Sample records for hydrogen sulfide h2s

  1. Hydrogen sulfide (H 2S) in urban ambient air

    NASA Astrophysics Data System (ADS)

    Kourtidis, K.; Kelesis, A.; Petrakakis, M.

    Despite indications of high hydrogen sulfide levels in some urban environments, only sparse measurements have been reported in the literature. Here we present one full year of hydrogen sulfide measurements in an urban traffic site in the city of Thessaloniki, Greece. In this 1-million-population city the H 2S concentrations were surprisingly high, with a mean annual concentration of 8 μg m -3 and wintertime mean monthly concentrations up to 20 μg m -3 (12.9 ppb). Daily mean concentrations in the winter were up to 30 μg m -3 (19.3 ppb), while hourly concentrations were up to 54 μg m -3 (34.8 ppb). During calm (wind velocity < 0.5 m s -1) conditions, mainly encountered during night-time hours, hourly values of H 2S were highly correlated with those of CO ( r2 = 0.75) and SO 2 ( r2 = 0.70), pointing to a common traffic source from catalytic converters. Annual mean concentrations are above the WHO recommendation for odor annoyance; hence, H 2S might play a role to the malodorous episodes that the city occasionally experiences. The high ambient H 2S levels might also be relevant to the implementation of preservation efforts for outdoor marble and limestone historical monuments that have been targeting SO 2 emissions as an atmospheric acidity source, since the measurements presented here suggest that about 19% of the annual sulfur (SO 2 + H 2S) emissions in Thessaloniki are in the form of H 2S.

  2. 30 CFR 550.215 - What hydrogen sulfide (H2S) information must accompany the EP?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false What hydrogen sulfide (H2S) information must accompany the EP? 550.215 Section 550.215 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF... Information Contents of Exploration Plans (ep) § 550.215 What hydrogen sulfide (H2S) information must...

  3. 30 CFR 550.215 - What hydrogen sulfide (H2S) information must accompany the EP?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false What hydrogen sulfide (H2S) information must accompany the EP? 550.215 Section 550.215 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF... Information Contents of Exploration Plans (ep) § 550.215 What hydrogen sulfide (H2S) information must...

  4. 30 CFR 550.215 - What hydrogen sulfide (H2S) information must accompany the EP?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false What hydrogen sulfide (H2S) information must accompany the EP? 550.215 Section 550.215 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, DEPARTMENT OF... Information Contents of Exploration Plans (ep) § 550.215 What hydrogen sulfide (H2S) information must...

  5. 30 CFR 250.215 - What hydrogen sulfide (H2S) information must accompany the EP?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What hydrogen sulfide (H2S) information must accompany the EP? 250.215 Section 250.215 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE... Contents of Exploration Plans (ep) § 250.215 What hydrogen sulfide (H2S) information must accompany the EP...

  6. 30 CFR 250.245 - What hydrogen sulfide (H2S) information must accompany the DPP or DOCD?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false What hydrogen sulfide (H2S) information must accompany the DPP or DOCD? 250.245 Section 250.245 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT... Development Operations Coordination Documents (docd) § 250.245 What hydrogen sulfide (H2S) information must...

  7. 30 CFR 550.245 - What hydrogen sulfide (H2S) information must accompany the DPP or DOCD?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false What hydrogen sulfide (H2S) information must accompany the DPP or DOCD? 550.245 Section 550.245 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT... Coordination Documents (docd) § 550.245 What hydrogen sulfide (H2S) information must accompany the DPP or DOCD...

  8. 30 CFR 550.245 - What hydrogen sulfide (H2S) information must accompany the DPP or DOCD?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false What hydrogen sulfide (H2S) information must accompany the DPP or DOCD? 550.245 Section 550.245 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT... Coordination Documents (docd) § 550.245 What hydrogen sulfide (H2S) information must accompany the DPP or DOCD...

  9. 30 CFR 550.245 - What hydrogen sulfide (H2S) information must accompany the DPP or DOCD?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false What hydrogen sulfide (H2S) information must accompany the DPP or DOCD? 550.245 Section 550.245 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT... Coordination Documents (docd) § 550.245 What hydrogen sulfide (H2S) information must accompany the DPP or DOCD...

  10. 30 CFR 250.215 - What hydrogen sulfide (H2S) information must accompany the EP?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false What hydrogen sulfide (H2S) information must accompany the EP? 250.215 Section 250.215 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION... CONTINENTAL SHELF Plans and Information Contents of Exploration Plans (ep) § 250.215 What hydrogen sulfide...

  11. Synthesis of zinc sulfide nanoparticles during zinc oxidization by H2S and H2S/H2O supercritical fluids

    NASA Astrophysics Data System (ADS)

    Vostrikov, A. A.; Fedyaeva, O. N.; Sokol, M. Ya.; Shatrova, A. V.

    2014-12-01

    Formation of zinc sulfide nanoparticles was detected during interaction of bulk samples with hydrogen sulfide at supercritical parameters. Synthesis proceeds with liberation of H2 by the reaction nZn + nH2S = (ZnS) n + nH2. It has been found by the X-ray diffraction method, scanning electron microscopy, and mass spectrometry that the addition of water stimulates coupled reactions of nanoparticle synthesis nZn + nH2O = (ZnO) n + nH2 and (ZnO) n + nH2S = (ZnS) n + nH2O and brings about an increase in the synthesis rate and morphological changes of (ZnS) n nanoparticles.

  12. Sulfide stress corrosion study of a super martensitic stainless steel in H2S sour environments: Metallic sulfides formation and hydrogen embrittlement

    NASA Astrophysics Data System (ADS)

    Monnot, Martin; Nogueira, Ricardo P.; Roche, Virginie; Berthomé, Grégory; Chauveau, Eric; Estevez, Rafael; Mantel, Marc

    2017-02-01

    Thanks to their high corrosion resistance, super martensitic stainless steels are commonly used in the oil and gas industry, particularly in sour environments. Some grades are however susceptible to undergo hydrogen and mechanically-assisted corrosion processes in the presence of H2S, depending on the pH. The martensitic stainless steel EN 1.4418 grade exhibits a clear protective passive behavior with no sulfide stress corrosion cracking when exposed to sour environments of pH ≥ 4, but undergoes a steep decrease in its corrosion resistance at lower pH conditions. The present paper investigated this abrupt loss of corrosion resistance with electrochemical measurements as well as different physicochemical characterization techniques. Results indicated that below pH 4.0 the metal surface is covered by a thick (ca 40 μm) porous and defect-full sulfide-rich corrosion products layer shown to be straightforwardly related to the onset of hydrogen and sulfide mechanically-assisted corrosion phenomena.

  13. 30 CFR 250.808 - Hydrogen sulfide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Hydrogen sulfide. 250.808 Section 250.808... OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Production Safety Systems § 250.808 Hydrogen sulfide. Production operations in zones known to contain hydrogen sulfide (H2S) or in zones where the presence of H2S...

  14. 30 CFR 250.504 - Hydrogen sulfide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false Hydrogen sulfide. 250.504 Section 250.504...-Completion Operations § 250.504 Hydrogen sulfide. When a well-completion operation is conducted in zones known to contain hydrogen sulfide (H2S) or in zones where the presence of H2S is unknown (as defined in...

  15. 30 CFR 250.604 - Hydrogen sulfide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false Hydrogen sulfide. 250.604 Section 250.604...-Workover Operations § 250.604 Hydrogen sulfide. When a well-workover operation is conducted in zones known to contain hydrogen sulfide (H2S) or in zones where the presence of H2S is unknown (as defined in...

  16. 30 CFR 250.504 - Hydrogen sulfide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false Hydrogen sulfide. 250.504 Section 250.504... § 250.504 Hydrogen sulfide. When a well-completion operation is conducted in zones known to contain hydrogen sulfide (H2S) or in zones where the presence of H2S is unknown (as defined in § 250.490 of this...

  17. 30 CFR 250.604 - Hydrogen sulfide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false Hydrogen sulfide. 250.604 Section 250.604... § 250.604 Hydrogen sulfide. When a well-workover operation is conducted in zones known to contain hydrogen sulfide (H2S) or in zones where the presence of H2S is unknown (as defined in § 250.490 of this...

  18. 30 CFR 250.504 - Hydrogen sulfide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false Hydrogen sulfide. 250.504 Section 250.504... § 250.504 Hydrogen sulfide. When a well-completion operation is conducted in zones known to contain hydrogen sulfide (H2S) or in zones where the presence of H2S is unknown (as defined in § 250.490 of this...

  19. 30 CFR 250.504 - Hydrogen sulfide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false Hydrogen sulfide. 250.504 Section 250.504... § 250.504 Hydrogen sulfide. When a well-completion operation is conducted in zones known to contain hydrogen sulfide (H2S) or in zones where the presence of H2S is unknown (as defined in § 250.490 of this...

  20. 30 CFR 250.604 - Hydrogen sulfide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false Hydrogen sulfide. 250.604 Section 250.604... § 250.604 Hydrogen sulfide. When a well-workover operation is conducted in zones known to contain hydrogen sulfide (H2S) or in zones where the presence of H2S is unknown (as defined in § 250.490 of this...

  1. 30 CFR 250.604 - Hydrogen sulfide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false Hydrogen sulfide. 250.604 Section 250.604... § 250.604 Hydrogen sulfide. When a well-workover operation is conducted in zones known to contain hydrogen sulfide (H2S) or in zones where the presence of H2S is unknown (as defined in § 250.490 of this...

  2. 30 CFR 250.808 - Hydrogen sulfide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false Hydrogen sulfide. 250.808 Section 250.808 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL... § 250.808 Hydrogen sulfide. Production operations in zones known to contain hydrogen sulfide (H2S) or in...

  3. 30 CFR 250.808 - Hydrogen sulfide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false Hydrogen sulfide. 250.808 Section 250.808 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL... § 250.808 Hydrogen sulfide. Production operations in zones known to contain hydrogen sulfide (H2S) or in...

  4. 30 CFR 250.808 - Hydrogen sulfide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false Hydrogen sulfide. 250.808 Section 250.808 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL... § 250.808 Hydrogen sulfide. Production operations in zones known to contain hydrogen sulfide (H2S) or in...

  5. 30 CFR 250.504 - Hydrogen sulfide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Hydrogen sulfide. 250.504 Section 250.504... OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Well-Completion Operations § 250.504 Hydrogen sulfide. When a well-completion operation is conducted in zones known to contain hydrogen sulfide (H2S) or in...

  6. 30 CFR 250.604 - Hydrogen sulfide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Hydrogen sulfide. 250.604 Section 250.604... OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Well-Workover Operations § 250.604 Hydrogen sulfide. When a well-workover operation is conducted in zones known to contain hydrogen sulfide (H2S) or in...

  7. Emission of hydrogen sulfide (H2S) at a waterfall in a sewer: study of main factors affecting H2S emission and modeling approaches.

    PubMed

    Jung, Daniel; Hatrait, Laetitia; Gouello, Julien; Ponthieux, Arnaud; Parez, Vincent; Renner, Christophe

    2017-11-01

    Hydrogen sulfide (H 2 S) represents one of the main odorant gases emitted from sewer networks. A mathematical model can be a fast and low-cost tool for estimating its emission. This study investigates two approaches to modeling H 2 S gas transfer at a waterfall in a discharge manhole. The first approach is based on an adaptation of oxygen models for H 2 S emission at a waterfall and the second consists of a new model. An experimental set-up and a statistical data analysis allowed the main factors affecting H 2 S emission to be studied. A new model of the emission kinetics was developed using linear regression and taking into account H 2 S liquid concentration, waterfall height and fluid velocity at the outlet pipe of a rising main. Its prediction interval was estimated by the residual standard deviation (15.6%) up to a rate of 2.3 g H 2h -1 . Finally, data coming from four sampling campaigns on sewer networks were used to perform simulations and compare predictions of all developed models.

  8. Highly sensitive hydrogen sulfide (H2 S) gas sensors from viral-templated nanocrystalline gold nanowires

    NASA Astrophysics Data System (ADS)

    Moon, Chung Hee; Zhang, Miluo; Myung, Nosang V.; Haberer, Elaine D.

    2014-04-01

    A facile, site-specific viral-templated assembly method was used to fabricate sensitive hydrogen sulfide (H2S) gas sensors at room temperature. A gold-binding M13 bacteriophage served to organize gold nanoparticles into linear arrays which were used as seeds for subsequent nanowire formation through electroless deposition. Nanowire widths and densities within the sensors were modified by electroless deposition time and phage concentration, respectively, to tune device resistance. Chemiresistive H2S gas sensors with superior room temperature sensing performance were produced with sensitivity of 654%/ppmv, theoretical lowest detection limit of 2 ppbv, and 70% recovery within 9 min for 0.025 ppmv. The role of the viral template and associated gold-binding peptide was elucidated by removing organics using a short O2 plasma treatment followed by an ethanol dip. The template and gold-binding peptide were crucial to electrical and sensor performance. Without surface organics, the resistance fell by several orders of magnitude, the sensitivity dropped by more than a factor of 100 to 6%/ppmv, the lower limit of detection increased, and no recovery was detected with dry air flow. Viral templates provide a novel, alternative fabrication route for highly sensitive, nanostructured H2S gas sensors.

  9. Redetermination of piperidinium hydrogen sulfide structure

    NASA Technical Reports Server (NTRS)

    Andras, Maria T.; Hepp, Aloysius F.; Fanwick, Phillip E.; Duraj, Stan A.; Gordon, Edward M.

    1994-01-01

    The presence of adventitious water in a reaction between dicyclopentamethylene thiuram-disulfide (C5H10NCS2)(sub 2) and a picoline solution of tricyclopentadienyl indium(III) (C5H5)(sub 3). It resulted in the formation of piperidinium hydrogen sulfide (C5H13NS). The piperidinium hydrogen sulfide produced in this way was unambiguously characterized by X-ray crystallography. The structure determination showed that the piperidinium hydrogen sulfide crystal (MW = 119.23 g/mol) has an orthorhombic (Pbcm) unit cell whose parameters are: a = 9.818(2), b = 7.3720(1), c = 9.754(1) A, V = 706.0(3) A(exp 3), Z=4. D(sub chi) = 1.122 g cm(exp -3), Mo K(alpha) (lamda = 0.71073), mu= 3.36 cm(exp -1), F(000) = 264.0, T =293 K, R = 0.036 for 343 reflections with F(sub O)(sup 2) greater than 3 sigma (F(sub O)(sup 2)) and 65 variables. The compound consists of (C5H10NH2)(+) cations and (SH)(-) anions with both species residing on crystallographic mirror planes. N-H -- S hydrogen bonding contributes to the interconnection of neighboring piperidinium components of the compound.

  10. Solar light-driven photocatalytic hydrogen evolution over ZnIn2S4 loaded with transition-metal sulfides

    NASA Astrophysics Data System (ADS)

    Shen, Shaohua; Chen, Xiaobo; Ren, Feng; Kronawitter, Coleman X.; Mao, Samuel S.; Guo, Liejin

    2011-12-01

    A series of Pt-loaded MS/ZnIn2S4 (MS = transition-metal sulfide: Ag2S, SnS, CoS, CuS, NiS, and MnS) photocatalysts was investigated to show various photocatalytic activities depending on different transition-metal sulfides. Thereinto, CoS, NiS, or MnS-loading lowered down the photocatalytic activity of ZnIn2S4, while Ag2S, SnS, or CuS loading enhanced the photocatalytic activity. After loading 1.0 wt.% CuS together with 1.0 wt.% Pt on ZnIn2S4, the activity for H2 evolution was increased by up to 1.6 times, compared to the ZnIn2S4 only loaded with 1.0 wt.% Pt. Here, transition-metal sulfides such as CuS, together with Pt, acted as the dual co-catalysts for the improved photocatalytic performance. This study indicated that the application of transition-metal sulfides as effective co-catalysts opened up a new way to design and prepare high-efficiency and low-cost photocatalysts for solar-hydrogen conversion.

  11. Liquid hydrogen production via hydrogen sulfide methane reformation

    NASA Astrophysics Data System (ADS)

    Huang, Cunping; T-Raissi, Ali

    Hydrogen sulfide (H 2S) methane (CH 4) reformation (H 2SMR) (2H 2S + CH 4 = CS 2 + 4H 2) is a potentially viable process for the removal of H 2S from sour natural gas resources or other methane containing gases. Unlike steam methane reformation that generates carbon dioxide as a by-product, H 2SMR produces carbon disulfide (CS 2), a liquid under ambient temperature and pressure-a commodity chemical that is also a feedstock for the synthesis of sulfuric acid. Pinch point analyses for H 2SMR were conducted to determine the reaction conditions necessary for no carbon lay down to occur. Calculations showed that to prevent solid carbon formation, low inlet CH 4 to H 2S ratios are needed. In this paper, we analyze H 2SMR with either a cryogenic process or a membrane separation operation for production of either liquid or gaseous hydrogen. Of the three H 2SMR hydrogen production flowsheets analyzed, direct liquid hydrogen generation has higher first and second law efficiencies of exceeding 80% and 50%, respectively.

  12. Protective Effects of Hydrogen Sulfide in the Ageing Kidney.

    PubMed

    Hou, Cui-Lan; Wang, Ming-Jie; Sun, Chen; Huang, Yong; Jin, Sheng; Mu, Xue-Pan; Chen, Ying; Zhu, Yi-Chun

    2016-01-01

    Aims . The study aimed to examine whether hydrogen sulfide (H 2 S) generation changed in the kidney of the ageing mouse and its relationship with impaired kidney function. Results . H 2 S levels in the plasma, urine, and kidney decreased significantly in ageing mice. The expression of two known H 2 S-producing enzymes in kidney, cystathionine γ -lyase (CSE) and cystathionine- β -synthase (CBS), decreased significantly during ageing. Chronic H 2 S donor (NaHS, 50  μ mol/kg/day, 10 weeks) treatment could alleviate oxidative stress levels and renal tubular interstitial collagen deposition. These protective effects may relate to transcription factor Nrf2 activation and antioxidant proteins such as HO-1, SIRT1, SOD1, and SOD2 expression upregulation in the ageing kidney after NaHS treatment. Furthermore, the expression of H 2 S-producing enzymes changed with exogenous H 2 S administration and contributed to elevated H 2 S levels in the ageing kidney. Conclusions . Endogenous hydrogen sulfide production in the ageing kidney is insufficient. Exogenous H 2 S can partially rescue ageing-related kidney dysfunction by reducing oxidative stress, decreasing collagen deposition, and enhancing Nrf2 nuclear translocation. Recovery of endogenous hydrogen sulfide production may also contribute to the beneficial effects of NaHS treatment.

  13. Hydrogen Sulfide as a Scavenger of Sulfur Atomic Cation.

    PubMed

    Fortenberry, Ryan C; Trabelsi, Tarek; Francisco, Joseph S

    2018-06-07

    The well-studied hydrogen sulfide molecule is shown here for the first time to form a S-S bond barrierlessly with sulfur atomic cation to produce stable H 2 SS + , a compound for which there is nearly no literature data. Previous work has shown that the reaction of hydrogen sulfide with neutral atomic sulfur will likely only take place at high pressures. Conversely, this work shows that hydrogen sulfide will readily bind with atomic sulfur cation first through the 1 4 A″ state from association of H 2 S with S + ( 4 S) and then will relax to the nearly degenerate 1 2 A' or 1 2 A″ states. S + ( 4 S) + H 2 S lies 29.5 kcal/mol above the 1 4 A″ H 2 SS + minimum. The 1 4 A″ H 2 SS + minimum in the S-S bond is also directly intersected by the doublet potential energy surface. As the S-S bond shortens in the association, the 1 2 A' and 1 2 A″ states split, falling 33.5 and 26.4 kcal/mol, respectively, below the 1 4 A″ state. Hence, this work is opening the door for novel synthesis of S-S bonds or potential removal of the common H 2 S toxin/pollutant through concatenation and subsequent precipitation.

  14. Microaeration reduces hydrogen sulfide in biogas

    USDA-ARS?s Scientific Manuscript database

    Although there are a variety of biological and chemical treatments for removal of hydrogen sulfide (H2S) from biogas, all require some level of chemical or water inputs and maintenance. In practice, managing biogas H2S remains a significant challenge for agricultural digesters where labor and opera...

  15. Water vapor inhibits hydrogen sulfide detection in pulsed fluorescence sulfur monitors

    NASA Astrophysics Data System (ADS)

    Bluhme, Anders B.; Ingemar, Jonas L.; Meusinger, Carl; Johnson, Matthew S.

    2016-06-01

    The Thermo Scientific 450 Hydrogen Sulfide-Sulfur Dioxide Analyzer measures both hydrogen sulfide (H2S) and sulfur dioxide (SO2). Sulfur dioxide is measured by pulsed fluorescence, while H2S is converted to SO2 with a molybdenum catalyst prior to detection. The 450 is widely used to measure ambient concentrations, e.g., for emissions monitoring and pollution control. An air stream with a constant H2S concentration was generated and the output of the analyzer recorded as a function of relative humidity (RH). The analyzer underreported H2S as soon as the relative humidity was increased. The fraction of undetected H2S increased from 8.3 at 5.3 % RH (294 K) to over 34 % at RH > 80 %. Hydrogen sulfide mole fractions of 573, 1142, and 5145 ppb were tested. The findings indicate that previous results obtained with instruments using similar catalysts should be re-evaluated to correct for interference from water vapor. It is suspected that water decreases the efficiency of the converter unit and thereby reduces the measured H2S concentration.

  16. Removal of hydrogen sulfide (H2S) from biogas for the community in the province of Maha Sarakham

    NASA Astrophysics Data System (ADS)

    Pinate, W.; Dangphonthong, D.; Sirirach, S.; Sukkhon, S.

    2017-09-01

    Biogas produced from the fermentation in the province of Maha Sarakham of excreta from cow dung, fattening pigs and buffalo dung in small scale farms contained hydrogen sulfide (H2S) at 764, 926 and 1,103 ppm, respectively. This gas has offensive smell and is corrosive to motor and metal stove of farmers, thus needs to be eliminated. The adsorbent granules soaking in FeCl3 and NaOH made from grey cement mixed with diatomaceous earth or fine sand. The experiment cow dung, fattening pigs and buffalo dung farms revealed that the adsorbent granules made from fine sand mixed with grey cement had better efficiency in reducing H2S than diatomaceous earth plus grey cement or scrap iron (97.1-91.4 vs. 86.0-64.3 and 77.9-89.4%, P<0.01). The reduction of H2S increased with the increasing weight of the adsorbent tanks, made from fine sand mixed with grey cement, from 2 to 4 and 6 kg (84.1-89.2 to 92.7-98.0 and 100-99.1%, respectively). Adsorbent set of 6 kg weight can be reduced H2S in biogas from 3,141 to 0 ppm in the first day and to 6 ppm on day 25 of using period, during which the colour of adsorbent granules changed from red brown to dark brown.

  17. Measurement of plasma hydrogen sulfide in vivo and in vitro

    PubMed Central

    Shen, Xinggui; Pattillo, Christopher B.; Pardue, Sibile; Bir, Shyamal C.; Wang, Rui; Kevil, Christopher G.

    2015-01-01

    The gasotransmitter hydrogen sulfide is known to regulate multiple cellular functions during normal and pathophysiological states. However, a paucity of concise information exists regarding quantitative amounts of hydrogen sulfide involved in physiological and pathological responses. This is primarily due to disagreement among various methods employed to measure free hydrogen sulfide. In this article, we describe a very sensitive method of measuring the presence of H2S in plasma down to nanomolar levels, using monobromobimane (MBB). The current standard assay using methylene blue provides erroneous results that do not actually measure H2S. The method presented herein involves derivatization of sulfide with excess MBB in 100 mM Tris–HCl buffer (pH 9.5, 0.1 mM DTPA) for 30 min in 1% oxygen at room temperature. The fluorescent product sulfide-dibimane (SDB) is analyzed by RP-HPLC using an eclipse XDB-C18 (4.6×250 mm) column with gradient elution by 0.1% (v/v) trifluoroacetic acid in acetonitrile. The limit of detection for sulfide-dibimane is 2 nM and the SDB product is very stable over time, allowing batch storage and analysis. In summary, our MBB method is suitable for sensitive quantitative measurement of free hydrogen sulfide in multiple biological samples such as plasma, tissue and cell culture lysates, or media. PMID:21276849

  18. Hydrogen sulfide measurement using sulfide dibimane: critical evaluation with electrospray ion trap mass spectrometry

    PubMed Central

    Shen, Xinggui; Chakraborty, Sourav; Dugas, Tammy R; Kevil, Christopher G

    2015-01-01

    Accurate measurement of hydrogen sulfide bioavailability remains a technical challenge due to numerous issues involving sample processing, detection methods used, and actual biochemical products measured. Our group and others have reported that reverse phase HPLC detection of sulfide dibimane (SDB) product from the reaction of H2S/HS− with monobromobimane allows for analytical detection of hydrogen sulfide bioavailability in free and other biochemical forms. However, it remains unclear whether possible interfering contaminants may contribute to HPLC SDB peak readings that may result in inaccurate measurements of bioavailable sulfide. In this study, we critically compared hydrogen sulfide dependent SDB detection using reverse phase HPLC (RP-HPLC) versus quantitative SRM electrospray ionization mass spectrometry (ESI/MS) to obtain greater clarity into the validity of the reverse phase HPLC method for analytical measurement of hydrogen sulfide. Using an LCQ-deca ion-trap mass spectrometer, SDB was identified by ESI/MS positive ion mode, and quantified by selected reaction monitoring (SRM) using hydrocortisone as an internal standard. Collision induced dissociation (CID) parameters were optimized at MS2 level for SDB and hydrocortisone. ESI/MS detection of SDB standard was found to be a log order more sensitive than RP-HPLC with a lower limit of 0.25 nM. Direct comparison of tissue and plasma SDB levels using RP-HPLC and ESI/MS methods revealed comparable sulfide levels in plasma, aorta, heart, lung and brain. Together, these data confirm the use of SDB as valid indicator of H2S bioavailability and highlights differences between analytical detection methods. PMID:24932544

  19. Reactive Precipitation of Anhydrous Alkali Sulfide Nanocrystals with Concomitant Abatement of Hydrogen Sulfide and Cogeneration of Hydrogen.

    PubMed

    Li, Xuemin; Zhao, Yangzhi; Brennan, Alice; McCeig, Miranda; Wolden, Colin A; Yang, Yongan

    2017-07-21

    Anhydrous alkali sulfide (M 2 S, M=Li or Na) nanocrystals (NCs) are important materials central to the development of next generation cathodes and solid-state electrolytes for advanced batteries, but not commercially available at present. This work reports an innovative method to directly synthesize M 2 S NCs through alcohol-mediated reactions between alkali metals and hydrogen sulfide (H 2 S). In the first step, the alkali metal is complexed with alcohol in solution, forming metal alkoxide (ROM) and releasing hydrogen (H 2 ). Next, H 2 S is bubbled through the ROM solution, where both chemicals are completely consumed to produce phase-pure M 2 S NC precipitates and regenerate alcohol that can be recycled. The M 2 S NCs morphology may be tuned through the choice of the alcohol and solvent. Both synthetic steps are thermodynamically favorable (ΔG m o <-100 kJ mol -1 ), proceeding rapidly to completion at ambient temperature with almost 100 % atom efficiency. The net result, H 2 S+2 m→M 2 S+H 2 , makes good use of a hazardous chemical (H 2 S) and delivers two value-added products that naturally phase separate for easy recovery. This scalable approach provides an energy-efficient and environmentally benign solution to the production of nanostructured materials required in emerging battery technologies. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Superconducting H5S2 phase in sulfur-hydrogen system under high-pressure

    NASA Astrophysics Data System (ADS)

    Ishikawa, Takahiro; Nakanishi, Akitaka; Shimizu, Katsuya; Katayama-Yoshida, Hiroshi; Oda, Tatsuki; Suzuki, Naoshi

    2016-03-01

    Recently, hydrogen sulfide was experimentally found to show the high superconducting critical temperature (Tc) under high-pressure. The superconducting Tc shows 30-70 K in pressure range of 100-170 GPa (low-Tc phase) and increases to 203 K, which sets a record for the highest Tc in all materials, for the samples annealed by heating it to room temperature at pressures above 150 GPa (high-Tc phase). Here we present a solid H5S2 phase predicted as the low-Tc phase by the application of the genetic algorithm technique for crystal structure searching and first-principles calculations to sulfur-hydrogen system under high-pressure. The H5S2 phase is thermodynamically stabilized at 110 GPa, in which asymmetric hydrogen bonds are formed between H2S and H3S molecules. Calculated Tc values show 50-70 K in pressure range of 100-150 GPa within the harmonic approximation, which can reproduce the experimentally observed low-Tc phase. These findings give a new aspect of the excellent superconductivity in compressed sulfur-hydrogen system.

  1. Superconducting H5S2 phase in sulfur-hydrogen system under high-pressure

    PubMed Central

    Ishikawa, Takahiro; Nakanishi, Akitaka; Shimizu, Katsuya; Katayama-Yoshida, Hiroshi; Oda, Tatsuki; Suzuki, Naoshi

    2016-01-01

    Recently, hydrogen sulfide was experimentally found to show the high superconducting critical temperature (Tc) under high-pressure. The superconducting Tc shows 30–70 K in pressure range of 100–170 GPa (low-Tc phase) and increases to 203 K, which sets a record for the highest Tc in all materials, for the samples annealed by heating it to room temperature at pressures above 150 GPa (high-Tc phase). Here we present a solid H5S2 phase predicted as the low-Tc phase by the application of the genetic algorithm technique for crystal structure searching and first-principles calculations to sulfur-hydrogen system under high-pressure. The H5S2 phase is thermodynamically stabilized at 110 GPa, in which asymmetric hydrogen bonds are formed between H2S and H3S molecules. Calculated Tc values show 50–70 K in pressure range of 100–150 GPa within the harmonic approximation, which can reproduce the experimentally observed low-Tc phase. These findings give a new aspect of the excellent superconductivity in compressed sulfur-hydrogen system. PMID:26983593

  2. Trace hydrogen sulfide gas sensor based on tungsten sulfide membrane-coated thin-core fiber modal interferometer

    NASA Astrophysics Data System (ADS)

    Deng, Dashen; Feng, Wenlin; Wei, Jianwei; Qin, Xiang; Chen, Rong

    2017-11-01

    A novel fiber-optic hydrogen sulfide sensor based on a thin-core Mach-Zehnder fiber modal interferometer (TMZFI) is demonstrated and fabricated. This in-line interferometer is composed of a short section of thin-core fiber sandwiched between two standard single mode fibers, and the fast response to hydrogen sulfide is achieved via the construction of tungsten sulfide film on the outside surface of the TMZFI using the dip-coating and calcination technique. The fabricated sensing nanofilm is characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS) spectrometer, Fourier transform infrared (FTIR) and spectroscopic analysis technology, etc. Experimental results showed that the WS2 sensing film has a hexagonal structure with a compact and porous morphology. The XPS and FTIR indicate that the existence of two elements (W and S) is demonstrated. With the increasing concentration of hydrogen sulfide, the interference spectra appear blue shift. In addition, a high sensitivity of 18.37 pm/ppm and a good linear relationship are obtained within a measurement range from 0 to 80 ppm. In addition, there is an excellent selectivity for H2S, which has also been proved by the surface adsorption energy results of tungsten sulfide with four gases (H2S, N2, O2 and CO2) by using the density functional theory calculations. This interferometer has the advantages of simple structure, high sensitivity and easy manufacture, and could be used in the safety monitoring field of hydrogen sulfide gas.

  3. Hydrogen sulfide in plants: from dissipation of excess sulfur to signaling molecule.

    PubMed

    Calderwood, Alexander; Kopriva, Stanislav

    2014-09-15

    Sulfur is essential in all organisms for the synthesis of amino acids cysteine and methionine and as an active component of numerous co-factors and prosthetic groups. However, only plants, algae, fungi, and some prokaryotes are capable of using the abundant inorganic source of sulfur, sulfate. Plants take sulfate up, reduce it, and assimilate into organic compounds with cysteine being the first product of the pathway and a donor of reduced sulfur for synthesis of other S-containing compounds. Cysteine is formed in a reaction between sulfide, derived from reduction of sulfite and an activated amino acid acceptor, O-acetylserine. Sulfide is thus an important intermediate in sulfur metabolism, but numerous other functions in plants has been revealed. Hydrogen sulfide can serve as an alternative source of sulfur for plants, which may be significant in anaerobic conditions of waterlogged soils. On the other hand, emissions of hydrogen sulfide have been detected from many plant species. Since the amount of H2S discharged correlated with sulfate supply to the plants, the emissions were considered a mechanism for dissipation of excess sulfur. Significant hydrogen sulfide emissions were also observed in plants infected with pathogens, particularly with fungi. H2S thus seems to be part of the widely discussed sulfur-induced-resistance/sulfur-enhanced-defense. Recently, however, more evidence has emerged for a role for H2S in regulation and signaling. Sulfide stabilizes the cysteine synthase complex, increasing so the synthesis of its acceptor O-acetylserine. H2S has been implicating in regulation of plant stress response, particularly draught stress. There are more and more examples of processes regulated by H2S in plants being discovered, and hydrogen sulfide is emerging as an important signaling molecule, similar to its role in the animal and human world. How similar the functions, and homeostasis of H2S are in these diverse organisms, however, remains to be elucidated

  4. Dechlorination of chloropicrin and 1,3-dichloropropene by hydrogen sulfide species: redox and nucleophilic substitution reactions.

    PubMed

    Zheng, Wei; Yates, Scott R; Papiernik, Sharon K; Guo, Mingxin; Gan, Jianying

    2006-03-22

    The chlorinated fumigants chloropicrin (trichloronitromethane) and 1,3-dichloropropene (1,3-D) are extensively used in agricultural production for the control of soilborne pests. The reaction of these two fumigants with hydrogen sulfide species (H2S and HS-) was examined in well-defined anoxic aqueous solutions. Chloropicrin underwent an extremely rapid redox reaction in the hydrogen sulfide solution. Transformation products indicated reductive dechlorination of chloropicrin by hydrogen sulfide species to produce dichloro- and chloronitromethane. The transformation of chloropicrin in hydrogen sulfide solution significantly increased with increasing pH, indicating that H2S is less reactive toward chloropicrin than HS- is. For both 1,3-D isomers, kinetics and transformation products analysis revealed that the reaction between 1,3-D and hydrogen sulfide species is an S(N)2 nucleophilic substitution process, in which the chlorine at C3 of 1,3-D is substituted by the sulfur nucleophile to form corresponding mercaptans. The 50% disappearance time (DT50) of 1,3-D decreased with increasing hydrogen sulfide species concentration at a constant pH. Transformation of 1,3-D was more rapid at high pH, suggesting that the reactivity of hydrogen sulfide species in the experimental system stems primarily from HS-. Because of the relatively low smell threshold values and potential environmental persistence of organic sulfur products yielded by the reaction of 1,3-D and HS-, the effects of reduced sulfide species should be considered in the development of alternative fumigation practices, especially in the integrated application of sulfur-containing fertilizers.

  5. Microbial oxidation of mixtures of methylmercaptan and hydrogen sulfide.

    PubMed

    Subramaniyan, A; Kolhatkar, R; Sublette, K L; Beitle, R

    1998-01-01

    Refinery spent-sulfidic caustic, containing only inorganic sulfides, has previously been shown to be amenable to biotreatment with Thiobacillus denitrificans strain F with complete oxidation of sulfides to sulfate. However, many spent caustics contain mercaptans that cannot be metabolized by this strict autotroph. An aerobic enrichment culture was developed from mixed Thiobacilli and activated sludge that was capable of simultaneous oxidation of inorganic sulfide and mercaptans using hydrogen sulfide (H2S) and methylmercaptan (MeSH) gas feeds used to simulate the inorganic and organic sulfur of a spent-sulfidic caustic. The enrichment culture was also capable of biotreatment of an actual mercaptan-containing, spent-sulfidic caustic but at lower rates than predicted by operation on MeSH and H2S fed to the culture in the gas phase, indicating that the caustic contained other inhibitory components.

  6. Hydrogen evolution using palladium sulfide (PdS) nanocorals as photoanodes in aqueous solution.

    PubMed

    Barawi, M; Ferrer, I J; Ares, J R; Sánchez, C

    2014-11-26

    Palladium sulfide (PdS) nanostructures are proposed to be used as photoanodes in photoelectrochemical cells (PECs) for hydrogen evolution due to their adequate transport and optical properties shown in previous works. Here, a complete morphological and electrochemical characterization of PdS films has been performed by different techniques. PdS flatband potential (Vfb=-0.65±0.05 V vs NHE) was determined by electrochemical impedance spectroscopy measurements in aqueous Na2SO3 electrolyte, providing a description of the energy levels scheme at the electrolyte-semiconductor interface. This energy levels scheme confirms PdS as a compound able to photogenerate hydrogen in a PEC. At last, photogenerated hydrogen rates are measured continuously by mass spectrometry as a function of the external bias potential under illumination, reaching values up to 4.4 μmolH2/h at 0.3 V vs Ag/AgCl.

  7. Kinetics and the mass transfer mechanism of hydrogen sulfide removal by biochar derived from rice hull.

    PubMed

    Shang, Guofeng; Liu, Liang; Chen, Ping; Shen, Guoqing; Li, Qiwu

    2016-05-01

    The biochar derived from rice hull was evaluated for its abilities to remove hydrogen sulfide (H2S) from gas phase. The surface area and pH of the biochar were compared. The biochar derived from rice hull was evaluated for its abilities to remove hydrogen sulfide (H2S) from gas phase. The surface area and pH of the biochar were compared. The different pyrolysis temperature has great influence on the adsorption of H2S. At the different pyrolysis temperature, the H2S removal efficiency of rice hull-derived biochar was different. The adsorption capacities of biochar were 2.09 mg·g(-1), 2.65 mg·g(-1), 16.30 mg·g(-1), 20.80 mg·g(-1), and 382.70 mg·g(-1), which their pyrolysis temperatures were 100 °C, 200 °C, 300 °C, 400 °C and 500 °C respectively. Based on the Yoon-Nelson model, it analyzed the mass transfer mechanism of hydrogen sulfide adsorption by biochar. The paper focuses on the biochar derived from rice hull-removed hydrogen sulfide (H2S) from gas phase. The surface area and pH of the biochar were compared. The different pyrolysis temperatures have great influence on the adsorption of H2S. At the different pyrolysis temperatures, the H2S removal efficiency of rice hull-derived biohar was different. The adsorption capacities of biochar were 2.09, 2.65, 16.30, 20.80, and 382.70 mg·g(-1), and their pyrolysis temperatures were 100, 200, 300, 400, and 500 °C, respectively. Based on the Yoon-Nelson model, the mass transfer mechanism of hydrogen sulfide adsorption by biochar was analyzed.

  8. Cyclodextrin-Based Metal-Organic Nanotube as Fluorescent Probe for Selective Turn-On Detection of Hydrogen Sulfide in Living Cells Based on H2S-Involved Coordination Mechanism

    NASA Astrophysics Data System (ADS)

    Xin, Xuelian; Wang, Jingxin; Gong, Chuanfang; Xu, Hai; Wang, Rongming; Ji, Shijie; Dong, Hanxiao; Meng, Qingguo; Zhang, Liangliang; Dai, Fangna; Sun, Daofeng

    2016-02-01

    Hydrogen sulfide (H2S) has been considered as the third biologically gaseous messenger (gasotransmitter) after nitric oxide (NO) and carbon monoxide (CO). Fluorescent detection of H2S in living cells is very important to human health because it has been found that the abnormal levels of H2S in human body can cause Alzheimer’s disease, cancers and diabetes. Herein, we develop a cyclodextrin-based metal-organic nanotube, CD-MONT-2, possessing a {Pb14} metallamacrocycle for efficient detection of H2S. CD-MONT-2‧ (the guest-free form of CD-MONT-2) exhibits turn-on detection of H2S with high selectivity and moderate sensitivity when the material was dissolved in DMSO solution. Significantly, CD-MONT-2‧ can act as a fluorescent turn-on probe for highly selective detection of H2S in living cells. The sensing mechanism in the present work is based on the coordination of H2S as the auxochromic group to the central Pb(II) ion to enhance the fluorescence intensity, which is studied for the first time.

  9. Biology and therapeutic potential of hydrogen sulfide and hydrogen sulfide-releasing chimeras

    PubMed Central

    Kashfi, Khosrow; Olson, Kenneth R.

    2012-01-01

    Hydrogen sulfide, H2S, is a colorless gas with a strong odor that until recently was only considered to be a toxic environmental pollutant with little or no physiological significance. However, the past few years have demonstrated its role in many biological systems and it is becoming increasingly clear that H2S is likely to join nitric oxide (NO) and carbon monoxide (CO) as a major player in mammalian biology. In this review, we have provided an overview of the chemistry and biology of H2S and have summarized the chemistry and biological activity of some natural and synthetic H2S-donating compounds. The naturally occurring compounds discussed include, garlic, sulforaphane, erucin, and iberin. The synthetic H2S donors reviewed include, GYY4137; cysteine analogs; S-propyl cysteine, S-allyl cysteine, S-propargyl cysteine, and N-acetyl cysteine. Dithiolethione and its NSAID and other chimeras such as, L-DOPA, sildenafil, aspirin, diclofenac, naproxen, ibuprofen, indomethacin, and mesalamine have also been reviewed in detail. The newly reported NOSH-aspirin that releases both NO and H2S has also been discussed. PMID:23103569

  10. Analytical Measurement of Discrete Hydrogen Sulfide Pools in Biological Specimens

    PubMed Central

    Shen, Xinggui; Peter, Elvis A.; Bir, Shyamal; Wang, Rui; Kevil, Christopher G.

    2015-01-01

    Hydrogen sulfide (H2S) is a ubiquitous gaseous signaling molecule that plays a vital role in numerous cellular functions and has become the focus of many research endeavors including pharmaco-therapeutic manipulation. Amongst the challenges facing the field is the accurate measurement of biologically active H2S. We have recently reported that the typically used methylene blue method and its associated results are invalid and do not measure bonafide H2S. The complexity of analytical H2S measurement reflects the fact that hydrogen sulfide is a volatile gas and exists in the body in different forms, including a free form, an acid labile pool and as bound sulfane sulfur. Here we describe a new protocol to discretely measure specific H2S pools using the monobromobimane method coupled with RP-HPLC. This new protocol involves selective liberation, trapping and derivatization of H2S. Acid-labile H2S is released by incubating the sample in an acidic solution (pH 2.6) of 100 mM phosphate buffer with 0.1 mM DTPA, in an enclosed system to contain volatilized H2S. Volatilized H2S is then trapped in 100 mM Tris-HCl (pH 9.5, 0.1 mM DTPA) and then reacted with excess monobromobimane. In a separate aliquot, the contribution of bound sulfane sulfur pool was measured by incubating the sample with 1 mM TCEP (Tris(2-carboxyethyl)phosphine hydrochloride), a reducing agent to reduce disulfide bonds, in 100 mM phosphate buffer (pH 2.6, 0.1 mM DTPA), and H2S measurement performed in an analogous manner to the one described above. The acid labile pool was determined by subtracting the free hydrogen sulfide value from the value obtained by the acid liberation protocol. The bound sulfane sulfur pool was determined by subtracting the H2S measurement from the acid liberation protocol alone compared to that of TCEP plus acidic conditions. In summary, our new method protocol allows very sensitive and accurate measurement of the three primary biological pools of H2S including free, acid labile

  11. Novel hydrogen sulfide-releasing compound, S-propargyl-cysteine, prevents STZ-induced diabetic nephropathy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qian, Xin; Li, Xinghui; Ma, Fenfen

    2016-05-13

    In this work, we demonstrated for the first time that S-propargyl-cysteine (SPRC, also named as ZYZ-802), a novel hydrogen sulfide (H{sub 2}S)-releasing compound, had renoprotective effects on streptozotocin (STZ)-induced diabetic kidney injury. SPRC treatment significantly reduced the level of creatinine, kidney to body weight ratio and in particular, markedly decreased 24-h urine microalbuminuria excretion. SPRC suppressed the mRNA expression of fibronectin and type IV collagen. In vitro, SPRC inhibited mesangial cells over-proliferation and hypertrophy induced by high glucose. Additionally, SPRC attenuated inflammation in diabetic kidneys. SPRC also reduced transforming growth factor β1 (TGF-β1) signaling and expression of phosphorylated Smad3 (p-Smad3) pathway. Moreover,more » SPRC inhibited phosphorylation of ERK, p38 protein. Taken together, SPRC was demonstrated to be a potential therapeutic candidate to suppress diabetic nephropathy. - Highlights: • We synthesized a novel hydrogen sulfide-releasing compound, S-propargyl-cysteine (SPRC). • SPRC was preliminarily demonstrated to prevent STZ-induced diabetic nephropathy (DN). • SPRC may exert potential therapeutic candidate to suppress DN.« less

  12. Methods for producing hydrogen (BI) sulfide and/or removing metals

    DOEpatents

    Truex, Michael J [Richland, WA; Peyton, Brent M [Pullman, WA; Toth, James J [Kennewick, WA

    2002-05-14

    The present invention is a process wherein sulfide production by bacteria is efficiently turned on and off, using pH adjustment. The adjustment of pH impacts sulfide production by bacteria by altering the relative amounts of H.sub.2 S and HS-- in solution and thereby control the inhibition of the bacterial metabolism that produces sulfide. This process can be used to make a bioreactor produce sulfide "on-demand" so that the production of sulfide can be matched to its use as a metal precipitation reagent. The present invention is of significance because it enables the use of a biological reactor, a cost effective sulfide production system, by making the biological reactor produce hydrogen sulfide "on demand", and therefore responsive to production schedules, waste stream generation rate, and health and safety requirements/goals.

  13. The role of hydrogen sulfide in aging and age-related pathologies.

    PubMed

    Perridon, Bernard W; Leuvenink, Henri G D; Hillebrands, Jan-Luuk; van Goor, Harry; Bos, Eelke M

    2016-09-27

    When humans grow older, they experience inevitable and progressive loss of physiological function, ultimately leading to death. Research on aging largely focuses on the identification of mechanisms involved in the aging process. Several proposed aging theories were recently combined as the 'hallmarks of aging'. These hallmarks describe (patho-)physiological processes that together, when disrupted, determine the aging phenotype. Sustaining evidence shows a potential role for hydrogen sulfide (H 2 S) in the regulation of aging. Nowadays, H 2 S is acknowledged as an endogenously produced signaling molecule with various (patho-) physiological effects. H 2 S is involved in several diseases including pathologies related to aging. In this review, the known, assumed and hypothetical effects of hydrogen sulfide on the aging process will be discussed by reviewing its actions on the hallmarks of aging and on several age-related pathologies.

  14. The role of hydrogen sulfide in aging and age-related pathologies

    PubMed Central

    Perridon, Bernard W.; Leuvenink, Henri G.D.; Hillebrands, Jan-Luuk; van Goor, Harry; Bos, Eelke M.

    2016-01-01

    When humans grow older, they experience inevitable and progressive loss of physiological function, ultimately leading to death. Research on aging largely focuses on the identification of mechanisms involved in the aging process. Several proposed aging theories were recently combined as the ‘hallmarks of aging’. These hallmarks describe (patho-)physiological processes that together, when disrupted, determine the aging phenotype. Sustaining evidence shows a potential role for hydrogen sulfide (H2S) in the regulation of aging. Nowadays, H2S is acknowledged as an endogenously produced signaling molecule with various (patho-) physiological effects. H2S is involved in several diseases including pathologies related to aging. In this review, the known, assumed and hypothetical effects of hydrogen sulfide on the aging process will be discussed by reviewing its actions on the hallmarks of aging and on several age-related pathologies. PMID:27683311

  15. Evaluation of thiosulfate as a substitute for hydrogen sulfide in sour corrosion fatigue studies

    NASA Astrophysics Data System (ADS)

    Kappes, Mariano Alberto

    This work evaluates the possibility of replacing hydrogen sulfide (H 2S) with thiosulfate anion (S2O32- ) in sour corrosion fatigue studies. H2S increases the corrosion fatigue crack growth rate (FCGR) and can be present in carbon steel risers and flowlines used in off-shore oil production. Corrosion tests with gaseous H2S require special facilities with safety features, because H2S is a toxic and flammable gas. The possibility of replacing H2S with S2O32-, a non-toxic anion, for studying stress corrosion cracking of stainless and carbon steels in H2S solutions was first proposed by Tsujikawa et al. ( Tsujikawa et al., Corrosion, 1993. 49(5): p. 409-419). In this dissertation, Tsujikawa work will be extended to sour corrosion fatigue of carbon steels. H2S testing is often conducted in deareated condition to avoid oxygen reaction with sulfide that yields sulfur and to mimic oil production conditions. Nitrogen deareation was also adopted in S2O3 2- testing, and gas exiting the cell was forced through a sodium hydroxide trap. Measurements of the sulfide content of this trap were used to estimate the partial pressure of H2S in nitrogen, and Henry's law was used to estimate the content of H2S in the solution in the cell. H2S was produced by a redox reaction of S2O 32-, which required electrons from carbon steel corrosion. This reaction is spontaneous at the open circuit potential of steel. Therefore, H2S concentration was expected to be maximum at the steel surface, and this concentration was estimated by a mass balance analysis. Carbon steel specimens exposed to S2O32- containing solutions developed a film on their surface, composed by iron sulfide and cementite. The film was not passivating and a good conductor of electrons. Hydrogen permeation experiments proved that this film controls the rate of hydrogen absorption of steels exposed to thiosulfate containing solutions. The absorption of hydrogen in S2O3 2- solutions was compared with the absorption of hydrogen in

  16. Raman spectra and cross sections of ammonia, chlorine, hydrogen sulfide, phosgene, and sulfur dioxide toxic gases in the fingerprint region 400 1400 cm 1

    DTIC Science & Technology

    2015-11-24

    ammonia , chlorine, hydrogen sulfide, phosgene, and sulfur dioxide toxic gases in the fingerprint region 400... ammonia (NH3), chlorine (Cl2), hydrogen sulfide (H2S), phosgene (COCl2), and sulfur dioxide (SO2) toxic gases have been measured in the fingerprint...sections of ammonia (NH3), chlorine (Cl2), hydrogen sulfide (H2S), phosgene (CCl2O), and sulfur dioxide (SO2) toxic gases in the fingerprint

  17. Raman Spectra and Cross Sections of Ammonia, Chlorine, Hydrogen Sulfide, Phosgene, and Sulfur Dioxide Toxic Gases in the Fingerprint Region 400-1400 cm-1

    DTIC Science & Technology

    2015-12-14

    ammonia , chlorine, hydrogen sulfide, phosgene, and sulfur dioxide toxic gases in the fingerprint region 400... ammonia (NH3), chlorine (Cl2), hydrogen sulfide (H2S), phosgene (COCl2), and sulfur dioxide (SO2) toxic gases have been measured in the fingerprint...sections of ammonia (NH3), chlorine (Cl2), hydrogen sulfide (H2S), phosgene (CCl2O), and sulfur dioxide (SO2) toxic gases in the fingerprint region

  18. Synthesis Of [2h, 13c] And [2h3, 13c]Methyl Aryl Sulfides

    DOEpatents

    Martinez, Rodolfo A.; Alvarez, Marc A.; Silks, III, Louis A.; Unkefer, Clifford J.

    2004-03-30

    The present invention is directed to labeled compounds, [.sup.2 H.sub.1, .sup.13 C], [.sup.2 H.sub.2, .sup.13 C] and [.sup.2 H.sub.3, .sup.13 C]methyl aryl sulfides wherein the .sup.13 C methyl group attached to the sulfur of the sulfide includes exactly one, two or three deuterium atoms and the aryl group is selected from the group consisting of 1-naphthyl, substituted 1-naphthyl, 2-naphthyl, substituted 2-naphthyl, and phenyl groups with the structure ##STR1## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4, and R.sub.5 are each independently, hydrogen, a C.sub.1 -C.sub.4 lower alkyl, a halogen, an amino group from the group consisting of NH.sub.2, NHR and NRR' where R and R' are each a C.sub.1 -C.sub.4 lower alkyl, a phenyl, or an alkoxy group. The present invention is also directed to processes of preparing [.sup.2 H.sub.1, .sup.13 C], [.sup.2 H.sub.2,.sup.13 C] and [.sup.2 H.sub.3, .sup.13 C]methyl aryl sulfides wherein the .sup.13 C methyl group attached to the sulfur of the sulfide includes exactly one, two or three deuterium atoms. The present invention is also directed to the labeled compounds of [.sup.2 H.sub.1, .sup.13 C]methyl iodide and [.sup.2 H.sub.2, .sup.13 C]methyl iodide.

  19. Biological treatment process of air loaded with an ammonia and hydrogen sulfide mixture.

    PubMed

    Malhautier, Luc; Gracian, Catherine; Roux, Jean-Claude; Fanlo, Jean-Louis; Le Cloirec, Pierre

    2003-01-01

    The physico-chemical characteristics of granulated sludge lead us to develop its use as a packing material in air biofiltration. Then, the aim of this study is to investigate the potential of unit systems packed with this support in terms of ammonia and hydrogen sulfide emissions treatment. Two laboratory scale pilot biofilters were used. A volumetric load of 680 g H2S m(-3) empty bed day(-1) and 85 g NH3 m(-3) empty bed day(-1) was applied for eight weeks to a unit called BGSn (column packed with granulated sludge and mainly supplied with hydrogen sulfide); a volumetric load of 170 g H2S m(-3) empty bed day(-1) and 340 g NH3 m(-3) empty bed day(-1) was applied for eight weeks to the other called BGNs (column packed with granulated sludge and mainly supplied with ammonia). Ammonia and hydrogen sulfide elimination occur in the biofilters simultaneously. The hydrogen sulphide and ammonia removal efficiencies reached are very high: 100% and 80% for BGSn; 100% and 80% for BGNs respectively. Hydrogen sulfide is oxidized into sulphate and sulfur. The ammonia oxidation products are nitrite and nitrate. The nitrogen error mass balance is high for BGSn (60%) and BGNs (36%). This result could be explained by the denitrification process which would have occurred in anaerobic zones. High percentages of ammonia or hydrogen sulfide are oxidized on the first half of the column. The oxidation of high amounts of hydrogen sulfide would involve some environmental stress on nitrifying bacterial growth and activity.

  20. Hydrogen sulfide ameliorated L-NAME-induced hypertensive heart disease by the Akt/eNOS/NO pathway.

    PubMed

    Jin, Sheng; Teng, Xu; Xiao, Lin; Xue, Hongmei; Guo, Qi; Duan, Xiaocui; Chen, Yuhong; Wu, Yuming

    2017-12-01

    Reductions in hydrogen sulfide (H 2 S) production have been implicated in the pathogenesis of hypertension; however, no studies have examined the functional role of hydrogen sulfide in hypertensive heart disease. We hypothesized that the endogenous production of hydrogen sulfide would be reduced and exogenous hydrogen sulfide would ameliorate cardiac dysfunction in N ω -nitro- L-arginine methyl ester ( L-NAME)-induced hypertensive rats. Therefore, this study investigated the cardioprotective effects of hydrogen sulfide on L-NAME-induced hypertensive heart disease and explored potential mechanisms. The rats were randomly divided into five groups: Control, Control + sodium hydrosulfide (NaHS), L-NAME, L-NAME + NaHS, and L-NAME + NaHS + glibenclamide (Gli) groups. Systolic blood pressure was monitored each week. In Langendorff-isolated rat heart, cardiac function represented by ±LV dP/dt max and left ventricular developing pressure was recorded after five weeks of treatment. Hematoxylin and Eosin and Masson's trichrome staining and myocardium ultrastructure under transmission electron microscopy were used to evaluate cardiac remodeling. The plasma nitric oxide and hydrogen sulfide concentrations, as well as nitric oxide synthases and cystathionine-γ-lyase activity in left ventricle tissue were determined. The protein expression of p-Akt, Akt, p-eNOS, and eNOS in left ventricle tissue was analyzed using Western blot. After five weeks of L-NAME treatment, there was a time-dependent hypertension, cardiac remodeling, and dysfunction accompanied by a decrease in eNOS phosphorylation, nitric oxide synthase activity, and nitric oxide concentration. Meanwhile, cystathionine-γ-lyase activity and hydrogen sulfide concentration were also decreased. NaHS treatment significantly increased plasma hydrogen sulfide concentration and subsequently promoted the Akt/eNOS/NO pathway which inhibited the development of hypertension and attenuated cardiac remodeling and

  1. Measurement of H2S in vivo and in vitro by the monobromobimane method

    PubMed Central

    Shen, Xinggui; Kolluru, Gopi K.; Yuan, Shuai; Kevil, Christopher

    2015-01-01

    The gasotransmitter hydrogen sulfide (H2S) is known as an important regulator in several physiological and pathological responses. Among the challenges facing the field is the accurate and reliable measurement of hydrogen sulfide bioavailability. We have reported an approach to discretely measure sulfide and sulfide pools using the monobromobimane (MBB) method coupled with RP-HPLC. The method involves the derivatization of sulfide with excess MBB under precise reaction conditions at room temperature to form sulfide-dibimane. The resultant fluorescent sulfide-dibimane (SDB) is analyzed by RP-HPLC using fluorescence detection with the limit of detection for SDB (2 nM). Care must be taken to avoid conditions that may confound H2S measurement with this method. Overall, RP-HPLC with fluorescence detection of SDB is a useful and powerful tool to measure biological sulfide levels. PMID:25725514

  2. Solubility of hydrogen sulfide in aqueous mixtures of monoethanolamine with N-methyldiethanolamine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng Hui Li; Keh Perng Shen

    1993-01-01

    Alkanolamine aqueous solutions are frequently used for the removal of acidic gases, such as CO[sub 2] and H[sub 2]S, from gas streams in the natural gas and synthetic ammonia industries and petroleum chemical plants. The solubilities of hydrogen sulfide in aqueous mixtures of monoethanolamine (MEA) with N-methyl-diethanolamine (MDEA) have been measured at 40, 60, 80, and 100C and at partial pressures of hydrogen sulfide ranging from 1.0 to 450 kPa. The mixtures of alkanolamines studied are 4.95 kmol/m[sup 3] MEA, 3.97 kmol/m[sup 3] MEA + 0.51 kmol/m[sup 3] MDEA, 2.0 kmol/m[sup 3] MEA + 1.54 kmol/m[sup 3] MDEA, and 2.57more » kmol/m[sup 3] MDEA aqueous solutions. The solubilities of hydrogen sulfide in aqueous alkanolamine solutions are reported as functions of the partial pressure of hydrogen sulfide at the temperatures of 40-100C.« less

  3. The metallization and superconductivity of dense hydrogen sulfide

    NASA Astrophysics Data System (ADS)

    Li, Yinwei; Hao, Jian; Liu, Hanyu; Li, Yanling; Ma, Yanming

    2014-05-01

    Hydrogen sulfide (H2S) is a prototype molecular system and a sister molecule of water (H2O). The phase diagram of solid H2S at high pressures remains largely unexplored arising from the challenges in dealing with the pressure-induced weakening of S-H bond and larger atomic core difference between H and S. Metallization is yet achieved for H2O, but it was observed for H2S above 96 GPa. However, the metallic structure of H2S remains elusive, greatly impeding the understanding of its metallicity and the potential superconductivity. We have performed an extensive structural study on solid H2S at pressure ranges of 10-200 GPa through an unbiased structure prediction method based on particle swarm optimization algorithm. Besides the findings of candidate structures for nonmetallic phases IV and V, we are able to establish stable metallic structures violating an earlier proposal of elemental decomposition into sulfur and hydrogen [R. Rousseau, M. Boero, M. Bernasconi, M. Parrinello, and K. Terakura, Phys. Rev. Lett. 85, 1254 (2000)]. Our study unravels a superconductive potential of metallic H2S with an estimated maximal transition temperature of ˜80 K at 160 GPa, higher than those predicted for most archetypal hydrogen-containing compounds (e.g., SiH4, GeH4, etc.).

  4. Protein S-sulfhydration by hydrogen sulfide in cardiovascular system.

    PubMed

    Meng, Guoliang; Zhao, Shuang; Xie, Liping; Han, Yi; Ji, Yong

    2018-04-01

    Hydrogen sulfide (H 2 S), independently of any specific transporters, has a number of biological effects on the cardiovascular system. However, until now, the detailed mechanism of H 2 S was not clear. Recently, a novel post-translational modification induced by H 2 S, named S-sulfhydration, has been proposed. S-sulfhydration is the chemical modification of specific cysteine residues of target proteins by H 2 S. There are several methods for detecting S-sulfhydration, such as the modified biotin switch assay, maleimide assay with fluorescent thiol modifying regents, tag-switch method and mass spectrometry. H 2 S induces S-sulfhydration on enzymes or receptors (such as p66Shc, phospholamban, protein tyrosine phosphatase 1B, mitogen-activated extracellular signal-regulated kinase 1 and ATP synthase subunit α), transcription factors (such as specific protein-1, kelch-like ECH-associating protein 1, NF-κB and interferon regulatory factor-1), and ion channels (such as voltage-activated Ca 2+ channels, transient receptor potential channels and ATP-sensitive K + channels) in the cardiovascular system. Although significant progress has been achieved in delineating the role of protein S-sulfhydration by H 2 S in the cardiovascular system, more proteins with detailed cysteine sites of S-sulfhydration as well as physiological function need to be investigated in further studies. This review mainly summarizes the role and possible mechanism of S-sulfhydration in the cardiovascular system. The S-sulfhydrated proteins may be potential novel targets for therapeutic intervention and drug design in the cardiovascular system, which may accelerate the development and application of H 2 S-related drugs in the future. This article is part of a themed section on Spotlight on Small Molecules in Cardiovascular Diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.8/issuetoc. © 2017 The British Pharmacological Society.

  5. Sulfur as a Signaling Nutrient Through Hydrogen Sulfide

    PubMed Central

    Kabil, Omer; Vitvitsky, Victor; Banerjee, Ruma

    2015-01-01

    Hydrogen sulfide (H2S) has emerged as an important signaling molecule with beneficial effects on various cellular processes affecting, for example, cardiovascular and neurological functions. The physiological importance of H2S is motivating efforts to develop strategies for modulating its levels. However, advancement in the field of H2S-based therapeutics is hampered by fundamental gaps in our knowledge of how H2S is regulated, its mechanism of action, and its molecular targets. This review provides an overview of sulfur metabolism; describes recent progress that has shed light on the mechanism of H2S as a signaling molecule; and examines nutritional regulation of sulfur metabolism, which pertains to health and disease. PMID:25033061

  6. Inhaled Hydrogen Sulfide

    PubMed Central

    Volpato, Gian Paolo; Searles, Robert; Yu, Binglan; Scherrer-Crosbie, Marielle; Bloch, Kenneth D.; Ichinose, Fumito; Zapol, Warren M.

    2010-01-01

    Background Breathing hydrogen sulfide (H2S) has been reported to induce a suspended animation–like state with hypothermia and a concomitant metabolic reduction in rodents. However, the impact of H2S breathing on cardiovascular function remains incompletely understood. In this study, the authors investigated the cardiovascular and metabolic effects of inhaled H2S in a murine model. Methods The impact of breathing H2S on cardiovascular function was examined using telemetry and echocardiography in awake mice. The effects of breathing H2S on carbon dioxide production and oxygen consumption were measured at room temperature and in a warmed environment. Results Breathing H2S at 80 parts per million by volume at 27°C ambient temperature for 6 h markedly reduced heart rate, core body temperature, respiratory rate, and physical activity, whereas blood pressure remained unchanged. Echocardiography demonstrated that H2S exposure decreased both heart rate and cardiac output but preserved stroke volume. Breathing H2S for 6 h at 35°C ambient temperature (to prevent hypothermia) decreased heart rate, physical activity, respiratory rate, and cardiac output without altering stroke volume or body temperature. H2S breathing seems to induce bradycardia by depressing sinus node activity. Breathing H2S for 30 min decreased whole body oxygen consumption and carbon dioxide production at either 27° or 35°C ambient temperature. Both parameters returned to baseline levels within 10 min after the cessation of H2S breathing. Conclusions Inhalation of H2S at either 27° or 35°C reversibly depresses cardiovascular function without changing blood pressure in mice. Breathing H2S also induces a rapidly reversible reduction of metabolic rate at either body temperature. PMID:18362598

  7. Chemical Foundations of Hydrogen Sulfide Biology

    PubMed Central

    Li, Qian; Lancaster, Jack R.

    2013-01-01

    Following nitric oxide (nitrogen monoxide) and carbon monoxide, hydrogen sulfide (or its newer systematic name sulfane, H2S) became the third small molecule that can be both toxic and beneficial depending on the concentration. In spite of its impressive therapeutic potential, the underlying mechanisms for its beneficial effects remain unclear. Any novel mechanism has to obey fundamental chemical principles. H2S chemistry was studied long before its biological relevance was discovered, however, with a few exceptions, these past works have received relatively little attention in the path of exploring the mechanistic conundrum of H2S biological functions. This review calls attention to the basic physical and chemical properties of H2S, focuses on the chemistry between H2S and its three potential biological targets: oxidants, metals and thiol derivatives, discusses the applications of these basics into H2S biology and methodology, and introduces the standard terminology to this youthful field. PMID:23850631

  8. Simultaneous treatment of dimethyl disulfide and hydrogen sulfide in an alkaline biotrickling filter.

    PubMed

    Arellano-García, Luis; Le Borgne, Sylvie; Revah, Sergio

    2018-01-01

    Foul odors comprise generally a complex mixture of molecules, where reduced sulfur compounds play a key role due to their toxicity and low odor threshold. Previous reports on treating mixtures of sulfur compounds in single biofilters showed that hydrogen sulfide (H 2 S) interferes with the removal and degradation of other sulfur compounds. In this study, hydrogen sulfide (H 2 S) and dimethyl disulfide (DMDS) were fed to an alkaline biotrickling filter (ABTF) at pH 10, to evaluate the simultaneous removal of inorganic and organic sulfur compounds in a single, basic-pH system. The H 2 S-DMDS mixture was treated for more than 200 days, with a gas residence time of 40 s, attaining elimination capacities of 86 g DMDS m -3 h -1 and 17 g H2S m -3 h -1 and removal efficiencies close to 100%. Conversion of H 2 S and DMDS to sulfate was generally above 70%. Consumption of sulfide and formaldehyde was verified by respirometry, suggesting the coexistence of both methylotrophic and chemoautotrophic breakdown pathways by the immobilized alkaliphilic biomass. The molecular biology analysis showed that the long-term acclimation of the ABTF led to a great variety of bacteria, predominated by Thioalkalivibrio species, while fungal community was notoriously less diverse and dominated by Fusarium species. Copyright © 2017. Published by Elsevier Ltd.

  9. Measurement of H2S in vivo and in vitro by the monobromobimane method.

    PubMed

    Shen, Xinggui; Kolluru, Gopi K; Yuan, Shuai; Kevil, Christopher G

    2015-01-01

    The gasotransmitter hydrogen sulfide (H2S) is known as an important regulator in several physiological and pathological responses. Among the challenges facing the field is the accurate and reliable measurement of hydrogen sulfide bioavailability. We have reported an approach to discretely measure sulfide and sulfide pools using the monobromobimane (MBB) method coupled with reversed phase high-performance liquid chromatography (RP-HPLC). The method involves the derivatization of sulfide with excess MBB under precise reaction conditions at room temperature to form sulfide dibimane (SDB). The resultant fluorescent SDB is analyzed by RP-HPLC using fluorescence detection with the limit of detection for SDB (2 nM). Care must be taken to avoid conditions that may confound H2S measurement with this method. Overall, RP-HPLC with fluorescence detection of SDB is a useful and powerful tool to measure biological sulfide levels. © 2015 Elsevier Inc. All rights reserved.

  10. Selective turn-on fluorescent probes for imaging hydrogen sulfide in living cells.

    PubMed

    Montoya, Leticia A; Pluth, Michael D

    2012-05-16

    Hydrogen sulfide (H(2)S) is an important biological messenger but few biologically-compatible methods are available for its detection. Here we report two bright fluorescent probes that are selective for H(2)S over cysteine, glutathione and other reactive sulfur, nitrogen, and oxygen species. Both probes are demonstrated to detect H(2)S in live cells. This journal is © The Royal Society of Chemistry 2012

  11. Human health cost of hydrogen sulfide air pollution from an oil and gas Field.

    PubMed

    Kenessary, Dinara; Kenessary, Almas; Kenessariyev, Ussen Ismailovich; Juszkiewicz, Konrad; Amrin, Meiram Kazievich; Erzhanova, Aya Eralovna

    2017-06-08

    Introduction and objective. The Karachaganak oil and gas condensate field (KOGCF), one of the largest in the world, located in the Republic of Kazakhstan (RoK) in Central Asia, is surrounded by 10 settlements with a total population of 9,000 people. Approximately73% of this population constantly mention a specific odour of rotten eggs in the air, typical for hydrogen sulfide (H2S) emissions, and the occurrence of low-level concentrations of hydrogen sulfide around certain industrial installations (esp. oil refineries) is a well known fact. Therefore, this study aimed at determining the impact on human health and the economic damage to the country due to H2S emissions. Materials and method. Dose-response dependency between H2S concentrations in the air and cardiovascular morbidity using multiple regression analysis was applied. Economic damage from morbidity was derived with a newly-developed method, with Kazakhstani peculiarities taken into account. Results.Hydrogen sulfide air pollution due to the KOGCF activity costs the state almost $60,000 per year. Moreover, this is the reason for a more than 40% rise incardiovascular morbidity in the region. Conclusion. The reduction of hydrogen sulfide emissions into the air is recommended, as well as successive constant ambient air monitoring in future. Economic damage evaluation should be made mandatory, on a legal basis, whenever an industrial facility operation results in associated air pollution.

  12. Involvement of ERK in NMDA receptor-independent cortical neurotoxicity of hydrogen sulfide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurokawa, Yuko; Sekiguchi, Fumiko; Kubo, Satoko

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer Hydrogen sulfide causes NMDA receptor-independent neurotoxicity in mouse fetal cortical neurons. Black-Right-Pointing-Pointer Activation of ERK mediates the toxicity of hydrogen sulfide. Black-Right-Pointing-Pointer Apoptotic mechanisms are involved in the hydrogen-induced cell death. -- Abstract: Hydrogen sulfide (H{sub 2}S), a gasotransmitter, exerts both neurotoxicity and neuroprotection, and targets multiple molecules including NMDA receptors, T-type calcium channels and NO synthase (NOS) that might affect neuronal viability. Here, we determined and characterized effects of NaHS, an H{sub 2}S donor, on cell viability in the primary cultures of mouse fetal cortical neurons. NaHS caused neuronal death, as assessed by LDH release and trypanmore » blue staining, but did not significantly reduce the glutamate toxicity. The neurotoxicity of NaHS was resistant to inhibitors of NMDA receptors, T-type calcium channels and NOS, and was blocked by inhibitors of MEK, but not JNK, p38 MAP kinase, PKC and Src. NaHS caused prompt phosphorylation of ERK and upregulation of Bad, followed by translocation of Bax to mitochondria and release of mitochondrial cytochrome c, leading to the nuclear condensation/fragmentation. These effects of NaHS were suppressed by the MEK inhibitor. Our data suggest that the NMDA receptor-independent neurotoxicity of H{sub 2}S involves activation of the MEK/ERK pathway and some apoptotic mechanisms.« less

  13. Electrochemical hydrogen sulfide biosensors.

    PubMed

    Xu, Tailin; Scafa, Nikki; Xu, Li-Ping; Zhou, Shufeng; Abdullah Al-Ghanem, Khalid; Mahboob, Shahid; Fugetsu, Bunshi; Zhang, Xueji

    2016-02-21

    The measurement of sulfide, especially hydrogen sulfide, has held the attention of the analytical community due to its unique physiological and pathophysiological roles in biological systems. Electrochemical detection offers a rapid, highly sensitive, affordable, simple, and real-time technique to measure hydrogen sulfide concentration, which has been a well-documented and reliable method. This review details up-to-date research on the electrochemical detection of hydrogen sulfide (ion selective electrodes, polarographic hydrogen sulfide sensors, etc.) in biological samples for potential therapeutic use.

  14. Clinical Implication of Plasma Hydrogen Sulfide Levels in Japanese Patients with Type 2 Diabetes.

    PubMed

    Suzuki, Kunihiro; Sagara, Masaaki; Aoki, Chie; Tanaka, Seiichi; Aso, Yoshimasa

    Objective The goal of the present study was to investigate the plasma hydrogen sulfide (H 2 S) levels in patients with type 2 diabetes, as the plasma H 2 S levels in Japanese patients with type 2 diabetes remain unclear. Methods The plasma H 2 S levels were measured in 154 outpatients with type 2 diabetes and 66 outpatients without diabetes. All blood samples were collected in the outpatient department from 09:00 to 10:00. The patients had fasted from 21:00 the previous evening and had not consumed alcohol or caffeine or smoked until sample collection. The plasma H 2 S levels were measured using the methylene blue assay. The plasma H 2 S levels were determined in triplicate, and the average concentrations were calculated against a calibration curve of sodium sulfide. Results The patients with type 2 diabetes showed a progressive reduction in the plasma H 2 S levels (45.115.5 M versus 54.026.4 M, p<0.05), which paralleled poor glycemic control. There was a significant correlation between a reduction in the plasma H 2 S levels and the HbA1c levels (=-0.505, p<0.01), Furthermore, a reduction in the plasma H 2 S levels was found to be related to a history of cardiovascular diseases in patients with type 2 diabetes (39.913.8 M versus 47.515.9 M, p<0.01). Conclusion Collectively, the plasma H 2 S levels were reduced in patients with type 2 diabetes, which may have implications in the pathophysiology of cardiovascular disease in diabetic patients. The trial was registered with the University Hospital Medical Information Network (UMIN no. #000020549).

  15. Biological removal of air loaded with a hydrogen sulfide and ammonia mixture.

    PubMed

    Chen, Ying-xu; Yin, Jun; Fang, Shi

    2004-01-01

    The nuisance impact of air pollutant emissions from wastewater pumping stations is a major issue of concern to China. Hydrogen sulfide and ammonia are commonly the primary odor and are important targets for removal. An alternative control technology, biofiltration, was studied. The aim of this study is to investigate the potential of unit systems packed with compost in terms of ammonia and hydrogen sulfide emissions treatment, and to establish optimal operating conditions for a full-scale conceptual design. The laboratory scale biofilter packed with compost was continuously supplied with hydrogen sulfide and ammonia gas mixtures. A volumetric load of less than 150 gH2S/(m3 x d) and 230 gNH3/(m3 x d) was applied for about fifteen weeks. Hydrogen sulfide and ammonia elimination occurred in the biofilter simultaneously. The removal efficiency, removal capacity and removal kinetics in the biofilter were studied. The hydrogen sulfide removal efficiency reached was very high above 99%, and ammonia removal efficiency was about 80%. Hydrogen sulfide was oxidized into sulphate. The ammonia oxidation products were nitrite and nitrate. Ammonia in the biofilter was mainly removed by adsorption onto the carrier material and by absorption into the water fraction of the carrier material. High percentages of hydrogen sulfide or ammonia were oxidized in the first section of the column. Through kinetics analysis, the presence of ammonia did not hinder the hydrogen sulfide removal. According to the relationship between pressure drop and gas velocity for the biofilter and Reynolds number, non-Darcy flow can be assumed to represent the flow in the medium.

  16. A novel peptide-based fluorescence chemosensor for selective imaging of hydrogen sulfide both in living cells and zebrafish.

    PubMed

    Wang, Peng; Wu, Jiang; Di, Cuixia; Zhou, Rong; Zhang, Hong; Su, Pingru; Xu, Cong; Zhou, Panpan; Ge, Yushu; Liu, Dan; Liu, Weisheng; Tang, Yu

    2017-06-15

    Hydrogen sulfide (H 2 S) plays an important role as a signaling compound (gasotransmitter) in living systems. However, the development of an efficient imaging chemosensor of H 2 S in live animals is a challenging field for chemists. Herein, a novel peptide-based fluorescence chemosensor L-Cu was designed and synthesized on the basis of the copper chelating with the peptide ligand (FITC-Ahx-Ser-Pro-Gly-His-NH 2 , L), and its H 2 S sensing ability has been evaluated both in living cells and zebrafish. The peptide backbone and Cu 2+ -removal sensing mechanism are used to deliver rapid response time, high sensitivity, and good biocompatibility. After a fast fluorescence quench by Cu 2+ coordinated with L, the fluorescence of L is recovered by adding S 2- to form insoluble copper sulfide in aqueous solution with a detection limit for hydrogen sulfide measured to be 31nM. Furthermore, the fluorescence chemosensor L-Cu showed excellent cell permeation and low biotoxicity to realize the intracellular biosensing, L-Cu has also been applied to image hydrogen sulfide in live zebrafish larvae. We expect that this peptide-based fluorescence chemosensor L-Cu can be used to study H 2 S-related chemical biology in physiological and pathological events. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Hydrogen Sulfide and Reactive Sulfur Species Impact Proteome S-Sulfhydration and Global Virulence Regulation in Staphylococcus aureus.

    PubMed

    Peng, Hui; Zhang, Yixiang; Palmer, Lauren D; Kehl-Fie, Thomas E; Skaar, Eric P; Trinidad, Jonathan C; Giedroc, David P

    2017-10-13

    Hydrogen sulfide (H 2 S) is thought to protect bacteria from oxidative stress, but a comprehensive understanding of its function in bacteria is largely unexplored. In this study, we show that the human pathogen Staphylococcus aureus (S. aureus) harbors significant effector molecules of H 2 S signaling, reactive sulfur species (RSS), as low molecular weight persulfides of bacillithiol, coenzyme A, and cysteine, and significant inorganic polysulfide species. We find that proteome S-sulfhydration, a post-translational modification (PTM) in H 2 S signaling, is widespread in S. aureus. RSS levels modulate the expression of secreted virulence factors and the cytotoxicity of the secretome, consistent with an S-sulfhydration-dependent inhibition of DNA binding by MgrA, a global virulence regulator. Two previously uncharacterized thioredoxin-like proteins, denoted TrxP and TrxQ, are S-sulfhydrated in sulfide-stressed cells and are capable of reducing protein hydrodisulfides, suggesting that this PTM is potentially regulatory in S. aureus. In conclusion, our results reveal that S. aureus harbors a pool of proteome- and metabolite-derived RSS capable of impacting protein activities and gene regulation and that H 2 S signaling can be sensed by global regulators to affect the expression of virulence factors.

  18. Occupationally related hydrogen sulfide deaths in the United States from 1984 to 1994.

    PubMed

    Fuller, D C; Suruda, A J

    2000-09-01

    Alice Hamilton described fatal work injuries from acute hydrogen sulfide poisonings in 1925 in her book Industrial Poisons in the United States. There is no unique code for H2S poisoning in the International Classification of Diseases, 9th Revision; therefore, these deaths cannot be identified easily from vital records. We reviewed US Occupational Safety and Health Administration (OSHA) investigation records for the period 1984 to 1994 for mention of hazardous substance 1480 (hydrogen sulfide). There were 80 fatalities from hydrogen sulfide in 57 incidents, with 19 fatalities and 36 injuries among coworkers attempting to rescue fallen workers. Only 17% of the deaths were at workplaces covered by collective bargaining agreements. OSHA issued citations for violation of respiratory protection and confined space standards in 60% of the fatalities. The use of hydrogen sulfide detection equipment, air-supplied respirators, and confined space safety training would have prevented most of the fatalities.

  19. Red soil as a regenerable sorbent for high temperature removal of hydrogen sulfide from coal gas.

    PubMed

    Ko, Tzu-Hsing; Chu, Hsin; Lin, Hsiao-Ping; Peng, Ching-Yu

    2006-08-25

    In this study, hydrogen sulfide (H(2)S) was removed from coal gas by red soil under high temperature in a fixed-bed reactor. Red soil powders were collected from the northern, center and southern of Taiwan. They were characterized by XRPD, porosity analysis and DCB chemical analysis. Results show that the greater sulfur content of LP red soils is attributed to the higher free iron oxides and suitable sulfidation temperature is around 773K. High temperature has a negative effect for use red soil as a desulfurization sorbent due to thermodynamic limitation in a reduction atmosphere. During 10 cycles of regeneration, after the first cycle the red soil remained stable with a breakthrough time between 31 and 36 min. Hydrogen adversely affects sulfidation reaction, whereas CO exhibits a positive effect due to a water-shift reaction. COS was formed during the sulfidation stage and this was attributed to the reaction of H(2)S and CO. Results of XRPD indicated that, hematite is the dominant active species in fresh red soil and iron sulfide (FeS) is a product of the reaction between hematite and hydrogen sulfide in red soils. The spinel phase FeAl(2)O(4) was found during regeneration, moreover, the amount of free iron oxides decreased after regeneration indicating the some of the free iron oxide formed a spinel phase, further reducting the overall desulfurization efficiency.

  20. Structural effects of naphthalimide-based fluorescent sensor for hydrogen sulfide and imaging in live zebrafish

    NASA Astrophysics Data System (ADS)

    Choi, Seon-Ae; Park, Chul Soon; Kwon, Oh Seok; Giong, Hoi-Khoanh; Lee, Jeong-Soo; Ha, Tai Hwan; Lee, Chang-Soo

    2016-05-01

    Hydrogen sulfide (H2S) is an important biological messenger, but few biologically-compatible methods are available for its detection in aqueous solution. Herein, we report a highly water-soluble naphthalimide-based fluorescent probe (L1), which is a highly versatile building unit that absorbs and emits at long wavelengths and is selective for hydrogen sulfide over cysteine, glutathione, and other reactive sulfur, nitrogen, and oxygen species in aqueous solution. We describe turn-on fluorescent probes based on azide group reduction on the fluorogenic ‘naphthalene’ moiety to fluorescent amines and intracellular hydrogen sulfide detection without the use of an organic solvent. L1 and L2 were synthetically modified to functional groups with comparable solubility on the N-imide site, showing a marked change in turn-on fluorescent intensity in response to hydrogen sulfide in both PBS buffer and living cells. The probes were readily employed to assess intracellular hydrogen sulfide level changes by imaging endogenous hydrogen sulfide signal in RAW264.7 cells incubated with L1 and L2. Expanding the use of L1 to complex and heterogeneous biological settings, we successfully visualized hydrogen sulfide detection in the yolk, brain and spinal cord of living zebrafish embryos, thereby providing a powerful approach for live imaging for investigating chemical signaling in complex multicellular systems.

  1. In situ optimization of pH for parts-per-billion electrochemical detection of dissolved hydrogen sulfide using boron doped diamond flow electrodes.

    PubMed

    Bitziou, Eleni; Joseph, Maxim B; Read, Tania L; Palmer, Nicola; Mollart, Tim; Newton, Mark E; Macpherson, Julie V

    2014-11-04

    A novel electrochemical approach to the direct detection of hydrogen sulfide (H2S), in aqueous solutions, covering a wide pH range (acid to alkali), is described. In brief, a dual band electrode device is employed, in a hydrodynamic flow cell, where the upstream electrode is used to controllably generate hydroxide ions (OH(-)), which flood the downstream detector electrode and provide the correct pH environment for complete conversion of H2S to the electrochemically detectable, sulfide (HS(-)) ion. All-diamond, coplanar conducting diamond band electrodes, insulated in diamond, were used due to their exceptional stability and robustness when applying extreme potentials, essential attributes for both local OH(-) generation via the reduction of water, and for in situ cleaning of the electrode, post oxidation of sulfide. Using a galvanostatic approach, it was demonstrated the pH locally could be modified by over five pH units, depending on the initial pH of the mobile phase and the applied current. Electrochemical detection limits of 13.6 ppb sulfide were achieved using flow injection amperometry. This approach which offers local control of the pH of the detector electrode in a solution, which is far from ideal for optimized detection of the analyte of interest, enhances the capabilities of online electrochemical detection systems.

