Science.gov

Sample records for hydrogen transfer reactions

  1. Laser driven hydrogen transfer reactions in atmospheric chemistry

    NASA Astrophysics Data System (ADS)

    Lester, Marsha I.

    2015-03-01

    Ozonolysis of alkenes, an important non-photolytic source of OH radicals in the troposphere, proceeds through energized Criegee intermediates that undergo unimolecular decay to produce OH radicals. In this work, infrared laser activation of cold methyl-substituted Criegee intermediates is utilized to drive hydrogen transfer from the methyl group to the terminal oxygen, followed by dissociation to OH radicals. State-selective excitation of the Criegee intermediates in the CH stretch overtone region combined with sensitive OH detection reveals the infrared spectra of CH3CHOO and (CH3)2 COO, effective barrier heights for the critical hydrogen transfer step, and rapid decay dynamics to OH products. Complementary theory provides insights on the infrared overtone spectra as well as vibrational excitations, structural changes, and energy required to move from the minimum energy configuration of the Criegee intermediates to the transition state for the hydrogen transfer reaction. Research supported by the National Science Foundation.

  2. Role of Double Hydrogen Atom Transfer Reactions in Atmospheric Chemistry.

    PubMed

    Kumar, Manoj; Sinha, Amitabha; Francisco, Joseph S

    2016-05-17

    Hydrogen atom transfer (HAT) reactions are ubiquitous and play a crucial role in chemistries occurring in the atmosphere, biology, and industry. In the atmosphere, the most common and traditional HAT reaction is that associated with the OH radical abstracting a hydrogen atom from the plethora of organic molecules in the troposphere via R-H + OH → R + H2O. This reaction motif involves a single hydrogen transfer. More recently, in the literature, there is an emerging framework for a new class of HAT reactions that involves double hydrogen transfers. These reactions are broadly classified into four categories: (i) addition, (ii) elimination, (iii) substitution, and (iv) rearrangement. Hydration and dehydration are classic examples of addition and elimination reactions, respectively whereas tautomerization or isomerization belongs to a class of rearrangement reactions. Atmospheric acids and water typically mediate these reactions. Organic and inorganic acids are present in appreciable levels in the atmosphere and are capable of facilitating two-point hydrogen bonding interactions with oxygenates possessing an hydroxyl and/or carbonyl-type functionality. As a result, acids influence the reactivity of oxygenates and, thus, the energetics and kinetics of their HAT-based chemistries. The steric and electronic effects of acids play an important role in determining the efficacy of acid catalysis. Acids that reduce the steric strain of 1:1 substrate···acid complex are generally better catalysts. Among a family of monocarboxylic acids, the electronic effects become important; barrier to the catalyzed reaction correlates strongly with the pKa of the acid. Under acid catalysis, the hydration of carbonyl compounds leads to the barrierless formation of diols, which can serve as seed particles for atmospheric aerosol growth. The hydration of sulfur trioxide, which is the principle mechanism for atmospheric sulfuric acid formation, also becomes barrierless under acid catalysis

  3. Intermolecula transfer and elimination of molecular hydrogen in thermal reactions of unsaturated organic compounds

    SciTech Connect

    Suria, Sabartanty

    1995-02-10

    Two reactions which are important to coal liquefaction include intermolecular transfer and the elimination of two hydrogen atoms. We have designed several model reactions to probe the viability of several hydrogen transfer and elimination pathways. This report described studies on these reactions using organic model compounds.

  4. Effects of delocalization on intrinsic barriers for H-atom transfer: Implications for the radical hydrogen transfer reaction

    SciTech Connect

    Camaioni, D.M.; Autrey, S.T.; Ferris, K.F.; Franz, J.A.

    1992-08-01

    PM3 calculations of transition states (TS) for both normal H-atom transfer and radical hydrogen transfer (RHT) reactions of a a wide-variety of hydrocarbon structures have enabled development of quantitative structure-reactivity relationships. Results indicate that activation barriers for RHT reactions are large enough that thermoneutral and endothermic reactions should not compete with alternative multistep pathways.

  5. Hydrogen transfer in SAM-mediated enzymatic radical reactions.

    PubMed

    Hioe, Johnny; Zipse, Hendrik

    2012-12-14

    S-adenosylmethionine (SAM) plays an essential role in a variety of enzyme-mediated radical reactions. One-electron reduction of SAM is currently believed to generate the C5'-desoxyadenosyl radical, which subsequently abstracts a hydrogen atom from the actual substrate in a catalytic or a non-catalytic fashion. Using a combination of theoretical and experimental bond dissociation energy (BDE) data, the energetics of these radical processes have now been quantified. SAM-derived radicals are found to react with their respective substrates in an exothermic fashion in enzymes using SAM in a stoichiometric (non-catalytic) way. In contrast, the catalytic use of SAM appears to be linked to a sequence of moderately endothermic and exothermic reaction steps. The use of SAM in spore photoproduct lyase (SPL) appears to fit neither of these general categories and appears to constitute the first example of a SAM-initiated radical reaction propagated independently of the cofactor. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Femtosecond Dynamics of Norrish Type-II Reactions: Nonconcerted Hydrogen-Transfer and Diradical Intermediacy.

    PubMed

    De Feyter S; Diau; Zewail

    2000-01-01

    Norrish type-II and McLafferty rearrangements, which both involve an intramolecular transfer of a gamma H atom, can be differentiated on the femtosecond time scale. The McLafferty rearrangement results in ion fragmentation of the parent ketone, whereas the Norrish type-II reaction leads to a diradical species, which then either cyclizes or fragments (see scheme). For Norrish type-II reactions, the reaction time for the transfer of the hydrogen atom is within 70 - 90 fs, and the lifetime of the diradical intermediate is in the range of 400 - 700 ps at the total energy studied.

  7. Role of internal thermodynamics in determining hydrogen tunneling in enzyme-catalyzed hydrogen transfer reactions.

    PubMed

    Rucker, J; Cha, Y; Jonsson, T; Grant, K L; Klinman, J P

    1992-11-24

    Previous investigations have indicated a role for hydrogen tunneling in the yeast alcohol dehydrogenase catalyzed oxidation of benzyl alcohol [Cha, Y., Murray, C. J., & Klinman, J. P. (1989) Science 243, 1325] and the bovine plasma amine oxidase catalyzed oxidation of benzylamine [Grant, K.L., & Klinman, J. P. (1989) Biochemistry 28,6597]. In the present studies, values of protium to tritium and deuterium to tritium isotope effects and their temperature dependencies have been measured using ring-substituted substrates for yeast alcohol dehydrogenase and bovine plasma amine oxidase, revealing tunneling in each case. The results of these studies indicate that hydrogen tunneling is a general phenomenon and is not limited to enzyme reactions with degenerate energy levels for bound substrates and products. An analysis of internal thermodynamics in the yeast alcohol dehydrogenase reaction shows that tunneling occurs when delta H degrees is endothermic and that the degree of tunneling appears to increase as delta H degrees decreases toward zero.

  8. Transfer Hydrogenation in Water.

    PubMed

    Wu, Xiaofeng; Wang, Chao; Xiao, Jianliang

    2016-12-01

    This article provides an account of our group's efforts in developing aqueous-phase transfer hydrogenation reactions. It is comprised of mainly two parts. The first part concentrates on asymmetric transfer hydrogenation in water, enabled by Noyori-Ikariya catalysts, while the second part is concerned with the achiral version of the reaction catalysed by a new class of catalysts, iridacycles. A range of substrates are featured, including various carbonyl compounds and N-heterocycles.

  9. Quantum-chemical ab initio investigation of the two-step charge transfer process of hydrogen reaction: approach of reaction pathways via hydrogen intermediate on Cu(100)

    NASA Astrophysics Data System (ADS)

    Kuznetsov, An. M.; Lorenz, W.

    1994-08-01

    Local reaction events in the course of the electrochemical two-step hydrogen evolution reaction have been investigated by means of quantum-chemical all-electron ab initio calculations on interfacial supermolecular cluster models including a hydrated hydrogen intermediate on Cu(100). Expanding on preceding study to larger hydration clusters, an approach to relevant reaction path characteristics has been pursued for two processes: (i) the transfer of hydrated hydronium ion into a chemisorbed hydrogen intermediate: (ii) the reaction of hydronium ion with the intermediate to molecular hydrogen. Computations were carried out on RHF level, using contracted (12,8,4)/[8,6,2,] and/or 6-31G * or G ** pol-O bases for the metal and adsorbate part, respectively. Destruction of the hydronium configuration in process (i) has been confirmed. Electronic partial charge transfer dut to chemical bond conversions in both steps (i) and (ii) has been displayed along relevant cuts of adiabatic potential surfaces, proving significantly different amounts of charge transfer in both steps, λ 1 > 1, λ 2≡(2-λ 1) < 1. In advance of consideration of macroscopic double layer effects, first insight has been gained into coupled nuclear motions and into the origin of reaction barriers

  10. Excited-state hydrogen atom transfer reaction in solvated 7-hydroxy-4-methylcoumarin.

    PubMed

    De Silva, Nuwan; Minezawa, Noriyuki; Gordon, Mark S

    2013-12-12

    Excited-state enol to keto tautomerization of 7-hydroxy-4-methylcoumarin (C456) with three water molecules (C456:3H2O), is theoretically investigated using time-dependent density functional theory (TDDFT) combined with the polarizable continuum model and 200 waters explicitly modeled with the effective fragment potential. The tautomerization of C456 in the presence of three water molecules is accompanied by an asynchronous quadruple hydrogen atom transfer reaction from the enol to the keto tautomer in the excited state. TDDFT with the PBE0 functional and the DH(d,p) basis set is used to calculate the excited-state reaction barrier height, absorption (excitation), and fluorescence (de-excitation) energies. These results are compared with the available experimental and theoretical data. In contrast to previous work, it is predicted here that the coumarin 456 system undergoes a hydrogen atom transfer, not a proton transfer. The calculated reaction barrier of the first excited state of C456:3H2O with 200 water molecules is found to be -0.23 kcal/mol without zero-point energy (-5.07 kcal/mol with zero point energy, i.e., the activation energy).

  11. Theoretical Study of Proton Coupled Electron Transfer Reactions: The Effect of Hydrogen Bond Bending Motion.

    PubMed

    Liu, Yang; Liu, Hao; Song, Kai; Xu, Yang; Shi, Qiang

    2015-06-25

    We investigate theoretically the effect of hydrogen bond bending motion on the proton coupled electron transfer (PCET) reaction, using a model system where an intramolecular hydrogen-bonded phenol group is the proton donor. It is shown that, in a two-dimensional (2D) model of the PCET reaction, the bending and stretching vibrational motions are separated, and due to the hydrogen bond configuration and anharmonicity of the potential energy surface, the bending vibration can play a role in the PCET reaction. The results are also compared with two different sets of one-dimensional models (1D-linear and 1D-curved). Due to contributions of the bending motion, the rate constants in the 2D model are larger than those in the 1D-linear model, although the differences between the total rate constants and KIEs for 2D and 1D models are not major. Results from the 1D-curved model lie between the 2D- and 1D-linear models, indicating that it can include some effect of bending motion in reducing the potential energies along the reaction path.

  12. Barrier heights of hydrogen-transfer reactions with diffusion quantum monte carlo method.

    PubMed

    Zhou, Xiaojun; Wang, Fan

    2017-04-30

    Hydrogen-transfer reactions are an important class of reactions in many chemical and biological processes. Barrier heights of H-transfer reactions are underestimated significantly by popular exchange-correlation functional with density functional theory (DFT), while coupled-cluster (CC) method is quite expensive and can be applied only to rather small systems. Quantum Monte-Carlo method can usually provide reliable results for large systems. Performance of fixed-node diffusion quantum Monte-Carlo method (FN-DMC) on barrier heights of the 19 H-transfer reactions in the HTBH38/08 database is investigated in this study with the trial wavefunctions of the single-Slater-Jastrow form and orbitals from DFT using local density approximation. Our results show that barrier heights of these reactions can be calculated rather accurately using FN-DMC and the mean absolute error is 1.0 kcal/mol in all-electron calculations. Introduction of pseudopotentials (PP) in FN-DMC calculations improves efficiency pronouncedly. According to our results, error of the employed PPs is smaller than that of the present CCSD(T) and FN-DMC calculations. FN-DMC using PPs can thus be applied to investigate H-transfer reactions involving larger molecules reliably. In addition, bond dissociation energies of the involved molecules using FN-DMC are in excellent agreement with reference values and they are even better than results of the employed CCSD(T) calculations using the aug-cc-pVQZ basis set. © 2017 Wiley Periodicals, Inc.

  13. Effect of Electronic Excitation on Hydrogen Atom Transfer (Tautomerization) Reactions for the DNA Base Adenine

    NASA Technical Reports Server (NTRS)

    Chaban, Galina M.; Salter, Latasha M.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    Geometrical structures and energetic properties for four different tautomers of adenine are calculated in this study, using multi-configurational wave functions. Both the ground and the lowest single excited state potential energy surface are studied. The energetic order of the tautomers on the ground state potential surface is 9H less than 7H less than 3H less than 1H, while on the excited state surface this order is found to be different: 3H less than 1H less than 9H less than 7H. Minimum energy reaction paths are obtained for hydrogen atom transfer (9 yields 3 tautomerization) reactions in the ground and the lowest excited electronic state. It is found that the barrier heights and the shapes of the reaction paths are different for the ground and the excited electronic state, suggesting that the probability of such tautomerization reaction is higher on the excited state potential energy surface. The barrier for this reaction in the excited state may become very low in the presence of water or other polar solvent molecules, and therefore such tautomerization reaction may play an important role in the solution phase photochemistry of adenine.

  14. Effect of Electronic Excitation on Hydrogen Atom Transfer (Tautomerization) Reactions for the DNA Base Adenine

    NASA Technical Reports Server (NTRS)

    Chaban, Galina M.; Salter, Latasha M.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    Geometrical structures and energetic properties for four different tautomers of adenine are calculated in this study, using multi-configurational wave functions. Both the ground and the lowest single excited state potential energy surface are studied. The energetic order of the tautomers on the ground state potential surface is 9H less than 7H less than 3H less than 1H, while on the excited state surface this order is found to be different: 3H less than 1H less than 9H less than 7H. Minimum energy reaction paths are obtained for hydrogen atom transfer (9 yields 3 tautomerization) reactions in the ground and the lowest excited electronic state. It is found that the barrier heights and the shapes of the reaction paths are different for the ground and the excited electronic state, suggesting that the probability of such tautomerization reaction is higher on the excited state potential energy surface. The barrier for this reaction in the excited state may become very low in the presence of water or other polar solvent molecules, and therefore such tautomerization reaction may play an important role in the solution phase photochemistry of adenine.

  15. Nitroxyl Radical plus Hydroxylamine Pseudo Self-Exchange Reactions: Tunneling in Hydrogen Atom Transfer

    PubMed Central

    Wu, Adam; Mader, Elizabeth A.; Datta, Ayan; Hrovat, David A.; Borden, Weston Thatcher; Mayer, James M.

    2009-01-01

    Bimolecular rate constants have been measured for reactions that involve hydrogen atom transfer (HAT) from hydroxylamines to nitroxyl radicals, using the stable radicals TEMPO• (2,2,6,6-tetramethylpiperidine-1-oxyl radical), 4-oxo-TEMPO• (2,2,6,6-tetramethyl-4-oxo-piperidine-1-oxyl radical), di-tert-butylnitroxyl (tBu2NO•), and the hydroxylamines TEMPO-H, 4-oxo-TEMPO-H, 4-MeO-TEMPO-H (2,2,6,6-tetramethyl-N-hydroxy-4-methoxy-piperidine), and tBu2NOH. The reactions have been monitored by UV-vis stopped-flow methods, using the different optical spectra of nitroxyl radicals. The HAT reactions all have |ΔGo| ≤ 1.4 kcal mol−1 and therefore are close to self-exchange reactions. The reaction of 4-oxo-TEMPO• + TEMPO-H → 4-oxo-TEMPO-H + TEMPO• occurs with k2H,MeCN = 10 ± 1 M−1 s−1 in MeCN at 298 K (K2H,MeCN = 4.5 ± 1.8). Surprisingly, the rate constant for the analogous deuterium atom transfer reaction is much slower: k2D,MeCN = 0.44 ± 0.05 M−1 s−1 with k2H,MeCN/k2D,MeCN = 23 ± 3 at 298 K. The same large kinetic isotope effect (KIE) is found in CH2Cl2, 23 ± 4, suggesting that the large KIE is not caused by solvent dynamics or hydrogen bonding to solvent. The related reaction of 4-oxo-TEMPO• with 4-MeO-TEMPO-H(D) also has a large KIE, k3H/k3D = 21 ± 3 in MeCN. For these three reactions, the EaD – EaH values, between 0.3 ± 0.6 and 1.3 ± 0.6 kcal mol−1, and the log(AH/AD) values, between 0.5 ± 0.7 and 1.1 ± 0.6, indicate that hydrogen tunneling plays an important role. The related reaction of tBu2NO• + TEMPO-H(D) in MeCN has a large KIE, 16 ± 3 in MeCN, and very unusual isotopic activation parameters, EaD – EaH = −2.6 ± 0.4 and log(AH/AD) = 3.1 ± 0.6. Computational studies, using POLYRATE, also indicate substantial tunneling in the (CH3)2NO• + (CH3)2NOH model reaction for the experimental self-exchange processes. Additional calculations on TEMPO(•/H), tBu2NO(•/H), and Ph2NO(•/H) self-exchange reactions reveal why the

  16. Polymerization of Acetonitrile via a Hydrogen Transfer Reaction from CH3 to CN under Extreme Conditions.

    PubMed

    Zheng, Haiyan; Li, Kuo; Cody, George D; Tulk, Christopher A; Dong, Xiao; Gao, Guoying; Molaison, Jamie J; Liu, Zhenxian; Feygenson, Mikhail; Yang, Wenge; Ivanov, Ilia N; Basile, Leonardo; Idrobo, Juan-Carlos; Guthrie, Malcolm; Mao, Ho-Kwang

    2016-09-19

    Acetonitrile (CH3 CN) is the simplest and one of the most stable nitriles. Reactions usually occur on the C≡N triple bond, while the C-H bond is very inert and can only be activated by a very strong base or a metal catalyst. It is demonstrated that C-H bonds can be activated by the cyano group under high pressure, but at room temperature. The hydrogen atom transfers from the CH3 to CN along the CH⋅⋅⋅N hydrogen bond, which produces an amino group and initiates polymerization to form a dimer, 1D chain, and 2D nanoribbon with mixed sp(2) and sp(3) bonded carbon. Finally, it transforms into a graphitic polymer by eliminating ammonia. This study shows that applying pressure can induce a distinctive reaction which is guided by the structure of the molecular crystal. It highlights the fact that very inert C-H can be activated by high pressure, even at room temperature and without a catalyst.

  17. Polymerization of Acetonitrile via a Hydrogen Transfer Reaction from CH3 to CN under Extreme Conditions

    DOE PAGES

    Zheng, Haiyan; Li, Kuo; Cody, George D.; ...

    2016-08-25

    Acetonitrile (CH3CN) is the simplest and one of the most stable nitriles. Reactions usually occur on the C≡N triple bond, while the C-H bond is very inert and can only be activated by a very strong base or a metal catalyst. In this study, it is demonstrated that C-H bonds can be activated by the cyano group under high pressure, but at room temperature. The hydrogen atom transfers from the CH3 to CN along the CH···N hydrogen bond, which produces an amino group and initiates polymerization to form a dimer, 1D chain, and 2D nanoribbon with mixed sp2 and sp3more » bonded carbon. Lastly, it transforms into a graphitic polymer by eliminating ammonia. This study shows that applying pressure can induce a distinctive reaction which is guided by the structure of the molecular crystal. It highlights the fact that very inert C-H can be activated by high pressure, even at room temperature and without a catalyst.« less

  18. Hydrogen atom transfer reactions in thiophenol: photogeneration of two new thione isomers.

    PubMed

    Reva, Igor; Nowak, Maciej J; Lapinski, Leszek; Fausto, Rui

    2015-02-21

    Photoisomerization reactions of monomeric thiophenol have been investigated for the compound isolated in low-temperature argon matrices. The initial thiophenol population consists exclusively of the thermodynamically most stable thiol form. Phototransformations were induced by irradiation of the matrices with narrowband tunable UV light. Irradiation at λ > 290 nm did not induce any changes in isolated thiophenol molecules. Upon irradiation at 290-285 nm, the initial thiol form of thiophenol converted into its thione isomer, cyclohexa-2,4-diene-1-thione. This conversion occurs by transfer of an H atom from the SH group to a carbon atom at the ortho position of the ring. Subsequent irradiation at longer wavelengths (300-427 nm) demonstrated that this UV-induced hydrogen-atom transfer is photoreversible. Moreover, upon irradiation at 400-425 nm, the cyclohexa-2,4-diene-1-thione product converts, by transfer of a hydrogen atom from the ortho to para position, into another thione isomer, cyclohexa-2,5-diene-1-thione. The latter thione isomer is also photoreactive and is consumed if irradiated at λ < 332 nm. The obtained results clearly show that H-atom-transfer isomerization reactions dominate the unimolecular photochemistry of thiophenol confined in a solid argon matrix. A set of low-intensity infrared bands, observed in the spectra of UV irradiated thiophenol, indicates the presence of a phenylthiyl radical with an H- atom detached from the SH group. Alongside the H-atom-transfer and H-atom-detachment processes, the ring-opening photoreaction occurred in cyclohexa-2,4-diene-1-thione by the cleavage of the C-C bond at the alpha position with respect to the thiocarbonyl C[double bond, length as m-dash]S group. The resulting open-ring conjugated thioketene adopts several isomeric forms, differing by orientations around single and double bonds. The species photogenerated upon UV irradiation of thiophenol were identified by comparison of their experimental infrared

  19. Hybrid quantum/classical path integral approach for simulation of hydrogen transfer reactions in enzymes.

    PubMed

    Wang, Qian; Hammes-Schiffer, Sharon

    2006-11-14

    A hybrid quantum/classical path integral Monte Carlo (QC-PIMC) method for calculating the quantum free energy barrier for hydrogen transfer reactions in condensed phases is presented. In this approach, the classical potential of mean force along a collective reaction coordinate is calculated using umbrella sampling techniques in conjunction with molecular dynamics trajectories propagated according to a mapping potential. The quantum contribution is determined for each configuration along the classical trajectory with path integral Monte Carlo calculations in which the beads move according to an effective mapping potential. This type of path integral calculation does not utilize the centroid constraint and can lead to more efficient sampling of the relevant region of conformational space than free-particle path integral sampling. The QC-PIMC method is computationally practical for large systems because the path integral sampling for the quantum nuclei is performed separately from the classical molecular dynamics sampling of the entire system. The utility of the QC-PIMC method is illustrated by an application to hydride transfer in the enzyme dihydrofolate reductase. A comparison of this method to the quantized classical path and grid-based methods for this system is presented.

  20. Hydrogen Atom Transfer Reactions of a Ruthenium Imidazole Complex: Hydrogen Tunneling and the Applicability of the Marcus Cross Relation

    PubMed Central

    Wu, Adam; Mayer, James M.

    2009-01-01

    The reaction of RuII(acac)2(py-imH) (RuIIimH) with TEMPO• (2,2,6,6-tetramethyl-piperidine-1-oxyl radical) in MeCN quantitatively gives RuIII(acac)2(py-im) (RuIIIim) and the hydroxylamine TEMPO-H by transfer of H• (H+ + e−) (acac = 2,4-pentanedionato, py-imH = 2-(2′-pyridyl)imidazole). Kinetic measurements of this reaction by UV-vis stopped-flow techniques indicate a bimolecular rate constant k3H = 1400 ± 100 M−1 s−1 at 298 K. The reaction proceeds via a concerted hydrogen atom transfer (HAT) mechanism, as shown by ruling out the stepwise pathways of initial proton or electron transfer due to their very unfavorable thermochemistry (ΔG°). Deuterium transfer from RuII(acac)2(py-imD) (RuIIimD) to TEMPO• is surprisingly much slower at k3D = 60 ± 7 M−1 s−1, with k3H/k3D = 23 ± 3 at 298 K. Temperature dependent measurements of this deuterium kinetic isotope effect (KIE) show a large difference between the apparent activation energies, Ea3D − Ea3H = 1.9 ± 0.8 kcal mol−1. The large k3H/k3D and ΔEa values appear to be greater than the semi-classical limits and thus suggest a tunneling mechanism. The self-exchange HAT reaction between RuIIimH and RuIIIim, measured by 1H NMR line broadening, occurs with k4H = (3.2 ± 0.3) × 105 M−1 s−1 at 298 K and k4H/k4D = 1.5 ± 0.2. Despite the small KIE, tunneling is suggested by the ratio of Arrhenius pre-exponential factors, log(A4H/A4D) = −0.5 ± 0.3. These data provide a test of the applicability of the Marcus cross relation for H and D transfers, over a range of temperatures, for a reaction that involves substantial tunneling. The cross relation calculates rate constants for RuIIimH(D) + TEMPO• that are greater than those observed: k3H,calc/k3H = 31 ± 4 and k3D,calc/k3D = 140 ± 20 at 298 K. In these rate constants and in the activation parameters, there is a better agreement with the Marcus cross relation for H than for D transfer, despite the greater prevalence of tunneling for H. The cross

  1. Trends in Ground-State Entropies for Transition Metal Based Hydrogen Atom Transfer Reactions

    SciTech Connect

    Mader, Elizabeth A.; Manner, Virginia W.; Markle, Todd F.; Wu, Adam; Franz, James A.; Mayer, James M.

    2009-03-10

    Reported herein are thermochemical studies of hydrogen atom transfer (HAT) reactions involving transition metal H-atom donors MIILH and oxyl radicals. [FeII(H2bip)3]2+, [FeII(H2bim)3]2+, [CoII(H2bim)3]2+ and RuII(acac)2(py-imH) [H2bip = 2,2’-bi-1,4,5,6-tetrahydro¬pyrimidine, H2bim = 2,2’-bi-imidazoline, acac = 2,4-pentandionato, py-imH = 2-(2’-pyridyl)¬imidazole)] each react with TEMPO (2,2,6,6-tetramethyl-1-piperidinoxyl) or tBu3PhO• (2,4,6-tri-tert-butylphenoxyl) to give the deprotonated, oxidized metal complex MIIIL, and TEMPOH or tBu3PhOH. Solution equilibrium measurements for the reactions of Co and Fe complexes with TEMPO show a large, negative ground-state entropy for hydrogen atom transfer: ΔSºHAT = -30 ± 2 cal mol-1 K-1 for the two iron complexes and -41 ± 2 cal mol-1 K-1 for [CoII(H2bim)3]2+. The ΔSºHAT for TEMPO + RuII(acac)2(py-imH) is much closer to zero, 4.9 ± 1.1 cal mol-1 K-1. Calorimetric measurements quantitatively confirm the enthalpy of reaction for [FeII(H2bip)3]2+ + TEMPO, thus also confirming ΔSºHAT. Calorimetry on TEMPOH + tBu3PhO• gives ΔHºHAT = 11.2 ± 0.5 kcal mol-1 which matches the enthalpy predicted from the difference in literature solution BDEs. An evaluation of the literature BDEs of both TEMPOH and tBu3PhOH is briefly presented and new estimates are included on the relative enthalpy of solvation for tBu3PhO• vs. tBu3PhOH. The primary contributor to the large magnitude of the ground-state entropy |ΔSºHAT| for the metal complexes is vibrational entropy, ΔSºvib. The common assumption that ΔSºHAT ≈ 0 for HAT reactions, developed for organic and small gas phase molecules, does not hold for transition metal based HAT reactions. The trend in magnitude of |ΔSºHAT| for reactions with TEMPO, RuII(acac)2(py-imH) << [FeII(H2bip)3]2+ = [FeII(H2bim)3]2+ < [CoII(H2bim)3]2+, is surprisingly well predicted by the trends for electron transfer half-reaction entropies, ΔSºET, in aprotic solvents. ΔSºET and

  2. Trends in Ground-State Entropies for Transition Metal Based Hydrogen Atom Transfer Reactions

    PubMed Central

    Mader, Elizabeth A.; Manner, Virginia W.; Markle, Todd F.; Wu, Adam; Franz, James A.; Mayer, James M.

    2009-01-01

    Reported herein are thermochemical studies of hydrogen atom transfer (HAT) reactions involving transition metal H-atom donors MIILH and oxyl radicals. [FeII(H2bip)3]2+, [FeII(H2bim)3]2+, [CoII(H2bim)3]2+ and RuII(acac)2(py-imH) [H2bip = 2,2’-bi-1,4,5,6-tetrahydropyrimidine, H2bim = 2,2’-bi-imidazoline, acac = 2,4-pentandionato, py-imH = 2-(2’-pyridyl)-imidazole)] each react with TEMPO (2,2,6,6-tetramethyl-1-piperidinoxyl) or tBu3PhO• (2,4,6-tri-tert-butylphenoxyl) to give the deprotonated, oxidized metal complex MIIIL, and TEMPOH or tBu3PhOH. Solution equilibrium measurements for the reaction of [CoII(H2bim)3]2+ with TEMPO show a large, negative ground-state entropy for hydrogen atom transfer, −41 ± 2 cal mol−1 K−1. This is even more negative than the ΔSoHAT = −30 ± 2 cal mol−1 K−1 for the two iron complexes and the ΔSoHAT for RuII(acac)2(py-imH) + TEMPO, 4.9 ± 1.1 cal mol−1 K−1, as reported earlier. Calorimetric measurements quantitatively confirm the enthalpy of reaction for [FeII(H2bip)3]2+ + TEMPO, thus also confirming ΔSoHAT. Calorimetry on TEMPOH + tBu3PhO• gives ΔHoHAT = −11.2 ± 0.5 kcal mol−1 which matches the enthalpy predicted from the difference in literature solution BDEs. A brief evaluation of the literature thermochemistry of TEMPOH and tBu3PhOH supports the common assumption that ΔSoHAT ≈ 0 for HAT reactions of organic and small gas-phase molecules. However, this assumption does not hold for transition metal based HAT reactions. The trend in magnitude of |ΔSoHAT| for reactions with TEMPO, RuII(acac)2(py-imH) << [FeII(H2bip)3]2+ = [FeII(H2bim)3]2+ < [CoII(H2bim)3]2+, is surprisingly well predicted by the trends for electron transfer half-reaction entropies, ΔSoET, in aprotic solvents. This is because both ΔSoET and ΔSoHAT have substantial contributions from vibrational entropy, which varies significantly with the metal center involved. The close connection between ΔSoHAT and ΔSoET provides an important

  3. Kinetics of self-decomposition and hydrogen atom transfer reactions of substituted phthalimide N-oxyl radicals in acetic acid.

    PubMed

    Cai, Yang; Koshino, Nobuyoshi; Saha, Basudeb; Espenson, James H

    2005-01-07

    Kinetic data have been obtained for three distinct types of reactions of phthalimide N-oxyl radicals (PINO(.)) and N-hydroxyphthalimide (NHPI) derivatives. The first is the self-decomposition of PINO(.) which was found to follow second-order kinetics. In the self-decomposition of 4-methyl-N-hydroxyphthalimide (4-Me-NHPI), H-atom abstraction competes with self-decomposition in the presence of excess 4-Me-NHPI. The second set of reactions studied is hydrogen atom transfer from NHPI to PINO(.), e.g., PINO(.) + 4-Me-NHPI <=> NHPI + 4-Me-PINO(.). The substantial KIE, k(H)/k(D) = 11 for both forward and reverse reactions, supports the assignment of H-atom transfer rather than stepwise electron-proton transfer. These data were correlated with the Marcus cross relation for hydrogen-atom transfer, and good agreement between the experimental and the calculated rate constants was obtained. The third reaction studied is hydrogen abstraction by PINO(.) from p-xylene and toluene. The reaction becomes regularly slower as the ring substituent on PINO(.) is more electron donating. Analysis by the Hammett equation gave rho = 1.1 and 1.8 for the reactions of PINO(.) with p-xylene and toluene, respectively.

  4. Rate constants for 1,5- and 1,6-hydrogen atom transfer reactions of mono-, di-, and tri-aryl-substituted donors, models for hydrogen atom transfers in polyunsaturated fatty acid radicals.

    PubMed

    DeZutter, Christopher B; Horner, John H; Newcomb, Martin

    2008-03-06

    Rate constants for 1,5- and 1,6-hydrogen atom transfer reactions in models of polyunsaturated fatty acid radicals were measured via laser flash photolysis methods. Photolyses of PTOC (pyridine-2-thioneoxycarbonyl) ester derivatives of carboxylic acids gave primary alkyl radicals that reacted by 1,5-hydrogen transfer from mono-, di-, and tri-aryl-substituted positions or 1,6-hydrogen transfer from di- and tri-aryl-substituted positions to give UV-detectable products. Rate constants for reactions in acetonitrile at room temperature ranged from 1 x 10(4) to 4 x 10(6) s(-1). The activation energies for a matched pair of 1,5- and 1,6-hydrogen atom transfers giving tri-aryl-substituted radicals were approximately equal, as were the primary kinetic isotope effects, but the 1,5-hydrogen atom transfer reaction was 1 order of magnitude faster at room temperature than the 1,6-hydrogen atom transfer reaction due to a less favorable entropy of activation for the 1,6-transfer reaction. Solvent effects on the rate constants for the 1,5-hydrogen atom transfer reaction of the 2-[2-(diphenylmethyl)phenyl]ethyl radical at ambient temperature were as large as a factor of 2 with the reaction increasing in rate in lower polarity solvents. Hybrid density functional theory computations for the 1,5- and 1,6-hydrogen atom transfers of the tri-aryl-substituted donors were in qualitative agreement with the experimental results.

  5. First-principles computation of electron transfer and reaction rate at a perovskite cathode for hydrogen production.

    PubMed

    Liu, C T; Chu, J F; Lin, C K; Hong, C W

    2017-03-22

    The focus of this research is on the electron transfer and its reaction rate at the perovskite cathode of a photoelectrochemical cell for hydrogen production. By employing the density functional theory (DFT), the electron density, projected density of states (PDOS), electron distribution and electron transfer path between [Fe-Fe] hydrogenase and the perovskite cathode can be obtained. Simulation results show that the perovskite cathode is better than traditional cathodes for hydrogen production. Before transmission to the [Fe-Fe] hydrogenase, electron clouds mainly aggregate at the periphery of amine molecules. Simulations also show that the key to hydrogen production at the perovskite structure lies in the organic molecules. Electrons are transferred to the hydrocarbon structural chain before reaching the Fe atoms. The Rice, Ramsperger, Kassel and Marcus (RRKM) theory was used to predict the reaction rates at different temperatures. It was found that the reaction rates are in good agreement with the experimental results. This research provides more physical insight into the electron transfer mechanism during the hydrogen production process.

  6. Hydrogen forming reaction process

    SciTech Connect

    Marianowski, L.G.; Fleming, D.K.

    1989-03-07

    A hydrogen forming process is described, comprising: conducting in a hydrogen production zone a chemical reaction forming mixed gases comprising molecular hydrogen; contacting one side of a hydrogen ion porous and molecular gas nonporous metallic foil with the mixed gases in the hydrogen production zone; dissociating the molecular hydrogen to ionic hydrogen on the one side of the metallic foil; passing the ionic hydrogen through the metallic foil to its other side; and withdrawing hydrogen from the other side of the metallic foil, thereby removing hydrogen from the hydrogen production zone.

  7. Rate-promoting vibrations and coupled hydrogen-electron transfer reactions in the condensed phase: A model for enzymatic catalysis

    NASA Astrophysics Data System (ADS)

    Mincer, Joshua S.; Schwartz, Steven D.

    2004-04-01

    A model is presented for coupled hydrogen-electron transfer reactions in condensed phase in the presence of a rate promoting vibration. Large kinetic isotope effects (KIEs) are found when the hydrogen is substituted with deuterium. While these KIEs are essentially temperature independent, reaction rates do exhibit temperature dependence. These findings agree with recent experimental data for various enzyme-catalyzed reactions, such as the amine dehydrogenases and soybean lipoxygenase. Consistent with earlier results, turning off the promoting vibration results in an increased KIE. Increasing the barrier height increases the KIE, while increasing the rate of electron transfer decreases it. These results are discussed in light of other views of vibrationally enhanced tunneling in enzymes.

  8. A monolith immobilised iridium Cp* catalyst for hydrogen transfer reactions under flow conditions.

    PubMed

    Rojo, Maria Victoria; Guetzoyan, Lucie; Baxendale, Ian R

    2015-02-14

    An immobilised iridium hydrogen transfer catalyst has been developed for use in flow based processing by incorporation of a ligand into a porous polymeric monolithic flow reactor. The monolithic construct has been used for several redox reductions demonstrating excellent recyclability, good turnover numbers and high chemical stability giving negligible metal leaching over extended periods of use.

  9. N-Heterocyclic olefins as ancillary ligands in catalysis: a study of their behaviour in transfer hydrogenation reactions.

    PubMed

    Iturmendi, Amaia; García, Nestor; Jaseer, E A; Munárriz, Julen; Sanz Miguel, Pablo J; Polo, Victor; Iglesias, Manuel; Oro, Luis A

    2016-08-09

    The Ir(i) complexes [Ir(cod)(κP,C,P'-NHO(PPh2))]PF6 and [IrCl(cod)(κC-NHO(OMe))] (cod = 1,5-cyclooctadiene, NHO(PPh2) = 1,3-bis(2-(diphenylphosphanyl)ethyl)-2-methyleneimidazoline) and NHO(OMe) = 1,3-bis(2-(methoxyethyl)-2-methyleneimidazoline), both featuring an N-heterocyclic olefin ligand (NHO), have been tested in the transfer hydrogenation reaction; this representing the first example of the use of NHOs as ancillary ligands in catalysis. The pre-catalyst [Ir(cod)(κP,C,P'-NHO(PPh2))]PF6 has shown excellent activities in the transfer hydrogenation of aldehydes, ketones and imines using (i)PrOH as a hydrogen source, while [IrCl(cod)(κC-NHO(OMe))] decomposes throughout the reaction to give low yields of the hydrogenated product. Addition of one or two equivalents of a phosphine ligand to the latter avoids catalyst decomposition and significantly improves the reaction yields. The reaction mechanism has been investigated by means of stoichiometric studies and theoretical calculations. The formation of the active species ([Ir(κP,C,P'-NHO(PPh2))((i)PrO)]) has been proposed to occur via isopropoxide coordination and concomitant COD dissociation. Moreover, throughout the catalytic cycle the NHO moiety behaves as a hemilabile ligand, thus allowing the catalyst to adopt stable square planar geometries in the transition states, which reduces the energetic barrier of the process.

  10. Proton transfer reactions and hydrogen-bond networks in protein environments

    PubMed Central

    Ishikita, Hiroshi; Saito, Keisuke

    2014-01-01

    In protein environments, proton transfer reactions occur along polar or charged residues and isolated water molecules. These species consist of H-bond networks that serve as proton transfer pathways; therefore, thorough understanding of H-bond energetics is essential when investigating proton transfer reactions in protein environments. When the pKa values (or proton affinity) of the H-bond donor and acceptor moieties are equal, significantly short, symmetric H-bonds can be formed between the two, and proton transfer reactions can occur in an efficient manner. However, such short, symmetric H-bonds are not necessarily stable when they are situated near the protein bulk surface, because the condition of matching pKa values is opposite to that required for the formation of strong salt bridges, which play a key role in protein–protein interactions. To satisfy the pKa matching condition and allow for proton transfer reactions, proteins often adjust the pKa via electron transfer reactions or H-bond pattern changes. In particular, when a symmetric H-bond is formed near the protein bulk surface as a result of one of these phenomena, its instability often results in breakage, leading to large changes in protein conformation. PMID:24284891

  11. Proton-coupled electron transfer versus hydrogen atom transfer in benzyl/toluene, methoxyl/methanol, and phenoxyl/phenol self-exchange reactions.

    PubMed

    Mayer, James M; Hrovat, David A; Thomas, Jennie L; Borden, Weston Thatcher

    2002-09-18

    Degenerate hydrogen atom exchange reactions have been studied using calculations, based on density functional theory (DFT), for (i) benzyl radical plus toluene, (ii) phenoxyl radical plus phenol, and (iii) methoxyl radical plus methanol. The first and third reactions occur via hydrogen atom transfer (HAT) mechanisms. The transition structure (TS) for benzyl/toluene hydrogen exchange has C(2)(h)() symmetry and corresponds to the approach of the 2p-pi orbital on the benzylic carbon of the radical to a benzylic hydrogen of toluene. In this TS, and in the similar C(2) TS for methoxyl/methanol hydrogen exchange, the SOMO has significant density in atomic orbitals that lie along the C-H vectors in the former reaction and nearly along the O-H vectors in the latter. In contrast, the SOMO at the phenoxyl/phenol TS is a pi symmetry orbital within each of the C(6)H(5)O units, involving 2p atomic orbitals on the oxygen atoms that are essentially orthogonal to the O.H.O vector. The transferring hydrogen in this reaction is a proton that is part of a typical hydrogen bond, involving a sigma lone pair on the oxygen of the phenoxyl radical and the O-H bond of phenol. Because the proton is transferred between oxygen sigma orbitals, and the electron is transferred between oxygen pi orbitals, this reaction should be described as a proton-coupled electron transfer (PCET). The PCET mechanism requires the formation of a hydrogen bond, and so is not available for benzyl/toluene exchange. The preference for phenoxyl/phenol to occur by PCET while methoxyl/methanol exchange occurs by HAT is traced to the greater pi donating ability of phenyl over methyl. This results in greater electron density on the oxygens in the PCET transition structure for phenoxyl/phenol, as compared to the PCET hilltop for methoxyl/methanol, and the greater electron density on the oxygens selectively stabilizes the phenoxyl/phenol TS by providing a larger binding energy of the transferring proton.

