels of humidity.

    PubMed

    Shih, Yang-Hsin; Wu, Shian-Chee

    2004-09-01

    Clays in soils or groundwater aquifer materials play roles in the sorption of organic pollutants. The intrinsic sorption kinetics of toluene in dry and humid clay films was investigated by tracking the change of infrared absorbance. Under the humid condition, similar toluene-sorbed intensities were found in Ca- and Cu-montmorillonites. However, a higher intensity of sorbed toluene was found in the Cu-form than in the Ca-form under the dry condition, which indicates a stronger interaction occurring in dry Cu-montmorillonite. The general time scale of sorption of toluene on clays is around 100 s. In both forms of montmorillonite, some portion of toluene was desorbed at an extremely slow rate under the dry condition. Some newly identified peaks were persistent against desorption from montmorillonites, suggesting the existence of irreversibly sorbed species and the possibility of toluene transformation occurring in clay systems.

  19. Optimization, equilibrium, kinetic, thermodynamic and desorption studies on the sorption of Cu(II) from an aqueous solution using marine green algae: Halimeda gracilis.

    PubMed

    Jayakumar, R; Rajasimman, M; Karthikeyan, C

    2015-11-01

    The aptitude of marine green algae Helimeda gracilis for sorption of Cu(II) ions from an aqueous solution was studied in batch experiments. The effect of relevant parameters such as function of pH, sorbent dosage, agitation speed and contact time was evaluated by using Response surface methodology (RSM). A maximum percentage removal of Cu (II) by Halimeda gracilis occurs at pH-4.49, sorbent dosage-1.98g/L, agitation speed-119.43rpm and contact time-60.21min. Further, the sorbent was characterized by using Fourier Transform Infrared Spectroscopy (FTIR) and Scanning electron microscope (SEM) analysis. Experimental data were analyzed in terms of pseudo-first order, pseudo-second order, intraparticle diffusion, power function and elovich kinetic models. The results showed that the sorption process of Cu(II) ions followed well pseudo-second order kinetics. The sorption data of Cu(II) ions at 308.15K are fitted to Langmuir, Freundlich, Dubinin-Radushkevich (D-R), Temkin, Sips and Toth isotherms. Sorption of Cu(II) onto marine green algae Helimeda gracilis followed the Langmuir and Toth isotherm models (R(2)=0.998 and R(2)=0.999) with the maximum sorption capacity of 38.46 and 38.07mg/g. The calculated thermodynamic parameters such as ΔG°, ΔH° and ΔS° showed that the sorption of Cu(II) ions onto Helimeda gracilis biomass was feasible, spontaneous and endothermic. Desorption study shows that the sorbent could be regenerated using 0.2M HCl solution, with up to 89% recovery. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Kinetics of thermoneutral intermolecular hydrogen migration in alkyl radicals.

    PubMed

    Ratkiewicz, Artur; Bankiewicz, Barbara; Truong, Thanh N

    2010-09-28

    High pressure limits of thermal rate constants of intramolecular hydrogen migrations, particularly 1,3 to 1,6 H-shift in propyl, butyl, pentyl and hexyl radicals, respectively, were calculated using the canonical variational transition state theory (CVT) with a multi-dimensional small-curvature tunneling (SCT) correction over the temperature range of 300-3000 K. The CCSD(T)/cc-pVDZ//BH&HLYP/cc-pVDZ method was used to provide necessary potential energy surface information. Rate constants for these reactions were used to extrapolate rate constants for reactions of larger alkyls where experimental data are available using the Reaction Class Transition State Theory (RC-TST). Excellent agreement with experimental data confirms the validity of the RC-TST methodology and the accuracy of the calculated kinetic data in this study.

  1. Kinetics of hydrogenation of nitrobenzene to aniline on a copper catalyst

    SciTech Connect

    Petrov, L.A.; Kirkov, N.V.; Shopov, D.M.

    1986-02-01

    The kinetics of the vapor-phase, catalytic hydrogenation of nitrobenzene to aniline on an industrial copper catalyst has been studied in the 503-563/sup 0/K range. A kinetic model of the process is presented which assumes the sequential addition of hydrogen from the gas phase and the absence of retardation by aniline.

  2. Structural study of Ni- or Mg-based complexes incorporated within UiO-66-NH{sub 2} framework and their impact on hydrogen sorption properties

    SciTech Connect

    Žunkovič, E.; Mazaj, M.; Mali, G.; Rangus, M.; Devic, T.; Serre, C.; Logar, N. Zabukovec

    2015-05-15

    Nickel and magnesium acetylacetonate molecular complexes were post-synthetically incorporated into microporous zirconium-based MOF (UiO-66-NH{sub 2}) in order to introduce active open-metal sites for hydrogen sorption. Elemental analysis, nitrogen physisorption and DFT calculations revealed that 5 molecules of Ni(acac){sub 2} or 2 molecules of Mg(acac){sub 2} were incorporated into one unit cell of UiO-66-NH{sub 2}. {sup 1}H–{sup 13}C CPMAS and {sup 1}H MAS NMR spectroscopy showed that, although embedded within the pores, both Ni- and Mg-complexes interacted with the UiO-66-NH{sub 2} framework only through weak van der Waals bonds. Inclusion of metal complexes led to the decrease of hydrogen sorption capacities in Ni-modified as well as in Mg-modified samples in comparison with the parent UiO-66-NH{sub 2}. The isosteric hydrogen adsorption enthalpy slightly increased in the case of Ni-modified material, but not in the case of Mg-modified analogue. - Graphical abstract: A post-synthesis impregnation of Mg- and Ni-acetylacetonate complexes performed on zirconium-based MOF UiO-66-NH{sub 2} does influence the hydrogen sorption performance with respect to the parent matrix. The structural study revealed that Mg- and Ni-acetylacetonate molecules interact with zirconium-terephthalate framework only by weak interactions and they are not covalently bonded to aminoterephthalate ligand. Still, they remain confined into the pores even after hydrogen sorption experiments. - Highlights: • Mg- and Ni-acetylacetonate molecules embedded in the pores of UiO-66-NH{sub 2} by PSM. • Molecules of complexes interact with framework only by van der Waals interactions. • Type/structure of deposited metal-complex impact hydrogen enthalpy of adsorption.

  3. U(VI) Sorption and Reduction Kinetics on the Magnetite (111) Surface

    SciTech Connect

    Singer, David M.; Chatman, Shawn M.; Ilton, Eugene S.; Rosso, Kevin M.; Banfield, Jillian F.; Waychunas, Glenn A.

    2012-04-03

    Sorption of contaminants onto mineral surfaces is an important process that can restrict their transport in the environment. In the current study, uranium (U) uptake on magnetite (111) was measured as a function of time and solution composition (pH, [CO3]T, [Ca]) under continuous batch-flow conditions. We observed, in real-time and in situ, adsorption and reduction of U(VI) and subsequent growth of UO2 nanoprecipitates using atomic force microscopy (AFM) and newly developed batch-flow U LIII-edge grazing-incidence X-ray absorption spectroscopy near-edge structure (GI-XANES) spectroscopy. U(VI) reduction occurred with and without CO3 present, and coincided with nucleation and growth of UO2 particles. When Ca and CO3 were both present no U(VI) reduction occurred and the U surface loading was lower. In situ batch-flow AFM data indicated that UO2 particles achieved a maximum height of 4–5 nm after about 8 h of exposure, however, aggregates continued to grow laterally after 8 h reaching up to about 300 nm in diameter. The combination of techniques indicated that U uptake is divided into three-stages; (1) initial adsorption of U(VI), (2) reduction of U(VI) to UO2 nanoprecipitates at surface-specific sites after 2–3 h of exposure, and (3) completion of U(VI) reduction after ~6–8 h. U(VI) reduction also corresponded to detectable increases in Fe released to solution and surface topography changes. Redox reactions are proposed that explicitly couple the reduction of U(VI) to enhanced release of Fe(II) from magnetite. Although counterintuitive, the proposed reaction stoichiometry was shown to be largely consistent with the experimental results. In addition to providing molecular-scale details about U sorption on magnetite, this work also presents novel advances for collecting surface sensitive molecular-scale information in real-time under batch-flow conditions.

  4. Sorption of the herbicides diquat and difenzoquat from aqueous medium by polymeric resins in the presence of sodium dodecylsulfate: Kinetic and mechanistic study.

    PubMed

    Vinhal, Jonas O; Lima, Claudio F; Cassella, Ricardo J

    2016-07-02

    The goal of this work was to propose a novel method for the solid-phase extraction of the herbicides diquat (DQT(2+)) and difenzoquat (DFQT(+)) from aqueous medium using polymeric Amberlite XAD-2 and XAD-4 resins in the presence of sodium dodecylsulfate (SDS). The addition of SDS to the medium was of fundamental importance in order to allow the formation of a negatively charged surface able to sorb the cationic solutes. Several factors that could influence the sorption process, such as SDS concentration in the medium, sorbent mass, pH, ionic strength, and initial concentration of the solutes were investigated. Kinetic studies were also performed to model the system and to identify the mechanisms that operate the sorption process of the herbicides. SDS concentration in the medium presented remarkable influence on the extraction efficiency, achieving maximum values when the ratios [SDS]/[herbicide] were approximately 90, for XAD-2, and 22 and 11 for DQT(2+) and DFQT(+), respectively, for XAD-4. The sorption process followed a pseudo second-order kinetic in all cases studied. It was also found that an intraparticle diffusion process controlled exclusively the sorption of the herbicides by the Amberlite XAD-2 and XAD-4 resins in the first 15 min, becoming less active with time.

  5. Metal sorption by peat and algae treated peat: kinetics and factors affecting the process.

    PubMed

    Lourie, Elena; Gjengedal, Elin

    2011-10-01

    The article presents a new approach that can be used for the purification of water contaminated by heavy metals. The treatment of peat with microalgae showed to be an effective way of increasing metal uptake by peat. Metal sorption was studied for a multimetal solution containing Cu, Cd, Ni, Zn, Cd, and Pb. Cu and Pb were found to be the metals having the highest affinity to peat. Water hardness has a strong effect on the uptake of borderline metals (Cd, Ni, Zn, Cd) from a solution. The use of algae for peat treatment resulted in less time to reach an equilibrium (24 h vs. 72 h for pure peat), and the effect of water hardness (Ca²⁺) on metal uptake was considerably reduced. Both peat and algal-treated peat were able to take up metals from rather acidic solutions (pH 3.0). pH had less influence on the metal uptake compared with water hardness. The affinity of heavy metals to peat was the following: Pb>Cu>Ni>Cd>Zn>Co. It slightly changed to Pb>Cu>Ni>Cd≈Co≈Zn when the combined sorbent, peat treated with microalga, was applied.

  6. Description of gas/particle sorption kinetics with an intraparticle diffusion model: Desorption experiments

    USGS Publications Warehouse

    Rounds, S.A.; Tiffany, B.A.; Pankow, J.F.

    1993-01-01

    Aerosol particles from a highway tunnel were collected on a Teflon membrane filter (TMF) using standard techniques. Sorbed organic compounds were then desorbed for 28 days by passing clean nitrogen through the filter. Volatile n-alkanes and polycyclic aromatic hydrocarbons (PAHs) were liberated from the filter quickly; only a small fraction of the less volatile ra-alkanes and PAHs were desorbed. A nonlinear least-squares method was used to fit an intraparticle diffusion model to the experimental data. Two fitting parameters were used: the gas/particle partition coefficient (Kp and an effective intraparticle diffusion coefficient (Oeff). Optimized values of Kp are in agreement with previously reported values. The slope of a correlation between the fitted values of Deff and Kp agrees well with theory, but the absolute values of Deff are a factor of ???106 smaller than predicted for sorption-retarded, gaseous diffusion. Slow transport through an organic or solid phase within the particles or preferential flow through the bed of particulate matter on the filter might be the cause of these very small effective diffusion coefficients. ?? 1993 American Chemical Society.

  7. A kinetic folding intermediate probed by native state hydrogen exchange.

    PubMed

    Parker, M J; Marqusee, S

    2001-01-19

    Stopped-flow fluorescence studies on the N-terminal domain of rat CD2 (CD2.d1) have demonstrated that folding from the fully denatured state (U) proceeds via the transient accumulation of an apparent intermediate (I) in a so-called burst phase that precedes the rate-limiting transition leading to the native state (N). A previous pH-dependent equilibrium hydrogen exchange (HX) study identified a subset of amides in CD2.d1 which, under EX2 conditions, exchange from N with free energies greater than or equal to the free energy difference between the N and I states calculated from the stopped-flow data. Under EX1 conditions the rates of HX for these amides tend towards an asymptote that matches the global unfolding rate calculated from the stopped-flow data, suggesting that exchange for these amides requires traversing the N-to-I transition state barrier. Exchange for these amides presumably occurs from exchange-competent forms comprising the kinetic burst phase therefore. To explore this idea further, native state HX (NHX) data have been collected for CD2.d1 under EX2 conditions using denaturant concentrations which span either side of the denaturant concentration where, according to the stopped-flow data, the apparent U and I states are iso-energetic. The data fit to a two-component, sub-global (sg)/global (g) NHX mechanism, yielding Delta G and m value parameters (where the m value is a measure of hydrocarbon solvation). Regression analysis demonstrates that the (m(sg), Delta G(sg)) and (m(g), Delta G(g)) values calculated for this subset of amides correspond with those describing the kinetic burst phase transition. This result confirms the ability of the NHX technique to explore the structural and energetic properties of kinetic folding intermediates. Copyright 2001 Academic Press.

  8. Spectroscopic study on sorption of hydrogen sulfide by means of red soil

    NASA Astrophysics Data System (ADS)

    Ko, T. H.; Chu, H.

    2005-07-01

    This paper reports the results of the characterization of red soils in relation to the sorption of H 2S from coal gas at 500 °C by spectroscopic techniques in order to provide more information on red soils' structural change both before and after reaction. In addition, by-products analysis has also been studied using Fourier transform infrared (FTIR) spectroscopy. Before and after the experiments the red soils were characterized with X-ray powder diffraction (XRPD), energy dispersion spectrum (EDS), X-ray photoelectron spectroscopy (XPS) and FTIR spectroscopy. XRPD results indicate that iron oxide species disappear from the original to reacted red soil. EDS analysis shows that a significant amount of sulfur is present in the reacted red soil, which is in agreement with the results of the elemental analysis and the calculated value based on breakthrough curve. XPS regression fitting results further indicate that sulfur retention may be associated with the iron oxides. S 2p XPS fittings point out that the major sulfur species present in the reacted red soil are composed of S -2, elemental sulfur, polysulfide, sulfite and sulfate. Additionally, the binding energy of iron shifts to a lower position for the reacted red soil, which indicates that iron oxides in the original red soil have been converted into iron sulfide. Appreciable amounts of the by-products CO 2, SO 2 and COS are detected by on-line FTIR spectroscopy during the initial and later stages of the sorption process. The formation of CO 2 is related to the water-shift reaction, and SO 2 is probably attributable to the reaction of organic matters and H 2S. The concentration of COS is quantified by GC/FPD and found it to be about 350 ppm, which is close to the equilibrium concentration of the reaction of inlet CO and H 2S at a temperature of 500 °C.

  9. Spectroscopic study on sorption of hydrogen sulfide by means of red soil.

    PubMed

    Ko, T H; Chu, H

    2005-07-01

    This paper reports the results of the characterization of red soils in relation to the sorption of H2S from coal gas at 500 degrees C by spectroscopic techniques in order to provide more information on red soils' structural change both before and after reaction. In addition, by-products analysis has also been studied using Fourier transform infrared (FTIR) spectroscopy. Before and after the experiments the red soils were characterized with X-ray powder diffraction (XRPD), energy dispersion spectrum (EDS), X-ray photoelectron spectroscopy (XPS) and FTIR spectroscopy. XRPD results indicate that iron oxide species disappear from the original to reacted red soil. EDS analysis shows that a significant amount of sulfur is present in the reacted red soil, which is in agreement with the results of the elemental analysis and the calculated value based on breakthrough curve. XPS regression fitting results further indicate that sulfur retention may be associated with the iron oxides. S 2p XPS fittings point out that the major sulfur species present in the reacted red soil are composed of S(-2), elemental sulfur, polysulfide, sulfite and sulfate. Additionally, the binding energy of iron shifts to a lower position for the reacted red soil, which indicates that iron oxides in the original red soil have been converted into iron sulfide. Appreciable amounts of the by-products CO2, SO2 and COS are detected by on-line FTIR spectroscopy during the initial and later stages of the sorption process. The formation of CO2 is related to the water-shift reaction, and SO2 is probably attributable to the reaction of organic matters and H2S. The concentration of COS is quantified by GC/FPD and found it to be about 350 ppm, which is close to the equilibrium concentration of the reaction of inlet CO and H2S at a temperature of 500 degrees C.

  10. Ab-initio kinetics and thermodynamics studies of ammonia-borane for hydrogen storage

    NASA Astrophysics Data System (ADS)

    Miranda, Caetano R.; Ceder, Gerbrand

    2007-03-01

    Ammonia-borane (BH3NH3) is a promising chemical hydrogen storage material given its high gravimetry and volumetric properties. However, the ammonia-borane (AB) thermal hydrogen release is not very efficient, being mainly limited by the kinetics of hydrogenation. Using ab initio calculations, we have investigated the thermodynamics and kinetics of hydrogen release on AB by calculating the free energies of the H2 release reactions for different possible decomposition products. Our results indicate that AB regeneration through the ammonia-borane polymeric and borazine-cyclotriborazane cycles is very unlikely due to the strong exothermic character of the reactions. The kinetics of hydrogen release is further investigated with the recently developed metadynamics method. This method allows us to calculate the multidimensional free energy surface of hydrogen release on AB. Our simulations reveal the atomistic mechanism of hydrogenation and provide the free energies barriers and transition states involved in inter and intramolecule H2 release on AB.

  11. Trapping of hydrogen atoms in X-irradiated salts at room temperature and the decay kinetics

    NASA Technical Reports Server (NTRS)

    May, C. E.; Philipp, W. H.; Marsik, S. J.

    1974-01-01

    The salts (hypophosphites, formates, a phosphite, a phosphate, and an oxalate) were X-irradiated, whereby hydrogen formed chemically by a radiolytic process becomes trapped in the solid. By room temperature vacuum extraction, the kinetics for the evolution of this trapped hydrogen was studied mass spectrometrically. All salts except two exhibited second-order kinetics. The two exceptions (NaH2PO2(H2O) and K2HPO4) showed first-order kinetics. Based on experimental results, the escape of hydrogen involves three steps: the diffusion of hydrogen atoms from the bulk to the surface, association of these atoms on the surface (rate controlling step for second-order hydrogen evolution), and the desorption of molecular hydrogen from the surface. The hydrogen does not escape if the irradiated salt is stored in air, apparently because adsorbed air molecules occupy surface sites required in the escape mechanism.

  12. Sorption-desorption kinetics for powdered and non-powered coal

    SciTech Connect

    Romanov, V.; Soong, Y.

    2007-05-01

    Diffusion through macro- and meso-pores with the subsequent filling of open micropores is a relatively fast process and the manometric measurements with fifteen minute pressure stabilization steps provide a good estimate of excess (ad)sorption. This can be followed by a much slower processes of the penetrant diffusion into the macromolecular network, accompanied by its structural relaxation, with or without free volume changes. The “free volume” effect is a change of the sample’s excluded volume because of the penetrant molecules mixing within the formerly excluded volume of the network or because of contraction (either reversible or semi-permanent) due to external pressure. If the resulting swelling of the sample leads to the mixture’s volume equal to the sum of the initial volumes of the components, there is no apparent change to the void volume and no pressure relaxation is observed (b). On the other hand, if the external forces (either macroscopic pressure or microscopic molecular interaction forces) change the excluded volume of the network (its density), without exchange of the sorbent molecules between the sample and the free fluid phase, such change causes a corresponding change in the void volume, which constitutes a pure free volume effect (c). In this case, no post-decompression exodus of the sorbent out of the sample is observed. As a special case, we consider an incorporation of the penetrant molecules into the network without any change in the volume of the mixture (d), though mathematically this can be written as a superposition of the previous two cases

  13. Isotherm and kinetic models and cell surface analysis for determination of the mechanism of metal sorption by Aspergillus versicolor.

    PubMed

    Gazem, Mufedah A H; Nazareth, Sarita

    2012-07-01

    The isolate Aspergillus versicolor was obtained from an estuary, which is exposed to metal contamination. It was found to have a good metal tolerance and sorption capacity. Further studies revealed that the rate of metal removal from solution is very rapid in the first 5-10 min, and is favoured by a pH of 6.0. The biosorption data obtained was explained by the Freundlich adsorption isotherm model and followed a pseudo-second order kinetics reaction. The fungus showed a higher accumulation of fatty acids when grown in presence of metals as compared to the mycelium grown in absence of the metal; there was also an increase in the saturation index of fatty acids in presence of Cu(2+) which serves as a protective mechanism for the fungus. Fourier Transform Infrared, scanning electron microscopy and EDAX analysis indicated that metal removal from solution by A. versicolor occurred by a passive adsorption to the fungal cell surface, involving an ion exchange mechanism.

  14. Binding of cadmium on raw paper pulp. Relationship between temperature and sorption kinetics.

    PubMed

    García-Gomez, C; Carbonell, G; Tarazona, J V

    2002-11-01

    Several assays have been carried out in order to study in detail the cadmium mobility from water to virgin pulp as previous step of cadmium mobility description from paper into food. Virgin pulp has been immersed in different concentration aqueous solutions at several temperatures and during short and long time. The absorbed cadmium amounts have been measured by atomic absorption spectroscopy. For a long time, the temperature of storage is not an important factor except during the first 3 h. In general, percentage of migrated cadmium into pulp is between 30% and 90% of initial charge. Kinetic equation of cadmium mobility has been described employing statistics methods with a very good correlation.

  15. Kinetics of hydrogen adsorption on MgH{sub 2}/CNT composite

    SciTech Connect

    Rather, Sami ullah Taimoor, Aqeel Ahmad; Muhammad, Ayyaz; Alhamed, Yahia Abobakor; Zaman, Sharif Fakhruz; Ali, Arshid Mahmood

    2016-05-15

    Highlights: • Hydrogen adsorption comparisons of commercial, milled, and MgH{sub 2} composite. • Hydrogen adsorption capacity and kinetics improves tremendously by CNT embedding. • Unsteady state modeling and simulation of adsorption kinetics. - Abstract: Magnesium hydride (MgH{sub 2})–carbon nanotubes (CNT) composite has been prepared by high-energy ball milling method and their experimental and kinetic hydrogen adsorption studies was assessed. Hydrogen adsorption studies were performed by Sievert’s volumetric apparatus and kinetic evaluation was conducted by surface chemistry and Langmuir–Hinshelwood–Hougen–Watson (LHHW) type mode. Powder X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) were performed. Hydrogen adsorption capacity of commercial MgH{sub 2}, milled MgH{sub 2}, and MgH{sub 2}/CNT composite are found to be 0.04, 0.057, and 0.059 g (H{sub 2})/g (MgH{sub 2}) at 673 K and hydrogen pressure of 4.6 MPa. Addition of 5 wt% of CNTs to MgH{sub 2} proved to be very critical to enhance hydrogen adsorption as well as to improve its kinetics. It was observed that hydrogen adsorption is not in quasi-state equilibrium and is modeled using kinetic rate laws.

  16. Sorption Kinetics on Open Carbon Nanohorn Aggregates: The Effect of Molecular Diameter.

    PubMed

    Russell, Brice A; Khanal, Pravin; Calbi, Maria M; Yudasaka, Masako; Iijima, Sumio; Migone, Aldo D

    2016-04-21

    We present the results of a study of the kinetics of adsorption on aggregates of open carbon nanohorns using argon and CF₄ sorbates. We measured the equilibration times for each value of the sorbent loading along eight adsorption isotherms (four isotherms for each sorbate species). We found that: the equilibration times decrease as the sorbent loading (and the equilibrium pressure of the coexisting gas) increases, for a given temperature; and, that, for a given value of the sorbent loading, the equilibration times decrease with increasing temperature. When considering the effect of scaling of the temperatures by the respective critical temperatures we found that, at the same scaled temperature and at comparable loadings, the equilibration times for CF₄ were longer than those for argon. We discuss a possible explanation for this result.

  17. Investigation of blistering kinetics in hydrogen implanted aluminium nitride

    NASA Astrophysics Data System (ADS)

    Singh, R.; Scholz, R.; Christiansen, S. H.; Gösele, U.

    2008-04-01

    Epitaxial layers of aluminium nitride (AlN) grown on sapphire by hydride vapour phase epitaxy (HVPE) were implanted with 100 keV hydrogen, H+2, ions with doses in the range of 5 × 1016-2.5 × 1017 cm-2 and subsequently annealed in ambient air at temperatures between 450 and 750 °C in order to determine the kinetics of surface blister formation in AlN. The Arrhenius plot of the blistering time versus temperature shows two different activation energies for the formation of surface blisters: 0.44 eV in the higher temperature regime of 550-750 °C and 1.16 eV in the lower temperature regime of 450-550 °C. The implantation-induced damage was analyzed by cross-sectional transmission electron microscopy, which revealed a band of defects extending from 330 to 550 nm from the surface of AlN. The XTEM image of the implanted and annealed AlN displayed clearly the formation of microcracks that ultimately lead to the formation of surface blisters.

  18. Kinetics of a hydrogen-oxidizing, perchlorate-reducing bacterium.

    PubMed

    Nerenberg, Robert; Kawagoshi, Yasunori; Rittmann, Bruce E

    2006-10-01

    This paper provides the first kinetic parameters for a hydrogen-oxidizing perchlorate-reducing bacterium (PCRB), Dechloromonas sp. PC1. The qmax for perchlorate and chlorate were 3.1 and 6.3 mg/mgDW-day, respectively. The K for perchlorate was 0.14 mg/L, an order of magnitude lower than reported for other PCRB. The yields Y on perchlorate and chlorate were 0.23 and 0.22 mgDW/mg, respectively, and the decay constant b was 0.055/day. The growth-threshold, Smin, for perchlorate was 14 microg/L, suggesting that perchlorate cannot be reduced below this level when perchlorate is the primary electron-acceptor, although it may be possible when oxygen or nitrate is the primary acceptor. Chlorate accumulated at maximum concentrations of 0.6-4.3 mg/L in batch tests with initial perchlorate concentrations ranging from 100 to 600 mg/L. Furthermore, 50 mg/L chlorate inhibited perchlorate reduction with perchlorate at 100 mg/L. This is the first report of chlorate accumulation and inhibition for a pure culture of PCRB. These Chlorate effects are consistent with competitive inhibition between perchlorate and chlorate for the (per)chlorate reductase enzyme.

  19. Study of nickel catalysts for hydrogen production in sorption enhanced reforming process

    NASA Astrophysics Data System (ADS)

    García-Lario, Ana L.; Aznar, María; Grasa, Gemma S.; García, Tomás; Murillo, Ramón

    2013-11-01

    The performance of Ni based catalysts to be used in Sorption Enhanced Reforming (SER) is assessed. For this aim, both their activity at low temperature and their behavior during multiple oxidation-reduction cycles in steam methane reforming are studied. Ni catalysts supported on α-Al2O3, Si3N4 and NiAl2O4, with different amounts of Ni (0-50% NiO), are compared by testing their activity in a fixed bed micro-reactor. While Ni/Si3N4 catalysts do not show an appropriate performance at low temperature, Ni/α-Al2O3 and Ni/NiAl2O4 present a significant activity, close to equilibrium data, at the typical SER conditions. The best experimental results are attained for 20% NiO/α-Al2O3 and 10% NiO/NiAl2O4 catalysts that show an activity close to the equilibrium for steam to methane ratio of 4.5. Higher amounts of NiO in both catalysts do not reveal an improvement in conversion results. In addition, both 20% NiO/α-Al2O3 and 10% NiO/NiAl2O4 catalysts show a good reforming activity after oxidation-reduction cycles at typical SER temperatures. The observed trend to carbon deposition on the catalyst surface for the studied supports is Si3N4 > Al2O3 > NiAl2O4, being negligible when NiAl2O4 support is used. These results suggested that 10% NiO/NiAl2O4 and 20% NiO/Al2O3 catalysts could be perfect candidates to be used in SER process.

  20. Kinetics of sorption and abiotic oxidation of arsenic(III) by aquifer materials

    USGS Publications Warehouse

    Amirbahman, A.; Kent, D.B.; Curtis, G.P.; Davis, J.A.

    2006-01-01

    The fate of arsenic in groundwater depends largely on its interaction with mineral surfaces. We investigated the kinetics of As(III) oxidation by aquifer materials collected from the USGS research site at Cape Cod, MA, USA, by conducting laboratory experiments. Five different solid samples with similar specific surface areas (0.6-0.9 m2 g-1) and reductively extractable iron contents (18-26 ??mol m-2), but with varying total manganese contents (0.5-3.5 ??mol m-2) were used. Both dissolved and adsorbed As(III) and As(V) concentrations were measured with time up to 250 h. The As(III) removal rate from solution increased with increasing solid manganese content, suggesting that manganese oxide is responsible for the oxidation of As(III). Under all conditions, dissolved As(V) concentrations were very low. A quantitative model was developed to simulate the extent and kinetics of arsenic transformation by aquifer materials. The model included: (1) reversible rate-limited adsorption of As(III) onto both oxidative and non-oxidative (adsorptive) sites, (2) irreversible rate-limited oxidation of As(III), and (3) equilibrium adsorption of As(V) onto adsorptive sites. Rate constants for these processes, as well as the total oxidative site densities were used as the fitting parameters. The total adsorptive site densities were estimated based on the measured specific surface area of each material. The best fit was provided by considering one fast and one slow site for each adsorptive and oxidative site. The fitting parameters were obtained using the kinetic data for the most reactive aquifer material at different initial As(III) concentrations. Using the same parameters to simulate As(III) and As(V) surface reactions, the model predictions were compared to observations for aquifer materials with different manganese contents. The model simulated the experimental data very well for all materials at all initial As(III) concentrations. The As(V) production rate was related to the

  1. Kinetics of sorption and abiotic oxidation of arsenic(III) by aquifer materials

    NASA Astrophysics Data System (ADS)

    Amirbahman, Aria; Kent, Douglas B.; Curtis, Gary P.; Davis, James A.

    2006-02-01

    The fate of arsenic in groundwater depends largely on its interaction with mineral surfaces. We investigated the kinetics of As(III) oxidation by aquifer materials collected from the USGS research site at Cape Cod, MA, USA, by conducting laboratory experiments. Five different solid samples with similar specific surface areas (0.6-0.9 m 2 g -1) and reductively extractable iron contents (18-26 μmol m -2), but with varying total manganese contents (0.5-3.5 μmol m -2) were used. Both dissolved and adsorbed As(III) and As(V) concentrations were measured with time up to 250 h. The As(III) removal rate from solution increased with increasing solid manganese content, suggesting that manganese oxide is responsible for the oxidation of As(III). Under all conditions, dissolved As(V) concentrations were very low. A quantitative model was developed to simulate the extent and kinetics of arsenic transformation by aquifer materials. The model included: (1) reversible rate-limited adsorption of As(III) onto both oxidative and non-oxidative (adsorptive) sites, (2) irreversible rate-limited oxidation of As(III), and (3) equilibrium adsorption of As(V) onto adsorptive sites. Rate constants for these processes, as well as the total oxidative site densities were used as the fitting parameters. The total adsorptive site densities were estimated based on the measured specific surface area of each material. The best fit was provided by considering one fast and one slow site for each adsorptive and oxidative site. The fitting parameters were obtained using the kinetic data for the most reactive aquifer material at different initial As(III) concentrations. Using the same parameters to simulate As(III) and As(V) surface reactions, the model predictions were compared to observations for aquifer materials with different manganese contents. The model simulated the experimental data very well for all materials at all initial As(III) concentrations. The As(V) production rate was related to the

  2. Nickel and phosphorous sorption efficiencies, tissue accumulation kinetics and morphological effects on Eichhornia crassipes.

    PubMed

    Hadad, H R; Maine, M A; Pinciroli, M; Mufarrege, M M

    2009-07-01

    The aim of the research was to assess the uptake efficiencies of Ni and P, their distribution in tissues along time and their toxic effects on the internal and external morphologies of Eichhornia crassipes. Aquaria with plants exposed to 1 mg Ni l(-1) or 5 mg P l(-1) and control were arranged in triplicate. Water and plants (aerial parts and roots) were sampled along 30 days. Ni uptake and tissue bioaccumulation kinetics was significantly faster than that of P. Mean root length, number of leaves, biomass and chlorophyll concentration were negatively affected by Ni, while these parameters were significantly increased by P in comparison with the control. Stele and metaxylem vessel cross-sectional areas (CSA) in the P treatment were significantly lower in comparison with that obtained in the Ni treatment and in control. Metaxylem vessels CSA in plants exposed to Ni were significantly higher while the number of vessels was significantly lower than those obtained in the control. Despite the toxic effects, E. crassipes efficiently accumulated Ni, probably due to the morphological plasticity of its root system.

  3. Kinetics Study of Solid Ammonia Borane Hydrogen Release – Modeling and Experimental Validation for Chemical Hydrogen Storage

    SciTech Connect

    Choi, Yong-Joon; Ronnebro, Ewa; Rassat, Scot D.; Karkamkar, Abhijeet J.; Maupin, Gary D.; Holladay, Jamelyn D.; Simmons, Kevin L.; Brooks, Kriston P.

    2014-02-24

    Ammonia borane (AB), NH3BH3, is a promising material for chemical hydrogen storage with 19.6 wt% gravimetric hydrogen capacity of which 16.2 wt% hydrogen can be utilized below 200°C. We have investigated the kinetics of hydrogen release from AB and from an AB-methyl cellulose (AB/MC) composite at temperatures of 160-300°C using both experiments and modeling. The purpose of our study was to show safe hydrogen release without thermal runaway effects and to validate system model kinetics. AB/MC released hydrogen at ~20°C lower than neat AB and at a rate that is two times faster. Based on the experimental results, the kinetics equations were revised to better represent the growth and nucleation process during decomposition of AB. We explored two different reactor concepts; Auger and fixed bed. The current Auger reactor concept turned out to not be appropriate, however, we demonstrated safe self-propagation of the hydrogen release reaction of solid AB/MC in a fixed bed reactor.

  4. Determination of outer layer and bulk dehydration kinetics of trehalose dihydrate using atomic force microscopy, gravimetric vapour sorption and near infrared spectroscopy.

    PubMed

    Jones, Matthew D; Beezer, Anthony E; Buckton, Graham

    2008-10-01

    Knowledge of the kinetics of solid state reactions is important when considering the stability of many medicines. Potentially, such reactions could follow different kinetics on the surface of particles when compared with their interior, yet solid state processes are routinely followed using only bulk characterisation techniques. Atomic force microscopy (AFM) has previously been shown to be a suitable technique for the investigation of surface processes, but has not been combined with bulk techniques in order to analyse surface and bulk kinetics separately. This report therefore describes the investigation of the outer layer and bulk kinetics of the dehydration of trehalose dihydrate at ambient temperature and low humidity, using AFM, dynamic vapour sorption (DVS) and near infrared spectroscopy (NIR). The use of AFM enabled the dehydration kinetics of the outer layers to be determined both directly and from bulk data. There were no significant differences between the outer layer dehydration kinetics determined using these methods. AFM also enabled the bulk-only kinetics to be analysed from the DVS and NIR data. These results suggest that the combination of AFM and bulk characterisation techniques should enable a more complete understanding of the kinetics of certain solid state reactions to be achieved. (c) 2008 Wiley-Liss, Inc. and the American Pharmacists Association

  5. Effects of cadmium stress and sorption kinetics on tropical freshwater periphytic communities in indoor mesocosm experiments.

    PubMed

    Bere, Taurai; Tundisi, José Galizia

    2012-08-15

    Understanding the cause and effect relationship between stressors and biota is crucial for the effective management, restoration and preservation of aquatic systems. The objective of the present study was to assess the effects of five Cd concentrations on tropical periphyton community growth, Cd accumulation kinetics, as well as the effects of Cd on diatom community structure and composition. Natural periphyton communities were transferred to artificial stream chambers and exposed to Cd concentrations of 0.005, 0.01, 0.03, 0.05 and 0.1mg.L(-1). Metal accumulation (total and intracellular) in biofilms, dry weight and ash-free dry mass, growth rate, algal cell density and diatom community composition were analysed on samples collected after 1, 2 and 4 weeks of colonization. Periphyton growth and development were significantly lowered by Cd concentrations>0.03 mg.L(-1). High Cd accumulation capacity by periphyton was demonstrated with total and intracellular Cd content in biofilms reflecting the effects of concentrations of Cd in the culture media and exposure duration. Total and intracellular Cd content generally increased in treatments in the order 0.005<0.01<0.03<0.05<0.1mg.L(-1) at any sampling time with increasing level of accumulated Cd with duration of exposure in all the systems. Shifts in species composition (development of more resistant species like Achnanthidium minutissimum and reduction of sensitive ones like Diatoma vulgare, Navicula viridula and Navicula cryptocephala), decreases in species richness and diversity and morphological alterations (deformities) of diatom cells with increasing Cd concentration and exposure duration were observed. The results give valuable information on Cd impact of freshwater biofilms. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Determination of bacterial and viral transport parameters in a gravel aquifer assuming linear kinetic sorption and desorption

    NASA Astrophysics Data System (ADS)

    Mallén, G.; Maloszewski, P.; Flynn, R.; Rossi, P.; Engel, M.; Seiler, K.-P.

    2005-05-01

    The bacteria Escherichia coli and Pseudomonas putida, and the bacteriophage virus H40/1 are examined both for their transport behaviour relative to inert solute tracers and for their modelability under natural flow conditions in a gravel aquifer. The microbes are attenuated in the following sequence: H40/1≥ P. putida≫ E. coli. The latter is desorbed almost completely within a few days. Breakthrough and recovery curves of the simultaneously injected non-reactive tracers are simulated with the 2D and 1D dispersion equation, in order to ascertain longitudinal dispersivity ( αL) and mean flow time ( T0). Mathematical modelling is difficult due to the aquifer heterogeneity, which results in preferential flow paths between injection and observation wells. Therefore, any attempt of fitting the dispersion model (DM) to the entire inert-tracer breakthrough curve (BTC) fails. Adequate fitting of the model to measured data only succeeds using a DM consisting of a superposition of several BTCs, each representing another set of flow paths. This gives rise to a multimodal, rather than a Gaussian groundwater velocity distribution. Only hydraulic parameters derived from the fastest partial curve, which is fitted to the rising part of the Uranine BTC, are suitable to model microbial breakthroughs. The hydraulic parameters found using 2D and 1D models were nearly identical. Their values were put into an analytical solution of 1D advective-dispersive transport combined with two-site reaction model introduced by Cameron and Klute [Cameron, D.R., Klute, A., 1977. Convective-dispersive solute transport with a combined equilibrium and kinetic adsorption model. Water Resour. Res. 13, 183-189], in order to identify reactive transport parameters (sorption/desorption) and attenuation mechanisms for the microbes migration. This shows that the microbes are almost entirely transported through preferential flow paths, which are represented by the first partial curve. Inert tracers, however

  7. Kinetics of hydrogenation of acetophenone to methylphenylcarbinol on KGA-43 copper-chromium catalyst

    SciTech Connect

    Ziyatdinov, A.Sh.; Stepanenko, V.V.; Chernykh, I.S.; Leonova, E.B.; Pisarenko, V.N.; Kafarov, V.V.

    1988-08-20

    The purpose of this investigation was to study the kinetics of the hydrogenation of acetophenone on KGA-43 catalyst, to establish a kinetic model for it, and to test the adequacy of the kinetic model for experiment. The kinetic studies of the hydrogenation of acetophenone on the new KGA-43 catalyst were conducted on a laboratory unit. Using the theory of steady-state reactions a kinetic model incorporating 10 unknown parameters was constructed. To determine the point estimates of the kinetic constants they used the method of maximum probability. The results of five repeated experiments were used to calculate the elements of a dispersion-covariation matrix of the reproducibility of the observations.

  8. Progress in improving thermodynamics and kinetics of new hydrogen storage materials

    NASA Astrophysics Data System (ADS)

    Song, Li-fang; Jiang, Chun-hong; Liu, Shu-sheng; Jiao, Cheng-li; Si, Xiao-liang; Wang, Shuang; Li, Fen; Zhang, Jian; Sun, Li-xian; Xu, Fen; Huang, Feng-lei

    2011-06-01

    Hydrogen storage material has been much developed recently because of its potential for proton exchange membrane (PEM) fuel cell applications. A successful solid-state reversible storage material should meet the requirements of high storage capacity, suitable thermodynamic properties, and fast adsorption and desorption kinetics. Complex hydrides, including boron hydride and alanate, ammonia borane, metal organic frameworks (MOFs), covalent organic frameworks (COFs) and zeolitic imidazolate frameworks (ZIFs), are remarkable hydrogen storage materials because of their advantages of high energy density and safety. This feature article focuses mainly on the thermodynamics and kinetics of these hydrogen storage materials in the past few years.

  9. Modeling of hydrogenation kinetics from triglyceride compositional data.

    PubMed

    Holser, Ronald A; List, Gary R; King, Jerry W; Holliday, Russell L; Neff, William E

    2002-11-20

    A mathematical model was developed to describe the reduction of soybean oil triglycerides during hydrogenation. The model was derived from reaction and transport mechanisms and formulated into a system of first-order irreversible rate expressions that included terms for temperature, hydrogen pressure, and catalyst concentration. The model parameters were estimated from experimental data, and the model was used to simulate the results of hydrogenation performed over the pressure range of 0.069-6.9 MPa. The model could be extended to include geometrical isomers formed during hydrogenation.

  10. Sorption of water alkalinity and hardness from high-strength wastewater on bifunctional activated carbon: process optimization, kinetics and equilibrium studies.

    PubMed

    Amosa, Mutiu K

    2016-08-01

    Sorption optimization and mechanism of hardness and alkalinity on bifunctional empty fruit bunch-based powdered activation carbon (PAC) were studied. The PAC possessed both high surface area and ion-exchange properties, and it was utilized in the treatment of biotreated palm oil mill effluent. Batch adsorption experiments designed with Design Expert(®) were conducted in correlating the singular and interactive effects of the three adsorption parameters: PAC dosage, agitation speed and contact time. The sorption trends of the two contaminants were sequentially assessed through a full factorial design with three factor interaction models and a central composite design with polynomial models of quadratic order. Analysis of variance revealed the significant factors on each design response with very high R(2) values indicating good agreement between model and experimental values. The optimum operating conditions of the two contaminants differed due to their different regions of operating interests, thus necessitating the utility of desirability factor to get consolidated optimum operation conditions. The equilibrium data for alkalinity and hardness sorption were better represented by the Langmuir isotherm, while the pseudo-second-order kinetic model described the adsorption rates and behavior better. It was concluded that chemisorption contributed majorly to the adsorption process.

  11. Sorption of arsenite, arsenate, and thioarsenates to iron oxides and iron sulfides: a kinetic and spectroscopic investigation.

    PubMed

    Couture, R-M; Rose, J; Kumar, N; Mitchell, K; Wallschläger, D; Van Cappellen, P

    2013-06-04

    Sorption to iron (Fe) minerals determines the fate of the toxic metalloid arsenic (As) in many subsurface environments. Recently, thiolated As species have been shown to dominate aqueous As speciation under a range of environmentally relevant conditions, thus highlighting the need for a quantitative understanding of their sorption behavior. We conducted batch experiments to measure the time-dependent sorption of two S-substituted arsenate species, mono- and tetrathioarsenate, and compared it to the sorption of arsenite and arsenate, in suspensions containing 2-line ferrihydrite, goethite, mackinawite, or pyrite. All four As species strongly sorbed to ferrihydrite. For the other sorbents, binding of the thiolated As species was generally lower compared to arsenate and arsenite, with the exception of the near instantaneous and complete sorption of monothioarsenate to pyrite. Analysis of the X-ray absorption spectroscopy (XAS) spectra of sorbed complexes implied that monothioarsenate binds to Fe oxides as a monodentate, inner-sphere complex. In the presence of Fe sulfides, mono- and tetrathioarsenate were both unstable and partially reduced to arsenite. Adsorption of the thiolated As species to the Fe sulfide minerals also caused the substitution of surface sulfur (S) atoms by As and the formation of As-Fe bonds.

  12. Thermodynamics and Kinetics of Phase Transformations in Hydrogen Storage Materials

    SciTech Connect

    Ceder, Gerbrand; Marzari, Nicola

    2011-08-31

    The aim of this project is to develop and apply computational materials science tools to determine and predict critical properties of hydrogen storage materials. By better understanding the absorption/desorption mechanisms and characterizing their physical properties it is possible to explore and evaluate new directions for hydrogen storage materials. Particular emphasis is on the determination of the structure and thermodynamics of hydrogen storage materials, the investigation of microscopic mechanisms of hydrogen uptake and release in various materials and the role of catalysts in this process. As a team we have decided to focus on a single material, NaAlH{sub 4}, in order to fully be able to study the many aspects of hydrogen storage. We have focused on phase stability, mass transport and size-dependent reaction mechanisms in this material.

  13. Structural study of Ni- or Mg-based complexes incorporated within UiO-66-NH2 framework and their impact on hydrogen sorption properties

    NASA Astrophysics Data System (ADS)

    Žunkovič, E.; Mazaj, M.; Mali, G.; Rangus, M.; Devic, T.; Serre, C.; Logar, N. Zabukovec

    2015-05-01

    Nickel and magnesium acetylacetonate molecular complexes were post-synthetically incorporated into microporous zirconium-based MOF (UiO-66-NH2) in order to introduce active open-metal sites for hydrogen sorption. Elemental analysis, nitrogen physisorption and DFT calculations revealed that 5 molecules of Ni(acac)2 or 2 molecules of Mg(acac)2 were incorporated into one unit cell of UiO-66-NH2. 1H-13C CPMAS and 1H MAS NMR spectroscopy showed that, although embedded within the pores, both Ni- and Mg-complexes interacted with the UiO-66-NH2 framework only through weak van der Waals bonds. Inclusion of metal complexes led to the decrease of hydrogen sorption capacities in Ni-modified as well as in Mg-modified samples in comparison with the parent UiO-66-NH2. The isosteric hydrogen adsorption enthalpy slightly increased in the case of Ni-modified material, but not in the case of Mg-modified analogue.

  14. The effect of the thermal reduction on the kinetics of low-temperature 4He sorption and the structural characteristics of graphene oxide

    NASA Astrophysics Data System (ADS)

    Dolbin, A. V.; Khlistuck, M. V.; Esel'son, V. B.; Gavrilko, V. G.; Vinnikov, N. A.; Basnukaeva, R. M.; Prokhvatilov, A. I.; Legchenkova, I. V.; Meleshko, V. V.; Maser, W. K.; Benito, A. M.

    2017-03-01

    The kinetics of the sorption and the subsequent desorption of 4He by the starting graphite oxide (GtO) and the thermally reduced graphene oxide samples (TRGO, Treduction = 200, 300, 500, 700 and 900 °C) have been investigated in the temperature interval 1.5-20 K. The effect of the annealing temperature on the structural characteristics of the samples was examined by the x-ray diffraction (XRD) technique. On lowering the temperature from 20 to 11-12 K, the time of 4He sorption increased for all the samples, which is typically observed under the condition of thermally activated diffusion. Below 5 K the characteristic times of 4He sorption by the GtO and TRGO-200 samples were only weakly dependent on temperature, suggesting the dominance of the tunnel mechanism. In the same region (T < 5 K) the characteristic times of the TRGOs reduced at higher temperatures (300, 500, 700 and 900 °C) were growing with lowering temperature, presumably due to the defects generated in the carbon planes on removing the oxygen functional groups (oFGs). The estimates of the activation energy (Ea) of 4He diffusion show that in the TRGO-200 sample the Ea value is 2.9 times lower as compared to the parent GtO, which is accounted for by GtO exfoliation due to evaporation of the water intercalated in the interlayer space of carbon. The nonmonotonic dependences Ea(T) for the GtO samples treated above 200 °C are determined by a competition between two processes—the recovery of the graphite carbon structure, which increases the activation energy, and the generation of defects, which decreases the activation energy by opening additional surface areas and ways for sorption. The dependence of the activation energy on Treduction correlates well with the contents of the crystalline phase in GtO varying with a rise of the annealing temperature.