  2. Hydrogen sulfide

    Integrated Risk Information System (IRIS)

    EPA / 635 / R - 03 / 005 www.epa.gov / iris TOXICOLOGICAL REVIEW OF HYDROGEN SULFIDE ( CAS No . 7783 - 06 - 4 ) In Support of Summary Information on the Integrated Risk Information System ( IRIS ) June 2003 U.S . Environmental Protection Agency Washington , DC DISCLAIMER This document has been

  3. Biological oxidation of hydrogen sulfide in mineral media using a biofilm airlift suspension reactor.

    PubMed

    Moghanloo, G M Mojarrad; Fatehifar, E; Saedy, S; Aghaeifar, Z; Abbasnezhad, H

    2010-11-01

    Hydrogen sulfide (H(2)S) removal in mineral media using Thiobacillus thioparus TK-1 in a biofilm airlift suspension reactor (BAS) was investigated to evaluate the relationship between biofilm formation and changes in inlet loading rates. Aqueous sodium sulfide was fed as the substrate into the continuous BAS-reactor. The reactor was operated at a constant temperature of 30 degrees C and a pH of 7, the optimal temperature and pH for biomass growth. The startup of the reactor was performed with basalt carrier material. Optimal treatment performance was obtained at a loading rate of 4.8 mol S(2-) m(-3) h(-1) at a conversion efficiency as high as 100%. The main product of H(2)S oxidation in the BAS-reactor was sulfate because of high oxygen concentrations in the airlift reactor. The maximum sulfide oxidation rate was 6.7 mol S(2-) m(-3) h(-1) at a hydraulic residence time of 3.3 h in the mineral medium. The data showed that the BAS-reactor with this microorganism can be used for sulfide removal from industrial effluent. Copyright 2010 Elsevier Ltd. All rights reserved.

  4. Comparison of field olfactometers in a controlled chamber using hydrogen sulfide as the test odorant.

    PubMed

    McGinley, M A; McGinley, C M

    2004-01-01

    A standard method for measuring and quantifying odour in the ambient air utilizes a portable odour detecting and measuring device known as a field olfactometer (US Public Health Service Project Grant A-58-541). The field olfactometer dynamically dilutes the ambient air with carbon-filtered air in distinct ratios known as "Dilutions-to-Threshold" dilution factors (D/Ts), i.e. 2, 4, 7, 15, etc. Thirteen US states and several cities in North America currently utilize field olfactometry as a key component of determining compliance to odour regulations and ordinances. A controlled environmental chamber was utilized, with hydrogen sulfide as the known test odorant. A hydrogen sulfide environment was created in this controlled chamber using an Advanced Calibration Designs, Inc. Cal2000 Hydrogen Sulfide Generator. The hydrogen sulfide concentration inside the chamber was monitored using an Arizona Instruments, Inc. Jerome Model 631 H2S Analyzer. When the environmental chamber reached a desired test concentration, test operators entered the chamber. The dilution-to-threshold odour concentration was measured using a Nasal Ranger Field Olfactometer (St Croix Sensory, Inc.) and a Barnebey Sutcliffe Corp. Scentometer. The actual hydrogen sulfide concentration was also measured at the location in the room where the operators were standing while using the two types of field olfactometers. This paper presents a correlation between dilution-to-threshold values (D/T) and hydrogen sulfide ambient concentration. For example, a D/T of 7 corresponds to ambient H2S concentrations of 5.7-15.6 microg/m3 (4-11 ppbv). During this study, no significant difference was found between results obtained using the Scentometer or the Nasal Ranger (r = 0.82). Also, no significant difference was found between results of multiple Nasal Ranger users (p = 0.309). The field olfactometers yielded hydrogen sulfide thresholds of 0.7-3.0 microg/m3 (0.5-2.0 ppbv). Laboratory olfactometry yielded comparable

  5. Production and Physiological Effects of Hydrogen Sulfide

    PubMed Central

    2014-01-01

    Abstract Significance: Hydrogen sulfide (H2S) has been recognized as a physiological mediator with a variety of functions. It regulates synaptic transmission, vascular tone, inflammation, transcription, and angiogenesis; protects cells from oxidative stress and ischemia-reperfusion injury; and promotes healing of ulcers. Recent Advances: In addition to cystathionine β-synthase and cystathionine γ-lyase, 3-mercaptopyruvate sulfurtransferase along with cysteine aminotransferase was recently demonstrated to produce H2S. Even in bacteria, H2S produced by these enzymes functions as a defense against antibiotics, suggesting that the cytoprotective effect of H2S is a universal defense mechanism in organisms from bacteria to mammals. Critical Issues: The functional form of H2S—undissociated H2S gas, dissociated HS ion, or some other form of sulfur—has not been identified. Future Directions: The regulation of H2S production by three enzymes may lead to the identification of the physiological signals that are required to release H2S. The identification of the physiological functions of other forms of sulfur may also help understand the biological significance of H2S. Antioxid. Redox Signal. 20, 783–793. PMID:23581969

  6. Removal of H{sub 2}S, methyl macapton dimethyl sulfide and dimethyl disulfide with biofiltration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singleton, B.; Milligan, D.

    1996-12-31

    A pilot study describes the biofiltration process control that was necessary to remove H{sub 2}S, methyl mercaptan, dimethyl sulfide, and dimethyl disulfide, when mixed in an airstream. A pilot test at a waste water treatment facility was operated over a six month period. During that time H{sub 2}S was removed with very high efficiency at concentrations that reached to 400 ppm{sub v}; H{sub 2}S loading reached as high as 20 gms/m{sup 3}/hr. Methyl mercaptan and the organic sulfides were not removed sufficiently to deodorize the air-stream until a second stage biofilter was added. An odor analysis indicated that the odormore » detection level was approximately 250,000 odor units at the inlet and 1100 odor units at the outlet. The sulfur distribution in the media indicated that elemental sulfur and sulfate is deposited as a byproduct of the H{sub 2}S oxidation. Data from a fall scale biofilter treating H{sub 2}S from a pumping station is also presented. This data shows very efficient removal of H{sub 2}S, no organic reduced sulfur compounds were found in this air-stream.« less

  7. Hydrogen sulfide as an oxygen sensor.

    PubMed

    Olson, Kenneth R

    2015-02-10

    Although oxygen (O2)-sensing cells and tissues have been known for decades, the identity of the O2-sensing mechanism has remained elusive. Evidence is accumulating that O2-dependent metabolism of hydrogen sulfide (H2S) is this enigmatic O2 sensor. The elucidation of biochemical pathways involved in H2S synthesis and metabolism have shown that reciprocal H2S/O2 interactions have been inexorably linked throughout eukaryotic evolution; there are multiple foci by which O2 controls H2S inactivation, and the effects of H2S on downstream signaling events are consistent with those activated by hypoxia. H2S-mediated O2 sensing has been demonstrated in a variety of O2-sensing tissues in vertebrate cardiovascular and respiratory systems, including smooth muscle in systemic and respiratory blood vessels and airways, carotid body, adrenal medulla, and other peripheral as well as central chemoreceptors. Information is now needed on the intracellular location and stoichometry of these signaling processes and how and which downstream effectors are activated by H2S and its metabolites. Development of specific inhibitors of H2S metabolism and effector activation as well as cellular organelle-targeted compounds that release H2S in a time- or environmentally controlled way will not only enhance our understanding of this signaling process but also provide direction for future therapeutic applications.

  8. Hydrogen Sulfide as a Potential Therapeutic Target in Fibrosis

    PubMed Central

    Zhang, Shufang; Pan, Chuli; Zhou, Feifei; Yuan, Zhi; Wang, Huiying; Cui, Wei; Zhang, Gensheng

    2015-01-01

    Hydrogen sulfide (H2S), produced endogenously by the activation of two major H2S-generating enzymes (cystathionine β-synthase and cystathionine γ-lyase), plays important regulatory roles in different physiologic and pathologic conditions. The abnormal metabolism of H2S is associated with fibrosis pathogenesis, causing damage in structure and function of different organs. A number of in vivo and in vitro studies have shown that both endogenous H2S level and the expressions of H2S-generating enzymes in plasma and tissues are significantly downregulated during fibrosis. Supplement with exogenous H2S mitigates the severity of fibrosis in various experimental animal models. The protective role of H2S in the development of fibrosis is primarily attributed to its antioxidation, antiapoptosis, anti-inflammation, proangiogenesis, and inhibition of fibroblasts activities. Future studies might focus on the potential to intervene fibrosis by targeting the pathway of endogenous H2S-producing enzymes and H2S itself. PMID:26078809

  9. Anxiolytic-like effect of hydrogen sulfide (H2S) in rats exposed and re-exposed to the elevated plus-maze and open field tests.

    PubMed

    Donatti, Alberto Ferreira; Soriano, Renato Nery; Leite-Panissi, Christie Ramos Andrade; Branco, Luiz G S; de Souza, Albert Schiaveto

    2017-03-06

    Hydrogen sulfide (H 2 S), an endogenous gaseous mediator, modulates many physiological functions in mammals but evidence of its involvement in emotional and behavioral aspects is currently scarce. We hypothesized that this gas plays a modulatory role in behavioral parameters in rats submitted to tests (for 5min) in the open field (OF) and elevated plus-maze (EPM - test and retest). Male Wistar rats (200-250g) were intraperitoneally injected with saline or Na 2 S (a H 2 S donor; 4, 8 and 12mg/kg) either once or for 8days, and submitted to the OF test or to the EPM test and retest. A third group (naïve) was not injected but exposed to the same experimental protocols. In the OF test, Na 2 S injected for 8days caused a decrease in self-cleaning (4, 8 and 12mg/kg) and freezing behaviors (8 and 12mg/kg), and a rise in the rate of line crossings in the central part of the arena (12mg/kg). In the EPM test and retest, Na 2 S at 12mg/kg for 8days caused an increase in the number of open arm entries and in the percentage of time spent on open arms. Our data are consistent with the notion that H 2 S exerts anxiolytic-like effects in rats submitted to the EPM and OF tests. Moreover, this gaseous modulator reduces aversive learning in the EPM retest. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. A batch assay to measure microbial hydrogen sulfide production from sulfur-containing solid wastes.

    PubMed

    Sun, Mei; Sun, Wenjie; Barlaz, Morton A

    2016-05-01

    Large volumes of sulfur-containing wastes enter municipal solid waste landfills each year. Under the anaerobic conditions that prevail in landfills, oxidized forms of sulfur, primarily sulfate, are converted to sulfide. Hydrogen sulfide (H2S) is corrosive to landfill gas collection and treatment systems, and its presence in landfill gas often necessitates the installation of expensive removal systems. For landfill operators to understand the cost of managing sulfur-containing wastes, an estimate of the H2S production potential is needed. The objective of this study was to develop and demonstrate a biochemical sulfide potential (BSP) test to measure the amount of H2S produced by different types of sulfur-containing wastes in a relatively fast (30days) and inexpensive (125mL serum bottles) batch assay. This study confirmed the toxic effect of H2S on both sulfate reduction and methane production in batch systems, and demonstrated that removing accumulated H2S by base adsorption was effective for mitigating inhibition. H2S production potentials of coal combustion fly ash, flue gas desulfurization residual, municipal solid waste combustion ash, and construction and demolition waste were determined in BSP assays. After 30days of incubation, most of the sulfate in the wastes was converted to gaseous or aqueous phase sulfide, with BSPs ranging from 0.8 to 58.8mLH2S/g waste, depending on the chemical composition of the samples. Selected samples contained solid phase sulfide which contributed to the measured H2S yield. A 60day incubation in selected samples resulted in 39-86% additional sulfide production. H2S production measured in BSP assays was compared with that measured in simulated landfill reactors and that calculated from chemical analyses. H2S production in BSP assays and in reactors was lower than the stoichiometric values calculated from chemical composition for all wastes tested, demonstrating the importance of assays to estimate the microbial sulfide production

  11. Excellent photocatalytic hydrogen production over CdS nanorods via using noble metal-free copper molybdenum sulfide (Cu2MoS4) nanosheets as co-catalysts

    NASA Astrophysics Data System (ADS)

    Hong, Sangyeob; Kumar, D. Praveen; Reddy, D. Amaranatha; Choi, Jiha; Kim, Tae Kyu

    2017-02-01

    Charge carrier recombination and durability issues are major problems in photocatalytic hydrogen (H2) evolution processes. Thus, there is a very important necessitate to extend an efficient photocatalyst to control charge-carrier dynamics in the photocatalytic system. We have developed copper molybdenum sulfide (Cu2MoS4) nanosheets as co-catalysts with CdS nanorods for controlling charge carriers without recombination for use in photocatalytic H2 evolution under simulated solar light irradiation. Effective control and utilization of charge carriers are possible by loading Cu2MoS4 nanosheets onto the CdS nanorods. The loading compensates for the restrictions of CdS, and stimulated synergistic effects, such as efficient photoexcited charge separation, lead to an improvement in photostability because of the layered structure of the Cu2MoS4nanosheets. These layered Cu2MoS4 nanosheets have emerged as novel and active replacements for precious noble metal co-catalysts in photocatalytic H2 production by water splitting. We have obtained superior H2 production rates by using Cu2MoS4 loaded CdS nanorods. The physicochemical properties of the composites are analyzed by diverse characterization techniques.

  12. High temperature regenerable hydrogen sulfide removal agents

    DOEpatents

    Copeland, Robert J.

    1993-01-01

    A system for high temperature desulfurization of coal-derived gases using regenerable sorbents. One sorbent is stannic oxide (tin oxide, SnO.sub.2), the other sorbent is a metal oxide or mixed metal oxide such as zinc ferrite (ZnFe.sub.2 O.sub.4). Certain otherwise undesirable by-products, including hydrogen sulfide (H.sub.2 S) and sulfur dioxide (SO.sub.2) are reused by the system, and elemental sulfur is produced in the regeneration reaction. A system for refabricating the sorbent pellets is also described.

  13. 30 CFR 250.808 - Hydrogen sulfide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false Hydrogen sulfide. 250.808 Section 250.808 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT OF THE... Safety Systems § 250.808 Hydrogen sulfide. Production operations in zones known to contain hydrogen...

  14. Modelling of hydrogen sulfide dispersion from the geothermal power plants of Tuscany (Italy)

    NASA Astrophysics Data System (ADS)

    Renato, Somma; Domenico, Granieri; Claudia, Troise; Carlo, Terranova; Natale Giuseppe, De; Maria, Pedone

    2017-04-01

    The hydrogen sulfide (H2S) is one of the main gaseous substances contained in deep fluids exploited by geo-thermoelectric plant. Therefore, it is a "waste" pollutant product by plants for energy production. Hydrogen sulfide is perceived by humans at very low concentrations in the air ( 0,008 ppm, World Health Organization, hereafter WHO, 2003) but it becomes odorless in higher concentrations (> 100 ppm, WHO, 2003) and, for values close to the ones lethal (> 500 ppm), produces an almost pleasant smell. The typical concentration in urban areas is <0.001ppm (<1ppb); in volcanic plumes it reaches values between 0.1 and 0.5 ppm. WHO defines the concentration and relative effects on human health. We applied the Eulerian code DISGAS (DISpersion of GAS) to investigate the dispersion of the hydrogen sulfide (H2S) from 32 geothermal power plants (out of 35 active) belonging to the geothermal districts of Larderello, Travale-Radicondoli and Monte Amiata, in Tuscany (Italy). DISGAS code has simulated scenarios consistent with the prevailing wind conditions, estimating reasonable H2S concentrations for each area, and for each active power plant. The results suggest that H2S plumes emitted from geothermal power plants are mainly concentrated around the stacks of emission (H2S concentration up to 1100 ug/m3) and rapidly dilute along the dominant local wind direction. Although estimated values of air H2S concentrations are orders of magnitude higher than in unpolluted areas, they do not indicate an immediate health risk for nearby communities, under the more frequent local atmospheric conditions. Starting from the estimated values, validated by measurements in the field, we make some considerations about the environmental impact of the H2S emission in all the geothermal areas of the Tuscany region. Furthermore, this study indicates the potential of DISGAS as a tool for an improved understanding of the atmospheric and environmental impacts of the H2S continuous degassing from

  15. Delivery of Hydrogen Sulfide by Ultrasound Targeted Microbubble Destruction Attenuates Myocardial Ischemia-reperfusion Injury

    PubMed Central

    Chen, Gangbin; Yang, Li; Zhong, Lintao; Kutty, Shelby; Wang, Yuegang; Cui, Kai; Xiu, Jiancheng; Cao, Shiping; Huang, Qiaobing; Liao, Wangjun; Liao, Yulin; Wu, Juefei; Zhang, Wenzhu; Bin, Jianping

    2016-01-01

    Hydrogen sulfide (H2S) is an attractive agent for myocardial ischemia-reperfusion injury, however, systemic delivery of H2S may cause unwanted side effects. Ultrasound targeted microbubble destruction has become a promising tool for organ specific delivery of bioactive substance. We hypothesized that delivery of H2S by ultrasound targeted microbubble destruction attenuates myocardial ischemia-reperfusion injury and could avoid unwanted side effects. We prepared microbubbles carrying hydrogen sulfide (hs-MB) with different H2S/C3F8 ratios (4/0, 3/1, 2/2, 1/3, 0/4) and determined the optimal ratio. Release of H2S triggered by ultrasound was investigated. The cardioprotective effect of ultrasound targeted hs-MB destruction was investigated in a rodent model of myocardial ischemia-reperfusion injury. The H2S/C3F8 ratio of 2/2 was found to be an optimal ratio to prepare stable hs-MB with higher H2S loading capability. Ultrasound targeted hs-MB destruction triggered H2S release and increased the concentration of H2S in the myocardium and lung. Ultrasound targeted hs-MB destruction limited myocardial infarct size, preserved left ventricular function and had no influence on haemodynamics and respiratory. This cardioprotective effect was associated with alleviation of apoptosis and oxidative stress. Delivery of H2S to the myocardium by ultrasound targeted hs-MB destruction attenuates myocardial ischemia-reperfusion injury and may avoid unwanted side effects. PMID:27469291

  16. Quantification of hydrogen sulfide by near-infrared cavity ring-down spectroscopy

    NASA Astrophysics Data System (ADS)

    Rella, C.; Hoffnagle, J.; Wahl, E. H.; Kim-Hak, D.

    2017-12-01

    Hydrogen Sulfide is an important atmospheric sulfur species. Primary natural terrestrial sources of atmospheric H2S are volcanos and wetlands; primary anthropogenic sources are landfills; wastewater treatment facilities; sewer systems; natural gas extraction, production, and distribution; and paper manufacturing. The human nose is very sensitive to H2S and other sulfur species, leading to a significant negative impact of industrial processes in which H2S is emitted into the atmosphere. However, there is a relative lack of instrumentation capable of detecting and quantifying H2S at ppb levels and below. We describe an instrument based on cavity ring-down spectroscopy for the quantitative analysis of hydrogen sulfide concentration in ambient air. In addition to H2S, the instrument measures water vapor and methane. The instrument has a precision (1-sigma) of about 1 ppb at a measurement rate of 1 second, and provides measurements of less than 100 ppt with averaging. The instrument provides stable measurements (drift < 1 ppb) over long periods of time (days), and has a response time of just a couple of seconds. We report on ambient atmospheric measurements at a 10m urban tower, which demonstrate the suitability of the instrument for applications in urban sulfur emissions. This instrument is also suitable for soil flux measurements in a recirculating chamber, with predicted detection limit of about 0.6 μg H2S / m2 / hr and 0.45 μg CH4 / m2 / hr in a 10-minute chamber closure time.

  17. Novel insights into hydrogen sulfide--mediated cytoprotection.

    PubMed

    Calvert, John W; Coetzee, William A; Lefer, David J

    2010-05-15

    Hydrogen sulfide (H(2)S) is a colorless, water soluble, flammable gas that has the characteristic smell of rotten eggs. Like other members of the gasotransmitter family (nitric oxide and carbon monoxide), H(2)S has traditionally been considered to be a highly toxic gas and environmental hazard. However, much like for nitric oxide and carbon monoxide, the initial negative perception of H(2)S has evolved with the discovery that H(2)S is produced enzymatically in mammals under normal conditions. As a result of this discovery, there has been a great deal of work to elucidate the physiological role of H(2)S. H(2)S is now recognized to be cytoprotective in various models of cellular injury. Specifically, it has been demonstrated that the acute administration of H(2)S, either prior to ischemia or at reperfusion, significantly ameliorates in vitro or in vivo myocardial and hepatic ischemia-reperfusion injury. These studies have also demonstrated a cardioprotective role for endogenous H(2)S. This review article summarizes the current body of evidence demonstrating the cytoprotective effects of H(2)S with an emphasis on the cardioprotective effects. This review also provides a detailed description of the current signaling mechanisms shown to be responsible for these cardioprotective actions.

  18. Chemically Reversible Reactions of Hydrogen Sulfide with Metal Phthalocyanines

    PubMed Central

    2015-01-01

    Hydrogen sulfide (H2S) is an important signaling molecule that exerts action on various bioinorganic targets. Despite this importance, few studies have investigated the differential reactivity of the physiologically relevant H2S and HS– protonation states with metal complexes. Here we report the distinct reactivity of H2S and HS– with zinc(II) and cobalt(II) phthalocyanine (Pc) complexes and highlight the chemical reversibility and cyclability of each metal. ZnPc reacts with HS–, but not H2S, to generate [ZnPc-SH]−, which can be converted back to ZnPc by protonation. CoPc reacts with HS–, but not H2S, to form [CoIPc]−, which can be reoxidized to CoPc by air. Taken together, these results demonstrate the chemically reversible reaction of HS– with metal phthalocyanine complexes and highlight the importance of H2S protonation state in understanding the reactivity profile of H2S with biologically relevant metal scaffolds. PMID:24785654

  19. Application of biofiltration to the degradation of hydrogen sulfide in gas effluents.

    PubMed

    Elías, A; Barona, A; Ríos, F J; Arreguy, A; Munguira, M; Peñas, J; Sanz, J L

    2000-01-01

    A laboratory scale bioreactor has been designed and set up in order to degrade hydrogen sulfide from an air stream. The reactor is a vertical column of 7 litre capacity and 1 meter in height. It is divided into three modules and each module is filled with pellets of agricultural residues as packing bed material. The gas stream fed into the reactor through the upper inlet consists of a mixture of hydrogen sulfide and humidified air. The hydrogen sulfide content in the inlet gas stream was increased in stages until the degradation efficiency was below 90%. The parameters to be controlled in order to reach continuous and stable operation were temperature, moisture content and the percentage of the compound to be degraded at the inlet and outlet gas streams (removal or elimination efficiency). When the H2S mass loading rate was between 10 and 40 g m(-3) h(-1), the removal efficiency was greater than 90%. The support material had a good physical performance throughout operation time, which is evidence that this material is suitable for biofiltration purposes.

  20. Control of microbially generated hydrogen sulfide in produced waters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burger, E.D.; Vance, I.; Gammack, G.F.

    1995-12-31

    Production of hydrogen sulfide in produced waters due to the activity of sulfate-reducing bacteria (SRB) is a potentially serious problem. The hydrogen sulfide is not only a safety and environmental concern, it also contributes to corrosion, solids formation, a reduction in produced oil and gas values, and limitations on water discharge. Waters produced from seawater-flooded reservoirs typically contain all of the nutrients required to support SRB metabolism. Surface processing facilities provide a favorable environment in which SRB flourish, converting water-borne nutrients into biomass and H{sub 2}S. This paper will present results from a field trial in which a new technologymore » for the biochemical control of SRB metabolism was successfully applied. A slip stream of water downstream of separators on a produced water handling facility was routed through a bioreactor in a side-steam device where microbial growth was allowed to develop fully. This slip stream was then treated with slug doses of two forms of a proprietary, nonbiocidal metabolic modifier. Results indicated that H{sub 2}S production was halted almost immediately and that the residual effect of the treatment lasted for well over one week.« less

  1. Membrane for hydrogen recovery from streams containing hydrogen sulfide

    DOEpatents

    Agarwal, Pradeep K.

    2007-01-16

    A membrane for hydrogen recovery from streams containing hydrogen sulfide is provided. The membrane comprises a substrate, a hydrogen permeable first membrane layer deposited on the substrate, and a second membrane layer deposited on the first layer. The second layer contains sulfides of transition metals and positioned on the on a feed side of the hydrogen sulfide stream. The present invention also includes a method for the direct decomposition of hydrogen sulfide to hydrogen and sulfur.

  2. A Sensitive Near-Infrared Fluorescent Sensor for Mitochondrial Hydrogen Sulfide.

    PubMed

    Ji, Ao; Fan, Yichong; Ren, Wei; Zhang, Shen; Ai, Hui-Wang

    2018-05-03

    Hydrogen sulfide (H 2 S) is an important gasotransmitter. Although a large number of fluorescent probes for cellular H 2 S have been reported, only a few can detect H 2 S in mitochondria, a cellular organelle connecting H 2 S with mitochondrial function and metabolic pathways. We hereby describe a novel near-infrared fluorescent probe, nimazide, by introducing sulfonyl azide to the core structure of a QSY-21 dark quencher. Nimazide responded quickly to H 2 S, resulting in robust fluorescence turn-off changes. This conversion displayed high specificity and fast kinetics. More impressively, we observed a robust fluorescence decrease in live cells loaded with mitochondrial nimazide in response to extracellular addition of nanomolar H 2 S, and successfully imaged biologically generated mitochondrial H 2 S in live mammalian cells. Nimazide is one of the most sensitive fluorescent probes for mitochondrial H 2 S.

  3. Catalytic properties of a CoMo/Al[sub 2]O[sub 3] catalyst presulfided with alkyl polysulfides: Comparison with conventional sulfiding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gestel, J. van; Leglise, J.; Duchet, J.C.

    1994-02-01

    A CoMo/Al[sub 2]O[sub 3] hydrotreating catalyst has been sulfided in different ways: (i) by conventional in situ sulfiding in a high-pressure reactor with a H[sub 2]S/H[sub 2] or dimethyldisulfide (DMDS)/H[sub 2] mixture at 350[degrees]C and 4 MPa; or (ii) by a preliminary presulfidation with di-tert-nonyl or di-tert-dodecyl pentasulfides followed by one of the above conventional in situ sulfidations. The presulfidation was performed in two steps: impregnation of the oxidic catalyst with the polysulfide and then thermal treatment under flowing nitrogen at 130[degrees]C. The catalysts were evaluated for their catalytic properties at 280-350[degrees]C and 4 MPa for the simultaneous hydrodesulfurization ofmore » thiophene and hydrogenation of cyclohexene. Compared to H[sub 2]S/H[sub 2], in situ DMDS/H[sub 2] sulfiding of the CoMo/Al[sub 2]O[sub 3] catalyst enhanced the C-S hydrogenolysis at 280[degrees]C but not the hydrogenation; however, the apparent activation energy for hydrogenation was markedly increased. The presulfidation with the polysulfides following by H[sub 2]S/H[sub 2] sulfidation yielded improved activities at 280[degrees]C for both hydrogenation and C-S bond breakage and did not influence the apparent activation energies. The highest activities were obtained by combining presulfiding and DMDS/H[sub 2] sulfidation. These results are discussed in terms of the genesis of the supported sulfide phase with various sulfur species. 40 refs., 2 figs., 2 tabs.« less

  4. 40 CFR 721.10445 - 2-Propen-1-ol, reaction products with hydrogen sulfide, distn. residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... hydrogen sulfide, distn. residues. 721.10445 Section 721.10445 Protection of Environment ENVIRONMENTAL... hydrogen sulfide, distn. residues. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as 2-propen-1-ol, reaction products with hydrogen sulfide, distn...

  5. 40 CFR 721.10445 - 2-Propen-1-ol, reaction products with hydrogen sulfide, distn. residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... hydrogen sulfide, distn. residues. 721.10445 Section 721.10445 Protection of Environment ENVIRONMENTAL... hydrogen sulfide, distn. residues. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as 2-propen-1-ol, reaction products with hydrogen sulfide, distn...

  6. Release and control of hydrogen sulfide during sludge thermal drying

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weng, Huanxin; Dai, Zhixin; Ji, Zhongqiang

    2015-04-15

    The release of hydrogen sulfide (H2S) during sludge drying is a major environmental problem because of its toxicity to human health. A series of experiments were performed to investigate the mechanisms and factors controlling the H2S release. Results of this study show that: 1) the biomass and activity of sulfate-reducing bacteria (SRB) in sludge were the major factors controlling the amount of H2S release, 2) the sludge drying temperature had an important effect on both the extent and the timing of H2S release from the sludge, and 3) decreasing sludge pH increased the H2S release. Based on the findings frommore » this study, a new system that integrates sludge drying and H2S gas treatment was developed to reduce the amount of H2S released from sludge treatments.« less

  7. The hydrogen sulfide emissions abatement program at the Geysers Geothermal Power Plant

    NASA Technical Reports Server (NTRS)

    Allen, G. W.; Mccluer, H. K.

    1974-01-01

    The scope of the hydrogen sulfide (H2S) abatement program at The Geysers Geothermal Power Plant and the measures currently under way to reduce these emissions are discussed. The Geysers steam averages 223 ppm H2S by weight and after passing through the turbines leaves the plant both through the gas ejector system and by air-stripping in the cooling towers. The sulfide dissolved in the cooling water is controlled by the use of an oxidation catalyst such as an iron salt. The H2S in the low Btu ejector off gases may be burned to sulfur dioxide and scrubbed directly into the circulating water and reinjected into the steam field with the excess condensate. Details are included concerning the disposal of the impure sulfur, design requirements for retrofitting existing plants and modified plant operating procedures. Discussion of future research aimed at improving the H2S abatement system is also included.

  8. Criegee intermediate-hydrogen sulfide chemistry at the air/water interface.

    PubMed

    Kumar, Manoj; Zhong, Jie; Francisco, Joseph S; Zeng, Xiao C

    2017-08-01

    We carry out Born-Oppenheimer molecular dynamic simulations to show that the reaction between the smallest Criegee intermediate, CH 2 OO, and hydrogen sulfide (H 2 S) at the air/water interface can be observed within few picoseconds. The reaction follows both concerted and stepwise mechanisms with former being the dominant reaction pathway. The concerted reaction proceeds with or without the involvement of one or two nearby water molecules. An important implication of the simulation results is that the Criegee-H 2 S reaction can provide a novel non-photochemical pathway for the formation of a C-S linkage in clouds and could be a new oxidation pathway for H 2 S in terrestrial, geothermal and volcanic regions.

  9. IRIS TOXICOLOGICAL REVIEW AND SUMMARY DOCUMENTS FOR HYDROGEN SULFIDE (EXTERNAL REVIEW DRAFT)

    EPA Science Inventory

    Hydrogen sulfide (H2S) is a colorless gas with a strong odor of rotten eggs. Its primary uses include the production of elemental sulfur and sulfuric acid, the manufacture of heavy water and other chemicals. Occupational exposure occurs primarily from its presence in petroleum, n...

  10. The protective effect of hydrogen sulfide (H2S) on traumatic brain injury (TBI) induced memory deficits in rats.

    PubMed

    Karimi, Seyed Asaad; Hosseinmardi, Narges; Janahmadi, Mahyar; Sayyah, Mohammad; Hajisoltani, Razieh

    2017-09-01

    Traumatic brain injury (TBI), as an expanding public health epidemic, is a common cause of death among youth. TBI is associated with cognitive deficits and memory impairment. Hydrogen sulfide (H 2 S), a novel gaseous mediator, has been recognized as an important neuromodulator and neuroprotective agent in the central nervous system. In the present study the potential neuroprotective role of sodium hydrosulfide (NaHS), an H 2 S donor on TBI induced memory deficit in a rat model of controlled cortical impact (CCI) injury was investigated. CCI model was used to induce TBI. Male rats were randomly assigned into the following groups: control, sham, sham treated with NaHS, TBI, and TBI treated with NaHS (3 and 5mg/kg). NaHS was injected intraperitoneally 5min before TBI induction. Learning and memory were assessed using Morris water maze (MWM) on days 8-12 following injury. CCI resulted in MWM deficits. Injured animals showed a slower rate of acquisition with respect to the sham-operated animals [F (1, 24)=13.97, P<0.01, two-way ANOVA]. NaHS improved spatial memory impairment of injured rats. Treatment with NaHS (5 mg/kg) decreased the escape latency [F (1, 24)=7.559, P<0.05, two-way ANOVA] and traveled distance [F (1, 12)=6.398, P<0.05, Two way ANOVA)]. In probe test, injured animals spent less time in target zone (P<0.05, unpaired t-test) and NaHS did not have any effect on this parameter (p>0.05, one way ANOVA). These findings suggest that NaHS has a neuroprotective effect on TBI-induced memory impairment in rats. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Circulating levels of hydrogen sulfide and substance P in patients with sepsis.

    PubMed

    Gaddam, Ravinder Reddy; Chambers, Stephen; Murdoch, David; Shaw, Geoffrey; Bhatia, Madhav

    2017-10-01

    To determine alterations of circulating levels of hydrogen sulfide and substance P in patients with sepsis compared to non-sepsis patients with similar disease severity and organ dysfunction. This study included 23 septic and 14 non-septic patients during 2015-16 study period at the Christchurch Hospital Intensive Care Unit, Christchurch, New Zealand. Blood samples were collected from the time of admission to 96 h, with collection at different time points (0 h, 12 h, 24 h, 48 h, 72 h and 96 h) and subjected to measurement of hydrogen sulfide, substance P, procalcitonin, C-reactive protein, interleukin-6 and lactate levels. Patients with sepsis showed higher circulating hydrogen sulfide and substance P levels compared to patients without sepsis. Hydrogen sulfide levels were significantly higher at 12 h (1.45 vs 0.75 μM; p < 0.05) and 24 h (1.11 vs 0.72 μM; p < 0.01), whereas substance P levels were higher at 48 h (0.55 vs 0.31 ng/mL; p < 0.05). Increased hydrogen sulfide and substance P levels in septic patients were associated with increased levels of inflammatory mediators - procalcitonin, C-reactive protein and interleukin-6. These results provide evidence that higher circulating levels of hydrogen sulfide and substance P are associated with increased inflammatory response in patients with sepsis. Copyright © 2017 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  12. Molecular evolution and expression of oxygen transport genes in livebearing fishes (Poeciliidae) from hydrogen sulfide rich springs.

    PubMed

    Barts, Nicholas; Greenway, Ryan; Passow, Courtney N; Arias-Rodriguez, Lenin; Kelley, Joanna L; Tobler, Michael

    2018-04-01

    Hydrogen sulfide (H 2 S) is a natural toxicant in some aquatic environments that has diverse molecular targets. It binds to oxygen transport proteins, rendering them non-functional by reducing oxygen-binding affinity. Hence, organisms permanently inhabiting H 2 S-rich environments are predicted to exhibit adaptive modifications to compensate for the reduced capacity to transport oxygen. We investigated 10 lineages of fish of the family Poeciliidae that have colonized freshwater springs rich in H 2 S-along with related lineages from non-sulfidic environments-to test hypotheses about the expression and evolution of oxygen transport genes in a phylogenetic context. We predicted shifts in the expression of and signatures of positive selection on oxygen transport genes upon colonization of H 2 S-rich habitats. Our analyses indicated significant shifts in gene expression for multiple hemoglobin genes in lineages that have colonized H 2 S-rich environments, and three hemoglobin genes exhibited relaxed selection in sulfidic compared to non-sulfidic lineages. However, neither changes in gene expression nor signatures of selection were consistent among all lineages in H 2 S-rich environments. Oxygen transport genes may consequently be predictable targets of selection during adaptation to sulfidic environments, but changes in gene expression and molecular evolution of oxygen transport genes in H 2 S-rich environments are not necessarily repeatable across replicated lineages.

  13. Endogenous mitigation of H2S inside of the landfills.

    PubMed

    Fang, Yuan; Zhong, Zhong; Shen, Dongsheng; Du, Yao; Xu, Jing; Long, Yuyang

    2016-02-01

    Vast quantities of hydrogen sulfide (H2S) emitted from landfill sites require urgent disposal. The current study focused on source control and examined the migration and conversion behavior of sulfur compounds in two lab-scale simulated landfills with different operation modes. It aimed to explore the possible strategies and mechanisms for H2S endogenous mitigation inside of landfills during decomposition. It was found that the strength of H2S emissions from the landfill sites was dependent on the municipal solid waste (MSW) degradation speed and vertical distribution of sulfide. Leachate recirculation can shorten both the H2S influence period and pollution risk to the surrounding environment. H2S endogenous mitigation may be achieved by chemical oxidation, biological oxidation, adsorption, and/or precipitation in different stages. Migration and conversion mainly affected H2S release behavior during the initial stabilization phase in the landfill. Microbial activities related to sulfur, nitrogen, and iron can further promote H2S endogenous mitigation during the high reducing phase. Thus, H2S endogenous mitigation can be effectively enhanced via control of the aforementioned processes.

  14. Decrease in hydrogen sulfide content during the final stage of beer fermentation due to involvement of yeast and not carbon dioxide gas purging.

    PubMed

    Oka, Kaneo; Hayashi, Teruhiko; Matsumoto, Nobuya; Yanase, Hideshi

    2008-09-01

    We observed a rapid decrease in hydrogen sulfide content in the final stage of beer fermentation that was attributed to yeast and not to the purging of carbon dioxide (CO(2)) gas. The well known immature off-flavor in beer due to hydrogen sulfide (H(2)S) behavior during beer fermentation was closely investigated. The H(2)S decrease occurred during the final stage of fermentation when the CO(2)-evolution rate was extremely small and there was a decrease in the availability of fermentable sugars, suggesting that the exhaustion of fermentable sugars triggered the decrease in H(2)S. An H(2)S-balance analysis suggested that the H(2)S decrease might have been caused due to sulfide uptake by yeast. Further investigation showed that the time necessary for H(2)S to decrease below the sensory threshold was related to the number of suspended yeast cells. This supported the hypothesis that yeast cells contributed to the rapid decrease in H(2)S during the final stage of beer fermentation.

  15. Role of hydrogen sulfide in paramyxovirus infections.

    PubMed

    Li, Hui; Ma, Yinghong; Escaffre, Oliver; Ivanciuc, Teodora; Komaravelli, Narayana; Kelley, John P; Coletta, Ciro; Szabo, Csaba; Rockx, Barry; Garofalo, Roberto P; Casola, Antonella

    2015-05-01

    Hydrogen sulfide (H2S) is an endogenous gaseous mediator that has gained increasing recognition as an important player in modulating acute and chronic inflammatory diseases. However, its role in virus-induced lung inflammation is currently unknown. Respiratory syncytial virus (RSV) is a major cause of upper and lower respiratory tract infections in children for which no vaccine or effective treatment is available. Using the slow-releasing H2S donor GYY4137 and propargylglycin (PAG), an inhibitor of cystathionine-γ-lyase (CSE), a key enzyme that produces intracellular H2S, we found that RSV infection led to a reduced ability to generate and maintain intracellular H2S levels in airway epithelial cells (AECs). Inhibition of CSE with PAG resulted in increased viral replication and chemokine secretion. On the other hand, treatment of AECs with the H2S donor GYY4137 reduced proinflammatory mediator production and significantly reduced viral replication, even when administered several hours after viral absorption. GYY4137 also significantly reduced replication and inflammatory chemokine production induced by human metapneumovirus (hMPV) and Nipah virus (NiV), suggesting a broad inhibitory effect of H2S on paramyxovirus infections. GYY4137 treatment had no effect on RSV genome replication or viral mRNA and protein synthesis, but it inhibited syncytium formation and virus assembly/release. GYY4137 inhibition of proinflammatory gene expression occurred by modulation of the activation of the key transcription factors nuclear factor κB (NF-κB) and interferon regulatory factor 3 (IRF-3) at a step subsequent to their nuclear translocation. H2S antiviral and immunoregulatory properties could represent a novel treatment strategy for paramyxovirus infections. RSV is a global health concern, causing significant morbidity and economic losses as well as mortality in developing countries. After decades of intensive research, no vaccine or effective treatment, with the exception of

  16. H2S-mediated thermal and photochemical methane activation.

    PubMed

    Baltrusaitis, Jonas; de Graaf, Coen; Broer, Ria; Patterson, Eric V

    2013-12-02

    Sustainable, low-temperature methods for natural gas activation are critical in addressing current and foreseeable energy and hydrocarbon feedstock needs. Large portions of natural gas resources are still too expensive to process due to their high content of hydrogen sulfide gas (H2S) mixed with methane, deemed altogether as sub-quality or "sour" gas. We propose a unique method of activation to form a mixture of sulfur-containing hydrocarbon intermediates, CH3SH and CH3SCH3 , and an energy carrier such as H2. For this purpose, we investigated the H2S-mediated methane activation to form a reactive CH3SH species by means of direct photolysis of sub-quality natural gas. Photoexcitation of hydrogen sulfide in the CH4 + H2S complex resulted in a barrierless relaxation by a conical intersection to form a ground-state CH3SH + H2 complex. The resulting CH3SH could further be coupled over acidic catalysts to form higher hydrocarbons, and the resulting H2 used as a fuel. This process is very different from conventional thermal or radical-based processes and can be driven photolytically at low temperatures, with enhanced control over the conditions currently used in industrial oxidative natural gas activation. Finally, the proposed process is CO2 neutral, as opposed to the current industrial steam methane reforming (SMR). Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Release and control of hydrogen sulfide during sludge thermal drying.

    PubMed

    Weng, Huanxin; Dai, Zhixi; Ji, Zhongqiang; Gao, Caixia; Liu, Chongxuan

    2015-10-15

    The release of hydrogen sulfide (H2S) during sludge drying is a major environmental problem because of its toxicity to human health. A series of experiments were performed to investigate the mechanisms and factors controlling the H2S release. Results of this study show that: (1) the biomass and activity of sulfate-reducing bacteria (SRB) in sludge were the major factors controlling the amount of H2S release, (2) the sludge drying temperature had an important effect on both the extent and the timing of H2S release from the sludge, and (3) decreasing sludge pH increased the H2S release. Based on the findings from this study, a new system that integrates sludge drying and H2S gas treatment was developed, by which 97.5% of H2S and 99.7% of smoke released from sludge treatments was eliminated. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Hydrogen Sulfide as an Oxygen Sensor

    PubMed Central

    2015-01-01

    Abstract Significance Although oxygen (O2)-sensing cells and tissues have been known for decades, the identity of the O2-sensing mechanism has remained elusive. Evidence is accumulating that O2-dependent metabolism of hydrogen sulfide (H2S) is this enigmatic O2 sensor. Recent Advances The elucidation of biochemical pathways involved in H2S synthesis and metabolism have shown that reciprocal H2S/O2 interactions have been inexorably linked throughout eukaryotic evolution; there are multiple foci by which O2 controls H2S inactivation, and the effects of H2S on downstream signaling events are consistent with those activated by hypoxia. H2S-mediated O2 sensing has been demonstrated in a variety of O2-sensing tissues in vertebrate cardiovascular and respiratory systems, including smooth muscle in systemic and respiratory blood vessels and airways, carotid body, adrenal medulla, and other peripheral as well as central chemoreceptors. Critical Issues Information is now needed on the intracellular location and stoichometry of these signaling processes and how and which downstream effectors are activated by H2S and its metabolites. Future Directions Development of specific inhibitors of H2S metabolism and effector activation as well as cellular organelle-targeted compounds that release H2S in a time- or environmentally controlled way will not only enhance our understanding of this signaling process but also provide direction for future therapeutic applications. Antioxid. Redox Signal. 22, 377–397. “Nothing in Biology Makes Sense Except in the Light of Evolution” —Theodosius Dobzhansky (29) PMID:24801248

  19. Kinetics of the Bicarbonate-Assisted Oxidation of Diethyl Sulfide by Hydrogen Peroxide and Sodium Peroxoborate

    NASA Astrophysics Data System (ADS)

    Dyatlenko, L. M.; Lobachev, V. L.; Bezbozhnaya, T. V.

    2018-07-01

    The kinetics of oxidation of diethyl sulfide (Et2S) is studied in aqueous solutions of hydrogen peroxide and sodium peroxoborate (Na2[B2(O2)2(OH)4]) in the presence of bicarbonate ions by means of gas-liquid distribution. The kinetics is investigated in a broad range of pH. Data show that the oxidation of Et2S by sodium peroxoborate in the range of pH 6-12 is mediated by such reactive species as hydrogen peroxide, hydrogen peroxide anions, and mono (B(O2H)(OH)3^{ - }) and diperoxoborate (B(O2H)2(OH)2^{ - }2->) anions. The rate of Et2S oxidation increases in the presence of bicarbonate, due to the additional reaction pathways mediated by monoperoxocarbonate species.

  20. Utilizing hydrogen sulfide as a novel anti-cancer agent by targeting cancer glycolysis and pH imbalance

    PubMed Central

    Lee, Z-W; Teo, X-Y; Tay, E Y-W; Tan, C-H; Hagen, T; Moore, P K; Deng, L-W

    2014-01-01

    Background and Purpose Many disparate studies have reported the ambiguous role of hydrogen sulfide (H2S) in cell survival. The present study investigated the effect of H2S on the viability of cancer and non-cancer cells. Experimental Approach Cancer and non-cancer cells were exposed to H2S [using sodium hydrosulfide (NaHS) and GYY4137] and cell viability was examined by crystal violet assay. We then examined cancer cellular glycolysis by in vitro enzymatic assays and pH regulator activity. Lastly, intracellular pH (pHi) was determined by ratiometric pHi measurement using BCECF staining. Key Results Continuous, but not a single, exposure to H2S decreased cell survival more effectively in cancer cells, as compared to non-cancer cells. Slow H2S-releasing donor, GYY4137, significantly increased glycolysis, leading to overproduction of lactate. H2S also decreased anion exchanger and sodium/proton exchanger activity. The combination of increased metabolic acid production and defective pH regulation resulted in an uncontrolled intracellular acidification, leading to cancer cell death. In contrast, no significant intracellular acidification or cell death was observed in non-cancer cells. Conclusions and Implications Low and continuous exposure to H2S targets metabolic processes and pH homeostasis in cancer cells, potentially serving as a novel and selective anti-cancer strategy. PMID:24827113

  1. H2S mediated thermal and photochemical methane activation

    PubMed Central

    Baltrusaitis, Jonas; de Graaf, Coen; Broer, Ria; Patterson, Eric

    2013-01-01

    Sustainable, low temperature methods of natural gas activation are critical in addressing current and foreseeable energy and hydrocarbon feedstock needs. Large portions of natural gas resources are still too expensive to process due to their high content of hydrogen sulfide gas (H2S) in mixture with methane, CH4, altogether deemed as sub-quality or “sour” gas. We propose a unique method for activating this “sour” gas to form a mixture of sulfur-containing hydrocarbon intermediates, CH3SH and CH3SCH3, and an energy carrier, such as H2. For this purpose, we computationally investigated H2S mediated methane activation to form a reactive CH3SH species via direct photolysis of sub-quality natural gas. Photoexcitation of hydrogen sulfide in the CH4+H2S complex results in a barrier-less relaxation via a conical intersection to form a ground state CH3SH+H2 complex. The resulting CH3SH can further be heterogeneously coupled over acidic catalysts to form higher hydrocarbons while the H2 can be used as a fuel. This process is very different from a conventional thermal or radical-based processes and can be driven photolytically at low temperatures, with enhanced controllability over the process conditions currently used in industrial oxidative natural gas activation. Finally, the proposed process is CO2 neutral, as opposed to the currently industrially used methane steam reforming (SMR). PMID:24150813

  2. Hydrogen sulfide production from subgingival plaque samples.

    PubMed

    Basic, A; Dahlén, G

    2015-10-01

    Periodontitis is a polymicrobial anaerobe infection. Little is known about the dysbiotic microbiota and the role of bacterial metabolites in the disease process. It is suggested that the production of certain waste products in the proteolytic metabolism may work as markers for disease severity. Hydrogen sulfide (H2S) is a gas produced by degradation of proteins in the subgingival pocket. It is highly toxic and believed to have pro-inflammatory properties. We aimed to study H2S production from subgingival plaque samples in relation to disease severity in subjects with natural development of the disease, using a colorimetric method based on bismuth precipitation. In remote areas of northern Thailand, adults with poor oral hygiene habits and a natural development of periodontal disease were examined for their oral health status. H2S production was measured with the bismuth method and subgingival plaque samples were analyzed for the presence of 20 bacterial species with the checkerboard DNA-DNA hybridization technique. In total, 43 subjects were examined (age 40-60 years, mean PI 95 ± 6.6%). Fifty-six percent had moderate periodontal breakdown (CAL > 3 < 7 mm) and 35% had severe periodontal breakdown (CAL > 7 mm) on at least one site. Parvimonas micra, Filifactor alocis, Porphyromonas endodontalis and Fusobacterium nucleatum were frequently detected. H2S production could not be correlated to periodontal disease severity (PPD or CAL at sampled sites) or to a specific bacterial composition. Site 21 had statistically lower production of H2S (p = 0.02) compared to 16 and 46. Betel nut chewers had statistically significant lower H2S production (p = 0.01) than non-chewers. Rapid detection and estimation of subgingival H2S production capacity was easily and reliably tested by the colorimetric bismuth sulfide precipitation method. H2S may be a valuable clinical marker for degradation of proteins in the subgingival pocket. Copyright © 2014 Elsevier Ltd. All

  3. Hydrogen and sulfur recovery from hydrogen sulfide wastes

    DOEpatents

    Harkness, J.B.L.; Gorski, A.J.; Daniels, E.J.

    1993-05-18

    A process is described for generating hydrogen and elemental sulfur from hydrogen sulfide waste in which the hydrogen sulfide is [dis]associated under plasma conditions and a portion of the hydrogen output is used in a catalytic reduction unit to convert sulfur-containing impurities to hydrogen sulfide for recycle, the process also including the addition of an ionizing gas such as argon to initiate the plasma reaction at lower energy, a preheater for the input to the reactor and an internal adjustable choke in the reactor for enhanced coupling with the microwave energy input.

  4. Hydrogen and sulfur recovery from hydrogen sulfide wastes

    DOEpatents

    Harkness, John B. L.; Gorski, Anthony J.; Daniels, Edward J.

    1993-01-01

    A process for generating hydrogen and elemental sulfur from hydrogen sulfide waste in which the hydrogen sulfide is associated under plasma conditions and a portion of the hydrogen output is used in a catalytic reduction unit to convert sulfur-containing impurities to hydrogen sulfide for recycle, the process also including the addition of an ionizing gas such as argon to initiate the plasma reaction at lower energy, a preheater for the input to the reactor and an internal adjustable choke in the reactor for enhanced coupling with the microwave energy input.

  5. Hydrogen Sulfide Ameliorates Homocysteine-Induced Cognitive Dysfunction by Inhibition of Reactive Aldehydes Involving Upregulation of ALDH2

    PubMed Central

    Li, Min; Zhang, Ping; Wei, Hai-jun; Li, Man-Hong; Li, Xiang; Gu, Hong-Feng

    2017-01-01

    Abstract Background: Homocysteine, a risk factor for Alzheimer’s disease, induces cognitive dysfunction. Reactive aldehydes play an important role in cognitive dysfunction. Aldehyde-dehydrogenase 2 detoxifies reactive aldehydes. Hydrogen sulfide, a novel neuromodulator, has neuroprotective effects and regulates learning and memory. Our previous work confirmed that the disturbance of hydrogen sulfide synthesis is invovled in homocysteine-induced defects in learning and memory. Therefore, the present work was to explore whether hydrogen sulfide ameliorates homocysteine-generated cognitive dysfunction and to investigate whether its underlying mechanism is related to attenuating accumulation of reactive aldehydes by upregulation of aldehyde-dehydrogenase 2. Methods: The cognitive function of rats was assessed by the Morris water maze test and the novel object recognition test. The levels of malondialdehyde, 4-hydroxynonenal, and glutathione as well as the activity of aldehyde-dehydrogenase 2 were determined by enzyme linked immunosorbent assay; the expression of aldehyde-dehydrogenase 2 was detected by western blot. Results: The behavior experiments, Morris water maze test and novel objects recognition test, showed that homocysteine induced deficiency in learning and memory in rats, and this deficiency was reversed by treatment of NaHS (a donor of hydrogen sulfide). We demonstrated that NaHS inhibited homocysteine-induced increases in generations of MDA and 4-HNE in the hippocampus of rats and that hydrogen sulfide reversed homocysteine-induced decreases in the level of glutathione as well as the activity and expression of aldehyde-dehydrogenase 2 in the hippocampus of rats. Conclusion: Hydrogen sulfide ameliorates homocysteine-induced impairment in cognitive function by decreasing accumulation of reactive aldehydes as a result of upregulations of glutathione and aldehyde-dehydrogenase 2. PMID:27988490

  6. Hydrogen Sulfide in Renal Physiology and Disease.

    PubMed

    Feliers, Denis; Lee, Hak Joo; Kasinath, Balakuntalam S

    2016-11-01

    Hydrogen sulfide (H2S) has only recently gained recognition for its physiological effects. It is synthesized widely in the mammalian tissues and regulates several biologic processes ranging from development, angiogenesis, neurotransmission to protein synthesis. Recent Advances: The aim of this review is to critically evaluate the evidence for a role for H2S in kidney function and disease. H2S regulates fundamental kidney physiologic processes such as glomerular filtration and sodium reabsorption. In kidney disease states H2S appears to play a complex role in a context-dependent manner. In some disease states such as ischemia-reperfusion and diabetic kidney disease it can serve as an agent that ameliorates kidney injury. In other diseases such as cis-platinum-induced kidney disease it may mediate kidney injury although more investigation is needed. Recent studies have revealed that the actions of nitric oxide and H2S may be integrated in kidney cells. Further studies are needed to understand the full impact of H2S on kidney physiology. As it is endowed with the properties of regulating blood flow, oxidative stress, and inflammation, H2S should be investigated for its role in inflammatory and toxic diseases of the kidney. Such in-depth exploration may identify specific kidney diseases in which H2S may constitute a unique target for therapeutic intervention. Antioxid. Redox Signal. 25, 720-731.

  7. Characteristics of H2S emission from aged refuse after excavation exposure.

    PubMed

    Shen, Dong-Sheng; Du, Yao; Fang, Yuan; Hu, Li-Fang; Fang, Cheng-Ran; Long, Yu-Yang

    2015-05-01

    Hydrogen sulfide (H2S(g)) emission from landfills is a widespread problem, especially when aged refuse is excavated. H2S(g) emission from aged refuse exposed to air was investigated and the results showed that large amounts of H2S(g) can be released, especially in the first few hours after excavation, when H2S(g) concentrations in air near refuse could reach 2.00 mg m(-3). Initial exposure to air did not inhibit the emission of H2S(g), as is generally assumed, but actually promoted it. The amounts of H2S(g) emitted in the first 2 d after excavation can be very dangerous, and the risks associated with the emission of H2S(g) could decrease significantly with time. Unlike a large number of sulfide existed under anaerobic conditions, the sulfide in aged municipal solid waste can be oxidized chemically to elemental sulfur (but not sulfate) under aerobic conditions, and its conversion rate was higher than 80%. Only microorganisms can oxidize the reduced sulfur species to sulfate, and the conversion rate could reach about 50%. Using appropriate techniques to enhance these chemical and biological transformations could allow the potential health risks caused by H2S(g) after refuse excavation to be largely avoided. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Hydrogen Sulfide in Biochemistry and Medicine

    PubMed Central

    Predmore, Benjamin Lee; Lefer, David Joseph

    2012-01-01

    Abstract Significance: An abundance of experimental evidence suggests that hydrogen sulfide (H2S) plays a prominent role in physiology and pathophysiology. Many targets exist for H2S therapy. The molecular targets of H2S include proteins, enzymes, transcription factors, and membrane ion channels. Recent Advances: Novel H2S precursors are being synthesized and discovered that are capable of releasing H2S in a slow and sustained manner. This presents a novel and advantageous approach to H2S therapy for treatment of chronic conditions associated with a decline in endogenous H2S, such as diabetes and cardiovascular disease. Critical Issues: While H2S is cytoprotective at physiological concentrations, it is not universally cytoprotective, as it appears to have pro-apoptotic actions in cancer cells and is well known to be toxic at supraphysiological concentrations. Many of the pleiotropic effects of H2S on health are associated with the inhibition of inflammation and upregulation of prosurvival pathways. The powerful anti-inflammatory, cytoprotective, immunomodulating, and trophic effects of H2S on the vast majority of normal cells seem to be mediated mainly by its actions as an extremely versatile direct and indirect antioxidant and free radical scavenger. While the overall effects of H2S on transformed (i.e., malignant) cells can be characterized as pro-oxidant and pro-apoptotic, they contrast sharply with the cytoprotective effects on most normal cells. Future Directions: H2S has become a molecule of great interest, and several slow-releasing H2S prodrugs are currently under development. We believe that additional agents regulating H2S bioavailability will be developed during the next 10 years. Antioxid. Redox Signal. 17, 119–140. PMID:22432697

  9. Protein-based nanobiosensor for direct detection of hydrogen sulfide

    NASA Astrophysics Data System (ADS)

    Omidi, Meisam; Amoabediny, Ghasem; Yazdian, Fatemeh; Habibi-Rezaei, M.

    2015-01-01

    The chemically modified cytochrome c from equine heart, EC (232-700-9), was immobilized onto gold nanoparticles in order to develop a specific biosensing system for monitoring hydrogen sulfide down to the micromolar level, by means of a localized surface plasmon resonance spectroscopy. The sensing mechanism is based on the cytochrome-c conformational changes in the presence of H2S which alter the dielectric properties of the gold nanoparticles and the surface plasmon resonance peak undergoes a redshift. According to the experiments, it is revealed that H2S can be detected at a concentration of 4.0 μ \\text{M} (1.3 \\text{ppb}) by the fabricated biosensor. This simple, quantitative and sensitive sensing platform provides a rapid and convenient detection for H2S at concentrations far below the hazardous limit.

  10. Highly selective and rapidly responsive fluorescent probe for hydrogen sulfide detection in wine.

    PubMed

    Wang, Hao; Wang, Jialin; Yang, Shaoxiang; Tian, Hongyu; Liu, Yongguo; Sun, Baoguo

    2018-08-15

    A new fluorescent probe 6-(2, 4-dinitrophenoxy)-2-naphthonitrile (probe 1) was designed and synthesized for the selective detection of hydrogen sulfide (H 2 S). The addition of H 2 S to a solution of probe 1 resulted in a marked fluorescence turn-on alongside a visual color change from colorless to light yellow. Importantly, this distinct color response indicated that probe 1 could be used as a visual sensor for H 2 S. Moreover, probe 1 was successfully used as a signal tool to determine the H 2 S levels in beer and red wine. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Application of bacteriophages specific to hydrogen sulfide-producing bacteria in raw poultry by-products.

    PubMed

    Gong, Chao; Liu, Xiaohua; Jiang, Xiuping

    2014-03-01

    Hydrogen sulfide-producing bacteria (SPB) can spoil raw animal materials and release harmful hydrogen sulfide (H2S) gas. The objective of this study was to apply a SPB-specific bacteriophage cocktail to control H2S production by SPB in different raw poultry by-products in the laboratory (20, 30, and 37°C) and greenhouse (average temperature 29 to 31°C, humidity 34.8 to 59.8%, and light intensity 604.8 Wm(2)) by simulating transportation and a rendering facility. The amount of H2S production was determined using either test strips impregnated with lead acetate or a H2S monitor. In the laboratory, phage treatment applied to fresh chicken meat inoculated with SPB, spoiled chicken meat, chicken guts, and chicken feathers reduced H2S production by approximately 25 to 69% at temperatures from 20 to 37°C. In the greenhouse, phage treatment achieved approximately a 30 to 85% reduction of H2S yield in chicken offal and feathers. Among all phage treatments, multiplicity of infection (MOI) of 100 exhibited the highest inhibitory activities against SPB on H2S production. Several factors such as initial SPB level, temperature, and MOI affect lytic activities of bacteriophages. Our study demonstrated that the phage cocktail is effective to reduce the production of H2S by SPB significantly in raw animal materials. This biological control method can control SPB in raw poultry by-products at ambient temperatures, leading to a safer working environment and high quality product with less nutrient degradation for the rendering industry.

  12. Reduction of ferrylmyoglobin by hydrogen sulfide. Kinetics in relation to meat greening.

    PubMed

    Libardi, Silvia H; Pindstrup, Helene; Cardoso, Daniel R; Skibsted, Leif H

    2013-03-20

    The hypervalent meat pigment ferrylmyoglobin, MbFe(IV)═O, characteristic for oxidatively stressed meat and known to initiate protein cross-linking, was found to be reduced by hydrogen sulfide to yield sulfmyoglobin. Horse heart myoglobin, void of cysteine, was used to avoid possible interference from protein thiols. For aqueous solution, the reactions were found to be second-order, and an apparent acid catalysis could be quantitatively accounted for in terms of a fast reaction between protonated ferrylmyoglobin, MbFe(IV)═O,H(+), and hydrogen sulfide, H2S (k2 = (2.5 ± 0.1) × 10(6) L mol(-1) s(-1) for 25.0 °C, ionic strengh 0.067, dominating for pH < 4), and a slow reaction between MbFe(IV)═O and HS(-) (k2 = (1.0 ± 0.7) × 10(4) L mol(-1) s(-1) for 25.0 °C, ionic strengh 0.067, dominating for pH > 7). For meat pH, a reaction via the transition state {MbFe(IV)═O···H···HS}([symbol: see text]) contributed significantly, and this reaction appeared almost independent of temperature with an apparent energy of activation of 2.1 ± 0.7 kJ mol(-1) at pH 7.4, as a result of compensation among activation energies and temperature influence on pKa values explaining low temperature greening of meat.

  13. Factors affecting activated carbon-based catalysts for selective hydrogen sulfide oxidation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Huixing; Monnell, J.D.; Alvin, M.A.

    2008-09-01

    The primary product of coal gasification processes is synthesis gas (syngas), a mixture of CO, H2, CO2, H2O and a number of minor components. Among the most significant minor components in syngas is hydrogen sulfide (H2S). In addition to its adverse environmental impact, H2S poisons the catalysts and hydrogen purification membranes, and causes severe corrosion in gas turbines. Technologies that can remove H2S from syngas and related process streams are, therefore, of considerable practical interest. To meet this need, we work towards understanding the mechanism by which prospective H2S catalysts perform in simulated fuel gas conditions. Specifically, we show thatmore » for low-temperature gas clean-up (~1408C) using activated carbon fibers and water plays a significant role in H2S binding and helps to prolong the lifetime of the material. Basic surface functional groups were found to be imperative for significant conversion of H2S to daughter compounds, whereas metal oxides (La and Ce) did little to enhance this catalysis. We show that although thermal regeneration of the material is possible, the regenerated material has a substantially lower catalytic and sorption capacity.« less

  14. Reaction Mechanisms of Metals with Hydrogen Sulfide and Thiols in Model Wine. Part 1: Copper-Catalyzed Oxidation.

    PubMed

    Kreitman, Gal Y; Danilewicz, John C; Jeffery, David W; Elias, Ryan J

    2016-05-25

    Sulfidic off-odors as a result of hydrogen sulfide (H2S) and low-molecular-weight thiols are commonly encountered in wine production. These odors are usually removed by the process of Cu(II) fining, a process that remains poorly understood. The present study aims to elucidate the underlying mechanisms by which Cu(II) interacts with H2S and thiol compounds (RSH) under wine-like conditions. Copper complex formation was monitored along with H2S, thiol, oxygen, and acetaldehyde concentrations after the addition of Cu(II) (50 or 100 μM) to air-saturated model wine solutions containing H2S, cysteine, 6-sulfanylhexan-1-ol, or 3-sulfanylhexan-1-ol (300 μM each). The presence of H2S and thiols in excess to Cu(II) led to the rapid formation of ∼1.4:1 H2S/Cu and ∼2:1 thiol/Cu complexes, resulting in the oxidation of H2S and thiols and reduction of Cu(II) to Cu(I), which reacted with oxygen. H2S was observed to initially oxidize rather than form insoluble copper sulfide. The proposed reaction mechanisms provide insight into the extent to which H2S can be selectively removed in the presence of thiols in wine.

  15. Temperature-Dependent Rate Coefficients for the Reaction of CH2OO with Hydrogen Sulfide.

    PubMed

    Smith, Mica C; Chao, Wen; Kumar, Manoj; Francisco, Joseph S; Takahashi, Kaito; Lin, Jim Jr-Min

    2017-02-09

    The reaction of the simplest Criegee intermediate CH 2 OO with hydrogen sulfide was measured with transient UV absorption spectroscopy in a temperature-controlled flow reactor, and bimolecular rate coefficients were obtained from 278 to 318 K and from 100 to 500 Torr. The average rate coefficient at 298 K and 100 Torr was (1.7 ± 0.2) × 10 -13 cm 3 s -1 . The reaction was found to be independent of pressure and exhibited a weak negative temperature dependence. Ab initio quantum chemistry calculations of the temperature-dependent reaction rate coefficient at the QCISD(T)/CBS level are in reasonable agreement with the experiment. The reaction of CH 2 OO with H 2 S is 2-3 orders of magnitude faster than the reaction with H 2 O monomer. Though rates of CH 2 OO scavenging by water vapor under atmospheric conditions are primarily controlled by the reaction with water dimer, the H 2 S loss pathway will be dominated by the reaction with monomer. The agreement between experiment and theory for the CH 2 OO + H 2 S reaction lends credence to theoretical descriptions of other Criegee intermediate reactions that cannot easily be probed experimentally.

  16. Hydrogen sulfide-powered solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Liu, Man

    2004-12-01

    The potential utilization of hydrogen sulfide as fuel in solid oxide fuel cells has been investigated using an oxide-ion conducting YSZ electrolyte and different kinds of anode catalysts at operating temperatures in the range of 700--900°C and at atmospheric pressure. This technology offers an economically attractive alternative to present methods for removing toxic and corrosive H2S gas from sour gas streams and a promising approach for cogenerating electrical energy and useful chemicals. The primary objective of the present research was to find active and stable anode materials. Fuel cell experimental results showed that platinum was a good electrocatalyst for the conversion of H2S, but the Pt/YSZ interface was physically unstable due to the reversible formation and decomposition of PtS in H 2S streams at elevated temperatures. Moreover, instability of the Pt/YSZ interface was accelerated significantly by electrochemical reactions, and ultimately led to the detachment of the Pt anode from the electrolyte. It has been shown that an interlayer of TiO2 stabilized the Pt anode on YSZ electrolyte, thereby prolonging cell lifetime. However, the current output for a fuel cell using Pt/TiO2 as anode was not improved compared to using Pt alone. It was therefore necessary to investigate novel anode systems for H 2S-air SOFCs. New anode catalysts comprising composite metal sulfides were developed. These catalysts exhibited good electrical conductivity and better catalytic activity than Pt. In contrast to MoS2 alone, composite catalysts (M-Mo-S, M = Fe, Co, Ni) were not volatile and had superior stability. However, when used for extended periods of time, detachment of Pt current collecting film from anodes comprising metal sulfides alone resulted in a large increase in contact resistance and reduction in cell performance. Consequently, a systematic investigation was conducted to identify alternative electronic conductors for use with M-Mo-S catalysts. Anode catalysts

  17. Endogenous hydrogen sulfide is involved in the pathogenesis of atherosclerosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiao, Wang; Chaoshu, Tang; Key Laboratory of Molecular Cardiovascular Medicine, Ministry of Education

    2010-05-28

    Atherosclerosis is a chronic, complex, and progressive pathological process in large and medium sized arteries. The exact mechanism of this process remains unclear. Hydrogen sulfide (H{sub 2}S), a novel gasotransmitter, was confirmed as playing a major role in the pathogenesis of many cardiovascular diseases. It plays a role in vascular smooth muscle cell (VSMC) proliferation and apoptosis, participates in the progress of hyperhomocysteinemia (HHCY), inhibits atherogenic modification of LDL, interferes with vascular calcification, intervenes with platelet function, and there are interactions between H{sub 2}S and inflammatory processes. The role of H{sub 2}S in atherosclerotic pathogenesis highlights the mysteries of atherosclerosismore » and inspires the search for innovative therapeutic strategies. Here, we review the studies to date that have considered the role of H{sub 2}S in atherosclerosis.« less

  18. The proteins of Fusobacterium spp. involved in hydrogen sulfide production from L-cysteine.

    PubMed

    Basic, Amina; Blomqvist, Madeleine; Dahlén, Gunnar; Svensäter, Gunnel

    2017-03-14

    Hydrogen sulfide (H 2 S) is a toxic foul-smelling gas produced by subgingival biofilms in patients with periodontal disease and is suggested to be part of the pathogenesis of the disease. We studied the H 2 S-producing protein expression of bacterial strains associated with periodontal disease. Further, we examined the effect of a cysteine-rich growth environment on the synthesis of intracellular enzymes in F. nucleatum polymorphum ATCC 10953. The proteins were subjected to one-dimensional (1DE) and two-dimensional (2DE) gel electrophoresis An in-gel activity assay was used to detect the H 2 S-producing enzymes; Sulfide from H 2 S, produced by the enzymes in the gel, reacted with bismuth forming bismuth sulfide, illustrated as brown bands (1D) or spots (2D) in the gel. The discovered proteins were identified with liquid chromatography - tandem mass spectrometry (LC-MS/MS). Cysteine synthase and proteins involved in the production of the coenzyme pyridoxal 5'phosphate (that catalyzes the production of H 2 S) were frequently found among the discovered enzymes. Interestingly, a higher expression of H 2 S-producing enzymes was detected from bacteria incubated without cysteine prior to the experiment. Numerous enzymes, identified as cysteine synthase, were involved in the production of H 2 S from cysteine and the expression varied among Fusobacterium spp. and strains. No enzymes were detected with the in-gel activity assay among the other periodontitis-associated bacteria tested. The expression of the H 2 S-producing enzymes was dependent on environmental conditions such as cysteine concentration and pH but less dependent on the presence of serum and hemin.

  19. Optimization of the superconducting phase of hydrogen sulfide

    NASA Astrophysics Data System (ADS)

    Degtyarenko, N. N.; Masur, E. A.

    2015-12-01

    The electron and phonon spectra, as well as the densities of electron and phonon states of the SH3 phase and the stable orthorhombic structure of hydrogen sulfide SH2, are calculated for the pressure interval 100-225 GPa. It is found that the I4/ mmm phase can be responsible for the superconducting properties of metallic hydrogen sulfide along with the SH3 phase. Sequential stages for obtaining and conservation of the SH2 phase are proposed. The properties of two (SH2 and SH3) superconducting phases of hydrogen sulfide are compared.

  20. Raman Spectra and Cross Sections of Ammonia, Chlorine, Hydrogen Sulfide, Phosgene, and Sulfur Dioxide Toxic Gases in the Fingerprint Region 400-1400 cm-1

    DTIC Science & Technology

    2016-02-11

    AIP ADVANCES 6, 025310 (2016) Raman spectra and cross sections of ammonia , chlorine, hydrogen sulfide, phosgene, and sulfur dioxide toxic gases in...Received 10 December 2015; accepted 3 February 2016; published online 11 February 2016) Raman spectra of ammonia (NH3), chlorine (Cl2), hydrogen...and cross sections of ammonia (NH3), chlorine (Cl2), hydrogen sulfide (H2S), phosgene (CCl2O), and sulfur dioxide (SO2) toxic gases in the fingerprint

  1. Hydrogen Sulfide: A Signal Molecule in Plant Cross-Adaptation

    PubMed Central

    Li, Zhong-Guang; Min, Xiong; Zhou, Zhi-Hao

    2016-01-01

    For a long time, hydrogen sulfide (H2S) has been considered as merely a toxic by product of cell metabolism, but nowadays is emerging as a novel gaseous signal molecule, which participates in seed germination, plant growth and development, as well as the acquisition of stress tolerance including cross-adaptation in plants. Cross-adaptation, widely existing in nature, is the phenomenon in which plants expose to a moderate stress can induce the resistance to other stresses. The mechanism of cross-adaptation is involved in a complex signal network consisting of many second messengers such as Ca2+, abscisic acid, hydrogen peroxide and nitric oxide, as well as their crosstalk. The cross-adaptation signaling is commonly triggered by moderate environmental stress or exogenous application of signal molecules or their donors, which in turn induces cross-adaptation by enhancing antioxidant system activity, accumulating osmolytes, synthesizing heat shock proteins, as well as maintaining ion and nutrient balance. In this review, based on the current knowledge on H2S and cross-adaptation in plant biology, H2S homeostasis in plant cells under normal growth conditions; H2S signaling triggered by abiotic stress; and H2S-induced cross-adaptation to heavy metal, salt, drought, cold, heat, and flooding stress were summarized, and concluded that H2S might be a candidate signal molecule in plant cross-adaptation. In addition, future research direction also has been proposed. PMID:27833636

  2. Hydrogen attack - Influence of hydrogen sulfide. [on carbon steel

    NASA Technical Reports Server (NTRS)

    Eliezer, D.; Nelson, H. G.

    1978-01-01

    An experimental study is conducted on 12.5-mm-thick SAE 1020 steel (plain carbon steel) plate to assess hydrogen attack at room temperature after specimen exposure at 525 C to hydrogen and a blend of hydrogen sulfide and hydrogen at a pressure of 3.5 MN/sq m for exposure times up to 240 hr. The results are discussed in terms of tensile properties, fissure formation, and surface scales. It is shown that hydrogen attack from a high-purity hydrogen environment is severe, with the formation of numerous methane fissures and bubbles along with a significant reduction in the room-temperature tensile yield and ultimate strengths. However, no hydrogen attack is observed in the hydrogen/hydrogen sulfide blend environment, i.e. no fissure or bubble formation occurred and the room-temperature tensile properties remained unchanged. It is suggested that the observed porous discontinuous scale of FeS acts as a barrier to hydrogen entry, thus reducing its effective equilibrium solubility in the iron lattice. Therefore, hydrogen attack should not occur in pressure-vessel steels used in many coal gasification processes.

  3. The Role of Hydrogen Sulfide in Evolution and the Evolution of Hydrogen Sulfide in Metabolism and Signaling.

    PubMed

    Olson, Kenneth R; Straub, Karl D

    2016-01-01

    The chemical versatility of sulfur and its abundance in the prebiotic Earth as reduced sulfide (H2S) implicate this molecule in the origin of life 3.8 billion years ago and also as a major source of energy in the first seven-eighths of evolution. The tremendous increase in ambient oxygen ∼ 600 million years ago brought an end to H2S as an energy source, and H2S-dependent animals either became extinct, retreated to isolated sulfide niches, or adapted. The first 3 billion years of molecular tinkering were not lost, however, and much of this biochemical armamentarium easily adapted to an oxic environment where it contributes to metabolism and signaling even in humans. This review examines the role of H2S in evolution and the evolution of H2S metabolism and signaling. ©2016 Int. Union Physiol. Sci./Am. Physiol. Soc.

  4. Hydrogen sulfide and nonmethane hydrocarbon emissions from broiler houses in the Southeastern United States

    USDA-ARS?s Scientific Manuscript database

    Hydrogen sulfide (H2S) and nonmethane hydrocarbon (NMHC) emissions from two mechanically ventilated commercial broiler houses located in the Southeastern United States were continuously monitored over 12 flocks during the one-year period of 2006-2007 as a joint effort between Iowa State University a...

  5. Crossett Hydrogen Sulfide Air Sampling Report

    EPA Pesticide Factsheets

    This report summarizes the results of the EPA’s hydrogen sulfide air monitoring conducted along Georgia Pacific’s wastewater treatment system and in surrounding Crossett, AR, neighborhoods in 2017.

  6. CHROMATOGRAPHIC SEPARATION AND IDENTIFICATION OF PRODUCTS FROM THE REACTION OF DIMETHYLARSINIC ACID WITH HYDROGEN SULFIDE

    EPA Science Inventory

    The reaction of dimethylarsinic acid (DMAV) with hydrogen sulfide (H2S) is of biological significance and may be implicated in the overall toxicity and carcinogenicity of arsenic. The course of the reaction in aqueous phase was monitored and an initial product, dimethylthioarsin...

  7. Hydrogen sulfide formation control and microbial competition in batch anaerobic digestion of slaughterhouse wastewater sludge: Effect of initial sludge pH.

    PubMed

    Yan, Li; Ye, Jie; Zhang, Panyue; Xu, Dong; Wu, Yan; Liu, Jianbo; Zhang, Haibo; Fang, Wei; Wang, Bei; Zeng, Guangming

    2018-07-01

    High sulfur content in excess sludge impacts the production of biomethane during anaerobic digestion, meanwhile leads to hydrogen sulfide (H 2 S) formation in biogas. Effect of initial sludge pH on H 2 S formation during batch mesophilic anaerobic digestion of slaughterhouse wastewater sludge was studied in this paper. The results demonstrated that when the initial sludge pH increased from 6.5 to 8.0, the biogas production increased by 10.1%, the methane production increased by 64.1%, while the H 2 S content in biogas decreased by 44.7%. The higher initial sludge pH inhibited the competition of sulfate-reducing bacteria with methane-producing bacteria, and thus benefitted the growth of methanogens. Positive correlation was found between the relative abundance of Desulfomicrobium and H 2 S production, as well as the relative abundance of Methanosarcina and methane production. More sulfates and organic sulfur were transferred to solid and liquid rather than H 2 S formation at a high initial pH. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. H2S: a universal defense against antibiotics in bacteria.

    PubMed

    Shatalin, Konstantin; Shatalina, Elena; Mironov, Alexander; Nudler, Evgeny

    2011-11-18

    Many prokaryotic species generate hydrogen sulfide (H(2)S) in their natural environments. However, the biochemistry and physiological role of this gas in nonsulfur bacteria remain largely unknown. Here we demonstrate that inactivation of putative cystathionine β-synthase, cystathionine γ-lyase, or 3-mercaptopyruvate sulfurtransferase in Bacillus anthracis, Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli suppresses H(2)S production, rendering these pathogens highly sensitive to a multitude of antibiotics. Exogenous H(2)S suppresses this effect. Moreover, in bacteria that normally produce H(2)S and nitric oxide, these two gases act synergistically to sustain growth. The mechanism of gas-mediated antibiotic resistance relies on mitigation of oxidative stress imposed by antibiotics.

  9. Hydrogen sulfide production from cysteine and homocysteine by periodontal and oral bacteria.

    PubMed

    Yoshida, Akihiro; Yoshimura, Mamiko; Ohara, Naoya; Yoshimura, Shigeru; Nagashima, Shiori; Takehara, Tadamichi; Nakayama, Koji

    2009-11-01

    Hydrogen sulfide is one of the predominant volatile sulfur compounds (VSCs) produced by oral bacteria. This study developed and evaluated a system for detecting hydrogen sulfide production by oral bacteria. L-methionine-alpha-deamino-gamma-mercaptomethane-lyase (METase) and beta carbon-sulfur (beta C-S) lyase were used to degrade homocysteine and cysteine, respectively, to produce hydrogen sulfide. Enzymatic reactions resulting in hydrogen sulfide production were assayed by reaction with bismuth trichloride, which forms a black precipitate when mixed with hydrogen sulfide. The enzymatic activities of various oral bacteria that result in hydrogen sulfide production and the capacity of bacteria from periodontal sites to form hydrogen sulfide in reaction mixtures containing L-cysteine or DL-homocysteine were assayed. With L-cysteine as the substrate, Streptococcus anginosus FW73 produced the most hydrogen sulfide, whereas Porphyromonas gingivalis American Type Culture Collection (ATCC) 33277 and W83 and Fusobacterium nucleatum ATCC 10953 produced approximately 35% of the amount produced by the P. gingivalis strains. Finally, the hydrogen sulfide found in subgingival plaque was analyzed. Using bismuth trichloride, the hydrogen sulfide produced by oral bacteria was visually detectable as a black precipitate. Hydrogen sulfide production by oral bacteria was easily analyzed using bismuth trichloride. However, further innovation is required for practical use.

  10. Magnetic MoS2 on multiwalled carbon nanotubes for sulfide sensing.

    PubMed

    Li, Chunxiang; Zhang, Dan; Wang, Jiankang; Hu, Pingan; Jiang, Zhaohua

    2017-07-04

    A novel hybrid metallic cobalt insided in multiwalled carbon nanotubles/molybdenum disulfide (Co@CNT/MoS 2 ) modified glass carbon electrode (GCE) was fabricated with a adhesive of Nafion suspension and used as chemical sensors for sulfide detection. Single-layered MoS 2 was coated on CNTs through magnetic traction force between paramagnetic monolayer MoS 2 and Co particles in CNTs. Co particles faciliated the collection of paramagnetic monolayer MoS 2 exfoliated from bulk MoS 2 in solution. Amperometric analysis, cycle voltammetry, cathodic stripping analysis and linear sweep voltammetry results showed the Co@CNT/MoS 2 modified GCE exhibited excellent electrochemical activity to sulfide in buffer solutions, but amperometric analysis was found to be more sensitive than the other methods. The amperometric response result indicated the Co@CNT/MoS 2 -modified GCE electrode was an excellent electrochemical sensor for detecting S 2- with a detection limit of 7.6 nM and sensitivity of 0.23 mA/μM. The proposed electrode was used for the determination of sulfide levels in hydrogen sulfide-pretreated fruits, and the method was also verified with recovery studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Co-treatment of hydrogen sulfide and methanol in a single-stage biotrickling filter under acidic conditions.

    PubMed

    Jin, Yaomin; Veiga, María C; Kennes, Christian

    2007-06-01

    Biofiltration of waste gases is cost-effective and environment-friendly compared to the conventional techniques for treating large flow rates of gas streams with low concentrations of pollutants. Pulp and paper industry off-gases usually contain reduced sulfur compounds, such as hydrogen sulfide and a wide range of volatile organic compounds (VOCs), e.g., methanol. It is desirable to eliminate both of these groups of compounds. Since the co-treatment of inorganic sulfur compounds and VOCs in biotrickling filters is a relatively unexplored area, the simultaneous biotreatment of H2S and methanol as the model VOC was investigated. The results showed that, after adaptation, the elimination capacity of methanol could reach around 236 g m(-3) h(-1) with the simultaneous complete removal (100%) of 12 ppm H2S when the empty bed residence time is 24 s. The pH of the system was around 2. Methanol removal was hardly affected by the presence of hydrogen sulfide, despite the low pH. Conversely, the presence of the VOC in the waste gas reduced the efficiency of H2S biodegradation. The maximal methanol removal decreased somewhat when increasing the gas flow rate. This is the first report on the degradation of methanol at such low pH in a biotrickling filter and on the co-treatment of H2S and VOCs under such conditions.

  12. NEAR-CONTINUOUS MEASUREMENT OF HYDROGEN SULFIDE AND CARBONYL SULFIDE BY AN AUTOMATIC GAS CHROMATOGRAPH

    EPA Science Inventory

    An automatic gas chromatograph with a flame photometric detector that samples and analyzes hydrogen sulfide and carbonyl sulfide at 30-s intervals is described. Temperature programming was used to elute trace amounts of carbon disulfide present in each injection from a Supelpak-S...

  13. Anti-inflammatory and cytoprotective properties of hydrogen sulfide.

    PubMed

    Gemici, Burcu; Wallace, John L

    2015-01-01

    Hydrogen sulfide is an endogenous gaseous mediator that plays important roles in many physiological processes in microbes, plants, and animals. This chapter focuses on the important roles of hydrogen sulfide in protecting tissues against injury, promoting the repair of damage, and downregulating the inflammatory responses. The chapter focuses largely, but not exclusively, on these roles of hydrogen sulfide in the gastrointestinal tract. Hydrogen sulfide is produced throughout the gastrointestinal tract, and it contributes to maintenance of mucosal integrity. Suppression of hydrogen sulfide synthesis renders the tissue more susceptible to injury and it impairs repair. In contrast, administration of hydrogen sulfide donors can increase resistance to injury and accelerate repair. Hydrogen sulfide synthesis is rapidly and dramatically enhanced in the gastrointestinal tract after injury is induced. These increases occur specifically at the site of tissue injury. Hydrogen sulfide also plays an important role in promoting resolution of inflammation, and restoration of normal tissue function. In recent years, these beneficial actions of hydrogen sulfide have provided the basis for development of novel hydrogen sulfide-releasing drugs. Nonsteroidal anti-inflammatory drugs that release small amounts of hydrogen sulfide are among the most advanced of the hydrogen sulfide-based drugs. Unlike the parent drugs, these modified drugs do not cause injury in the gastrointestinal tract, and do not interfere with healing of preexisting damage. Because of the increased safety profile of these drugs, they can be used in circumstances in which the toxicity of the parent drug would normally limit their use, such as in chemoprevention of cancer. © 2015 Elsevier Inc. All rights reserved.

  14. Source Of Hydrogen Sulfide To Sulfidic Spring And Watershed Ecosystems In Northern Sierra De Chiapas, Mexico Based On Sulfur And Carbon Isotopes

    NASA Astrophysics Data System (ADS)

    Rosales Lagarde, L.; Boston, P. J.; Campbell, A.