  12. Isotope effect in the reaction of hydrogen atom transfer from molecules of the matrix to a carboxymethyl radical in crystalline potassium hydrogen malonate

    SciTech Connect

    Syutkin, V.M.; Tolkachev, V.A.

    1987-02-01

    Using the EPR method, the authors have studied the kinetics of abstraction of hydrogen and deuterium atoms by carboxymethyl radicals from molecules of the matrix in potassium hydrogen malonate and its deuterium-substituted analog exposed to ..gamma.. irradiation at 77 K. The authors have shown: (1) the kinetics is not described by an exponential law; (2) the activation energy for abstraction of a hydrogen atom is approx. 45 kJ/mole; (3) when the transfer H atom is replaced by a D atom, the reaction rate at 225 K drops by a factor of approx. 2. The authors discuss the hypothesis that the transfer of an atom is not the limiting step.

  13. Steric effect for proton, hydrogen-atom, and hydride transfer reactions with geometric isomers of NADH-model ruthenium complexes.

    PubMed

    Cohen, Brian W; Polyansky, Dmitry E; Achord, Patrick; Cabelli, Diane; Muckerman, James T; Tanaka, Koji; Thummel, Randolph P; Zong, Ruifa; Fujita, Etsuko

    2012-01-01

    Two isomers, [Ru(1)]2+ (Ru = Ru(bpy)2, bpy = 2,2'-bipyridine, 1 = 2-(pyrid-2'-yl)-1-azaacridine) and [Ru(2)]2+ (2 = 3-(pyrid-2'-yl)-4-azaacridine), are bioinspired model compounds containing the nicotinamide functionality and can serve as precursors for the photogeneration of C-H hydrides for studying reactions pertinent to the photochemical reduction of metal-C1 complexes and/or carbon dioxide. While it has been shown that the structural differences between the azaacridine ligands of [Ru(1)]2+ and [Ru(2)]2+ have a significant effect on the mechanism of formation of the hydride donors, [Ru(1HH)]2+ and [Ru(2HH)]2+, in aqueous solution, we describe the steric implications for proton, net-hydrogen-atom and net-hydride transfer reactions in this work. Protonation of [Ru(2*-)] in aprotic and even protic media is slow compared to that of [Ru(1*-)]+. The net hydrogen-atom transfer between *[Ru(1)]2+ and hydroquinone (H2Q) proceeds by one-step EPT, rather than stepwise electron-proton transfer. Such a reaction was not observed for *[Ru(2)]2+ because the non-coordinated N atom is not easily available for an interaction with H2Q. Finally, the rate of the net hydride ion transfer from [Ru(1HH)]2+ to [Ph3C]+ is significantly slower than that of [Ru (2HH)]2+ owing to steric congestion at the donor site.

  14. Hybrid approach for including electronic and nuclear quantum effects in molecular dynamics simulations of hydrogen transfer reactions in enzymes

    NASA Astrophysics Data System (ADS)

    Billeter, Salomon R.; Webb, Simon P.; Iordanov, Tzvetelin; Agarwal, Pratul K.; Hammes-Schiffer, Sharon

    2001-04-01

    A hybrid approach for simulating proton and hydride transfer reactions in enzymes is presented. The electronic quantum effects are incorporated with an empirical valence bond approach. The nuclear quantum effects of the transferring hydrogen are included with a mixed quantum/classical molecular dynamics method in which the hydrogen nucleus is described as a multidimensional vibrational wave function. The free energy profiles are obtained as functions of a collective reaction coordinate. A perturbation formula is derived to incorporate the vibrationally adiabatic nuclear quantum effects into the free energy profiles. The dynamical effects are studied with the molecular dynamics with quantum transitions (MDQT) surface hopping method, which incorporates nonadiabatic transitions among the adiabatic hydrogen vibrational states. The MDQT method is combined with a reactive flux approach to calculate the transmission coefficient and to investigate the real-time dynamics of reactive trajectories. This hybrid approach includes nuclear quantum effects such as zero point energy, hydrogen tunneling, and excited vibrational states, as well as the dynamics of the complete enzyme and solvent. The nuclear quantum effects are incorporated during the generation of the free energy profiles and dynamical trajectories rather than subsequently added as corrections. Moreover, this methodology provides detailed mechanistic information at the molecular level and allows the calculation of rates and kinetic isotope effects. An initial application of this approach to the enzyme liver alcohol dehydrogenase is also presented.

  15. Exploring excited-state hydrogen atom transfer along an ammonia wire cluster: Competitive reaction paths and vibrational mode selectivity

    NASA Astrophysics Data System (ADS)

    Tanner, Christian; Manca, Carine; Leutwyler, Samuel

    2005-05-01

    The excited-state hydrogen-atom transfer (ESHAT) reaction of the 7-hydroxyquinoline•(NH3)3 cluster involves a crossing from the initially excited π1π* to a π1σ* state. The nonadiabatic coupling between these states induces homolytic dissociation of the O-H bond and H-atom transfer to the closest NH3 molecule, forming a biradical structure denoted HT1, followed by two more Grotthus-type translocation steps along the ammonia wire. We investigate this reaction at the configuration interaction singles level, using a basis set with diffuse orbitals. Intrinsic reaction coordinate calculations of the enol→HT1 step predict that the H-atom transfer is preceded and followed by extensive twisting and bending of the ammonia wire, as well as large O -H⋯NH3 hydrogen bond contraction and expansion. The calculations also predict an excited-state proton transfer path involving synchronous proton motions; however, it lies 20-25kcal/mol above the ESHAT path. Higher singlet and triplet potential curves are calculated along the ESHAT reaction coordinate: Two singlet-triplet curve crossings occur within the HT1 product well and intersystem crossing to these Tn states branches the reaction back to the enol reactant side, decreasing the ESHAT yield. In fact, a product yield of ≈40% 7-ketoquinoline•(NH3)3 is experimentally observed. The vibrational mode selectivity of the enol→HT1 reaction step [C. Manca, C. Tanner, S. Coussan, A. Bach, and S. Leutwyler, J. Chem. Phys. 121, 2578 (2004)] is shown to be due to the large sensitivity of the diffuse πσ* state to vibrational displacements along the intermolecular coordinates.

  16. Temperature-dependent kinetics of charge transfer, hydrogen-atom transfer, and hydrogen-atom expulsion in the reaction of CO+ with CH4 and CD4.

    PubMed

    Melko, Joshua J; Ard, Shaun G; Johnson, Ryan S; Shuman, Nicholas S; Guo, Hua; Viggiano, Albert A

    2014-09-18

    We have determined the rate constants and branching ratios for the reactions of CO(+) with CH4 and CD4 in a variable-temperature selected ion flow tube. We find that the rate constants are collisional for all temperatures measured (193-700 K for CH4 and 193-500 K for CD4). For the CH4 reaction, three product channels are identified, which include charge transfer (CH4(+) + CO), H-atom transfer (HCO(+) + CH3), and H-atom expulsion (CH3CO(+) + H). H-atom transfer is slightly preferred to charge transfer at low temperature, with the charge-transfer product increasing in contribution as the temperature is increased (H-atom expulsion is a minor product for all temperatures). Analogous products are identified for the CD4 reaction. Density functional calculations on the CO(+) + CH4 reaction were also conducted, revealing that the relative temperature dependences of the charge-transfer and H-atom transfer pathways are consistent with an initial charge transfer followed by proton transfer.

  17. Synthetic scope and mechanistic studies of Ru(OH)x/Al2O3-catalyzed heterogeneous hydrogen-transfer reactions.

    PubMed

    Yamaguchi, Kazuya; Koike, Takeshi; Kotani, Miyuki; Matsushita, Mitsunori; Shinachi, Satoshi; Mizuno, Noritaka

    2005-11-04

    Three kinds of hydrogen-transfer reactions, namely racemization of chiral secondary alcohols, reduction of carbonyl compounds to alcohols using 2-propanol as a hydrogen donor, and isomerization of allylic alcohols to saturated ketones, are efficiently promoted by the easily prepared and inexpensive supported ruthenium catalyst Ru(OH)x/Al2O3. A wide variety of substrates, such as aromatic, aliphatic, and heterocyclic alcohols or carbonyl compounds, can be converted into the desired products, under anaerobic conditions, in moderate to excellent yields and without the need for additives such as bases. A larger scale, solvent-free reaction is also demonstrated: the isomerization of 1-octen-3-ol with a substrate/catalyst ratio of 20,000/1 shows a very high turnover frequency (TOF) of 18,400 h(-1), with a turnover number (TON) that reaches 17,200. The catalysis for these reactions is intrinsically heterogeneous in nature, and the Ru(OH)x/Al2O3 recovered after the reactions can be reused without appreciable loss of catalytic performance. The reaction mechanism of the present Ru(OH)x/Al2O3-catalyzed hydrogen-transfer reactions were examined with monodeuterated substrates. After the racemization of (S)-1-deuterio-1-phenylethanol in the presence of acetophenone was complete, the deuterium content at the alpha-position of the corresponding racemic alcohol was 91%, whereas no deuterium was incorporated into the alpha-position during the racemization of (S)-1-phenylethanol-OD. These results show that direct carbon-to-carbon hydrogen transfer occurs via a metal monohydride for the racemization of chiral secondary alcohols and reduction of carbonyl compounds to alcohols. For the isomerization, the alpha-deuterium of 3-deuterio-1-octen-3-ol was selectively relocated at the beta-position of the corresponding ketones (99% D at the beta-position), suggesting the involvement of a 1,4-addition of ruthenium monohydride species to the alpha,beta-unsaturated ketone intermediate. The

  18. Development of Novel Electrode Materials for the Electrocatalysis of Oxygen-Transfer and Hydrogen-Transfer Reactions

    SciTech Connect

    Simpson, Brett Kimball

    2002-01-01

    Throughout this thesis, the fundamental aspects involved in the electrocatalysis of anodic O-transfer reactions and cathodic H-transfer reactions have been studied. The investigation into anodic O-transfer reactions at undoped and Fe(III)[doped MnO2 films] revealed that MnO2 film electrodes prepared by a cycling voltammetry deposition show improved response for DMSO oxidation at the film electrodes vs. the Au substrate. Doping of the MnO2 films with Fe(III) further enhanced electrode activity. Reasons for this increase are believed to involve the adsorption of DMSO by the Fe(III) sites. The investigation into anodic O-transfer reactions at undoped and Fe(III)-doped RuO2 films showed that the Fe(III)-doped RuO2-film electrodes are applicable for anodic detection of sulfur compounds. The Fe(III) sites in the Fe-RuO2 films are speculated to act as adsorption sites for the sulfur species while the Ru(IV) sites function for anodic discharge of H2O to generate the adsorbed OH species. The investigation into cathodic H-transfer reactions, specifically nitrate reduction, at various pure metals and their alloys demonstrated that the incorporation of metals into alloy materials can create a material that exhibits bifunctional properties for the various steps involved in the overall nitrate reduction reaction. The Sb10Sn20Ti70, Cu63Ni37 and Cu25Ni75 alloy electrodes exhibited improved activity for nitrate reduction as compared to their pure component metals. The Cu63Ni37 alloy displayed the highest activity for nitrate reduction. The final investigation was a detailed study of the electrocatalytic activity of cathodic H-transfer reactions (nitrate reduction) at various compositions of Cu-Ni alloy electrodes. Voltammetric response for NO3- at the Cu-Ni alloy electrode is superior to

  19. Hydrogen evolution reaction catalyst

    DOEpatents

    Subbaraman, Ram; Stamenkovic, Vojislav; Markovic, Nenad; Tripkovic, Dusan

    2016-02-09

    Systems and methods for a hydrogen evolution reaction catalyst are provided. Electrode material includes a plurality of clusters. The electrode exhibits bifunctionality with respect to the hydrogen evolution reaction. The electrode with clusters exhibits improved performance with respect to the intrinsic material of the electrode absent the clusters.

  20. Catalytic biorefining of plant biomass to non-pyrolytic lignin bio-oil and carbohydrates through hydrogen transfer reactions.

    PubMed

    Ferrini, Paola; Rinaldi, Roberto

    2014-08-11

    Through catalytic hydrogen transfer reactions, a new biorefining method results in the isolation of depolymerized lignin--a non-pyrolytic lignin bio-oil--in addition to pulps that are amenable to enzymatic hydrolysis. Compared with organosolv lignin, the lignin bio-oil is highly susceptible to further hydrodeoxygenation under low-severity conditions and therefore establishes a unique platform for lignin valorization by heterogeneous catalysis. Overall, the potential of a catalytic biorefining method designed from the perspective of lignin utilization is reported. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Control of interspecies electron transfer flow during anaerobic digestion: dynamic diffusion reaction models for hydrogen gas transfer in microbial flocs.

    PubMed

    Ozturk, S S; Palsson, B O; Thiele, J H

    1989-02-05

    Dynamic reaction diffusion models were used to analyze the consequences of aggregation for syntrophic reactions in methanogenic ecosystems. Flocs from a whey digestor were used to measure all model parameters under the in situ conditions of a particular defined biological system. Fermentation simulations without adjustable parameters could precisely predict the kinetics of H(2) gas production of digestor flocs during syntrophic methanogenesis from ethanol. The results demonstrated a kinetic compartmentalization of H(2) metabolism inside the flocs. The interspecies electron transfer reaction was mildly diffusion controlled. The H(2) gas profiles across the flocs showed high H (2) concentrations inside the flocs at any time. Simulations of the syntrophic metabolism at low substrate concentrations such as in digestors or sediments showed that it is impossible to achieve high H(2) gas turnovers at simultaneously low steady-state H(2) concentrations. This showed a mechanistic contradiction in the concept of postulated low H(2) microenvironments for the anaerobic digestion process. The results of the computer experiments support the conclusion that syntrophic H(2) production may only be a side reaction of H(2) independent interspecies electron transfer in methanogenic ecosystems.

  2. State-To Dynamics of Photoionization and Charge Transfer Reactions Involving Hydrogen Bromide.

    NASA Astrophysics Data System (ADS)

    Xie, Jinchun

    The selection rules for electric-dipole-allowed photoionization of diatomic molecule are derived. From a single rotational level of neutral molecules, the final rotational levels of the ions can be accessed only when their angular momentum, parity, spin, and other quantum numbers satisfy certain relations concerning photoelectron partial waves. Furthermore, under irreducible tensor treatment photoionization probability is simply expressed by three factors: the geometrical coefficient C^ {k}_{p} the rotational linestrength S^{k}_{p } and the square of the tensor moment < {bf T}^{k} _{p}>. This method makes photoionization and electron impact induced transitions as easy to interpret as the well known multiphoton transition. The photoionization HBr^*(nu,J) + hnu to HBr ^+(^2Pi_{i},nu ^+,J^+) + e^- has been studied experimentally. The HBr^*(nu,J) is prepared in three 5ppi Rydberg states: f ^3Delta_2, g ^3Sigma^-_0 ^+ and F ^1Delta _2 via 2-photon excitation, and the product HBr^+(^2Pi_{i} ,nu^+,J^+ ) is probed in a quantum state specific manner using laser induced fluorescence (LIF). Distributions of the HBr^+ product show very strong parity propensities for the type of transition (+/- )-(mp), and also rotational propensities: Delta J = +/-1.5, +/-0.5 for the type of transition (+/-)-( mp) and Delta J = +/-2.5, +/-1.5, +/-0.5 for (+/-)-( +/-). These results are able to be described by using selection rules and irreducible moment presentation. The charge-transfer reaction DBr^+( ^2Pi_{i},nu^+,J ^+) + HBr to HBr ^+(^2Pi_{i^{ '}},nu^{'+ },J^{'+}) + DBr is studied under thermal conditions in a flowing gas mixture of HBr and DBr. The DBr^+(^2Pi _{i},nu^+,J^+) reagent is prepared by using (2 + 1) resonance enhanced multiphoton ionization and the HBr^+(^2 Pi_{i^{'+} },nu^{'+},J^ {'+}) product is detected using LIF. From the measurements of the molecular density and the populations of both HBr^+ and DBr^+, the absolute rate constants k(i,nu^+to i^', nu^{'+}) are determined for

  3. Hydrogen Storage and Transfer

    DTIC Science & Technology

    1975-08-25

    pressurization, chilldown of transfer lines, heat leak through surfaces , liquid trapped in the transfer line (and eventually drained at the end of each...storage of liquid hydrogen are: vacuum with a liquid-nitrogen shield; evacuated foams; evacuated perlite ; ana evacuated multi-layer "super-insulations...example, the 26,000 gal. storage tank frequently employed for rail shipments, contains a 15-inch thickness of perlite insulation, and the hydrogen

  4. Domino rhodium/palladium-catalyzed dehydrogenation reactions of alcohols to acids by hydrogen transfer to inactivated alkenes.

    PubMed

    Trincado, Mónica; Grützmacher, Hansjörg; Vizza, Francesco; Bianchini, Claudio

    2010-03-01

    The combination of the d(8) Rh(I) diolefin amide [Rh(trop(2)N)(PPh(3))] (trop(2)N=bis(5-H-dibenzo[a,d]cyclohepten-5-yl)amide) and a palladium heterogeneous catalyst results in the formation of a superior catalyst system for the dehydrogenative coupling of alcohols. The overall process represents a mild and direct method for the synthesis of aromatic and heteroaromatic carboxylic acids for which inactivated olefins can be used as hydrogen acceptors. Allyl alcohols are also applicable to this coupling reaction and provide the corresponding saturated aliphatic carboxylic acids. This transformation has been found to be very efficient in the presence of silica-supported palladium nanoparticles. The dehydrogenation of benzyl alcohol by the rhodium amide, [Rh]N, follows the well established mechanism of metal-ligand bifunctional catalysis. The resulting amino hydride complex, [RhH]NH, transfers a H(2) molecule to the Pd nanoparticles, which, in turn, deliver hydrogen to the inactivated alkene. Thus a domino catalytic reaction is developed which promotes the reaction R-CH(2)-OH+NaOH+2 alkene-->R-COONa+2 alkane.

  5. Cyclofunctionalization and free-radical-based hydrogen-transfer reactions. An iterative reaction sequence applied to the synthesis of the C(7)-C(16) subunit of zincophorin.

    PubMed

    Guindon, Y; Murtagh, L; Caron, V; Landry, S R; Jung, G; Bencheqroun, M; Faucher, A M; Guérin, B

    2001-08-10

    The strategy considered herein features an iodocyclofunctionalization/hydrogen-transfer reaction sequence for the elaboration of propionate motifs. Proceeding with excellent yield and diastereoselectivity, the synthetic sequence proposed gives access to the anti-anti dipropionate motif when the reduction step is performed under the control of the exocyclic effect. The tandem sequence is applied successfully to the synthesis of the C(7)-C(16) subunit of zincophorin, and iteration of the process gives the desired anti-anti-anti-anti polypropionate stereopentad. Modifications of the reaction sequence--including phenylselenocyclofunctionalization, carbonate hydrolysis, and chelation-controlled radical reduction reactions--lead to the formation of the anti-syn dipropionate motif with remarkable diastereocontrol.

  6. Hydrogen-transfer and charge transfer in photochemical and high energy radiation induced reactions: effects of thiols. Final report, February 1, 1960-january 31, 1979

    SciTech Connect

    Cohen, S G

    1980-03-01

    Absorption of ultraviolet or visible light, or high energy radiation, may lead to highly reactive free radicals. Thiols affect the reactions of these radicals in the following ways: (1) transfer of hydrogen from sulfur of the thiol to a substrate radical, converting the radical to a stable molecule, and the thiol to a reactive thiyl radical; and (2) transfer of hydrogen from a substrate radical or molecule to thiyl, regenerating thiol. The thiol is thus used repeatedly and a single molecule may affect the consequences of many quanta. Three effects may ensue, depending upon the system irradiated: (1) the substrate radicals may be converted by thiol-thiyl to the original molecules, and protection against radiation damage is afforded. (2) The radicals may be converted to molecules not identical with the starting materials, and in both cases damage caused by radical combination processes is prevented. (3) Product yields may be increased where the initial radicals might otherwise regenerate starting materials. It was shown that rates of reaction of excited species can be correlated with triplet energies and reduction potentials, and with ionization potentials, that amines are very reactive toward excited carbonyl compounds of all types, and that yields of products from these reactions can be increased by thiols, leading to increased efficiency in utilization of light.

  7. Role of pendant proton relays and proton-coupled electron transfer on the hydrogen evolution reaction by nickel hangman porphyrins

    PubMed Central

    Bediako, D. Kwabena; Solis, Brian H.; Dogutan, Dilek K.; Roubelakis, Manolis M.; Maher, Andrew G.; Lee, Chang Hoon; Chambers, Matthew B.; Hammes-Schiffer, Sharon; Nocera, Daniel G.

    2014-01-01

    The hangman motif provides mechanistic insights into the role of pendant proton relays in governing proton-coupled electron transfer (PCET) involved in the hydrogen evolution reaction (HER). We now show improved HER activity of Ni compared with Co hangman porphyrins. Cyclic voltammogram data and simulations, together with computational studies using density functional theory, implicate a shift in electrokinetic zone between Co and Ni hangman porphyrins due to a change in the PCET mechanism. Unlike the Co hangman porphyrin, the Ni hangman porphyrin does not require reduction to the formally metal(0) species before protonation by weak acids in acetonitrile. We conclude that protonation likely occurs at the Ni(I) state followed by reduction, in a stepwise proton transfer–electron transfer pathway. Spectroelectrochemical and computational studies reveal that upon reduction of the Ni(II) compound, the first electron is transferred to a metal-based orbital, whereas the second electron is transferred to a molecular orbital on the porphyrin ring. PMID:25298534

  8. Role of pendant proton relays and proton-coupled electron transfer on the hydrogen evolution reaction by nickel hangman porphyrins

    SciTech Connect

    Bediako, D. Kwabena; Solis, Brian H.; Dogutan, Dilek K.; Roubelakis, Manolis M.; Maher, Andrew G.; Lee, Chang Hoon; Chambers, Matthew B.; Hammes-Schiffer, Sharon; Nocera, Daniel G.

    2014-10-08

    Here, the hangman motif provides mechanistic insights into the role of pendant proton relays in governing proton-coupled electron transfer (PCET) involved in the hydrogen evolution reaction (HER). We now show improved HER activity of Ni compared with Co hangman porphyrins. Cyclic voltammogram data and simulations, together with computational studies using density functional theory, implicate a shift in electrokinetic zone between Co and Ni hangman porphyrins due to a change in the PCET mechanism. Unlike the Co hangman porphyrin, the Ni hangman porphyrin does not require reduction to the formally metal(0) species before protonation by weak acids in acetonitrile. We conclude that protonation likely occurs at the Ni(I) state followed by reduction, in a stepwise proton transfer–electron transfer pathway. Spectroelectrochemical and computational studies reveal that upon reduction of the Ni(II) compound, the first electron is transferred to a metal-based orbital, whereas the second electron is transferred to a molecular orbital on the porphyrin ring.

  9. Role of pendant proton relays and proton-coupled electron transfer on the hydrogen evolution reaction by nickel hangman porphyrins

    DOE PAGES

    Bediako, D. Kwabena; Solis, Brian H.; Dogutan, Dilek K.; ...

    2014-10-08

    Here, the hangman motif provides mechanistic insights into the role of pendant proton relays in governing proton-coupled electron transfer (PCET) involved in the hydrogen evolution reaction (HER). We now show improved HER activity of Ni compared with Co hangman porphyrins. Cyclic voltammogram data and simulations, together with computational studies using density functional theory, implicate a shift in electrokinetic zone between Co and Ni hangman porphyrins due to a change in the PCET mechanism. Unlike the Co hangman porphyrin, the Ni hangman porphyrin does not require reduction to the formally metal(0) species before protonation by weak acids in acetonitrile. We concludemore » that protonation likely occurs at the Ni(I) state followed by reduction, in a stepwise proton transfer–electron transfer pathway. Spectroelectrochemical and computational studies reveal that upon reduction of the Ni(II) compound, the first electron is transferred to a metal-based orbital, whereas the second electron is transferred to a molecular orbital on the porphyrin ring.« less

  10. Polymerization of Acetonitrile via a Hydrogen Transfer Reaction from CH3 to CN under Extreme Conditions

    SciTech Connect

    Zheng, Haiyan; Li, Kuo; Cody, George D.; Tulk, Christopher A.; Dong, Xiao; Gao, Guoying; Molaison, Jamie J.; Liu, Zhenxian; Feygenson, Mikhail; Yang, Wenge; Ivanov, Ilia N.; Basile, Leonardo; Idrobo, Juan-Carlos; Guthrie, Malcolm; Mao, Ho-kwang

    2016-08-25

    Acetonitrile (CH3CN) is the simplest and one of the most stable nitriles. Reactions usually occur on the C≡N triple bond, while the C-H bond is very inert and can only be activated by a very strong base or a metal catalyst. In this study, it is demonstrated that C-H bonds can be activated by the cyano group under high pressure, but at room temperature. The hydrogen atom transfers from the CH3 to CN along the CH···N hydrogen bond, which produces an amino group and initiates polymerization to form a dimer, 1D chain, and 2D nanoribbon with mixed sp2 and sp3 bonded carbon. Lastly, it transforms into a graphitic polymer by eliminating ammonia. This study shows that applying pressure can induce a distinctive reaction which is guided by the structure of the molecular crystal. It highlights the fact that very inert C-H can be activated by high pressure, even at room temperature and without a catalyst.

  11. Polymerization of Acetonitrile via a Hydrogen Transfer Reaction from CH3 to CN under Extreme Conditions

    SciTech Connect

    Zheng, Haiyan; Li, Kuo; Cody, George D.; Tulk, Christopher A.; Dong, Xiao; Gao, Guoying; Molaison, Jamie J.; Liu, Zhenxian; Feygenson, Mikhail; Yang, Wenge; Ivanov, Ilia N.; Basile, Leonardo; Idrobo, Juan-Carlos; Guthrie, Malcolm; Mao, Ho-kwang

    2016-08-25

    Acetonitrile (CH3CN) is the simplest and one of the most stable nitriles. Reactions usually occur on the C≡N triple bond, while the C-H bond is very inert and can only be activated by a very strong base or a metal catalyst. In this study, it is demonstrated that C-H bonds can be activated by the cyano group under high pressure, but at room temperature. The hydrogen atom transfers from the CH3 to CN along the CH···N hydrogen bond, which produces an amino group and initiates polymerization to form a dimer, 1D chain, and 2D nanoribbon with mixed sp2 and sp3 bonded carbon. Lastly, it transforms into a graphitic polymer by eliminating ammonia. This study shows that applying pressure can induce a distinctive reaction which is guided by the structure of the molecular crystal. It highlights the fact that very inert C-H can be activated by high pressure, even at room temperature and without a catalyst.

  12. Hybrid quantum/classical molecular dynamics simulations of the proton transfer reactions catalyzed by ketosteroid isomerase: analysis of hydrogen bonding, conformational motions, and electrostatics.

    PubMed

    Chakravorty, Dhruva K; Soudackov, Alexander V; Hammes-Schiffer, Sharon

    2009-11-10

    Hybrid quantum/classical molecular dynamics simulations of the two proton transfer reactions catalyzed by ketosteroid isomerase are presented. The potential energy surfaces for the proton transfer reactions are described with the empirical valence bond method. Nuclear quantum effects of the transferring hydrogen increase the rates by a factor of approximately 8, and dynamical barrier recrossings decrease the rates by a factor of 3-4. For both proton transfer reactions, the donor-acceptor distance decreases substantially at the transition state. The carboxylate group of the Asp38 side chain, which serves as the proton acceptor and donor in the first and second steps, respectively, rotates significantly between the two proton transfer reactions. The hydrogen-bonding interactions within the active site are consistent with the hydrogen bonding of both Asp99 and Tyr14 to the substrate. The simulations suggest that a hydrogen bond between Asp99 and the substrate is present from the beginning of the first proton transfer step, whereas the hydrogen bond between Tyr14 and the substrate is virtually absent in the first part of this step but forms nearly concurrently with the formation of the transition state. Both hydrogen bonds are present throughout the second proton transfer step until partial dissociation of the product. The hydrogen bond between Tyr14 and Tyr55 is present throughout both proton transfer steps. The active site residues are more mobile during the first step than during the second step. The van der Waals interaction energy between the substrate and the enzyme remains virtually constant along the reaction pathway, but the electrostatic interaction energy is significantly stronger for the dienolate intermediate than for the reactant and product. Mobile loop regions distal to the active site exhibit significant structural rearrangements and, in some cases, qualitative changes in the electrostatic potential during the catalytic reaction. These results suggest

  13. Hydrogen-atom transfer reactions from ortho-alkoxy-substituted phenols: an experimental approach.

    PubMed

    Amorati, Riccardo; Menichetti, Stefano; Mileo, Elisabetta; Pedulli, Gian Franco; Viglianisi, Caterina

    2009-01-01

    The role of intramolecular hydrogen bonding (HB) on the bond-dissociation enthalpy (BDE) of the phenolic O-H and on the kinetics of H-atom transfer to peroxyl radicals (k(inh)) of several 2-alkoxyphenols was experimentally quantified by the EPR equilibration technique and by inhibited autoxidation studies. These compounds can be regarded as useful models for studying the H-atom abstraction from 2-OR phenols, such as many lignans, reduced coenzyme Q and curcumin. The effects of the various substituents on the BDE(O-H) of 2-methoxy, 2-methoxy-4-methyl, 2,4-dimethoxyphenols versus phenol were measured in benzene solution as -1.8; -3.7; -5.4 kcal mol(-1), respectively. In the case of polymethoxyphenols, significant deviations from the BDE(O-H) values predicted by the additive effects of the substituents were found. The logarithms of the k(inh) constants in cumene were inversely related to the BDE(O-H) values, obeying a linear Evans-Polanyi plot with the same slope of other substituted phenols and a y-axis intercept slightly smaller than that of 2,6-dimethyl phenols. In the cases of phenols having the 2-OR substituent included in a five-membered condensed ring (i.e, compounds 9-11), both conformational isomers in which the OH group points toward or away from the oxygen in position 2 were detected by FTIR spectroscopy and the intramolecular HB strength was thus estimated. The contribution to the BDE(O-H) of the ortho-OR substituent in 9, corrected for intramolecular HB formation, was calculated as -5.6 kcal mol(-1). The similar behaviour of cyclic and non-cyclic ortho-alkoxy derivatives clearly showed that the preferred conformation of the OMe group in ortho-methoxyphenoxyl radicals is that in which the methyl group points away from the phenoxyl oxygen, in contrast to the geometries predicted by DFT calculations.

  14. Kinetic solvent effects on the reactions of the cumyloxyl radical with tertiary amides. Control over the hydrogen atom transfer reactivity and selectivity through solvent polarity and hydrogen bonding.

    PubMed

    Salamone, Michela; Mangiacapra, Livia; Bietti, Massimo

    2015-01-16

    A laser flash photolysis study on the role of solvent effects on hydrogen atom transfer (HAT) from the C-H bonds of N,N-dimethylformamide (DMF), N,N-dimethylacetamide (DMA), N-formylpyrrolidine (FPRD), and N-acetylpyrrolidine (APRD) to the cumyloxyl radical (CumO(•)) was carried out. From large to very large increases in the HAT rate constant (kH) were measured on going from MeOH and TFE to isooctane (kH(isooctane)/kH(MeOH) = 5-12; kH(isooctane)/kH(TFE) > 80). This behavior was explained in terms of the increase in the extent of charge separation in the amides determined by polar solvents through solvent-amide dipole-dipole interactions and hydrogen bonding, where the latter interactions appear to play a major role with strong HBD solvents such as TFE. These interactions increase the electron deficiency of the amide C-H bonds, deactivating these bonds toward HAT to an electrophilic radical such as CumO(•), indicating that changes in solvent polarity and hydrogen bonding can provide a convenient method for deactivation of the C-H bond of amides toward HAT. With DMF, a solvent-induced change in HAT selectivity was observed, suggesting that solvent effects can be successfully employed to control the reaction selectivity in HAT-based procedures for the functionalization of C-H bonds.

  15. Reactions of OOH radical with beta-carotene, lycopene, and torulene: hydrogen atom transfer and adduct formation mechanisms.

    PubMed

    Galano, Annia; Francisco-Marquez, Misaela

    2009-08-13

    The relative free radical scavenging activity of beta-carotene, lycopene, and torulene toward OOH radicals has been studied using density functional theory. Hydrogen atom transfer (HAT) and radical adduct formation (RAF) mechanisms have been considered. All the possible reaction sites have been included in the modeling, and detailed branching ratios are reported for the first time. The reactions of hydrocarbon carotenoids (Car) with peroxyl radicals, in both polar and nonpolar environments, are predicted to proceed via RAF mechanism, with contributions higher than 98% to the overall OOH + Car reactions. Lycopene and torulene were found to be more reactive than beta-carotene. In nonpolar environments the reactivity of the studied carotenoids toward peroxyl radical follows the trend LYC > TOR > BC, whereas in aqueous solutions it is TOR > LYC > BC. OOH adducts are predicted to be formed mainly at the terminal sites of the conjugated polyene chains. The main addition sites were found to be C5 for beta-carotene and lycopene and C30 for torulene. The general agreement between the calculated magnitudes and the available experimental data supports the predictions from this work.

  16. Single step synthesis of gold-amino acid composite, with the evidence of the catalytic hydrogen atom transfer (HAT) reaction, for the electrochemical recognition of Serotonin

    NASA Astrophysics Data System (ADS)

    Choudhary, Meenakshi; Siwal, Samarjeet; Nandi, Debkumar; Mallick, Kaushik

    2016-03-01

    A composite architecture of amino acid and gold nanoparticles has been synthesized using a generic route of 'in-situ polymerization and composite formation (IPCF)' [1,2]. The formation mechanism of the composite has been supported by a model hydrogen atom (H•≡H++e-) transfer (HAT) type of reaction which belongs to the proton coupled electron transfer (PCET) mechanism. The 'gold-amino acid composite' was used as a catalyst for the electrochemical recognition of Serotonin.

  17. Hydrogen Bonds in Excited State Proton Transfer

    NASA Astrophysics Data System (ADS)

    Horke, D. A.; Watts, H. M.; Smith, A. D.; Jager, E.; Springate, E.; Alexander, O.; Cacho, C.; Chapman, R. T.; Minns, R. S.

    2016-10-01

    Hydrogen bonding interactions between biological chromophores and their surrounding protein and solvent environment significantly affect the photochemical pathways of the chromophore and its biological function. A common first step in the dynamics of these systems is excited state proton transfer between the noncovalently bound molecules, which stabilizes the system against dissociation and principally alters relaxation pathways. Despite such fundamental importance, studying excited state proton transfer across a hydrogen bond has proven difficult, leaving uncertainties about the mechanism. Through time-resolved photoelectron imaging measurements, we demonstrate how the addition of a single hydrogen bond and the opening of an excited state proton transfer channel dramatically changes the outcome of a photochemical reaction, from rapid dissociation in the isolated chromophore to efficient stabilization and ground state recovery in the hydrogen bonded case, and uncover the mechanism of excited state proton transfer at a hydrogen bond, which follows sequential hydrogen and charge transfer processes.

  18. Hydrogen tunnelling in enzyme-catalysed H-transfer reactions: flavoprotein and quinoprotein systems

    PubMed Central

    Sutcliffe, Michael J; Masgrau, Laura; Roujeinikova, Anna; Johannissen, Linus O; Hothi, Parvinder; Basran, Jaswir; Ranaghan, Kara E; Mulholland, Adrian J; Leys, David; Scrutton, Nigel S

    2006-01-01

    It is now widely accepted that enzyme-catalysed C–H bond breakage occurs by quantum mechanical tunnelling. This paradigm shift in the conceptual framework for these reactions away from semi-classical transition state theory (TST, i.e. including zero-point energy, but with no tunnelling correction) has been driven over the recent years by experimental studies of the temperature dependence of kinetic isotope effects (KIEs) for these reactions in a range of enzymes, including the tryptophan tryptophylquinone-dependent enzymes such as methylamine dehydrogenase and aromatic amine dehydrogenase, and the flavoenzymes such as morphinone reductase and pentaerythritol tetranitrate reductase, which produced observations that are also inconsistent with the simple Bell-correction model of tunnelling. However, these data—especially, the strong temperature dependence of reaction rates and the variable temperature dependence of KIEs—are consistent with other tunnelling models (termed full tunnelling models), in which protein and/or substrate fluctuations generate a configuration compatible with tunnelling. These models accommodate substrate/protein (environment) fluctuations required to attain a configuration with degenerate nuclear quantum states and, when necessary, motion required to increase the probability of tunnelling in these states. Furthermore, tunnelling mechanisms in enzymes are supported by atomistic computational studies performed within the framework of modern TST, which incorporates quantum nuclear effects. PMID:16873125

  19. Quantitative kinetic analysis of hydrogen transfer reactions from dietary polyphenols to the DPPH radical.

    PubMed

    Goupy, Pascale; Dufour, Claire; Loonis, Michele; Dangles, Olivier

    2003-01-29

    Diphenylpicrylhydrazyl (DPPH) is widely used for quickly assessing the ability of polyphenols to transfer labile H atoms to radicals, a likely mechanism of antioxidant protection. This popular test generally pays no attention to the kinetics of H atom transfer, which however could be even more important than the total H-atom-donating capacities (stoichiometry, EC50) typically evaluated. In the present work, a series of dietary polyphenols belonging to the most representative families (flavonols from onion, flavanol monomers and oligomers from barley, and caffeic acid and caffeoyl esters from artichoke and endive) are characterized not only by their total stoichiometries (n(tot)) but also by their rate constants of first H atom abstraction by DPPH (k(1)), deduced from the kinetic analysis of the decay of the DPPH visible band following addition of the antioxidant. The mildly reactive DPPH radical allows a good discrimation between polyphenols, as demonstrated by the relatively large ranges of k(1) (ca. 400-5000 M(-)(1) s(-)(1)) and n(tot) (ca. 1-5) values typically measured with antioxidants having a single polyphenolic nucleus. With antioxidants displaying more than one polyphenolic nucleus (procyanidin oligomers, dicaffeoyl esters), the kinetic analysis makes it possible to demonstrate significant differences in reactivity between the subunits (two distinct k(1) values whose ratio lies in the range 3-10) and nonadditive stoichiometries.

  20. Isotope Effects as Probes for Enzyme Catalyzed Hydrogen-Transfer Reactions

    PubMed Central

    Roston, Daniel; Islam, Zahidul; Kohen, Amnon

    2015-01-01

    Kinetic Isotope effects (KIEs) have long served as a probe for the mechanisms of both enzymatic and solution reactions. Here, we discuss various models for the physical sources of KIEs, how experimentalists can use those models to interpret their data, and how the focus of traditional models has grown to a model that includes motion of the enzyme and quantum mechanical nuclear tunneling. We then present two case studies of enzymes, thymidylate synthase and alcohol dehydrogenase, and discuss how KIEs have shed light on the C-H bond cleavages those enzymes catalyze. We will show how the combination of both experimental and computational studieshas changed our notion of how these enzymes exert their catalytic powers. PMID:23673528

  1. Role of bonding mechanisms during transfer hydrogenation reaction on heterogeneous catalysts of platinum nanoparticles supported on zinc oxide nanorods

    NASA Astrophysics Data System (ADS)

    Al-Alawi, Reem A.; Laxman, Karthik; Dastgir, Sarim; Dutta, Joydeep

    2016-07-01

    For supported heterogeneous catalysis, the interface between a metal nanoparticle and the support plays an important role. In this work the dependency of the catalytic efficiency on the bonding chemistry of platinum nanoparticles supported on zinc oxide (ZnO) nanorods is studied. Platinum nanoparticles were deposited on ZnO nanorods (ZnO NR) using thermal and photochemical processes and the effects on the size, distribution, density and chemical state of the metal nanoparticles upon the catalytic activities are presented. The obtained results indicate that the bonding at Pt-ZnO interface depends on the deposition scheme which can be utilized to modulate the surface chemistry and thus the activity of the supported catalysts. Additionally, uniform distribution of metal on the catalyst support was observed to be more important than the loading density. It is also found that oxidized platinum Pt(IV) (platinum hydroxide) provided a more suitable surface for enhancing the transfer hydrogenation reaction of cyclohexanone with isopropanol compared to zero valent platinum. Photochemically synthesized ZnO supported nanocatalysts were efficient and potentially viable for upscaling to industrial applications.

  2. Reversible hydrogen transfer reactions in thiyl radicals from cysteine and related molecules: absolute kinetics and equilibrium constants determined by pulse radiolysis.