  15. Sorption Kinetics Of Selected Heavy Metals Adsorption To Natural And Fe(III) Modified Zeolite Tuff Containing Clinoptilolite Mineral

    NASA Astrophysics Data System (ADS)

    Sirotiak, Maroš; Lipovský, Marek; Bartošová, Alica

    2015-06-01

    In the research described in this paper, studied was sorption capacity of natural and ferric modification of zeolite tuff containing mineral clinoptilolite from the Nižný Hrabovec deposit to remove potentially toxic metals (ionic forms of chromium, nickel, copper and aluminium) from their water solutions. We reported that the Fe (III) zeolite has an enhanced ability to sorption of Cu (II), and a slight improvement occurs in the case of Cr (VI) and Ni (II). On the other hand, the deterioration was observed in the case of Al (III) adsorption.

  16. Kinetic Monte Carlo study on the evolution of silicon surface roughness under hydrogen thermal treatment

    NASA Astrophysics Data System (ADS)

    Wang, Gang; Wang, Yu; Wang, Junzhuan; Pan, Lijia; Yu, Linwei; Zheng, Youdou; Shi, Yi

    2017-08-01

    The evolution of a two-dimensional silicon surface under hydrogen thermal treatment is studied by kinetic Monte Carlo simulations, focusing on the dependence of the migration behaviors of surface atoms on both the temperature and hydrogen pressure. We adopt different activation energies to analyze the influence of hydrogen pressure on the evolution of surface morphology at high temperatures. The reduction in surface roughness is divided into two stages, both exhibiting exponential dependence on the equilibrium time. Our results indicate that a high hydrogen pressure is conducive to obtaining optimized surfaces, as a strategy in the applications of three-dimensional devices.

  17. Sorption kinetics of superabsorbent polymers (SAPs) in fresh Portland cement-based pastes visualized and quantified by neutron radiography and correlated to the progress of cement hydration

    SciTech Connect

    Schroefl, Christof; Mechtcherine, Viktor; Vontobel, Peter; Hovind, Jan; Lehmann, Eberhard

    2015-09-15

    Water sorption of two superabsorbent polymers in cement-based pastes has been characterized by neutron radiography. Cement pastes with W/C of 0.25 and 0.50 and one additionally containing silica fume (W/C = 0.42) were investigated. The SAPs differed in their inherent sorption kinetics in extracted cement pore solution (SAP 1: self-releasing; SAP 2: retentive). Desorption from SAP 1 started very early after paste preparation. Hence, its individual non-retentiveness governs its behavior only. SAP 2 released water into all matrices, but its kinetics were different. In the paste with the highest W/C, some moderate water release was recorded from the beginning. In the other two pastes, SAP 2 retained its stored liquid during the dormant period, i.e., up to the percolation threshold. Intense desorption then set in and continued throughout the acceleration period. These findings explain the pronouncedly higher efficiency of SAP 2 as internal curing admixture as compared to SAP 1.

  18. Tailoring Thermodynamics and Kinetics for Hydrogen Storage in Complex Hydrides towards Applications.

    PubMed

    Liu, Yongfeng; Yang, Yaxiong; Gao, Mingxia; Pan, Hongge

    2016-02-01

    Solid-state hydrogen storage using various materials is expected to provide the ultimate solution for safe and efficient on-board storage. Complex hydrides have attracted increasing attention over the past two decades due to their high gravimetric and volumetric hydrogen densities. In this account, we review studies from our lab on tailoring the thermodynamics and kinetics for hydrogen storage in complex hydrides, including metal alanates, borohydrides and amides. By changing the material composition and structure, developing feasible preparation methods, doping high-performance catalysts, optimizing multifunctional additives, creating nanostructures and understanding the interaction mechanisms with hydrogen, the operating temperatures for hydrogen storage in metal amides, alanates and borohydrides are remarkably reduced. This temperature reduction is associated with enhanced reaction kinetics and improved reversibility. The examples discussed in this review are expected to provide new inspiration for the development of complex hydrides with high hydrogen capacity and appropriate thermodynamics and kinetics for hydrogen storage. © 2015 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Hydrogen kinetics in magnesium hydride: On different catalytic effects of niobium

    NASA Astrophysics Data System (ADS)

    Bazzanella, N.; Checchetto, R.; Miotello, A.; Sada, C.; Mazzoldi, P.; Mengucci, P.

    2006-07-01

    The hydrogen desorption kinetics from pure and Nb-doped MgH2 samples was studied as function of the Nb concentration (6×10-4<[Nb /Mg]<5×10-2). Structural and kinetics analyses indicate that Nb acts as catalyst both when Nb atoms aggregate forming NbH clusters dispersed in the MgH2 and also when Nb is contained as atomic impurity. It is suggested that the local atomic environment around the Nb atom acts as seed for h-Mg phase nucleation which constitutes the rate limiting step for the hydrogen kinetics while, when the Nb concentration exceeds about 1at.%, the rate limiting step is hydrogen diffusion.

  20. Kinetics of hydrogen desorption from MgH2 and AlH3 hydrides

    NASA Astrophysics Data System (ADS)

    Terent'ev, P. B.; Gerasimov, E. G.; Mushnikov, N. V.; Uimin, M. A.; Maikov, V. V.; Gaviko, V. S.; Golovatenko, V. D.

    2015-12-01

    Kinetic parameters of the process of thermal decomposition of the MgH2 hydride (obtained by the method of the mechanoactivation of magnesium in a hydrogen atmosphere) and of the commercial AlH3 hydride have been studied upon the rapid heating in the range of temperatures of 150-510°C at hydrogen pressures of 0-2 atm. The time dependences of the amount of hydrogen released by the metal hydrides at different temperatures and pressures have been determined. It has been shown that the activation energies of the hydrogen desorption are 135 kJ/mol for MgH2 and 107 kJ/mol for AlH3. The maximum rates of hydrogen desorption from the investigated metal hydrides have been established, and the temperatures and initial pressures that ensure the maximum rate and maximum volume of the hydrogen release have been determined.

  1. Remaining uncertainties in the kinetic mechanism of hydrogen combustion

    SciTech Connect

    Konnov, Alexander A.

    2008-03-15

    An analysis of the performance of an updated hydrogen combustion mechanism is presented. Particular attention was paid to different channels of reaction between H atoms and HO{sub 2} radicals, to pressure dependence of the recombination of HO{sub 2} radicals, and to the anomalous rate constant of reaction between OH and HO{sub 2} radicals. The contemporary choice of the reaction rate constants is presented with the emphasis on their uncertainties. Then the predictions of ignition, oxidation, flame burning velocities, and flame structure of hydrogen-oxygen-inert mixtures are shown. The modeling range covers ignition experiments from 950 to 2700 K and from subatmospheric pressures up to 87 atm; hydrogen oxidation in a flow reactor at temperatures around 900 K from 0.3 up to 15.7 atm; flame burning velocities in hydrogen-oxygen-inert mixtures from 0.35 up to 4 atm; and hydrogen flame structure at 1 and 10 atm. Comparison of the modeling and experiments is discussed in terms of the range of applicability of the present detailed mechanism. The necessity for analysis of the mechanism to have an exhaustive list of reactions is emphasized. (author)

  2. Numerical simulation of the kinetics of dissociation and ionization of molecular hydrogen in the penning discharge plasma with the use of the reduced kinetic model

    NASA Astrophysics Data System (ADS)

    Storozhev, D. A.; E Kuratov, S.

    2017-02-01

    A simplified kinetic scheme for describing the kinetics of ionization and dissociation of hydrogen in the Penning discharge plasma is developed. The calculations of the component composition of the Penning discharge plasma are performed. Numerical simulation results are compared with the results provided by the detailed state-to-state kinetic scheme.

  3. Kinetic limitations of the Mg(2)Si system for reversible hydrogen storage.

    PubMed

    Kelly, Stephen T; Van Atta, Sky L; Vajo, John J; Olson, Gregory L; Clemens, B M

    2009-05-20

    Despite the promising thermodynamics and storage capacities of many destabilized metal hydride hydrogen storage material systems, they are often kinetically limited from achieving practical and reversible behavior. Such is the case with the Mg2Si system. We investigated the kinetic mechanisms responsible for limiting the reversibility of the MgH2+Si system using thin films as a controlled research platform. We observed that the reaction MgH2 + 1/2Mg2Si + H2 is limited by the mass transport of Mg and Si into separate phases. Hydrogen readily diffuses through the Mg2Si material and nucleating MgH2 phase growth does not result in reaction completion. By depositing and characterizing multilayer films of Mg2Si and Mg with varying Mg2Si layer thicknesses, we conclude that the hydrogenation reaction consumes no more than 1 nm of Mg2Si, making this system impractical for reversible hydrogen storage.

  4. Kinetics of Hydrogen Diffusion in LaNi(sub 5-x)Sn(sub x) Alloys

    NASA Technical Reports Server (NTRS)

    Ratnakumar, B. V.; Hightower, A.; Witham, C.; Bowman, R. C.; Fultz, B.

    1996-01-01

    Solid-state diffusion of hydrogen in metal hydride (MH) alloys is recognized as the rate determining step in the discharge of MH alloys in alkaline Ni-MH rechargeable cells. In our pursuit of new ternary solutes in LaNi(sub 5) for extended cycle lifetimes, we have observed noticeable improvement in the cycle life with small substitutions of Sn and Ge for Ni. Furthermore, these substituents also facilitate enhanced charge transfer kinetics for hydriding-dehydriding process. In this paper, we report our studies on the kinetics of hydrogen diffusion in LaNi(sub 5-x) Sn(sub x) alloys by electrochemical pulse techniques, chronoamperometry and chronocoulometry.

  5. An investigation of the kinetics for hydrogen chemisorption on iron metal surfaces

    NASA Technical Reports Server (NTRS)

    Shanabarger, M. R.

    1980-01-01

    A quasi-isothermal approach was used to study the kinetics of hydrogen and hydrogen sulfide chemisorption onto iron film in an effort to understand the environmental degradation of steels. The coverage of chemisorbed hydrogen or chemisorbed sulfur was observed as a function of time for fixed conditions of substrate temperature. Auger electron spectroscopy was used to observe the sulfur and chemisorption-induced resistance change was employed to monitor hydrogen coverage. To compare the results obtained from studying the kinetics by two different techniques, the kinetics of oxygen chemisorption onto iron films was also studied. A reaction model utilized to interpret the H2/Fe2 chemisorption kinetics was applied to data from an earlier study on the desorption kinetics for H2 chemisorbed onto nicket films in the vicinity of the Curie temperature of the film. This analysis permitted a separation of the gross desorption process into individual components so that the influence of the magnetic phase transition on the rate constants could be determined.

  6. The kinetic and dynamic aspects of corrosion fatigue in a gaseous hydrogen environment.

    NASA Technical Reports Server (NTRS)

    Nelson, H. G.; Williams, D. P.; Tetelman, A. S.

    1972-01-01

    The stable, subcritical crack growth stage of fracture under conditions of corrosion fatigue was studied experimentally in order to demonstrate the importance of the kinetic and dynamic aspects of environment-sensitive behavior. The cyclic loading of a titanium alloy in a low-pressure gaseous hydrogen environment is compared to that in a vacuum environment. The influence of the hydrogen environment on the rate of subcritical crack growth is discussed.

  7. An investigation of the effect of surface impurities on the adsorption kinetics of hydrogen chemisorbed onto iron

    NASA Technical Reports Server (NTRS)

    Shanabarger, Mickey R.

    1993-01-01

    The goal of this program was to develop an understanding of heterogeneous kinetic processes for those molecular species which produce gaseous hydrogen degradation of the mechanical properties of metallic structural materials. Although hydrogen degradation of metallic materials is believed to result from dissolved protonic hydrogen, the heterogeneous hydrogen interface transport processes often dominate the kinetics of degradation. The initial step in the interface transport process is the dissociative chemisorption of the molecular species at the metal surface followed by hydrogen absorption into and transport through the bulk. The interaction of hydrogen with the surfaces of alpha-2(Ti3Al) titanium aluminide, gamma(TiAl) titanium aluminide, and beryllium were studied.

  8. Sorption behavior of Eu(III) from an aqueous solution onto modified hydroxyapatite: kinetics, modeling and thermodynamics.

    PubMed

    Gad, H M H; Youssef, M A

    2017-08-16

    Nano-pore hydroxyapatite (HAP) was prepared using physical activation of raw and chemically modified [using Acid; HNO3 (HAPA) or Base; NaOH (HAPB)] bone char (BC) by heating at 900°C for 1 hr to obtain HAP9, HAPA9 and HAPB9, respectively. Investigation the effects of thermal and chemical treatment of prepared nano-hydroxyapatite on elemental analysis, FTIR, scanning electron microscopy, surface area and consequently, the sorption behavior of Eu (III) ions onto the prepared nano-pore hydroxyapatite. Batch adsorption technique was used and the obtained results revealed that the optimum pH = 5.0. The % removal of europium (III) using HAPA9 and HAPB9 reach to 100% within 15 min, while HAP9 after 180 min and the pseudo-second-order was found to be fit to the experimental data. According to Langmuir model, the maximum sorption capacities (qm) were 123.8, 384.9 and 74.2 mg g(-1) for HAP9, HAPA9 and HAPB9, respectively. The reaction is spontaneous according to ΔG° value. HCl (0.5 M) was the most efficient desorbing agent for recovery of Eu(III) and regeneration of adsorbents. Finally, nano-pore hydroxyapatite (HAP) was low cost and very effective adsorbent for sorption or recovery of Eu(III) from aqueous solutions and remediation of environmental pollution.

  9. Sorption kinetics and equilibrium of the herbicide diuron to carbon nanotubes or soot in absence and presence of algae.

    PubMed

    Schwab, Fabienne; Camenzuli, Louise; Knauer, Katja; Nowack, Bernd; Magrez, Arnaud; Sigg, Laura; Bucheli, Thomas D

    2014-09-01

    Carbon nanotubes (CNT) are strong sorbents for organic micropollutants, but changing environmental conditions may alter the distribution and bioavailability of the sorbed substances. Therefore, we investigated the effect of green algae (Chlorella vulgaris) on sorption of a model pollutant (diuron, synonyms: 3-(3,4-Dichlorophenyl)-1,1-dimethylurea, DCMU) to CNT (multi-walled purified, industrial grade, pristine, and oxidized; reference material: Diesel soot). In absence of algae, diuron sorption to CNT was fast, strong, and nonlinear (Freundlich coefficients: 10(5.79)-10(6.24) μg/kgCNT·(μg/L)(-n) and 0.62-0.70 for KF and n, respectively). Adding algae to equilibrated diuron-CNT mixtures led to 15-20% (median) diuron re-dissolution. The relatively high amorphous carbon content slowed down ad-/desorption to/from the high energy sorption sites for both industrial grade CNT and soot. The results suggest that diuron binds readily, but - particularly in presence of algae - partially reversibly to CNT, which is of relevance for environmental exposure and risk assessment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. GEOMETRY, HEAT REMOVAL AND KINETICS SCOPING MODELS FOR HYDROGEN STORAGE SYSTEMS

    SciTech Connect

    Hardy, B

    2007-11-16

    It is recognized that detailed models of proposed hydrogen storage systems are essential to gain insight into the complex processes occurring during the charging and discharging processes. Such insight is an invaluable asset for both assessing the viability of a particular system and/or for improving its design. The detailed models, however, require time to develop and run. Clearly, it is much more efficient to begin a modeling effort with a good system design and to progress from that point. To facilitate this approach, it is useful to have simplified models that can quickly estimate optimal loading and discharge kinetics, effective hydrogen capacities, system dimensions and heat removal requirements. Parameters obtained from these models can then be input to the detailed models to obtain an accurate assessment of system performance that includes more complete integration of the physical processes. This report describes three scoping models that assess preliminary system design prior to invoking a more detailed finite element analysis. The three models address the kinetics, the scaling and heat removal parameters of the system, respectively. The kinetics model is used to evaluate the effect of temperature and hydrogen pressure on the loading and discharge kinetics. As part of the kinetics calculations, the model also determines the mass of stored hydrogen per mass of hydride (in a particular reference form). As such, the model can determine the optimal loading and discharge rates for a particular hydride and the maximum achievable loading (over an infinite period of time). The kinetics model developed with the Mathcad{reg_sign} solver, runs in a mater of seconds and can quickly be used to identify the optimal temperature and pressure for either the loading or discharge processes. The geometry scoping model is used to calculate the size of the system, the optimal placement of heat transfer elements, and the gravimetric and volumetric capacities for a particular

  11. A Chemical Kinetic Mechanism for the Ignition of Silane/Hydrogen Mixtures

    NASA Technical Reports Server (NTRS)

    Jachimowski, C. J.; Mclain, A. G.

    1983-01-01

    A chemical kinetic reaction mechanism for the oxidation of silane/hydrogen mixtures is presented and discussed. Shock-tube ignition delay time data were used to evaluate and refine the mechanism. Good agreement between experimental results and the results predicted by the mechanism was obtained by adjusting the rate coefficient for the reaction SiH3 + O2 yields SiH2O + OH. The reaction mechanism was used to theoretically investigate the ignition characteristics of silane/hydrogen mixtures. The results revealed that over the entire range of temperature examined (800 K to 1200 K), substantial reduction in ignition delay times is obtained when silane is added to hydrogen.

  12. Fundamental studies on kinetic isotope effect (KIE) of hydrogen isotope fractionation in natural gas systems

    USGS Publications Warehouse

    Ni, Y.; Ma, Q.; Ellis, G.S.; Dai, J.; Katz, B.; Zhang, S.; Tang, Y.

    2011-01-01

    Based on quantum chemistry calculations for normal octane homolytic cracking, a kinetic hydrogen isotope fractionation model for methane, ethane, and propane formation is proposed. The activation energy differences between D-substitute and non-substituted methane, ethane, and propane are 318.6, 281.7, and 280.2cal/mol, respectively. In order to determine the effect of the entropy contribution for hydrogen isotopic substitution, a transition state for ethane bond rupture was determined based on density function theory (DFT) calculations. The kinetic isotope effect (KIE) associated with bond rupture in D and H substituted ethane results in a frequency factor ratio of 1.07. Based on the proposed mathematical model of hydrogen isotope fractionation, one can potentially quantify natural gas thermal maturity from measured hydrogen isotope values. Calculated gas maturity values determined by the proposed mathematical model using ??D values in ethane from several basins in the world are in close agreement with similar predictions based on the ??13C composition of ethane. However, gas maturity values calculated from field data of methane and propane using both hydrogen and carbon kinetic isotopic models do not agree as closely. It is possible that ??D values in methane may be affected by microbial mixing and that propane values might be more susceptible to hydrogen exchange with water or to analytical errors. Although the model used in this study is quite preliminary, the results demonstrate that kinetic isotope fractionation effects in hydrogen may be useful in quantitative models of natural gas generation, and that ??D values in ethane might be more suitable for modeling than comparable values in methane and propane. ?? 2011 Elsevier Ltd.

  13. Fundamental studies on kinetic isotope effect (KIE) of hydrogen isotope fractionation in natural gas systems

    NASA Astrophysics Data System (ADS)

    Ni, Yunyan; Ma, Qisheng; Ellis, Geoffrey S.; Dai, Jinxing; Katz, Barry; Zhang, Shuichang; Tang, Yongchun

    2011-05-01

    Based on quantum chemistry calculations for normal octane homolytic cracking, a kinetic hydrogen isotope fractionation model for methane, ethane, and propane formation is proposed. The activation energy differences between D-substitute and non-substituted methane, ethane, and propane are 318.6, 281.7, and 280.2 cal/mol, respectively. In order to determine the effect of the entropy contribution for hydrogen isotopic substitution, a transition state for ethane bond rupture was determined based on density function theory (DFT) calculations. The kinetic isotope effect (KIE) associated with bond rupture in D and H substituted ethane results in a frequency factor ratio of 1.07. Based on the proposed mathematical model of hydrogen isotope fractionation, one can potentially quantify natural gas thermal maturity from measured hydrogen isotope values. Calculated gas maturity values determined by the proposed mathematical model using δD values in ethane from several basins in the world are in close agreement with similar predictions based on the δ 13C composition of ethane. However, gas maturity values calculated from field data of methane and propane using both hydrogen and carbon kinetic isotopic models do not agree as closely. It is possible that δD values in methane may be affected by microbial mixing and that propane values might be more susceptible to hydrogen exchange with water or to analytical errors. Although the model used in this study is quite preliminary, the results demonstrate that kinetic isotope fractionation effects in hydrogen may be useful in quantitative models of natural gas generation, and that δD values in ethane might be more suitable for modeling than comparable values in methane and propane.

  14. Isotope effects on desorption kinetics of hydrogen isotopes implanted into stainless steel by glow discharge

    SciTech Connect

    Matsuyama, M.; Kondo, M.; Noda, N.; Tanaka, M.; Nishimura, K.

    2015-03-15

    In a fusion device the control of fuel particles implies to know the desorption rate of hydrogen isotopes by the plasma-facing materials. In this paper desorption kinetics of hydrogen isotopes implanted into type 316L stainless steel by glow discharge have been studied by experiment and numerical calculation. The temperature of a maximum desorption rate depends on glow discharge time and heating rate. Desorption spectra observed under various experimental conditions have been successfully reproduced by numerical simulations that are based on a diffusion-limited process. It is suggested, therefore, that desorption rate of a hydrogen isotope implanted into the stainless steel is limited by a diffusion process of hydrogen isotope atoms in bulk. Furthermore, small isotope effects were observed for the diffusion process of hydrogen isotope atoms. (authors)

  15. Localized surface plasmon resonance sensor for simultaneous kinetic determination of peroxyacetic acid and hydrogen peroxide.

    PubMed

    Tashkhourian, Javad; Hormozi-Nezhad, Mohammad Reza; Khodaveisi, Javad; Dashti, Razieh

    2013-01-31

    A new sensor for simultaneous determination of peroxyacetic acid and hydrogen peroxide using silver nanoparticles (Ag-NPs) as a chromogenic reagent is introduced. The silver nanoparticles have the catalytic ability for the decomposition of peroxyacetic acid and hydrogen peroxide; then the decomposition of them induces the degradation of silver nanoparticles. Hence, a remarkable change in the localized surface plasmon resonance absorbance strength could be observed. Spectra-kinetic approach and artificial neural network was applied for the simultaneous determination of peroxyacetic acid and hydrogen peroxide. Linear calibration graphs were obtained in the concentration range of (8.20×10(-5) to 2.00×10(-3) mol L(-1)) for peroxyacetic acid and (2.00×10(-5) to 4.80×10(-3) mol L(-1)) for hydrogen peroxide. The analytical performance of this sensor has been evaluated for the detection of simultaneous determination of peroxyacetic acid and hydrogen peroxide in real samples.

  16. Cr(VI) sorption behavior from aqueous solutions onto polymeric microcapsules containing a long-chain quaternary ammonium salt: kinetics and thermodynamics analysis.

    PubMed

    Barassi, Giancarlo; Valdés, Andrea; Araneda, Claudio; Basualto, Carlos; Sapag, Jaime; Tapia, Cristián; Valenzuela, Fernando

    2009-12-15

    This work studies the adsorption of Cr(VI) ions from an aqueous acid solution on hydrophobic polymeric microcapsules containing a long-chain quaternary ammonium salt-type extractant immobilized in their pore structure. The microcapsules were synthesized by adding the extractant Aliquat 336 during the in situ radical copolymerization of the monomers styrene (ST) and ethylene glycol dimethacrylate (EGDMA). The microcapsules, which had a spherical shape with a rough surface, behaved as efficient adsorbents for Cr(VI) at the tested temperatures. The results of kinetics experiments carried out at different temperatures showed that the adsorption process fits well to a pseudo-second-order with an activation energy of 82.7 kJ mol(-1), confirming that the sorption process is controlled by a chemisorption mechanism. Langmuir's isotherms were found to represent well the experimentally observed sorption data. Thermodynamics parameters, namely, changes in standard free energy (DeltaG(0)), enthalpy (DeltaH(0)), and entropy (DeltaS(0)), are also calculated. The results indicate that the chemisorption process is spontaneous and exothermic. The entropy change value measured in this study shows that metal adsorbed on microcapsules leads to a less chaotic system than a liquid-liquid extraction system.

  17. Kinetic sorption modelling of Cu, Ni, Zn, Pb and Cr ions to pine bark and blast furnace slag by using batch experiments.

    PubMed

    Nehrenheim, E; Gustafsson, J P

    2008-04-01

    Storm water and landfill leachate can both contain significant amounts of toxic metals such as Zn, Cu, Pb, Cr and Ni. Pine bark and blast furnace slag are both residual waste products that have shown a large potential for metal removal from contaminated water. There are however many variables that must be optimized in order to achieve efficient metal retention. One of these variables is the time of which the solution is in contact with each unit of filter material. Metal sorption was studied in two laboratory experiments to improve the knowledge of the effects of contact time. The results showed that pine bark was generally more efficient than blast furnace slag when the metal concentrations were relatively small, whereas blast furnace slag sorbed most metals to a larger extent at increased metal loads. In addition, sorption to blast furnace slag was found to be faster than metal binding to pine bark. A pseudo-second-order kinetic model was able to describe the data well within 1000 s of reaction time.

  18. Development of an analytical method for trace gold in aqueous solution using polyurethane foam sorbents: kinetic and thermodynamic characteristic of gold(III) sorption.

    PubMed

    Bashammakh, A S; Bahaffi, S O; Al-Shareef, F M; El-Shahawi, M S

    2009-03-01

    The kinetic parameters of gold(III) sorption by unloaded polyurethane foams (PUFs) and PUFs impregnated with some onium cations e.g. tetramethylammonium perchlorate (TMA(+)ClO(4)(-)), tetrabutylammonium iodide (TBA(+)I(-)), and tetraheptylammonium bromide (THA(+)Br(-)), have been determined. The retention steps were found to be fast, reached equilibrium in a few minutes and followed a first-order rate equation with an overall rate constant, k, of 0.0076 and 0.007 min(-1), respectively. The thermodynamic characteristics of gold(III) retention by the unloaded PUFs and THA(+)Br(-) immobilized PUFs have been critically studied. The negative values of DeltaH and DeltaS are interpreted as the exothermic and spontaneous reaction of gold(III) sorption onto unloaded PUFs and foams impregnated with THA(+)Br(-). The cellular structure of the PUFs sorbent offer unique advantages over conventional bulk-type sorbents in the rapid, versatile effective separation and/or preconcentration of gold ions.

  19. Corrosion of concrete sewers--the kinetics of hydrogen sulfide oxidation.

    PubMed

    Vollertsen, Jes; Nielsen, Asbjørn Haaning; Jensen, Henriette Stokbro; Wium-Andersen, Tove; Hvitved-Jacobsen, Thorkild

    2008-05-01

    Hydrogen sulfide absorption and oxidation by corroding concrete surfaces was quantified in a test rig consisting of 6 concrete pipes operated under sewer conditions. The test rig was placed in an underground sewer monitoring station with access to fresh wastewater. Hydrogen sulfide gas was injected into the pipe every 2nd hour to peak concentrations around 1000 ppm. After some months of operation, the hydrogen sulfide became rapidly oxidized by the corroding concrete surfaces. At hydrogen sulfide concentrations of 1000 ppm, oxidation rates as high as 1 mg S m(-2) s(-1) were observed. The oxidation process followed simple nth order kinetics with a process order of 0.45-0.75. Extrapolating the results to gravity sewer systems showed that hydrogen sulfide oxidation by corroding concrete is a fast process compared to the release of hydrogen sulfide from the bulk water, resulting in low gas concentrations compared with equilibrium. Balancing hydrogen sulfide release with hydrogen sulfide oxidation at steady state conditions demonstrated that significant corrosion rates--several millimeters of concrete per year--can potentially occur at hydrogen sulfide gas phase concentrations well below 5-10 ppm. The results obtained in the study advances the knowledge on prediction of sewer concrete corrosion and the extent of odor problems.

  20. Capacitively Coupled Radio Frequency Discharge Plasmas In Hydrogen: Particle Modeling and Negative Ion Kinetics

    SciTech Connect

    Diomede, P.; Longo, S.; Capitelli, M.

    2005-05-16

    We present a 1D(r)2D(v) particle code for capacitively coupled radio frequency discharge plasmas in hydrogen, which includes a rigorous kinetic modeling of ion transport and several solutions to speed up the convergence. In a test case the effect of surface atom recombination and molecule vibrational deactivation on H- concentration is investigated.

  1. The effect of MWCNT treatment by H2O2 and/or UV on fulvic acids sorption.

    PubMed

    Czech, Bożena

    2017-05-01

    The carbon nanotubes (CNT) present in the wastewater subjected to treatment will possess altered physico-chemical properties. The changed properties will result in the unknown behavior of CNT in the environment after disposal; and it is expected to differ from their pristine analogues. In the present paper the effect of sorption of dissolved organic matter with fulvic acids (FA) as representatives onto UV and/or H2O2 treated CNT was tested. Both kinetics and mechanism of sorption was estimated. The chemical adsorption was a rate limiting step and a pseudo-second order kinetics described the sorption of FA onto UV and/or H2O2 treated CNT. The treating increased affinity towards FA and treating by UV and H2O2 simultaneously possessed greater impact on k2 than UV and H2O2 separately. The greatest effect on CNT sorption capacity revealed H2O2. The sorption mechanism was described by Temkin (CNT-H2O2) and Dubinin-Radushkevich model. The increase in CNT surface disorder caused by UV and/or H2O2 treatment favored sorption of FA via π-π interactions (exfoliated surface and disordered CNT walls). FA sorption occurred between aromatic rings of FA and CNT and hydrogen bonds formed with the oxygen functional groups. The results indicate that UV and/or H2O2 treatment affected the sorption capacity and affinity of CNT towards FA. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Kinetics studies of d-glucose hydrogenation over activated charcoal supported platinum catalyst

    NASA Astrophysics Data System (ADS)

    Ahmed, Muthanna J.

    2012-02-01

    The kinetics of the catalytic hydrogenation of d-glucose to produce d-sorbitol was studied in a three-phase laboratory scale reactor. The hydrogenation reactions were performed on activated charcoal supported platinum catalyst in the temperature range 25-65°C and in a constant pressure of 1 atm. The kinetic data were modeled by zero, first and second-order reaction equations. In the operating regimes studied, the results show that the hydrogenation reaction was of a first order with respect to d-glucose concentration. Also the activation energy of the reaction was determined, and found to be 12.33 kJ mole-1. A set of experiment was carried out to test the deactivation of the catalyst, and the results show that the deactivation is slow with the ability of using the catalyst for several times with a small decrease in product yield.

  3. Thermodynamics and kinetics of graphene chemistry: a graphene hydrogenation prototype study.

    PubMed

    Pham, Buu Q; Gordon, Mark S

    2016-12-07

    The thermodynamic and kinetic controls of graphene chemistry are studied computationally using a graphene hydrogenation reaction and polyaromatic hydrocarbons to represent the graphene surface. Hydrogen atoms are concertedly chemisorped onto the surface of graphene models of different shapes (i.e., all-zigzag, all-armchair, zigzag-armchair mixed edges) and sizes (i.e., from 16-42 carbon atoms). The second-order Z-averaged perturbation theory (ZAPT2) method combined with Pople double and triple zeta basis sets are used for all calculations. It is found that both the net enthalpy change and the barrier height of graphene hydrogenation at graphene edges are lower than at their interior surfaces. While the thermodynamic product distribution is mainly determined by the remaining π-islands of functionalized graphenes (Phys. Chem. Chem. Phys., 2013, 15, 3725-3735), the kinetics of the reaction is primarily correlated with the localization of the electrostatic potential of the graphene surface.

  4. Sorption kinetic study of selenite and selenate onto a high and low pressure aged iron oxide nanomaterial

    PubMed Central

    Gonzalez, Christina M.; Hernandez, Jeffrey; Peralta-Videa, Jose R.; Botez, Cristian E.; Parsons, Jason G.; Gardea-Torresdey, Jorge L.

    2015-01-01

    The sorption of selenite (SeO32−) and selenate (SeO42−) onto Fe3O4 nanomaterials produced by non microwave-assisted or microwave-assisted synthetic techniques was investigated through use of the batch technique. The phase of both synthetic nanomaterials was determined to be magnetite by X-ray diffraction. The average grain sizes of non microwave-assisted and microwave-assisted synthetic Fe3O4 were determined to be 27 and 25 nm, respectively through use of the Scherrer's equation. Sorption of selenite was pH independent in the pH range of 2-6, while sorption of selenate decreased at pH 5 and 6. The addition of Cl− had no significant effect on selenite or selenate binding, while the addition of NO3− only affected selenate binding to the microwave assisted Fe3O4. A decrease of selenate binding to both synthetic particles was observed after the addition of SO42− while selenite binding was not affected. The addition of PO43− beginning at concentrations of 0.1 ppm had the most prominent effect on the binding of both selenite and selenate. The capacities of binding, determined through the use of Langmuir isotherm, were found to be 1923 and 1428 mg Se/kg of non microwave-assisted Fe3O4 and 2380 and 2369 mg Se/kg of microwave-assisted Fe3O4 for selenite and selenate, respectively. PMID:21907486

  5. Stereoselectivity of the hydrogen-atom transfer in benzophenone-tyrosine dyads: an intramolecular kinetic solvent effect.

    PubMed

    Hörner, Gerald; Hug, Gordon L; Lewandowska, Anna; Kazmierczak, Franciszek; Marciniak, Bronislaw

    2009-01-01

    To be or not to be solvated is the decisive parameter that controls the photoinduced hydrogen-atom transfer in diastereomeric ketone/phenol dyads. A kinetic solvent effect that refers to hydrogen bonding between the phenol and the solvent is suggested to be the main source of the stereoselective discrimination in the hydrogen transfer (see figure).

  6. Kinetic Modification on Hydrogen Desorption of Lithium Hydride and Magnesium Amide System.

    PubMed

    Miyaoka, Hiroki; Wang, Yongming; Hino, Satoshi; Isobe, Shigehito; Tokoyoda, Kazuhiko; Ichikawa, Takayuki; Kojima, Yoshitsugu

    2015-06-29

    Various synthesis and rehydrogenation processes of lithium hydride (LiH) and magnesium amide (Mg(NH₂)₂) system with 8:3 molar ratio are investigated to understand the kinetic factors and effectively utilize the essential hydrogen desorption properties. For the hydrogen desorption with a solid-solid reaction, it is expected that the kinetic properties become worse by the sintering and phase separation. In fact, it is experimentally found that the low crystalline size and the close contact of LiH and Mg(NH₂)₂ lead to the fast hydrogen desorption. To preserve the potential hydrogen desorption properties, thermochemical and mechanochemical rehydrogenation processes are investigated. Although the only thermochemical process results in slowing the reaction rate due to the crystallization, the ball-milling can recover the original hydrogen desorption properties. Furthermore, the mechanochemical process at 150 °C is useful as the rehydrogenation technique to preserve the suitable crystalline size and mixing state of the reactants. As a result, it is demonstrated that the 8LiH and 3Mg(NH₂)₂ system is recognized as the potential hydrogen storage material to desorb more than 5.5 mass% of H₂ at 150 °C.

  7. Kinetic Modification on Hydrogen Desorption of Lithium Hydride and Magnesium Amide System

    PubMed Central

    Miyaoka, Hiroki; Wang, Yongming; Hino, Satoshi; Isobe, Shigehito; Tokoyoda, Kazuhiko; Ichikawa, Takayuki; Kojima, Yoshitsugu

    2015-01-01

    Various synthesis and rehydrogenation processes of lithium hydride (LiH) and magnesium amide (Mg(NH2)2) system with 8:3 molar ratio are investigated to understand the kinetic factors and effectively utilize the essential hydrogen desorption properties. For the hydrogen desorption with a solid-solid reaction, it is expected that the kinetic properties become worse by the sintering and phase separation. In fact, it is experimentally found that the low crystalline size and the close contact of LiH and Mg(NH2)2 lead to the fast hydrogen desorption. To preserve the potential hydrogen desorption properties, thermochemical and mechanochemical rehydrogenation processes are investigated. Although the only thermochemical process results in slowing the reaction rate due to the crystallization, the ball-milling can recover the original hydrogen desorption properties. Furthermore, the mechanochemical process at 150 °C is useful as the rehydrogenation technique to preserve the suitable crystalline size and mixing state of the reactants. As a result, it is demonstrated that the 8LiH and 3Mg(NH2)2 system is recognized as the potential hydrogen storage material to desorb more than 5.5 mass% of H2 at 150 °C. PMID:28793414

  8. The kinetics of catalytic hydrogenation of pyrene-implications for direct coal liquefaction processing

    SciTech Connect

    Stephens, H.P.; Chapman, R.N.

    1983-01-01

    Although recycling heavy solvents has recently re-emerged as a key to cutting the cost of direct coal liquefaction, little data for the hydrogenation of heavy solvent donors have been reported. This study addresses the kinetic and thermodynamic aspects of catalytic hydrogenation of pyrene, a donor solvent precursor thought to play an important role in coal liquefaction processes that use heavy recycle solvents. In the presence of a catalyst, pyrene (Py) is hydrogenated to di- (H/sub 2/Py), tetra- (H/sub 4/Py), hexa- (H/sub 6/Py), deca- (H/sub 10/Py) and perhydro- (H/sub 16/Py) species via a complex mechanism involving a network of reversible parallel and series reactions. Though several studies have dealt with aspects of pyrene hydrogenation, including hydrocracking reactions, reaction product distributions and thermodynamic properties, the kinetics of hydrogenation have not been previously reported. Ultimate application of kinetic and thermodynamic data to direct coal liquefaction must take into consideration the conditions imposed by the particular process used. However, two generalizations may be made regarding hydrogen supplied by the dihydropyrene component of donor solvents: (1) Increasing hydrogen partial pressure increases both the rate at which H/sub 2/Py is formed and the equilibrium concentration of H/sub 2/Py. Therefore, pyrene rehydrogenation should be done at as high a pressure as is cost effective. Although an increase in temperature favors the rate of attainment of equilibrium between Py and H/sub 2/Py, the position of the equilibrium is shifted toward pyrene. Temperature must therefore be adjusted to achieve an optimum trade-off between rate of formation and maximum possible concentration of H/sub 2/Py.

  9. Non-isothermal reduction kinetics of titanomagnetite by hydrogen

    NASA Astrophysics Data System (ADS)

    Dang, Jie; Zhang, Guo-hua; Hu, Xiao-jun; Chou, Kuo-chih

    2013-12-01

    Reduction of titanomagnetite (TTM) powders by H2-Ar gas mixtures was investigated under a non-isothermal condition by using a thermogravimetric analysis system. It was found that non-isothermal reduction of TTM proceeded via a dual-reaction mechanism. The first reaction was reduction of TTM to wüstite and ilmenite, whereas the second one was reduction of wüstite and ilmenite to iron and titanium dioxide. By using a new model for the dual reactions, which was in an analytical form and incorporated different variables, such as time, temperature, particle size, and hydrogen partial pressure, rate-controlling steps for the dual reactions were obtained with the apparent activation energies calculated to be 90-98 and 115-132 kJ/mol for the first and second reactions, respectively.

  10. Kinetics of the reaction of nitric oxide with hydrogen

    NASA Technical Reports Server (NTRS)

    Flower, W. L.; Hanson, R. K.; Kruger, C. H.

    1974-01-01

    Mixtures of NO and H2 diluted in argon or krypton were heated by incident shock waves, and the infrared emission from the fundamental vibration-rotation band of NO at 5.3 microns was used to monitor the time-varying NO concentration. The reaction kinetics were studied in the temperature range 2400-4500 K using a shock-tube technique. The decomposition of nitric oxide behind the shock was found to be modeled well by a fifteen-reaction system. A principle result of the study was the determination of the rate constant for the reaction H + NO yields N + OH, which may be the rate-limiting step for NO removal in some combustion systems. Experimental values of k sub 1 were obtained for each test through comparisons of measured and numerically predicted NO profiles.

  11. Synthesis, X-ray crystal structures, and gas sorption properties of pillared square grid nets based on paddle-wheel motifs: implications for hydrogen storage in porous materials.

    PubMed

    Chun, Hyungphil; Dybtsev, Danil N; Kim, Hyunuk; Kim, Kimoon

    2005-06-06

    A systematic modulation of organic ligands connecting dinuclear paddle-wheel motifs leads to a series of isomorphous metal-organic porous materials that have a three-dimensional connectivity and interconnected pores. Aromatic dicarboxylates such as 1,4-benzenedicarboxylate (1,4-bdc), tetramethylterephthalate (tmbdc), 1,4-naphthalenedicarboxylate (1,4-ndc), tetrafluoroterephthalate (tfbdc), or 2,6-naphthalenedicarboxylate (2,6-ndc) are linear linkers that form two-dimensional layers, and diamine ligands, 4-diazabicyclo[2.2.2]octane (dabco) or 4,4'-dipyridyl (bpy), coordinate at both sides of Zn(2) paddle-wheel units to bridge the layers vertically. The resulting open frameworks [Zn(2)(1,4-bdc)(2)(dabco)] (1), [Zn(2)(1,4-bdc)(tmbdc)(dabco)] (2), [Zn(2)(tmbdc)(2)(dabco)] (3), [Zn(2)(1,4-ndc)(2)(dabco)] (4), [Zn(2)(tfbdc)(2)(dabco)] (5), and [Zn(2)(tmbdc)(2)(bpy)] (8) possess varying size of pores and free apertures originating from the side groups of the 1,4-bdc derivatives. [Zn(2)(1,4-bdc)(2)(bpy)] (6) and [Zn(2)(2,6-ndc)(2)(bpy)] (7) have two- and threefold interpenetrating structures, respectively. The non-interpenetrating frameworks (1-5 and 8) possess surface areas in the range of 1450-2090 m(2)g(-1) and hydrogen sorption capacities of 1.7-2.1 wt % at 78 K and 1 atm. A detailed analysis of the sorption data in conjunction with structural similarities and differences concludes that porous materials with straight channels and large openings do not perform better than those with wavy channels and small openings in terms of hydrogen storage through physisorption.

  12. Size-dependent kinetic enhancement in hydrogen absorption and desorption of the Li-Mg-N-H system.

    PubMed

    Liu, Yongfeng; Zhong, Kai; Luo, Kun; Gao, Mingxia; Pan, Hongge; Wang, Qidong

    2009-02-11

    High operating temperature and slow kinetics retard the practical applications of the Li-Mg-N-H system for hydrogen storage. To alleviate these problems, a first attempt was carried out by synthesizing Li(2)MgN(2)H(2) through sintering a mixture of Mg(NH(2))(2)-2LiNH(2) and investigating its size-dependent hydrogen storage performance. A dramatically enhanced kinetics for hydrogen absorption/desorption was achieved with a reduction in the particle size. For the dehydrogenation reaction, a three-dimensional diffusion-controlled kinetic mechanism was identified for the first time by analyzing isothermal hydrogen desorption curves with a linear plot method. The experimental improvement and mechanistic understanding on the dehydrogenation kinetics of the Li-Mg-N-H system shed light on how to further decrease the operating temperature and enhance the hydrogen absorption/desorption rate of the amide/hydride combined materials.

  13. Kinetics of Hydrogen Oxidation Downstream of Lean Propane and Hydrogen Flames

    NASA Technical Reports Server (NTRS)

    Fine, Burton

    1961-01-01

    The decay of hydrogen was measured downstream of lean, flat, premixed hydrogen and propane-air flames seated on cooled porous burners. Experimental variables included temperature, pressure, initial equivalence ratio and diluent. Sampling of burned gas was done through uncooled quartz orifice probes, and the analysis was based on gas chromatography. An approximate treatment of the data in which diffusion was neglected led to the following rate expression for the zone downstream of hydrogen flames d[H (sub 2)] divided by (d times t) equals 1.7 times 10 (sup 10) [H (sub 2)] (sup 3) divided by (sub 2) [O (sub 2)]e (sup (-8100 divided by RT)) moles per liters per second. On the basis of a rate expression of this form, the specific rate constant for the reaction downstream of hydrogen flames was about three times as great as that determined downstream of propane flames. This result was explained on the basis of the existence of a steady state between hydrogen and carbon monoxide in the burned gas downstream of propane flames.

  14. Washout kinetics of inhaled hydrogen cyanide in breath.

    PubMed

    Stamyr, Kristin; Nord, Pierre; Johanson, Gunnar

    2008-06-10

    Hydrogen cyanide (HCN) intoxication causes or contributes significantly to many of the fatalities among fire victims. To enable fast treatment of HCN poisoning, a more rapid diagnostic method than currently available is required. One possibility would be measurement in exhaled air. However, as HCN is highly water soluble, it may be absorbed during inhalation and reabsorbed during exhalation. If this, so-called, washin-washout effect is substantial it may interfere with the diagnosis, as a major part of breath HCN may originate from the respiratory tract, due to recent exposure, and not from systemic exposure. The aim of this study was to estimate the importance of the washin-washout effect of HCN. The time-course of cyanide in exhaled air was measured with an electrochemical detector in 10 volunteers during and after a 1 min x 10 ppm exposure to HCN. The experiment revealed an average half-life of 16s (range 10-24s) in breath. Extrapolating the results to higher exposures suggests that the contribution from washin-washout from the airways will be negligible even at fatal exposures. The results support the use of breath HCN as a potential indicator of systemic intoxication.

  15. Analytical chemical kinetic investigation of the effects of oxygen, hydrogen, and hydroxyl radicals on hydrogen-air combustion

    NASA Technical Reports Server (NTRS)

    Carson, G. T., Jr.

    1974-01-01

    Quantitative values were computed which show the effects of the presence of small amounts of oxygen, hydrogen, and hydroxyl radicals on the finite-rate chemical kinetics of premixed hydrogen-air mixtures undergoing isobaric autoignition and combustion. The free radicals were considered to be initially present in hydrogen-air mixtures at equivalence ratios of 0.2, 0.6, 1.0, and 1.2. Initial mixture temperatures were 1100 K, 1200 K, and 1500 K, and pressures were 0.5, 1.0, 2.0, and 4.0 atm. Of the radicals investigated, atomic oxygen was found to be the most effective for reducing induction time, defined as the time to 5 percent of the total combustion temperature rise. The reaction time, the time between 5 percent and 95 percent of the temperature rise, is not decreased by the presence of free radicals in the initial hydrogen-air mixture. Fuel additives which yield free radicals might be used to effect a compact supersonic combustor design for efficient operation in an otherwise reaction-limited combustion regime.

  16. SEDIMENT-ASSOCIATED REACTIONS OF AROMATIC AMINES: 1. ELUCIDATION OF SORPTION MECHANISMS

    EPA Science Inventory

    Sorption of aromatic amines to sediments and soils can occur by both reversible physical processes and irreversible chemical processes. To elucidate the significance of these sorption pathways, the sorption kinetics of aniline and pyridine were studied in resaturated pond sedimen...

  17. SEDIMENT-ASSOCIATED REACTIONS OF AROMATIC AMINES: 1. ELUCIDATION OF SORPTION MECHANISMS

    EPA Science Inventory

    Sorption of aromatic amines to sediments and soils can occur by both reversible physical processes and irreversible chemical processes. To elucidate the significance of these sorption pathways, the sorption kinetics of aniline and pyridine were studied in resaturated pond sedimen...

  18. Kinetic solvent effects on hydrogen abstraction reactions from carbon by the cumyloxyl radical. The role of hydrogen bonding.

    PubMed

    Bietti, Massimo; Salamone, Michela

    2010-08-20

    A kinetic study of the H-atom abstraction reactions from 1,4-cyclohexadiene and triethylamine by the cumyloxyl radical has been carried out in different solvents. Negligible effects are observed with 1,4-cyclohexadiene, whereas with triethylamine a significant decrease in rate constant (k(H)) is observed on going from benzene to MeOH. A good correlation between log k(H) and the solvent hydrogen bond donor parameter alpha is observed, indicative of an H-bonding interaction between the amine lone pair and the solvent.

  19. Process development for hydrogen production with Chlamydomonas reinhardtii based on growth and product formation kinetics.