    2013-12-01

    At least four watersheds in northern Sierra de Chiapas, Mexico are fed by conspicuous karst sulfide-rich springs. The toxic hydrogen sulfide (H2S) in these springs nurtures rich ecosystems including especially adapted microorganisms, invertebrates and fish. Sulfur and carbon isotopic analysis of various chemical species in the spring water are integrated within their hydrogeologic context to evaluate the hydrogen sulfide source. Constraining the H2S origin can also increase the understanding of this compound effect in the quality of the nearby hydrocarbon reservoirs, and the extent to which its oxidation to sulfuric acid increases carbonate dissolution and steel corrosion in surface structures. The SO42-/H2S ratio in the spring water varies from 70,000 to 2 meq/L thus sulfate is the dominant species in the groundwater system. This sulfate is mainly produced from anhydrite dissolution based on its isotopic signature. The Δ SO42--H2S range of 16 spring water samples (30-50 ‰) is similar to the values determined by Goldhaber & Kaplan (1975) and Canfield (2001) for low rates of bacterial sulfate reduction suggesting that this is the most important mechanism producing H2S. Although the carbon isotopes do not constrain the nature of the organic matter participating in this reaction, this material likely comes from depth, perhaps as hydrocarbons, due to the apparent stability of the system. The organic matter availability and reactivity probably control the progress of sulfate reduction. The subsurface environments identified in the area also have different sulfur isotopic values. The heavier residual sulfate isotopic value in the Northern brackish springs (δ34S SO42- ≥ 18 ‰) compared to the Southern springs (δ34S SO42- ~18 ‰) suggests sulfate reduction is particularly enhanced in the former, probably by contribution of organic matter associated with oil produced water. In comparison, the composition of the Southern aquifer is mainly influenced by halite

  15. The dipole moment surface for hydrogen sulfide H2S

    NASA Astrophysics Data System (ADS)

    Azzam, Ala`a. A. A.; Lodi, Lorenzo; Yurchenko, Sergey N.; Tennyson, Jonathan

    2015-08-01

    In this work we perform a systematic ab initio study of the dipole moment surface (DMS) of H2S at various levels of theory and of its effect on the intensities of vibration-rotation transitions; H2S intensities are known from the experiment to display anomalies which have so far been difficult to reproduce by theoretical calculations. We use the transition intensities from the HITRAN database of 14 vibrational bands for our comparisons. The intensities of all fundamental bands show strong sensitivity to the ab initio method used for constructing the DMS while hot, overtone and combination bands up to 4000 cm-1 do not. The core-correlation and relativistic effects are found to be important for computed line intensities, for instance affecting the most intense fundamental band (ν2) by about 20%. Our recommended DMS, called ALYT2, is based on the CCSD(T)/aug-cc-pV(6+d)Z level of theory supplemented by a core-correlation/relativistic corrective surface obtained at the CCSD[T]/aug-cc-pCV5Z-DK level. The corresponding computed intensities agree significantly better (to within 10%) with experimental data taken directly from original papers. Worse agreement (differences of about 25%) is found for those HITRAN intensities obtained from fitted effective dipole models, suggesting the presence of underlying problems in those fits.

  16. H2S, a novel therapeutic target in renal-associated diseases?

    PubMed

    Pan, Wen-Jun; Fan, Wen-Jing; Zhang, Chi; Han, Dan; Qu, Shun-Lin; Jiang, Zhi-Sheng

    2015-01-01

    For more than a century, hydrogen sulfide (H2S) has been regarded as a toxic gas. Recently, the understanding of the biological effects of H2S has been changed. This review surveys the growing recognition of H2S as an endogenous signaling molecule in mammals, with emphasis on its physiological and pathological pathways in the urinary system. This article reviews recent progress of basic and pharmacological researches related to endogenous H2S in urinary system, including the regulatory effects of H2S in the process of antioxidant, inflammation, cellular matrix remodeling and ion channels, and the role of endogenous H2S pathway in the pathogenesis of renal and urogenital disorders. Copyright © 2014. Published by Elsevier B.V.

  17. Anti-cancer activity of new designer hydrogen sulfide-donating hybrids.

    PubMed

    Kashfi, Khosrow

    2014-02-10

    Hydrogen sulfide (H2S) is likely to join nitric oxide (NO) and carbon monoxide (CO) as the third gaseous transmitter, influencing an array of intracellular signaling cascades. Thus, H2S is implicated in numerous physiological processes and in the pathology of various diseases. H2S-donating agents that liberate H2S slowly either alone or in combination with NO, the so-called NOSH compounds, are being synthesized, and these have been shown to have great potential against cancer. An accurate determination of H2S levels is challenging. H2S and NO share many similar actions; do these similarities act to potentiate each other? Since many actions of H2S appear to be mediated through inhibition of inflammation and Nuclear factor kappa-light-chain-enhancer of activated B cells is a central player in this scenario, does S-nitrosylation of this transcription factor by NO affect its S-sulfhydration by H2S and vice versa? Deciphering the molecular targets of these novel hybrid agents and having genetically engineered animals should help us move toward targeted therapeutic applications. Human safety data with these new hybrids is essential.

  18. Role of Hydrogen Sulfide in Retinal Diseases.

    PubMed

    Du, Jiantong; Jin, Hongfang; Yang, Liu

    2017-01-01

    As the third gasotransmitter, hydrogen sulfide (H 2 S) plays a crucial role in the physiology and pathophysiology of many systems in the body, such as the nervous, cardiovascular, respiratory, and gastrointestinal systems. The mechanisms for its effects, including inhibiting ischemic injury, reducing oxidative stress damage, regulating apoptosis, and reducing the inflammation reaction in different systems, have not been fully understood. Recently, H 2 S and its endogenous synthesis pathway were found in the mammalian retina. This review describes the production and the metabolism of H 2 S and the evidence of a role of H 2 S in the retina physiology and in the different retinal diseases, including retinal degenerative diseases and vascular diseases. In the retina, H 2 S is generated in the presence of cystathionine-β-synthase, cystathionine-γ-lyase, and 3-mercaptopyruvate sulfurtransferase from L-cysteine. The role of endogenous H 2 S and its physiologic effect in the retina are still elusive. However, strong evidence shows that retina-derived H 2 S might play protective or deleterious role in the pathogenesis of retinal diseases. For example, by regulating Ca 2+ influx, H 2 S can protect retinal neurons against light-induced degeneration. H 2 S preconditioning can mediate the anti-apoptotic effect of retinal ganglion cells in retinal ischemia/reperfusion injury. Treatment with H 2 S in rats relieves diabetic retinopathy by suppressing oxidative stress and reducing inflammation. Further studies would greatly improve our understanding of the pathophysiologic mechanisms responsible for retinal diseases and the potential for the H 2 S-related therapy of the retinal diseases as well.

  19. Cupriavidus necator H16 Uses Flavocytochrome c Sulfide Dehydrogenase To Oxidize Self-Produced and Added Sulfide

    PubMed Central

    Lü, Chuanjuan; Xia, Yongzhen; Liu, Daixi; Zhao, Rui; Gao, Rui

    2017-01-01

    ABSTRACT Production of sulfide (H2S, HS−, and S2−) by heterotrophic bacteria during aerobic growth is a common phenomenon. Some bacteria with sulfide:quinone oxidoreductase (SQR) and persulfide dioxygenase (PDO) can oxidize self-produced sulfide to sulfite and thiosulfate, but other bacteria without these enzymes release sulfide into the medium, from which H2S can volatilize into the gas phase. Here, we report that Cupriavidus necator H16, with the fccA and fccB genes encoding flavocytochrome c sulfide dehydrogenases (FCSDs), also oxidized self-produced H2S. A mutant in which fccA and fccB were deleted accumulated and released H2S. When fccA and fccB were expressed in Pseudomonas aeruginosa strain Pa3K with deletions of its sqr and pdo genes, the recombinant rapidly oxidized sulfide to sulfane sulfur. When PDO was also cloned into the recombinant, the recombinant with both FCSD and PDO oxidized sulfide to sulfite and thiosulfate. Thus, the proposed pathway is similar to the pathway catalyzed by SQR and PDO, in which FCSD oxidizes sulfide to polysulfide, polysulfide spontaneously reacts with reduced glutathione (GSH) to produce glutathione persulfide (GSSH), and PDO oxidizes GSSH to sulfite, which chemically reacts with polysulfide to produce thiosulfate. About 20.6% of sequenced bacterial genomes contain SQR, and only 3.9% contain FCSD. This is not a surprise, since SQR is more efficient in conserving energy because it passes electrons from sulfide oxidation into the electron transport chain at the quinone level, while FCSD passes electrons to cytochrome c. The transport of electrons from the latter to O2 conserves less energy. FCSDs are grouped into three subgroups, well conserved at the taxonomic level. Thus, our data show the diversity in sulfide oxidation by heterotrophic bacteria. IMPORTANCE Heterotrophic bacteria with SQR and PDO can oxidize self-produced sulfide and do not release H2S into the gas phase. C. necator H16 has FCSD but not SQR, and it does

  20. S-Sulfhydration of ATP synthase by hydrogen sulfide stimulates mitochondrial bioenergetics.

    PubMed

    Módis, Katalin; Ju, YoungJun; Ahmad, Akbar; Untereiner, Ashley A; Altaany, Zaid; Wu, Lingyun; Szabo, Csaba; Wang, Rui

    2016-11-01

    Mammalian cells can utilize hydrogen sulfide (H 2 S) to support mitochondrial respiration. The aim of our study was to explore the potential role of S-sulfhydration (a H 2 S-induced posttranslational modification, also known as S-persulfidation) of the mitochondrial inner membrane protein ATP synthase (F1F0 ATP synthase/Complex V) in the regulation of mitochondrial bioenergetics. Using a biotin switch assay, we have detected S-sulfhydration of the α subunit (ATP5A1) of ATP synthase in response to exposure to H 2 S in vitro. The H 2 S generator compound NaHS induced S-sulfhydration of ATP5A1 in HepG2 and HEK293 cell lysates in a concentration-dependent manner (50-300μM). The activity of immunocaptured mitochondrial ATP synthase enzyme isolated from HepG2 and HEK293 cells was stimulated by NaHS at low concentrations (10-100nM). Site-directed mutagenesis of ATP5A1 in HEK293 cells demonstrated that cysteine residues at positions 244 and 294 are subject to S-sulfhydration. The double mutant ATP synthase protein (C244S/C294S) showed a significantly reduced enzyme activity compared to control and the single-cysteine-mutated recombinant proteins (C244S or C294S). To determine whether endogenous H 2 S plays a role in the basal S-sulfhydration of ATP synthase in vivo, we compared liver tissues harvested from wild-type mice and mice deficient in cystathionine-gamma-lyase (CSE, one of the three principal mammalian H 2 S-producing enzymes). Significantly reduced S-sulfhydration of ATP5A1 was observed in liver homogenates of CSE -/- mice, compared to wild-type mice, suggesting a physiological role for CSE-derived endogenous H 2 S production in the S-sulfhydration of ATP synthase. Various forms of critical illness (including burn injury) upregulate H 2 S-producing enzymes and stimulate H 2 S biosynthesis. In liver tissues collected from mice subjected to burn injury, we detected an increased S-sulfhydration of ATP5A1 at the early time points post-burn. At later time points

  1. A distal ligand mutes the interaction of hydrogen sulfide with human neuroglobin

    PubMed Central

    Ruetz, Markus; Kumutima, Jacques; Lewis, Brianne E.; Filipovic, Milos R.; Lehnert, Nicolai; Stemmler, Timothy L.; Banerjee, Ruma

    2017-01-01

    Hydrogen sulfide is a critical signaling molecule, but high concentrations cause cellular toxicity. A four-enzyme pathway in the mitochondrion detoxifies H2S by converting it to thiosulfate and sulfate. Recent studies have shown that globins like hemoglobin and myoglobin can also oxidize H2S to thiosulfate and hydropolysulfides. Neuroglobin, a globin enriched in the brain, was reported to bind H2S tightly and was postulated to play a role in modulating neuronal sensitivity to H2S in conditions such as stroke. However, the H2S reactivity of the coordinately saturated heme in neuroglobin is expected a priori to be substantially lower than that of the 5-coordinate hemes present in myoglobin and hemoglobin. To resolve this discrepancy, we explored the role of the distal histidine residue in muting the reactivity of human neuroglobin toward H2S. Ferric neuroglobin is slowly reduced by H2S and catalyzes its inefficient oxidative conversion to thiosulfate. Mutation of the distal His64 residue to alanine promotes rapid binding of H2S and its efficient conversion to oxidized products. X-ray absorption, EPR, and resonance Raman spectroscopy highlight the chemically different reaction options influenced by the distal histidine ligand. This study provides mechanistic insights into how the distal heme ligand in neuroglobin caps its reactivity toward H2S and identifies by cryo-mass spectrometry a range of sulfide oxidation products with 2–6 catenated sulfur atoms with or without oxygen insertion, which accumulate in the absence of the His64 ligand. PMID:28246171

  2. Photolysis of low concentration H2S under UV/VUV irradiation emitted from microwave discharge electrodeless lamps.

    PubMed

    Xia, Lan-Yan; Gu, Ding-Hong; Tan, Jing; Dong, Wen-Bo; Hou, Hui-Qi

    2008-04-01

    The photolysis of simulating low concentration of hydrogen sulfide malodorous gas was studied under UV irradiation emitted by self-made microwave discharge electrodeless lamps (i.e. microwave UV electrodeless mercury lamp (185/253.7 nm) and iodine lamp (178.3/180.1/183/184.4/187.6/206.2 nm)). Experiments results showed that the removal efficiency (eta H2S) of hydrogen sulfide was decreased with increasing initial H2S concentration and increased slightly with gas residence time; H2S removal efficiency was decreased dramatically with enlarged pipe diameter. Under the experimental conditions with pipe diameter of 36 mm, gas flow rate of 0.42 standard l s(-1), eta H2S was 52% with initial H2S concentration of 19.5 mg m(-3) by microwave mercury lamp, the absolute removal amount (ARA) was 4.30 microg s(-1), and energy yield (EY) was 77.3 mg kW h(-1); eta H2S was 56% with initial H2S concentration of 18.9 mg m(-3) by microwave iodine lamp, the ARA was 4.48 microg s(-1), and the EY was 80.5mg kW h(-1). The main photolysis product was confirmed to be SO4(2-) with IC.

  3. Reactivity of Metal Oxide Sorbents for Removal of H{sub 2}S

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwon, K.C.; Crowe, E.R.

    1996-12-31

    Removal of hydrogen sulfide contained in hot coal gases produced from integrated gasification combined cycle power generation systems is required to protect downstream combustion turbines from being corroded with sulfur compounds. Removal of sulfur compounds from hot coal gas products is investigated by using various metal oxide sorbents and membrane separation methods. The main requirements of these metal oxide sorbents are durability and high sulfur loading capacity during absorption-regeneration cycles. In this research, durable metal oxide sorbents were formulated. Reactivity of the formulated metal oxide sorbents with simulated coal gas mixtures was examined to search for an ideal sorbent formulationmore » with a high-sulfur loading capacity suitable for removal of hydrogen sulfide from coal gases. The main objectives of this research are to formulate durable metal oxide sorbents with high-sulfur loading capacity by a physical mixing method, to investigate reaction kinetics on the removal of sulfur compounds from coal gases at high temperature and pressure, to study reaction kinetics on the regeneration of sulfided sorbents, to identify effects of hydrogen partial pressures and moisture on equilibrium/dynamic absorption of hydrogen sulfide into formulated metal oxide sorbents as well as initial reaction rates of H{sub 2}S with formulated metal oxide sorbents, and to evaluate intraparticular diffusivity of H{sub 2}S into formulated sorbents at various reaction conditions. The metal oxide sorbents such as TU-1, TU-19, TU-24, TU-25 and TU-28 were formulated with zinc oxide powder as an active sorbent ingredient, bentonite as a binding material and titanium oxide as a supporting metal oxide.« less

  4. Detection of hydrogen sulfide above the clouds in Uranus's atmosphere

    NASA Astrophysics Data System (ADS)

    Irwin, Patrick G. J.; Toledo, Daniel; Garland, Ryan; Teanby, Nicholas A.; Fletcher, Leigh N.; Orton, Glenn A.; Bézard, Bruno

    2018-04-01

    Visible-to-near-infrared observations indicate that the cloud top of the main cloud deck on Uranus lies at a pressure level of between 1.2 bar and 3 bar. However, its composition has never been unambiguously identified, although it is widely assumed to be composed primarily of either ammonia or hydrogen sulfide (H2S) ice. Here, we present evidence of a clear detection of gaseous H2S above this cloud deck in the wavelength region 1.57-1.59 μm with a mole fraction of 0.4-0.8 ppm at the cloud top. Its detection constrains the deep bulk sulfur/nitrogen abundance to exceed unity (>4.4-5.0 times the solar value) in Uranus's bulk atmosphere, and places a lower limit on the mole fraction of H2S below the observed cloud of (1.0 -2.5 ) ×1 0-5. The detection of gaseous H2S at these pressure levels adds to the weight of evidence that the principal constituent of 1.2-3-bar cloud is likely to be H2S ice.

  5. Detection of hydrogen sulfide above the clouds in Uranus's atmosphere

    NASA Astrophysics Data System (ADS)

    Irwin, Patrick G. J.; Toledo, Daniel; Garland, Ryan; Teanby, Nicholas A.; Fletcher, Leigh N.; Orton, Glenn A.; Bézard, Bruno

    2018-05-01

    Visible-to-near-infrared observations indicate that the cloud top of the main cloud deck on Uranus lies at a pressure level of between 1.2 bar and 3 bar. However, its composition has never been unambiguously identified, although it is widely assumed to be composed primarily of either ammonia or hydrogen sulfide (H2S) ice. Here, we present evidence of a clear detection of gaseous H2S above this cloud deck in the wavelength region 1.57-1.59 μm with a mole fraction of 0.4-0.8 ppm at the cloud top. Its detection constrains the deep bulk sulfur/nitrogen abundance to exceed unity (>4.4-5.0 times the solar value) in Uranus's bulk atmosphere, and places a lower limit on the mole fraction of H2S below the observed cloud of (1.0 -2.5 ) ×1 0-5. The detection of gaseous H2S at these pressure levels adds to the weight of evidence that the principal constituent of 1.2-3-bar cloud is likely to be H2S ice.

  6. Impact of fermentation rate changes on potential hydrogen sulfide concentrations in wine.

    PubMed

    Butzke, Christian E; Park, Seung Kook

    2011-05-01

    The correlation between alcoholic fermentation rate, measured as carbon dioxide (CO2) evolution, and the rate of hydrogen sulfide (H2S) formation during wine production was investigated. Both rates and the resulting concentration peaks in fermentor headspace H2S were directly impacted by yeast assimilable nitrogenous compounds in the grape juice. A series of model fermentations was conducted in temperature-controlled and stirred fermentors using a complex model juice with defined concentrations of ammonium ions and/or amino acids. The fermentation rate was measured indirectly by noting the weight loss of the fermentor; H2S was quantitatively trapped in realtime using a pre-calibrated H2S detection tube which was inserted into a fermentor gas relief port. Evolution rates for CO2 and H2S as well as the relative ratios between them were calculated. These fermentations confirmed that total sulfide formation was strongly yeast strain-dependent, and high concentrations of yeast assimilable nitrogen did not necessarily protect against elevated H2S formation. High initial concentrations of ammonium ions via addition of diammonium phosphate (DAP) caused a higher evolution of H2S when compared with a non-supplemented but nondeficient juice. It was observed that the excess availability of a certain yeast assimilable amino acid, arginine, could result in a more sustained CO2 production rate throughout the wine fermentation. The contribution of yeast assimilable amino acids from conventional commercial yeast foods to lowering of the H2S formation was marginal.

  7. Measurement, analysis, and modeling of hydrogen sulfide emissions from a swine facility in North Carolina

    NASA Astrophysics Data System (ADS)

    Blunden, Jessica

    Annual global source contributions of sulfur compounds to the natural atmospheric environment are estimated to be 142 x 106 tons. Although not quantified, volatilization from animal wastes may be an important source of gaseous reduced sulfur compounds. Hydrogen sulfide (H2S) is a colorless gas emitted during decomposition of hog manure that produces an offensive "rotten egg" odor. Once released into the atmosphere, H 2S is oxidized and the eventual byproduct, sulfuric acid, may combine with other atmospheric constituents to form aerosol products such as ammonium bisulfate and ammonium sulfate. In recent years, confined animal feeding operations (CAFOs) have increased in size, resulting in more geographically concentrated areas of animals and, subsequently, animal waste. In North Carolina and across the southeastern United States anaerobic waste treatment lagoons are traditionally used to store and treat hog excreta at commercial hog farms. Currently, no state regulations exist for H2S gaseous emissions from animal production facilities in North Carolina and the amount of H2S being emitted into the atmosphere from these potential sources is widely unknown. In response to the need for data, this research initiative has been undertaken in an effort to quantify emissions of H2S from swine CAFOs. An experimental study was conducted at a commercial swine farm in eastern North Carolina to measure hydrogen sulfide emissions from a hog housing unit utilizing a mechanical fan ventilation system and from an on-site waste storage treatment lagoon. A dynamic flow-through chamber system was employed to make lagoon flux measurements. Semi-continuous measurements were made over a one-year period (2004-2005) for a few days during each of the four predominant seasons in order to assess diurnal and temporal variability in emissions. Fan rpm from the barn was continuously measured and flow rates were calculated in order to accurately assess gaseous emissions from the system

  8. Two colorimetric and ratiometric fluorescence probes for hydrogen sulfide based on AIE strategy of α-cyanostilbenes

    NASA Astrophysics Data System (ADS)

    Zhao, Baoying; Yang, Binsheng; Hu, Xiangquan; Liu, Bin

    2018-06-01

    Aggregation-induced emission (AIE) active fluorescent probes have attracted great potential in biological sensors. In this paper two cyanostilbene based fluorescence chemoprobe Cya-NO2 (1) and Cya-N3 (2) were developed and evaluated for the selective and sensitive detection of hydrogen sulfide (H2S). Both of these probes behave aggression-induced emission (AIE) activity which fluoresces in the red region with a large Stokes shift. They exhibit rapid response to H2S with enormous colorimetric and ratiometric fluorescent changes. They are readily employed for assessing intracellular H2S levels.

  9. Influence of H 2O and H 2S on the composition, activity, and stability of sulfided Mo, CoMo, and NiMo supported on MgAl 2O 4 for hydrodeoxygenation of ethylene glycol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dabros, Trine Marie Hartmann; Gaur, Abhijeet; Pintos, Delfina Garcia

    Here in this work, density functional theory (DFT), catalytic activity tests, and in-situ X-ray absorption spectroscopy (XAS) was performed to gain detailed insights into the activity and stability of MoS 2, Ni-MoS 2, and Co-MoS 2 catalysts used for hydrodeoxygenation (HDO) of ethylene glycol upon variation of the partial pressures of H 2O and H 2S. The results show high water tolerance of the catalysts and highlight the importance of promotion and H 2S level during HDO. DFT calculations unraveled that the active edge of MoS 2 could be stabilized against SO exchanges by increasing the partial pressure of Hmore » 2S or by promotion with either Ni or Co. The Mo, NiMo, and CoMo catalysts of the present study were all active and fairly selective for ethylene glycol HDO at 400 °C, 27 bar H 2, and 550–2200 ppm H 2S, and conversions of ≈50–100%. The unpromoted Mo/MgAl 2O 4 catalyst had a lower stability and activity per gram catalyst than the promoted analogues. The NiMo and CoMo catalysts produced ethane, ethylene, and C1 cracking products with a C 2/C 1 ratio of 1.5–2.0 at 550 ppm H 2S. This ratio of HDO to cracking could be increased to ≈2 at 2200 ppm H 2S which also stabilized the activity. Removing H 2S from the feed caused severe catalyst deactivation. Both DFT and catalytic activity tests indicated that increasing the H 2S concentration increased the concentration of SH groups on the catalyst, which correspondingly activated and stabilized the catalytic HDO performance. In-situ XAS further supported that the catalysts were tolerant towards water when exposed to increasing water concentration with H2O/H2S ratios up to 300 at 400–450 °C. Raman spectroscopy and XAS showed that MoS2 was present in the prepared catalysts as small and highly dispersed particles, probably owing to a strong interaction with the support. Linear combination fitting (LCF) analysis of the X-ray absorption near edge structure (XANES) spectra obtained during in-situ sulfidation

  10. Influence of H 2O and H 2S on the composition, activity, and stability of sulfided Mo, CoMo, and NiMo supported on MgAl 2O 4 for hydrodeoxygenation of ethylene glycol

    DOE PAGES

    Dabros, Trine Marie Hartmann; Gaur, Abhijeet; Pintos, Delfina Garcia; ...

    2017-12-10

    Here in this work, density functional theory (DFT), catalytic activity tests, and in-situ X-ray absorption spectroscopy (XAS) was performed to gain detailed insights into the activity and stability of MoS 2, Ni-MoS 2, and Co-MoS 2 catalysts used for hydrodeoxygenation (HDO) of ethylene glycol upon variation of the partial pressures of H 2O and H 2S. The results show high water tolerance of the catalysts and highlight the importance of promotion and H 2S level during HDO. DFT calculations unraveled that the active edge of MoS 2 could be stabilized against SO exchanges by increasing the partial pressure of Hmore » 2S or by promotion with either Ni or Co. The Mo, NiMo, and CoMo catalysts of the present study were all active and fairly selective for ethylene glycol HDO at 400 °C, 27 bar H 2, and 550–2200 ppm H 2S, and conversions of ≈50–100%. The unpromoted Mo/MgAl 2O 4 catalyst had a lower stability and activity per gram catalyst than the promoted analogues. The NiMo and CoMo catalysts produced ethane, ethylene, and C1 cracking products with a C 2/C 1 ratio of 1.5–2.0 at 550 ppm H 2S. This ratio of HDO to cracking could be increased to ≈2 at 2200 ppm H 2S which also stabilized the activity. Removing H 2S from the feed caused severe catalyst deactivation. Both DFT and catalytic activity tests indicated that increasing the H 2S concentration increased the concentration of SH groups on the catalyst, which correspondingly activated and stabilized the catalytic HDO performance. In-situ XAS further supported that the catalysts were tolerant towards water when exposed to increasing water concentration with H2O/H2S ratios up to 300 at 400–450 °C. Raman spectroscopy and XAS showed that MoS2 was present in the prepared catalysts as small and highly dispersed particles, probably owing to a strong interaction with the support. Linear combination fitting (LCF) analysis of the X-ray absorption near edge structure (XANES) spectra obtained during in-situ sulfidation

  11. Hydrogen Sulfide Alleviates Postharvest Senescence of Grape by Modulating the Antioxidant Defenses

    PubMed Central

    Ni, Zhi-Jing; Hu, Kang-Di; Song, Chang-Bing; Ma, Run-Hui; Li, Zhi-Rong; Zheng, Ji-Lian; Fu, Liu-Hui

    2016-01-01

    Hydrogen sulfide (H2S) has been identified as an important gaseous signal in plants. Here, we investigated the mechanism of H2S in alleviating postharvest senescence and rotting of Kyoho grape. Exogenous application of H2S released from 1.0 mM NaHS remarkably decreased the rotting and threshing rate of grape berries. H2S application also prevented the weight loss in grape clusters and inhibited the decreases in firmness, soluble solids, and titratable acidity in grape pulp during postharvest storage. The data of chlorophyll and carotenoid content suggested the role of H2S in preventing chlorophyll breakdown and carotenoid accumulation in both grape rachis and pulp. In comparison to water control, exogenous H2S application maintained significantly higher levels of ascorbic acid and flavonoid and total phenolics and reducing sugar and soluble protein in grape pulp. Meanwhile, H2S significantly reduced the accumulation of malondialdehyde (MDA), hydrogen peroxide (H2O2), and superoxide anion (O2 ∙−) in grape pulp. Further investigations showed that H2S enhanced the activities of antioxidant enzymes ascorbate peroxidase (APX) and catalase (CAT) and decreased those of lipoxygenase (LOX) in both grape peels and pulp. In all, we provided strong evidence that H2S effectively alleviated postharvest senescence and rotting of Kyoho grape by modulating antioxidant enzymes and attenuating lipid peroxidation. PMID:27594971

  12. Best Management Practices to Prevent and Control Hydrogen Sulfide and Reduced Sulfur Compound Emissions at Landfills That Dispose of Gypsum Drywall

    EPA Science Inventory

    Hydrogen sulfide (H2S) gas can be emitted from both construction and demolition (C&D) debris and municipal solid waste (MSW) landfills. H2S emissions may be problematic at a landfill as they can cause odor, impact surrounding communities, cause wear or dama...

  13. Anti-Cancer Activity of New Designer Hydrogen Sulfide-Donating Hybrids

    PubMed Central

    2014-01-01

    Abstract Significance: Hydrogen sulfide (H2S) is likely to join nitric oxide (NO) and carbon monoxide (CO) as the third gaseous transmitter, influencing an array of intracellular signaling cascades. Thus, H2S is implicated in numerous physiological processes and in the pathology of various diseases. Recent Advances: H2S-donating agents that liberate H2S slowly either alone or in combination with NO, the so-called NOSH compounds, are being synthesized, and these have been shown to have great potential against cancer. Critical Issues: An accurate determination of H2S levels is challenging. H2S and NO share many similar actions; do these similarities act to potentiate each other? Since many actions of H2S appear to be mediated through inhibition of inflammation and Nuclear factor kappa-light-chain-enhancer of activated B cells is a central player in this scenario, does S-nitrosylation of this transcription factor by NO affect its S-sulfhydration by H2S and vice versa? Future Directions: Deciphering the molecular targets of these novel hybrid agents and having genetically engineered animals should help us move toward targeted therapeutic applications. Human safety data with these new hybrids is essential. Antioxid. Redox Signal. 20, 831–846. PMID:23581880

  14. Gas phase recovery of hydrogen sulfide contaminated polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Kakati, Biraj Kumar; Kucernak, Anthony R. J.

    2014-04-01

    The effect of hydrogen sulfide (H2S) on the anode of a polymer electrolyte membrane fuel cell (PEMFC) and the gas phase recovery of the contaminated PEMFC using ozone (O3) were studied. Experiments were performed on fuel cell electrodes both in an aqueous electrolyte and within an operating fuel cell. The ex-situ analyses of a fresh electrode; a H2S contaminated electrode (23 μmolH2S cm-2); and the contaminated electrode cleaned with O3 shows that all sulfide can be removed within 900 s at room temperature. Online gas analysis of the recovery process confirms the recovery time required as around 720 s. Similarly, performance studies of an H2S contaminated PEMFC shows that complete rejuvenation occurs following 600-900 s O3 treatment at room temperature. The cleaning process involves both electrochemical oxidation (facilitated by the high equilibrium potential of the O3 reduction process) and direct chemical oxidation of the contaminant. The O3 cleaning process is more efficient than the external polarization of the single cell at 1.6 V. Application of O3 at room temperature limits the amount of carbon corrosion. Room temperature O3 treatment of poisoned fuel cell stacks may offer an efficient and quick remediation method to recover otherwise inoperable systems.

  15. H2S and polysulfide metabolism: Conventional and unconventional pathways.

    PubMed

    Olson, Kenneth R

    2018-03-01

    It is now well established that hydrogen sulfide (H 2 S) is an effector of a wide variety of physiological processes. It is also clear that many of the effects of H 2 S are mediated through reactions with cysteine sulfur on regulatory proteins and most of these are not mediated directly by H 2 S but require prior oxidation of H 2 S and the formation of per- and polysulfides (H 2 S n , n = 2-8). Attendant with understanding the regulatory functions of H 2 S and H 2 S n is an appreciation of the mechanisms that control, i.e., both increase and decrease, their production and catabolism. Although a number of standard "conventional" pathways have been described and well characterized, novel "unconventional" pathways are continuously being identified. This review summarizes our current knowledge of both the conventional and unconventional. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Hydrogen sulfide production and volatilization in a polymictic eutrophic saline lake, Salton Sea, California.

    PubMed

    Reese, Brandi Kiel; Anderson, Michael A; Amrhein, Christopher

    2008-11-15

    The Salton Sea is a large shallow saline lake located in southern California that is noted for high sulfate concentrations, substantial algal productivity, and very warm water column temperatures. These conditions are well-suited for sulfide production, and sulfide has been implicated in summer fish kills, although no studies have been conducted to specifically understand hydrogen sulfide production and volatilization there. Despite polymictic mixing patterns and relatively short accumulation periods, the amount of sulfide produced is comparable to meromictic lakes. Sulfide levels in the Salton Sea reached concentrations of 1.2 mmol L(-1) of total free sulfide in the hypolimnion and 5.6 mmol L(-1) in the sediment pore water. Strong winds in late July mixed H2S into the surface water, where it depleted the entire water column of dissolved oxygen and reached a concentration of 0.1 mmol L(-1). Sulfide concentrations exceeded the toxicity threshold of tilapia (Oreochromis mossambicus) and combined with strong anoxia throughout the water column, resulted in a massive fish kill. The mixing of sulfide into the surface waters also increased atmospheric H2S concentrations, reaching 1.0 micromol m(-3). The flux of sulfide from the sediment into the water column was estimated to range from 2-3 mmol m(-2) day(-1) during the winter and up to 8 mmol m(-2) day(-1) during the summer. Application of the two-layer model for volatilization indicates that up to 19 mmol m(-2) day(-1) volatilized from the surface during the mixing event. We estimate that as much as 3400 Mg year(-1) or approximately 26% of sulfide that diffused into the water column from the deepest sediments may have been volatilized to the atmosphere.

  17. Hydrogen sulfide ameliorates aging-associated changes in the kidney.

    PubMed

    Lee, Hak Joo; Feliers, Denis; Barnes, Jeffrey L; Oh, Sae; Choudhury, Goutam Ghosh; Diaz, Vivian; Galvan, Veronica; Strong, Randy; Nelson, James; Salmon, Adam; Kevil, Christopher G; Kasinath, Balakuntalam S

    2018-04-01

    Aging is associated with replacement of normal kidney parenchyma by fibrosis. Because hydrogen sulfide (H 2 S) ameliorates kidney fibrosis in disease models, we examined its status in the aging kidney. In the first study, we examined kidney cortical H 2 S metabolism and signaling pathways related to synthesis of proteins including matrix proteins in young and old male C57BL/6 mice. In old mice, increase in renal cortical content of matrix protein involved in fibrosis was associated with decreased H 2 S generation and AMPK activity, and activation of insulin receptor (IR)/IRS-2-Akt-mTORC1-mRNA translation signaling axis that can lead to increase in protein synthesis. In the second study, we randomized 18-19 month-old male C57BL/6 mice to receive 30 μmol/L sodium hydrosulfide (NaHS) in drinking water vs. water alone (control) for 5 months. Administration of NaHS increased plasma free sulfide levels. NaHS inhibited the increase in kidney cortical content of matrix proteins involved in fibrosis and ameliorated glomerulosclerosis. NaHS restored AMPK activity and inhibited activation of IR/IRS-2-Akt-mTORC1-mRNA translation axis. NaHS inhibited age-related increase in kidney cortical content of p21, IL-1β, and IL-6, components of the senescence-associated secretory phenotype. NaHS abolished increase in urinary albumin excretion seen in control mice and reduced serum cystatin C levels suggesting improved glomerular clearance function. We conclude that aging-induced changes in the kidney are associated with H 2 S deficiency. Administration of H 2 S ameliorates aging-induced kidney changes probably by inhibiting signaling pathways leading to matrix protein synthesis.

  18. Properties of Hydrogen Sulfide Sensors Based on Thin Films of Tin Dioxide and Tungsten Trioxide

    NASA Astrophysics Data System (ADS)

    Sevastianov, E. Yu.; Maksimova, N. K.; Chernikov, E. V.; Sergeichenko, N. V.; Rudov, F. V.

    2016-12-01

    The effect of hydrogen sulfide in the concentration range of 0-100 ppm on the characteristics of thin films of tin dioxide and tungsten trioxide obtained by the methods of magnetron deposition and modified with gold in the bulk and on the surface is studied. The impurities of antimony and nickel have been additionally introduced into the SnO2 bulk. An optimal operating temperature of sensors 350°C was determined, at which there is a satisfactory correlation between the values of the response to H2S and the response time. Degradation of the sensor characteristics is investigated in the long-term ( 0.5-1.5 years) tests at operating temperature and periodic exposure to hydrogen sulfide, as well as after conservation of samples in the laboratory air. It is shown that for the fabrication of H2S sensors, the most promising are thin nanocrystalline Au/WO3:Au films characterized by a linear concentration dependence of the response and high stability of parameters during exploitation.

  19. Cystathionine γ-Lyase-Produced Hydrogen Sulfide Controls Endothelial NO Bioavailability and Blood Pressure.

    PubMed

    Szijártó, István András; Markó, Lajos; Filipovic, Milos R; Miljkovic, Jan Lj; Tabeling, Christoph; Tsvetkov, Dmitry; Wang, Ning; Rabelo, Luiza A; Witzenrath, Martin; Diedrich, André; Tank, Jens; Akahoshi, Noriyuki; Kamata, Shotaro; Ishii, Isao; Gollasch, Maik

    2018-06-01

    Hydrogen sulfide (H 2 S) and NO are important gasotransmitters, but how endogenous H 2 S affects the circulatory system has remained incompletely understood. Here, we show that CTH or CSE (cystathionine γ-lyase)-produced H 2 S scavenges vascular NO and controls its endogenous levels in peripheral arteries, which contribute to blood pressure regulation. Furthermore, eNOS (endothelial NO synthase) and phospho-eNOS protein levels were unaffected, but levels of nitroxyl were low in CTH-deficient arteries, demonstrating reduced direct chemical interaction between H 2 S and NO. Pretreatment of arterial rings from CTH-deficient mice with exogenous H 2 S donor rescued the endothelial vasorelaxant response and decreased tissue NO levels. Our discovery that CTH-produced H 2 S inhibits endogenous endothelial NO bioavailability and vascular tone is novel and fundamentally important for understanding how regulation of vascular tone is tailored for endogenous H 2 S to contribute to systemic blood pressure function. © 2018 American Heart Association, Inc.

  20. Hydrogen sulfide deactivates common nitrobenzofurazan-based fluorescent thiol labeling reagents.

    PubMed

    Montoya, Leticia A; Pluth, Michael D

    2014-06-17

    Sulfhydryl-containing compounds, including thiols and hydrogen sulfide (H2S), play important but differential roles in biological structure and function. One major challenge in separating the biological roles of thiols and H2S is developing tools to effectively separate the reactivity of these sulfhydryl-containing compounds. To address this challenge, we report the differential responses of common electrophilic fluorescent thiol labeling reagents, including nitrobenzofurazan-based scaffolds, maleimides, alkylating agents, and electrophilic aldehydes, toward cysteine and H2S. Although H2S reacted with all of the investigated scaffolds, the photophysical response to each scaffold was significantly different. Maleimide-based, alkylating, and aldehydic thiol labeling reagents provided a diminished fluorescence response when treated with H2S. By contrast, nitrobenzofurazan-based labeling reagents were deactivated by H2S addition. Furthermore, the addition of H2S to thiol-activated nitrobenzofurazan-based reagents reduced the fluorescence signal, thus establishing the incompatibility of nitrobenzofurazan-based thiol labeling reagents in the presence of H2S. Taken together, these studies highlight the differential reactivity of thiols and H2S toward common thiol-labeling reagents and suggest that sufficient care must be taken when labeling or measuring thiols in cellular environments that produce H2S due to the potential for both false-positive and eroded responses.

  1. The Role of Hydrogen Sulfide in Renal System.

    PubMed

    Cao, Xu; Bian, Jin-Song

    2016-01-01

    Hydrogen sulfide has gained recognition as the third gaseous signaling molecule after nitric oxide and carbon monoxide. This review surveys the emerging role of H 2 S in mammalian renal system, with emphasis on both renal physiology and diseases. H 2 S is produced redundantly by four pathways in kidney, indicating the abundance of this gaseous molecule in the organ. In physiological conditions, H 2 S was found to regulate the excretory function of the kidney possibly by the inhibitory effect on sodium transporters on renal tubular cells. Likewise, it also influences the release of renin from juxtaglomerular cells and thereby modulates blood pressure. A possible role of H 2 S as an oxygen sensor has also been discussed, especially at renal medulla. Alternation of H 2 S level has been implicated in various pathological conditions such as renal ischemia/reperfusion, obstructive nephropathy, diabetic nephropathy, and hypertensive nephropathy. Moreover, H 2 S donors exhibit broad beneficial effects in renal diseases although a few conflicts need to be resolved. Further research reveals that multiple mechanisms are underlying the protective effects of H 2 S, including anti-inflammation, anti-oxidation, and anti-apoptosis. In the review, several research directions are also proposed including the role of mitochondrial H 2 S in renal diseases, H 2 S delivery to kidney by targeting D-amino acid oxidase/3-mercaptopyruvate sulfurtransferase (DAO/3-MST) pathway, effect of drug-like H 2 S donors in kidney diseases and understanding the molecular mechanism of H 2 S. The completion of the studies in these directions will not only improves our understanding of renal H 2 S functions but may also be critical to translate H 2 S to be a new therapy for renal diseases.

  2. Borax and octabor treatment of stored swine manure to reduce sulfate reducing bacteria and hydrogen sulfide emissions

    USDA-ARS?s Scientific Manuscript database

    Odorous gas emissions from stored swine manure are becoming serious environmental and health issues as the livestock industry becomes more specialized, concentrated, and industrialized. These nuisance gasses include hydrogen sulfide (H2S), ammonia, and methane, which are produced as a result of ana...

  3. Nitric oxide reactivity of [2Fe-2S] clusters leading to H2S generation.

    PubMed

    Tran, Camly T; Williard, Paul G; Kim, Eunsuk

    2014-08-27

    The crosstalk between two biologically important signaling molecules, nitric oxide (NO) and hydrogen sulfide (H2S), proceeds via elusive mechanism(s). Herein we report the formation of H2S by the action of NO on synthetic [2Fe-2S] clusters when the reaction environment is capable of providing a formal H(•) (e(-)/H(+)). Nitrosylation of (NEt4)2[Fe2S2(SPh)4] (1) in the presence of PhSH or (t)Bu3PhOH results in the formation of (NEt4)[Fe(NO)2(SPh)2] (2) and H2S with the concomitant generation of PhSSPh or (t)Bu3PhO(•). The amount of H2S generated is dependent on the electronic environment of the [2Fe-2S] cluster as well as the type of H(•) donor. Employment of clusters with electron-donating groups or H(•) donors from thiols leads to a larger amount of H2S evolution. The 1/NO reaction in the presence of PhSH exhibits biphasic decay kinetics with no deuterium kinetic isotope effect upon PhSD substitution. However, the rates of decay increase significantly with the use of 4-MeO-PhSH or 4-Me-PhSH in place of PhSH. These results provide the first chemical evidence to suggest that [Fe-S] clusters are likely to be a site for the crosstalk between NO and H2S in biology.

  4. Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production

    NASA Astrophysics Data System (ADS)

    Ran, Jingrun; Gao, Guoping; Li, Fa-Tang; Ma, Tian-Yi; Du, Aijun; Qiao, Shi-Zhang

    2017-01-01

    Scalable and sustainable solar hydrogen production through photocatalytic water splitting requires highly active and stable earth-abundant co-catalysts to replace expensive and rare platinum. Here we employ density functional theory calculations to direct atomic-level exploration, design and fabrication of a MXene material, Ti3C2 nanoparticles, as a highly efficient co-catalyst. Ti3C2 nanoparticles are rationally integrated with cadmium sulfide via a hydrothermal strategy to induce a super high visible-light photocatalytic hydrogen production activity of 14,342 μmol h-1 g-1 and an apparent quantum efficiency of 40.1% at 420 nm. This high performance arises from the favourable Fermi level position, electrical conductivity and hydrogen evolution capacity of Ti3C2 nanoparticles. Furthermore, Ti3C2 nanoparticles also serve as an efficient co-catalyst on ZnS or ZnxCd1-xS. This work demonstrates the potential of earth-abundant MXene family materials to construct numerous high performance and low-cost photocatalysts/photoelectrodes.

  5. Don't mess with H/sub 2/S

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-09-01

    The American Petroleum Institute issued a report on ''Recommended Practices for Safe Drilling of Wells Containing Hydrogen Sulfide.'' The study (RP49) updates a first edition published in September 1974. It provides a solid overview of preventive steps that should be taken to safeguard crew and equipment when drilling through H/sub 2/S zones. Discussions cover personnel training, protective equipment, wellsite layout, rig and well equipment, general rig operations and contingency planning and emergency procedures. This article summarizes the report.

  6. Hydrogen sulfide therapy in brain diseases: from bench to bedside

    PubMed Central

    Zhang, Ju-yi; Ding, Yi-ping; Wang, Zhong; Kong, Yan; Gao, Rong; Chen, Gang

    2017-01-01

    Hydrogen sulfide (H2S) has been recognized and studied for nearly 300 years, but past researches mainly focus on its toxicity effect. During the past two decades, the majority of researches have reported that H2S is a novel endogenous gaseous signal molecule in organisms, and play an important role in various systems and diseases. H2S is mainly produced by three enzymes, including cystathionine β-synthase, cystathionine γ-lyase and 3-mercaptopyruvate sulfurtransferase along with cysteine aminotransferase. H2S had been firstly reported as a neuromodulator in the brain, because of its essential role in the facilitating hippocampal long-term potentiation at physiological concentration. It is subsequently reported that H2S may have relevance to neurologic disorders through antioxidative, anti-inflammatory, anti-apoptotic and additional effects. Recent basic medical studies and preclinical studies on neurologic diseases have demonstrated that the administration of H2S at physiological or pharmacological levels attenuates brain injury. However, the neuroprotective effect of H2S is concentration-dependent, only a comparatively low dose of H2S can provide beneficial effect. Herein, we review the neuroprotevtive role of H2S therapy in brain diseases from its mechanism to clinical application in animal and human subjects, and therefore provide the potential strategies for further clinical treatment. PMID:28744364

  7. Removal of hydrogen sulfide from hot fuel gas using an electrochemical membrane system

    NASA Astrophysics Data System (ADS)

    Burke, Adrian Alan

    Sulfur is a natural contaminant in nearly all fossil fuel supplies. When a fuel stream is gasified or reformed, the sulfur manifests itself in the form of hydrogen sulfide, H2S. Extraordinary effort is put forth to remove H2S to at least ppm levels before the fuel can be used for power generation. To compete with current methods, an electrochemical membrane system (EMS) is now being studied to remove H2S in one step at high temperature. This process offers continuous H2S removal at an estimated operating cost of $0.32/kg H2S removed and a capital cost that is roughly half that of a Claus plant with tail-gas clean-up. Other advantages are the considerable savings in energy and space compared to current methods. A bench scale set-up was constructed to test the cell performance at 600-700°C and 1 atm. The typical fuel stream inlet proportions were 34% CO, 22% CO2, 35% H2, 8% H2O, and 450-2000 ppm H2S. The fundamental transport restrictions for sulfur species in an electrochemical cell were examined. Temperature and membrane thickness were varied to examine how these parameters affect the maximum flux of H 2S removal. It was found that higher temperature allows more sulfide species to enter the electrolyte, thus increasing the sulfide flux across the membrane and raising the maximum flux of H2S removal. Also, membrane thickness was found to be a critical parameter in cell design. A thinner membrane decreases the distance that sulfide ions must travel to be oxidized at the anode. These results identify sulfide diffusion across the membrane as the rate-limiting step in H2S removal. The maximum H2S removal flux of 1.1 x 10-6 gmol H2S min-1 cm-2 (or 3.5 mA cm-2) was obtained at 650°C, with a membrane that was 0.9 mm thick, 36% porous, and had an estimated tortuosity of 3.6. Another focus of this thesis was to examine the stability of cathode materials in full cell trials. A major hurdle that remains in process scale-up is cathode selection, as the lifetime of the cell

  8. Control of malodorous hydrogen sulfide compounds using microbial fuel cell.

    PubMed

    Eaktasang, Numfon; Min, Hyeong-Sik; Kang, Christina; Kim, Han S

    2013-10-01

    In this study, a microbial fuel cell (MFC) was used to control malodorous hydrogen sulfide compounds generated from domestic wastewaters. The electricity production demonstrated a distinct pattern of a two-step increase during 170 h of system run: the first maximum current density was 118.6 ± 7.2 mA m⁻² followed by a rebound of current density increase, reaching the second maximum of 176.8 ± 9.4 mA m⁻². The behaviors of the redox potential and the sulfate level in the anode compartment indicated that the microbial production of hydrogen sulfide compounds was suppressed in the first stage, and the hydrogen sulfide compounds generated from the system were removed effectively as a result of their electrochemical oxidation, which contributed to the additional electricity production in the second stage. This was also directly supported by sulfur deposits formed on the anode surface, which was confirmed by analyses on those solids using a scanning electron microscope equipped with energy dispersive X-ray spectroscopy as well as an elemental analyzer. To this end, the overall reduction efficiencies for HS⁻ and H₂S(g) were as high as 67.5 and 96.4 %, respectively. The correlations among current density, redox potential, and sulfate level supported the idea that the electricity signal generated in the MFC can be utilized as a potential indicator of malodor control for the domestic wastewater system.

  9. Effect of inoculum and sulfide type on simultaneous hydrogen sulfide removal from biogas and nitrogen removal from swine slurry and microbial mechanism.

    PubMed

    Wang, Lan; Wei, Benping; Chen, Ziai; Deng, Liangwei; Song, Li; Wang, Shuang; Zheng, Dan; Liu, Yi; Pu, Xiaodong; Zhang, Yunhong

    2015-12-01

    Four reactors were initiated to study the effect of inoculum and sulfide type on the simultaneous hydrogen sulfide removal from biogas and nitrogen removal from swine slurry (Ssu-Nir) process. Anaerobic sludge, aerobic sludge, and water were used as inocula, and Na2S and biogas were used as a sulfide substrate, respectively. Additionally, 454 pyrosequencing of the 16S rRNA gene was used to explore the bacterial diversity. The results showed that sulfur-oxidizing bacteria (Thiobacillus, 42.2-84.4 %) were dominant in Ssu-Nir process and led to the excellent performance. Aerobic sludge was more suitable for inoculation of the Ssu-Nir process because it is better for rapidly enriching dominant sulfur-oxidizing bacteria (Thiobacillus, 54.4 %), denitrifying sulfur-oxidizing bacteria (40.0 %) and denitrifiers (23.9 %). Lower S(2-) removal efficiency (72.6 %) and NO3 (-) removal efficiency (<90 %) of the Ssu-Nir process were obtained using biogas as a sulfide substrate than when Na2S was used. For the Ssu-Nir process with biogas as the sulfide substrate, limiting H2S absorption caused a high relative abundance of sulfur-oxidizing bacteria, Thiobacillus (84.8 %) and Thiobacillus sayanicus (39.6 %), which in turn led to low relative abundance of denitrifiers (1.6 %) and denitrifying sulfur-oxidizing bacteria (24.4 %), low NO3 (-) removal efficiency, and eventually poor performance.

  10. Transcriptome analysis of drought-responsive genes regulated by hydrogen sulfide in wheat (Triticum aestivum L.) leaves.

    PubMed

    Li, Hua; Li, Min; Wei, Xingliang; Zhang, Xia; Xue, Ruili; Zhao, Yidan; Zhao, Huijie

    2017-10-01

    Drought is an environmental factor that deeply impacts wheat yield and quality. Hydrogen sulfide (H 2 S) is a known regulator of drought resistance in plants. To preliminarily elucidate the regulatory mechanisms of H 2 S on drought tolerance, the effects of H 2 S on drought-responsive genes were investigated by transcriptome analysis. As a result, a total of 7552 transcripts not only responded to drought stress but also exhibited differential expression relative to the polyethylene glycol (PEG) treatment (P) and the NaHS pretreatment with PEG treatment (SP). GO categories of 'transport' were especially enriched under the SP treatment and ion transport categories (especially 'iron ion transport') were more significantly enriched among up-regulated transcripts in SP versus P treatments (SP.vs.P). Indeed, a higher translocation of iron from root to shoot and iron availability in shoots was detected in SP compared to P. The KEGG pathway of 'ribosome biogenesis in eukaryotes', 'protein processing in endoplasmic reticulum', 'fatty acid degradation', and 'cyanoamino acid metabolism' was induced by H 2 S under drought stress. Further, H 2 S was involved in plant hormones signal transduction, and drought-induced transcription factors, protein kinases, and functional genes exhibited higher expression levels under SP relative to P. Additionally, several effectors or master regulatory genes of H 2 S were identified genome-wide. Summarily, these results showed that H 2 S alleviated drought damage probably related to transport systems, plant hormones signal transduction, protein processing pathway, fatty acids and amino acids metabolism, which provides a guide for future experimentation to analyze hydrogen sulfide-dependent drought tolerance mechanisms in wheat.

  11. High Glucose Induces Mouse Mesangial Cell Overproliferation via Inhibition of Hydrogen Sulfide Synthesis in a TLR-4-Dependent Manner.

    PubMed

    Ding, Tao; Chen, Wei; Li, Juan; Ding, Jiarong; Mei, Xiaobin; Hu, Haiyan

    2017-01-01

    Overproliferation of mesangial cells was believed to play an important role in the progress of diabetic nephropathy, one of the primary complications of diabetes. Hydrogen sulfide (H2S), a well-known and pungent gas with the distinctive smell of rotten eggs, was discovered to play a protective role in diabetic nephropathy. MTT assay was used to examine the viability of mesangial cells. Small interfering RNA was used to knock down the expression of TLR4 while specific inhibitor LY294002 to suppress the function of PI3K. H2S generation rate was determined by a H2S micro-respiration sensor. Glucose of 25mM induced significant mesangial cells proliferation, which was accomplished by significantly inhibited endogenous H2S synthesis. And exogenous H2S treatment by NaHS markedly mitigated the overproliferation of mouse mesangial cells. Furthermore, it was found that H2S deficiency could result in TLR4 activation. And H2S supplementation remarkably inhibited TLR4 expression and curbed the mesangial cell overproliferation. Besides, PI3K/Akt pathway inhibition also significantly ameliorated the cell overproliferation. High glucose (HG) induces mouse mesangial cell overproliferation via inhibition of hydrogen sulfide synthesis in a TLR-4-dependent manner. And PI3K/Akt pathway might also play a vital part in the HG-induced mesangial cell overproliferation. © 2017 The Author(s)Published by S. Karger AG, Basel.

  12. Giant Hydrogen Sulfide Plume in the Oxygen Minimum Zone off Peru Supports Chemolithoautotrophy

    PubMed Central

    Großkopf, Tobias; Kalvelage, Tim; Löscher, Carolin R.; Paulmier, Aurélien; Contreras, Sergio; Siegel, Herbert; Holtappels, Moritz; Rosenstiel, Philip; Schilhabel, Markus B.; Graco, Michelle; Schmitz, Ruth A.; Kuypers, Marcel M. M.; LaRoche, Julie

    2013-01-01

    In Eastern Boundary Upwelling Systems nutrient-rich waters are transported to the ocean surface, fuelling high photoautotrophic primary production. Subsequent heterotrophic decomposition of the produced biomass increases the oxygen-depletion at intermediate water depths, which can result in the formation of oxygen minimum zones (OMZ). OMZs can sporadically accumulate hydrogen sulfide (H2S), which is toxic to most multicellular organisms and has been implicated in massive fish kills. During a cruise to the OMZ off Peru in January 2009 we found a sulfidic plume in continental shelf waters, covering an area >5500 km2, which contained ∼2.2×104 tons of H2S. This was the first time that H2S was measured in the Peruvian OMZ and with ∼440 km3 the largest plume ever reported for oceanic waters. We assessed the phylogenetic and functional diversity of the inhabiting microbial community by high-throughput sequencing of DNA and RNA, while its metabolic activity was determined with rate measurements of carbon fixation and nitrogen transformation processes. The waters were dominated by several distinct γ-, δ- and ε-proteobacterial taxa associated with either sulfur oxidation or sulfate reduction. Our results suggest that these chemolithoautotrophic bacteria utilized several oxidants (oxygen, nitrate, nitrite, nitric oxide and nitrous oxide) to detoxify the sulfidic waters well below the oxic surface. The chemolithoautotrophic activity at our sampling site led to high rates of dark carbon fixation. Assuming that these chemolithoautotrophic rates were maintained throughout the sulfidic waters, they could be representing as much as ∼30% of the photoautotrophic carbon fixation. Postulated changes such as eutrophication and global warming, which lead to an expansion and intensification of OMZs, might also increase the frequency of sulfidic waters. We suggest that the chemolithoautotrophically fixed carbon may be involved in a negative feedback loop that could fuel further

  13. Giant hydrogen sulfide plume in the oxygen minimum zone off Peru supports chemolithoautotrophy.

    PubMed

    Schunck, Harald; Lavik, Gaute; Desai, Dhwani K; Großkopf, Tobias; Kalvelage, Tim; Löscher, Carolin R; Paulmier, Aurélien; Contreras, Sergio; Siegel, Herbert; Holtappels, Moritz; Rosenstiel, Philip; Schilhabel, Markus B; Graco, Michelle; Schmitz, Ruth A; Kuypers, Marcel M M; Laroche, Julie

    2013-01-01

    In Eastern Boundary Upwelling Systems nutrient-rich waters are transported to the ocean surface, fuelling high photoautotrophic primary production. Subsequent heterotrophic decomposition of the produced biomass increases the oxygen-depletion at intermediate water depths, which can result in the formation of oxygen minimum zones (OMZ). OMZs can sporadically accumulate hydrogen sulfide (H2S), which is toxic to most multicellular organisms and has been implicated in massive fish kills. During a cruise to the OMZ off Peru in January 2009 we found a sulfidic plume in continental shelf waters, covering an area >5500 km(2), which contained ∼2.2×10(4) tons of H2S. This was the first time that H2S was measured in the Peruvian OMZ and with ∼440 km(3) the largest plume ever reported for oceanic waters. We assessed the phylogenetic and functional diversity of the inhabiting microbial community by high-throughput sequencing of DNA and RNA, while its metabolic activity was determined with rate measurements of carbon fixation and nitrogen transformation processes. The waters were dominated by several distinct γ-, δ- and ε-proteobacterial taxa associated with either sulfur oxidation or sulfate reduction. Our results suggest that these chemolithoautotrophic bacteria utilized several oxidants (oxygen, nitrate, nitrite, nitric oxide and nitrous oxide) to detoxify the sulfidic waters well below the oxic surface. The chemolithoautotrophic activity at our sampling site led to high rates of dark carbon fixation. Assuming that these chemolithoautotrophic rates were maintained throughout the sulfidic waters, they could be representing as much as ∼30% of the photoautotrophic carbon fixation. Postulated changes such as eutrophication and global warming, which lead to an expansion and intensification of OMZs, might also increase the frequency of sulfidic waters. We suggest that the chemolithoautotrophically fixed carbon may be involved in a negative feedback loop that could fuel

  14. H2O-CH4 and H2S-CH4 complexes: a direct comparison through molecular beam experiments and ab initio calculations.

    PubMed

    Cappelletti, David; Bartocci, Alessio; Frati, Federica; Roncaratti, Luiz F; Belpassi, Leonardo; Tarantelli, Francesco; Lakshmi, Prabha Aiswarya; Arunan, Elangannan; Pirani, Fernando

    2015-11-11

    New molecular beam scattering experiments have been performed to measure the total (elastic plus inelastic) cross sections as a function of the velocity in collisions between water and hydrogen sulfide projectile molecules and the methane target. Measured data have been exploited to characterize the range and strength of the intermolecular interaction in such systems, which are of relevance as they drive the gas phase molecular dynamics and the clathrate formation. Complementary information has been obtained by rotational spectra, recorded for the hydrogen sulfide-methane complex, with a pulsed nozzle Fourier transform microwave spectrometer. Extensive ab initio calculations have been performed to rationalize all the experimental findings. The combination of experimental and theoretical information has established the ground for the understanding of the nature of the interaction and allows for its basic components to be modelled, including charge transfer, in these weakly bound systems. The intermolecular potential for H2S-CH4 is significantly less anisotropic than for H2O-CH4, although both of them have potential minima that can be characterized as 'hydrogen bonded'.

  15. Hydrogen Sulfide Ameliorates Homocysteine-Induced Cognitive Dysfunction by Inhibition of Reactive Aldehydes Involving Upregulation of ALDH2.

    PubMed

    Li, Min; Zhang, Ping; Wei, Hai-Jun; Li, Man-Hong; Zou, Wei; Li, Xiang; Gu, Hong-Feng; Tang, Xiao-Qing

    2017-04-01

    Homocysteine, a risk factor for Alzheimer's disease, induces cognitive dysfunction. Reactive aldehydes play an important role in cognitive dysfunction. Aldehyde-dehydrogenase 2 detoxifies reactive aldehydes. Hydrogen sulfide, a novel neuromodulator, has neuroprotective effects and regulates learning and memory. Our previous work confirmed that the disturbance of hydrogen sulfide synthesis is invovled in homocysteine-induced defects in learning and memory. Therefore, the present work was to explore whether hydrogen sulfide ameliorates homocysteine-generated cognitive dysfunction and to investigate whether its underlying mechanism is related to attenuating accumulation of reactive aldehydes by upregulation of aldehyde-dehydrogenase 2. The cognitive function of rats was assessed by the Morris water maze test and the novel object recognition test. The levels of malondialdehyde, 4-hydroxynonenal, and glutathione as well as the activity of aldehyde-dehydrogenase 2 were determined by enzyme linked immunosorbent assay; the expression of aldehyde-dehydrogenase 2 was detected by western blot. The behavior experiments, Morris water maze test and novel objects recognition test, showed that homocysteine induced deficiency in learning and memory in rats, and this deficiency was reversed by treatment of NaHS (a donor of hydrogen sulfide). We demonstrated that NaHS inhibited homocysteine-induced increases in generations of MDA and 4-HNE in the hippocampus of rats and that hydrogen sulfide reversed homocysteine-induced decreases in the level of glutathione as well as the activity and expression of aldehyde-dehydrogenase 2 in the hippocampus of rats. Hydrogen sulfide ameliorates homocysteine-induced impairment in cognitive function by decreasing accumulation of reactive aldehydes as a result of upregulations of glutathione and aldehyde-dehydrogenase 2. © The Author 2016. Published by Oxford University Press on behalf of CINP.

  16. NO, hydrogen sulfide does not come first during tomato response to high salinity.

    PubMed

    da-Silva, Cristiane J; Mollica, Débora C F; Vicente, Mateus H; Peres, Lázaro E P; Modolo, Luzia V

    2018-06-01

    High salinity greatly impacts agriculture, particularly in tomato (Solanum lycopersicum), a crop that is a model to study this abiotic stress. This work investigated whether hydrogen sulfide (H 2 S) acts upstream or downstream of nitric oxide (NO) in the signaling cascade during tomato response to salt stress. An NO-donor incremented H 2 S levels by 12-18.9% while an H 2 S-donor yielded 10% more NO in roots. The NO accumulated in roots one-hour after NaCl treatment while H 2 S accumulation started two-hour later. The NO stimulated H 2 S accumulation in roots/leaves, but not the opposite (i.e H 2 S was unable to stimulate NO accumulation) two-hour post NaCl treatment. Also, NO accumulation was accompanied by an increment of transcript levels of genes that encode for H 2 S-synthesizing enzymes. Our results indicate that H 2 S acts downstream of NO in the mitigation of oxidative stress, which helps tomato plants to tolerate high salinity. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Quantum cascade laser-based analyzer for hydrogen sulfide detection at sub-parts-per-million levels

    NASA Astrophysics Data System (ADS)

    Nikodem, Michal; Krzempek, Karol; Stachowiak, Dorota; Wysocki, Gerard

    2018-01-01

    Due to its high toxicity, monitoring of hydrogen sulfide (H2S) concentration is essential in many industrial sites (such as natural gas extraction sites, petroleum refineries, geothermal power plants, or waste water treatment facilities), which require sub-parts-per-million sensitivities. We report on a quantum cascade laser-based spectroscopic system for detection of H2S in the midinfrared at ˜7.2 μm. We present a sensor design utilizing Herriott multipass cell and a wavelength modulation spectroscopy to achieve a detection limit of 140 parts per billion for 1-s integration time.

  18. Hydrogen sulfide prolongs postharvest shelf life of strawberry and plays an antioxidative role in fruits.

    PubMed

    Hu, Lan-Ying; Hu, Shu-Li; Wu, Jun; Li, Yan-Hong; Zheng, Ji-Lian; Wei, Zhao-Jun; Liu, Jian; Wang, Hui-Li; Liu, Yong-Sheng; Zhang, Hua

    2012-09-05

    Accumulating evidence shows that hydrogen sulfide (H(2)S) plays various physiological roles in plants, such as seed germination, root organogenesis, abiotic stress tolerance, and senescence of cut flowers. However, whether H(2)S participates in the regulation of ripening and senescence in postharvest fruits remains unknown. In the present study, the effect of H(2)S on postharvest shelf life and antioxidant metabolism in strawberry fruits was investigated. Fumigation with H(2)S gas released from the H(2)S donor NaHS prolonged postharvest shelf life of strawberry fruits in a dose-dependent manner. Strawberry fruits fumigated with various concentrations of H(2)S sustained significantly lower rot index, higher fruit firmness, and kept lower respiration intensity and polygalacturonase activities than controls. Further investigation showed that H(2)S treatment maintained higher activities of catalase, guaiacol peroxidase, ascorbate peroxidase, and glutathione reductase and lower activities of lipoxygenase relative to untreated controls. H(2)S also reduced malondialdehyde, hydrogen peroxide, and superoxide anion to levels below control fruits during storage. Moreover, H(2)S treatment maintained higher contents of reducing sugars, soluble proteins, free amino acid, and endogenous H(2)S in fruits. We interpret these data as indicating that H(2)S plays an antioxidative role in prolonging postharvest shelf life of strawberry fruits.

  19. Physiological Importance of Hydrogen Sulfide: Emerging Potent Neuroprotector and Neuromodulator

    PubMed Central

    Chung, Hyung-Joo

    2016-01-01

    Hydrogen sulfide (H2S) is an emerging neuromodulator that is considered to be a gasotransmitter similar to nitrogen oxide (NO) and carbon monoxide (CO). H2S exerts universal cytoprotective effects and acts as a defense mechanism in organisms ranging from bacteria to mammals. It is produced by the enzymes cystathionine β-synthase (CBS), cystathionine ϒ-lyase (CSE), 3-mercaptopyruvate sulfurtransferase (MST), and D-amino acid oxidase (DAO), which are also involved in tissue-specific biochemical pathways for H2S production in the human body. H2S exerts a wide range of pathological and physiological functions in the human body, from endocrine system and cellular longevity to hepatic protection and kidney function. Previous studies have shown that H2S plays important roles in peripheral nerve regeneration and degeneration and has significant value during Schwann cell dedifferentiation and proliferation but it is also associated with axonal degradation and the remyelination of Schwann cells. To date, physiological and toxic levels of H2S in the human body remain unclear and most of the mechanisms of action underlying the effects of H2S have yet to be fully elucidated. The primary purpose of this review was to provide an overview of the role of H2S in the human body and to describe its beneficial effects. PMID:27413423

  20. Combined borax and tannin treatment of stored dairy manure to reduce bacterial populations and hydrogen sulfide emissions

    USDA-ARS?s Scientific Manuscript database

    Background: Anaerobic digestion of organic residues in stored livestock manure is associated with the production of odors and emissions. Hydrogen sulfide (H2S) is one such emission that can reach hazardous levels during manure storage and handling, posing a risk to both farmers and livestock. New te...

  1. A Practical Look at the Chemistry and Biology of Hydrogen Sulfide

    PubMed Central

    2012-01-01

    Abstract Significance: Hydrogen sulfide (H2S) is garnering increasing interest as a biologically relevant signaling molecule. The effects of H2S have now been observed in virtually every organ system and numerous physiological processes. Recent Advances: These studies have not only opened a new field of “gasotransmitter” biology, they have also led to the development of synthetic H2S “donating” compounds with the potential to be parlayed into a variety of therapeutic applications. Critical Issues: Often lost in the exuberance of this new field is a critical examination or understanding of practical aspects of H2S chemistry and biology. This is especially notable in the areas of handling and measuring H2S, evaluating biosynthetic and metabolic pathways, and separating physiological from pharmacological responses. Future Directions: This brief review describes some of the pitfalls in H2S chemistry and biology that can lead or have already led to misleading or erroneous conclusions. The intent is to allow individuals entering or already in this burgeoning field to critically analyze the literature and to assist them in the design of future experiments. Antioxid. Redox Signal. 17, 32–44. PMID:22074253

  2. Homolytic cleavage of both heme-bound hydrogen peroxide and hydrogen sulfide leads to the formation of sulfheme

    DOE PAGES

    Arbelo-Lopez, Hector D.; Simakov, Nikolay A.; Smith, Jeremy C.; ...

    2016-06-29

    Many heme-containing proteins with a histidine in the distal E7 (HisE7) position can form sulfheme in the presence of hydrogen sulfide (H 2S) and a reactive oxygen species such as hydrogen peroxide. For reasons unknown, sulfheme derivatives are formed specifically on solvent-excluded heme pyrrole B. Sulfhemes severely decrease the oxygen-binding affinity in hemoglobin (Hb) and myoglobin (Mb). Here, use of hybrid quantum mechanical/molecular mechanical methods has permitted characterization of the entire process of sulfheme formation in the HisE7 mutant of hemoglobin I (HbI) from Lucina pectinata. This process includes a mechanism for H 2S to enter the solvent-excluded active sitemore » through a hydrophobic channel to ultimately form a hydrogen bond with H 2O 2 bound to Fe(III). Proton transfer from H 2O 2 to His64 to form compound (Cpd) 0, followed by hydrogen transfer from H 2S to the Fe(III) H 2O 2 complex, results in homolytic cleavage of the O–O and S–H bonds to form a reactive thiyl radical (HS*), ferryl heme Cpd II, and a water molecule. Subsequently, the addition of HS to Cpd II, followed by three proton transfer reactions, results in the formation of a three-membered ring ferric sulfheme that avoids migration of the radical to the protein matrix, in contrast to that in other peroxidative reactions. The transformation of this three-membered episulfide ring structure to the five-membered thiochlorin ring structure occurs through a significant potential energy barrier, although both structures are nearly isoenergetic. Both three- and five-membered ring structures reveal longer N B–Fe(III) bonds compared with other pyrrole nitrogen–Fe(III) bonds, which would lead to decreased oxygen binding. Altogether, these results are in agreement with a wide range of experimental data and provide fertile ground for further investigations of sulfheme formation in other heme proteins and additional effects of H 2S on cell signaling and reactivity.« less

  3. Homolytic cleavage of both heme-bound hydrogen peroxide and hydrogen sulfide leads to the formation of sulfheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arbelo-Lopez, Hector D.; Simakov, Nikolay A.; Smith, Jeremy C.

    Many heme-containing proteins with a histidine in the distal E7 (HisE7) position can form sulfheme in the presence of hydrogen sulfide (H 2S) and a reactive oxygen species such as hydrogen peroxide. For reasons unknown, sulfheme derivatives are formed specifically on solvent-excluded heme pyrrole B. Sulfhemes severely decrease the oxygen-binding affinity in hemoglobin (Hb) and myoglobin (Mb). Here, use of hybrid quantum mechanical/molecular mechanical methods has permitted characterization of the entire process of sulfheme formation in the HisE7 mutant of hemoglobin I (HbI) from Lucina pectinata. This process includes a mechanism for H 2S to enter the solvent-excluded active sitemore » through a hydrophobic channel to ultimately form a hydrogen bond with H 2O 2 bound to Fe(III). Proton transfer from H 2O 2 to His64 to form compound (Cpd) 0, followed by hydrogen transfer from H 2S to the Fe(III) H 2O 2 complex, results in homolytic cleavage of the O–O and S–H bonds to form a reactive thiyl radical (HS*), ferryl heme Cpd II, and a water molecule. Subsequently, the addition of HS to Cpd II, followed by three proton transfer reactions, results in the formation of a three-membered ring ferric sulfheme that avoids migration of the radical to the protein matrix, in contrast to that in other peroxidative reactions. The transformation of this three-membered episulfide ring structure to the five-membered thiochlorin ring structure occurs through a significant potential energy barrier, although both structures are nearly isoenergetic. Both three- and five-membered ring structures reveal longer N B–Fe(III) bonds compared with other pyrrole nitrogen–Fe(III) bonds, which would lead to decreased oxygen binding. Altogether, these results are in agreement with a wide range of experimental data and provide fertile ground for further investigations of sulfheme formation in other heme proteins and additional effects of H 2S on cell signaling and reactivity.« less

  4. Iodide-Photocatalyzed Reduction of Carbon Dioxide to Formic Acid with Thiols and Hydrogen Sulfide.

    PubMed

    Berton, Mateo; Mello, Rossella; González-Núñez, María Elena

    2016-12-20

    The photolysis of iodide anions promotes the reaction of carbon dioxide with hydrogen sulfide or thiols to quantitatively yield formic acid and sulfur or disulfides. The reaction proceeds in acetonitrile and aqueous solutions, at atmospheric pressure and room temperature by irradiation using a low-pressure mercury lamp. This transition-metal-free photocatalytic process for CO 2 capture coupled with H 2 S removal may have been relevant as a prebiotic carbon dioxide fixation. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Lifting of Administrative Stay for Hydrogen Sulfide

    EPA Pesticide Factsheets

    EPA lifted the Administrative Stay of the TRI reporting requirements for hydrogen sulfide. Hydrogen sulfide can reasonably be anticipated to cause chronic health effects in humans and significant adverse effects in aquatic organisms.

  6. Carbonyl sulfide removal with compost and wood chip biofilters, and in the presence of hydrogen sulfide.

    PubMed

    Sattler, Melanie L; Garrepalli, Divya R; Nawal, Chandraprakash S

    2009-12-01

    Carbonyl sulfide (COS) is an odor-causing compound and hazardous air pollutant emitted frequently from wastewater treatment facilities and chemical and primary metals industries. This study examined the effectiveness of biofiltration in removing COS. Specific objectives were to compare COS removal efficiency for various biofilter media; to determine whether hydrogen sulfide (H2S), which is frequently produced along with COS under anaerobic conditions, adversely impacts COS removal; and to determine the maximum elimination capacity of COS for use in biofilter design. Three laboratory-scale polyvinyl chloride biofilter columns were filled with up to 28 in. of biofilter media (aged compost, fresh compost, wood chips, or a compost/wood chip mixture). Inlet COS ranged from 5 to 46 parts per million (ppm) (0.10-9.0 g/m3 hr). Compost and the compost/wood chip mixture produced higher COS removal efficiencies than wood chips alone. The compost and compost/wood chip mixture had a shorter stabilization times compared with wood chips alone. Fresh versus aged compost did not impact COS removal efficiency. The presence of H2S did not adversely impact COS removal for the concentration ratios tested. The maximum elimination capacity is at least 9 g/m3 hr for COS with compost media.

  7. Normal state of metallic hydrogen sulfide

    NASA Astrophysics Data System (ADS)

    Kudryashov, N. A.; Kutukov, A. A.; Mazur, E. A.

    2017-02-01

    A generalized theory of the normal properties of metals in the case of electron-phonon (EP) systems with a nonconstant density of electron states has been used to study the normal state of the SH3 and SH2 phases of hydrogen sulfide at different pressures. The frequency dependence of the real Re Σ (ω) and imaginary ImΣ (ω) parts of the self-energy Σ (ω) part (SEP) of the Green's function of the electron Σ (ω), real part Re Z (ω), and imaginary part Im Z (ω) of the complex renormalization of the mass of the electron; the real part Re χ (ω) and the imaginary part Imχ (ω) of the complex renormalization of the chemical potential; and the density of electron states N (ɛ) renormalized by strong electron-phonon interaction have been calculated. Calculations have been carried out for the stable orthorhombic structure (space group Im3¯ m) of the hydrogen sulfide SH3 for three values of the pressure P = 170, 180, and 225 GPa; and for an SH2 structure with a symmetry of I4/ mmm ( D4 h1¯7) for three values of pressure P = 150, 180, and 225 GP at temperature T = 200 K.

  8. Hydrogen sulfide-based therapeutics and gastrointestinal diseases: translating physiology to treatments.

    PubMed

    Chan, Melissa V; Wallace, John L

    2013-10-01

    Hydrogen sulfide (H2S) is a gaseous meditator that has various physiological and pathophysiological roles in the body. It has been shown to be an important mediator of gastrointestinal (GI) mucosal defense and contributes significantly to repair of damage and resolution of inflammation. Synthesis of H2S increases markedly after mucosal injury, and inhibition of H2S in such circumstances leads to delayed healing and exacerbated inflammation. The beneficial effects of H2S may be attributable to its ability to elevate mucosal blood flow, prevent leukocyte-endothelial adhesion, reduce oxidative stress, and stimulate angiogenesis. The use of H2S-donating agents and inhibitors of the key enzymes contributing to H2S synthesis have provided strong evidence for the importance of H2S in enhancing mucosal resistance to damage, as well as modulating inflammation and repair. In recent years, significant evidence has been generated to support the notion that these positive aspects of H2S can be exploited in drug design, particularly for arthritis, inflammatory bowel disease, and colon cancer chemoprevention. Thus novel H2S-based therapies have been shown to be effective anti-inflammatories that can promote the resolution of inflammation and accelerate the healing of GI ulcers. Encouraging results have already been seen experimentally with a mesalamine derivative and with H2S-releasing derivatives of nonsteroidal anti-inflammatory drugs.

  9. Renewable biocatalyst for swine manure treatment and mitigation of odorous VOCs, ammonia and hydrogen sulfide emissions: Review

    USDA-ARS?s Scientific Manuscript database

    Comprehensive control of odors, hydrogen sulfide (H2S), ammonia (NH3), and greenhouse gas (GHG) emissions associated with swine production is a critical need. The objective of this paper is to review the use of soybean peroxidase (SBP) and peroxides as a manure additive to mitigate emissions of odor...

  10. Comparative exploration of hydrogen sulfide and water transmembrane free energy surfaces via orthogonal space tempering free energy sampling

    DOE PAGES

    Lv, Chao; Aitchison, Erick W.; Wu, Dongsheng; ...

    2015-06-29

    Hydrogen sulfide (H 2S), a commonly known toxic gas compound, possesses unique chemical features that allow this small solute molecule to quickly diffuse through cell membranes. Taking advantage of the recent orthogonal space tempering (OST) method, we comparatively mapped the transmembrane free energy landscapes of H 2S and its structural analogue, water (H 2O), seeking to decipher the molecular determinants that govern their drastically different permeabilities. Here, as revealed by our OST sampling results, in contrast to the highly polar water solute, hydrogen sulfide is evidently amphipathic, and thus inside membrane is favorably localized at the interfacial region, that is,more » the interface between the polar head-group and nonpolar acyl chain regions. Because the membrane binding affinity of H 2S is mainly governed by its small hydrophobic moiety and the barrier height inbetween the interfacial region and the membrane center is largely determined by its moderate polarity, the transmembrane free energy barriers to encounter by this toxic molecule are very small. Moreover when H2S diffuses from the bulk solution to the membrane center, the above two effects nearly cancel each other, so as to lead to a negligible free energy difference. Lastly, this study not only explains why H 2S can quickly pass through cell membranes but also provides a practical illustration on how to use the OST free energy sampling method to conveniently analyze complex molecular processes.« less

  11. Comparative exploration of hydrogen sulfide and water transmembrane free energy surfaces via orthogonal space tempering free energy sampling.

    PubMed

    Lv, Chao; Aitchison, Erick W; Wu, Dongsheng; Zheng, Lianqing; Cheng, Xiaolin; Yang, Wei

    2016-03-05

    Hydrogen sulfide (H2 S), a commonly known toxic gas compound, possesses unique chemical features that allow this small solute molecule to quickly diffuse through cell membranes. Taking advantage of the recent orthogonal space tempering (OST) method, we comparatively mapped the transmembrane free energy landscapes of H2 S and its structural analogue, water (H2 O), seeking to decipher the molecular determinants that govern their drastically different permeabilities. As revealed by our OST sampling results, in contrast to the highly polar water solute, hydrogen sulfide is evidently amphipathic, and thus inside membrane is favorably localized at the interfacial region, that is, the interface between the polar head-group and nonpolar acyl chain regions. Because the membrane binding affinity of H2 S is mainly governed by its small hydrophobic moiety and the barrier height inbetween the interfacial region and the membrane center is largely determined by its moderate polarity, the transmembrane free energy barriers to encounter by this toxic molecule are very small. Moreover when H2 S diffuses from the bulk solution to the membrane center, the above two effects nearly cancel each other, so as to lead to a negligible free energy difference. This study not only explains why H2 S can quickly pass through cell membranes but also provides a practical illustration on how to use the OST free energy sampling method to conveniently analyze complex molecular processes. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  12. Electron density modulation of NiCo2S4 nanowires by nitrogen incorporation for highly efficient hydrogen evolution catalysis.

    PubMed

    Wu, Yishang; Liu, Xiaojing; Han, Dongdong; Song, Xianyin; Shi, Lei; Song, Yao; Niu, Shuwen; Xie, Yufang; Cai, Jinyan; Wu, Shaoyang; Kang, Jian; Zhou, Jianbin; Chen, Zhiyan; Zheng, Xusheng; Xiao, Xiangheng; Wang, Gongming

    2018-04-12

    Metal sulfides for hydrogen evolution catalysis typically suffer from unfavorable hydrogen desorption properties due to the strong interaction between the adsorbed H and the intensely electronegative sulfur. Here, we demonstrate a general strategy to improve the hydrogen evolution catalysis of metal sulfides by modulating the surface electron densities. The N modulated NiCo 2 S 4 nanowire arrays exhibit an overpotential of 41 mV at 10 mA cm -2 and a Tafel slope of 37 mV dec -1 , which are very close to the performance of the benchmark Pt/C in alkaline condition. X-ray photoelectron spectroscopy, synchrotron-based X-ray absorption spectroscopy, and density functional theory studies consistently confirm the surface electron densities of NiCo 2 S 4 have been effectively manipulated by N doping. The capability to modulate the electron densities of the catalytic sites could provide valuable insights for the rational design of highly efficient catalysts for hydrogen evolution and beyond.

  13. The Redox Chemistry and Chemical Biology of H2S, Hydropersulfides and Derived Species: Implications to Their Possible Biological Activity and Utility

    PubMed Central

    Ono, Katsuhiko; Akaike, Takaake; Sawa, Tomohiro; Kumagai, Yoshito; Wink, David A.; Tantillo, Dean J.; Hobbs, Adrian J.; Nagy, Peter; Xian, Ming; Lin, Joseph; Fukuto, Jon M.

    2014-01-01

    Hydrogen sulfide (H2S) is an endogenously generated and putative signaling/effector molecule. In spite of its numerous reported functions, the chemistry by which it elicits its functions is not understood. Moreover, recent studies allude to the existence of other sulfur species besides H2S that may play critical physiological roles. Herein, the basic chemical biology of H2S as well as other related or derived species is discussed and reviewed. A particular focus of this review are the per- and poly-sulfides which are likely in equilibrium with free H2S and which may be important biological effectors themselves. PMID:25229186

  14. Role of Elemental Sulfur in Forming Latent Precursors of H2S in Wine.

    PubMed

    Jastrzembski, Jillian A; Allison, Rachel B; Friedberg, Elle; Sacks, Gavin L

    2017-12-06

    The level of hydrogen sulfide (H 2 S) can increase during abiotic storage of wines, and potential latent sources of H 2 S are still under investigation. We demonstrate that elemental sulfur (S 0 ) residues on grapes not only can produce H 2 S during fermentation but also can form precursors capable of generating additional H 2 S after bottle storage for 3 months. H 2 S could be released from S 0 -derived precursors by addition of a reducing agent (TCEP), but not by addition of strong brine to induce release of H 2 S from metal sulfide complexes. The size of the TCEP-releasable pool varied among yeast strains. Using the TCEP assay, multiple polar S 0 -derived precursors were detected following normal-phase preparative chromatography. Using reversed-phase liquid chromatography and high-resolution mass spectrometry, we detected an increase in the levels of diglutathione trisulfane (GSSSG) and glutathione disulfide (GSSG) in S 0 -fermented red wine and an increase in the levels of glutathione S-sulfonate (GSSO 3 - ) and tetrathionate (S 4 O 6 2- ) in S 0 -fermented white wine as compared to controls. GSSSG, but not S 4 O 6 2- , was shown to evolve H 2 S in the presence of TCEP. Pathways for the formation of GSSSG, GSSG, GSSO 3 - , and S 4 O 6 2- from S 0 are proposed.