    PubMed

    Nauser, Thomas; Koppenol, Willem H; Schöneich, Christian

    2012-05-10

    The mercapto group of cysteine (Cys) is a predominant target for oxidative modification, where one-electron oxidation leads to the formation of Cys thiyl radicals, CysS(•). These Cys thiyl radicals enter 1,2- and 1,3-hydrogen transfer reactions, for which rate constants are reported in this paper. The products of these 1,2- and 1,3-hydrogen transfer reactions are carbon-centered radicals at position C(3) (α-mercaptoalkyl radicals) and C(2) ((•)C(α) radicals) of Cys, respectively. Both processes can be monitored separately in Cys analogues such as cysteamine (CyaSH) and penicillamine (PenSH). At acidic pH, thiyl radicals from CyaSH permit only the 1,2-hydrogen transfer according to equilibrium 12, (+)H(3)NCH(2)CH(2)S(• )⇌ (+)H(3)NCH(2)(•)CH-SH, where rate constants for forward and reverse reaction are k(12) ≈ 10(5) s(-1) and k(-12) ≈ 1.5 × 10(5)s(-1), respectively. In contrast, only the 1,3-hydrogen transfer is possible for thiyl radicals from PenSH according to equilibrium 14, ((+)H(3)N/CO(2)H)C(α)-C(CH(3))(2)-S(•) ⇌ ((+)H(3)N/CO(2)H)(•)C(α)-C(CH(3))(2)-SH, where rate constants for the forward and the reverse reaction are k(14) = 8 × 10(4) s(-1) and k(-14) = 1.4 × 10(6) s(-1). The (•)C(α) radicals from PenSH and Cys have the additional opportunity for β-elimination of HS(•)/S(•-), which proceeds with k(39) ≈ (3 ± 1) × 10(4) s(-1) from (•)C(α) radicals from PenSH and k(-34) ≈ 5 × 10(3) s(-1) from (•)C(α) radicals from Cys. The rate constants quantified for the 1,2- and 1,3-hydrogen transfer reactions can be used as a basis to calculate similar processes for Cys thiyl radicals in proteins, where hydrogen transfer reactions, followed by the addition of oxygen, may lead to the irreversible modification of target proteins.

  3. Reversible Hydrogen Transfer Reactions in Thiyl Radicals From Cysteine and Related Molecules: Absolute Kinetics and Equilibrium Constants Determined by Pulse Radiolysis

    PubMed Central

    Koppenol, Willem H.

    2013-01-01

    The mercapto group of cysteine (Cys) is a predominant target for oxidative modification, where one-electron oxidation leads to the formation of Cys thiyl radicals, CysS•. These Cys thiyl radicals enter 1,2- and 1,3-hydrogen transfer reactions, for which rate constants are reported in this paper. The products of these 1,2- and 1,3-hydrogen transfer reactions are carbon-centered radicals at position C3 (α-mercaptoalkyl radicals) and C2 (•Cα radicals) of Cys, respectively. Both processes can be monitored separately in Cys analogues such as cysteamine (CyaSH) and penicillamine (PenSH). At acidic pH, thiyl radicals from CyaSH permit only the 1,2-hydrogen transfer according to equilibrium 12, +H3NCH2CH2S• ⇌ +H3NCH2 •CH–SH, where rate constants for forward and reverse reaction are k12 ≈ 105 s−1 and k−12 ≈ 1.5 × 105s−1, respectively. In contrast, only the 1,3-hydrogen transfer is possible for thiyl radicals from PenSH according to equilibrium 14, (+H3N/CO2H)Cα–C(CH3)2–S• ⇌ (+H3N/CO2H)•Cα–C(CH3)2–SH, where rate constants for the forward and the reverse reaction are k14 = 8 × 104 s−1 and k−14 = 1.4 × 106 s−1. The •Cα radicals from PenSH and Cys have the additional opportunity for β-elimination of HS•/S•−, which proceeds with k39 ≈ (3 ± 1) × 104 s−1 from •Cα radicals from PenSH and k−34 ≈ 5 × 103 s−1 from •Cα radicals from Cys. The rate constants quantified for the 1,2- and 1,3-hydrogen transfer reactions can be used as a basis to calculate similar processes for Cys thiyl radicals in proteins, where hydrogen transfer reactions, followed by the addition of oxygen, may lead to the irreversible modification of target proteins. PMID:22483034

  4. Three-carbon Dowd-Beckwith ring expansion reaction versus intramolecular 1,5-hydrogen transfer reaction: a theoretical study.

    PubMed

    Ardura, Diego; Sordo, Tomás L

    2005-11-11

    [Reaction: see text]. The evolution of the primary radicals formed by addition of AIBN/HSnBu3 to methyl 1-(3-iodopropyl)-5-oxocyclopentanecarboxylate, methyl (1R,2R)-1-(3-iodopropyl)-2-methyl-5-oxocyclopentanecarboxylate, and methyl (1R,2S)-1-(3-iodopropyl)-2-methyl-5-oxocyclopentanecarboxylate in benzene has been theoretically investigated by ROMP2/6-311++G(2d,2p)//UB3LYP/6-31G(d,p) calculations taking into account the effect of solvent through a PCM-UAHF model. According to the theoretical results, for methyl 1-(3-iodopropyl)-5-oxocyclopentanecarboxylate and methyl (1R,2S)-1-(3-iodopropyl)-2-methyl-5-oxocyclopentanecarboxylate the major product is the cyclooctane derivative from the three-carbon ring expansion, whereas for methyl (1R,2R)-1-(3-iodopropyl)-2-methyl-5-oxocyclopentanecarboxylate the major product is that corresponding to the 1,5-H transposition in agreement with the experimental findings. This different behavior is a consequence of several factors determining the relative energy barriers. The methyl substituent destabilizes the ring expansion process for methyl (1R,2R)-1-(3-iodopropyl)-2-methyl-5-oxocyclopentanecarboxylate because of steric repulsion but favors it in the case of the beta-trans-substituted substrate because it makes possible the evolution of the system along more favorable conformations. The methyl group also favors the 1,5-H transposition rendering the transposed product a tertiary radical. The second stage of the ring expansion process is stabilized by resonance.

  5. Structural and medium effects on the reactions of the cumyloxyl radical with intramolecular hydrogen bonded phenols. The interplay between hydrogen-bonding and acid-base interactions on the hydrogen atom transfer reactivity and selectivity.

    PubMed

    Salamone, Michela; Amorati, Riccardo; Menichetti, Stefano; Viglianisi, Caterina; Bietti, Massimo

    2014-07-03

    A time-resolved kinetic study on the reactions of the cumyloxyl radical (CumO(•)) with intramolecularly hydrogen bonded 2-(1-piperidinylmethyl)phenol (1) and 4-methoxy-2-(1-piperidinylmethyl)phenol (2) and with 4-methoxy-3-(1-piperidinylmethyl)phenol (3) has been carried out. In acetonitrile, intramolecular hydrogen bonding protects the phenolic O-H of 1 and 2 from attack by CumO(•) and hydrogen atom transfer (HAT) exclusively occurs from the C-H bonds that are α to the piperidine nitrogen (α-C-H bonds). With 3 HAT from both the phenolic O-H and the α-C-H bonds is observed. In the presence of TFA or Mg(ClO4)2, protonation or Mg(2+) complexation of the piperidine nitrogen removes the intramolecular hydrogen bond in 1 and 2 and strongly deactivates the α-C-H bonds of the three substrates. Under these conditions, HAT to CumO(•) exclusively occurs from the phenolic O-H group of 1-3. These results clearly show that in these systems the interplay between intramolecular hydrogen bonding and Brønsted and Lewis acid-base interactions can drastically influence both the HAT reactivity and selectivity. The possible implications of these findings are discussed in the framework of the important role played by tyrosyl radicals in biological systems.

  6. Hydrogen tunneling in enzyme reactions

    SciTech Connect

    Cha, Y.; Murray, C.J.; Klinman, J.P.

    1989-03-10

    Primary and secondary protium-to-tritium (H/T) and deuterium-to-tritium (D/T) kinetic isotope effects for the catalytic oxidation of benzyl alcohol to benzaldehyde by yeast alcohol dehydrogenase (YADH) at 25 degrees Celsius have been determined. Previous studies showed that this reaction is nearly or fully rate limited by the hydrogen-transfer step. Semiclassical mass considerations that do not include tunneling effects would predict that kH/kT = (kD/kT)3.26, where kH, kD, and kT are the rate constants for the reaction of protium, deuterium, and tritium derivatives, respectively. Significant deviations from this relation have now been observed for both primary and especially secondary effects, such that experimental H/T ratios are much greater than those calculated from the above expression. These deviations also hold in the temperature range from 0 to 40 degrees Celsius. Such deviations were previously predicted to result from a reaction coordinate containing a significant contribution from hydrogen tunneling.

  7. Vibrationally Enhanced Hydrogen Tunneling in Enzymatic Reactions

    NASA Astrophysics Data System (ADS)

    Bruno, William James

    1990-01-01

    Evidence for tunneling in enzymatic hydrogen transfer reactions has recently been observed. We argue that such reactions are likely to proceed via ground-state tunneling through a barrier which has been greatly shortened by thermally activated vibrational fluctuations. These fluctuations enhance the tunneling rate, cause it to depend on temperature and lead to a modest, temperature dependent "kinetic isotope effect" (KIE), which is defined to be the factor by which the reaction slows down due to isotopic substitution of the transferred hydrogen. We present a quantitative model for this mechanism which leads to a simple expression for the KIE in terms of two parameters: the tunneling action, S, and the ratio of its derivatives, S^ {'2}/S^{ ''}. This expression is used to fit the four KIE quantities measured in the bovine serum amine oxidase (BSAO) system: the hydrogen/tritium and hydrogen/deuterium KIE's and their Arrhenius slopes.

  8. Reactions of the phthalimide N-oxyl radical (PINO) with activated phenols: the contribution of π-stacking interactions to hydrogen atom transfer rates.

    PubMed

    D'Alfonso, Claudio; Bietti, Massimo; DiLabio, Gino A; Lanzalunga, Osvaldo; Salamone, Michela

    2013-02-01

    The kinetics of reactions of the phthalimide N-oxyl radical (PINO) with a series of activated phenols (2,2,5,7,8-pentamethylchroman-6-ol (PMC), 2,6-dimethyl- and 2,6-di-tert-butyl-4-substituted phenols) were investigated by laser flash photolysis in CH(3)CN and PhCl in order to establish if the reactions with PINO can provide a useful tool for evaluating the radical scavenging ability of phenolic antioxidants. On the basis of the small values of deuterium kinetic isotope effects, the relatively high and negative ρ values in the Hammett correlations and the results of theoretical calculations, we suggest that these reactions proceed by a hydrogen atom transfer (HAT) mechanism having a significant degree of charge transfer resulting from a π-stacked conformation between PINO and the aromatic ring of the phenols. Kinetic solvent effects were analyzed in detail for the hydrogen transfer from 2,4,6-trimethylphenol to PINO and the data obtained are in accordance with the Snelgrove-Ingold equation for HAT. Experimental rate constants for the reactions of PINO with activated phenols are in accordance with those predicted by applying the Marcus cross relation.

  9. Proton-electron transfer pathways in the reactions of peroxyl and dpph˙ radicals with hydrogen-bonded phenols.

    PubMed

    Amorati, Riccardo; Menichetti, Stefano; Viglianisi, Caterina; Foti, Mario C

    2012-12-18

    The kinetics of the reaction of peroxyl and dpph˙ radicals with phenols H-bonded to N-bases have been studied for the first time. Electron-transfer processes are observed in MeCN but only with the dpph˙ radical.

  10. Kinetic Study of the Reaction of the Phthalimide-N-oxyl Radical with Amides: Structural and Medium Effects on the Hydrogen Atom Transfer Reactivity and Selectivity.

    PubMed

    Bietti, Massimo; Forcina, Veronica; Lanzalunga, Osvaldo; Lapi, Andrea; Martin, Teo; Mazzonna, Marco; Salamone, Michela

    2016-12-02

    A kinetic study of the hydrogen atom transfer (HAT) reactions from a series of secondary N-(4-X-benzyl)acetamides and tertiary amides to the phthalimide-N-oxyl radical (PINO) has been carried out. The results indicate that HAT is strongly influenced by structural and medium effects; in particular, the addition of Brønsted and Lewis acids determines a significant deactivation of C-H bonds α to the amide nitrogen of these substrates. Thus, by changing the reaction medium, it is possible to carefully control the regioselectivity of the aerobic oxidation of amides catalyzed by N-hydroxyphthalimide, widening the synthetic versatility of this process.

  11. Reactions of the cumyloxyl radical with secondary amides. The influence of steric and stereoelectronic effects on the hydrogen atom transfer reactivity and selectivity.

    PubMed

    Salamone, Michela; Basili, Federica; Mele, Riccardo; Cianfanelli, Marco; Bietti, Massimo

    2014-12-19

    A time-resolved kinetic study of the hydrogen atom transfer (HAT) reactions from secondary alkanamides to the cumyloxyl radical was carried out in acetonitrile. HAT predominantly occurs from the N-alkyl α-C-H bonds, and a >60-fold decrease in kH was observed by increasing the steric hindrance of the acyl and N-alkyl groups. The role of steric and stereoelectronic effects on the reactivity and selectivity is discussed in the framework of HAT reactions from peptides.

  12. Electron transfer reactions

    NASA Astrophysics Data System (ADS)

    Marcus, R. A.

    1989-07-01

    During the tenure of this contract research was performed on a number of aspects of electron transfer reactions (solvent dynamics including vibrational effects, non-Debye solvent dynamics, early steps in bacterial photosynthesis) and of the use of artificial intelligence searching methods, the latter, in part, as a prelude to our current study of electron transfer reactions in structurally complicated systems such as proteins. Seven Technical Reports were issued during this period, and research on several topics was initiated: the study of the relation between charge transfer absorption and fluorescence spectra and the inverted region, a nonadiabatic/adiabatic coherent mechanism for electron transfers, and electron transfers between two immiscible-liquid phases and between a semiconductor and an electrolyte.

  13. Multiple hydrogen bonds tuning guest/host excited-state proton transfer reaction: its application in molecular recognition.

    PubMed

    Chou, He-Chun; Hsu, Chin-Hao; Cheng, Yi-Ming; Cheng, Chung-Chih; Liu, Hsiao-Wei; Pu, Shih-Chieh; Chou, Pi-Tai

    2004-02-18

    A molecular recognition concept exploiting multiple-hydrogen-bond fine-tuned excited-state proton-transfer (ESPT) was conveyed using 3,4,5,6-tetrahydrobis(pyrido[3,2-g]indolo)[2,3-a:3',2'-j]acridine (1a). The catalytic type 1a/carboxylic acids hydrogen-bonding (HB) complexes undergo ultrafast ESPT, resulting in an anomalously large Stokes shifted tautomer emission (lambdamax approximately 600 nm). Albeit forming a quadruple HB complex, ESPT is prohibited in the noncatalytic-type 1a/urea complexes (lambdamax approximately 430 nm). The HB configuration tuning ESPT properties lead to a feasible design for sensing multiple-HB-site analytes of biological interest.

  14. Theoretical Studies of the Role of Vibrational Excitation on the Dynamics of the Hydrogen-Transfer Reaction of F(^2P) + HCl → FH + Cl({^2}P)

    NASA Astrophysics Data System (ADS)

    Ray, Sara E.; Vissers, Gé W. M.; McCoy, Anne B.

    2009-06-01

    Hydrogen-transfer reactions are probed through vibrational excitation of the HCl bond in the pre-reactive F\\cdotsHCl complex. Such open-shell species provide a challenge for quantum dynamical calculations due to the need to take into account multiple potential energy surfaces to accurately describe the system.A three-dimensional, fully-coupled potential energy surface has been constructed based on electronic energies calculated at the multireference configuration interaction+Davidson correction (MRCI+Q) level of theory with an aug-cc-pVnZ (n=2,3,4) basis. Spin orbit calculations have also been included. Here we present the results of time-dependent quantum wave packet calculations on the asymmetric hydrogen-transfer reaction of F(^2P) + HCl. In these calculations, the reaction is initiated by vibrationally exciting the HCl stretching motion in the pre-reactive F\\cdotsHCl complex. The wave packet is propagated on the coupled potential energy surfaces. Product state distributions were calculated for reactions initiated in the first three vibrationally excited states of HCl, v=1-3. M. P. Deskevich, M. Y. Hayes, K. Takahashi, R. T. Skodje, and D. J. Nesbitt J. Chem. Phys. 124 (22) 224303 (2006) M. P. Deskevich and D. J. Nesbitt private communication(2007)

  15. Importance of π-stacking interactions in the hydrogen atom transfer reactions from activated phenols to short-lived N-oxyl radicals.

    PubMed

    Mazzonna, Marco; Bietti, Massimo; DiLabio, Gino A; Lanzalunga, Osvaldo; Salamone, Michela

    2014-06-06

    A kinetic study of the hydrogen atom transfer from activated phenols (2,6-dimethyl- and 2,6-di-tert-butyl-4-substituted phenols, 2,2,5,7,8-pentamethylchroman-6-ol, caffeic acid, and (+)-cathechin) to a series of N-oxyl radical (4-substituted phthalimide-N-oxyl radicals (4-X-PINO), 6-substituted benzotriazole-N-oxyl radicals (6-Y-BTNO), 3-quinazolin-4-one-N-oxyl radical (QONO), and 3-benzotriazin-4-one-N-oxyl radical (BONO)), was carried out by laser flash photolysis in CH3CN. A significant effect of the N-oxyl radical structure on the hydrogen transfer rate constants (kH) was observed with kH values that monotonically increase with increasing NO-H bond dissociation energy (BDENO-H) of the N-hydroxylamines. The analysis of the kinetic data coupled to the results of theoretical calculations indicates that these reactions proceed by a hydrogen atom transfer (HAT) mechanism where the N-oxyl radical and the phenolic aromatic rings adopt a π-stacked arrangement. Theoretical calculations also showed pronounced structural effects of the N-oxyl radicals on the charge transfer occurring in the π-stacked conformation. Comparison of the kH values measured in this study with those previously reported for hydrogen atom transfer to the cumylperoxyl radical indicates that 6-CH3-BTNO is the best N-oxyl radical to be used as a model for evaluating the radical scavenging ability of phenolic antioxidants.

  16. Hydrogen-atom transfer in reactions of organic radicals with [Co(II)(por)]* (por = porphyrinato) and in subsequent addition of [Co(H)(por)] to olefins.

    PubMed

    de Bruin, Bas; Dzik, Wojciech I; Li, Shan; Wayland, Bradford B

    2009-01-01

    The mechanisms for hydrogen-atom transfer from the cyanoisopropyl radical (*)C(CH(3))(2)CN to [Co(II)(por)](*) (yielding [Co(III)(H)(por)] and CH(2)=C(CH(3))(CN); por = porphyrinato) and the insertion of vinyl acetate (CH(2)=CHOAc) into the Co-H bond of [Co(H)(por)] (giving [Co(III){CH(OAc)CH(3)}(por)]) were investigated by DFT calculations. The results are compared with experimental data. These reactions are relevant to catalytic chain transfer (CCT) in radical polymerization of olefins mediated by [Co(II)(por)](*), the formation and homolysis of organo-cobalt complexes that mediate living radical polymerization of vinyl acetate, and cobalt-mediated hydrogenation of olefins. Hydrogen transfer from (*)C(CH(3))(2)CN to [Co(II)(por)](*) proceeds via a single transition state that has structural features resembling the products [Co(H)(por)] and CH(2)=C(CH(3))CN. The separated radicals approach to form a close-contact radical pair and then pass through the transition state for hydrogen-atom transfer to form [Co(III)(H)(por)] and CH(2)=C(CH(3))CN. This process provides a very low overall barrier for the hydrogen-atom transfer reaction (DeltaG(double dagger) = +3.8 kcal mol(-1)). The reverse reaction corresponding to the addition of [Co(H)(por)] to CH(2)=C(CH(3))CN has a low barrier (DeltaG(double dagger) = +8.9 kcal mol(-1)) as well. Insertion of vinyl acetate into the Co-H bond of [Co(III)(H)(por)] also proceeds over a low barrier (DeltaG(double dagger) = +11.4 kcal mol(-1)) hydrogen-transfer step from [Co(III)(H)(por)] to a carbon atom of the alkene to produce a close-contact radical pair. Dissociation of the radical pair, reorientation, and radical-radical coupling to form an organo-cobalt complex are the culminating steps in the net insertion of an olefin into the Co-H bond. The computed energies obtained for the hydrogen-atom transfer reactions from (*)C(CH(3))(2)CN to [Co(II)(por)](*) and from [Co(H)(por)] to olefins, as well as the organo-cobalt bond homolysis

  17. Complex mechanism of the gas phase reaction between formic acid and hydroxyl radical. Proton coupled electron transfer versus radical hydrogen abstraction mechanisms.

    PubMed

    Anglada, Josep M

    2004-08-11

    The gas phase reaction between formic acid and hydroxyl radical has been investigated with high level quantum mechanical calculations using DFT-B3LYP, MP2, CASSCF, QCISD, and CCSD(T) theoretical approaches in connection with the 6-311+G(2df,2p) and aug-cc-pVTZ basis sets. The reaction has a very complex mechanism involving several elementary processes, which begin with the formation of a reactant complex before the hydrogen abstraction by hydroxyl radical. The results obtained in this investigation explain the unexpected experimental fact that hydroxyl radical extracts predominantly the acidic hydrogen of formic acid. This is due to a mechanism involving a proton coupled electron-transfer process. The calculations show also that the abstraction of formyl hydrogen has an increased contribution at higher temperatures, which is due to a conventional hydrogen abstraction radical type mechanism. The overall rate constant computed at 298 K is 6.24 x 10(-13) cm3 molecules(-1) s(-1), and compares quite well with the range from 3.2 +/- 1 to 4.9 +/- 1.2 x 10(-13) cm3 molecules(-1) s(-1), reported experimentally.

  18. Controllable growth and transfer of monolayer MoS2 on Au foils and its potential application in hydrogen evolution reaction.

    PubMed

    Shi, Jianping; Ma, Donglin; Han, Gao-Feng; Zhang, Yu; Ji, Qingqing; Gao, Teng; Sun, Jingyu; Song, Xiuju; Li, Cong; Zhang, Yanshuo; Lang, Xing-You; Zhang, Yanfeng; Liu, Zhongfan

    2014-10-28

    Controllable synthesis of monolayer MoS2 is essential for fulfilling the application potentials of MoS2 in optoelectronics and valleytronics, etc. Herein, we report the scalable growth of high quality, domain size tunable (edge length from ∼ 200 nm to 50 μm), strictly monolayer MoS2 flakes or even complete films on commercially available Au foils, via low pressure chemical vapor deposition method. The as-grown MoS2 samples can be transferred onto arbitrary substrates like SiO2/Si and quartz with a perfect preservation of the crystal quality, thus probably facilitating its versatile applications. Of particular interest, the nanosized triangular MoS2 flakes on Au foils are proven to be excellent electrocatalysts for hydrogen evolution reaction, featured by a rather low Tafel slope (61 mV/decade) and a relative high exchange current density (38.1 μA/cm(2)). The excellent electron coupling between MoS2 and Au foils is considered to account for the extraordinary hydrogen evolution reaction activity. Our work reports the synthesis of monolayer MoS2 when introducing metal foils as substrates, and presents sound proof that monolayer MoS2 assembled on a well selected electrode can manifest a hydrogen evolution reaction property comparable with that of nanoparticles or few-layer MoS2 electrocatalysts.

  19. The Role of Vibrational Excitation on the Dynamics of the F(^2P) + HCl → FH + Cl(2P) Hydrogen-Transfer Reaction

    NASA Astrophysics Data System (ADS)

    Ray, Sara E.; Vissers, G. W. M.; McCoy, Anne B.

    2010-06-01

    Recently, open-shell systems have gained interest in experimental and theoretical science. What proves interesting about these open-shell systems is that the potential energy surfaces often contain a van der Waals well in the reactant or product channel that allows researchers to probe the pre-reactive species. Here we present the results of time-dependent quantum wave packet calculations on the asymmetric hydrogen-transfer reaction of F(^SUP>2P) + HCl. In these calculations, the reaction is initiated by vibrationally exciting the HCl stretching motion of the pre-reactive F\\cdotsHCl complex in the van der Waals well. The wave packet is propagated on a three-dimensional, fully coupled potential energy surface that has been constructed based on electronic energies calculated at the multi-reference configuration interation+Davidson correction (MRCI+Q) level of theory with an aug-cc-pVnZ (n=2,3,4) basis. Product state distributions were calculated for reactions initiated in the first three vibrationally excited states of HCl, v=1, 2, and 3. Specifically, we analyzed the final electronic, vibrational, and rotational distributions. Previous studies on the hydrogen-transfer reaction of the Cl(^2P) + HCl system focused on whether vibrational excitation of the HCl stretch would promote the reaction and if so, how the reaction dynamics reflect the coupling among the diabatic potential surfaces that describe this system. We also compare our F(^2P) + HCl results to those of this related system. M. P. Deskevich, M. Y. Hayes, K. Takahashi, R. T. Skodje, and D. J. Nesbitt J. Chem. Phys., 124(22) 224303 (2006) G. W. M. Vissers and A. B. McCoy J. Phys Chem. A, 110 5978 (2006)

  20. Intramolecular hydrogen transfer reactions of thiyl radicals from glutathione: formation of carbon-centered radical at Glu, Cys and Gly

    PubMed Central

    Mozziconacci, Olivier; Williams, Todd D.; Schöneich, Christian

    2013-01-01

    Glutathione thiyl radicals (GS•) were generated in H2O and D2O by either exposure of GSH to AAPH#, photoirradiation of GSH in the presence of acetone, or photoirradiation of GSSG. Detailed interpretation of the fragmentation pathways of deuterated GSH and GSH-derivatives during mass spectrometry analysis allowed us to demonstrate that reversible intramolecular H-atom transfer reactions between GS• and C-H bonds at Cys[αC], Cys[βC], and Gly[αC] are possible. PMID:22712461

  1. Redox control and hydrogen bonding networks: proton-coupled electron transfer reactions and tyrosine Z in the photosynthetic oxygen-evolving complex.

    PubMed

    Keough, James M; Zuniga, Ashley N; Jenson, David L; Barry, Bridgette A

    2013-02-07

    In photosynthetic oxygen evolution, redox active tyrosine Z (YZ) plays an essential role in proton-coupled electron transfer (PCET) reactions. Four sequential photooxidation reactions are necessary to produce oxygen at a Mn(4)CaO(5) cluster. The sequentially oxidized states of this oxygen-evolving cluster (OEC) are called the S(n) states, where n refers to the number of oxidizing equivalents stored. The neutral radical, YZ•, is generated and then acts as an electron transfer intermediate during each S state transition. In the X-ray structure, YZ, Tyr161 of the D1 subunit, is involved in an extensive hydrogen bonding network, which includes calcium-bound water. In electron paramagnetic resonance experiments, we measured the YZ• recombination rate, in the presence of an intact Mn(4)CaO(5) cluster. We compared the S(0) and S(2) states, which differ in Mn oxidation state, and found a significant difference in the YZ• decay rate (t(1/2) = 3.3 ± 0.3 s in S(0); t(1/2) = 2.1 ± 0.3 s in S(2)) and in the solvent isotope effect (SIE) on the reaction (1.3 ± 0.3 in S(0); 2.1 ± 0.3 in S(2)). Although the YZ site is known to be solvent accessible, the recombination rate and SIE were pH independent in both S states. To define the origin of these effects, we measured the YZ• recombination rate in the presence of ammonia, which inhibits oxygen evolution and disrupts the hydrogen bond network. We report that ammonia dramatically slowed the YZ• recombination rate in the S(2) state but had a smaller effect in the S(0) state. In contrast, ammonia had no significant effect on YD•, the stable tyrosyl radical. Therefore, the alterations in YZ• decay, observed with S state advancement, are attributed to alterations in OEC hydrogen bonding and consequent differences in the YZ midpoint potential/pK(a). These changes may be caused by activation of metal-bound water molecules, which hydrogen bond to YZ. These observations document the importance of redox control in proton

  2. Competitive reaction pathways for o-anilide aryl radicals: 1,5- or 1,6-hydrogen transfer versus nucleophilic coupling reactions. A novel rearrangement to afford an amidyl radical.

    PubMed

    Rey, Valentina; Pierini, Adriana B; Peñéñory, Alicia B

    2009-02-06

    The photoinduced reactions of o-iodoanilides (o-IC6H4N(Me)COR, 4a-d) with sulfur nucleophiles such as thiourea anion (1, -SCNH(NH2)), thioacetate anion (2, MeCOS-), and sulfide anion (3, S(2-)) follow different reaction channels, giving the sulfides by a radical nucleophilic substitution or the dehalogenated products by hydrogen atom transfer pathways. After an initial photoinduced electron transfer (PET) from 1 to iodide 4, the o-amide aryl radicals 12 are generated. These aryl radicals 12 afford alternative reaction pathways depending on the structure of the alpha-carbonyl moiety: (a) 12b (R = Me) adds to 1 to render the methylthio-substituted compounds by quenching the thiolate anion intermediate with MeI after irradiation; (b) 12c (R = -CH2Ph) follows a 1,5-hydrogen transfer to give a stabilized alpha-carbonyl radical (17); and (c) 12d (R = t-Bu) affords 1,6-hydrogen transfer, followed by a 1,4-aryl migration to render an amidyl radical (20), which is reduced to the N-benzyl-N,2-dimethylpropanamide (10). Together with this last rearranged product, the ipso substitution derivative was also observed. Similar results were obtained in the PET reactions of 4d (R = t-Bu) with anions 2 and 3 under entrainment conditions with the enolate anion from cyclohexenone (5) or the tert-butoxide anion (6). From this novel rearrangement, and only under reductive conditions by PET reaction with anion 5, iodide 4d (R = t-Bu) affords quantitatively the propanamide 10. The energetic of the intramolecular rearrangements followed by radicals 12b-d were rationalized by B3LYP/6-31+G* calculations.

  3. Photoelectrochemical cells based on hydrogen-atom abstraction and electron-transfer reactions in solution: systems based on benzophenone, 2-propanol, trialkylamines, and methyl viologen

    SciTech Connect

    Chandrasekaran, K.; Whitten, D.G.

    1981-12-02

    This paper reports the linking of well-studied solution photoprocesses such as hydrogen-atom abstraction by triplet benzophenone from 2-propanol and electron transfer from triethylamine to triplet benzophenone to proton reduction in aqueous acid via a two-compartment photoelectrochemical cell. In each case the intermediate reduction of N,N'-dimethyl-4,4'-bipyridinium (methyl viologen, MV/sup 2 +/) provides a means for circumventing undesirable radical reactions and generating a stable carrier in high overall efficiency. The net result is reasonably efficient generation of a photocurrent concurrent with the occurrence of an endothermic reaction providing products that can in principle be recycled. An interesting aspect of this work is the finding that the overall efficiency of these cells is enhanced by the photochemical self-sensitization of MV/sup +/ in the presence of 2-propanol or triethylamine and MV/sup 2 +/.

  4. Kinetics of catalytic transfer hydrogenation of soybean lecithin

    SciTech Connect

    Naglic, M.; Smidovnik, A.; Koloini, T.

    1997-12-01

    Catalytic transfer hydrogenation of soybean lecithin has been studied using aqueous sodium formate solution as hydrogen donor and palladium on carbon as catalyst. Kinetic constants and selectivity have been determined at intensive stirring. Hydrogenation reactions followed the first-order kinetics with respect to fatty acids. In addition to short reaction time, this method offers safe and easy handling. Hydrogenated soybean lecithin provides products with increased stability with respect to oxidation.

  5. Mass Transfer with Chemical Reaction.

    ERIC Educational Resources Information Center

    DeCoursey, W. J.

    1987-01-01

    Describes the organization of a graduate course dealing with mass transfer, particularly as it relates to chemical reactions. Discusses the course outline, including mathematics models of mass transfer, enhancement of mass transfer rates by homogeneous chemical reaction, and gas-liquid systems with chemical reaction. (TW)

  6. Mass Transfer with Chemical Reaction.

    ERIC Educational Resources Information Center

    DeCoursey, W. J.

    1987-01-01

    Describes the organization of a graduate course dealing with mass transfer, particularly as it relates to chemical reactions. Discusses the course outline, including mathematics models of mass transfer, enhancement of mass transfer rates by homogeneous chemical reaction, and gas-liquid systems with chemical reaction. (TW)

  7. Lewis acid mediated vinyl-transfer reaction of alkynes to N-alkylimines by using the N-alkyl residue as a sacrificial hydrogen donor.

    PubMed

    Malakar, Chandi C; Stas, Sara; Herrebout, Wouter; Abbaspour Tehrani, Kourosch

    2013-10-11

    A variety of N-alkyl-α,α-dichloroaldimines were vinylated by terminal acetylenes in the presence of Lewis acids such as In(OTf)3 or BF3 ⋅OEt2 and hexafluoroisopropanol (HFIP) as an additive. The reaction proceeds at ambient temperature and leads to geometrically pure allylic β,β-dichloroamines. This approach is complementary to previously reported transition-metal-catalyzed vinyl-transfer methods, which are not applicable to aliphatic imines and are restricted to imines that contain an electron-withdrawing nitrogen substituent. In the present approach, terminal alkynes were used as a source of the vinyl residue, and the N-alkyl moiety of the imine acts as a sacrificial hydrogen donor. The additional advantage of this methodology is the fact that no external toxic or hazardous reducing agents or molecular hydrogen has to be used. This new methodology nicely combines a C(sp(2) )C(sp) bond formation, hydride transfer, and an unusual cleavage of an unactivated CN bond, thereby giving rise to functionalized primary allylic amines. A detailed experimental study supported by DFT calculations of the mechanism has been done. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Multiple-Site Concerted Proton-Electron Transfer Reactions of Hydrogen-Bonded Phenols are Non-adiabatic and Well Described by Semi-Classical Marcus Theory

    PubMed Central

    Schrauben, Joel N.; Cattaneo, Mauricio; Day, Thomas C.; Tenderholt, Adam L.; Mayer, James M.

    2012-01-01

    Photo-oxidations of hydrogen-bonded phenols using excited state polyarenes are described, to derive fundamental understanding of multiple-site concerted proton-electron transfer reactions (MS-CPET). Experiments have examined phenol-bases having −CPh2NH2, −Py, and −CH2Py groups ortho to the phenol hydroxyl group and tert-butyl groups in the 4,6-positions for stability (HOAr-NH2, HOAr-Py, and HOAr-CH2Py, respectively; Py = pyridyl; Ph = phenyl). The photo-oxidations proceed by intramolecular proton transfer from the phenol to the pendent base concerted with electron transfer to the excited polyarene. For comparison, 2,4,6-tBu3C6H2OH, a phenol without a pendent base and tert-butyl groups in the 2,4,6-positions, has also been examined. Many of these bimolecular reactions are fast, with rate constants near the diffusion limit. Combining the photochemical kCPET values with those from prior thermal stopped-flow kinetic studies gives datasets for the oxidations of HOAr-NH2 and of HOAr-CH2Py that span over 107 in kCPET and nearly 0.9 eV in driving force (ΔGo′). Plots of log(kCPET) vs. ΔGo′ define a single Marcus parabola in each case, each including both excited state anthracenes and ground state aminium radical cations. These two datasets are thus well described by semi-classical Marcus theory, providing a strong validation of the use of this theory for MS-CPET. The parabolas give λCPET ≅ 1.15–1.2 eV and Hab ≅ 20–30 cm−1. These experiments represent the most direct measurements of Hab for MS-CPET reactions to date. Although rate constants are available only up to the diffusion limit, the parabolas clearly peak well below the adiabatic limit of ca. 6 × 1012 s−1. Thus, this is a very clear demonstration that the reactions are non-adiabatic. The non-adiabatic character slows the reactions by a factor of ~45. Results for the oxidation of HOAr-Py, in which the phenol and base are conjugated, and for oxidation of 2,4,6-tBu3C6H2OH, which lacks a base

  9. Multiple-site concerted proton-electron transfer reactions of hydrogen-bonded phenols are nonadiabatic and well described by semiclassical Marcus theory.

    PubMed

    Schrauben, Joel N; Cattaneo, Mauricio; Day, Thomas C; Tenderholt, Adam L; Mayer, James M

    2012-10-10

    Photo-oxidations of hydrogen-bonded phenols using excited-state polyarenes are described to derive fundamental understanding of multiple-site concerted proton-electron transfer reactions (MS-CPET). Experiments have examined phenol bases having -CPh(2)NH(2), -Py, and -CH(2)Py groups ortho to the phenol hydroxyl group and tert-butyl groups in the 4,6-positions for stability (HOAr-NH(2), HOAr-Py, and HOAr-CH(2)Py, respectively; Py = pyridyl; Ph = phenyl). The photo-oxidations proceed by intramolecular proton transfer from the phenol to the pendent base concerted with electron transfer to the excited polyarene. For comparison, 2,4,6-(t)Bu(3)C(6)H(2)OH, a phenol without a pendent base and tert-butyl groups in the 2,4,6-positions, has also been examined. Many of these bimolecular reactions are fast, with rate constants near the diffusion limit. Combining the photochemical k(CPET) values with those from prior thermal stopped-flow kinetic studies gives data sets for the oxidations of HOAr-NH(2) and HOAr-CH(2)Py that span over 10(7) in k(CPET) and nearly 0.9 eV in driving force (ΔG(o)'). Plots of log(k(CPET)) vs ΔG(o)', including both excited-state anthracenes and ground state aminium radical cations, define a single Marcus parabola in each case. These two data sets are thus well described by semiclassical Marcus theory, providing a strong validation of the use of this theory for MS-CPET. The parabolas give λ(CPET) ≅ 1.15-1.2 eV and H(ab) ≅ 20-30 cm(-1). These experiments represent the most direct measurements of H(ab) for MS-CPET reactions to date. Although rate constants are available only up to the diffusion limit, the parabolas clearly peak well below the adiabatic limit of ca. 6 × 10(12) s(-1). Thus, this is a very clear demonstration that the reactions are nonadiabatic. The nonadiabatic character slows the reactions by a factor of ~45. Results for the oxidation of HOAr-Py, in which the phenol and base are conjugated, and for oxidation of 2,4,6-(t)Bu(3)C(6)H(2

  10. Spectroscopic investigation and computational analysis of charge transfer hydrogen bonded reaction between 3-aminoquinoline with chloranilic acid in 1:1 stoichiometric ratio

    NASA Astrophysics Data System (ADS)

    Al-Ahmary, Khairia M.; Alenezi, Maha S.; Habeeb, Moustafa M.

    2015-10-01

    Charge transfer hydrogen bonded reaction between the electron donor (proton acceptor) 3-aminoquinoline with the electron acceptor (proton donor) chloranilic acid (H2CA) has been investigated experimentally and theoretically. The experimental work included the application of UV-vis spectroscopy to identify the charge transfer band of the formed complex, its molecular composition as well as estimating its formation constants in different solvent included acetonitrile (AN), methanol (MeOH), ethanol (EtOH) and chloroform (CHL). It has been recorded the presence of new absorption bands in the range 500-550 nm attributing to the formed complex. The molecular composition of the HBCT complex was found to be 1:1 (donor:acceptor) in all studied solvents based on continuous variation and photometric titration methods. In addition, the calculated formation constants from Benesi-Hildebrand equation recorded high values, especially in chloroform referring to the formation of stable HBCT complex. Infrared spectroscopy has been applied for the solid complex where formation of charge and proton transfer was proven in it. Moreover, 1H and 13C NMR spectroscopies were used to characterize the formed complex where charge and proton transfers were reconfirmed. Computational analysis included the use of GAMESS computations as a package of ChemBio3D Ultr12 program were applied for energy minimization and estimation of the stabilization energy for the produced complex. Also, geometrical parameters (bond lengths and bond angles) of the formed HBCT complex were computed and analyzed. Furthermore, Mullikan atomic charges, molecular potential energy surface, HOMO and LUMO molecular orbitals as well as assignment of the electronic spectra of the formed complex were presented. A full agreement between experimental and computational analysis has been found especially in the existence of the charge and proton transfers and the assignment of HOMO and LUMO molecular orbitals in the formed complex as

  11. Deformed transition-state theory: Deviation from Arrhenius behavior and application to bimolecular hydrogen transfer reaction rates in the tunneling regime.

    PubMed

    Carvalho-Silva, Valter H; Aquilanti, Vincenzo; de Oliveira, Heibbe C B; Mundim, Kleber C

    2017-01-30

    A formulation is presented for the application of tools from quantum chemistry and transition-state theory to phenomenologically cover cases where reaction rates deviate from Arrhenius law at low temperatures. A parameter d is introduced to describe the deviation for the systems from reaching the thermodynamic limit and is identified as the linearizing coefficient in the dependence of the inverse activation energy with inverse temperature. Its physical meaning is given and when deviation can be ascribed to quantum mechanical tunneling its value is calculated explicitly. Here, a new derivation is given of the previously established relationship of the parameter d with features of the barrier in the potential energy surface. The proposed variant of transition state theory permits comparison with experiments and tests against alternative formulations. Prescriptions are provided and implemented to three hydrogen transfer reactions: CH4  + OH → CH3  + H2 O, CH3 Cl + OH → CH2 Cl + H2 O and H2  + CN → H + HCN, widely investigated both experimentally and theoretically. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. N-Alkylation by Hydrogen Autotransfer Reactions.

    PubMed

    Ma, Xiantao; Su, Chenliang; Xu, Qing

    2016-06-01

    Owing to the importance of amine/amide derivatives in all fields of chemistry, and also the green and environmentally benign features of using alcohols as alkylating reagents, the relatively high atom economic dehydrative N-alkylation reactions of amines/amides with alcohols through hydrogen autotransfer processes have received much attention and have developed rapidly in recent decades. Various efficient homogeneous and heterogeneous transition metal catalysts, nano materials, electrochemical methods, biomimetic methods, asymmetric N-alkylation reactions, aerobic oxidative methods, and even certain transition metal-free, catalyst-free, or autocatalyzed methods, have also been developed in recent years. With a brief introduction to the background and developments in this area of research, this chapter focuses mainly on recent progress and technical and conceptual advances contributing to the development of this research in the last decade. In addition to mainstream research on homogeneous and heterogeneous transition metal-catalyzed reactions, possible mechanistic routes for hydrogen transfer and alcohol activation, which are key processes in N-alkylation reactions but seldom discussed in the past, the recent reports on computational mechanistic studies of the N-alkylation reactions, and the newly emerged N-alkylation methods based on novel alcohol activation protocols such as air-promoted reactions and transition metal-free methods, are also reviewed in this chapter. Problems and bottlenecks that remained to be solved in the field, and promising new research that deserves greater future attention and effort, are also reviewed and discussed.