    PubMed

    Lehr, Florian; Morweiser, Michael; Rosello Sastre, Rosa; Kruse, Olaf; Posten, Clemens

    2012-11-30

    Certain strains of microalgae are long known to produce hydrogen under anaerobic conditions. In Chlamydomonas reinhardtii the oxygen-sensitive hydrogenase enzyme recombines electrons from the chloroplast electron transport chain with protons to form molecular hydrogen directly inside the chloroplast. A sustained hydrogen production can be obtained under low sulfur conditions in C. reinhardtii, reducing the net oxygen evolution by reducing the photosystem II activity and thereby overcoming the inhibition of the hydrogenases. The development of specially adapted hydrogen production strains led to higher yields and optimized biological process preconditions. So far sustainable hydrogen production required a complete exchange of the growth medium to establish sulfur-deprived conditions after biomass growth. In this work we demonstrate the transition from the biomass growth phase to the hydrogen production phase in a single batch culture only by exact dosage of sulfur. This eliminates the elaborate and energy intensive solid-liquid separation step and establishes a process strategy to proceed further versus large scale production. This strategy has been applied to determine light dependent biomass growth and hydrogen production kinetics to assess the potential of H₂ production with C. reinhardtii as a basis for scale up and further process optimization.

  20. Stereoselective synthesis of norephedrine and norpseudoephedrine by using asymmetric transfer hydrogenation accompanied by dynamic kinetic resolution.

    PubMed

    Lee, Hyeon-Kyu; Kang, Soyeong; Choi, Eun Bok

    2012-06-15

    Each of the enantiomers of both norephedrine and norpseudoephedrine were stereoselectively prepared from the common, prochiral cyclic sulfamidate imine of racemic 1-hydroxy-1-phenyl-propan-2-one by employing asymmetric transfer hydrogenation (ATH) catalyzed by the well-defined chiral Rh-complexes, (S,S)- or (R,R)-Cp*RhCl(TsDPEN), and HCO(2)H/Et(3)N as the hydrogen source. The ATH processes are carried out under mild conditions (rt, 15 min) and are accompanied by dynamic kinetic resolution.

  1. Understanding kinetic solvent effects on hydrogen abstraction reactions from carbon by the cumyloxyl radical.

    PubMed

    Bietti, Massimo; Martella, Roberto; Salamone, Michela

    2011-11-18

    A kinetic study of the hydrogen abstraction reactions from tetrahydrofuran (THF) and cyclohexane (CHX) by the cumyloxyl radical was carried out in different solvents. With THF, a 4.5-fold decrease in rate constant (k(H)) was observed on going from isooctane to 2,2,2-trifluoroethanol. An opposite behavior was observed with CHX, where k(H) increased by a factor 4 on going from isooctane to 2,2,2-trifluoroethanol. The important role of substrate structure and of the solvent hydrogen bond donor ability is discussed.

  2. Kinetics of vapor-phase hydrogenation of furfural on a copper-chromium catalyst

    SciTech Connect

    Borts, M.S.; Gil'chenok, N.D.; Gurevich, G.S.; Ignat'ev, V.M.

    1986-08-01

    This paper studies the principal kinetic relationships of hydrogenation of furfural to furfuryl alcohol, which must be known for development of the industrial process. Prelininary experiments showed that at linear velocities of the vapor-gas stream (calculated for the free cross section of the reactor) above 0.26 matsec and with an average catalyst particle size less than 0.30 mm neither external nor internal diffusio resistance has any effect. In all the subsequent experiments a 0.20-0.25-mm catalyst fraction was used at a linear vapor-gas velocity of 0.50 m/sec, when the reaction proceeded with kinetic control.

  3. Kinetics and models of hydrogenation of phenylhydroxylamine and azobenzene on nickel catalysts in aqueous 2-propanol solutions

    NASA Astrophysics Data System (ADS)

    Romanenko, Yu. E.; Merkin, A. A.; Komarov, A. A.; Lefedova, O. V.

    2014-08-01

    The kinetics of the hydrogenation of intermediates in the reduction of nitrobenzene in aqueous 2-propanol with acetic acid and sodium hydroxide additions on nickel catalysts was studied. A kinetic description of liquid-phase hydrogenation of azobenzene and phenylhydroxylamine was suggested. A kinetic model was developed. The dependences that characterize the variation of the amounts of the starting compound, reaction product, and absorbed hydrogen during the reaction were calculated. The calculated values were shown to be in satisfactory agreement with the experimental values under different reaction conditions.

  4. Thermodynamics, Kinetics, and Activation energy Studies of the sorption of chromium(III) and chromium(VI) to a Mn3O4 nanomaterial

    PubMed Central

    Cantu, Yvette; Remes, Abril; Reyna, Alejandra; Martinez, Denise; Villarreal, Jahaziel; Ramos, Hilda; Trevino, Samantha; Tamez, C.; Martinez, A.; Eubanks, T.; Parsons, J. G.

    2014-01-01

    In this study, a manganese oxide, Mn3O4 was used to remove chromium(III) and chromium(VI) from aqueous solutions. The Mn3O4 nanomaterial was synthesized through a precipitation method, and was characterized using XRD, which confirmed the material had a crystal structure similar to hausmannite. In addition, using Scherrer’s equation it was determined that the nanomaterial had an average grain size of 19.5 ± 1.10 nm. A study of the effects of pH on the binding of chromium(III) and chromium(VI) showed that the optimum binding pH was 4 and 3 respectively. Batch isotherm studies were performed to determine the binding capacity of chromium(III), which was determined to be 18.7 mg/g, 41.7 mg/g, and 54.4 mg/g respectively for 4°C, 21°C, and 45°C. Chromium(VI) on the other hand had lower binding capacities of 2.5 mg/g, 4.3 mg/g, and 5.8 mg/g for 4°C, 21°C, 45°C, respectively. Thermodynamic studies performed indicated the sorption process was for the most part controlled by physisorption. The ΔG for the sorption of chromium(III) and Chromium(VI) ranged from −0.9 to −13 kJ/mol, indicating a spontaneous reaction was occurring. The enthalpy indicated a endothermic reaction was occurring during the binding and show ΔH values of 70.6 and 19.1 kJ.mol for chromium(III) and Chromium(VI), respectively. In addition, ΔS for the reaction had positive values of 267 and 73 J/mol for chromium(III) and chromium(VI) which indicate a spontaneous reaction. In addition, the sorption process was found to follow pseudo second order kinetic and the activation energy studies indicated the binding process occurred through chemisorption. PMID:25097453

  5. Oxygen atom kinetics in silane-hydrogen-nitrous oxide mixtures behind reflected shock waves

    NASA Astrophysics Data System (ADS)

    Javoy, S.; Mével, R.; Dupré, G.

    2010-11-01

    Resonance Absorption Spectroscopy has been used to study the O-atom dynamics behind reflected shock waves in highly argon diluted silane-hydrogen-nitrous oxide mixtures in the temperature range 1606-2528 K and at total pressures from 234 to 584 kPa. The absorptions at 130.5 nm of N 2O, SiH 4 and Si have been taken into account to compare simulated and experimental absorption profiles. A detailed kinetic model has been also used to interpret the results and reaction pathway and sensitivity analyses have been performed to underline important elementary reactions. A comparison with the O-atom kinetic in silane-nitrous oxide and hydrogen-nitrous oxide mixtures is also proposed.

  6. Hydrogen-bond driven loop-closure kinetics in unfolded polypeptide chains

    SciTech Connect

    Daidone, Isabella; Neuweiler, H; Doose, S; Sauer, M; Smith, Jeremy C

    2010-12-01

    Characterization of the length dependence of end-to-end loop-closure kinetics in unfolded polypeptide chains provides an understanding of early steps in protein folding. Here, loop-closure in poly-glycine-serine peptides is investigated by combining single-molecule fluorescence spectroscopy with molecular dynamics simulation. For chains containing more than 10 peptide bonds loop-closing rate constants on the 20-100 nanosecond time range exhibit a power-law length dependence. However, this scaling breaks down for shorter peptides, which exhibit slower kinetics arising from a perturbation induced by the dye reporter system used in the experimental setup. The loop-closure kinetics in the longer peptides is found to be determined by the formation of intra-peptide hydrogen bonds and transient beta-sheet structure, that accelerate the search for contacts among residues distant in sequence relative to the case of a polypeptide chain in which hydrogen bonds cannot form. Hydrogen-bond-driven polypeptide-chain collapse in unfolded peptides under physiological conditions found here is not only consistent with hierarchical models of protein folding, that highlights the importance of secondary structure formation early in the folding process, but is also shown to speed up the search for productive folding events.

  7. In situ hydrogen consumption kinetics as an indicator of subsurface microbial activity

    USGS Publications Warehouse

    Harris, S.H.; Smith, R.L.; Suflita, J.M.

    2007-01-01

    There are few methods available for broadly assessing microbial community metabolism directly within a groundwater environment. In this study, hydrogen consumption rates were estimated from in situ injection/withdrawal tests conducted in two geochemically varying, contaminated aquifers as an approach towards developing such a method. The hydrogen consumption first-order rates varied from 0.002 nM h-1 for an uncontaminated, aerobic site to 2.5 nM h-1 for a contaminated site where sulfate reduction was a predominant process. The method could accommodate the over three orders of magnitude range in rates that existed between subsurface sites. In a denitrifying zone, the hydrogen consumption rate (0.02 nM h-1) was immediately abolished in the presence of air or an antibiotic mixture, suggesting that such measurements may also be sensitive to the effects of environmental perturbations on field microbial activities. Comparable laboratory determinations with sediment slurries exhibited hydrogen consumption kinetics that differed substantially from the field estimates. Because anaerobic degradation of organic matter relies on the rapid consumption of hydrogen and subsequent maintenance at low levels, such in situ measures of hydrogen turnover can serve as a key indicator of the functioning of microbial food webs and may be more reliable than laboratory determinations. ?? 2007 Federation of European Microbiological Societies.

  8. In situ oxidation remediation technologies: kinetic of hydrogen peroxide decomposition on soil organic matter.

    PubMed

    Romero, Arturo; Santos, Aurora; Vicente, Fernando; Rodriguez, Sergio; Lafuente, A Lopez

    2009-10-30

    Rates of hydrogen peroxide decomposition were investigated in soils slurries. The interaction soil-hydrogen peroxide was studied using a slurry system at 20 degrees C and pH 7. To determine the role of soil organic matter (SOM) in the decomposition of hydrogen peroxide, several experiments were carried out with two soils with different SOM content (S1=15.1%, S2=10%). The influence of the oxidant dosage ([H2O2](o) from 10 to 30 g L(-1) and soil weight to liquid phase volume ratio=500 g L(-1)) was investigated using the two calcareous loamy sand soil samples. The results showed a rate dependency on both SOM and hydrogen peroxide concentration being the H2O2 decomposition rate over soil surface described by a second-order kinetic expression r(H2O2) = -dn(H2O2) / W(SOM) dt = kC(H2O2) C(SOM). Thermogravimetric analysis (TGA) was used to evaluate the effect caused by the application of this oxidant on the SOM content. It was found a slightly increase of SOM content after treatment with hydrogen peroxide, probably due to the incorporation of oxygen from the oxidant (hydrogen peroxide).

  9. Nano-structured iron(III)-cerium(IV) mixed oxide: Synthesis, characterization and arsenic sorption kinetics in the presence of co-existing ions aiming to apply for high arsenic groundwater treatment

    NASA Astrophysics Data System (ADS)

    Basu, Tina; Ghosh, Uday Chand

    2013-10-01

    Here, we aim to develop an efficient material by eco-friendly green synthetic route that was characterized to be nano-structured. The thermal stability of the sample was well established from the consistent particle size at different temperature and also, from differential thermal analysis. The bimetal mixed oxide contained agglomerated crystalline nano-particles of dimension 10-20 nm, and its empirical composition as FeCe1.1O7.6. The surface area ( m2g-1), pore volume ( cm3 g-1) and maximum pore width (nm) obtained from BET analysis were found to be 104, 0.1316 and 5.68 respectively. Use of this material for estimating arsenic sorption kinetics in presence of some groundwater occurring ions revealed that the pseudo-second order kinetic model is unambiguously the best fit option to describe the nature of the reactions. Groundwater occurring ions exhibit a notable decrease of As(V)-sorption capacity (no other ion > chloride ∼ silicate > sulfate > bicarbonate > phosphate). However, As(III)-sorption capacity of the bimetal mixed oxide was nominally influenced by the presence of the above ions in the reaction system. Rate determining step of arsenic sorption reactions was confirmed to be a multistage process in the presence of the above ions at pH ∼ 7.0 and 30 °C.

  10. Effect of electrolytical hydrogenation on the thermal stability and crystallization kinetics of METGLASS MBF-50

    NASA Astrophysics Data System (ADS)

    Górecki, Cz; Górecki, T.

    2007-08-01

    The effect of electrolytical hydrogenation on both the surface and volume crystallization kinetics and thermal stability of amorphous alloy METGLASS MBF-50 has been investigated. The surface crystallization has been investigated by the exoelectron emission (EEE) technique, whereas the volume crystallization has been followed by differential thermal analysis (DTA). It has been found that both the surface and volume crystallization of investigated material occur in two stages. The surface crystallization occurs at temperature lower and with activation energy distinctly smaller than the volume crystallization. Hydrogenation of the investigated metallic glass enhances its thermal stability by increasing the activation energies for both the surface and volume crystallization. The results of DTA measurements indicate that hydrogenation causes an increase in the enthalpy of both stages of volume crystallization.

  11. Anisotropic hydrogen diffusion in α-Zr and Zircaloy predicted by accelerated kinetic Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Zhang, Yongfeng; Jiang, Chao; Bai, Xianming

    2017-01-01

    This report presents an accelerated kinetic Monte Carlo (KMC) method to compute the diffusivity of hydrogen in hcp metals and alloys, considering both thermally activated hopping and quantum tunneling. The acceleration is achieved by replacing regular KMC jumps in trapping energy basins formed by neighboring tetrahedral interstitial sites, with analytical solutions for basin exiting time and probability. Parameterized by density functional theory (DFT) calculations, the accelerated KMC method is shown to be capable of efficiently calculating hydrogen diffusivity in α-Zr and Zircaloy, without altering the kinetics of long-range diffusion. Above room temperature, hydrogen diffusion in α-Zr and Zircaloy is dominated by thermal hopping, with negligible contribution from quantum tunneling. The diffusivity predicted by this DFT + KMC approach agrees well with that from previous independent experiments and theories, without using any data fitting. The diffusivity along is found to be slightly higher than that along , with the anisotropy saturated at about 1.20 at high temperatures, resolving contradictory results in previous experiments. Demonstrated using hydrogen diffusion in α-Zr, the same method can be extended for on-lattice diffusion in hcp metals, or systems with similar trapping basins.

  12. Anisotropic hydrogen diffusion in α-Zr and Zircaloy predicted by accelerated kinetic Monte Carlo simulations

    PubMed Central

    Zhang, Yongfeng; Jiang, Chao; Bai, Xianming

    2017-01-01

    This report presents an accelerated kinetic Monte Carlo (KMC) method to compute the diffusivity of hydrogen in hcp metals and alloys, considering both thermally activated hopping and quantum tunneling. The acceleration is achieved by replacing regular KMC jumps in trapping energy basins formed by neighboring tetrahedral interstitial sites, with analytical solutions for basin exiting time and probability. Parameterized by density functional theory (DFT) calculations, the accelerated KMC method is shown to be capable of efficiently calculating hydrogen diffusivity in α-Zr and Zircaloy, without altering the kinetics of long-range diffusion. Above room temperature, hydrogen diffusion in α-Zr and Zircaloy is dominated by thermal hopping, with negligible contribution from quantum tunneling. The diffusivity predicted by this DFT + KMC approach agrees well with that from previous independent experiments and theories, without using any data fitting. The diffusivity along is found to be slightly higher than that along , with the anisotropy saturated at about 1.20 at high temperatures, resolving contradictory results in previous experiments. Demonstrated using hydrogen diffusion in α-Zr, the same method can be extended for on-lattice diffusion in hcp metals, or systems with similar trapping basins. PMID:28106154

  13. Anisotropic hydrogen diffusion in α-Zr and Zircaloy predicted by accelerated kinetic Monte Carlo simulations

    DOE PAGES

    Zhang, Yongfeng; Jiang, Chao; Bai, Xianming

    2017-01-20

    Here, this report presents an accelerated kinetic Monte Carlo (KMC) method to compute the diffusivity of hydrogen in hcp metals and alloys, considering both thermally activated hopping and quantum tunneling. The acceleration is achieved by replacing regular KMC jumps in trapping energy basins formed by neighboring tetrahedral interstitial sites, with analytical solutions for basin exiting time and probability. Parameterized by density functional theory (DFT) calculations, the accelerated KMC method is shown to be capable of efficiently calculating hydrogen diffusivity in α-Zr and Zircaloy, without altering the kinetics of long-range diffusion. Above room temperature, hydrogen diffusion in α-Zr and Zircaloy ismore » dominated by thermal hopping, with negligible contribution from quantum tunneling. The diffusivity predicted by this DFT + KMC approach agrees well with that from previous independent experiments and theories, without using any data fitting. The diffusivity along < c > is found to be slightly higher than that along < a >, with the anisotropy saturated at about 1.20 at high temperatures, resolving contradictory results in previous experiments. Demonstrated using hydrogen diffusion in α-Zr, the same method can be extended for on-lattice diffusion in hcp metals, or systems with similar trapping basins.« less

  14. Anisotropic hydrogen diffusion in α-Zr and Zircaloy predicted by accelerated kinetic Monte Carlo simulations.

    PubMed

    Zhang, Yongfeng; Jiang, Chao; Bai, Xianming

    2017-01-20

    This report presents an accelerated kinetic Monte Carlo (KMC) method to compute the diffusivity of hydrogen in hcp metals and alloys, considering both thermally activated hopping and quantum tunneling. The acceleration is achieved by replacing regular KMC jumps in trapping energy basins formed by neighboring tetrahedral interstitial sites, with analytical solutions for basin exiting time and probability. Parameterized by density functional theory (DFT) calculations, the accelerated KMC method is shown to be capable of efficiently calculating hydrogen diffusivity in α-Zr and Zircaloy, without altering the kinetics of long-range diffusion. Above room temperature, hydrogen diffusion in α-Zr and Zircaloy is dominated by thermal hopping, with negligible contribution from quantum tunneling. The diffusivity predicted by this DFT + KMC approach agrees well with that from previous independent experiments and theories, without using any data fitting. The diffusivity along is found to be slightly higher than that along , with the anisotropy saturated at about 1.20 at high temperatures, resolving contradictory results in previous experiments. Demonstrated using hydrogen diffusion in α-Zr, the same method can be extended for on-lattice diffusion in hcp metals, or systems with similar trapping basins.

  15. Kinetic limitations of the Mg2Si system for reversible hydrogen storage

    NASA Astrophysics Data System (ADS)

    Kelly, Stephen T.; Van Atta, Sky L.; Vajo, John J.; Olson, Gregory L.; Clemens, B. M.

    2009-05-01

    Despite the promising thermodynamics and storage capacities of many destabilized metal hydride hydrogen storage material systems, they are often kinetically limited from achieving practical and reversible behavior. Such is the case with the Mg2Si system. We investigated the kinetic mechanisms responsible for limiting the reversibility of the MgH2+Si system using thin films as a controlled research platform. We observed that the reaction \\mathrm {MgH}_2+\\frac {1}{2}\\mathrm {Si} \\Leftrightarrow \\frac {1}{2}\\mathrm {Mg}_2\\mathrm {Si}+\\mathrm {H}_2 is limited by the mass transport of Mg and Si into separate phases. Hydrogen readily diffuses through the Mg2Si material and nucleating MgH2 phase growth does not result in reaction completion. By depositing and characterizing multilayer films of Mg2Si and Mg with varying Mg2Si layer thicknesses, we conclude that the hydrogenation reaction consumes no more than 1 nm of Mg2Si, making this system impractical for reversible hydrogen storage.

  16. Reduced kinetic mechanism of ignition for nonpremixed hydrogen/air in a supersonic mixing layer

    SciTech Connect

    Ju, Y.; Niioka, T. . Inst. of Fluid Science)

    1994-11-01

    Transient ignition processes in a two-dimensional spatially evolving supersonic mixing layer consisting of a parallel nonpremixed airstream and a hydrogen stream both with temperatures higher than 1,000 K were investigated numerically by using the full chemistry and its reduced chemistry. A phenomenon different from that examined in previous studies, in which ignition of hydrogen/oxygen mixtures was considered, was found in the nonpremixed case examined here. It was shown that the concentration of O was greater than that of OH before ignition, but became smaller with the development of ignition process. Fourteen important reactions for ignition were obtained and verified using sensitivity analyses of ignition delay time and radical concentrations. Several different four-step and three-step reduced kinetic mechanisms were then deduced by introducing the steady-state approximation to different species. Comparison of these reduced kinetic mechanisms with the full chemistry showed that the steady-state approximation of O used in previous studies caused serious errors in the prediction of ignition delay time in supersonic flow, in which nonpremixed character is predominant and the transport phenomenon is important. Ignition locations predicted with the proper four-step and three-step reduced kinetic mechanisms were within 5% and 20% of those predicted with the full chemistry. Finally, these two reduced mechanisms were used to evaluate the effect of viscous dissipation on ignition in the supersonic shear layer. Good agreements between the results of the present reduced kinetic mechanisms and those of the full chemistry were obtained.

  17. Kinetic measurement and prediction of the hydrogen outgassing from the polycrystalline LiH/LiOH system

    SciTech Connect

    Dinh, L N; Grant, D M; Schildbach, M A; Smith, R A; Leckey, J H; Siekhaus, W J; Balazs, B; McLean II, W

    2005-03-09

    In this report, we present the use of temperature programmed reaction/decomposition (TPR) in the isoconversion mode to measure outgassing kinetics and to make kinetic prediction concerning hydrogen release from the polycrystalline LiH/LiOH system in the absence of any external H{sub 2}O source.

  18. Fundamental Kinetics of Supercritical Coal Liquefaction: Effect of Catalysts and Hydrogen-Donor Solvents

    SciTech Connect

    McCoy, Ben J; Madras, Girodhar; Smith, J M; Kodera, Yoichi

    1997-04-16

    This is the quarterly report on our recent progress toward the overall objective to understand the supercritical fluid extraction of hydrocarbons from coal. Our strategy is to simulate coal as a high molecular-weight polymeric material by studying the degradation of polymers under various conditions. The hypothesis we are testing is that degradation of such macromolecules is applicable to the decomposition (depolymerization) of the coal network. Polymer degradation and coal liquefaction are influenced strongly by the solvent in the reaction. This motivated our investigation of the effect of hydrogen donor solvents on polymer degradation. In particular, we obtained new experimental data to show how a hydrogen donor, 6-hydroxy tetralin, influences the degradation rate of polystyrene. We also developed a detailed radical mechanism for hydrogen donation based on the Rice-Herzfeld chain reaction concept with the elementary steps of initiation, depropagation, hydrogen abstraction, and termination. Expressions for the degradation rate parameters were obtained by applying continuous distribution kinetics to the MWD of the reacting polymer. The theory explains the different influences of the hydrogen donor solvent on the degradation rate coefficients for different polymers. Though developed for the degradation of polymers, the mechanism and the theory are potentially applicable for chain scission and addition reactions among distributions of paraffins, olefins, and radicals of all chain lengths. The concepts can, in principle, be extended to examine the effect of hydrogen donors on coal liquefaction and on the complex mixture of liquefaction compounds. Based on this work, a research paper titled "Effect of Hydrogen Donors on Polymer Degradation", has been submitted for publication. Our research paper entitled, "Molecular weight effect on the dynamics of polystyrene degradation", has been accepted for publication by the journal, Industrial and Engineering Chemistry Research.

  19. Isosteric heat of hydrogen adsorption on MOFs: comparison between adsorption calorimetry, sorption isosteric method, and analytical models

    NASA Astrophysics Data System (ADS)

    Kloutse, A. F.; Zacharia, R.; Cossement, D.; Chahine, R.; Balderas-Xicohténcatl, R.; Oh, H.; Streppel, B.; Schlichtenmayer, M.; Hirscher, M.

    2015-12-01

    Isosteric heat of adsorption is an important parameter required to describe the thermal performance of adsorptive storage systems. It is most frequently calculated from adsorption isotherms measured over wide ranges of pressure and temperature, using the so-called adsorption isosteric method. Direct quantitative estimation of isosteric heats on the other hand is possible using the coupled calorimetric-volumetric method, which involves simultaneous measurement of heat and adsorption. In this work, we compare the isosteric heats of hydrogen adsorption on microporous materials measured by both methods. Furthermore, the experimental data are compared with the isosteric heats obtained using the modified Dubinin-Astakhov, Tóth, and Unilan adsorption analytical models to establish the reliability and limitations of simpler methods and assumptions. To this end, we measure the hydrogen isosteric heats on five prototypical metal-organic frameworks: MOF-5, Cu-BTC, Fe-BTC, MIL-53, and MOF-177 using both experimental methods. For all MOFs, we find a very good agreement between the isosteric heats measured using the calorimetric and isosteric methods throughout the range of loading studied. Models' prediction on the other hand deviates from both experiments depending on the MOF studied and the range of loading. Under low-loadings of less than 5 mol kg-1, the isosteric heat of hydrogen adsorption decreases in the order Cu-BTC > MIL-53 > MOF-5 > Fe-BTC > MOF-177. The order of isosteric heats is coherent with the strength of hydrogen interaction revealed from previous thermal desorption spectroscopy measurements.

  20. Gas cleaning and hydrogen sulfide removal for COREX coal gas by sorption enhanced catalytic oxidation over recyclable activated carbon desulfurizer.

    PubMed

    Sun, Tonghua; Shen, Yafei; Jia, Jinping

    2014-02-18

    This paper proposes a novel self-developed JTS-01 desulfurizer and JZC-80 alkaline adsorbent for H2S removal and gas cleaning of the COREX coal gas in small-scale and commercial desulfurizing devices. JTS-01 desulfurizer was loaded with metal oxide (i.e., ferric oxides) catalysts on the surface of activated carbons (AC), and the catalyst capacity was improved dramatically by means of ultrasonically assisted impregnation. Consequently, the sulfur saturation capacity and sulfur capacity breakthrough increased by 30.3% and 27.9%, respectively. The whole desulfurizing process combined selective adsorption with catalytic oxidation. Moreover, JZC-80 adsorbent can effectively remove impurities such as HCl, HF, HCN, and ash in the COREX coal gas, stabilizing the system pressure drop. The JTS-01 desulfurizer and JZC-80 adsorbent have been successfully applied for the COREX coal gas cleaning in the commercial plant at Baosteel, Shanghai. The sulfur capacity of JTS-01 desulfurizer can reach more than 50% in industrial applications. Compared with the conventional dry desulfurization process, the modified AC desulfurizers have more merit, especially in terms of the JTS-01 desulfurizer with higher sulfur capacity and low pressure drop. Thus, this sorption enhanced catalytic desulfurization has promising prospects for H2S removal and other gas cleaning.

  1. Capacitively coupled hydrogen plasmas sustained by tailored voltage waveforms: vibrational kinetics and negative ions control

    NASA Astrophysics Data System (ADS)

    Diomede, P.; Bruneau, B.; Longo, S.; Johnson, E.; Booth, J.-P.

    2017-07-01

    A comprehensive hybrid model of a hydrogen capacitively coupled plasma, including a detailed description of the molecular vibrational kinetics, has been applied to the study of the effect of tailored voltage waveforms (TVWs) on the production kinetics and transport of negative ions in these discharges. Two kinds of TVWs are considered, valleys-to-peaks and saw-tooth, with amplitude and slope asymmetry respectively. By tailoring the voltage waveform only, it is possible to exert substantial control over the peak density and position of negative ions inside the discharge volume. This control is particularly effective for saw-tooth waveforms. Insight into the mechanisms allowing this control is provided by an analysis of the model results. This reveals the roles of the vibrational distribution function and of the electron energy distribution and their correlations, as well as changes in the negative ion transport in the electric field when using different TVWs. Considering the chemical reactivity of H- ions, the possibility of a purely electrical control of the negative ion cloud in a reactor operating with a feedstock gas diluted by hydrogen may find interesting applications. This is the first study of vibrational kinetics in the context of TVWs in molecular gases.

  2. Dynamic model of hydrogen peroxide diffusion kinetics into the pulp cavity.

    PubMed

    Kwon, So Ran; Li, Yiming; Oyoyo, Udochukwu; Aprecio, Raydolfo M

    2012-07-01

    To measure the time course hydrogen peroxide penetration into the pulp cavity and evaluate short-term tooth color changes after bleaching. Twenty extracted human canines were sectioned, pulp tissue removed and the cavity enlarged. Teeth were painted with nail varnish to leave a 6-mm diameter circle on the buccal surface. Baseline color was measured spectrophotometrically. Teeth were randomized into a control group (n = 10) treated with 30 µl of glycerin base and a bleaching group (n = 10) exposed to 30 µl of 40% hydrogen peroxide for 1 hour. A linear low density polyethylene wrap was placed to prevent evaporation of the material. Acetate buffer was placed into the cavity and replenished every 10 minutes and placed into plastic tubes. Hydrogen peroxide amount was estimated spectrophotometrically using leukocrystal violet and horseradish peroxidase. Specimen color was remeasured immediately after bleaching, 1 hour, 1 day 1, 2 and 6 weeks postbleaching. Color change was measured per Commission Internationale de l'Eclairage methodology. Mann-Whitney procedure was used to assess baseline color measurements and total hydrogen peroxide penetration amount. Friedman's test was used to assess within group differences for color change and hydrogen peroxide penetration. There was significantly greater hydrogen peroxide penetration in the bleaching group (p < 0.05). Hydrogen peroxide penetration levels were constant throughout the 1-hour evaluation period in the bleaching group. The groups showed no difference at baseline with respect to any of L*a*b color measurements (p > 0.05). The postbleaching color measurement showed an increase of change in overall color (ΔE) and lightness (ΔL) up to 1 week followed by a gradual stabilization up to 6 weeks. This dynamic model provided information about the time course diffusion kinetics into the pulp cavity, demonstrating constant penetration of hydrogen peroxide into the pulp cavity during a 1-hour bleaching session. A prolonged

  3. A kinetics study on promising hydrogen storage properties of Mg-based thin films at room temperature.

    PubMed

    Qu, Jianglan; Liu, Yang; Xin, Gongbiao; Zheng, Jie; Li, Xingguo

    2014-04-21

    Pd-Mg-Pd thin films with variable thickness of Mg layers were prepared. Their optical and electrical changes in both gasochromic and chemochromic processes were compared to investigate the kinetics of Mg-based thin films at room temperature. Hydrogen absorption and desorption kinetics of Pd-Mg-Pd thin films were strongly dependent on the thickness of the Mg layer. Especially, when the thickness was lowered to 60 nm, a MgH2 layer formed immediately after exposure to H2 at room temperature, while a Mg layer was rapidly generated during hydrogen desorption in ambient air. By means of optical and electrical resistance measurements, we found that the diffusion process contributed significantly to hydrogen absorption and desorption. The remarkable absorption and desorption kinetics at room temperature reported here suggested promising applications in Mg-based energy-efficient devices and hydrogen sensors.

  4. Hydrogen in the upper mantle: Diffusion and effects on olivine transformation kinetics

    NASA Astrophysics Data System (ADS)

    Du Frane, Wyatt Louis

    Olivine is the most abundant mineral in Earth's upper mantle and can host significant amounts of hydrogen within its crystal structure. The presence of hydrogen affects many of olivine's physical properties such as electrical conductivity, viscosity, sound speed, transformation kinetics, phase equilibrium, and generally speaking the physics governing the interior of the earth. Understanding how hydrogen affects olivine is integral to understanding the Earth's interior. In this work olivine was experimentally hydrated and reacted at high pressure and temperature, to simulate upper mantle conditions. The physical properties measured in this work are used to understand seismic and magnetotelluric observations of the Earth. In the first project the effects of hydrogen on olivine transformation kinetics were examined. Growth rates for olivine's high pressure polymorphs, wadsleyite and ringwoodite, to determine if olivine can persist metastably inside cold subducting slabs in the mantle transition zone. Hydrogen significantly enhances the growth rates of olivine into ringwoodite. For olivine containing ˜75 (or higher) ppmw H2O At 18 GPa and 900°C the growth rate for ringwoodite rims is 1.0x10-9 m/s with activation enthalpy of 235 +/- 30 kJ/mol, which is too high for persistence of metastable olivine into the transition zone. Confirmation of the existence of metastable olivine by seismologists would constrain H2O contents at such locations to be < 75 ppmw H2O. In the second project deuterium-hydrogen interdiffusion coefficients were measured to help understand electrical conductivity, point defect populations, chemical transport, and defect dominated properties in olivine. For the fastest H-diffusing [100] orientation DD-H, [100] = 10(-5.04 +/- 1.43)*e(-137 +/- 31 kJ/mol)/(RT) m²/s at 2 GPa and 750--900°C. Comparison of DD-H to chemical diffusion coefficients allows us to calculate diffusivity of intrinsic defects. Olivine electrical conductivity is calculated from DD

  5. Biotransformation kinetics and sorption of cocaine and its metabolites and the factors influencing their estimation in wastewater.

    PubMed

    Plósz, Benedek Gy; Reid, Malcolm J; Borup, Morten; Langford, Katherine H; Thomas, Kevin V

    2013-05-01

    The quantitative analysis of human urinary metabolites as biomarkers in wastewater streams has been used to estimate the rates of illicit drug use in the wider community. The primary underlying assumption in such studies is that a sample of wastewater is equivalent to a cumulative sample of urine. Drug metabolism in humans is predominantly enzymatically mediated, but these processes are not exclusive to the human body, and are found to occur in the environment and the sewer network. Understanding what happens to drugs and their urinary metabolites in the sewer system between the point of excretion and sampling is particularly important since it is possible that in-sewer transformation may influence final biomarker concentration. The present study uses batch experiments to measure and assess the biotransformation processes of cocaine and its two major human metabolites, benzoylecgonine and ecgonine methyl ester. The activated sludge modelling framework for xenobiotic organic micro-pollutants (ASM-X) is used for model structure identification and calibration. Biotransformation was observed to follow pseudo first-order kinetics. The biodegradation kinetics of cocaine, benzoylecgonine and ecgonine methyl ester is not significantly affected by the availability of dissolved oxygen. Results obtained in this study show that omitting in-pipe biotransformation affects the accuracy of back-calculated cocaine use estimates. This varies markedly depending on the in-sewer hydraulic retention time, total biomass concentration and the relative concentration of each metabolite. However, back-calculated cocaine use estimates derived from wastewater concentrations of benzoylecgonine and ecgonine methyl ester do show very close agreement if ex-vivo biotransformation of these compounds is considered.

  6. Hydrogen absorption by Zr-1Nb alloy with TiNx film deposited by filtered cathodic vacuum arc

    NASA Astrophysics Data System (ADS)

    Kashkarov, E. B.; Nikitenkov, N. N.; Syrtanov, M. S.; Babihina, M. N.

    2016-02-01

    coating for Zr-2.5Nb alloy from hydrogenation. Dense TiNx films were prepared by filtered cathodic vacuum arc (CVA). Hydrogen absorption rate was calculated from the kinetic curves of hydrogen sorption at elevated temperature of the sample (T = 673 K) and pressure (P = 2 atm). Results revealed that TiNx films significantly reduced hydrogen absorption rate of Zr-2.5Nb.

  7. Theoretical mechanisms and kinetics of the hydrogen abstraction reaction of acetone by chlorine radical

    NASA Astrophysics Data System (ADS)

    Tiu, Gerald C.; Tao, Fu-Ming

    2006-09-01

    Reaction mechanisms and kinetics of the hydrogen abstraction of acetone by chlorine radical are studied by theoretical calculations. Density functional theory and ab initio methods are used to explore the reaction pathways. The hydrogen abstraction is found to be highly favored over the addition pathway, and the latter is insignificant in atmospheric conditions. Classical transition state theory with Eckart tunneling corrections is employed to obtain rate constants of the reaction from 210 K to 360 K. The reaction is characterized by a small barrier, and rate constants approximated by the expression k( T) = 6.44 × 10 -12 e (-672/ T) cm 3 molecule -1 s -1, which is in reasonable agreement with experiment.

  8. Computation of Kinetics for the Hydrogen/Oxygen System Using the Thermodynamic Method

    NASA Technical Reports Server (NTRS)

    Marek, C. John

    1996-01-01

    A new method for predicting chemical rate constants using thermodynamics has been applied to the hydrogen/oxygen system. This method is based on using the gradient of the Gibbs free energy and a single proportionality constant D to determine the kinetic rate constants. Using this method the rate constants for any gas phase reaction can be computed from thermodynamic properties. A modified reaction set for the H/O system is determined. A11 of the third body efficiencies M are taken to be unity. Good agreement was obtained between the thermodynamic method and the experimental shock tube data. In addition, the hydrogen bromide experimental data presented in previous work is recomputed with M's of unity.

  9. Decomposition Kinetics of Hydrogen Peroxide: Novel Lab Experiments Employing Computer Technology

    NASA Astrophysics Data System (ADS)

    Abramovitch, Dorota A.; Cunningham, Latrice K.; Litwer, Mitchell R.

    2003-07-01

    The quantitative catalytic decomposition of hydrogen peroxide has been used in many general chemistry experiments. The typical procedure involves measuring the volume of oxygen generated in the reaction under constant pressure using a displacement method and calculating the necessary data. A pressure sensor interfaced with a computer using LabWorks II software allowed us to modify this reaction and to measure the change in pressure, at constant volume. Since the software allows the collection and display of real-time data and the ability to import the data to Excel, we re-examined the kinetics of this reaction. Using different concentrations of hydrogen peroxide and catalase enzyme and graphing initial concentrations versus initial rates, we determined the rate and the order of the decomposition.

  10. Surface properties of the Ni-silica gel catalyst precursors for the vegetable oil hydrogenation process: N2 sorption and XPS studies

    NASA Astrophysics Data System (ADS)

    Nikolova, D.; Krstić, J.; Spasov, L.; Simeonov, D.; Lončarević, D.; Stefanov, Pl.; Jovanović, D.

    2011-12-01

    The effect of the type of the silica gel pore structure on the surface properties of the Ni-silica gel catalyst precursors for the vegetable oil hydrogenation process has been examined applying N2 sorption and X-ray photoelectron spectroscopy techniques. The nickel catalyst precursors with identical composition (SiO2/Ni = 1.0) has been synthesized by precipitation of Ni(NO3)2 · 6H2O solution with Na2CO3 solution on the three types of silica gel with different pore structures. It is shown that the usage of the silica gel supports with different texture as source of SiO2 causes different location of Ni-species into the support pores and on the external surface area. The XPS data confirm the formation of surface species with different strength of interaction and different dispersion. These surface characteristics of the precursors will predetermine the formation of the active nickel metallic phase as well as the mass transfer of the reactants and products to and from the catalytic sites.

  11. Hydrogen exchange kinetics of proteins in denaturants: a generalized two-process model.

    PubMed

    Qian, H; Chan, S I

    1999-02-19

    The recent progress in measurements on the amide hydrogen exchange (HX) in proteins under varying denaturing conditions, both at equilibrium and in transient relaxation, necessitates the development of a unifying theory which quantitatively relates the HX rates to the conformational energetics of the proteins. We present here a comprehensive kinetic model for the site-specific HX of proteins under varying solvent denaturing conditions based on the two-state protein folding model. The generalized two-process model considers both conformational fluctuations and residual protections, respectively, within the folded and unfolded states of a protein, as well as a global kinetic folding-unfolding transition between the two states. The global transition can be either rapid or slow, depending on the solvent condition for the protein. This novel model is applicable to the traditional equilibrium HX measurements in both EX2 and EX1 regimes, and also the recently introduced transient pulse-labeling HX experiments. A set of simple analytical equations is provided for quantitative interpretation of experimental data. The model emphasizes the use of full time-course of bi-exponential HX kinetics, rather than fitting time-course data to single rate constants, to obtain quantitative information about fluctuating conformers within the folded and unfolded states of proteins. This HX kinetic model naturally unfolds into a simple two-state and two-stage kinetic interpretation for protein folding. It suggests that the various observed intermediates of a protein can be interpreted as dominant isomers of either the folded or the unfolded state under different solvent conditions. This simple, minimalist's view of protein folding is consistent with various recent experimental observations on folding kinetics by HX.

  12. Hydrogen electrosorption into Pd-Cd nanostructures.

    PubMed

    Adams, Brian D; Ostrom, Cassandra K; Chen, Aicheng

    2010-05-18

    Hydrogen-absorbing materials are crucial for both the purification and storage of hydrogen. Pd and Pd-based alloys have been studied extensively for their use as both hydrogen dissociation catalysts and hydrogen selective membrane materials. It is known that incorporating metal atoms of different sizes into the Pd lattice has a major impact on the hydrogen absorption process. In this paper, hydrogen electrosorption into nanostructured Pd-Cd alloys has been studied for different compositions of Cd that varied from 0 to 15 at. %. The low cost of Cd makes it an attractive material to combine with Pd for hydrogen sorption. A combination of chronoamperometry and cyclic voltammetric experiments was used to determine the ratio of the H/(Pd + Cd) and the kinetics of hydrogen sorption into these Pd-Cd alloys at different potentials. It was found that the maximum H/(Pd + Cd) value was 0.66 for pure Pd, and this decreased with increasing the amount of Cd. Also, the alpha (solid solution) to beta phase (metal hydride) hydrogen transition was determined to be the slowest step in the absorption process and was practically eliminated when an optimum amount of Cd atoms was doped (i.e., Pd-Cd(15%)). With increasing the amount of Cd, more hydrogen was absorbed into the Pd-Cd nanostructures at the higher potentials (the alpha phase region). The faster kinetics, along with the decrease in the phase transition of hydrogen sorption into the Pd-Cd nanostructures when compared to pure Pd, makes the Pd-Cd nanostructures attractive for use as a hydrogen dissociation catalytic capping layer for other metal hydrides or as a hydrogen selective membrane.

  13. Microscopic observation of kinetic molecular sieving of hydrogen isotopes in a nanoporous material.

    PubMed

    Nguyen, T X; Jobic, H; Bhatia, S K

    2010-08-20

    We report quasielastic neutron scattering studies of H2-D2 diffusion in a carbon molecular sieve, demonstrating remarkable quantum effects, with the heavier isotope diffusing faster below 100 K, confirming our recent predictions. Our transition state theory and molecular dynamics calculations show that while it is critical for this effect to have narrow windows of size comparable to the de Broglie wavelength, high flux requires that the energy barrier be reduced through small cages. Such materials will enable novel processes for kinetic molecular sieving of hydrogen isotopes.

  14. Microscopic Observation of Kinetic Molecular Sieving of Hydrogen Isotopes in a Nanoporous Material

    NASA Astrophysics Data System (ADS)

    Nguyen, T. X.; Jobic, H.; Bhatia, S. K.

    2010-08-01

    We report quasielastic neutron scattering studies of H2-D2 diffusion in a carbon molecular sieve, demonstrating remarkable quantum effects, with the heavier isotope diffusing faster below 100 K, confirming our recent predictions. Our transition state theory and molecular dynamics calculations show that while it is critical for this effect to have narrow windows of size comparable to the de Broglie wavelength, high flux requires that the energy barrier be reduced through small cages. Such materials will enable novel processes for kinetic molecular sieving of hydrogen isotopes.

  15. Microscopic Observation of Kinetic Molecular Sieving of Hydrogen Isotopes in a Nanoporous Material

    SciTech Connect

    Nguyen, T. X.; Bhatia, S. K.; Jobic, H.

    2010-08-20

    We report quasielastic neutron scattering studies of H{sub 2}-D{sub 2} diffusion in a carbon molecular sieve, demonstrating remarkable quantum effects, with the heavier isotope diffusing faster below 100 K, confirming our recent predictions. Our transition state theory and molecular dynamics calculations show that while it is critical for this effect to have narrow windows of size comparable to the de Broglie wavelength, high flux requires that the energy barrier be reduced through small cages. Such materials will enable novel processes for kinetic molecular sieving of hydrogen isotopes.

  16. An Experimental and Chemical Kinetics Study of the Combustion of Syngas and High Hydrogen Content Fuels

    SciTech Connect

    Santoro, Robers; Dryer, Frederick; Ju, Yiguang

    2013-09-30

    An integrated and collaborative effort involving experiments and complementary chemical kinetic modeling investigated the effects of significant concentrations of water and CO2 and minor contaminant species (methane [CH4], ethane [C2H6], NOX, etc.) on the ignition and combustion of HHC fuels. The research effort specifically addressed broadening the experimental data base for ignition delay, burning rate, and oxidation kinetics at high pressures, and further refinement of chemical kinetic models so as to develop compositional specifications related to the above major and minor species. The foundation for the chemical kinetic modeling was the well validated mechanism for hydrogen and carbon monoxide developed over the last 25 years by Professor Frederick Dryer and his co-workers at Princeton University. This research furthered advance the understanding needed to develop practical guidelines for realistic composition limits and operating characteristics for HHC fuels. A suite of experiments was utilized that that involved a high-pressure laminar flow reactor, a pressure-release type high-pressure combustion chamber and a high-pressure turbulent flow reactor.

  17. A review of catalyst-enhanced magnesium hydride as a hydrogen storage material

    NASA Astrophysics Data System (ADS)

    Webb, C. J.

    2015-09-01

    Magnesium hydride remains an attractive hydrogen storage material due to the high hydrogen capacity and low cost of production. A high activation energy and poor kinetics at practical temperatures for the pure material have driven research into different additives to improve the sorption properties. This review details the development of catalytic additives and their effect on the activation energy, kinetics and thermodynamic properties of magnesium hydride.

  18. Divergent kinetic and thermodynamic hydration of a porous Cu(II) coordination polymer with exclusive CO₂ sorption selectivity.

    PubMed

    Du, Miao; Li, Cheng-Peng; Chen, Min; Ge, Zhi-Wei; Wang, Xi; Wang, Lei; Liu, Chun-Sen

    2014-08-06

    Selective adsorption and separation of CO2 are of great importance for different target applications. Metal-organic frameworks (MOFs) represent a promising class of porous materials for this purpose. Here we present a unique MOF material, [Cu(tba)2]n (tba = 4-(1H-1,2,4-triazol-1-yl)benzoate), which shows high CO2 adsorption selectivity over CH4/H2/O2/Ar/N2 gases (with IAST selectivity of 41-68 at 273 K and 33-51 at 293 K). By using a critical point dryer, the CO2 molecules can be well sealed in the 1D channels of [Cu(tba)2]n to allow a single-crystal X-ray analysis, which reveals the presence of not only C(δ+)-H···O(δ-) bonds between the host framework and CO2 but also quadrupole-quadrupole (CO2(δ-)···(δ+)CO2) interactions between the CO2 molecules. Furthermore, [Cu(tba)2]n will suffer divergent kinetic and thermodynamic hydration processes to form its isostructural hydrate {[Cu(tba)2](H2O)}n and a mononuclear complex [Cu(tba)2(H2O)4] via single-crystal to single-crystal transformations.

  19. Carbon-coated Li3 N nanofibers for advanced hydrogen storage.

    PubMed

    Xia, Guanglin; Li, Dan; Chen, Xiaowei; Tan, Yingbin; Tang, Ziwei; Guo, Zaiping; Liu, Huakun; Liu, Zongwen; Yu, Xuebin

    2013-11-20

    3D porous carbon-coated Li3 N nanofibers are successfully fabricated via the electrospinning technique. The as-prepared nanofibers exhibit a highly improved hydrogen-sorption performance in terms of both thermodynamics and kinetics. More interestingly, a stable regeneration can be achieved due to the unique structure of the nanofibers, over 10 cycles of H2 sorption at a temperature as low as 250 °C.

  20. Carbonate effects and pH-dependence of uranium sorption onto bacteriogenic iron oxides: kinetic and equilibrium studies.

    PubMed

    Katsoyiannis, Ioannis A

    2007-01-02

    The removal of U(VI) from groundwaters by adsorption onto bacteriogenic iron oxides (BIOS) has been investigated under batch mode. The adsorbent dosage, the uranium concentration, the concentration of carbonate and the use of a real groundwater spiked with uranium comprised the examined parameters. In addition, the effect of pH was examined in two different water matrixes, i.e., in distilled water and in real groundwater. Equilibrium studies were carried out to determine the maximum adsorption capacity of BIOS and the data correlated well with the Langmuir and Freundlich models. The presence of carbonate affected adversely the adsorption of U(VI) onto BIOS. The maximum adsorption capacity of BIOS was 9.25 mg g(-1) at 0.1mM carbonate concentration and decreased to 6.93 mg g(-1) at 0.5mM carbonate concentration, whereas at carbonate concentration of 2mM practically no adsorption occurred. The data were further analyzed using the pseudo-second order kinetic equation, which fitted best the experimental results. The initial adsorption rate (h) was found to increase with decreasing the concentration of carbonate in all cases. When experiments were accomplished in the absence of carbonate, the pH values did not have an effect on the adsorption of U(VI). However, the extent of U(VI) adsorption was strongly pH-dependent when the experiments were carried out in the real groundwater. The maximum adsorption capacity increased sharply as the pH decreased and optimum removal was obtained in the pH range 3.2-4.0, thus bacteriogenic iron oxides can found application in the removal of U(VI) by adsorption from low pH or low carbonate waters.