  15. Calculation of the visible-UV absorption spectra of hydrogen sulfide, bisulfide, polysulfides, and As and Sb sulfides, in aqueous solution

    PubMed Central

    Tossell, JA

    2003-01-01

    Recently we showed that visible-UV spectra in aqueous solution can be accurately calculated for arsenic (III) bisulfides, such as As(SH)3, As(SH)2S- and their oligomers. The calculated lowest energy transitions for these species were diagnostic of their protonation and oligomerization state. We here extend these studies to As and Sb oxidation state III and v sulfides and to polysulfides Sn2-, n = 2–6, the bisulfide anion, SH-, hydrogen sulfide, H2S and the sulfanes, SnH2, n = 2–5. Many of these calculations are more difficult than those performed for the As(iii) bisulfides, since the As and Sb(v) species are more acidic and therefore exist as highly charged anions in neutral and basic solutions. In general, small and/or highly charged anions are more difficult to describe computationally than larger, monovalent anions or neutral molecules. We have used both Hartree-Fock based (CI Singles and Time-Dependent HF) and density functional based (TD B3LYP) techniques for the calculations of absorption energy and intensity and have used both explicit water molecules and a polarizable continuum to describe the effects of hydration. We correctly reproduce the general trends observed experimentally, with absorption energies increasing from polysulfides to As, Sb sulfides to SH- to H2S. As and Sb(v) species, both monomers and dimers, also absorb at characteristically higher energies than do the analogous As and Sb(III)species. There is also a small reduction in absorption energy from monomeric to dimeric species, for both As and Sb III and v. The polysufides, on the other hand, show no simple systematic changes in UV spectra with chain length, n, or with protonation state. Our results indicate that for the As and Sb sulfides, the oxidation state, degree of protonation and degree of oligomerization can all be determined from the visible-UV absorption spectrum. We have also calculated the aqueous phase energetics for the reaction of S8 with SH- to produce the polysulfides

  16. Poisoning of Ni-Based anode for proton conducting SOFC by H2S, CO2, and H2O as fuel contaminants

    NASA Astrophysics Data System (ADS)

    Sun, Shichen; Awadallah, Osama; Cheng, Zhe

    2018-02-01

    It is well known that conventional solid oxide fuel cells (SOFCs) based on oxide ion conducting electrolyte (e.g., yttria-stabilized zirconia, YSZ) and nickel (Ni) - ceramic cermet anodes are susceptible to poisoning by trace amount of hydrogen sulfide (H2S) while not significantly impacted by the presence of carbon dioxide (CO2) and moisture (H2O) in the fuel stream unless under extreme operating conditions. In comparison, the impacts of H2S, CO2, and H2O on proton-conducting SOFCs remain largely unexplored. This study aims at revealing the poisoning behaviors caused by H2S, CO2, and H2O for proton-conducting SOFCs. Anode-supported proton-conducting SOFCs with BaZe0.1Ce0.7Y0.1Yb0.1O3 (BZCYYb) electrolyte and Ni-BZCYYb anode and La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) cathode as well as Ni-BZCYYb/BZCYYb/Ni-BZCYYb anode symmetrical cells were subjected to low ppm-level H2S or low percentage-level CO2 or H2O in the hydrogen fuel, and the responses in cell electrochemical behaviors were recorded. The results suggest that, contrary to conventional SOFCs that show sulfur poisoning and CO2 and H2O tolerance, such proton-conducting SOFCs with Ni-BZCYYb cermet anode seem to be poisoned by all three types of "contaminants". Beyond that, the implications of the experimental observations on understanding the fundamental mechanism of anode hydrogen electrochemical oxidation reaction in proton conducting SOFCs are also discussed.

  17. Ambient geothermal hydrogen sulfide exposure and peripheral neuropathy

    PubMed Central

    Pope, Karl; So, Yuen T.; Crane, Julian; Bates, Michael N.

    2017-01-01

    The mechanism of toxicity of hydrogen sulfide (H2S) gas is thought mainly to operate through effects on the nervous system. The gas has high acute toxicity, but whether chronic exposure causes effects, including peripheral neuropathy, is yet unclear. The city of Rotorua, New Zealand, sits on an active geothermal field and the population has some of the highest measured ambient H2S exposures. A previous study in Rotorua provided evidence that H2S is associated with peripheral neuropathy. Using clinical methods, the present study sought to investigate and possibly confirm this association in the Rotorua population. The study population comprised 1,635 adult residents of Rotorua, aged 18–65. Collected data relevant to the peripheral neuropathy investigation included symptoms, ankle stretch reflex, vibration sensitivity, as measured by the timed-tuning fork test and a Bio-Thesiometer (Bio-Medical Instrument Co., Ohio), and light touch sensitivity measured by monofilaments. An exposure metric, estimating time-weighted H2S exposure across the last 30 years was used. Principal components analysis was used to combine data across the various indicators of possible peripheral neuropathy. The main data analysis used linear regression to examine associations between the peripheral nerve function indicators and H2S exposure. None of the peripheral nerve function indicators were associated with H2S exposure, providing no evidence that H2S exposure at levels found in Rotorua is a cause of peripheral neuropathy. The earlier association between H2S exposure and peripheral neuropathy diagnoses may be attributable to the ecological study design used. The possibility that H2S exposure misclassification could account for the lack of association found cannot be entirely excluded. PMID:28223159

  18. Ambient geothermal hydrogen sulfide exposure and peripheral neuropathy.

    PubMed

    Pope, Karl; So, Yuen T; Crane, Julian; Bates, Michael N

    2017-05-01

    The mechanism of toxicity of hydrogen sulfide (H 2 S) gas is thought mainly to operate through effects on the nervous system. The gas has high acute toxicity, but whether chronic exposure causes effects, including peripheral neuropathy, is yet unclear. The city of Rotorua, New Zealand, sits on an active geothermal field and the population has some of the highest measured ambient H 2 S exposures. A previous study in Rotorua provided evidence that H 2 S is associated with peripheral neuropathy. Using clinical methods, the present study sought to investigate and possibly confirm this association in the Rotorua population. The study population comprised 1635 adult residents of Rotorua, aged 18-65. Collected data relevant to the peripheral neuropathy investigation included symptoms, ankle stretch reflex, vibration sensitivity, as measured by the timed-tuning fork test and a Bio-Thesiometer (Bio-Medical Instrument Co., Ohio), and light touch sensitivity measured by monofilaments. An exposure metric, estimating time-weighted H 2 S exposure across the last 30 years was used. Principal components analysis was used to combine data across the various indicators of possible peripheral neuropathy. The main data analysis used linear regression to examine associations between the peripheral nerve function indicators and H 2 S exposure. None of the peripheral nerve function indicators were associated with H 2 S exposure, providing no evidence that H 2 S exposure at levels found in Rotorua is a cause of peripheral neuropathy. The earlier association between H 2 S exposure and peripheral neuropathy diagnoses may be attributable to the ecological study design used. The possibility that H 2 S exposure misclassification could account for the lack of association found cannot be entirely excluded. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Elevated corrosion rates and hydrogen sulfide in homes with 'Chinese Drywall'.

    PubMed

    Allen, Joseph G; MacIntosh, David L; Saltzman, Lori E; Baker, Brian J; Matheson, Joanna M; Recht, Joel R; Minegishi, Taeko; Fragala, Matt A; Myatt, Theodore A; Spengler, John D; Stewart, James H; McCarthy, John F

    2012-06-01

    In December 2008, the U.S. Consumer Product Safety Commission (CPSC) began receiving reports about odors, corrosion, and health concerns related to drywall originating from China. In response, a detailed environmental health and engineering evaluation was conducted of 41 complaint and 10 non-complaint homes in the Southeast U.S. Each home investigation included characterization of: 1) drywall composition; 2) indoor and outdoor air quality; 3) temperature, moisture, and building ventilation; and 4) copper and silver corrosion rates. Complaint homes had significantly higher hydrogen sulfide concentrations (mean 0.82 vs. sulfide and silver sulfide corrosion compared to non-complaint homes (Cu(2)S: 476 vs. <32 Å/30 d, p<0.01; Ag(2)S: 1472 vs. 389 Å/30 d, p<0.01). The abundance of carbonate and strontium in drywall was also elevated in complaint homes, and appears to be useful objective marker of problematic drywall in homes that meet other screening criteria (e.g., constructed or renovated in 2006-2007, reports of malodor and accelerated corrosion). This research provides empirical evidence of the direct association between homes constructed with 'Chinese Drywall' in 2006-2007 and elevated corrosion rates and hydrogen sulfide concentrations in indoor air. Copyright © 2012. Published by Elsevier B.V.

  20. Exposure to low levels of hydrogen sulfide elevates circulating glucose in maternal rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayden, L.J.; Goeden, H.; Roth, S.H.

    1990-09-01

    Although the lethal effect of hydrogen sulfide (H{sub 2}S) has long been known, the results of exposure to low levels of H{sub 2}S have not been well documented. Rat dams and pups were exposed to low levels of H{sub 2}S (less than or equal to 75 ppm) from d 1 of gestation until d 21 postpartum and analyzed for changes in circulating enzymatic activity and metabolites. Blood glucose was significantly elevated in maternal blood on d 21 postpartum at all exposure levels. This increase in glucose was accompanied by a possible decrease in serum triglyceride in the pups and inmore » the dams on d 21 postpartum. There was no evidence of alterations in serum alkaline phosphatase, lactate dehydrogenase, or serum glutamate oxaloacetate transaminase.« less

  1. Effects of ammonia and hydrogen sulfide on physical and biochemical properties of the claw horn of Holstein cows

    PubMed Central

    Higuchi, Hidetoshi; Kurumado, Hisatoshi; Mori, Maya; Degawa, Aiko; Fujisawa, Hideyo; Kuwano, Atsutoshi; Nagahata, Hajime

    2009-01-01

    The effects of ammonia and hydrogen sulfide on the physical and biochemical properties of the claw horn of Holstein cows were evaluated. Significant (P < 0.05, 0.01) decreases in hardness and elasticity were found in claw horns soaked in ammonia (NH3) and hydrogen sulfide (H2S) solutions compared with those that were soaked in water for 12, 24, and 48 h. Water absorption rate, as a indicator of permeability barrier function, increased significantly (P < 0.05) over time during the soaking period and was found to be dependent on the concentrations of NH3 and H2S in the solutions. The contents of ceramide, the main lipid component for the permeability barrier system of the stratum corneum, were significantly decreased in claw horns soaked in NH3 and H2S solutions compared with the values before soaking. Quantities of eluted protein released from claw horns treated with NH3 and H2S solutions were approximately 20 times and 30 to 40 times greater than those released from claw horns treated with water alone. Interestingly, the quantities of cytokeratin 10, the main cytoskeletal protein of the stratum corneum, eluted from claw horns treated with NH3 and H2S solutions were markedly greater than the quantity released from horns soaked in water. Our results suggest that abnormal changes in the physical property of claw horn caused by NH3 and H2S treatment are due to disruption of the biochemical property of the claw horn induced by these chemical agents derived from slurry. PMID:19337390

  2. Hydrogen sulfide promotes autophagy of hepatocellular carcinoma cells through the PI3K/Akt/mTOR signaling pathway.

    PubMed

    Wang, Shanshan S; Chen, Yuhan H; Chen, Ning; Wang, Lijun J; Chen, Dexi X; Weng, Honglei L; Dooley, Steven; Ding, Huiguo G

    2017-03-23

    Hydrogen sulfide (H 2 S), in its gaseous form, plays an important role in tumor carcinogenesis. This study investigated the effects of H 2 S on the cell biological functions of hepatocellular carcinoma (HCC). HCC cell lines, HepG2 and HLE, were treated with NaHS, a donor of H 2 S, and rapamycin, a classic autophagy inducer, for different lengths of time. Western blotting, immunofluorescence, transmission electron microscopy (TEM), scratch assay, CCK-8 and flow cytometric analysis were carried out to examine the effects of H 2 S on HCC autophagy, cell behavior and PI3K/Akt/mTOR signaling. Treatment with NaHS upregulated expression of LC3-II and Atg5, two autophagy-related proteins, in HepG2 and HLE cells. TEM revealed increased numbers of intracellular double-membrane vesicles in those cells treated with NaHS. Like rapamycin, NaHS also significantly inhibited expression of p-PI3K, p-Akt and mTOR proteins in HCC cells. Interestingly, the expression of LC3-II was further increased when the cells were treated with NaHS together with rapamycin. In addition, NaHS inhibited HCC cell migration, proliferation and cell division. These findings show that H 2 S can induce HCC cell apoptosis. The biological function of the gasotransmitter H 2 S in HCC cells was enhanced by the addition of rapamycin. Hydrogen sulfide influences multiple biological functions of HCC cells through inhibiting the PI3K/Akt/mTOR signaling pathway.

  3. Modeling the phase behavior of H2S+n-alkane binary mixtures using the SAFT-VR+D approach.

    PubMed

    dos Ramos, M Carolina; Goff, Kimberly D; Zhao, Honggang; McCabe, Clare

    2008-08-07

    A statistical associating fluid theory for potential of variable range has been recently developed to model dipolar fluids (SAFT-VR+D) [Zhao and McCabe, J. Chem. Phys. 2006, 125, 104504]. The SAFT-VR+D equation explicitly accounts for dipolar interactions and their effect on the thermodynamics and structure of a fluid by using the generalized mean spherical approximation (GMSA) to describe a reference fluid of dipolar square-well segments. In this work, we apply the SAFT-VR+D approach to real mixtures of dipolar fluids. In particular, we examine the high-pressure phase diagram of hydrogen sulfide+n-alkane binary mixtures. Hydrogen sulfide is modeled as an associating spherical molecule with four off-center sites to mimic hydrogen bonding and an embedded dipole moment (micro) to describe the polarity of H2S. The n-alkane molecules are modeled as spherical segments tangentially bonded together to form chains of length m, as in the original SAFT-VR approach. By using simple Lorentz-Berthelot combining rules, the theoretical predictions from the SAFT-VR+D equation are found to be in excellent overall agreement with experimental data. In particular, the theory is able to accurately describe the different types of phase behavior observed for these mixtures as the molecular weight of the alkane is varied: type III phase behavior, according to the scheme of classification by Scott and Konynenburg, for the H2S+methane system, type IIA (with the presence of azeotropy) for the H2S+ethane and+propane mixtures; and type I phase behavior for mixtures of H2S and longer n-alkanes up to n-decane. The theory is also able to predict in a qualitative manner the solubility of hydrogen sulfide in heavy n-alkanes.

  4. Evaluation of Stress Corrosion Resistance Properties of 15CrMoR(H) in H2S Environment

    NASA Astrophysics Data System (ADS)

    Zhang, Yiliang; Wang, Jing; Wu, Mingyao; Li, Shurui; Liu, Wenbin

    To evaluate the hydrogen resistant properties of the 15CrMoR(H) with new smelting process, according to NACE and National Standards, three tests including NACE standard tensile test, NACE standard bent-beam test and hydrogen induced cracking test are executed in saturated hydrogen sulfide(H2S) environment. Stress-life mathematical model of this material is given by analyzing and fitting the results of tensile test. Test results show that the threshold sth of tensile test is 0.7R eL(252MPa); the threshold nominal stress SC of bent-beam is higher than 4.5 R eL (1620MPa); for HIC test, the crack length rate CLR is 4.40%, the crack thickness rate CTR is 0.87% and the crack sensitive rate CSR is 0.04%. Compare with EFC standard, the safety margin of HIC test is 3.4, 3.4 and 37.5 times respectively. All the experimental results show that the new 15CrMoR(H) material has excellent H2S environmental cracking resistance properties.

  5. Homocysteine in renovascular complications: hydrogen sulfide is a modulator and plausible anaerobic ATP generator.

    PubMed

    Sen, Utpal; Pushpakumar, Sathnur B; Amin, Matthew A; Tyagi, Suresh C

    2014-09-15

    Homocysteine (Hcy) is a non-protein amino acid derived from dietary methionine. High levels of Hcy, known as hyperhomocysteinemia (HHcy) is known to cause vascular complications. In the mammalian tissue, Hcy is metabolized by transsulfuration enzymes to produce hydrogen sulfide (H2S). H2S, a pungent smelling gas was previously known for its toxic effects in the central nervous system, recent studies however has revealed protective effects in a variety of diseases including hypertension, diabetes, inflammation, atherosclerosis, and renal disease progression and failure. Interestingly, under stress conditions including hypoxia, H2S can reduce metabolic demand and also act as a substrate for ATP production. This review highlights some of the recent advances in H2S research as a potential therapeutic agent targeting renovascular diseases associated with HHcy. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Facile Modification of TiO2 with Nickel Sulfide and Sulfate Species for Photoreformation of Cellulose into H2.

    PubMed

    Hao, Hongchang; Zhang, Ling; Wang, Wenzhong; Zeng, Shuwen

    2018-06-19

    Photocatalytic cellulose reformation is regarded as a potential and affordable route for sustainable H2 evolution. However, the direct photoreformation still suffers from challenges such as the limited solubility of cellulose and dependence on catalytic activity of noble-metals. Herein, we reported a novel photoreformation of cellulose into H2 over TiO2 which is synchronously modified with nickel sulfide (NixSy) and chemisorbed sulfate species (SO42-) by a one-pot approach. A significant elevation in photocatalytic hydrogen evolution rate is achieved, with the maximal value of 3.02 mmol/g/h during the first three hours, almost 76-fold higher than that of P25 and comparable to Pt-P25. Aided by systematic investigation, it is proposed that nickel sulfide and sulfate modification synergistically contribute to the remarkably raised efficiency of biomass transformation. Specifically, NixSy serves as co-catalyst for photocatalytic H2 production, while SO42- ions are inferred to promote cellulose hydrolyzation and consequent accessibility of biomass to catalysts. Further, the accumulated formate intermediates are found to have a poison effect on catalysts, desorption of which can be controlled by tuning aqueous alkalinity. Overall, our strategy for modifying TiO2 with SO42- and NixSy provides a novel perspective of concurrently accelerating cellulose hydrolyzation process and supplementing hydrogen evolution sites, for efficient photocatalytic reformation of cellulose into H2. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Photocatalytic degradation of H2S aqueous media using sulfide nanostructured solid-solution solar-energy-materials to produce hydrogen fuel.

    PubMed

    Lashgari, Mohsen; Ghanimati, Majid

    2018-03-05

    H 2 S is a corrosive, flammable and noxious gas, which can be neutralized by dissolving in alkaline media and employed as H 2 -source by utilizing inside semiconductor-assisted/photochemical reactors. Herein, through a facile hydrothermal route, a ternary nanostructured solid-solution of iron, zinc and sulfur was synthesized in the absence and presence of Ag-dopant, and applied as efficient photocatalyst of hydrogen fuel production from H 2 S media. The effect of pH on the photocatalyst performance was scrutinized and the maximum activity was attained at pH=11, where HS - concentration is high. BET, diffuse reflectance and photoluminescence studies indicated that the ternary solid-solution photocatalyst, in comparison to its solid-solvent (ZnS), has a greater surface area, stronger photon absorption and less charge recombination, which justify its superiority. Moreover, the effect of silver-dopant on the photocatalyst performance was examined. The investigations revealed that although silver could boost the absorption of photons and increase the surface area, it could not appreciably enhance the photocatalyst performance due to its weak influence on retarding the charge-recombination process. Finally, the phenomenon was discussed in detail from mechanistic viewpoint. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Physiological and pharmacological features of the novel gasotransmitter: Hydrogen sulfide

    PubMed Central

    Mancardi, Daniele; Penna, Claudia; Merlino, Annalisa; Del Soldato, Piero; Wink, David A.; Pagliaro, Pasquale

    2012-01-01

    Hydrogen sulfide (H2S) has been known for hundreds of years because of its poisoning effect. Once the basal bio-production became evident its pathophysiological role started to be investigated in depth. H2S is a gas that can be formed by the action of two enzymes, cystathionine gamma-lyase and cystathionine beta-synthase, both involved in the metabolism of cysteine. It has several features in common with the other two well known “gasotransmitters” (nitric oxide and carbon monoxide) in the biological systems. These three gasses share some biological targets; however, they also have dissimilarities. For instance, the three gases target heme-proteins and open KATP channels; H2S as NO is an antioxidant, but in contrast to the latter molecule, H2S does not directly form radicals. In the last years H2S has been implicated in several physiological and pathophysiological processes such as long term synaptic potentiation, vasorelaxation, pro- and anti-inflammatory conditions, cardiac inotropism regulation, cardioprotection, and several other physiological mechanisms. We will focus on the biological role of H2S as a molecule able to trigger cell signaling. Our attention will be particularly devoted on the effects in cardiovascular system and in cardioprotection. We will also provide available information on H2S-donating drugs which have so far been tested in order to conjugate the beneficial effect of H2S with other pharmaceutical properties. PMID:19285949

  9. A fluorescent turn-on H2S-responsive probe: design, synthesis and application.

    PubMed

    Zhang, Yufeng; Chen, Haiyan; Chen, Dan; Wu, Di; Chen, Xiaoqiang; Liu, Sheng Hua; Yin, Jun

    2015-10-14

    Hydrogen sulfide (H2S) is considered as the third signaling molecule in vivo and it plays an important role in various physiological processes and pathological processes in vivo, such as vasodilation, apoptosis, neurotransmission, ischemia/reperfusion-induced injury, insulin secretion and inflammation. Developing a highly selective and sensitive method that can detect H2S in the biological system is very important. In this work, a colorimetric and "turn-on" fluorescent probe is developed. Furthermore, this probe displays a highly selective response to H2S in aqueous solution and possesses good capability for bioimaging H2S without interference in living cells. The results suggest that a H2S-selective probe has good water-solubility, biocompatibility and cell-penetrability and can serve as an efficient tool for probing H2S in the cell level.

  10. Hydrogen sulfide-induced itch requires activation of Cav3.2 T-type calcium channel in mice

    PubMed Central

    Wang, Xue-Long; Tian, Bin; Huang, Ya; Peng, Xiao-Yan; Chen, Li-Hua; Li, Jun-Cheng; Liu, Tong

    2015-01-01

    The contributions of gasotransmitters to itch sensation are largely unknown. In this study, we aimed to investigate the roles of hydrogen sulfide (H2S), a ubiquitous gasotransmitter, in itch signaling. We found that intradermal injection of H2S donors NaHS or Na2S, but not GYY4137 (a slow-releasing H2S donor), dose-dependently induced scratching behavior in a μ-opioid receptor-dependent and histamine-independent manner in mice. Interestingly, NaHS induced itch via unique mechanisms that involved capsaicin-insensitive A-fibers, but not TRPV1-expressing C-fibers that are traditionally considered for mediating itch, revealed by depletion of TRPV1-expressing C-fibers by systemic resiniferatoxin treatment. Moreover, local application of capsaizapine (TRPV1 blocker) or HC-030031 (TRPA1 blocker) had no effects on NaHS-evoked scratching. Strikingly, pharmacological blockade and silencing of Cav3.2 T-type calcium channel by mibefradil, ascorbic acid, zinc chloride or Cav3.2 siRNA dramatically decreased NaHS-evoked scratching. NaHS induced robust alloknesis (touch-evoked itch), which was inhibited by T-type calcium channels blocker mibefradil. Compound 48/80-induced itch was enhanced by an endogenous precursor of H2S (L-cysteine) but attenuated by inhibitors of H2S-producing enzymes cystathionine γ-lyase and cystathionine β-synthase. These results indicated that H2S, as a novel nonhistaminergic itch mediator, may activates Cav3.2 T-type calcium channel, probably located at A-fibers, to induce scratching and alloknesis in mice. PMID:26602811

  11. Hydrogen sulfide: a novel gaseous signaling molecule and intracellular Ca2+ regulator in rat parotid acinar cells.

    PubMed

    Moustafa, Amira; Habara, Yoshiaki

    2015-10-01

    In addition to nitric oxide (NO), hydrogen sulfide (H2S) is recognized as a crucial gaseous messenger that exerts many biological actions in various tissues. An attempt was made to assess the roles and underlying mechanisms of both gases in isolated rat parotid acinar cells. Ductal cells and some acinar cells were found to express NO and H2S synthases. Cevimeline, a muscarinic receptor agonist upregulated endothelial NO synthase in parotid tissue. NO and H2S donors increased the intracellular Ca(2+) concentration ([Ca(2+)]i). This was not affected by inhibitors of phospholipase C and inositol 1,4,5-trisphosphate receptors, but was decreased by blockers of ryanodine receptors (RyRs), soluble guanylyl cyclase, and protein kinase G. The H2S donor evoked NO production, which was decreased by blockade of NO synthases or phosphoinositide 3-kinase or by hypotaurine, an H2S scavenger. The H2S donor-induced [Ca(2+)]i increase was diminished by a NO scavenger or the NO synthases blocker. These results suggest that NO and H2S play important roles in regulating [Ca(2+)]i via soluble guanylyl cyclase-cGMP-protein kinase G-RyRs, but not via inositol 1,4,5-trisphosphate receptors. The effect of H2S may be partially through NO produced via phosphoinositide 3-kinase-Akt-endothelial NO synthase. It was concluded that both gases regulate [Ca(2+)]i in a synergistic way, mainly via RyRs in rat parotid acinar cells. Copyright © 2015 the American Physiological Society.

  12. Design, synthesis and biological evaluation of novel hydrogen sulfide releasing capsaicin derivatives.

    PubMed

    Gao, Mingxiang; Li, Jinyu; Nie, Cunbin; Song, Beibei; Yan, Lin; Qian, Hai

    2018-05-15

    Capsaicin (CAP), the prototypical TRPV1 agonist, is the major active component in chili peppers with health-promoting benefits. However, its use is limited by the low bioavailability and irritating quality. In this study, for improving the activity of CAP and alleviating its irritating effects, a series of H 2 S-releasing CAPs were designed and synthesized by combining capsaicin and dihydro capsaicin with various hydrogen sulfide donors. The resulting compounds were evaluated their TRPV1 agonist activity, analgesic activity, anticancer activities, H 2 S-releasing ability, and gastric mucosa irritation. Biological evaluation indicated that the most active compound B 9 , containing 5-(4-hydroxyphenyl)-3H-1,2-dithiole-3-thione moiety as H 2 S donor, had better analgesic activity and displayed more potent cytotoxic effects on the test cell lines than the lead compound CAP. Furthermore, the preferred compound, B 9 reduced rat gastric mucosa irritation caused by CAP. Notably, the improved properties of this derivative are associated with its H 2 S-releasing capability. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Distribution of hydrogen sulfide (H₂S)-producing enzymes and the roles of the H₂S donor sodium hydrosulfide in diabetic nephropathy.

    PubMed

    Yamamoto, Junichiro; Sato, Waichi; Kosugi, Tomoki; Yamamoto, Tokunori; Kimura, Toshihide; Taniguchi, Shigeki; Kojima, Hiroshi; Maruyama, Shoichi; Imai, Enyu; Matsuo, Seiichi; Yuzawa, Yukio; Niki, Ichiro

    2013-02-01

    Hydrogen sulfide (H(2)S) has recently been found to play beneficial roles in ameliorating several diseases, including hypertension, atherosclerosis and cardiac/renal ischemia-reperfusion injuries. Cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE), the main enzymes in the transsulfuration pathway, catalyze H(2)S production in mammalian tissues. However, the distributions and precise roles of these enzymes in the kidney have not yet been identified. The present study examined the localization of both enzymes in the normal kidney and the effect of the H(2)S donor sodium hydrosulfide (NaHS) in the renal peritubular capillary (PTC) under conditions of diabetic nephropathy, using pancreatic β-cell-specific calmodulin-overexpressing transgenic mice as a model of diabetes. In the normal kidney, we detected expression of both CBS and CSE in the brush border and cytoplasm of the proximal tubules, but not in the glomeruli, distal tubules and vascular endothelial cells of renal PTCs. Administration of NaHS increased PTC diameter and blood flow. We further evaluated whether biosynthesis of H(2)S was altered in a spontaneous diabetic model that developed renal lesions similar to human diabetic nephropathy. CSE expression was markedly reduced under diabetic conditions, whereas CBS expression was unaffected. Progressive diabetic nephropathy showed vasoconstriction and a loss of blood flow in PTCs that was ameliorated by NaHS treatment. These findings suggest that CSE expression in the proximal tubules may also regulate tubulointerstitial microcirculation via H(2)S production. H(2)S may represent a target of treatment to prevent progression of ischemic injury in diabetic nephropathy.

  14. Enhanced reactive adsorption of hydrogen sulfide on the composites of graphene/graphite oxide with copper (hydr)oxychlorides.

    PubMed

    Mabayoje, Oluwaniyi; Seredych, Mykola; Bandosz, Teresa J

    2012-06-27

    Composites of copper (hydr)oxychlorides with graphite oxide or graphene were synthesized and used as adsorbents of hydrogen sulfide at dynamic conditions at ambient temperatures. The materials were extensively characterized before and after adsorption in order to link their performance to the surface features. X-ray diffraction, FTIR, thermal analysis, TEM, SEM/EDX, and adsorption of nitrogen were used. It was found that the composite with graphene has the most favorable surface features enhancing reactive adsorption of hydrogen sulfide. The presence of moisture in the H2S stream has a positive effect on the removal process owing to the dissociation process. H2S is retained on the surface via a direct replacement of OH groups and via acid-base reactions with the copper (hydr)oxide. Highly dispersed reduced copper species on the surface of the composite with graphene enhance activation of oxygen and cause formation of sulfites and sulfates. Higher conductivity of the graphene phase than that of graphite oxide helps in electron transfer in redox reactions.

  15. Survival of hydrogen sulfide oxidizing bacteria on corroded concrete surfaces of sewer systems.

    PubMed

    Jensen, H S; Nielsen, A H; Hvitved-Jacobsen, T; Vollertsen, J

    2008-01-01

    The activity of hydrogen sulfide oxidizing bacteria within corroded concrete from a sewer manhole was investigated. The bacteria were exposed to hydrogen sulfide starvation for up till 18 months, upon which their hydrogen sulfide oxidizing activity was measured. It was tested whether the observed reduction in biological activity was caused by a biological lag phase or by decay of the bacteria. The results showed that the bacterial activity declined with approximately 40% pr. month during the first two months of hydrogen sulfide starvation. After 2-3 months of starvation, the activity stabilized. Even after 6 months of starvation, exposure to hydrogen sulfide for 6 hours a day on three successive days could restore the bacteriological activity to about 80% of the initial activity. After 12 months of starvation, the activity could, however, not be restored, and after 18 months the biological activity approached zero. The long-term survival aspect of concrete corroding bacteria has implications for predicting hydrogen sulfide corrosion in sewer systems subject to irregular hydrogen sulfide loadings, e.g. as they occur in temperate climates where hydrogen sulfide often is a summer-problem only.

  16. Pilot-scale testing of renewable biocatalyst for swine manure treatment and mitigation of odorous VOCs, ammonia and hydrogen sulfide emissions

    USDA-ARS?s Scientific Manuscript database

    Comprehensive control of odors, hydrogen sulfide (H2S), ammonia (NH3), and greenhouse gas (GHG) emissions associated with swine production is a critical need. A pilot-scale experiment was conducted to evaluate the topical application of soybean peroxidase (SBP) and calcium peroxide (CaO2) as a manu...

  17. Depolarizing Actions of Hydrogen Sulfide on Hypothalamic Paraventricular Nucleus Neurons

    PubMed Central

    Khademullah, C. Sahara; Ferguson, Alastair V.

    2013-01-01

    Hydrogen sulfide (H2S) is a novel neurotransmitter that has been shown to influence cardiovascular functions as well and corticotrophin hormone (CRH) secretion. Since the paraventricular nucleus of the hypothalamus (PVN) is a central relay center for autonomic and endocrine functions, we sought to investigate the effects of H2S on the neuronal population of the PVN. Whole cell current clamp recordings were acquired from the PVN neurons and sodium hydrosulfide hydrate (NaHS) was bath applied at various concentrations (0.1, 1, 10, and 50 mM). NaHS (1, 10, and 50 mM) elicited a concentration-response relationship from the majority of recorded neurons, with almost exclusively depolarizing effects following administration. Cells responded and recovered from NaHS administration quickly and the effects were repeatable. Input differences from baseline and during the NaHS-induced depolarization uncovered a biphasic response, implicating both a potassium and non-selective cation conductance. The results from the neuronal population of the PVN shed light on the possible physiological role that H2S has in autonomic and endocrine function. PMID:23691233

  18. In situ Removal of Hydrogen Sulfide During Biogas Fermentation at Microaerobic Condition.

    PubMed

    Wu, Mengmeng; Zhang, Yima; Ye, Yuanyuan; Lin, Chunmian

    2016-11-01

    In this paper, rice straw was used as a raw material to produce biogas by anaerobic batch fermentation at 35 °C (mesophilic) or 55 °C (thermophilic). The hydrogen sulfide in biogas can be converted to S 0 or sulfate and removed in-situ under micro-oxygen environment. Trace oxygen was conducted to the anaerobic fermentation tank in amount of 0.5, 1.0, 2.0, 3.0, 4.0, 5.0, or 10.0 times stoichiometric equivalence, respectively, and the control experiment without oxygen addition was carried out. The results showed that the initial H 2 S concentrations of biogas are about 3235 ± 185 mg/m 3 (mesophilic) or 3394 ± 126 mg/m 3 (thermophilic), respectively. The desulfurization efficiency is 72.3 % (mesophilic) or 65.6 % (thermophilic), respectively, with oxygen addition by stoichiometric relation. When the oxygen feeded in amount of 2∼4 times, theoretical quantity demanded the removal efficiency of hydrogen sulfide could be over 92 %, and the oxygen residue in biogas could be maintained less than 0.5 %, which fit the requirement of biogas used as vehicle fuel or combined to the grid. Though further more oxygen addition could promote the removal efficiency of hydrogen sulfide (about 93.6 %), the oxygen residue in biogas would be higher than the application limit concentration (0.5 %). Whether mesophilic or thermophilic fermentation with the extra addition of oxygen, there were no obvious changes in the gas production and methane concentration. In conclusion, in-situ desulfurization can be achieved in the anaerobic methane fermentation system under micro-oxygen environment. In addition, air could be used as a substitute oxygen resource on the situation without strict demand for the methane content of biogas.

  19. Photocatalytic hydrogen production of the CdS/TiO2-WO3 ternary hybrid under visible light irradiation.

    PubMed

    Chen, Yi-Lin; Lo, Shang-Lien; Chang, Hsiang-Ling; Yeh, Hsiao-Mei; Sun, Liping; Oiu, Chunsheng

    2016-01-01

    An attractive and effective method for converting solar energy into clean and renewable hydrogen energy is photocatalytic water splitting over semiconductors. The study aimed at utilizing organic sacrificial agents in water, modeled by formic acid, in combination with visible light driven photocatalysts to produce hydrogen with high efficiencies. The photocatalytic hydrogen production of cadmium sulfide (CdS)/titanate nanotubes (TNTs) binary hybrid with specific CdS content was investigated. After visible light irradiation for 3 h, the hydrogen production rate of 25 wt% CdS/TNT achieved 179.35 μmol·h(-1). Thanks to the two-step process, CdS/TNTs-WO3 ternary hybrid can better promote the efficiency of water splitting compared with CdS/TNTs binary hybrid. The hydrogen production of 25 wt% CdS/TNTs-WO3 achieved 212.68 μmol·h(-1), under the same condition. Coating of platinum metal onto the WO3 could further promote the reaction. Results showed that 0.2 g 0.1 wt% Pt/WO3 + 0.2 g 25 wt% CdS/TNTs had the best hydrogen production rate of 428.43 μmol·h(-1). The resultant materials were well characterized by high-resolution transmission electron microscope, X-ray diffraction, scanning electron microscopy, and UV-Vis spectra.

  20. Biofiltration of hydrogen sulfide by Sulfolobus metallicus at high temperatures.

    PubMed

    Morales, M; Silva, J; Morales, P; Gentina, J C; Aroca, G

    2012-01-01

    Biofiltration of reduced sulfur compounds such as hydrogen sulfide has been mainly applied to emissions at mild temperatures (25 to 35 °C). However, an important number of industrial gaseous emission containing sulfur compounds, from diverse industrial sectors (petroleum refinery, cellulose production, smelting, rendering plants and food industries) are emitted at temperatures over 50 °C. Most of the studies on thermophilic systems report that a higher elimination capacity can be obtained at elevated temperature, allowing the design of smaller equipment for the same loading rate than that required for removing the same load under mesophilic conditions. A biotrickling filter inoculated with Sulfolobus metallicus, which operates at three different residence times, 60, 80 and 120 s, and two different temperatures (45 and 55 °C) for treating H(2)S is reported. The input loads of H(2)S were progressively increased from 0 to 100 gS/m(3). The aim of this study was to determine the capacity and ability of S. metallicus to oxidize H(2)S at high temperatures. The better removal capacity of H(2)S obtained was 37.1 ± 1.7 gS/m(3) h at 55 °C for a residence time of 120 s. The difference of the removal capacity of H(2)S between the two temperatures was 4 g/m(3) h on average of sulfur removal for the different residence times.

  1. Bismuth-Based, Disposable Sensor for the Detection of Hydrogen Sulfide Gas.

    PubMed

    Rosolina, Samuel M; Carpenter, Thomas S; Xue, Zi-Ling

    2016-02-02

    A new sensor for the detection of hydrogen sulfide (H2S) gas has been developed to replace commercial lead(II) acetate-based test papers. The new sensor is a wet, porous, paper-like substrate coated with Bi(OH)3 or its alkaline derivatives at pH 11. In contrast to the neurotoxic lead(II) acetate, bismuth is used due to its nontoxic properties, as Bi(III) has been a reagent in medications such as Pepto-Bismol. The reaction between H2S gas and the current sensor produces a visible color change from white to yellow/brown, and the sensor responds to ≥ 30 ppb H2S in a total volume of 1.35 L of gas, a typical volume of human breath. The alkaline, wet coating helps the trapping of acidic H2S gas and its reaction with Bi(III) species, forming colored Bi2S3. The sensor is suitable for testing human bad breath and is at least 2 orders of magnitude more sensitive than a commercial H2S test paper based on Pb(II)(acetate)2. The small volume of 1.35-L H2S is important, as the commercial Pb(II)(acetate)2-based paper requires large volumes of 5 ppm H2S gas. The new sensor reported here is inexpensive, disposable, safe, and user-friendly. A simple, laboratory setup for generating small volumes of ppb-ppm of H2S gas is also reported.

  2. Sulfide-responsive transcriptional repressor SqrR functions as a master regulator of sulfide-dependent photosynthesis.

    PubMed

    Shimizu, Takayuki; Shen, Jiangchuan; Fang, Mingxu; Zhang, Yixiang; Hori, Koichi; Trinidad, Jonathan C; Bauer, Carl E; Giedroc, David P; Masuda, Shinji

    2017-02-28

    Sulfide was used as an electron donor early in the evolution of photosynthesis, with many extant photosynthetic bacteria still capable of using sulfur compounds such as hydrogen sulfide (H 2 S) as a photosynthetic electron donor. Although enzymes involved in H 2 S oxidation have been characterized, mechanisms of regulation of sulfide-dependent photosynthesis have not been elucidated. In this study, we have identified a sulfide-responsive transcriptional repressor, SqrR, that functions as a master regulator of sulfide-dependent gene expression in the purple photosynthetic bacterium Rhodobacter capsulatus SqrR has three cysteine residues, two of which, C41 and C107, are conserved in SqrR homologs from other bacteria. Analysis with liquid chromatography coupled with an electrospray-interface tandem-mass spectrometer reveals that SqrR forms an intramolecular tetrasulfide bond between C41 and C107 when incubated with the sulfur donor glutathione persulfide. SqrR is oxidized in sulfide-stressed cells, and tetrasulfide-cross-linked SqrR binds more weakly to a target promoter relative to unmodified SqrR. C41S and C107S R. capsulatus SqrRs lack the ability to respond to sulfide, and constitutively repress target gene expression in cells. These results establish that SqrR is a sensor of H 2 S-derived reactive sulfur species that maintain sulfide homeostasis in this photosynthetic bacterium and reveal the mechanism of sulfide-dependent transcriptional derepression of genes involved in sulfide metabolism.

  3. [Fatal outcome of an hydrogen sulfide poisoning].

    PubMed

    Querellou, E; Jaffrelot, M; Savary, D; Savry, C; Perfus, J-P

    2005-10-01

    We report a case of fatal outcome poisoning by massive exposure to hydrogen sulfide of a sewer worker. This rare event was associated with a moderate intoxication of two members of the rescue team. The death was due to asystole and massive lung oedema. Autopsy analysis showed diffuse necrotic lesions in lungs. Hydrogen sulfide is a direct and systemic poison, produced by organic matter decomposition. The direct toxicity mechanism is still unclear. The systemic toxicity is due to an acute toxicity by oxygen depletion at cellular level. It is highly diffusable and potentially very dangerous. At low concentration, rotten egg smell must trigger hydrogen sulfide suspicion since at higher concentration it is undetectable, making intoxication possible. In case of acute intoxication, there is an almost instantaneous cardiovascular failure and a rapid death. Hydrogen sulfide exposure requires prevention measures and more specifically the use of respiratory equipment for members of the rescue team.

  4. A Reaction-Based Novel Fluorescent Probe for Detection of Hydrogen Sulfide and Its Application in Wine.

    PubMed

    Wang, Hao; Wang, Jialin; Yang, Shaoxiang; Tian, Hongyu; Sun, Baoguo; Liu, Yongguo

    2018-01-01

    A new reaction-based fluorescent probe 6-cyanonaphthalen-2-yl-2,4- dinitrobenzenesulfonate (probe 1) was designed and synthesized for detection of hydrogen sulfide (H 2 S). The addition of H 2 S to a solution of probe 1 resulted in a marked fluorescence increased accompanied by a visual color change from colorless to yellow. Importantly, this distinct color response indicates that probe 1 could be used as a visual tool for detection of H 2 S. H 2 S can be detected quantitatively in the concentration range 0 to 25 μM and the detection limit was 30 nM. Moreover, probe 1 was successfully used as a sensor to determine H 2 S levels in red wine and beer. Fluorescent probe 1 could be employed as a visible sensor for H 2 S. Probe 1 could be used to detect H 2 S quantitatively in food simple. © 2017 Institute of Food Technologists®.

  5. Optimum reaction ratio of coal fly ash to blast furnace cement for effective removal of hydrogen sulfide.

    PubMed

    Asaoka, Satoshi; Okamura, Hideo; Kim, Kyunghoi; Hatanaka, Yuzuru; Nakamoto, Kenji; Hino, Kazutoshi; Oikawa, Takahito; Hayakawa, Shinjiro; Okuda, Tetsuji

    2017-02-01

    Reducing hydrogen sulfide concentration in eutrophic marine sediments is crucial to maintaining healthy aquatic ecosystems. Managing fly ash, 750 million tons of which is generated annually throughout the world, is another serious environmental problem. In this study, we develop an approach that addresses both these issues by mixing coal fly ash from coal-fired power plants with blast furnace cement to remediate eutrophic sediments. The purpose of this study is to optimize the mixing ratio of coal fly ash and blast furnace cement to improve the rate of hydrogen sulfide removal based on scientific evidence obtained by removal experiments and XAFS, XRD, BET, and SEM images. In the case of 10 mg-S L -1 of hydrogen sulfide, the highest removal rate of hydrogen sulfide was observed for 87 wt% of coal fly ash due to decreased competition of adsorption between sulfide and hydroxyl ions. Whereas regarding 100 mg-S L -1 , the hydrogen sulfide removal rate was the highest for 95 wt% of coal fly ash. However, for both concentrations, the removal rate obtained by 87 wt% and 95 wt% were statistically insignificant. The crushing strength of the mixture was over 1.2 N mm -2 when the coal fly ash mixing ratio was less than 95 wt%. Consequently, the mixing ratio of coal fly ash was optimized at 87 wt% in terms of achieving both high hydrogen sulfide removal rate and sufficient crushing strength. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Valorizing waste iron powder in biogas production: Hydrogen sulfide control and process performances.

    PubMed

    Andriamanohiarisoamanana, Fetra J; Shirai, Tomoya; Yamashiro, Takaki; Yasui, Seiichi; Iwasaki, Masahiro; Ihara, Ikko; Nishida, Takehiro; Tangtaweewipat, Suchon; Umetsu, Kazutaka

    2018-02-15

    Biogas is composed of different gases including hydrogen sulfide (H 2 S), which is a hazardous gas that damages pipes and generators in anaerobic digestion system. The objective of this study was to control H 2 S by waste iron powder produced by laser cutting machine in a steel and iron industry. Waste iron powder was mixed with dairy manure at a concentration between 2.0 and 20.0 g/L in batch experiments, while the concentration was varied between 1.0 and 4.0 g/L in bench experiment. In batch experiment, a reduction of up to 93% of H 2 S was observed at waste iron powder of 2.0 g/L (T1), while the reduction was of more than 99% at waste iron powder beyond 8.0 g/L (T4 ∼ T6). The total sulfide concentration (S T ) increased together with waste iron powder concentration and was fitted with a quadratic equation with a maximum S T of 208.0 mg/L at waste iron powder of 20.2 g/L. Waste iron powder did not have significant effect on methane yield in batch and bench experiments. However, hydrolysis rate constant was increased by almost 100%, while the lag-phase period was reduced to half in test digesters compared to that in control digester. In bench experiment, H 2 S concentration was reduced by 89% at 2.0 g/L, while 50% at 1.0 g/L. Therefore, waste iron powder was effectively removed H 2 S and did not affect negatively anaerobic digestion process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. The removal of hydrogen sulfide from biogas in a microaerobic biotrickling filter using polypropylene carrier as packing material.

    PubMed

    Zhou, Qiying; Liang, Hong; Yang, Senlin; Jiang, Xia

    2015-04-01

    Biological removal of hydrogen sulfide in biogas is an increasingly adopted alternative to the conventional physicochemical processes, because of its economic and environmental benefits. In this study, a microaerobic biofiltration system packed with polypropylene carrier was used to investigate the removal of high concentrations of H2S contained in biogas from an anaerobic digester. The results show that H2S in biogas was removed completely under different inlet concentrations of H2S from 2065 ± 234 to 7818 ± 131 ppmv, and the elimination capacity of H2S in the filter achieved about 122 g H2S/m(3)/h. It was observed that the content of CH4 in biogas increased after the biogas biodesulfurization process, which was beneficial for the further utilization of biogas. The elemental sulfur and sulfate were the main sulfur species of H2S degradation, and elemental sulfur was dominant (about 80 %) under high inlet H2S concentration. The results of terminal restriction fragment length polymorphism (T-RFLP) and fluorescence in situ hybridization (FISH) show that the population of sulfide-oxidizing bacteria (SOB) species in the filter changed with different concentrations of H2S. The microaerobic biofiltration system allows the potential use of biogas and the recovery of elemental sulfur resource simultaneously.

  8. Endogenous generation of hydrogen sulfide and its regulation in Shewanella oneidensis

    PubMed Central

    Wu, Genfu; Li, Ning; Mao, Yinting; Zhou, Guangqi; Gao, Haichun

    2015-01-01

    Hydrogen sulfide (H2S) has been recognized as a physiological mediator with a variety of functions across all domains of life. In this study, mechanisms of endogenous H2S generation in Shewanella oneidensis were investigated. As a research model with highly diverse anaerobic respiratory pathways, the microorganism is able to produce H2S by respiring on a variety of sulfur-containing compounds with SirACD and PsrABC enzymatic complexes, as well as through cysteine degradation with three enzymes, MdeA, SO_1095, and SseA. We showed that the SirACD and PsrABC complexes, which are predominantly, if not exclusively, responsible for H2S generation via respiration of sulfur species, do not interplay with each other. Strikingly, a screen for regulators controlling endogenous H2S generation by transposon mutagenesis identified global regulator Crp to be essential to all H2S-generating processes. In contrast, Fnr and Arc, two other global regulators that have a role in respiration, are dispensable in regulating H2S generation via respiration of sulfur species. Interestingly, Arc is involved in the H2S generation through cysteine degradation by repressing expression of the mdeA gene. We further showed that expression of the sirA and psrABC operons is subjected to direct regulation of Crp, but the mechanisms underlying the requirement of Crp for H2S generation through cysteine degradation remain elusive. PMID:25972854

  9. Endogenous Hydrogen Sulfide Enhances Cell Proliferation of Human Gastric Cancer AGS Cells.

    PubMed

    Sekiguchi, Fumiko; Sekimoto, Teruki; Ogura, Ayaka; Kawabata, Atsufumi

    2016-01-01

    Hydrogen sulfide (H2S), the third gasotransmitter, is endogenously generated by certain H2S synthesizing enzymes, including cystathionine-γ-lyase (CSE) and cystathionine-β-synthase (CBS) from L-cysteine in the mammalian body. Several studies have shown that endogenous and exogenous H2S affects the proliferation of cancer cells, although the effects of H2S appear to vary with cell type, being either promotive or suppressive. In the present study, we determined whether endogenously formed H2S regulates proliferation in human gastric cancer AGS cells. CSE, but not CBS, was expressed in AGS cells. CSE inhibitors, DL-propargylglycine (PPG) and β-cyano-L-alanine (BCA), significantly suppressed the proliferation of AGS cells in a concentration-dependent manner. CSE inhibitors did not increase lactate dehydrogenase (LDH) release in the same concentration range. The inhibitory effects of PPG and BCA on cell proliferation were reversed by repetitive application of NaHS, a donor of H2S. Interestingly, nuclear condensation and fragmentation were detected in AGS cells treated with PPG or BCA. These results suggest that endogenous H2S produced by CSE may contribute to the proliferation of gastric cancer AGS cells, most probably through anti-apoptotic actions.

  10. Discrimination of the oral microbiota associated with high hydrogen sulfide and methyl mercaptan production

    PubMed Central

    Takeshita, Toru; Suzuki, Nao; Nakano, Yoshio; Yasui, Masaki; Yoneda, Masahiro; Shimazaki, Yoshihiro; Hirofuji, Takao; Yamashita, Yoshihisa

    2012-01-01

    Both hydrogen sulfide (H2S) and methyl mercaptan (CH3SH) are frequently detected in large amounts in malodorous mouth air. We investigated the bacterial composition of saliva of 30 subjects with severe oral malodor exhibiting extreme CH3SH/H2S ratios (high H2S but low CH3SH concentrations, n = 14; high CH3SH but low H2S concentrations, n = 16) and 13 subjects without malodor, using barcoded pyrosequencing analysis of the 16S rRNA gene. Phylogenetic community analysis with the UniFrac distance metric revealed a distinct bacterial community structure in each malodor group. The H2S group showed higher proportions of the genera Neisseria, Fusobacterium, Porphyromonas and SR1 than the other two groups, whereas the CH3SH group had higher proportions of the genera Prevotella, Veillonella, Atopobium, Megasphaera, and Selenomonas. Our results suggested that distinct bacterial populations in the oral microbiota are involved in production of high levels of H2S and CH3SH in the oral cavity. PMID:22355729

  11. Discrimination of the oral microbiota associated with high hydrogen sulfide and methyl mercaptan production.

    PubMed

    Takeshita, Toru; Suzuki, Nao; Nakano, Yoshio; Yasui, Masaki; Yoneda, Masahiro; Shimazaki, Yoshihiro; Hirofuji, Takao; Yamashita, Yoshihisa

    2012-01-01

    Both hydrogen sulfide (H2S) and methyl mercaptan (CH(3)SH) are frequently detected in large amounts in malodorous mouth air. We investigated the bacterial composition of saliva of 30 subjects with severe oral malodor exhibiting extreme CH(3)SH/H(2)S ratios (high H(2)S but low CH(3)SH concentrations, n 5 14; high CH(3)SH but low H2S concentrations, n 5 16) and 13 subjects without malodor, using barcoded pyrosequencing analysis of the 16S rRNA gene. Phylogenetic community analysis with the UniFrac distance metric revealed a distinct bacterial community structure in each malodor group. The H2S group showed higher proportions of the genera Neisseria, Fusobacterium, Porphyromonas and SR1 than the other two groups, whereas the CH(3)SH group had higher proportions of the genera Prevotella, Veillonella,Atopobium, Megasphaera, and Selenomonas. Our results suggested that distinct bacterial populations in the oral microbiota are involved in production of high levels of H2S and CH3SH in the oral cavity.

  12. Ammonium Additives to Dissolve Lithium Sulfide through Hydrogen Binding for High-Energy Lithium–Sulfur Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Huilin; Han, Kee Sung; Vijayakumar, M.

    In rechargeable Li-S batteries, the uncontrollable passivation of electrodes by highly insulating Li2S limits sulfur utilization, increases polarization and decreases cycling stability. Dissolving Li2S in organic electrolyte is a facile solution to maintain the active reaction interface between electrolyte and sulfur cathode, and thus address the above issues. Herein, ammonium salts are demonstrated as effective additives to promote the dissolution of Li2S to 1.25 M in DMSO solvent at room temperature. NMR measurements show that the strong hydrogen binding effect of N-H groups plays a critical role in dissolving Li2S by forming complex ligands with S2- anions coupled with themore » solvent’s solvating surrounding. Ammonium additives in electrolyte can also significantly improve the oxidation kinetics of Li2S, therefore enables the direct use of Li2S as cathode material in Li-S battery system in the future. This provides a new approach to manage the solubility of lithium sulfides through cation coordination with sulfide anion.« less

  13. Insights into solar nebula formation of pyrrhotite from nanoscale disequilibrium phases produced by H2S sulfidation of Fe metal

    DOE PAGES

    Gainsforth, Z; Lauretta, DS; Tamura, N; ...

    2017-09-01

    © 2017 by Walter de Gruyter Berlin/Boston. Lauretta (2005) produced sulfide in the laboratory by exposing canonical nebular metal analogs to H 2 S gas under temperatures and pressures relevant to the formation of the Solar System. The resulting reactions produced a suite of sulfides and nanophase materials not visible at the microprobe scale, but which we have now analyzed by TEM for comparison with interplanetary dust samples and comet Wild 2 samples returned by the Stardust mission. We find the unexpected result that disequilibrium formation favors pyrrhotite over troilite and also produces minority schreibersite, daubréelite, barringerite, taenite, oldhamite, andmore » perryite at the metal-sulfide interface. TEM identification of nanophases and analysis of pyrrhotite superlattice reflections illuminate the formation pathway of disequilibrium sulfide. We discuss the conditions under which such disequilibrium can occur, and implications for formation of sulfide found in extraterrestrial materials.« less

  14. Hydrogen Production from Liquid Hydrocarbons Demonstration Program.

    DTIC Science & Technology

    1986-09-01

    The results of a 17 hour run indicate that the DP can produce hydrogen-containing product gas with less than 1 ppmv hydrogen sulfide . (4) Product...promotes the hydrolysis of carbonyl sulfide (COS) by the reaction: COS + H20 = H2 S + CO2 (2) Feed inlet temperature is 550*F. The water gas reaction is...feed stream to less than 10 ppmw. This is achieved by contacting the product gas stream with a zinc oxide bed where the hydrogen sulfide will react with

  15. Ammonium Additives to Dissolve Lithium Sulfide through Hydrogen Binding for High-Energy Lithium-Sulfur Batteries.

    PubMed

    Pan, Huilin; Han, Kee Sung; Vijayakumar, M; Xiao, Jie; Cao, Ruiguo; Chen, Junzheng; Zhang, Jiguang; Mueller, Karl T; Shao, Yuyan; Liu, Jun

    2017-02-08

    In rechargeable Li-S batteries, the uncontrollable passivation of electrodes by highly insulating Li 2 S limits sulfur utilization, increases polarization, and decreases cycling stability. Dissolving Li 2 S in organic electrolyte is a facile solution to maintain the active reaction interface between electrolyte and sulfur cathode, and thus address the above issues. Herein, ammonium salts are demonstrated as effective additives to promote the dissolution of Li 2 S to 1.25 M in DMSO solvent at room temperature. NMR measurements show that the strong hydrogen binding effect of N-H groups plays a critical role in dissolving Li 2 S by forming complex ligands with S 2- anions coupled with the solvent's solvating surrounding. Ammonium additives in electrolyte can also significantly improve the oxidation kinetics of Li 2 S, and therefore enable the direct use of Li 2 S as cathode material in Li-S battery system in the future. This provides a new approach to manage the solubility of lithium sulfides through cation coordination with sulfide anion.

  16. Synthesis and characterization of nanoscale molybdenum sulfide catalysts by controlled gas phase decomposition of Mo(CO){sub 6} and H{sub 2}S

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Close, M.R.; Petersen, J.L.; Kugler, E.L.

    1999-04-05

    Molybdenum sulfide catalysts with surface areas ranging from 16 to 120 m{sup 2}/g were prepared by the thermal decomposition of Mo(CO){sub 6} and H{sub 2}S vapors in a specially designed tubular reactor system. The gas phase decomposition (GPD) reactions performed at 500--1100 C produced only MoS{sub 2} when excess H{sub 2}S was used. The optimum temperature range for the high-yield production of MoS{sub 2} was from 500 to 700 C. By controlling the decomposition temperature, the Mo(CO){sub 6} partial pressure, or the inert gas flow rate, the surface area, oxidation state, chemical composition, and the grain size of the molybdenummore » sulfide product(s) were modified. At reactor temperatures between 300 and 400 C, lower valent molybdenum sulfide materials, which were sulfur deficient relative to MoS{sub 2}, were obtained with formal molybdenum oxidation states intermediate to those found for Chevrel phase compounds, M{prime}Mo{sub 6}S{sub 8} (M{prime} = Fe, Ni, Co) and MoS{sub 2}. By lowering the H{sub 2}S flow rate used for the GPD reaction at 1000 C, mixtures containing variable amounts of MoS{sub 2} and Mo{sub 2}S{sub 3} were produced. Thus, through the modification of critical reactor parameters used for these GPD reactions, fundamental material properties were controlled.« less

  17. Dual-Reactable Fluorescent Probes for Highly Selective and Sensitive Detection of Biological H2 S.

    PubMed

    Wei, Chao; Wang, Runyu; Zhang, Changyu; Xu, Guoce; Li, Yanyan; Zhang, Qiang-Zhe; Li, Lu-Yuan; Yi, Long; Xi, Zhen

    2016-05-06

    Hydrogen sulfide (H2 S) is an important endogenous signaling molecule with a variety of biological functions. Development of fluorescent probes for highly selective and sensitive detection of H2 S is necessary. We show here that dual-reactable fluorescent H2 S probes could react with higher selectivity than single-reactable probes. One of the dual-reactable probes gives more than 4000-fold turn-on response when reacting with H2 S, the largest response among fluorescent H2 S probes reported thus far. In addition, the probe could be used for high-throughput enzymatic assays and for the detection of Cys-induced H2 S in cells and in zebrafish. These dual-reactable probes hold potential for highly selective and sensitive detection of H2 S in biological systems. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. The route and timing of hydrogen sulfide therapy critically impacts intestinal recovery following ischemia and reperfusion injury.

    PubMed

    Jensen, Amanda R; Drucker, Natalie A; Te Winkel, Jan P; Ferkowicz, Michael J; Markel, Troy A

    2018-06-01

    Hydrogen sulfide (H 2 S) has many beneficial properties and may serve as a novel treatment in patients suffering from intestinal ischemia-reperfusion injury (I/R). The purpose of this study was to examine the method of delivery and timing of administration of H 2 S for intestinal therapy during ischemic injury. We hypothesized that 1) route of administration of hydrogen sulfide would impact intestinal recovery following acute mesenteric ischemia and 2) preischemic H 2 S conditioning using the optimal mode of administration as determined above would provide superior protection compared to postischemic application. Male C57BL/6J mice underwent intestinal ischemia by temporary occlusion of the superior mesenteric artery. Following ischemia, animals were treated according to one of the following (N=6 per group): intraperitoneal or intravenous injection of GYY4137 (H 2 S-releasing donor, 50mg/kg in PBS), vehicle, inhalation of oxygen only, inhalation of 80ppm hydrogen sulfide gas. Following 24-h recovery, perfusion was assessed via laser Doppler imaging, and animals were euthanized. Perfusion and histology data were assessed, and terminal ileum samples were analyzed for cytokine production following ischemia. Once the optimal route of administration was determined, preischemic conditioning with H 2 S was undertaken using that route of administration. All data were analyzed using Mann-Whitney. P-values <0.05 were significant. Mesenteric perfusion following intestinal I/R was superior in mice treated with intraperitoneal (IP) GYY4137 (IP vehicle: 25.6±6.0 vs. IP GYY4137: 79.7±15.1; p=0.02) or intravenous (IV) GYY4137 (IV vehicle: 36.3±5.9 vs. IV GYY4137: 100.7±34.0; p=0.03). This benefit was not observed with inhaled H 2 S gas (O2 vehicle: 66.6±11.4 vs. H 2 S gas: 81.8±6.0; p=0.31). However, histological architecture was only preserved with intraperitoneal administration of GYY4127 (IP vehicle: 3.4±0.4 vs. IP GYY4137: 2±0.3; p=0.02). Additionally, IP GYY4137

  19. Key bioactive reaction products of the NO/H2S interaction are S/N-hybrid species, polysulfides, and nitroxyl

    PubMed Central

    Cortese-Krott, Miriam M.; Kuhnle, Gunter G. C.; Dyson, Alex; Fernandez, Bernadette O.; Grman, Marian; DuMond, Jenna F.; Barrow, Mark P.; McLeod, George; Nakagawa, Hidehiko; Ondrias, Karol; Nagy, Péter; King, S. Bruce; Saavedra, Joseph E.; Keefer, Larry K.; Singer, Mervyn; Kelm, Malte; Butler, Anthony R.; Feelisch, Martin

    2015-01-01

    Experimental evidence suggests that nitric oxide (NO) and hydrogen sulfide (H2S) signaling pathways are intimately intertwined, with mutual attenuation or potentiation of biological responses in the cardiovascular system and elsewhere. The chemical basis of this interaction is elusive. Moreover, polysulfides recently emerged as potential mediators of H2S/sulfide signaling, but their biosynthesis and relationship to NO remain enigmatic. We sought to characterize the nature, chemical biology, and bioactivity of key reaction products formed in the NO/sulfide system. At physiological pH, we find that NO and sulfide form a network of cascading chemical reactions that generate radical intermediates as well as anionic and uncharged solutes, with accumulation of three major products: nitrosopersulfide (SSNO−), polysulfides, and dinitrososulfite [N-nitrosohydroxylamine-N-sulfonate (SULFI/NO)], each with a distinct chemical biology and in vitro and in vivo bioactivity. SSNO− is resistant to thiols and cyanolysis, efficiently donates both sulfane sulfur and NO, and potently lowers blood pressure. Polysulfides are both intermediates and products of SSNO− synthesis/decomposition, and they also decrease blood pressure and enhance arterial compliance. SULFI/NO is a weak combined NO/nitroxyl donor that releases mainly N2O on decomposition; although it affects blood pressure only mildly, it markedly increases cardiac contractility, and formation of its precursor sulfite likely contributes to NO scavenging. Our results unveil an unexpectedly rich network of coupled chemical reactions between NO and H2S/sulfide, suggesting that the bioactivity of either transmitter is governed by concomitant formation of polysulfides and anionic S/N-hybrid species. This conceptual framework would seem to offer ample opportunities for the modulation of fundamental biological processes governed by redox switching and sulfur trafficking. PMID:26224837

  20. Hydrogen Sulfide Induced Disruption of Na+ Homeostasis in the Cortex

    PubMed Central

    Chao, Dongman; He, Xiaozhou; Yang, Yilin; Balboni, Gianfranco; Salvadori, Severo; Kim, Dong H.; Xia, Ying

    2012-01-01

    Maintenance of ionic balance is essential for neuronal functioning. Hydrogen sulfide (H2S), a known toxic environmental gaseous pollutant, has been recently recognized as a gasotransmitter involved in numerous biological processes and is believed to play an important role in the neural activities under both physiological and pathological conditions. However, it is unclear if it plays any role in maintenance of ionic homeostasis in the brain under physiological/pathophysiological conditions. Here, we report by directly measuring Na+ activity using Na+ selective electrodes in mouse cortical slices that H2S donor sodium hydrosulfide (NaHS) increased Na+ influx in a concentration-dependent manner. This effect could be partially blocked by either Na+ channel blocker or N-methyl-D-aspartate receptor (NMDAR) blocker alone or almost completely abolished by coapplication of both blockers but not by non-NMDAR blocker. These data suggest that increased H2S in pathophysiological conditions, e.g., hypoxia/ischemia, potentially causes a disruption of ionic homeostasis by massive Na+ influx through Na+ channels and NMDARs, thus injuring neural functions. Activation of delta-opioid receptors (DOR), which reduces Na+ currents/influx in normoxia, had no effect on H2S-induced Na+ influx, suggesting that H2S-induced disruption of Na+ homeostasis is resistant to DOR regulation and may play a major role in neuronal injury in pathophysiological conditions, e.g., hypoxia/ischemia. PMID:22474073

  1. High hydrogen desorption properties of Mg-based nanocomposite at moderate temperatures: The effects of multiple catalysts in situ formed by adding nickel sulfides/graphene

    NASA Astrophysics Data System (ADS)

    Xie, Xiubo; Chen, Ming; Liu, Peng; Shang, Jiaxiang; Liu, Tong

    2017-12-01

    Nickel sulfides decorated reduced graphene oxide (rGO) has been produced by co-reducing Ni2+ and graphene oxide (GO), and is subsequently ball milled with Mg nanoparticles (NPs) produced by hydrogen plasma metal reaction (HPMR). The nickel sulfides of about 800 nm completely in situ change to MgS, Mg2Ni and Ni multiple catalysts after first hydrogenation/dehydrogenation process at 673 K. The Mg-5wt%NiS/rGO nanocomposite shows the highest hydrogen desorption kinetics and capacity properties, and the catalytic effect order of the additives is NiS/rGO, NiS and rGO. At 573 K, the Mg-NiS/rGO nanocomposite can quickly desorb 3.7 wt% H2 in 10 min and 4.5 wt% H2 in 60 min. The apparent hydrogen absorption and desorption activation energies of the Mg-5wt%NiS/rGO nanocomposite are decreased to 44.47 and 63.02 kJ mol-1, smaller than those of the Mg-5wt%rGO and Mg-5wt%NiS samples. The best hydrogen desorption properties of the Mg-5wt%NiS/rGO nanocomposite can be explained by the synergistic catalytic effects of the highly dispersed MgS, Mg2Ni and Ni catalysts on the rGO sheets, and the more nucleation sites between the catalysts, rGO sheets and Mg matrix.

  2. [NO and H2S brain systems of the Japanese shore crab Hemigrapsus sanguineus under conditions of anoxia].

    PubMed

    Kotsiuba, E P

    2012-01-01

    The topography and dynamics of the activity of the enzymes of the synthesis of nitric oxide (NO) and hydrogen sulfide (H2S) in the brain of the Japanese shore crab Hemigrapsus sanguineus after 1, 6, and 12 h ofanoxia was studied histochemically and immunocytochemically. Changes in the activity and number of NO- and CBS-immune-positive cells that take place due to anoxia and the intensity of which depends on the duration of the influence were revealed. The fact that the balance between the nitric oxide and hydrogen sulfide systems in the brain of the crabs H. sanguineus is preserved indicates the joint participation of those systems in the central regulation of adaptive mechanisms under the influence of anoxia and, apparently, plays an important role in the adaptation of these hydrobionts to oxygen deficit.

  3. Photoelectron spectroscopy and density functional theory studies of (FeS)mH- (m = 2-4) cluster anions: effects of the single hydrogen.

    PubMed

    Yin, Shi; Bernstein, Elliot R

    2017-12-20

    Single hydrogen containing iron hydrosulfide cluster anions (FeS) m H - (m = 2-4) are studied by photoelectron spectroscopy (PES) at 3.492 eV (355 nm) and 4.661 eV (266 nm) photon energies, and by Density Functional Theory (DFT) calculations. The structural properties, relative energies of different spin states and isomers, and the first calculated vertical detachment energies (VDEs) of different spin states for these (FeS) m H - (m = 2-4) cluster anions are investigated at various reasonable theory levels. Two types of structural isomers are found for these (FeS) m H - (m = 2-4) clusters: (1) the single hydrogen atom bonds to a sulfur site (SH-type); and (2) the single hydrogen atom bonds to an iron site (FeH-type). Experimental and theoretical results suggest such available different SH- and FeH-type structural isomers should be considered when evaluating the properties and behavior of these single hydrogen containing iron sulfide clusters in real chemical and biological systems. Compared to their related, respective pure iron sulfur (FeS) m - clusters, the first VDE trend of the diverse type (FeS) m H 0,1 - (m = 1-4) clusters can be understood through (1) the different electron distribution properties of their highest singly occupied molecular orbital employing natural bond orbital analysis (NBO/HSOMO), and (2) the partial charge distribution on the NBO/HSOMO localized sites of each cluster anion. Generally, the properties of the NBO/HSOMOs play the principal role with regard to the physical and chemical properties of all the anions. The change of cluster VDE from low to high is associated with the change in nature of their NBO/HSOMO from a dipole bound and valence electron mixed character, to a valence p orbital on S, to a valence d orbital on Fe, and to a valence p orbital on Fe or an Fe-Fe delocalized valence bonding orbital. For clusters having the same properties for NBO/HSOMOs, the partial charge distributions at the NBO/HSOMO localized sites additionally

  4. Evaluation of feed COD/sulfate ratio as a control criterion for the biological hydrogen sulfide production and lead precipitation.

    PubMed

    Velasco, Antonio; Ramírez, Martha; Volke-Sepúlveda, Tania; González-Sánchez, Armando; Revah, Sergio

    2008-03-01

    The ability of sulfate-reducing bacteria to produce hydrogen sulfide and the high affinity of sulfide to react with divalent metallic cations represent an excellent option to remove heavy metals from wastewater. Different parameters have been proposed to control the hydrogen sulfide production by anaerobic bacteria, such as the organic and sulfate loading rates and the feed COD/SO4(2-) ratio. This work relates the feed COD/SO4(2-) ratio with the hydrogen sulfide production and dissolved lead precipitation, using ethanol as carbon and energy source in an up-flow anaerobic sludge blanket reactor. A maximum dissolved sulfide concentration of 470+/-7 mg S/L was obtained at a feed COD/SO4(2-) ratio of 2.5, with sulfate and ethanol conversions of approximately 94 and 87%, respectively. The lowest dissolved sulfide concentration (145+/-10 mg S/L) was observed with a feed COD/SO4(2-) ratio of 0.67. Substantial amounts of acetate (510-1730 mg/L) were produced and accumulated in the bioreactor from ethanol oxidation. Although only incomplete oxidation of ethanol to acetate was observed, the consortium was able to remove 99% of the dissolved lead (200 mg/L) with a feed COD/SO4(2-) ratio of 1.5. It was found that the feed COD/SO4(2-) ratio could be an adequate parameter to control the hydrogen sulfide production and the consequent precipitation of dissolved lead.

  5. Inhibition of hydrogen sulfide generation from disposed gypsum drywall using chemical inhibitors.

    PubMed

    Xu, Qiyong; Townsend, Timothy; Bitton, Gabriel

    2011-07-15

    Disposal of gypsum drywall in landfills has been demonstrated to elevate hydrogen sulfide (H(2)S) concentrations in landfill gas, a problem with respect to odor, worker safety, and deleterious effect on gas-to-energy systems. Since H(2)S production in landfills results from biological activity, the concept of inhibiting H(2)S production through the application of chemical agents to drywall during disposal was studied. Three possible inhibition agents - sodium molybdate (Na(2)MoO(4)), ferric chloride (FeCl(3)), and hydrated lime (Ca(OH)(2)) - were evaluated using flask and column experiments. All three agents inhibited H(2)S generation, with Na(2)MoO(4) reducing H(2)S generation by interrupting the biological sulfate reduction process and Ca(OH)(2) providing an unfavorable pH for biological growth. Although FeCl(3) was intended to provide an electron acceptor for a competing group of bacteria, the mechanism found responsible for inhibiting H(2)S production in the column experiment was a reduction in pH. Application of both Na(2)MoO(4) and FeCl(3) inhibited H(2)S generation over a long period (over 180 days), but the impact of Ca(OH)(2) decreased with time as the alkalinity it contributed was neutralized by the generated H(2)S. Practical application and potential environmental implications need additional exploration. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Case Study: Microbial Ecology and Forensics of Chinese Drywall-Elemental Sulfur Disproportionation as Primary Generator of Hydrogen Sulfide.

    PubMed

    Tomei Torres, Francisco A

    2017-06-21

    Drywall manufactured in China released foul odors attributed to volatile sulfur compounds. These included hydrogen sulfide, methyl mercaptan, and sulfur dioxide. Given that calcium sulfate is the main component of drywall, one would suspect bacterial reduction of sulfate to sulfide as the primary culprit. However, when the forensics, i.e., the microbial and chemical signatures left in the drywall, are studied, the evidence suggests that, rather than dissimilatory sulfate reduction, disproportionation of elemental sulfur to hydrogen sulfide and sulfate was actually the primary cause of the malodors. Forensic evidence suggests that the transformation of elemental sulfur went through several abiological and microbial stages: (1) partial volatilization of elemental sulfur during the manufacture of plaster of Paris, (2) partial abiotic disproportionation of elemental sulfur to sulfide and thiosulfate during the manufacture of drywall, (3) microbial disproportionation of elemental sulfur to sulfide and sulfate resulting in neutralization of all alkalinity, and acidification below pH 4, (4) acidophilic microbial disproportionation of elemental sulfur to sulfide and sulfuric acid, and (5) hydrogen sulfide volatilization, coating of copper fixtures resulting in corrosion, and oxidation to sulfur dioxide.

  7. Combination of borax and quebracho condensed tannins treatment to reduce hydrogen sulfide, ammonia and greenhouse gas emissions from stored swine manure

    USDA-ARS?s Scientific Manuscript database

    Livestock producers are acutely aware for the need to reduce gaseous emissions from stored livestock waste and have been trying to identify new technologies to address the chronic problem. Besides the malodor issue, toxic gases emitted from stored livestock manure, especially hydrogen sulfide (H2S)...

  8. Hydrogen sulfide and its roles in Saccharomyces cerevisiae in a winemaking context.

    PubMed

    Huang, Chien-Wei; Walker, Michelle E; Fedrizzi, Bruno; Gardner, Richard C; Jiranek, Vladimir

    2017-09-01

    The rotten-egg odour of hydrogen sulfide (H2S) produced by the yeast Saccharomyces cerevisiae has attracted considerable research interest due to its huge impact on the sensory quality of fermented foods and beverages. To date, the yeast genetic mechanisms of H2S liberation during wine fermentation are well understood and yeast strains producing low levels of H2S have been developed. Studies have also revealed that H2S is not just a by-product in the biosynthesis of the sulfur-containing amino acids, but indeed a vital molecule involved in detoxification, population signalling and extending cellular life span. Moreover, polysulfides have recently emerged as key players in signalling and the sensory quality of wine because their degradation leads to the release of H2S. This review will focus on the recent findings on the production of H2S and polysulfides in S. cerevisiae and summarise their potential roles in yeast survival and winemaking. Recent advances in techniques for the detection of H2S and polysulfides offer an exciting opportunity to uncover the novel genes and pathways involved in their formation from different sulfur sources. This knowledge will not only provide further insights into yeast sulfur metabolism, but could potentially improve the sensory quality of wine. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Mineralization of Basalts in the CO 2-H 2O-H 2S System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaef, Herbert T.; McGrail, B. Peter; Owen, Antionette T.

    2013-05-10

    Basalt samples representing five different formations were immersed in water equilibrated with supercritical carbon dioxide containing 1% hydrogen sulfide (H2S) at reservoir conditions (100 bar, 90°C) for up to 3.5 years. Surface coatings in the form of pyrite and metal cation substituted carbonates were identified as reaction products associated with all five basalts. In some cases, high pressure tests contained excess H2S, which produced the most corroded basalts and largest amount of secondary products. In comparison, tests containing limited amounts of H2S appeared least reacted with significantly less concentrations of reaction products. In all cases, pyrite appeared to precede carbonation,more » and in some instances, was observed in the absence of carbonation such as in cracks, fractures, and within the porous glassy mesostasis. Armoring reactions from pyrite surface coatings observed in earlier shorter duration tests were found to be temporary with carbonate mineralization observed with all the basalts tested in these long duration experiments. Geochemical simulations conducted with the geochemical code EQ3/6 accurately predicted early pyrite precipitation followed by formation of carbonates. Reactivity with H2S was correlated with measured Fe(II)/Fe(III) ratios in the basalts with more facile pyrite formation occurring with basalts containing more Fe(III) phases. These experimental and modeling results confirm potential for long term sequestration of acid gas mixtures in continental flood basalt formations.« less

  10. Kinetics and mechanisms of iron sulfide reductions in hydrogen and in carbon monoxide

    USGS Publications Warehouse

    Wiltowski, T.; Hinckley, C.C.; Smith, Gerard V.; Nishizawa, T.; Saporoschenko, Mykola; Shiley, R.H.; Webster, J.R.

    1987-01-01

    The reduction of iron sulfides by hydrogen and by carbon monoxide has been studied using plug flow and thermogravimetric methods. The reactions were studied in the 523-723??K temperature range and were found to be first-order processes. Plug flow studies were used to correlate reaction rates between pyrite and the gases as a function of the surface area of the pyrite. The rate of H2S formation increases with the surface area of the pyrite sample. The results of thermogravimetric experiments indicate that the reactions consist of several steps. Rate constants for the pyrite reduction by H2 and by CO were obtained. The activation energies increased with degree of reduction. Values of Ea were 113.2 (step I) and 122.5 kJ/mole (step II) for pyrite reduction with CO and 99.4 (step I), 122.4 (step II), 125.2 (step III), and 142.6 kJ/mole (step IV) for pyrite reduction with hydrogen. ?? 1987.

  11. Spent coffee-based activated carbon: specific surface features and their importance for H2S separation process.

    PubMed

    Kante, Karifala; Nieto-Delgado, Cesar; Rangel-Mendez, J Rene; Bandosz, Teresa J

    2012-01-30

    Activated carbons were prepared from spent ground coffee. Zinc chloride was used as an activation agent. The obtained materials were used as a media for separation of hydrogen sulfide from air at ambient conditions. The materials were characterized using adsorption of nitrogen, elemental analysis, SEM, FTIR, and thermal analysis. Surface features of the carbons depend on the amount of an activation agent used. Even though the residual inorganic matter takes part in the H(2)S retention via salt formation, the porous surface of carbons governs the separation process. The chemical activation method chosen resulted in formation of large volume of pores with sizes between 10 and 30Å, optimal for water and hydrogen sulfide adsorption. Even though the activation process can be optimized/changed, the presence of nitrogen in the precursor (caffeine) is a significant asset of that specific organic waste. Nitrogen functional groups play a catalytic role in hydrogen sulfide oxidation. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Development of Selective Colorimetric Probes for Hydrogen Sulfide Based on Nucleophilic Aromatic Substitution

    PubMed Central

    Montoya, Leticia A.; Pearce, Taylor F.; Hansen, Ryan J.; Zakharov, Lev N.; Pluth, Michael D.

    2013-01-01

    Hydrogen sulfide is an important biological signalling molecule and an important environmental target for detection. A major challenge in developing H2S detection methods is separating the often similar reactivity of thiols and other nucleophiles from H2S. To address this need, the nucleophilic aromatic substitution (SNAr) reaction of H2S with electron-poor aromatic electrophiles was developed as a strategy to separate H2S and thiol reactivity. Treatment of aqueous solutions of nitrobenzofurazan (7-nitro-1,2,3-benzoxadiazole, NBD) thioethers with H2S resulted in thiol extrusion and formation of nitrobenzofurazan thiol (λmax = 534 nm). This reactivity allows for unwanted thioether products to be converted to the desired nitrobenzofurazan thiol upon reaction with H2S. The scope of the reaction was investigated using a Hammett linear free energy relationship study, and the determined ρ = +0.34 is consistent with the proposed SN2Ar reaction mechanism. The efficacy of the developed probes was demonstrated in buffer and in serum with associated sub-micromolar detection limits as low as 190 nM (buffer) and 380 nM (serum). Furthermore, the sigmoidal response of nitrobenzofurazan electrophiles with H2S can be fit to accurately quantify H2S. The developed detection strategy offers a manifold for H2S detection that we foresee being applied in various future applications. PMID:23735055

  13. Development of selective colorimetric probes for hydrogen sulfide based on nucleophilic aromatic substitution.

    PubMed

    Montoya, Leticia A; Pearce, Taylor F; Hansen, Ryan J; Zakharov, Lev N; Pluth, Michael D

    2013-07-05

    Hydrogen sulfide is an important biological signaling molecule and an important environmental target for detection. A major challenge in developing H2S detection methods is separating the often similar reactivity of thiols and other nucleophiles from H2S. To address this need, the nucleophilic aromatic substitution (SNAr) reaction of H2S with electron-poor aromatic electrophiles was developed as a strategy to separate H2S and thiol reactivity. Treatment of aqueous solutions of nitrobenzofurazan (7-nitro-1,2,3-benzoxadiazole, NBD) thioethers with H2S resulted in thiol extrusion and formation of nitrobenzofurazan thiol (λmax = 534 nm). This reactivity allows for unwanted thioether products to be converted to the desired nitrobenzofurazan thiol upon reaction with H2S. The scope of the reaction was investigated using a Hammett linear free energy relationship study, and the determined ρ = +0.34 is consistent with the proposed SN2Ar reaction mechanism. The efficacy of the developed probes was demonstrated in buffer and in serum with associated submicromolar detection limits as low as 190 nM (buffer) and 380 nM (serum). Furthermore, the sigmoidal response of nitrobenzofurazan electrophiles with H2S can be fit to accurately quantify H2S. The developed detection strategy offers a manifold for H2S detection that we foresee being applied in various future applications.

  14. Hydrogen Sulfide Prolongs Postharvest Storage of Fresh-Cut Pears (Pyrus pyrifolia) by Alleviation of Oxidative Damage and Inhibition of Fungal Growth

    PubMed Central

    Gao, Shuai-Ping; Wu, Jun; Li, Yan-Hong; Zheng, Ji-Lian; Han, Yi; Liu, Yong-Sheng; Zhang, Hua

    2014-01-01

    Hydrogen sulfide (H2S) has proved to be a multifunctional signaling molecule in plants and animals. Here, we investigated the role of H2S in the decay of fresh-cut pears (Pyrus pyrifolia). H2S gas released by sodium hydrosulfide (NaHS) prolonged the shelf life of fresh-cut pear slices in a dose-dependent manner. Moreover, H2S maintained higher levels of reducing sugar and soluble protein in pear slices. H2S significantly reduced the accumulation of hydrogen peroxide (H2O2), superoxide radicals (•O2 −) and malondialdehyde (MDA). Further investigation showed that H2S fumigation up-regulated the activities of antioxidant enzymes ascorbate peroxidase (APX), catalase (CAT), and guaiacol peroxidase (POD), while it down-regulated those of lipoxygenase (LOX), phenylalanine ammonia lyase (PAL) and polyphenol oxidase (PPO). Furthermore, H2S fumigation effectively inhibited the growth of two fungal pathogens of pear, Aspergillus niger and Penicillium expansum, suggesting that H2S can be developed as an effective fungicide for postharvest storage. The present study implies that H2S is involved in prolonging postharvest storage of pears by acting as an antioxidant and fungicide. PMID:24454881

  15. o-Fluorination of aromatic azides yields improved azido-based fluorescent probes for hydrogen sulfide: synthesis, spectra, and bioimaging.

    PubMed

    Wei, Chao; Wang, Runyu; Wei, Lv; Cheng, Longhuai; Li, Zhifei; Xi, Zhen; Yi, Long

    2014-12-01

    Hydrogen sulfide (H2S) is an endogenously produced gaseous signaling molecule with multiple biological functions. To visualize the endogenous in situ production of H2S in real time, new coumarin- and boron-dipyrromethene-based fluorescent turn-on probes were developed for fast sensing of H2S in aqueous buffer and in living cells. Introduction of a fluoro group in the ortho position of the aromatic azide can lead to a greater than twofold increase in the rate of reaction with H2S. On the basis of o-fluorinated aromatic azides, fluorescent probes with high sensitivity and selectivity toward H2S over other biologically relevant species were designed and synthesized. The probes can be used to in situ to visualize exogenous H2S and D-cysteine-dependent endogenously produced H2S in living cells, which makes them promising tools for potential applications in H2S biology. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Removal of H2S in down-flow GAC biofiltration using sulfide oxidizing bacteria from concentrated latex wastewater.