  13. Nonheme Fe(IV) Oxo Complexes of Two New Pentadentate Ligands and Their Hydrogen-Atom and Oxygen-Atom Transfer Reactions.

    PubMed

    Mitra, Mainak; Nimir, Hassan; Demeshko, Serhiy; Bhat, Satish S; Malinkin, Sergey O; Haukka, Matti; Lloret-Fillol, Julio; Lisensky, George C; Meyer, Franc; Shteinman, Albert A; Browne, Wesley R; Hrovat, David A; Richmond, Michael G; Costas, Miquel; Nordlander, Ebbe

    2015-08-03

    Two new pentadentate {N5} donor ligands based on the N4Py (N4Py = N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine) framework have been synthesized, viz. [N-(1-methyl-2-benzimidazolyl)methyl-N-(2-pyridyl)methyl-N-(bis-2-pyridyl methyl)amine] (L(1)) and [N-bis(1-methyl-2-benzimidazolyl)methyl-N-(bis-2-pyridylmethyl)amine] (L(2)), where one or two pyridyl arms of N4Py have been replaced by corresponding (N-methyl)benzimidazolyl-containing arms. The complexes [Fe(II)(CH3CN)(L)](2+) (L = L(1) (1); L(2) (2)) were synthesized, and reaction of these ferrous complexes with iodosylbenzene led to the formation of the ferryl complexes [Fe(IV)(O)(L)](2+) (L = L(1) (3); L(2) (4)), which were characterized by UV-vis spectroscopy, high resolution mass spectrometry, and Mössbauer spectroscopy. Complexes 3 and 4 are relatively stable with half-lives at room temperature of 40 h (L = L(1)) and 2.5 h (L = L(2)). The redox potentials of 1 and 2, as well as the visible spectra of 3 and 4, indicate that the ligand field weakens as ligand pyridyl substituents are progressively substituted by (N-methyl)benzimidazolyl moieties. The reactivities of 3 and 4 in hydrogen-atom transfer (HAT) and oxygen-atom transfer (OAT) reactions show that both complexes exhibit enhanced reactivities when compared to the analogous N4Py complex ([Fe(IV)(O)(N4Py)](2+)), and that the normalized HAT rates increase by approximately 1 order of magnitude for each replacement of a pyridyl moiety; i.e., [Fe(IV)(O)(L(2))](2+) exhibits the highest rates. The second-order HAT rate constants can be directly related to the substrate C-H bond dissociation energies. Computational modeling of the HAT reactions indicates that the reaction proceeds via a high spin transition state.

  14. Tandem ring-closing metathesis/transfer hydrogenation: practical chemoselective hydrogenation of alkenes.

    PubMed

    Connolly, Timothy; Wang, Zhongyu; Walker, Michael A; McDonald, Ivar M; Peese, Kevin M

    2014-09-05

    An operationally simple chemoselective transfer hydrogenation of alkenes using ruthenium metathesis catalysts is presented. Of great practicality, the transfer hydrogenation reagents can be added directly to a metathesis reaction and effect hydrogenation of the product alkene in a single pot at ambient temperature without the need to seal the vessel to prevent hydrogen gas escape. The reduction is applicable to a range of alkenes and can be performed in the presence of aryl halides and benzyl groups, a notable weakness of Pd-catalyzed hydrogenations. Scope and mechanistic considerations are presented.

  15. A General Catalytic Enantioselective Transfer Hydrogenation Reaction of β,β-Disubstituted Nitroalkenes Promoted by a Simple Organocatalyst.

    PubMed

    Bernardi, Luca; Fochi, Mariafrancesca

    2016-07-30

    Given its synthetic relevance, the catalytic enantioselective reduction of β,β-disubstituted nitroalkenes has received a great deal of attention. Several bio-, metal-, and organo-catalytic methods have been developed, which however are usually applicable to single classes of nitroalkene substrates. In this paper, we present an account of our previous work on this transformation, which implemented with new disclosures and mechanistic insights results in a very general protocol for nitroalkene reductions. The proposed methodology is characterized by (i) a remarkably broad scope encompassing various nitroalkene classes; (ii) Hantzsch esters as convenient (on a preparative scale) hydrogen surrogates; (iii) a simple and commercially available thiourea as catalyst; (iv) user-friendly procedures. Overall, the proposed protocol gives a practical dimension to the catalytic enantioselective reduction of β,β-disubstituted nitroalkenes, offering a useful and general platform for the preparation of nitroalkanes bearing a stereogenic center at the β-position in a highly enantioenriched form. A transition state model derived from control kinetic experiments combined with literature data is proposed and discussed. This model accounts and justifies the observed experimental results.

  16. Hydrogen permeation pathways for the hydrogenation reaction of aluminum

    NASA Astrophysics Data System (ADS)

    Saitoh, H.; Machida, A.; Katayama, Y.; Aoki, K.

    2010-09-01

    The hydrogenation of aluminum is inhibited by the slow diffusion of hydrogen in its hydride AlH3, which covers the surface of aluminum in the initial stages of the reaction. Thus, permeation pathways for hydrogen are introduced by either mixing aluminum powder with boron nitride powder or alloying aluminum with gallium at 10 at. % Ga. The aluminum in the composite or alloy is reacted with hydrogen at high pressure and temperature. In both cases, the hydrogenation reaction yields are significantly enhanced, confirming that boron nitride and the liquid phase produced by partial melting of the alloy work efficiently as hydrogen permeation pathways.

  17. Hydride transfer and dihydrogen elimination from osmium and ruthenium metalloporphyrin hydrides: Model processes for hydrogenase enzymes and the hydrogen electrode reaction

    SciTech Connect

    Collman, J.P.; Wagenknecht, P.S.; Lewis, N.S.

    1992-07-01

    A series of metalloporphyrin hydride complexes of the type K[M(Por)(L)(H)] (M - Ru, Os; Por - OEP, TMP; L = THF, *Im, PPh{sub 3}, pyridine) has been synthesized by stoichiometric protonation of the corresponding K{sub 2}[M(Por)], followed by addition of L. The addition of excess acids to these hydrides resulted in the elimination of dihydrogen. The kinetics showed no evidence for a bimolecular mechanism for this process and suggest simple protonation of the metal-hydride bond followed by dihydrogen loss. One-electron oxidation of the metal hydrides also resulted in dihydrogen formation. The kinetics of the oxidatively induced hydrogen evolution step from K[Ru(OEP)(THF)(H)] were examined and indicate a biomolecular mechanism in which two metal hydrides reductively eliminate one dihydrogen molecule. The rate constant was determined to be 88 {+-} 14 M{sup -1} s{sup -1}. These reaction mechanisms are discussed in the context of designing bimetallic proton reduction catalysts. The metal hydride K[Ru(OEP)(THF)(H)], was also synthesized by heterolytic activation of H{sub 2}. This hydride is a good one-electron reductant (-1.15 V vs FeCp{sub 2}) and is capable of reducing, by hydride transfer, the NAD{sup +} analogue, 1-benzyl-N,N-diethyl-nicotinamide. This nicotinamide reduction by a hydride formed from heterolytic dihydrogen activation is suggested as the mechanism for hydrogenase enzymes. 38 refs., 4 figs., 3 tabs.

  18. Recent advances in organocatalytic enantioselective transfer hydrogenation.

    PubMed

    Faísca Phillips, Ana Maria; Pombeiro, Armando J L

    2017-02-23

    The organocatalytic reduction of C[double bond, length as m-dash]C and C[double bond, length as m-dash]N double bonds with biomimetic reductants, e.g. Hantzsch 1,4-dihydropyridine esters and benzothiazolines, is reviewed. Very high yields and stereoselectivities have been achieved with a variety of catalysts, including chiral amines, thioureas and phosphoric acids, even with loadings equivalent to those of transition metal-catalyzed reactions in some cases. Reductive amination reactions and the dearomatization of heteroaromatic substrates are the subject of more than one half of the contributions. Of lately, methodologies based on kinetic resolution, cascade reactions involving transfer hydrogenation and the development of novel reductants have become prominent in an area which brings great prospects for the future of target oriented-synthesis.

  19. Hydrogen transfer from alcohol donors to aromatic substrates

    SciTech Connect

    Garry, M.J.; Virk, P.S.

    1980-01-01

    Hydrogen transfer reactions between cyclohexanol (CHL) donor and each of anthracene (ANT) and phenanthrene (PHE) acceptors have been studied in the liquid phase at temperatures from 300 to 425 C, times from 0.16 to 12.0 hr and initial donor/acceptor ratios of 0.125 to 15.4. In addition to the desired hydrogen transfer reaction (Rl), two other pathways were observed, namely, (R2) reversion of the hydrogenated acceptor to original acceptor by way of both hydrogen elimination (R2') and disproportionation (R2''); and (R3) pyrolytic donor decomposition. The kinetics of (R2) and R3) were also investigated and it was found that (R2) was small and (R3) negligible relative to (Rl). The hydrogen transfer reactions were bimolecular, being of order one in each of donor and acceptor. Arrhenius parameters were respectively for CHL-ANT (6.0 +- 0.2, 33.1 +- 0.6) and for CHL-PHE (7.6 +- 0.6, 42.5 +- 3.5). The observed molecularity and Arrhenius parameters suggest a concerted pericyclic mechanism for the hydrogen transfer with a relatively tight transition state akin to that well known for Diels-Alder cycloaddition. Hydrogen elimination from dihydroanthracene (DHA) and dihydrophenthrene (DHP) liquids was studied at temperatures from 300 to 450 C, times from 0.16 to 10.0 hrs and substrate concentration ranges of 0.2 to 4.0 mol/liter. The hydrogen elimination reactions were strictly unimolecular. Arrhenius parameters were respectively for DHA (12.6 +- 0.6, 50.8 +- 0.8) and for DHP (12.6 +- 0.3, 58.1 +- 0.8). The observed hydrogen elimination from DHA to ANT is strikingly analogous to that from 1,4 cyclohexadiene to benzene and suggests a similar concerted pericyclic group transfer reaction.

  20. A Simple Marcus-Theory Type Model for Hydrogen Atom Transfer/Proton-Coupled Electron Transfer.

    PubMed

    Mayer, James M

    2011-01-01

    Hydrogen atom transfer reactions are the simplest class of proton-coupled electron transfer (PCET) processes. These reactions involve transfer of one electron and one proton from one reagent to another, in the same kinetic step: XH + Y → X + HY. A predictive model for these reactions based on the Marcus cross relation is described. The model predicts rate constants within one or two orders of magnitude in most cases, over a very wide range of reactants and solvents. This remarkable result implies a surprising generality of the additivity postulate for the reaction intrinsic barriers, and a smaller role for the quantum mechanical details of the proton and electron transfers.

  1. A classical but new kinetic equation for hydride transfer reactions.

    PubMed

    Zhu, Xiao-Qing; Deng, Fei-Huang; Yang, Jin-Dong; Li, Xiu-Tao; Chen, Qiang; Lei, Nan-Ping; Meng, Fan-Kun; Zhao, Xiao-Peng; Han, Su-Hui; Hao, Er-Jun; Mu, Yuan-Yuan

    2013-09-28

    A classical but new kinetic equation to estimate activation energies of various hydride transfer reactions was developed according to transition state theory using the Morse-type free energy curves of hydride donors to release a hydride anion and hydride acceptors to capture a hydride anion and by which the activation energies of 187 typical hydride self-exchange reactions and more than thirty thousand hydride cross transfer reactions in acetonitrile were safely estimated in this work. Since the development of the kinetic equation is only on the basis of the related chemical bond changes of the hydride transfer reactants, the kinetic equation should be also suitable for proton transfer reactions, hydrogen atom transfer reactions and all the other chemical reactions involved with breaking and formation of chemical bonds. One of the most important contributions of this work is to have achieved the perfect unity of the kinetic equation and thermodynamic equation for hydride transfer reactions.

  2. Transfer reactions in nuclear astrophysics

    NASA Astrophysics Data System (ADS)

    Bardayan, D. W.

    2016-08-01

    To a high degree many aspects of the large-scale behavior of objects in the Universe are governed by the underlying nuclear physics. In fact the shell structure of nuclear physics is directly imprinted into the chemical abundances of the elements. The tranquility of the night sky is a direct result of the relatively slow rate of nuclear reactions that control and determines a star’s fate. Understanding the nuclear structure and reaction rates between nuclei is vital to understanding our Universe. Nuclear-transfer reactions make accessible a wealth of knowledge from which we can extract much of the required nuclear physics information. A review of transfer reactions for nuclear astrophysics is presented with an emphasis on the experimental challenges and opportunities for future development.

  3. Pristine Graphene Electrode in Hydrogen Evolution Reaction.

    PubMed

    Xie, Aozhen; Xuan, Ningning; Ba, Kun; Sun, Zhengzong

    2017-02-08

    Graphene, the sp(2) carbonaceous two-dimensional (2D) material, is gaining more attention in recent electrochemical studies. However, this atomic thick electrode usually suffers with surface contamination and poor electrochemical endurance. To overcome the drawbacks, we developed a PMMA-assisted, flipped transfer method to fabricate the graphene electrode with pristine surface and prolonged lifetime in hydrogen evolution reaction (HER). The HER performances of the single-layer graphene (SLG) were evaluated on various insulating and conductive substrates, including SiO2, polymers, SLG, highly oriented pyrolytic graphite (HOPG), and copper. The parallel Tafel slopes of SLG, bilayer graphene (BLG), and HOPG suggest they share the same electrochemical activities deriving from the sp(2) carbon basal plane. Moreover, the atomic barriers, both for SLG and the single-layer h-BN (SLBN), are semitransparent in HER for the underneath copper, providing a new perspective for the 2D materials to protect and couple with the other electrochemical catalysts.

  4. The development of aqueous transfer hydrogenation catalysts.

    PubMed

    Robertson, Andrew; Matsumoto, Takahiro; Ogo, Seiji

    2011-10-28

    This review discusses the development of aqueous phase, homogeneous, transfer hydrogenation catalysis. Transfer hydrogenation catalysts, based on Ru, Ir and Rh, reduce organic substrates in water by assisting the transfer of hydrogen from simple donor species. These catalysts are expected to have significant benefits when compared with organic phase catalysts, including greater activity, greater selectivity and smaller environmental impact. They will therefore be expected to make a significant contribution to homogeneous catalysis and 'green chemistry'. Here, we comprehensively examine these catalysts, paying special attention to structural features.

  5. Transfer reactions with heavy elements

    SciTech Connect

    Hoffman, D.C.

    1986-04-01

    Transfer reactions for several transuranium elements are studied. (/sup 248/Cm, /sup 249/Bk, /sup 249/CF, /sup 254/Es), /sup 16,18/O, /sup 20,22/Ne, and /sup 40,48/Ca projectiles are used. The production of neutron-rich heavy actinides is enhanced by the use of neutron-rich projectiles /sup 18/O and /sup 22/Ne. The maxima of the isotopic distributions occur at only 2 to 3 mass numbers larger for /sup 48/Ca than for /sup 40/Ca reactions with /sup 248/Cm. The cross sections decrease rapidly with the number of nucleons transferred. The use of neutron-rich targets favors the production of neutron-rich isotopes. ''Cold'' heavy targets are produced. Comparisons with simple calculations of the product excitation energies assuming binary transfers indicate that the maxima of the isotopic distributions occur at the lightest product isotope for which the energy exceeds the reaction barrier. The cross sections for transfer of the same nucleon clusters appear to be comparable for a wide variety of systems. 23 refs., 4 figs., 4 tabs.

  6. Mechanism of Pd(NHC)-catalyzed transfer hydrogenation of alkynes.

    PubMed

    Hauwert, Peter; Boerleider, Romilda; Warsink, Stefan; Weigand, Jan J; Elsevier, Cornelis J

    2010-12-01

    The transfer semihydrogenation of alkynes to (Z)-alkenes shows excellent chemo- and stereoselectivity when using a zerovalent palladium(NHC)(maleic anhydride)-complex as precatalyst and triethylammonium formate as hydrogen donor. Studies on the kinetics under reaction conditions showed a broken positive order in substrate and first order in catalyst and hydrogen donor. Deuterium-labeling studies on the hydrogen donor showed that both hydrogens of formic acid display a primary kinetic isotope effect, indicating that proton and hydride transfers are separate rate-determining steps. By monitoring the reaction with NMR, we observed the presence of a coordinated formate anion and found that part of the maleic anhydride remains coordinated during the reaction. From these observations, we propose a mechanism in which hydrogen transfer from coordinated formate anion to zerovalent palladium(NHC)(MA)(alkyne)-complex is followed by migratory insertion of hydride, after which the product alkene is liberated by proton transfer from the triethylammonium cation. The explanation for the high selectivity observed lies in the competition between strongly coordinating solvent and alkyne for a Pd(alkene)-intermediate.

  7. Chiral gold phosphate catalyzed tandem hydroamination/asymmetric transfer hydrogenation enables access to chiral tetrahydroquinolines.

    PubMed

    Du, Yu-Liu; Hu, Yue; Zhu, Yi-Fan; Tu, Xi-Feng; Han, Zhi-Yong; Gong, Liu-Zhu

    2015-05-01

    A highly efficient chiral gold phosphate-catalyzed tandem hydroamination/asymmetric transfer hydrogenation reaction is described. A series of chiral tetrahydroquinolines were obtained in excellent yields and enantioselectivities. In this reaction, the gold catalyst enables both the hydroamination step as a π-Lewis acid and the asymmetric hydrogen-transfer process as an effective chiral Lewis acid.

  8. Heat-transfer data for hydrogen

    NASA Technical Reports Server (NTRS)

    Mc Carthy, J. R.; Miller, W. S.; Okuda, A. S.; Seader, J. D.

    1970-01-01

    Information is given regarding experimental heat-transfer data compiled for the turbulent flow of hydrogen within straight, electrically heated, round cross section tubes. Tube materials, test conditions, parameters studied, and generalized conclusions are presented.

  9. The rate of second electron transfer to QB(-) in bacterial reaction center of impaired proton delivery shows hydrogen-isotope effect.

    PubMed

    Maróti, Ágnes; Wraight, Colin A; Maróti, Péter

    2015-02-01

    The 2nd electron transfer in reaction center of photosynthetic bacterium Rhodobacter sphaeroides is a two step process in which protonation of QB(-) precedes interquinone electron transfer. The thermal activation and pH dependence of the overall rate constants of different RC variants were measured and compared in solvents of water (H2O) and heavy water (D2O). The electron transfer variants where the electron transfer is rate limiting (wild type and M17DN, L210DN and H173EQ mutants) do not show solvent isotope effect and the significant decrease of the rate constant of the second electron transfer in these mutants is due to lowering the operational pKa of QB(-)/QBH: 4.5 (native), 3.9 (L210DN), 3.7 (M17DN) and 3.1 (H173EQ) at pH7. On the other hand, the proton transfer variants where the proton transfer is rate limiting demonstrate solvent isotope effect of pH-independent moderate magnitude (2.11±0.26 (WT+Ni(2+)), 2.16±0.35 (WT+Cd(2+)) and 2.34±0.44 (L210DN/M17DN)) or pH-dependent large magnitude (5.7 at pH4 (L213DN)). Upon deuteration, the free energy and the enthalpy of activation increase in all proton transfer variants by about 1 kcal/mol and the entropy of activation becomes negligible in L210DN/M17DN mutant. The results are interpreted as manifestation of equilibrium and kinetic solvent isotope effects and the structural, energetic and kinetic possibility of alternate proton delivery pathways are discussed.

  10. The role of acid-base equilibria in formal hydrogen transfer reactions: tryptophan radical repair by uric acid as a paradigmatic case.

    PubMed

    Muñoz-Rugeles, Leonardo; Galano, Annia; Alvarez-Idaboy, Juan Raúl

    2017-06-14

    The results presented in this work demonstrate the high complexity of chemical reactions involving species with multiple acid-base equilibria. For the case study investigated here, it was necessary to consider two radical species for tryptophan (Trp(-H)˙ and Trp˙(+)) and three fractions for uric acid (H3Ur, H2Ur(-) and HUr(2-)) in order to properly reproduce the experimental results. At pH = 7.4, two main reaction mechanisms were identified: proton-electron sequential transfer (PEST) and sequential proton gain-electron transfer (SPGET). Combined, they account for more than 99% of the overall reaction, despite the fact that they involve minor species, i.e., H3Ur and Trp˙(+), respectively. The excellent agreement between the calculated overall rate constant and the experimental value seems to support this proposal. In addition, if only the dominant species at pH = 7.4 (H2Ur(-) and Trp(-H)˙) were considered, there would be a large discrepancy with the experimental value (about 4 orders of magnitude), which also supports the finding that the key species in this case are not the most abundant ones. The influence of the pH on the kinetics of the investigated reaction was explored. It was found that the maximum repairing ability of uric acid does not occur at physiological pH, but at a more acidic pH (pH = 5.0).

  11. A search for pure compounds suitable for use as matrix in spectroscopic studies of radiation-produced radical cations. III. A selection of compounds based on the thermochemistry of hydrogen and proton transfer reactions between neutral molecules and their cations

    NASA Astrophysics Data System (ADS)

    Van den Bosch, Ann; Ceulemans, Jan

    A systematic investigation is made of the thermochemistry of hydrogen and proton transfer between neutral molecules and their cations covering the entire organic chemistry, with the aim of selecting those compounds that are suitable for use as matrices in spectroscopic studies of radiation-produced radical cations. Compounds that are characterized by positive reaction enthalpies may be considered promising for use as matrices in such studies. Calculations are based on experimentally determined ionization energies and proton affinities and on carbon-hydrogen bond strengths that are arbitrarily taken as 418 kJ.mol -1 (100 kcal.mol -1). Effects of actual deviations from this value are considered. In the aliphatic series of compounds, reaction enthalpies depend strongly on functional groups present. Marked positive reaction enthalpies are obtained for alkenes, alkadienes, thioethers, mercaptans, iodoalkanes and tertiary amines. Non-aromatic cyclic compounds generally behave as their aliphatic counterparts. Thus, positive reaction enthalpies are generally obtained for unsaturated alicyclic hydrocarbons and cyclic thioethers. Positive reaction enthalpies are also obtained for piperidine, quinuclidine, manxine and derivatives. In the homocyclic aromatic series of compounds, reaction enthalpies are generally positive. Thus, positive reaction enthalpies are obtained for aromatic hydrocarbons, fluoro- and chlorobenzenes, aromatic amines (amino group attached directly to the ring) and halo- and methoxyanilines. In the heterocyclic aromatic series of compounds reaction enthalpies are generally negative. This is for instance the case for a large number of pyridine derivatives, di- and triazines and a number of bi- and tricyclic compounds. Positive reaction enthalpies are however obtained for furan and pyrrole.

  12. PROTON-COUPLED ELECTRON TRANSFER: A Reaction Chemist's View

    NASA Astrophysics Data System (ADS)

    Mayer, James M.

    2004-01-01

    Proton-coupled electron transfer (PCET) reactions involve the concerted transfer of an electron and a proton. Such reactions play an important role in many areas of chemistry and biology. Concerted PCET is thermochemically more favorable than the first step in competing consecutive processes involving stepwise electron transfer (ET) and proton transfer (PT), often by >=1 eV. PCET reactions of the form X-H + Y X + H-Y can be termed hydrogen atom transfer (HAT). Another PCET class involves outersphere electron transfer concerted with deprotonation by another reagent, Y+ + XH-B Y + X-HB+ . Many PCET/HAT rate constants are predicted well by the Marcus cross relation. The cross-relation calculation uses rate constants for self-exchange reactions to provide information on intrinsic barriers. Intrinsic barriers for PCET can be comparable to or larger than those for ET. These properties are discussed in light of recent theoretical treatments of PCET.

  13. Ruthenium(II) carbonyl complexes bearing CCC-pincer bis-(carbene) ligands: synthesis, structures and activities toward recycle transfer hydrogenation reactions.

    PubMed

    Naziruddin, Abbas Raja; Huang, Zhao-Jiunn; Lai, Wei-Chih; Lin, Wan-Jung; Hwang, Wen-Shu

    2013-09-28

    A new series of ruthenium(II) carbonyl complexes with benzene-based CCC-pincer bis-(carbene) ligands, [((R)CCC(R))Ru(CO)2(X)](0/+) and [((R)CCC(R))Ru(CO)(NN)](+) ((R)CCC(R) = 2,6-bis-(1-alkylimidazolylidene)benzene, R = Me or (n)Bu; X = I, Br, CH3CN, or 6-(aminomethyl)pyridine (ampy); NN = 2·CH3CN, or chelating ampy or bipyridine), was synthesized and fully characterized. X-Ray structure determinations revealed that these eight complexes have pseudo-octahedral configurations around the ruthenium center with the pincer ligand occupying three meridional sites. These complexes prove to be efficient precatalysts demonstrating very good activity and reusability for the transfer hydrogenation of ketones.

  14. Quantum chemical investigation of the intra- and intermolecular proton transfer reactions and hydrogen bonding interactions in 4-amino-5-(2-hydroxyphenyl)-2H-1,2,4-triazole-3(4H)-thione.

    PubMed

    Özdemir, Namık

    2013-01-01

    The intramolecular thione-thiol tautomerism and intermolecular double proton transfer reaction of the hydrogen-bonded thione and thiol dimers in the title triazole compound were studied at the B3LYP level of theory using 6-311++G(d,p) basis function. The influence of the solvent on the single and double proton transfer reactions was examined in three solvents (chloroform, methanol and water) using the polarizable continuum model (PCM) approximation. The computational results show that the thione tautomer is the most stable isomer with a very high tautomeric energy barrier both in the gas phase and in solution phase, indicating a quite disfavored process. The solvent effect is found to be sizable with increasing polarity. In the double proton transfer reaction, the thione dimer is found to be more stable than thiol dimer both in the gas phase and in solution phase. The energetic and thermodynamic parameters of the double proton transfer process show that the double proton exchange from thione dimer to thiol dimer is thermodynamically unfavored. However, the exchange from thiol dimer to thione dimer for the gas phase and water phase seems to be feasible with a low barrier height and with a negative value in enthalpy and free energy changes. In addition, the hydrogen bonding interactions were analyzed in the gas phase regarding their geometries and energies. It is found that all complex formations are enthalpically favored, and the stability of the H-bonds comes in the order of S1-H2···N2>N2-H2···S1>N3-H3B···O1. Finally, non-linear optical properties were carried out at the same calculation level in the gas phase.

  15. Reactivity and selectivity patterns in hydrogen atom transfer from amino acid C-H bonds to the cumyloxyl radical: polar effects as a rationale for the preferential reaction at proline residues.

    PubMed

    Salamone, Michela; Basili, Federica; Bietti, Massimo

    2015-04-03

    Absolute rate constants for hydrogen atom transfer (HAT) from the C-H bonds of N-Boc-protected amino acids to the cumyloxyl radical (CumO(•)) were measured by laser flash photolysis. With glycine, alanine, valine, norvaline, and tert-leucine, HAT occurs from the α-C-H bonds, and the stability of the α-carbon radical product plays a negligible role. With leucine, HAT from the α- and γ-C-H bonds was observed. The higher kH value measured for proline was explained in terms of polar effects, with HAT that predominantly occurs from the δ-C-H bonds, providing a rationale for the previous observation that proline residues represent favored HAT sites in the reactions of peptides and proteins with (•)OH. Preferential HAT from proline was also observed in the reactions of CumO(•) with the dipeptides N-BocProGlyOH and N-BocGlyGlyOH. The rate constants measured for CumO(•) were compared with the relative rates obtained previously for the corresponding reactions of different hydrogen-abstracting species. The behavior of CumO(•) falls between those observed for the highly reactive radicals Cl(•) and (•)OH and the significantly more stable Br(•). Taken together, these results provide a general framework for the description of the factors that govern reactivity and selectivity patterns in HAT reactions from amino acid C-H bonds.

  16. Highly enantioselective hydrogenation of N-aryl imines derived from acetophenones by using Ru-pybox complexes under hydrogenation or transfer hydrogenation conditions in isopropanol.

    PubMed

    Menéndez-Pedregal, Estefanía; Vaquero, Mónica; Lastra, Elena; Gamasa, Pilar; Pizzano, Antonio

    2015-01-07

    The asymmetric reduction of N-aryl imines derived from acetophenones by using Ru complexes bearing both a pybox (2,6-bis(oxazoline)pyridine) and a monodentate phosphite ligand has been described. The catalysts show good activity with a diverse range of substrates, and deliver the amine products in very high levels of enantioselectivity (up to 99 %) under both hydrogenation and transfer hydrogenation conditions in isopropanol. From deuteration studies, a very different labeling is observed under hydrogenation and transfer hydrogenation conditions, which demonstrates the different nature of the hydrogen source in both reactions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. A guided-ion beam study of the hydrogen atom transfer reaction of state-selected N + 2 with H2 at collision energies ranging from subthermal to 2 eV (c.m.)

    NASA Astrophysics Data System (ADS)

    Knott, W. J.; Proch, D.; Kompa, K. L.; Rose-Petruck, Ch.

    1995-01-01

    This article presents detailed internal and kinetic energy dependent cross sections and reaction rates for the hydrogen atom transfer processes N+2(X 2Σ+g, v+=0-4, J+=2)+H2→N2H++H, which were obtained under single-collision conditions in a guided-ion beam/scattering gas experiment. Preparation of ions in specific states relied on single-color excitation within a resonantly enhanced (2+1) multiphoton ionization scheme. The translational energy of the ions, Elab, was varied from 0.1 eV to approximately 30 eV. A small activation barrier impedes the reaction. Vibronic state preparation of the nitrogen ion is influential on the nature of the energy surface—N+2+H2 or H+2+N2—along which the H atom transfer proceeds. Calculations of model potential energy surfaces suggest that the reaction pathway must involve several exoergic and endoergic channels which open successively as the collision energy increases. A purely collision determined cross section—as would be evidenced by the E-1/2 dependence formulated in the Langevin-Gioumousis-Stevenson model—is observed only within a narrow window of kinetic energies.

  18. Alkane desaturation by concerted double hydrogen atom transfer to benzyne.

    PubMed

    Niu, Dawen; Willoughby, Patrick H; Woods, Brian P; Baire, Beeraiah; Hoye, Thomas R

    2013-09-26

    The removal of two vicinal hydrogen atoms from an alkane to produce an alkene is a challenge for synthetic chemists. In nature, desaturases and acetylenases are adept at achieving this essential oxidative functionalization reaction, for example during the biosynthesis of unsaturated fatty acids, eicosanoids, gibberellins and carotenoids. Alkane-to-alkene conversion almost always involves one or more chemical intermediates in a multistep reaction pathway; these may be either isolable species (such as alcohols or alkyl halides) or reactive intermediates (such as carbocations, alkyl radicals, or σ-alkyl-metal species). Here we report a desaturation reaction of simple, unactivated alkanes that is mechanistically unique. We show that benzynes are capable of the concerted removal of two vicinal hydrogen atoms from a hydrocarbon. The discovery of this exothermic, net redox process was enabled by the simple thermal generation of reactive benzyne intermediates through the hexadehydro-Diels-Alder cycloisomerization reaction of triyne substrates. We are not aware of any single-step, bimolecular reaction in which two hydrogen atoms are simultaneously transferred from a saturated alkane. Computational studies indicate a preferred geometry with eclipsed vicinal C-H bonds in the alkane donor.

  19. A unified diabatic description for electron transfer reactions, isomerization reactions, proton transfer reactions, and aromaticity.

    PubMed

    Reimers, Jeffrey R; McKemmish, Laura K; McKenzie, Ross H; Hush, Noel S

    2015-10-14

    While diabatic approaches are ubiquitous for the understanding of electron-transfer reactions and have been mooted as being of general relevance, alternate applications have not been able to unify the same wide range of observed spectroscopic and kinetic properties. The cause of this is identified as the fundamentally different orbital configurations involved: charge-transfer phenomena involve typically either 1 or 3 electrons in two orbitals whereas most reactions are typically closed shell. As a result, two vibrationally coupled electronic states depict charge-transfer scenarios whereas three coupled states arise for closed-shell reactions of non-degenerate molecules and seven states for the reactions implicated in the aromaticity of benzene. Previous diabatic treatments of closed-shell processes have considered only two arbitrarily chosen states as being critical, mapping these states to those for electron transfer. We show that such effective two-state diabatic models are feasible but involve renormalized electronic coupling and vibrational coupling parameters, with this renormalization being property dependent. With this caveat, diabatic models are shown to provide excellent descriptions of the spectroscopy and kinetics of the ammonia inversion reaction, proton transfer in N2H7(+), and aromaticity in benzene. This allows for the development of a single simple theory that can semi-quantitatively describe all of these chemical phenomena, as well as of course electron-transfer reactions. It forms a basis for understanding many technologically relevant aspects of chemical reactions, condensed-matter physics, chemical quantum entanglement, nanotechnology, and natural or artificial solar energy capture and conversion.

  20. Hydrogen and Dihydrogen Bonds in the Reactions of Metal Hydrides.

    PubMed

    Belkova, Natalia V; Epstein, Lina M; Filippov, Oleg A; Shubina, Elena S

    2016-08-10

    The dihydrogen bond-an interaction between a transition-metal or main-group hydride (M-H) and a protic hydrogen moiety (H-X)-is arguably the most intriguing type of hydrogen bond. It was discovered in the mid-1990s and has been intensively explored since then. Herein, we collate up-to-date experimental and computational studies of the structural, energetic, and spectroscopic parameters and natures of dihydrogen-bonded complexes of the form M-H···H-X, as such species are now known for a wide variety of hydrido compounds. Being a weak interaction, dihydrogen bonding entails the lengthening of the participating bonds as well as their polarization (repolarization) as a result of electron density redistribution. Thus, the formation of a dihydrogen bond allows for the activation of both the MH and XH bonds in one step, facilitating proton transfer and preparing these bonds for further transformations. The implications of dihydrogen bonding in different stoichiometric and catalytic reactions, such as hydrogen exchange, alcoholysis and aminolysis, hydrogen evolution, hydrogenation, and dehydrogenation, are discussed.

  1. Radiative transfer effects in primordial hydrogen recombination

    SciTech Connect

    Ali-Haiemoud, Yacine; Hirata, Christopher M.; Grin, Daniel

    2010-12-15

    The calculation of a highly accurate cosmological recombination history has been the object of particular attention recently, as it constitutes the major theoretical uncertainty when predicting the angular power spectrum of cosmic microwave background anisotropies. Lyman transitions, in particular the Lyman-{alpha} line, have long been recognized as one of the bottlenecks of recombination, due to their very low escape probabilities. The Sobolev approximation does not describe radiative transfer in the vicinity of Lyman lines to a sufficient degree of accuracy, and several corrections have already been computed in other works. In this paper, we compute the impact of some radiative transfer effects that were previously ignored, or for which previous treatments were incomplete. First, the effect of Thomson scattering in the vicinity of the Lyman-{alpha} line is evaluated, using a full redistribution kernel incorporated into a radiative transfer code. The effect of feedback of distortions generated by the optically thick deuterium Lyman-{alpha} line blueward of the hydrogen line is investigated with an analytic approximation. It is shown that both effects are negligible during cosmological hydrogen recombination. Second, the importance of high-lying, nonoverlapping Lyman transitions is assessed. It is shown that escape from lines above Ly{gamma} and frequency diffusion in Ly{beta} and higher lines can be neglected without loss of accuracy. Third, a formalism generalizing the Sobolev approximation is developed to account for the overlap of the high-lying Lyman lines, which is shown to lead to negligible changes to the recombination history. Finally, the possibility of a cosmological hydrogen recombination maser is investigated. It is shown that there is no such maser in the purely radiative treatment presented here.

  2. Neutron transfer reactions at large distances

    SciTech Connect

    Rehm, K.E.; Glagola, B.G.; Kutschera, W.; Wolfs, F.L.H.; Wuosmaa, A.H. )

    1993-06-01

    [sup 58]Ni-induced one- and two-neutron transfer reactions have been measured on [sup 232]Th at [ital E][sub lab]=500 MeV. The transfer probabilities at large internuclear distances measured for the deformed [sup 232]Th target are compared with similar data on spherical [sup 208]Pb. For one-neutron transfer reactions good agreement between experiment and the prediction from the tunneling model is observed in both cases. The transfer probabilities for two-neutron transfer reactions deviate from the semiclassical predictions. The disagreement increases at higher bombarding energies. These deviations can be explained by the influence of diffractive effects which become more important at higher bombarding energies.

  3. Heterogeneous catalytic hydrogenation reactions in continuous-flow reactors.

    PubMed

    Irfan, Muhammad; Glasnov, Toma N; Kappe, C Oliver

    2011-03-21

    Microreactor technology and continuous flow processing in general are key features in making organic synthesis both more economical and environmentally friendly. Heterogeneous catalytic hydrogenation reactions under continuous flow conditions offer significant benefits compared to batch processes which are related to the unique gas-liquid-solid triphasic reaction conditions present in these transformations. In this review article recent developments in continuous flow heterogeneous catalytic hydrogenation reactions using molecular hydrogen are summarized. Available flow hydrogenation techniques, reactors, commonly used catalysts and examples of synthetic applications with an emphasis on laboratory-scale flow hydrogenation reactions are presented. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Incomplete Combustion of Hydrogen: Trapping a Reaction Intermediate

    ERIC Educational Resources Information Center

    Mattson, Bruce; Hoette, Trisha

    2007-01-01

    The combustion of hydrogen in air is quite complex with at least 28 mechanistic steps and twelve reaction species. Most of the species involved are radicals (having unpaired electrons) in nature. Among the various species generated, a few are stable, including hydrogen peroxide. In a normal hydrogen flame, the hydrogen peroxide goes on to further…

  5. Incomplete Combustion of Hydrogen: Trapping a Reaction Intermediate

    ERIC Educational Resources Information Center

    Mattson, Bruce; Hoette, Trisha

    2007-01-01

    The combustion of hydrogen in air is quite complex with at least 28 mechanistic steps and twelve reaction species. Most of the species involved are radicals (having unpaired electrons) in nature. Among the various species generated, a few are stable, including hydrogen peroxide. In a normal hydrogen flame, the hydrogen peroxide goes on to further…

  6. Study of molybdenum electrodes for hydrogen evolution reaction

    NASA Astrophysics Data System (ADS)

    Padilha, Janine Carvalho; Martini, Emilse Maria Agostini; Brum, Cauã; de Souza, Michèle Oberson; de Souza, Roberto Fernando

    The molybdenum electrode, Mo, has been investigated for hydrogen production via water electrolysis in 10 vol.% aqueous solutions of 1-butyl-3-methylimidazolium tetrafluoroborate (BMI·BF 4) using electrochemical impedance spectroscopy (EIS). The EIS measurements show that the Mo system has much higher interfacial capacitance, and correspondently the electrical double layer formed on this electrode is thicker than those formed on nickel or platinum. The positive displacement of potential of zero charge (PZC) values indicates the specific adsorption of the imidazolium cation on the Mo surface. This study provides an elegant explanation for the better performance of Mo electrodes in the hydrogen evolution reaction (HER): the BMI cation acts as an intermediate for the proton transfer from water to the electrode surface, thereby decreasing the overpotential of HER. This model explains the synergism between Mo and the BMI cation in the HER process.

  7. High-power CW laser using hydrogen-fluorine reaction

    NASA Technical Reports Server (NTRS)

    Moynihan, P. I.

    1975-01-01

    Continuous-wave laser has been proposed based on reaction of hydrogen and fluorine. Hydrogen is produced by dissociation of hydrazine, which can be stored as liquid in light containers at room temperature.

  8. Catalytic Transfer Hydogenation Reactions for Undergraduate Practical Programs

    NASA Astrophysics Data System (ADS)

    Hanson, R. W.

    1997-04-01

    A brief review of catalytic transfer hydrogenation (CTH) reactions is given. Attention is drawn, particularly, to the utility of ammonium formate as the hydrogen donor in this type of reaction. The reduction of aryl carbonyl compounds to the corresponding methylene derivatives by ammonium formate in the presence of 10% Pd/C at 110°C is compared to their reductive ammonation which occurs at higher temperatures in the absence of the catalyst (the Leuckart reaction). It is suggested that the low cost and simplicity of CTH reactions using ammonium formate as the hydrogen donor, together with the high yields obtained in many cases, make them excellent candidates for inclusion in undergraduate practical programmes. Laboratory instructions are given for the reduction of nitrobenzene to aniline (isolated as benzanilide), benzophenone to diphenylmethanol and fluorenone to fluorene, in all cases using ammonium formate as the hydrogen donor and 10% Pd/C as the catalyst. Thin layer chromatography shows that in each case the product is homogeneous; the yields are essentially quantitative.

  9. Thermally-generated reactive intermediates: Trapping of the parent ferrocene-based o-quinodimethane and reactions of diradicals generated by hydrogen-atom transfers

    SciTech Connect

    Ferguson, John Michael

    1993-09-01

    Ferrocenocyclobutene is prepared by flash vacuum pyrolysis (FVP) of the N-amino-2-phenylaziridine hydrazone of 2-methylferrocenealdehyde. In the second section of this dissertation, a series of hydrocarbon rearrangements were observed. FVP of o-allyltoluene at 0.1 Torr (700--900 C) gives 2-methylindan and indene, accompanied by o-propenyltoluene. FVP of 2-methyl-2`-vinylbiphenyl gives 9-methyl-9,10-dihydrophenanthrene, which fits the proposed mechanism. However, FVP of 2-(o-methylbenzyl)styrene gives mainly anthracene and 1-methylanthracene. This cyclization reaction was also successful with o-allylphenol and o-(2-methylallyl)phenol.