  1. Model coupling intraparticle diffusion/sorption, nonlinear sorption, and biodegradation processes

    USGS Publications Warehouse

    Karapanagioti, Hrissi K.; Gossard, Chris M.; Strevett, Keith A.; Kolar, Randall L.; Sabatini, David A.

    2001-01-01

    Diffusion, sorption and biodegradation are key processes impacting the efficiency of natural attenuation. While each process has been studied individually, limited information exists on the kinetic coupling of these processes. In this paper, a model is presented that couples nonlinear and nonequilibrium sorption (intraparticle diffusion) with biodegradation kinetics. Initially, these processes are studied independently (i.e., intraparticle diffusion, nonlinear sorption and biodegradation), with appropriate parameters determined from these independent studies. Then, the coupled processes are studied, with an initial data set used to determine biodegradation constants that were subsequently used to successfully predict the behavior of a second data set. The validated model is then used to conduct a sensitivity analysis, which reveals conditions where biodegradation becomes desorption rate-limited. If the chemical is not pre-equilibrated with the soil prior to the onset of biodegradation, then fast sorption will reduce aqueous concentrations and thus biodegradation rates. Another sensitivity analysis demonstrates the importance of including nonlinear sorption in a coupled diffusion/sorption and biodegradation model. While predictions based on linear sorption isotherms agree well with solution concentrations, for the conditions evaluated this approach overestimates the percentage of contaminant biodegraded by as much as 50%. This research demonstrates that nonlinear sorption should be coupled with diffusion/sorption and biodegradation models in order to accurately predict bioremediation and natural attenuation processes. To our knowledge this study is unique in studying nonlinear sorption coupled with intraparticle diffusion and biodegradation kinetics with natural media.

  2. Kinetic and Thermodynamic Investigation of Hydrogen Release from Ethane 1,2-di-amineborane

    SciTech Connect

    Neiner, Doinita; Karkamkar, Abhijeet J.; Bowden, Mark; Choi, Young Joon; Luedtke, Avery T.; Holladay, Jamelyn D.; Fisher, Allison M.; Szymczak, Nathaniel; Autrey, Thomas

    2011-07-18

    The thermodynamics and kinetics of hydrogen (H2) release from ethane 1,2-di-amineborane (EDAB, BH3NH2CH2CH2NH2BH3) were measured using Calvet and differential scanning calorimetry (DSC), pressure-composition isotherms, and volumetric gas-burette experiments. The results presented here indicate that EDAB releases ~ 9 wt.% H2 at temperatures ranging from 100 °C to 200 °C in two moderately exothermic steps, approximately -10±1 kJ/mol H2 and -3.8±1 kJ/mol H2. Isothermal kinetic analysis shows that EDAB is more stable than ammonia borane (AB) at temperatures lower than 100°C; however, the rates of hydrogen release are faster for EDAB than for AB at temperatures higher than 120°C. In addition, no volatile impurities in the H2 released by EDAB were detected by mass spectrometry upon heating with 1°C/min to 200°C in a calorimeter.

  3. Kinetic study of the reactions between chloramine disinfectants and hydrogen peroxide: temperature dependence and reaction mechanism.

    PubMed

    McKay, Garrett; Sjelin, Brittney; Chagnon, Matthew; Ishida, Kenneth P; Mezyk, Stephen P

    2013-09-01

    The temperature-dependent kinetics for the reaction between hydrogen peroxide and chloramine water disinfectants (NH2Cl, NHCl2, and NCl3) have been determined using stopped flow-UV/Vis spectrophotometry. Rate constants for the mono- and dichloramine-peroxide reaction were on the order of 10(-2)M(-1)s(-1) and 10(-5)M(-1)s(-1), respectively. The reaction of trichloramine with peroxide was negligibly slow compared to its thermal and photolytically-induced decomposition. Arrhenius expressions of ln(kH2O2-NH2Cl)=(17.3±1.5)-(51500±3700)/RT and ln(kH2O2-NHCl2)=(18.2±1.9)-(75800±5100)/RT were obtained for the mono- and dichloramine peroxide reaction over the temperature ranges 11.4-37.9 and 35.0-55.0°C, respectively. Both monochloramine and hydrogen peroxide were first-order in the rate-limiting kinetic step and concomitant measurements made using a chloride ion selective electrode showed that the chloride was produced quantitatively. These data will aid water utilities in predicting chloramine concentrations (and thus disinfection potential) throughout the water distribution system.

  4. DOE Hydrogen Sorption Center of Excellence: Synthesis and Processing of Single-Walled Carbon Nanohorns for Hydrogen Storage and Catalyst Supports

    SciTech Connect

    David B. Geohegan; Hui Hu; Mina Yoon; Alex A. Puretzky; Christopher M. Rouleau; Norbert Thonnard; Gerd Duscher; Karren More

    2011-05-24

    The objective of the project was to exploit the unique morphology, tunable porosity and excellent metal supportability of single-walled carbon nanohorns (SWNHs) to optimize hydrogen uptake and binding energy through an understanding of metal-carbon interactions and nanoscale confinement. SWNHs provided a unique material to understand these effects because they are carbon nanomaterials which are synthesized from the 'bottom-up' with well-defined, sub-nm pores and consist of single-layer graphene, rolled up into closed, conical, horn-shaped units which form ball-shaped aggregates of {approx}100-nm diameter. SWNHs were synthesized without metal catalysts by the high-temperature vaporization of solid carbon, so they can be used to explore metal-free hydrogen storage. However, SWNHs can also be decorated with metal nanoparticles or coatings in post-processing treatments to understand how metals augment hydrogen storage. The project first explored how the synthesis and processing of SWNHs could be modified to tailor pore sizes to optimal size ranges. Nanohorns were rapidly synthesized at 20g/hr rates by high-power laser vaporization enabling studies such as neutron scattering with gram quantities. Diagnostics of the synthesis process including high-speed videography, fast pyrometry of the graphite target, and differential mobility analysis monitoring of particle size distributions were applied in this project to provide in situ process control of SWNH morphology, and to understand the conditions for different pore sizes. We conclude that the high-temperature carbon-vaporization process to synthesize SWNHs is scalable, and can be performed by electric arc or other similar techniques as economically as carbon can be vaporized. However, the laser vaporization approach was utilized in this project to permit the precise tuning of the synthesis process through adjustment of the laser pulse width and repetition rate. A result of this processing control in the project was to

  5. Understanding the role of vanadium in enhancing the low-temperature hydrogenation kinetics of an Mg thin film.

    PubMed

    Zheng, Shiyou; Li, Zhi-Peng; Bendersky, Leonid A

    2013-08-14

    Mg100-xVx (x = 0 to 15) thin films capped with Pd were prepared by electron beam codeposition and studied for their hydrogenation/dehydrogenation kinetics and cycling properties at 140 °C under hydrogenation pressures of 0.1 MPa. It has been found that the Mg100-xVx thin films show significantly higher reversible hydrogen-storage capacity and faster kinetics in comparison with a pure Mg thin film; for instance, the maximum hydrogen absorption (3.7% mass fraction hydrogen) can be obtained in the fifth cycle for Mg90V10 in less than 5 min. The addition of V clearly plays a favorable role in improving the reversible hydrogen-storage capacity of an Mg film; however, with increasing hydrogenation/dehydrogenation cycles the hydrogen-storage capacity gradually deteriorates. To explore the origin of the effect of V on the improved hydrogenation of an Mg thin film, in this work we focused on studying the structural variations of the Mg90V10 thin film before and after hydrogenation at different stages of cycling; the films were investigated by X-ray diffraction as well as scanning and transmission electron microscopy. We concluded that (1) early in the absorption/desorption cycling the as-deposited structure of percolating layers of nanocrystalline V throughout a Mg matrix is preserved; (2) the percolating V layers envelope fine Mg grains and act as (a) dispersers that isolate small Mg grains, (b) fast diffusers of hydrogen, and (c) hydrogen catalysts at the Mg/V interface to form MgH2; and (3) with progressive cycling, the continuous layers of V aggregate to spherical nanoparticles, which interrupts the continuity of fast hydrogen diffusion through V.

  6. Sorption of Pahs To Soil Minerals and Subsurface Soil

    NASA Astrophysics Data System (ADS)

    Mueller, S.; Totsche, K. U.; Koegel-Knabner, I.

    In subsurface soil horizons, the sorption of hydrophobic organic contaminants may primarily be controlled by the composition and the properties of the soil minerals. Therefore this study aimed to elucidate the sorption and the sorption kinetics of hydrophobic organic contaminants to different inorganic soil constituents and subsurface soil horizons. Batch sorption experiments are conducted with three poly- cyclic aromatic hydrocarbons (PAHS; phenanthrene, pyrene and benzo(a)pyrene), with the model minerals quartz sand, quartz sand coated with goethite and a quartz sand - mont- morillonite mixture, and with b and c horizons of different soil types developped in the temperate climate. Batch experiments show a considerable sorption of PAHS to all soil minerals and soil horizons except for the sorption of phenanthrene to quartz sand. The sorption process of PAHS to single minerals is rapid and completed after 4 hours of contact time. The sorption to subsurface soil horizons, however, is not in equilibrium after 120h of contact time and shows a considerable sorption kinetic. Sorption capacity is higher for clay minerals and iron oxides than for quartz sand which corresponds with a higher sorption capacity of soil horizons with a high clay content. Sorption isotherms of the soil minerals are best described by a nonlinear isotherm whereas the sorption isotherms of the subsurface soil horizons are more or less linear indicating different sorption mechanisms for mineral sorbents and soil horizons.

  7. COSOLVENT EFFECTS ON SORPTION ISOTHERM LINEARITY

    EPA Science Inventory

    Sorption-desorption hysteresis, slow desorption kinetics, and other nonideal phenomena have been attributed to the differing sorptive characteristics of the natural organic polymers associated with soils and sediments. In this study, aqueous and mixed solvent systems were used t...

  8. COSOLVENT EFFECTS ON SORPTION ISOTHERM LINEARITY

    EPA Science Inventory

    Sorption-desorption hysteresis, slow desorption kinetics, and other nonideal phenomena have been attributed to the differing sorptive characteristics of the natural organic polymers associated with soils and sediments. In this study, aqueous and mixed solvent systems were used t...

  9. A kinetic model for quantitative evaluation of the effect of hydrogen and osmolarity on hydrogen production by Caldicellulosiruptor saccharolyticus

    PubMed Central

    2011-01-01

    Background Caldicellulosiruptor saccharolyticus has attracted increased interest as an industrial hydrogen (H2) producer. The aim of the present study was to develop a kinetic growth model for this extreme thermophile. The model is based on Monod kinetics supplemented with the inhibitory effects of H2 and osmotic pressure, as well as the liquid-to-gas mass transfer of H2. Results Mathematical expressions were developed to enable the simulation of microbial growth, substrate consumption and product formation. The model parameters were determined by fitting them to experimental data. The derived model corresponded well with experimental data from batch fermentations in which the stripping rates and substrate concentrations were varied. The model was used to simulate the inhibition of growth by H2 and solute concentrations, giving a critical dissolved H2 concentration of 2.2 mmol/L and an osmolarity of 0.27 to 29 mol/L. The inhibition by H2, being a function of the dissolved H2 concentration, was demonstrated to be mainly dependent on H2 productivity and mass transfer rate. The latter can be improved by increasing the stripping rate, thereby allowing higher H2 productivity. The experimentally determined degree of oversaturation of dissolved H2 was 12 to 34 times the equilibrium concentration and was comparable to the values given by the model. Conclusions The derived model is the first mechanistically based model for fermentative H2 production and provides useful information to improve the understanding of the growth behavior of C. saccharolyticus. The model can be used to determine optimal operating conditions for H2 production regarding the substrate concentration and the stripping rate. PMID:21914204

  10. Polymer-induced surface modifications of Pd-based thin films leading to improved kinetics in hydrogen sensing and energy storage applications.

    PubMed

    Ngene, Peter; Westerwaal, Ruud J; Sachdeva, Sumit; Haije, Wim; de Smet, Louis C P M; Dam, Bernard

    2014-11-03

    The catalytic properties of Pd alloy thin films are enhanced by a thin sputtered PTFE coating, resulting in profound improvements in hydrogen adsorption and desorption in Pd-based and Pd-catalyzed hydrogen sensors and hydrogen storage materials. The remarkably enhanced catalytic performance is attributed to chemical modifications of the catalyst surface by the sputtered PTFE leading to a possible change in the binding strength of the intermediate species involved in the hydrogen sorption process. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Wang, Tao; Liu, Pan; Liao, Zhongquan; Liu, Shaohua; Zhuang, Xiaodong; Chen, Mingwei; Zschech, Ehrenfried; Feng, Xinliang

    2017-05-01

    Various platinum-free electrocatalysts have been explored for hydrogen evolution reaction in acidic solutions. However, in economical water-alkali electrolysers, sluggish water dissociation kinetics (Volmer step) on platinum-free electrocatalysts results in poor hydrogen-production activities. Here we report a MoNi4 electrocatalyst supported by MoO2 cuboids on nickel foam (MoNi4/MoO2@Ni), which is constructed by controlling the outward diffusion of nickel atoms on annealing precursor NiMoO4 cuboids on nickel foam. Experimental and theoretical results confirm that a rapid Tafel-step-decided hydrogen evolution proceeds on MoNi4 electrocatalyst. As a result, the MoNi4 electrocatalyst exhibits zero onset overpotential, an overpotential of 15 mV at 10 mA cm-2 and a low Tafel slope of 30 mV per decade in 1 M potassium hydroxide electrolyte, which are comparable to the results for platinum and superior to those for state-of-the-art platinum-free electrocatalysts. Benefiting from its scalable preparation and stability, the MoNi4 electrocatalyst is promising for practical water-alkali electrolysers.

  12. Kinetics of suprathermal hydrogen atom reactions with saturated hydrides in planetary and satellite atmospheres

    NASA Astrophysics Data System (ADS)

    Morton, Richard J.; Kaiser, Ralf I.

    2003-05-01

    The kinetics of saturated hydrides methane (CH 4), silane (SiH 4), germane (GeH 4), ammonia (NH 3), phosphine (PH 3), arsane (AsH 3), water (H 2O), and hydrogen sulfide (H 2S) in the low-temperature atmospheres of Jupiter, Saturn, Uranus, Neptune, Pluto, Titan, and Triton reacting with suprathermal hydrogen atoms were investigated computationally to extract suprathermal rate constants k( E) via an inverse Laplace transformation from experimentally available thermal rate constants k( T). Our data reveal that all suprathermal rate constants range up to 10 -10 cm3 s-1, whereas the thermal counterparts are as low as 8×10 -73 cm3 s-1. These data demonstrate explicitly a significantly enhanced reactivity of photolytically generated suprathermal hydrogen atoms in the low-temperature planetary and satellite atmospheres and suggest that this hitherto unaccounted reaction class should be included by the planetary modeling community into future photochemical networks of atmospheres of outer solar system planets and their moons.

  13. Hydrogen Attack kinetics of 2.25 Cr-1 Mo steel weld metals

    NASA Astrophysics Data System (ADS)

    Parthasarathy, T. A.; Lopez, H. F.; Shewmon, P. G.

    1985-06-01

    The kinetics of Hydrogen Attack (HA) of the base metals and the weld metals of two Q&T 2.25 Cr-1 Mo steel weldments made by different techniques (SMAW and SAW) were studied in the temperature range 460 to 590°C (860 to 1094 °F) and 10 to 23 MPa of hydrogen. A sensitive dilatometer used to measure the rate of HA showed that the weld metals suffered HA at significantly higher rates than the base metals. The SMAW weld metal was inferior to the SAW weld metal and swelled nearly an order of magnitude faster than the base metal. This behavior is due to a significantly higher bubble density, and a resulting higher contribution of power law creep of the matrix. The SAW behavior was intermediate between those of the base metals and the SMAW. For the same hydrogen pressure the operating limit of the SMAW weld would be roughly 100°C lower than that of the base metals, and that of the SAW roughly 50°C lower.

  14. Kinetic and thermodynamic studies on the disulfide-bond reducing potential of hydrogen sulfide.

    PubMed

    Vasas, Anita; Dóka, Éva; Fábián, István; Nagy, Péter

    2015-04-30

    The significance of persulfide species in hydrogen sulfide biology is increasingly recognized. However, the molecular mechanisms of their formation remain largely elusive. The obvious pathway of the reduction of biologically abundant disulfide moieties by sulfide was challenged on both thermodynamic and kinetic grounds. Using DTNB (5,5'-dithiobis-(2-nitrobenzoic acid), also known as Ellman's reagent) as a model disulfide we conducted a comprehensive kinetic study for its reaction with sulfide. The bimolecular reaction is relatively fast with a second-order rate constant of 889 ± 12 M(-1)s(-1) at pH = 7.4. pH dependence of the rate law revealed that the reaction proceeds via the bisulfide anion species with an initial nucleophilic thiol-disulfide exchange reaction to give 5-thio-2-nitrobenzoic acid (TNB) and TNB-persulfide with a pH independent second-order rate constant of 1090 ± 12 M(-1)s(-1). However, kinetic studies and stoichiometric analyses in a wide range of reactant ratios together with kinetic simulations revealed that it is a multistep process that proceeds via kinetically driven, practically irreversible reactions along the disulfide → persulfide → inorganic polysulfides axis. The kinetic model postulated here, which is fully consistent with the experimental data, suggests that the TNB-persulfide is further reduced by sulfide with a second-order rate constant in the range of 5 × 10(3) - 5 × 10(4) M(-1)s(-1) at pH 7.4 and eventually yields inorganic polysulfides and TNB. The reactions of cystine and GSSG with sulfide were found to be significantly slower and to occur via more complicated reaction schemes. (1)H NMR studies suggest that these reactions also generate Cys-persulfide and inorganic polysulfide species, but in contrast with DTNB, in consecutive equilibrium processes that are sensitive to changes in the reactant and product ratios. Collectively, our results demonstrate that the reaction of disulfides with sulfide is a highly system

  15. Effects of radiation on NO kinetics in turbulent hydrogen/air diffusion flames

    SciTech Connect

    Sivathanu, Y.R.; Gore, J.P.; Laurendeau, N.M.

    1997-07-01

    The authors describe a coupled radiation and NO kinetics calculation of turbulent hydrogen/air diffusion flame properties. Transport equations for mass, momentum, mixture fraction, enthalpy (sensible + chemical) including gas band radiation, and NO mass fraction are solved. NO kinetics is described by a one step thermal production mechanism. The local temperature is obtained by solving the enthalpy equation taking radiation loss from H{sub 2}O into consideration. Radiation/turbulence and chemical kinetics/turbulence interactions are treated using a clipped Gaussian probability density function (PDF) for the mixture fraction, and a delta PDF for the enthalpy. The source terms in the enthalpy and mass fraction of NO equations are treated using assumed PDF integration over the mixture fraction space. The results of the simulation are compared with existing measurements of the Emission Indices of NO (EINO) in turbulent H{sub 2}/air diffusion flames. The major conclusion of the paper is that coupled turbulence/radiation interactions should be taken into account while computing the EINO.

  16. An investigation of the effect of surface impurities on the adsorption kinetics of hydrogen chemisorbed onto iron

    NASA Technical Reports Server (NTRS)

    Shanabarger, Mickey R.

    1991-01-01

    The goal was to develop an understanding of heterogeneous kinetic processes for those molecular species which produce gaseous hydrogen degradation of the mechanical properties of metallic structural materials. Although hydrogen degradation of metallic materials is believed to result from dissolved protonic hydrogen, the heterogeneous hydrogen interface transport processes often dominate the kinetics of the degradation process. The initial step in the interface transport process is the dissociative chemisorption of the molecular species at the metal surface followed by hydrogen absorption into and transport through the bulk. Modern advanced aerospace applications often require the use of structural materials in high pressure hydrogen environments at temperatures which range from low cryogenic temperatures to very high temperatures (1300 K and greater). Materials proposed for these applications, such as the titanium aluminides, beta-titanium alloys, nickel- and cobalt-based superalloys, molybdenum-rhenium alloys, beryllium, and various beryllides, need to possess a high degree of immunity from hydrogen induced degradation of mechanical properties. In the present program, the interaction of hydrogen with the surfaces of alpha-2 (Ti3Al) titanium aluminide, gamma (TiAl) titanium aluminide, and beryllium were studied. The interaction of low pressure hydrogen with gamma titanium aluminide and beryllium was found to be relatively weak, in the sense that adsorption leads to a low surface concentration of dissociated hydrogen, i.e., the chemisorption process is reversible at room temperature (300 K) for gamma titanium aluminide and the sticking coefficient for chemisorption is extremely small for beryllium. Hydrogen was found to interact readily with alpha-2 titanium aluminide to form a stable surface hydride at 300 K. These results correlate well with other recent studies which show that the mechanical properties for alpha-2 titanium aluminide are readily degraded in

  17. Kinetic and isotherm studies of bisphenol A adsorption onto orange albedo(Citrus sinensis): Sorption mechanisms based on the main albedo components vitamin C, flavones glycosides and carotenoids.

    PubMed

    Kamgaing, Theophile; Doungmo, Giscard; Melataguia Tchieno, Francis Merlin; Gouoko Kouonang, Jimmy Julio; Mbadcam, Ketcha Joseph

    2017-07-03

    Orange albedo and its adsorption capacity towards bisphenol A (BPA) were studied. Adsorption experiments were conducted in batch mode at 25-55°C. Scanning electron microscopy (SEM), Energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) and Fourier transform infrared (FTIR) spectroscopy were used to characterise the biosorbent. The effects of various parameters including adsorption time, equilibrium pH, adsorbent dosage and initial adsorbate concentration were investigated. The optimum contact time and pH for the removal of BPA were 60 min and 2, respectively. It was found that the adsorption isotherms best matched the Freundlich model, the adsorption of BPA being multilayer and that of the albedo surface heterogeneous. From the kinetic studies, it was found that the removal of BPA best matched the pseudo-second order kinetic model. An adsorption mechanism based on the albedo surface molecules is proposed and gives a good account of π-π interactions and hydrogen bonding. Orange albedo, with a maximum BPA loading capacity of 82.36 mg g(-1) (significantly higher than that of most agricultural residues), is a good candidate for BPA adsorption in aqueous media.

  18. Kinetic study on the sorption of dissolved natural organic matter onto different aquifer materials: the effects of hydrophobicity and functional groups.

    PubMed

    Chi, Fung-Hwa; Amy, Gary L

    2004-06-15

    The subsurface sorption of Suwannee River fulvic acid (SRFA) and humic acid (SRHA) onto a synthetic aquifer material (iron-oxide-coated quartz) and two natural aquifer materials (Ringold sediment and Bemidji soils) was studied in both batch and column experiments. The hypothesis that hydrophobic effects followed by ligand exchange are the dominant mechanism contributing to the chemical sorption happening between dissolved natural organic matter (NOM) and the mineral surfaces is supported by observations of several phenomena: nonlinear isotherms, faster sorption rates versus slower desorption rates, phosphate competition, a solution pH increase during NOM sorption, and functional groups and aromaticity-related sorption. In addition, high-pressure size exclusion chromatography (HPSEC) and carboxylic acidity showed that lower molecular weight NOM components of SRHA are preferentially sorbed to iron oxide, a result in contrast to that for SRFA. Phosphate increased the desorption of sorbed NOM as well as soil organic matter. All of these trends support ligand exchange as the dominant reaction between NOM and the iron oxide surfaces; however, if the soil surface has been occupied by soil organic matter, then the sorption of NOM is more due to hydrophobic effect.

  19. Modeling of hydrogen production methods: Single particle model and kinetics assessment

    SciTech Connect

    Miller, R.S.; Bellan, J.

    1996-10-01

    The investigation carried out by the Jet Propulsion Laboratory (JPL) is devoted to the modeling of biomass pyrolysis reactors producing an oil vapor (tar) which is a precursor to hydrogen. This is an informal collaboration with NREL whereby JPL uses the experimentally-generated NREL data both as initial and boundary conditions for the calculations, and as a benchmark for model validation. The goal of this investigation is to find drivers of biomass fast-pyrolysis in the low temperature regime. The rationale is that experimental observations produce sparse discrete conditions for model validation, and that numerical simulations produced with a validated model are an economic way to find control parameters and an optimal operation regime, thereby circumventing costly changes in hardware and tests. During this first year of the investigation, a detailed mathematical model has been formulated for the temporal and spatial accurate modeling of solid-fluid reactions in biomass particles. These are porous particles for which volumetric reaction rate data is known a priori and both the porosity and the permeability of the particle are large enough to allow for continuous gas phase flow. The methodology has been applied to the pyrolysis of spherically symmetric biomass particles by considering previously published kinetics schemes for both cellulose and wood. The results show that models which neglect the thermal and species boundary layers exterior to the particle will generally over predict both the pyrolysis rates and experimentally obtainable tar yields. An evaluation of the simulation results through comparisons with experimental data indicates that while the cellulose kinetics is reasonably accurate, the wood pyrolysis kinetics is not accurate; particularly at high reactor temperatures. Current effort in collaboration with NREL is aimed at finding accurate wood kinetics.

  20. An investigation of the effect of surface impurities on the adsorption kinetics of hydrogen chemisorbed onto iron. Annual status report, 1 January-31 December 1993

    SciTech Connect

    Shanabarger, M.R.

    1993-01-01

    The goal of this program was to develop an understanding of heterogeneous kinetic processes for those molecular species which produce gaseous hydrogen degradation of the mechanical properties of metallic structural materials. Although hydrogen degradation of metallic materials is believed to result from dissolved protonic hydrogen, the heterogeneous hydrogen interface transport processes often dominate the kinetics of degradation. The initial step in the interface transport process is the dissociative chemisorption of the molecular species at the metal surface followed by hydrogen absorption into and transport through the bulk. The interaction of hydrogen with the surfaces of alpha-2(Ti3Al) titanium aluminide, gamma(TiAl) titanium aluminide, and beryllium were studied.

  1. Hybrid electrodynamics and kinetics simulation for electromagnetic wave propagation in weakly ionized hydrogen plasmas.

    PubMed

    Chen, Qiang; Chen, Bin

    2012-10-01

    In this paper, a hybrid electrodynamics and kinetics numerical model based on the finite-difference time-domain method and lattice Boltzmann method is presented for electromagnetic wave propagation in weakly ionized hydrogen plasmas. In this framework, the multicomponent Bhatnagar-Gross-Krook collision model considering both elastic and Coulomb collisions and the multicomponent force model based on the Guo model are introduced, which supply a hyperfine description on the interaction between electromagnetic wave and weakly ionized plasma. Cubic spline interpolation and mean filtering technique are separately introduced to solve the multiscalar problem and enhance the physical quantities, which are polluted by numerical noise. Several simulations have been implemented to validate our model. The numerical results are consistent with a simplified analytical model, which demonstrates that this model can obtain satisfying numerical solutions successfully.

  2. Dual Studies on a Hydrogen-Deuterium Exchange of Resorcinol and the Subsequent Kinetic Isotope Effect.

    PubMed

    Giles, Richard; Kim, Iris; Chao, Weyjuin Eric; Moore, Jennifer; Jung, Kyung Woon

    2014-08-12

    An efficient laboratory experiment has been developed for undergraduate students to conduct hydrogen-deuterium (H-D) exchange of resorcinol by electrophilic aromatic substitution using D2O and a catalytic amount of H2SO4. The resulting labeled product is characterized by (1)H NMR. Students also visualize a significant kinetic isotope effect (kH/kD ≈ 3 to 4) by adding iodine tincture to solutions of unlabeled resorcinol and the H-D exchange product. This method is highly adaptable to fit a target audience and has been successfully implemented in a pedagogical capacity with second-year introductory organic chemistry students as part of their laboratory curriculum. It was also adapted for students at the advanced high school level.

  3. Kinetics of 1,5-hydrogen migration in alkyl radical reaction class.

    PubMed

    Ratkiewicz, Artur; Bankiewicz, Barbara

    2012-01-12

    Kinetics of the 1,5-intramolecular hydrogen migration in the alkyl radicals reaction class has been studied using the reaction class transition state theory combined with the linear energy relationship (LER) and the barrier height grouping (BHG) approach. The high pressure limits of the rate constants for the reference reaction of 1-pentyl → 1-pentyl, calculated by the Canonical Variational Transition State Theory (CVT) with the Small Curvature Tunneling (SCT), are taken from the literature. Direct comparison with available experimental data indicates that the RC-TST/LER, where only reaction energy is needed, can predict rate constants for any reaction in this reaction class with excellent accuracy. Specifically for this reaction class, the RC-TST/LER method has less than 65% systematic errors in the predicted rate constants when compared to explicit rate calculations.

  4. Theoretical study of the thermodynamics and kinetics of hydrogen abstractions from hydrocarbons.

    PubMed

    Vandeputte, Aäron G; Sabbe, Maarten K; Reyniers, Marie-Françoise; Van Speybroeck, Veronique; Waroquier, Michel; Marin, Guy B

    2007-11-22

    Thermochemical and kinetic data were calculated at four cost-effective levels of theory for a set consisting of five hydrogen abstraction reactions between hydrocarbons for which experimental data are available. The selection of a reliable, yet cost-effective method to study this type of reactions for a broad range of applications was done on the basis of comparison with experimental data or with results obtained from computationally demanding high level of theory calculations. For this benchmark study two composite methods (CBS-QB3 and G3B3) and two density functional theory (DFT) methods, MPW1PW91/6-311G(2d,d,p) and BMK/6-311G(2d,d,p), were selected. All four methods succeeded well in describing the thermochemical properties of the five studied hydrogen abstraction reactions. High-level Weizmann-1 (W1) calculations indicated that CBS-QB3 succeeds in predicting the most accurate reaction barrier for the hydrogen abstraction of methane by methyl but tends to underestimate the reaction barriers for reactions where spin contamination is observed in the transition state. Experimental rate coefficients were most accurately predicted with CBS-QB3. Therefore, CBS-QB3 was selected to investigate the influence of both the 1D hindered internal rotor treatment about the forming bond (1D-HR) and tunneling on the rate coefficients for a set of 21 hydrogen abstraction reactions. Three zero curvature tunneling (ZCT) methods were evaluated (Wigner, Skodje & Truhlar, Eckart). As the computationally more demanding centrifugal dominant small curvature semiclassical (CD-SCS) tunneling method did not yield significantly better agreement with experiment compared to the ZCT methods, CD-SCS tunneling contributions were only assessed for the hydrogen abstractions by methyl from methane and ethane. The best agreement with experimental rate coefficients was found when Eckart tunneling and 1D-HR corrections were applied. A mean deviation of a factor 6 on the rate coefficients is found for

  5. On the mean kinetic energy of the proton in strong hydrogen bonded systems

    SciTech Connect

    Finkelstein, Y.; Moreh, R.; Shang, S. L.; Wang, Y.; Liu, Z. K.; Shchur, Ya.

    2016-02-07

    The mean atomic kinetic energies of the proton, Ke(H), and of the deuteron, Ke(D), were calculated in moderate and strongly hydrogen bonded (HB) systems, such as the ferro-electric crystals of the KDP type (XH{sub 2}PO{sub 4}, X = K, Cs, Rb, Tl), the DKDP (XD{sub 2}PO{sub 4}, X = K, Cs, Rb) type, and the X{sub 3}H(SO{sub 4}){sub 2} superprotonic conductors (X = K, Rb). All calculations utilized the simulated partial phonon density of states, deduced from density functional theory based first-principle calculations and from empirical lattice dynamics simulations in which the Coulomb, short range, covalent, and van der Waals interactions were accounted for. The presently calculated Ke(H) values for the two systems were found to be in excellent agreement with published values obtained by deep inelastic neutron scattering measurements carried out using the VESUVIO instrument of the Rutherford Laboratory, UK. The Ke(H) values of the M{sub 3}H(SO{sub 4}){sub 2} compounds, in which the hydrogen bonds are centro-symmetric, are much lower than those of the KDP type crystals, in direct consistency with the oxygen-oxygen distance R{sub OO}, being a measure of the HB strength.

  6. Inhibition of tafel kinetics for electrolytic hydrogen evolution on isolated micron scale electrocatalysts on semiconductor interfaces

    DOE PAGES

    Coridan, Robert H.; Schichtl, Zebulon G.; Sun, Tao; ...

    2016-08-30

    Semiconductor-liquid junctions are ubiquitous in photoelectrochemical approaches for solar-to-fuels energy conversion. Electrocatalysts are added to the interface to improve catalytic efficiency, but they can also impair the photovoltage-generating energetics of the electrode without appropriate microscopic organization of catalytically active area on the surface. This balance is more complicated when gas products are evolved, like hydrogen on water splitting electrodes. Discrete catalysts can be blocked by the gas liquid-solid boundary of a bubble stuck to the surface. Here, we study the kinetics of hydrogen evolution on semiconductor electrodes fabricated with an isolated, micronscale platinum electrocatalyst pad. Movies of in operando bubblemore » evolution were recorded with synchrotron-based high-speed x-ray phase-contrast imaging in a compatible electrochemical cell. The self-limited growth of a bubble residing on the isolated electrocatalyst was measured by tracking the evolution of the gas-liquid boundary through the sequence of images in the movie. As a result, the effect of pad size on the catalytic currents and the issues with reactant transport can be inferred from these dynamics.« less

  7. Inhibition of tafel kinetics for electrolytic hydrogen evolution on isolated micron scale electrocatalysts on semiconductor interfaces

    SciTech Connect

    Coridan, Robert H.; Schichtl, Zebulon G.; Sun, Tao; Fezzaa, Kamel

    2016-08-30

    Semiconductor-liquid junctions are ubiquitous in photoelectrochemical approaches for solar-to-fuels energy conversion. Electrocatalysts are added to the interface to improve catalytic efficiency, but they can also impair the photovoltage-generating energetics of the electrode without appropriate microscopic organization of catalytically active area on the surface. This balance is more complicated when gas products are evolved, like hydrogen on water splitting electrodes. Discrete catalysts can be blocked by the gas liquid-solid boundary of a bubble stuck to the surface. Here, we study the kinetics of hydrogen evolution on semiconductor electrodes fabricated with an isolated, micronscale platinum electrocatalyst pad. Movies of in operando bubble evolution were recorded with synchrotron-based high-speed x-ray phase-contrast imaging in a compatible electrochemical cell. The self-limited growth of a bubble residing on the isolated electrocatalyst was measured by tracking the evolution of the gas-liquid boundary through the sequence of images in the movie. As a result, the effect of pad size on the catalytic currents and the issues with reactant transport can be inferred from these dynamics.

  8. Fundamental Kinetics of Supercritical Coal Liquefaction: Effect of Catalysts and Hydrogen-Donor Solvents.

    SciTech Connect

    McCoy, B.J.; Smith, J.M.

    1997-07-21

    Most research on polymer degradation is for single polymers, even though the thermal decomposition of polymer mixtures is of interest both practically and theoretically. Polymer degradation rates depend on the mixture type, and adding a polymer can increase, decrease, or leave unchanged the degradation rate of the first polymer. We show how distribution-kinetics theory, based on molecular-weight distributions (MWDs), provides expressions for degradation rates of binary polymer mixtures. The approach accounts for initiation, termination, hydrogen abstraction, and radical chain scission in the governing equations for MWDS. Molecular-weight moments yield expressions for molar and mass concentrations and rate coefficients for combinations of random and chain-end scission. Experimental data show the concentration effect of poly((x-methyl styrene)) (PAMS) on the degradation of polystyrene dissolved in mineral oil at 275 {degrees}C in a batch reactor. Samples analyzed by gel permeation chromatography yielded the time evolution of the MD. The results indicated that, owing to the interaction of mixed radicals with polymer by hydrogen abstraction, polystyrene degradation rate decreases with increasing PAMS concentration.

  9. Simulating the Heliosphere with Kinetic Hydrogen and Dynamic MHD Source Terms

    SciTech Connect

    Heerikhuisen, Jacob; Pogorelov, Nikolai; Zank, Gary

    2013-04-01

    The interaction between the ionized plasma of the solar wind (SW) emanating from the sun and the partially ionized plasma of the local interstellar medium (LISM) creates the heliosphere. The heliospheric interface is characterized by the tangential discontinuity known as the heliopause that separates the SW and LISM plasmas, and a termination shock on the SW side along with a possible bow shock on the LISM side. Neutral Hydrogen of interstellar origin plays a critical role in shaping the heliospheric interface, since it freely traverses the heliopause. Charge-exchange between H-atoms and plasma protons couples the ions and neutrals, but the mean free paths are large, resulting in non-equilibrated energetic ion and neutral components. In our model, source terms for the MHD equations are generated using a kinetic approach for hydrogen, and the key computational challenge is to resolve these sources with sufficient statistics. For steady-state simulations, statistics can accumulate over arbitrarily long time intervals. In this paper we discuss an approach for improving the statistics in time-dependent calculations, and present results from simulations of the heliosphere where the SW conditions at the inner boundary of the computation vary according to an idealized solar cycle.

  10. Simulating the Heliosphere with Kinetic Hydrogen and Dynamic MHD Source Terms

    DOE PAGES

    Heerikhuisen, Jacob; Pogorelov, Nikolai; Zank, Gary

    2013-04-01

    The interaction between the ionized plasma of the solar wind (SW) emanating from the sun and the partially ionized plasma of the local interstellar medium (LISM) creates the heliosphere. The heliospheric interface is characterized by the tangential discontinuity known as the heliopause that separates the SW and LISM plasmas, and a termination shock on the SW side along with a possible bow shock on the LISM side. Neutral Hydrogen of interstellar origin plays a critical role in shaping the heliospheric interface, since it freely traverses the heliopause. Charge-exchange between H-atoms and plasma protons couples the ions and neutrals, but themore » mean free paths are large, resulting in non-equilibrated energetic ion and neutral components. In our model, source terms for the MHD equations are generated using a kinetic approach for hydrogen, and the key computational challenge is to resolve these sources with sufficient statistics. For steady-state simulations, statistics can accumulate over arbitrarily long time intervals. In this paper we discuss an approach for improving the statistics in time-dependent calculations, and present results from simulations of the heliosphere where the SW conditions at the inner boundary of the computation vary according to an idealized solar cycle.« less

  11. Capacitively coupled radio-frequency hydrogen discharges: The role of kinetics

    SciTech Connect

    Marques, L.; Jolly, J.; Alves, L. L.

    2007-09-15

    This paper presents a systematic characterization of capacitively coupled radio-frequency hydrogen discharges, produced within a parallel plate cylindrical setup at different rf applied voltages (V{sub rf}=50-600 V), frequencies (f=13.56-40.68 MHz), and pressures (p=0.2-1 torr). A two-dimensional, time-dependent fluid model for charged particle transport is self-consistently solved coupled to a homogeneous kinetic model for hydrogen, including vibrationally excited molecular species and electronically excited atomic species. Numerical simulations are compared with experimental measurements of various plasma parameters. A good quantitative agreement is found between simulations and experiment for the coupled electrical power and the plasma potential. The model underestimates the values of the electron density, the self-bias potential, and the H(n=1) atom density with respect to measurements, but agrees with experiment when predicting that all these parameters increase with either V{sub rf}, f, or p. The dissociation degree is about 10{sup -3} for the work conditions considered. Simulations adopt a wall recombination probability for H atoms that was experimentally measured, thus accounting for surface modification with discharge operating conditions. Results show the key role played by the atomic wall recombination mechanism in plasma description.

  12. On the mean kinetic energy of the proton in strong hydrogen bonded systems

    NASA Astrophysics Data System (ADS)

    Finkelstein, Y.; Moreh, R.; Shang, S. L.; Shchur, Ya.; Wang, Y.; Liu, Z. K.

    2016-02-01

    The mean atomic kinetic energies of the proton, Ke(H), and of the deuteron, Ke(D), were calculated in moderate and strongly hydrogen bonded (HB) systems, such as the ferro-electric crystals of the KDP type (XH2PO4, X = K, Cs, Rb, Tl), the DKDP (XD2PO4, X = K, Cs, Rb) type, and the X3H(SO4)2 superprotonic conductors (X = K, Rb). All calculations utilized the simulated partial phonon density of states, deduced from density functional theory based first-principle calculations and from empirical lattice dynamics simulations in which the Coulomb, short range, covalent, and van der Waals interactions were accounted for. The presently calculated Ke(H) values for the two systems were found to be in excellent agreement with published values obtained by deep inelastic neutron scattering measurements carried out using the VESUVIO instrument of the Rutherford Laboratory, UK. The Ke(H) values of the M3H(SO4)2 compounds, in which the hydrogen bonds are centro-symmetric, are much lower than those of the KDP type crystals, in direct consistency with the oxygen-oxygen distance ROO, being a measure of the HB strength.

  13. Coal desulfurization in oxidative acid media using hydrogen peroxide and ozone: a kinetic and statistical approach

    SciTech Connect

    F.R. Carrillo-Pedroza; A. Davalos Sanchez; M. Soria-Aguilar; E.T. Pecina Trevino

    2009-07-15

    The removal of pyritic sulfur from a Mexican sub-bituminous coal in nitric, sulfuric, and hydrochloric acid solutions was investigated. The effect of the type and concentration of acid, in the presence of hydrogen peroxide and ozone as oxidants, in a temperature range of 20-60{sup o}C, was studied. The relevant factors in pyrite dissolution were determined by means of the statistical analysis of variance and optimized by the response surface method. Kinetic models were also evaluated, showing that the dissolution of pyritic sulfur follows the kinetic model of the shrinking core model, with diffusion through the solid product of the reaction as the controlling stage. The results of statistical analysis indicate that the use of ozone as an oxidant improves the pyrite dissolution because, at 0.25 M HNO{sub 3} or H{sub 2}SO{sub 4} at 20{sup o}C and 0.33 g/h O{sub 3}, the obtained dissolution is similar to that of 1 M H{sub 2}O{sub 2} and 1 M HNO{sub 3} or H{sub 2}SO{sub 4} at 40{sup o}C. 42 refs., 9 figs., 3 tabs.

  14. Compensation effect in the hydrogenation/dehydrogenation kinetics of metal hydrides.

    PubMed

    Andreasen, Anders; Vegge, Tejs; Pedersen, Allan S

    2005-03-03

    The possible existence of a compensation effect, i.e. concurrent changes in activation energy and prefactor, is investigated for the hydrogenation and dehydrogenation kinetics of metal hydrides, by analyzing a series of reported kinetic studies on Mg and LaNi(5) based hydrides. For these systems, we find a clear linear relation between apparent prefactors and apparent activation energies, as obtained from an Arrhenius analysis, indicating the existence of a compensation effect. Large changes in apparent activation energies in the case of Mg based hydrides are rationalized in terms of a dependency of observed apparent activation energy on the degree of surface oxidation, i.e., a physical effect. On the other hand, we find the large concurrent changes in apparent prefactors to be a direct result of the Arrhenius analysis. Thus, we find the observed compensation effect to be an artifact of the data analysis rather than a physical phenomenon. In the case of LaNi(5) based hydrides, observed scatter in reported apparent activation energies is less pronounced supporting the general experience that LaNi(5) is less sensitive toward surface contamination.

  15. Chemical kinetic analysis of hydrogen-air ignition and reaction times

    NASA Technical Reports Server (NTRS)

    Rogers, R. C.; Schexnayder, C. J., Jr.

    1981-01-01

    An anaytical study of hydrogen air kinetics was performed. Calculations were made over a range of pressure from 0.2 to 4.0 atm, temperatures from 850 to 2000 K, and mixture equivalence ratios from 0.2 to 2.0. The finite rate chemistry model included 60 reactions in 20 species of the H2-O2-N2 system. The calculations also included an assessment of how small amounts of the chemicals H2O, NOx, H2O2, and O3 in the initial mixture affect ignition and reaction times, and how the variation of the third body efficiency of H2O relative of N2 in certain key reactions may affect reaction time. The results indicate that for mixture equivalence ratios between 0.5 and 1.7, ignition times are nearly constant; however, the presence of H2O and NO can have significant effects on ignition times, depending on the mixture temperature. Reaction time is dominantly influenced by pressure but is nearly independent of initial temperature, equivalence ratio, and the addition of chemicals. Effects of kinetics on reaction at supersonic combustor conditions are discussed.

  16. Kinetic modeling of E-to-H mode transition in inductively coupled hydrogen plasmas

    SciTech Connect

    Nishida, K. Mochizuki, S.; Hatayama, A.; Mattei, S.; Lettry, J.

    2016-06-21

    Radio Frequency (RF) Inductively Coupled Plasmas (ICPs) are widely known for their two discharge modes, i.e., H-mode and E-mode, where the dynamics of the plasmas are completely different from each other. We have performed a kinetic simulation of a hydrogen plasma discharge in order to clarify the discharge mechanism and the E-to-H transition of the RF ICPs. The numerical simulation results, such as the time variations of spatial distribution of electron density and the power dissipated in the plasma, show the characteristic changes of the plasma dynamics due to E-to-H mode transition. Especially, the drastic change during the mode transition has been observed in the time evolution of the electron energy distribution function (EEDF). The EEDF deviates from a Maxwellian distribution before/after the transition and the deviation is more significant in the E-mode phase. These results indicate the importance of kinetic modeling for the physical understanding of E-to-H transition.

  17. Hydrogen Donor-Acceptor Fluctuations from Kinetic Isotope Effects: A Phenomenological Model

    PubMed Central

    Roston, Daniel; Cheatum, Christopher M.; Kohen, Amnon

    2012-01-01

    Kinetic isotope effects (KIEs) and their temperature dependence can probe the structural and dynamic nature of enzyme-catalyzed proton or hydride transfers. The molecular interpretation of their temperature dependence requires expensive and specialized QM/MM calculations to provide a quantitative molecular understanding. Currently available phenomenological models use a non-adiabatic assumption that is not appropriate for most hydride and proton-transfer reactions, while others require more parameters than the experimental data justify. Here we propose a phenomenological interpretation of KIEs based on a simple method to quantitatively link the size and temperature dependence of KIEs to a conformational distribution of the catalyzed reaction. The present model assumes adiabatic hydrogen tunneling, and by fitting experimental KIE data, the model yields a population distribution for fluctuations of the distance between donor and acceptor atoms. Fits to data from a variety of proton and hydride transfers catalyzed by enzymes and their mutants, as well as non-enzymatic reactions, reveal that steeply temperature-dependent KIEs indicate the presence of at least two distinct conformational populations, each with different kinetic behaviors. We present the results of these calculations for several published cases and discuss how the predictions of the calculations might be experimentally tested. The current analysis does not replace molecular quantum mechanics/molecular mechanics (QM/MM) investigations, but it provides a fast and accessible way to quantitatively interpret KIEs in the context of a Marcus-like model. PMID:22857146

  18. Kinetic Analysis of Competitive Electrocatalytic Pathways: New Insights into Hydrogen Production with Nickel Electrocatalysts

    SciTech Connect

    Wiedner, Eric S.; Brown, Houston J.; Helm, Monte L.

    2016-01-20

    The hydrogen production electrocatalyst Ni(PPh2NPh2)22+ (1) is capable of traversing multiple electrocatalytic pathways. When using dimethylformamidium, DMF(H)+, the mechanism of formation of H2 catalyzed by 1 changes from an ECEC to an EECC mechanism as the potential approaches the Ni(I/0) couple. Two recent electrochemical methods, current-potential analysis and foot-of-the-wave analysis (FOWA), were performed on 1 to measure the detailed chemical kinetics of the competing ECEC and EECC pathways. A sensitivity analysis was performed on the electrochemical methods using digital simulations to gain a better understanding of their strengths and limitations. Notably, chemical rate constants were significantly underestimated when not accounting for electron transfer kinetics, even when electron transfer was fast enough to afford a reversible non-catalytic wave. The EECC pathway of 1 was found to be faster than the ECEC pathway under all conditions studied. Using buffered DMF: DMF(H)+ mixtures led to an increase in the catalytic rate constant (kobs) of the EECC pathway, but kobs for the ECEC pathway did not change when using buffered acid. Further kinetic analysis of the ECEC path revealed that added base increases the rate of isomerization of the exo-protonated Ni(0) isomers to the catalytically active endo-isomers, but decreases the net rate of protonation of Ni(I). FOWA on 1 did not provide accurate rate constants due to incomplete reduction of the exo-protonated Ni(I) intermediate at the foot of the wave, but FOWA could be used to estimate the reduction potential of this previously undetected intermediate. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.