    PubMed

    Rattanapan, Cheerawit; Boonsawang, Piyarat; Kantachote, Duangporn

    2009-01-01

    A biofiltration system with sulfur oxidizing bacteria immobilized on granular activated carbon (GAC) as packing materials had a good potential when used to eliminate H(2)S. The sulfur oxidizing bacteria were stimulated from concentrated latex wastewater with sulfur supplement under aerobic condition. Afterward, it was immobilized on GAC to test the performance of cell-immobilized GAC biofilter. In this study, the effect of inlet H(2)S concentration, H(2)S gas flow rate, air gas flow rate and long-term operation on the H(2)S removal efficiency was investigated. In addition, the comparative performance of sulfide oxidizing bacterium immobilized on GAC (biofilter A) and GAC without cell immobilization (biofilter B) systems was studied. It was found that the efficiency of the H(2)S removal was more than 98% even at high concentrations (200-4000 ppm) and the maximum elimination capacity was about 125 g H(2)S/m(3)of GAC/h in the biofilter A. However, the H(2)S flow rate of 15-35 l/h into both biofilters had little influence on the efficiency of H(2)S removal. Moreover, an air flow rate of 5.86 l/h gave complete removal of H(2)S (100%) in biofilter A. During the long-term operation, the complete H(2)S removal was achieved after 3-days operation in biofilter A and remained stable up to 60-days.

  17. Effect of migration and transformation of iron on the endogenous reduction of H2S in anaerobic landfill.

    PubMed

    Long, Yu-Yang; Du, Yao; Fang, Yuan; Xu, Jing; He, Yan-Ni; Shen, Dong-Sheng

    2016-07-01

    Hydrogen sulfide (H2S) is a major odor in landfill gas and needs urgent treatment. In this study, the effect of migration and transformation of iron on the endogenous reduction of H2S was investigated in two simulated landfills. The results showed that the H2S emission concentration from the landfill cover of conventional anaerobic landfill (CL) and anaerobic landfill with leachate recirculation (RL) could reach 19.4mgm(-3) and 24.1mgm(-3), respectively. However, the migration and transformation of iron in anaerobic landfill with different operational modes results in different endogenous reduction mechanism for H2S. The proportion of precipitation-reduction mechanism and oxidation-reduction mechanism in CL was 73.3% and 26.3%, respectively. But for RL, the function of oxidation was enhanced, and the sulfide content was reduced 23.1% compared with CL. The iron in landfill with leachate recirculation revealed good endogenous reduction effect on H2S control after a period of time landfilling. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Actions of Hydrogen Sulfide on Sodium Transport Processes across Native Distal Lung Epithelia (Xenopus laevis)

    PubMed Central

    Erb, Alexandra; Althaus, Mike

    2014-01-01

    Hydrogen sulfide (H2S) is well known as a highly toxic environmental chemical threat. Prolonged exposure to H2S can lead to the formation of pulmonary edema. However, the mechanisms of how H2S facilitates edema formation are poorly understood. Since edema formation can be enhanced by an impaired clearance of electrolytes and, consequently, fluid across the alveolar epithelium, it was questioned whether H2S may interfere with transepithelial electrolyte absorption. Electrolyte absorption was electrophysiologically measured across native distal lung preparations (Xenopus laevis) in Ussing chambers. The exposure of lung epithelia to H2S decreased net transepithelial electrolyte absorption. This was due to an impairment of amiloride-sensitive sodium transport. H2S inhibited the activity of the Na+/K+-ATPase as well as lidocaine-sensitive potassium channels located in the basolateral membrane of the epithelium. Inhibition of these transport molecules diminishes the electrochemical gradient which is necessary for transepithelial sodium absorption. Since sodium absorption osmotically facilitates alveolar fluid clearance, interference of H2S with the epithelial transport machinery provides a mechanism which enhances edema formation in H2S-exposed lungs. PMID:24960042

  19. Protein kinase G–regulated production of H2S governs oxygen sensing

    PubMed Central

    Yuan, Guoxiang; Vasavda, Chirag; Peng, Ying-Jie; Makarenko, Vladislav V.; Raghuraman, Gayatri; Nanduri, Jayasri; Gadalla, Moataz M.; Semenza, Gregg L.; Kumar, Ganesh K.; Snyder, Solomon H.; Prabhakar, Nanduri R.

    2015-01-01

    Reflexes initiated by the carotid body, the principal O2-sensing organ, are critical for maintaining cardio-respiratory homeostasis during hypoxia. O2 sensing by the carotid body requires carbon monoxide (CO) generation by heme oxygenase-2 (HO-2) and hydrogen sulfide (H2S) synthesis by cystathionine-γ-lyase (CSE). We report that O2 stimulated the generation of CO, but not that of H2S, and required two cysteine residues in the heme regulatory motif (Cys265 and Cys282) of HO-2. CO stimulated protein kinase G (PKG)–dependent phosphorylation of Ser377 of CSE, inhibiting the production of H2S. Hypoxia decreased the inhibition of CSE by reducing CO generation resulting in increased H2S, which stimulated carotid body neural activity. In carotid bodies from mice lacking HO-2, compensatory increased abundance of nNOS (neuronal nitric oxide synthase) mediated O2 sensing through PKG-dependent regulation of H2S by nitric oxide. These results provide a mechanism for how three gases work in concert in the carotid body to regulate breathing. PMID:25900831

  20. Sulfur Dioxide Enhances Endogenous Hydrogen Sulfide Accumulation and Alleviates Oxidative Stress Induced by Aluminum Stress in Germinating Wheat Seeds

    PubMed Central

    Zhu, Dong-Bo; Hu, Kang-Di; Guo, Xi-Kai; Liu, Yong; Hu, Lan-Ying; Li, Yan-Hong; Wang, Song-Hua; Zhang, Hua

    2015-01-01

    Aluminum ions are especially toxic to plants in acidic soils. Here we present evidences that SO2 protects germinating wheat grains against aluminum stress. SO2 donor (NaHSO3/Na2SO3) pretreatment at 1.2 mM reduced the accumulation of superoxide anion, hydrogen peroxide, and malondialdehyde, enhanced the activities of guaiacol peroxidase, catalase, and ascorbate peroxidase, and decreased the activity of lipoxygenase in germinating wheat grains exposed to Al stress. We also observed higher accumulation of hydrogen sulfide (H2S) in SO2-pretreated grain, suggesting the tight relation between sulfite and sulfide. Wheat grains geminated in water for 36 h were pretreated with or without 1 mM SO2 donor for 12 h prior to exposure to Al stress for 48 h and the ameliorating effects of SO2 on wheat radicles were studied. SO2 donor pretreatment reduced the content of reactive oxygen species, protected membrane integrity, and reduced Al accumulation in wheat radicles. Gene expression analysis showed that SO2 donor pretreatment decreased the expression of Al-responsive genes TaWali1, TaWali2, TaWali3, TaWali5, TaWali6, and TaALMT1 in radicles exposed to Al stress. These results suggested that SO2 could increase endogenous H2S accumulation and the antioxidant capability and decrease endogenous Al content in wheat grains to alleviate Al stress. PMID:26078810

  1. Acute pit gas (hydrogen sulfide) poisoning in confinement cattle.

    PubMed

    Hooser, S B; Van Alstine, W; Kiupel, M; Sojka, J

    2000-05-01

    Rapid deaths in confinement cattle caused by exposure to hydrogen sulfide (H2S) gas from manure pits has not been reported in the USA. In 1997, 158 cattle in 2 confinement pens were exposed to H2S gas as the manure in the pits under a slatted floor was agitated prior to pumping. Approximately 35 of the cattle were lying on the floor when the upper agitator was turned on. Within 5 minutes, many these cattle were down on their sides and paddling. Of these, 26 died within a few minutes. The survivors were treated and sent to slaughter. Cattle that did not show immediate signs of toxicosis remained clinically unaffected. Two steers that were near death were brought to the Purdue Animal Disease Diagnostic Laboratory for clinical evaluation, euthanasia, and necropsy. They were recumbent and unresponsive to visual and auditory stimuli. Necropsy examination yielded no significant gross lesions. No evidence of viral or bacterial infection was found. Ocular fluid nitrate concentrations were within normal limits, and no lead was detected in either animal. Microscopic examination revealed lesions consistent with H2S-induced central nervous system anoxia. Histologically, sections of brain demonstrated massive, diffuse cerebral cortical laminar necrosis and edema. Portions of the outer lamina contained hypereosinophilic and shrunken neurons. The subcortical white matter was vacuolated in some areas. The history, clinical signs, and histologic lesion of cerebral laminar necrosis led to a diagnosis of H2S toxicosis in these cattle.

  2. Enhanced Synthesis of Alkyl Amino Acids in Miller's 1958 H2S Experiment

    NASA Technical Reports Server (NTRS)

    Parker, Eric T.; Cleaves, H. James; Callahan, Michael P.; Dworkin, James P.; Glavin, Daniel P.; Lazcano, Antonio; Bada, Jeffrey L.

    2011-01-01

    Stanley Miller's 1958 H2S-containing experiment, which included a simulated prebiotic atmosphere of methane (CH4), ammonia (NH3), carbon dioxide (CO2), and hydrogen sulfide (H2S) produced several alkyl amino acids, including the alpha-, beta-, and gamma-isomers of aminobutyric acid (ABA) in greater relative yields than had previously been reported from his spark discharge experiments. In the presence of H2S, aspariic and glutamic acids could yield alkyl amino acids via the formation of thioimide intermediates. Radical chemistry initiated by passing H2S through a spark discharge could have also enhanced alkyl amino acid synthesis by generating alkyl radicals that can help form the aldehyde and ketone precursors to these amino acids. We propose mechanisms that may have influenced the synthesis of certain amino acids in localized environments rich in H2S and lightning discharges, similar to conditions near volcanic systems on the early Earth, thus contributing to the prebiotic chemical inventory of the primordial Earth.

  3. Modelling of hydrogen sulfide dispersion from the geothermal power plants of Tuscany (Italy).

    PubMed

    Somma, Renato; Granieri, Domenico; Troise, Claudia; Terranova, Carlo; De Natale, Giuseppe; Pedone, Maria

    2017-04-01

    We applied the Eulerian code DISGAS (DISpersion of GAS) to investigate the dispersion of the hydrogen sulfide (H 2 S) from 32 geothermal power plants (out of 35 active) belonging to the geothermal districts of Larderello, Travale-Radicondoli and Monte Amiata, in Tuscany (Italy). An updated geographic database, for use in a GIS environment, was realized in order to process input data required by the code and to handle the outputs. The results suggest that H 2 S plumes emitted from geothermal power plants are mainly concentrated around the stacks of emission (H 2 S concentration up to 1100μg/m 3 ) and rapidly dilute along the dominant local wind direction. Although estimated values of air H 2 S concentrations are orders of magnitude higher than in unpolluted areas, they do not indicate an immediate health risk for nearby communities, under the more frequent local atmospheric conditions. Starting from the estimated values, validated by measurements in the field, we make some considerations about the environmental impact of the H 2 S emission in all the geothermal areas of the Tuscany region. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. A nanoscale Zr-based fluorescent metal-organic framework for selective and sensitive detection of hydrogen sulfide

    NASA Astrophysics Data System (ADS)

    Li, Yanping; Zhang, Xin; Zhang, Ling; Jiang, Ke; Cui, Yuanjing; Yang, Yu; Qian, Guodong

    2017-11-01

    Hydrogen sulfide (H2S) has been commonly viewed as a gas signaling molecule in various physiological and pathological processes. However, the highly efficient H2S detection still remains challenging. Herein, we designed a new robust nano metal-organic framework (MOF) UiO-66-CH=CH2 as a fluorescent probe for rapid, sensitive and selective detection of biological H2S. UiO-66-CH=CH2 was prepared by heating ZrCl4 and 2-vinylterephthalic acid via a simple method. UiO-66-CH=CH2 displayed fluorescence quenching to H2S and kept excellent selectivity in the presence of biological relevant analytes especially the cysteine and glutathione. This MOF-based probe also exhibited fast response (10 s) and high sensitivity with a detection limit of 6.46 μM which was within the concentration range of biological H2S in living system. Moreover, this constructed MOF featured water-stability, nanoscale (20-30 nm) and low toxicity, which made it a promising candidate for biological H2S sensing.

  5. VERIFICATION OF AMBIENT MONITORING TECHNOLOGIES FOR AMMONIA AND HYDROGEN SULFIDE AT ANIMAL FEEDING OPERATIONS

    EPA Science Inventory

    The increasing concentration of livestock agriculture into animal feeding operations (AFOs) has raised concerns about the environmental and potential health impact of the emissions from AFOs into the atmosphere. Gaseous ammonia (NH3) and hydrogen sulfide (H2...

  6. Emissions of ammonia, carbon dioxide, and hydrogen sulfide from swine wastewater during and after acidification treatment: effect of pH, mixing and aeration.

    PubMed

    Dai, X R; Blanes-Vidal, V

    2013-01-30

    This study aimed at evaluating the effect of swine slurry acidification and acidification-aeration treatments on ammonia (NH(3)), carbon dioxide (CO(2)) and hydrogen sulfide (H(2)S) emissions during slurry treatment and subsequent undisturbed storage. The study was conducted in an experimental setup consisting of nine dynamic flux chambers. Three pH levels (pH = 6.0, pH = 5.8 and pH = 5.5), combined with short-term aeration and venting (with an inert gas) treatments were studied. Acidification reduced average NH(3) emissions from swine slurry stored after acidification treatment compared to emissions during storage of non-acidified slurry. The reduction were 50%, 62% and 77% when pH was reduce to 6.0, 5.8 and 5.5, respectively. However, it had no significant effect on average CO(2) and H(2)S emissions during storage of slurry after acidification. Aeration of the slurry for 30 min had no effect on average NH(3), CO(2) and H(2)S emissions both during the process and from stored slurry after venting treatments. During aeration treatment, the NH(3), CO(2) and H(2)S release pattern observed was related to the liquid turbulence caused by the gas bubbles rather than to biological oxidation processes in this study. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Sulfide binding properties of truncated hemoglobins.

    PubMed

    Nicoletti, Francesco P; Comandini, Alessandra; Bonamore, Alessandra; Boechi, Leonardo; Boubeta, Fernando Martin; Feis, Alessandro; Smulevich, Giulietta; Boffi, Alberto

    2010-03-16

    adducts, the strong band at 375 cm(-1) is tentatively assigned to a Fe-S stretching band. The high affinity for hydrogen sulfide is thought to have a possible physiological significance as H(2)S is produced in bacteria at metabolic steps involved in cysteine biosynthesis and hence in thiol redox homeostasis.

  8. Inhibition of Hydrogen Sulfide-induced Angiogenesis and Inflammation in Vascular Endothelial Cells: Potential Mechanisms of Gastric Cancer Prevention by Korean Red Ginseng.

    PubMed

    Choi, Ki-Seok; Song, Heup; Kim, Eun-Hee; Choi, Jae Hyung; Hong, Hua; Han, Young-Min; Hahm, Ki Baik

    2012-04-01

    Previously, we reported that Helicobacter pylori-associated gastritis and gastric cancer are closely associated with increased levels of hydrogen sulfide (H2S) and that Korean red ginseng significantly reduced the severity of H. pylori-associated gastric diseases by attenuating H2S generation. Because the incubation of endothelial cells with H2S has been known to enhance their angiogenic activities, we hypothesized that the amelioration of H2S-induced gastric inflammation or angiogenesis in human umbilical vascular endothelial cells (HUVECs) might explain the preventive effect of Korean red ginseng on H. pylori-associated carcinogenesis. The expression of inflammatory mediators, angiogenic growth factors, and angiogenic activities in the absence or presence of Korean red ginseng extracts (KRGE) were evaluated in HUVECs stimulated with the H2S generator sodium hydrogen sulfide (NaHS). KRGE efficiently decreased the expression of cystathionine β-synthase and cystathionine γ-lyase, enzymes that are essential for H2S synthesis. Concomitantly, a significant decrease in the expression of inflammatory mediators, including cyclooxygenase-2 and inducible nitric oxide synthase, and several angiogenic factors, including interleukin (IL)-8, hypoxia inducible factor-1a, vascular endothelial growth factor, IL-6, and matrix metalloproteinases, was observed; all of these factors are normally induced after NaHS. An in vitro angiogenesis assay demonstrated that NaHS significantly increased tube formation in endothelial cells, whereas KRGE pretreatment significantly attenuated tube formation. NaHS activated p38 and Akt, increasing the expression of angiogenic factors and the proliferation of HUVECs, whereas KRGE effectively abrogated this H2S-activated angiogenesis and the increase in inflammatory mediators in vascular endothelial cells. In conclusion, KRGE was able to mitigate H2S-induced angiogenesis, implying that antagonistic action against H2S-induced angiogenesis may be the

  9. Biofiltration for control of carbon disulfide and hydrogen sulfide vapors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fucich, W.J.; Yang, Y.; Togna, A.P.

    1997-12-31

    A full-scale biofiltration system has been installed to control carbon disulfide (CS{sub 2}) and hydrogen sulfide (H{sub 2}S) vapor emissions at Nylonge Corporation (Nylonge), a cellulose sponge manufacturing facility in Elyria, Ohio. Both CS{sub 2} and H{sub 2}S are toxic and odorous. In addition, the US Environmental Protection Agency (EPA) has classified CS{sub 2} as one of the 189 hazardous air pollutants listed under Title 3 of the 1990 Clean Air Act Amendments. Nylonge evaluated several technologies to control CS{sub 2} and H{sub 2}S vapor emissions. After careful consideration of both removal efficiency requirements and cost, Nylonge selected biological treatmentmore » as the best overall technology for their application. A biological based technology has been developed to effectively degrade CS{sub 2} and H{sub 2}S vapors. Biofiltration is a process that aerobically converts particular vapor phase compounds into CO{sub 2}, biomass, and water vapor. In this process, microorganisms, in the form of a moistened biofilm layer, immobilized on an organic packing material, such as compost, peat, wood chips, etc., are used to catalyze beneficial chemical reactions. As a contaminated vapor stream passes through the biofilter bed, the contaminants are transferred to the biofilm and are degraded by the microorganisms. This paper describes the CS{sub 2} and H{sub 2}S biofiltration process and the full-scale biofilter system installed at Nylonge`s facility. The system was started in October of 1995, and is designed to treat a 30,000 CFM exhaust stream contaminated with CS{sub 2} and H{sub 2}S vapors.« less

  10. Interaction of Hydrogen Sulfide with Nitric Oxide in the Cardiovascular System

    PubMed Central

    Nagpure, B. V.; Bian, Jin-Song

    2016-01-01

    Historically acknowledged as toxic gases, hydrogen sulfide (H2S) and nitric oxide (NO) are now recognized as the predominant members of a new family of signaling molecules, “gasotransmitters” in mammals. While H2S is biosynthesized by three constitutively expressed enzymes (CBS, CSE, and 3-MST) from L-cysteine and homocysteine, NO is generated endogenously from L-arginine by the action of various isoforms of NOS. Both gases have been transpired as the key and independent regulators of many physiological functions in mammalian cardiovascular, nervous, gastrointestinal, respiratory, and immune systems. The analogy between these two gasotransmitters is evident not only from their paracrine mode of signaling, but also from the identical and/or shared signaling transduction pathways. With the plethora of research in the pathophysiological role of gasotransmitters in various systems, the existence of interplay between these gases is being widely accepted. Chemical interaction between NO and H2S may generate nitroxyl (HNO), which plays a specific effective role within the cardiovascular system. In this review article, we have attempted to provide current understanding of the individual and interactive roles of H2S and NO signaling in mammalian cardiovascular system, focusing particularly on heart contractility, cardioprotection, vascular tone, angiogenesis, and oxidative stress. PMID:26640616

  11. Role of reactive oxygen species and sulfide-quinone oxoreductase in hydrogen sulfide-induced contraction of rat pulmonary arteries

    PubMed Central

    Prieto-Lloret, Jesus; Snetkov, Vladimir A.; Shaifta, Yasin; Docio, Inmaculada; Connolly, Michelle J.; MacKay, Charles E.; Knock, Greg A.

    2018-01-01

    Application of H2S (“sulfide”) elicits a complex contraction in rat pulmonary arteries (PAs) comprising a small transient contraction (phase 1; Ph1) followed by relaxation and then a second, larger, and more sustained contraction (phase 2; Ph2). We investigated the mechanisms causing this response using isometric myography in rat second-order PAs, with Na2S as a sulfide donor. Both phases of contraction to 1,000 μM Na2S were attenuated by the pan-PKC inhibitor Gö6983 (3 μM) and by 50 μM ryanodine; the Ca2+ channel blocker nifedipine (1 μM) was without effect. Ph2 was attenuated by the mitochondrial complex III blocker myxothiazol (1 μM), the NADPH oxidase (NOX) blocker VAS2870 (10 μM), and the antioxidant TEMPOL (3 mM) but was unaffected by the complex I blocker rotenone (1 μM). The bath sulfide concentration, measured using an amperometric sensor, decreased rapidly following Na2S application, and the peak of Ph2 occurred when this had fallen to ~50 μM. Sulfide caused a transient increase in NAD(P)H autofluorescence, the offset of which coincided with development of the Ph2 contraction. Sulfide also caused a brief mitochondrial hyperpolarization (assessed using tetramethylrhodamine ethyl ester), followed immediately by depolarization and then a second more prolonged hyperpolarization, the onset of which was temporally correlated with the Ph2 contraction. Sulfide application to cultured PA smooth muscle cells increased reactive oxygen species (ROS) production (recorded using L012); this was absent when the mitochondrial flavoprotein sulfide-quinone oxoreductase (SQR) was knocked down using small interfering RNA. We propose that the Ph2 contraction is largely caused by SQR-mediated sulfide metabolism, which, by donating electrons to ubiquinone, increases electron production by complex III and thereby ROS production. PMID:29351439

  12. Hydrogen Sulfide Recruits Macrophage Migration by Integrin β1-Src-FAK/Pyk2-Rac Pathway in Myocardial Infarction

    NASA Astrophysics Data System (ADS)

    Miao, Lei; Xin, Xiaoming; Xin, Hong; Shen, Xiaoyan; Zhu, Yi-Zhun

    2016-03-01

    Myocardial infarction (MI) triggers an inflammatory reaction, in which macrophages are of key importance for tissue repairing. Infiltration and/or migration of macrophages into the infarct area early after MI is critical for infarct healing, vascularization, and cardiac function. Hydrogen sulfide (H2S) has been demonstrated to possess cardioprotective effects post MI and during the progress of cardiac remodeling. However, the specific molecular and cellular mechanisms involved in macrophage recruitment by H2S remain to be identified. In this study, the NaHS (exogenous sources of H2S) treatment exerted an increased infiltration of macrophages into the infarcted myocardium at early stage of MI cardiac tissues in both wild type (WT) and cystathionine-γ-lyase-knockout (CSE-KO) mice. And NaHS accelerated the migration of macrophage cells in vitro. While, the inhibitors not only significantly diminished the migratory ability in response to NaHS, but also blocked the activation of phospho-Src, -Pyk2, -FAK397, and -FAK925. Furthermore, NaHS induced the internalization of integrin β1 on macrophage surface, but, integrin β1 silencing inhibited macrophage migration and Src signaling activation. These results indicate that H2S may have the potential as an anti-infarct of MI by governing macrophage migration, which was achieved by accelerating internalization of integrin β1 and activating downstream Src-FAK/Pyk2-Rac pathway.

  13. Hydrogen sulfide generation in simulated construction and demolition debris landfills: impact of waste composition.

    PubMed

    Yang, Kenton; Xu, Qiyong; Townsend, Timothy G; Chadik, Paul; Bitton, Gabriel; Booth, Matthew

    2006-08-01

    Hydrogen sulfide (H2S) generation in construction and demolition (C&D) debris landfills has been associated with the biodegradation of gypsum drywall. Laboratory research was conducted to observe H2S generation when drywall was codisposed with different C&D debris constituents. Two experiments were conducted using simulated landfill columns. Experiment 1 consisted of various combinations of drywall, wood, and concrete to determine the impact of different waste constituents and combinations on H2S generation. Experiment 2 was designed to examine the effect of concrete on H2S generation and migration. The results indicate that decaying drywall, even alone, leached enough sulfate ions and organic matter for sulfate-reducing bacteria (SRB) to generate large H2S concentrations as high as 63,000 ppmv. The codisposed wastes show some effect on H2S generation. At the end of experiment 1, the wood/drywall and drywall alone columns possessed H2S concentrations > 40,000 ppmv. Conversely, H2S concentrations were < 1 ppmv in those columns containing concrete. Concrete plays a role in decreasing H2S by increasing pH out of the range for SRB growth and by reacting with H2S. This study also showed that wood lowered H2S concentrations initially by decreasing leachate pH values. Based on the results, two possible control mechanisms to mitigate H2S generation in C&D debris landfills are suggested.

  14. Hydrogen sulfide concentrations at three middle schools near industrial livestock facilities.

    PubMed

    Guidry, Virginia T; Kinlaw, Alan C; Johnston, Jill; Hall, Devon; Wing, Steve

    2017-03-01

    Safe school environments are essential for healthy development, yet some schools are near large-scale livestock facilities that emit air pollution. Hydrogen sulfide (H 2 S) from decomposing manure is an indicator of livestock-related air pollution. We measured outdoor concentrations of H 2 S at three public middle schools near livestock facilities in North Carolina. We used circular graphs to relate H 2 S detection and wind direction to geospatial distributions of nearby livestock barns. We also used logistic and linear regression to model H 2 S in relation to upwind, distance-weighted livestock barn area. Circular graphs suggested an association between upwind livestock barns and H 2 S detection. The log-odds of H 2 S detection per 1000 m 2 increased with upwind weighted swine barn area (School A: β-coefficient (β)=0.43, SE=0.06; School B: β=0.64, SE=0.24) and upwind weighted poultry barn area (School A: β=0.05, SE=0.01), with stronger associations during periods of atmospheric stability than atmospheric instability (School A stable: β=0.69, SE=0.11; School A unstable: β=0.32, SE=0.09). H 2 S concentration also increased linearly with upwind swine barn area, with greater increases during stable atmospheric conditions (stable: β=0.16 parts per billion (p.p.b.), SE=0.01; unstable: β=0.05 p.p.b., SE=0.01). Off-site migration of pollutants from industrial livestock operations can decrease air quality at nearby schools.

  15. Hydrogen sulfide increases survival during sepsis: Protective effect of CHOP inhibition

    PubMed Central

    Ferlito, Marcella; Wang, Qihong; Fulton, William B; Colombani, Paul; Marchionni, Luigi; Fox-Talbot, Karen; Paolocci, Nazareno; Steenbergen, Charles

    2014-01-01

    Sepsis is a major cause of mortality, and dysregulation of the immune response plays a central role in this syndrome. Hydrogen sulfide (H2S), a recently discovered gaso-transmitter, is endogenously generated by many cell types, regulating a number of physiologic processes and pathophysiologic conditions. Here we report that H2S increased survival after experimental sepsis induced by cecal ligation and puncture (CLP) in mice. Exogenous H2S decreased the systemic inflammatory response, reduced apoptosis in the spleen, and accelerated bacterial eradication. We found that CHOP, a mediator of the endoplasmic reticulum (ER) stress response, was elevated in several organs after CLP and its expression was inhibited by H2S treatment. Using CHOP knockout (KO) mice, we demonstrated for the first time that genetic deletion of Chop increased survival after lipopolysaccharide (LPS) injection or CLP. CHOP KO mice displayed diminished splenic caspase-3 activation and apoptosis, decreased cytokine production and augmented bacterial clearance. Furthermore, septic CHOP KO mice treated with H2S showed no additive survival benefit compared to septic CHOP KO mice. Finally, we showed that H2S inhibited CHOP expression in macrophages by a mechanism involving Nrf2 activation. In conclusion, our findings show a protective effect of H2S treatment afforded, at least partially, by inhibition of CHOP expression. The data reveal a major negative role for the transcription factor CHOP in overall survival during sepsis and suggest a new target for clinical intervention as well potential strategies for treatment. PMID:24403532

  16. Sulfur transformations at the hydrogen sulfide/oxygen interface in stratified waters and in cyanobacterial mats

    NASA Technical Reports Server (NTRS)

    Cohen, Y.

    1985-01-01

    Stratified water bodies allow the development of several microbial plates along the water column. The microbial plates develop in relation to nutrient availability, light penetration, and the distribution of oxygen and sulfide. Sulfide is initially produced in the sediment by sulfate-reducing bacteria. It diffuses along the water column creating a zone of hydrogen sulfide/oxygen interface. In the chemocline of Solar Lake oxygen and sulfide coexist in a 0 to 10 cm layer that moves up and down during a diurnal cycle. The microbial plate at the chemocline is exposed to oxygen and hydrogen sulfide, alternating on a diurnal basis. The cyanobacteria occupying the interface switch from anoxygenic photosynthesis in the morning to oxygenic photosynthesis during the rest of the day which results in a temporal build up of elemental sulfur during the day and disappears at night due to both oxidation to thiosulfate and sulfate by thiobacilli, and reduction to hydrogen sulfide by Desulfuromonas sp. and anaerobically respiring cyanobacteria. Sulfate reduction was enhanced in the light at the surface of the cyanobacterial mats. Microsulfate reduction measurements showed enhanced activity of sulfate reduction even under high oxygen concentrations of 300 to 800 micrometer. Apparent aerobic SO sub 4 reduction activity is explained by the co-occurrence of H sub 2. The physiology of this apparent sulfate reduction activity is studied.

  17. Understanding the Reactive Adsorption of H 2S and CO 2 in Sodium-Exchanged Zeolites

    DOE PAGES

    Fetisov, Evgenii O.; Shah, Mansi S; Knight, Christopher; ...

    2018-02-19

    Purifying sour natural gas streams containing hydrogen sulfide and carbon dioxide has been a long-standing environmental and economic challenge. In the presence of cation-exchanged zeolites, these two acid gases can react to form carbonyl sulfide and water (H 2S+CO 2H 2O+COS), but this reaction is rarely accounted for. In this work, we carry out reactive first-principles Monte Carlo (RxFPMC) simulations for mixtures of H 2S and CO 2 in all-silica and Na-exchanged forms of zeolite beta to understand the governing principles driving the enhanced conversion. The RxFPMC simulations show that the presence of Na + cations can change the equilibriummore » constant by several orders of magnitude compared to the gas phase or in all-silica beta. The shift in the reaction equilibrium is caused by very strong interactions of H 2O with Na + that reduce the reaction enthalpy by about 20 kJmol -1. The simulations also demonstrate that the siting of Al atoms in the framework plays an important role. Lastly, the RxFPMC method presented here is applicable to any chemical conversion in any confined environment, where strong interactions of guest molecules with the host framework and high activation energies limit the use of other computational approaches to study reaction equilibria.« less

  18. Experimental investigation on thermochemical sulfate reduction by H2S initiation

    USGS Publications Warehouse

    Zhang, T.; Amrani, A.; Ellis, G.S.; Ma, Q.; Tang, Y.

    2008-01-01

    Hydrogen sulfide (H2S) is known to catalyze thermochemical sulfate reduction (TSR) by hydrocarbons (HC), but the reaction mechanism remains unclear. To understand the mechanism of this catalytic reaction, a series of isothermal gold-tube hydrous pyrolysis experiments were conducted at 330 ??C for 24 h under a constant confining pressure of 24.1 MPa. The reactants used were saturated HC (sulfur-free) and CaSO4 in the presence of variable H2S partial pressures at three different pH conditions. The experimental results showed that the in-situ pH of the aqueous solution (herein, in-situ pH refers to the calculated pH of aqueous solution under the experimental conditions) can significantly affect the rate of the TSR reaction. A substantial increase in the TSR reaction rate was recorded with a decrease in the in-situ pH value of the aqueous solution involved. A positive correlation between the rate of TSR and the initial partial pressure of H2S occurred under acidic conditions (at pH ???3-3.5). However, sulfate reduction at pH ???5.0 was undetectable even at high initial H2S concentrations. To investigate whether the reaction of H2S(aq) and HSO4- occurs at pH ???3, an additional series of isothermal hydrous pyrolysis experiments was conducted with CaSO4 and variable H2S partial pressures in the absence of HC at the same experimental temperature and pressure conditions. CaSO4 reduction was not measurable in the absence of paraffin even with high H2S pressure and acidic conditions. These experimental observations indicate that the formation of organosulfur intermediates from H2S reacting with hydrocarbons may play a significant role in sulfate reduction under our experimental conditions rather than the formation of elemental sulfur from H2S reacting with sulfate as has been suggested previously (Toland W. G. (1960) Oxidation of organic compounds with aqueous sulphate. J. Am. Chem. Soc. 82, 1911-1916). Quantification of labile organosulfur compounds (LSC), such as thiols

  19. H2S Loss through Nalophan™ Bags: Contributions of Adsorption and Diffusion

    PubMed Central

    2017-01-01

    Hydrogen-sulfide (H2S) is a molecule of small dimensions typically present in the odor emissions from different plants. The European Standard EN 13725:2003 set a maximum storage time allowed of 30 hours, during which the sampling bag has to maintain the mixture of odorants with minimal changes. This study investigates the H2S losses through Nalophan bags and it shows that nonnegligible losses of H2S can be observed. The percent H2S loss after 30 hrs with respect to the initial concentration is equal to 33%  ± 3% at a relative humidity of 20% and equal to 22%  ± 1% at a relative humidity of 60%. The average quantity of adsorbed H2S at 30 h is equal to 2.17 105 gH2S/gNalophan at a storage humidity of 20% and equal to 1.79 105 gH2S/gNalophan at a storage humidity of 60%. The diffusion coefficients of H2S through Nalophan, for these two humidity conditions tested, are comparable (i.e., 7.5 10−12 m2/sec at 20% humidity and 6.6 10−12 m2/sec at 60% humidity). PMID:28740857

  20. Working with "H2S": facts and apparent artifacts.

    PubMed

    Wedmann, Rudolf; Bertlein, Sarah; Macinkovic, Igor; Böltz, Sebastian; Miljkovic, Jan Lj; Muñoz, Luis E; Herrmann, Martin; Filipovic, Milos R

    2014-09-15

    Hydrogen sulfide (H2S) is an important signaling molecule with physiological endpoints similar to those of nitric oxide (NO). Growing interest in its physiological roles and pharmacological potential has led to large sets of contradictory data. The principle cause of these discrepancies can be the common neglect of some of the basic H2S chemistry. This study investigates how the experimental outcome when working with H2S depends on its source and dose and the methodology employed. We show that commercially available NaHS should be avoided and that traces of metal ions should be removed because these can reduce intramolecular disulfides and change protein structure. Furthermore, high H2S concentrations may lead to a complete inhibition of cell respiration, mitochondrial membrane potential depolarization and superoxide generation, which should be considered when discussing the biological effects observed upon treatment with high concentrations of H2S. In addition, we provide chemical evidence that H2S can directly react with superoxide. H2S is also capable of reducing cytochrome c(3+) with the concomitant formation of superoxide. H2S does not directly react with nitrite but with NO electrodes that detect H2S. In addition, H2S interferes with the Griess reaction and should therefore be removed from the solution by Cd(2+) or Zn(2+) precipitation prior to nitrite quantification. 2-Phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (PTIO) is reduced by H2S, and its use should be avoided in combination with H2S. All these constraints must be taken into account when working with H2S to ensure valid data. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Low level measurements of atmospheric DMS, H2S, and SO2 for GTE/CITE-3

    NASA Technical Reports Server (NTRS)

    Saltzman, Eric; Cooper, David

    1991-01-01

    This project involved the measurement of atmospheric dimethylsulfide (DMS) and hydrogen sulfide (H2S) as part of the GTE/CITE-3 instrument intercomparison program. The two instruments were adapted for use on the NASA Electra aircraft and participated in all phases of the mission. This included ground-based measurements of NIST-provided standard gases and a series of airborne missions over the Western Atlantic Ocean. Analytical techniques used are described and the results are summarized.

  2. Two's company, three's a crowd: can H2S be the third endogenous gaseous transmitter?

    PubMed

    Wang, Rui

    2002-11-01

    Bearing the public image of a deadly "gas of rotten eggs," hydrogen sulfide (H2S) can be generated in many types of mammalian cells. Functionally, H2S has been implicated in the induction of hippocampal long-term potentiation, brain development, and blood pressure regulation. By acting specifically on KATP channels, H2S can hyperpolarize cell membranes, relax smooth muscle cells, or decrease neuronal excitability. The endogenous metabolism and physiological functions of H2S position this gas well in the novel family of endogenous gaseous transmitters, termed "gasotransmitters." It is hypothesized that H2S is the third endogenous signaling gasotransmitter, besides nitric oxide and carbon monoxide. This positioning of H2S will open an exciting field-H2S physiology-encompassing realization of the interaction of H2S and other gasotransmitters, sulfurating modification of proteins, and the functional role of H2S in multiple systems. It may shed light on the pathogenesis of many diseases related to the abnormal metabolism of H2S.

  3. Physiological effects of hydrogen sulfide inhalation during exercise in healthy men.

    PubMed

    Bhambhani, Y; Singh, M

    1991-11-01

    Occupational exposure to hydrogen sulfide (H2S) is prevalent in a variety of industries. H2S when inhaled 1) is oxidized into a sulfate or a thiosulfate by oxygen bound to hemoglobin and 2) suppresses aerobic metabolism by inhibiting cytochrome oxidase (c and aa3) activity in the electron transport chain. The purpose of this study was to examine the acute effects of oral inhalation of H2S on the physiological responses during graded cycle exercise performed to exhaustion in healthy male subjects. Sixteen volunteers were randomly exposed to 0 (control), 0.5, 2.0, and 5.0 ppm H2S on four separate occasions. Compared with the control values, the results indicated that the heart rate and expired ventilation were unaffected as a result of the H2S exposures during submaximal and maximal exercise. The oxygen uptake had a tendency to increase, whereas carbon dioxide output had a tendency to decrease as a result of the H2S exposures, but only the 5.0 ppm exposure resulted in a significantly higher maximum oxygen uptake. Blood lactate concentrations increased significantly during submaximal and maximal exercise as a result of the 5.0 ppm exposure. Despite these large increases in lactate concentration, the maximal power output of the subjects was not significantly altered as a result of the 5.0 ppm H2S exposure. It was concluded that healthy young male subjects could safely exercise at their maximum metabolic rates while breathing 5.0 ppm H2S without experiencing a significant reduction in their maximum physical work capacity during short-term incremental exercise.

  4. Supramolecular binding and release of sulfide and hydrosulfide anions in water.

    PubMed

    Vázquez, J; Sindelar, V

    2018-06-05

    Hydrogen sulfide (H2S) has become an important target for research due to its physiological properties as well as its potential applications in medicine. In this work, supramolecular binding of sulfide (S2-) and hydrosulfide (HS-) anions in water is presented for the first time. Bambusurils were used to slow down the release of these anions in water.

  5. Anchoring the Gas-Phase Acidity Scale from Hydrogen Sulfide to Pyrrole. Experimental Bond Dissociation Energies of Nitromethane, Ethanethiol, and Cyclopentadiene.

    PubMed

    Ervin, Kent M; Nickel, Alex A; Lanorio, Jerry G; Ghale, Surja B

    2015-07-16

    A meta-analysis of experimental information from a variety of sources is combined with statistical thermodynamics calculations to refine the gas-phase acidity scale from hydrogen sulfide to pyrrole. The absolute acidities of hydrogen sulfide, methanethiol, and pyrrole are evaluated from literature R-H bond energies and radical electron affinities to anchor the scale. Relative acidities from proton-transfer equilibrium experiments are used in a local thermochemical network optimized by least-squares analysis to obtain absolute acidities of 14 additional acids in the region. Thermal enthalpy and entropy corrections are applied using molecular parameters from density functional theory, with explicit calculation of hindered rotor energy levels for torsional modes. The analysis reduces the uncertainties of the absolute acidities of the 14 acids to within ±1.2 to ±3.3 kJ/mol, expressed as estimates of the 95% confidence level. The experimental gas-phase acidities are compared with calculations, with generally good agreement. For nitromethane, ethanethiol, and cyclopentadiene, the refined acidities can be combined with electron affinities of the corresponding radicals from photoelectron spectroscopy to obtain improved values of the C-H or S-H bond dissociation energies, yielding D298(H-CH2NO2) = 423.5 ± 2.2 kJ mol(-1), D298(C2H5S-H) = 364.7 ± 2.2 kJ mol(-1), and D298(C5H5-H) = 347.4 ± 2.2 kJ mol(-1). These values represent the best-available experimental bond dissociation energies for these species.

  6. Coordination polymer structure and revisited hydrogen evolution catalytic mechanism for amorphous molybdenum sulfide

    PubMed Central

    Tran, Phong D.; Tran, Thu V.; Orio, Maylis; Torelli, Stephane; Truong, Quang Duc; Nayuki, Keiichiro; Sasaki, Yoshikazu; Chiam, Sing Yang; Yi, Ren; Honma, Itaru; Barber, James; Artero, Vincent

    2017-01-01

    Molybdenum sulfides are very attractive noble-metal free electrocatalysts for the hydrogen evolution reaction (HER) from water. Atomic structure and identity of the catalytically active sites have been well established for crystalline molybdenum disulfide (c-MoS2) but not for amorphous molybdenum sulfide (a-MoSx) which displays significantly higher HER activity compared to its crystalline counterpart. Here we show that HER–active a-MoSx, prepared either as nanoparticles or as films, is a molecular–based coordination polymer consisting of discrete [Mo3S13]2– building blocks. Of the three terminal disulfide (S22–) ligands within these clusters, two are shared to form the polymer chain. The third one remains free and generates molybdenum hydride moieties as the active site under H2 evolution conditions. Such a molecular structure therefore provides a basis for revisiting the mechanism of a-MoSx catalytic activity, as well as explaining some of its special properties such as reductive activation and corrosion. Our findings open up new avenues for the rational optimisation of this HER electrocatalyst as an alternative to platinum. PMID:26974410

  7. Adsorption of 2 Chloroethyl Ethyl Sulfide on Silica: Binding Mechanism and Energy of a Bifunctional Hydrogen-Bond Acceptor at the Gas Surface Interface

    DTIC Science & Technology

    2014-11-19

    C. A. S.; Sumpter, K. B.; Wagner, G. W.; Rice, J. S. Degradation of the Blister Agent Sulfur Mustard, Bis(2-chloroethyl) Sulfide, on Concrete . J...SECURITY CLASSIFICATION OF: This work investigates the fundamental nature of sulfur mustard surface adsorption by characterizing interfacial hydrogen...nature of sulfur mustard surface adsorption by characterizing interfacial hydrogen bonding and other intermolecular forces for the surrogate molecule

  8. An Antifungal Role of Hydrogen Sulfide on the Postharvest Pathogens Aspergillus niger and Penicillium italicum

    PubMed Central

    Li, Yan-Hong; Hu, Liang-Bin; Yan, Hong; Liu, Yong-Sheng; Zhang, Hua

    2014-01-01

    In this research, the antifungal role of hydrogen sulfide (H2S) on the postharvest pathogens Aspergillus niger and Penicillium italicum growing on fruits and under culture conditions on defined media was investigated. Our results show that H2S, released by sodium hydrosulfide (NaHS) effectively reduced the postharvest decay of fruits induced by A. niger and P. italicum. Furthermore, H2S inhibited spore germination, germ tube elongation, mycelial growth, and produced abnormal mycelial contractions when the fungi were grown on defined media in Petri plates. Further studies showed that H2S could cause an increase in intracellular reactive oxygen species (ROS) in A. niger. In accordance with this observation we show that enzyme activities and the expression of superoxide dismutase (SOD) and catalase (CAT) genes in A. niger treated with H2S were lower than those in control. Moreover, H2S also significantly inhibited the growth of Saccharomyces cerevisiae, Rhizopus oryzae, the human pathogen Candida albicans, and several food-borne bacteria. We also found that short time exposure of H2S showed a microbicidal role rather than just inhibiting the growth of microbes. Taken together, this study suggests the potential value of H2S in reducing postharvest loss and food spoilage caused by microbe propagation. PMID:25101960

  9. Toxic hydrogen sulfide and dark caves: life-history adaptations in a livebearing fish (Poecilia mexicana, Poeciliidae).

    PubMed

    Riesch, Rüdiger; Plath, Martin; Schlupp, Ingo

    2010-05-01

    Life-history traits are very sensitive to extreme environmental conditions, because resources that need to be invested in somatic maintenance cannot be invested in reproduction. Here we examined female life-history traits in the Mexican livebearing fish Poecilia mexicana from a variety of benign surface habitats, a creek with naturally occurring toxic hydrogen sulfide (H2S), a sulfidic cave, and a non-sulfidic cave. Previous studies revealed pronounced genetic and morphological divergence over very small geographic scales in this system despite the absence of physical barriers, suggesting that local adaptation to different combinations of two selection factors, toxicity (H2S) and darkness, is accompanied by very low rates of gene flow. Hence, we investigated life-history divergence between these populations in response to the selective pressures of darkness and/or toxicity. Our main results show that toxicity and darkness both select for (or impose constraints on) the same female trait dynamics: reduced fecundity and increased offspring size. Since reduced fecundity in the sulfur cave population was previously shown to be heritable, we discuss how divergent life-history evolution may promote further ecological divergence: for example, reduced fecundity and increased offspring autonomy are clearly beneficial in extreme environments, but fish with these traits are outcompeted in benign habitats.

  10. Electroactive Au@Ag nanoparticles driven electrochemical sensor for endogenous H2S detection.

    PubMed

    Zhao, Yuan; Yang, Yaxin; Cui, Linyan; Zheng, Fangjie; Song, Qijun

    2018-05-26

    In this work, a novel and facile electrochemical sensor is reported for the highly selective and sensitive detection of dissolved hydrogen sulfide (H 2 S), attributing to the redox reaction between Au@Ag core-shell nanoparticles (Au@Ag NPs) and H 2 S. Electroactive Au@Ag NPs not only possess excellent conductivity, but exhibit great electrochemical reactivity at 0.26 V due to the electrochemical oxidation from Ag° to Ag + . In the presence of H 2 S, the Ag shell of Au@Ag NPs can be oxidized to Ag 2 S, resulting in the decrease of differential pulse voltammetry (DPV) peak at 0.26 V. The electrochemical sensor exhibits a wide linear response range from 0.1 nM to 500 nM. The limit of detection (LOD) for H 2 S is as low as 0.04 nM. The developed sensor shows significant prospects in the study of pathological processes related to the mechanism of H 2 S production. Copyright © 2018. Published by Elsevier B.V.

  11. Electro-Chemical Behavior of Low Carbon Steel Under H2S Influence

    NASA Astrophysics Data System (ADS)

    Zaharia, M. G.; Stanciu, S.; Cimpoesu, R.; Nejneru, C.; Savin, C.; Manole, V.; Cimpoeșu, N.

    2017-06-01

    Abstract A commercial low carbon steel material (P265GH) with application at industrial scale for natural gas delivery and transportation systems was analyzed in H2S atmosphere. The article proposed a new experimental cell in order to establish the behavior of the material in sulfur contaminated environment. In most of the industrial processes for gas purification the corrosion rate is speed up by the presence of S (sulfur) especially as ions or species like H2S. The H2S (hydrogen sulfide) is, beside a very toxic compound, a very active element in the acceleration of metallic materials deterioration especially in complex solicitations like pressure and temperature in the same time. For experiments we used a three electrodes cell with Na2SO4 + Na2S solution at pH 3 at room temperature (∼ 25 °C) to realize EIS (electrochemical impedance spectroscopy) and potentio-dynamic polarization experiments. Scanning electron microscopy and X-ray dispersive energy spectroscopy were used to characterize the metallic material surface exposed to experimental environment.

  12. Solubility of mixtures of hydrogen sulfide and carbon dioxide in aqueous N-methyldiethanolamine solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jou, Fang Yuan; Carroll, J.J.; Mather, A.E.

    1993-01-01

    Aqueous solutions of alkanolamines are commonly used to strip acid gases (H[sub 2]S and CO[sub 2]) from streams contaminated with these components. The two most widely used amines are monoethanolamine (MEA) and diethanolamine (DEA). The solubilities of mixtures of hydrogen sulfide and carbon dioxide in a 35 wt% (3.04 kmol/m[sup 3]) aqueous solution of N-methyldiethanolamine at 40 and 100C have been measured. Partial pressures of the acid gases ranged from 0.006 to 101 kPa at 40C and from 4 to 530 kPa at 100C.

  13. Lens Opacity and Hydrogen Sulfide in a New Zealand Geothermal Area.

    PubMed

    Bates, Michael N; Bailey, Ian L; DiMartino, Robert B; Pope, Karl; Crane, Julian; Garrett, Nick

    2017-04-01

    Hydrogen sulfide (H2S) is a highly toxic gas with well-established, acute irritation effects on the eye. The population of Rotorua, New Zealand, sited on an active geothermal field, has some of the highest ambient H2S exposures in the world. Evidence from ecological studies in Rotorua has suggested that H2S is associated with cataract. The purpose of the present study was, using more detailed exposure characterization, clinical examinations, and anterior eye photography, to more directly investigate this previously reported association. Enrolled were 1637 adults, ages 18 to 65, from a comprehensive Rotorua primary care medical register. Patients underwent a comprehensive ophthalmic examination, including pupillary dilation and lens photography to capture evidence of any nuclear opacity, nuclear color, and cortical and posterior subcapsular opacity. Photographs were scored for all four outcomes on the LOCS III scale with decimalized interpolation between the exemplars. H2S exposure for up to the last 30 years was estimated based on networks of passive samplers set out across Rotorua and knowledge of residential, workplace, and school locations over the 30 years. Data analysis using linear and logistic regression examined associations between the degree of opacification and nuclear color or cataract (defined as a LOCS III score ≥2.0) in relation to H2S exposure. No associations were found between estimated H2S exposures and any of the four ophthalmic outcome measures. Overall, results were generally reassuring. They provided no evidence that H2S exposure at the levels found in Rotorua is associated with cataract. The previously found association between cataract and H2S exposure in the Rotorua population seems likely to be attributable to the limitations of the ecological study design. These results cannot rule out the possibility of an association with cataract at higher levels of H2S exposure.

  14. Design and scale-up of an oxidative scrubbing process for the selective removal of hydrogen sulfide from biogas.

    PubMed

    Krischan, J; Makaruk, A; Harasek, M

    2012-05-15

    Reliable and selective removal of hydrogen sulfide (H(2)S) is an essential part of the biogas upgrading procedure in order to obtain a marketable and competitive natural gas substitute for flexible utilization. A promising biogas desulfurization technology has to ensure high separation efficiency regardless of process conditions or H(2)S load without the use or production of toxic or ecologically harmful substances. Alkaline oxidative scrubbing is an interesting alternative to existing desulfurization technologies and is investigated in this work. In experiments on a stirred tank reactor and a continuous scrubbing column in laboratory-scale, H(2)S was absorbed from a gas stream containing large amounts of carbon dioxide (CO(2)) into an aqueous solution prepared from sodium hydroxide (NaOH), sodium bicarbonate (NaHCO(3)) and hydrogen peroxide (H(2)O(2)). The influence of pH, redox potential and solution aging on the absorption efficiency and the consumption of chemicals was investigated. Because of the irreversible oxidation reactions of dissolved H(2)S with H(2)O(2), high H(2)S removal efficiencies were achieved while the CO(2) absorption was kept low. At an existing biogas upgrading plant an industrial-scale pilot scrubber was constructed, which efficiently desulfurizes 180m(3)/h of raw biogas with an average removal efficiency of 97%, even at relatively high and strongly fluctuating H(2)S contents in the crude gas. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. The rate of sulfide oxidation by δMnO 2 in seawater

    NASA Astrophysics Data System (ADS)

    Yao, Wensheng; Millero, Frank J.

    1993-07-01

    The rate of oxidation of hydrogen sulfide by manganese dioxide in seawater was determined as a function of pH (2.0-9.0), temperature (5-45°C), and ionic strength (0-4 M). The overall rate constant, k, in seawater at pH = 8.17 was found to be first order with respect to both sulfide and manganese dioxide: - d[H 2S] T/dt = k[H 2S] τ[MnO 2] . The rate constant, k, for seawater (S = 35.8, pH = 8.17) at 25°C was found to be 436 M -1 min -1, or 0.0244 m -2 1 min -1 when [MnO 2] is expressed in surface area (m 2/L). The energies of activation were found to be 14 ± 1 KJ mol -1 and 10 ± 1 KJ mol -1, respectively, for pH = 8.2 and pH = 5.0 in seawater (S = 35). The rate increased from pH 2.0 to a maximum at a pH of about 5.0 and decreased at higher pH. This pH dependence was attributed to formation of a surface complex between >MnO - and H 2S. As the concentration of HS - increases above pH = 5 the rate of the reaction decreases. The rate of sulfide oxidation by MnO 2 is not strongly dependent on ionic strength. The rates in 0.57 M NaCl were found to be slightly higher than the rates in seawater. Measurements made in solutions of the major sea salts indicated that Ca 2+ and Mg 2+ caused the rates to decrease, apparently by absorbing on the surface of manganese dioxide. Measurements made in artificial seawater (Na +, Mg 2+, Ca 2+, Cl -, and SO 2-4) were found to be in good agreement with the measurements in actual seawater. Phosphate was found to inhibit the reaction significantly.

  16. Hydrogen sulfide interacts with calcium signaling to enhance the chromium tolerance in Setaria italica.

    PubMed

    Fang, Huihui; Jing, Tao; Liu, Zhiqiang; Zhang, Liping; Jin, Zhuping; Pei, Yanxi

    2014-12-01

    The oscillation of intracellular calcium (Ca(2+)) concentration is a primary event in numerous biological processes in plants, including stress response. Hydrogen sulfide (H2S), an emerging gasotransmitter, was found to have positive effects in plants responding to chromium (Cr(6+)) stress through interacting with Ca(2+) signaling. While Ca(2+) resemblances H2S in mediating biotic and abiotic stresses, crosstalk between the two pathways remains unclear. In this study, Ca(2+) signaling interacted with H2S to produce a complex physiological response, which enhanced the Cr(6+) tolerance in foxtail millet (Setaria italica). Results indicate that Cr(6+) stress activated endogenous H2S synthesis as well as Ca(2+) signaling. Moreover, toxic symptoms caused by Cr(6+) stress were strongly moderated by 50μM H2S and 20mM Ca(2+). Conversely, treatments with H2S synthesis inhibitor and Ca(2+) chelators prior to Cr(6+)-exposure aggravated these toxic symptoms. Interestingly, Ca(2+) upregulated expression of two important factors in metal metabolism, MT3A and PCS, which participated in the biosynthesis of heavy metal chelators, in a H2S-dependent manner to cope with Cr(6+) stress. These findings also suggest that the H2S dependent pathway is a component of the Ca(2+) activating antioxidant system and H2S partially contributes Ca(2+)-activating antioxidant system. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Carvedilol induces endogenous hydrogen sulfide tissue concentration changes in various mouse organs.

    PubMed

    Wiliński, Bogdan; Wiliński, Jerzy; Somogyi, Eugeniusz; Piotrowska, Joanna; Góralska, Marta; Macura, Barbara

    2011-01-01

    Carvedilol, a third generation non-selective adrenoreceptor blocker, is widely used in cardiology. Its action has been proven to reach beyond adrenergic antagonism and involves multiple biological mechanisms. The interaction between carvedilol and endogenous 'gasotransmitter' hydrogen sulfide (H2S) is unknown. The aim of the study is to assess the influence of carvedilol on the H2S tissue level in mouse brain, liver, heart and kidney. Twenty eight SJL strain female mice were administered intraperitoneal injections of 2.5 mg/kg b.w./d (group D1, n=7), 5 mg/kg b.w./d (group D2, n=7) or 10 mg/kg b.w./d of carvedilol (group D3, n=7). The control group (n=7) received physiological saline in portions of the same volume (0.2 ml). Measurements of the free tissue H2S concentrations were performed according to the modified method of Siegel. A progressive decline in H2S tissue concentration along with an increase in carvedilol dose was observed in the brain (12.5%, 13.7% and 19.6%, respectively). Only the highest carvedilol dose induced a change in H2S tissue level in the heart - an increase by 75.5%. In the liver medium and high doses of carvedilol increased the H2S level by 48.1% and 11.8%, respectively. In the kidney, group D2 showed a significant decrease of H2S tissue level (22.5%), while in the D3 group the H2S concentration increased by 12.9%. Our study has proven that carvedilol affects H2S tissue concentration in different mouse organs.

  18. Reactions of ferric hemoglobin and myoglobin with hydrogen sulfide under physiological conditions.

    PubMed

    Jensen, Birgitte; Fago, Angela

    2018-05-01

    Ferric hemoglobin (metHb) and myoglobin (metMb), present at low levels in vivo, have been recently found to oxidize hydrogen sulfide (H 2 S) in excess, thus potentially contributing to removal of toxic H 2 S in blood and heart, respectively. Here, we present a kinetic and thermodynamic study of the reaction of metHb and metMb with H 2 S under physiological conditions, i.e. at low H 2 S concentrations and with protein in excess of H 2 S. We show here that both proteins react with sub-stoichiometric H 2 S:heme ratios following two processes: a fast reversible binding of H 2 S to ferric heme that prevails at high H 2 S and a slow heme reduction to the ferrous state that prevails at low H 2 S. While these two processes are fast for metMb, H 2 S-induced heme reduction is slow for metHb and the metHb-H 2 S complex once formed is therefore relatively stable. We find that metHb binds H 2 S reversibly and cooperatively with a pH-dependent ligand affinity that is within the physiological range of H 2 S concentrations found in blood. Stopped-flow kinetics show identical association rate constants for H 2 S at varying pH, demonstrating that H 2 S and not HS - enters the ferric heme pocket. Dissociation rates of the metHb-H 2 S complex increase when decreasing pH, consistent with the pH-dependent affinity. Taken together, these data are consistent with a novel biological role of metHb as a H 2 S carrier in the blood, in parallel with the oxygen carrier function of the much more abundant ferrous Hb. In contrast, metMb in the heart could participate to redox-signaling involving H 2 S. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Hydrogen sulfide inhibits enzymatic browning of fresh-cut lotus root slices by regulating phenolic metabolism.

    PubMed

    Sun, Ying; Zhang, Wei; Zeng, Tao; Nie, Qixing; Zhang, Fengying; Zhu, Liqin

    2015-06-15

    The effect of fumigation with hydrogen sulfide (H2S) gas on inhibiting enzymatic browning of fresh-cut lotus root slices was investigated. Browning degree, changes in color, total phenol content, superoxide anion production rate (O2(-)), H2O2 content, antioxidant capacities (DPPH radical scavenging ability, ABTS radical scavenging activity and the reducing power) and activities of the phenol metabolism-associated enzymes including phenylalanine ammonialyase (PAL), catalase (CAT), peroxidase (POD), polyphenol oxidase (PPO) were evaluated. The results showed that treatment with 15 μl L(-1) H2S significantly inhibited the browning of fresh-cut lotus root slices (P<0.05), reduced significantly O2(-) production rate and H2O2 content, and enhanced antioxidant capacities (P<0.05). PPO and POD activities in the fresh-cut lotus root slices were also significantly inhibited by treatment with H2S (P<0.05). This study suggested that treatment with exogenous H2S could inhibit the browning of fresh-cut lotus root slices by enhancing antioxidant capacities to alleviate the oxidative damage. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Nonaqueous System of Iron-Based Ionic Liquid and DMF for the Oxidation of Hydrogen Sulfide and Regeneration by Electrolysis.

    PubMed

    Guo, Zhihui; Zhang, Tingting; Liu, Tiantian; Du, Jun; Jia, Bing; Gao, Shujing; Yu, Jiang

    2015-05-05

    To improve the hydrogen sulfide removal efficiency with the application of an iron-based imidazolium chloride ionic liquid (Fe(III)-IL) as desulfurizer, Fe(II) and N,N-dimethylformamide (DMF) are introduced to Fe(III)-IL to construct a new nonaqueous desulfurization system (Fe(III/II)-IL/DMF). Following desulfurization, the system can be regenerated using the controlled-potential electrolysis method. The addition of Fe(II) in Fe(III)-IL is beneficial for the hydrogen sulfide removal and the electrochemical regeneration of the desulfurizer. The addition of DMF in Fe(III/II)-IL does not change the structure of Fe(III/II)-IL but clearly decreases the acidity, increases the electrolytic current, and decreases the stability of the Fe-Cl bond in Fe(III/II)-IL. Fe(III/II)-IL/DMF can remove hydrogen sulfide and can be regenerated through an electrochemical method more efficiently than can Fe(III/II)-IL. After six cycles, the desulfurization efficiency remains higher than 98%, and the average conversion rate of Fe(II) is essentially unchanged. No sulfur peroxidation occurs, and the system remains stable. Therefore, this new nonaqueous system has considerable potential for removing H2S in pollution control applications.

  1. ZnO-carbon nanofibers for stable, high response, and selective H2S sensors.

    PubMed

    Zhang, Jitao; Zhu, Zijian; Chen, Changmiao; Chen, Zhi; Cai, Mengqiu; Qu, Baihua; Wang, Taihong; Zhang, Ming

    2018-07-06

    Hydrogen sulfide (H 2 S), as a typical atmospheric pollutant, is neurotoxic and flammable even at a very low concentration. In this study, we design stable H 2 S sensors based on ZnO-carbon nanofibers. Nanofibers with 30.34 wt% carbon are prepared by a facial electrospinning route followed by an annealing treatment. The resulting H 2 S sensors show excellent selectivity and response compared to the pure ZnO nanofiber H 2 S sensors, particularly the response in the range of 102-50 ppm of H 2 S. Besides, they exhibited a nearly constant response of approximately 40-20 ppm of H 2 S over 60 days. The superior performance of these H 2 S sensors can be attributed to the protection of carbon, which ensures the high stability of ZnO, and oxygen vacancies that improve the response and selectivity of H 2 S. The good performance of ZnO-carbon H 2 S sensors suggests that composites with oxygen vacancies prepared by a facial electrospinning route may provide a new research strategy in the field of gas sensors, photocatalysts, and semiconductor devices.

  2. Hydrogen sulfide removal in water-based drilling fluid by metal oxide nanoparticle and ZnO/TiO2 nanocomposite

    NASA Astrophysics Data System (ADS)

    Salehi Morgani, M.; Saboori, R.; Sabbaghi, S.

    2017-07-01

    Advanced approaches to the application of nanomaterials for environmental studies, such as waste-water treatment and pollution removal/adsorption, have been considered in recent decades. In this research, hydrogen sulfide removal from water-based drilling fluid by ZnO and TiO2 nanoparticles and a ZnO/TiO2 nanocomposite was studied experimentally. The ZnO and TiO2 nanoparticles were synthesized by sedimentation and the sol-gel method. A sol-chemical was employed to synthesize the ZnO/TiO2 nanocomposite. X-ray diffraction, scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) surface analysis, inductively coupled plasma mass spectrometry (ICP), dynamic light scattering (DLS) and Fourier transform infrared spectroscopy were used to characterize the produced ZnO and TiO2 nanoparticles, and the ZnO/TiO2 nanocomposite. The results showed that the concentration of hydrogen sulfide decreased from 800 ppm to about 250 ppm (about 70% removal) and less than 150 ppm (more than 80% removal) using the TiO2 and ZnO nanoparticles with a 0.67 wt% concentration, respectively. Hydrogen sulfide removal using the ZnO/TiO2 nanocomposite with a 0.67 wt% showed the highest value of removal in comparison with the TiO2 and ZnO nanoparticles. The hydrogen sulfide level was lowered from 800 ppm to less than 5 ppm (99% removal) by the nanocomposite.

  3. AOI [3] High-Temperature Nano-Derived Micro-H 2 and - H 2S Sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabolsky, Edward M.

    2014-08-01

    The emissions from coal-fired power plants remain a significant concern for air quality. This environmental challenge must be overcome by controlling the emission of sulfur dioxide (SO 2) and hydrogen sulfide (H 2S) throughout the entire coal combustion process. One of the processes which could specifically benefit from robust, low cost, and high temperature compatible gas sensors is the coal gasification process which converts coal and/or biomass into syngas. Hydrogen (H 2), carbon monoxide (CO) and sulfur compounds make up 33%, 43% and 2% of syngas, respectively. Therefore, development of a high temperature (>500°C) chemical sensor for in-situ monitoring ofmore » H 2, H 2S and SO2 2 levels during coal gasification is strongly desired. The selective detection of SO 2/H 2S in the presence of H 2, is a formidable task for a sensor designer. In order to ensure effective operation of these chemical sensors, the sensor system must inexpensively function within harsh temperature and chemical environment. Currently available sensing approaches, which are based on gas chromatography, electrochemistry, and IR-spectroscopy, do not satisfy the required cost and performance targets. This work focused on the development microsensors that can be applied to this application. In order to develop the high- temperature compatible microsensor, this work addressed various issues related to sensor stability, selectivity, and miniaturization. In the research project entitled “High-Temperature Nano-Derived Micro-H 2 and -H 2S Sensors”, the team worked to develop micro-scale, chemical sensors and sensor arrays composed of nano-derived, metal-oxide composite materials to detect gases like H 2, SO 2, and H 2S within high-temperature environments (>500°C). The research was completed in collaboration with NexTech Materials, Ltd. (Lewis Center, Ohio). NexTech assisted in the testing of the sensors in syngas with contaminate levels of H 2S. The idea of including nanomaterials as the

  4. Nucleoside monophosphorothioates as the new hydrogen sulfide precursors with unique properties.

    PubMed

    Bełtowski, Jerzy; Guranowski, Andrzej; Jamroz-Wiśniewska, Anna; Korolczuk, Agnieszka; Wojtak, Andrzej

    2014-03-01

    Hydrogen sulfide (H2S) is the gasotransmitter enzymatically synthesized in mammalian tissues from l-cysteine. H2S donors are considered as the potential drugs for the treatment of cardiovascular, neurological and inflammatory diseases. Recently, it has been demonstrated that synthetic nucleotide analogs, adenosine- and guanosine 5'-monophosphorothioates (AMPS and GMPS) can be converted to H2S and AMP or GMP, respectively, by purified histidine triad nucleotide-binding (Hint) proteins. We examined if AMPS and GMPS can be used as the H2S donors in intact biological systems. H2S production by isolated rat kidney glomeruli was measured by the specific polarographic sensor. H2S production was detected when glomeruli were incubated with AMPS or GMPS and ionotropic purinergic P2X7 receptor/channel agonist, BzATP. More H2S was generated from GMPS than from equimolar amount of AMPS. Nucleoside phosphorothioates together with BzATP relaxed angiotensin II-preconstricted glomeruli. In addition, infusion of AMPS or GMPS together with BzATP into the renal artery increased filtration fraction and glomerular filtration rate but had no effect on renal vascular resistance or renal blood flow. AMPS but not GMPS was converted to adenosine by isolated glomeruli, however, adenosine was not involved in AMPS-induced H2S synthesis because neither adenosine nor specific adenosine receptor agonists had any effect on H2S production. AMPS, but not GMPS, increased phosphorylation level of AMP-stimulated protein kinase (AMPK), but AMPK inhibitor, compound C, had no effect on AMPS-induced H2S production. In conclusion, nucleoside phosphorothioates are converted to H2S which relaxes isolated kidney glomeruli in vitro and increases glomerular filtration rate in vivo. AMPS and GMPS can be used as the H2S donors in experimental studies and possibly also as the H2S-releasing drugs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Proanthocyanidin-containing polyphenol extracts from fruits prevent the inhibitory effect of hydrogen sulfide on human colonocyte oxygen consumption.

    PubMed

    Andriamihaja, Mireille; Lan, Annaïg; Beaumont, Martin; Grauso, Marta; Gotteland, Martin; Pastene, Edgar; Cires, Maria Jose; Carrasco-Pozo, Catalina; Tomé, Daniel; Blachier, François

    2018-06-01

    Hydrogen sulfide (H 2 S), a metabolic end product synthesized by the microbiota from L-cysteine, has been shown to act at low micromolar concentration as a mineral oxidative substrate in colonocytes while acting as an inhibitor of oxygen consumption at higher luminal concentrations (65 µM and above). From the previous works showing that polyphenols can bind volatile sulfur compounds, we hypothesized that different dietary proanthocyanidin-containing polyphenol (PACs) plant extracts might modulate the inhibitory effect of H 2 S on colonocyte respiration. Using the model of human HT-29 Glc-/+ cell colonocytes, we show here that pre-incubation of 65 µM of the H 2 S donor NaHS with the different polyphenol extracts markedly reduced the inhibitory effect of NaHS on colonocyte oxygen consumption. Our studies on HT-29 Glc-/+ cell respiration performed in the absence or the presence of PACs reveal rapid binding of H 2 S with the sulfide-oxidizing unit and slower binding of H 2 S to the cytochrome c oxidase (complex IV of the respiratory chain). Despite acute inhibition of colonocyte respiration, no measurable effect of NaHS on paracellular permeability was recorded after 24 h treatment using the Caco-2 colonocyte monolayer model. The results are discussed in the context of the binding of excessive bacterial metabolites by unabsorbed dietary compounds and of the capacity of colonocytes to adapt to changing luminal environment.

  6. Effects of H2S/HS- on Stress Corrosion Cracking Behavior of X100 Pipeline Steel Under Simulated Sulfate-Reducing Bacteria Metabolite Conditions

    NASA Astrophysics Data System (ADS)

    Liu, Q.; Li, Z.; Liu, Z. Y.; Li, X. G.; Wang, S. Q.

    2017-04-01

    The effect of H2S/HS-, which simulates the main metabolites of sulfate-reducing bacteria (SRB), on the electrochemical and stress corrosion cracking (SCC) behaviors of X100 steel was investigated in a near-neutral solution. The results showed that different H2S/HS- contents mainly affected the cathodic process of X100 electrochemical corrosion. As the concentration of H2S/HS- increased, the corrosion potential was shifted negatively, the corrosion current density was considerably increased, and the corrosion rate was linearly increased. Different rust layers with shifting structures were formed under different conditions and had different effects on electrochemical behaviors. However, sulfide mainly promoted local corrosion processes. With the synergistic effects of stress and H2S/HS-, SCC susceptibility was considerably enhanced. The accelerated process of hydrogen evolution by sulfide was crucial in enhancing SCC processes. In brief, the trace H2S/HS- generated by SRB metabolites played a positive role in promoting SCC.

  7. H2 S Sensors: Fumarate-Based fcu-MOF Thin Film Grown on a Capacitive Interdigitated Electrode.

    PubMed

    Yassine, Omar; Shekhah, Osama; Assen, Ayalew H; Belmabkhout, Youssef; Salama, Khaled N; Eddaoudi, Mohamed

    2016-12-19

    Herein we report the fabrication of an advanced sensor for the detection of hydrogen sulfide (H 2 S) at room temperature, using thin films of rare-earth metal (RE)-based metal-organic framework (MOF) with underlying fcu topology. This unique MOF-based sensor is made via the in situ growth of fumarate-based fcu-MOF (fum-fcu-MOF) thin film on a capacitive interdigitated electrode. The sensor showed a remarkable detection sensitivity for H 2 S at concentrations down to 100 ppb, with the lower detection limit around 5 ppb. The fum-fcu-MOF sensor exhibits a highly desirable detection selectivity towards H 2 S vs. CH 4 , NO 2 , H 2 , and C 7 H 8 as well as an outstanding H 2 S sensing stability as compared to other reported MOFs. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. ELEVATED DISSOLVED SULFIDES IN SURFICIAL SEDIMENTS OF YAQUINA BAY ESTUARY, OREGON

    EPA Science Inventory

    Dissolved sulfide concentrations were measured in porewater of surficial sediments collected from two exposed intertidal sites in Yaquina Bay, Oregon. Idaho Pt. (IP) is an area where drift green macroalgae is known to accumulate, and the odor of hydrogen sulfide gas (H2S) on th...

  9. Synthesis and reactivity of NHC-supported Ni2(μ(2)-η(2),η(2)-S2)-bridging disulfide and Ni2(μ-S)2-bridging sulfide complexes.

    PubMed

    Olechnowicz, Frank; Hillhouse, Gregory L; Jordan, Richard F

    2015-03-16

    The (IPr)Ni scaffold stabilizes low-coordinate, mononuclear and dinuclear complexes with a diverse range of sulfur ligands, including μ(2)-η(2),η(2)-S2, η(2)-S2, μ-S, and μ-SH motifs. The reaction of {(IPr)Ni}2(μ-Cl)2 (1, IPr = 1,3-bis(2,6-diisopropylphenyl)imidazolin-2-ylidene) with S8 yields the bridging disulfide species {(IPr)ClNi}2(μ(2)-η(2),η(2)-S2) (2). Complex 2 reacts with 2 equiv of AdNC (Ad = adamantyl) to yield a 1:1 mixture of the terminal disulfide compound (IPr)(AdNC)Ni(η(2)-S2) (3a) and trans-(IPr)(AdNC)NiCl2 (4a). 2 also reacts with KC8 to produce the Ni-Ni-bonded bridging sulfide complex {(IPr)Ni}2(μ-S)2 (6). Complex 6 reacts with H2 to yield the bridging hydrosulfide compound {(IPr)Ni}2(μ-SH)2 (7), which retains a Ni-Ni bond. 7 is converted back to 6 by hydrogen atom abstraction by 2,4,6-(t)Bu3-phenoxy radical. The 2,6-diisopropylphenyl groups of the IPr ligand provide lateral steric protection of the (IPr)Ni unit but allow for the formation of Ni-Ni-bonded dinuclear species and electronically preferred rather than sterically preferred structures.

  10. A novel enzymatic method for determination of homocysteine using electrochemical hydrogen sulfide sensor.

    PubMed

    Zhao, Dong; Liu, Tsan-Zon; Chan, Err-Cheng; Fein, Harry; Zhang, Xueji

    2007-05-01

    Homocysteine is a sulfur-containing compound produced during metabolism process of methionine. Its uptake in human plasma is believed to be the cause of cardiovascular diseases and many other diseases. An electrochemical method was proposed for selective and quantitative measurement of homocysteine by employing hydrogen sulfide sensor coupled with methionine a, g-lyase. The principle of this method is to measure the evolved hydrogen sulfide from the enzymatic reaction between homocysteine and methionine a, g-lyase. The sensitivities of the measurements at different pH values of the tris buffer solutions and at room temperature peaked to 275 pA/mM at pH 6.5 with detection limit of 150 nM (based on 3 s cutoff). The linearity measurements at pH 6.5 were performed for the homocysteine concentrations range from 0.5 to 200 mM, which is wider than the human blood plasma total homocysteine level of 5 to 100 mM, and the regressive analysis of the experiments gave R2=0.9987. The enzyme also showed the fastest response to homocysteine in the tris buffer solution of pH 7.5 with the current approaching its maximum at 134 seconds. The interference tests against several common agents were carried out, and found that cysteine and methionine were the major two species to introduce measurement problem. The solution to this interference problem was explored and discussed thoroughly based on the preliminary tests. The sensitivities of the experiments against several enzyme concentrations were also performed.

  11. Hydrogen Sulfide Ameliorates Homocysteine-Induced Alzheimer's Disease-Like Pathology, Blood-Brain Barrier Disruption, and Synaptic Disorder.

    PubMed

    Kamat, Pradip K; Kyles, Philip; Kalani, Anuradha; Tyagi, Neetu

    2016-05-01

    Elevated plasma total homocysteine (Hcy) level is associated with an increased risk of Alzheimer's disease (AD). During transsulfuration pathways, Hcy is metabolized into hydrogen sulfide (H2S), which is a synaptic modulator, as well as a neuro-protective agent. However, the role of hydrogen sulfide, as well as N-methyl-D-aspartate receptor (NMDAR) activation, in hyperhomocysteinemia (HHcy) induced blood-brain barrier (BBB) disruption and synaptic dysfunction, leading to AD pathology is not clear. Therefore, we hypothesized that the inhibition of neuronal NMDA-R by H2S and MK801 mitigate the Hcy-induced BBB disruption and synapse dysfunction, in part by decreasing neuronal matrix degradation. Hcy intracerebral (IC) treatment significantly impaired cerebral blood flow (CBF), and cerebral circulation and memory function. Hcy treatment also decreases the expression of cystathionine-β-synthase (CBS) and cystathionine-γ-lyase (CSE) in the brain along with increased expression of NMDA-R (NR1) and synaptosomal Ca(2+) indicating excitotoxicity. Additionally, we found that Hcy treatment increased protein and mRNA expression of intracellular adhesion molecule 1 (ICAM-1), matrix metalloproteinase (MMP)-2, and MMP-9 and also increased MMP-2 and MMP-9 activity in the brain. The increased expression of ICAM-1, glial fibrillary acidic protein (GFAP), and the decreased expression of vascular endothelial (VE)-cadherin and claudin-5 indicates BBB disruption and vascular inflammation. Moreover, we also found decreased expression of microtubule-associated protein 2 (MAP-2), postsynaptic density protein 95 (PSD-95), synapse-associated protein 97 (SAP-97), synaptosomal-associated protein 25 (SNAP-25), synaptophysin, and brain-derived neurotrophic factor (BDNF) showing synapse dysfunction in the hippocampus. Furthermore, NaHS and MK801 treatment ameliorates BBB disruption, CBF, and synapse functions in the mice brain. These results demonstrate a neuro-protective effect of H2S over Hcy

  12. Measurements of atmospheric dimethylsulfide, hydrogen sulfide, and carbon disulfide during GTE/CITE 3

    NASA Technical Reports Server (NTRS)

    Cooper, David J.; Saltzman, Eric S.

    1993-01-01

    Measurements of atmospheric dimethylsulfide (DMS), hydrogen sulfide (H2S), and carbon disulfide (CS2) were made over the North and South Atlantic Ocean as part of the Global Tropospheric Experiment/Chemical Instrumentation Test and Evaluation (GTE/CITE 3) project. DMS and CS2 samples were collected and analyzed using an automated gas chromatography/flame photometric detection system with a sampling frequency of 10 min. H2S samples were collected using silver nitrate impregnated filters and analyzed by fluorescence quenching. The DMS data from both hemispheres have a bimodal distribution. Over the North Atlantic this reflects the difference between marine and continental air masses. Over the South Atlantic it may reflect differences in the sea surface source of DMS, corresponding to different air mass source regions. The median boundary layer H2S and CS2 levels were significantly higher in the northern hemisphere than the southern hemisphere, reflecting the higher frequency of samples influenced by pollutant and/or coastal emissions. Composite vertical profiles of DMS and H2S are similar to each other, are consistent with a sea surface source. Vertical profiles of CS2 have maxima in the free troposphere, implicating a continental source. The low levels of H2S and CS2 found in the southern hemisphere constrain the role of these compounds in global budgets to significantly less than previously estimated.

  13. Solutions to a combined problem of excessive hydrogen sulfide in biogas and struvite scaling.

    PubMed

    Charles, W; Cord-Ruwisch, R; Ho, G; Costa, M; Spencer, P

    2006-01-01

    The Woodman Point Wastewater Treatment Plant (WWTP) in Western Australia has experienced two separate problems causing avoidable maintenance costs: the build-up of massive struvite (MgNH4PO4. 6H2O) scaling downstream of the anaerobic digester and the formation of hydrogen sulfide (H2S) levels in the digester gas to levels that compromised gas engine operation and caused high operating costs on the gas scrubber. As both problems hang together with a chemical imbalance in the anaerobic digester, we decided to investigate whether both problems could be (feasibly and economically) addressed by a common solution (such as dosing of iron solutions to precipitate both sulfide and phosphate), or by using separate approaches. Laboratory results showed that, the hydrogen sulfide emission in digesters could be effectively and economically controlled by the addition of iron dosing. Slightly higher than the theoretical value of 1.5 mol of FeCl3 was required to precipitate 1 mol of dissolved sulfide inside the digester. Due to the high concentration of PO4(3-) in the digested sludge liquor, significantly higher iron is required for struvite precipitation. Iron dosing did not appear an economic solution for struvite control via iron phosphate formation. By taking advantage of the natural tendency of struvite formation in the digester liquid, it is possible to reduce the risk of struvite precipitation in and around the sludge-dewatering centrifuge by increasing the pH to precipitate struvite out before passing through the centrifuge. However, as the Mg2+/PO4(3-) molar ratio in digested sludge was low, by increasing the pH alone (using NaOH) the precipitation of PO4(3-) was limited by the amount of cations (Ca2+ and Mg2+) available in the sludge. Although this would reduce struvite precipitation in the centrifuge, it could not significantly reduce PO4(3-) recycling back to the plant. For long-term operation, maximum PO4(3-) reduction should be the ultimate aim to minimise PO4

  14. Hydrogen sulfide alleviates postharvest ripening and senescence of banana by antagonizing the effect of ethylene

    PubMed Central

    Hu, Lan-Ying; Chen, Xiao-Yan; Li, Yan-Hong; Yang, Ying; Yang, Feng

    2017-01-01

    Accumulating evidence shows that hydrogen sulfide (H2S) acts as a multifunctional signaling molecule in plants, whereas the interaction between H2S and ethylene is still unclear. In the present study we investigated the role of H2S in ethylene-promoted banana ripening and senescence by the application of ethylene released from 1.0 g·L−1 ethephon solution or H2S with 1 mM sodium hydrosulfide (NaHS) as the donor or in combination. Fumigation with ethylene was found to accelerate banana ripening and H2S treatment effectively alleviated ethylene-induced banana peel yellowing and fruit softening in parallel with decreased activity of polygalacturonase (PG). Ethylene+H2S treatment also delayed the decreases in chlorophyll and total phenolics, and increased the accumulation of flavonoid, whereas decreased the contents of carotenoid, soluble protein in banana peel and reducing sugar in pulp compared with ethylene treatment alone. Besides, ethylene+H2S treatment suppressed the accumulation of superoxide radicals (·O2−), hydrogen peroxide (H2O2) and malondialdehyde (MDA) which accumulated highly in ethylene-treated banana peels. Furthermore H2S enhanced total antioxidant capacity in ethylene-treated banana peels with the 2,2’-azobis(3-ethylbenz-thiazoline-6-sulfonic acid (ABTS) assay. The result of quantitative real-time PCR showed that the combined treatment of ethylene with H2S down-regulated the expression of ethylene synthesis genes MaACS1, MaACS2 and MaACO1 and pectate lyase MaPL compared with ethylene treatment, while the expression of ethylene receptor genes MaETR, MaERS1 and MaERS2 was enhanced in combination treatment compared with ethylene alone. In all, it can be concluded that H2S alleviates banana fruit ripening and senescence by antagonizing the effect of ethylene through reduction of oxidative stress and inhibition of ethylene signaling pathway. PMID:28662156

  15. Hydrogen sulfide alleviates postharvest ripening and senescence of banana by antagonizing the effect of ethylene.

    PubMed

    Ge, Yun; Hu, Kang-Di; Wang, Sha-Sha; Hu, Lan-Ying; Chen, Xiao-Yan; Li, Yan-Hong; Yang, Ying; Yang, Feng; Zhang, Hua

    2017-01-01

    Accumulating evidence shows that hydrogen sulfide (H2S) acts as a multifunctional signaling molecule in plants, whereas the interaction between H2S and ethylene is still unclear. In the present study we investigated the role of H2S in ethylene-promoted banana ripening and senescence by the application of ethylene released from 1.0 g·L-1 ethephon solution or H2S with 1 mM sodium hydrosulfide (NaHS) as the donor or in combination. Fumigation with ethylene was found to accelerate banana ripening and H2S treatment effectively alleviated ethylene-induced banana peel yellowing and fruit softening in parallel with decreased activity of polygalacturonase (PG). Ethylene+H2S treatment also delayed the decreases in chlorophyll and total phenolics, and increased the accumulation of flavonoid, whereas decreased the contents of carotenoid, soluble protein in banana peel and reducing sugar in pulp compared with ethylene treatment alone. Besides, ethylene+H2S treatment suppressed the accumulation of superoxide radicals (·O2-), hydrogen peroxide (H2O2) and malondialdehyde (MDA) which accumulated highly in ethylene-treated banana peels. Furthermore H2S enhanced total antioxidant capacity in ethylene-treated banana peels with the 2,2'-azobis(3-ethylbenz-thiazoline-6-sulfonic acid (ABTS) assay. The result of quantitative real-time PCR showed that the combined treatment of ethylene with H2S down-regulated the expression of ethylene synthesis genes MaACS1, MaACS2 and MaACO1 and pectate lyase MaPL compared with ethylene treatment, while the expression of ethylene receptor genes MaETR, MaERS1 and MaERS2 was enhanced in combination treatment compared with ethylene alone. In all, it can be concluded that H2S alleviates banana fruit ripening and senescence by antagonizing the effect of ethylene through reduction of oxidative stress and inhibition of ethylene signaling pathway.