  10. Metal-free transfer hydrogenation of olefins via dehydrocoupling catalysis

    PubMed Central

    Pérez, Manuel; Caputo, Christopher B.; Dobrovetsky, Roman; Stephan, Douglas W.

    2014-01-01

    A major advance in main-group chemistry in recent years has been the emergence of the reactivity of main-group species that mimics that of transition metal complexes. In this report, the Lewis acidic phosphonium salt [(C6F5)3PF][B(C6F5)4] 1 is shown to catalyze the dehydrocoupling of silanes with amines, thiols, phenols, and carboxylic acids to form the Si-E bond (E = N, S, O) with the liberation of H2 (21 examples). This catalysis, when performed in the presence of a series of olefins, yields the concurrent formation of the products of dehydrocoupling and transfer hydrogenation of the olefin (30 examples). This reactivity provides a strategy for metal-free catalysis of olefin hydrogenations. The mechanisms for both catalytic reactions are proposed and supported by experiment and density functional theory calculations. PMID:25002489

  11. Reaction pathways of proton transfer in hydrogen-bonded phenol-carboxylate complexes explored by combined UV-vis and NMR spectroscopy.

    PubMed

    Koeppe, Benjamin; Tolstoy, Peter M; Limbach, Hans-Heinrich

    2011-05-25

    Combined low-temperature NMR/UV-vis spectroscopy (UVNMR), where optical and NMR spectra are measured in the NMR spectrometer under the same conditions, has been set up and applied to the study of H-bonded anions A··H··X(-) (AH = 1-(13)C-2-chloro-4-nitrophenol, X(-) = 15 carboxylic acid anions, 5 phenolates, Cl(-), Br(-), I(-), and BF(4)(-)). In this series, H is shifted from A to X, modeling the proton-transfer pathway. The (1)H and (13)C chemical shifts and the H/D isotope effects on the latter provide information about averaged H-bond geometries. At the same time, red shifts of the π-π* UV-vis absorption bands are observed which correlate with the averaged H-bond geometries. However, on the UV-vis time scale, different tautomeric states and solvent configurations are in slow exchange. The combined data sets indicate that the proton transfer starts with a H-bond compression and a displacement of the proton toward the H-bond center, involving single-well configurations A-H···X(-). In the strong H-bond regime, coexisting tautomers A··H···X(-) and A(-)···H··X are observed by UV. Their geometries and statistical weights change continuously when the basicity of X(-) is increased. Finally, again a series of single-well structures of the type A(-)···H-X is observed. Interestingly, the UV-vis absorption bands are broadened inhomogeneously because of a distribution of H-bond geometries arising from different solvent configurations.

  12. Light induced electron transfer reactions of metal complexes

    SciTech Connect

    Sutin, N; Creutz, C

    1980-01-01

    Properties of the excited states of tris(2,2'-bipyridine) and tris(1,10-phenanthroline) complexes of chromium(III), iron(II), ruthenium(II), osmium(II), rhodium(III), and iridium(III) are described. The electron transfer reactions of the ground and excited states are discussed and interpreted in terms of the driving force for the reaction and the distortions of the excited states relative to the corresponding ground states. General considerations relevant to the conversion of light into chemical energy are presented and progress in the use of polypyridine complexes to effect the light decomposition of water into hydrogen and oxygen is reviewed.

  13. Innovative Strategy on Hydrogen Evolution Reaction Utilizing Activated Liquid Water

    NASA Astrophysics Data System (ADS)

    Hwang, Bing-Joe; Chen, Hsiao-Chien; Mai, Fu-Der; Tsai, Hui-Yen; Yang, Chih-Ping; Rick, John; Liu, Yu-Chuan

    2015-11-01

    Splitting water for hydrogen production using light, or electrical energy, is the most developed ‘green technique’. For increasing efficiency in hydrogen production, currently, the most exciting and thriving strategies are focused on efficient and inexpensive catalysts. Here, we report an innovative idea for efficient hydrogen evolution reaction (HER) utilizing plasmon-activated liquid water with reduced hydrogen-bonded structure by hot electron transfer. This strategy is effective for all HERs in acidic, basic and neutral systems, photocatalytic system with a g-C3N4 (graphite carbon nitride) electrode, as well as in an inert system with an ITO (indium tin oxide) electrode. Compared to deionized water, the efficiency of HER increases by 48% based on activated water ex situ on a Pt electrode. Increase in energy efficiency from activated water is 18% at a specific current yield of -20 mA in situ on a nanoscale-granulated Au electrode. Moreover, the onset potential of -0.023 V vs RHE was very close to the thermodynamic potential of the HER (0 V). The measured current density at the corresponding overpotential for HER in an acidic system was higher than any data previously reported in the literature. This approach establishes a new vista in clean green energy production.

  14. Innovative Strategy on Hydrogen Evolution Reaction Utilizing Activated Liquid Water

    PubMed Central

    Hwang, Bing-Joe; Chen, Hsiao-Chien; Mai, Fu-Der; Tsai, Hui-Yen; Yang, Chih-Ping; Rick, John; Liu, Yu-Chuan

    2015-01-01

    Splitting water for hydrogen production using light, or electrical energy, is the most developed ‘green technique’. For increasing efficiency in hydrogen production, currently, the most exciting and thriving strategies are focused on efficient and inexpensive catalysts. Here, we report an innovative idea for efficient hydrogen evolution reaction (HER) utilizing plasmon-activated liquid water with reduced hydrogen-bonded structure by hot electron transfer. This strategy is effective for all HERs in acidic, basic and neutral systems, photocatalytic system with a g-C3N4 (graphite carbon nitride) electrode, as well as in an inert system with an ITO (indium tin oxide) electrode. Compared to deionized water, the efficiency of HER increases by 48% based on activated water ex situ on a Pt electrode. Increase in energy efficiency from activated water is 18% at a specific current yield of −20 mA in situ on a nanoscale-granulated Au electrode. Moreover, the onset potential of −0.023 V vs RHE was very close to the thermodynamic potential of the HER (0 V). The measured current density at the corresponding overpotential for HER in an acidic system was higher than any data previously reported in the literature. This approach establishes a new vista in clean green energy production. PMID:26541371

  15. Antioxidant activity of wine pigments derived from anthocyanins: hydrogen transfer reactions to the dpph radical and inhibition of the heme-induced peroxidation of linoleic acid.

    PubMed

    Goupy, Pascale; Bautista-Ortin, Ana-Belen; Fulcrand, Helene; Dangles, Olivier

    2009-07-08

    The consumption of red wine can provide substantial concentrations of antioxidant polyphenols, in particular grape anthocyanins (e.g., malvidin-3-O-beta-d-glucoside (1)) and specific red wine pigments formed by reaction between anthocyanins and other wine components such as catechin (3), ethanol, and hydroxycinnamic acids. In this work, the antioxidant properties of red wine pigments (RWPs) are evaluated by the DPPH assay and by inhibition of the heme-induced peroxidation of linoleic acid in acidic conditions (a model of antioxidant action in the gastric compartment). RWPs having a 1 and 3 moieties linked via a CH(3)-CH bridge appear more potent than the pigment with a direct 1-3 linkage. Pyranoanthocyanins derived from 1 reduce more DPPH radicals than 1 irrespective of the substitution of their additional aromatic ring. Pyranoanthocyanins are also efficient inhibitors of the heme-induced lipid peroxidation, although the highly hydrophilic pigment derived from pyruvic acid appears less active.

  16. What's new in the proton transfer reaction from pyranine to water? A femtosecond study of the proton transfer dynamics

    SciTech Connect

    Prayer, C.; Gustavsson, T.; Tran-Thi, T.-H.

    1996-04-01

    The proton transfer from excited pyranine to water is studied by the femtosecond fluorescence upconversion technique. It is shown for the first time that the proton transfer reaction in water proceeds by three successive steps: the solvent cage relaxation, the specific solute-solvent hydrogen-bond formation and finally the ion pair dissociation/diffusion.

  17. CNN pincer ruthenium catalysts for hydrogenation and transfer hydrogenation of ketones: experimental and computational studies.

    PubMed

    Baratta, Walter; Baldino, Salvatore; Calhorda, Maria José; Costa, Paulo J; Esposito, Gennaro; Herdtweck, Eberhardt; Magnolia, Santo; Mealli, Carlo; Messaoudi, Abdelatif; Mason, Sax A; Veiros, Luis F

    2014-10-13

    Reaction of [RuCl(CNN)(dppb)] (1-Cl) (HCNN=2-aminomethyl-6-(4-methylphenyl)pyridine; dppb=Ph2 P(CH2 )4 PPh2 ) with NaOCH2 CF3 leads to the amine-alkoxide [Ru(CNN)(OCH2 CF3 )(dppb)] (1-OCH2 CF3 ), whose neutron diffraction study reveals a short RuO⋅⋅⋅HN bond length. Treatment of 1-Cl with NaOEt and EtOH affords the alkoxide [Ru(CNN)(OEt)(dppb)]⋅(EtOH)n (1-OEt⋅n EtOH), which equilibrates with the hydride [RuH(CNN)(dppb)] (1-H) and acetaldehyde. Compound 1-OEt⋅n EtOH reacts reversibly with H2 leading to 1-H and EtOH through dihydrogen splitting. NMR spectroscopic studies on 1-OEt⋅n EtOH and 1-H reveal hydrogen bond interactions and exchange processes. The chloride 1-Cl catalyzes the hydrogenation (5 atm of H2 ) of ketones to alcohols (turnover frequency (TOF) up to 6.5×10(4) h(-1) , 40 °C). DFT calculations were performed on the reaction of [RuH(CNN')(dmpb)] (2-H) (HCNN'=2-aminomethyl-6-(phenyl)pyridine; dmpb=Me2 P(CH2 )4 PMe2 ) with acetone and with one molecule of 2-propanol, in alcohol, with the alkoxide complex being the most stable species. In the first step, the Ru-hydride transfers one hydrogen atom to the carbon of the ketone, whereas the second hydrogen transfer from NH2 is mediated by the alcohol and leads to the key "amide" intermediate. Regeneration of the hydride complex may occur by reaction with 2-propanol or with H2 ; both pathways have low barriers and are alcohol assisted.

  18. Hydrogen-exchange reactions via hot hydrogen atoms produced in the dissociation process of molecular hydrogen on Ir{111}

    NASA Astrophysics Data System (ADS)

    Moritani, Kousuke; Okada, Michio; Nakamura, Mamiko; Kasai, Toshio; Murata, Yoshitada

    2001-12-01

    Adsorption and reaction of hydrogen (deuterium) on the Ir{111} surface has been studied with temperature-programmed desorption and direct measurements of desorbing molecules using a quadrupole mass spectrometer at ˜100 K. H2 exposure of the D-precovered Ir{111} surface was found to induce the desorption of HD and D2 molecules. This result suggests that energetic H atoms (hot H atoms) produced in the dissociation process of incident H2 molecules react with preadsorbed D atoms and desorb as HD molecules or produce secondary energetic D atoms via energy transfer. Secondary energetic D atoms (secondary hot D atoms) also induce the associative reactions with preadsorbed D atoms and desorb as D2 molecules. We will discuss the hot-H-atom-mediated reaction based on both empirical and steady-state approximation models for interpreting the present experimental results.

  19. Thermal hydrogen-atom transfer from methane: A mechanistic exercise

    NASA Astrophysics Data System (ADS)

    Schwarz, Helmut

    2015-06-01

    Hydrogen-atom transfer (HAT) constitutes a key process in a broad range of chemical transformations as it covers heterogeneous, homogeneous, and enzymatic reactions. While open-shell metal oxo species [MO]rad are no longer regarded as being involved in the heterogeneously catalyzed oxidative coupling of methane (2CH4 + → C2H6 + H2O), these reagents are rather versatile in bringing about (gas-phase) hydrogen-atom transfer, even from methane at ambient conditions. In this mini-review, various mechanistic scenarios will be presented, and it will be demonstrated how these are affected by the composition of the metal-oxide cluster ions. Examples will be discussed, how 'doping' the clusters permits the control of the charge and spin situation at the active site and, thus, the course of the reaction. Also, the interplay between supposedly inert support material and the active site - the so-called 'aristocratic atoms' - of the gas-phase catalyst will be addressed. Finally, gas-phase HAT from methane will be analyzed in the broader context of thermal activation of inert Csbnd H bonds by metal-oxo species.

  20. Reactions of butadiyne. 1: The reaction with hydrogen atoms

    NASA Technical Reports Server (NTRS)

    Schwanebeck, W.; Warnatz, J.

    1984-01-01

    The reaction of hydrogen (H) atoms with butadiene (C4H2) was studied at room temperature in a pressure range between w mbar and 10 mbar. The primary step was an addition of H to C4H2 which is in its high pressure range at p 1 mbar. Under these conditions the following addition of a second H atom lies in the transition region between low and high pressure range. Vibrationally excited C4H4 can be deactivated to form buten-(1)-yne-(3)(C4H4) or decomposes into two C2H2 molecules. The rate constant at room temperature for primary step is given. The second order rate constant for the consumption of buten-(1)-yne-(3) is an H atom excess at room temperature is given.

  1. Atom transfer and rearrangement reactions catalyzed by methyltrioxorhenium, MTO

    SciTech Connect

    Jacob, Josemon

    1999-05-10

    Methyltrioxorhenium (MTO) catalyzes the desulfurization of thiiranes by triphenylphosphine. Enormous enhancement in rate is observed when the catalyst is pretreated with hydrogen sulfide prior to the reaction. Using 2-mercaptomethylthiophenol as a ligand, the author synthesized several model complexes to study the mechanism of this reaction. With suitable model systems, they were able to show that the active catalyst is a Re(V) species. The reactions are highly stereospecific and very tolerant to functional groups. As part of the studies, he synthesized and crystallographically characterized the first examples of neutral terminal and bridging Re(V)sulfidocomplexes. Some of these complexes undergo fast oxygen atom transfer reactions with organic and inorganic oxidants. Studies on these model complexes led them to the discovery that MTO catalyzes the selective oxidation of thiols to disulfides. This report contains the Introduction; ``Chapter 6: Isomerization of Propargylic Alcohols to Enones and Enals Catalyzed by Methylrhenium Trioxide``; and Conclusions.

  2. Bimodal proton transfer in acid-base reactions in water

    SciTech Connect

    Rini, Matteo; Pines, Dina; Magnes, Ben-Zion; Pines, Ehud; Nibbering, Erik T.J.

    2004-11-15

    We investigate one of the fundamental reactions in solutions, the neutralization of an acid by a base. We use a photoacid, 8-hydroxy-1,3,6-trisulfonate-pyrene (HPTS; pyranine), which upon photoexcitation reacts with acetate under transfer of a deuteron (solvent: deuterated water). We analyze in detail the resulting bimodal reaction dynamics between the photoacid and the base, the first report on which was recently published [M. Rini, B.-Z. Magnes, E. Pines, and E. T. J. Nibbering, Science 301, 349 (2003)]. We have ascribed the bimodal proton-transfer dynamics to contributions from preformed hydrogen bonding complexes and from initially uncomplexed acid and base. We report on the observation of an additional (6 ps)-1 contribution to the reaction rate constant. As before, we analyze the slower part of the reaction within the framework of the diffusion model and the fastest part by a static, sub-150 fs reaction rate. Adding the second static term considerably improves the overall modeling of the experimental results. It also allows to connect experimentally the diffusion controlled bimolecular reaction models as defined by Eigen-Weller and by Collins-Kimball [D. Shoup and A. Szabo, Biophys. J. 40, 33 (1982)]. Our findings are in agreement with a three-stage mechanism for liquid phase intermolecular proton transfer: mutual diffusion of acid and base to form a 'loose' encounter complex, followed by reorganization of the solvent shells and by 'tightening' of the acid-base encounter complex. These rearrangements last a few picoseconds and enable a prompt proton transfer along the reaction coordinate, which occurs faster than our time resolution of 150 fs. Alternative models for the explanation of the slower 'on-contact' reaction time of the loose encounter complex in terms of proton transmission through a von Grotthuss mechanism are also discussed.

  3. Model studies of heterogeneous catalytic hydrogenation reactions with gold.

    PubMed

    Pan, Ming; Brush, Adrian J; Pozun, Zachary D; Ham, Hyung Chul; Yu, Wen-Yueh; Henkelman, Graeme; Hwang, Gyeong S; Mullins, C Buddie

    2013-06-21

    Supported gold nanoparticles have recently been shown to possess intriguing catalytic activity for hydrogenation reactions, particularly for selective hydrogenation reactions. However, fundamental studies that can provide insight into the reaction mechanisms responsible for this activity have been largely lacking. In this tutorial review, we highlight several recent model experiments and theoretical calculations on a well-structured gold surface that provide some insights. In addition to the behavior of hydrogen on a model gold surface, we review the reactivity of hydrogen on a model gold surface in regards to NO2 reduction, chemoselective C=O bond hydrogenation, ether formation, and O-H bond dissociation in water and alcohols. Those studies indicate that atomic hydrogen has a weak interaction with gold surfaces which likely plays a key role in the unique hydrogenative chemistry of classical gold catalysts.

  4. Understanding hydrogen atom transfer: from bond strengths to Marcus theory.

    PubMed

    Mayer, James M

    2011-01-18

    Hydrogen atom transfer (HAT), a key step in many chemical, environmental, and biological processes, is one of the fundamental chemical reactions: A-H + B → A + H-B. Traditional HAT involves p-block radicals such as tert-BuO(•) abstracting H(•) from organic molecules. More recently, the recognition that transition metal species undergo HAT has led to a broader perspective, with HAT viewed as a type of proton-coupled electron transfer (PCET). When transition metal complexes oxidize substrates by removing H(•) (e(-) + H(+)), typically the electron transfers to the metal and the proton to a ligand. Examples with iron-imidazolinate, vanadium-oxo, and many other complexes are discussed. Although these complexes may not "look like" main group radicals, they have the same pattern of reactivity. For instance, their HAT rate constants parallel the A-H bond strengths within a series of similar reactions. Like main group radicals, they abstract H(•) much faster from O-H bonds than from C-H bonds of the same strength, showing that driving force is not the only determinant of reactivity. This Account describes our development of a conceptual framework for HAT with a Marcus theory approach. In the simplest model, the cross relation uses the self-exchange rate constants (k(AH/A) for AH + A) and the equilibrium constant to predict the rate constant for AH + B: k(AH/B) = (k(AH/A)k(BH/B)K(eq)f)(1/2). For a variety of transition metal oxidants, k(AH/B) is predicted within one or two orders of magnitude with only a few exceptions. For 36 organic reactions of oxyl radicals, k(AH/B) is predicted with an average deviation of a factor of 3.8, and within a factor of 5 for all but six of the reactions. These reactions involve both O-H or C-H bonds, occur in either water or organic solvents, and occur over a range of 10(28) in K(eq) and 10(13) in k(AH/B). The treatment of organic reactions includes the well-established kinetic solvent effect on HAT reactions. This is one of a number

  5. Effects of nonlocality on transfer reactions

    NASA Astrophysics Data System (ADS)

    Titus, Luke

    Nuclear reactions play a key role in the study of nuclei away from stability. Single-nucleon transfer reactions involving deuterons provide an exceptional tool to study the single-particle structure of nuclei. Theoretically, these reactions are attractive as they can be cast into a three-body problem composed of a neutron, proton, and the target nucleus. Optical potentials are a common ingredient in reactions studies. Traditionally, nucleon-nucleus optical potentials are made local for convenience. The effects of nonlocal potentials have historically been included approximately by applying a correction factor to the solution of the corresponding equation for the local equivalent interaction. This is usually referred to as the Perey correction factor. In this thesis, we have systematically investigated the effects of nonlocality on (p,d) and (d,p) transfer reactions, and the validity of the Perey correction factor. We implemented a method to solve the single channel nonlocal equation for both bound and scattering states. We also developed an improved formalism for nonlocal interactions that includes deuteron breakup in transfer reactions. This new formalism, the nonlocal adiabatic distorted wave approximation, was used to study the effects of including nonlocality consistently in ( d,p) transfer reactions. For the (p,d) transfer reactions, we solved the nonlocal scattering and bound state equations using the Perey-Buck type interaction, and compared to local equivalent calculations. Using the distorted wave Born approximation we construct the T-matrix for (p,d) transfer on 17O, 41Ca, 49Ca, 127 Sn, 133Sn, and 209Pb at 20 and 50 MeV. Additionally we studied (p,d) reactions on 40Ca using the the nonlocal dispersive optical model. We have also included nonlocality consistently into the adiabatic distorted wave approximation and have investigated the effects of nonlocality on on (d,p) transfer reactions for deuterons impinged on 16O, 40Ca, 48Ca, 126Sn, 132Sn, 208Pb at 10

  6. Recent advances in osmium-catalyzed hydrogenation and dehydrogenation reactions.

    PubMed

    Chelucci, Giorgio; Baldino, Salvatore; Baratta, Walter

    2015-02-17

    CONSPECTUS: A current issue in metal-catalyzed reactions is the search for highly efficient transition-metal complexes affording high productivity and selectivity in a variety of processes. Moreover, there is also a great interest in multitasking catalysts that are able to efficiently promote different organic transformations by careful switching of the reaction parameters, such as temperature, solvent, and cocatalyst. In this context, osmium complexes have shown the ability to catalyze efficiently different types of reactions involving hydrogen, proving at the same time high thermal stability and simple synthesis. In the catalytic reduction of C═X (X = O, N) bonds by both hydrogenation (HY) and transfer hydrogenation (TH) reactions, the most interest has been focused on homogeneous systems based on rhodium, iridium, and in particular ruthenium catalysts, which have proved to catalyze chemo- and stereoselective hydrogenations with remarkable efficiency. By contrast, osmium catalysts have received much less attention because they are considered less active on account of their slower ligand exchange kinetics. Thus, this area remained almost neglected until recent studies refuted these prejudices. The aim of this Account is to highlight the impressive developments achieved over the past few years by our and other groups on the design of new classes of osmium complexes and their applications in homogeneous catalytic reactions involving the hydrogenation of carbon-oxygen and carbon-nitrogen bonds by both HY and TH reactions as well as in alcohol deydrogenation (DHY) reactions. The work described in this Account demonstrates that osmium complexes are emerging as powerful catalysts for asymmetric and non-asymmetric syntheses, showing a remarkably high catalytic activity in HY and TH reactions of ketones, aldehydes, imines, and esters as well in DHY reactions of alcohols. Thus, for instance, the introduction of ligands with an NH function, possibly in combination with a

  7. Organocatalytic Transfer Hydrogenation and Hydrosilylation Reactions.

    PubMed

    Herrera, Raquel P

    2016-06-01

    The reduction of different carbon-carbon or carbon-heteroatom double bonds is a powerful tool that generates in many cases new stereogenic centers. In the last decade, the organocatalytic version of these transformations has attracted more attention, and remarkable progress has been made in this way. Organocatalysts such as chiral Brønsted acids, thioureas, chiral secondary amines or Lewis bases have been successfully used for this purpose. In this context, this chapter will cover pioneering and seminal examples using Hantzsch dihydropyridines 1 and trichlorosilane 2 as reducing agents. More recent examples will be also cited in order to cover as much as possible the complete research in this field.

  8. Continuum effects in nuclear transfer reactions

    SciTech Connect

    Marta, H. D.; Donangelo, R.; Fernandez Niello, J. O.; Pacheco, A. J.

    2007-02-12

    We develop a semiclassical calculation for nuclear transfer reactions where the continuum is treated in an exact way, and compare the results with those of a treatment in which the continuum is neglected. We conclude that the influence of the continuum is very important for weakly bound reactants.

  9. Barrierless electron transfer bond fragmentation reactions.

    PubMed

    Lorance, Edward D; Kramer, Wolfgang H; Gould, Ian R

    2004-11-03

    The ultrafast N-O bond fragmentation in a series of N-methoxypyridyl radicals, formed by one-electron reduction of the corresponding N-methoxypyridiniums, has been investigated as potentially barrierless electron-transfer-initiated chemical reactions. A model for the reaction involving the electronic and geometric factors that control the shape of the potential energy surface for the reaction is described. On the basis of this model, molecular structural features appropriate for ultrafast reactivity are proposed. Femtosecond kinetic measurements on these reactions are consistent with a kinetic definition of an essentially barrierless reaction, i.e., that the lifetime of the radical is a few vibrational periods of the fragmenting bond, for the p-methoxy-N-methoxypyridyl radical.

  10. Transfer reaction code with nonlocal interactions

    NASA Astrophysics Data System (ADS)

    Titus, L. J.; Ross, A.; Nunes, F. M.

    2016-10-01

    We present a suite of codes (NLAT for nonlocal adiabatic transfer) to calculate the transfer cross section for single-nucleon transfer reactions, (d , N) or (N , d) , including nonlocal nucleon-target interactions, within the adiabatic distorted wave approximation. For this purpose, we implement an iterative method for solving the second order nonlocal differential equation, for both scattering and bound states. The final observables that can be obtained with NLAT are differential angular distributions for the cross sections of A(d , N) B or B(N , d) A. Details on the implementation of the T-matrix to obtain the final cross sections within the adiabatic distorted wave approximation method are also provided. This code is suitable to be applied for deuteron induced reactions in the range of Ed =10-70 MeV, and provides cross sections with 4% accuracy.

  11. Transfer reaction code with nonlocal interactions

    SciTech Connect

    Titus, L. J.; Ross, A.; Nunes, F. M.

    2016-07-14

    Here, we present a suite of codes (NLAT for nonlocal adiabatic transfer) to calculate the transfer cross section for single-nucleon transfer reactions, (d,N) or (N,d), including nonlocal nucleon-target interactions, within the adiabatic distorted wave approximation. For this purpose, we implement an iterative method for solving the second order nonlocal differential equation, for both scattering and bound states. The final observables that can be obtained with NLAT are dif- ferential angular distributions for the cross sections of A(d,N)B or B(N,d)A. Details on the implementation of the T-matrix to obtain the final cross sections within the adiabatic distorted wave approximation method are also provided. This code is suitable to be applied for deuteron induced reactions in the range of Ed = 10–70 MeV, and provides cross sections with 4% accuracy.

  12. Homogeneous catalytic reduction of dioxygen using transfer hydrogenation catalysts.

    PubMed

    Heiden, Zachariah M; Rauchfuss, Thomas B

    2007-11-21

    Solutions of Cp*IrH(rac-TsDPEN) (TsDPEN = H2NCHPhCHPhN(SO2C6H4CH3)-) (1H(H)) with O2 generate Cp*Ir(TsDPEN-H) (1) and 1 equiv of H2O. Kinetic analysis indicates a third-order rate law (second order in [1H(H)] and first order in [O2]), resulting in an overall rate constant of 0.024 +/- 0.013 M(-2) s(-1). Isotopic labeling revealed that the rate of the reaction of 1H(H) + O2 was strongly affected by deuteration at the hydride position (k(HH2)/k(DH2) = 6.0 +/- 1.3) but insensitive to deuteration of the amine (k(HH2)/k(HD2) = 1.2 +/- 0.2); these values are more disparate than for conventional transfer hydrogenation (Casey, C. P.; Johnson, J. B. J. Org. Chem. 2003, 68, 1998-2001). The temperature dependence of the reaction rate indicated DeltaH = 82.2 kJ/mol, DeltaS = 13.2 J/mol K, and a reaction barrier of 85.0 kJ/mol. A CH2Cl2 solution under 0.30 atm of H2 and 0.13 atm of O2 converted to H2O in the presence of 1 and 10 mol % of H(OEt2)2BAr(F)4 (BAr(F)4- = B(C6H3-3,5-(CF3)2)4-). The formation of water from H2 was verified by 2H NMR for the reaction of D2 + O2. Solutions of 1 slowly catalyze the oxidation of amyl alcohol to pentanal; using 1,4-benzoquinone as a cocatalyst, the conversion was faster. Complex 1 also catalyzes the reaction of O2 with RNH2BH3 (R = H, t-Bu), resulting in the formation of water and H2. The deactivation of the catalyst 1 in its reactions with O2 was traced to degradation of the Cp* ligand to a fulvene derivative. This pathway is not observed in the presence of amine-boranes, which were shown to reduce fulvenes back to Cp*. This work suggests the potential of transfer hydrogenation catalysts in reactions involving O2.

  13. Coprocessing through fundamental and mechanistic studies in hydrogen transfer and catalysis. Quarterly report, December 27, 1991--March 27, 1992

    SciTech Connect

    Curtis, C.W.

    1992-12-31

    The research conducted this quarter evaluated hydrogen transfer from resids reduced using the Birch reduction method and their corresponding parent resid to an aromatic acceptor, anthracene (ANT). The reactions involved thermal and catalytic reactions using sulfur introduced as thiophenol. This catalyst has been shown by Rudnick to affect the hydrogen transfer from cycloalkane to aromatics/or coal. The purpose of this current study was to evaluate the efficacy of hydrogen transfer from the hydrogen-enriched reduced resid to an aromatic species and to compare that to the hydrogen transfer from the original resid. The analyses performed to evaluate hydrogen transfer were the determination of product slates from the hydrogenation of ANT and the fractionation of the resid into solubility fractions after reaction with ANT. The amount of coal conversion to THF solubles was higher in the coprocessing reactions with the reduced resids compared to the reactions with the corresponding untreated resid. The reduction of the resids by the Birch method increased the hydrogen donating ability of the resid to the same level as that obtained with the introduction of isotetralin (ISO) to the original resid. The ISO was introduced at a level of 0.5 wt % donable hydrogen. Both the original resids and the resids reduced by the Birch method were reacted in the presence of an aromatic species, anthracene (ANT). These reactions were performed under both nitrogen and hydrogen atmospheres at a pressure of 1250 psig introduced at ambient temperature. The reactions were performed both thermally and catalytically at 380{degree}C for 30 minutes. The catalyst used was thiophenol which is the same catalyst as has been used in the previously reported model compound studies involving hydrogen transfer from cycloalkanes to aromatics.

  14. Magnetic resonance studies of photo-induced electron transfer reactions

    SciTech Connect

    van Willigen, H.

    1992-11-01

    Fourier Transform Electron Paramagnetic Resonance (FT EPR) is useful in study of photochemical reactions: a microwave pulse rotates the electron spin magnetization vector from z (magnetic field) into xy plane ([pi]/2 pulse); the time evolution of magnetization in xy plane, the free induction decay (FID), is sampled. Fourier transform of FID gives the frequency domain EPR spectrum of the free radicals, and the method is ideal for time-resolved studies of free radicals produced by pulsed-laser excitation. Investigations of electron transfer reactions focused on porphyrin (donor) - quinone (acceptor) systems. First, two hydrogen abstraction reactions were studied with FT EPR: photoreduction of acetone with 2-propanol, yielding the acetone ketyl radical, and the reaction of 2-propanol with t-butoxy radicals. Then, the FT EPR study of benzoquinone or duroquinone anion radicals generated by pulsed-laser induced electron transfer from zinc tetraphenylporphyrin (ZnTPP) or tetrasulfonated Zn(TPP), was carried out in homogeneous solution, micellar solutions, and silica gel. Finally, FT EPR was used to study electron transfer quenching of triplet C[sub 60] by electron donors.

  15. The mechanism of chemisorption of hydrogen atom on graphene: Insights from the reaction force and reaction electronic flux

    SciTech Connect

    Cortés-Arriagada, Diego Gutiérrez-Oliva, Soledad; Herrera, Bárbara; Soto, Karla; Toro-Labbé, Alejandro

    2014-10-07

    At the PBE-D3/cc-pVDZ level of theory, the hydrogen chemisorption on graphene was analyzed using the reaction force and reaction electronic flux (REF) theories in combination with electron population analysis. It was found that chemisorption energy barrier is mainly dominated by structural work (∼73%) associated to the substrate reconstruction whereas the electronic work is the greatest contribution of the reverse energy barrier (∼67%) in the desorption process. Moreover, REF shows that hydrogen chemisorption is driven by charge transfer processes through four electronic events taking place as H approaches the adsorbent surface: (a) intramolecular charge transfer in the adsorbent surface; (b) surface reconstruction; (c) substrate magnetization and adsorbent carbon atom develops a sp{sup 3} hybridization to form the σC-H bond; and (d) spontaneous intermolecular charge transfer to reach the final chemisorbed state.

  16. Intramolecular energy transfer reactions in polymetallic

    SciTech Connect

    Petersen, J.

    1990-11-01

    This report is concerned with intramolecular, energy-transfer reactions. The concept of preparing synthetically a complex molecular species, capable of absorbing a photon at one metal center (antenna fragment), transferring that energy to a second metal center (reactive fragment) via a bridging ligand was first reported by our group in 1979. It is now apparent that a major emphasis in inorganic chemistry in the future will involve these types of molecular ensembles. Complexes discussed include Rh, Ru, and Cu complexes. 23 refs., 14 tabs.

  17. Insights into the Hydrogen-Atom Transfer of the Blue Aroxyl.

    PubMed

    Bächle, Josua; Marković, Marijana; Kelterer, Anne-Marie; Grampp, Günter

    2017-07-26

    An experimental and theoretical study on hydrogen-atom transfer dynamics in the hydrogen-bonded substituted phenol/phenoxyl complex of the blue aroxyl (2,4,6-tri-tert-butylphenoxyl) is presented. The experimental exchange dynamics is determined in different organic solvents from the temperature-dependent alternating line-width effect in the continuous-wave ESR spectrum. From bent Arrhenius plots, effective tunnelling contributions with parallel heavy-atom motion are concluded. To clarify the transfer mechanism, reaction paths for different conformers of the substituted phenol/phenoxyl complex are modelled theoretically. Various DFT and post-Hartree-Fock methods including multireference methods are applied. From the comparison of experimental and theoretical data it is concluded that the system favours concerted hydrogen-atom transfer along a parabolic reaction path caused by heavy-atom motion. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Enantioselective Brønsted acid catalyzed transfer hydrogenation: organocatalytic reduction of imines.

    PubMed

    Rueping, Magnus; Sugiono, Erli; Azap, Cengiz; Theissmann, Thomas; Bolte, Michael

    2005-08-18

    The first enantioselective Brønsted acid catalyzed reduction of imines has been developed. This new organocatalytic transfer hydrogenation of ketimines with Hantzsch dihydropyridine as the hydrogen source offers a mild method to various chiral amines with high enantioselectivity. The stereochemistry of the chiral amines can be rationalized by a stereochemical model derived from an X-ray crystal structure of a chiral BINOL phosphate catalyst. [reaction: see text

  19. Lysine 2,3-aminomutase. Support for a mechanism of hydrogen transfer involving S-adenosylmethionine.

    PubMed

    Baraniak, J; Moss, M L; Frey, P A

    1989-01-25

    The conversion of L-lysine to L-beta-lysine is catalyzed by lysine 2,3-aminomutase. The reaction involves the interchange of the 2-amino group of lysine with a hydrogen at carbon 3. As such the reaction is formally analogous to adenosylcobalamin-dependent rearrangements. However, the enzyme does not contain and is not activated by this coenzyme. Instead it contains iron and pyridoxal phosphate and is activated by S-adenosylmethionine. Earlier experiments implicated adenosyl-C-5' of S-adenosylmethionine in the hydrogen transfer mechanism, apparently in a role similar or analogous to that of adenosyl moiety of adenosylcobalamin in the B12-dependent rearrangements. The question of whether both hydrogens or only one hydrogen at adenosyl-C-5' participate in the hydrogen-transfer process has been addressed by carrying out the lysine 2,3-aminomutase reaction with S-[5'-3H] adenosylmethionine in the presence of 10 times its molar concentration of enzyme. Under these conditions all of the tritium appeared in lysine and beta-lysine, showing that C-5'-hydrogens participate. To determine whether hydrogen transfer is compulsorily intermolecular and intramolecular, various molar ratios of [3,3-2H2]lysine and unlabeled lysine were submitted to the action of lysine 2,3-aminomutase under conditions in which 10-15% conversion to beta-lysine occurred. Mass spectral analysis of the beta-lysine for monodeutero and dideutero species showed conclusively that hydrogen transfer is both intramolecular and intermolecular. The results quantitatively support our postulate that activation of the enzyme involves a transformation of S-adenosylmethionine into a form that promotes the generation of an adenosyl-5' free radical, which abstracts hydrogen from lysine to form 5'-deoxyadenosine as an intermediate.

  20. Hydrogen generation by reaction of Si nanopowder with neutral water

    NASA Astrophysics Data System (ADS)

    Kobayashi, Yuki; Matsuda, Shinsuke; Imamura, Kentaro; Kobayashi, Hikaru

    2017-05-01

    Si and its oxide are nonpoisonous materials, and thus, it can be taken for medical effects. We have developed a method of generation of hydrogen by use of reactions of Si nanopowder with water in the neutral pH region. Si nanopowder is fabricated by the simple bead milling method. Si nanopowder reacts with water to generate hydrogen even in cases where pH is set at the neutral region between 7.0 and 8.6. The hydrogen generation rate strongly depends on pH and in the case of pH 8.0, ˜55 ml/g hydrogen which corresponds to that contained in approximately 3 L saturated hydrogen-rich water is generated in 1 h. The reaction rate for hydrogen generation greatly increases with pH, indicating that the reacting species is hydroxide ions. The change of pH after the hydrogen generation reaction is negligibly low compared with that estimated assuming that hydroxide ions are consumed by the reaction. From these results, we conclude the following reaction mechanism: Si nanopowder reacts with hydroxide ions in the rate-determining reaction to form hydrogen molecules, SiO2, and electrons in the conduction band. Then, generated electrons are accepted by water molecules, resulting in production of hydrogen molecules and hydroxide ions. The hydrogen generation rate strongly depends on the crystallite size of Si nanopowder, but not on the size of aggregates of Si nanopowder. The present study shows a possibility to use Si nanopowder for hydrogen generation in the body in order to eliminate hydroxyl radicals which cause various diseases.

  1. Hydrogen generation by reaction of Si nanopowder with neutral water.

    PubMed

    Kobayashi, Yuki; Matsuda, Shinsuke; Imamura, Kentaro; Kobayashi, Hikaru

    2017-01-01

    Si and its oxide are nonpoisonous materials, and thus, it can be taken for medical effects. We have developed a method of generation of hydrogen by use of reactions of Si nanopowder with water in the neutral pH region. Si nanopowder is fabricated by the simple bead milling method. Si nanopowder reacts with water to generate hydrogen even in cases where pH is set at the neutral region between 7.0 and 8.6. The hydrogen generation rate strongly depends on pH and in the case of pH 8.0, ∼55 ml/g hydrogen which corresponds to that contained in approximately 3 L saturated hydrogen-rich water is generated in 1 h. The reaction rate for hydrogen generation greatly increases with pH, indicating that the reacting species is hydroxide ions. The change of pH after the hydrogen generation reaction is negligibly low compared with that estimated assuming that hydroxide ions are consumed by the reaction. From these results, we conclude the following reaction mechanism: Si nanopowder reacts with hydroxide ions in the rate-determining reaction to form hydrogen molecules, SiO2, and electrons in the conduction band. Then, generated electrons are accepted by water molecules, resulting in production of hydrogen molecules and hydroxide ions. The hydrogen generation rate strongly depends on the crystallite size of Si nanopowder, but not on the size of aggregates of Si nanopowder. The present study shows a possibility to use Si nanopowder for hydrogen generation in the body in order to eliminate hydroxyl radicals which cause various diseases.

  2. Heat Transfer Characteristics of SHS Reactions

    DTIC Science & Technology

    1990-07-01

    A+R?0 Qt43 =5 -YA co ,/A FINAL REPORT AD- A225 769-=-_ HEAT TRANSFER CHARACTERISTICS OF SHS REACTIONS K. V. Logan, G. R. Villalobos, J. N. Harris, P...2741 Ta 180.9 3287 5731 Cr 52.0 2130 2945 lNb 95.9 2890 4919 W 183.8 3683 >6000 Mli 54.9 1518 2335 Fe 55.8 1808 3135 Co 58.9 1768 3201 Ni 58.7 1726

  3. Formation of C–C Bonds via Iridium-Catalyzed Hydrogenation and Transfer Hydrogenation

    PubMed Central

    Bower, John F.; Krische, Michael J.

    2011-01-01

    The formation of C–C bonds via catalytic hydrogenation and transfer hydrogenation enables carbonyl and imine addition in the absence of stoichiometric organometallic reagents. In this review, iridium-catalyzed C–C bond-forming hydrogenations and transfer hydrogenations are surveyed. These processes encompass selective, atom-economic methods for the vinylation and allylation of carbonyl compounds and imines. Notably, under transfer hydrogenation conditions, alcohol dehydrogenation drives reductive generation of organoiridium nucleophiles, enabling carbonyl addition from the aldehyde or alcohol oxidation level. In the latter case, hydrogen exchange between alcohols and π-unsaturated reactants generates electrophile–nucleophile pairs en route to products of hydro-hydroxyalkylation, representing a direct method for the functionalization of carbinol C–H bonds. PMID:21822399

  4. Tryptophan and hydrogen sulfide reaction from modified trypticase soy agar.

    PubMed Central

    VON Riesen, V L

    1978-01-01

    The use of Trypticase soy agar modified by the addition of 0.05% ferric ammonium citrate and 0.01% sodium thiosulfate for the determination of indole, phenylpyruvic acid, anthranilate, kynurenine, and hydrogen sulfide reactions is described. PMID:624768

  5. Ultrafast excited state hydrogen atom transfer in salicylideneaniline driven by changes in aromaticity.

    PubMed

    Gutiérrez-Arzaluz, Luis; Cortés-Guzmán, Fernando; Rocha-Rinza, Tomás; Peón, Jorge

    2015-12-21

    We investigated two important unresolved issues on excited state intramolecular proton transfer (ESIPT) reactions, i.e., their driving force and the charge state of the transferred species by means of quantum chemical topology. We related changes in the aromaticity of a molecule after electron excitation to reaction dynamics in an excited state. Additionally, we found that the conveyed particle has a charge intermediate between that of a bare proton and a neutral hydrogen atom. We anticipate that the analysis presented in this communication will yield valuable insights into ESIPT and other similar photochemical reactions.