  19. Kinetics of microbial bromate reduction in a hydrogen-oxidizing, denitrifying biofilm reactor.

    PubMed

    Downing, Leon S; Nerenberg, Robert

    2007-10-15

    Bromate (BrO(3)(-)) is an oxidized contaminant produced from bromide (Br(-)) during ozonation and advanced oxidation of drinking water. Previous research shows that denitrifying bioreactors can reduce bromate to innocuous bromide. We studied a hydrogen-based, denitrifying membrane-biofilm reactor (MBfR) for bromate reduction, and report the first kinetics for a hydrogen-based bromate reduction process. A mixed-culture MBfR reduced up to 1,500 microg/L bromate to below 10 microg/L with a 50-min hydraulic residence time. Kinetics were determined using short-term tests on a completely mixed MBfR at steady state with an influent of 5 mg N/L nitrate plus 100 microg/L bromate. Short-term tests examined the impact of pH, nitrite, nitrate, and bromate on bromate reduction rates in the MBfR. Kinetic parameters for the process were estimated based on the short-term bromate tests. The q(max) for bromate reduction was 0.12 mg BrO(3)(-) x mg(x)(-1) x day(-1), and the K was 1.2 mg BrO(3)(-)/L. This q(max) is 2-3 times higher than reported for heterotrophic enrichments, and the K is the first reported in the literature. Nitrite and nitrate partially inhibited bromate reduction, with nitrite exerting a stronger inhibitory effect. Bromate was self-inhibitory at concentrations above 15 mg/L, but up to 50 mg/L of bromate had no inhibitory effect on denitrification. The optimum pH was approximately 7. We also examined the performance of an MBfR containing pure culture of the denitrifying bacterium Ralstonia eutropha. Under conditions similar to the mixed-culture tests, no bromate reduction was detected, showing that not all denitrifying bacteria are active in bromate reduction. Our results suggest the presence of specialized, dissimilatory bromate-reducing bacteria in the mixed-culture MBfR. Copyright 2007 Wiley Periodicals, Inc.

  20. Structural and kinetic studies of metal hydride hydrogen storage materials using thin film deposition and characterization techniques

    NASA Astrophysics Data System (ADS)

    Kelly, Stephen Thomas

    Hydrogen makes an attractive energy carrier for many reasons. It is an abundant chemical fuel that can be produced from a wide variety of sources and stored for very long periods of time. When used in a fuel cell, hydrogen emits only water at the point of use, making it very attractive for mobile applications such as in an automobile. Metal hydrides are promising candidates for on-board reversible hydrogen storage in mobile applications due to their very high volumetric storage capacities---in most cases exceeding even that of liquid hydrogen. The United States Department of Energy (DOE) has set fuel system targets for an automotive hydrogen storage system, but as of yet no single material meets all the requirements. In particular, slow reaction kinetics and/or inappropriate thermodynamics plague many metal hydride hydrogen storage materials. In order to engineer a practical material that meets the DOE targets, we need a detailed understanding of the kinetic and thermodynamic properties of these materials during the phase change. In this work I employed sputter deposited thin films as a platform to study materials with highly controlled chemistry, microstructure and catalyst placement using thin film characterization techniques such as in situ x-ray diffraction (XRD) and neutron reflectivity. I observed kinetic limitations in the destabilized Mg2Si system due to the slow diffusion of the host Mg and Si atoms while forming separate MgH2 and Si phases. Conversely, I observed that the presence of Al in the Mg/Al system inhibits hydrogen diffusion while the host Mg and Al atoms interdiffuse readily, allowing the material to fall into a kinetic and/or thermodynamic trap by forming intermetallic compounds such as Mg17Al 12. By using in situ XRD to analyze epitaxial Mg films grown on (001) oriented Al2O3 substrates I observed hydride growth consistent with a model of a planar hydride layer growing into an existing metal layer. Subsequent film cycling changes the hydrogen

  1. Behaviors and mechanism of acid dyes sorption onto diethylenetriamine-modified native and enzymatic hydrolysis starch.

    PubMed

    Wang, Zuohua; Xiang, Bo; Cheng, Rumei; Li, Yijiu

    2010-11-15

    In this paper, different starches were modified by diethylenetriamine. The native starch reacted with diethylenetriamine giving CAS, whereas the enzymatic hydrolysis starch was modified by diethylenetriamine producing CAES. Adsorption capacities of CAES for four acid dyes, namely, Acid orange 7 (AO7), Acid orange 10 (AO10), Acid green 25 (AG25) and Acid red 18 (AR18) have been determined to be 2.521, 1.242, 1.798 and 1.570 mmol g(-1), respectively. In all cases, CAES has exhibited higher sorption ability than CAS, and the increment for these dyes took the sequence of AO7 (0.944 mmol g(-1))>AO10 (0.592 mmol g(-1))>AR18 (0.411 mmol g(-1))>AG25 (0.047 mmol g(-1)). Sorption kinetics and isotherms analysis showed that these sorption processes were better fitted to pseudo-second-order equation and Langmuir equation. Chemical sorption mechanisms were confirmed by studying the effects of pH, ionic strength and hydrogen bonding. Thermodynamic parameters of these dyes onto CAES and CAS were also observed and it indicated that these sorption processes were exothermic and spontaneous in nature.

  2. METAL HYDRIDE HYDROGEN COMPRESSORS: A REVIEW

    SciTech Connect

    Bowman Jr, Robert C; Yartys, Dr. Volodymyr A.; Lototskyy, Dr. Michael V; Pollet, Dr. B.G.

    2014-01-01

    Metal hydride (MH) thermal sorption compression is an efficient and reliable method allowing a conversion of energy from heat into a compressed hydrogen gas. The most important component of such a thermal engine the metal hydride material itself should possess several material features in order to achieve an efficient performance in the hydrogen compression. Apart from the hydrogen storage characteristics important for every solid H storage material (e.g. gravimetric and volumetric efficiency of H storage, hydrogen sorption kinetics and effective thermal conductivity), the thermodynamics of the metal-hydrogen systems is of primary importance resulting in a temperature dependence of the absorption/desorption pressures). Several specific features should be optimized to govern the performance of the MH-compressors including synchronisation of the pressure plateaus for multi-stage compressors, reduction of slope of the isotherms and hysteresis, increase of cycling stability and life time, together with challenges in system design associated with volume expansion of the metal matrix during the hydrogenation. The present review summarises numerous papers and patent literature dealing with MH hydrogen compression technology. The review considers (a) fundamental aspects of materials development with a focus on structure and phase equilibria in the metal-hydrogen systems suitable for the hydrogen compression; and (b) applied aspects, including their consideration from the applied thermodynamic viewpoint, system design features and performances of the metal hydride compressors and major applications.

  3. Mechanisms and Kinetics of Boron Removal from Silicon by Humidified Hydrogen

    NASA Astrophysics Data System (ADS)

    Safarian, Jafar; Tang, Kai; Olsen, Jan Erik; Andersson, Stefan; Tranell, Gabriella; Hildal, Kjetil

    2016-04-01

    The removal of boron from silicon by top blowing of humidified hydrogen has been studied in the present work through experimental work, thermodynamic calculations, computational fluid dynamic modeling, and quantum chemistry calculations. The effect of process parameters; temperature, lance diameter, lance distance from the melt surface, gas flow rate, and crucible material on the kinetics of boron removal were studied. It has been shown that the rate of boron removal is decreased with increasing temperature due to the competitive reactions between silicon and oxygen as well as boron and oxygen, which can be confirmed with the increases of p SiO/ p HBO in the system. The rate of boron removal is increased with increasing the gas flow rate due mainly to the better supply and transport of the gas over the melt surface, as confirmed by the CFD modeling. Moreover, the rate of boron removal in alumina crucible is the highest followed by that in quartz and graphite crucibles, respectively. Faster B removal in quartz crucible than that in graphite crucible can be attributed to more oxygen dissolves in silicon melts. The fastest boron removal in alumina crucible is attributed to the additional boron gasification through aluminum borate (AlBO2) formation on the melt surface. Thermodynamic properties of the AlBO2 species have thus been revised by quantum chemistry calculations, which were more accurate to describe the formation of gaseous AlBO2 than those in the JANAF Thermochemical Tables. The main chemical reactions for boron gasification from silicon melts are proposed as In graphite, quartz and alumina crucible:quad \\underline{{B}} + \\underline{{H}} + \\underline{{O}} = {{ HBO}}( {{g}} ) {{In alumina crucible}}:\\underline{{Al}} + \\underline{{B}} + \\underline{{O}} = {{ AlBO}}2 ( {{g}} ) Based on the obtained results, it has been proposed that boron removal from silicon melt by humidified hydrogen is controlled both by the chemical reaction for boron gasification and

  4. Kinetics of uranium(VI) reduction by hydrogen sulfide in anoxic aqueous systems.

    PubMed

    Hua, Bin; Xu, Huifang; Terry, Jeff; Deng, Baolin

    2006-08-01

    Aqueous U(VI) reduction by hydrogen sulfide was investigated by batch experiments and speciation modeling; product analysis by transmission electron microscopy (TEM) was also performed. The molar ratio of U(VI) reduced to sulfide consumed, and the TEM result suggested that the reaction stoichiometry could be best represented by UO2(2+) + HS- = UO2+ S* + H+. At pH 6.89 and total carbonate concentration ([CO32-]T) of 4.0 mM, the reaction took place according to the following kinetics: -d[U(VI)]/dt = 0.0103[U(VI)][S2-]T0.54 where [U(VI)] is the concentration of hexavalent uranium, and [S2-]T is the total concentration of sulfide. The kinetics of U(VI) reduction was found to be largely controlled by [CO32-]T (examined from 0.0 to 30.0 mM) and pH (examined from 6.37 to 9.06). The reduction was almost completely inhibited with the following [CO32-]T and pH combinations: [(> or = 15.0 mM, pH 6.89); (> or = 4.0 mM, pH 8.01); and (> or = 2.0 mM, pH 9.06)]. By comparing the experimental results with the calculated speciation of U(VI), it was found that there was a strong correlation between the measured initial reaction rates and the calculated total concentrations of uranium-hydroxyl species; we, therefore, concluded that uranium-hydroxyl species were the ones being reduced by sulfide, not the dominant U-carbonate species present in many carbonate-containing systems.

  5. USING METHANOL-WATER SYSTEMS TO INVESTIGATE PHENANTHRENE SORPTION-DESORPTION ON SEDIMENT

    EPA Science Inventory

    Sorption isotherm nonlinearity, sorption-desorption hysteresis, slow desorption kinetics, and other nonideal phenomena have been attributed to the differing sorptive characteristics of the natural organic matter (NOM) polymers associated with soils and sediments. A conceptualizat...

  6. USING METHANOL-WATER SYSTEMS TO INVESTIGATE PHENANTHRENE SORPTION-DESORPTION ON SEDIMENT

    EPA Science Inventory

    Sorption isotherm nonlinearity, sorption-desorption hysteresis, slow desorption kinetics, and other nonideal phenomena have been attributed to the differing sorptive characteristics of the natural organic matter (NOM) polymers associated with soils and sediments. A conceptualizat...

  7. Hydrogen production in anaerobic reactors during shock loads--influence of formate production and H2 kinetics.

    PubMed

    Voolapalli, R K; Stuckey, D C

    2001-05-01

    In this article the role of hydrogen as a process monitoring tool in methanogenic systems was studied by considering the influence of several key system parameters. Hydrogen production was found to be influenced mainly by the inocula's source pH, and varied only slightly with external pH and HCO3- levels. When an inoculum adapted to above neutral conditions (pH > 7) was shocked, reducing equivalents were selectively channelled through formate, while high hydrogen production was noticed with acidically (pH < 6.5) adapted inocula. The results also revealed that the production of hydrogen or formate during shock loads was not strongly associated with microbial morphology (granules or flocs) as high electron fluxes were possible through either during acidogenesis. Shock load experiments in continuous reactors revealed that neither hydrogen nor formate accumulated to any significant degree, nevertheless digester recovery took a long time due to the slow kinetics of volatile fatty acid degradation. Selective formate production under neutral pH environments, coupled with high hydrogenotrophic activity, was found to be responsible for the dampened hydrogen response during the early phases of gradually shocked systems (step change). Based on these results it appears that the role of hydrogen as a process monitoring tool has been overemphasised in the literature.

  8. An investigation of the effect of surface impurities on the adsorption kinetics of hydrogen chemisorbed onto iron

    NASA Technical Reports Server (NTRS)

    Shanabarger, Mickey R.

    1994-01-01

    The goal of this program has been to develop an understanding of heterogeneous kinetic processes for those molecular species which produce gaseous hydrogen degradation of the mechanical properties of metallic structural materials. During the present program, the interaction of hydrogen with the surfaces of alpha-2 (Ti3Al) titanium aluminide, gamma (TiAl) titanium aluminide, and beryllium were studied. The interaction of low pressure hydrogen with gamma titanium aluminide and beryllium was found to be relatively weak. Weak in the sense that adsorption leads to a low surface concentration of dissociated hydrogen, i.e., the chemisorption process is reversible at room temperature (300 K) for gamma titanium aluminide and the sticking coefficient for chemisorption is extremely small for beryllium. Hydrogen was found to interact readily with alpha-2 titanium aluminide to form a stable surface hydride at 300 K. These results correlate well with other recent studies which show that the mechanical properties for alpha-2 titanium aluminide are readily degraded in hydrogen while gamma titanium aluminide exhibits less degradation and beryllium essentially no degradation. The interaction of oxygen with the surface of several of these materials was studied. More recently, preliminary hydrogen permeation studies were completed for three high temperature alloys, Incoloy 909, Mo-47.5Re (wt. %), and this past year, Haynes 188.

  9. Influence of Hydrogen Bonding on the Kinetic Stability of Vapor Deposited Glasses of Triazine Derivatives

    DOE Data Explorer

    Laventure, Audrey [Departement de chimie, Universite de Montreal, C.P. 6128, Succ. Centre-Ville, Montreal, Quebec H3C 3J7, Canada] (ORCID:0000000208670231); Gujral, Ankit [Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States] (ORCID:0000000250652694); Lebel, Olivier [Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, Ontario K7K 7B4] (ORCID:0000000217376843); Ediger, Mark [Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States] (ORCID:0000000347158473); Pellerin, Christian [Departement de chimie, Universite de Montreal, C.P. 6128, Succ. Centre-Ville, Montreal, Quebec H3C 3J7, Canada] (ORCID:0000000161441318)

    2017-02-01

    It has recently been established that physical vapor deposition (PVD) can produce organic glasses with enhanced kinetic stability, high density, and anisotropic packing, with the substrate temperature during deposition (Tsubstrate) as the key control parameter. The influence of hydrogen bonding on the formation of PVD glasses has not been fully explored. Herein, we use a high-throughput preparation method to vapor-deposit three triazine derivatives over a wide range of Tsubstrate, from 0.69 to 1.08Tg, where Tg is the glass transition temperature. These model systems are structural analogues containing a functional group with different H-bonding capability at the 2-position of a triazine ring: (1) 2-methylamino-4,6-bis(3,5-dimethyl-phenylamino)-1,3,5-triazine (NHMe) (H-bond donor), (2) 2-methoxy-4,6-bis(3,5-dimethyl-phenylamino)-1,3,5-triazine (OMe) (H-bond acceptor), and (3) 2-ethyl-4,6-bis(3,5-dimethyl-phenylamino)-1,3,5-triazine (Et) (none). Using spectroscopic ellipsometry, we find that the Et and OMe compounds form PVD glasses with relatively high kinetic stability, with the transformation time (scaled by the α-relaxation time) on the order of 103, comparable to other highly stable glasses formed by PVD. In contrast, PVD glasses of NHMe are only slightly more stable than the corresponding liquid-cooled glass. Using IR spectroscopy, we find that both the supercooled liquid and the PVD glasses of the NHMe derivative show a higher average number of bonded NH per molecule than that in the other two compounds. These results suggest that H-bonds hinder the formation of stable glasses, perhaps by limiting the surface mobility. Interestingly, despite this difference in kinetic stability, all three compounds show properties typically observed in highly stable glasses prepared by PVD, including a higher density and anisotropic molecular packing (as characterized by IR and wide-angle X-ray scattering).

  10. Influence of Hydrogen Bonding on the Kinetic Stability of Vapor-Deposited Glasses of Triazine Derivatives.

    PubMed

    Laventure, Audrey; Gujral, Ankit; Lebel, Olivier; Pellerin, Christian; Ediger, M D

    2017-03-16

    It has recently been established that physical vapor deposition (PVD) can produce organic glasses with enhanced kinetic stability, high density, and anisotropic packing, with the substrate temperature during deposition (Tsubstrate) as the key control parameter. The influence of hydrogen bonding on the formation of PVD glasses has not been fully explored. Herein, we use a high-throughput preparation method to vapor-deposit three triazine derivatives over a wide range of Tsubstrate, from 0.69 to 1.08Tg, where Tg is the glass transition temperature. These model systems are structural analogues containing a functional group with different H-bonding capability at the 2-position of a triazine ring: (1) 2-methylamino-4,6-bis(3,5-dimethyl-phenylamino)-1,3,5-triazine (NHMe) (H-bond donor), (2) 2-methoxy-4,6-bis(3,5-dimethyl-phenylamino)-1,3,5-triazine (OMe) (H-bond acceptor), and (3) 2-ethyl-4,6-bis(3,5-dimethyl-phenylamino)-1,3,5-triazine (Et) (none). Using spectroscopic ellipsometry, we find that the Et and OMe compounds form PVD glasses with relatively high kinetic stability, with the transformation time (scaled by the α-relaxation time) on the order of 10(3), comparable to other highly stable glasses formed by PVD. In contrast, PVD glasses of NHMe are only slightly more stable than the corresponding liquid-cooled glass. Using IR spectroscopy, we find that both the supercooled liquid and the PVD glasses of the NHMe derivative show a higher average number of bonded NH per molecule than that in the other two compounds. These results suggest that H-bonds hinder the formation of stable glasses, perhaps by limiting the surface mobility. Interestingly, despite this difference in kinetic stability, all three compounds show properties typically observed in highly stable glasses prepared by PVD, including a higher density and anisotropic molecular packing (as characterized by IR and wide-angle X-ray scattering).

  11. Kinetic-energy release of fragments from electron-impact dissociation of the molecular hydrogen ion and its isotopologues

    NASA Astrophysics Data System (ADS)

    Scarlett, Liam H.; Zammit, Mark C.; Fursa, Dmitry V.; Bray, Igor

    2017-08-01

    We calculate the kinetic-energy release distributions of fragments produced for electron-impact dissociation of the vibrationally excited molecular hydrogen ion H2 + and its isotopologues D2 + and T2 +. Here we apply the adiabatic-nuclei convergent close-coupling method and compare results with several different methods, including the δ approximation. Results are presented for a number of dissociative excitation transitions and dissociative ionization as a function of the initial vibrational state of the molecule. We confirm that the square root approximation is a good approximation for the adiabatic-nuclei kinetic-energy release cross sections of H2 +. Agreement with experiment, where available, is good.

  12. Kinetics of hydrogen isotope exchange in β-phase Pd-H-D

    DOE PAGES

    Luo, Weifang; Cowgill, Donald F.

    2015-07-22

    Hydrogen isotope gas exchange within palladium powders is examined using a batch-type reactor coupled to a residual gas analyzer (RGA). Furthermore, the exchange rates in both directions (H2 + PdD and D2 + PdH) are measured in the temperature range 178–323 K for the samples with different particle sizes. The results show this batch-type exchange is closely approximated as a first-order kinetic process with a rate directly proportional to the surface area of the powder particles. An exchange rate constant of 1.40 ± 0.24 μmol H2/atm cm2 s is found for H2 + PdD at 298 K, 1.4 times highermore » than that for D2 + PdH, with an activation energy of 25.0 ± 3.2 kJ/mol H for both exchange directions. Finally, a comparison of exchange measurement techniques shows these coefficients, and the fundamental exchange probabilities are in good agreement with those obtained by NMR and flow techniques.« less

  13. Kinetics of hydrogen isotope exchange in β-phase Pd-H-D

    SciTech Connect

    Luo, Weifang; Cowgill, Donald F.

    2015-07-22

    Hydrogen isotope gas exchange within palladium powders is examined using a batch-type reactor coupled to a residual gas analyzer (RGA). Furthermore, the exchange rates in both directions (H2 + PdD and D2 + PdH) are measured in the temperature range 178–323 K for the samples with different particle sizes. The results show this batch-type exchange is closely approximated as a first-order kinetic process with a rate directly proportional to the surface area of the powder particles. An exchange rate constant of 1.40 ± 0.24 μmol H2/atm cm2 s is found for H2 + PdD at 298 K, 1.4 times higher than that for D2 + PdH, with an activation energy of 25.0 ± 3.2 kJ/mol H for both exchange directions. Finally, a comparison of exchange measurement techniques shows these coefficients, and the fundamental exchange probabilities are in good agreement with those obtained by NMR and flow techniques.

  14. Investigation of the kinetics of reduction of nickel tungstate by hydrogen

    SciTech Connect

    Sridhar, S. . Dept. of Materials Science and Engineering); Du Sichen; Seetharaman, S. . Dept. of Metallurgy)

    1994-06-01

    In the present work, the kinetics of reduction of nickel tungstate, NiWO[sub 4], by hydrogen was investigated by a thermogravimetric method in the temperature range 891 to 1,141 K. The experiments were conducted under both isothermal and nonisothermal conditions. The products were examined by X-ray diffraction analysis. The results indicate that the reduction reaction proceeds in two steps; first, reduction of NiWO[sub 4] to nickel as well as WO[sub 2] and then WO[sub 2] to tungsten. From the isothermal experiments, the activation energies of the two reaction steps were calculated to be 95.3 [+-] 4.9 and 80.8 [+-] 6.4 kJ [center dot] mol[sup [minus]1], respectively. The activation energy value obtained from nonisothermal experiments for the first step is in agreement with the isothermal experiments. The values are compared with the activation energies reported in other literature for the individual oxides.

  15. The chemical kinetics and thermodynamics of sodium species in oxygen-rich hydrogen flames

    NASA Technical Reports Server (NTRS)

    Hynes, A. J.; Steinberg, M.; Schofield, K.

    1984-01-01

    Results are presented which, it is claimed, lead to a correction of previous misconceptions over the relative importance and kinetics of NaO2. It is shown that its rapid conversion to NaO and NaOH is such that it can severely perturb the NaOH/Na ratio and produce significant concentration overshoots over that predicted from the balance of the reaction of Na with H2O. This becomes increasingly the case in flames of large O2 concentrations and temperatures below 2500 K; and the corresponding large rate constants for the termolecular formation of the other alkali peroxides imply that similar considerations will be necessary for them. Depending on the rate constants for the exothermic conversions of MO2 to MO or MOH, the steady-state concentrations of MO2 could be more or less significant than for sodium. Owing to numerous reactions that produce these conversions, the MOH species will probably be the dominant species in all cases in oxygen-rich hydrogen or hydrocarbon flames, with MO concentrations at not greater than 1 percent of the bound metal.

  16. Kinetics of 1,4-hydrogen migration in the alkyl radical reaction class.

    PubMed

    Bankiewicz, Barbara; Huynh, Lam K; Ratkiewicz, Artur; Truong, Thanh N

    2009-02-26

    The kinetics of the 1,4-intramolecular hydrogen migration in the alkyl radicals reaction class has been studied using reaction class transition-state theory combined with the linear energy relationship (LER) and barrier height grouping (BHG) approach. The rate constants for the reference reaction of n-C(4)H(9) were obtained by canonical variational transition-state theory (CVT) with the small curvature tunnelling (SCT) correction in the temperature range 300-3000 K with potential-energy surface information computed at the CCSD(T)/cc-pVDZ//BH&HLYP/cc-pVDZ level of theory. Error analyses indicate that RC-TST/LER, where only reaction energy is needed, and RC-TST/BHG, where no other information is needed, can predict rate constants for any reaction in this reaction class with excellent accuracy. Specifically, for this reaction class the RC-TST/LER method has less than 65% systematic errors in the predicted rate constants, while the RC-TST/BHG method has less than 80% error when compared to explicit rate calculations.

  17. Kinetics of oxidation of bilirubin and its protein complex by hydrogen peroxide in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Solomonov, A. V.; Rumyantsev, E. V.; Antina, E. V.

    2010-12-01

    A comparative study of oxidation reactions of bilirubin and its complex with albumin was carried out in aqueous solutions under the action of hydrogen peroxide and molecular oxygen at different pH values. Free radical oxidation of the pigment in both free and bound forms at pH 7.4 was shown not to lead to the formation of biliverdin, but to be associated with the decomposition of the tetrapyrrole chromophore into monopyrrolic products. The effective and true rate constants of the reactions under study were determined. It was assumed that one possible mechanism of the oxidation reaction is associated with the interaction of peroxyl radicals and protons of the NH groups of bilirubin molecules at the limiting stage with the formation of a highly reactive radical intermediate. The binding of bilirubin with albumin was found to result in a considerable reduction in the rate of the oxidation reaction associated with the kinetic manifestation of the protein protection effect. It was found that the autoxidation of bilirubin by molecular oxygen with the formation of biliverdin at the intermediate stage can be observed with an increase in the pH of solutions.

  18. Sorption of perfluorooctane sulfonate on organo-montmorillonites.

    PubMed

    Zhou, Qin; Deng, Shubo; Yu, Qiang; Zhang, Qiaoying; Yu, Gang; Huang, Jun; He, Hongping

    2010-02-01

    Perfluorinated compound as one of the emerging pollutants has caused great attention in recent years. In this study, the organo-montmorillonites (organo-Mts) with different amounts and arrangements of hexadecyltrimethylammonium bromide (HDTMAB) were prepared as effective sorbents for PFOS removal from water. Batch sorption experiments including sorption kinetics, sorption isotherm as well as effect of solution pH were studied. The Elovich and pseudo-second-order models were selected to fit the kinetic data and the latter described the sorption kinetic better. Sorption isotherms showed that the sorption amount of PFOS increased with increasing amount of HDTMAB loaded in the montmorillonites, indicating that hydrophobic interaction played an important role in the sorption process. Comparative sorption of other perfluorinated compounds (PFCs) with different length of C-F chains and different functional groups further verified that hydrophobic interaction was the main force for the sorption of PFCs on the organo-Mts. X-ray diffraction (XRD) analysis demonstrated the significant decrease of interlayer distance after PFOS sorption, suggesting that the HDTMAB molecules were rearranged in the interlayer of organo-Mts. The PFOS molecules first diffused into the organo-Mts via hydrophobic interaction, and then the rearrangement occurred through electrostatic interaction between the two surfactants, resulting in the microstructure change within the organo-Mts.

  19. Kinetic solvent effects on hydrogen abstraction reactions from carbon by the cumyloxyl radical. The importance of solvent hydrogen-bond interactions with the substrate and the abstracting radical.

    PubMed

    Salamone, Michela; Giammarioli, Ilaria; Bietti, Massimo

    2011-06-03

    A kinetic study of the hydrogen atom abstraction reactions from propanal (PA) and 2,2-dimethylpropanal (DMPA) by the cumyloxyl radical (CumO•) has been carried out in different solvents (benzene, PhCl, MeCN, t-BuOH, MeOH, and TFE). The corresponding reactions of the benzyloxyl radical (BnO•) have been studied in MeCN. The reaction of CumO• with 1,4-cyclohexadiene (CHD) also has been investigated in TFE solution. With CHD a 3-fold increase in rate constant (k(H)) has been observed on going from benzene, PhCl, and MeCN to TFE. This represents the first observation of a sizable kinetic solvent effect for hydrogen atom abstraction reactions from hydrocarbons by alkoxyl radicals and indicates that strong HBD solvents influence the hydrogen abstraction reactivity of CumO•. With PA and DMPA a significant decrease in k(H) has been observed on going from benzene and PhCl to MeOH and TFE, indicative of hydrogen-bond interactions between the carbonyl lone pair and the solvent in the transition state. The similar k(H) values observed for the reactions of the aldehydes in MeOH and TFE point toward differential hydrogen bond interactions of the latter solvent with the substrate and the radical in the transition state. The small reactivity ratios observed for the reactions of CumO• and BnO• with PA and DMPA (k(H)(BnO•)/k(H)(CumO•) = 1.2 and 1.6, respectively) indicate that with these substrates alkoxyl radical sterics play a minor role.

  20. Kinetic model for photoinduced and thermally induced creation and annihilation of metastable defects in hydrogenated amorphous silicon

    NASA Astrophysics Data System (ADS)

    Abdulhalim, I.

    1995-03-01

    A microscopic many-body model is proposed for the kinetics of metastable defects (MSDs) in hydrogenated amorphous silicon (a-Si:H). It is based on the existence of short-lived large energy fluctuations which induce transient traps for carriers that release their energy and enhance the creation or annihilation of MSDs. The expressions found for the photoinduced and thermally induced creation and annihilation rates' coefficients explain the dependence on the variety of parameters.

  1. Enhanced Hydrogen Storage Kinetics of Nanocrystalline and Amorphous Mg2Ni-type Alloy by Melt Spinning

    PubMed Central

    Zhang, Yang-Huan; Li, Bao-Wei; Ren, Hui-Ping; Li, Xia; Qi, Yan; Zhao, Dong-Liang

    2011-01-01

    Mg2Ni-type Mg2Ni1−xCox (x = 0, 0.1, 0.2, 0.3, 0.4) alloys were fabricated by melt spinning technique. The structures of the as-spun alloys were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The hydrogen absorption and desorption kinetics of the alloys were measured by an automatically controlled Sieverts apparatus. The electrochemical hydrogen storage kinetics of the as-spun alloys was tested by an automatic galvanostatic system. The results show that the as-spun (x = 0.1) alloy exhibits a typical nanocrystalline structure, while the as-spun (x = 0.4) alloy displays a nanocrystalline and amorphous structure, confirming that the substitution of Co for Ni notably intensifies the glass forming ability of the Mg2Ni-type alloy. The melt spinning treatment notably improves the hydriding and dehydriding kinetics as well as the high rate discharge ability (HRD) of the alloys. With an increase in the spinning rate from 0 (as-cast is defined as spinning rate of 0 m/s) to 30 m/s, the hydrogen absorption saturation ratio (R5a) of the (x = 0.4) alloy increases from 77.1 to 93.5%, the hydrogen desorption ratio (R20d) from 54.5 to 70.2%, the hydrogen diffusion coefficient (D) from 0.75 × 10−11 to 3.88 × 10−11 cm2/s and the limiting current density IL from 150.9 to 887.4 mA/g. PMID:28879988

  2. Kinetics and mechanism of the degradation of methyl parathion in aqueous hydrogen sulfide solution: investigation of natural organic matter effects.

    PubMed

    Guo, Xiaofen; Jans, Urs

    2006-02-01

    The kinetics of the transformation of methyl parathion have been investigated in aqueous solution containing reduced sulfur species and small concentrations of natural organic matter (NOM) from different sources such as soil, river, and peat. It was shown that NOM mediates the degradation of methyl parathion in aqueous solutions containing hydrogen sulfide. After evaluating and quantifying the effect of the NOM concentration on the degradation kinetics of methyl parathion in the presence of hydrogen sulfide, it was found that the observed pseudo-first-order reaction rate constants (k(obs)) were proportional to NOM concentrations. The influence of pH on the degradation of methyl parathion in the aqueous solutions containing hydrogen sulfide and NOM has been studied. The rate of degradation of methyl parathion was strongly pH dependent. The results indicate k(obs) with a commercially available humic acid has a maximum value at approximately pH 8.3. Two main reaction mechanisms are identified to dominate the degradation of methyl parathion in aqueous solution containing hydrogen sulfide and NOM based on the products aminomethyl parathion and desmethyl methyl parathion. The two mechanisms are nitro-group reduction and nucleophilic attack at the methoxy-carbon. The reduction of the nitro-group is only observed in the presence of NOM. The results of this study form an important base for the evaluation and interpretation of transformation processes of methyl parathion in the environment.

  3. Effects of pH and ORP on microbial ecology and kinetics for hydrogen production in continuously dark fermentation.

    PubMed

    Song, Jiaxiu; An, Dong; Ren, Nanqi; Zhang, Yongming; Chen, Ying

    2011-12-01

    The microbial structure and kinetic characteristics of the hydrogen producing strains in two fermentative continuous stirred-tank reactors (CSTRs) were studied by controlling pH and oxidation and reduction potential (ORP). The fluorescence in situ hybridization (FISH) tests were conducted to investigate the fermentative performance of Clostridium histolyticum (C. histolyticum), Clostridium lituseburense (C. lituseburense) and Enterobacteriaceae. The experimental results showed that in ethanol-type reactor 1#, the relative abundance of the strains was 48%, 30% and 22%. Comparatively, the relative abundance in butyric acid-type reactor 2# was 24%, 55% and 19% with butyric acids and hydrogen as the main products. The kinetic results indicated that the hydrogen yield coefficients YP/X in both reactors were 8.357 and 5.951 l-H2/g, while the coefficients of the cellular yield were 0.0268 and 0.0350 g-Cell/g, respectively. At the same biomass, the hydrogen yield in ethanol-type reactors was more than that in butyric acid reactors. However, the cellular synthesis rate in ethanol-type reactors was low when the same carbon source was used.

  4. Intrinsic Kinetics of Dimethyl Ether Synthesis from Plasma Activation of CO2 Hydrogenation over Cu-Fe-Ce/HZSM-5.

    PubMed

    Su, Tongming; Zhou, Xinhui; Qin, Zuzeng; Ji, Hongbing

    2017-02-02

    CO2 is activated in a plasma reactor followed by hydrogenation over a Cu-Fe-Ce/HZSM-5 catalyst, and the intrinsic kinetics of the plasma catalytic process are studied. Compared with CO2 hydrogenation using Cu-Fe-Ce/HZSM-5 alone, the CO2 conversion and the dimethyl ether selectivity for the plasma catalytic process are increased by 16.3 %, and 10.1 %, respectively, indicating that the CO2 was activated by the plasma to promote hydrogenation. A study of the intrinsic kinetics shows that the activation energies of methanol formation, the reverse water-gas shift reaction, and methanol dehydration to dimethyl ether are 149.34, 75.47, and 73.18 kJ mol(-1) , respectively, which are lower than if Cu-Fe-Ce/HZSM-5 is used without plasma, indicating that the activation of CO2 in the plasma reduces the activation energy of the hydrogenation reaction and improves the yield of dimethyl ether.

  5. The kinetics of the hydrogen/deuterium exchange of epidermal growth factor receptor ligands.

    PubMed

    Iloro, Ibon; Narváez, Daniel; Guillén, Nancy; Camacho, Carlos M; Guillén, Lalisse; Cora, Elsa; Pastrana-Ríos, Belinda

    2008-05-15

    Five highly homologous epidermal growth factor receptor ligands were studied by mass spectral analysis, hydrogen/deuterium (H/D) exchange via attenuated total reflectance Fourier transform-infrared spectroscopy, and two-dimensional correlation analysis. These studies were performed to determine the order of events during the exchange process, the extent of H/D exchange, and associated kinetics of exchange for a comparative analysis of these ligands. Furthermore, the secondary structure composition of amphiregulin (AR) and heparin-binding-epidermal growth factor (HB-EGF) was determined. All ligands were found to have similar contributions of 3(10)-helix and random coil with varying contributions of beta-sheets and beta-turns. The extent of exchange was 40%, 65%, 55%, 65%, and 98% for EGF, transforming growth factor-alpha (TGF-alpha), AR, HB-EGF, and epiregulin (ER), respectively. The rate constants were determined and classified as fast, intermediate, and slow: for EGF the 0.20 min(-1) (Tyr), 0.09 min(-1) (Arg, beta-turns), and 1.88 x 10(-3) min(-1) (beta-sheets and 3(10)-helix); and for TGF-alpha 0.91 min(-1) (Tyr), 0.27 min(-1) (Arg, beta-turns), and 1.41 x 10(-4) min(-1) (beta-sheets). The time constants for AR 0.47 min(-1) (Tyr), 0.04 min(-1) (Arg), and 1.00 x 10(-4) min(-1) (buried 3(10)-helix, beta-turns, and beta-sheets); for HB-EGF 0.89 min(-1) (Tyr), 0.14 min(-1) (Arg and 3(10)-helix), and 1.00 x 10(-3) min(-1) (buried 3(10)-helix, beta-sheets, and beta-turns); and for epiregulin 0.16 min(-1) (Tyr), 0.03 min(-1) (Arg), and 1.00 x 10(-4) min(-1) (3(10)-helix and beta-sheets). These results provide essential information toward understanding secondary structure, H/D exchange kinetics, and solvation of these epidermal growth factor receptor ligands in their unbound state.

  6. Equilibrium and kinetic studies of sorption of 2.4-dichlorophenol onto 2 mixtures: bamboo biochar plus calcium sulphate (BC) and hydroxyapatite plus bamboo biochar plus calcium sulphate (HBC), in a fluidized bed circulation column

    DOE PAGES

    Alamin, Ahmed Hassan; Kaewsichan, Lupong

    2016-06-30

    Sorption studies were carried out to investigate removal of 2.4-dichlorophenol (2.4-DCP) from aqueous solution in a fluidized bed by two types of adsorbent mixtures: BC (Bamboo char plus Calcium sulphate), and HBC (Hydroxyapatite plus Bamboo char plus Calcium sulphate); both manufactured in ball shape. The main material bamboo char was characterized by FTIR, DTA and SEM. The adsorption experiments were conducted in a fluidized bed circulation column. Adsorption, isotherms and kinetic studies were established under 180 min operating process time, at different initial 2.4-DCP solution concentrations ranging from 5–10 mg/L, and at different flow rates ranging from 0.25–0.75 L/min. Themore » data obtained fitted well for both the Langmuir and Freundlich isotherm models; indicating favorable condition of monolayer adsorption. The kinetics of both adsorbents complies with the pseudo second-order kinetic model. BC was proven a new effective composite and low cost adsorbent which can be applied in the field of wastewater treatment, and it can also play an important role in industry water treatment« less

  7. Equilibrium and kinetic studies of sorption of 2.4-dichlorophenol onto 2 mixtures: bamboo biochar plus calcium sulphate (BC) and hydroxyapatite plus bamboo biochar plus calcium sulphate (HBC), in a fluidized bed circulation column

    SciTech Connect

    Alamin, Ahmed Hassan; Kaewsichan, Lupong

    2016-06-30

    Sorption studies were carried out to investigate removal of 2.4-dichlorophenol (2.4-DCP) from aqueous solution in a fluidized bed by two types of adsorbent mixtures: BC (Bamboo char plus Calcium sulphate), and HBC (Hydroxyapatite plus Bamboo char plus Calcium sulphate); both manufactured in ball shape. The main material bamboo char was characterized by FTIR, DTA and SEM. The adsorption experiments were conducted in a fluidized bed circulation column. Adsorption, isotherms and kinetic studies were established under 180 min operating process time, at different initial 2.4-DCP solution concentrations ranging from 5–10 mg/L, and at different flow rates ranging from 0.25–0.75 L/min. The data obtained fitted well for both the Langmuir and Freundlich isotherm models; indicating favorable condition of monolayer adsorption. The kinetics of both adsorbents complies with the pseudo second-order kinetic model. BC was proven a new effective composite and low cost adsorbent which can be applied in the field of wastewater treatment, and it can also play an important role in industry water treatment

  8. Radionuclide sorption on drill core material from the Canadian Shield

    SciTech Connect

    Vandergraat, T.T.; Abry, D.R.

    1982-06-01

    The sorption of four radionuclides, /sup 90/Sr, /sup 137/Cs, /sup 144/Ce, and /sup 237/Pu, on drill core material from two rock formations in the Canadian Shield has been studied as part of the Canadian Nuclear Fuel Waste Management Program. For all four radionuclides, sorption increased with increased mafic mineral content of the rock. Autoradiographic investigations showed enhanced sorption on dark, or mafic, minerals and high sorption on chlorite infilling material in a closed fracture. Desorption was less complete than sorption after the same equilibration time, indicating a degree of irreversible sorption, or slower desorption kinetics. The effect of surface roughness (measured by mercury porosimetry) on sorption was not as great as that of the chemical and mineral composition of the rock.

  9. A Kinetic Platform to Determine the Fate of Hydrogen Peroxide in Escherichia coli

    PubMed Central

    Adolfsen, Kristin J.; Brynildsen, Mark P.

    2015-01-01

    Hydrogen peroxide (H2O2) is used by phagocytic cells of the innate immune response to kill engulfed bacteria. H2O2 diffuses freely into bacteria, where it can wreak havoc on sensitive biomolecules if it is not rapidly detoxified. Accordingly, bacteria have evolved numerous systems to defend themselves against H2O2, and the importance of these systems to pathogenesis has been substantiated by the many bacteria that require them to establish or sustain infections. The kinetic competition for H2O2 within bacteria is complex, which suggests that quantitative models will improve interpretation and prediction of network behavior. To date, such models have been of limited scope, and this inspired us to construct a quantitative, systems-level model of H2O2 detoxification in Escherichia coli that includes detoxification enzymes, H2O2-dependent transcriptional regulation, enzyme degradation, the Fenton reaction and damage caused by •OH, oxidation of biomolecules by H2O2, and repair processes. After using an iterative computational and experimental procedure to train the model, we leveraged it to predict how H2O2 detoxification would change in response to an environmental perturbation that pathogens encounter within host phagosomes, carbon source deprivation, which leads to translational inhibition and limited availability of NADH. We found that the model accurately predicted that NADH depletion would delay clearance at low H2O2 concentrations and that detoxification at higher concentrations would resemble that of carbon-replete conditions. These results suggest that protein synthesis during bolus H2O2 stress does not affect clearance dynamics and that access to catabolites only matters at low H2O2 concentrations. We anticipate that this model will serve as a computational tool for the quantitative exploration and dissection of oxidative stress in bacteria, and that the model and methods used to develop it will provide important templates for the generation of comparable

  10. Thermodynamic and kinetic considerations for the reaction of semiquinone radicals to form superoxide and hydrogen peroxide.

    PubMed

    Song, Yang; Buettner, Garry R

    2010-09-15

    The quinone/semiquinone/hydroquinone triad (Q/SQ(*-)/H(2)Q) represents a class of compounds that has great importance in a wide range of biological processes. The half-cell reduction potentials of these redox couples in aqueous solutions at neutral pH, E degrees ', provide a window to understanding the thermodynamic and kinetic characteristics of this triad and their associated chemistry and biochemistry in vivo. Substituents on the quinone ring can significantly influence the electron density "on the ring" and thus modify E degrees' dramatically. E degrees' of the quinone governs the reaction of semiquinone with dioxygen to form superoxide. At near-neutral pH the pK(a)'s of the hydroquinone are outstanding indicators of the electron density in the aromatic ring of the members of these triads (electrophilicity) and thus are excellent tools to predict half-cell reduction potentials for both the one-electron and two-electron couples, which in turn allow estimates of rate constants for the reactions of these triads. For example, the higher the pK(a)'s of H(2)Q, the lower the reduction potentials and the higher the rate constants for the reaction of SQ(*-) with dioxygen to form superoxide. However, hydroquinone autoxidation is controlled by the concentration of di-ionized hydroquinone; thus, the lower the pK(a)'s the less stable H(2)Q to autoxidation. Catalysts, e.g., metals and quinone, can accelerate oxidation processes; by removing superoxide and increasing the rate of formation of quinone, superoxide dismutase can accelerate oxidation of hydroquinones and thereby increase the flux of hydrogen peroxide. The principal reactions of quinones are with nucleophiles via Michael addition, for example, with thiols and amines. The rate constants for these addition reactions are also related to E degrees'. Thus, pK(a)'s of a hydroquinone and E degrees ' are central to the chemistry of these triads. Copyright 2010 Elsevier Inc. All rights reserved.

  11. Kinetic and Mechanistic Studies of Carbon-to-Metal Hydrogen Atom Transfer Involving Os-Centered Radicals: Evidence for Tunneling

    SciTech Connect

    Lewandowska-Androlojc, Anna; Grills, David C.; Zhang, Jie; Bullock, R. Morris; Miyazawa, Akira; Kawanishi, Yuji; Fujita, Etsuko

    2014-03-05

    We have investigated the kinetics of novel carbon-to-metal hydrogen atom transfer reactions, in which homolytic cleavage of a C-H bond is accomplished by a single metal-centered radical. Studies by means of time-resolved IR spectroscopic measurements revealed efficient hydrogen atom transfer from xanthene, 9,10-dihydroanthracene and 1,4-cyclohexadiene to Cp(CO)2Os• and (n5-iPr4C5H)(CO)2Os• radicals, formed by photoinduced homolysis of the corresponding osmium dimers. The rate constants for hydrogen abstraction from these hydrocarbons were found to be in the range 1.54 × 105 M 1 s 1 -1.73 × 107 M 1 s-1 at 25 °C. For the first time, kinetic isotope effects for carbon-to-metal hydrogen atom transfer were determined. Large primary kinetic isotope effects of 13.4 ± 1.0 and 16.6 ± 1.4 were observed for the hydrogen abstraction from xanthene to form Cp(CO)2OsH and (n5-iPr4C5H)(CO)2OsH, respectively, at 25 °C. Temperature-dependent measurements of the kinetic isotope effects over a 60 -C temperature range were carried out to obtain the difference in activation energies and the pre-exponential factor ratio. For hydrogen atom transfer from xanthene to (n5-iPr4C5H)(CO)2Os•, the (ED - EH) = 3.25 ± 0.20 kcal/mol and AH/AD = 0.056 ± 0.018 values are greater than the semi-classical limits and thus suggest a quantum mechanical tunneling mechanism. The work at BNL was carried out under contract DE-AC02-98CH10886 with the U.S. Department of Energy and supported by its Division of Chemical Sciences, Geosciences & Biosciences, Office of Basic Energy Sciences. RMB also thanks the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences for support. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.

  12. Distillation Kinetics of Solid Mixtures of Hydrogen Peroxide and Water and the Isolation of Pure Hydrogen Peroxide in Ultrahigh Vacuum

    NASA Technical Reports Server (NTRS)

    Teolis, B. D.; Baragiola, R. A.

    2006-01-01

    We present results of the growth of thin films of crystalline H2O2 and H2O2.2H2O (dihydrate) in ultrahigh vacuum by distilling an aqueous solution of hydrogen peroxide. We traced the process using infrared reflectance spectroscopy, mass loss on a quartz crystal microbalance, and in a few cases ultraviolet-visible reflectance. We find that the different crystalline phases-water, dihydrate, and hydrogen peroxide-have very different sublimation rates, making distillation efficient to isolate the less volatile component, crystalline H2O2.

  13. Cation-induced kinetic trapping and enhanced hydrogen adsorption in a modulated anionic metal-organic framework.

    PubMed

    Yang, Sihai; Lin, Xiang; Blake, Alexander J; Walker, Gavin S; Hubberstey, Peter; Champness, Neil R; Schröder, Martin

    2009-09-01

    Metal-organic frameworks (MOFs)--microporous materials constructed by bridging metal centres with organic ligands--show promise for applications in hydrogen storage, which is a key challenge in the development of the 'hydrogen economy'. Their adsorption capacities, however, have remained insufficient for practical applications, and thus strategies to enhance hydrogen-MOF interactions are required. Here we describe an anionic MOF material built from In(III) centres and tetracarboxylic acid ligands (H(4)L) in which kinetic trapping behaviour--where hydrogen is adsorbed at high pressures but not released immediately on lowering the pressure--is modulated by guest cations. With piperazinium dications in its pores, the framework exhibits hysteretic hydrogen adsorption. On exchange of these dications with lithium cations, no hysteresis is seen, but instead there is an enhanced adsorption capacity coupled to an increase in the isosteric heat of adsorption. This is rationalized by the different locations of the cations within the pores, determined with precision by X-ray crystallography.