  16. Hydrogen sulfide: role in ion channel and transporter modulation in the eye

    PubMed Central

    Njie-Mbye, Ya F.; Opere, Catherine A.; Chitnis, Madhura; Ohia, Sunny E.

    2012-01-01

    Hydrogen sulfide (H2S), a colorless gas with a characteristic smell of rotten eggs, has been portrayed for decades as a toxic environmental pollutant. Since evidence of its basal production in mammalian tissues a decade ago, H2S has attracted substantial interest as a potential inorganic gaseous mediator with biological importance in cellular functions. Current research suggests that, next to its counterparts nitric oxide and carbon monoxide, H2S is an important multifunctional signaling molecule with pivotal regulatory roles in various physiological and pathophysiological processes as diverse as learning and memory, modulation of synaptic activities, cell survival, inflammation, and maintenance of vascular tone in the central nervous and cardiovascular systems. In contrast, there are few reports of a regulatory role of H2S in the eye. Accumulating reports on the pharmacological role of H2S in ocular tissues indicate the existence of a functional trans-sulfuration pathway and a potential physiological role for H2S as a gaseous neuromodulator in the eye. Thus, understanding the role of H2S in vision-related processes is imperative to our expanding knowledge of this molecule as a gaseous mediator in ocular tissues. This review aims to provide a comprehensive and current understanding of the potential role of H2S as a signaling molecule in the eye. This objective is achieved by discussing the involvement of H2S in the regulation of (1) ion channels such as calcium (L-type, T-type, and intracellular stores), potassium (KATP and small conductance channels) and chloride channels, (2) glutamate transporters such as EAAT1/GLAST and the L-cystine/glutamate antiporter. The role of H2S as an important mediator in cellular functions and physiological processes that are triggered by its interaction with ion channels/transporters in the eye will also be discussed. PMID:22934046

  17. Role of Hydrogen Sulfide in Early Blood-Brain Barrier Disruption following Transient Focal Cerebral Ischemia

    PubMed Central

    Jiang, Zheng; Li, Chun; Manuel, Morganne L.; Yuan, Shuai; Kevil, Christopher G.; McCarter, Kimberly D.; Lu, Wei; Sun, Hong

    2015-01-01

    We determined the role of endogenous hydrogen sulfide (H₂S) in cerebral vasodilation/hyperemia and early BBB disruption following ischemic stroke. A cranial window was prepared over the left frontal, parietal and temporal cortex in mice. Transient focal cerebral Ischemia was induced by directly ligating the middle cerebral artery (MCA) for two hours. Regional vascular response and cerebral blood flow (CBF) during ischemia and reperfusion were measured in real time. Early BBB disruption was assessed by Evans Blue (EB) and sodium fluorescein (Na-F) extravasation at 3 hours of reperfusion. Topical treatment with DL-propargylglycine (PAG, an inhibitor for cystathionine γ-lyase (CSE)) and aspartate (ASP, inhibitor for cysteine aminotransferase/3-mercaptopyruvate sulfurtransferase (CAT/3-MST)), but not O-(Carboxymethyl)hydroxylamine hemihydrochloride (CHH, an inhibitor for cystathionine β-synthase (CBS)), abolished postischemic cerebral vasodilation/hyperemia and prevented EB and Na-F extravasation. CSE knockout (CSE-/-) reduced postischemic cerebral vasodilation/hyperemia but only inhibited Na-F extravasation. An upregulated CBS was found in cerebral cortex of CSE-/- mice. Topical treatment with CHH didn’t further alter postischemic cerebral vasodilation/hyperemia, but prevented EB extravasation in CSE-/- mice. In addition, L-cysteine-induced hydrogen sulfide (H2S) production similarly increased in ischemic side cerebral cortex of control and CSE-/- mice. Our findings suggest that endogenous production of H2S by CSE and CAT/3-MST during reperfusion may be involved in postischemic cerebral vasodilation/hyperemia and play an important role in early BBB disruption following transient focal cerebral ischemia. PMID:25695633

  18. Sulfidation treatment of molten incineration fly ashes with Na2S for zinc, lead and copper resource recovery.

    PubMed

    Kuchar, D; Fukuta, T; Onyango, M S; Matsuda, H

    2007-04-01

    The present study focuses on the conversion of heavy metals involved in molten incineration fly ashes to metal sulfides which could be thereafter separated by flotation. The sulfidation treatment was carried out for five molten incineration fly ashes (Fly ash-A to Fly ash-E) by contacting each fly ash with Na(2)S solution for a period of 10 min to 6h. The initial molar ratio of S(2-) to Me(2+) was adjusted to 1.20. The conversion of heavy metals to metal sulfides was evaluated by measuring the S(2-) residual concentrations using an ion selective electrode. The formation of metal sulfides was studied by XRD and SEM-EDS analyses. In the case of Fly ash-A to Fly ash-D, more than 79% of heavy metals of zinc, lead and copper was converted to metal sulfides within the contacting period of 0.5h owing to a fast conversion of metal chlorides to metal sulfides. By contrast, the conversion of about 35% was achieved for Fly ash-E within the same contacting period, which was attributed to a high content of metal oxides. Further, the S(2-) to Me(2+) molar ratio was reduced to 1.00 to minimize Na(2)S consumption and the conversions obtained within the contacting period of 0.5h varied from 76% for Fly ash-D to 91% for Fly ash-C. Finally, soluble salts such as NaCl and KCl were removed during the sulfidation treatment, which brought about a significant enrichment in metals content by a factor varying from 1.5 for Fly ash-D to 4.9 for Fly ash-A.

  19. Hydrogen Sulfide Sensing through Reactive Sulfur Species (RSS) and Nitroxyl (HNO) in Enterococcus faecalis.

    PubMed

    Shen, Jiangchuan; Walsh, Brenna J C; Flores-Mireles, Ana Lidia; Peng, Hui; Zhang, Yifan; Zhang, Yixiang; Trinidad, Jonathan C; Hultgren, Scott J; Giedroc, David P

    2018-05-17

    Recent studies of hydrogen sulfide (H 2 S) signaling implicate low molecular weight (LMW) thiol persulfides and other reactive sulfur species (RSS) as signaling effectors. Here, we show that a CstR protein from the human pathogen Enterococcus faecalis ( E. faecalis), previously identified in Staphylococcus aureus ( S. aureus), is an RSS-sensing repressor that transcriptionally regulates a cst-like operon in response to both exogenous sulfide stress and Angeli's salt, a precursor of nitroxyl (HNO). E. faecalis CstR reacts with coenzyme A persulfide (CoASSH) to form interprotomer disulfide and trisulfide bridges between C32 and C61', which negatively regulate DNA binding to a consensus CstR DNA operator. A Δ cstR strain exhibits deficiency in catheter colonization in a catheter-associated urinary tract infection (CAUTI) mouse model, suggesting sulfide regulation and homeostasis is critical for pathogenicity. Cellular polysulfide metabolite profiling of sodium sulfide-stressed E. faecalis confirms an increase in both inorganic polysulfides and LMW thiols and persulfides sensed by CstR. The cst-like operon encodes two authentic thiosulfate sulfurtransferases and an enzyme we characterize here as an NADH and FAD-dependent coenzyme A (CoA) persulfide reductase (CoAPR) that harbors an N-terminal CoA disulfide reductase (CDR) domain and a C-terminal rhodanese homology domain (RHD). Both cysteines in the CDR (C42) and RHD (C508) domains are required for CoAPR activity and complementation of a sulfide-induced growth phenotype of a S. aureus strain lacking cstB, encoding a nonheme Fe II persulfide dioxygenase. We propose that S. aureus CstB and E. faecalis CoAPR employ orthogonal chemistries to lower CoASSH that accumulates under conditions of cellular sulfide toxicity and signaling.

  20. Hydrogen sulfide synthesis enzymes reduced in lower esophageal sphincter of patients with achalasia.

    PubMed

    Zhang, L; Zhao, W; Zheng, Z; Wang, T; Zhao, C; Zhou, G; Jin, H; Wang, B

    2016-10-01

    The etiology of achalasia remains largely unknown. Considerable evidence reveals that the lower esophageal sphincter dysfunction is due to the lack of inhibitory neurotransmitter, secondary to esophageal neuronal inflammation or loss. Recent studies suggest hydrogen sulfide may act as an inhibitory transmitter in gastrointestinal tract, but study about hydrogen sulfide in human esophagus still lack. The aim of the study was to investigate if hydrogen sulfide synthesis enzymes could be detected in human esophagus and if the synthesis of the endogenous hydrogen sulfide could be affected in achalasia patients. Tissue samples in cardia, lower esophageal sphincter, 2 cm and 4 cm above lower esophageal sphincter were obtained from achalasia patients undergoing peroral endoscopic myotomy. Control tissues in lower esophageal sphincter were obtained from esophageal carcinoma patients. Expression of cystathionine-β-synthase and cystathionine-γ-lyase in lower esophageal sphincter of achalasia patients and control were detected by immunohistochemical staining. In addition, expression of cystathionine-β-synthase and cystathionine-γ-lyase were compared among different parts of esophagus in achalasia patients. Compared with control, the expression of cystathionine-β-synthase and cystathionine-γ-lyase in lower esophageal sphincter of achalasia patients was significantly reduced (χ 2 = 11.429, P = 0.010). The expression of cystathionine-β-synthase and cystathionine-γ-lyase were lower in lower esophageal sphincter than that in 2 cm and 4 cm above lower esophageal sphincter, respectively (all P < 0.05). In conclusion, the expression of hydrogen sulfide synthesis enzymes, cystathionine-β-synthase and cystathionine-γ-lyase, can be detected in human esophagus and is reduced in patients with achalasia, which implicates the involvement of the two hydrogen sulfide synthesis enzymes in the pathophysiology of achalasia. © 2015 International Society for Diseases of the

  1. Use of Tissue Metabolite Analysis and Enzyme Kinetics To Discriminate between Alternate Pathways for Hydrogen Sulfide Metabolism.

    PubMed

    Augustyn, Kristie D Cox; Jackson, Michael R; Jorns, Marilyn Schuman

    2017-02-21

    Hydrogen sulfide (H 2 S) is an endogenously synthesized signaling molecule that is enzymatically metabolized in mitochondria. The metabolism of H 2 S maintains optimal concentrations of the gasotransmitter and produces sulfane sulfur (S 0 )-containing metabolites that may be functionally important in signaling. Sulfide:quinone oxidoreductase (SQOR) catalyzes the initial two-electron oxidation of H 2 S to S 0 using coenzyme Q as the electron acceptor in a reaction that requires a third substrate to act as the acceptor of S 0 . We discovered that sulfite is a highly efficient acceptor and proposed that sulfite is the physiological acceptor in a reaction that produces thiosulfate, a known metabolic intermediate. This model has been challenged by others who assume that the intracellular concentration of sulfite is very low, a scenario postulated to favor reaction of SQOR with a considerably poorer acceptor, glutathione. In this study, we measured the intracellular concentration of sulfite and other metabolites in mammalian tissues. The values observed for sulfite in rat liver (9.2 μM) and heart (38 μM) are orders of magnitude higher than previously assumed. We discovered that the apparent kinetics of oxidation of H 2 S by SQOR with glutathione as the S 0 acceptor reflect contributions from other SQOR-catalyzed reactions, including a novel glutathione:CoQ reductase reaction. We used observed metabolite levels and steady-state kinetic parameters to simulate rates of oxidation of H 2 S by SQOR at physiological concentrations of different S 0 acceptors. The results show that the reaction with sulfite as the S 0 acceptor is a major pathway in liver and heart and provide insight into the potential dynamics of H 2 S metabolism.

  2. The hydrogen sulfide metabolite trimethylsulfonium is found in human urine

    NASA Astrophysics Data System (ADS)

    Lajin, Bassam; Francesconi, Kevin A.

    2016-06-01

    Hydrogen sulfide is the third and most recently discovered gaseous signaling molecule following nitric oxide and carbon monoxide, playing important roles both in normal physiological conditions and disease progression. The trimethylsulfonium ion (TMS) can result from successive methylation reactions of hydrogen sulfide. No report exists so far about the presence or quantities of TMS in human urine. We developed a method for determining TMS in urine using liquid chromatography-electrospray ionization-triple quadrupole mass spectrometry (LC-ESI-QQQ), and applied the method to establish the urinary levels of TMS in a group of human volunteers. The measured urinary levels of TMS were in the nanomolar range, which is commensurate with the steady-state tissue concentrations of hydrogen sulfide previously reported in the literature. The developed method can be used in future studies for the quantification of urinary TMS as a potential biomarker for hydrogen sulfide body pools.

  3. Role of hydrogen sulfide in portal hypertension and esophagogastric junction vascular disease

    PubMed Central

    Wang, Chao; Han, Juan; Xiao, Liang; Jin, Chang-E; Li, Dong-Jian; Yang, Zhen

    2014-01-01

    AIM: To investigate the association between endogenous hydrogen sulfide (H2S) and portal hypertension as well as its effect on vascular smooth muscle cells. METHODS: Portal hypertension patients were categorized by Child-Pugh score based on bilirubin and albumin levels, prothrombin time, ascites and hepatic encephalopathy. Plasma H2S concentrations and portal vein diameters (PVDs) were compared between portal hypertension patients and control participants, as well as between portal hypertension patients with varying degrees of severity. In addition, we established a rabbit hepatic schistosomiasis portal hypertension (SPH) model and analyzed liver morphology, fibrosis grade, plasma and liver tissue H2S concentrations, as well as cystathionine γ-lyase (CSE) activity and phosphorylated extracellular signal-regulated kinase (pERK)1/2, B cell lymphoma (Bcl)-2 and Bcl-XL expression in portal vein smooth muscle cells, in addition to their H2S-induced apoptosis rates. RESULTS: In portal hypertension patients, endogenous H2S levels were significantly lower than those in healthy controls. The more severe the disease was, the lower were the H2S plasma levels, which were inversely correlated with PVD and Child-Pugh score. Liver tissue H2S concentrations and CSE expression were significantly lower in the SPH rabbit livers compared with the control animals, starting at 3 wk, whereas pERK 1/2 expressions gradually increased 12-20 wk after SPH model establishment. In portal vein smooth muscle cells, increasing H2S levels led to increased apoptosis, while Bcl-2 and Bcl-XL expression decreased. CONCLUSION: H2S prevents vascular restructuring caused by excessive proliferation of smooth muscle cells via apoptosis induction, which helps to maintain normal vascular structures. PMID:24574782

  4. Hydrogen sulfide ameliorates subarachnoid hemorrhage-induced neuronal apoptosis via the ROS-MST1 pathway

    PubMed Central

    Shi, Ligen; Lei, Jianwei; Xu, Hangzhe; Zheng, Jingwei; Wang, Yan; Peng, Yucong; Yu, Jun; Zhang, Jianmin

    2017-01-01

    Background Hydrogen sulfide (H2S) has shown a neuroprotective role in several cerebrovascular diseases. This study aimed to explore the underlying mechanisms of H2S in early brain injury after subarachnoid hemorrhage (SAH). Methods One hundred seventy-seven male Sprague-Dawley rats were employed in this study. Sodium hydrosulfide (NaHS), a donor of H2S, was injected intraperitoneally at 60 min after SAH was induced by endovascular perforation. Western blot analysis determined the expression of several proteins of interest, and an immunofluorescence assay was used to examine neuronal apoptosis. Results Exogenous NaHS markedly improved neurological scores, attenuated brain edema, and ameliorated neuronal apoptosis at 24 h after SAH induction. The underlying mechanisms of H2S in ameliorating neuronal apoptosis might be executed through inhibition of the activity of mammalian sterile 20-like kinase 1 (MST1) protein. Western blot analysis demonstrated that exogenous NaHS decreased cleaved MST1 (cl-MST1) while increasing full-length MST1 expression. This anti-apoptotic effect of H2S could be reversed by chelerythrine, which could activate MST1 via caspase-dependent cleavage. Conclusions Exogenous NaHS, as a donor of H2S, could ameliorate early brain injury after SAH by inhibiting neuronal apoptosis by reducing the activity of the MST1 protein. PMID:29088725

  5. Effects of Hydrogen Sulfide on Bacterial Communities on the Surface of Galatheid Crab, Shinkaia crosnieri, and in a Bacterial Mat Cultured in Rearing Tanks

    PubMed Central

    Konishi, Masaaki; Watsuji, Tomo-o; Nakagawa, Satoshi; Hatada, Yuji; Takai, Ken; Toyofuku, Takashi

    2013-01-01

    To investigate the effects of H2S on the bacterial consortia on the galatheid crab, Shinkaia crosnieri, crabs of this species were cultivated in the laboratory under two different conditions, with and without hydrogen sulfide feeding. We developed a novel rearing tank system equipped with a feedback controller using a semiconductor sensor for hydrogen sulfide feeding. H2S aqueous concentration was successfully maintained between 5 to 40 μM for 80 d with the exception of brief periods of mechanical issues. According to real-time PCR analysis, the numbers of copies of partial 16S rRNA gene of an episymbiont of the crabs with H2S feeding was three orders of magnitude larger than that without feeding. By phylogenetic analysis of partial 16S rRNA gene, we detected several clones related to symbionts of deep sea organisms in Alphaproteobacteria, Gammaproteobacteria, Epsilonproteobacteria, and Flavobacteria, from a crab with H2S feeding. The symbiont-related clones were grouped into four different groups: Gammaproteobacteria in marine epibiont group I, Sulfurovum-affiliated Epsilonproteobacteria, Osedax mucofloris endosymbiont-affiliated Epsilonproteobacteria, and Flavobacteria closely related to CFB group bacterial epibiont of Rimicaris exoculata. The other phylotypes were related to Roseobacter, and some Flavobacteria, seemed to be free-living psychrophiles. Furthermore, white biofilm occurred on the surface of the rearing tank with H2S feeding. The biofilms contained various phylotypes of Gammaproteobacteria, Epsilonproteobacteria, and Flavobacteria, as determined by phylogenetic analysis. Interestingly, major clones were related to symbionts of Alviniconcha sp. type 2 and to endosymbionts of Osedax mucofloris, in Epsilonproteobacteria. PMID:23080406

  6. Short-term effects of subchronic low-level hydrogen sulfide exposure on oil field workers.

    PubMed

    Mousa, Haider Abdul-Lateef

    2015-01-01

    To investigate the short-term effects of low-level hydrogen sulfide (H2S) exposure on oil field workers. Observational study included 34 patients who work at an oil field. All patients were males with age range of 22-60 years (mean 37 years). The data were collected by systematic questionnaire about symptoms. The inclusion criteria of patients were symptoms related to inhalation of H2S gas in the oil field. The complaints should be frequent and relapsed after each gas exposure and disappeared when there was no gas exposure. Exclusion criteria were the symptoms which experienced with or without H2S exposure. The presence of H2S gas was confirmed by valid gas detector devices. The most frequent presenting symptom was nasal bleeding. It was revealed in 18 patients (52.9%). This followed by pharyngeal bleeding, gum bleeding, and bloody saliva (mouth bleeding) which were encountered in five cases for each complaint (14.7%). Other less frequent presenting symptoms were tongue bleeding, bloody sputum, headache, abdominal colic, pharyngeal soreness, fatigue, and sleepiness. Nasal mucosa was the most vulnerable part to H2S effect. Inhalation of H2S produced upper respiratory tract epithelial damage that led to bleeding from nose, pharynx, gum, tongue, trachea, and bronchi. There were no complaints of asthmatic attack upon exposure to low level of H2S. Sunlight had a significant role in reduction of ambient air H2S level.

  7. Organic silicon compounds anf hydrogen sulfide removal from biogas by mineral and adsorbent

    NASA Astrophysics Data System (ADS)

    Choi, J.

    2015-12-01

    Biogas utilized for energy production needs to be free from organic silicon compounds and hydrogen sulfide , as their burning has damaging effects on utilities and humans; organic silicon compounds and hydrogen sulfide can be found in biogas produced from biomass wastes, due to their massive industrial use in synthetic product,such as cosmetics, detergents and paints.Siloxanes and hydrogen sulfide removal from biogas can be carried out by various methods (Ajhar et al., 2010); aim of the present work is to find a single practical andeconomic way to drastically and simultaneously reduce both hydrogen sulfide and the siloxanes concentration to less than 1 ppm. Some commercial activated carbons previously selected (Monteleoneet al., 2011) as being effective in hydrogen sulfide up taking have been tested in an adsorption measurement apparatus, by flowing both hydrogen sulphide and volatile siloxane (Decamethycyclopentasiloxane or D5) in a nitrogen stream,typically 25-300 ppm D5 over N2, through an clay minerals, Fe oxides and Silica; the adsorption process was analyzed by varying some experimental parameters (concentration, grain size, bed height). The best silica shows an adsorption capacity of 0.2 g D5 per gram of silica. The next thermo gravimetric analysis (TGA) confirms the capacity data obtained experimentally by the breakthrough curve tests.The capacity results depend on D5 and hydrogen sulphide concentrations. A regenerative silica process is then carried out byheating the silica bed up to 200 ° C and flushing out the adsorbed D5 and hydrogen sulphide samples in a nitrogen stream in athree step heating procedure up to 200 ° C. The adsorption capacity is observed to degrade after cyclingthe samples through several adsorption-desorption cycles.

  8. Hydrogen sulfide emission in sewer networks: a two-phase modeling approach to the sulfur cycle.

    PubMed

    Yongsiri, C; Vollertsen, J; Hvitved-Jacobsen, T

    2004-01-01

    Wherever transport of anaerobic wastewater occurs, potential problems associated with hydrogen sulfide in relation to odor nuisance, health risk and corrosion exist. Improved understanding of prediction of hydrogen sulfide emission into the sewer atmosphere is needed for better evaluation of such problems in sewer networks. A two-phase model for emission of hydrogen sulfide along stretches of gravity sewers is presented to estimate the occurrence of both sulfide in the water phase and hydrogen sulfide in the sewer atmosphere. The model takes into account air-water mass transfer of hydrogen sulfide and interactions with other processes in the sulfur cycle. Various emission scenarios are simulated to illustrate the release characteristics of hydrogen sulfide.

  9. Achieving Simultaneous CO2 and H2 S Conversion via a Coupled Solar-Driven Electrochemical Approach on Non-Precious-Metal Catalysts.

    PubMed

    Ma, Weiguang; Wang, Hong; Yu, Wei; Wang, Xiaomei; Xu, Zhiqiang; Zong, Xu; Li, Can

    2018-03-19

    Carbon dioxide (CO 2 ) and hydrogen sulfide (H 2 S) are generally concomitant with methane (CH 4 ) in natural gas and traditionally deemed useless or even harmful. Developing strategies that can simultaneously convert both CO 2 and H 2 S into value-added products is attractive; however it has not received enough attention. A solar-driven electrochemical process is demonstrated using graphene-encapsulated zinc oxide catalyst for CO 2 reduction and graphene catalyst for H 2 S oxidation mediated by EDTA-Fe 2+ /EDTA-Fe 3+ redox couples. The as-prepared solar-driven electrochemical system can realize the simultaneous conversion of CO 2 and H 2 S into carbon monoxide and elemental sulfur at near neutral conditions with high stability and selectivity. This conceptually provides an alternative avenue for the purification of natural gas with added economic and environmental benefits. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Toward new instruments for measurement of low concentration hydrogen sulfide in small-quantity aqueous solutions

    NASA Astrophysics Data System (ADS)

    Wu, Xiao Chu; Qing Wu, Dong; Sammynaiken, R.; Yang, Wei; Wang, Rui; Zhang, W. J.

    2008-11-01

    Endogenously generated hydrogen sulfide (H2S) has been found to play some important physiological roles in the nervous and cardiovascular systems, such as a neuromodulator and a vasorelaxant. These roles are in contrast to our common perception that H2S is toxic. However, whether H2S plays a positive or negative role is dependent on the H2S concentration levels in mammals. This further puts a high demand on the accurate measurement of H2S in mammals with a further desire to be real time, continuous and in vivo. Existing methods for H2S measurement require a large number of tissue samples with complex procedures, and these methods are extremely invasive. The development of new in vivo and real-time methods for measuring H2S is, however, a great challenge. In the present study, we proposed and examined five potential H2S measurement methods: (1) atomic force microscopy with coating materials, (2) Raman spectroscopy on the H2S solutions, (3) gas chromatography/mass spectroscopy (with the static headspace technique) on the H2S solutions, (4) mass spectroscopy on unfunctionalized carbon nanotubes treated with the H2S solutions and (5) Raman spectroscopy on unfunctionalized carbon nanotubes treated with the H2S solutions. Our study concluded that method (5) is the most promising one for detecting low concentration H2S in small-quantity aqueous solutions in terms of measurement resolution and non-invasiveness, but the method is not very robust.

  11. Effect of active zinc oxide dispersion on reduced graphite oxide for hydrogen sulfide adsorption at mid-temperature

    NASA Astrophysics Data System (ADS)

    Song, Hoon Sub; Park, Moon Gyu; Croiset, Eric; Chen, Zhongwei; Nam, Sung Chan; Ryu, Ho-Jung; Yi, Kwang Bok

    2013-09-01

    Composites of Zinc oxide (ZnO) with reduced graphite oxide (rGO) were synthesized and used as adsorbents for hydrogen sulfide (H2S) at 300 °C. Various characterization methods (TGA, XRD, FT-IR, TEM and XPS) were performed in order to link their H2S adsorption performance to the properties of the adsorbent's surface. Microwave-assisted reduction process of graphite oxide (GO) provided mild reduction environment, allowing oxygen-containing functional groups to remain on the rGO surface. It was confirmed that for the ZnO/rGO synthesize using the microwave-assisted reduction method, the ZnO particle size and the degree of ZnO dispersion remained stable over time at 300 °C, which was not the case for only the ZnO particles themselves. This stable highly dispersed feature allows for sustained high surface area over time. This was confirmed through breakthrough experiments for H2S adsorption where it was found that the ZnO/rGO composite showed almost four times higher ZnO utilization efficiency than ZnO itself. The effect of the H2 and CO2 on H2S adsorption was also investigated. The presence of hydrogen in the H2S stream had a positive effect on the removal of H2S since it allows a reducing environment for Znsbnd O and Znsbnd S bonds, leading to more active sites (Zn2+) to sulfur molecules. On the other hand, the presence of carbon dioxide (CO2) showed the opposite trend, likely due to the oxidation environment and also due to possible competitive adsorption between H2S and CO2.

  12. Increased growth and germination success in plants following hydrogen sulfide administration.

    PubMed

    Dooley, Frederick D; Nair, Suven P; Ward, Peter D

    2013-01-01

    This study presents a novel way of enhancing plant growth through the use of a non-petroleum based product. We report here that exposing either roots or seeds of multicellular plants to extremely low concentrations of dissolved hydrogen sulfide at any stage of life causes statistically significant increases in biomass including higher fruit yield. Individual cells in treated plants were smaller (~13%) than those of controls. Germination success and seedling size increased in, bean, corn, wheat, and pea seeds while time to germination decreases. These findings indicated an important role of H2S as a signaling molecule that can increase the growth rate of all species yet tested. The increased crop yields reported here has the potential to effect the world's agricultural output.

  13. Hydrogen Sulfide Attenuates the Recruitment of CD11b+Gr-1+ Myeloid Cells and Regulates Bax/Bcl-2 Signaling in Myocardial Ischemia Injury

    PubMed Central

    Zhang, Youen; Li, Hua; Zhao, Gang; Sun, Aijun; Zong, Nobel C.; Li, Zhaofeng; Zhu, Hongming; Zou, Yunzeng; Yang, Xiangdong; Ge, Junbo

    2014-01-01

    Hydrogen sulfide, an endogenous signaling molecule, plays an important role in the physiology and pathophysiology of the cardiovascular system. Using a mouse model of myocardial infarction, we investigated the anti-inflammatory and anti-apoptotic effects of the H2S donor sodium hydrosulfide (NaHS). The results demonstrated that the administration of NaHS improved survival, preserved left ventricular function, limited infarct size, and improved H2S levels in cardiac tissue to attenuate the recruitment of CD11b+Gr-1+ myeloid cells and to regulate the Bax/Bcl-2 pathway. Furthermore, the cardioprotective effects of NaHS were enhanced by inhibiting the migration of CD11b+Gr-1+ myeloid cells from the spleen into the blood and by attenuating post-infarction inflammation. These observations suggest that the novel mechanism underlying the cardioprotective function of H2S is secondary to a combination of attenuation the recruitment of CD11b+Gr-1+ myeloid cells and regulation of the Bax/Bcl-2 apoptotic signaling. PMID:24758901

  14. Gas-phase hydrogen atom abstraction reactions of S- with H2, CH4, and C2H6

    NASA Astrophysics Data System (ADS)

    Angel, Laurence A.; Dogbevia, Moses K.; Rempala, Katarzyna M.; Ervin, Kent M.

    2003-11-01

    Reaction cross sections, product axial velocity distributions, and potential energy surfaces are presented for the hydrogen atom abstraction reactions S-+RH→R+HS- (R=H, CH3, C2H5) as a function of collision energy. The observed threshold energy, E0, for S-+H2H+HS- agrees with the reaction endothermicity, ΔrH0. At low collision energies, the H+HS- products exhibit symmetric, low-recoil-velocity scattering, consistent with statistical reaction behavior. The S-+CH4→CH3+HS- and S-+C2H6→C2H5+HS reactions, in contrast, show large excess threshold energies when compared to ΔrH0. The excess energies are partly explained by a potential energy barrier separating products from reactants. However, additional dynamical constraints must account for more than half of the excess threshold energy. The observed behavior seems to be general for collisional activation of anion-molecule reactions that proceed through a tight, late transition state. For RH=CH4 and C2H6, the HS- velocity distributions show anisotropic backward scattering at low collision energies indicating small impact parameters and a direct rebound reaction mechanism. At higher collision energies, there is a transition to HS- forward scattering and high velocities consistent with grazing collisions and a stripping mechanism.

  15. Sputum-to-serum hydrogen sulfide ratio as a novel biomarker of predicting future risks of asthma exacerbation.

    PubMed

    Suzuki, Yasuhito; Saito, Junpei; Kikuchi, Masami; Uematsu, Manabu; Fukuhara, Atsuro; Sato, Suguru; Munakata, Mitsuru

    2018-05-14

    Increased level of hydrogen sulfide (H 2 S) in sputum is reported to be a new biomarker of neutrophilic airway inflammation in chronic airway disorders. However, the relationship between H 2 S and disease activity remains unclear. We investigated whether H 2 S levels could vary during different conditions in asthma. H 2 S levels in sputum and serum were measured using a sulfide-sensitive electrode in 47 stable asthmatic subjects (S-BA), 21 uncontrolled asthmatic subjects (UC-BA), 26 asthmatic subjects with acute exacerbation (AE-BA), and 15 healthy subjects. Of these, H 2 S levels during stable, as well as exacerbation states were obtained in 13 asthmatic subjects. Sputum H 2 S levels were significantly higher in the AE-BA subjects compared to the UC-BA and healthy subjects (p<0.05). However, serum H 2 S levels in the AE-BA subjects were lower than in the S-BA subjects (p<0.001) and similar to those in healthy subjects. Thus, the sputum-to-serum ratio of H 2 S (H 2 S ratio) in the AE-BA subjects was significantly higher than in the S-BA, UC-BA and healthy subjects (p<0.05). Among all subjects, sputum H 2 S levels showed a trend to decrease with FEV 1% predicted, and significantly positive correlations with sputum neutrophils (%), sputum IL-8, and serum IL-8. A multiple linear regression analysis showed that sputum H 2 S was independently associated with increased sputum neutrophils (%) and decreased FEV 1% predicted (p<0.05) The cut-off level of H 2 S ratio to indicate an exacerbation was ≥0.34 (area under the curve; 0.88, with a sensitivity of 81.8% and specificity of 72.7%, p<0.001). Furthermore, half of the asthmatic subjects with H 2 S ratios higher than the cutoff level experienced asthma exacerbations over the following 3 months after enrollment. The H 2 S ratio may provide useful information on predicting future risks of asthma exacerbation, as well as on obstructive neutrophilic airway inflammation as one of the non-Th2 biomarkers, in asthma. This article

  16. Enhanced photocatalytic hydrogen production from aqueous sulfide/sulfite solution by ZnO0.6S0.4 with simultaneous dye degradation under visible-light irradiation.

    PubMed

    Chu, Ka Him; Ye, Liqun; Wang, Wei; Wu, Dan; Chan, Donald Ka Long; Zeng, Cuiping; Yip, Ho Yin; Yu, Jimmy C; Wong, Po Keung

    2017-09-01

    Photocatalytic hydrogen (H 2 ) production was performed by visible-light-driven (VLD) ternary photocatalyst, zinc oxysulfide (ZnO 0.6 S 0.4 ) in the presence of sulfide/sulfite (S 2 2- /SO 3 2- ) sacrificing system, with simultaneous azo-dye Reactive Violet 5 (RV5) degradation. Enhancement in both RV5 degradation and H 2 production was achieved, with the promotion of H 2 production after decolorization of RV5. The effect of initial concentration of RV5 was found to be influential on the enhancement of H 2 during the simultaneous processes, with a maximum of 110% increase of H 2 produced. The mechanism of the simultaneous system was investigated by scavenger study and intermediate analysis, including Fourier transform-infrared (FTIR) spectroscopy and total organic carbon (TOC) analysis. It was confirmed that the partial degradation of RV5 and presence of dynamic organic intermediates contributed to the enhancement in H 2 production. The present study revealed the feasibility of developing VLD photocatalysis as a sustainable and environmentally friendly technology for concurrent organic pollutant degradation with energy generation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Colorimetric detection of endogenous hydrogen sulfide production in living cells

    NASA Astrophysics Data System (ADS)

    Ahn, Yong Jin; Lee, Young Ju; Lee, Jaemyeon; Lee, Doyeon; Park, Hun-Kuk; Lee, Gi-Ja

    2017-04-01

    Hydrogen sulfide (H2S) has received great attention as a third gaseous signal transmitter, following nitric oxide and carbon monoxide. In particular, H2S plays an important role in the regulation of cancer cell biology. Therefore, the detection of endogenous H2S concentrations within biological systems can be helpful to understand the role of gasotransmitters in pathophysiology. Although a simple and inexpensive method for the detection of H2S has been developed, its direct and precise measurement in living cells remains a challenge. In this study, we introduced a simple, facile, and inexpensive colorimetric system for selective H2S detection in living cells using a silver-embedded Nafion/polyvinylpyrrolidone (PVP) membrane. This membrane could be easily applied onto a polystyrene microplate cover. First, we optimized the composition of the coating membrane, such as the PVP/Nafion mixing ratio and AgNO3 concentration, as well as the pH of the Na2S (H2S donor) solution and the reaction time. Next, the in vitro performance of a colorimetric detection assay utilizing the silver/Nafion/PVP membrane was evaluated utilizing a known concentration of Na2S standard solution both at room temperature and at 37 °C in a 5% CO2 incubator. As a result, the sensitivity of the colorimetric assay for H2S at 37 °C in the incubator (0.0056 Abs./μM Na2S, R2 = 0.9948) was similar to that at room temperature (0.0055 Abs./μM Na2S, R2 = 0.9967). Moreover, these assays were less sensitive to interference from compounds such as glutathione, L-cysteine (Cys), and dithiothreitol than to the H2S from Na2S. This assay based on the silver/Nafion/PVP membrane also showed excellent reproducibility (2.8% RSD). Finally, we successfully measured the endogenous H2S concentrations in live C6 glioma cells by s-(5‧-adenosyl)-L-methionine stimulation with and without Cys and L-homocysteine, utilizing the silver/Nafion/PVP membrane. In summary, colorimetric assays using silver

  18. Online analysis of H2S and SO2 via advanced mid-infrared gas sensors.

    PubMed

    Petruci, João Flavio da Silveira; Wilk, Andreas; Cardoso, Arnaldo Alves; Mizaikoff, Boris

    2015-10-06

    Volatile sulfur compounds (VSCs) are among the most prevalent emitted pollutants in urban and rural atmospheres. Mainly because of the versatility of sulfur regarding its oxidation state (2- to 6+), VSCs are present in a wide variety of redox-environments, concentration levels, and molar ratios. Among the VSCs, hydrogen sulfide and sulfur dioxide are considered most relevant and have simultaneously been detected within naturally and anthropogenically caused emission events (e.g., volcano emissions, food production and industries, coal pyrolysis, and various biological activities). Next to their presence as pollutants, changes within their molar ratio may also indicate natural anomalies. Prior to analysis, H2S- and SO2-containing samples are usually preconcentrated via solid sorbents and are then detected by gas chromatographic techniques. However, such analytical strategies may be of limited selectivity, and the dimensions and operation modalities of the involved instruments prevent routine field usage. In this contribution, we therefore describe an innovative portable mid-infrared chemical sensor for simultaneously determining and quantifying gaseous H2S and SO2 via coupling a substrate-integrated hollow waveguides (iHWG) serving as a highly miniaturized mid-infrared photon conduit and gas cell with a custom-made preconcentration tube and an in-line UV-converter device. Both species were collected onto a solid sorbent within the preconcentrator and then released by thermal desorption into the UV-device. Hydrogen sulfide is detected by UV-assisted quantitative conversion of the rather weak IR-absorber H2S into SO2, which provides a significantly more pronounced and distinctively detectable rovibrational signature. Modulation of the UV-device system (i.e., UV-lamp on/off) enables discriminating between SO2 generated from H2S conversion and abundant SO2 signals. After optimization of the operational parameters, calibrations in the range of 0.75-10 ppmv with a limit

  19. Copper(II)-Mediated Hydrogen Sulfide and Thiol Oxidation to Disulfides and Organic Polysulfanes and Their Reductive Cleavage in Wine: Mechanistic Elucidation and Potential Applications.

    PubMed

    Kreitman, Gal Y; Danilewicz, John C; Jeffery, David W; Elias, Ryan J

    2017-03-29

    Fermentation-derived volatile sulfur compounds (VSCs) are undesirable in wine and are often remediated in a process known as copper fining. In the present study, the addition of Cu(II) to model and real wine systems containing hydrogen sulfide (H 2 S) and thiols provided evidence for the generation of disulfides (disulfanes) and organic polysulfanes. Cu(II) fining of a white wine spiked with glutathione, H 2 S, and methanethiol (MeSH) resulted in the generation of MeSH-glutathione disulfide and trisulfane. In the present study, the mechanisms underlying the interaction of H 2 S and thiols with Cu(II) is discussed, and a prospective diagnostic test for releasing volatile sulfur compounds from their nonvolatile forms in wine is investigated. This test utilized a combination of reducing agents, metal chelators, and low-oxygen conditions to promote the release of H 2 S and MeSH, at levels above their reported sensory thresholds, from red and white wines that were otherwise free of sulfidic off-odors at the time of addition.

  20. Nanocomposite polymer structures for optical sensors of hydrogen sulfide

    NASA Astrophysics Data System (ADS)

    Sergeev, A. A.; Mironenko, A. Yu.; Nazirov, A. E.; Leonov, A. A.; Voznesenskii, S. S.

    2017-08-01

    Composite coatings based on gold and silver nanoparticles reduced in situ in the film of chitosan polysaccharide are studied. In the presence of hydrogen sulfide, the maximum of plasmon resonance of the nanoparticles that is proportional to the analyte concentration decreases. The detection limits for hydrogen sulfide are 0.1 and 5 ppm for the chitosan/silver and chitosan/gold nanocomposites, respectively.

  1. Sulfur fertilization and fungal infections affect the exchange of H(2)S and COS from agricultural crops.

    PubMed

    Bloem, Elke; Haneklaus, Silvia; Kesselmeier, Jürgen; Schnug, Ewald

    2012-08-08

    The emission of gaseous sulfur (S) compounds by plants is related to several factors, such as the plant S status or fungal infection. Hydrogen sulfide (H(2)S) is either released or taken up by the plant depending on the ambient air concentration and the plant demand for S. On the contrary, carbonyl sulfide (COS) is normally taken up by plants. In a greenhouse experiment, the dependence of H(2)S and COS exchange with ambient air on the S status of oilseed rape (Brassica napus L.) and on fungal infection with Sclerotinia sclerotiorum was investigated. Thiol contents were determined to understand their influence on the exchange of gaseous S compounds. The experiment revealed that H(2)S emissions were closely related to pathogen infections as well as to S nutrition. S fertilization caused a change from H(2)S consumption by S-deficient oilseed rape plants to a H(2)S release of 41 pg g(-1) (dw) min(-1) after the addition of 250 mg of S per pot. Fungal infection caused an even stronger increase of H(2)S emissions with a maximum of 1842 pg g(-1) (dw) min(-1) 2 days after infection. Healthy oilseed rape plants acted as a sink for COS. Fungal infection caused a shift from COS uptake to COS releases. The release of S-containing gases thus seems to be part of the response to fungal infection. The roles the S-containing gases may play in this response are discussed.

  2. Hydrogen Sulfide Treatment Promotes Glucose Uptake by Increasing Insulin Receptor Sensitivity and Ameliorates Kidney Lesions in Type 2 Diabetes

    PubMed Central

    Xue, Rong; Hao, Dan-Dan; Sun, Ji-Ping; Li, Wen-Wen; Zhao, Man-Man; Li, Xing-Hui; Chen, Ying; Zhu, Jian-Hua; Ding, Ying-Jiong; Liu, Jun

    2013-01-01

    Abstract Aims: To examine if hydrogen sulfide (H2S) can promote glucose uptake and provide amelioration in type 2 diabetes. Results: Treatment with sodium hydrosulfide (NaHS, an H2S donor) increased glucose uptake in both myotubes and adipocytes. The H2S gas solution showed similar effects. The NaHS effects were blocked by an siRNA-mediated knockdown of the insulin receptor (IR). NaHS also increased phosphorylation of the IR, PI3K, and Akt. In Goto-Kakizaki (GK) diabetic rats, chronic NaHS treatment (30 μmol·kg−1·day−1) decreased fasting blood glucose, increased insulin sensitivity, and increased glucose tolerance with increased phosphorylation of PI3K and Akt in muscles. Similar insulin-sensitizing effects of NaHS treatment were also observed in Wistar rats. Moreover, glucose uptake was reduced in the cells with siRNA-mediated knockdown of the H2S-generating enzyme cystathionine γ-lyase in the presence or absence of exogenous H2S. Moreover, chronic NaHS treatment reduced oxygen species and the number of crescentic glomeruli in the kidney of GK rats. Innovation and Conclusion: This study provides the first piece of evidence for the insulin-sensitizing effect of NaHS/H2S in the both in vitro and in vivo models of insulin resistance. Rebound Track: This work was rejected during a standard peer review and rescued by the Rebound Peer Review (Antoxid Redox Signal 16: 293–296, 2012) with the following serving as open reviewers: Jin-Song Bian, Samuel Dudley, Hideo Kimura, and Xian Wang. Antioxid. Redox Signal. 19, 5–23. PMID:23293908

  3. Hydrogen sulfide mediates hypoxia-induced relaxation of trout urinary bladder smooth muscle.

    PubMed

    Dombkowski, Ryan A; Doellman, Meredith M; Head, Sally K; Olson, Kenneth R

    2006-08-01

    Hydrogen sulfide (H2S) is a recently identified gasotransmitter that may mediate hypoxic responses in vascular smooth muscle. H2S also appears to be a signaling molecule in mammalian non-vascular smooth muscle, but its existence and function in non-mammalian non-vascular smooth muscle have not been examined. In the present study we examined H2S production and its physiological effects in urinary bladder from steelhead and rainbow trout (Oncorhynchus mykiss) and evaluated the relationship between H2S and hypoxia. H2S was produced by trout bladders, and its production was sensitive to inhibitors of cystathionine beta-synthase and cystathionine gamma-lyase. H2S produced a dose-dependent relaxation in unstimulated and carbachol pre-contracted bladders and inhibited spontaneous contractions. Bladders pre-contracted with 80 mmol l(-1) KCl were less sensitive to H2S than bladders contracted with either 80 mmol l(-1) KC2H3O2 (KAc) or carbachol, suggesting that some of the H2S effects are mediated through an ion channel. However, H2S relaxation of bladders was not affected by the potassium channel inhibitors, apamin, charybdotoxin, 4-aminopyridine, and glybenclamide, or by chloride channel/exchange inhibitors 4,4'-Diisothiocyanatostilbene-2,2'-disulfonic acid disodium salt, tamoxifen and glybenclamide, or by the presence or absence of extracellular HCO3-. Inhibitors of neuronal mechanisms, tetrodotoxin, strychnine and N-vanillylnonanamide were likewise ineffective. Hypoxia (aeration with N2) also relaxed bladders, was competitive with H2S for relaxation, and it was equally sensitive to KCl, and unaffected by neuronal blockade or the presence of extracellular HCO3-. Inhibitors of H2S synthesis also inhibited hypoxic relaxation. These experiments suggest that H2S is a phylogenetically ancient gasotransmitter in non-mammalian non-vascular smooth muscle and that it serves as an oxygen sensor/transducer, mediating the effects of hypoxia.

  4. Comparative Proteomic Analysis of Differentially Expressed Proteins Induced by Hydrogen Sulfide in Spinacia oleracea Leaves

    PubMed Central

    Chen, Juan; Liu, Ting-Wu; Hu, Wen-Jun; Simon, Martin; Wang, Wen-Hua; Chen, Juan; Liu, Xiang; Zheng, Hai-Lei

    2014-01-01

    Hydrogen sulfide (H2S), as a potential gaseous messenger molecule, has been suggested to play important roles in a wide range of physiological processes in plants. The aim of present study was to investigate which set of proteins is involved in H2S-regulated metabolism or signaling pathways. Spinacia oleracea seedlings were treated with 100 µM NaHS, a donor of H2S. Changes in protein expression profiles were analyzed by 2-D gel electrophoresis coupled with MALDI-TOF MS. Over 1000 protein spots were reproducibly resolved, of which the abundance of 92 spots was changed by at least 2-fold (sixty-five were up-regulated, whereas 27 were down-regulated). These proteins were functionally divided into 9 groups, including energy production and photosynthesis, cell rescue, development and cell defense, substance metabolism, protein synthesis and folding, cellular signal transduction. Further, we found that these proteins were mainly localized in cell wall, plasma membrane, chloroplast, mitochondria, nucleus, peroxisome and cytosol. Our results demonstrate that H2S is involved in various cellular and physiological activities and has a distinct influence on photosynthesis, cell defense and cellular signal transduction in S. oleracea leaves. These findings provide new insights into proteomic responses in plants under physiological levels of H2S. PMID:25181351

  5. Evaluation of different techniques to control hydrogen sulfide and greenhouse gases from animal production systems

    NASA Astrophysics Data System (ADS)

    Gautam, Dhan Prasad

    The livestock manure management sector is one of the prime sources for the emission of greenhouse gases (GHGs) and other pollutant gases such as ammonia (NH3) and hydrogen sulfide (H2S), which may affect the human health, animal welfare, and the environment. So, worldwide investigations are going on to mitigate these gaseous emissions. The overall objective of this research was to investigate different approaches (dietary manipulation and nanotechnology) for mitigating the gaseous emissions from livestock manure system. A field study was conducted to investigate the effect of different levels of dietary proteins (12 and 16%) and fat levels (3 to 5.5%) fed to beef cattle on gaseous emission (methane-CH4, nitrous oxide-N2O, carbon dioxide-CO 2 and hydrogen sulfide-H2S) from the pen surface. To evaluate the effects of different nanoparticles (zinc oxide-nZnO; and zirconium-nZrO 2) on these gaseous emissions from livestock manure stored under anaerobic conditions, laboratory studies were conducted with different treatments (control, bare NPs, NPs entrapped alginate beads applying freely and keeping in bags, and used NPs entrapped alginate beads). Field studies showed no significant differences in the GHG and H2S emissions from the manure pen surface. Between nZnO and nZrO2, nZnO outperformed the nZrO2 in terms of gases production and concentration reduction from both swine and dairy liquid manure. Application of nZnO at a rate of 3 g L-1 showed up to 82, 78, 40 and 99% reduction on total gas production, CH 4, CO2 and H2S concentrations, respectively. The effectiveness of nZnO entrapped alginate (alginate-nZnO) beads was statistically lower than the bare nZnO, but both of them were very effective in reducing gas production and concentrations. These gaseous reductions were likely due to combination of microbial inhibition of microorganisms and chemical conversion during the treatment, which was confirmed by microbial plate count, SEM-EDS, and XPS analysis. However

  6. Nitrosopersulfide (SSNO(-)) accounts for sustained NO bioactivity of S-nitrosothiols following reaction with sulfide.

    PubMed

    Cortese-Krott, Miriam M; Fernandez, Bernadette O; Santos, José L T; Mergia, Evanthia; Grman, Marian; Nagy, Péter; Kelm, Malte; Butler, Anthony; Feelisch, Martin

    2014-01-01

    Sulfide salts are known to promote the release of nitric oxide (NO) from S-nitrosothiols and potentiate their vasorelaxant activity, but much of the cross-talk between hydrogen sulfide and NO is believed to occur via functional interactions of cell regulatory elements such as phosphodiesterases. Using RFL-6 cells as an NO reporter system we sought to investigate whether sulfide can also modulate nitrosothiol-mediated soluble guanylyl cyclase (sGC) activation following direct chemical interaction. We find a U-shaped dose response relationship where low sulfide concentrations attenuate sGC stimulation by S-nitrosopenicillamine (SNAP) and cyclic GMP levels are restored at equimolar ratios. Similar results are observed when intracellular sulfide levels are raised by pre-incubation with the sulfide donor, GYY4137. The outcome of direct sulfide/nitrosothiol interactions also critically depends on molar reactant ratios and is accompanied by oxygen consumption. With sulfide in excess, a 'yellow compound' accumulates that is indistinguishable from the product of solid-phase transnitrosation of either hydrosulfide or hydrodisulfide and assigned to be nitrosopersulfide (perthionitrite, SSNO(-); λ max 412 nm in aqueous buffers, pH 7.4; 448 nm in DMF). Time-resolved chemiluminescence and UV-visible spectroscopy analyses suggest that its generation is preceded by formation of the short-lived NO-donor, thionitrite (SNO(-)). In contrast to the latter, SSNO(-) is rather stable at physiological pH and generates both NO and polysulfides on decomposition, resulting in sustained potentiation of SNAP-induced sGC stimulation. Thus, sulfide reacts with nitrosothiols to form multiple bioactive products; SSNO(-) rather than SNO(-) may account for some of the longer-lived effects of nitrosothiols and contribute to sulfide and NO signaling.

  7. Hydrogen sulfide: A novel nephroprotectant against cisplatin-induced renal toxicity.

    PubMed

    Dugbartey, George J; Bouma, Hjalmar R; Lobb, Ian; Sener, Alp

    2016-07-01

    Cisplatin is a potent chemotherapeutic agent for the treatment of various solid-organ cancers. However, a plethora of evidence indicates that nephrotoxicity is a major side effect of cisplatin therapy. While the antineoplastic action of cisplatin is due to formation of cisplatin-DNA cross-links, which damage rapidly dividing cancer cells upon binding to DNA, its nephrotoxic effect results from metabolic conversion of cisplatin into a nephrotoxin and production of reactive oxygen species, causing oxidative stress leading to renal tissue injury and potentially, kidney failure. Despite therapeutic targets in several pre-clinical and clinical studies, there is still incomplete protection against cisplatin-induced nephrotoxicity. Hydrogen sulfide (H2S), the third discovered gasotransmitter next to nitric oxide and carbon monoxide, has recently been identified in several in vitro and in vivo studies to possess specific antioxidant, anti-inflammatory and anti-apoptotic properties that modulate several pathogenic pathways involved in cisplatin-induced nephrotoxicity. The current article reviews the molecular mechanisms underlying cisplatin-induced nephrotoxicity and displays recent findings in the H2S field that could disrupt such mechanisms to ameliorate cisplatin-induced renal injury. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Design and performance characterization strategy using modeling for biofiltration control of odorous hydrogen sulfide.

    PubMed

    Martin, Ronald W; Mihelcic, James R; Crittenden, John C

    2004-07-01

    Biofilter, dynamic modeling software characterizing contaminant removal via biofiltration, was used in the preliminary design of a biofilter to treat odorous hydrogen sulfide (H2S). Steady-state model simulations were run to generate performance plots for various influent concentrations, loadings, residence times, media sizes, and temperatures. Although elimination capacity and removal efficiency frequently are used to characterize biofilter performance, effluent concentration can be used to characterize performance when treating to a target effluent concentration. Model simulations illustrate that, at a given temperature, a biofilter cannot reduce H2S emissions below a minimum value, no matter how large the biofilter or how long the residence time. However, a higher biofilter temperature results in lower effluent H2S concentrations. Because dynamic model simulations show that shock loading can significantly increase the effluent concentration above values predicted by the steady-state model simulations, it is recommended that, to consistently meet treatment objectives, dynamic feed conditions should be considered. This study illustrates that modeling can serve as a valuable tool in the design and performance optimization of biofilters.

  9. Development of a detection sensor for lethal H2S gas.

    PubMed

    Park, Young-Ho; Kim, Yong-Jae; Lee, Chang-Seop

    2012-07-01

    The gas which may be lethal to human body with short-term exposure in common industrial fields or workplaces in LAB may paralyze the olfactory sense and impose severe damages to central nervous system and lung. This study is concerned with the gas sensor which allows individuals to avoid the toxic gas that may be generated in the space with residues of organic wastes under 50 degrees C or above. This study investigates response and selectivity of the sensor to hydrogen sulfide gas with operating temperatures and catalysts. The thick-film semiconductor sensor for hydrogen sulfide gas detection was fabricated WO3/SnO2 prepared by sol-gel and precipitation methods. The nanosized SnO2 powder mixed with the various metal oxides (WO3, TiO2, and ZnO) and doped with transition metals (Au, Ru, Pd Ag and In). Particle sizes, specific surface areas and phases of sensor materials were investigated by SEM, BET and XRD analyses. The metal-WO3/SnO2 thick films were prepared by screen-printing method. The measured response to hydrogen sulfide gas is defined as the ratio (Ra/R,) of the resistance of WO3ISnO2 film in air to the resistance of WO3/SnO2 film in a hydrogen sulfide gas. It was shown that the highest response and selectivity of the sensor for hydrogen sulfide by doping with 1 wt% Ru and 10 wt% WO3 to SnO2 at the optimum operating temperature of 200 degrees C.

  10. H2S-induced S-sulfhydration of pyruvate carboxylase contributes to gluconeogenesis in liver cells.

    PubMed

    Ju, YoungJun; Untereiner, Ashley; Wu, Lingyun; Yang, Guangdong

    2015-11-01

    Cystathionine gamma-lyase (CSE)-derived hydrogen sulfide (H(2)S) possesses diverse roles in the liver, affecting lipoprotein synthesis, insulin sensitivity, and mitochondrial biogenesis. H(2)S S-sulfhydration is now proposed as a major mechanism for H(2)S-mediated signaling. Pyruvate carboxylase (PC) is an important enzyme for gluconeogenesis. S-sulfhydration regulation of PC by H(2)S and its implication in gluconeogenesis in the liver have been unknown. Gene expressions were analyzed by real-time PCR and western blotting, and protein S-sulfhydration was assessed by both modified biotin switch assay and tag switch assay. Glucose production and PC activity was measured with coupled enzyme assays, respectively. Exogenously applied H(2)S stimulates PC activity and gluconeogenesis in both HepG2 cells and mouse primary liver cells. CSE overexpression enhanced but CSE knockout reduced PC activity and gluconeogenesis in liver cells, and blockage of PC activity abolished H(2)S-induced gluconeogenesis. H(2)S had no effect on the expressions of PC mRNA and protein, while H(2)S S-sulfhydrated PC in a dithiothreitol-sensitive way. PC S-sulfhydration was significantly strengthened by CSE overexpression but attenuated by CSE knockout, suggesting that H(2)S enhances glucose production through S-sulfhydrating PC. Mutation of cysteine 265 in human PC diminished H(2)S-induced PC S-sulfhydration and activity. In addition, high-fat diet feeding of mice decreased both CSE expression and PC S-sulfhydration in the liver, while glucose deprivation of HepG2 cells stimulated CSE expression. CSE/H(2)S pathway plays an important role in the regulation of glucose production through S-sulfhydrating PC in the liver. Tissue-specific regulation of CSE/H(2)S pathway might be a promising therapeutic target of diabetes and other metabolic syndromes. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Rapid fluctuations in the northern Baltic Sea H2S layer

    NASA Astrophysics Data System (ADS)

    Kankaanpää, Harri T.; Virtasalo, Joonas J.

    2017-12-01

    Hydrogen sulfide (H2S) is linked to water quality deterioration in the Baltic Sea, with widespread seafloor hypoxia. We examined the vertical and temporal variability of in situ [H2S], oxygen concentration ([O2]), temperature (T) and pH at weekly, hourly and minute intervals at 13 locations in the western Gulf of Finland in 2013-2014. The main target was the 60-100 m water depth range, containing 3.2-290 μM O2 and 6.3-22.6 μM H2S. Where gas was detected by acoustic surveys, the structure of the H2S layer was more complex compared to stations devoid of gas. Local minima and maxima in pH frequently occurred near the H2S upper boundary (redox transition zone). Except for the homogeneous, tranquil zone above the seafloor at some stations, substantial rapid changes in hydrographic conditions were common. Typically, a layer of marked temporal T variability was present atop or within the topmost H2S layers. The largest temporal changes over a weekly period were - 0.44 °C/- 10.8 μM H2S/- 0.12 pH units (at seafloor level), + 0.18 °C/+7.9 μM H2S between casts (1 h) and + 0.03 °C/- 2.5 μM H2S per minute (high resolution logging). Abrupt [H2S] changes were recorded at two stations with sediments containing free gas. The T and [H2S] changes were synchronous at several layers, reflecting water movement. We conclude that rapid changes occur in hydrographic conditions in the near-bottom H2S layer in the northern Baltic Sea, especially at locations where free gas is present in the underlying sediments.

  12. Transient Kinetic Analysis of Hydrogen Sulfide Oxidation Catalyzed by Human Sulfide Quinone Oxidoreductase*

    PubMed Central

    Mishanina, Tatiana V.; Yadav, Pramod K.; Ballou, David P.; Banerjee, Ruma

    2015-01-01

    The first step in the mitochondrial sulfide oxidation pathway is catalyzed by sulfide quinone oxidoreductase (SQR), which belongs to the family of flavoprotein disulfide oxidoreductases. During the catalytic cycle, the flavin cofactor is intermittently reduced by sulfide and oxidized by ubiquinone, linking H2S oxidation to the electron transfer chain and to energy metabolism. Human SQR can use multiple thiophilic acceptors, including sulfide, sulfite, and glutathione, to form as products, hydrodisulfide, thiosulfate, and glutathione persulfide, respectively. In this study, we have used transient kinetics to examine the mechanism of the flavin reductive half-reaction and have determined the redox potential of the bound flavin to be −123 ± 7 mV. We observe formation of an unusually intense charge-transfer (CT) complex when the enzyme is exposed to sulfide and unexpectedly, when it is exposed to sulfite. In the canonical reaction, sulfide serves as the sulfur donor and sulfite serves as the acceptor, forming thiosulfate. We show that thiosulfate is also formed when sulfide is added to the sulfite-induced CT intermediate, representing a new mechanism for thiosulfate formation. The CT complex is formed at a kinetically competent rate by reaction with sulfide but not with sulfite. Our study indicates that sulfide addition to the active site disulfide is preferred under normal turnover conditions. However, under pathological conditions when sulfite concentrations are high, sulfite could compete with sulfide for addition to the active site disulfide, leading to attenuation of SQR activity and to an alternate route for thiosulfate formation. PMID:26318450

  13. Transient Kinetic Analysis of Hydrogen Sulfide Oxidation Catalyzed by Human Sulfide Quinone Oxidoreductase.

    PubMed

    Mishanina, Tatiana V; Yadav, Pramod K; Ballou, David P; Banerjee, Ruma

    2015-10-09

    The first step in the mitochondrial sulfide oxidation pathway is catalyzed by sulfide quinone oxidoreductase (SQR), which belongs to the family of flavoprotein disulfide oxidoreductases. During the catalytic cycle, the flavin cofactor is intermittently reduced by sulfide and oxidized by ubiquinone, linking H2S oxidation to the electron transfer chain and to energy metabolism. Human SQR can use multiple thiophilic acceptors, including sulfide, sulfite, and glutathione, to form as products, hydrodisulfide, thiosulfate, and glutathione persulfide, respectively. In this study, we have used transient kinetics to examine the mechanism of the flavin reductive half-reaction and have determined the redox potential of the bound flavin to be -123 ± 7 mV. We observe formation of an unusually intense charge-transfer (CT) complex when the enzyme is exposed to sulfide and unexpectedly, when it is exposed to sulfite. In the canonical reaction, sulfide serves as the sulfur donor and sulfite serves as the acceptor, forming thiosulfate. We show that thiosulfate is also formed when sulfide is added to the sulfite-induced CT intermediate, representing a new mechanism for thiosulfate formation. The CT complex is formed at a kinetically competent rate by reaction with sulfide but not with sulfite. Our study indicates that sulfide addition to the active site disulfide is preferred under normal turnover conditions. However, under pathological conditions when sulfite concentrations are high, sulfite could compete with sulfide for addition to the active site disulfide, leading to attenuation of SQR activity and to an alternate route for thiosulfate formation. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Fast-Response Turn-on Fluorescent Probes Based on Thiolysis of NBD Amine for H2 S Bioimaging.

    PubMed

    Wang, Runyu; Li, Zhifei; Zhang, Changyu; Li, Yanyan; Xu, Guoce; Zhang, Qiang-Zhe; Li, Lu-Yuan; Yi, Long; Xi, Zhen

    2016-05-17

    Hydrogen sulfide (H2 S) is an important endogenous signaling molecule with multiple biological functions. New selective fluorescent turn-on probes based on fast thiolyling of NBD (7-nitro-1,2,3-benzoxadiazole) amine were explored for sensing H2 S in aqueous buffer and in living cells. The syntheses of both probes are simple and quite straightforward. The probes are highly sensitive and selective toward H2 S over other biologically relevant species. The fluorescein-NBD-based probe showed 65-fold green fluorescent increase upon H2 S activation. The rhodamine-NBD-based probe reacted rapidly with H2 S (t1/2 ≈1 min) to give a 4.5-fold increase in red fluorescence. Moreover, both probes were successfully used for monitoring H2 S in living cells and in mice. Based on such probe-based tools, we could observe H2 O2 -induced H2 S biogenesis in a concentration-dependent and time-dependent fashion in living cells. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Surface Defect Passivation and Reaction of c-Si in H2S.

    PubMed

    Liu, Hsiang-Yu; Das, Ujjwal K; Birkmire, Robert W

    2017-12-26

    A unique passivation process of Si surface dangling bonds through reaction with hydrogen sulfide (H 2 S) is demonstrated in this paper. A high-level passivation quality with an effective minority carrier lifetime (τ eff ) of >2000 μs corresponding to a surface recombination velocity of <3 cm/s is achieved at a temperature range of 550-650 °C. X-ray photoelectron spectroscopy (XPS) confirmed the bonding states of Si and S and provides insights into the reaction pathway of Si with H 2 S and other impurity elements both during and after the reaction. Quantitative analysis of XPS spectra showed that the τ eff increases with an increase in the surface S content up to ∼3.5% and stabilizes thereafter, indicative of surface passivation by monolayer coverage of S on the Si surface. However, S passivation of the Si surface is highly unstable because of thermodynamically favorable reaction with atmospheric H 2 O and O 2 . This instability can be eliminated by capping the S-passivated Si surface with a protective thin film such as low-temperature-deposited amorphous silicon nitride.

  16. Na2S, a fast-releasing H2S donor, given as suppository lowers blood pressure in rats.

    PubMed

    Tomasova, Lenka; Drapala, Adrian; Jurkowska, Halina; Wróbel, Maria; Ufnal, Marcin

    2017-10-01

    Hydrogen sulfide (H 2 S) is involved in blood pressure control. The available slow-releasing H 2 S-donors are poorly soluble in water and their ability to release H 2 S in biologically relevant amounts under physiological conditions is questionable. Therefore, new slow-releasing donors or new experimental approaches to fast-releasing H 2 S donors are needed. Hemodynamics and ECG were recorded in male, anesthetized Wistar Kyoto rats (WKY) and in Spontaneously hypertensive rats (SHR) at baseline and after: 1) intravenous (iv) infusion of vehicle or Na 2 S; 2) administration of vehicle suppositories or Na 2 S suppositories. Intravenously administered vehicle and vehicle suppositories did not affect mean arterial blood pressure (MABP) and heart rate (HR). Na 2 S administered iv caused a significant, but transient (2-5min) decrease in MABP. Na 2 S suppositories produced a dose-dependent hypotensive response that lasted ∼45min in WKY and ∼75-80min in SHR. It was accompanied by a decrease in HR in WKY, and an increase in HR in SHR. Na 2 S suppositories did not produce a significant change in corrected QT, an indicator of cardiotoxicity. Na 2 S suppositories increased blood level of thiosulfates, products of H 2 S oxidation. Na 2 S administered in suppositories exerts a prolonged hypotensive effect in rats, with no apparent cardiotoxic effect. SHR and WKY differ in hemodynamic response to the H 2 S donor. Suppository formulation of fast-releasing H 2 S donors may be useful in research, if a reference slow-releasing H 2 S donor is not available. Copyright © 2017 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  17. Nanomaterials for the Selective Detection of Hydrogen Sulfide in Air

    PubMed Central

    Llobet, Eduard; Brunet, Jérôme; Pauly, Alain; Ndiaye, Amadou; Varenne, Christelle

    2017-01-01

    This paper presents a focused review on the nanomaterials and associated transduction schemes that have been developed for the selective detection of hydrogen sulfide. It presents a quite comprehensive overview of the latest developments, briefly discusses the hydrogen sulfide detection mechanisms, identifying the reasons for the selectivity (or lack of) observed experimentally. It critically reviews performance, shortcomings, and identifies missing or overlooked important aspects. It identifies the most mature/promising materials and approaches for achieving inexpensive hydrogen sulfide sensors that could be employed in widespread, miniaturized, and inexpensive detectors and, suggests what research should be undertaken for ensuring that requirements are met. PMID:28218674

  18. Influence of Hydrogen Sulfide Exposure on the Transport and Structural Properties of the Metal–Organic Framework ZIF-8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dutta, Akshita; Tymi?ska, Nina; Zhu, Guanghui

    In this paper, the interaction between hydrogen sulfide and ZIF-8 was studied via structural characterizations and guest molecule diffusion measurements. It was found that hydrogen sulfide reacts with the ZIF-8 external particle surface to form a surface barrier that excludes the uptake of larger molecules (ethanol) and slows down the uptake of smaller molecules (carbon dioxide). Nonetheless, bulk transport properties were unaltered, as supported by pulsed field gradient nuclear magnetic resonance studies. Dispersion-corrected density functional theory calculations revealed that H 2S is consumed by reactions occurring at the ZIF external surface. These reactions result in water and defect formation, bothmore » of which were found to be exothermic and independent of both crystallographic facets ({001} and {110}) and surface termination. Finally, we concluded that these surface reactions lead to structural and chemical changes to the ZIF-8 external surface that generate surface barriers to molecular transport.« less

  19. Influence of Hydrogen Sulfide Exposure on the Transport and Structural Properties of the Metal–Organic Framework ZIF-8

    DOE PAGES

    Dutta, Akshita; Tymi?ska, Nina; Zhu, Guanghui; ...

    2018-03-09

    In this paper, the interaction between hydrogen sulfide and ZIF-8 was studied via structural characterizations and guest molecule diffusion measurements. It was found that hydrogen sulfide reacts with the ZIF-8 external particle surface to form a surface barrier that excludes the uptake of larger molecules (ethanol) and slows down the uptake of smaller molecules (carbon dioxide). Nonetheless, bulk transport properties were unaltered, as supported by pulsed field gradient nuclear magnetic resonance studies. Dispersion-corrected density functional theory calculations revealed that H 2S is consumed by reactions occurring at the ZIF external surface. These reactions result in water and defect formation, bothmore » of which were found to be exothermic and independent of both crystallographic facets ({001} and {110}) and surface termination. Finally, we concluded that these surface reactions lead to structural and chemical changes to the ZIF-8 external surface that generate surface barriers to molecular transport.« less

  20. A turn-on fluorescent probe for simultaneous sensing of cysteine/homocysteine and hydrogen sulfide and its bioimaging applications.

    PubMed

    Chen, Fengzao; Han, Deman; Gao, Yuan; Liu, Heng; Wang, Shengfu; Zhou, Fangyu; Li, Kaibin; Zhang, Siqi; Shao, Wujun; He, Yanling

    2018-09-01

    Hydrogen sulfide and biothiol molecules such as Cys, Hcy, and GSH play important roles in biological systems. Exploiting a probe to simultaneously detect and distinguish them is quite important. In this work, a versatile fluorescent probe that can simultaneously detect and discriminate Cys/Hcy and H 2 S is reported. The probe easily prepared by the Knoevenagel condensation of cyanoacetylindole with chlorinated phenyl-propenal possessed three potential sites that could react with biothiols and H 2 S. This probe also exhibited rapidity, high selectivity, and sensitivity for Cys/Hcy and H 2 S with distinct optical signal changes. The probe was able to display obvious fluorescence enhancement at 480 nm for Cys/Hcy and unique absorbance enhancement at 500 nm for H 2 S. We also demonstrated that the probe can be successfully applied to image Cys in MCF-7 cells suing a confocal fluorescence microscope. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Lens Opacity and Hydrogen Sulfide in a New Zealand Geothermal Area

    PubMed Central

    Bates, Michael N.; Bailey, Ian L.; DiMartino, Robert B.; Pope, Karl; Crane, Julian; Garrett, Nick

    2016-01-01

    Purpose Hydrogen sulfide (H2S) is a highly toxic gas with well-established, acute irritation effects on the eye. The population of Rotorua, New Zealand, sited on an active geothermal field has some of the highest ambient H2S exposures in the world. Evidence from ecological studies in Rotorua has suggested that H2S is associated with cataract. The purpose of the present study was, using more detailed exposure characterization, clinical examinations and anterior eye photography, to more directly investigate this previously reported association. Methods Enrolled were 1637 adults, ages 18–65, from a comprehensive Rotorua primary care medical register. Patients underwent a comprehensive ophthalmic examination, including pupillary dilation and lens photography to capture evidence of any nuclear opacity, nuclear color, and cortical and posterior subcapsular opacity. Photographs were scored for all four outcomes on the LOCS III scale with decimalized interpolation between the exemplars. H2S exposure for up to the last 30 years was estimated based on networks of passive samplers set out across Rotorua and knowledge of residential, workplace and school locations over the 30 years. Data analysis using linear and logistic regression examined associations between the degree of opacification and nuclear color or cataract (defined as a LOCS III score ≥ 2.0) in relation to H2S exposure. Results No associations were found between estimated H2S exposures and any of the four ophthalmic outcome measures. Conclusions Overall, results were generally reassuring. They provided no evidence that H2S exposure at the levels found in Rotorua is associated with cataract. The previously found association between cataract and H2S exposure in the Rotorua population seems likely to be attributable to the limitations of the ecological study design. These results cannot rule out the possibility of an association with cataract at higher levels of H2S exposure. PMID:28182590

  2. Investigating the effect of design parameters on the response time of a highly sensitive microbial hydrogen sulfide biosensor based on oxygen consumption.

    PubMed

    Vosoughi, Amin; Yazdian, Fatemeh; Amoabediny, Ghassem; Hakim, Maziar

    2015-08-15

    A novel hydrogen sulfide microbial biosensor was developed based on investigating the influence of four design parameters: cell concentration, immobilization bed type, hydrogen sulfide concentration, and geometrical shape of the biosensor. Thiobacillus thioparus was used as the recognition element and it was immobilized on sodium alginate as well as agarose bed. The results were optimized by the application of statistical optimization software based on response time of the system. Oxygen reduction was considered as the detection sign. Sodium alginate solution with a concentration of 2.3% (w/v) and optical density of 10 at 605 nm was found as the optimum conditions for immobilization with response time of 72s . Optimum response time of immobilized T. thioparus on agarose was also found equal to 120 s at agarose concentration of 1.2% (w/v) and optical density of 10.83. Performance of the biosensor in different temperatures, pH and agitation speeds was also analyzed. The designed biosensor could detect concentrations of hydrogen sulfide as low as 0.5 ppm. T. thioparus could retain 99% of the original activity in both systems, after ten days passing the fabrication. A fractal analysis was also done theoretically to investigate the diffusion of oxygen in immobilized cells which showed a satisfactory value of oxygen take up by the immobilized cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Computational investigation of single-wall carbon nanotube functionalized with palladium nanoclusters as hydrogen sulfide gas sensor

    NASA Astrophysics Data System (ADS)

    Bagherzadeh-Nobari, S.; Hosseini-Istadeh, K.; Kalantarinejad, R.; Elahi, S. M.; Shokri, A. A.

    2018-03-01

    Our aim is to study theoretically, the sensitivity of a hydrogen sulfide gas sensor, with regard to electrical conductance behavior. Our senor consists of a semiconductor single-wall carbon nanotube (SWCNT), functionalized with palladium nanoclusters, sandwiched between two gold electrodes. Initially, we have computed the optimized structure of the sensor, via molecular dynamic simulations. Then by using non-equilibrium Green's function method, combined with density functional theory, the electronic and transport properties of the sensor were calculated, and compared before and after adsorption of H2S gas, at different bias voltages. The highest sensitivity is achieved at 40 mV bias voltage. In this bias voltage, H2S gas adsorption causes a significant decrease of current, because as a result of charge transfer from the CNT and palladium nanoclusters, to H2S gas, majority carriers (electrons) decrease. The results show that CNT decorated with palladium nanoclusters can be a promising candidate in gas-sensorics.

  4. Characterization of recycled rubber media for hydrogen sulphide (H2S) control.

    PubMed

    Wang, Ning; Park, Jaeyoung; Evans, Eric A; Ellis, Timothy G

    2014-01-01

    Hydrogen sulphide (H2S) adsorption capacities on recycled rubber media, tyre-derived rubber particle (TDRP), and other rubber material (ORM) have been evaluated. As part of the research, densities, moisture contents, and surface properties of TDRP and ORM have been determined. The research team findings show that TDRP and ORM are more particulate in nature and not highly porous-like activated carbon. The characteristics of surface area, pore size, and moisture content support chemisorption on the macrosurface rather than physical adsorption in micropores. For example, moisture content is essential for H2S adsorption on ORM, and an increase in moisture content results in an increase in adsorption capacity.

  5. Removal of hydrogen sulfide as ammonium sulfate from hydropyrolysis product vapors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marker, Terry L.; Felix, Larry G.; Linck, Martin B.

    A system and method for processing biomass into hydrocarbon fuels that includes processing a biomass in a hydropyrolysis reactor resulting in hydrocarbon fuels and a process vapor stream and cooling the process vapor stream to a condensation temperature resulting in an aqueous stream. The aqueous stream is sent to a catalytic reactor where it is oxidized to obtain a product stream containing ammonia and ammonium sulfate. A resulting cooled product vapor stream includes non-condensable process vapors comprising H.sub.2, CH.sub.4, CO, CO.sub.2, ammonia and hydrogen sulfide.

  6. Removal of hydrogen sulfide as ammonium sulfate from hydropyrolysis product vapors

    DOEpatents

    Marker, Terry L; Felix, Larry G; Linck, Martin B; Roberts, Michael J

    2014-10-14

    A system and method for processing biomass into hydrocarbon fuels that includes processing a biomass in a hydropyrolysis reactor resulting in hydrocarbon fuels and a process vapor stream and cooling the process vapor stream to a condensation temperature resulting in an aqueous stream. The aqueous stream is sent to a catalytic reactor where it is oxidized to obtain a product stream containing ammonia and ammonium sulfate. A resulting cooled product vapor stream includes non-condensable process vapors comprising H.sub.2, CH.sub.4, CO, CO.sub.2, ammonia and hydrogen sulfide.

  7. Enhanced photocatalytic H2 production of Mn0.5Cd0.5S solid solution through loading transition metal sulfides XS (X = Mo, Cu, Pd) cocatalysts

    NASA Astrophysics Data System (ADS)

    Zhai, Huishan; Liu, Xiaolei; Wang, Peng; Huang, Baibiao; Zhang, Qianqian

    2018-02-01

    Development of highly efficient cocatalyst is important towards photocatalytic H2 production. Herein, a series of transition metal sulfides XS (X = Mo, Cu, Pd) as cocatalysts have been successfully grown on Mn0.5Cd0.5S photocatalyst through photo-reduction or in-situ deposition method, respectively. Among them, the maximum production of H2 obtained from MoS2/Mn0.5Cd0.5S, CuxS/Mn0.5Cd0.5S (1 ≤ x ≤ 2) and PdS/Mn0.5Cd0.5S samples were 197, 347 and 614 μmol/h, which were around 6.5, 11.5 and 20.3 times than pristine Mn0.5Cd0.5S. MoS2/Mn0.5Cd0.5S heterostructure can facilitate electron transfer from Mn0.5Cd0.5S to MoS2 and MoS2 as active site for H2 production, p-n junction constructed between Mn0.5Cd0.5S and CuxS can efficiently separate the photo-generated carriers and PdS as a hole acceptor can accelerate the consume of photo-generated holes to enhance the photocatalytic H2 production. The effective charge transfer was further proved by the weaker PL intensity and stronger photocurrent density relative to that of Mn0.5Cd0.5S alone. This work demonstrated that transition metal sulfides XS (X = Mo, Cu, Pd) are efficient cocatalysts to improve the H2 production performance of Mn0.5Cd0.5S photocatalyst.

  8. Metabolic and cardiac signaling effects of inhaled hydrogen sulfide and low oxygen in male rats

    PubMed Central

    Stein, Asaf; Mao, Zhengkuan; Morrison, Joanna P.; Fanucchi, Michelle V.; Postlethwait, Edward M.; Patel, Rakesh P.; Kraus, David W.; Doeller, Jeannette E.

    2012-01-01

    Low concentrations of inhaled hydrogen sulfide (H2S) induce hypometabolism in mice. Biological effects of H2S in in vitro systems are augmented by lowering O2 tension. Based on this, we hypothesized that reduced O2 tension would increase H2S-mediated hypometabolism in vivo. To test this, male Sprague-Dawley rats were exposed to 80 ppm H2S at 21% O2 or 10.5% O2 for 6 h followed by 1 h recovery at room air. Rats exposed to H2S in 10.5% O2 had significantly decreased body temperature and respiration compared with preexposure levels. Heart rate was decreased by H2S administered under both O2 levels and did not return to preexposure levels after 1 h recovery. Inhaled H2S caused epithelial exfoliation in the lungs and increased plasma creatine kinase-MB activity. The effect of inhaled H2S on prosurvival signaling was also measured in heart and liver. H2S in 21% O2 increased Akt-PSer473 and GSK-3β-PSer9 in the heart whereas phosphorylation was decreased by H2S in 10.5% O2, indicating O2 dependence in regulating cardiac signaling pathways. Inhaled H2S and low O2 had no effect on liver Akt. In summary, we found that lower O2 was needed for H2S-dependent hypometabolism in rats compared with previous findings in mice. This highlights the possibility of species differences in physiological responses to H2S. Inhaled H2S exposure also caused tissue injury to the lung and heart, which raises concerns about the therapeutic safety of inhaled H2S. In conclusion, these findings demonstrate the importance of O2 in influencing physiological and signaling effects of H2S in mammalian systems. PMID:22403348

  9. Airborne sulfur trace species intercomparison campaign: Sulfur dioxide, dimethylsulfide, hydrogen sulfide, carbon disulfide, and carbonyl sulfide

    NASA Technical Reports Server (NTRS)

    Gregory, Gerald L.; Hoell, James M., Jr.; Davis, Douglas D.

    1991-01-01

    Results from an airborne intercomparison of techniques to measure tropospheric levels of sulfur trace gases are presented. The intercomparison was part of the NASA Global Tropospheric Experiment (GTE) and was conducted during the summer of 1989. The intercomparisons were conducted on the Wallops Electra aircraft during flights from Wallops Island, Virginia, and Natal, Brazil. Sulfur measurements intercompared included sulfur dioxide (SO2), dimethylsulfide (DMS), hydrogen sulfide (H2S), carbon disulfide (CS2), and carbonyl sulfide (OCS). Measurement techniques ranged from filter collection systems with post-flight analyses to mass spectrometer and gas chromatograph systems employing various methods for measuring and identifying the sulfur gases during flight. Sampling schedules for the techniques ranged from integrated collections over periods as long as 50 minutes to one- to three-minute samples every ten or fifteen minutes. Several of the techniques provided measurements of more than one sulfur gas. Instruments employing different detection principles were involved in each of the sulfur intercomparisons. Also included in the intercomparison measurement scenario were a host of supporting measurements (i.e., ozone, nitrogen oxides, carbon monoxide, total sulfur, aerosols, etc.) for purposes of: (1) interpreting results (i.e., correlation of any noted instrument disagreement with the chemical composition of the measurement environment); and (2) providing supporting chemical data to meet CITE-3 science objectives of studying ozone/sulfur photochemistry, diurnal cycles, etc. The results of the intercomparison study are briefly discussed.

  10. A malonitrile-functionalized metal-organic framework for hydrogen sulfide detection and selective amino acid molecular recognition

    NASA Astrophysics Data System (ADS)

    Li, Haiwei; Feng, Xiao; Guo, Yuexin; Chen, Didi; Li, Rui; Ren, Xiaoqian; Jiang, Xin; Dong, Yuping; Wang, Bo

    2014-03-01

    A novel porous polymeric fluorescence probe, MN-ZIF-90, has been designed and synthesized for quantitative hydrogen sulfide (H2S) fluorescent detection and highly selective amino acid recognition. This distinct crystalline structure, derived from rational design and malonitrile functionalization, can trigger significant enhancement of its fluorescent intensity when exposed to H2S or cysteine molecules. Indeed this new metal-organic framework (MOF) structure shows high selectivity of biothiols over other amino acids and exhibits favorable stability. Moreover, in vitro viability assays on HeLa cells show low cytotoxicity of MN-ZIF-90 and its imaging contrast efficiency is further demonstrated by fluorescence microscopy studies. This facile yet powerful strategy also offers great potential of using open-framework materials (i.e. MOFs) as the novel platform for sensing and other biological applications.

  11. Association between Daily Hydrogen Sulfide Exposure and Incidence of Emergency Hospital Visits: A Population-Based Study

    PubMed Central

    Finnbjornsdottir, Ragnhildur Gudrun; Carlsen, Hanne Krage; Thorsteinsson, Throstur; Oudin, Anna; Lund, Sigrun Helga; Gislason, Thorarinn; Rafnsson, Vilhjalmur

    2016-01-01

    Background The adverse health effects of high concentrations of hydrogen sulfide (H2S) exposure are well known, though the possible effects of low concentrations have not been thoroughly studied. The aim was to study short-term associations between modelled ambient low-level concentrations of intermittent hydrogen sulfide (H2S) and emergency hospital visits with heart diseases (HD), respiratory diseases, and stroke as primary diagnosis. Methods The study is population-based, using data from patient-, and population-registers from the only acute care institution in the Reykjavik capital area, between 1 January, 2007 and 30 June, 2014. The study population was individuals (≥18yr) living in the Reykjavik capital area. The H2S emission originates from a geothermal power plant in the vicinity. A model was used to estimate H2S exposure in different sections of the area. A generalized linear model assuming Poisson distribution was used to investigate the association between emergency hospital visits and H2S exposure. Distributed lag models were adjusted for seasonality, gender, age, traffic zones, and other relevant factors. Lag days from 0 to 4 were considered. Results The total number of emergency hospital visits was 32961 with a mean age of 70 years. In fully adjusted un-stratified models, H2S concentrations exceeding 7.00μg/m3 were associated with increases in emergency hospital visits with HD as primary diagnosis at lag 0 risk ratio (RR): 1.067; 95% confidence interval (CI): 1.024–1.111, lag 2 RR: 1.049; 95%CI: 1.005–1.095, and lag 4 RR: 1.046; 95%CI: 1.004–1.089. Among males an association was found between H2S concentrations exceeding 7.00μg/m3, and HD at lag 0 RR: 1.087; 95%CI: 1.032–1.146 and lag 4 RR: 1080; 95%CI: 1.025–1.138; and among those 73 years and older at lag 0 RR: 1.075; 95%CI: 1.014–1.140 and lag 3 RR: 1.072; 95%CI: 1.009–1.139. No associations were found with other diseases. Conclusions The study showed an association between

  12. Hydrogen sulfide enhances nitric oxide-induced tolerance of hypoxia in maize (Zea mays L.).

    PubMed

    Peng, Renyi; Bian, Zhiyuan; Zhou, Lina; Cheng, Wei; Hai, Na; Yang, Changquan; Yang, Tao; Wang, Xinyu; Wang, Chongying

    2016-11-01

    Our data present H 2 S in a new role, serving as a multi-faceted transducer to different response mechanisms during NO-induced acquisition of tolerance to flooding-induced hypoxia in maize seedling roots. Nitric oxide (NO), serving as a secondary messenger, modulates physiological processes in plants. Recently, hydrogen sulfide (H 2 S) has been demonstrated to have similar signaling functions. This study focused on the effects of treatment with H 2 S on NO-induced hypoxia tolerance in maize seedlings. The results showed that treatment with the NO donor sodium nitroprusside (SNP) enhanced survival rate of submerged maize roots through induced accumulation of endogenous H 2 S. The induced H 2 S then enhanced endogenous Ca 2+ levels as well as the Ca 2+ -dependent activity of alcohol dehydrogenase (ADH), improving the capacity for antioxidant defense and, ultimately, the hypoxia tolerance in maize seedlings. In addition, NO induced the activities of key enzymes in H 2 S biosynthesis, such as L-cysteine desulfhydrases (L-CDs), O-acetyl-L-serine (thiol)lyase (OAS-TL), and β-Cyanoalanine Synthase (CAS). SNP-induced hypoxia tolerance was enhanced by the application of NaHS, but was eliminated by the H 2 S-synthesis inhibitor hydroxylamine (HA) and the H 2 S-scavenger hypotaurine (HT). H 2 S concurrently enhanced the transcriptional levels of relative hypoxia-induced genes. Together, our findings indicated that H 2 S serves as a multi-faceted transducer that enhances the nitric oxide-induced hypoxia tolerance in maize (Zea mays L.).