  6. Transfer reaction code with nonlocal interactions

    SciTech Connect

    Titus, L. J.; Ross, A.; Nunes, F. M.

    2016-07-14

    We present a suite of codes (NLAT for nonlocal adiabatic transfer) to calculate the transfer cross section for single-nucleon transfer reactions, (d,N)(d,N) or (N,d)(N,d), including nonlocal nucleon–target interactions, within the adiabatic distorted wave approximation. For this purpose, we implement an iterative method for solving the second order nonlocal differential equation, for both scattering and bound states. The final observables that can be obtained with NLAT are differential angular distributions for the cross sections of A(d,N)BA(d,N)B or B(N,d)AB(N,d)A. Details on the implementation of the TT-matrix to obtain the final cross sections within the adiabatic distorted wave approximation method are also provided. This code is suitable to be applied for deuteron induced reactions in the range of View the MathML sourceEd=10–70MeV, and provides cross sections with 4% accuracy.

  7. Transfer reaction code with nonlocal interactions

    DOE PAGES

    Titus, L. J.; Ross, A.; Nunes, F. M.

    2016-07-14

    We present a suite of codes (NLAT for nonlocal adiabatic transfer) to calculate the transfer cross section for single-nucleon transfer reactions, (d,N)(d,N) or (N,d)(N,d), including nonlocal nucleon–target interactions, within the adiabatic distorted wave approximation. For this purpose, we implement an iterative method for solving the second order nonlocal differential equation, for both scattering and bound states. The final observables that can be obtained with NLAT are differential angular distributions for the cross sections of A(d,N)BA(d,N)B or B(N,d)AB(N,d)A. Details on the implementation of the TT-matrix to obtain the final cross sections within the adiabatic distorted wave approximation method are also provided.more » This code is suitable to be applied for deuteron induced reactions in the range of View the MathML sourceEd=10–70MeV, and provides cross sections with 4% accuracy.« less

  8. Regio-Selective Intramolecular Hydrogen/Deuterium Exchange in Gas-Phase Electron Transfer Dissociation.

    PubMed

    Hamuro, Yoshitomo

    2017-05-01

    Protein backbone amide hydrogen/deuterium exchange mass spectrometry (HDX-MS) typically utilizes enzymatic digestion after the exchange reaction and before MS analysis to improve data resolution. Gas-phase fragmentation of a peptic fragment prior to MS analysis is a promising technique to further increase the resolution. The biggest technical challenge for this method is elimination of intramolecular hydrogen/deuterium exchange (scrambling) in the gas phase. The scrambling obscures the location of deuterium. Jørgensen's group pioneered a method to minimize the scrambling in gas-phase electron capture/transfer dissociation. Despite active investigation, the mechanism of hydrogen scrambling is not well-understood. The difficulty stems from the fact that the degree of hydrogen scrambling depends on instruments, various parameters of mass analysis, and peptide analyzed. In most hydrogen scrambling investigations, the hydrogen scrambling is measured by the percentage of scrambling in a whole molecule. This paper demonstrates that the degree of intramolecular hydrogen/deuterium exchange depends on the nature of exchangeable hydrogen sites. The deuterium on Tyr amide of neurotensin (9-13), Arg-Pro-Tyr-Ile-Leu, migrated significantly faster than that on Ile or Leu amides, indicating the loss of deuterium from the original sites is not mere randomization of hydrogen and deuterium but more site-specific phenomena. This more precise approach may help understand the mechanism of intramolecular hydrogen exchange and provide higher confidence for the parameter optimization to eliminate intramolecular hydrogen/deuterium exchange during gas-phase fragmentation. Graphical Abstract ᅟ.

  9. Regio-Selective Intramolecular Hydrogen/Deuterium Exchange in Gas-Phase Electron Transfer Dissociation

    NASA Astrophysics Data System (ADS)

    Hamuro, Yoshitomo

    2017-05-01

    Protein backbone amide hydrogen/deuterium exchange mass spectrometry (HDX-MS) typically utilizes enzymatic digestion after the exchange reaction and before MS analysis to improve data resolution. Gas-phase fragmentation of a peptic fragment prior to MS analysis is a promising technique to further increase the resolution. The biggest technical challenge for this method is elimination of intramolecular hydrogen/deuterium exchange (scrambling) in the gas phase. The scrambling obscures the location of deuterium. Jørgensen's group pioneered a method to minimize the scrambling in gas-phase electron capture/transfer dissociation. Despite active investigation, the mechanism of hydrogen scrambling is not well-understood. The difficulty stems from the fact that the degree of hydrogen scrambling depends on instruments, various parameters of mass analysis, and peptide analyzed. In most hydrogen scrambling investigations, the hydrogen scrambling is measured by the percentage of scrambling in a whole molecule. This paper demonstrates that the degree of intramolecular hydrogen/deuterium exchange depends on the nature of exchangeable hydrogen sites. The deuterium on Tyr amide of neurotensin (9-13), Arg-Pro-Tyr-Ile-Leu, migrated significantly faster than that on Ile or Leu amides, indicating the loss of deuterium from the original sites is not mere randomization of hydrogen and deuterium but more site-specific phenomena. This more precise approach may help understand the mechanism of intramolecular hydrogen exchange and provide higher confidence for the parameter optimization to eliminate intramolecular hydrogen/deuterium exchange during gas-phase fragmentation.

  10. Regio-Selective Intramolecular Hydrogen/Deuterium Exchange in Gas-Phase Electron Transfer Dissociation

    NASA Astrophysics Data System (ADS)

    Hamuro, Yoshitomo

    2017-02-01

    Protein backbone amide hydrogen/deuterium exchange mass spectrometry (HDX-MS) typically utilizes enzymatic digestion after the exchange reaction and before MS analysis to improve data resolution. Gas-phase fragmentation of a peptic fragment prior to MS analysis is a promising technique to further increase the resolution. The biggest technical challenge for this method is elimination of intramolecular hydrogen/deuterium exchange (scrambling) in the gas phase. The scrambling obscures the location of deuterium. Jørgensen's group pioneered a method to minimize the scrambling in gas-phase electron capture/transfer dissociation. Despite active investigation, the mechanism of hydrogen scrambling is not well-understood. The difficulty stems from the fact that the degree of hydrogen scrambling depends on instruments, various parameters of mass analysis, and peptide analyzed. In most hydrogen scrambling investigations, the hydrogen scrambling is measured by the percentage of scrambling in a whole molecule. This paper demonstrates that the degree of intramolecular hydrogen/deuterium exchange depends on the nature of exchangeable hydrogen sites. The deuterium on Tyr amide of neurotensin (9-13), Arg-Pro-Tyr-Ile-Leu, migrated significantly faster than that on Ile or Leu amides, indicating the loss of deuterium from the original sites is not mere randomization of hydrogen and deuterium but more site-specific phenomena. This more precise approach may help understand the mechanism of intramolecular hydrogen exchange and provide higher confidence for the parameter optimization to eliminate intramolecular hydrogen/deuterium exchange during gas-phase fragmentation.

  11. A reaction calorimetric investigation of the hydrogenation of a substituted pyrazine

    SciTech Connect

    Landau, R.N.; Singh, U.; Gortsema, F.

    1995-11-01

    Reaction calorimetry was the primary tool in investigations of the liquid-phase hydrogenation of a substituted pyrazine compound carried out over supported Pd catalysts. In addition to providing information about gas-liquid mass transfer limitations, calorimetric measurements provided a kinetic analysis of how product selectivity in this consecutive reaction network may be tuned by changing reaction conditions. Concentration profiles developed from fitting the heat flow data to a first-order model were compared with analytical measurements of concentration, demonstrating the utility of combining independent measurements of reaction progress as a means of assessing the validity of a kinetic model. 15 refs., 5 figs., 3 tabs.

  12. Reaction of Aluminum with Water to Produce Hydrogen - 2010 Update

    SciTech Connect

    Petrovic, John; Thomas, George

    2011-06-01

    A Study of Issues Related to the Use of Aluminum for On-Board Vehicular Hydrogen Storage The purpose of this White Paper is to describe and evaluate the potential of aluminum-water reactions for the production of hydrogen for on-board hydrogen-powered vehicle applications. Although the concept of reacting aluminum metal with water to produce hydrogen is not new, there have been a number of recent claims that such aluminum-water reactions might be employed to power fuel cell devices for portable applications such as emergency generators and laptop computers, and might even be considered for possible use as the hydrogen source for fuel cell-powered vehicles.

  13. Investigation of plasma hydrogenation and trapping mechanism for layer transfer

    NASA Astrophysics Data System (ADS)

    Chen, Peng; Chu, Paul K.; Höchbauer, T.; Lee, J.-K.; Nastasi, M.; Buca, D.; Mantl, S.; Loo, R.; Caymax, M.; Alford, T.; Mayer, J. W.; Theodore, N. David; Cai, M.; Schmidt, B.; Lau, S. S.

    2005-01-01

    Hydrogen ion implantation is conventionally used to initiate the transfer of Si thin layers onto Si wafers coated with thermal oxide. In this work, we studied the feasibility of using plasma hydrogenation to replace high dose H implantation for layer transfer. Boron ion implantation was used to introduce H-trapping centers into Si wafers to illustrate the idea. Instead of the widely recognized interactions between boron and hydrogen atoms, this study showed that lattice damage, i.e., dangling bonds, traps H atoms and can lead to surface blistering during hydrogenation or upon postannealing at higher temperature. The B implantation and subsequent processes control the uniformity of H trapping and the trap depths. While the trap centers were introduced by B implantation in this study, there are many other means to do the same without implantation. Our results suggest an innovative way to achieve high quality transfer of Si layers without H implantation at high energies and high doses.

  14. Charge transfer reactions in multiply charged ion-atom collisions. [in interstellar clouds

    NASA Technical Reports Server (NTRS)

    Steigman, G.

    1975-01-01

    Charge-transfer reactions in collisions between highly charged ions and neutral atoms of hydrogen and/or helium may be rapid at thermal energies. If these reactions are rapid, they will suppress highly charged ions in H I regions and guarantee that the observed absorption features from such ions cannot originate in the interstellar gas. A discussion of such charge-transfer reactions is presented and compared with the available experimental data. The possible implications of these reactions for observations of the interstellar medium, H II regions, and planetary nebulae are outlined.

  15. Applications of light-induced electron-transfer and hydrogen-abstraction processes: photoelectrochemical production of hydrogen from reducing radicals

    SciTech Connect

    Chandrasekaran, K.; Whitten, D.G.

    1980-07-16

    A study of several photoprocesses which generate reducing radicals in similar photoelectrochemical cells was reported. Coupling of a light-induced reaction to produce a photocurrent concurrent with hydrogen generation in a second compartment can occur for a number of electron transfers and hydrogen abstractions in what appears to be a fairly general process. Irradiation of the RuL/sub 3//sup +2//Et/sub 3/N: photoanode compartment leads to production of a photocurrent together with generation of hydrogen at the cathode. A rather different type of reaction that also results in formation of two reducing radicals as primary photoproducts if the photoreduction of ketones and H-heteroaromatics by alcohols and other hydrogen atom donors. Irradiation of benzophenone/2-propanol/MV/sup +2/ solutions in the photoanode compartment (intensity 1.4 x 10/sup -8/ einstein/s) leads to a buildup of moderate levels of MV/sup +/ and to a steady photocurrent of 320 ..mu..A. The MV/sup +/ is oxidized at the anode of the photolyzed compartment with concomitant reduction of H/sup +/ in the cathode compartment. There was no decrease in benzophenone concentration over moderate periods of irradiation, and a steady production of hydrogen in the cathode compartment was observed. The photocurrent produced was linear with the square of absorbed light intensity. The quantum efficiency at the above-indicated intensity is 22%; quantitative analysis of the hydrogen produced gives good agreement with this value. 1 figure, 1 table. (DP)

  16. A Frustrated Lewis Pair Catalyzed Asymmetric Transfer Hydrogenation of Imines Using Ammonia Borane.

    PubMed

    Li, Songlei; Li, Gen; Meng, Wei; Du, Haifeng

    2016-10-05

    Inspired by the zwitterion species generated from the splitting of H2 by frustrated Lewis pairs, we put forward a novel frustrated Lewis pair by the combination of H(δ-) and H(δ+) incorporated Lewis acid and base together. Piers' borane and chiral tert-butylsulfinamide were chosen as the FLP, and a metal-free asymmetric transfer hydrogenation of imines was realized with high enantioselectivities. Significantly, with ammonia borane as hydrogen source, a catalytic asymmetric reaction using 10 mol % of Piers' borane, chiral tert-butylsulfinamide, and pyridine additive, has been successfully achieved to furnish optically active amines in 78-99% yields with 84-95% ee's. Experimental and theoretical mechanistic studies reveal an interesting 8-membered ring hydrogen transfer transition state and an expected regeneration of reactive species with ammonia borane. Accordingly, a plausible catalytic pathway for this reaction is depicted.

  17. Decoupling interfacial reactions between plasmas and liquids: charge transfer vs plasma neutral reactions.

    PubMed

    Rumbach, Paul; Witzke, Megan; Sankaran, R Mohan; Go, David B

    2013-11-06

    Plasmas (gas discharges) formed at the surface of liquids can promote a complex mixture of reactions in solution. Here, we decouple two classes of reactions, those initiated by electrons (electrolysis) and those initiated by gaseous neutral species, by examining an atmospheric-pressure microplasma formed in different ambients at the surface of aqueous saline (NaCl) solutions. Electrolytic reactions between plasma electrons and aqueous ions yield an excess of hydroxide ions (OH(-)), making the solution more basic, while reactions between reactive neutral species formed in the plasma phase and the solution lead to nitrous acid (HNO2), nitric acid (HNO3), and hydrogen peroxide (H2O2), making the solution more acidic. The relative importance of either reaction path is quantified by pH measurements, and we find that it depends directly on the composition of the ambient background gas. With a background gas of oxygen or argon, electron transfer reactions yielding excess OH(-) dominate, while HNO2 and HNO3 formed in the plasma and by the dissolution of nitrogen oxide (NOx) species dominate in the case of air and nitrogen. For pure nitrogen (N2) gas, we observe a unique coupling between both reactions, where oxygen (O2) gas formed via water electrolysis reacts in the bulk of the plasma to form NOx, HNO2, and HNO3.

  18. Heterogeneous Catalysis: Deuterium Exchange Reactions of Hydrogen and Methane

    ERIC Educational Resources Information Center

    Mirich, Anne; Miller, Trisha Hoette; Klotz, Elsbeth; Mattson, Bruce

    2015-01-01

    Two gas phase deuterium/hydrogen exchange reactions are described utilizing a simple inexpensive glass catalyst tube containing 0.5% Pd on alumina through which gas mixtures can be passed and products collected for analysis. The first of these exchange reactions involves H[subscript 2] + D[subscript 2], which proceeds at temperatures as low as 77…

  19. Heterogeneous Catalysis: Deuterium Exchange Reactions of Hydrogen and Methane

    ERIC Educational Resources Information Center

    Mirich, Anne; Miller, Trisha Hoette; Klotz, Elsbeth; Mattson, Bruce

    2015-01-01

    Two gas phase deuterium/hydrogen exchange reactions are described utilizing a simple inexpensive glass catalyst tube containing 0.5% Pd on alumina through which gas mixtures can be passed and products collected for analysis. The first of these exchange reactions involves H[subscript 2] + D[subscript 2], which proceeds at temperatures as low as 77…

  20. Hydrogen Transfer in Energetic Materials from ReaxFF and DFT Calculations.

    PubMed

    Sergeev, Oleg V; Yanilkin, Alexey V

    2017-04-27

    Energetic materials are characterized by fast and complex chemical reactions. It makes them hardly available for kinetic experiments in relevant conditions and a good target for reactive molecular dynamics simulations. In this work, unimolecular and condensed-phase thermal decomposition of pentaerythritol tetranitrate (PETN) are investigated by ReaxFF molecular dynamics. It is shown that the decomposition kinetics in condensed phase may be described with the activation barrier lower by a factor of 2 than that for isolated molecules. The effect of the intermolecular hydrogen transfer is revealed in condensed phase. Energetic barriers for hydrogen transfer in two energetic materials (methyl nitrate, which is a nitroester as well as PETN, and o-nitrotoluene) are studied with ReaxFF and DFT using nudged elastic band technique. The results indicate that ReaxFF gives significantly lower activation energy for intermolecular hydrogen transfer in nitroesters than different DFT approximations, which explains the molecular dynamics results for PETN.

  1. Diels-Alder reactions onto fluorinated and hydrogenated graphene

    NASA Astrophysics Data System (ADS)

    Denis, Pablo A.

    2017-09-01

    We studied Diels-Alder (DA) reactions onto functionalized graphene. When fluorine, hydrogen or oxygen functional groups are present on one side of the sheet, the DA cycloadditions become significantly more exergonic when performed on the opposite side. Hydrogen is more effective than fluorine and oxygen to promote these cycloadditions. In contrast with the results obtained for perfect graphene, the functionalization with H, F or O turns the DA reactions exergonic, with ΔG°298 = -127.2 kcal/mol. The reaction barriers are expected to be considerably lowered with respect to perfect graphene because the functional groups significantly reduce the distortion energy.

  2. Magnetically Recoverable Supported Ruthenium Catalyst for Hydrogenation of Alkynes and Transfer Hydrogenation of Carbonyl Compounds

    EPA Science Inventory

    A ruthenium (Ru) catalyst supported on magnetic nanoparticles (NiFe2O4) has been successfully synthesized and used for hydrogenation of alkynes at room temperature as well as transfer hydrogenation of a number of carbonyl compounds under microwave irradiation conditions. The cata...

  3. Magnetically Recoverable Supported Ruthenium Catalyst for Hydrogenation of Alkynes and Transfer Hydrogenation of Carbonyl Compounds

    EPA Science Inventory

    A ruthenium (Ru) catalyst supported on magnetic nanoparticles (NiFe2O4) has been successfully synthesized and used for hydrogenation of alkynes at room temperature as well as transfer hydrogenation of a number of carbonyl compounds under microwave irradiation conditions. The cata...

  4. Proton Transfer Reaction Ion Trap Mass Spectrometer

    SciTech Connect

    Prazeller, Peter; Palmer, Peter T.; Boscaini, Elena; Jobson, B Tom T.; Alexander, M. Lizabeth

    2003-06-11

    Proton transfer reaction mass spectrometry is a relatively new field that has attracted a great deal of interest in the last few years. This technique uses H₃Oþ as a chemical ionization (CI) reagent to measure volatile organic compounds (VOCs) in the parts per billion by volume (ppbv) to parts per trillion by volume (pptv) range. Mass spectra acquired with a proton transfer reaction mass spectrometer (PTR-MS) are simple because proton transfer chemical ionization is ‘soft’ and results in little or no fragmentation. Unfortunately, peak identification can still be difficult due to isobaric interferences. A possible solution to this problem is to couple the PTR drift tube to an ion trap mass spectrometer (ITMS). The use of an ITMS is appealing because of its ability to perform MS/MS and possibly distinguish between isomers and other isobars. Additionally, the ITMS duty cycle is much higher than that of a linear quadrupole so faster data acquisition rates are possible that will allow for detection of multiple compounds. Here we present the first results from a proton transfer reaction ion trap mass spectrometer (PTR-ITMS). The aim of this study was to investigate ion injection and storage efficiency of a simple prototype instrument in order to estimate possible detection limits of a second-generation instrument. Using this prototype a detection limit of 100 ppbv was demonstrated. Modifications are suggested that will enable further reduction in detection limits to the low-ppbv to high-pptv range. Furthermore, the applicability of MS/MS in differentiating between isobaric species was determined. MS/MS spectra of the isobaric compounds methyl vinyl ketone (MVK) and methacrolein (MACR) are presented and show fragments of different mass making differentiation possible, even when a mixture of both species is present in the same sample. However, MS/MS spectra of acetone and propanal produce fragments with the same molecular masses but with different intensity ratios

  5. Improved performance in coprocessing through fundamental and mechanistic studies in hydrogen transfer and catalysis. Quarterly report, December 26, 1989--March 26, 1990

    SciTech Connect

    Curtis, C.W.

    1990-12-31

    To gain a fundamental understanding of the role and importance of hydrogen transfer reactions in thermal and catalytic coprocessing by examining possible hydrogen donation from cycloalkane/aromatic systems and by understanding the chemistry and enhanced reactivity of hydrotreated residuum, as well as by enriching petroleum solvent with potent new donors, nonaromatic hydroaromatics, thereby promoting hydrogen transfer reactions in coprocessing. The detailed results of experiments performed on several subtasks during the quarter are presented.

  6. Improved performance in coprocessing through fundamental and mechanistic studies in hydrogen transfer and catalysis. Quarterly report, December 27, 1990--March 26, 1991

    SciTech Connect

    Curtis, C.W.

    1991-12-31

    The objective is to gain a fundamental understanding of the role and importance of hydrogen transfer reactions in thermal and catalytic coprocessing by examining possible hydrogen donation from cycloalkane/aromatic systems and by understanding the chemistry and enhanced reactivity of hydrotreated residuum, as well as by enriching petroleum solvent with potent new donors, nonaromatic hydroaromatics, thereby promoting hydrogen transfer reactions in coprocessing. The detailed results of experiments performed on several subtasks during the quarter are presented.

  7. Improved performance in coprocessing through fundamental and mechanistic studies in hydrogen transfer and catalysis. Quarterly report, March 27, 1990--June 26, 1990

    SciTech Connect

    Curtis, C.W.

    1990-12-31

    To gain a fundamental understanding of the role and importance of hydrogen transfer reactions in thermal and catalytic coprocessing by examining possible hydrogen donation from cycloalkane/aromatic systems and by understanding the chemistry and enhanced reactivity of hydrotreated residuum, as well as by enriching petroleum solvent with potent new donors, nonaromatic hydroaromatics, thereby promoting hydrogen transfer reactions in coprocessing. The detailed results of experiments performed on several subtasks during the quarter are presented.

  8. Improved performance in coprocessing through fundamental and mechanistic studies in hydrogen transfer and catalysis. Quarterly report, September 27, 1990--December 26, 1990

    SciTech Connect

    Curtis, C.W.

    1990-12-31

    The objective is to gain a fundamental understanding of the role and importance of hydrogen transfer reactions in thermal and catalytic coprocessing by examining possible hydrogen donation from cycloalkane/aromatic systems and by understanding the chemistry and enhanced reactivity of hydrotreated residuum, as well as by enriching petroleum solvent with potent new donors, nonaromatic hydroaromatics, thereby promoting hydrogen transfer reactions in coprocessing. The detailed results of experiments performed on several subtasks during the quarter are presented.

  9. Improved performance in coprocessing through fundamental and mechanistic studies in hydrogen transfer and catalysis. Quarterly report, September 26, 1989--December 26, 1989

    SciTech Connect

    Curtis, C.W.

    1989-12-31

    To gain a fundamental understanding of the role and importance of hydrogen transfer reactions in thermal and catalytic coprocessing by examining possible hydrogen donation from cycloalkane/aromatic systems and by understanding the chemistry and enhanced reactivity of hydrotreated residuum, as well as by enriching petroleum solvent with potent new donors, nonaromatic hydroaromatics, thereby promoting hydrogen transfer reactions in coprocessing. The detailed results of experiments performed on several subtasks during the quarter are presented.

  10. Improved performance in coprocessing through fundamental and mechanistic studies in hydrogen transfer and catalysis. Quarterly report, March 27, 1991--June 26, 1991

    SciTech Connect

    Curtis, C.W.

    1991-12-31

    The objective is to gain a fundamental understanding of the role and importance of hydrogen transfer reactions in thermal and catalytic coprocessing by examining possible hydrogen donation from cycloalkane/aromatic systems and by understanding the chemistry and enhanced reactivity of hydrotreated residuum, as well as by enriching petroleum solvent with potent new donors, nonaromatic hydroaromatics, thereby promoting hydrogen transfer reactions in coprocessing. The detailed results of experiments performed on several subtasks during the quarter are presented.

  11. Improved performance in coprocessing through fundamental and mechanistic studies in hydrogen transfer and catalysis. Quarterly report, June 27, 1991--September 26, 1991

    SciTech Connect

    Curtis, C.W.

    1991-12-31

    The objective is to gain a fundamental understanding of the role and importance of hydrogen transfer reactions in thermal and catalytic coprocessing by examining possible hydrogen donation from cycloalkane/aromatic systems and by understanding the chemistry and enhanced reactivity of hydrotreated residuum, as well as by enriching petroleum solvent with potent new donors, nonaromatic hydroaromatics, thereby promoting hydrogen transfer reactions in coprocessing. The detailed results of experiments performed on several subtasks during the quarter are presented.

  12. Gas Requirements in Pressurized Transfer of Liquid Hydrogen

    NASA Technical Reports Server (NTRS)

    Gluck, D. F.; Kline, J. F.

    1961-01-01

    Of late, liquid hydrogen has become a very popular fuel for space missions. It is being used in such programs as Centaur and Saturn. Furthermore, hydrogen is the ideal working fluid for nuclear powered space vehicles currently under development. In these applications, liquid hydrogen fuel is generally transferred to the combustion chamber by a combination of pumping and pressurization. The pump forces the liquid propellant from the fuel tank to the combustion chamber; gaseous pressurant holds tank pressure sufficiently high to prevent cavitation at the pump inlet and to maintain the structural rigidity of the tank. The pressurizing system, composed of pressurant, tankage, and associated hardware can be a large portion of the total vehicle weight. Pressurant weight can be reduced by introducing the pressurizing gas at temperatures substantially greater than those of liquid hydrogen. Heat and mass transfer processes thereby induced complicate gas requirements during discharge. These requirements must be known to insure proper design of the pressurizing system. The aim of this paper is to develop from basic mass and energy transfer processes a general method to predict helium and hydrogen gas usage for the pressurized transfer of liquid hydrogen. This required an analytical and experimental investigation, the results of which are described in this paper.

  13. Tension-Enhanced Hydrogen Evolution Reaction on Vanadium Disulfide Monolayer

    NASA Astrophysics Data System (ADS)

    Pan, Hui

    2016-02-01

    Water electrolysis is an efficient way for hydrogen production. Finding efficient, cheap, and eco-friendly electrocatalysts is essential to the development of this technology. In the work, we present a first-principles study on the effects of tension on the hydrogen evolution reaction of a novel electrocatalyst, vanadium disulfide (VS2) monolayer. Two electrocatalytic processes, individual and collective processes, are investigated. We show that the catalytic ability of VS2 monolayer at higher hydrogen coverage can be efficiently improved by escalating tension. We find that the individual process is easier to occur in a wide range of hydrogen coverage and the collective process is possible at a certain hydrogen coverage under the same tension. The best hydrogen evolution reaction with near-zero Gibbs free energy can be achieved by tuning tension. We further show that the change of catalytic activity with tension and hydrogen coverage is induced by the change of free carrier density around the Fermi level, that is, higher carrier density, better catalytic performance. It is expected that tension can be a simple way to improve the catalytic activity, leading to the design of novel electrocatalysts for efficient hydrogen production from water electrolysis.

  14. Tension-Enhanced Hydrogen Evolution Reaction on Vanadium Disulfide Monolayer.

    PubMed

    Pan, Hui

    2016-12-01

    Water electrolysis is an efficient way for hydrogen production. Finding efficient, cheap, and eco-friendly electrocatalysts is essential to the development of this technology. In the work, we present a first-principles study on the effects of tension on the hydrogen evolution reaction of a novel electrocatalyst, vanadium disulfide (VS2) monolayer. Two electrocatalytic processes, individual and collective processes, are investigated. We show that the catalytic ability of VS2 monolayer at higher hydrogen coverage can be efficiently improved by escalating tension. We find that the individual process is easier to occur in a wide range of hydrogen coverage and the collective process is possible at a certain hydrogen coverage under the same tension. The best hydrogen evolution reaction with near-zero Gibbs free energy can be achieved by tuning tension. We further show that the change of catalytic activity with tension and hydrogen coverage is induced by the change of free carrier density around the Fermi level, that is, higher carrier density, better catalytic performance. It is expected that tension can be a simple way to improve the catalytic activity, leading to the design of novel electrocatalysts for efficient hydrogen production from water electrolysis.

  15. Product distributions and rate constants for ion-molecule reactions in water, hydrogen sulfide, ammonia, and methane

    NASA Technical Reports Server (NTRS)

    Huntress, W. T., Jr.; Pinizzotto, R. F., Jr.

    1973-01-01

    The thermal energy, bimolecular ion-molecule reactions occurring in gaseous water, hydrogen sulfide, ammonia, and methane have been identified and their rate constants determined using ion cyclotron resonance methods. Absolute rate constants were determined for the disappearance of the primary ions by using the trapped ion method, and product distributions were determined for these reactions by using the cyclotron ejection method. Previous measurements are reviewed and compared with the results using the present methods. The relative rate constants for hydrogen-atom abstraction, proton transfer, and charge transfer are also determined for reactions of the parent ions.

  16. Product distributions and rate constants for ion-molecule reactions in water, hydrogen sulfide, ammonia, and methane

    NASA Technical Reports Server (NTRS)

    Huntress, W. T., Jr.; Pinizzotto, R. F., Jr.

    1973-01-01

    The thermal energy, bimolecular ion-molecule reactions occurring in gaseous water, hydrogen sulfide, ammonia, and methane have been identified and their rate constants determined using ion cyclotron resonance methods. Absolute rate constants were determined for the disappearance of the primary ions by using the trapped ion method, and product distributions were determined for these reactions by using the cyclotron ejection method. Previous measurements are reviewed and compared with the results using the present methods. The relative rate constants for hydrogen-atom abstraction, proton transfer, and charge transfer are also determined for reactions of the parent ions.

  17. Dynamical quantum filtering in hydrogen surface reactions

    NASA Astrophysics Data System (ADS)

    Diño, Wilson Agerico; Kasai, Hideaki; Okiji, Ayao

    1998-11-01

    We report on how surfaces that adsorb hydrogen could act as rotational quantum state filters and cause, for example, D 2 molecules desorbing in the vibrational ground state from Cu(111) to exhibit strong rotational alignment. For low final translational energies, we found that desorbing D 2 molecules have rotational alignment factor values corresponding to cartwheel-type rotational preference. As the final translational energy increases, the corresponding alignment factor increases initially to values corresponding to helicopter-type rotational preference and then, eventually, decreases to values almost compatible with a spatially isotropic distribution, as the translational energy increases further.

  18. A Note on the Reaction of Hydrogen and Plutonium

    SciTech Connect

    Noone, Bailey C

    2012-08-15

    Plutonium hydride has many practical and experimental purposes. The reaction of plutonium and hydrogen has interesting characteristics, which will be explored in the following analysis. Plutonium is a radioactive actinide metal that emits alpha particles. When plutonium metal is exposed to air, the plutonium oxides and hydrides, and the volume increases. PuH{sub 2} and Pu{sub 2}O{sub 3} are the products. Hydrogen is a catalyst for plutonium's corrosion in air. The reaction can take place at room temperature because it is fairly insensitive to temperature. Plutonium hydride, or PuH{sub 2}, is black and metallic. After PuH{sub 2} is formed, it quickly flakes off and burns. The reaction of hydrogen and plutonium is described as pyrophoric because the product will spontaneously ignite when oxygen is present. This tendency must be considered in the storage of metal plutonium. The reaction is characterized as reversible and nonstoichiometric. The reaction goes as such: Pu + H{sub 2} {yields} PuH{sub 2}. When PuH{sub 2} is formed, the hydrogen/plutonium ratio is between 2 and 2.75 (approximately). As more hydrogen is added to the system, the ratio increases. When the ratio exceeds 2.75, PuH{sub 3} begins to form along with PuH{sub 2}. Once the ratio surpasses 2.9, only PuH{sub 3} remains. The volume of the plutonium sample increases because of the added hydrogen and the change in crystal structure which the sample undergoes. As more hydrogen is added to a system of metal plutonium, the crystal structure evolves. Plutonium has a crystal structure classified as monoclinic. A monoclinic crystal structure appears to be a rectangular prism. When plutonium reacts with hydrogen, the product PuH{sub 2}, becomes a fluorite structure. It can also be described as a face centered cubic structure. PuH{sub 3} forms a hexagonal crystal structure. As plutonium evolves from metal plutonium to plutonium hydride to plutonium trihydride, the crystal structure evolves from monoclinic to

  19. Evidence for coupled motion and hydrogen tunneling of the reaction catalyzed by glutamate mutase.

    PubMed

    Cheng, Mou-Chi; Marsh, E Neil G

    2007-01-23

    Glutamate mutase is one of a group of adenosylcobalamin-dependent enzymes that catalyze unusual isomerizations that proceed through organic radical intermediates generated by homolytic fission of the coenzyme's unique cobalt-carbon bond. These enzymes are part of a larger family of enzymes that catalyze radical chemistry in which a key step is the abstraction of a hydrogen atom from an otherwise inert substrate. To gain insight into the mechanism of hydrogen transfer, we previously used pre-steady-state, rapid-quench techniques to measure the alpha-secondary tritium kinetic and equilibrium isotope effects associated with the formation of 5'-deoxyadenosine when glutamate mutase was reacted with [5'-(3)H]adenosylcobalamin and L-glutamate. We showed that both the kinetic and equilibrium isotope effects are large and inverse, 0.76 and 0.72, respectively. We have now repeated these measurements using glutamate deuterated in the position of hydrogen abstraction. The effect of introducing a primary deuterium kinetic isotope effect on the hydrogen transfer step is to reduce the magnitude of the secondary kinetic isotope effect to a value close to unity, 1.05 +/- 0.08, whereas the equilibrium isotope effect is unchanged. The significant reduction in the secondary kinetic isotope effect is consistent with motions of the 5'-hydrogen atoms being coupled in the transition state to the motion of the hydrogen undergoing transfer, in a reaction that involves a large degree of quantum tunneling.

  20. Evidence for Coupled Motion and Hydrogen Tunneling the Reaction Catalyzed by Glutamate Mutase:†

    PubMed Central

    Cheng, Mou-Chi; Marsh, E. Neil G.

    2008-01-01

    Glutamate mutase is one of a group of adenosylcobalamin-dependent enzymes that catalyze unusual isomerizations that proceed through organic radical intermediates generated by homolytic fission of coenzyme's unique cobalt-carbon bond. These enzymes are part of a larger family of enzymes that catalyze radical chemistry in which a key step is the abstraction of a hydrogen atom from an otherwise inert substrate. To gain insight into the mechanism of hydrogen transfer we previously used pre-steady state, rapid quench techniques to measure the α-secondary tritium kinetic and equilibrium isotope effects associated with the formation of 5’-deoxyadenosine when glutamate mutase was reacted with [5’-3H]-adenosylcobalamin and L-glutamate. We showed that both the kinetic and equilibrium isotope effects are large and inverse, 0.76 and 0.72 respectively. We have now repeated these measurements using glutamate deuterated in the position of hydrogen abstraction. The effect of introducing a primary deuterium kinetic isotope effect on the hydrogen transfer step is to reduce the magnitude of the secondary kinetic isotope effect to a value close to unity, 1.05 ± 0.08, whereas the equilibrium isotope effect is unchanged. The significant reduction in the secondary kinetic isotope effect is consistent with motions of the 5’-hydrogen atoms being coupled in the transition state to the motion of the hydrogen undergoing transfer, in a reaction that involves a large degree of quantum tunneling. PMID:17223710

  1. Electron transfer reactions in microporous solids

    SciTech Connect

    Mallouk, T.E.

    1992-05-01

    We have studied electron transfer quenching of the excited state of Ru(bpy){sub 3}{sup 2+} in aqueous suspensions of zeolites Y, L, and mordenite. The internal pore network of the zeolite is ion-exchanged with methylviologen cations, which quench the excited state of the surface-bound sensitizer. A detailed study of the quenching and charge recombination kinetics, using time-resolved luminescence quenching and transient diffuse reflectance spectroscopies, shows to remarkable effects: first, the excited state quenching is entirely dynamic is large-pore zeolites (L and Y), even when they are prepared as apparently dry'' powders (which still contain significant amounts of internally sited water). Second, a lower limit for the diffusion coefficient of the MV{sup 2+} ion in these zeolites, determined by this technique, is 10{sup {minus}7} cm{sup 2}sec, i.e., only about one order of magnitude slower than a typical ion in liquid water, and 2--3 orders of magnitude faster than charge transfer diffusion of cations in polyelectrolyte films or membranes such as Nafion. Surface sensitization of internally platinized layered oxide semiconductors such as K{sub 4-x}H{sub x}Nb{sub 6}O{sub 17}{center dot}nH{sub 2}O (x {approx} 2.5) yields photocatalysts for the production of H{sub 2} and I{sub 3{minus}} in aqueous iodide solutions. Layered alkali niobates and titanates form a class of zeolitic wide-bandap semiconductors, and are the first examples of photocatalysts that evolve hydrogen from an electrochemically reversible (i.e., non-sacrificial) electron donor with visible light excitation.

  2. Hydrogen triggered exothermal reaction in uranium metal

    NASA Astrophysics Data System (ADS)

    Dufour, J.; Murat, D.; Dufour, X.; Foos, J.

    2000-06-01

    An exothermal reaction has been observed when submitting metallic uranium to the combined action of a magnetic field and an electrical current. The set-up used to study the phenomenon is described and results are given. A tentative explanation is given, based on the possible existence of a still hypothetical proton/electron resonance.

  3. Hydrogen forms in water by proton transfer to a distorted electron.

    PubMed

    Marsalek, Ondrej; Frigato, Tomaso; VandeVondele, Joost; Bradforth, Stephen E; Schmidt, Burkhard; Schütte, Christof; Jungwirth, Pavel

    2010-01-21

    Solvated electrons are ubiquitous intermediates in radiation-induced processes, with their lifetime being determined by quenching processes, such as the direct reaction with protons under acidic conditions. Ab initio molecular dynamics simulations allow us to unravel with molecular resolution the ultrafast reaction mechanism by which the electron and proton react in water. The path to a successful reaction involves a distortion and contraction of the hydrated electron and a rapid proton motion along a chain of hydrogen bonds, terminating on the water molecule most protruding into the electron cloud. This fundamental reaction is thus decidedly shown to be of a proton-transfer rather than electron-transfer character. Due to the desolvation penalty connected with breaking of the hydration shells of these charged particles, the reaction is, however, not diffusion-limited, in agreement with the interpretation of kinetics measurements.

  4. MODELING OF SYNGAS REACTIONS AND HYDROGEN GENERATION OVER SULFIDES

    SciTech Connect

    Kamil Klier; Jeffery A. Spirko; Michael L. Neiman

    2004-10-01

    The objective of the research is to analyze pathways of reactions of hydrogen with oxides of carbon over sulfides, and to predict which characteristics of the sulfide catalyst (nature of metal, defect structure) give rise to the lowest barriers toward oxygenated hydrocarbon product. Reversal of these pathways entails the generation of hydrogen, which is also proposed for study. During this study, adsorption reactions of H atoms and H{sub 2} molecules with MoS{sub 2}, both in molecular and solid form, have been modeled using high-level density functional theory. The relative stabilities of pure MoS{sub 2} edges were calculated and small clusters exhibiting properties of the edges were modeled. The results were finalized and published in the journal ''Surface Science''. Hydrogen adsorption energies on both the edges and the clusters were calculated, and the thermodynamics of hydrogen adsorption on both systems were evaluated. The adsorption locations and vibrational frequencies were also determined. These additional results were published in a second paper in ''Surface Science''. Most recently, the bonding and effect of alkali and transition metal ions was investigated on the MoS{sub 2} clusters. Potassium atoms bind to the clusters and increase the binding of hydrogen to the clusters while reducing the activation barriers for hydrogen adsorption. Silver attaches to the Mo7S14 cluster and donates its odd electron to the nearby Mo atoms and should have a similar effect to hydrogen as potassium does.

  5. Iron-, Cobalt-, and Nickel-Catalyzed Asymmetric Transfer Hydrogenation and Asymmetric Hydrogenation of Ketones.

    PubMed

    Li, Yan-Yun; Yu, Shen-Luan; Shen, Wei-Yi; Gao, Jing-Xing

    2015-09-15

    Chiral alcohols are important building blocks in the pharmaceutical and fine chemical industries. The enantioselective reduction of prochiral ketones catalyzed by transition metal complexes, especially asymmetric transfer hydrogenation (ATH) and asymmetric hydrogenation (AH), is one of the most efficient and practical methods for producing chiral alcohols. In both academic laboratories and industrial operations, catalysts based on noble metals such as ruthenium, rhodium, and iridium dominated the asymmetric reduction of ketones. However, the limited availability, high price, and toxicity of these critical metals demand their replacement with abundant, nonprecious, and biocommon metals. In this respect, the reactions catalyzed by first-row transition metals, which are more abundant and benign, have attracted more and more attention. As one of the most abundant metals on earth, iron is inexpensive, environmentally benign, and of low toxicity, and as such it is a fascinating alternative to the precious metals for catalysis and sustainable chemical manufacturing. However, iron catalysts have been undeveloped compared to other transition metals. Compared with the examples of iron-catalyzed asymmetric reduction, cobalt- and nickel-catalyzed ATH and AH of ketones are even seldom reported. In early 2004, we reported the first ATH of ketones with catalysts generated in situ from iron cluster complex and chiral PNNP ligand. Since then, we have devoted ourselves to the development of ATH and AH of ketones with iron, cobalt, and nickel catalysts containing novel chiral aminophosphine ligands. In our study, the iron catalyst containing chiral aminophosphine ligands, which are expected to control the stereochemistry at the metal atom, restrict the number of possible diastereoisomers, and effectively transfer chiral information, are successful catalysts for enantioselective reduction of ketones. Among these novel chiral aminophosphine ligands, 22-membered macrocycle P2N4

  6. Oxygen-transfer reactions of methylrhenium oxides

    SciTech Connect

    Abu-Omar, M.M.; Espenson, J.H.; Appelman, E.H.