  14. Carbon Dioxide Hydrogenation into Higher Hydrocarbons and Oxygenates: Thermodynamic and Kinetic Bounds and Progress with Heterogeneous and Homogeneous Catalysis.

    PubMed

    Prieto, Gonzalo

    2017-03-22

    Under specific scenarios, the catalytic hydrogenation of CO2 with renewable hydrogen is considered a suitable route for the chemical recycling of this environmentally harmful and chemically refractory molecule into added-value energy carriers and chemicals. The hydrogenation of CO2 into C1 products, such as methane and methanol, can be achieved with high selectivities towards the corresponding hydrogenation product. More challenging, however, is the selective production of high (C2+ ) hydrocarbons and oxygenates. These products are desired as energy vectors, owing to their higher volumetric energy density and compatibility with the current fuel infrastructure than C1 compounds, and as entry platform chemicals for existing value chains. The major challenge is the optimal integration of catalytic functionalities for both reductive and chain-growth steps. This Minireview summarizes the progress achieved towards the hydrogenation of CO2 to C2+ hydrocarbons and oxygenates, covering both solid and molecular catalysts and processes in the gas and liquid phases. Mechanistic aspects are discussed with emphasis on intrinsic kinetic limitations, in some cases inevitably linked to thermodynamic bounds through the concomitant reverse water-gas-shift reaction, which should be considered in the development of advanced catalysts and processes.

  15. Variations in protein/flavin hydrogen bonding in a LOV domain produce non-Arrhenius kinetics of adduct decay†

    PubMed Central

    Zoltowski, Brian D.; Nash, Abigail I.; Gardner, Kevin H.

    2011-01-01

    Light Oxygen Voltage (LOV) domains utilize a conserved blue light-dependent mechanism to control a diverse array of effector domains in biological and engineered proteins. Variations in the kinetics and efficiency of LOV photochemistry fine tune various aspects of the photic response. Characterization of the kinetics of a key aspect of this photochemical mechanism in EL222, a blue-light responsive DNA binding protein from Erythrobacter litoralis HTCC2594, reveals unique non-Arrhenius behavior in the rate of dark state cleavage of the photochemically-generated adduct. Sequence analysis and mutagenesis studies establish that this effect stems from a Gln to Ala mutation unique to EL222 and homologous proteins from marine bacteria. Kinetic and spectroscopic analyses reveal that hydrogen bonding interactions between the FMN N1, O2 and ribityl hydroxyls with the surrounding protein regulate photocycle kinetics and stabilize the LOV active site from temperature-induced alteration in local structure. Substitution of residues interacting with the N1-O2 locus modulates adduct stability, structural flexibility and sequestration of the active site from bulk solvent without perturbation of light-activated DNA binding. Together, these variants link non-Arrhenius behavior to specific alteration of an H-bonding network, while affording tunability of photocycle kinetics. PMID:21923139

  16. Mixed-Gas Sorption Joule-Thomson Refrigerator

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.; Petrick, S. Walter; Bard, Steven

    1991-01-01

    Proposed mixed-gas sorption Joule-Thomson refrigerator provides cooling down to temperature of 70 K. Includes only one stage and no mechanical compressor. Simpler, operates without vibrating, and consumes less power in producing same amount of cooling. Same sorption principle of operation applicable in compressor that chemisorbs oxygen or hydrogen from mixture with helium, neon, and/or other nonreactive gases.

  17. LEAD SORPTION ON RUTHENIUM OXIDE: A MACROSCOPIC AND SPECTROSCOPIC STUDY

    EPA Science Inventory

    The sorption and desorption of Pb on RuO2 xH2O were examined kinetically and thermodynamically via spectroscopic and macroscopic investigations. X-ray absorption spectroscopy (XAS) was employed to determine the sorption mechanism with regard to identity of nearest atomic neighbo...

  18. LEAD SORPTION ON RUTHENIUM OXIDE: A MACROSCOPIC AND SPECTROSCOPIC STUDY

    EPA Science Inventory

    The sorption and desorption of Pb on RuO2 xH2O were examined kinetically and thermodynamically via spectroscopic and macroscopic investigations. X-ray absorption spectroscopy (XAS) was employed to determine the sorption mechanism with regard to identity of nearest atomic neighbo...

  19. Gas-Phase Hydrogen-Deuterium Exchange Labeling of Select Peptide Ion Conformer Types: a Per-Residue Kinetics Analysis.

    PubMed

    Khakinejad, Mahdiar; Kondalaji, Samaneh Ghassabi; Tafreshian, Amirmahdi; Valentine, Stephen J

    2015-07-01

    The per-residue, gas-phase hydrogen deuterium exchange (HDX) kinetics for individual amino acid residues on selected ion conformer types of the model peptide KKDDDDDIIKIIK have been examined using ion mobility spectrometry (IMS) and HDX-tandem mass spectrometry (MS/MS) techniques. The [M + 4H](4+) ions exhibit two major conformer types with collision cross sections of 418 Å(2) and 446 Å(2); the [M + 3H](3+) ions also yield two different conformer types having collision cross sections of 340 Å(2) and 367 Å(2). Kinetics plots of HDX for individual amino acid residues reveal fast- and slow-exchanging hydrogens. The contributions of each amino acid residue to the overall conformer type rate constant have been estimated. For this peptide, N- and C-terminal K residues exhibit the greatest contributions for all ion conformer types. Interior D and I residues show decreased contributions. Several charge state trends are observed. On average, the D residues of the [M + 3H](3+) ions show faster HDX rate contributions compared with [M + 4H](4+) ions. In contrast the interior I8 and I9 residues show increased accessibility to exchange for the more elongated [M + 4H](4+) ion conformer type. The contribution of each residue to the overall uptake rate showed a good correlation with a residue hydrogen accessibility score model calculated using a distance from charge site and initial incorporation site for nominal structures obtained from molecular dynamic simulations (MDS).

  20. Gas-Phase Hydrogen-Deuterium Exchange Labeling of Select Peptide Ion Conformer Types: a Per-Residue Kinetics Analysis

    NASA Astrophysics Data System (ADS)

    Khakinejad, Mahdiar; Kondalaji, Samaneh Ghassabi; Tafreshian, Amirmahdi; Valentine, Stephen J.

    2015-07-01

    The per-residue, gas-phase hydrogen deuterium exchange (HDX) kinetics for individual amino acid residues on selected ion conformer types of the model peptide KKDDDDDIIKIIK have been examined using ion mobility spectrometry (IMS) and HDX-tandem mass spectrometry (MS/MS) techniques. The [M + 4H]4+ ions exhibit two major conformer types with collision cross sections of 418 Å2 and 446 Å2; the [M + 3H]3+ ions also yield two different conformer types having collision cross sections of 340 Å2 and 367 Å2. Kinetics plots of HDX for individual amino acid residues reveal fast- and slow-exchanging hydrogens. The contributions of each amino acid residue to the overall conformer type rate constant have been estimated. For this peptide, N- and C-terminal K residues exhibit the greatest contributions for all ion conformer types. Interior D and I residues show decreased contributions. Several charge state trends are observed. On average, the D residues of the [M + 3H]3+ ions show faster HDX rate contributions compared with [M + 4H]4+ ions. In contrast the interior I8 and I9 residues show increased accessibility to exchange for the more elongated [M + 4H]4+ ion conformer type. The contribution of each residue to the overall uptake rate showed a good correlation with a residue hydrogen accessibility score model calculated using a distance from charge site and initial incorporation site for nominal structures obtained from molecular dynamic simulations (MDS).

  1. Kinetics of self-decomposition and hydrogen atom transfer reactions of substituted phthalimide N-oxyl radicals in acetic acid.

    PubMed

    Cai, Yang; Koshino, Nobuyoshi; Saha, Basudeb; Espenson, James H

    2005-01-07

    Kinetic data have been obtained for three distinct types of reactions of phthalimide N-oxyl radicals (PINO(.)) and N-hydroxyphthalimide (NHPI) derivatives. The first is the self-decomposition of PINO(.) which was found to follow second-order kinetics. In the self-decomposition of 4-methyl-N-hydroxyphthalimide (4-Me-NHPI), H-atom abstraction competes with self-decomposition in the presence of excess 4-Me-NHPI. The second set of reactions studied is hydrogen atom transfer from NHPI to PINO(.), e.g., PINO(.) + 4-Me-NHPI <=> NHPI + 4-Me-PINO(.). The substantial KIE, k(H)/k(D) = 11 for both forward and reverse reactions, supports the assignment of H-atom transfer rather than stepwise electron-proton transfer. These data were correlated with the Marcus cross relation for hydrogen-atom transfer, and good agreement between the experimental and the calculated rate constants was obtained. The third reaction studied is hydrogen abstraction by PINO(.) from p-xylene and toluene. The reaction becomes regularly slower as the ring substituent on PINO(.) is more electron donating. Analysis by the Hammett equation gave rho = 1.1 and 1.8 for the reactions of PINO(.) with p-xylene and toluene, respectively.

  2. The complex kinetics of the ice VI to ice XV hydrogen ordering phase transition

    NASA Astrophysics Data System (ADS)

    Shephard, Jacob J.; Salzmann, Christoph G.

    2015-09-01

    The reversible phase transition from hydrochloric-acid-doped ice VI to its hydrogen-ordered counterpart ice XV is followed using differential scanning calorimetry. Upon cooling at ambient pressure fast hydrogen ordering is observed at first followed by a slower process which manifests as a tail to the initial sharp exotherm. The residual hydrogen disorder in H2O and D2O ice XV is determined as a function of the cooling rate. We conclude that it will be difficult to obtain fully hydrogen-ordered ice XV by cooling at ambient pressure. Our new experimental findings are discussed in the context of recent computational work on ice XV.

  3. Kinetics and mechanisms of heterogeneous reaction of gaseous hydrogen peroxide on mineral oxide particles.

    PubMed

    Zhao, Yue; Chen, Zhongming; Shen, Xiaoli; Zhang, Xuan

    2011-04-15

    Recent studies have shown that heterogeneous reactions of hydrogen peroxide (H(2)O(2)) on aerosol surfaces may play an important role in tropospheric chemistry. The data concerning the kinetics and mechanisms of these reactions, however, are quite scarce so far. Here, we investigated, for the first time, the heterogeneous reactions of gaseous H(2)O(2) on SiO(2) and α-Al(2)O(3) particles, two major components of mineral dust aerosol, using transmission-Fourier Transform Infrared (T-FTIR) spectroscopy, and high-performance liquid chromatography (HPLC). It is found that H(2)O(2) molecularly adsorbs on SiO(2), and a small amount of molecularly adsorbed H(2)O(2) decomposes due to its thermal instability. For α-Al(2)O(3), catalytic decomposition of H(2)O(2) evidently occurs, but there is also a small amount of H(2)O(2) molecularly adsorbed on the particle surface. The BET uptake coefficients of H(2)O(2) on both particles appear to be independent of gaseous H(2)O(2) concentration (1.27-13.8 ppmv) and particle sample mass (2.8-6.5 mg for SiO(2) and 8.6-18.9 mg for α-Al(2)O(3)), but are strongly dependent on relative humidity with the values ranging from (1.55 ± 0.14) × 10(-8) and (1.21 ± 0.04) × 10(-7) at 2% RH to (0.61 ± 0.06) × 10(-8) and (0.76 ± 0.09) × 10(-7) at 76% RH for SiO(2) and α-Al(2)O(3), respectively. On the basis of the experimental results and literature data, the potential mechanisms for heterogeneous decomposition of H(2)O(2) were proposed, and the atmospheric implications of these reactions were discussed. It is found that heterogeneous reaction of H(2)O(2) on both mineral oxides plays a significant role in processing mineral aerosols, although its role as a sink for ambient H(2)O(2) is probably limited.

  4. Phosphorus seasonal sorption-desorption kinetics in suspended sediment in response to land use and management in the Guaporé catchment, Southern Brazil.

    PubMed

    Zafar, Mohsin; Tiecher, Tales; de Castro Lima, José Augusto Monteiro; Schaefer, Gilmar Luiz; Santanna, Maria Alice; Dos Santos, Danilo Rheinheimer

    2016-11-01

    Phosphate sorption-desorption parameters like maximum phosphorus (P) adsorption capacity (P max), equilibrium phosphorus concentration (EPC), water desorbable P (α), potentially bioavailable P (β), and mobility index (α/β ratio) were determined in order to understand the sediment source-sink nature in Guaporé catchment in southern Brazil during summer and winter 2013 and 2014. The result showed a significant (p = 0.05) variation across sediment site or seasons and revealed the most sorption-desorption parameters (P max, α, β) with the increments following the order urban sediments > intensive agriculture under CT > intensive agriculture under NT > low agriculture sub-catchments (sub1 and sub2) > native forest. In the main river points, these parameters decreased along the river (P1 to P5). The results were more obvious in winter than the summer season. In contrast, the low values of λ and α/β ratio in the sediment from native forest and relatively less polluted catchment (sub1) during summer season show the quick P desorption when compared to specific Fe and Al oxides bound to stable P in intensive agriculture sediments. These findings clearly indicated that agricultural practices, sediment characteristics, and hydrological factors have a major impact on seasonal sediment P bioavailability and mobility. The urban untreated discharges may be a single major P source and, if it is not wisely managed, proves a major threat to water quality. These results have serious implications for the river ecosystem and will be of great importance to improve the environmental and economic performance of agricultural practices aiming to reduce soil-based P legacy to surface waters.

  5. A Discussion of Reversible and Irreversible Sorption for Sr, Cs, Np, and Pu

    SciTech Connect

    Carroll, Susan; Tinnacher, Ruth; Kersting, Annie; Zavarin, Mavrik

    2010-04-30

    Here we discuss the possibility that fission product and actinide sorption is reversible when thermodynamic and kinetic factors are accounted for in predictive models. We do this by reviewing the sorption behavior of Sr, Cs, Np, and Pu, and by reviewing our ability to model their sorption behavior.

  6. Evaluation of hydride compressor elements for the Planck sorption cryocooler

    NASA Technical Reports Server (NTRS)

    Bowman, R. C.; Prina, M.; Barber, D. S.; Bhandari, P.; Crumb, D.; Loc, A. S.; Morgante, G.; Reiter, J. W.; Schmelzel, M. E.

    2002-01-01

    Hydrogen sorption crycoolers are being developed for the European Space Agency Planck mission to provide nominal 19 K cooling to instruments for measuring the temperature anisotropy of the cosmic microwave background with extreme sensitivity and resolution.

  7. Kinetic and spectroscopic requirements for the inference of chemical heating rates and atomic hydrogen densities from OH Meinel band measurements

    NASA Astrophysics Data System (ADS)

    Mlynczak, Martin G.; Zhou, Daniel K.; Adler-Golden, Steven M.

    We present the accuracy requirements for specific kinetic and spectroscopic parameters used in modeling populations of vibrationally excited hydroxyl. The requirements are based on simulations of the inference of chemical energy deposition rates and atomic hydrogen densities from satellite observations of the hydroxyl Meinel band emission rates. Improvement in the rate constants which describe the collisional removal of the high-lying υ states of OH and the reaction of highlying υ states with atomic oxygen is required in addition to improved specification of the nascent distribution of energy within OH upon reaction of atomic hydrogen and ozone. These improvements are necessary for the interpretation of Meinel band measurements to be made from a new spaceflight experiment in less than 3 years.

  8. Effect of electrolytical hydrogenation on the thermal stability and crystallization kinetics of metallic glass Fe79Si9B12

    NASA Astrophysics Data System (ADS)

    Górecki, Cz; Górecki, T.

    2011-04-01

    The effect of electrolytical hydrogenation on both the surface and volume crystallization kinetics and thermal stability of amorphous alloy Fe79Si9B12 has been investigated. The parameters of the surface and volume crystallization (temperature, activation energy) have been determined applying the exoelectron emission (EEE) and differential thermal analysis (DTA) methods, respectively. It has been found that the surface crystallization of investigated material occurs at temperature much lower and with activation energy smaller than the volume crystallization. The determination of the activation energies for the volume and surface crystallization by the combination of DTA and EEE techniques enables the determination of activation energies for both the nucleation and growth of the crystalline phase in metallic glasses and other amorphous materials. Hydrogenation of the investigated metallic glass reduces its thermal stability, what is manifested by an decrease in the activation energies for both the surface and volume crystallization.

  9. Growth kinetics of hydrogen sulfide oxidizing bacteria in corroded concrete from sewers.

    PubMed

    Jensen, Henriette Stokbro; Lens, Piet N L; Nielsen, Jeppe L; Bester, Kai; Nielsen, Asbjørn Haaning; Hvitved-Jacobsen, Thorkild; Vollertsen, Jes

    2011-05-30

    Hydrogen sulfide oxidation by microbes present on concrete surfaces of sewer pipes is a key process in sewer corrosion. The growth of aerobic sulfur oxidizing bacteria from corroded concrete surfaces was studied in a batch reactor. Samples of corrosion products, containing sulfur oxidizing bacteria, were suspended in aqueous solution at pH similar to that of corroded concrete. Hydrogen sulfide was supplied to the reactor to provide the source of reduced sulfur. The removal of hydrogen sulfide and oxygen was monitored. The utilization rates of both hydrogen sulfide and oxygen suggested exponential bacterial growth with median growth rates of 1.25 d(-1) and 1.33 d(-1) as determined from the utilization rates of hydrogen sulfide and oxygen, respectively. Elemental sulfur was found to be the immediate product of the hydrogen sulfide oxidation. When exponential growth had been achieved, the addition of hydrogen sulfide was terminated leading to elemental sulfur oxidation. The ratio of consumed sulfur to consumed oxygen suggested that sulfuric acid was the ultimate oxidation product. To the knowledge of the authors, this is the first study to determine the growth rate of bacteria involved in concrete corrosion with hydrogen sulfide as source of reduced sulfur.

  10. Chemical Kinetics of Hydrogen Atom Abstraction from Allylic Sites by (3)O2; Implications for Combustion Modeling and Simulation.

    PubMed

    Zhou, Chong-Wen; Simmie, John M; Somers, Kieran P; Goldsmith, C Franklin; Curran, Henry J

    2017-03-09

    Hydrogen atom abstraction from allylic C-H bonds by molecular oxygen plays a very important role in determining the reactivity of fuel molecules having allylic hydrogen atoms. Rate constants for hydrogen atom abstraction by molecular oxygen from molecules with allylic sites have been calculated. A series of molecules with primary, secondary, tertiary, and super secondary allylic hydrogen atoms of alkene, furan, and alkylbenzene families are taken into consideration. Those molecules include propene, 2-butene, isobutene, 2-methylfuran, and toluene containing the primary allylic hydrogen atom; 1-butene, 1-pentene, 2-ethylfuran, ethylbenzene, and n-propylbenzene containing the secondary allylic hydrogen atom; 3-methyl-1-butene, 2-isopropylfuran, and isopropylbenzene containing tertiary allylic hydrogen atom; and 1-4-pentadiene containing super allylic secondary hydrogen atoms. The M06-2X/6-311++G(d,p) level of theory was used to optimize the geometries of all of the reactants, transition states, products and also the hinder rotation treatments for lower frequency modes. The G4 level of theory was used to calculate the electronic single point energies for those species to determine the 0 K barriers to reaction. Conventional transition state theory with Eckart tunnelling corrections was used to calculate the rate constants. The comparison between our calculated rate constants with the available experimental results from the literature shows good agreement for the reactions of propene and isobutene with molecular oxygen. The rate constant for toluene with O2 is about an order magnitude slower than that experimentally derived from a comprehensive model proposed by Oehlschlaeger and coauthors. The results clearly indicate the need for a more detailed investigation of the combustion kinetics of toluene oxidation and its key pyrolysis and oxidation intermediates. Despite this, our computed barriers and rate constants retain an important internal consistency. Rate constants

  11. Site-Specific Hydrogen Isotope Composition of Propane: Mass spectrometric methods, equilibrium temperature dependence, and kinetics of exchange

    NASA Astrophysics Data System (ADS)

    Xie, H.; Ponton, C.; Kitchen, N.; Lloyd, M. K.; Lawson, M.; Formolo, M. J.; Eiler, J. M.

    2016-12-01

    Intramolecular isotope ordering can constrain temperatures of synthesis, mechanisms of formation, and/or source substrates of organic compounds. Here we explore site-specific hydrogen isotope variations of propane. Statistical thermodynamic models predict that at equilibrium methylene hydrogen (-CH2-) in propane will be 10's of per mil higher in D/H ratio than methyl hydrogen (-CH3) at geologically relevant temperatures, and that this difference is highly temperature dependent ( 0.5-1 ‰/°C). Chemical-kinetic controls on site-specific D/H in propane could constrain the mechanisms, conditions and extents of propane synthesis or destruction. We have developed a method for measuring the difference in D/H ratio between methylene and methyl hydrogen in propane by gas source mass spectrometry. The data were measured using the Thermo Fisher Double Focusing Sector high resolution mass spectrometer (DFS), and involve comparison of the D/H ratios of molecular ion (C3H8+) and the ethyl fragmental ion (C2H5+). We demonstrate the accuracy and precision of this method through analysis of D-labeled and independently analyzed propanes. In the exchange experiments, propane was heated (100-200 oC) either alone or in the presence of D-enriched water (δD=1,1419 ‰ SMOW), with or without one of several potentially catalytic substrates for hours to weeks. Propane was found to exchange hydrogen with water vigorously at 200 °C in the presence of metal catalysts. In the presence of Ni catalyst, methylene hydrogen exchanges 2.5 times faster than methyl hydrogen. Hydrogen exchange in the presence of Pd catalyst is more effective and can equilibrate hydrogen isotope distribution on propane on the order of 7 days. Isotopic exchange in the presence of natural materials have also been tested, but is only measurable in the methylene group at 200 °C. High catalytic activity of Pd permits attainment of a bracketed, time-invariant equilibrium state that we use to calibrate the site

  12. Kinetic and spectroscopic studies of the [palladium(Ar-bian)]-catalyzed semi-hydrogenation of 4-octyne.

    PubMed

    Kluwer, Alexander M; Koblenz, Tehila S; Jonischkeit, Thorsten; Woelk, Klaus; Elsevier, Cornelis J

    2005-11-09

    The kinetics of the stereoselective semi-hydrogenation of 4-octyne in THF by the highly active catalyst [Pd{(m,m'-(CF(3))(2)C(6)H(3))-bian}(ma)] (2) (bian = bis(imino)acenaphthene; ma = maleic anhydride) has been investigated. The rate law under hydrogen-rich conditions is described by r = k[4-octyne](0.65)[Pd][H(2)], showing first order in palladium and dihydrogen and a broken order in substrate. Parahydrogen studies have shown that a pairwise transfer of hydrogen atoms occurs in the rate-limiting step. In agreement with recent theoretical results, the proposed mechanism consists of the consecutive steps: alkyne coordination, heterolytic dihydrogen activation (hydrogenolysis of one Pd-N bond), subsequent hydro-palladation of the alkyne, followed by addition of N-H to palladium, reductive coupling of vinyl and hydride and, finally, substitution of the product alkene by the alkyne substrate. Under hydrogen-limiting conditions, side reactions occur, that is, formation of catalytically inactive palladacycles by oxidative alkyne coupling. Furthermore, it has been shown that (Z)-oct-4-ene is the primary reaction product, from which the minor product (E)-oct-4-ene is formed by an H(2)-assisted, palladium-catalyzed isomerization reaction.

  13. Influence of different types of effectors on the kinetic parameters of suicide inactivation of catalase by hydrogen peroxide.

    PubMed

    Ghadermarzi, M; Moosavi-Movahedi, A A

    1999-04-12

    The effects of cyanide and azide ions (class A), sodium-n-dodecyl sulphate (SDS) and 2-mercaptoethanol (class B), 3-aminotriazole (class C) and NADPH (class D) on the initial activity (ai), inactivation rate constant (ki) and the partition ratio (r) of bovine liver catalase reaction with its suicide substrate, hydrogen peroxide, were studied in 50 mM sodium phosphate buffer, pH 7.0 at 27 degrees C. The above kinetic parameters were determined by processing the progress curve data. In class A, which contains fast and reversible inhibitors of catalase, a proportional decrease in ai and ki was observed by inhibitors, so that the r remained constant. In class B, which contains slow and irreversible inactivators, a decrease in ai and constancy of ki and r were observed when catalase was incubated in the presence of such inactivators for a determined time. In class C, containing effector which can combine with intermediate compound I, ai was relatively unchanged but an increase in ki and a decrease in r were observed. In class D, containing effector which reduces compound I to ferricatalase, ai was not affected significantly but some decrease in ki was detected which was linked with an increase in r. These results demonstrate that different classes of effectors affect the determined kinetic parameters of catalase in various ways. Thus, determination of such parameters by simple kinetic experiments can be carried out for classification of the agents which have an effect on the kinetics of catalase.

  14. A Conserved Helical Capping Hydrogen Bond in PAS Domains Controls Signaling Kinetics in the Superfamily Prototype Photoactive Yellow Protein

    PubMed Central

    Kumauchi, Masato; Kaledhonkar, Sandip; Philip, Andrew F.; Wycoff, James; Hara, Miwa; Li, Yunxing; Xie, Aihua; Hoff, Wouter D.

    2010-01-01

    PAS domains form a divergent protein superfamily with more than 20,000 members that perform a wide array of sensing and regulatory functions in all three domains of life. Only 9 residues are well-conserved in PAS domains, with an Asn residue at the start of α-helix 3 showing the strongest conservation. The molecular functions of these 9 conserved residues are unknown. We use static and time-resolved visible and FTIR spectroscopy to investigate receptor activation in the photosensor photoactive yellow protein (PYP), a PAS domain prototype. The N43A and N43S mutants allow an investigation of the role of side chain hydrogen bonding at this conserved position. The mutants exhibit a blue-shifted visible absorbance maximum and up-shifted chromophore pKa. Disruption of the hydrogen bonds in N43A PYP causes both a reduction in protein stability and a 3,400-fold increase in the lifetime of the signaling state of this photoreceptor. A significant part of this increase in lifetime can be attributed to the helical capping interaction of Asn43. This extends the known importance of helical capping for protein structure to regulating functional protein kinetics. A model for PYP activation has been proposed in which side chain hydrogen bonding of Asn43 is critical for relaying light-induced conformational changes. However, FTIR spectroscopy shows that both Asn43 mutants retain full allosteric transmission of structural changes. Analysis of 30 available high resolution structures of PAS domains reveals that the side chain hydrogen bonding of residue 43 but not residue identity is highly conserved, and suggests that its helical cap affects signaling kinetics in other PAS domains. PMID:20954744

  15. First-principles-based kinetic Monte Carlo studies of diffusion of hydrogen in Ni–Al and Ni–Fe binary alloys

    DOE PAGES

    Tafen, De Nyago

    2015-02-14

    The diffusion of dilute hydrogen in fcc Ni–Al and Ni–Fe binary alloys was examined using kinetic Monte Carlo method with input kinetic parameters obtained from first-principles density functional theory. The simulation involves the implementation of computationally efficient energy barrier model that describes the configuration dependence of the hydrogen hopping. The predicted hydrogen diffusion coefficients in Ni and Ni89.4Fe10.6 are compared well with the available experimental data. In Ni–Al, the model predicts lower hydrogen diffusivity compared to that in Ni. Overall, diffusion prefactors and the effective activation energies of H in Ni–Fe and Ni–Al are concentration dependent of the alloying element.more » Furthermore, the changes in their values are the results of the short-range order (nearest-neighbor) effect on the interstitial diffusion of hydrogen in fcc Ni-based alloys.« less

  16. First-principles-based kinetic Monte Carlo studies of diffusion of hydrogen in Ni–Al and Ni–Fe binary alloys

    SciTech Connect

    Tafen, De Nyago

    2015-02-14

    The diffusion of dilute hydrogen in fcc Ni–Al and Ni–Fe binary alloys was examined using kinetic Monte Carlo method with input kinetic parameters obtained from first-principles density functional theory. The simulation involves the implementation of computationally efficient energy barrier model that describes the configuration dependence of the hydrogen hopping. The predicted hydrogen diffusion coefficients in Ni and Ni89.4Fe10.6 are compared well with the available experimental data. In Ni–Al, the model predicts lower hydrogen diffusivity compared to that in Ni. Overall, diffusion prefactors and the effective activation energies of H in Ni–Fe and Ni–Al are concentration dependent of the alloying element. Furthermore, the changes in their values are the results of the short-range order (nearest-neighbor) effect on the interstitial diffusion of hydrogen in fcc Ni-based alloys.

  17. Enhanced Kinetics of Electrochemical Hydrogen Uptake and Release by Palladium Powders Modified by Electrochemical Atomic Layer Deposition

    DOE PAGES

    Benson, David M.; Tsang, Chu F.; Sugar, Joshua Daniel; ...

    2017-04-28

    One method for the formation of nanofilms of materials, is Electrochemical atomic layer deposition (E-ALD), one atomic layer at a time. It uses the galvanic exchange of a less noble metal, deposited using underpotential deposition (UPD), to produce an atomic layer of a more noble element by reduction of its ions. This process is referred to as surface limited redox replacement and can be repeated in a cycle to grow thicker deposits. Previously, we performed it on nanoparticles and planar substrates. In the present report, E-ALD is applied for coating a submicron-sized powder substrate, making use of a new flowmore » cell design. E-ALD is used to coat a Pd powder substrate with different thicknesses of Rh by exchanging it for Cu UPD. Furthermore, cyclic voltammetry and X-ray photoelectron spectroscopy indicate an increasing Rh coverage with increasing numbers of deposition cycles performed, in a manner consistent with the atomic layer deposition (ALD) mechanism. Cyclic voltammetry also indicated increased kinetics of H sorption and desorption in and out of the Pd powder with Rh present, relative to unmodified Pd.« less

  18. Estimation of kinetic parameters related to biochemical interactions between hydrogen peroxide and signal transduction proteins

    PubMed Central

    Brito, Paula M.; Antunes, Fernando

    2014-01-01

    The lack of kinetic data concerning the biological effects of reactive oxygen species is slowing down the development of the field of redox signaling. Herein, we deduced and applied equations to estimate kinetic parameters from typical redox signaling experiments. H2O2-sensing mediated by the oxidation of a protein target and the switch-off of this sensor, by being converted back to its reduced form, are the two processes for which kinetic parameters are determined. The experimental data required to apply the equations deduced is the fraction of the H2O2 sensor protein in the reduced or in the oxidized state measured in intact cells or living tissues after exposure to either endogenous or added H2O2. Either non-linear fittings that do not need transformation of the experimental data or linearized plots in which deviations from the equations are easily observed can be used. The equations were shown to be valid by fitting to them virtual time courses simulated with a kinetic model. The good agreement between the kinetic parameters estimated in these fittings and those used to simulate the virtual time courses supported the accuracy of the kinetic equations deduced. Finally, equations were successfully tested with real data taken from published experiments that describe redox signaling mediated by the oxidation of two protein tyrosine phosphatases, PTP1B and SHP-2, which are two of the few H2O2-sensing proteins with known kinetic parameters. Whereas for PTP1B estimated kinetic parameters fitted in general the present knowledge, for SHP-2 results obtained suggest that reactivity toward H2O2 as well as the rate of SHP-2 regeneration back to its reduced form are higher than previously thought. In conclusion, valuable quantitative kinetic data can be estimated from typical redox signaling experiments, thus improving our understanding about the complex processes that underlie the interplay between oxidative stress and redox signaling responses. PMID:25325054

  19. Estimation of kinetic parameters related to biochemical interactions between hydrogen peroxide and signal transduction proteins

    NASA Astrophysics Data System (ADS)

    Brito, Paula; Antunes, Fernando

    2014-10-01

    The lack of kinetic data concerning the biological effects of reactive oxygen species is slowing down the development of the field of redox signaling. Herein, we deduced and applied equations to estimate kinetic parameters from typical redox signaling experiments. H2O2-sensing mediated by the oxidation of a protein target and the switch-off of this sensor, by being converted back to its reduced form, are the two processes for which kinetic parameters are determined. The experimental data required to apply the equations deduced is the fraction of the H2O2 sensor protein in the reduced or in the oxidized state measured in intact cells or living tissues after exposure to either endogenous or added H2O2. Either non-linear fittings that do not need transformation of the experimental data or linearized plots in which deviations from the equations are easily observed can be used. The equations were shown to be valid by fitting to them virtual time courses simulated with a kinetic model. The good agreement between the kinetic parameters estimated in these fittings and those used to simulate the virtual time courses supported the accuracy of the kinetic equations deduced. Finally, equations were successfully tested with real data taken from published experiments that describe redox signaling mediated by the oxidation of two protein tyrosine phosphatases, PTP1B and SHP-2, which are two of the few H2O2-sensing proteins with known kinetic parameters. Whereas for PTP1B estimated kinetic parameters fitted in general the present knowledge, for SHP-2 results obtained suggest that reactivity towards H2O2 as well as the rate of SHP-2 regeneration back to its reduced form are higher than previously thought. In conclusion, valuable quantitative kinetic data can be estimated from typical redox signaling experiments, thus improving our understanding about the complex processes that underline the interplay between oxidative stress and redox signaling responses.

  20. Effect of transition-metal additives on hydrogen desorption kinetics of MgH2

    NASA Astrophysics Data System (ADS)

    Roy, Anindya; Janotti, Anderson; Van de Walle, Chris G.

    2013-01-01

    Using first-principles calculations, we study the effect of transition-metal additives (Ti, Fe, Co, and Ni) on the rate of hydrogen desorption in MgH2. The presence of large concentrations of transition-metal impurities causes the Fermi level to shift according to the position of the transition-metal acceptor/donor levels in the band gap. This shift can lower the formation energy of native defects and increase their concentration. The resulting higher rates of hydrogen desorption enhance the prospect of MgH2 as a solid-state hydrogen-storage material.

  1. Reduced and Validated Kinetic Mechanisms for Hydrogen-CO-sir Combustion in Gas Turbines

    SciTech Connect

    Yiguang Ju; Frederick Dryer

    2009-02-07

    Rigorous experimental, theoretical, and numerical investigation of various issues relevant to the development of reduced, validated kinetic mechanisms for synthetic gas combustion in gas turbines was carried out - including the construction of new radiation models for combusting flows, improvement of flame speed measurement techniques, measurements and chemical kinetic analysis of H{sub 2}/CO/CO{sub 2}/O{sub 2}/diluent mixtures, revision of the H{sub 2}/O{sub 2} kinetic model to improve flame speed prediction capabilities, and development of a multi-time scale algorithm to improve computational efficiency in reacting flow simulations.

  2. Sorption of some textile dyes by beech wood sawdust.

    PubMed

    Dulman, Viorica; Cucu-Man, Simona Maria

    2009-03-15

    The purpose of this paper is to establish the experimental conditions for removal of several textile dyes from aqueous solutions by sorption on beech wood sawdust, an industrial waste lignocellulosic product. From the six dyes tested, the sorbent shows preference for three dyes: Direct Brown, Direct Brown 2 and Basic Blue 86. Sorption of dyes on the beech wood sawdust is dependent on the nature of dye, pH, dyes concentration, contact time, and amount of sorbent. By comparative kinetic studies, the rate of sorption was found to conform with good correlation to pseudo-second-order kinetics. The parameters that characterize the sorption were determined on the basis of Langmuir isotherms. The preference of beech sawdust for dyes increases as follows: Basic Blue 86sorption of the commercial dye (of approximately 60% purity) was found to be 526.3 mg g(-1) for Direct Brown.

  3. Features of the kinetics of 4-nitroaniline and azoxybenzene hydrogenation in 2-propanol aqueous solutions

    NASA Astrophysics Data System (ADS)

    Kha, Nguen Tkhi Tkhu; Lefedova, O. V.; Merkin, A. A.

    2013-04-01

    It is shown experimentally that the hydrogenation of 4-nitroaniline and azoxybenzene over a skeletal nickel catalyst in 2-propanol aqueous solutions proceeds selectively with the formation of the corresponding amines without the accumulation of side products in the bulk phase. It is concluded that during reduction, considerable participation of hydrogen bonded with active centers of a catalyst surface was observed. The competitive character of adsorption between the initial azoxybenzene and aniline formed as a result of reaction is established. It is ascertained that the character of changes in the rates of hydrogenation of nitro and azoxy groups is identical in the presence of additions of acid or base. It is demonstrated that a targeted change in the hydrogenation rates of these compounds is possible by introducing additions of acetic acid or sodium hydroxide into 2-propanol aqueous solution.

  4. Modeling the reaction kinetics of a hydrogen generator onboard a fuel cell -- Electric hybrid motorcycle

    NASA Astrophysics Data System (ADS)

    Ganesh, Karthik

    Owing to the perceived decline of the fossil fuel reserves in the world and environmental issues like pollution, conventional fuels may be replaced by cleaner alternative fuels. The potential of hydrogen as a fuel in vehicular applications is being explored. Hydrogen as an energy carrier potentially finds applications in internal combustion engines and fuel cells because it is considered a clean fuel and has high specific energy. However, at 6 to 8 per kilogram, not only is hydrogen produced from conventional methods like steam reforming expensive, but also there are storage and handling issues, safety concerns and lack of hydrogen refilling stations across the country. The purpose of this research is to suggest a cheap and viable system that generates hydrogen on demand through a chemical reaction between an aluminum-water slurry and an aqueous sodium hydroxide solution to power a 2 kW fuel cell on a fuel cell hybrid motorcycle. This reaction is essentially an aluminum-water reaction where sodium hydroxide acts as a reaction promoter or catalyst. The Horizon 2000 fuel cell used for this purpose has a maximum hydrogen intake rate of 28 lpm. The study focuses on studying the exothermic reaction between the reactants and proposes a rate law that best describes the rate of generation of hydrogen in connection to the surface area of aluminum available for the certain reaction and the concentration of the sodium hydroxide solution. Further, the proposed rate law is used in the simulation model of the chemical reactor onboard the hybrid motorcycle to determine the hydrogen flow rate to the fuel cell with time. Based on the simulated rate of production of hydrogen from the chemical system, its feasibility of use on different drive cycles is analyzed. The rate of production of hydrogen with a higher concentration of sodium hydroxide and smaller aluminum powder size was found to enable the installation of the chemical reactor on urban cycles with frequent stops and starts

  5. Systematic evaluation of nitrate and perchlorate bioreduction kinetics in groundwater using a hydrogen-based membrane biofilm reactor.

    PubMed

    Ziv-El, Michal C; Rittmann, Bruce E

    2009-01-01

    To evaluate the simultaneous reduction kinetics of the oxidized compounds, we treated nitrate-contaminated groundwater (approximately 9.4 mg-N/L) containing low concentrations of perchlorate (approximately 12.5 microg/L) and saturated with dissolved oxygen (approximately 8 mg/L) in a hydrogen-based membrane biofilm reactor (MBfR). We systematically increased the hydrogen availability and simultaneously varied the surface loading of the oxidized compounds on the biofilm in order to provide a comprehensive, quantitative data set with which to evaluate the relationship between electron donor (H(2)) availability, surface loading of the electron acceptors (oxidized compounds), and simultaneous bioreduction of the electron acceptors. Increasing the H(2) pressure delivered more H(2) gas, and the total H(2) flux increased linearly from approximately 0.04 mg/cm(2)-d for 0.5 psig (0.034 atm) to 0.13 mg/cm(2)-d for 9.5 psig (0.65 atm). This increased rate of H(2) delivery allowed for continued reduction of the acceptors as their surface loading increased. The electron acceptors had a clear hydrogen-utilization order when the availability of hydrogen was limited: oxygen, nitrate, nitrite, and then perchlorate. Spiking the influent with perchlorate or nitrate allowed us to identify the maximum surface loadings that still achieved more than 99.5% reduction of both oxidized contaminants: 0.21 mg NO(3)-N/cm(2)-d and 3.4 microg ClO(4)/cm(2)-d. Both maximum values appear to be controlled by factors other than hydrogen availability.

  6. Equilibrium, thermodynamics, and kinetic sorption studies for the removal of coomassie brilliant blue on wheat bran as a low-cost adsorbent.

    PubMed

    Ata, Sadia; Imran Din, Muhammad; Rasool, Atta; Qasim, Imran; Ul Mohsin, Ijaz

    2012-01-01

    The sorption studies of coomassie brilliant blue (CBB) from aqueous solution have been carried out on wheat bran (WB). Coomassie brilliant blue on wheat bran was used to study the adsorption behavior under various parameters such as pH, dosage amount, and contact time. It was observed that under optimized conditions up to 95.70% dye could be removed from solution onto WB. Langmuir and Freundlich adsorption isotherms were used to elaborate the results. Freundlich model was found to be fitted well and favored multilayer adsorption. The Freundlich constants n and KF were determined as 0.53 and 2.5 × 10(-4). Thermodynamic parameters such as ΔG, ΔH, and ΔS studied were taking into account, showed spontaneous and favorable reaction for coomassie brilliant blue on wheat bran. The maximum adsorption capacity q(m) was found to be 6.410 mg/g. The investigations show that non treated WB is a low-cost adsorbent for the removal of dyes from textile industry effluents.

  7. Equilibrium, Thermodynamics, and Kinetic Sorption Studies for the Removal of Coomassie Brilliant Blue on Wheat Bran as a Low-Cost Adsorbent

    PubMed Central

    Ata, Sadia; Imran Din, Muhammad; Rasool, Atta; Qasim, Imran; Ul Mohsin, Ijaz

    2012-01-01

    The sorption studies of coomassie brilliant blue (CBB) from aqueous solution have been carried out on wheat bran (WB). Coomassie brilliant blue on wheat bran was used to study the adsorption behavior under various parameters such as pH, dosage amount, and contact time. It was observed that under optimized conditions up to 95.70% dye could be removed from solution onto WB. Langmuir and Freundlich adsorption isotherms were used to elaborate the results. Freundlich model was found to be fitted well and favored multilayer adsorption. The Freundlich constants n and KF were determined as 0.53 and 2.5 × 10−4. Thermodynamic parameters such as ΔG, ΔH, and ΔS studied were taking into account, showed spontaneous and favorable reaction for coomassie brilliant blue on wheat bran. The maximum adsorption capacity qm was found to be 6.410 mg/g. The investigations show that non treated WB is a low-cost adsorbent for the removal of dyes from textile industry effluents. PMID:22567559

  8. Thermodynamic and kinetic size effects for hydrogen-desorption in catalytically-doped magnesium hydride: Nanoparticle versus bulk surface effects

    NASA Astrophysics Data System (ADS)

    Reich, Jason; Wang, L.-L.; Johnson, D. D.

    2010-03-01

    Using density-functional methods with simulated annealing, we show that there are no size effects for hydrogen desorption energies in nanoparticles (NPs) of MgH2. Recently reported exothermic desorption energies in MgH2-doped NP (Mg30XH62) are shown to be spurious, resulting from metastable NP configurations before dehyrogenation. We confirm that the 93-atom NPs are amorphous, with structures that are sensitive to the presence of dopants, found via simulated annealing techniques. We find that dehydrogenation energies are similar between bulk surfaces and nanoparticles, showing that the thermodynamics is unchanged by particle size as desorption is determined only by the local hydrogen-metal bond. We then discuss the effects of nanoparticle size and presence of dopants on the kinetic barriers between NPs and bulk surfaces. The takehome message is: In modeling desorption events, especially within amorphous NPs, metastable, local minimum must be carefully avoided, and, in doing so, an accurate and physically reasonable picture emerges for the thermodynamic and kinetic behavior.

  9. Probing hydrogen peroxide oxidation kinetics of wild-type Synechocystis catalase-peroxidase (KatG) and selected variants.

    PubMed

    Vlasits, Jutta; Furtmüller, Paul G; Jakopitsch, Christa; Zamocky, Marcel; Obinger, Christian

    2010-04-01

    Catalase-peroxidases (KatGs) are unique bifunctional heme peroxidases that exhibit peroxidase and substantial catalase activities. Nevertheless, the reaction pathway of hydrogen peroxide dismutation, including the electronic structure of the redox intermediate that actually oxidizes H(2)O(2), is not clearly defined. Several mutant proteins with diminished overall catalase but wild-type-like peroxidase activity have been described in the last years. However, understanding of decrease in overall catalatic activity needs discrimination between reduction and oxidation reactions of hydrogen peroxide. Here, by using sequential-mixing stopped-flow spectroscopy, we have investigated the kinetics of the transition of KatG compound I (produced by peroxoacetic acid) to its ferric state by trapping the latter as cyanide complex. Apparent bimolecular rate constants (pH 6.5, 20 degrees C) for wild-type KatG and the variants Trp122Phe (lacks KatG-typical distal adduct), Asp152Ser (controls substrate access to the heme cavity) and Glu253Gln (channel entrance) are reported to be 1.2x10(4)M(-1)s(-1), 30M(-1)s(-1), 3.4x10(3)M(-1)s(-1), and 8.6x10(3)M(-1)s(-1), respectively. These findings are discussed with respect to steady-state kinetic data and proposed reaction mechanism(s) for KatG. Assets and drawbacks of the presented method are discussed. Copyright 2009 Elsevier B.V. All rights reserved.

  10. Transport and sorption of volatile organic compounds and water vapor in porous media

    SciTech Connect

    Lin, Tsair-Fuh

    1995-07-01

    To gain insight on the controlling mechanisms for VOC transport in porous media, the relations among sorbent properties, sorption equilibrium and intraparticle diffusion processes were studied at the level of individual sorbent particles and laboratory columns for soil and activated carbon systems. Transport and sorption of VOCs and water vapor were first elucidated within individual dry soil mineral grains. Soil properties, sorption capacity, and sorption rates were measured for 3 test soils; results suggest that the soil grains are porous, while the sorption isotherms are nonlinear and adsorption-desorption rates are slow and asymmetric. An intragranular pore diffusion model coupled with the nonlinear Freundlich isotherm was developed to describe the sorption kinetic curves. Transport of benzene and water vapor within peat was studied; partitioning and sorption kinetics were determined with an electrobalance. A dual diffusion model was developed. Transport of benzene in dry and moist soil columns was studied, followed by gaseous transport and sorption in activated carbon. The pore diffusion model provides good fits to sorption kinetics for VOCs to soil and VOC to granular activated carbon and activated carbon fibers. Results of this research indicate that: Intraparticle diffusion along with a nonlinea sorption isotherm are responsible for the slow, asymmetric sorption-desorption. Diffusion models are able to describe results for soil and activated carbon systems; when combined with mass transfer equations, they predict column breakthrough curves for several systems. Although the conditions are simplified, the mechanisms should provide insight on complex systems involving transport and sorption of vapors in porous media.

  11. In-situ catalyzation approach for enhancing the hydrogenation/dehydrogenation kinetics of MgH2 powders with Ni particles

    NASA Astrophysics Data System (ADS)

    El-Eskandarany, M. Sherif; Shaban, Ehab; Ali, Naser; Aldakheel, Fahad; Alkandary, Abdullah

    2016-11-01

    One practical solution for utilizing hydrogen in vehicles with proton-exchange fuel cells membranes is storing hydrogen in metal hydrides nanocrystalline powders. According to its high hydrogen capacity and low cost of production, magnesium hydride (MgH2) is a desired hydrogen storage system. Its slow hydrogenation/dehydrogenation kinetics and high thermal stability are the major barriers restricting its usage in real applications. Amongst the several methods used for enhancing the kinetics behaviors of MgH2 powders, mechanically milling the powders with one or more catalyst species has shown obvious advantages. Here we are proposing a new approach for gradual doping MgH2 powders with Ni particles upon ball milling the powders with Ni-balls milling media. This proposed is-situ method showed mutually beneficial for overcoming the agglomeration of catalysts and the formation of undesired Mg2NiH4 phase. Moreover, the decomposition temperature and the corresponding activation energy showed low values of 218 °C and 75 kJ/mol, respectively. The hydrogenation/dehydrogenation kinetics examined at 275 °C of the powders milled for 25 h took place within 2.5 min and 8 min, respectively. These powders containing 5.5 wt.% Ni performed 100-continuous cycle-life time of hydrogen charging/discharging at 275 °C within 56 h without failure or degradation.

  12. In-situ catalyzation approach for enhancing the hydrogenation/dehydrogenation kinetics of MgH2 powders with Ni particles.