  13. [Lethal myocardial injury associated with hydrogen sulfide poisoning: report of two cases].

    PubMed

    Inoue, Yukinori; Kumagai, Ken; Tanaka, Toshiharu; Yoshida, Satoru; Sekiguchi, Hiroshi; Kobayashi, Kaori; Hirose, Yasuo

    2011-09-01

    We investigated two cases of hydrogen sulfide poisoning in which the patients showed lethal myocardial injury. Both patients had planned to commit suicide by inhaling hydrogen sulfide. In case 1, a 17-year-old man was confused and was brought to our hospital by ambulance. An electrocardiogram (ECG) revealed diffuse elevation of the ST segment on the second hospital day. The patient recovered and was discharged from the hospital on the 15th day. However, he died suddenly on the 18th day. In case 2, a 21-year-old man was found lying on the floor and was admitted to our hospital. ECG showed tall T waves after 5 hr. Tachycardia and tachypnea occurred after 12 hr. After 16 hr, the ECG showed a marked elevation of the ST segment, and the patient developed cardiac arrest. Even though percutaneous cardiopulmonary support was used, he died on the 4th day. It is highly probable that myocardial injury asscociated with hydrogen sulfide poisoning was not caused by systemic hypoxia but by selective myocardial toxicity. These cases demonstrate that delayed presentation of a lethal myocardial injury should be considered while treating cases of hydrogen sulfide poisoning.

  14. Removal of hydrogen sulfide generated during anaerobic treatment of sulfate-laden wastewater using biochar: Evaluation of efficiency and mechanisms.

    PubMed

    Kanjanarong, Jarupat; Giri, Balendu S; Jaisi, Deb P; Oliveira, Fernanda R; Boonsawang, Piyarat; Chaiprapat, Sumate; Singh, R S; Balakrishna, Avula; Khanal, Samir Kumar

    2017-06-01

    Removal of hydrogen sulfide (H 2 S) from biogas was investigated in a biochar column integrated with a bench-scale continuous-stirred tank reactor (CSTR) treating sulfate-laden wastewater. Synthetic wastewater containing sulfate concentrations of 200-2000mg SO 4 2- /L was used as substrate, and the CSTR was operated at an organic loading rate of 1.5g chemical oxygen demand (COD)/L·day and a hydraulic retention time (HRT) of 20days. The biochar was able to remove about 98.0 (±1.2)% of H 2 S for the ranges of concentrations from 105-1020ppmv, especially at high moisture content (80-85%). Very high H 2 S adsorption capacity (up to 273.2±1.9mg H 2 S/g) of biochar is expected to enhance the H 2 S oxidation into S 0 and sulfate. These findings bring a potentially novel application of sulfur-rich biochar as a source of sulfur, an essential but often deficient micro-nutrient in soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Assessment of hydrogen sulfide emission from a sewage treatment plant using AERMOD.

    PubMed

    Baawain, Mahad; Al-Mamun, Abdullah; Omidvarborna, Hamid; Al-Jabri, Abdullah

    2017-06-01

    Air quality modeling plays an important role in prediction of air pollutants in urban areas. Moreover, it is also an essential component to make crucial decisions in environmental management. In this study, environmental protection agency (EPA) regulatory model (AERMOD) was implemented in order to assess the urban air quality in the city of Muscat, Sultanate of Oman. Dispersion modeling was employed for the prediction of hydrogen sulfide (H 2 S) emissions, a neighborhood claimed issue, from Al-Ansab sewage treatment plant (STP). Meteorological, elevation data, and H 2 S survey results were implemented into the model. From the site survey study, four different H 2 S emission sources were identified as sewage tanker connection points, biofilter, old odor control unit (OCU), and open channels of raw sewage. It was observed that based on maximum 24-h analysis, the ground level concentration outside the STP exceeded the concentration limit, 40 μg/m 3 , recommended by the local regulating agency in Oman. By applying a sensitivity analysis study, the locations with the highest predicted H 2 S levels were identified. The most affected area in the worst-case scenario was the nearby expressway with 450.9 μg/m 3 of H 2 S. The highest ground level concentration of H 2 S was detected in March, while the lowest was measured in December. The model also predicted that the impact of odor nuisance is greater at the summer season than that of other seasons due to the elevated temperatures. The study revealed an adverse environmental impact from the STPs on urban air quality, which may pose a threat to the public health.

  16. A facile synthesis of Zn(x)Cd(1-x)S/CNTs nanocomposite photocatalyst for H2 production.

    PubMed

    Wang, Lei; Yao, Zhongping; Jia, Fangzhou; Chen, Bin; Jiang, Zhaohua

    2013-07-21

    The sulfide solid solution has become a promising and important visible-light-responsive photocatalyst for hydrogen production nowadays. Zn(x)Cd(1-x)S/CNT nanocomposites were synthesized to improve the dispersion, adjust the energy band gap, and enhance the separation of the photogenerated electrons and holes. The as-prepared photocatalysts were characterized by scanning electron-microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and UV-visible diffuse reflectance spectra (UV-visible), respectively. And the effects of CNTs on structure, composition and optical absorption property of the sulfide solid solutions were investigated along with their inherent relationships. For Zn0.83Cd0.17S/CNTs, sulfide solid solution is assembled along the CNTs orderly, with a diameter of 100 nm or so. XPS analysis shows that there is bonding effect between the solid solutions and the CNTs due to the strong adsorption of Zn(2+) and Cd(2+) on the surface of CNTs. There are two obvious absorption edges for Zn0.83Cd0.17S/CNTs, corresponding to two kinds of sulfide solid solutions with different molar ratios of Zn/Cd. The hybridization of solid solutions with CNTs makes the absorption spectrum red shift. The photocatalytic property was evaluated by splitting Na2S + Na2SO3 solution into H2, and the highest rate of H2 evolution of 6.03 mmol h(-1) g(-1) was achieved over Zn0.83Cd0.17S/CNTs. The high activity of photocatalytic H2 production is attributed to the following factors: (1) the optimum band gap and a moderate position of the conduction band (which needs to match the irradiation spectrum of the Xe lamp best), (2) the efficient separation of photogenerated electrons and holes by hybridization, and (3) the improvement of the dispersion of nanocomposites by assembling along the CNTs as well.

  17. Biofiltration of high concentration of H2S in waste air under extreme acidic conditions.

    PubMed

    Ben Jaber, Mouna; Couvert, Annabelle; Amrane, Abdeltif; Rouxel, Franck; Le Cloirec, Pierre; Dumont, Eric

    2016-01-25

    Removal of high concentrations of hydrogen sulfide using a biofilter packed with expanded schist under extreme acidic conditions was performed. The impact of various parameters such as H2S concentration, pH changes and sulfate accumulation on the performances of the process was evaluated. Elimination efficiency decreased when the pH was lower than 1 and the sulfate accumulation was more than 12 mg S-SO4(2-)/g dry media, due to a continuous overloading by high H2S concentrations. The influence of these parameters on the degradation of H2S was clearly underlined, showing the need for their control, performed through an increase of watering flow rate. A maximum elimination capacity (ECmax) of 24.7 g m(-3) h(-1) was recorded. As a result, expanded schist represents an interesting packing material to remove high H2S concentration up to 360 ppmv with low pressure drops. In addition, experimental data were fitted using both Michaelis-Menten and Haldane models, showing that the Haldane model described more accurately experimental data since the inhibitory effect of H2S was taken into account. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Hydrogen sulfide attenuates carbon tetrachloride-induced hepatotoxicity, liver cirrhosis and portal hypertension in rats.

    PubMed

    Tan, Gang; Pan, Shangha; Li, Jie; Dong, Xuesong; Kang, Kai; Zhao, Mingyan; Jiang, Xian; Kanwar, Jagat R; Qiao, Haiquan; Jiang, Hongchi; Sun, Xueying

    2011-01-01

    Hydrogen sulfide (H(2)S) displays vasodilative, anti-oxidative, anti-inflammatory and cytoprotective activities. Impaired production of H(2)S contributes to the increased intrahepatic resistance in cirrhotic livers. The study aimed to investigate the roles of H(2)S in carbon tetrachloride (CCl(4))-induced hepatotoxicity, cirrhosis and portal hypertension. Sodium hydrosulfide (NaHS), a donor of H(2)S, and DL-propargylglycine (PAG), an irreversible inhibitor of cystathionine γ-lyase (CSE), were applied to the rats to investigate the effects of H(2)S on CCl(4)-induced acute hepatotoxicity, cirrhosis and portal hypertension by measuring serum levels of H(2)S, hepatic H(2)S producing activity and CSE expression, liver function, activity of cytochrome P450 (CYP) 2E1, oxidative and inflammatory parameters, liver fibrosis and portal pressure. CCl(4) significantly reduced serum levels of H(2)S, hepatic H(2)S production and CSE expression. NaHS attenuated CCl(4)-induced acute hepatotoxicity by supplementing exogenous H(2)S, which displayed anti-oxidative activities and inhibited the CYP2E1 activity. NaHS protected liver function, attenuated liver fibrosis, inhibited inflammation, and reduced the portal pressure, evidenced by the alterations of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), hyaluronic acid (HA), albumin, tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6 and soluble intercellular adhesion molecule (ICAM)-1, liver histology, hepatic hydroxyproline content and α-smooth muscle actin (SMA) expression. PAG showed opposing effects to NaHS on most of the above parameters. Exogenous H(2)S attenuates CCl(4)-induced hepatotoxicity, liver cirrhosis and portal hypertension by its multiple functions including anti-oxidation, anti-inflammation, cytoprotection and anti-fibrosis, indicating that targeting H(2)S may present a promising approach, particularly for its prophylactic effects, against liver cirrhosis and portal hypertension.

  19. Hydrogen sulfide from a NaHS source attenuates dextran sulfate sodium (DSS)-induced inflammation via inhibiting nuclear factor-κB

    PubMed Central

    Chen, Xi; Liu, Xi-shuang

    2016-01-01

    This study investigated the alleviating effects of hydrogen sulfide (H2S), derived from sodium hydrosulfide (NaHS), on inflammation induced by dextran sulfate sodium (DSS) in both in vivo and in vitro models. We found that NaHS injection markedly decreased rectal bleeding, diarrhea, and histological injury in DSS-challenged mice. NaHS (20 μmol/L) reversed DSS-induced inhibition in cell viability in Caco-2 cells and alleviated pro-inflammation cytokine expression in vivo and in vitro, indicating an anti-inflammatory function for H2S. It was also found that H2S may regulate cytokine expression by inhibiting the nuclear factor-κB (NF-κB) signaling pathway. In conclusion, our results demonstrated that H2S alleviated DSS-induced inflammation in vivo and in vitro and that the signal mechanism might be associated with the NF-κB signaling pathway. PMID:26984841

  20. Laser-Based Monitoring of CH4, CO2, NH3, and H2S in Animal Farming—System Characterization and Initial Demonstration

    PubMed Central

    Jaworski, Piotr; Nikodem, Michał

    2018-01-01

    In this paper, we present a system for sequential detection of multiple gases using laser-based wavelength modulation spectroscopy (WMS) method combined with a Herriot-type multi-pass cell. Concentration of hydrogen sulfide (H2S), methane (CH4), carbon dioxide (CO2), and ammonia (NH3) are retrieved using three distributed feedback laser diodes operating at 1574.5 nm (H2S and CO2), 1651 nm (CH4), and 1531 nm (NH3). Careful adjustment of system parameters allows for H2S sensing at single parts-per-million by volume (ppmv) level with strongly reduced interference from adjacent CO2 transitions even at atmospheric pressure. System characterization in laboratory conditions is presented and the results from initial tests in real-world application are demonstrated. PMID:29425175

  1. Pediatric Cystic Fibrosis Sputum Can Be Chemically Dynamic, Anoxic, and Extremely Reduced Due to Hydrogen Sulfide Formation

    PubMed Central

    Cowley, Elise S.; Kopf, Sebastian H.; LaRiviere, Alejandro

    2015-01-01

    ABSTRACT Severe and persistent bacterial lung infections characterize cystic fibrosis (CF). While several studies have documented the microbial diversity within CF lung mucus, we know much less about the inorganic chemistry that constrains microbial metabolic processes and their distribution. We hypothesized that sputum is chemically heterogeneous both within and between patients. To test this, we measured microprofiles of oxygen and sulfide concentrations as well as pH and oxidation-reduction potentials in 48 sputum samples from 22 pediatric patients with CF. Inorganic ions were measured in 20 samples from 12 patients. In all cases, oxygen was depleted within the first few millimeters below the sputum-air interface. Apart from this steep oxycline, anoxia dominated the sputum environment. Different sputum samples exhibited a broad range of redox conditions, with either oxidizing (16 mV to 355 mV) or reducing (−300 to −107 mV) potentials. The majority of reduced samples contained hydrogen sulfide and had a low pH (2.9 to 6.5). Sulfide concentrations increased at a rate of 0.30 µM H2S/min. Nitrous oxide was detected in only one sample that also contained sulfide. Microenvironmental variability was observed both within a single patient over time and between patients. Modeling oxygen dynamics within CF mucus plugs indicates that anoxic zones vary as a function of bacterial load and mucus thickness and can occupy a significant portion of the mucus volume. Thus, aerobic respiration accounts only partially for pathogen survival in CF sputum, motivating research to identify mechanisms of survival under conditions that span fluctuating redox states, including sulfidic environments. PMID:26220964

  2. Hydrogen sulfide donors alleviate itch secondary to the activation of type-2 protease activated receptors (PAR-2) in mice.

    PubMed

    Coavoy-Sánchez, S A; Rodrigues, L; Teixeira, S A; Soares, A G; Torregrossa, R; Wood, M E; Whiteman, M; Costa, S K P; Muscará, M N

    2016-11-01

    Hydrogen sulfide (H 2 S) has been highlighted as an endogenous signaling molecule and we have previously found that it can inhibit histamine-mediated itching. Pruritus is the most common symptom of cutaneous diseases and anti-histamines are the usual treatment; however, anti-histamine-resistant pruritus is common in some clinical settings. In this way, the involvement of mediators other than histamine in the context of pruritus requires new therapeutic targets. Considering that the activation of proteinase-activated receptor 2 (PAR-2) is involved in pruritus both in rodents and humans, in this study we investigated the effect of H 2 S donors on the acute scratching behavior mediated by PAR-2 activation in mice, as well as some of the possible pharmacological mechanisms involved. The intradermal injection of the PAR-2 peptide agonist SLIGRL-NH 2 (8-80nmol) caused a dose-dependent scratching that was unaffected by intraperitoneal pre-treatment with the histamine H1 antagonist pyrilamine (30mg/kg). Co-injection of SLIGRL-NH 2 (40nmol) with either the slow-release H 2 S donor GYY4137 (1 and 3nmol) or the spontaneous donor NaHS (1 and 0.3nmol) significantly reduced pruritus. Co-treatment with the K ATP channel blocker glibenclamide (200nmol) or the nitric oxide (NO) donor sodium nitroprusside (10nmol) abolished the antipruritic effects of NaHS; however, the specific soluble guanylyl cyclase inhibitor ODQ (30μg) had no significant effects. The transient receptor potential ankyrin type 1 (TRPA1) antagonist HC-030031 (20μg) significantly reduced SLIGRL-NH 2 -induced pruritus; however pruritus induced by the TRPA1 agonist AITC (1000nmol) was unaffected by NaHS. Based on these data, we conclude that pruritus secondary to PAR-2 activation can be reduced by H 2 S, which acts through K ATP channel opening and involves NO in a cyclic guanosine monophosphate (cGMP)-independent manner. Furthermore, TRPA1 receptors mediate the pruritus induced by activation of PAR-2, but H 2 S

  3. Sulfide Homeostasis and Nitroxyl Intersect via Formation of Reactive Sulfur Species in Staphylococcus aureus.

    PubMed

    Peng, Hui; Shen, Jiangchuan; Edmonds, Katherine A; Luebke, Justin L; Hickey, Anne K; Palmer, Lauren D; Chang, Feng-Ming James; Bruce, Kevin A; Kehl-Fie, Thomas E; Skaar, Eric P; Giedroc, David P

    2017-01-01

    Staphylococcus aureus is a commensal human pathogen and a major cause of nosocomial infections. As gaseous signaling molecules, endogenous hydrogen sulfide (H 2 S) and nitric oxide (NO·) protect S. aureus from antibiotic stress synergistically, which we propose involves the intermediacy of nitroxyl (HNO). Here, we examine the effect of exogenous sulfide and HNO on the transcriptome and the formation of low-molecular-weight (LMW) thiol persulfides of bacillithiol, cysteine, and coenzyme A as representative of reactive sulfur species (RSS) in wild-type and Δ cstR strains of S. aureus . CstR is a per- and polysulfide sensor that controls the expression of a sulfide oxidation and detoxification system. As anticipated, exogenous sulfide induces the cst operon but also indirectly represses much of the CymR regulon which controls cysteine metabolism. A zinc limitation response is also observed, linking sulfide homeostasis to zinc bioavailability. Cellular RSS levels impact the expression of a number of virulence factors, including the exotoxins, particularly apparent in the Δ cstR strain. HNO, like sulfide, induces the cst operon as well as other genes regulated by exogenous sulfide, a finding that is traced to a direct reaction of CstR with HNO and to an endogenous perturbation in cellular RSS, possibly originating from disassembly of Fe-S clusters. More broadly, HNO induces a transcriptomic response to Fe overload, Cu toxicity, and reactive oxygen species and reactive nitrogen species and shares similarity with the sigB regulon. This work reveals an H 2 S/NO· interplay in S. aureus that impacts transition metal homeostasis and virulence gene expression. IMPORTANCE Hydrogen sulfide (H 2 S) is a toxic molecule and a recently described gasotransmitter in vertebrates whose function in bacteria is not well understood. In this work, we describe the transcriptomic response of the major human pathogen Staphylococcus aureus to quantified changes in levels of cellular

  4. Nitric oxide-activated hydrogen sulfide is essential for cadmium stress response in bermudagrass (Cynodon dactylon (L). Pers.).

    PubMed

    Shi, Haitao; Ye, Tiantian; Chan, Zhulong

    2014-01-01

    Nitric oxide (NO) and hydrogen sulfide (H2S) are important gaseous molecules, serving as important secondary messengers in plant response to various biotic and abiotic stresses. However, the interaction between NO and H2S in plant stress response was largely unclear. In this study, endogenous NO and H2S were evidently induced by cadmium stress treatment in bermudagrass, and exogenous applications of NO donor (sodium nitroprusside, SNP) or H2S donor (sodium hydrosulfide, NaHS) conferred improved cadmium stress tolerance. Additionally, SNP and NaHS treatments alleviated cadmium stress-triggered plant growth inhibition, cell damage and reactive oxygen species (ROS) burst, partly via modulating enzymatic and non-enzymatic antioxidants. Moreover, SNP and NaHS treatments also induced the productions of both NO and H2S in the presence of Cd. Interestingly, combined treatments with inhibitors and scavengers of NO and H2S under cadmium stress condition showed that NO signal could be blocked by both NO and H2S inhibitors and scavengers, while H2S signal was specifically blocked by H2S inhibitors and scavengers, indicating that NO-activated H2S was essential for cadmium stress response. Taken together, we assigned the protective roles of endogenous and exogenous NO and H2S in bermudagrass response to cadmium stress, and speculated that NO-activated H2S might be essential for cadmium stress response in bermudagrass. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  5. Organic sulfur compounds resulting from the interaction of iron sulfide, hydrogen sulfide and carbon dioxide in an anaerobic aqueous environment

    NASA Astrophysics Data System (ADS)

    Heinen, Wolfgang; Lauwers, Anne Marie

    1996-04-01

    The reaction of iron sulfide (FeS) with H2S in water, in presence of CO2 under anaerobic conditions was found to yield H2 and a variety of organic sulfur compounds, mainly thiols and small amounts of CS2 and dimethyldisulfide. The same compounds were produced when H2S was replaced by HCl, in the H2S-generating system FeS/HCl/CO2. The identification of the products was confirmed by GC-MS analyses and the incorporation of H2 in the organic sulfur compounds was demonstrated by experiments in which all hydrogen compounds were replaced by deuterium compounds. Generation of H2 and the synthesis of thiols were both dependent upon the relative abundance of FeS and HCl or H2S, i.e. the FeS/HCl- or FeS/H2S-proportions. Whether thiols or CS2 were formed as the main products depended also on the FeS/HCl-ratio: All conditions which create a H2 deficiency were found to initiate a proportional increase in the amount of CS2. The quantities of H2 and thiols generated depended on temperature: the production of H2 was significantly accelerated from 50°C onward and thiol synthesis above 75°C. The yield of thiols increased with the amount of FeS and HCl (H2S), given a certain FeS/HCl-ratio and a surplus of CO2. A deficiency of CO2 results in lower thiol systhesis. The end product, pyrite (FeS2), was found to appear as a silvery granular layer floating on the aqueous surface. The identity of the thiols was confirmed by mass spectrometry, and the reduction of CO2 demonstrated by the determination of deuterium incorporation with DCl and D2O. The described reactions can principally proceed under the conditions comparable to those obtaining around submarine hydrothermal vents, or the global situation about 4 billion years ago, before the dawn of life, and could replace the need for a reducing atmosphere on the primitive earth.

  6. Access and Binding of H2S to Hemeproteins: The Case of HbI of Lucina pectinata.

    PubMed

    Boubeta, Fernando M; Bari, Sara E; Estrin, Dario A; Boechi, Leonardo

    2016-09-15

    Hydrogen sulfide (H2S) was recently discovered as a gasotransmitter, capable of coordinating to the heme iron of hemeproteins. H2S is unique for its ability to render varying concentrations of the nucleophilic conjugate bases (HS(-) or S(2-)), either as free or bound species with expected outcomes on its further reactivity. There is no direct evidence about which species (H2S, HS(-), or S(2-)) coordinates to the iron. We performed computer simulations to address the migration and binding processes of H2S species to the hemoglobin I of Lucina pectinata, which exhibits the highest affinity for the substrate measured to date. We found that H2S is the most favorable species in the migration from the bulk to the active site, through an internal pathway of the protein. After the coordination of H2S, an array of clustered water molecules modifies the active site environment, and assists in the subsequent deprotonation of the ligand, forming Fe(III)-SH(-). The feasibility of the second deprotonation of the coordinated ligand is also discussed.

  7. Exogenous hydrogen sulfide promotes cell proliferation and differentiation by modulating autophagy in human keratinocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Xin; Dai, Hui; Zhuang, Binyu

    The effects and the underlying mechanisms of hydrogen sulfide (H{sub 2}S) on keratinocyte proliferation and differentiation are still less known. In the current study, we investigated the effects and the underlying mechanisms of exogenous H{sub 2}S on keratinocyte proliferation and differentiation. Human keratinocytes (HaCaT cells) were treated with various concentrations (0.05, 0.25, 0.5 and 1 mM) of sodium hydrosulfide (NaHS, a donor of H{sub 2}S) for 24 h. A CCK-8 assay was used to assess cell viability. Western blot analysis was performed to determine the expression levels of proteins associated with differentiation and autophagy. Transmission electron microscopy was performed to observe autophagicmore » vacuoles, and flow cytometry was applied to evaluate apoptosis. NaHS promoted the viability, induced the differentiation, and enhanced autophagic activity in a dose-dependent manner in HaCaT cells but had no effect on cell apoptosis. Blockage of autophagy by ATG5 siRNA inhibited NaHS-induced cell proliferation and differentiation. The current study demonstrated that autophagy in response to exogenous H{sub 2}S treatment promoted keratinocyte proliferation and differentiation. Our results provide additional insights into the potential role of autophagy in keratinocyte proliferation and differentiation. - Highlights: • Exogenous H{sub 2}S promotes keratinocyte proliferation and differentiation. • The effects of H{sub 2}S on proliferation and differentiation is modulated by autophagy. • Exogenous H{sub 2}S has no effect on keratinocyte apoptosis.« less

  8. Perspective on recent developments on sulfur-containing agents and hydrogen sulfide signaling.

    PubMed

    Jacob, Claus; Anwar, Awais; Burkholz, Torsten

    2008-10-01

    The last couple of years have witnessed the coming together of several initially unconnected lines of investigation which now link natural sulfur products to hydrogen sulfide release and wide ranging cardiovascular protection. It has become apparent that sulfur compounds contained within garlic, onions, mushrooms and various edible beans and fruits may be transformed chemically or enzymatically in the human body with subsequent formation of hydrogen sulfide. The latter has emerged during the last decade from a shadowy existence as toxic gas to be recognized as the third gaseous transmitter besides nitric oxide ( (.)NO) and carbon monoxide (CO). Hydrogen sulfide is formed endogenously in the human body by enzymes such as cystathionine beta-synthase (CBS) in the brain and cystathionine gamma-lyase (CSE) in liver, vascular and non-vascular smooth muscle. Although its exact chemical and biochemical modes of action are still not fully understood, levels of hydrogen sulfide in the brain and vasculature have unambiguously been associated with human health and disease. Not surprisingly, agents releasing hydrogen sulfide, as well as inhibitors of hydrogen sulfide synthesis (CBS and CSE inhibitors) have been investigated. Apart from linking our daily diet to a healthy brain and cardiovasculature, these findings may also provide new leads for drug design. Future studies will therefore need to focus on how such compounds are formed and transformed in the relevant plants, how food processing affects their chemical constitution, and how they release hydrogen sulfide (or control its levels) in the human body. Such multidisciplinary research should ultimately answer the all-important question if a hearty diet is also good for the heart.

  9. Effects of hydrogen sulfide on inflammation in caerulein-induced acute pancreatitis

    PubMed Central

    2009-01-01

    Background Hydrogen sulfide (H2S), a gaseous mediator plays an important role in a wide range of physiological and pathological processes. H2S has been extensively studied for its various roles in cardiovascular and neurological disorders. However, the role of H2S in inflammation is still controversial. The current study was aimed to investigate the therapeutic potential of sodium hydrosulfide (NaHS), an H2S donor in in vivo model of acute pancreatitis in mice. Methods Acute pancreatitis was induced in mice by hourly caerulein injections (50 μg/kg) for 10 hours. Mice were treated with different dosages of NaHS (5 mg/kg, 10 mg/kg or 15 mg/kg) or with vehicle, distilled water (DW). NaHS or DW was administered 1 h before induction of pancreatitis. Mice were sacrificed 1 h after the last caerulein injection. Blood, pancreas and lung tissues were collected and were processed to measure the plasma amylase, myeloperoxidase (MPO) activities in pancreas and lung and chemokines and adhesion molecules in pancreas and lung. Results It was revealed that significant reduction of inflammation, both in pancreas and lung was associated with NaHS 10 mg/kg. Further the anti-inflammatory effects of NaHS 10 mg/kg were associated with reduction of pancreatic and pulmonary inflammatory chemokines and adhesion molecules. NaHS 5 mg/kg did not cause significant improvement on inflammation in pancreas and associated lung injury and NaHS 15 mg/kg did not further enhance the beneficial effects seen with NaHS 10 mg/kg. Conclusion In conclusion, these data provide evidence for anti-inflammatory effects of H2S based on its dosage used. PMID:20040116

  10. Hydrogen sulfide improves diabetic wound healing in ob/ob mice via attenuating inflammation.

    PubMed

    Zhao, Huichen; Lu, Shengxia; Chai, Jiachao; Zhang, Yuchao; Ma, Xiaoli; Chen, Jicui; Guan, Qingbo; Wan, Meiyan; Liu, Yuantao

    2017-09-01

    The proposed mechanisms of impaired wound healing in diabetes involve sustained inflammation, excess oxidative stress and compromised agiogenesis. Hydrogen sulfide (H 2 S) has been reported to have multiple biological activities. We aim to investigate the role of H 2 S in impaired wound healing in ob/ob mice and explore the possible mechanisms involved. Full-thickness skin dorsal wounds were created on ob/ob mice and C57BL/6 mice. Cystathionine-γ-lyase (CSE) expression and H 2 S production were determined in granulation tissues of the wounds. Effects of NaHS on wound healing were evaluated. Inflammation and angiogenesis in granulation tissues of the wounds were examined. CSE expression, and H 2 S content were significantly reduced in granulation tissues of wounds in ob/ob mice compared with control mice. NaHS treatment significantly improved wound healing in ob/ob mice, which was associated with reduced neutrophil and macrophage infiltration, decreased production of tumor necrosis factor (TNF)-α, interleukin (IL)-6. NaHS treatment decreased metalloproteinase (MMP)-9, whereas increased collagen deposition and vascular-like structures in granulation tissues of wounds in ob/ob mice. CSE down-regulation may play a role in the pathogenesis of diabetic impaired wound healing. Exogenous H 2 S could be a potential agent to improve diabetic impaired wound healing by attenuating inflammation and increasing angiogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Clinical and Experimental Evidences of Hydrogen Sulfide Involvement in Lead-Induced Hypertension

    PubMed Central

    Possomato-Vieira, José Sérgio; do Nascimento, Regina Aparecida; Wandekin, Rodrigo Roldão; Caldeira-Dias, Mayara; Chimini, Jessica Sabbatine; da Silva, Maria Luiza Santos

    2018-01-01

    Lead- (Pb-) induced hypertension has been shown in humans and experimental animals and cardiovascular effects of hydrogen sulfide (H2S) have been reported previously. However, no studies examined involvement of H2S in Pb-induced hypertension. We found increases in diastolic blood pressure and mean blood pressure in Pb-intoxicated humans followed by diminished H2S plasmatic levels. In order to expand our findings, male Wistar rats were divided into four groups: Saline, Pb, NaHS, and Pb + NaHS. Pb-intoxicated animals received intraperitoneally (i.p.) 1st dose of 8 μg/100 g of Pb acetate and subsequent doses of 0.1 μg/100 g for seven days and sodium hydrosulfide- (NaHS-) treated animals received i.p. NaHS injections (50 μmol/kg/twice daily) for seven days. NaHS treatment blunted increases in systolic blood pressure, increased H2S plasmatic levels, and diminished whole-blood lead levels. Treatment with NaHS in Pb-induced hypertension seems to induce a protective role in rat aorta which is dependent on endothelium and seems to promote non-NO-mediated relaxation. Pb-intoxication increased oxidative stress in rats, while treatment with NaHS blunted increases in plasmatic MDA levels and increased antioxidant status of plasma. Therefore, H2S pathway may be involved in Pb-induced hypertension and treatment with NaHS exerts antihypertensive effect, promotes non-NO-mediated relaxation, and decreases oxidative stress in rats with Pb-induced hypertension. PMID:29789795

  12. Diligustilide releases H2S and stabilizes S-nitrosothiols in ethanol-induced lesions on rat gastric mucosa.

    PubMed

    Velázquez-Moyado, Josué Arturo; Balderas-López, José Luis; Pineda-Peña, Elizabeth Arlen; Sánchez-Ortiz, Brenda Lorena; Tavares-Carvalho, José Carlos; Navarrete, Andrés

    2018-04-01

    (Z,Z')-Diligustilide (DLG) or levistolide A is a dimeric phthalide isolated from Ligusticum porteri (Osha), the roots of which are used in the traditional treatment of many diseases including gastric aches. However, its action has not been completely elucidated. We analyzed the contributions of hydrogen sulfide and S-nitrosothiols to the action of DLG. Animals were pretreated with freshly formed in vitro nitrosothiol using Na 2 S and sodium nitroprusside to elucidate participation in the action of DLG. We also evaluated the production of H 2 S in vivo and in real time on the stomach via a specific electrode introduced into the stomachs of anaesthetized animals pretreated with DLG. Treatment with 10 mg/kg DLG increases gastric H 2 S production in vivo from 7.8 ± 0.81 ppm to 13.1 ± 3.01 ppm and prevents the decrease in gastric injury caused by absolute ethanol. In addition, it maintains endogenous concentrations of GSH and NO · . Exogenous S-nitrosothiols protect the gastric mucosa from damage, suggesting that the action of DLG might be associated with S-nitrosothiol and H 2 S formation.

  13. Regulation of mitochondrial bioenergetic function by hydrogen sulfide. Part II. Pathophysiological and therapeutic aspects

    PubMed Central

    Módis, Katalin; Bos, Eelke M; Calzia, Enrico; van Goor, Harry; Coletta, Ciro; Papapetropoulos, Andreas; Hellmich, Mark R; Radermacher, Peter; Bouillaud, Frédéric; Szabo, Csaba

    2014-01-01

    Emerging work demonstrates the dual regulation of mitochondrial function by hydrogen sulfide (H2S), including, at lower concentrations, a stimulatory effect as an electron donor, and, at higher concentrations, an inhibitory effect on cytochrome C oxidase. In the current article, we overview the pathophysiological and therapeutic aspects of these processes. During cellular hypoxia/acidosis, the inhibitory effect of H2S on complex IV is enhanced, which may shift the balance of H2S from protective to deleterious. Several pathophysiological conditions are associated with an overproduction of H2S (e.g. sepsis), while in other disease states H2S levels and H2S bioavailability are reduced and its therapeutic replacement is warranted (e.g. diabetic vascular complications). Moreover, recent studies demonstrate that colorectal cancer cells up-regulate the H2S-producing enzyme cystathionine β-synthase (CBS), and utilize its product, H2S, as a metabolic fuel and tumour-cell survival factor; pharmacological CBS inhibition or genetic CBS silencing suppresses cancer cell bioenergetics and suppresses cell proliferation and cell chemotaxis. In the last chapter of the current article, we overview the field of H2S-induced therapeutic ‘suspended animation’, a concept in which a temporary pharmacological reduction in cell metabolism is achieved, producing a decreased oxygen demand for the experimental therapy of critical illness and/or organ transplantation. Linked Articles This article is part of a themed issue on Mitochondrial Pharmacology: Energy, Injury & Beyond. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2014.171.issue-8 PMID:23991749

  14. Examining Metasomatism in Low fO2 Environments: Exploring Sulfidation Reactions in Various Planetary Bodies

    NASA Technical Reports Server (NTRS)

    Srinivasan, P.; Shearer, C. K.; McCubbin, F. M.; Bell, A. S.; Agee, C. B.

    2016-01-01

    Hydrothermal systems are common on Earth in a variety of tectonic environments and at different temperature and pressure conditions. These systems are commonly dominated by H2O, and they are responsible for element transport and the production of ore deposits. Unlike the Earth (fO2FMQ), many other planetary bodies (e.g., Moon and asteroids) have fO2 environments that are more reduced (IW+/-2), and H2O is not the important solvent responsible for element transport. One example of a texture that could result from element transport and metasomatism, which appears to occur on numerous planetary bodies, is sulfide-silicate intergrowths. These subsolidus assemblages are interpreted to form as a result of sulfidation reactions from a S-rich fluid phase. The composition of fluids may vary within and among parent bodies and could be sourced from magmatic (e.g. Moon) or impact processes (e.g. HED meteorites and Moon). For example, it has been previously demonstrated on the Moon that the interaction of olivine with a hydrogen- and sulfur-bearing vapor phase altered primary mineral assemblages, producing sulfides (e.g. troilite) and orthopyroxene. Formation of these types of "sulfidation" assemblages can be illustrated with the following reaction: Fe2SiO4(ol) + 1/2 S(2 system) = FeS(troi)+ FeSiO3(opx) + 1/2 O2 system. The products of this reaction, as seen in lunar rocks, is a vermicular or "worm-like" texture of intergrown orthopyroxene and troilite. Regardless of the provenance of the S-bearing fluid, the minerals in these various planetary environments reacted in the same manner to produce orthopyroxene and troilite. Although similar textures have been identified in a variety of parent bodies, a comparative study on the compositions and the origins of these sulfide-silicate assemblages has yet to be undertaken. The intent of this study is to examine and compare sulfide-silicate intergrowths from various planetary bodies to explore their petrogenesis and examine the nature

  15. Hydrogen sulfide replacement therapy protects the vascular endothelium in hyperglycemia by preserving mitochondrial function.

    PubMed

    Suzuki, Kunihiro; Olah, Gabor; Modis, Katalin; Coletta, Ciro; Kulp, Gabriella; Gerö, Domokos; Szoleczky, Petra; Chang, Tuanjie; Zhou, Zongmin; Wu, Lingyun; Wang, Rui; Papapetropoulos, Andreas; Szabo, Csaba

    2011-08-16

    The goal of the present studies was to investigate the role of changes in hydrogen sulfide (H(2)S) homeostasis in the pathogenesis of hyperglycemic endothelial dysfunction. Exposure of bEnd3 microvascular endothelial cells to elevated extracellular glucose (in vitro "hyperglycemia") induced the mitochondrial formation of reactive oxygen species (ROS), which resulted in an increased consumption of endogenous and exogenous H(2)S. Replacement of H(2)S or overexpression of the H(2)S-producing enzyme cystathionine-γ-lyase (CSE) attenuated the hyperglycemia-induced enhancement of ROS formation, attenuated nuclear DNA injury, reduced the activation of the nuclear enzyme poly(ADP-ribose) polymerase, and improved cellular viability. In vitro hyperglycemia resulted in a switch from oxidative phosphorylation to glycolysis, an effect that was partially corrected by H(2)S supplementation. Exposure of isolated vascular rings to high glucose in vitro induced an impairment of endothelium-dependent relaxations, which was prevented by CSE overexpression or H(2)S supplementation. siRNA silencing of CSE exacerbated ROS production in hyperglycemic endothelial cells. Vascular rings from CSE(-/-) mice exhibited an accelerated impairment of endothelium-dependent relaxations in response to in vitro hyperglycemia, compared with wild-type controls. Streptozotocin-induced diabetes in rats resulted in a decrease in the circulating level of H(2)S; replacement of H(2)S protected from the development of endothelial dysfunction ex vivo. In conclusion, endogenously produced H(2)S protects against the development of hyperglycemia-induced endothelial dysfunction. We hypothesize that, in hyperglycemic endothelial cells, mitochondrial ROS production and increased H(2)S catabolism form a positive feed-forward cycle. H(2)S replacement protects against these alterations, resulting in reduced ROS formation, improved endothelial metabolic state, and maintenance of normal endothelial function.

  16. Process of simultaneous hydrogen sulfide removal from biogas and nitrogen removal from swine wastewater.

    PubMed

    Deng, Liangwei; Chen, Huijuan; Chen, Ziai; Liu, Yi; Pu, Xiaodong; Song, Li

    2009-12-01

    The feasibility of a new flowchart describing simultaneous hydrogen sulfide removal from biogas and nitrogen removal from wastewater was investigated. It took 30 days for the reactor inoculated with aerobic sludge to attain a removal rate of 60% for H(2)S and NO(x)-N simultaneously. It took 34 and 48 days to attain the same removal rate for the reactor without inoculated sludge and the reactor inoculated with anaerobic sludge respectively. The reactor without inoculated sludge still operated successfully, despite requiring a slightly longer startup time. The packing material was capable of enhancing the removal efficiency of reactors. Based on the concentration of NO(x)-N and H(2)S in the effluent, the loading rate and the ability of the system to resist shock loading, the performance of the reactor filled with hollow plastic balls was greater than that of the reactor filled with elastic packing and the reactor filled with Pall rings.

  17. Inhaled hydrogen sulfide: a rapidly reversible inhibitor of cardiac and metabolic function in the mouse.

    PubMed

    Volpato, Gian Paolo; Searles, Robert; Yu, Binglan; Scherrer-Crosbie, Marielle; Bloch, Kenneth D; Ichinose, Fumito; Zapol, Warren M

    2008-04-01

    Breathing hydrogen sulfide (H2S) has been reported to induce a suspended animation-like state with hypothermia and a concomitant metabolic reduction in rodents. However, the impact of H2S breathing on cardiovascular function remains incompletely understood. In this study, the authors investigated the cardiovascular and metabolic effects of inhaled H2S in a murine model. The impact of breathing H2S on cardiovascular function was examined using telemetry and echocardiography in awake mice. The effects of breathing H2S on carbon dioxide production and oxygen consumption were measured at room temperature and in a warmed environment. Breathing H2S at 80 parts per million by volume at 27 degrees C ambient temperature for 6 h markedly reduced heart rate, core body temperature, respiratory rate, and physical activity, whereas blood pressure remained unchanged. Echocardiography demonstrated that H2S exposure decreased both heart rate and cardiac output but preserved stroke volume. Breathing H2S for 6 h at 35 degrees C ambient temperature (to prevent hypothermia) decreased heart rate, physical activity, respiratory rate, and cardiac output without altering stroke volume or body temperature. H2S breathing seems to induce bradycardia by depressing sinus node activity. Breathing H2S for 30 min decreased whole body oxygen consumption and carbon dioxide production at either 27 degrees or 35 degrees C ambient temperature. Both parameters returned to baseline levels within 10 min after the cessation of H2S breathing. Inhalation of H2S at either 27 degrees or 35 degrees C reversibly depresses cardiovascular function without changing blood pressure in mice. Breathing H2S also induces a rapidly reversible reduction of metabolic rate at either body temperature.

  18. Production of Hydrogen by Superadiabatic Decomposition of Hydrogen Sulfide - Final Technical Report for the Period June 1, 1999 - September 30, 2000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rachid B. Slimane; Francis S. Lau; Javad Abbasian

    2000-10-01

    The objective of this program is to develop an economical process for hydrogen production, with no additional carbon dioxide emission, through the thermal decomposition of hydrogen sulfide (H{sub 2}S) in H{sub 2}S-rich waste streams to high-purity hydrogen and elemental sulfur. The novel feature of the process being developed is the superadiabatic combustion (SAC) of part of the H{sub 2}S in the waste stream to provide the thermal energy required for the decomposition reaction such that no additional energy is required. The program is divided into two phases. In Phase 1, detailed thermochemical and kinetic modeling of the SAC reactor withmore » H{sub 2}S-rich fuel gas and air/enriched air feeds is undertaken to evaluate the effects of operating conditions on exit gas products and conversion efficiency, and to identify key process parameters. Preliminary modeling results are used as a basis to conduct a thorough evaluation of SAC process design options, including reactor configuration, operating conditions, and productivity-product separation schemes, with respect to potential product yields, thermal efficiency, capital and operating costs, and reliability, ultimately leading to the preparation of a design package and cost estimate for a bench-scale reactor testing system to be assembled and tested in Phase 2 of the program. A detailed parametric testing plan was also developed for process design optimization and model verification in Phase 2. During Phase 2 of this program, IGT, UIC, and industry advisors UOP and BP Amoco will validate the SAC concept through construction of the bench-scale unit and parametric testing. The computer model developed in Phase 1 will be updated with the experimental data and used in future scale-up efforts. The process design will be refined and the cost estimate updated. Market survey and assessment will continue so that a commercial demonstration project can be identified.« less

  19. Porphyromonas gingivalis hydrogen sulfide enhances methyl mercaptan-induced pathogenicity in mouse abscess formation.

    PubMed

    Nakamura, Suguru; Shioya, Koki; Hiraoka, B Yukihiro; Suzuki, Nao; Hoshino, Tomonori; Fujiwara, Taku; Yoshinari, Nobuo; Ansai, Toshihiro; Yoshida, Akihiro

    2018-04-01

    Porphyromonas gingivalis produces hydrogen sulfide (H2S) from l-cysteine. However, the role of H2S produced by P. gingivalis in periodontal inflammation is unclear. In this study, we identified the enzyme that catalyses H2S production from l-cysteine and analysed the role of H2S using a mouse abscess model. The enzyme identified was identical to methionine γ-lyase (PG0343), which produces methyl mercaptan (CH3SH) from l-methionine. Therefore, we analysed H2S and CH3SH production by P. gingivalis W83 and a PG0343-deletion mutant (ΔPG0343) with/without l-cysteine and/or l-methionine. The results indicated that CH3SH is produced constitutively irrespective of the presence of l-methionine, while H2S was greatly increased by both P. gingivalis W83 and ΔPG0343 in the presence of l-cysteine. In contrast, CH3SH production by ΔPG0343 was absent irrespective of the presence of l-methionine, and H2S production was eliminated in the absence of l-cysteine. Thus, CH3SH and H2S production involves different substrates, l-methionine or l-cysteine, respectively. Based on these characteristics, we analysed the roles of CH3SH and H2S in abscess formation in mice by P. gingivalis W83 and ΔPG0343. Abscess formation by P. gingivalis W83, but not ΔPG0343, differed significantly in the presence and absence of l-cysteine. In addition, the presence of l-methionine did not affect the size of abscesses generated by P. gingivalis W83 and ΔPG0343. Therefore, we conclude that H2S produced by P. gingivalis does not induce inflammation; however, H2S enhances inflammation caused by CH3SH. Thus, these results suggest the H2S produced by P. gingivalis plays a supportive role in inflammation caused by methionine γ-lyase.

  20. Chemical trapping and characterization of small oxoacids of sulfur (SOS) generated in aqueous oxidations of H2S.

    PubMed

    Kumar, Murugaeson R; Farmer, Patrick J

    2018-04-01

    Small oxoacids of sulfur (SOS) are elusive molecules like sulfenic acid, HSOH, and sulfinic acid, HS(O)OH, generated during the oxidation of hydrogen sulfide, H 2 S, in aqueous solution. Unlike their alkyl homologs, there is a little data on their generation and speciation during H 2 S oxidation. These SOS may exhibit both nucleophilic and electrophilic reactivity, which we attribute to interconversion between S(II) and S(IV) tautomers. We find that SOS may be trapped in situ by derivatization with nucleophilic and electrophilic trapping agents and then characterized by high resolution LC MS. In this report, we compare SOS formation from H 2 S oxidation by a variety of biologically relevant oxidants. These SOS appear relatively long lived in aqueous solution, and thus may be involved in the observed physiological effects of H 2 S. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Photocatalytic wastewater purification with simultaneous hydrogen production using MoS2 QD-decorated hierarchical assembly of ZnIn2S4 on reduced graphene oxide photocatalyst.

    PubMed

    Zhang, Shuqu; Wang, Longlu; Liu, Chengbin; Luo, Jinming; Crittenden, John; Liu, Xia; Cai, Tao; Yuan, Jili; Pei, Yong; Liu, Yutang

    2017-09-15

    It is attractive to photocatalytically purify wastewater and simultaneously convert solar energy into clean hydrogen energy. However, it is still a challenge owing to the relatively low photocatalytic efficiency of photocatalysts. In this study, we synthesized a molybdenum disulfide (MoS 2 ) quantum dot-decorated 3D nanoarchitecture (MoS 2 QDs) of indium zinc sulfide (ZnIn 2 S 4 ) and reduced grapheme oxide (MoS 2 QDs@ZnIn 2 S 4 @RGO) photocatalyst using a simple solvothermal method. The RGO promotes the electron transfer, and the highly dispersed MoS 2 QDs provides numerous catalytic sites. The photocatalytic purification of rhodamine B (RhB), eosin Y (EY), fulvic acid (FA), methylene blue (MB) and p-nitrophenol (PNP) in simulated wastewaters were further tested. The degradation efficiencies and TOC removal were 91% and 75% for PNP, 92.2% and 72% for FA, 98.5% and 80% for MB, 98.6% and 84% for EY, and 98.8% and 88% for RhB, respectively (C organics  = 20 mg/L, C catalyst  = 1.25 g/L, t = 12 h, I light  = 3.36 × 10 -5  E L -1  s -1 ). Among these tests, the highest hydrogen production was achieved (45 μmol) during RhB degradation. Both experimental and calculational results prove that lower LUMO (lowest unoccupied molecular orbit) level of organic molecules was available for transferring electrons to catalysts, resulting in more efficient hydrogen production. Significantly, the removal efficiencies of natural organic substances in actual river water reached 76.3-98.4%, and COD reduced from 32 to 16 mg/L with 13.8 μmol H 2 production after 12 h. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Hydrogen sulfide mediates the anti-survival effect of sulforaphane on human prostate cancer cells.

    PubMed

    Pei, Yanxi; Wu, Bo; Cao, Qiuhui; Wu, Lingyun; Yang, Guangdong

    2011-12-15

    Hydrogen sulfide (H(2)S) is a novel gasotransmitter that regulates cell proliferation and other cellular functions. Sulforaphane (SFN) is a sulfur-containing compound that exhibits anticancer properties, and young sprouts of broccoli are particularly rich in SFN. There is consistent epidemiological evidence that the consumption of sulfur-containing vegetables, such as garlic and cruciferous vegetables, may help reduce the occurrence of prostate cancer. Here we found that a large amount of H(2)S is released when SFN is added into cell culture medium or mixed with mouse liver homogenates, respectively. Both SFN and NaHS (a H(2)S donor) decreased the viability of PC-3 cells (a human prostate cancer cell line) in a dose-dependent manner, and supplement of methemoglobin or oxidized glutathione (two H(2)S scavengers) reversed SFN-reduced cell viability. We further found both cystathionine gamma-lyase (CSE) and cystathionine beta-synthase are expressed in PC-3 cells and mouse prostate tissues. H(2)S production in prostate tissues from CSE knockout mice was only 20% of that from wild-type mice, suggesting CSE is a major H(2)S-producing enzyme in prostate. CSE overexpression enhanced H(2)S production and inhibited cell viability in PC-3 cells. In addition, both SFN and NaHS activated p38 mitogen-activated protein kinases (MAPK) and c-Jun N-terminal kinase (JNK). Pre-treatment of PC-3 cells with methemoglobin decreased SFN-stimulated MAPK activities. Suppression of both p38 MAPK and JNK reversed H(2)S- or SFN-reduced viability of PC-3 cells. Our results demonstrated that H(2)S mediates the inhibitory effect of SFN on the proliferation of PC-3 cells, which suggests that H(2)S-releasing diet or drug might be beneficial in the treatment of prostate cancer. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Perfusion of isolated carotid sinus with hydrogen sulfide attenuated the renal sympathetic nerve activity in anesthetized male rats.

    PubMed

    Guo, Q; Wu, Y; Xue, H; Xiao, L; Jin, S; Wang, R

    2016-07-18

    The purpose of the present study was to define the indirect central effect of hydrogen sulfide (H(2)S) on baroreflex control of sympathetic outflow. Perfusing the isolated carotid sinus with sodium hydrosulfide (NaHS), a H(2)S donor, the effect of H(2)S was measured by recording changes of renal sympathetic nerve activity (RSNA) in anesthetized male rats. Perfusion of isolated carotid sinus with NaHS (25, 50, 100 micromol/l) dose and time-dependently inhibited sympathetic outflow. Preconditioning of glibenclamide (20 micromol/l), a ATP-sensitive K(+) channels (K(ATP)) blocker, the above effect of NaHS was removed. With 1, 4-dihydro-2, 6-dimethyl-5-nitro-4-(2-[trifluoromethyl] phenyl) pyridine-3-carboxylic acid methyl ester (Bay K8644, 500 nmol/l) pretreatment, which is an agonist of L-calcium channels, the effect of NaHS was eliminated. Perfusion of cystathionine gamma-lyase (CSE) inhibitor, DL-propargylglycine (PPG, 200 micromol/l), increased sympathetic outflow. The results show that exogenous H(2)S in the carotid sinus inhibits sympathetic outflow. The effect of H(2)S is attributed to opening K(ATP) channels and closing the L-calcium channels.

  4. Investigating Catalyst–Support Interactions To Improve the Hydrogen Evolution Reaction Activity of Thiomolybdate [Mo 3 S 13 ] 2– Nanoclusters

    DOE PAGES

    Hellstern, Thomas R.; Kibsgaard, Jakob; Tsai, Charlie; ...

    2017-09-22

    Molybdenum sulfides have been identified as promising materials for catalyzing the hydrogen evolution reaction (HER) in acid, with active edge sites that exhibit some of the highest turnover frequencies among nonpreciousmetal catalysts. The thiomolybdate [Mo 3S 13] 2- nanocluster catalyst contains a structural motif that resembles the active site of MoS 2 and has been reported to be among the most active forms of molybdenum sulfide. Herein, we improve the activity of the [Mo 3S 13] 2- catalysts through catalyst-support interactions. We synthesize [Mo 3S 13] 2- on gold, silver, glassy carbon, and copper supports to demonstrate the ability tomore » tune the hydrogen binding energy of [Mo 3S 13] 2- using catalyst-support electronic interactions and optimize HER activity.« less

  5. Investigating Catalyst–Support Interactions To Improve the Hydrogen Evolution Reaction Activity of Thiomolybdate [Mo 3 S 13 ] 2– Nanoclusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hellstern, Thomas R.; Kibsgaard, Jakob; Tsai, Charlie

    Molybdenum sulfides have been identified as promising materials for catalyzing the hydrogen evolution reaction (HER) in acid, with active edge sites that exhibit some of the highest turnover frequencies among nonpreciousmetal catalysts. The thiomolybdate [Mo 3S 13] 2- nanocluster catalyst contains a structural motif that resembles the active site of MoS 2 and has been reported to be among the most active forms of molybdenum sulfide. Herein, we improve the activity of the [Mo 3S 13] 2- catalysts through catalyst-support interactions. We synthesize [Mo 3S 13] 2- on gold, silver, glassy carbon, and copper supports to demonstrate the ability tomore » tune the hydrogen binding energy of [Mo 3S 13] 2- using catalyst-support electronic interactions and optimize HER activity.« less

  6. Advances in the Diagnosis of Sepsis: Hydrogen Sulfide as a Prognostic Marker of Septic Shock Severity

    PubMed Central

    Košir, Miha

    2017-01-01

    Hydrogen sulfide (H2S) is a third known gasotransmitter. Most of the time it was knows as a poisonous gas. In last 30 years, we are seeing change in its perception. Scientists have discovered its major role in different organ systems. It is endogenously produced in various tissues and its production is influenced by many factors. In normal, physiological conditions only 20% of H2S is in its free form. The role of H2S is very wide. It acts as a signaling molecule, has influence on vascular tone, inflammatory response, scavenges reactive oxygen species, can be cytoprotective and can even reduce the extent of myocardial ischemia. Different studies have shown H2S has considerable influence in pathology of sepsis and its outcome. High free plasma levels of H2S are predictor of unfavorable outcome. Findings show that moderate free plasma levels of H2S have protective effect. Paradoxical very low free plasma levels of H2S, seen in patients with chronic heart failure, are also predictor of severity of disease and poor outcome. We presume that relationship between morbidity/mortality and concentration of H2S has a wide U-shape curve dependence. New researches with discovery of H2S agonists and antagonists could open new ways in understanding different pathologies and ability to treat them. Recent advances in the identification of H2S agonists and antagonists may help in forwarding our understanding of pathomechanisms and hence their treatment. PMID:28757821

  7. Effective sulfur and energy recovery from hydrogen sulfide through incorporating an air-cathode fuel cell into chelated-iron process.

    PubMed

    Sun, Min; Song, Wei; Zhai, Lin-Feng; Cui, Yu-Zhi

    2013-12-15

    The chelated-iron process is among the most promising techniques for the hydrogen sulfide (H2S) removal due to its double advantage of waste minimization and resource recovery. However, this technology has encountered the problem of chelate degradation which made it difficult to ensure reliable and economical operation. This work aims to develop a novel fuel-cell-assisted chelated-iron process which employs an air-cathode fuel cell for the catalyst regeneration. By using such a process, sulfur and electricity were effectively recovered from H2S and the problem of chelate degradation was well controlled. Experiment on a synthetic sulfide solution showed the fuel-cell-assisted chelated-iron process could maintain high sulfur recovery efficiencies generally above 90.0%. The EDTA was preferable to NTA as the chelating agent for electricity generation, given the Coulombic efficiencies (CEs) of 17.8 ± 0.5% to 75.1 ± 0.5% for the EDTA-chelated process versus 9.6 ± 0.8% to 51.1 ± 2.7% for the NTA-chelated process in the pH range of 4.0-10.0. The Fe (III)/S(2-) ratio exhibited notable influence on the electricity generation, with the CEs improved by more than 25% as the Fe (III)/S(2-) molar ratio increased from 2.5:1 to 3.5:1. Application of this novel process in treating a H2S-containing biogas stream achieved 99% of H2S removal efficiency, 78% of sulfur recovery efficiency, and 78.6% of energy recovery efficiency, suggesting the fuel-cell-assisted chelated-iron process was effective to remove the H2S from gas streams with favorable sulfur and energy recovery efficiencies. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Sulfide response analysis for sulfide control using a pS electrode in sulfate reducing bioreactors.

    PubMed

    Villa-Gomez, D K; Cassidy, J; Keesman, K J; Sampaio, R; Lens, P N L

    2014-03-01

    Step changes in the organic loading rate (OLR) through variations in the influent chemical oxygen demand (CODin) concentration or in the hydraulic retention time (HRT) at constant COD/SO4(2-) ratio (0.67) were applied to create sulfide responses for the design of a sulfide control in sulfate reducing bioreactors. The sulfide was measured using a sulfide ion selective electrode (pS) and the values obtained were used to calculate proportional-integral-derivative (PID) controller parameters. The experiments were performed in an inverse fluidized bed bioreactor with automated operation using the LabVIEW software version 2009(®). A rapid response and high sulfide increment was obtained through a stepwise increase in the CODin concentration, while a stepwise decrease to the HRT exhibited a slower response with smaller sulfide increment. Irrespective of the way the OLR was decreased, the pS response showed a time-varying behavior due to sulfide accumulation (HRT change) or utilization of substrate sources that were not accounted for (CODin change). The pS electrode response, however, showed to be informative for applications in sulfate reducing bioreactors. Nevertheless, the recorded pS values need to be corrected for pH variations and high sulfide concentrations (>200 mg/L). Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Nicotine affects hydrogen sulfide concentrations in mouse kidney and heart but not in brain and liver tissues.

    PubMed

    Wiliński, Jerzy; Wiliński, Bogdan; Somogyi, Eugeniusz; Piotrowska, Joanna; Kameczura, Tomasz; Zygmunt, Małgorzata

    2017-01-01

    Nicotine, a potent parasympathomimetic alkaloid with stimulant effects, is contributing to addictive properties of tobacco smoking and is though used in the smoking cessation therapy. Hydrogen sulfide (H2S) is involved in physiology and pathophysiology of various systems in mammals. The interactions between nicotine and H2S are not fully recognized. The aim of the study is to assess the influence of nicotine on the H2S tissue concentrations in different mouse organs. Adult CBA male mice were administered intraperitoneally 1.5 mg/kg b.w. per day of nicotine (group D1, n = 10) or 3 mg/ kg b.w. per day of nicotine (group D2, n = 10). The control group (n = 10) received physiological saline. The measurements of the free and acid-labile H2S tissue concentrations were performed with the Siegel spectrophotometric modi ed method. ere was a significant increase in H2S concentrations in both nicotine doses groups in the kidney (D1 by 54.2%, D2 by 40.0%). In the heart the higher nicotine dose caused a marked decrease in H2S tissue level (by 65.4%), while the lower dose did not affect H2S content. Nicotine administration had no effect on H2S concentrations in the brain and liver. In conclusion, nicotine affects H2S tissue concentrations in kidney and heart but not in the liver and brain tissues.

  10. Quantitative and comparative liquid chromatography-electrospray ionization-mass spectrometry analyses of hydrogen sulfide and thiol metabolites derivaitized with 2-iodoacetanilide isotopologues.

    PubMed

    Lee, Der-Yen; Huang, Wei-Chieh; Gu, Ting-Jia; Chang, Geen-Dong

    2018-06-01

    Hydrogen sulfide (H 2 S), previously known as a toxic gas, is now recognized as a gasotransmitter along with nitric oxide and carbon monoxide. However, only few methods are available for quantitative determination of H 2 S in biological samples. 2-Iodoacetanilide (2-IAN), a thiol-reacting agent, has been used to tag the reduced cysteine residues of proteins for quantitative proteomics and for detection of cysteine oxidation modification. In this article, we proposed a new method for quantitative analyses of H 2 S and thiol metabolites using the procedure of pre-column 2-IAN derivatization coupled with liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS). 13 C 6 -Labeled and label-free 2-IAN efficiently react with H 2 S and thiol compounds at pH 9.5 and 65 °C. The derivatives exhibit excellent stability at alkaline conditions, high resolution on reverse phase liquid chromatography and great sensitivity for ESI-MS detection. The measurement of H 2 S, l-cysteine, glutathione, and DL-homocysteine derivatives was validated using 13 C 6 -labeled standard in LC-ESI-MS analyses and exhibited 10 nM-1 μM linear ranges for DL-homocysteine and glutathione and 1 nM-1 μM linear ranges for l-cysteine and H 2 S. In addition, the sequence of derivatization and extraction of metabolites is important in the quantification of thiol metabolites suggesting the presence of matrix effects. Most importantly, labeling with 2-IAN and 13 C 6 -2-IAN isotopologues could achieve quantitative and matched sample comparative analyses with minimal bias using our extraction and labeling procedures before LC-MS analysis. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Hydrogen sulfide enhances salt tolerance through nitric oxide-mediated maintenance of ion homeostasis in barley seedling roots

    PubMed Central

    Chen, Juan; Wang, Wen-Hua; Wu, Fei-Hua; He, En-Ming; Liu, Xiang; Shangguan, Zhou-Ping; Zheng, Hai-Lei

    2015-01-01

    Hydrogen sulfide (H2S) and nitric oxide (NO) are emerging as messenger molecules involved in the modulation of plant physiological processes. Here, we investigated a signalling network involving H2S and NO in salt tolerance pathway of barley. NaHS, a donor of H2S, at a low concentration of either 50 or 100 μM, had significant rescue effects on the 150 mM NaCl-induced inhibition of plant growth and modulated the K+/Na+ balance by decreasing the net K+ efflux and increasing the gene expression of an inward-rectifying potassium channel (HvAKT1) and a high-affinity K+ uptake system (HvHAK4). H2S and NO maintained the lower Na+ content in the cytoplast by increasing the amount of PM H+-ATPase, the transcriptional levels of PM H+-ATPase (HvHA1) and Na+/H+ antiporter (HvSOS1). H2S and NO modulated Na+ compartmentation into the vacuoles with up-regulation of the transcriptional levels of vacuolar Na+/H+ antiporter (HvVNHX2) and H+-ATPase subunit β (HvVHA-β) and increased in the protein expression of vacuolar Na+/H+ antiporter (NHE1). H2S mimicked the effect of sodium nitroprusside (SNP) by increasing NO production, whereas the function was quenched with the addition of NO scavenger. These results indicated that H2S increased salt tolerance by maintaining ion homeostasis, which were mediated by the NO signal. PMID:26213372

  12. Measurements of dimethyl sulfide and H2S over the western North Atlantic and the tropical Atlantic

    NASA Technical Reports Server (NTRS)

    Andreae, T. W.; Andreae, M. O.; Bingemer, H. G.; Leck, C.

    1993-01-01

    Airborne measurements of DMS and H2S were made off the east coast of the United States and over the tropical Atlantic off Brazil. Samples were collected through a fluorinated ethylene propylene Teflon inlet manifold. Dimethyl sulfide (DMS) was preconcentrated onto gold wool and analyzed by gas chromatography/flame photometric detection. H2S was collected on AgNO3-impregnated filters and determined by fluorescence quenching. Use of a new scrubber material (cotton) to remove negative interference on DMS measurements was investigated. Comparison with a Na2CO3/Anakrom scrubber gave good overall agreement. Only under extreme conditions, e.g., on flight 9 (continental air mass, low humidity, high O3, and low DMS values) did Na2CO3 show noticeable loss of DMS compared to cotton. On most flights, especially in marine air masses with high humidity and relatively low O3, the results from both scrubbers agreed well with each other and with other instruments used during the intercalibration. Off the U.S. East Coast, DMS levels showed strong dependence on air mass origin with high values (up to 83 ppt) in marine tropical air masses and low values (10-20 ppt) in continental and polar air. Over the tropical Atlantic, DMS ranged over 20-100 ppt in the mixed layer. Nighttime values were a factor of 1.6-2.3 higher than daytime levels. DMS decreased with altitude to less than 1 ppt at 4000 m. H2S in the mixed layer off the U.S. East Coast ranged from 10 to 200 ppt. Significant influence from terrestrial and pollution sources was evident. H2S in air masses originating over the eastern seaboard was much higher than in continental polar air or over the remote tropical continents. In contrast, over the tropical Atlantic, concentrations were very low (5-10 ppt), typical of truly marine air. Night/day ratios were about 1.4. No significant geographical variability was seen in H2S levels over the tropical Atlantic. The correlation of atmospheric Rn-222 and H2S was significant, with both

  13. Inhibition of endogenous hydrogen sulfide formation reduces the organ injury caused by endotoxemia

    PubMed Central

    Collin, Marika; Anuar, Farhana B M; Murch, Oliver; Bhatia, Madhav; Moore, Philip K; Thiemermann, Christoph

    2005-01-01

    Hydrogen sulfide (H2S) is a naturally occurring gaseous transmitter, which may play important roles in normal physiology and disease. Here, we investigated the role of H2S in the organ injury caused by severe endotoxemia in the rat. Male Wistar rats were subjected to acute endotoxemia (Escherichia coli lipopolysaccharide (LPS) 6 mg kg−1 intravenously (i.v.) for 6 h) and treated with vehicle (saline, 1 ml kg−1 i.v.) or DL-propargylglycine (PAG, 10–100 mg kg−1 i.v.), an inhibitor of the H2S-synthesizing enzyme cystathionine-γ-lyase (CSE). PAG was administered either 30 min prior to or 60 min after the induction of endotoxemia. Endotoxemia resulted in circulatory failure (hypotension and tachycardia) and an increase in serum levels of alanine aminotransferase and aspartate aminotransferase (markers for hepatic injury), lipase (indicator of pancreatic injury) and creatine kinase (indicator of neuromuscular injury). In the liver, endotoxemia induced a significant increase in the myeloperoxidase (MPO) activity, and in the expression and activity of the H2S-synthesizing enzymes CSE and cystathionine-β-synthase. Administration of PAG either prior to or after the injection of LPS dose-dependently reduced the hepatocellular, pancreatic and neuromuscular injury caused by endotoxemia, but not the circulatory failure. Pretreatment of rats with PAG abolished the LPS-induced increase in the MPO activity and in the formation of H2S and in the liver. These findings support the view that an enhanced formation of H2S contributes to the pathophysiology of the organ injury in endotoxemia. We propose that inhibition of H2S synthesis may be a useful therapeutic strategy against the organ injury associated with sepsis and shock. PMID:16100527

  14. The anti-proliferative and anti-inflammatory response of COPD airway smooth muscle cells to hydrogen sulfide.

    PubMed

    Perry, Mark M; Tildy, Bernadett; Papi, Alberto; Casolari, Paolo; Caramori, Gaetano; Rempel, Karen Limbert; Halayko, Andrew J; Adcock, Ian; Chung, Kian Fan

    2018-05-09

    COPD is a common, highly debilitating disease of the airways, primarily caused by smoking. Chronic inflammation and structural remodelling are key pathological features of this disease caused, in part, by the aberrant function of airway smooth muscle (ASM). We have previously demonstrated that hydrogen sulfide (H 2 S) can inhibit ASM cell proliferation and CXCL8 release, from cells isolated from non-smokers. We examined the effect of H 2 S upon ASM cells from COPD patients. ASM cells were isolated from non-smokers, smokers and patients with COPD (n = 9). Proliferation and cytokine release (IL-6 and CXCL8) of ASM was induced by FCS, and measured by bromodeoxyuridine incorporation and ELISA, respectively. Exposure of ASM to H 2 S donors inhibited FCS-induced proliferation and cytokine release, but was less effective upon COPD ASM cells compared to the non-smokers and smokers. The mRNA and protein expression of the enzymes responsible for endogenous H 2 S production (cystathionine-β-synthase [CBS] and 3-mercaptopyruvate sulphur transferase [MPST]) were inhibited by H 2 S donors. Finally, we report that exogenous H 2 S inhibited FCS-stimulated phosphorylation of ERK-1/2 and p38 mitogen activated protein kinases (MAPKs), in the non-smoker and smoker ASM cells, with little effect in COPD cells. H 2 S production provides a novel mechanism for the repression of ASM proliferation and cytokine release. The ability of COPD ASM cells to respond to H 2 S is attenuated in COPD ASM cells despite the presence of the enzymes responsible for H 2 S production.

  15. Hydrogen Sulfide Protects Renal Grafts Against Prolonged Cold Ischemia-Reperfusion Injury via Specific Mitochondrial Actions.

    PubMed

    Lobb, I; Jiang, J; Lian, D; Liu, W; Haig, A; Saha, M N; Torregrossa, R; Wood, M E; Whiteman, M; Sener, A

    2017-02-01

    Ischemia-reperfusion injury is unavoidably caused by loss and subsequent restoration of blood flow during organ procurement, and prolonged ischemia-reperfusion injury IRI results in increased rates of delayed graft function and early graft loss. The endogenously produced gasotransmitter, hydrogen sulfide (H 2 S), is a novel molecule that mitigates hypoxic tissue injury. The current study investigates the protective mitochondrial effects of H 2 S during in vivo cold storage and subsequent renal transplantation (RTx) and in vitro cold hypoxic renal injury. Donor allografts from Brown Norway rats treated with University of Wisconsin (UW) solution + H 2 S (150 μM NaSH) during prolonged (24-h) cold (4°C) storage exhibited significantly (p < 0.05) decreased acute necrotic/apoptotic injury and significantly (p < 0.05) improved function and recipient Lewis rat survival compared to UW solution alone. Treatment of rat kidney epithelial cells (NRK-52E) with the mitochondrial-targeted H 2 S donor, AP39, during in vitro cold hypoxic injury improved the protective capacity of H 2 S >1000-fold compared to similar levels of the nonspecific H 2 S donor, GYY4137 and also improved syngraft function and survival following prolonged cold storage compared to UW solution. H 2 S treatment mitigates cold IRI-associated renal injury via mitochondrial actions and could represent a novel therapeutic strategy to minimize the detrimental clinical outcomes of prolonged cold IRI during RTx. © 2016 The American Society of Transplantation and the American Society of Transplant Surgeons.

  16. Hydrogen Sulfide Inhibits Hypoxia- But Not Anoxia-Induced Hypoxia-Inducible Factor 1 Activation in a von Hippel-Lindau- and Mitochondria-Dependent Manner

    PubMed Central

    Kai, Shinichi; Tanaka, Tomoharu; Daijo, Hiroki; Harada, Hiroshi; Kishimoto, Shun; Suzuki, Kengo; Takabuchi, Satoshi; Takenaga, Keizo; Fukuda, Kazuhiko

    2012-01-01

    Abstract Aims: In addition to nitric oxide and carbon monoxide, hydrogen sulfide (H2S) is an endogenously synthesized gaseous molecule that acts as an important signaling molecule in the living body. Transcription factor hypoxia-inducible factor 1 (HIF-1) is known to respond to intracellular reduced oxygen (O2) availability, which is regulated by an elaborate balance between O2 supply and demand. However, the effect of H2S on HIF-1 activity under hypoxic conditions is largely unknown in mammalian cells. In this study, we tried to elucidate the effect of H2S on hypoxia-induced HIF-1 activation adopting cultured cells and mice. Results: The H2S donors sodium hydrosulfide and sodium sulfide in pharmacological concentrations reversibly reduced cellular O2 consumption and inhibited hypoxia- but not anoxia-induced HIF-1α protein accumulation and expression of genes downstream of HIF-1 in established cell lines. H2S did not affect HIF-1 activation induced by the HIF-α hydroxylases inhibitors desferrioxamine or CoCl2. Experimental evidence adopting von Hippel-Lindau (VHL)- or mitochondria-deficient cells indicated that H2S did not affect neosynthesis of HIF-1α protein but destabilized HIF-1α in a VHL- and mitochondria-dependent manner. We also demonstrate that exogenously administered H2S inhibited HIF-1–dependent gene expression in mice. Innovation: For the first time, we show that H2S modulates intracellular O2 homeostasis and regulates activation of HIF-1 and the subsequent gene expression induced by hypoxia by using an in vitro system with established cell lines and an in vivo system in mice. Conclusions: We demonstrate that H2S inhibits hypoxia-induced HIF-1 activation in a VHL- and mitochondria-dependent manner. Antioxid. Redox Signal. 16, 203–216. PMID:22004513

  17. Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production

    PubMed Central

    Ran, Jingrun; Gao, Guoping; Li, Fa-Tang; Ma, Tian-Yi; Du, Aijun; Qiao, Shi-Zhang

    2017-01-01

    Scalable and sustainable solar hydrogen production through photocatalytic water splitting requires highly active and stable earth-abundant co-catalysts to replace expensive and rare platinum. Here we employ density functional theory calculations to direct atomic-level exploration, design and fabrication of a MXene material, Ti3C2 nanoparticles, as a highly efficient co-catalyst. Ti3C2 nanoparticles are rationally integrated with cadmium sulfide via a hydrothermal strategy to induce a super high visible-light photocatalytic hydrogen production activity of 14,342 μmol h−1 g−1 and an apparent quantum efficiency of 40.1% at 420 nm. This high performance arises from the favourable Fermi level position, electrical conductivity and hydrogen evolution capacity of Ti3C2 nanoparticles. Furthermore, Ti3C2 nanoparticles also serve as an efficient co-catalyst on ZnS or ZnxCd1−xS. This work demonstrates the potential of earth-abundant MXene family materials to construct numerous high performance and low-cost photocatalysts/photoelectrodes. PMID:28045015

  18. Hydrogen sulfide accelerates the recovery of kidney tubules after renal ischemia/reperfusion injury.

    PubMed

    Han, Sang Jun; Kim, Jee In; Park, Jeen-Woo; Park, Kwon Moo

    2015-09-01

    Progression of acute kidney injury to chronic kidney disease (CKD) is associated with inadequate recovery of damaged kidney. Hydrogen sulfide (H2S) regulates a variety of cellular signals involved in cell death, differentiation and proliferation. This study aimed to identify the role of H2S and its producing enzymes in the recovery of kidney following ischemia/reperfusion (I/R) injury. Mice were subjected to 30 min of bilateral renal ischemia. Some mice were administered daily NaHS, an H2S donor, and propargylglycine (PAG), an inhibitor of the H2S-producing enzyme cystathionine gamma-lyase (CSE), during the recovery phase. Cell proliferation was assessed via 5'-bromo-2'-deoxyuridine (BrdU) incorporation assay. Ischemia resulted in decreases in CSE and cystathionine beta-synthase (CBS) expression and activity, and H2S level in the kidney. These decreases did not return to sham level until 8 days after ischemia when kidney had fibrotic lesions. NaHS administration to I/R-injured mice accelerated the recovery of renal function and tubule morphology, whereas PAG delayed that. Furthermore, PAG increased mortality after ischemia. NaHS administration to I/R-injured mice accelerated tubular cell proliferation, whereas it inhibited interstitial cell proliferation. In addition, NaHS treatment reduced post-I/R superoxide formation, lipid peroxidation, level of GSSG/GSH and Nox4 expression, whereas it increased catalase and MnSOD expression. Our findings demonstrate that H2S accelerates the recovery of I/R-induced kidney damage, suggesting that the H2S-producing transsulfuration pathway plays an important role in kidney repair after acute injury. © The Author 2015. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  19. Operator Exposure to Hydrogen Sulfide from Dairy Manure Storages Containing Gypsum Bedding.

    PubMed

    Fabian-Wheeler, Eileen E; Hile, Michael L; Murphy, Dennis J; Hill, Davis E; Meinen, Robert; Brandt, Robin C; Elliott, Hershel A; Hofstetter, Daniel

    2017-01-26

    Dairy manure storages containing gypsum-based bedding have been linked anecdotally with injury and death due to presumed dangerous levels of gases released. Recycled gypsum products are used as a cost-effective bedding alternative to improve animal welfare and provide agronomic benefits to manure recycled back to the land. Sulfur contained in gypsum (calcium sulfate) can contribute to hydrogen sulfide (H2S) gas formation under the anaerobic storage conditions typical of dairy manure slurry. Disturbance of stored manure during agitation releases a burst of volatile gases. On-farm monitoring was conducted to document conditions during manure storage agitation relative to gas concentration and operator safety. One objective was to document operator exposure to H2S levels; therefore, each operator wore a personal gas monitor while performing tasks associated with manure storage agitation. Data from three dairy bedding management categories on ten farms were compared: (1) traditional organic bedding, (2) gypsum bedding, and (3) gypsum bedding plus a manure additive thought to reduce H2S formation and/or release. Portable meters placed around the perimeter of dairy manure storages recorded H2S concentrations prior to and during 19 agitation events. Results show that farms using gypsum bedding produced higher H2S concentrations during manure storage agitation than farms using traditional bedding. In most cases, gypsum-containing manure storages produced H2S levels above recognized safe thresholds for both livestock and humans. Farm operators were most at risk during activities in close proximity to the manure storage during agitation, and conditions 10 m away from the storage were above the 20 ppm H2S threshold on some farms using gypsum bedding. Although H2S concentrations rose to dangerous levels, only two of 18 operators were exposed to >50 ppm H2S during the first 60 min of manure storage agitation. Operators who are aware of the risk of high H2S concentrations near

  20. 76 FR 64022 - Hydrogen Sulfide; Community Right-to-Know Toxic Chemical Release Reporting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-17

    ...EPA is announcing that it is lifting the Administrative Stay of the Emergency Planning and Community Right-to-Know Act (EPCRA) section 313 toxic chemical release reporting requirements for hydrogen sulfide (Chemical Abstracts Service Number (CAS No.) 7783-06-4). Hydrogen sulfide was added to the EPCRA section 313 list of toxic chemicals in a final rule published in the Federal Register on December 1, 1993. However, on August 22, 1994, EPA issued an Administrative Stay of the reporting requirements for hydrogen sulfide in order to evaluate issues brought to the Agency's attention after promulgation of the final rule concerning the human health effect basis for the listing and the Agency's use of exposure analysis in EPCRA section 313 listing decisions. Although the final rule listing hydrogen sulfide under section 313 of EPCRA remained in force, the stay deferred the reporting requirements for hydrogen sulfide while EPA completed this further evaluation. EPA completed its further evaluation of additional information that has become available since the stay was put in place regarding the human health and environmental effects of hydrogen sulfide, and the Agency published a position that the stay should be lifted in the February 26, 2010, Federal Register document ``Intent to Consider Lifting Administrative Stay; Opportunity for Public Comment.'' Based on EPA's further evaluation and the consideration of the public comments received on the notice of intent, EPA continues to believe that the Administrative Stay should be lifted. By this current action, EPA is not revisiting the original listing decision, which was accomplished by final rule on December 1, 1993. Rather, EPA is lifting the Administrative Stay of the reporting requirements for hydrogen sulfide.

  1. Novel phenanthridine (PHE-4i) derivative inhibits carrageenan-induced rat hind paw oedema through suppression of hydrogen sulfide.

    PubMed

    George, Leema; Ramasamy, Tamizhselvi; Manickam, Venkatraman; Iyer, Sathiyanarayanan Kulathu; Radhakrishnan, Vidya

    2016-08-01

    This study was conducted to assess the anti-inflammatory effect of a novel synthesized phenanthridine alkaloid (PHE-4i) and to examine the possible involvement of hydrogen sulfide (H2S) in anti-inflammatory mechanism. The synthesized phenanthridine derivative PHE-4i (2, 5, and 10 mg/kg) was administered intraperitoneally to rats. One hour following treatment, inflammation was induced by intraplantar injection of carrageenan (1 %), in the hind paw. Paw volume as the index of inflammation was measured before and after carrageenan injection. Neutrophil sequestration into the hind paw was quantified by measuring tissue myeloperoxidase (MPO) activity and was compared for the inhibition of H2S production. Pretreatment with PHE-4i significantly reduced carrageenan-induced hind paw weight, MPO activity, leukocyte infiltration, and H2S production in a dose-dependent manner (p < 0.001). These results indicate that the anti-inflammatory effect of PHE-4i on carrageenan-induced rat paw oedema could be via the inhibition of the gaseous mediator H2S.

  2. Hybrid SnO2/TiO2 Nanocomposites for Selective Detection of Ultra-Low Hydrogen Sulfide Concentrations in Complex Backgrounds

    PubMed Central

    Larin, Alexander; Womble, Phillip C.; Dobrokhotov, Vladimir

    2016-01-01

    In this paper, we present a chemiresistive metal oxide (MOX) sensor for detection of hydrogen sulfide. Compared to the previous reports, the overall sensor performance was improved in multiple characteristics, including: sensitivity, selectivity, stability, activation time, response time, recovery time, and activation temperature. The superior sensor performance was attributed to the utilization of hybrid SnO2/TiO2 oxides as interactive catalytic layers deposited using a magnetron radio frequency (RF) sputtering technique. The unique advantage of the RF sputtering for sensor fabrication is the ability to create ultra-thin films with precise control of geometry, morphology and chemical composition of the product of synthesis. Chemiresistive films down to several nanometers can be fabricated as sensing elements. The RF sputtering technique was found to be very robust for bilayer and multilayer oxide structure fabrication. The geometry, morphology, chemical composition and electronic structure of interactive layers were evaluated in relation to their gas sensing performance, using scanning electron microscopy (SEM), X-ray diffraction technique (XRD), atomic force microscopy (AFM), Energy Dispersive X-ray Spectroscopy (EDAX), UV visible spectroscopy, and Kelvin probe measurements. A sensor based on multilayer SnO2/TiO2 catalytic layer with 10% vol. content of TiO2 demonstrated the best gas sensing performance in all characteristics. Based on the pattern relating material’s characteristics to gas sensing performance, the optimization strategy for hydrogen sulfide sensor fabrication was suggested. PMID:27618900

  3. Modes of physiologic H2S signaling in the brain and peripheral tissues.

    PubMed

    Paul, Bindu D; Snyder, Solomon H

    2015-02-10

    Hydrogen sulfide (H2S), once associated with rotten eggs and sewers, is now recognized as a gasotransmitter that is synthesized in vivo in a regulated fashion. This ancient gaseous molecule has been retained throughout evolution to perform various roles in different life forms. H2S modulates important signaling functions in diverse cellular processes ranging from regulation of blood pressure to redox homeostasis. One of the modes by which H2S signals is by post-translational modification of reactive cysteine residues in a process designated as sulfhydration, resulting in conversion of the -SH groups of target cysteine residues to -SSH. Using the modified biotin-switch assay and a fluorescent maleimide-based analysis, sulfhydration of several proteins has been detected in various cell types. Aberrant sulfhydration patterns occur in neurodegenerative conditions such as Parkinson's disease. The exact concentration, source of H2S, and conditions under which various stores of H2S are utilized have not been fully elucidated. Currently, available inhibitors of the biosynthetic enzymes of H2S lack sufficient specificity to shed light on detailed mechanisms of H2S action. Probes with a higher sensitivity that can reliably detect cellular and tissue H2S levels are yet to be developed. Availability of advanced probes and biosynthesis inhibitors would help in the measurement of real-time changes of endogenous H2S levels in an in vivo context. The study of the dynamics of sulfhydration and nitrosylation of critical cysteine residues of regulatory proteins involved in physiology and pathophysiology is an area of interest for the future.