    1996-12-18

    Methylrhenium dioxide, CH{sub 3}ReO{sub 2} (or MDO), is produced from methylrhenium trioxide, CH{sub 3}ReO{sub 3} (or MTO), and hypophosphorous acid in acidic aqueous medium. Its mechanism is discussed in light of MTO`s coordination ability and the inverse kinetic isotope effect (kie): H{sub 2}P(O)OH, k = 0.028 L mol{sup -1} s{sup -1}; D{sub 2}P(O)OH, k = 0.039 L mol{sup -1} s{sup -1}. The Re(V) complex, MDO, reduces perchlorate and other inorganic oxoanions (XO{sub n}{sup -}, where X = Cl, Br, or I and N = 4 or 3). The rate is controlled by the first oxygen abstraction from perchlorate to give chlorate, with a second-order rate constant at pH 0 and 25 {degrees}C of 7.3 L mol{sup -1} s{sup -1}. Organic oxygen-donors such as sulfoxides and pyridine N-oxides oxidize MDO to MTO as do metal oxo complexes: VO{sup 2+}{sub (aq)}, VO{sub 2}{sup +}{sub (aq)}, HOMoO{sub 2}{sup +}{sub (aq)}, and MnO{sub 4}{sup -}. The reaction between V{sup 2+}{sub (aq)} with MTO and the reduction of VO{sup 2+} with MDO made it possible to determine the free energy for MDO/MTO. Oxygen-atom transfer from oxygen-donors to MDO involves nucleophilic attack of X-O on the electrophilic Re(V) center of MDO; the reaction proceeds via an [MDO{center_dot}XO] adduct, which is supported by the saturation kinetics observed for some. The parameters that control and facilitate the kinetics of such oxygen-transfer processes are suggested and include the force constant for the asymmetric stretching of the element-oxygen bond.

  7. Hydrogen transport membranes for dehydrogenation reactions

    DOEpatents

    Balachandran,; Uthamalingam, [Hinsdale, IL

    2008-02-12

    A method of converting C.sub.2 and/or higher alkanes to olefins by contacting a feedstock containing C.sub.2 and/or higher alkanes with a first surface of a metal composite membrane of a sintered homogenous mixture of an Al oxide or stabilized or partially stabilized Zr oxide ceramic powder and a metal powder of one or more of Pd, Nb, V, Zr, Ta and/or alloys or mixtures thereof. The alkanes dehydrogenate to olefins by contact with the first surface with substantially only atomic hydrogen from the dehydrogenation of the alkanes passing through the metal composite membrane. Apparatus for effecting the conversion and separation is also disclosed.

  8. Electron Transfer and Reaction Mechanism of Laccases

    PubMed Central

    Jones, Stephen M.; Solomon, Edward I.

    2015-01-01

    Laccases are part of the family of multicopper oxidases (MCOs), which couple the oxidation of substrates to the four electron reduction of O2 to H2O. MCOs contain a minimum of four Cu's divided into Type 1 (T1), Type 2 (T2), and binuclear Type 3 (T3) Cu sites that are distinguished based on unique spectroscopic features. Substrate oxidation occurs near the T1, and electrons are transferred approximately 13 Å through the protein via the Cys-His pathway to the T2/T3 trinuclear copper cluster (TNC) where dioxygen reduction occurs. This review outlines the electron transfer (ET) process in laccases, and the mechanism of O2 reduction as elucidated through spectroscopic, kinetic, and computational data. Marcus theory is used to describe the relevant factors which impact ET rates including the driving force (ΔG°), reorganization energy (λ), and electronic coupling matrix element (HDA). Then the mechanism of O2 reaction is detailed with particular focus on the intermediates formed during the two 2e− reduction steps. The first 2e− step forms the peroxide intermediate (PI), followed by the second 2e− step to form the native intermediate (NI), which has been shown to be the catalytically relevant fully oxidized form of the enzyme. PMID:25572295

  9. Phosphoryl Transfer Reaction Snapshots in Crystals

    PubMed Central

    Gerlits, Oksana; Tian, Jianhui; Das, Amit; Langan, Paul; Heller, William T.; Kovalevsky, Andrey

    2015-01-01

    To study the catalytic mechanism of phosphorylation catalyzed by cAMP-dependent protein kinase (PKA) a structure of the enzyme-substrate complex representing the Michaelis complex is of specific interest as it can shed light on the structure of the transition state. However, all previous crystal structures of the Michaelis complex mimics of the PKA catalytic subunit (PKAc) were obtained with either peptide inhibitors or ATP analogs. Here we utilized Ca2+ ions and sulfur in place of the nucleophilic oxygen in a 20-residue pseudo-substrate peptide (CP20) and ATP to produce a close mimic of the Michaelis complex. In the ternary reactant complex, the thiol group of Cys-21 of the peptide is facing Asp-166 and the sulfur atom is positioned for an in-line phosphoryl transfer. Replacement of Ca2+ cations with Mg2+ ions resulted in a complex with trapped products of ATP hydrolysis: phosphate ion and ADP. The present structural results in combination with the previously reported structures of the transition state mimic and phosphorylated product complexes complete the snapshots of the phosphoryl transfer reaction by PKAc, providing us with the most thorough picture of the catalytic mechanism to date. PMID:25925954

  10. Role of iron-based catalyst and hydrogen transfer in direct coal liquefaction

    SciTech Connect

    Xian Li; Shuxun Hu; Lijun Jin; Haoquan Hu

    2008-03-15

    The aim of this research is to understand the major function of iron-based catalysts on direct coal liquefaction (DCL). Pyrolysis and direct liquefaction of Shenhua bituminous coal were carried out to investigate the effect of three solvents (wash-oil from coal-tar, cycle-oil from coal liquefaction, and tetralin) in a N{sub 2} or a H{sub 2} atmosphere and with or without catalyst. The hydrogen content in the solvent and liquid product and the H{sub 2} consumption for every run were calculated to understand the hydrogen transfer approach in DCL. The results showed that the iron-based catalyst promotes the coal pyrolysis, and the dominating function of the catalyst in DCL is to promote the formation of activated hydrogen and to accelerate the secondary distribution of H in the reaction system including the gas, liquid, and solid phases. The major transfer approach of the activated hydrogen is from molecular hydrogen to solvent and then from solvent to coal, and the solvent takes on the role of a 'bridge' in the hydrogen transfer approach. 31 refs., 5 figs., 3 tabs.

  11. [Mechanistic examination of organometallic electron transfer reactions: Annual report, 1989

    SciTech Connect

    Not Available

    1989-12-31

    Our mechanistic examination of electron transfer reactions between organometallic complexes has required data from our stopped-flow infrared spectrophotometer that was constructed in the first year. Our research on organometallic electron transfer reaction mechanisms was recognized by an invitation to the Symposium on Organometallic Reaction Mechanisms at the National ACS meeting in Miami. We have obtained a reasonable understanding of the electron transfer reactions between metal cations and anions and between metal carbonyl anions and metal carbonyl dimers. In addition we have begun to obtain data on the outer sphere electron transfer between metal carbonyl anions and coordination complexes and on reactions involving cluster anions.

  12. Hydrogenation, purification, and unzipping of carbon nanotubes by reaction with molecular hydrogen: road to graphane nanoribbons.

    PubMed

    Talyzin, Alexandr V; Luzan, Serhiy; Anoshkin, Ilya V; Nasibulin, Albert G; Jiang, Hua; Kauppinen, Esko I; Mikoushkin, Valery M; Shnitov, Vladimir V; Marchenko, Dmitry E; Noréus, Dag

    2011-06-28

    Reaction of single-walled carbon nanotubes (SWNTs) with hydrogen gas was studied in a temperature interval of 400-550 °C and at hydrogen pressure of 50 bar. Hydrogenation of nanotubes was observed for samples treated at 400-450 °C with about 1/3 of carbon atoms forming covalent C-H bonds, whereas hydrogen treatment at higher temperatures (550 °C) occurs as an etching. Unzipping of some SWNTs into graphene nanoribbons is observed as a result of hydrogenation at 400-550 °C. Annealing in hydrogen gas at elevated conditions for prolonged periods of time (72 h) is demonstrated to result also in nanotube opening, purification of nanotubes from amorphous carbon, and removal of carbon coatings from Fe catalyst particles, which allows their complete elimination by acid treatment.

  13. Fundamental aspects of electrocatalysis of the hydrogen electrode reaction and oxygen electrode reaction on platinum

    NASA Astrophysics Data System (ADS)

    Bao, Jianer

    This dissertation work studies the fundamental aspects of the electrocatalysis of the hydrogen electrode reaction (HER) and oxygen electrode reaction (OER) on platinum over a wide temperature range from ambient up to 220°C. Previously, the majority of the work reported was restricted to temperatures below 70°C due to apparatus constraints, whereas the current operation temperature for proton exchange membrane fuel cells is around 100oC and is envisioned to operate at even higher temperatures. In this work, a special apparatus for controlled hydrodynamic study was constructed, which can keep the system in a single aqueous phase at elevated temperatures. The growth kinetics and mechanism of the anodic oxide film on platinum are studied under potential sweep conditions. By fitting the current equation derived based on the framework of the point defect model (PDM) on the linear polarization curves, the kinetic parameters for film growth and dissolution are extracted, which agree well with other findings. The kinetics and mechanism of the HER are investigated both at ambient temperature with a rotating ring disk electrode and at elevated temperatures with a platinized nickel electrode. Ambient results by micropolarization analysis agree well with findings in literature, and yield an exchange current density on the order of mA/cm2. An activation energy of 17.3kJ/mol is determined. This is comparable with that of a bulk platinum electrode, and is lower than sputtered platinum and single crystal platinum electrodes in alkaline solutions. Surprisingly, the apparent Tafel slope of the hydrogen evolution reaction is almost temperature independent. The most probable reason is that two parallel reactions with different activation energy and transfer coefficients are occurring at the interface. The OER on platinum is also studied by potential sweep method and potentiostatic polarization method. The sluggish nature of this reaction is postulated to be due to the existence of a

  14. Proton Transfer Reaction Ion Trap Mass Spectrometer

    SciTech Connect

    Prazeller, Peter; Palmer, Peter T.; Boscaini, Elena; Jobson, B Tom; Alexander, M. Lizabeth

    2003-07-07

    Proton Transfer Reaction Mass Spectrometry (PTR-MS) is a relatively new field that has attracted a great deal of interest in the last several years. This technique uses H3O+ as a chemical ionization (CI) agent for measuring volatile organic compounds (VOCs) in the parts per billion by volume (ppbv) - parts per trillion by volume (pptv) range. PTR-MS mass spectra are simple because the ionization method of proton transfer is “soft”, resulting in little or no fragmentation. Unfortunately, the simplicity of the mass spectra can cause problems in peak identification due to isobaric interferences. A possible solution to this problem is to couple the PTR drift tube to an ion trap mass spectrometer (ITMS). ITMS is appealing because of the ability to perform MS/MS and possibly distinguish between isomers and other isobars. Additionally, the ITMS duty cycle is much higher than that of a linear quadrupole so faster data acquisition rates can be realized for detection of multiple compounds. We present here the first results from a Proton Transfer Reaction Ion Trap Mass Spectrometer (PTR-ITMS). The aim of this study was to investigate ion injection and storage efficiency of a simple prototype interface in order to estimate possible detection limits of a second generation instrument. Using this prototype a detection limit of 100 ppbv was demonstrated for the PTR-ITMS. Modifications are suggested that will enable further reduction in detection limits to the low ppbv to pptv range. Furthermore the applicability of MS/MS to differentiate between isobaric species was determined. MS/MS spectra of the isobaric compounds methyl vinyl ketone (MVK) and methacrolein (MACR) are presented and show fragments of different mass making a differentiation possible even when a mixture of both species is present in the same sample. MS/MS spectra of acetone and propanal produce fragments with the same molecular weight but different ratios, allowing quantitative distinction only if one species

  15. Transfer-type products accompanying cold fusion reactions

    SciTech Connect

    Adamian, G.G.; Antonenko, N.V.

    2005-12-15

    Production of nuclei heavier than the target is treated for projectile-target combinations used in cold fusion reactions leading to superheavy nuclei. These products are related to transfer-type or to asymmetry-exit-channel quasifission reactions. The production of isotopes in the transfer-type reactions emitting of {alpha} particles with large energies is discussed.

  16. Investigating the role of atomic hydrogen on chloroethene reactions with iron using tafel analysis and electrochemical impedance spectroscopy.

    PubMed

    Wang, Jiankang; Farrell, James

    2003-09-01

    Metallic iron filings are commonly employed as reducing agents in permeable barriers used for remediating groundwater contaminated by chlorinated solvents. Reactions of trichloroethylene (TCE) and tetrachloroethylene (PCE) with zerovalent iron were investigated to determine the role of atomic hydrogen in their reductive dechlorination. Experiments simultaneously measuring dechlorination and iron corrosion rates were performed to determine the fractions of the total current going toward dechlorination and hydrogen evolution. Corrosion rates were determined using Tafel analysis, and dechlorination rates were determined from rates of byproduct generation. Electrochemical impedance spectroscopy (EIS) was used to determine the number of reactions that controlled the observed rates of chlorocarbon disappearance, as well as the role of atomic hydrogen in TCE and PCE reduction. Comparison of iron corrosion rates with those for TCE reaction showed that TCE reduction occurred almost exclusively via atomic hydrogen at low pH values and via atomic hydrogen and direct electron transfer at neutral pH values. In contrast, reduction of PCE occurred primarily via direct electron transfer at both low and neutral pH values. At low pH values and micromolar concentrations, TCE reaction rates were faster than those for PCE due to more rapid reduction of TCE by atomic hydrogen. At neutral pH values and millimolar concentrations, PCE reaction rates were faster than those for TCE. This shift in relative reaction rates was attributed to a decreasing contribution of the atomic hydrogen reaction mechanism with increasing halocarbon concentrations and pH values. The EIS data showed that all the rate limitations for TCE and PCE dechlorination occurred during the transfer of the first two electrons. Results from this study show that differences in relative reaction rates of TCE and PCE with iron are dependent on the significance of the reduction pathway involving atomic hydrogen.

  17. The role of intramolecular hydrogen bonds in nucleophilic addition reactions of ketenaminals

    NASA Astrophysics Data System (ADS)

    Isaev, A. N.

    2012-08-01

    Quantum-chemical calculations of the geometries and electronic structures of molecules of ketenaminals 3-(diaminomethylene)-2,4-pentanedione and dimethyl-2-(diaminomethylene)-malonate and calculations of the structures of intermediates in the reaction of the nucleophilic addition of the ketenaminals to the acetonitrile molecule are performed by B3LYP/6-31+G** method. Two possible scenarios of the process are shown, depending on the mutual orientation of reacting molecules. The nucleophilic addition proceeds in two stages. It is found that the rate-limiting stage of the process is the transfer of the proton of the intramolecular hydrogen bond in a ketenaminal molecule. The experimentally observed faster reaction of pyrimidine formation for the 3-(diaminomethylene)-2,4-pentanedione molecule relative to that for dimethyl-2-(diaminomethylene)-malonate is explained by the hydrogen bond being stronger and the barrier of proton transfer from the aminogroup to the ketogroup oxygen falling upon nucleophilic attack in the former molecule.

  18. Sorption enhanced reaction process (SERP) for production of hydrogen

    SciTech Connect

    Sircar, S.; Anand, M.; Carvill, B.

    1995-09-01

    Sorption Enhanced Reaction (SER) is a novel process that is being developed for the production of lower cost hydrogen by steam-methane reforming (SMR). In this process, the reaction of methane with steam is carried out in the presence of an admixture of a catalyst and a selective adsorbent for carbon dioxide. The consequences of SER are: (1) reformation reaction at a significantly lower temperature (300-500{degrees}C) than conventional SMR (800-1100{degrees}C), while achieving the same conversion of methane to hydrogen, (2) the product hydrogen is obtained at reactor pressure (200-400 psig) and at 99+% purity directly from the reactor (compared to only 70-75% H{sub 2} from conventional SMR reactor), (3) downstream hydrogen purification step is either eliminated or significantly reduced in size. The early focus of the program will be on the identification of an adsorbent/chemisorbent for CO{sub 2} and on the demonstration of the SER concept for SMR in our state-of-the-art bench scale process. In the latter stages, a pilot plant will be built to scale-up the technology and to develop engineering data. The program has just been initiated and no significant results for SMR will be reported. However, results demonstrating the basic principles and process schemes of SER technology will be presented for reverse water gas shift reaction as the model reaction. If successful, this technology will be commercialized by Air Products and Chemicals, Inc. (APCI) and used in its existing hydrogen business. APCI is the world leader in merchant hydrogen production for a wide range of industrial applications.

  19. Heat and mass transfer rates during flow of dissociated hydrogen gas over graphite surface

    NASA Technical Reports Server (NTRS)

    Nema, V. K.; Sharma, O. P.

    1986-01-01

    To improve upon the performance of chemical rockets, the nuclear reactor has been applied to a rocket propulsion system using hydrogen gas as working fluid and a graphite-composite forming a part of the structure. Under the boundary layer approximation, theoretical predictions of skin friction coefficient, surface heat transfer rate and surface regression rate have been made for laminar/turbulent dissociated hydrogen gas flowing over a flat graphite surface. The external stream is assumed to be frozen. The analysis is restricted to Mach numbers low enough to deal with the situation of only surface-reaction between hydrogen and graphite. Empirical correlations of displacement thickness, local skin friction coefficient, local Nusselt number and local non-dimensional heat transfer rate have been obtained. The magnitude of the surface regression rate is found low enough to ensure the use of graphite as a linear or a component of the system over an extended period without loss of performance.

  20. Heat and mass transfer rates during flow of dissociated hydrogen gas over graphite surface

    NASA Technical Reports Server (NTRS)

    Nema, V. K.; Sharma, O. P.

    1986-01-01

    To improve upon the performance of chemical rockets, the nuclear reactor has been applied to a rocket propulsion system using hydrogen gas as working fluid and a graphite-composite forming a part of the structure. Under the boundary layer approximation, theoretical predictions of skin friction coefficient, surface heat transfer rate and surface regression rate have been made for laminar/turbulent dissociated hydrogen gas flowing over a flat graphite surface. The external stream is assumed to be frozen. The analysis is restricted to Mach numbers low enough to deal with the situation of only surface-reaction between hydrogen and graphite. Empirical correlations of displacement thickness, local skin friction coefficient, local Nusselt number and local non-dimensional heat transfer rate have been obtained. The magnitude of the surface regression rate is found low enough to ensure the use of graphite as a linear or a component of the system over an extended period without loss of performance.

  1. Methanol oxidation and hydrogen reactions on NiZr in acid solution

    NASA Astrophysics Data System (ADS)

    Hays, C. C.; Manoharan, R.; Goodenough, J. B.

    The electrochemical properties of a Ni 50Zr 50 (at.%) alloy have been investigated by cyclic voltammetry and steady-state polarization measurements. The alloy forms a passivating oxyhydroxide film that makes it electrochemically stable in an acid solution. The oxyhydroxide film is shown to be an electrocatalyst for the methanol oxidation reaction (MOR). The reaction proceeds at surface O 2- ions neighboring a Ni 3+ ion of a thicker passivating film; electron transfer from the surface to the electrode occurs diffusively by the nickel atoms of the film. A reaction pathway is presented that accounts for the observation of an optimum thickness for the passivating film. The NiZr alloy was also found to catalyze both hydrogen-oxidation and proton-reduction reactions (HOR and PRR) if it has a thinner surface oxyhydroxide film. The alloy appears to form mixed NiZrH and NiZrH 3- x hydrides on cycling negative of the normal hydrogen potential. The activity of the hydrogen-oxidation reaction on a hydride surface was found to increase in the presence of streaming hydrogen gas and also with increasing negative initial potential. Although the hydride is unstable in acid, it may be an attractive candidate for use as a rechargeable negative electrode in an alkaline metal/air or nickel-metal hydride secondary battery.

  2. Hydrogen evolution from water through metal sulfide reactions.

    PubMed

    Saha, Arjun; Raghavachari, Krishnan

    2013-11-28

    Transition metal sulfides play an important catalytic role in many chemical reactions. In this work, we have conducted a careful computational study of the structures, electronic states, and reactivity of metal sulfide cluster anions M2S(X)(-) (M = Mo and W, X = 4-6) using density functional theory. Detailed structural analysis shows that these metal sulfide anions have ground state isomers with two bridging sulfide bonds, notably different in some cases from the corresponding oxides with the same stoichiometry. The chemical reactivity of these metal sulfide anions with water has also been carried out. After a thorough search on the reactive potential energy surface, we propose several competitive, energetically favorable, reaction pathways that lead to the evolution of hydrogen. Selectivity in the initial water addition and subsequent hydrogen migration are found to be the key steps in all the proposed reaction channels. Initial adsorption of water is most favored involving a terminal metal sulfur bond in Mo2S4(-) isomers whereas the most preferred orientation for water addition involves a bridging metal sulfur bond in the case of W2S4(-) and M2S5(-) isomers. In all the lowest energy H2 elimination steps, the interacting hydrogen atoms involve a metal hydride and a metal hydroxide (or thiol) group. We have also observed a higher energy reaction channel where the interacting hydrogen atoms in the H2 elimination step involve a thiol (-SH) and a hydroxyl (-OH) group. For all the reaction pathways, the Mo sulfide reactions involve a higher barrier than the corresponding W analogues. We observe for both metals that reactions of M2S4(-) and M2S5(-) clusters with water to liberate H2 are exothermic and involve modest free energy barriers. However, the reaction of water with M2S6(-) is highly endothermic with a considerable barrier due to saturation of the local bonding environment.

  3. Hydrogen evolution from water through metal sulfide reactions

    NASA Astrophysics Data System (ADS)

    Saha, Arjun; Raghavachari, Krishnan

    2013-11-01

    Transition metal sulfides play an important catalytic role in many chemical reactions. In this work, we have conducted a careful computational study of the structures, electronic states, and reactivity of metal sulfide cluster anions M2SX- (M = Mo and W, X = 4-6) using density functional theory. Detailed structural analysis shows that these metal sulfide anions have ground state isomers with two bridging sulfide bonds, notably different in some cases from the corresponding oxides with the same stoichiometry. The chemical reactivity of these metal sulfide anions with water has also been carried out. After a thorough search on the reactive potential energy surface, we propose several competitive, energetically favorable, reaction pathways that lead to the evolution of hydrogen. Selectivity in the initial water addition and subsequent hydrogen migration are found to be the key steps in all the proposed reaction channels. Initial adsorption of water is most favored involving a terminal metal sulfur bond in Mo2S4- isomers whereas the most preferred orientation for water addition involves a bridging metal sulfur bond in the case of W2S4- and M2S5- isomers. In all the lowest energy H2 elimination steps, the interacting hydrogen atoms involve a metal hydride and a metal hydroxide (or thiol) group. We have also observed a higher energy reaction channel where the interacting hydrogen atoms in the H2 elimination step involve a thiol (-SH) and a hydroxyl (-OH) group. For all the reaction pathways, the Mo sulfide reactions involve a higher barrier than the corresponding W analogues. We observe for both metals that reactions of M2S4- and M2S5- clusters with water to liberate H2 are exothermic and involve modest free energy barriers. However, the reaction of water with M2S6- is highly endothermic with a considerable barrier due to saturation of the local bonding environment.

  4. Proton displacements coupled to primary electron transfer in the Rhodobacter sphaeroides reaction center.

    PubMed

    Eisenmayer, Thomas J; Lasave, Jorge A; Monti, Adriano; de Groot, Huub J M; Buda, Francesco

    2013-09-26

    Using first-principles molecular dynamics (AIMD) and constrained density functional theory (CDFT) we identify the pathway of primary electron transfer in the R. Sphaeroides reaction center from the special pair excited state (P*) to the accessory bacteriochlorophyll (BA). Previous AIMD simulations on the special pair (PLPM) predicted a charge-transfer intermediate formation through the excited-state relaxation along a reaction coordinate characterized by the rotation of an axial histidine (HisM202). To account for the full electron transfer we extend the model to include the primary acceptor BA. In this extended model, the LUMO is primarily localized on the acceptor BA and extends over an interstitial water (water A) that is known to influence the rate of electron transfer (Potter et al. Biochemistry 2005 280, 27155-27164). A vibrational analysis of the dynamical trajectories gives a frequency of 30-35 cm(-1) for a molecular motion involving the hydrogen-bond network around water A, in good agreement with experimental findings (Yakovlev et al. Biochemistry, 2003, 68, 603-610). In its binding pocket water A can act as a switch by breaking and forming hydrogen bonds. With CDFT we calculate the energy required to the formation of the charge-separated state and find it to decrease along the predicted anisotropic reaction coordinate. Furthermore, we observe an increased coupling between the ground and charge-separated state. Water A adapts its hydrogen-bonding network along this reaction coordinate and weakens the hydrogen bond with HisM202. We also present AIMD simulations on the radical cation (P(•+)) showing a weakening of the hydrogen bond between HisL168 and the 3(1)-acetyl of PL. This work demonstrates how proton displacements are crucially coupled to the primary electron transfer and characterizes the reaction coordinate of the initial photoproduct formation.

  5. Thermochemical hydrogen production via a cycle using barium and sulfur - Reaction between barium sulfide and water

    NASA Technical Reports Server (NTRS)

    Ota, K.; Conger, W. L.

    1977-01-01

    The reaction between barium sulfide and water, a reaction found in several sulfur based thermochemical cycles, was investigated kinetically at 653-866 C. Gaseous products were hydrogen and hydrogen sulfide. The rate determining step for hydrogen formation was a surface reaction between barium sulfide and water. An expression was derived for the rate of hydrogen formation.

  6. Thermochemical hydrogen production via a cycle using barium and sulfur - Reaction between barium sulfide and water

    NASA Technical Reports Server (NTRS)

    Ota, K.; Conger, W. L.

    1977-01-01

    The reaction between barium sulfide and water, a reaction found in several sulfur based thermochemical cycles, was investigated kinetically at 653-866 C. Gaseous products were hydrogen and hydrogen sulfide. The rate determining step for hydrogen formation was a surface reaction between barium sulfide and water. An expression was derived for the rate of hydrogen formation.

  7. Microscale Synthesis of Chiral Alcohols via Asymmetric Catalytic Transfer Hydrogenation

    ERIC Educational Resources Information Center

    Peeters, Christine M.; Deliever, Rik; De Vos, Dirk

    2009-01-01

    Synthesis of pure enantiomers is a key issue in industry, especially in areas connected to life sciences. Catalytic asymmetric synthesis has emerged as a powerful and practical tool. Here we describe an experiment on racemic reduction and asymmetric reduction via a catalytic hydrogen transfer process. Acetophenone and substituted acetophenones are…

  8. Microscale Synthesis of Chiral Alcohols via Asymmetric Catalytic Transfer Hydrogenation

    ERIC Educational Resources Information Center

    Peeters, Christine M.; Deliever, Rik; De Vos, Dirk

    2009-01-01

    Synthesis of pure enantiomers is a key issue in industry, especially in areas connected to life sciences. Catalytic asymmetric synthesis has emerged as a powerful and practical tool. Here we describe an experiment on racemic reduction and asymmetric reduction via a catalytic hydrogen transfer process. Acetophenone and substituted acetophenones are…

  9. Single-collision studies of energy transfer and chemical reaction

    SciTech Connect

    Valentini, J.J.

    1993-12-01

    The research focus in this group is state-to-state dynamics of reaction and energy transfer in collisions of free radicals such as H, OH, and CH{sub 3} with H{sub 2}, alkanes, alcohols and other hydrogen-containing molecules. The motivation for the work is the desire to provide a detailed understanding of the chemical dynamics of prototype reactions that are important in the production and utilization of energy sources, most importantly in combustion. The work is primarily experimental, but with an important and growing theoretical/computational component. The focus of this research program is now on reactions in which at least one of the reactants and one of the products is polyatomic. The objective is to determine how the high dimensionality of the reactants and products differentiates such reactions from atom + diatom reactions of the same kinematics and energetics. The experiments use highly time-resolved laser spectroscopic methods to prepare reactant states and analyze the states of the products on a single-collision time scale. The primary spectroscopic tool for product state analysis is coherent anti-Stokes Raman scattering (CARS) spectroscopy. CARS is used because of its generality and because the extraction of quantum state populations from CARS spectra is straightforward. The combination of the generality and easy analysis of CARS makes possible absolute cross section measurements (both state-to-state and total), a particularly valuable capability for characterizing reactive and inelastic collisions. Reactant free radicals are produced by laser photolysis of appropriate precursors. For reactant vibrational excitation stimulated Raman techniques are being developed and implemented.

  10. Replacing precious metals with carbide catalysts for hydrogenation reactions

    DOE PAGES

    Ruijun, Hou; Chen, Jingguang G.; Chang, Kuan; ...

    2015-03-03

    Molybdenum carbide (Mo₂C and Ni/Mo₂C) catalysts were compared with Pd/SiO₂ for the hydrogenation of several diene molecules, 1,3- butadiene, 1,3- and 1,4-cyclohexadiene (CHD). Compared to Pd/SiO₂, Mo₂C showed similar hydrogenation rate for 1,3-butadiene and 1,3-CHD and even higher rate for 1,4-CHD, but with significant deactivation rate for 1,3-CHD hydrogenation. However, the hydrogenation activity of Mo₂C could be completely regenerated by H₂ treatment at 723 K for the three molecules. The Ni modified Mo₂C catalysts retained similar activity for 1,3-butadiene hydrogenation with significantly enhanced selectivity for 1-butene production. The 1-butene selectivity increased with increasing Ni loading below 15%. Among the Nimore » modified Mo₂C catalysts, 8.6%Ni/Mo₂C showed the highest selectivity to 1-butene, which was even higher selectivity than that over Pd/SiO₂. Compared to Pd/SiO₂, both Mo₂C and Ni/Mo₂C showed combined advantages in hydrogenation activity and catalyst cost reduction, demonstrating the potential to use less expensive carbide catalysts to replace precious metals for hydrogenation reactions.« less

  11. Replacing precious metals with carbide catalysts for hydrogenation reactions

    SciTech Connect

    Ruijun, Hou; Chen, Jingguang G.; Chang, Kuan; Wang, Tiefeng

    2015-03-03

    Molybdenum carbide (Mo₂C and Ni/Mo₂C) catalysts were compared with Pd/SiO₂ for the hydrogenation of several diene molecules, 1,3- butadiene, 1,3- and 1,4-cyclohexadiene (CHD). Compared to Pd/SiO₂, Mo₂C showed similar hydrogenation rate for 1,3-butadiene and 1,3-CHD and even higher rate for 1,4-CHD, but with significant deactivation rate for 1,3-CHD hydrogenation. However, the hydrogenation activity of Mo₂C could be completely regenerated by H₂ treatment at 723 K for the three molecules. The Ni modified Mo₂C catalysts retained similar activity for 1,3-butadiene hydrogenation with significantly enhanced selectivity for 1-butene production. The 1-butene selectivity increased with increasing Ni loading below 15%. Among the Ni modified Mo₂C catalysts, 8.6%Ni/Mo₂C showed the highest selectivity to 1-butene, which was even higher selectivity than that over Pd/SiO₂. Compared to Pd/SiO₂, both Mo₂C and Ni/Mo₂C showed combined advantages in hydrogenation activity and catalyst cost reduction, demonstrating the potential to use less expensive carbide catalysts to replace precious metals for hydrogenation reactions.

  12. Nickel phlorin intermediate formed by proton-coupled electron transfer in hydrogen evolution mechanism

    PubMed Central

    Solis, Brian H.; Maher, Andrew G.; Dogutan, Dilek K.; Nocera, Daniel G.; Hammes-Schiffer, Sharon

    2016-01-01

    The development of more effective energy conversion processes is critical for global energy sustainability. The design of molecular electrocatalysts for the hydrogen evolution reaction is an important component of these efforts. Proton-coupled electron transfer (PCET) reactions, in which electron transfer is coupled to proton transfer, play an important role in these processes and can be enhanced by incorporating proton relays into the molecular electrocatalysts. Herein nickel porphyrin electrocatalysts with and without an internal proton relay are investigated to elucidate the hydrogen evolution mechanisms and thereby enable the design of more effective catalysts. Density functional theory calculations indicate that electrochemical reduction leads to dearomatization of the porphyrin conjugated system, thereby favoring protonation at the meso carbon of the porphyrin ring to produce a phlorin intermediate. A key step in the proposed mechanisms is a thermodynamically favorable PCET reaction composed of intramolecular electron transfer from the nickel to the porphyrin and proton transfer from a carboxylic acid hanging group or an external acid to the meso carbon of the porphyrin. The C–H bond of the active phlorin acts similarly to the more traditional metal-hydride by reacting with acid to produce H2. Support for the theoretically predicted mechanism is provided by the agreement between simulated and experimental cyclic voltammograms in weak and strong acid and by the detection of a phlorin intermediate through spectroelectrochemical measurements. These results suggest that phlorin species have the potential to perform unique chemistry that could prove useful in designing more effective electrocatalysts. PMID:26655344

  13. Surface Hydrogen and Subsurface Hydrogen: Their Roles in Bulk Absorption and Surface Reaction

    NASA Astrophysics Data System (ADS)

    Fukutani, Katsuyuki

    Hydrogen adsorbed on metal surfaces possibly penetrates into “subsurface” sites, which might further diffuse into bulk. When temperature is raised, on the other hand, such absorbed hydrogen diffuses back to the surface via the subsurface site eventually desorbing from the surface. The kinetics of these absorption and desorption are ideally expressed by the potential energy surfaces of hydrogen near the surfaces. This article describes how the potential of hydrogen is described, and how the surface and subsurface sites influence the kinetics of absorption and desorption for Pd and Ni as examples. As well as these phenomena, the subsurface sites could serve to promote particular hydrogenation reactions occurring at surfaces. The mechanism of subsurface chemistry is discussed.

  14. Osmium pyme complexes for fast hydrogenation and asymmetric transfer hydrogenation of ketones.

    PubMed

    Baratta, Walter; Ballico, Maurizio; Del Zotto, Alessandro; Siega, Katia; Magnolia, Santo; Rigo, Pierluigi

    2008-01-01

    The osmium compound trans,cis-[OsCl2(PPh3)2(Pyme)] (1) (Pyme=1-(pyridin-2-yl)methanamine), obtained from [OsCl2(PPh3)3] and Pyme, thermally isomerizes to cis,cis-[OsCl2(PPh3)(2)(Pyme)] (2) in mesitylene at 150 degrees C. Reaction of [OsCl2(PPh3)3] with Ph2P(CH2)(4)PPh2 (dppb) and Pyme in mesitylene (150 degrees C, 4 h) leads to a mixture of trans-[OsCl2(dppb)(Pyme)] (3) and cis-[OsCl2(dppb)(Pyme)] (4) in about an 1:3 molar ratio. The complex trans-[OsCl2(dppb)(Pyet)] (5) (Pyet=2-(pyridin-2-yl)ethanamine) is formed by reaction of [OsCl2(PPh3)3] with dppb and Pyet in toluene at reflux. Compounds 1, 2, 5 and the mixture of isomers 3/4 efficiently catalyze the transfer hydrogenation (TH) of different ketones in refluxing 2-propanol and in the presence of NaOiPr (2.0 mol %). Interestingly, 3/4 has been proven to reduce different ketones (even bulky) by means of TH with a remarkably high turnover frequency (TOF up to 5.7 x 10(5) h(-1)) and at very low loading (0.05-0.001 mol %). The system 3/4 also efficiently catalyzes the hydrogenation of many ketones (H2, 5.0 atm) in ethanol with KOtBu (2.0 mol %) at 70 degrees C (TOF up to 1.5 x 10(4) h(-1)). The in-situ-generated catalysts prepared by the reaction of [OsCl2(PPh3)3] with Josiphos diphosphanes and (+/-)-1-alkyl-substituted Pyme ligands, promote the enantioselective TH of different ketones with 91-96 % ee (ee=enantiomeric excess) and with a TOF of up to 1.9 x 10(4) h(-1) at 60 degrees C.

  15. Investigation of mechanism of hydrogen transfer in coal hydrogenation. Quarterly progress report, June-August, 1980

    SciTech Connect

    Cronauer, D. C.; Ruberto, R. G.; McNeil, R. I.; Young, D. C.

    1980-09-01

    Hydrogen transfer experiments using Powhatan Number 5 Mine bituminous coal and deuterium labeled tetralin are underway. The rate of coal conversion, hydrogen transfer and site of hydrogen transfer are being measured. Preliminary results are consistent with those previously obtained with Kentucky and Illinois seam coals; namely, about 3.5 g of hydrogen is transferred per 100 g MAF coal at reactor conditions of 450/sup 0/C, 30 minutes and 30% feed coal in tetralin. At these conditions, about 73% conversion of coal to toluene solubles is achieved. Results at lower times (0 and 10 minutes) and temperatures (300, 350, and 400/sup 0/C) are also discussed. An evaluation of the techniques to measure hydrogen donor capacity has indicated that the best instrumental approach available to us is that of Seshadri et al in which /sup 13/C-NMR is used to quantify the level of hydroaromatics. Both GC/MS and group type MS techniques do not appear to be adequate for this purpose. Plans are being established to carry out solvent recycle and follow the effect of isomerization and adduction with the number of cycles.

  16. Sum Frequency Generation Studies of Hydrogenation Reactions on Platinum Nanoparticles

    SciTech Connect

    Krier, James M.

    2013-08-31

    Sum Frequency Generation (SFG) vibrational spectroscopy is used to characterize intermediate species of hydrogenation reactions on the surface of platinum nanoparticle catalysts. In contrast to other spectroscopy techniques which operate in ultra-high vacuum or probe surface species after reaction, SFG collects information under normal conditions as the reaction is taking place. Several systems have been studied previously using SFG on single crystals, notably alkene hydrogenation on Pt(111). In this thesis, many aspects of SFG experiments on colloidal nanoparticles are explored for the first time. To address spectral interference by the capping agent (PVP), three procedures are proposed: UV cleaning, H2 induced disordering and calcination (core-shell nanoparticles). UV cleaning and calcination physically destroy organic capping while disordering reduces SFG signal through a reversible structural change by PVP.

  17. Energetics of Hydrogen Storage Reactions: The Power of DFT

    NASA Astrophysics Data System (ADS)

    Herbst, Jan

    2005-03-01

    Calculations of hydrogen site energetics in LaNi5Hn (hexagonal P63mc crystal structure) and LaCo5Hn (orthorhombic Cmmm structure) have been performed within density functional theory (DFT). In each case DFT correctly identifies the most stable hydrogen site configuration, yields an accurate value for the enthalpy of hydride formation, and predicts hydrogen-richer hydrides. The novel hydrogen storage reaction LiNH2 + LiH <-> Li2NH + H2 has also been investigated, with the inclusion of zero point energies and finite temperature corrections. The generalized gradient approximation for the exchange-correlation energy functional μxc provides much better agreement with experiment than the local density approximation for the structural parameters as well as for the enthalpy of formation of LiNH2, LiH, and the reaction enthalpy. While the choice of μxc may have substantial impact on results, it is indisputably clear that DFT is a powerful tool for understanding hydrogen storage energetics.

  18. Density Functional Reactivity Theory Characterizes Charge Separation Propensity in Proton-Coupled Electron Transfer Reactions

    SciTech Connect

    Liu, Shubin; Ess, Daniel H.; Schauer, Cynthia

    2011-04-20

    Proton-coupled electron transfer (PCET) reactions occur in many biological and artificial solar energy conversion processes. In these reactions the electron is often transferred to a site distant to the proton acceptor site. In this work, we employ the dual descriptor and the electrophilic Fukui function from density functional reactivity theory (DFRT) to characterize the propensity for an electron to be transferred to a site other than the proton acceptor site. The electrophilic regions of hydrogen bond or van der Waal reactant complexes were examined using these DFRT descriptors to determine the region of space to which the electron is most likely to be transferred. This analysis shows that in PCET reactions the electrophilic region of the reactant complex does not include the proton acceptor site.

  19. Tunnelling in low-temperature hydrogen-atom and proton transfers

    NASA Astrophysics Data System (ADS)

    Arnaut, Luis G.; Formosinho, Sebastião J.; Barroso, Monica

    2006-04-01

    The reaction path of the interacting-state model with the Lippincott-Schroeder potential for hydrogen bonds, is used in transition-state theory calculations with the semiclassical correction for tunnelling (LS-ISM/scTST) to estimate proton and hydrogen-atom transfer rates at low temperatures. Down to 100 K, the semiclassical correction leads to semi-empirical rates and isotope effects that are in good agreement with the thermal tautomerism of porphine, and the excited-state tautomerisms of salicylideneanilines and 2-(2'-hydroxyphenyl)benzoxazole. For lower temperatures, the tunnelling corrections become extremely high and unreliable. It is shown that the permeability of an Eckart barrier fitted to the curvature of the LS-ISM reaction path leads to good estimates of these reaction rates down to 2 K.