    PubMed

    El-Eskandarany, M Sherif; Shaban, Ehab; Ali, Naser; Aldakheel, Fahad; Alkandary, Abdullah

    2016-11-16

    One practical solution for utilizing hydrogen in vehicles with proton-exchange fuel cells membranes is storing hydrogen in metal hydrides nanocrystalline powders. According to its high hydrogen capacity and low cost of production, magnesium hydride (MgH2) is a desired hydrogen storage system. Its slow hydrogenation/dehydrogenation kinetics and high thermal stability are the major barriers restricting its usage in real applications. Amongst the several methods used for enhancing the kinetics behaviors of MgH2 powders, mechanically milling the powders with one or more catalyst species has shown obvious advantages. Here we are proposing a new approach for gradual doping MgH2 powders with Ni particles upon ball milling the powders with Ni-balls milling media. This proposed is-situ method showed mutually beneficial for overcoming the agglomeration of catalysts and the formation of undesired Mg2NiH4 phase. Moreover, the decomposition temperature and the corresponding activation energy showed low values of 218 °C and 75 kJ/mol, respectively. The hydrogenation/dehydrogenation kinetics examined at 275 °C of the powders milled for 25 h took place within 2.5 min and 8 min, respectively. These powders containing 5.5 wt.% Ni performed 100-continuous cycle-life time of hydrogen charging/discharging at 275 °C within 56 h without failure or degradation.

  13. In-situ catalyzation approach for enhancing the hydrogenation/dehydrogenation kinetics of MgH2 powders with Ni particles

    PubMed Central

    El-Eskandarany, M. Sherif; Shaban, Ehab; Ali, Naser; Aldakheel, Fahad; Alkandary, Abdullah

    2016-01-01

    One practical solution for utilizing hydrogen in vehicles with proton-exchange fuel cells membranes is storing hydrogen in metal hydrides nanocrystalline powders. According to its high hydrogen capacity and low cost of production, magnesium hydride (MgH2) is a desired hydrogen storage system. Its slow hydrogenation/dehydrogenation kinetics and high thermal stability are the major barriers restricting its usage in real applications. Amongst the several methods used for enhancing the kinetics behaviors of MgH2 powders, mechanically milling the powders with one or more catalyst species has shown obvious advantages. Here we are proposing a new approach for gradual doping MgH2 powders with Ni particles upon ball milling the powders with Ni-balls milling media. This proposed is-situ method showed mutually beneficial for overcoming the agglomeration of catalysts and the formation of undesired Mg2NiH4 phase. Moreover, the decomposition temperature and the corresponding activation energy showed low values of 218 °C and 75 kJ/mol, respectively. The hydrogenation/dehydrogenation kinetics examined at 275 °C of the powders milled for 25 h took place within 2.5 min and 8 min, respectively. These powders containing 5.5 wt.% Ni performed 100-continuous cycle-life time of hydrogen charging/discharging at 275 °C within 56 h without failure or degradation. PMID:27849033

  14. A DFT study and micro-kinetic analysis of acetylene selective hydrogenation on Pd-doped Cu(111) surfaces

    NASA Astrophysics Data System (ADS)

    Ma, Ling-Ling; Lv, Cun-Qin; Wang, Gui-Chang

    2017-07-01

    Semi-hydrogenation of acetylene in a hydrogen-rich stream is an industrially important process. Inspired by the recent experiments that Cu(111) surface doped by a small number of Pd atoms can exhibit excellent catalytic performance toward the dissociation of H2 molecule as well as the high selective hydrogenation of acetylene as compared with pure Cu and Pd metal alone at low-temperature, here we performed systematic first-principles calculations to investigate the corresponding reaction mechanism related to the acetylene hydrogenation processes on single atom alloys (SAAs) and monolayer Pd/Cu(111) (i.e.,1.00 ML Pd/Cu(111)) model catalysts in detail, and to explore the possible factors controlling the high selectivity on SAAs. Our results clearly demonstrate that the SAA catalyst has higher selectivity for the ethylene formation than that of 1.00 ML Pd/Cu(111), and lower activity for the acetylene conversion compared with that of 1.00 ML Pd/Cu(111). The relatively high selectivity on SAA is mainly due to the facile desorption of ethylene and moderate activity in the dissociation of molecular H2. The main factor which lowers the selectivity towards the ethylene formation on 1.00 ML Pd/Cu(111) is that this system has a higher capacity to promote the breaking of Csbnd H/Csbnd C bonds, which leads to the formation of carbonaceous deposits and polymers such as benzene, and thus reduces the selectivity for the ethylene formation. Meanwhile, it was found that the desorption energy of ethylene on these two surfaces was smaller than the energy barrier of further hydrogenation, which results in the absence of ethane on these two systems. Micro-kinetic model analysis provides a further valuable insight into the evidence for the key factors controlling the catalytic activity and selectivity towards the selective hydrogenation of acetylene. Our findings may help people to design a highly selective hydrogenation catalyst by controlling the balance between the H2 dissociation and

  15. Electrical and mechanical controlling of the kinetic and magnetic properties of hydrogen atoms on free-standing silicene

    NASA Astrophysics Data System (ADS)

    Podsiadły-Paszkowska, Agata; Krawiec, Mariusz

    2016-07-01

    Effects of strain, charge doping and external electric field on kinetic and magnetic properties of hydrogen atoms on a free-standing silicene layer are investigated by first-principles density functional theory. It was found that the charge doping and strain are the most effective ways of changing the hydrogen-silicene binding energy, but they can only raise its value. The perpendicular external electric field can also lower it albeit in a narrower range. The strain has also the strongest impact on diffusion processes, and the diffusion barrier can be modified up to 50% of its unstrained value. The adsorption of hydrogen atoms results in a locally antiferromagnetic ground state with the effective exchange constant of approximately 1 eV. The system can easily be driven into a nonmagnetic phase by the charge doping and strain. The obtained results are very promising in view of the silicene functionalization and potential applications of silicene in fields of modern nanoelectronics and spintronics.

  16. A mathematical model for the kinetics of Methanobacterium bryantii M.o.H. considering hydrogen thresholds.

    PubMed

    Karadagli, Fatih; Rittmann, Bruce E

    2007-08-01

    We develop a kinetic model that builds on the foundation of classic Monod kinetics, but incorporates new phenomena such as substrate thresholds and survival mode observed in experiments with the H2-oxidizing methanogen Methanobacterium bryantii M.o.H. We apply our model to the experimental data presented in our companion paper on H2 thresholds. The model accurately describes H2 consumption, CH4 generation, biomass growth, substrate thresholds, and survival state during batch experiments. Methane formation stops when its Gibbs free energy is equal zero, although this does not interrupt H2 oxidation. The thermodynamic threshold for H2 oxidation occurs when the free energy for oxidizing H2 and transferring electrons to biomass is no longer negative, at approximately 0.4 nM. This threshold is not controlled by the Gibbs free energy equation of methanogenesis from H2 + HCO3- as we show in our companion paper. Beyond this threshold, the microorganisms shift to a low-maintenance metabolism called "the survival state" in response to extended H2 starvation; adding the starvation response as another new feature of the kinetic model. A kinetic threshold (or S (min)), a natural feature of the Monod kinetics, is also captured by the model at H2 concentration of around approximately 2,400 nM. S (min) is the minimum substrate concentration to maintain steady-state biomass concentration. Our model will be useful for interpreting threshold results and designing new studies to understand thresholds and their ecological implications.

  17. Impact of Materials Processing on Microstructural Evolution and Hydrogen Isotope Storage Properties of Pd-Rh Alloy Powders.

    SciTech Connect

    Yee, Joshua K

    2015-02-01

    Cryomilled Pd - 10Rh was investiga ted as potential solid - state storage material of hydrogen. Pd - 10Rh was first atomized, and then subsequently cryomilled. The cryomilled Pd - 10Rh was then examined using microstructural characterization techniques including op tical microscopy, electron microscopy, and X - ray diffraction. Pd - 10Rh particles were significantly flattened, increasing the apparent surface area. Microstructural refinement was observed in the cryomilled Pd - 10Rh, generating grains at the nanom etric scale through dislocation - based activity. Hydrogen sorption properties were also characterized, generating both capacity as well as kinetics measurements. It was found that the microstructural refinement due to cryomilling did not play a significant role on hyd rogen sorption properties until the smallest grain size (on the order of %7E25 nm) was achieved. Additionally, the increased surface area and other changes in particle morphology were associated with cryomilling changed the kinetics of hydrogen absorption.

  18. Competitive sorption of cadmium and lead in acid soils of central Spain

    SciTech Connect

    Serrano, S.; Garrido, F.; Campbell, C.G.; Garcia-Gonzolez, Maria Teresa

    2004-01-30

    The bioavailability and ultimate fate of heavy metals in the environment are controlled by chemical sorption. To assess competitive sorption of Pb and Cd, batch equilibrium experiments (generating sorption isotherms) and kinetics sorption studies were performed using single and binary metal solutions in surface samples of four soils from central Spain. For comparisons between soils, as well as, single and binary metal solutions, soil chemical processes were characterized using the Langmuir equation, ionic strength, and an empirical power function for kinetic sorption. In addition, soil pH and clay mineralogy were used to explain observed sorption processes. Sorption isotherms were well described by the Langmuir equation and the sorption kinetics were well described by an empirical power function within the reaction times in this study. Soils with higher pH and clay content (characterized by having smectite) had the greatest sorption capacity as estimated by the maximum sorption parameter (Q) of the Langmuir equation. All soils exhibited greater sorption capacity for Pb than Cd and the presence of both metals reduced the tendency for either to be sorbed although Cd sorption was affected to a greater extent than that of Pb. The Langmuir binding strength parameter (k) was always greater for Pb than for Cd. However, these k values tended to increase as a result of the simultaneous presence of both metals, that may indicate competition for sorption sites promoting the retention of both metals on more specific sorption sites. The kinetic experiments showed that Pb sorption is initially faster than Cd sorption from both single and binary solutions although the simultaneous presence of both metals affected the sorption of Cd at short times while only a minor effect was observed on Pb. The estimated exponents of the kinetic function were in all cases smaller for Pb than for Cd, likely due to diffusion processes into micropores or interlayer space of the clay minerals which

  19. Highly improved hydrogen storage capacity and kinetics of the nanocrystalline and amorphous PrMg12-type alloys by mechanical milling

    NASA Astrophysics Data System (ADS)

    Zhang, Y. H.; Shang, H. W.; Li, Y. Q.; Yuan, Z. M.; Yang, T.; Zhao, D. L.

    2017-01-01

    Nanocrystalline and amorphous PrMg11Ni + x wt.% Ni (x = 100, 200) alloys were synthesized by mechanical milling. Effects of Ni content and milling duration on the structures, hydrogen storage capacity and kinetics of the as-milled alloys were investigated systematically. The structures were characterized by XRD and HRTEM. The hydrogen desorption activation energy was calculated by using Kissinger method. The results show that increasing Ni content dramatically improves the electrochemical discharge capacity of the as-milled alloys. Furthermore, the variation of milling time has a significant impact on the kinetics of the alloys. As the milling time increased, the high-rate discharge ability (HRD), gaseous hydrogen absorption capacity and hydrogenation rate increased at first but decreased finally, while the dehydrogenation rate always increased.

  20. Nucleation kinetics, crystal growth and optical studies on lithium hydrogen oxalate monohydrate single crystal

    NASA Astrophysics Data System (ADS)

    Chandran, Senthilkumar; Paulraj, Rajesh; Ramasamy, P.

    2017-06-01

    Semi-organic lithium hydrogen oxalate monohydrate non-linear optical single crystals have been grown by slow evaporation solution technique at 40 °C. The nucleation parameters such as critical radius, interfacial tension, and critical free energy change have been evaluated using the experimental data. The solubility and the nucleation curve of the crystal at different temperatures have been analyzed. The crystal has a positive temperature coefficient of solubility. The metastable zone width and induction period have been determined for the aqueous solution growth of lithium hydrogen oxalate monohydrate. The UV-vis-NIR spectrum showed this crystal has high transparency. The photoconductivity studies indicate lithium hydrogen oxalate monohydrate has positive photoconductivity behaviour. The low etch pit density observed on (0 0 1) crystal surface and the high resolution x-ray difraction analysis indicate the good quality of the grown crystals

  1. Magnesium nanoparticles with transition metal decoration for hydrogen storage

    NASA Astrophysics Data System (ADS)

    Pasquini, Luca; Callini, Elsa; Brighi, Matteo; Boscherini, Federico; Montone, Amelia; Jensen, Torben R.; Maurizio, Chiara; Vittori Antisari, Marco; Bonetti, Ennio

    2011-11-01

    We report on the hydrogen storage behaviour of Mg nanoparticles (NPs) (size range 100 nm-1 μm) with metal-oxide core-shell morphology synthesized by inert gas condensation and decorated by transition metal (TM) (Pd or Ti) clusters via in situ vacuum deposition. The structure and morphology of the as-prepared and hydrogenated NPs is studied by electron microscopy, X-ray diffraction including in situ experiments and X-ray absorption spectroscopy, in order to investigate the relationships with the hydrogen storage kinetics measured by the volumetric Sieverts method. With both Pd and Ti, the decoration deeply improves the hydrogen sorption properties: previously inert NPs exhibit complete hydrogenation with fast transformation kinetics, good stability and reversible gravimetric capacity that can attain 6 wt%. In the case of Pd-decoration, the occurrence of Mg-Pd alloying is observed at high temperatures and in dependence of the hydrogen pressure conditions. These structural transformations modify both the kinetics and thermodynamics of hydride formation, while Ti-decoration has an effect only on the kinetics. The experimental results are discussed in relation with key issues such as the amount of decoration, the heat of mixing between TM and Mg and the binding energy between TM and hydrogen.

  2. An exceptional kinetic quantum sieving separation effect of hydrogen isotopes on commercially available carbon molecular sieves.

    PubMed

    Xing, Yanlong; Cai, Jinjun; Li, Liangjun; Yang, Menglong; Zhao, Xuebo

    2014-08-14

    The quantum sieving effect of H2/D2 at 77 K on commercially available carbon molecular sieves (1.5GN-H and 3KT-172) was studied. An exceptional reverse kinetic quantum effect is observed on 1.5GN-H where D2 diffuses much faster than H2 with a ratio of up to 5.83 at low pressure, and the difference is still very evident even as the pressure increases up to 1 bar. D2 also diffuses faster than H2 on 3KT-172 with a ratio of up to 1.86. However, the reverse kinetic sieving disappears in a polymer-based carbon (PC). The present kinetic quantum sieving effect of H2 and D2 at 77 K on 1.5GN-H is the highest to date.

  3. Kinetics of the Oxidation of Hydrazine by Hydrogen Peroxide, Catalyzed by Copper (II)

    DTIC Science & Technology

    1975-08-01

    the reaction involves copper ion and hydrogen peroxide. Since copp~er(II) has been shawn to react slowly with hydrogen peroxide,5’,10 the miore...NUMBER 7. AUTHOR(s) 0 CONTRACT OR GRANT NUMBER(a) Carl R. Wellman J. Richard Ward !.ester P. Kuhn 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM...NAME AND ADDRESS 12. REPORT DATE U.S. Army Materiel Command AUGUST 1975) 5001 Eisenhower Av’enue .NUEROPAS AlexandriaV ; 2 IC. MONITORING ASANC NAME

  4. FUNDAMENTAL KINETICS OF SUPERCRITICAL COAL LIQUEFACTION: EFFECT OF CATALYSTS AND HYDROGEN-DONOR SOLVENTS

    SciTech Connect

    Benjamin J. McCoy; J.M. Smith

    1998-08-01

    This report outlines a distribution kinetics approach to macromolecular reactions that has been applied to several processes. The objective was to develop an understanding of high-temperature, dense-phase thermolytic processes for complex macromolecular systems, such as coal. Experiments and theory are described for chemical models that simulate depolymerization of coal. The approach has been exceptionally successful for the model macromolecular systems. Development of a novel chemical reaction engineering analysis, based on distribution kinetics, was a major accomplishment of the current research.

  5. Gas Sorption and Storage Properties of Calixarenes

    SciTech Connect

    Patil, Rahul S.; Banerjee, Debasis; Atwood, Jerry L.; Thallapally, Praveen K.

    2016-12-01

    Calixarenes, a class of organic macrocyclic molecules have shown interesting gas sorption properties towards industrially important gases such as carbon di-oxide, hydrogen, methane and acetylene. These macrocycles are involved in weak van der Waals interaction to form multidimensional supramolecular frameworks. The gas-diffusion and subsequent sorption occurs due to a cooperative behavior between neighboring macrocycles. Furthermore, the flexibility at the upper rim functional group also plays a key role in the overall gas uptake of calixarene. In this book chapter, we give a brief account of interaction and diffusion of gases in calixarene and selected derivatives.

  6. Dynamic kinetic resolution in the stereoselective synthesis of 4,5-diaryl cyclic sulfamidates by using chiral rhodium-catalyzed asymmetric transfer hydrogenation.

    PubMed

    Han, Juae; Kang, Soyeong; Lee, Hyeon-Kyu

    2011-04-07

    The dynamic kinetic resolution of 4,5-diaryl cyclic sulfamidate imines was achieved via asymmetric transfer hydrogenation using a HCO(2)H/Et(3)N mixture as the hydrogen source and chiral Rh catalysts (R,R)- or (S,S)-RhCl(TsDPEN)Cp* affording the corresponding cyclic sulfamidates in good yields with up to >20 : 1 dr and up to >99% ee.

  7. Stereoselective Synthesis of 4-Substituted Cyclic Sulfamidate-5-Phosphonates by Using Rh-Catalyzed, Asymmetric Transfer Hydrogenation with Accompanying Dynamic Kinetic Resolution.

    PubMed

    Seo, Yeon Ji; Kim, Jin-ah; Lee, Hyeon-Kyu

    2015-09-04

    Dynamic kinetic resolution driven, asymmetric transfer hydrogenation of 4-substituted cyclic sulfamidate imine-5-phosphonates produces the corresponding cyclic sulfamidate-5-phosphonates. The process employs a HCO2H/Et3N mixture as the hydrogen source and the chiral Rh catalysts, (R,R)- or (S,S)-Cp*RhCl(TsDPEN), and it takes place at room temperature within 1 h with high yields and high levels of stereoselectivity.

  8. Regenerative Sorption Refrigerator

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.; Wen, Liang-Chi; Bard, Steven

    1991-01-01

    Two-stage sorption refrigerator achieves increased efficiency via regenerative-heating concept in which waste heat from praseodymium/cerium oxide (PCO) chemisorption compressor runs charcoal/krypton (C/Kr) sorption compressor. Waste heat from each PCO sorption compressor used to power surrounding C/Kr sorption compressor. Flows of heat in two compressor modules controlled by gas-gap thermal switches. Has no wearing moving parts other than extremely long life, room-temperature check valves operating about twice per hour. Virtually no measurable vibration, and has potential operating life of at least ten years.

  9. New analytical potential energy surface for the F(2P)+CH4 hydrogen abstraction reaction: kinetics and dynamics.

    PubMed

    Espinosa-García, J; Bravo, J L; Rangel, C

    2007-04-12

    A new potential energy surface for the gas-phase F(2P)+CH4 reaction and its deuterated analogues is reported, and its kinetics and dynamics are studied exhaustively. This semiempirical surface is completely symmetric with respect to the permutation of the four methane hydrogen atoms, and it is calibrated to reproduce the topology of the reaction and the experimental thermal rate constants. For the kinetics, the thermal rate constants were calculated using variational transition-state theory with semiclassical transmission coefficients over a wide temperature range, 180-500 K. The theoretical results reproduce the experimental variation with temperature. The influence of the tunneling factor is negligible, due to the flattening of the surface in the entrance valley, and we found a direct dependence on temperature, and therefore positive and small activation energies, in agreement with experiment. Two sets of kinetic isotope effects were calculated, and they show good agreement with the sparse experimental data. The coupling between the reaction coordinate and the vibrational modes shows qualitatively that the FH stretching and the CH3 umbrella bending modes in the products appear vibrationally excited. The dynamics study was performed using quasi-classical trajectory calculations, including corrections to avoid zero-point energy leakage along the trajectories. First, we found that the FH(nu',j') rovibrational distributions agree with experiment. Second, the excitation function presents an oscillatory pattern, reminiscent of a reactive resonance. Third, the state specific scattering distributions present reasonable agreement with experiment, and as the FH(nu') vibrational state increases the scattering angle becomes more forward. These kinetics and dynamics results seem to indicate that a single, adiabatic potential energy surface is adequate to describe this reaction, and the reasonable agreement with experiment (always qualitative and sometimes quantitative) lends

  10. An experimental and detailed chemical kinetic modeling study of hydrogen and syngas mixture oxidation at elevated pressures

    DOE PAGES

    Keromnes, Alan; Metcalfe, Wayne K.; Heufer, Karl A.; ...

    2013-03-12

    The oxidation of syngas mixtures was investigated experimentally and simulated with an updated chemical kinetic model. Ignition delay times for H2/CO/O2/N2/Ar mixtures have been measured using two rapid compression machines and shock tubes at pressures from 1 to 70 bar, over a temperature range of 914–2220 K and at equivalence ratios from 0.1 to 4.0. Results show a strong dependence of ignition times on temperature and pressure at the end of the compression; ignition delays decrease with increasing temperature, pressure, and equivalence ratio. The reactivity of the syngas mixtures was found to be governed by hydrogen chemistry for CO concentrationsmore » lower than 50% in the fuel mixture. For higher CO concentrations, an inhibiting effect of CO was observed. Flame speeds were measured in helium for syngas mixtures with a high CO content and at elevated pressures of 5 and 10 atm using the spherically expanding flame method. A detailed chemical kinetic mechanism for hydrogen and H2/CO (syngas) mixtures has been updated, rate constants have been adjusted to reflect new experimental information obtained at high pressures and new rate constant values recently published in the literature. Experimental results for ignition delay times and flame speeds have been compared with predictions using our newly revised chemical kinetic mechanism, and good agreement was observed. In the mechanism validation, particular emphasis is placed on predicting experimental data at high pressures (up to 70 bar) and intermediate- to high-temperature conditions, particularly important for applications in internal combustion engines and gas turbines. The reaction sequence H2 + HO˙2 ↔ H˙+H2O2 followed by H2O2(+M) ↔ O˙H+O˙H(+M) was found to play a key role in hydrogen ignition under high-pressure and intermediate-temperature conditions. The rate constant for H2+HO˙2 showed strong sensitivity to high-pressure ignition times and has considerable uncertainty, based on literature values

  11. An experimental and detailed chemical kinetic modeling study of hydrogen and syngas mixture oxidation at elevated pressures

    SciTech Connect

    Keromnes, Alan; Metcalfe, Wayne K.; Heufer, Karl A.; Donohoe, Nicola; Das, Apurba K.; Sung, Chih -Jen; Herzler, Jurgen; Naumann, Clemens; Griebel, Peter; Mathieu, Olivier; Krejci, Michael C.; Petersen, Eric L.; Pitz, William J.; Curran, Henry J.

    2013-03-12

    The oxidation of syngas mixtures was investigated experimentally and simulated with an updated chemical kinetic model. Ignition delay times for H2/CO/O2/N2/Ar mixtures have been measured using two rapid compression machines and shock tubes at pressures from 1 to 70 bar, over a temperature range of 914–2220 K and at equivalence ratios from 0.1 to 4.0. Results show a strong dependence of ignition times on temperature and pressure at the end of the compression; ignition delays decrease with increasing temperature, pressure, and equivalence ratio. The reactivity of the syngas mixtures was found to be governed by hydrogen chemistry for CO concentrations lower than 50% in the fuel mixture. For higher CO concentrations, an inhibiting effect of CO was observed. Flame speeds were measured in helium for syngas mixtures with a high CO content and at elevated pressures of 5 and 10 atm using the spherically expanding flame method. A detailed chemical kinetic mechanism for hydrogen and H2/CO (syngas) mixtures has been updated, rate constants have been adjusted to reflect new experimental information obtained at high pressures and new rate constant values recently published in the literature. Experimental results for ignition delay times and flame speeds have been compared with predictions using our newly revised chemical kinetic mechanism, and good agreement was observed. In the mechanism validation, particular emphasis is placed on predicting experimental data at high pressures (up to 70 bar) and intermediate- to high-temperature conditions, particularly important for applications in internal combustion engines and gas turbines. The reaction sequence H2 + HO˙2 ↔ H˙+H2O2 followed by H2O2(+M) ↔ O˙H+O˙H(+M) was found to play a key role in hydrogen ignition under high-pressure and intermediate-temperature conditions. The rate constant for H2+HO˙2

  12. Dual Studies on a Hydrogen-Deuterium Exchange of Resorcinol and the Subsequent Kinetic Isotope Effect

    ERIC Educational Resources Information Center

    Giles, Richard; Kim, Iris; Chao, Weyjuin Eric; Moore, Jennifer; Jung, Kyung Woon

    2014-01-01

    An efficient laboratory experiment has been developed for undergraduate students to conduct hydrogen-deuterium (H-D) exchange of resorcinol by electrophilic aromatic substitution using D[subscript 2]O and a catalytic amount of H[subscript 2]SO[subscript 4]. The resulting labeled product is characterized by [superscript 1]H NMR. Students also…

  13. Dual Studies on a Hydrogen-Deuterium Exchange of Resorcinol and the Subsequent Kinetic Isotope Effect

    ERIC Educational Resources Information Center

    Giles, Richard; Kim, Iris; Chao, Weyjuin Eric; Moore, Jennifer; Jung, Kyung Woon

    2014-01-01

    An efficient laboratory experiment has been developed for undergraduate students to conduct hydrogen-deuterium (H-D) exchange of resorcinol by electrophilic aromatic substitution using D[subscript 2]O and a catalytic amount of H[subscript 2]SO[subscript 4]. The resulting labeled product is characterized by [superscript 1]H NMR. Students also…

  14. An investigation of the kinetics of hydrogen chemisorption on iron metal surfaces

    NASA Technical Reports Server (NTRS)

    Shanabarger, M. R.

    1982-01-01

    The isothermal kinetics of H2, H2S, and O2 chemisorption onto epitaxially grown (III) oriented Fe films were studied. The measurements were made using the techniques of chemisorption induced resistance change and Auger electron spectroscopy (for adsorbed sulfur and oxygen). Also the origin of the chemisorption induced resistance change for these systems and its applicability to kinetic measurements were established. The chemisorption kinetics were interpreted as dissociative chemisorption via an adsorbed molecular species. The applicable rate constants were established. In none of the studies were the rate constants observed to be coverage dependent. By comparing the temperature dependence of the rate constants with absolute rate theory, the binding energies and activation energies of all the kinetic processes were obtained for the H2/Fe system. The initial sticking coefficient was pressure dependent for both the H2/Fe and H2S/Fe systems. This results from the step between the adsorbed molecular state and the dissociated chemisorbed state being the rate limiting step for absorption at certain pressures and temperatures. Estimates were obtained for the temperature dependence of the rate constants for the O2/Fe system.

  15. Kinetics and the mass transfer mechanism of hydrogen sulfide removal by biochar derived from rice hull.

    PubMed

    Shang, Guofeng; Liu, Liang; Chen, Ping; Shen, Guoqing; Li, Qiwu

    2016-05-01

    The biochar derived from rice hull was evaluated for its abilities to remove hydrogen sulfide (H2S) from gas phase. The surface area and pH of the biochar were compared. The biochar derived from rice hull was evaluated for its abilities to remove hydrogen sulfide (H2S) from gas phase. The surface area and pH of the biochar were compared. The different pyrolysis temperature has great influence on the adsorption of H2S. At the different pyrolysis temperature, the H2S removal efficiency of rice hull-derived biochar was different. The adsorption capacities of biochar were 2.09 mg·g(-1), 2.65 mg·g(-1), 16.30 mg·g(-1), 20.80 mg·g(-1), and 382.70 mg·g(-1), which their pyrolysis temperatures were 100 °C, 200 °C, 300 °C, 400 °C and 500 °C respectively. Based on the Yoon-Nelson model, it analyzed the mass transfer mechanism of hydrogen sulfide adsorption by biochar. The paper focuses on the biochar derived from rice hull-removed hydrogen sulfide (H2S) from gas phase. The surface area and pH of the biochar were compared. The different pyrolysis temperatures have great influence on the adsorption of H2S. At the different pyrolysis temperatures, the H2S removal efficiency of rice hull-derived biohar was different. The adsorption capacities of biochar were 2.09, 2.65, 16.30, 20.80, and 382.70 mg·g(-1), and their pyrolysis temperatures were 100, 200, 300, 400, and 500 °C, respectively. Based on the Yoon-Nelson model, the mass transfer mechanism of hydrogen sulfide adsorption by biochar was analyzed.

  16. A kinetic model for thermally induced hydrogen and carbon isotope fractionation of individual n-alkanes in crude oil

    NASA Astrophysics Data System (ADS)

    Tang, Yongchun; Huang, Yongsong; Ellis, Geoffrey S.; Wang, Yi; Kralert, Paul G.; Gillaizeau, Bruno; Ma, Qisheng; Hwang, Rong

    2005-09-01

    A quantitative kinetic model has been proposed to simulate the large D and 13C isotope enrichments observed in individual n-alkanes (C 13-C 21) during artificial thermal maturation of a North Sea crude oil under anhydrous, closed-system conditions. Under our experimental conditions, average n-alkane δ 13C values increase by ˜4‰ and δD values increase by ˜50‰ at an equivalent vitrinite reflectance value of 1.5%. While the observed 13C-enrichment shows no significant dependence on hydrocarbon chain length, thermally induced D-enrichment increases with increasing n-alkane carbon number. This differential fractionation effect is speculated to be due to the combined effect of the greater extent of thermal cracking of higher molecular weight, n-alkanes compared to lower molecular weight homologues, and the generation of isotopically lighter, lower molecular weight compounds. This carbon-number-linked hydrogen isotopic fractionation behavior could form the basis of a new maturity indicator to quantitatively assess the extent of oil cracking in petroleum reservoirs. Quantum mechanical calculations of the average change in enthalpy (ΔΔH ‡) and entropy (ΔΔS ‡) as a result of isotopic substitution in n-alkanes undergoing homolytic cleavage of C-C bonds lead to predictions of isotopic fractionation that agree quite well with our experimental results. For n-C 20 ( n-icosane), the changes in enthalpy are calculated to be ˜1340 J mol -1 (320 cal mol -1) and 230 J mol -1 (55 cal mol -1) for D-H and 13C- 12C, respectively. Because the enthalpy term associated with hydrogen isotope fractionation is approximately six times greater than that for carbon, variations in δD values for individual long-chain hydrocarbons provide a highly sensitive measure of the extent of thermal alteration experienced by the oil. Extrapolation of the kinetic model to typical geological heating conditions predicts significant enrichment in 13C and D for n-icosane at equivalent vitrinite

  17. Sorption of norfloxacin onto humic acid extracted from weathered coal.

    PubMed

    Zhang, Qin; Zhao, Ling; Dong, Yuan-Hua; Huang, Guan-Yi

    2012-07-15

    Norfloxacin (NOR), is an ionizable and polar antimicrobial compound, and it may enter the environment in substantial amounts via the application of manure or sewage as a fertilizer. Sorption of NOR onto humic acid (HA) may affect its environmental fate. In this study, HA extracted from weathered coal was used to investigate the sorption of NOR at different solution chemistry conditions (pH, ionic strength) and temperatures. The sorption of NOR onto HA showed a two-stage sorption process with an equilibration time of 48 h. The sorption kinetic curve fitted well with a pseudo second-order kinetic model. Thermodynamic characteristics demonstrated that the sorption of NOR onto HA was a spontaneous and exothermic process predominated by physical sorption. All sorption isotherms fitted well with the Freundlich and Langmuir models and they were highly nonlinear with values of n between 0.4 and 0.5, suggesting the high heterogeneity of HA. Increasing Ca2+ concentration resulted in a considerable reduction in the K(d) values of NOR, hinting that Ca2+ had probably competed with NOR(+,0) for the cation exchange sites on the surfaces of HA. The sorption reached a maximum at pH 6.0 over the pH range of 2.0-8.0, implying that the primary sorption mechanism was cation exchange interaction between NOR(+,0) species and the negatively charged functional groups of HA. Spectroscopic evidence demonstrated that the piperazinyl moiety of NOR was responsible for sorption onto HA, while the carbonyl group and the aromatic structure of HA participated in adsorbing NOR. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Sorption of Pb(ll) by poly(hydroxamic acid) grafted oil palm empty fruit bunch.

    PubMed

    Haron, M J; Tiansin, M; Ibrahim, N A; Kassim, A; Wan Yunus, W M Z; Talebi, S M

    2011-01-01

    This paper describes the sorption of Pb(ll) from aqueous solution. Oil palm empty fruit bunch (OPEFB) fiber was first grafted with poly(methylacrylate) and then treated with hydroxylammonium chloride in alkaline medium to produce hydroxamic acid (PHA) grafted OPEFB. Sorption of Pb(ll) by PHA-OPEFB was maximum at pH 5. The sorption followed the Langmuir model with maximum capacityof 125.0 mg g-1 at 25 degrees C. The sorption process was exothermic, as shown by the negative value of enthalpy change, Delta H0. The free energy change (DeltaG0) for the sorption was negative, showing that the sorption process was spontaneous. A kinetic study showed that the Pb(ll) sorption followed a second order kinetic model.

  19. Sorption of radionuclides by cement-based barrier materials

    SciTech Connect

    Li, Kefei Pang, Xiaoyun

    2014-11-15

    This paper investigates the sorption of radionuclide ions, {sup 137}Cs{sup +} and {sup 90}Sr{sup 2+}, by cement-based barrier materials for radioactive waste disposal. A mortar with ternary binder is prepared and powder samples are ground from the hardened material following a predetermined granulometry. After pre-equilibrium with an artificial pore solution, the sorption behaviors of powder samples are investigated through single sorption and blended sorption. The results show that: (1) no systematic difference is observed for single and blended sorptions thus the interaction between {sup 137}Cs{sup +} and {sup 90}Sr{sup 2+} sorptions must be weak; (2) the sorption kinetics is rapid and all characteristic times are less than 1d; (3) the sorption capacity is enhanced by C–A–S–H hydrates and the measured K{sub d} values can be predicted from C–S–H sorption data with Ca/Si ratio equal to Ca/(Si + Al) ratio.

  20. Sorption of fibronectin to human root surfaces in vitro

    SciTech Connect

    Mendieta, C.; Caravana, C.; Fine, D.H. )

    1990-05-01

    The purpose of this study was to determine the conditions that favor the sorption and retention of human plasma fibronectin to cementum. Rectangular root segments prepared from teeth extracted for orthodontic reasons were mounted on a capillary pipette and immersed in solutions of {sup 125}I fibronectin for assay of cementum sorption under various conditions. Kinetic studies showed sorption to be rapid, with 77% of the maximum fibronectin sorption occurring within 1 minute. Fibronectin sorption was reduced when added in conjunction with serum and was inhibited by monovalent ions (such as sodium), but enhanced in the presence of divalent cations (such as calcium). Exposure of cementum to serum partially blocked subsequent sorption of fibronectin, while cementum bound fibronectin was eluted by subsequent exposure to serum. Treatment of cementum with citric acid pH 1.1 (4 minutes) followed by 5% sodium hypochlorite (5 minutes) caused a significant increase in fibronectin sorption with maximum retention upon subsequent exposure to serum (P less than 0.05). Fibronectin sorption to cementum was: rapid, electrostatic in nature, competitive, reversible, Ca+(+)-facilitated, and maximized by prior treatment of the root with citric acid and sodium hypochlorite. It is concluded that sorption of fibronectin to cementum can be achieved for clinical gain; however, conditions of application can significantly influence both accumulation and subsequent release of root sorbed material.

  1. Promising gaseous and electrochemical hydrogen storage properties of porous Mg-Pd films under mild conditions.

    PubMed

    Xin, Gongbiao; Yuan, Huiping; Jiang, Lijun; Wang, Shumao; Liu, Xiaopeng; Li, Xingguo

    2015-05-28

    In this paper, the gaseous and electrochemical hydrogen storage properties of 200 nm Mg-Pd thin films with different morphologies have been investigated. The results show that Mg-Pd films become porous with the increase of substrate temperature. Porous Mg-Pd films exhibit superior gaseous and electrochemical hydrogen storage behaviors under mild conditions, including rapid hydrogen sorption kinetics, a large hydrogen storage amount, high electrochemical discharge capacity, and a fast hydrogen diffusion rate. The excellent behaviors of porous Mg-Pd films might be ascribed to the significantly shortened hydrogen diffusion paths and the large contact areas between the hydrogen gas and the solid Mg phases, which are elucidative for the development and applications of thick Mg-Pd films.

  2. An Investigation of the Effect of Surface Impurities on the Adsorption Kinetics of Hydrogen Chemisorbed onto Iron

    NASA Technical Reports Server (NTRS)

    Shanabarger, M. R.

    1997-01-01

    The original goal of this program was to investigate the effect surface impurities have on the heterogeneous kinetic processes of those molecular species which produce gaseous hydrogen degradation of the mechanical properties of metallic structural materials. However, shortly after the initiation of the original program, the program's NASA Technical Monitor, Dr. Howard Nelson, requested that the effort supported by this Co-operative Agreement be redirected to study more pressing materials issues associated to the development of the National Aero-Space Plane (NASP). The results of these efforts are outlined in this report. Detailed discussions of specific work, including experimental techniques and procedures, will be found in the publications listed with the subsection discussing that specific work as well and in Section 5. No inventions were generated or disclosed within this Agreement.

  3. Enantiodivergent Atroposelective Synthesis of Chiral Biaryls by Asymmetric Transfer Hydrogenation: Chiral Phosphoric Acid Catalyzed Dynamic Kinetic Resolution.

    PubMed

    Mori, Keiji; Itakura, Tsubasa; Akiyama, Takahiko

    2016-09-12

    Reported herein is an enantiodivergent synthesis of chiral biaryls by a chiral phosphoric acid catalyzed asymmetric transfer hydrogenation reaction. Upon treatment of biaryl lactols with aromatic amines and a Hantzsch ester in the presence of chiral phosphoric acid, dynamic kinetic resolution (DKR) involving a reductive amination reaction proceeded smoothly to furnish both R and S isomers of chiral biaryls with excellent enantioselectivities by proper choice of hydroxyaniline derivative. This trend was observed in wide variety of substrates, and various chiral biphenyl and phenyl naphthyl adducts were synthesized with satisfactory enantioselectivities in enantiodivergent fashion. The enantiodivergent synthesis of synthetically challenging, chiral o-tetrasubstituted biaryls were also accomplished, and suggests high synthetic potential of the present method.

  4. Electrocatalysis of hydrogen peroxide reactions on perovskite oxides: experiment versus kinetic modeling.

    PubMed

    Poux, T; Bonnefont, A; Ryabova, A; Kéranguéven, G; Tsirlina, G A; Savinova, E R

    2014-07-21

    Hydrogen peroxide has been identified as a stable intermediate of the electrochemical oxygen reduction reaction on various electrodes including metal, metal oxide and carbon materials. In this article we study the hydrogen peroxide oxidation and reduction reactions in alkaline medium using a rotating disc electrode (RDE) method on oxides of the perovskite family (LaCoO3, LaMnO3 and La0.8Sr0.2MnO3) which are considered as promising electrocatalytic materials for the cathode of liquid and solid alkaline fuel cells. The experimental findings, such as the higher activity of Mn-compared to that of Co-perovskites, the shape of RDE curves, and the influence of the H2O2 concentration, are rationalized with the help of a microkinetic model.

  5. Small-Scale Kinetic Study of the Catalyzed Decomposition of Hydrogen Peroxide

    NASA Astrophysics Data System (ADS)

    Ragsdale, Ronald O.; Vanderhooft, Jan C.; Zipp, Arden P.

    1998-02-01

    The rate of decomposition of hydrogen peroxide with pyrolusite as a catalyst was studied directly by following the formation of oxygen bubbles. The apparatus consisted of a barrel from a 2-ml Beral pipet inserted over a micropipet tip which was fitted into a one-hole stopper. The stopper assembly was placed in a 20-mL glass bottle reaction vessel. The hydrogen peroxide can be obtained from the super market and the catalyst, a piece of pyrolusite, can be recycled. The reaction order was found to be 1.1 + 0.2 by 240 pairs of students. The activation energy was 35 + 14 kJ. Reproducible data have also been obtained with the minerals, psilomelane, maganite, and groutite as catalysts.

  6. Thermochemical and kinetics studies of the CH3SH+S (3P) hydrogen abstraction and insertion reactions.

    PubMed

    Cardoso, Daniely V V; Cunha, Leonardo A; Spada, Rene F K; Ferrão, Luiz F A; Roberto-Neto, Orlando; Machado, Francisco B C

    2014-09-01

    Sulfur-containing molecules have a significant impact on atmosphere and biosphere. In this work we studied, from the point of view of electronic structure and chemical kinetics methods, the elementary reactions between a methanethiol molecule and a sulfur atom leading to hydrogen abstraction C-S bond cleavage (CH(3)SH+S; R1:→ CH(3)S+SH; R2: → CH(2)SH+SH; R3:→ CH(3)+HS(2)). The geometrical structures of the reactants, products, and saddle points for the three reaction paths were optimized using the BB1K method with the aug-cc-pV(T+d)Z basis set. The thermochemical properties were improved using single point coupled-cluster (CCSD(T)) calculations on the BB1K geometries followed by extrapolation to the complete basis set (CBS) limit. This methodology was previously applied and has given accurate values of thermochemical and kinetics properties when compared to benchmark calculations and experimental data. For each reaction, the thermal rate constants were calculated using the improved canonical variational theory (ICVT) including the zero-curvature (ICVT/ZCT) and small-curvature (ICVT/SCT) tunneling corrections. For comparison, the overall ICVT/SCT reaction rate constant at 300 K obtained with single-point CCSD(T)/CBS calculations for the CH(3)SH+S reaction is approximately 1400 times lower than the isovalent CH(3)SH+O reaction, obtained with CVT/SCT. The reaction path involving the hydrogen abstraction from the thiol group is the most important reactive path in all temperatures.

  7. Implementation of steady state approximation for modelling of reaction kinetic of UV catalysed hydrogen peroxide oxidation of starch

    NASA Astrophysics Data System (ADS)

    Kumoro, Andri Cahyo; Retnowati, Diah Susetyo; Ratnawati, Budiyati, Catarina Sri

    2015-12-01

    With regard to its low viscosity, high stability, clarity, film forming and binding properties, oxidised starch has been widely used in various applications specifically in the food, paper, textile, laundry finishing and binding materials industries. A number of methods have been used to produce oxidised starch through reactions with various oxidizing agents, such as hydrogen peroxide, air oxygen, ozone, bromine, chromic acid, permanganate, nitrogen dioxide and hypochlorite. Unfortunately, most of previous works reported in the literatures were focused on the study of reaction mechanism and physicochemical properties characterization of the oxidised starches produced without investigation of the reaction kinetics of the oxidation process. This work aimed to develop a simple kinetic model for UV catalysed hydrogen peroxide oxidation of starch through implementation of steady state approximation for the radical reaction rates. The model was then verified using experimental data available in the literature. The model verification revealed that the proposed model shows its good agreement with the experimental data as indicated by an average absolute relative error of only 2.45%. The model also confirmed that carboxyl groups are oxidised further by hydroxyl radical. The carbonyl production rate was found to follow first order reaction with respect to carbonyl concentration. Similarly, carboxyl production rate also followed first order reaction with respect to carbonyl concentration. The apparent reaction rate constant for carbonyl formation and oxidation were 6.24 × 104 s-1 and 1.01 × 104 M-1.s-1, respectively. While apparent reaction rate constant for carboxyl oxidation was 4.86 × 104 M-1.s-1.

  8. Kinetic studies on enzyme-catalyzed reactions: oxidation of glucose, decomposition of hydrogen peroxide and their combination.

    PubMed

    Tao, Zhimin; Raffel, Ryan A; Souid, Abdul-Kader; Goodisman, Jerry

    2009-04-08

    The kinetics of the glucose oxidase-catalyzed reaction of glucose with O2, which produces gluconic acid and hydrogen peroxide, and the catalase-assisted breakdown of hydrogen peroxide to generate oxygen, have been measured via the rate of O2 depletion or production. The O2 concentrations in air-saturated phosphate-buffered salt solutions were monitored by measuring the decay of phosphorescence from a Pd phosphor in solution; the decay rate was obtained by fitting the tail of the phosphorescence intensity profile to an exponential. For glucose oxidation in the presence of glucose oxidase, the rate constant determined for the rate-limiting step was k = (3.0 +/- 0.7) x 10(4) M(-1) s(-1) at 37 degrees C. For catalase-catalyzed H2O2 breakdown, the reaction order in [H2O2] was somewhat greater than unity at 37 degrees C and well above unity at 25 degrees C, suggesting different temperature dependences of the rate constants for various steps in the reaction. The two reactions were combined in a single experiment: addition of glucose oxidase to glucose-rich cell-free media caused a rapid drop in [O2], and subsequent addition of catalase caused [O2] to rise and then decrease to zero. The best fit of [O2] to a kinetic model is obtained with the rate constants for glucose oxidation and peroxide decomposition equal to 0.116 s(-1) and 0.090 s(-1) respectively. Cellular respiration in the presence of glucose was found to be three times as rapid as that in glucose-deprived cells. Added NaCN inhibited O2 consumption completely, confirming that oxidation occurred in the cellular mitochondrial respiratory chain.

  9. The kinetics of iodide oxidation by hydrogen peroxide in acid solution

    NASA Astrophysics Data System (ADS)

    Milenković, M. C.; Stanisavljev, D. R.

    2011-12-01

    The kinetics of the complex reaction between I- and H2O2 in acid media was investigated. The particular attention was focused on the determination of the rate constant of the reaction between HIO and H2O2 involved in the investigated complex process. The examination of the whole kinetics was performed by simultaneously monitoring the evolution of O2 pressure, I{3/-} and I- concentrations. We modeled the behavior of experimentally followed components based on Liebhafsky's research. Our preliminary results suggest a significantly higher rate constant (3.5 × 107 M-1 s-1) of the reaction between HIO and H2O2 as those proposed in the literature.

  10. One-step reduced kinetics for lean hydrogen-air deflagration

    SciTech Connect

    Fernandez-Galisteo, D.; Sanchez, A.L.; Linan, A.; Williams, F.A.

    2009-05-15

    A short mechanism consisting of seven elementary reactions, of which only three are reversible, is shown to provide good predictions of hydrogen-air lean-flame burning velocities. This mechanism is further simplified by noting that over a range of conditions of practical interest, near the lean flammability limit all reaction intermediaries have small concentrations in the important thin reaction zone that controls the hydrogen-air laminar burning velocity and therefore follow a steady state approximation, while the main species react according to the global irreversible reaction 2H{sub 2} + O{sub 2} {yields} 2H{sub 2}O. An explicit expression for the non-Arrhenius rate of this one-step overall reaction for hydrogen oxidation is derived from the seven-step detailed mechanism, for application near the flammability limit. The one-step results are used to calculate flammability limits and burning velocities of planar deflagrations. Furthermore, implications concerning radical profiles in the deflagration and reasons for the success of the approximations are clarified. It is also demonstrated that adding only two irreversible direct recombination steps to the seven-step mechanism accurately reproduces burning velocities of the full detailed mechanism for all equivalence ratios at normal atmospheric conditions and that an eight-step detailed mechanism, constructed from the seven-step mechanism by adding to it the fourth reversible shuffle reaction, improves predictions of O and OH profiles. The new reduced-chemistry descriptions can be useful for both analytical and computational studies of lean hydrogen-air flames, decreasing required computation times. (author)

  11. Ab initio study of the kinetics of hydrogen abstraction reactions on toluene and tetralin

    SciTech Connect

    Beste, Ariana; Britt, Phillip F; Buchanan III, A C; Harrison, Robert J; Hathorn, Bryan C

    2008-01-01

    Hydrogen abstraction reactions play a key role in many thermal and catalytic processes involved in the production of fuels and chemicals. In this paper, the reaction barriers and rate constants for the hydrogen abstraction reactions on toluene and tetralin by the benzyl radical are calculated by ab initio methods. These reactions are representatives of similar reactions occurring in the thermolysis of lignin model compounds containing the phenethyl phenyl ether (PPE) structural moiety. Thermolysis of PPE occurs by a free radical chain mechanism in which the product selectivity arises from competitive hydrogen abstraction at the benzylic and nonbenzylic methylen sites by chain carrying benzyl and phenoxyl radicals. The title reactions serve to calibrate the theoretical methods to be used in the study of PPE through comparison of the rate constants and the reaction enthalpies with reliable experimental values. In this study, we used two different hybrid density functionals (BHandHLYP, B3LYP) and second-order perturbation theory to obtain equilibrium and transition state geometries. Multiple transition states were found for both reactions. BHandHLYP underestimates and second-order perturbation theory overestimates the reaction barriers; B3LYP energy barriers agree well with experiment. Absolute and relative rate constants were calculated using transition state theory. We found that the relative rate constant using the B3LYP functional agrees within a factor of 2.0 with experiment at the experimental temperature of 333 K, indicating that the B3LYP functional will be successful in predicting relative rate constants for hydrogen abstraction reactions participating in the pyrolysis of PPE.