  4. Cross-talk of MicroRNA and hydrogen sulfide: A novel therapeutic approach for bone diseases

    PubMed Central

    Zhai, Yuankun; Tyagi, Suresh C.; Tyagi, Neetu

    2017-01-01

    Bone homeostasis requires a balance between the bone formation of osteoblasts and bone resorption of osteoclasts to maintain ideal bone mass and bone quality. An imbalance in bone remodeling processes results in bone metabolic disorders such as osteoporosis. Hydrogen sulfide (H2S), a gasotransmitter, has attracted the focus of many researchers due to its multiple physiological functions. It has been implicated in anti-inflammatory, vasodilatory, angiogenic, cytoprotective, anti-oxidative and anti-apoptotic mechanisms. H2S has also been shown to exert osteoprotective activity through its anti-inflammatory and anti-oxidative effects. However, the underlying molecular mechanisms by which H2S mitigates bone diseases are not completely understood. Experimental evidence suggests that H2S may regulate signaling pathways by directly influencing a gene in the cascade or interacting with some other gasotransmitter (carbon monoxide or nitric oxide) or both. MicroRNAs (miRNAs) are short non-coding RNAs which regulate gene expression by targeting, binding and suppressing mRNAs; thus controlling cell fate. Certainly, bone remodeling is also regulated by miRNAs expression and has been reported in many studies. MicroRNAs also regulate H2S biosynthesis. The inter-regulation of microRNAs and H2S opens a new possibility for exploring the H2S-microRNA crosstalk in bone diseases. However, the relationship between miRNAs, bone development, and H2S is still not well explained. This review focuses on miRNAs and their roles in regulating bone remodeling and possible mechanisms behind H2S mediated bone loss inhibition, H2S-miRNAs crosstalk in relation to the pathophysiology of bone remodeling, and future perspectives for miRNA-H2S as a therapeutic agent for bone diseases. PMID:28618652

  5. Cross-talk of MicroRNA and hydrogen sulfide: A novel therapeutic approach for bone diseases.

    PubMed

    Zhai, Yuankun; Tyagi, Suresh C; Tyagi, Neetu

    2017-08-01

    Bone homeostasis requires a balance between the bone formation of osteoblasts and bone resorption of osteoclasts to maintain ideal bone mass and bone quality. An imbalance in bone remodeling processes results in bone metabolic disorders such as osteoporosis. Hydrogen sulfide (H 2 S), a gasotransmitter, has attracted the focus of many researchers due to its multiple physiological functions. It has been implicated in anti-inflammatory, vasodilatory, angiogenic, cytoprotective, anti-oxidative and anti-apoptotic mechanisms. H 2 S has also been shown to exert osteoprotective activity through its anti-inflammatory and anti-oxidative effects. However, the underlying molecular mechanisms by which H 2 S mitigates bone diseases are not completely understood. Experimental evidence suggests that H 2 S may regulate signaling pathways by directly influencing a gene in the cascade or interacting with some other gasotransmitter (carbon monoxide or nitric oxide) or both. MicroRNAs (miRNAs) are short non-coding RNAs which regulate gene expression by targeting, binding and suppressing mRNAs; thus controlling cell fate. Certainly, bone remodeling is also regulated by miRNAs expression and has been reported in many studies. MicroRNAs also regulate H 2 S biosynthesis. The inter-regulation of microRNAs and H 2 S opens a new possibility for exploring the H 2 S-microRNA crosstalk in bone diseases. However, the relationship between miRNAs, bone development, and H 2 S is still not well explained. This review focuses on miRNAs and their roles in regulating bone remodeling and possible mechanisms behind H 2 S mediated bone loss inhibition, H 2 S-miRNAs crosstalk in relation to the pathophysiology of bone remodeling, and future perspectives for miRNA-H 2 S as a therapeutic agent for bone diseases. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  6. Fluorescent Probes and Selective Inhibitors for Biological Studies of Hydrogen Sulfide- and Polysulfide-Mediated Signaling.

    PubMed

    Takano, Yoko; Echizen, Honami; Hanaoka, Kenjiro

    2017-10-01

    Hydrogen sulfide (H 2 S) plays roles in many physiological processes, including relaxation of vascular smooth muscles, mediation of neurotransmission, inhibition of insulin signaling, and regulation of inflammation. Also, hydropersulfide (R-S-SH) and polysulfide (-S-S n -S-) have recently been identified as reactive sulfur species (RSS) that regulate the bioactivities of multiple proteins via S-sulfhydration of cysteine residues (protein Cys-SSH) and show cytoprotection. Chemical tools such as fluorescent probes and selective inhibitors are needed to establish in detail the physiological roles of H 2 S and polysulfide. Recent Advances: Although many fluorescent probes for H 2 S are available, fluorescent probes for hydropersulfide and polysulfide have only recently been developed and used to detect these sulfur species in living cells. In this review, we summarize recent progress in developing chemical tools for the study of H 2 S, hydropersulfide, and polysulfide, covering fluorescent probes based on various design strategies and selective inhibitors of H 2 S- and polysulfide-producing enzymes (cystathionine γ-lyase, cystathionine β-synthase, and 3-mercaptopyruvate sulfurtransferase), and we summarize their applications in biological studies. Despite recent progress, the precise biological functions of H 2 S, hydropersulfide, and polysulfide remain to be fully established. Fluorescent probes and selective inhibitors are effective chemical tools to study the physiological roles of these sulfur molecules in living cells and tissues. Therefore, further development of a broad range of practical fluorescent probes and selective inhibitors as tools for studies of RSS biology is currently attracting great interest. Antioxid. Redox Signal. 27, 669-683.

  7. Sulfide Homeostasis and Nitroxyl Intersect via Formation of Reactive Sulfur Species in Staphylococcus aureus

    PubMed Central

    Peng, Hui; Shen, Jiangchuan; Edmonds, Katherine A.; Luebke, Justin L.; Hickey, Anne K.; Palmer, Lauren D.; Chang, Feng-Ming James; Bruce, Kevin A.; Kehl-Fie, Thomas E.; Skaar, Eric P.

    2017-01-01

    ABSTRACT Staphylococcus aureus is a commensal human pathogen and a major cause of nosocomial infections. As gaseous signaling molecules, endogenous hydrogen sulfide (H2S) and nitric oxide (NO·) protect S. aureus from antibiotic stress synergistically, which we propose involves the intermediacy of nitroxyl (HNO). Here, we examine the effect of exogenous sulfide and HNO on the transcriptome and the formation of low-molecular-weight (LMW) thiol persulfides of bacillithiol, cysteine, and coenzyme A as representative of reactive sulfur species (RSS) in wild-type and ΔcstR strains of S. aureus. CstR is a per- and polysulfide sensor that controls the expression of a sulfide oxidation and detoxification system. As anticipated, exogenous sulfide induces the cst operon but also indirectly represses much of the CymR regulon which controls cysteine metabolism. A zinc limitation response is also observed, linking sulfide homeostasis to zinc bioavailability. Cellular RSS levels impact the expression of a number of virulence factors, including the exotoxins, particularly apparent in the ΔcstR strain. HNO, like sulfide, induces the cst operon as well as other genes regulated by exogenous sulfide, a finding that is traced to a direct reaction of CstR with HNO and to an endogenous perturbation in cellular RSS, possibly originating from disassembly of Fe-S clusters. More broadly, HNO induces a transcriptomic response to Fe overload, Cu toxicity, and reactive oxygen species and reactive nitrogen species and shares similarity with the sigB regulon. This work reveals an H2S/NO· interplay in S. aureus that impacts transition metal homeostasis and virulence gene expression. IMPORTANCE Hydrogen sulfide (H2S) is a toxic molecule and a recently described gasotransmitter in vertebrates whose function in bacteria is not well understood. In this work, we describe the transcriptomic response of the major human pathogen Staphylococcus aureus to quantified changes in levels of cellular

  8. Effects of onion extract on endogenous vascular H2S and adrenomedulin in rat atherosclerosis.

    PubMed

    Li, Wei; Tang, Chaoshu; Jin, Hongfang; Du, Junbao

    2011-09-01

    This study aimed to explore the effect of onion extract on endogenous hydrogen sulfide (H2S) and adrenomedulin (ADM) and on atherosclerotic progression in rats with atherosclerosis (AS). Male Sprague-Dawley rats were randomly divided into control, AS and AS+onion groups. Ultrastructure of aorta and atherosclerotic lesions both in aorta and in coronary artery were detected. Plasma and aortic H2S were detected by using a sulfide- sensitive electrode. Plasma and aortic ADM was determined with radioimmunoassay. Cystathionine-γ-lyase (CSE), calcitonin receptor-like receptor (CRLR), receptor activity-modifying protein (RAMP1, RAMP2 and RAMP3) mRNA expressions were analysed. Glutathione peroxidase (GSH-PX), superoxide dismutase (SOD), malondialdehyde (MDA), nitric oxide (NO) and NO synthase (NOS) contents in plasma, SOD1, SOD2 and ICAM-1 expressions in aorta were detected. Rats in the AS group showed marked atherosclerotic lesions both in aorta and in coronary artery but decreased aortic H2S production. Decreased plasma and aortic ADM content, but increased levels of aortic CRLR, RAMP2 and RAMP3 mRNAs were observed. Plasma GSH-PX and SOD were reduced but MDA elevated. Plasma ICAM-1 and NO contents and iNOS activity were increased. Onion extract, however, lessened atherosclerotic lesions and increased endogenous aortic H2S production, but decreased plasma ADM content, aortic ADM content and aortic CRLR, RAMP2 and RAMP3 mRNAs. In addition, it increased plasma GSH-PX level and SOD activities but reduced MDA; it decreased inflammatory response but increased plasma eNOS activity and NO content. Onion extract exerted a marked antiatherogenic effect in association with the up-regulation of the endogenous CSE/H2S pathway but down-regulation of the ADM/CRLR family in atherosclerotic rats.

  9. Hydrogenated MoS2 QD-TiO2 heterojunction mediated efficient solar hydrogen production.

    PubMed

    Saha, Arka; Sinhamahapatra, Apurba; Kang, Tong-Hyun; Ghosh, Subhash C; Yu, Jong-Sung; Panda, Asit B

    2017-11-09

    Herein, we report the development of a hydrogenated MoS 2 QD-TiO 2 (HMT) heterojunction as an efficient photocatalytic system via a one-pot hydrothermal reaction followed by hydrogenation. This synthetic strategy facilitates the formation of MoS 2 QDs with an enhanced band gap and a proper heterojunction between them and TiO 2 , which accelerates charge transfer process. Hydrogenation leads to oxygen vacancies in TiO 2 , enhancing the visible light absorption capacity through narrowing its band gap, and sulfur vacancies in MoS 2 , which enhance the active sites for hydrogen adsorption. Due to the band gap reduction of hydrogenated TiO 2 and the band gap enhancement of the MoS 2 QDs, the energy states are rearranged to create a reverse movement of electrons and holes facilitated the charge transfer process which enhance life-time of photo-generated charges. The photocatalyst showed stable, efficient and exceptionally high noble metal free sunlight-induced hydrogen production with a maximum rate of 3.1 mmol g -1 h -1 . The developed synthetic strategy also provides flexibility towards the shape of the MoS 2 , e.g. QDs/single or few layers, on TiO 2 and offers the opportunity to design novel visible light active photocatalysts for different applications.

  10. Retrofitting existing chemical scrubbers to biotrickling filters for H2S emission control

    PubMed Central

    Gabriel, David; Deshusses, Marc A.

    2003-01-01

    Biological treatment is a promising alternative to conventional air-pollution control methods, but thus far biotreatment processes for odor control have always required much larger reactor volumes than chemical scrubbers. We converted an existing full-scale chemical scrubber to a biological trickling filter and showed that effective treatment of hydrogen sulfide (H2S) in the converted scrubber was possible even at gas contact times as low as 1.6 s. That is 8–20 times shorter than previous biotrickling filtration reports and comparable to usual contact times in chemical scrubbers. Significant removal of reduced sulfur compounds, ammonia, and volatile organic compounds present in traces in the air was also observed. Continuous operation for >8 months showed stable performance and robust behavior for H2S treatment, with pollutant-removal performance comparable to that achieved by using a chemical scrubber. Our study demonstrates that biotrickling filters can replace chemical scrubbers and be a safer, more economical technique for odor control. PMID:12740445

  11. Retrofitting existing chemical scrubbers to biotrickling filters for H2S emission control.

    PubMed

    Gabriel, David; Deshusses, Marc A

    2003-05-27

    Biological treatment is a promising alternative to conventional air-pollution control methods, but thus far biotreatment processes for odor control have always required much larger reactor volumes than chemical scrubbers. We converted an existing full-scale chemical scrubber to a biological trickling filter and showed that effective treatment of hydrogen sulfide (H2S) in the converted scrubber was possible even at gas contact times as low as 1.6 s. That is 8-20 times shorter than previous biotrickling filtration reports and comparable to usual contact times in chemical scrubbers. Significant removal of reduced sulfur compounds, ammonia, and volatile organic compounds present in traces in the air was also observed. Continuous operation for >8 months showed stable performance and robust behavior for H2S treatment, with pollutant-removal performance comparable to that achieved by using a chemical scrubber. Our study demonstrates that biotrickling filters can replace chemical scrubbers and be a safer, more economical technique for odor control.

  12. H2S induced coma and cardiogenic shock in the rat: Effects of phenothiazinium chromophores

    PubMed Central

    SONOBE, TAKASHI; HAOUZI, PHILIPPE

    2015-01-01

    Context Hydrogen sulfide (H2S) intoxication produces an acute depression in cardiac contractility-induced circulatory failure, which has been shown to be one of the major contributors to the lethality of H2S intoxication or to the neurological sequelae in surviving animals. Methylene blue (MB), a phenothiazinium dye, can antagonize the effects of the inhibition of mitochondrial electron transport chain, a major effect of H2S toxicity. Objectives We investigated whether MB could affect the immediate outcome of H2S-induced coma in unanesthetized animals. Second, we sought to characterize the acute cardiovascular effects of MB and two of its demethylated metabolites—azure B and thionine—in anesthetized rats during lethal infusion of H2S. Materials and methods First, MB (4 mg/kg, intravenous [IV]) was administered in non-sedated rats during the phase of agonal breathing, following NaHS (20 mg/kg, IP)-induced coma. Second, in 4 groups of urethane-anesthetized rats, NaHS was infused at a rate lethal within 10 min (0.8 mg/min, IV). Whenever cardiac output (CO) reached 40% of its baseline volume, MB, azure B, thionine, or saline were injected, while sulfide infusion was maintained until cardiac arrest occurred. Results Seventy-five percent of the comatose rats that received saline (n = 8) died within 7 min, while all the 7 rats that were given MB survived (p = 0.007). In the anesthetized rats, arterial, left ventricular pressures and CO decreased during NaHS infusion, leading to a pulseless electrical activity within 530 s. MB produced a significant increase in CO and dP/dtmax for about 2 min. A similar effect was produced when MB was also injected in the pre-mortem phase of sulfide exposure, significantly increasing survival time. Azure B produced an even larger increase in blood pressure than MB, while thionine had no effect. Conclusion MB can counteract NaHS-induced acute cardiogenic shock; this effect is also produced by azure B, but not by thionine, suggesting

  13. Visible light photocatalytic H2-production activity of wide band gap ZnS nanoparticles based on the photosensitization of graphene

    NASA Astrophysics Data System (ADS)

    Wang, Faze; Zheng, Maojun; Zhu, Changqing; Zhang, Bin; Chen, Wen; Ma, Li; Shen, Wenzhong

    2015-08-01

    Visible light photocatalytic H2 production from water splitting is considered an attractive way to solve the increasing global energy crisis in modern life. In this study, a series of zinc sulfide nanoparticles and graphene (GR) sheet composites were synthesized by a two-step hydrothermal method, which used zinc chloride, sodium sulfide, and graphite oxide (GO) as the starting materials. The as-prepared ZnS-GR showed highly efficient visible light photocatalytic activity in hydrogen generation. The morphology and structure of the composites obtained by transmission electron microscope and x-ray diffraction exhibited a small crystallite size and a good interfacial contact between the ZnS nanoparticles and the two-dimensional (2D) GR sheet, which were beneficial for the photocatalysis. When the content of the GR in the catalyst was 0.1%, the ZG0.1 sample exhibited the highest H2-production rate of 7.42 μmol h-1 g-1, eight times more than the pure ZnS sample. This high visible-light photocatalytic H2 production activity is attributed to the photosensitization of GR. Irradiated by visible light, the electrons photogenerated from GR transfer to the conduction band of ZnS to participate in the photocatalytic process. This study presents the visible-light photocatalytic activity of wide bandgap ZnS and its application in H2 evolution.

  14. Visible light photocatalytic H2-production activity of wide band gap ZnS nanoparticles based on the photosensitization of grapheme.

    PubMed

    Wang, Faze; Zheng, Maojun; Zhu, Changqing; Zhang, Bin; Chen, Wen; Ma, Li; Shen, Wenzhong

    2015-08-28

    Visible light photocatalytic H(2) production from water splitting is considered an attractive way to solve the increasing global energy crisis in modern life. In this study, a series of zinc sulfide nanoparticles and graphene (GR) sheet composites were synthesized by a two-step hydrothermal method, which used zinc chloride, sodium sulfide, and graphite oxide (GO) as the starting materials. The as-prepared ZnS-GR showed highly efficient visible light photocatalytic activity in hydrogen generation. The morphology and structure of the composites obtained by transmission electron microscope and x-ray diffraction exhibited a small crystallite size and a good interfacial contact between the ZnS nanoparticles and the two-dimensional (2D) GR sheet,which were beneficial for the photocatalysis. When the content of the GR in the catalyst was 0.1%, the ZG0.1 sample exhibited the highest H(2)-production rate of 7.42 μmol h(−1) g(−1), eight times more than the pure ZnS sample. This high visible-light photocatalytic H(2) production activity is attributed to the photosensitization of GR. Irradiated by visible light, the electrons photogenerated from GR transfer to the conduction band of ZnS to participate in the photocatalytic process. This study presents the visible-light photocatalytic activity of wide bandgap ZnS and its application in H(2) evolution.

  15. Comparison of Hydrogen Sulfide Analysis Techniques

    ERIC Educational Resources Information Center

    Bethea, Robert M.

    1973-01-01

    A summary and critique of common methods of hydrogen sulfide analysis is presented. Procedures described are: reflectance from silver plates and lead acetate-coated tiles, lead acetate and mercuric chloride paper tapes, sodium nitroprusside and methylene blue wet chemical methods, infrared spectrophotometry, and gas chromatography. (BL)

  16. Human trophoblast-derived hydrogen sulfide stimulates placental artery endothelial cell angiogenesis.

    PubMed

    Chen, Dong-Bao; Feng, Lin; Hodges, Jennifer K; Lechuga, Thomas J; Zhang, Honghai

    2017-09-01

    Endogenous hydrogen sulfide (H2S), mainly synthesized by cystathionine β-synthase (CBS) and cystathionine γ-lyase (CTH), has been implicated in regulating placental angiogenesis; however, the underlying mechanisms are unknown. This study was to test a hypothesis that trophoblasts synthesize H2S to promote placental angiogenesis. Human choriocarcinoma-derived BeWo cells expressed both CBS and CTH proteins, while the first trimester villous trophoblast-originated HTR-8/SVneo cells expressed CTH protein only. The H2S producing ability of BeWo cells was significantly inhibited by either inhibitors of CBS (carboxymethyl hydroxylamine hemihydrochloride, CHH) or CTH (β-cyano-L-alanine, BCA) and that in HTR-8/SVneo cells was inhibited by CHH only. H2S donors stimulated cell proliferation, migration, and tube formation in ovine placental artery endothelial cells (oFPAECs) as effectively as vascular endothelial growth factor. Co-culture with BeWo and HTR-8/SVneo cells stimulated oFPAEC migration, which was inhibited by CHH or BCA in BeWo but CHH only in HTR-8/SVneo cells. Primary human villous trophoblasts (HVT) were more potent than trophoblast cell lines in stimulating oFPAEC migration that was inhibited by CHH and CHH/BCA combination in accordance with its H2S synthesizing activity linked to CBS and CTH expression patterns. H2S donors activated endothelial nitric oxide synthase (NOS3), v-AKT murine thymoma viral oncogene homolog 1 (AKT1), and extracellular signal-activated kinase 1/2 (mitogen-activated protein kinase 3/1, MAPK3/1) in oFPAECs. H2S donor-induced NOS3 activation was blocked by AKT1 but not MAPK3/1 inhibition. In keeping with our previous studies showing a crucial role of AKT1, MAPK3/1, and NOS3/NO in placental angiogenesis, these data show that trophoblast-derived endogenous H2S stimulates placental angiogenesis, involving activation of AKT1, NOS3/NO, and MAPK3/1. © The Authors 2017. Published by Oxford University Press on behalf of Society for the Study

  17. Size-tunable copper nanocluster aggregates and their application in hydrogen sulfide sensing on paper-based devices

    NASA Astrophysics Data System (ADS)

    Chen, Po-Cheng; Li, Yu-Chi; Ma, Jia-Yin; Huang, Jia-Yu; Chen, Chien-Fu; Chang, Huan-Tsung

    2016-04-01

    Polystyrene sulfonate (PSS), a strong polyelectrolyte, was used to prepare red photoluminescent PSS-penicillamine (PA) copper (Cu) nanoclusters (NC) aggregates, which displayed high selectivity and sensitivity to the detection of hydrogen sulfide (H2S). The size of the PSS-PA-Cu NC aggregates could be readily controlled from 5.5 μm to 173 nm using different concentrations of PSS, which enabled better dispersity and higher sensitivity towards H2S. PSS-PA-Cu NC aggregates provided rapid H2S detection by using the strong Cu-S interaction to quench NC photoluminescence as a sensing mechanism. As a result, a detection limit of 650 nM, which is lower than the maximum level permitted in drinking water by the World Health Organization, was achieved for the analysis of H2S in spring-water samples. Moreover, highly dispersed PSS-PA-Cu NC aggregates could be incorporated into a plate-format paper-based analytical device which enables ultra-low sample volumes (5 μL) and feature shorter analysis times (30 min) compared to conventional solution-based methods. The advantages of low reagent consumption, rapid result readout, limited equipment, and long-term storage make this platform sensitive and simple enough to use without specialized training in resource constrained settings.

  18. Ontogenetic and temperature-dependent changes in tolerance to hypoxia and hydrogen sulfide during the early life stages of the Manila clam Ruditapes philippinarum.

    PubMed

    Kodama, Keita; Waku, Mitsuyasu; Sone, Ryota; Miyawaki, Dai; Ishida, Toshiro; Akatsuka, Tetsuji; Horiguchi, Toshihiro

    2018-06-01

    Wind-induced upwelling of hypoxic waters containing hydrogen sulfide (H 2 S) sometimes causes mass mortalities of aquatic organisms inhabiting coastal areas, including the hypoxia-tolerant Manila clam Ruditapes philippinarum. We examined the tolerance of Manila clam to H 2 S under controlled laboratory conditions. Larvae and juveniles obtained by artificial fertilization or from a wild population were exposed to normoxic or to hypoxic water with or without un-ionized H 2 S (concentrations, 0.2-52.2 mg/L). Twenty-four-hour exposure experiments revealed ontogenetic changes in the clam's tolerance to H 2 S exposure: tolerance was enhanced from the larval stages to juveniles just after settlement but was attenuated as juveniles grew. Tolerance of larvae and juveniles to H 2 S exposure weakened as the water temperature rose from 20 to 28 °C. Prolonged 48-h exposure to H 2 S attenuated the tolerance of juveniles to H 2 S. Temporary suspension of H 2 S exposure by 24-h reoxygenation improved the ability of juveniles to withstand repeated H 2 S exposure. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Thermochemical hydrogen production via a cycle using barium and sulfur - Reaction between barium sulfide and water

    NASA Technical Reports Server (NTRS)

    Ota, K.; Conger, W. L.

    1977-01-01

    The reaction between barium sulfide and water, a reaction found in several sulfur based thermochemical cycles, was investigated kinetically at 653-866 C. Gaseous products were hydrogen and hydrogen sulfide. The rate determining step for hydrogen formation was a surface reaction between barium sulfide and water. An expression was derived for the rate of hydrogen formation.

  20. Application of bacteriophages to reduce biofilms formed by hydrogen sulfide producing bacteria on surfaces in a rendering plant.

    PubMed

    Gong, Chao; Jiang, Xiuping

    2015-08-01

    Hydrogen sulfide producing bacteria (SPB) in raw animal by-products are likely to grow and form biofilms in the rendering processing environments, resulting in the release of harmful hydrogen sulfide (H2S) gas. The objective of this study was to reduce SPB biofilms formed on different surfaces typically found in rendering plants by applying a bacteriophage cocktail. Using a 96-well microplate method, we determined that 3 SPB strains of Citrobacter freundii and Hafnia alvei are strong biofilm formers. Application of 9 bacteriophages (10(7) PFU/mL) from families of Siphoviridae and Myoviridae resulted in a 33%-70% reduction of biofilm formation by each SPB strain. On stainless steel and plastic templates, phage treatment (10(8) PFU/mL) reduced the attached cells of a mixed SPB culture (no biofilm) by 2.3 and 2.7 log CFU/cm(2) within 6 h at 30 °C, respectively, as compared with 2 and 1.5 log CFU/cm(2) reductions of SPB biofilms within 6 h at 30 °C. Phage treatment was also applied to indigenous SPB biofilms formed on the environmental surface, stainless steel, high-density polyethylene plastic, and rubber templates in a rendering plant. With phage treatment (10(9) PFU/mL), SPB biofilms were reduced by 0.7-1.4, 0.3-0.6, and 0.2-0.6 log CFU/cm(2) in spring, summer, and fall trials, respectively. Our study demonstrated that bacteriophages could effectively reduce the selected SPB strains either attached to or in formed biofilms on various surfaces and could to some extent reduce the indigenous SPB biofilms on the surfaces in the rendering environment.

  1. Neuroprotective effects of hydrogen sulfide on sodium azide‑induced autophagic cell death in PC12 cells.

    PubMed

    Shan, Haiyan; Chu, Yang; Chang, Pan; Yang, Lijun; Wang, Yi; Zhu, Shaohua; Zhang, Mingyang; Tao, Luyang

    2017-11-01

    Sodium azide (NaN3) is a chemical of rapidly growing commercial importance. It is very acutely toxic and inhibits cytochrome oxidase (COX) by binding irreversibly to the heme cofactor. A previous study from our group demonstrated that hydrogen sulfide (H2S), the third endogenous gaseous mediator identified, had protective effects against neuronal damage induced by traumatic brain injury (TBI). It is well‑known that TBI can reduce the activity of COX and have detrimental effects on the central nervous system metabolism. Therefore, in the present study, it was hypothesized that H2S may provide neuroprotection against NaN3 toxicity. The current results revealed that NaN3 treatment induced non‑apoptotic cell death, namely autophagic cell death, in PC12 cells. Expression of the endogenous H2S‑producing enzymes, cystathionine‑β‑synthase and 3‑mercaptopyruvate sulfurtransferase, decreased in a dose‑dependent manner following NaN3 treatment. Pretreatment with H2S markedly attenuated the NaN3‑induced cell viability loss and autophagic cell death in a dose‑dependent manner. The present study suggests that H2S‑based strategies may have future potential in the prevention and/or therapy of neuronal damage following NaN3 exposure.

  2. Boron toxicity is alleviated by hydrogen sulfide in cucumber (Cucumis sativus L.) seedlings.

    PubMed

    Wang, Bao-Lan; Shi, Lei; Li, Yin-Xing; Zhang, Wen-Hao

    2010-05-01

    Boron (B) is an essential micronutrient for plants, which when occurs in excess in the growth medium, becomes toxic to plants. Rapid inhibition of root elongation is one of the most distinct symptoms of B toxicity. Hydrogen sulfide (H(2)S) is emerging as a potential messenger molecule involved in modulation of physiological processes in plants. In the present study, we investigated the role of H(2)S in B toxicity in cucumber (Cucumis sativus) seedlings. Root elongation was significantly inhibited by exposure of cucumber seedlings to solutions containing 5 mM B. The inhibitory effect of B on root elongation was substantially alleviated by treatment with H(2)S donor sodium hydrosulfide (NaHS). There was an increase in the activity of pectin methylesterase (PME) and up-regulated expression of genes encoding PME (CsPME) and expansin (CsExp) on exposure to high B concentration. The increase in PME activity and up-regulation of expression of CsPME and CsExp induced by high B concentration were markedly reduced in the presence of H(2)S donor. There was a rapid increase in soluble B concentrations in roots on exposure to high concentration B solutions. Treatment with H(2)S donor led to a transient reduction in soluble B concentration in roots such that no differences in soluble B concentrations in roots in the absence and presence of NaHS were found after 8 h exposure to the high concentration B solutions. These findings suggest that increases in activities of PME and expansin may underlie the inhibition of root elongation by toxic B, and that H(2)S plays an ameliorative role in protection of plants from B toxicity by counteracting B-induced up-regulation of cell wall-associated proteins of PME and expansins.

  3. Hydrogen Sulfide Regulates Ca2+ Homeostasis Mediated by Concomitantly Produced Nitric Oxide via a Novel Synergistic Pathway in Exocrine Pancreas

    PubMed Central

    Moustafa, Amira

    2014-01-01

    Abstract Aim: The present study was designed to explore the effects of hydrogen sulfide (H2S) on Ca2+ homeostasis in rat pancreatic acini. Results: Sodium hydrosulfide (NaHS; an H2S donor) induced a biphasic increase in the intracellular Ca2+ concentration ([Ca2+]i) in a dose-dependent manner. The NaHS-induced [Ca2+]i elevation persisted with an EC50 of 73.3 μM in the absence of extracellular Ca2+ but was abolished by thapsigargin, indicating that both Ca2+ entry and Ca2+ release contributed to the increase. The [Ca2+]i increase was markedly inhibited in the presence of NG-monomethyl L-arginine or 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO), and diaminofluorescein-2/diaminofluorescein-2 triazole (DAF-2/DAF-2T) fluorometry demonstrated that nitric oxide (NO) was also produced by H2S in a dose-dependent manner with an EC50 of 64.8 μM, indicating that NO was involved in the H2S effect. The H2S-induced [Ca2+]i increase was inhibited by pretreatment with U73122, xestospongin C, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, KT5823, and GP2A, indicating that phospholipase C (PLC), the inositol 1,4,5-trisphosphate (IP3) receptor, soluble guanylate cyclase (sGC), protein kinase G (PKG), and Gq-protein play roles as intermediate components in the H2S-triggered intracellular signaling. Innovation: To our knowledge, our study is the first one highlighting the effect of H2S on intracellular Ca2+ dynamics in pancreatic acinar cells. Moreover, a novel cascade was presumed to function via the synergistic interaction between H2S and NO. Conclusion: We conclude that H2S affects [Ca2+]i homeostasis that is mediated by H2S-evoked NO production via an endothelial nitric oxide synthase (eNOS)-NO-sGC-cyclic guanosine monophosphate-PKG-Gq-protein-PLC-IP3 pathway to induce Ca2+ release, and this pathway is identical to the one we recently proposed for a sole effect of NO and the two gaseous molecules synergistically function to regulate Ca2+ homeostasis

  4. Study and modeling of the evolution of gas-liquid partitioning of hydrogen sulfide in model solutions simulating winemaking fermentations.

    PubMed

    Mouret, Jean-Roch; Sablayrolles, Jean-Marie; Farines, Vincent

    2015-04-01

    The knowledge of gas-liquid partitioning of aroma compounds during winemaking fermentation could allow optimization of fermentation management, maximizing concentrations of positive markers of aroma and minimizing formation of molecules, such as hydrogen sulfide (H2S), responsible for defects. In this study, the effect of the main fermentation parameters on the gas-liquid partition coefficients (Ki) of H2S was assessed. The Ki for this highly volatile sulfur compound was measured in water by an original semistatic method developed in this work for the determination of gas-liquid partitioning. This novel method was validated and then used to determine the Ki of H2S in synthetic media simulating must, fermenting musts at various steps of the fermentation process, and wine. Ki values were found to be mainly dependent on the temperature but also varied with the composition of the medium, especially with the glucose concentration. Finally, a model was developed to quantify the gas-liquid partitioning of H2S in synthetic media simulating must to wine. This model allowed a very accurate prediction of the partition coefficient of H2S: the difference between observed and predicted values never exceeded 4%.

  5. Nitric oxide-releasing flurbiprofen reduces formation of proinflammatory hydrogen sulfide in lipopolysaccharide-treated rat

    PubMed Central

    Anuar, Farhana; Whiteman, Matthew; Siau, Jia Ling; Kwong, Shing Erl; Bhatia, Madhav; Moore, Philip K

    2006-01-01

    The biosynthesis of both nitric oxide (NO) and hydrogen sulfide (H2S) is increased in lipopolysaccharide (LPS)-injected mice and rats but their interaction in these models is not known. In this study we examined the effect of the NO donor, nitroflurbiprofen (and the parent molecule flurbiprofen) on NO and H2S metabolism in tissues from LPS-pretreated rats. Administration of LPS (10 mg kg−1, i.p.; 6 h) resulted in an increase (P<0.05) in plasma TNF-α, IL-1β and nitrate/nitrite (NOx) concentrations, liver H2S synthesis (from added cysteine), CSE mRNA, inducible nitric oxide synthase (iNOS), myeloperoxidase (MPO) activity (marker for neutrophil infiltration) and nuclear factor-kappa B (NF-κB) activation. Nitroflurbiprofen (3–30 mg kg−1, i.p.) administration resulted in a dose-dependent inhibition of the LPS-mediated increase in plasma TNF-α, IL-1β and NOx concentration, liver H2S synthesis (55.00±0.95 nmole mg protein−1, c.f. 62.38±0.47 nmole mg protein−1, n=5, P<0.05), CSE mRNA, iNOS, MPO activity and NF-κB activation. Flurbiprofen (21 mg kg−1, i.p.) was without effect. These results show for the first time that nitroflurbiprofen downregulates the biosynthesis of proinflammatory H2S and suggest that such an effect may contribute to the augmented anti-inflammatory activity of this compound. These data also highlight the existence of ‘crosstalk' between NO and H2S in this model of endotoxic shock. PMID:16491094

  6. Analysis of cardiovascular responses to the H2S donors Na2S and NaHS in the rat

    PubMed Central

    Yoo, Daniel; Jupiter, Ryan C.; Pankey, Edward A.; Reddy, Vishwaradh G.; Edward, Justin A.; Swan, Kevin W.; Peak, Taylor C.; Mostany, Ricardo

    2015-01-01

    Hydrogen sulfide (H2S) is an endogenous gaseous molecule formed from L-cysteine in vascular tissue. In the present study, cardiovascular responses to the H2S donors Na2S and NaHS were investigated in the anesthetized rat. The intravenous injections of Na2S and NaHS 0.03–0.5 mg/kg produced dose-related decreases in systemic arterial pressure and heart rate, and at higher doses decreases in cardiac output, pulmonary arterial pressure, and systemic vascular resistance. H2S infusion studies show that decreases in systemic arterial pressure, heart rate, cardiac output, and systemic vascular resistance are well-maintained, and responses to Na2S are reversible. Decreases in heart rate were not blocked by atropine, suggesting that the bradycardia was independent of parasympathetic activation and was mediated by an effect on the sinus node. The decreases in systemic arterial pressure were not attenuated by hexamethonium, glybenclamide, Nw-nitro-l-arginine methyl ester hydrochloride, sodium meclofenamate, ODQ, miconazole, 5-hydroxydecanoate, or tetraethylammonium, suggesting that ATP-sensitive potassium channels, nitric oxide, arachidonic acid metabolites, cyclic GMP, p450 epoxygenase metabolites, or large conductance calcium-activated potassium channels are not involved in mediating hypotensive responses to the H2S donors in the rat and that responses are not centrally mediated. The present data indicate that decreases in systemic arterial pressure in response to the H2S donors can be mediated by decreases in vascular resistance and cardiac output and that the donors have an effect on the sinus node independent of the parasympathetic system. The present data indicate that the mechanism of the peripherally mediated hypotensive response to the H2S donors is uncertain in the intact rat. PMID:26071540

  7. 40 CFR 60.648 - Optional procedure for measuring hydrogen sulfide in acid gas-Tutwiler Procedure. 1

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... hydrogen sulfide in acid gas-Tutwiler Procedure. 1 60.648 Section 60.648 Protection of Environment... procedure for measuring hydrogen sulfide in acid gas—Tutwiler Procedure. 1 1 Gas Engineers Handbook, Fuel.... In principle, this method consists of titrating hydrogen sulfide in a gas sample directly with a...

  8. 40 CFR 60.648 - Optional procedure for measuring hydrogen sulfide in acid gas-Tutwiler Procedure. 1

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... hydrogen sulfide in acid gas-Tutwiler Procedure. 1 60.648 Section 60.648 Protection of Environment... procedure for measuring hydrogen sulfide in acid gas—Tutwiler Procedure. 1 1 Gas Engineers Handbook, Fuel.... In principle, this method consists of titrating hydrogen sulfide in a gas sample directly with a...

  9. 40 CFR 60.648 - Optional procedure for measuring hydrogen sulfide in acid gas-Tutwiler Procedure. 1

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... hydrogen sulfide in acid gas-Tutwiler Procedure. 1 60.648 Section 60.648 Protection of Environment... procedure for measuring hydrogen sulfide in acid gas—Tutwiler Procedure. 1 1 Gas Engineers Handbook, Fuel.... In principle, this method consists of titrating hydrogen sulfide in a gas sample directly with a...

  10. A hypothesis for treating inflammation and oxidative stress with hydrogen sulfide during age-related macular degeneration.

    PubMed

    George, Akash K; Singh, Mahavir; Homme, Rubens Petit; Majumder, Avisek; Sandhu, Harpal S; Tyagi, Suresh C

    2018-01-01

    Age-related macular degeneration (AMD) is a leading cause of blindness and is becoming a global crisis since affected people will increase to 288 million by 2040. Genetics, age, diabetes, gender, obesity, hypertension, race, hyperopia, iris-color, smoking, sun-light and pyroptosis have varying roles in AMD, but oxidative stress-induced inflammation remains a significant driver of pathobiology. Eye is a unique organ as it contains a remarkable oxygen-gradient that generates reactive oxygen species (ROS) which upregulates inflammatory pathways. ROS becomes a source of functional and morphological impairments in retinal pigment epithelium (RPE), endothelial cells and retinal ganglion cells. Reports demonstrated that hydrogen sulfide (H 2 S) acts as a signaling molecule and that it may treat ailments. Therefore, we propose a novel hypothesis that H 2 S may restore homeostasis in the eyes thereby reducing damage caused by oxidative injury and inflammation. Since H 2 S has been shown to be a powerful antioxidant because of its free-radicals' inhibition properties in addition to its beneficial effects in age-related conditions, therefore, patients may benefit from H 2 S salubrious effects not only by minimizing their oxidant and inflammatory injuries to retina but also by lowering retinal glutamate excitotoxicity.

  11. Myocardial and lung injuries induced by hydrogen sulfide and the effectiveness of oxygen therapy in rats.

    PubMed

    Wu, Na; Du, Xuqin; Wang, Dixin; Hao, Fengtong

    2011-03-01

    To study myocardial and lung injuries initiated by hydrogen sulfide, and evaluate the role and effectiveness of normobaric and hyperbaric oxygen (HBO) treatment in rats. One hundred healthy male Wistar rats were randomly divided into five groups: A: Normal control group (no H2S); B: H2S-exposed group; C: H2S+33% oxygen treatment group; D: H2S+50% oxygen treatment group; E: H2S+HBO group. The rats in groups C, D and E were exposed to H2S in an exposure chamber (1 m3) and were made to inhale 300 ppm hydrogen sulfide for 60 min, and then they were subjected to normobaric or HBO therapy. Normobaric oxygen was at concentrations of 33% or 50%, HBO was for 100 min including compression and decompression; the rats in group A inhaled air under the same conditions. Blood was sampled immediately after the experiment for analysis of arterial blood gases, myocardial enzymes and cardiac troponin I. Lung was rapidly removed to be made into tissue homogenates and then cytochrome c oxidase activity was measured; myocardial and lung ultrastructural changes were observed by electron microscopy. Arterial blood gases: partial pressure of O2 (mmHg) (Group A, 97.6 ± 8.38; B, 76.5 ± 6.95*; C, 83.2 ± 2.66*; D, 86.20 ± 10.75*; E, 93.50 ± 4.97: *p < 0.01 compared to group A) was significantly lower than that in group in all but HBO rats. For myocardial enzymes and cardiac troponin I every parameter in groups B and C was significantly higher than that in group A (p<0.01),with no difference in D and E. Cytochrome c oxidase activity (u/mg) of lung tissue was reduced compared to group A after all treatments (A, 1.76 ± 0.02; B, 0.36 ± 0.04; C, 0.50 ± 0.12; D, 0.56 ± 0.07; E, 0.68 ± 0.05 (A vs. B p < 0.01; B vs. C,D,E p < 0.05 or p < 0.01), with a graded effect of oxygen dose in C, D and E. Pathological changes: (1) Myocardium - Mitochondrial swelling and autolysis with blurred or broken cristae was observed in the myocardium of H2S-exposed group; in group E

  12. Atomic layer deposition of metal sulfide thin films using non-halogenated precursors

    DOEpatents

    Martinson, Alex B. F.; Elam, Jeffrey W.; Pellin, Michael J.

    2015-05-26

    A method for preparing a metal sulfide thin film using ALD and structures incorporating the metal sulfide thin film. The method includes providing an ALD reactor, a substrate, a first precursor comprising a metal and a second precursor comprising a sulfur compound. The first and the second precursors are reacted in the ALD precursor to form a metal sulfide thin film on the substrate. In a particular embodiment, the metal compound comprises Bis(N,N'-di-sec-butylacetamidinato)dicopper(I) and the sulfur compound comprises hydrogen sulfide (H.sub.2S) to prepare a Cu.sub.2S film. The resulting metal sulfide thin film may be used in among other devices, photovoltaic devices, including interdigitated photovoltaic devices that may use relatively abundant materials for electrical energy production.

  13. 40 CFR 60.648 - Optional procedure for measuring hydrogen sulfide in acid gas-Tutwiler Procedure. 1

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... hydrogen sulfide in acid gas-Tutwiler Procedure. 1 60.648 Section 60.648 Protection of Environment..., 2011 § 60.648 Optional procedure for measuring hydrogen sulfide in acid gas—Tutwiler Procedure. 1 1 Gas... dilute solutions are used. In principle, this method consists of titrating hydrogen sulfide in a gas...

  14. 40 CFR 60.648 - Optional procedure for measuring hydrogen sulfide in acid gas-Tutwiler Procedure. 1

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... hydrogen sulfide in acid gas-Tutwiler Procedure. 1 60.648 Section 60.648 Protection of Environment..., 2011 § 60.648 Optional procedure for measuring hydrogen sulfide in acid gas—Tutwiler Procedure. 1 1 Gas... dilute solutions are used. In principle, this method consists of titrating hydrogen sulfide in a gas...

  15. Nanostructured N-doped TiO2 marigold flowers for an efficient solar hydrogen production from H2S

    NASA Astrophysics Data System (ADS)

    Chaudhari, Nilima S.; Warule, Sambhaji S.; Dhanmane, Sushil A.; Kulkarni, Milind V.; Valant, Matjaz; Kale, Bharat B.

    2013-09-01

    Nitrogen-doped TiO2 nanostructures in the form of marigold flowers have been synthesized for the first time using a facile solvothermal method. The structural analysis has shown that such an N-doped TiO2 system crystallizes in the anatase structure. The optical absorption spectra have clearly shown the shift in the absorption edge towards the visible-light range, which indicates successful nitrogen doping. The nitrogen doping has been further confirmed by photoluminescence and photoemission spectroscopy. Microscopy studies have shown the thin nanosheets (petals) of N-TiO2 with a thickness of ~2-3 nm, assembled in the form of the marigold flower with a high surface area (224 m2 g-1). The N-TiO2 nanostructure with marigold flowers is an efficient photocatalyst for the decomposition of H2S and production of hydrogen under solar light. The maximum hydrogen evolution obtained is higher than other known N-TiO2 systems. It is noteworthy that photohydrogen production using the unique marigold flowers of N-TiO2 from abundant H2S under solar light is hitherto unattempted. The proposed synthesis method can also be utilized to design other hierarchical nanostructured N-doped metal oxides.Nitrogen-doped TiO2 nanostructures in the form of marigold flowers have been synthesized for the first time using a facile solvothermal method. The structural analysis has shown that such an N-doped TiO2 system crystallizes in the anatase structure. The optical absorption spectra have clearly shown the shift in the absorption edge towards the visible-light range, which indicates successful nitrogen doping. The nitrogen doping has been further confirmed by photoluminescence and photoemission spectroscopy. Microscopy studies have shown the thin nanosheets (petals) of N-TiO2 with a thickness of ~2-3 nm, assembled in the form of the marigold flower with a high surface area (224 m2 g-1). The N-TiO2 nanostructure with marigold flowers is an efficient photocatalyst for the decomposition of H2S and

  16. Physiologic Levels of Endogenous Hydrogen Sulfide Maintain the Proliferation and Differentiation Capacity of Periodontal Ligament Stem Cells.

    PubMed

    Su, Yingying; Liu, Dayong; Liu, Yi; Zhang, Chunmei; Wang, Jinsong; Wang, Songlin

    2015-11-01

    Many invading oral bacteria are known to produce considerable amounts of hydrogen sulfide (H2S). The toxic activity of exogenous H2S in periodontal tissue has been demonstrated, but the role of endogenous H2S in the physiologic function of periodontal tissue remains poorly understood. The purpose of the present study is to investigate the biologic functions of H2S in the proliferation and differentiation of human periodontal ligament stem cells (PDLSCs). PDLSCs were isolated from periodontal ligament tissues of periodontally healthy volunteers or patients with periodontitis. Immunocytochemical staining, flow cytometry, and Western blot analysis were used to examine the expression of H2S-synthesizing enzymes cystathionine-β-synthase (CBS) and cystathionine-γ-lyase (CSE). The proliferation capacity of PDLSCs was determined by cell counting kit-8 assay, carboxyfluorescein succinimidyl ester analysis, and 5-ethynyl-2'-deoxyuridine assay. The osteogenic potential of PDLSCs was tested using alkaline phosphatase staining, Alizarin Red staining, and in vivo transplantation experiments. Oil Red O staining was used to analyze adipogenic ability. The results show that human PDLSCs express both CBS and CSE and produce H2S. Blocking the generation of endogenous H2S with CBS inhibitor hydroxylamine significantly attenuated PDLSC proliferation and reduced the osteogenic and adipogenic differentiation capacity of PDLSCs. In contrast, CSE inhibitor DL-propargylglycine had no effect on PDLSC function. Exogenous H2S could inhibit the production of endogenous H2S and impair PDLSC function in a dose-dependent manner. Physiologic levels of endogenous H2S maintain the proliferation and differentiation capacity of PDLSCs, and CBS may be the main source of endogenous H2S in PDLSCs.

  17. Hydrogen Sulfide Regulates the Cytosolic/Nuclear Partitioning of Glyceraldehyde-3-Phosphate Dehydrogenase by Enhancing its Nuclear Localization.

    PubMed

    Aroca, Angeles; Schneider, Markus; Scheibe, Renate; Gotor, Cecilia; Romero, Luis C

    2017-06-01

    Hydrogen sulfide is an important signaling molecule comparable with nitric oxide and hydrogen peroxide in plants. The underlying mechanism of its action is unknown, although it has been proposed to be S-sulfhydration. This post-translational modification converts the thiol groups of cysteines within proteins to persulfides, resulting in functional changes of the proteins. In Arabidopsis thaliana, S-sulfhydrated proteins have been identified, including the cytosolic isoforms of glyceraldehyde-3-phosphate dehydrogenase GapC1 and GapC2. In this work, we studied the regulation of sulfide on the subcellular localization of these proteins using two different approaches. We generated GapC1-green fluorescent protein (GFP) and GapC2-GFP transgenic plants in both the wild type and the des1 mutant defective in the l-cysteine desulfhydrase DES1, responsible for the generation of sulfide in the cytosol. The GFP signal was detected in the cytoplasm and the nucleus of epidermal cells, although with reduced nuclear localization in des1 compared with the wild type, and exogenous sulfide treatment resulted in similar signals in nuclei in both backgrounds. The second approach consisted of the immunoblot analysis of the GapC endogenous proteins in enriched nuclear and cytosolic protein extracts, and similar results were obtained. A significant reduction in the total amount of GapC in des1 in comparison with the wild type was determined and exogenous sulfide significantly increased the protein levels in the nuclei in both plants, with a stronger response in the wild type. Moreover, the presence of an S-sulfhydrated cysteine residue on GapC1 was demonstrated by mass spectrometry. We conclude that sulfide enhances the nuclear localization of glyceraldehyde-3-phosphate dehydrogenase. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  18. Phosphodiesterase type 4 inhibition enhances nitric oxide- and hydrogen sulfide-mediated bladder neck inhibitory neurotransmission.

    PubMed

    Agis-Torres, Ángel; Recio, Paz; López-Oliva, María Elvira; Martínez, María Pilar; Barahona, María Victoria; Benedito, Sara; Bustamante, Salvador; Jiménez-Cidre, Miguel Ángel; García-Sacristán, Albino; Prieto, Dolores; Fernandes, Vítor S; Hernández, Medardo

    2018-03-16

    Nitric oxide (NO) and hydrogen sulfide (H 2 S) play a pivotal role in nerve-mediated relaxation of the bladder outflow region. In the bladder neck, a marked phosphodiesterase type 4 (PDE4) expression has also been described and PDE4 inhibitors, as rolipram, produce smooth muscle relaxation. This study investigates the role of PDE4 isoenzyme in bladder neck gaseous inhibitory neurotransmission. We used Western blot and double immunohistochemical staining for the detection of NPP4 (PDE4) and PDE4A and organ baths for isometric force recording to roflumilast and tadalafil, PDE4 and PDE5, respectively, inhibitors in pig and human samples. Endogenous H 2 S production measurement and electrical field stimulation (EFS) were also performed. A rich PDE4 and PDE4A expression was observed mainly limited to nerve fibers of the smooth muscle layer of both species. Moreover, roflumilast produced a much more potent smooth muscle relaxation than that induced by tadalafil. In porcine samples, H 2 S generation was diminished by H 2 S and NO synthase inhibition and augmented by roflumilast. Relaxations elicited by EFS were potentiated by roflumilast. These results suggest that PDE4, mainly PDE4A, is mostly located within nerve fibers of the pig and human bladder neck, where roflumilast produces a powerful smooth muscle relaxation. In pig, the fact that roflumilast increases endogenous H 2 S production and EFS-induced relaxations suggests a modulation of PDE4 on NO- and H 2 S-mediated inhibitory neurotransmission.

  19. Korean red ginseng ameliorated experimental pancreatitis through the inhibition of hydrogen sulfide in mice.

    PubMed

    Lee, Sooyeon; Park, Jong-Min; Jeong, Migyeong; Han, Young-Min; Go, Eun Jin; Ko, Weon Jin; Cho, Joo Young; Kwon, Chang Il; Hahm, Ki Baik

    2016-01-01

    Effective therapy to treat acute pancreatitis (AP) or to prevent its recurrence/complication is still not available. Based on previous results that suggest that: i) hydrogen sulfide (H2S) levels were significantly increased in pancreatitis and gastritis and ii) Korean red ginseng (KRG) efficiently attenuated Helicobacter pylori-associated gastritis through the suppressive actions of H2S, we hypothesized that KRG can ameliorate experimental pancreatitis through suppression of H2S generation. C57BL/6 mice were pre-administered KRG and then subjected to cerulein injection or pancreatic duct ligation (PDL) to induce pancreatitis. Blood and pancreas tissues were collected and processed to measure serum levels of amylase, lipase and myeloperoxidase and the concentration of H2S and the levels of various inflammatory cytokine in pancreatic tissues of mice with induced AP. KRG significantly inhibited NaHS-induced COX-2 and TNF-α mRNA in pancreatic cells, but dl-propargylglycine did not. KRG ameliorated cerulein-induced edematous pancreatitis accompanied with significant inactivation of NF-κB and JNK in pancreatic tissues of C57BL/6 mice (p < 0.001) and also significantly ameliorated PDL-induced necrotizing pancreatitis (p<0.01); in both conditions, the significant suppression of H2S resulting from KRG pretreatment afforded rescuing outcomes. Along with suppressed levels of H2S consequent to depressed expressions of CBS and CSE mRNA, KRG administration efficiently decreased the serum level of amylase, lipase, and myeloperoxidase and the expression of inflammatory cytokines in animal models of mild or severe AP. These results provide evidence for the preventive and therapeutic roles of KRG against AP mediated by H2S suppression. Copyright © 2016 IAP and EPC. Published by Elsevier B.V. All rights reserved.

  20. A Possible Progenitor of the Interstellar Sulfide Bond: Rovibrational Characterization of the Hydrogen Disulfide Cation HSSH+

    NASA Astrophysics Data System (ADS)

    Fortenberry, Ryan C.; Francisco, Joseph S.

    2018-03-01

    {\\tilde{X}}2A\\prime\\prime S2H (HSS) has been observed very recently in the interstellar medium, specifically in the Horsehead nebula. The protonated form, S2H2 +, is believed to be a necessary intermediate in its creation in the gas phase in UV-irradiated regions. However, little is known about this radical cation. This work showcases that the trans-HSSH+ isomer is 0.12 eV lower in energy than the cis with a 1.05 eV upper limit to the torsional rotation barrier. Additionally, the vibrational frequencies and rotational constants for both structures are provided in full here for the first time. The cis isomer is likely the more detectable since it possesses a permanent dipole moment and has a high-intensity vibrational frequency for the antisymmetric H‑S‑S bend at 926 cm‑1 (10.8 μm), in the heart of the mid-IR spectral range. A third isomer, H2S‑S+ is also reported herein lying ∼0.9 eV in energy above trans-HSSH+. This isomer could play a role in the formation of S2H since it would be kinetically favored in the reaction of sulfur cations with hydrogen sulfide. Further assessment of this third, higher-energy isomer is left for future work.

  1. Protective role of hydrogen sulfide against noise-induced cochlear damage: a chronic intracochlear infusion model.

    PubMed

    Li, Xu; Mao, Xiao-Bo; Hei, Ren-Yi; Zhang, Zhi-Bin; Wen, Li-Ting; Zhang, Peng-Zhi; Qiu, Jian-Hua; Qiao, Li

    2011-01-01

    A reduction in cochlear blood flow plays an essential role in noise-induced hearing loss (NIHL). The timely regulation of cochlear perfusion determines the progression and prognosis of NIHL. Hydrogen sulfide (H(2)S) has attracted increasing interest as a vasodilator in cardiovascular systems. This study identified the role of H(2)S in cochlear blood flow regulation and noise protection. The gene and protein expression of the H(2)S synthetase cystathionine-γ-lyase (CSE) in the rat cochlea was examined using immunofluorescence and real-time PCR. Cochlear CSE mRNA levels varied according to the duration of noise exposure. A chronic intracochlear infusion model was built and artificial perilymph (AP), NaHS or DL-propargylglycine (PPG) were locally administered. Local sodium hydrosulfide (NaHS) significantly increased cochlear perfusion post-noise exposure. Cochlear morphological damage and hearing loss were alleviated in the NaHS group as measured by conventional auditory brainstem response (ABR), cochlear scanning electron microscope (SEM) and outer hair cell (OHC) count. The highest percentage of OHC loss occurred in the PPG group. Our results suggest that H(2)S plays an important role in the regulation of cochlear blood flow and the protection against noise. Further studies may identify a new preventive and therapeutic perspective on NIHL and other blood supply-related inner ear diseases.

  2. Hydrogen sulfide - cysteine cycle system enhances cadmium tolerance through alleviating cadmium-induced oxidative stress and ion toxicity in Arabidopsis roots

    PubMed Central

    Jia, Honglei; Wang, Xiaofeng; Dou, Yanhua; Liu, Dan; Si, Wantong; Fang, Hao; Zhao, Chen; Chen, Shaolin; Xi, Jiejun; Li, Jisheng

    2016-01-01

    Cadmium (Cd2+) is a common toxic heavy metal ion. We investigated the roles of hydrogen sulfide (H2S) and cysteine (Cys) in plant responses to Cd2+ stress. The expression of H2S synthetic genes LCD and DES1 were induced by Cd2+ within 3 h, and endogenous H2S was then rapidly released. H2S promoted the expression of Cys synthesis-related genes SAT1 and OASA1, which led to endogenous Cys accumulation. The H2S and Cys cycle system was stimulated by Cd2+ stress, and it maintained high levels in plant cells. H2S inhibited the ROS burst by inducing alternative respiration capacity (AP) and antioxidase activity. H2S weakened Cd2+ toxicity by inducing the metallothionein (MTs) genes expression. Cys promoted GSH accumulation and inhibited the ROS burst, and GSH induced the expression of phytochelatin (PCs) genes, counteracting Cd2+ toxicity. In summary, the H2S and Cys cycle system played a key role in plant responses to Cd2+ stress. The Cd2+ tolerance was weakened when the cycle system was blocked in lcddes1-1 and oasa1 mutants. This paper is the first to describe the role of the H2S and Cys cycle system in Cd2+ stress and to explore the relevant and specificity mechanisms of H2S and Cys in mediating Cd2+ stress. PMID:28004782

  3. [Regulation of sulfates, hydrogen sulfide and heavy metals in technogenic reservoirs by sulfate-reducing bacteria].

    PubMed

    Hudz', S P; Peretiatko, T B; Moroz, O M; Hnatush, S O; Klym, I R

    2011-01-01

    Sulfate-reducing bacteria Desulfovibrio desulfuricans Ya-11 in the presence of sulfates and organic compounds in the medium reduce sulfates to hydrogen sulfide (dissimilatory sulfate reduction). Heavy metals in concentration over 2 mM inhibit this process. Pb2+, Zn2+, Ni2+, Co2+, Fe2+ and Cd2+ ions in concentration 1-1.5 mM display insignificant inhibiting effect on sulfate reduction process, and metals precipitate in the form of sulfides. At concentrations of heavy metals 2-3 mM one can observe a decrease of sulfates reduction intensity, and a percent of metals binding does not exceed 72%. Obtained results give reason to confirm, that sulfate-reducing bacteria play an important role in regulation of the level of sulfates, hydrogen sulfide and heavy metals in reservoirs and they may be used for purification of water environment from these compounds.

  4. A H2S Donor GYY4137 Exacerbates Cisplatin-Induced Nephrotoxicity in Mice

    PubMed Central

    Liu, Mi; Sun, Ying; Zhang, Aihua; Yang, Tianxin

    2016-01-01

    Accumulating evidence demonstrated that hydrogen sulfide (H2S) is highly involved in inflammation, oxidative stress, and apoptosis and contributes to the pathogenesis of kidney diseases. However, the role of H2S in cisplatin nephrotoxicity is still debatable. Here we investigated the effect of GYY4137, a novel slow-releasing H2S donor, on cisplatin nephrotoxicity in mice. Male C57BL/6 mice were pretreated with GYY4137 for 72 h prior to cisplatin injection. After cisplatin treatment for 72 h, mice developed obvious renal dysfunction and kidney injury as evidenced by elevated blood urea nitrogen (BUN) and histological damage. Consistently, these mice also showed increased proinflammatory cytokines such as TNF-α, IL-6, and IL-1β in circulation and/or kidney tissues. Meanwhile, circulating thiobarbituric aid-reactive substances (TBARS) and renal apoptotic indices including caspase-3, Bak, and Bax were all elevated. However, application of GYY4137 further aggravated renal dysfunction and kidney structural injury in line with promoted inflammation, oxidative stress, and apoptotic response following cisplatin treatment. Taken together, our results suggested that GYY4137 exacerbated cisplatin-induced nephrotoxicity in mice possibly through promoting inflammation, oxidative stress, and apoptotic response. PMID:27340345

  5. Hydrogen sulfide alleviates mercury toxicity by sequestering it in roots or regulating reactive oxygen species productions in rice seedlings.

    PubMed

    Chen, Zhen; Chen, Moshun; Jiang, Ming

    2017-02-01

    Soil mercury (Hg) contamination is a major factor that affects agricultural yield and food security. Hydrogen sulfide (H 2 S) plays multifunctional roles in mediating a variety of responses to abiotic stresses. The effects of exogenous H 2 S on rice (Oryza sativa var 'Nipponbare') growth and metabolism under mercuric chloride (HgCl 2 ) stress were investigated in this study. Either 100 or 200 μM sodium hydrosulfide (NaHS, a donor of H 2 S) pretreatment improved the transcription of bZIP60, a membrane-associated transcription factor, and then enhanced the expressions of non-protein thiols (NPT) and metallothioneins (OsMT-1) to sequester Hg in roots and thus inhibit Hg transport to shoots. Meanwhile, H 2 S promoted seedlings growth significantly even in the presences of Hg and superoxide dismutase (SOD, EC 1.15.1.1) or catalase (CAT, EC 1.11.1.6) inhibitors, diethyldithiocarbamate (DDC) or 3-amino-1,2,4-triazole (AT). H 2 S might act as an antioxidant to inhibit or scavenge reactive oxygen species (ROS) productions for maintaining the lower MDA and H 2 O 2 levels, and thereby preventing oxidative damages. All these results indicated H 2 S effectively alleviated Hg toxicity by sequestering it in roots or by regulating ROS in seedlings and then thus significantly promoted rice growth. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  6. Cystathionine-β-synthase-derived hydrogen sulfide is required for amygdalar long-term potentiation and cued fear memory in rats.

    PubMed

    Chen, Hai-Bo; Wu, Wen-Ning; Wang, Wei; Gu, Xun-Hu; Yu, Bin; Wei, Bo; Yang, Yuan-Jian

    2017-04-01

    Hydrogen sulfide (H 2 S) is an endogenous gaseous molecule that functions as a neuromodulator in the brain. We previously reported that H 2 S regulated amygdalar synaptic plasticity and cued fear memory in rats. However, whether endogenous H 2 S is required for amygdalar long-term potentiation (LTP) induction and cued fear memory formation remains unclear. Here, we show that cystathionine-β-synthase (CBS), the predominant H 2 S-producing enzyme in the brain, was highly expressed in the amygdala of rats. Suppressing CBS activity by inhibitor prevented activity-triggered generation of H 2 S in the lateral amygdala (LA) region. Incubating brain slices with CBS inhibitor significantly prevented the induction of NMDA receptors (NMDARs)-dependent LTP in the thalamo-LA pathway, and intra-LA infusion of CBS inhibitor impaired cued fear memory in rats. Notably, treatment with H 2 S donor, but not CBS activator, significantly reversed the impairments of LTP and fear memory caused by CBS inhibition. Mechanismly, inhibition of CBS activity led to a reduction in NMDAR-mediated synaptic response in the thalamo-LA pathway, and treatment with H 2 S donor restored the function of NMDARs. Collectively, these results indicate that CBS-derived H 2 S is required for amygdalar synaptic plasticity and cued fear memory in rats, and the effects of endogenous H 2 S might involve the regulation of NMDAR function. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Hydrogen Storage Properties of New Hydrogen-Rich BH3NH3-Metal Hydride (TiH2, ZrH2, MgH2, and/or CaH2) Composite Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Young Joon; Xu, Yimin; Shaw, Wendy J.

    2012-04-19

    Ammonia borane (AB = NH3BH3) is one of the most attractive materials for chemical hydrogen storage due to its high hydrogen contents of 19.6 wt.%, however, impurity levels of borazine, ammonia and diborane in conjunction with foaming and exothermic hydrogen release calls for finding ways to mitigate the decomposition reactions. In this paper we present a solution by mixing AB with metal hydrides (TiH2, ZrH2, MgH2 and CaH2) which have endothermic hydrogen release in order to control the heat release and impurity levels from AB upon decomposition. The composite materials were prepared by mechanical ball milling, and their H2 releasemore » properties were characterized by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The formation of volatile products from decomposition side reactions, such as borazine (N3B3H6) was determined by mass spectrometry (MS). Sieverts type pressure-composition-temperature (PCT) gas-solid reaction instrument was adopted to observe the kinetics of the H2 release reactions of the combined systems and neat AB. In situ 11B MAS-NMR revealed a destabilized decomposition pathway. We found that by adding specific metal hydrides to AB we can eliminate the impurities and mitigate the heat release.« less

  8. FRET ratiometric probes reveal the chiral-sensitive cysteine-dependent H2S production and regulation in living cells

    NASA Astrophysics Data System (ADS)

    Wei, Lv; Yi, Long; Song, Fanbo; Wei, Chao; Wang, Bai-Fan; Xi, Zhen

    2014-04-01

    Hydrogen sulfide (H2S) is an endogenously produced gaseous signalling molecule with multiple biological functions. In order to visualize and quantify the endogenous in situ production of H2S in living cells, here we developed two new sulphide ratiometric probes (SR400 and SR550) based on fluorescence resonance energy transfer (FRET) strategy for live capture of H2S. The FRET-based probes show excellent selectivity toward H2S in a high thiol background under physiological buffer. The probe can be used to in situ visualize cysteine-dependent H2S production in a chiral-sensitive manner in living cells. The ratiometric imaging studies indicated that D-Cys induces more H2S production than that of L-Cys in mitochondria of human embryonic kidney 293 cells (HEK293). The cysteine mimics propargylglycine (PPG) has also been found to inhibit the cysteine-dependent endogenous H2S production in a chiral-sensitive manner in living cells. D-PPG inhibited D-Cys-dependent H2S production more efficiently than L-PPG, while, L-PPG inhibited L-Cys-dependent H2S production more efficiently than D-PPG. Our bioimaging studies support Kimura's discovery of H2S production from D-cysteine in mammalian cells and further highlight the potential of D-cysteine and its derivatives as an alternative strategy for classical H2S-releasing drugs.

  9. H2S as an Indicator of Water Supply Vulnerability and Health Risk in Low-Resource Settings: A Prospective Cohort Study

    PubMed Central

    Khush, Ranjiv S.; Arnold, Benjamin F.; Srikanth, Padma; Sudharsanam, Suchithra; Ramaswamy, Padmavathi; Durairaj, Natesan; London, Alicia G.; Ramaprabha, Prabhakar; Rajkumar, Paramasivan; Balakrishnan, Kalpana; Colford Jr., John M.

    2013-01-01

    In this large-scale longitudinal study conducted in rural Southern India, we compared a presence/absence hydrogen sulfide (H2S) test with quantitative assays for total coliforms and Escherichia coli as measures of water quality, health risk, and water supply vulnerability to microbial contamination. None of the three indicators showed a significant association with child diarrhea. The presence of H2S in a water sample was associated with higher levels of total coliform species that may have included E. coli but that were not restricted to E. coli. In addition, we observed a strong relationship between the percent positive H2S test results and total coliform levels among water source samples (R2 = 0.87). The consistent relationships between H2S and total coliform levels indicate that presence/absence of H2S tests provide a cost-effective option for assessing both the vulnerability of water supplies to microbial contamination and the results of water quality management and risk mitigation efforts. PMID:23716404

  10. Chemical Probes for Molecular Imaging and Detection of Hydrogen Sulfide and Reactive Sulfur Species in Biological Systems

    PubMed Central

    2014-01-01

    Hydrogen sulfide (H2S), a gaseous species produced by both bacteria and higher eukaryotic organisms, including mammalian vertebrates, has attracted attention in recent years for its contributions to human health and disease. H2S has been proposed as a cytoprotectant and gasotransmitter in many tissue types, including mediating vascular tone in blood vessels as well as neuromodulation in the brain. The molecular mechanisms dictating how H2S affects cellular signaling and other physiological events remain insufficiently understood. Furthermore, the involvement of H2S in metal-binding interactions and formation of related RSS such as sulfane sulfur may contribute to other distinct signaling pathways. Owing to its widespread biological roles and unique chemical properties, H2S is an appealing target for chemical biology approaches to elucidate its production, trafficking, and downstream function. In this context, reaction-based fluorescent probes offer a versatile set of screening tools to visualize H2S pools in living systems. Three main strategies used in molecular probe development for H2S detection include azide and nitro group reduction, nucleophilic attack, and CuS precipitation. Each of these approaches exploit the strong nucleophilicity and reducing potency of H2S to achieve selectivity over other biothiols. In addition, a variety of methods have been developed for the detection of other reactive sulfur species (RSS), including sulfite and bisulfite, as well as sulfane sulfur species and related modifications such as S-nitrosothiols. Access to this growing chemical toolbox of new molecular probes for H2S and related RSS sets the stage for applying these developing technologies to probe reactive sulfur biology in living systems. PMID:25474627

  11. Hydrogen Sulfide Targets the Cys320/Cys529 Motif in Kv4.2 to Inhibit the Ito Potassium Channels in Cardiomyocytes and Regularizes Fatal Arrhythmia in Myocardial Infarction

    PubMed Central

    Ma, Shan-Feng; Luo, Yan; Ding, Ying-Jiong; Chen, Ying; Pu, Shi-Xin; Wu, Hang-Jing; Wang, Zhong-Feng; Tao, Bei-Bei; Wang, Wen-Wei

    2015-01-01

    Abstract Aims: The mechanisms underlying numerous biological roles of hydrogen sulfide (H2S) remain largely unknown. We have previously reported an inhibitory role of H2S in the L-type calcium channels in cardiomyocytes. This prompts us to examine the mechanisms underlying the potential regulation of H2S on the ion channels. Results: H2S showed a novel inhibitory effect on Ito potassium channels, and this effect was blocked by mutation at the Cys320 and/or Cys529 residues of the Kv4.2 subunit. H2S broke the disulfide bridge between a pair of oxidized cysteine residues; however, it did not modify single cysteine residues. H2S extended action potential duration in epicardial myocytes and regularized fatal arrhythmia in a rat model of myocardial infarction. H2S treatment significantly increased survival by ∼1.4-fold in the critical 2-h time window after myocardial infarction with a protection against ventricular premature beats and fatal arrhythmia. However, H2S did not change the function of other ion channels, including IK1 and INa. Innovation and Conclusion: H2S targets the Cys320/Cys529 motif in Kv4.2 to regulate the Ito potassium channels. H2S also shows a potent regularizing effect against fatal arrhythmia in a rat model of myocardial infarction. The study provides the first piece of evidence for the role of H2S in regulating Ito potassium channels and also the specific motif in an ion channel labile for H2S regulation. Antioxid. Redox Signal. 23, 129–147. PMID:25756524

  12. A Redox-Nucleophilic Dual-Reactable Probe for Highly Selective and Sensitive Detection of H2S: Synthesis, Spectra and Bioimaging

    NASA Astrophysics Data System (ADS)

    Zhang, Changyu; Wang, Runyu; Cheng, Longhuai; Li, Bingjie; Xi, Zhen; Yi, Long

    2016-07-01

    Hydrogen sulfide (H2S) is an important signalling molecule with multiple biological functions. The reported H2S fluorescent probes are majorly based on redox or nucleophilic reactions. The combination usage of both redox and nucleophilic reactions could improve the probe’s selectivity, sensitivity and stability. Herein we report a new dual-reactable probe with yellow turn-on fluorescence for H2S detection. The sensing mechanism of the dual-reactable probe was based on thiolysis of NBD (7-nitro-1,2,3-benzoxadiazole) amine (a nucleophilic reaction) and reduction of azide to amine (a redox reaction). Compared with its corresponding single-reactable probes, the dual-reactable probe has higher selectivity and fluorescence turn-on fold with magnitude of multiplication from that of each single-reactable probe. The highly selective and sensitive properties enabled the dual-reactable probe as a useful tool for efficiently sensing H2S in aqueous buffer and in living cells.

  13. H2S removal and bacterial structure along a full-scale biofilter bed packed with polyurethane foam in a landfill site.

    PubMed

    Li, Lin; Han, Yunping; Yan, Xu; Liu, Junxin

    2013-11-01

    Hydrogen sulfide accumulated under a cover film in a landfill site was treated for 7 months by a full-scale biofilter packed with polyurethane foam cubes. Sampling ports were set along the biofilter bed to investigate H2S removal and microbial characteristics in the biofilter. The H2S was removed effectively by the biofilter, and over 90% removal efficiency was achieved in steady state. Average elimination capacity of H2S was 2.21 g m(-3) h(-1) in lower part (LPB) and 0.41 g m(-3) h(-1) in upper part (UPB) of the biofilter. Most H2S was eliminated in LPB. H2S concentration varied along the polyurethane foam packed bed, the structure of the bacterial communities showed spatial variation in the biofilter, and H2S removal as well as products distribution changed accordingly. The introduction of odorants into the biofilter shifted the distribution of the existing microbial populations toward a specific culture that could metabolize the target odors. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Relation between malodor, ambient hydrogen sulfide, and health in a community bordering a landfill.

    PubMed

    Heaney, Christopher D; Wing, Steve; Campbell, Robert L; Caldwell, David; Hopkins, Barbara; Richardson, David; Yeatts, Karin

    2011-08-01

    Municipal solid waste landfills are sources of air pollution that may affect the health and quality of life of neighboring communities. To investigate health and quality of life concerns of neighbors related to landfill air pollution. Landfill neighbors were enrolled and kept twice-daily diaries for 14d about odor intensity, alteration of daily activities, mood states, and irritant and other physical symptoms between January and November 2009. Concurrently, hydrogen sulfide (H(2)S) air measurements were recorded every 15-min. Relationships between H(2)S, odor, and health outcomes were evaluated using conditional fixed effects regression models. Twenty-three participants enrolled and completed 878 twice-daily diary entries. H(2)S measurements were recorded over a period of 80d and 1-h average H(2)S=0.22ppb (SD=0.27; range: 0-2.30ppb). Landfill odor increased 0.63 points (on 5-point Likert-type scale) for every 1ppb increase in hourly average H(2)S when the wind was blowing from the landfill towards the community (95% confidence interval (CI): 0.29, 0.91). Odor was strongly associated with reports of alteration of daily activities (odds ratio (OR)=9.0; 95% CI: 3.5, 23.5), negative mood states (OR=5.2; 95% CI: 2.8, 9.6), mucosal irritation (OR=3.7; 95% CI=2.0, 7.1) and upper respiratory symptoms (OR=3.9; 95% CI: 2.2, 7.0), but not positive mood states (OR=0.6; 95% CI: 0.2, 1.5) and gastrointestinal (GI) symptoms (OR=1.0; 95% CI: 0.4, 2.6). Results suggest air pollutants from a regional landfill negatively impact the health and quality of life of neighbors. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. A sensor system based on a luminescent protein complex in a biopolymer matrix for detecting small concentrations of hydrogen sulfide in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Sergeev, A. A.; Leonov, A. A.; Kamenev, D. G.; Voznesenskii, S. S.; Kul'chin, Yu. M.

    2017-09-01

    We have studied the properties of luminescent protein complexes based on myoglobin with covalently bound CY3 luminophore, which were incorporated into polysaccharide agarose films, as potential elements sensitive to hydrogen sulfide (H2S) in aqueous solutions. The presence of this analyte changes the absorption spectrum of myoglobin, which influences the efficiency of luminophore excitation while having almost no effect on its emission spectrum. This effect shows that a luminescent sensor system with the optical response determined by analyte-induced changes in the efficiency of luminescence excitation in the sensitive element can be created. For the system studied, the limit of detection of H2S dissolved in water amounted to 100 pM.

  16. H2S in Shallow Groundwater: Hydrogeochemical Processes, Degassing Experiments and Health Impacts

    NASA Astrophysics Data System (ADS)

    Broers, H. P.; Weert, J. D.; Bouma, R.

    2016-12-01

    Hydrogen sulfide is known to be a hazardous gas even at rather low concentrations and may pose a serious health risk. Occurrences of H2S in groundwater and degassing into the atmosphere are known for volcanic or tectonic active regions, coal mining or gypsum dissolution regions. We studied the occurrence and origin of H2S in shallow groundwater and its degassing into air after pumping in a setting of shallow unconsolidated deposits in the south of the Netherlands, where the sulfate source is antropogenic. We measured H2S concentrations in water using a field photo spectrometer and the degassing into air with a Jerome 631. We analyzed for macro-ions and determined the apparent 3H/3He age to assess the origin of the sulfide in the groundwater. H2S was formed in-situ within organic-rich and carbonate free sediments and peat layers of a fluvio-glacial sediment series in groundwater that infiltrated approximately 15 years ago. Sulfate is omnipresent in Dutch shallow groundwater due to historical atmospheric inputs of SOx, sulfur inputs from intensive livestock farming and subsurface production of sulfate from pyrite oxidation following nitrate leaching from agricultural fields (Zhang et al. 2009 GCA, 2012 AppGeochem). The co-existence of H2S and sulfate in our groundwater appears to be determined by the low pH of the water (4.8-5.5) which limits the precipitation of mackinawite or amorphous FeS. Mapping the combination of observations wells with pH < 5.5, sulfate > 75 mg/L and Fe > 10 mg/l delineated large areas where H2S appeared to be present in concentration between 0.1 and 1.0 mg/L S2- in water. Degassing of groundwater with 0.7 mg S2-/L into a contained volume of air yielded concentrations > 50 ppmv within 15 minutes. Using the degassing rates observed in the experiments and assuming equilibrium degassing, we calibrated a simple model which describes the inflow of water, the degassing and the export of gas in relation to wind velocity. We used the model to evaluate

  17. Size-tunable copper nanocluster aggregates and their application in hydrogen sulfide sensing on paper-based devices

    PubMed Central

    Chen, Po-Cheng; Li, Yu-Chi; Ma, Jia-Yin; Huang, Jia-Yu; Chen, Chien-Fu; Chang, Huan-Tsung

    2016-01-01

    Polystyrene sulfonate (PSS), a strong polyelectrolyte, was used to prepare red photoluminescent PSS-penicillamine (PA) copper (Cu) nanoclusters (NC) aggregates, which displayed high selectivity and sensitivity to the detection of hydrogen sulfide (H2S). The size of the PSS-PA-Cu NC aggregates could be readily controlled from 5.5 μm to 173 nm using different concentrations of PSS, which enabled better dispersity and higher sensitivity towards H2S. PSS-PA-Cu NC aggregates provided rapid H2S detection by using the strong Cu-S interaction to quench NC photoluminescence as a sensing mechanism. As a result, a detection limit of 650 nM, which is lower than the maximum level permitted in drinking water by the World Health Organization, was achieved for the analysis of H2S in spring-water samples. Moreover, highly dispersed PSS-PA-Cu NC aggregates could be incorporated into a plate-format paper-based analytical device which enables ultra-low sample volumes (5 μL) and feature shorter analysis times (30 min) compared to conventional solution-based methods. The advantages of low reagent consumption, rapid result readout, limited equipment, and long-term storage make this platform sensitive and simple enough to use without specialized training in resource constrained settings. PMID:27113330

  18. Hydrogen sulfide induces systemic tolerance to salinity and non-ionic osmotic stress in strawberry plants through modification of reactive species biosynthesis and transcriptional regulation of multiple defence pathways

    PubMed Central

    Christou, Anastasis; Manganaris, George A.; Papadopoulos, Ioannis; Fotopoulos, Vasileios

    2013-01-01

    Hydrogen sulfide (H2S) has been recently found to act as a potent priming agent. This study explored the hypothesis that hydroponic pretreatment of strawberry (Fragaria × ananassa cv. Camarosa) roots with a H2S donor, sodium hydrosulfide (NaHS; 100 μM for 48h), could induce long-lasting priming effects and tolerance to subsequent exposure to 100mM NaCI or 10% (w/v) PEG-6000 for 7 d. Hydrogen sulfide pretreatment of roots resulted in increased leaf chlorophyll fluorescence, stomatal conductance and leaf relative water content as well as lower lipid peroxidation levels in comparison with plants directly subjected to salt and non-ionic osmotic stress, thus suggesting a systemic mitigating effect of H2S pretreatment to cellular damage derived from abiotic stress factors. In addition, root pretreatment with NaHS resulted in the minimization of oxidative and nitrosative stress in strawberry plants, manifested via lower levels of synthesis of NO and H2O2 in leaves and the maintenance of high ascorbate and glutathione redox states, following subsequent salt and non-ionic osmotic stresses. Quantitative real-time RT-PCR gene expression analysis of key antioxidant (cAPX, CAT, MnSOD, GR), ascorbate and glutathione biosynthesis (GCS, GDH, GS), transcription factor (DREB), and salt overly sensitive (SOS) pathway (SOS2-like, SOS3-like, SOS4) genes suggests that H2S plays a pivotal role in the coordinated regulation of multiple transcriptional pathways. The ameliorative effects of H2S were more pronounced in strawberry plants subjected to both stress conditions immediately after NaHS root pretreatment, rather than in plants subjected to stress conditions 3 d after root pretreatment. Overall, H2S-pretreated plants managed to overcome the deleterious effects of salt and non-ionic osmotic stress by controlling oxidative and nitrosative cellular damage through increased performance of antioxidant mechanisms and the coordinated regulation of the SOS pathway, thus proposing a novel

  19. Ozone and hydrogen peroxide as strategies to control biomass in a trickling filter to treat methanol and hydrogen sulfide under acidic conditions.

    PubMed

    García-Pérez, Teresa; Le Borgne, Sylvie; Revah, Sergio

    2016-12-01

    The operation and performance of a biotrickling filter for methanol (MeOH) and hydrogen sulfide (H 2 S) removal at acid pH was studied. Excess biomass in the filter bed, causing performance loss and high pressure drop, was controlled by intermittent addition, of ozone (O 3 ) and hydrogen peroxide (H 2 O 2 ). The results showed that after adaptation to acid pH, the maximum elimination capacity (EC) reached for MeOH was 565 g m -3  h -1 (97 % RE). High MeOH loads resulted in increased biomass concentration within the support, triggering reductions in the removal efficiency (RE) for both compounds close to 50 %, and high pressure drop. At this stage, an inlet load of 150.2 ± 16.7 g m -3  h -1 of O 3 was fed by 38 days favoring biomass detachment, and EC recovery and lower pressure dropped with a maximum elimination capacity of 587 g m -3  h -1 (81 % RE) and 15.8 g m -3  h -1 (97 % RE) for MeOH and H 2 S, respectively. After O 3 addition, a rapid increase in biomass content and higher fluctuations in pressure drop were observed reducing the system performance. A second treatment with oxidants was implemented feeding a O 3 load of 4.8 ± 0.1 g m -3  h -1 for 7 days, followed by H 2 O 2 addition for 23 days, registering 607.5 g biomass  L -1 packing before and 367.5 g biomass  L -1 packing after the oxidant addition. PCR-DGGE analysis of different operating stages showed a clear change in the bacterial populations when O 3 was present while the fungal population was less affected.

  20. Inhibition of RhoA/Rho kinase pathway and smooth muscle contraction by hydrogen sulfide.

    PubMed

    Nalli, Ancy D; Wang, Hongxia; Bhattacharya, Sayak; Blakeney, Bryan A; Murthy, Karnam S

    2017-10-01

    Hydrogen sulfide (H 2 S) plays an important role in smooth muscle relaxation. Here, we investigated the expression of enzymes in H 2 S synthesis and the mechanism regulating colonic smooth muscle function by H 2 S. Expression of cystathionine-γ-lyase (CSE), but not cystathionine-β-synthase (CBS), was identified in the colonic smooth muscle of rabbit, mouse, and human. Carbachol (CCh)-induced contraction in rabbit muscle strips and isolated muscle cells was inhibited by l-cysteine (substrate of CSE) and NaHS (an exogenous H 2 S donor) in a concentration-dependent fashion. H 2 S induced S-sulfhydration of RhoA that was associated with inhibition of RhoA activity. CCh-induced Rho kinase activity also was inhibited by l-cysteine and NaHS in a concentration-dependent fashion. Inhibition of CCh-induced contraction by l-cysteine was blocked by the CSE inhibitor, dl-propargylglycine (DL-PPG) in dispersed muscle cells. Inhibition of CCh-induced Rho kinase activity by l-cysteine was blocked by CSE siRNA in cultured cells and DL-PPG in dispersed muscle cells. Stimulation of Rho kinase activity and muscle contraction in response to CCh was also inhibited by l-cysteine or NaHS in colonic muscle cells from mouse and human. Collectively, our studies identified the expression of CSE in colonic smooth muscle and determined that sulfhydration of RhoA by H 2 S leads to inhibition of RhoA and Rho kinase activities and muscle contraction. The mechanism identified may provide novel therapeutic approaches to mitigate gastrointestinal motility disorders. © 2017 The Authors. Pharmacology Research & Perspectives published by John Wiley & Sons Ltd, British Pharmacological Society and American Society for Pharmacology and Experimental Therapeutics.