  12. Impact of coal structural heterogeneity on the nonideal sorption of organic contaminants.

    PubMed

    Shi, Xin; Fu, Heyun; Li, Yuan; Mao, Jingdong; Zheng, Shourong; Zhu, Dongqiang

    2011-06-01

    Carbonaceous geosorbents (black carbon, coal, and humin/kerogen) play a primary role in the nonideal sorption (isotherm nonlinearity, hysteresis, and multiphasic kinetics) of hydrophobic organic chemicals by soils and sediments. The present study investigated the impact of coal structural heterogeneity on sorption/desorption of two model monoaromatic compounds (1,3-dichlorobenzene and 1,3-dinitrobenzene). Due to the higher degree of aromaticity and condensation, anthracite showed stronger sorption affinity and nonlinearity and slower sorption kinetics than lignite. Removal of humic substances by alkali extraction and/or mineral fraction by acidification did not much affect organic carbon-normalized sorption coefficient to the coal, suggesting nearly complete accessibility of adsorption sites on the condensed organic carbon. However, the treatments greatly increased sorption kinetics and meanwhile alleviated hysteresis of 1,3-dinitrobenzene, as compared with the original lignite. These observations were attributed to the enhanced exposure of high-energy adsorption sites on the condensed organic carbon after exfoliating the surface coverage by humic substances and minerals. An empirical biphasic pseudo-second-order model consisting of a fast sorption phase and a slow sorption phase adequately quantified the overall sorption kinetics for the coal sorbents. The results indicated that the condensed organic carbon, in combination with other structural components, controls the nonideal sorption of unburned coal. Copyright © 2011 SETAC.

  13. Sorption isotherms, kinetic and optimization process of amino acid proline based polymer nanocomposite for the removal of selected textile dyes from industrial wastewater.

    PubMed

    Raghunath, Sharista; Anand, K; Gengan, R M; Nayunigari, Mithil Kumar; Maity, Arjun

    2016-12-01

    In this article, adsorption and kinetic studies were carried out on three textile dyes, namely Reactive Blue 222 (RB 222), Reactive Red 195 (RR 195) and Reactive Yellow 145 (RY 145). The dyes studied in a mixture were adsorbed under various conditions onto PRO-BEN, a bentonite modified with a new cationic proline polymer (l-proline-epichlorohydrin polymer). The proline polymer was characterized by (1)H NMR, Fourier transform infrared spectroscopy (FT-IR), dynamic light scattering (DLS) and TEM. The PRO-BEN composite was characterized by FT-IR, dynamic light scattering (DLS) (zeta potential), TEM imaging, SEM/EDX and X-ray photoelectron spectroscopy (characterize the binding energy). During adsorption studies, factors involving pH, temperature, the initial concentrations of the dyes and the quantity of PRO-BEN used during adsorption were established. The results revealed that the adsorption mechanism was categorized by the Langmuir type 1 isotherm. The adsorption data followed the pseudo-second order kinetic model. The intraparticle diffusion model indicated that adsorption did not only depend on the intraparticle diffusion of the dyes. The thermodynamic parameters verified that the adsorption process was spontaneous and exothermic. The Gibbs free energy values indicated that physisorption had occurred. Successful adsorption of dyes from an industrial effluent was achieved. Desorption studies concluded that PRO-BEN desorbed the dyes better than alumina. This can thereby be viewed as a recyclable remediation material. The PRO-BEN composite could be a cost efficient alternative towards the removal of organic dyes in wastewater treatment.

  14. Quantitative kinetic analysis of hydrogen transfer reactions from dietary polyphenols to the DPPH radical.

    PubMed

    Goupy, Pascale; Dufour, Claire; Loonis, Michele; Dangles, Olivier

    2003-01-29

    Diphenylpicrylhydrazyl (DPPH) is widely used for quickly assessing the ability of polyphenols to transfer labile H atoms to radicals, a likely mechanism of antioxidant protection. This popular test generally pays no attention to the kinetics of H atom transfer, which however could be even more important than the total H-atom-donating capacities (stoichiometry, EC50) typically evaluated. In the present work, a series of dietary polyphenols belonging to the most representative families (flavonols from onion, flavanol monomers and oligomers from barley, and caffeic acid and caffeoyl esters from artichoke and endive) are characterized not only by their total stoichiometries (n(tot)) but also by their rate constants of first H atom abstraction by DPPH (k(1)), deduced from the kinetic analysis of the decay of the DPPH visible band following addition of the antioxidant. The mildly reactive DPPH radical allows a good discrimation between polyphenols, as demonstrated by the relatively large ranges of k(1) (ca. 400-5000 M(-)(1) s(-)(1)) and n(tot) (ca. 1-5) values typically measured with antioxidants having a single polyphenolic nucleus. With antioxidants displaying more than one polyphenolic nucleus (procyanidin oligomers, dicaffeoyl esters), the kinetic analysis makes it possible to demonstrate significant differences in reactivity between the subunits (two distinct k(1) values whose ratio lies in the range 3-10) and nonadditive stoichiometries.

  15. Kinetic study of the effects of calcium ions on cationic artichoke (Cynara scolymus L.) peroxidase: calcium binding, steady-state kinetics and reactions with hydrogen peroxide.

    PubMed

    Hiner, Alexander N P; Sidrach, Lara; Chazarra, Soledad; Varón, Ramón; Tudela, José; García-Cánovas, Francisco; Rodríguez-López, José Neptuno

    2004-01-01

    The apparent catalytic constant (k(cat)) of artichoke (Cynara scolymus L.) peroxidase (AKPC) with 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) increased 130-fold in the presence of calcium ions (Ca2+) but the affinity (K(m)) of the enzyme for ABTS was 500 times lower than for Ca2+-free AKPC. AKPC is known to exhibit an equilibrium between 6-aquo hexa-coordinate and penta-coordinate forms of the haem iron that is modulated by Ca2+ and affects compound I formation. Measurements of the Ca2+ dissociation constant (K(D)) were complicated by the water-association/dissociation equilibrium yielding a global value more than 1000 times too high. The value for the Ca2+ binding step alone has now been determined to be K(D) approximately 10 nM. AKPC-Ca2+ was more resistant to inactivation by hydrogen peroxide (H(2)O(2)) and exhibited increased catalase activity. An analysis of the complex H(2)O(2) concentration dependent kinetics of Ca2+-free AKPC is presented.

  16. High-yield hydrogen production from biomass by in vitro metabolic engineering: Mixed sugars coutilization and kinetic modeling

    SciTech Connect

    Rollin, Joseph A.; Martin del Campo, Julia; Myung, Suwan; Sun, Fangfang; You, Chun; Bakovic, Allison; Castro, Roberto; Chandrayan, Sanjeev K.; Wu, Chang-Hao; Adams, Michael W. W.; Senger, Ryan S.; Zhang, Y. -H. Percival

    2015-04-06

    The use of hydrogen (H2) as a fuel offers enhanced energy conversion efficiency and tremendous potential to decrease greenhouse gas emissions, but producing it in a distributed, carbon-neutral, low-cost manner requires new technologies. Herein we demonstrate the complete conversion of glucose and xylose from plant biomass to H2 and CO2 based on an in vitro synthetic enzymatic pathway. Glucose and xylose were simultaneously converted to H2 with a yield of two H2 per carbon, the maximum possible yield. Parameters of a nonlinear kinetic model were fitted with experimental data using a genetic algorithm, and a global sensitivity analysis was used to identify the enzymes that have the greatest impact on reaction rate and yield. After optimizing enzyme loadings using this model, volumetric H2 productivity was increased 3-fold to 32 mmol H2∙L₋1∙h₋1. The productivity was further enhanced to 54 mmol H2∙L₋1∙h₋1 by increasing reaction temperature, substrate, and enzyme concentrations—an increase of 67-fold compared with the initial studies using this method. The production of hydrogen from locally produced biomass is a promising means to achieve global green energy production.

  17. High-yield hydrogen production from biomass by in vitro metabolic engineering: Mixed sugars coutilization and kinetic modeling

    PubMed Central

    Rollin, Joseph A.; Martin del Campo, Julia; Myung, Suwan; Sun, Fangfang; You, Chun; Bakovic, Allison; Castro, Roberto; Chandrayan, Sanjeev K.; Wu, Chang-Hao; Adams, Michael W. W.; Senger, Ryan S.; Zhang, Y.-H. Percival

    2015-01-01

    The use of hydrogen (H2) as a fuel offers enhanced energy conversion efficiency and tremendous potential to decrease greenhouse gas emissions, but producing it in a distributed, carbon-neutral, low-cost manner requires new technologies. Herein we demonstrate the complete conversion of glucose and xylose from plant biomass to H2 and CO2 based on an in vitro synthetic enzymatic pathway. Glucose and xylose were simultaneously converted to H2 with a yield of two H2 per carbon, the maximum possible yield. Parameters of a nonlinear kinetic model were fitted with experimental data using a genetic algorithm, and a global sensitivity analysis was used to identify the enzymes that have the greatest impact on reaction rate and yield. After optimizing enzyme loadings using this model, volumetric H2 productivity was increased 3-fold to 32 mmol H2⋅L−1⋅h−1. The productivity was further enhanced to 54 mmol H2⋅L−1⋅h−1 by increasing reaction temperature, substrate, and enzyme concentrations—an increase of 67-fold compared with the initial studies using this method. The production of hydrogen from locally produced biomass is a promising means to achieve global green energy production. PMID:25848015

  18. High-yield hydrogen production from biomass by in vitro metabolic engineering: Mixed sugars coutilization and kinetic modeling

    DOE PAGES

    Rollin, Joseph A.; Martin del Campo, Julia; Myung, Suwan; ...

    2015-04-06

    The use of hydrogen (H2) as a fuel offers enhanced energy conversion efficiency and tremendous potential to decrease greenhouse gas emissions, but producing it in a distributed, carbon-neutral, low-cost manner requires new technologies. Herein we demonstrate the complete conversion of glucose and xylose from plant biomass to H2 and CO2 based on an in vitro synthetic enzymatic pathway. Glucose and xylose were simultaneously converted to H2 with a yield of two H2 per carbon, the maximum possible yield. Parameters of a nonlinear kinetic model were fitted with experimental data using a genetic algorithm, and a global sensitivity analysis was usedmore » to identify the enzymes that have the greatest impact on reaction rate and yield. After optimizing enzyme loadings using this model, volumetric H2 productivity was increased 3-fold to 32 mmol H2∙L₋1∙h₋1. The productivity was further enhanced to 54 mmol H2∙L₋1∙h₋1 by increasing reaction temperature, substrate, and enzyme concentrations—an increase of 67-fold compared with the initial studies using this method. The production of hydrogen from locally produced biomass is a promising means to achieve global green energy production.« less

  19. Hydrogen peroxide release kinetics into saliva from different whitening products: a double-blind, randomized clinical trial.

    PubMed

    Marques, Duarte Nuno da Silva; da Mata, António Duarte Sola Pereira; Silveira, João Miguel Lourenço; Marques, Joana Rita Oliveira Faria; Amaral, João Pedro de Almeida Rato; Guilherme, Nuno Filipe Rito Parada Marques

    2012-02-01

    The objective of this study is to compare salivary hydrogen peroxide (HP) release kinetics and potential toxicity of systemic exposure of four different whitening products. A double-blind, randomized controlled trial was conducted in a Portuguese dental faculty clinic. Two hundred forty volunteers were randomized to eight intervention groups. Participants were randomly assigned to receive active or placebo applications of one of four different products: Opalescence 10% PF™ (OPL), Vivastyle® 10%™ (VS10%), Vivadent Paint On Plus™ (PO+), and Trés White Supreme™ (TWS). Saliva collection was obtained by established methods at different times. The HP salivary content was determined by a photometric method. Salivary HP variations, total amount of salivary HP, and counts of subjects above the safe daily HP dose were the main outcome measures. All whitening systems significantly released HP to the saliva when compared to placebo, and all showed different release kinetics. The adaptable tray system (TWS) presented a risk increase of 37% [20-54%, 95% confidence interval] when compared to the other systems. The use of an adaptable tray whitening system with higher concentration of HP increases the toxicity potential.

  20. Degradation kinetics and mechanism of trace nitrobenzene by granular activated carbon enhanced microwave/hydrogen peroxide system.

    PubMed

    Tan, Dina; Zeng, Honghu; Liu, Jie; Yu, Xiaozhang; Liang, Yanpeng; Lu, Lanjing

    2013-07-01

    The kinetics of the degradation of trace nitrobenzene (NB) by a granular activated carbon (GAC) enhanced microwave (MW)/hydrogen peroxide (H202) system was studied. Effects of pH, NB initial concentration and tert-butyl alcohol on the removal efficiency were examined. It was found that the reaction rate fits well to first-order reaction kinetics in the MW/GAC/H202 process. Moreover, GAC greatly enhanced the degradation rate of NB in water. Under a given condition (MW power 300 W, H202 dosage 10 mg/L, pH 6.85 and temperature (60 +/- 5)degrees C), the degradation rate of NB was 0.05214 min-1when 4 g/L GAC was added. In general, alkaline pH was better for NB degradation; however, the optimum pH was 8.0 in the tested pH value range of 4.0-12.0. At H202 dosage of 10 mg/L and GAC dosage of 4 g/L, the removal of NB was decreased with increasing initial concentrations of NB, indicating that a low initial concentration was beneficial for the degradation of NB. These results indicated that the MW/GAC/H202 process was effective for trace NB degradation in water. Gas chromatography-mass spectrometry analysis indicated that a hydroxyl radical addition reaction and dehydrogenation reaction enhanced NB degradation.

  1. Nanosizing and nanoconfinement: new strategies towards meeting hydrogen storage goals.

    PubMed

    de Jongh, Petra E; Adelhelm, Philipp

    2010-12-17

    Hydrogen is expected to play an important role as an energy carrier in a future, more sustainable society. However, its compact, efficient, and safe storage is an unresolved issue. One of the main options is solid-state storage in hydrides. Unfortunately, no binary metal hydride satisfies all requirements regarding storage density and hydrogen release and uptake. Increasingly complex hydride systems are investigated, but high thermodynamic stabilities as well as slow kinetics and poor reversibility are important barriers for practical application. Nanostructuring by ball-milling is an established method to reduce crystallite sizes and increase reaction rates. Since five years attention has also turned to alternative preparation techniques that enable particle sizes below 10 nanometers and are often used in conjunction with porous supports or scaffolds. In this Review we discuss the large impact of nanosizing and -confinement on the hydrogen sorption properties of metal hydrides. We illustrate possible preparation strategies, provide insight into the reasons for changes in kinetics, reversibility and thermodynamics, and highlight important progress in this field. All in all we provide the reader with a clear view of how nanosizing and -confinement can beneficially affect the hydrogen sorption properties of the most prominent materials that are currently considered for solid-state hydrogen storage.

  2. Batch sorption dynamics, kinetics and equilibrium studies of Cr(VI), Ni(II) and Cu(II) from aqueous phase using agricultural residues

    NASA Astrophysics Data System (ADS)

    Kaur, Rajvinder; Singh, Joginder; Khare, Rajshree; Cameotra, Swaranjit Singh; Ali, Amjad

    2013-03-01

    In the present study, the agricultural residues viz., Syzygium cumini and Populus deltoides leaves powder have been used for the biosorption of Cu(II), Ni(II), and Cr(VI) from aqueous solutions. FTIR and SEM analysis of the biosorbents were performed to explore the type of functional groups available for metal binding and to study the surface morphology. Various physico-chemical parameters such as pH, adsorbent dosage, initial metal ion concentration, and equilibrium contact time were studied. Thermodynamic studies were carried out and the results demonstrated the spontaneous and endothermic nature of the biosorption process. The equilibrium data were tested using four isotherm models—Langmuir, Freundlich, Temkin and Dubinin-Radushkevich and the maximum biosorption capacities were evaluated. The Pseudo-first-order, pseudo-second-order, Elovich and intraparticle diffusion models were applied to study the reaction kinetics with pseudo-second order model giving the best fit ( R 2 = 0.99) to the experimental data.

  3. Kinetics of hydrogen-oxygen and methane-oxygen ignition sensitized by NO or NO2

    NASA Technical Reports Server (NTRS)

    Slack, M. W.; Grillo, A. R.

    1978-01-01

    In a study of methane ignition sensitized by NO2, the induction period chemical kinetics were examined by monitoring reactants and intermediates (CH4, NO2, OH, NO, CO, CO2, and H2O) prior to ignition. Data were obtained at pressure of 2-4 atm, temperatures of 1300-1900 K, equivalence ratios of 0.5-1.0, and NO2 up to 3.4 mole %. A tentative NO2 sensitization mechanism was deduced from the analysis of photometric observations and the comparison of computer modeling with observations.

  4. Kinetic behaviour of Duolite ES 468 in the cosorption of non-ionic surfactant and copper(II).

    PubMed

    Kauspediene, D; Snukiskis, J; Gefeniene, A

    2003-05-30

    Kinetic behaviour of the hydrogen form of Duolite ES 468 polyacrylic acid-functionalised cation exchanger with respect to the sorption of non-ionic surfactant alkylmonoethers (ALM-10) and copper(II) has been investigated; kinetic curves have been obtained, using spectrophotometric determination for ALM-10 and complexometric one for copper(II). Kinetic coefficient (B), intraparticle diffusion coefficient (D; m(2)s(-1)) and overall rate constant (k(o); s(-1)) for non-ionic surfactant and copper(II) depend on the solution composition, pH and the maximum sorption at the equilibrium. On increasing the solution acidity from pH 5 to pH 3 a decrease in both D and the equilibrium sorption for copper(II) although an increase in D for ALM-10 is observed. The action of copper(II) results in an increase in both D for ALM-10 and the maximum sorption at the equilibrium, whereas the action of ALM-10 leads to a decrease in the corresponding parameters for copper(II). Hydrogen form of Duolite ES 468 polyacrylic acid-functionalised cation exchanger is suitable for the simultaneous removal of non-ionic surfactant and copper(II) from waste water.

  5. Ultrafast electron kinetics in short pulse laser-driven dense hydrogen

    SciTech Connect

    Zastrau, U.; Sperling, P.; Fortmann-Grote, C.; Bornath, T.; Bredow, R.; Doppner, T.; Fennel, T.; Fletcher, L. B.; Forster, E.; Gode, S.; Gregori, G.; Harmand, M.; Hilbert, V.; Laarmann, T.; Lee, H. J.; Ma, T.; Meiwes-Broer, K. H.; Mithen, J. P.; Murphy, C. D.; Nakatsutsumi, M.; Neumayer, P.; Przystawik, A.; Skruszewicz, S.; Tiggesbaumker, J.; Toleikis, S.; White, T. G.; Glenzer, S. H.; Redmer, R.; Tschentscher, T.

    2015-09-25

    Dense cryogenic hydrogen is heated by intense femtosecond infrared laser pulses at intensities of ${10}^{15}-{10}^{16}\\;$ W cm–2. Three-dimensional particle-in-cell (PIC) simulations predict that this heating is limited to the skin depth, causing an inhomogeneously heated outer shell with a cold core and two prominent temperatures of about $25$ and $40\\;\\mathrm{eV}$ for simulated delay times up to $+70\\;\\mathrm{fs}$ after the laser pulse maximum. Experimentally, the time-integrated emitted bremsstrahlung in the spectral range of 8–18 nm was corrected for the wavelength-dependent instrument efficiency. The resulting spectrum cannot be fit with a single temperature bremsstrahlung model, and the best fit is obtained using two temperatures of about 13 and $30\\;$eV. The lower temperatures in the experiment can be explained by missing energy-loss channels in the simulations, as well as the inclusion of hot, non-Maxwellian electrons in the temperature calculation. In conclusion, we resolved the time-scale for laser-heating of hydrogen, and PIC results for laser–matter interaction were successfully tested against the experiment data.

  6. Ultrafast electron kinetics in short pulse laser-driven dense hydrogen

    DOE PAGES

    Zastrau, U.; Sperling, P.; Fortmann-Grote, C.; ...

    2015-09-25

    Dense cryogenic hydrogen is heated by intense femtosecond infrared laser pulses at intensities ofmore » $${10}^{15}-{10}^{16}\\;$$ W cm–2. Three-dimensional particle-in-cell (PIC) simulations predict that this heating is limited to the skin depth, causing an inhomogeneously heated outer shell with a cold core and two prominent temperatures of about $25$ and $$40\\;\\mathrm{eV}$$ for simulated delay times up to $$+70\\;\\mathrm{fs}$$ after the laser pulse maximum. Experimentally, the time-integrated emitted bremsstrahlung in the spectral range of 8–18 nm was corrected for the wavelength-dependent instrument efficiency. The resulting spectrum cannot be fit with a single temperature bremsstrahlung model, and the best fit is obtained using two temperatures of about 13 and $$30\\;$$eV. The lower temperatures in the experiment can be explained by missing energy-loss channels in the simulations, as well as the inclusion of hot, non-Maxwellian electrons in the temperature calculation. In conclusion, we resolved the time-scale for laser-heating of hydrogen, and PIC results for laser–matter interaction were successfully tested against the experiment data.« less

  7. Ultrafast electron kinetics in short pulse laser-driven dense hydrogen

    NASA Astrophysics Data System (ADS)

    Zastrau, U.; Sperling, P.; Fortmann-Grote, C.; Becker, A.; Bornath, T.; Bredow, R.; Döppner, T.; Fennel, T.; Fletcher, L. B.; Förster, E.; Göde, S.; Gregori, G.; Harmand, M.; Hilbert, V.; Laarmann, T.; Lee, H. J.; Ma, T.; Meiwes-Broer, K. H.; Mithen, J. P.; Murphy, C. D.; Nakatsutsumi, M.; Neumayer, P.; Przystawik, A.; Skruszewicz, S.; Tiggesbäumker, J.; Toleikis, S.; White, T. G.; Glenzer, S. H.; Redmer, R.; Tschentscher, T.

    2015-11-01

    Dense cryogenic hydrogen is heated by intense femtosecond infrared laser pulses at intensities of {10}15-{10}16 W cm-2. Three-dimensional particle-in-cell (PIC) simulations predict that this heating is limited to the skin depth, causing an inhomogeneously heated outer shell with a cold core and two prominent temperatures of about 25 and 40 {eV} for simulated delay times up to +70 {fs} after the laser pulse maximum. Experimentally, the time-integrated emitted bremsstrahlung in the spectral range of 8-18 nm was corrected for the wavelength-dependent instrument efficiency. The resulting spectrum cannot be fit with a single temperature bremsstrahlung model, and the best fit is obtained using two temperatures of about 13 and 30 eV. The lower temperatures in the experiment can be explained by missing energy-loss channels in the simulations, as well as the inclusion of hot, non-Maxwellian electrons in the temperature calculation. We resolved the time-scale for laser-heating of hydrogen, and PIC results for laser-matter interaction were successfully tested against the experiment data.

  8. Kinetics and mechanisms of iron sulfide reductions in hydrogen and in carbon monoxide

    USGS Publications Warehouse

    Wiltowski, T.; Hinckley, C.C.; Smith, Gerard V.; Nishizawa, T.; Saporoschenko, Mykola; Shiley, R.H.; Webster, J.R.

    1987-01-01

    The reduction of iron sulfides by hydrogen and by carbon monoxide has been studied using plug flow and thermogravimetric methods. The reactions were studied in the 523-723??K temperature range and were found to be first-order processes. Plug flow studies were used to correlate reaction rates between pyrite and the gases as a function of the surface area of the pyrite. The rate of H2S formation increases with the surface area of the pyrite sample. The results of thermogravimetric experiments indicate that the reactions consist of several steps. Rate constants for the pyrite reduction by H2 and by CO were obtained. The activation energies increased with degree of reduction. Values of Ea were 113.2 (step I) and 122.5 kJ/mole (step II) for pyrite reduction with CO and 99.4 (step I), 122.4 (step II), 125.2 (step III), and 142.6 kJ/mole (step IV) for pyrite reduction with hydrogen. ?? 1987.

  9. Transient Kinetic Analysis of Hydrogen Sulfide Oxidation Catalyzed by Human Sulfide Quinone Oxidoreductase.

    PubMed

    Mishanina, Tatiana V; Yadav, Pramod K; Ballou, David P; Banerjee, Ruma

    2015-10-09

    The first step in the mitochondrial sulfide oxidation pathway is catalyzed by sulfide quinone oxidoreductase (SQR), which belongs to the family of flavoprotein disulfide oxidoreductases. During the catalytic cycle, the flavin cofactor is intermittently reduced by sulfide and oxidized by ubiquinone, linking H2S oxidation to the electron transfer chain and to energy metabolism. Human SQR can use multiple thiophilic acceptors, including sulfide, sulfite, and glutathione, to form as products, hydrodisulfide, thiosulfate, and glutathione persulfide, respectively. In this study, we have used transient kinetics to examine the mechanism of the flavin reductive half-reaction and have determined the redox potential of the bound flavin to be -123 ± 7 mV. We observe formation of an unusually intense charge-transfer (CT) complex when the enzyme is exposed to sulfide and unexpectedly, when it is exposed to sulfite. In the canonical reaction, sulfide serves as the sulfur donor and sulfite serves as the acceptor, forming thiosulfate. We show that thiosulfate is also formed when sulfide is added to the sulfite-induced CT intermediate, representing a new mechanism for thiosulfate formation. The CT complex is formed at a kinetically competent rate by reaction with sulfide but not with sulfite. Our study indicates that sulfide addition to the active site disulfide is preferred under normal turnover conditions. However, under pathological conditions when sulfite concentrations are high, sulfite could compete with sulfide for addition to the active site disulfide, leading to attenuation of SQR activity and to an alternate route for thiosulfate formation.

  10. Remobilizing surfactant retarded fluid particle interfaces. I. Stress-free conditions at the interfaces of micellar solutions of surfactants with fast sorption kinetics

    NASA Astrophysics Data System (ADS)

    Stebe, Kathleen J.; Lin, Shi-Yow; Maldarelli, Charles

    1991-01-01

    Surfactant molecules adsorb onto the interfaces of moving fluid particles and are convected to regions in which the surface flow converges. Accumulation of surfactant in these regions creates interfacial tension gradients that retard the surface flow. In this study it is argued theoretically and demonstrated experimentally that fluid movement on the surface of a drop or bubble can remain unhindered in the presence of a single adsorbed surfactant if, relative to the convective rate of transport of adsorbed surfactant along the surface, desorption is fast, and the bulk concentration is high enough so that diffusion away from the particle is fast. For this circumstance, a uniform surface concentration of surfactant is maintained, and no gradients in surface tension arise to retard the surface velocity. The fluid particle flow behaves as it would in the absence of surfactant save that it has a reduced, uniform surface tension. The remobilization of surfactant-laden interfaces of fluid particles is demonstrated experimentally in a three-phase periodic slug flow in a capillary tube in which a train of alternating air and aqueous slugs ride on an annular wetting film of fluorocarbon oil. Surfactant, dissolved in the aqueous slug phase, adsorbs onto and retards the aqueous-oil interface. The hydrodynamics of this flow is such that small changes in the mobility of this interface create large shear rates in the oil layer. This significantly increases the pressure drop required to drive the slug train at constant velocity. Three surface adsorbers are used to demonstrate surface remobilization: The polyethoxy, nonionic surfactants Triton X-100 and Brij-35, which have fast desorption kinetics and do not retard the surface flow at high concentrations and, as a counter example, the desorption hindered protein bovine serum albumin, which is shown to be unable to remobilize an interface even at high concentration.

  11. Ultrafine Nanocrystalline CeO2@C-Containing NaAlH4 with Fast Kinetics and Good Reversibility for Hydrogen Storage.

    PubMed

    Zhang, Xin; Liu, Yongfeng; Wang, Ke; Li, You; Gao, Mingxia; Pan, Hongge

    2015-12-21

    A nanocrystalline CeO2@C-containing NaAlH4 composite is successfully synthesized in situ by hydrogenating a NaH-Al mixture doped with CeO2@C. Compared with NaAlH4 , the as-prepared CeO2@C-containing NaAlH4 composite, with a minor amount of excess Al, exhibits significantly improved hydrogen storage properties. The dehydrogenation onset temperature of the hydrogenated [NaH-Al-7 wt % CeO2@C]-0.04Al sample is 77 °C lower than that of the pristine sample because of a reduced kinetic barrier. More importantly, the dehydrogenated sample absorbs ∼4.7 wt % hydrogen within 35 min at 100°C and 10 MPa of hydrogen. Compositional and structural analyses reveal that CeO2 is converted to CeH2 during ball milling and that the newly formed CeH2 works with the excess of Al to synergistically improve the hydrogen storage properties of NaAlH4. Our findings will aid in the rational design of novel catalyst-doped complex hydride systems with low operating temperatures, fast kinetics, and long-term cyclability.

  12. Separation of (+)-catechin and quercetin on mesoporous MCM-41 composites: Dynamics of the sorption of flavonoids

    NASA Astrophysics Data System (ADS)

    Karpov, S. I.; Korabel'nikova, E. O.

    2015-06-01

    An analysis of conditions for chromatographic separation of quercetin and (+)-catechin based on experimental data and using the equations of an asymptotic model of sorption dynamics for substances characterized by convex isotherms of sorption is presented. The effects of the equilibrium (distribution coefficient) and kinetic (diffusion coefficient) factors on the dynamics of the sorption of flavonoids by ordered mesoporous material of the MCM-41 type and its composites with grafted organosilane groups is considered. The effects of kinetic and equilibrium parameters on the broadening of adsorption fronts is demonstrated with allowance for the inner and outer diffusion limitations of the sorption process.

  13. Hydrogen

    PubMed Central

    Bockris, John O’M.

    2011-01-01

    The idea of a “Hydrogen Economy” is that carbon containing fuels should be replaced by hydrogen, thus eliminating air pollution and growth of CO2 in the atmosphere. However, storage of a gas, its transport and reconversion to electricity doubles the cost of H2 from the electrolyzer. Methanol made with CO2 from the atmosphere is a zero carbon fuel created from inexhaustible components from the atmosphere. Extensive work on the splitting of water by bacteria shows that if wastes are used as the origin of feed for certain bacteria, the cost for hydrogen becomes lower than any yet known. The first creation of hydrogen and electricity from light was carried out in 1976 by Ohashi et al. at Flinders University in Australia. Improvements in knowledge of the structure of the semiconductor-solution system used in a solar breakdown of water has led to the discovery of surface states which take part in giving rise to hydrogen (Khan). Photoelectrocatalysis made a ten times increase in the efficiency of the photo production of hydrogen from water. The use of two electrode cells; p and n semiconductors respectively, was first introduced by Uosaki in 1978. Most photoanodes decompose during the photoelectrolysis. To avoid this, it has been necessary to create a transparent shield between the semiconductor and its electronic properties and the solution. In this way, 8.5% at 25 °C and 9.5% at 50 °C has been reached in the photo dissociation of water (GaP and InAs) by Kainthla and Barbara Zeleney in 1989. A large consortium has been funded by the US government at the California Institute of Technology under the direction of Nathan Lewis. The decomposition of water by light is the main aim of this group. Whether light will be the origin of the post fossil fuel supply of energy may be questionable, but the maximum program in this direction is likely to come from Cal. Tech. PMID:28824125

  14. Molecular Scale Assessment of Methylarsenic Sorption on Aluminum Oxide

    SciTech Connect

    Shimizu, M.; Ginder-Vogel, M; Parikh, S; Sparks, D

    2010-01-01

    Methylated forms of arsenic (As), monomethylarsenate (MMA) and dimethylarsenate (DMA), have historically been used as herbicides and pesticides. Because of their large application to agriculture fields and the toxicity of MMA and DMA, the sorption of methylated As to soil constituents requires investigation. MMA and DMA sorption on amorphous aluminum oxide (AAO) was investigated using both macroscopic batch sorption kinetics and molecular scale extended X-ray absorption fine structure (EXAFS) and Fourier transform infrared (FTIR) spectroscopic techniques. Sorption isotherm studies revealed sorption maxima of 0.183, 0.145, and 0.056 mmol As/mmol Al for arsenate (As{sup V}), MMA, and DMA, respectively. In the sorption kinetics studies, 100% of added As{sup V} was sorbed within 5 min, while 78% and 15% of added MMA and DMA were sorbed, respectively. Desorption experiments, using phosphate as a desorbing agent, resulted in 30% release of absorbed As{sup V}, while 48% and 62% of absorbed MMA and DMA, respectively, were released. FTIR and EXAFS studies revealed that MMA and DMA formed mainly bidentate binuclear complexes with AAO. On the basis of these results, it is proposed that increasing methyl group substitution results in decreased As sorption and increased As desorption on AAO.

  15. Molecular scale assessment of methylarsenic sorption on aluminum oxide.

    PubMed

    Shimizu, Masayuki; Ginder-Vogel, Matthew; Parikh, Sanjai J; Sparks, Donald L

    2010-01-15

    Methylated forms of arsenic (As), monomethylarsenate (MMA) and dimethylarsenate (DMA), have historically been used as herbicides and pesticides. Because of their large application to agriculture fields and the toxicity of MMA and DMA, the sorption of methylated As to soil constituents requires investigation. MMA and DMA sorption on amorphous aluminum oxide (AAO) was investigated using both macroscopic batch sorption kinetics and molecular scale extended X-ray absorption fine structure (EXAFS) and Fourier transform infrared (FTIR) spectroscopic techniques. Sorption isotherm studies revealed sorption maxima of 0.183, 0.145, and 0.056 mmol As/mmol Al for arsenate (As(V)), MMA, and DMA, respectively. In the sorption kinetics studies, 100% of added As(V) was sorbed within 5 min, while 78% and 15% of added MMA and DMA were sorbed, respectively. Desorption experiments, using phosphate as a desorbing agent, resulted in 30% release of absorbed As(V), while 48% and 62% of absorbed MMA and DMA, respectively, were released. FTIR and EXAFS studies revealed that MMA and DMA formed mainly bidentate binuclear complexes with AAO. On the basis of these results, it is proposed that increasing methyl group substitution results in decreased As sorption and increased As desorption on AAO.

  16. Sorption of lanthanum ions by natural clinoptilolite tuff

    NASA Astrophysics Data System (ADS)

    Dampilova, B. V.; Zonkhoeva, E. L.

    2013-08-01

    The equilibrium and kinetics of sorption of lanthanum ions on natural clinoptilolite tuff are studied. It is demonstrated that sorption of lanthanum ions from diluted solutions occurs in micropores of clinoptilolite, and from concentrated solutions in the mesoporous structure of tuff. The main capacity of zeolite tuff is found in the secondary porous structure. The sorption of lanthanum ions is limited by diffusion in tuff grains. Lanthanum ions are regularly distributed in the tuff phase and interact with the Brønsted centers of large clinoptilolite cavities.

  17. Kinetics of CO2 Hydrogenation to Hydrocarbons over Iron-Silica Catalysts.

    PubMed

    Owen, Rhodri E; Mattia, Davide; Plucinski, Pawel; Jones, Matthew D

    2017-06-28

    The conversion of CO2 to hydrocarbons is increasingly seen as a potential alternative source of fuel and chemicals, while at the same time contributing to addressing global warming effects. An understanding of kinetics and mass transfer limitations is vital to both optimise catalyst performance and to scale up the whole process. In this work we report on a systematic investigation of the influence of the different process parameters, including pore size, catalyst support particle diameter, reaction temperature, pressure and reactant flow rate on conversion and selectivity of iron nanoparticle -silica catalysts. The results provided on activation energy and mass transfer limitations represent the basis to fully design a reactor system for the effective catalytic conversion of CO2 to hydrocarbons. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Kinetics of Hydrogen Atom Abstraction from Substrate by an Active Site Thiyl Radical in Ribonucleotide Reductase

    PubMed Central

    2015-01-01

    Ribonucleotide reductases (RNRs) catalyze the conversion of nucleotides to deoxynucleotides in all organisms. Active E. coli class Ia RNR is an α2β2 complex that undergoes reversible, long-range proton-coupled electron transfer (PCET) over a pathway of redox active amino acids (β-Y122 → [β-W48] → β-Y356 → α-Y731 → α-Y730 → α-C439) that spans ∼35 Å. To unmask PCET kinetics from rate-limiting conformational changes, we prepared a photochemical RNR containing a [ReI] photooxidant site-specifically incorporated at position 355 ([Re]-β2), adjacent to PCET pathway residue Y356 in β. [Re]-β2 was further modified by replacing Y356 with 2,3,5-trifluorotyrosine to enable photochemical generation and spectroscopic observation of chemically competent tyrosyl radical(s). Using transient absorption spectroscopy, we compare the kinetics of Y· decay in the presence of substrate and wt-α2, Y731F-α2 ,or C439S-α2, as well as with 3′-[2H]-substrate and wt-α2. We find that only in the presence of wt-α2 and the unlabeled substrate do we observe an enhanced rate of radical decay indicative of forward radical propagation. This observation reveals that cleavage of the 3′-C–H bond of substrate by the transiently formed C439· thiyl radical is rate-limiting in forward PCET through α and has allowed calculation of a lower bound for the rate constant associated with this step of (1.4 ± 0.4) × 104 s–1. Prompting radical propagation with light has enabled observation of PCET events heretofore inaccessible, revealing active site chemistry at the heart of RNR catalysis. PMID:25353063

  19. Base-catalyzed insertion of dioxygen into rhodium-hydrogen bonds: kinetics and mechanism.

    PubMed

    Szajna-Fuller, Ewa; Bakac, Andreja

    2010-02-01

    The reaction between molecular oxygen and rhodium hydrides L(OH)RhH(+) (L = (NH(3))(4), trans-L(1), and cis-L(1), where L(1) = cyclam) in basic aqueous solutions rapidly produces the corresponding hydroperoxo complexes. Over the pH range 8 < pH < 12, the kinetics exhibit a first order dependence on [OH(-)]. The dependence on [O(2)] is less than first order and approaches saturation at the highest concentrations used. These data suggest an attack by OH(-) at the hydride with k = (1.45 +/- 0.25) x 10(3) M(-1) s(-1) for trans-L(1)(OH)RhH(+) at 25 degrees C, resulting in heterolytic cleavage of the Rh-H bond and formation of a reactive Rh(I) intermediate. A competition between O(2) and H(2)O for Rh(I) is the source of the observed dependence on O(2). In support of this mechanism, there is a significant kinetic isotope effect for the initial step, L(1)(OH(D))RhH(D)(+) + OH(D)(-) k(1)/k(-1) L(1)(OH(D))Rh(I) + H(D)(2)O, k(1H)/k(1D) = 1.7, and k(-1H)/k(-1D) = 3.0. The activation parameters for k(1) for trans-L(1)(OH)RhH(+) are DeltaH(++) = 64.6 +/- 1.3 kJ mol(-1) and DeltaS(++) = 40 +/-4 J mol(-1) K(-1).

  20. Effects of hydrodynamic conditions on the sorption behaviors of aniline on sediment with coexistence of nitrobenzene.

    PubMed

    Wang, Peng; Hua, Zulin; Cai, Yunjie; Shen, Xia; Li, Qiongqiong; Liu, Xiaoyuan

    2015-08-01

    The sorption behaviors of pollutants affected by hydrodynamic conditions were confirmed in natural water environment. The effects of hydrodynamic conditions on the sorption behaviors of aniline on sediment with coexistence of nitrobenzene were investigated. The particle entrainment simulator (PES) was used to simulate varied bottom shear stresses. The batch equilibrium method was applied to the experiments with the stress levels and the action time controlled at 0.2-0.5 N/m(2) and 24 h, respectively. The findings indicated that apparent partition coefficient of aniline on sediment increased with the shear stress significantly, while decreased with nitrobenzene concentration. On the contrary, both the sorption amount of aniline on suspended particulate matter (Q s) and the effect of nitrobenzene concentration on Q s declined as the shear stress increased. The sorption kinetic results showed that the sorption process followed the pseudo-second-order kinetics equation, and the process included two stages: fast sorption stage and slow sorption stage, among which the average sorption rate of fast stage was 7.5-9.5 times that of slow one. The effect of shear stress on the average sorption rate of aniline was enhanced with the increase of nitrobenzene concentration. And shear stress weakened the disturbance of cosolute on main solute sorption process. In addition, experiment results of sorption kinetic show that only the initial sorption rate was affected by shear stress and cosolute concentration. In the first 5 min, shear stress had positive effects on the sorption rate. After that, the sorption rate barely changed with shear stress and cosolute concentration.

  1. Understanding the kinetics of adsorption in narrow channel metal organic frameworks

    NASA Astrophysics Data System (ADS)

    Zhou, Wei; Simmons, Jason; Yildirim, Taner

    2010-03-01

    Advancements in the controlled synthesis of metal organic frameworks (MOFs) have lead to impressive increases in hydrogen storage capacities and enhanced binding energies that may offer higher temperature operation. Given that the optimum pore size for hydrogen adsorption is on the order of 7 Angstroms, diffusion of hydrogen into these materials can play an important role in their ultimate implementation. In this presentation we use a combination of experimental and computational techniques, including gas sorption and neutron scattering measurements and detailed first-principles calculations, to better understand the kinetic limitations to adsorption in narrow channel MOF. In particular we show that the adsorption is diffusion limited with a significant activation barrier of ˜70 meV, and that this barrier is phonon-mediated. This work demonstrates the importance of considering kinetic effects in addition to pore volume and heats of adsorption when optimizing MOF materials for hydrogen storage.

  2. Size-dependent mechanical properties of Mg nanoparticles used for hydrogen storage

    SciTech Connect

    Yu, Qian; Qi, Liang; Mishra, Raja K.; Zeng, Xiaoqin; Minor, Andrew M.

    2015-06-29

    Magnesium (Mg) hydride is a promising hydrogen storage material, yet its application has been limited by the slow hydrogen sorption kinetics. Recently, Mg nanoparticles have shown significant improvement of hydrogen storage properties in terms of dimensional stability upon cycling with the trend that the smaller the particle, the better the sorption kinetics. Since the volume change during sorption generates stress, leading to plastic deformation, the fundamentals of the mechanical deformation of the Mg particles are a significant issue. By using in situ transmission electron microscope compression tests and atomistic simulations on Mg nanoparticles, it was observed that deformation in the larger particles was dominated by the nucleation of 〈a〉-type dislocations from stress concentrations at the contact surface, while the smaller particles deformed more homogeneously with greater distribution of multiple types of dislocation sources. Importantly, this improvement of plastic deformation with decrease in size is orientation-independent. First-principles calculations suggest that this improved plasticity can be explained by the nearly-isotropic ideal shear strength for Mg, which becomes more important in smaller nanoparticles. As a result, the smaller Mg nanoparticles demonstrated better plastic stability to accommodate volume change upon hydrogen storage cycling.

  3. Size-dependent mechanical properties of Mg nanoparticles used for hydrogen storage

    NASA Astrophysics Data System (ADS)

    Yu, Qian; Qi, Liang; Mishra, Raja K.; Zeng, Xiaoqin; Minor, Andrew M.

    2015-06-01

    Magnesium (Mg) hydride is a promising hydrogen storage material, yet its application has been limited by the slow hydrogen sorption kinetics. Recently, Mg nanoparticles have shown significant improvement of hydrogen storage properties in terms of dimensional stability upon cycling with the trend that the smaller the particle, the better the sorption kinetics. Since the volume change during sorption generates stress, leading to plastic deformation, the fundamentals of the mechanical deformation of the Mg particles are a significant issue. By using in situ transmission electron microscope compression tests and atomistic simulations on Mg nanoparticles, it was observed that deformation in the larger particles was dominated by the nucleation of ⟨a⟩-type dislocations from stress concentrations at the contact surface, while the smaller particles deformed more homogeneously with greater distribution of multiple types of dislocation sources. Importantly, this improvement of plastic deformation with decrease in size is orientation-independent. First-principles calculations suggest that this improved plasticity can be explained by the nearly-isotropic ideal shear strength for Mg, which becomes more important in smaller nanoparticles. As a result, the smaller Mg nanoparticles demonstrated better plastic stability to accommodate volume change upon hydrogen storage cycling.

  4. Fast, Low-Duty-Cycle Sorption Refrigerators

    NASA Technical Reports Server (NTRS)

    Johnson, AL; Jones, Jack A.

    1994-01-01

    Metal hydride/hydrogen-sorption refrigerators developed to provide rapid, intermittent cooling at temperatures between 30 and 10 K. In original application, refrigerators cool infrared detectors aboard spacecraft, exhausting heat to outer space via radiators at 250 K. Modified to cool scientific instrumentation on Earth with some loss of efficiency. Require no power during quick cooldown and low heating power during relatively long recharge periods.

  5. Sorption and Release of Organics by Primary, Anaerobic, and Aerobic Activated Sludge Mixed with Raw Municipal Wastewater

    PubMed Central

    Modin, Oskar; Saheb Alam, Soroush; Persson, Frank; Wilén, Britt-Marie

    2015-01-01

    New activated sludge processes that utilize sorption as a major mechanism for organics removal are being developed to maximize energy recovery from wastewater organics, or as enhanced primary treatment technologies. To model and optimize sorption-based activated sludge processes, further knowledge about sorption of organics onto sludge is needed. This study compared primary-, anaerobic-, and aerobic activated sludge as sorbents, determined sorption capacity and kinetics, and investigated some characteristics of the organics being sorbed. Batch sorption assays were carried out without aeration at a mixing velocity of 200 rpm. Only aerobic activated sludge showed net sorption of organics. Sorption of dissolved organics occurred by a near-instantaneous sorption event followed by a slower process that obeyed 1st order kinetics. Sorption of particulates also followed 1st order kinetics but there was no instantaneous sorption event; instead there was a release of particles upon mixing. The 5-min sorption capacity of activated sludge was 6.5±10.8 mg total organic carbon (TOC) per g volatile suspend solids (VSS) for particulate organics and 5.0±4.7 mgTOC/gVSS for dissolved organics. The observed instantaneous sorption appeared to be mainly due to organics larger than 20 kDa in size being sorbed, although molecules with a size of about 200 Da with strong UV absorbance at 215–230 nm were also rapidly removed. PMID:25768429

  6. Photochemical generation and decay kinetics of superoxide and hydrogen peroxide in the presence of standard humic and fulvic acids.

    PubMed

    Fujii, Manabu; Otani, Erika

    2017-10-15

    Reactive oxygen species (ROS) such as superoxide (O2(-)) and hydrogen peroxide (H2O2) can be photochemically generated in aerobic waters containing natural organic matters (NOM) such as humic substances (HS). To investigate the effect of NOM molecular composition on the kinetics and mechanism of ROS transformation, photochemical O2(-) generation and subsequent H2O2 production via catalyzed and uncatalyzed (bimolecular dismutation) O2(-) decay were examined in the presence of 14 types of HS (pH 8.0). By using chemiluminescence and colorimetric techniques, the photochemical O2(-) generation rate, quasi-steady-state O2(-) concentration, catalyzed and uncatalyzed O2(-) decay rates, and H2O2 production rate were found to vary significantly by factors of 72, 18, 14, 320, and 7.7, respectively, depending on the type of HS and degree of photolysis. For more than half of the HS samples, both uncatalyzed and catalyzed reductive decay of photogenerated O2(-) were significantly involved in H2O2 generation, and their rates were comparable to those for O2(-) oxidative decay in which H2O2 is not generated. These results suggest that the chemical quality of HS influenced the H2O2 generation pathway. Correlation analyses indicated that rate constants associated with HS-mediated photochemical O2(-) and H2O2 generation are significantly correlated with HS molecular composition including total and aromatic C contents. In particular, practical indices representing NOM aromaticity including specific ultraviolet absorbance (SUVA) can be useful for predicting NOM-mediated ROS generation and decay kinetics. Overall, the present work suggests that NOM concentration and its quality influence NOM-mediated ROS dynamics in aqueous systems. Copyright © 2017 Elsevier Ltd. All rights reserved.