  20. The effect of the environment on the methyl transfer reaction mechanism between trimethylsulfonium and phenolate.

    PubMed

    Saez, David Adrian; Vogt-Geisse, Stefan; Inostroza-Rivera, Ricardo; Kubař, Tomáš; Elstner, Marcus; Toro-Labbé, Alejandro; Vöhringer-Martinez, Esteban

    2016-09-14

    Methyl transfer reactions play an important role in biology and are catalyzed by various enzymes. Here, the influence of the molecular environment on the reaction mechanism was studied using advanced ab initio methods, implicit solvation models and QM/MM molecular dynamics simulations. Various conceptual DFT and electronic structure descriptors identified different processes along the reaction coordinate e.g. electron transfer. The results show that the polarity of the solvent increases the energy required for the electron transfer and that this spontaneous process is located in the transition state region identified by the (mean) reaction force analysis and takes place through the bonds which are broken and formed. The inclusion of entropic contributions and hydrogen bond interactions in QM/MM molecular dynamics simulations with a validated DFTB3 Hamiltonian yields activation barriers in good agreement with the experimental values in contrast to the values obtained using two implicit solvation models.

  1. Prodrugs of aza nucleosides based on proton transfer reaction

    NASA Astrophysics Data System (ADS)

    Karaman, Rafik

    2010-12-01

    DFT calculation results for intramolecular proton transfer reactions in Kirby's enzyme models 1- 7 reveal that the reaction rate is quite responsive to geometric disposition, especially to distance between the two reactive centers, r GM, and the angle of attack, α (the hydrogen bonding angle). Hence, the study on the systems reported herein could provide a good basis for designing aza nucleoside prodrug systems that are less hydrophilic than their parental drugs and can be used, in different dosage forms, to release the parent drug in a controlled manner. For example, based on the calculated log EM, the cleavage process for prodrug 1ProD is predicted to be about 1010 times faster than that for prodrug 7ProD and about 104 times faster than prodrug 3ProD: rate 1ProD > rate 3ProD > rate 7ProD . Hence, the rate by which the prodrug releases the aza nucleoside drug can be determined according to the structural features of the linker (Kirby's enzyme model).

  2. Few-nucleon transfer reactions on deformed nuclei

    SciTech Connect

    van den Berg, A.M.

    1985-01-01

    Recent developments discussed include: alpha-transfer reactions on deformed nuclei, quasi-elastic neutron transfer reactions induced by /sup 58/Ni beams on spherical and deformed samarium nuclei, and the population of low-lying states in neutron rich nuclei using (particle,..gamma..) or (particle,e) coincidence methods. 37 refs., 10 figs. (LEW)

  3. Computational Discovery of Novel Hydrogen Storage Materials and Reactions

    NASA Astrophysics Data System (ADS)

    Wolverton, Christopher

    2009-03-01

    Practical hydrogen storage for mobile applications requires materials that exhibit high hydrogen densities, low decomposition temperatures, and fast kinetics for absorption and desorption. Unfortunately, no reversible materials are currently known that possess all of these attributes. Here we present an overview of our recent efforts aimed at developing a first-principles computational approach to the discovery of novel hydrogen storage materials. We have developed computational tools which enable accurate prediction of decomposition thermodynamics, crystal structures for unknown hydrides, and thermodynamically preferred decomposition pathways. We present examples that illustrate each of these three capabilities. Specifically, we focus on recent work on crystal structure and dehydriding reactions of borohydride materials, such as Mg(BH4)2, MgB12H12, and mixtures of complex hydrides such as the ternary LiBH4/LiNH2/MgH2 system.References:[0pt] (1) V. Ozolins, E. H. Majzoub, and C. Wolverton, ``First-Principles Prediction of a Ground State Crystal Structure of Magnesium Borohydride'', Phys. Rev. Lett. 100, 135501 (2008).(2) C. Wolverton, D. J. Siegel, A. R. Akbarzadeh, and V. Ozolins, ``Discovery of Novel Hydrogen Storage Materials: An Atomic Scale Computational Approach'', J. Phys. Condens. Matt. 20, 064228 (2008).(3) J. Yang, et al., ``A Self-Catalyzing Hydrogen Storage Material'' Angew. Chem. Int. Ed., 47, 882 (2008).(4) A. R. Akbarzadeh, V. Ozolins, and C. Wolverton, ``First-Principles Determination of Multicomponent Hydride Phase Diagrams: Application to the Li-Mg-N-H System'', Advanced Materials 19, 3233 (2007).(5) D. J. Siegel, C. Wolverton, and V. Ozolins, ``Thermodynamic Guidelines for the Prediction of Hydrogen Storage Reactions and their Application to Destabilized Hydride Mixtures'', Phys. Rev. B 76, 134102 (2007).

  4. Design principles for hydrogen evolution reaction catalyst materials

    DOE PAGES

    Strmcnik, Dusan; Lopes, Pietro Papa; Genorio, Bostjan; ...

    2016-04-19

    Design and synthesis of active, stable and cost-effective materials for efficient hydrogen production (hydrogen evolution reaction, HER) is of paramount importance for the successful deployment of hydrogen -based alternative energy technologies. The HER, seemingly one of the simplest electrochemical reactions, has served for decades to bridge the gap between fundamental electrocatalysis and practical catalyst design. However, there are still many open questions that need to be answered before it would be possible to claim that design principles of catalyst materials are fully developed for the efficient hydrogen production. Here in this review, by summarizing key results for the HER onmore » well-characterized electrochemical interfaces in acidic and alkaline media, we have broadened our understanding of the HER in the whole range of pH by considering three main parameters: the nature of the proton donor (H3O+ in acid and H2O in alkaline), the energy of adsorption of Had and OHad, and the presence of spectator species. Simply by considering these three parameters we show that great deal has already been learned and new trends are beginning to emerge, giving some predictive ability with respect to the nature of electrochemical interface and electrocatalytic activity of the HER.« less

  5. Progress in Nanoscale Studies of Hydrogen Reactions in Construction Materials

    NASA Astrophysics Data System (ADS)

    Schweitzer, J. S.; Livingston, R. A.; Cheung, J.; Rolfs, C.; Becker, H.-W.; Kubsky, S.; Spillane, T.; Zickefoose, J.; Castellote, M.; Bengtsson, N.; Galan, I.; de Viedma, P. G.; Brendle, S.; Bumrongjaroen, W.; Muller, I.

    Nuclear resonance reaction analysis (NRRA) has been applied to measure the nanoscale distribution of hydrogen with depth in the hydration of cementitious phases. This has provided a better understanding of the mechanisms and kinetics of cement hydration during the induction period that is critical to improved concrete technology. NRRA was also applied to measure the hydrogen depth profiles in other materials used in concrete construction such as fly ash and steel. By varying the incident beam energy one measures a profile with a depth resolution of a few nanometers. Time-resolved measurements are achieved by stopping the chemical reactions at specific times. Effects of temperature, sulfate concentration, accelerators and retarders, and superplasticizers have been investigated. Hydration of fly ashes has been studied with synthetic glass specimens whose chemical compositions are modeled on those of actual fly ashes. A combinatorial chemistry approach was used where glasses of different compositions are hydrated in various solutions for a fixed time. The resulting hydrogen depth profiles show significant differences in hydrated phases, rates of depth penetration and amount of surface etching. Hydrogen embrittlement of steel was studied on slow strain rate specimens under different corrosion potentials.

  6. Design principles for hydrogen evolution reaction catalyst materials

    SciTech Connect

    Strmcnik, Dusan; Lopes, Pietro Papa; Genorio, Bostjan; Stamenkovic, Vojislav R.; Markovic, Nenad M.

    2016-04-19

    Design and synthesis of active, stable and cost-effective materials for efficient hydrogen production (hydrogen evolution reaction, HER) is of paramount importance for the successful deployment of hydrogen -based alternative energy technologies. The HER, seemingly one of the simplest electrochemical reactions, has served for decades to bridge the gap between fundamental electrocatalysis and practical catalyst design. However, there are still many open questions that need to be answered before it would be possible to claim that design principles of catalyst materials are fully developed for the efficient hydrogen production. Here in this review, by summarizing key results for the HER on well-characterized electrochemical interfaces in acidic and alkaline media, we have broadened our understanding of the HER in the whole range of pH by considering three main parameters: the nature of the proton donor (H3O+ in acid and H2O in alkaline), the energy of adsorption of Had and OHad, and the presence of spectator species. Simply by considering these three parameters we show that great deal has already been learned and new trends are beginning to emerge, giving some predictive ability with respect to the nature of electrochemical interface and electrocatalytic activity of the HER.

  7. Supercritical hydrogenation and acid-catalysed reactions "without gases".

    PubMed

    Hyde, Jason R; Poliakoff, Martyn

    2004-07-07

    The high temperature catalytic decomposition of HCO2H and HCO2Et are used to generate the high pressure H2 and the supercritical fluids needed for micro-scale hydrogenation of organic compounds; our approach overcomes the problems and limitations of handling high pressure gases on a small-scale and opens the way to the widespread use of continuous supercritical reactions in the laboratory.

  8. Hydrogen evolution from water through metal sulfide reactions

    SciTech Connect

    Saha, Arjun; Raghavachari, Krishnan

    2013-11-28

    Transition metal sulfides play an important catalytic role in many chemical reactions. In this work, we have conducted a careful computational study of the structures, electronic states, and reactivity of metal sulfide cluster anions M{sub 2}S{sub X}{sup −} (M = Mo and W, X = 4–6) using density functional theory. Detailed structural analysis shows that these metal sulfide anions have ground state isomers with two bridging sulfide bonds, notably different in some cases from the corresponding oxides with the same stoichiometry. The chemical reactivity of these metal sulfide anions with water has also been carried out. After a thorough search on the reactive potential energy surface, we propose several competitive, energetically favorable, reaction pathways that lead to the evolution of hydrogen. Selectivity in the initial water addition and subsequent hydrogen migration are found to be the key steps in all the proposed reaction channels. Initial adsorption of water is most favored involving a terminal metal sulfur bond in Mo{sub 2}S{sub 4}{sup −} isomers whereas the most preferred orientation for water addition involves a bridging metal sulfur bond in the case of W{sub 2}S{sub 4}{sup −} and M{sub 2}S{sub 5}{sup −} isomers. In all the lowest energy H{sub 2} elimination steps, the interacting hydrogen atoms involve a metal hydride and a metal hydroxide (or thiol) group. We have also observed a higher energy reaction channel where the interacting hydrogen atoms in the H{sub 2} elimination step involve a thiol (–SH) and a hydroxyl (–OH) group. For all the reaction pathways, the Mo sulfide reactions involve a higher barrier than the corresponding W analogues. We observe for both metals that reactions of M{sub 2}S{sub 4}{sup −} and M{sub 2}S{sub 5}{sup −} clusters with water to liberate H{sub 2} are exothermic and involve modest free energy barriers. However, the reaction of water with M{sub 2}S{sub 6}{sup −} is highly endothermic with a considerable

  9. Cryogenic Propellant Storage and Transfer Engineering Development Unit Hydrogen Tank

    NASA Technical Reports Server (NTRS)

    Werkheiser, Arthur

    2015-01-01

    The Cryogenic Propellant Storage and Transfer (CPST) project has been a long-running program in the Space Technology Mission Directorate to enhance the knowledge and technology related to handling cryogenic propellants, specifically liquid hydrogen. This particular effort, the CPST engineering development unit (EDU), was a proof of manufacturability effort in support of a flight article. The EDU was built to find and overcome issues related to manufacturability and collect data to anchor the thermal models for use on the flight design.

  10. Analysis of Thermal and Reaction Times for Hydrogen Reduction of Lunar Regolith

    NASA Technical Reports Server (NTRS)

    Hegde, U.; Balasubramaniam, R.; Gokoglu, S.

    2008-01-01

    System analysis of oxygen production by hydrogen reduction of lunar regolith has shown the importance of the relative time scales for regolith heating and chemical reaction to overall performance. These values determine the sizing and power requirements of the system and also impact the number and operational phasing of reaction chambers. In this paper, a Nusselt number correlation analysis is performed to determine the heat transfer rates and regolith heat up times in a fluidized bed reactor heated by a central heating element (e.g., a resistively heated rod, or a solar concentrator heat pipe). A coupled chemical and transport model has also been developed for the chemical reduction of regolith by a continuous flow of hydrogen. The regolith conversion occurs on the surfaces of and within the regolith particles. Several important quantities are identified as a result of the above analyses. Reactor scale parameters include the void fraction (i.e., the fraction of the reactor volume not occupied by the regolith particles) and the residence time of hydrogen in the reactor. Particle scale quantities include the particle Reynolds number, the Archimedes number, and the time needed for hydrogen to diffuse into the pores of the regolith particles. The analysis is used to determine the heat up and reaction times and its application to NASA s oxygen production system modeling tool is noted.

  11. Analysis of Thermal and Reaction Times for Hydrogen Reduction of Lunar Regolith

    NASA Technical Reports Server (NTRS)

    Hegde, U.; Balasubramaniam, R.; Gokoglu, S.

    2009-01-01

    System analysis of oxygen production by hydrogen reduction of lunar regolith has shown the importance of the relative time scales for regolith heating and chemical reaction to overall performance. These values determine the sizing and power requirements of the system and also impact the number and operational phasing of reaction chambers. In this paper, a Nusselt number correlation analysis is performed to determine the heat transfer rates and regolith heat up times in a fluidized bed reactor heated by a central heating element (e.g., a resistively heated rod, or a solar concentrator heat pipe). A coupled chemical and transport model has also been developed for the chemical reduction of regolith by a continuous flow of hydrogen. The regolith conversion occurs on the surfaces of and within the regolith particles. Several important quantities are identified as a result of the above analyses. Reactor scale parameters include the void fraction (i.e., the fraction of the reactor volume not occupied by the regolith particles) and the residence time of hydrogen in the reactor. Particle scale quantities include the particle Reynolds number, the Archimedes number, and the time needed for hydrogen to diffuse into the pores of the regolith particles. The analysis is used to determine the heat up and reaction times and its application to NASA s oxygen production system modeling tool is noted.

  12. Analysis of Thermal and Reaction Times for Hydrogen Reduction of Lunar Regolith

    NASA Astrophysics Data System (ADS)

    Hegde, U.; Balasubramaniam, R.; Gokoglu, S.

    2008-01-01

    System analysis of oxygen production by hydrogen reduction of lunar regolith has shown the importance of the relative time scales for regolith heating and chemical reaction to overall performance. These values determine the sizing and power requirements of the system and also impact the number and operational phasing of reaction chambers. In this paper, a Nusselt number correlation analysis is performed to determine the heat transfer rates and regolith heat up times in a fluidized bed reactor heated by a central heating element (e.g., a resistively heated rod, or a solar concentrator heat pipe). A coupled chemical and transport model has also been developed for the chemical reduction of regolith by a continuous flow of hydrogen. The regolith conversion occurs on the surfaces of and within the regolith particles. Several important quantities are identified as a result of the above analyses. Reactor scale parameters include the void fraction (i.e., the fraction of the reactor volume not occupied by the regolith particles) and the residence time of hydrogen in the reactor. Particle scale quantities include the particle Reynolds number, the Archimedes number, and the time needed for hydrogen to diffuse into the pores of the regolith particles. The analysis is used to determine the heat up and reaction times and its application to NASA's oxygen production system modeling tool is noted.

  13. A continuous flow strategy for the coupled transfer hydrogenation and etherification of 5-(hydroxymethyl)furfural using Lewis acid zeolites.

    PubMed

    Lewis, Jennifer D; Van de Vyver, Stijn; Crisci, Anthony J; Gunther, William R; Michaelis, Vladimir K; Griffin, Robert G; Román-Leshkov, Yuriy

    2014-08-01

    Hf-, Zr- and Sn-Beta zeolites effectively catalyze the coupled transfer hydrogenation and etherification of 5-(hydroxymethyl)furfural with primary and secondary alcohols into 2,5-bis(alkoxymethyl)furans, thus making it possible to generate renewable fuel additives without the use of external hydrogen sources or precious metals. Continuous flow experiments reveal nonuniform changes in the relative deactivation rates of the transfer hydrogenation and etherification reactions, which impact the observed product distribution over time. We found that the catalysts undergo a drastic deactivation for the etherification step while maintaining catalytic activity for the transfer hydrogenation step. (119) Sn and (29) Si magic angle spinning (MAS) NMR studies show that this deactivation can be attributed to changes in the local environment of the metal sites. Additional insights were gained by studying effects of various alcohols and water concentration on the catalytic reactivity.

  14. Predicting organic hydrogen atom transfer rate constants using the Marcus cross relation

    PubMed Central

    Warren, Jeffrey J.; Mayer, James M.

    2010-01-01

    Chemical reactions that involve net hydrogen atom transfer (HAT) are ubiquitous in chemistry and biology, from the action of antioxidants to industrial and metalloenzyme catalysis. This report develops and validates a procedure to predict rate constants for HAT reactions of oxyl radicals (RO•) in various media. Our procedure uses the Marcus cross relation (CR) and includes adjustments for solvent hydrogen-bonding effects on both the kinetics and thermodynamics of the reactions. Kinetic solvent effects (KSEs) are included by using Ingold’s model, and thermodynamic solvent effects are accounted for by using an empirical model developed by Abraham. These adjustments are shown to be critical to the success of our combined model, referred to as the CR/KSE model. As an initial test of the CR/KSE model we measured self-exchange and cross rate constants in different solvents for reactions of the 2,4,6-tri-tert-butylphenoxyl radical and the hydroxylamine 2,2′-6,6′-tetramethyl-piperidin-1-ol. Excellent agreement is observed between the calculated and directly determined cross rate constants. We then extend the model to over 30 known HAT reactions of oxyl radicals with OH or CH bonds, including biologically relevant reactions of ascorbate, peroxyl radicals, and α-tocopherol. The CR/KSE model shows remarkable predictive power, predicting rate constants to within a factor of 5 for almost all of the surveyed HAT reactions. PMID:20215463

  15. Efficient Deactivation of a Model Base Pair via Excited-State Hydrogen Transfer

    NASA Astrophysics Data System (ADS)

    Schultz, Thomas; Samoylova, Elena; Radloff, Wolfgang; Hertel, Ingolf V.; Sobolewski, Andrzej L.; Domcke, Wolfgang

    2004-12-01

    We present experimental and theoretical evidence for an excited-state deactivation mechanism specific to hydrogen-bonded aromatic dimers, which may account, in part, for the photostability of the Watson-Crick base pairs in DNA. Femtosecond time-resolved mass spectroscopy of 2-aminopyridine clusters reveals an excited-state lifetime of 65 +/- 10 picoseconds for the near-planar hydrogen-bonded dimer, which is significantly shorter than the lifetime of either the monomer or the 3- and 4-membered nonplanar clusters. Ab initio calculations of reaction pathways and potential-energy profiles identify the mechanism of the enhanced excited-state decay of the dimer: Conical intersections connect the locally excited 1ππ* state and the electronic ground state with a 1ππ* charge-transfer state that is strongly stabilized by the transfer of a proton.

  16. Biological Phosphoryl-Transfer Reactions: Understanding Mechanism and Catalysis

    PubMed Central

    Lassila, Jonathan K.; Zalatan, Jesse G.; Herschlag, Daniel

    2012-01-01

    Phosphoryl-transfer reactions are central to biology. These reactions also have some of the slowest nonenzymatic rates and thus require enormous rate accelerations from biological catalysts. Despite the central importance of phosphoryl transfer and the fascinating catalytic challenges it presents, substantial confusion persists about the properties of these reactions. This confusion exists despite decades of research on the chemical mechanisms underlying these reactions. Here we review phosphoryl-transfer reactions with the goal of providing the reader with the conceptual and experimental background to understand this body of work, to evaluate new results and proposals, and to apply this understanding to enzymes. We describe likely resolutions to some controversies, while emphasizing the limits of our current approaches and understanding. We apply this understanding to enzyme-catalyzed phosphoryl transfer and provide illustrative examples of how this mechanistic background can guide and deepen our understanding of enzymes and their mechanisms of action. Finally, we present important future challenges for this field. PMID:21513457

  17. Biological phosphoryl-transfer reactions: understanding mechanism and catalysis.

    PubMed

    Lassila, Jonathan K; Zalatan, Jesse G; Herschlag, Daniel

    2011-01-01

    Phosphoryl-transfer reactions are central to biology. These reactions also have some of the slowest nonenzymatic rates and thus require enormous rate accelerations from biological catalysts. Despite the central importance of phosphoryl transfer and the fascinating catalytic challenges it presents, substantial confusion persists about the properties of these reactions. This confusion exists despite decades of research on the chemical mechanisms underlying these reactions. Here we review phosphoryl-transfer reactions with the goal of providing the reader with the conceptual and experimental background to understand this body of work, to evaluate new results and proposals, and to apply this understanding to enzymes. We describe likely resolutions to some controversies, while emphasizing the limits of our current approaches and understanding. We apply this understanding to enzyme-catalyzed phosphoryl transfer and provide illustrative examples of how this mechanistic background can guide and deepen our understanding of enzymes and their mechanisms of action. Finally, we present important future challenges for this field.

  18. Synthetic and mechanistic studies of metal-free transfer hydrogenations applying polarized olefins as hydrogen acceptors and amine borane adducts as hydrogen donors.

    PubMed

    Yang, Xianghua; Fox, Thomas; Berke, Heinz

    2012-01-28

    Metal-free transfer hydrogenation of polarized olefins (RR'C=CEE': R, R' = H or organyl, E, E' = CN or CO(2)Me) using amine borane adducts RR'NH-BH(3) (R = R' = H, AB; R = Me, R' = H, MAB; R = (t)Bu, R' = H, tBAB; R = R' = Me, DMAB) as hydrogen donors, were studied by means of in situ NMR spectroscopy. Deuterium kinetic isotope effects and the traced hydroboration intermediate revealed that the double H transfer process occurred regio-specifically in two steps with hydride before proton transfer characteristics. Studies on substituent effects and Hammett correlation indicated that the rate determining step of the H(N) transfer is in agreement with a concerted transition state. The very reactive intermediate [NH(2)=BH(2)] generated from AB was trapped by addition of cyclohexene into the reaction mixture forming Cy(2)BNH(2). The final product borazine (BHNH)(3) is assumed to be formed by dehydrocoupling of [NH(2)=BH(2)] or its solvent stabilized derivative [NH(2)=BH(2)]-(solvent), rather than by dehydrogenation of cyclotriborazane (BH(2)NH(2))(3) which is the trimerization product of [NH(2)=BH(2)].

  19. KOtBu: A Privileged Reagent for Electron Transfer Reactions?

    PubMed

    Barham, Joshua P; Coulthard, Graeme; Emery, Katie J; Doni, Eswararao; Cumine, Florimond; Nocera, Giuseppe; John, Matthew P; Berlouis, Leonard E A; McGuire, Thomas; Tuttle, Tell; Murphy, John A

    2016-06-15

    Many recent studies have used KOtBu in organic reactions that involve single electron transfer; in the literature, the electron transfer is proposed to occur either directly from the metal alkoxide or indirectly, following reaction of the alkoxide with a solvent or additive. These reaction classes include coupling reactions of halobenzenes and arenes, reductive cleavages of dithianes, and SRN1 reactions. Direct electron transfer would imply that alkali metal alkoxides are willing partners in these electron transfer reactions, but the literature reports provide little or no experimental evidence for this. This paper examines each of these classes of reaction in turn, and contests the roles proposed for KOtBu; instead, it provides new mechanistic information that in each case supports the in situ formation of organic electron donors. We go on to show that direct electron transfer from KOtBu can however occur in appropriate cases, where the electron acceptor has a reduction potential near the oxidation potential of KOtBu, and the example that we use is CBr4. In this case, computational results support electrochemical data in backing a direct electron transfer reaction.

  20. Dynamics of competitive reactions: endothermic proton transfer and exothermic substitution.

    PubMed

    Ren, Jianhua; Brauman, John I

    2004-03-03

    Dynamics of an endothermic proton-transfer reaction, F(-) with dimethyl sulfoxide, and an endothermic proton-transfer reaction with a competing exothermic substitution (S(N)2) channel, F(-) with borane-methyl sulfide complex, were investigated using a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR) and kinetic modeling. The two proton-transfer reactions have slightly positive and a small negative overall free energy changes, respectively. Energy-dependent rate constants were measured as a function of F(-) ion translational energy, and the resulting kinetics were modeled with the RRKM (Rice-Ramsperger-Kassel-Marcus) theory. The observed rate constants for the proton-transfer reactions of F(-) with dimethyl sulfoxide and with borane-methyl sulfide complex are identical, with a value of 0.17 x 10(-9) cm(3) molecule(-1) s(-1); for the S(N)2 reaction, k = 0.90 x 10(-9) cm(3) molecule(-1) s(-1) at 350 K. Both proton-transfer reactions have positive entropy changes in the forward direction and show positive energy dependences. The competing S(N)2 reaction exhibits negative energy dependence and becomes less important at higher energies. The changes of the observed rate constants agree with RRKM theory predictions for a few kcal/mol of additional kinetic energy. The dynamic change of the branching ratio for the competing proton transfer and the substitution reactions results from the competition between the microscopic rate constants associated with each channel.

  1. Geometric phase effects in ultracold hydrogen exchange reaction

    NASA Astrophysics Data System (ADS)

    Hazra, Jisha; Kendrick, Brian K.; Balakrishnan, N.

    2016-10-01

    The role of the geometric phase effect on chemical reaction dynamics is explored by examining the hydrogen exchange process in the fundamental H+HD reaction. Results are presented for vibrationally excited HD molecules in the v = 4 vibrational level and for collision energies ranging from 1 μK to 100 K. It is found that, for collision energies below 3 K, inclusion of the geometric phase leads to dramatic enhancement or suppression of the reaction rates depending on the final quantum state of the HD molecule. The effect was found to be the most prominent for rotationally resolved integral and differential cross sections but it persists to a lesser extent in the vibrationally resolved and total reaction rate coefficients. However, no significant GP effect is present in the reactive channel leading to the D+H2 product or in the D+H2 (v=4,j=0) \\to HD+H reaction. A simple interference mechanism involving inelastic (nonreactive) and exchange scattering amplitudes is invoked to account for the observed GP effects. The computed results also reveal a shape resonance in the H+HD reaction near 1 K and the GP effect is found to influence the magnitude of the resonant part of the cross section. Experimental detection of the resonance may allow a sensitive probe of the GP effect in the H+HD reaction.

  2. Geometric phase effects in ultracold hydrogen exchange reaction

    SciTech Connect

    Hazra, Jisha; Kendrick, Brian K.; Balakrishnan, Naduvalath

    2016-10-14

    The role of the geometric phase effect on chemical reaction dynamics is explored by examining the hydrogen exchange process in the fundamental H+HD reaction. Results are presented for vibrationally excited HD molecules in the v = 4 vibrational level and for collision energies ranging from 1 μK to 100 K. It is found that, for collision energies below 3 K, inclusion of the geometric phase leads to dramatic enhancement or suppression of the reaction rates depending on the final quantum state of the HD molecule. The effect was found to be the most prominent for rotationally resolved integral and differential cross sections but it persists to a lesser extent in the vibrationally resolved and total reaction rate coefficients. However, no significant GP effect is present in the reactive channel leading to the D+H2 product or in the D+H2 $(v=4,j=0)\\,\\to $ HD+H reaction. A simple interference mechanism involving inelastic (nonreactive) and exchange scattering amplitudes is invoked to account for the observed GP effects. The computed results also reveal a shape resonance in the H+HD reaction near 1 K and the GP effect is found to influence the magnitude of the resonant part of the cross section. In conclusion, experimental detection of the resonance may allow a sensitive probe of the GP effect in the H+HD reaction.

  3. Geometric phase effects in ultracold hydrogen exchange reaction

    DOE PAGES

    Hazra, Jisha; Kendrick, Brian K.; Balakrishnan, Naduvalath

    2016-10-14

    The role of the geometric phase effect on chemical reaction dynamics is explored by examining the hydrogen exchange process in the fundamental H+HD reaction. Results are presented for vibrationally excited HD molecules in the v = 4 vibrational level and for collision energies ranging from 1 μK to 100 K. It is found that, for collision energies below 3 K, inclusion of the geometric phase leads to dramatic enhancement or suppression of the reaction rates depending on the final quantum state of the HD molecule. The effect was found to be the most prominent for rotationally resolved integral and differential cross sections but it persists to a lesser extent in the vibrationally resolved and total reaction rate coefficients. However, no significant GP effect is present in the reactive channel leading to the D+H2 product or in the D+H2more » $$(v=4,j=0)\\,\\to $$ HD+H reaction. A simple interference mechanism involving inelastic (nonreactive) and exchange scattering amplitudes is invoked to account for the observed GP effects. The computed results also reveal a shape resonance in the H+HD reaction near 1 K and the GP effect is found to influence the magnitude of the resonant part of the cross section. In conclusion, experimental detection of the resonance may allow a sensitive probe of the GP effect in the H+HD reaction.« less

  4. Hydrated alizarin complexes: hydrogen bonding and proton transfer.

    PubMed

    Huh, Hyun; Cho, Sung Haeng; Heo, Jiyoung; Kim, Nam Joon; Kim, Seong Keun

    2012-07-07

    We investigated the hydrogen bonding structures and proton transfer for the hydration complexes of alizarin (Az) produced in a supersonic jet using fluorescence excitation (FE), dispersed laser induced fluorescence (LIF), visible-visible hole burning (HB), and fluorescence detected infrared (FDIR) spectroscopy. The FDIR spectrum of bare Az with two O-H groups exhibits two vibrational bands at 3092 and 3579 cm(-1), which, respectively, correspond to the stretching vibration of O1-H1 that forms a strong intramolecular hydrogen bond with the C9=O9 carbonyl group and the stretching vibration of O2-H2 that is weakly hydrogen-bonded to O1-H1. For the 1:1 hydration complex Az(H(2)O)(1), we identified three conformers. In the most stable conformer, the water molecule forms hydrogen bonds with the O1-H1 and O2-H2 groups of Az as a proton donor and proton acceptor, respectively. In the other conformers, the water binds to the C10=O10 group in two nearly isoenergetic configurations. In contrast to the sharp vibronic peaks in the FE spectra of Az and Az(H(2)O)(1), only broad, structureless absorption was observed for Az(H(2)O)(n) (n≥ 2), indicating a facile decay process, possibly due to proton transfer in the electronic excited state. The FDIR spectrum with the wavelength of the probe laser fixed at the broad band exhibited a broad vibrational band near the O2-H2 stretching vibration frequency of the most stable conformer of Az(H(2)O)(1). With the help of theoretical calculations, we suggest that the broad vibrational band may represent the occurrence of proton transfer by tunnelling in the electronic ground state of Az(H(2)O)(n) (n≥ 2) upon excitation of the O2-H2 vibration.

  5. Revisiting the Meerwein-Ponndorf-Verley Reduction: A Sustainable Protocol for Transfer Hydrogenation of Aldehydes and Ketones

    EPA Science Inventory

    The metal-catalyzed transfer hydrogenation of carbonyl compounds has received much interest because of the immense number of opportunities that exist to prepare high-value products. This reaction is featured in numerous multi-step organic syntheses and is arguably the most import...

  6. Revisiting the Meerwein-Ponndorf-Verley Reduction: A Sustainable Protocol for Transfer Hydrogenation of Aldehydes and Ketones

    EPA Science Inventory

    The metal-catalyzed transfer hydrogenation of carbonyl compounds has received much interest because of the immense number of opportunities that exist to prepare high-value products. This reaction is featured in numerous multi-step organic syntheses and is arguably the most import...

  7. Slush hydrogen transfer studies at the NASA K-Site Test Facility

    NASA Technical Reports Server (NTRS)

    Hardy, Terry L.; Whalen, Margaret V.

    1992-01-01

    An experimental study was performed as part of the National Aerospace Plane (NASP) effort to determine slush hydrogen production and transfer characteristics. Flow rate and pressure drop characteristics were determined for slush hydrogen flow through a vacuum-jacketed transfer system. These characteristics were compared to similar tests using normal boiling point and triple point hydrogen. In addition, experimental flow characteristic data was compared with predictions from the FLUSH analytical model. Slush hydrogen density loss during the transfer process was also examined.

  8. Stereoselectivity in electron-transfer reactions in chiral media.

    PubMed

    Olmstead, Deborah; Hua, Xaio; Osvath, Peter; Lappin, A Graham

    2010-02-07

    The oxidation of [Co(edta)](2-) by [IrCl(6)](2-) proceeds by both inner-sphere and outer-sphere electron-transfer pathways. In the presence of added [Co(en)(3)](3+), the outer-sphere pathway is enhanced. When optically active [Co(en)(3)](3+) is used, the [Co(edta)](-) formed is optically active, reflecting a 1.5% DeltaLambda selectivity. It is proposed that the selectivity arises from preferential formation and reactivity of the DeltaLambda ion pair, {[Co(edta)](2-),[Co(en)(3)](3+)}. Direct reaction of [Co(edta)](-) with [Co(en)(3)](2+) has also been investigated in the optically active solvent, (S)-(-)-1,2-propylene carbonate. The induction is small, forming 0.75% Delta-[Co(en)(3)](3+), consistent with the important role for hydrogen bonding in determining the precursor stereoselectivity to the exclusion of solvent.

  9. Mobility mechanism of hydroxyl radicals in aqueous solution via hydrogen transfer.

    PubMed

    Codorniu-Hernández, Edelsys; Kusalik, Peter G

    2012-01-11

    The hydroxyl radical (OH*) is a highly reactive oxygen species that plays a salient role in aqueous solution. The influence of water molecules upon the mobility and reactivity of the OH* constitutes a crucial knowledge gap in our current understanding of many critical reactions that impact a broad range of scientific fields. Specifically, the relevant molecular mechanisms associated with OH* mobility and the possibility of diffusion in water via a H-transfer reaction remain open questions. Here we report insights into the local hydration and electronic structure of the OH* in aqueous solution from Car-Parrinello molecular dynamics and explore the mechanism of H-transfer between OH* and a water molecule. The relatively small free energy barrier observed (~4 kcal/mol) supports a conjecture that the H-transfer can be a very rapid process in water, in accord with very recent experimental results, and that this reaction can contribute significantly to OH* mobility in aqueous solution. Our findings reveal a novel H-transfer mechanism of hydrated OH*, resembling that of hydrated OH(-) and presenting hybrid characteristics of hydrogen-atom and electron-proton transfer processes, where local structural fluctuations play a pivotal role. © 2011 American Chemical Society

  10. A reaction-diffusion model of cytosolic hydrogen peroxide.

    PubMed

    Lim, Joseph B; Langford, Troy F; Huang, Beijing K; Deen, William M; Sikes, Hadley D

    2016-01-01

    As a signaling molecule in mammalian cells, hydrogen peroxide (H2O2) determines the thiol/disulfide oxidation state of several key proteins in the cytosol. Localization is a key concept in redox signaling; the concentrations of signaling molecules within the cell are expected to vary in time and in space in manner that is essential for function. However, as a simplification, all theoretical studies of intracellular hydrogen peroxide and many experimental studies to date have treated the cytosol as a well-mixed compartment. In this work, we incorporate our previously reported reduced kinetic model of the network of reactions that metabolize hydrogen peroxide in the cytosol into a model that explicitly treats diffusion along with reaction. We modeled a bolus addition experiment, solved the model analytically, and used the resulting equations to quantify the spatiotemporal variations in intracellular H2O2 that result from this kind of perturbation to the extracellular H2O2 concentration. We predict that micromolar bolus additions of H2O2 to suspensions of HeLa cells (0.8 × 10(9)cells/l) result in increases in the intracellular concentration that are localized near the membrane. These findings challenge the assumption that intracellular concentrations of H2O2 are increased uniformly throughout the cell during bolus addition experiments and provide a theoretical basis for differing phenotypic responses of cells to intracellular versus extracellular perturbations to H2O2 levels. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Arrhenius curves of hydrogen transfers: tunnel effects, isotope effects and effects of pre-equilibria

    PubMed Central

    Limbach, Hans-Heinrich; Miguel Lopez, Juan; Kohen, Amnon

    2006-01-01

    In this paper, the Arrhenius curves of selected hydrogen-transfer reactions for which kinetic data are available in a large temperature range are reviewed. The curves are discussed in terms of the one-dimensional Bell–Limbach tunnelling model. The main parameters of this model are the barrier heights of the isotopic reactions, barrier width of the H-reaction, tunnelling masses, pre-exponential factor and minimum energy for tunnelling to occur. The model allows one to compare different reactions in a simple way and prepare the kinetic data for more-dimensional treatments. The first type of reactions is concerned with reactions where the geometries of the reacting molecules are well established and the kinetic data of the isotopic reactions are available in a large temperature range. Here, it is possible to study the relation between kinetic isotope effects (KIEs) and chemical structure. Examples are the tautomerism of porphyrin, the porphyrin anion and related compounds exhibiting intramolecular hydrogen bonds of medium strength. We observe pre-exponential factors of the order of kT/h≅1013 s−1 corresponding to vanishing activation entropies in terms of transition state theory. This result is important for the second type of reactions discussed in this paper, referring mostly to liquid solutions. Here, the reacting molecular configurations may be involved in equilibria with non- or less-reactive forms. Several cases are discussed, where the less-reactive forms dominate at low or at high temperature, leading to unusual Arrhenius curves. These cases include examples from small molecule solution chemistry like the base-catalysed intramolecular H-transfer in diaryltriazene, 2-(2′-hydroxyphenyl)-benzoxazole, 2-hydroxy-phenoxyl radicals, as well as in the case of an enzymatic system, thermophilic alcohol dehydrogenase. In the latter case, temperature-dependent KIEs are interpreted in terms of a transition between two regimes with different temperature

  12. Controlling the conductance of molecular junctions using proton transfer reactions: A theoretical model study

    NASA Astrophysics Data System (ADS)

    Hofmeister, Chriszandro; Coto, Pedro B.; Thoss, Michael

    2017-03-01

    The influence of an intramolecular proton transfer reaction on the conductance of a molecular junction is investigated employing a generic model, which includes the effects of the electric field of the gate and leads electrodes and the coupling to a dissipative environment. Using a quantum master equation approach it is shown that, depending on the localization of the proton, the junction exhibits a high or low current state, which can be controlled by external electric fields. Considering different regimes, which range from weak to strong hydrogen bonds in the proton transfer complex and comprise situations with high and low barriers, necessary preconditions to achieve control are analyzed. The results show that systems with a weak hydrogen bond and a significant energy barrier for the proton transfer can be used as molecular transistors or diodes.

  13. Effect of thermal nonequilibrium on reactions in hydrogen combustion

    NASA Astrophysics Data System (ADS)

    Voelkel, S.; Raman, V.; Varghese, P. L.

    2016-09-01

    The presence of shocks in scramjet internal flows introduces nonequilibrium of internal energy modes of the molecules. Here, the effect of vibrational nonequilibrium on key reactions of hydrogen-air combustion is studied. A quasi-classical trajectory (QCT) approach is used to derive reaction probability for nonequilibrium conditions using ab initio-derived potential energy surfaces. The reaction rates under nonequilibrium are studied using a two-temperature description, where the vibrational modes are assumed to be distributed according to a Boltzmann distribution at a characteristic vibrational temperature, in addition to a translational temperature describing the translational and rotational population distribution. At scramjet-relevant conditions, it is found that the nonequilibrium reaction rate depends not only on the level of vibrational excitation, but also on the reactants involved. Conventional two-temperature models for reaction rates, often derived using empirical means, were found to be inaccurate under these conditions, and modified parameters are proposed based on the QCT calculations. It is also found that models that include details of the reaction process through dissociation energy, for instance, provide a better description of nonequilibrium effects.

  14. [Mechanism of oxidation reaction of NADH models and phynylglyoxal with hydrogen peroxide. Hypothesis on separate transport of hydrogen and electron atom in certain enzymatic reactions with the participation of NADH and NADPH].

    PubMed

    Iasnikov, A A; Ponomarenko, S P

    1976-05-01

    Kinetics of co-oxidation of 1-benzen-3-carbamido-1,4-dihydropyridine (BDN) and phenylglyoxal (PG) with hydrogen peroxide is studied. Dimeric product (di-e11-benzen-5-carbamido-1,2-dihydropyridyl-2]) is found to be formed at pH 9, and quaternal pyridinium salt (BNA)--at pH 7. Molecular oxigen is determined to participate in the reaction at pH 7. Copper (II) ions catalyze this process. Significant catalytic effect of p-dinitrobenzen (p-DNB) is found. The reaction mechanism is postulated to form hydroperoxide from PG and hydrogen peroxide which are capable to split the hydrogen attom from dihydropyridine, molecular oxigen or p-DNB being an acceptor of the electrone. Hypothesis on separate transfer of hydrogen atom and electrone in biological systems are proposed.

  15. Reaction-based probe for hydrogen sulfite: dual-channel and good ratiometric response.

    PubMed

    Cheng, Xiaohong; He, Ping; Zhong, Zhicheng; Liang, Guijie

    2016-11-01

    We designed and synthesized a new series of intramolecular charge transfer (ICT) molecules (compounds T1, T2 and T3) by attaching various electron-donating thiophene groups to the triphenylamine backbone with aldehyde group as the electron acceptor. Based on the nucleophilic addition reaction between hydrogen sulfite and aldehyde, all compounds could act as ratiometric optical probe for hydrogen sulfite and displayed efficient chromogenic and fluorogenic signaling. Upon the addition of hydrogen sulfite anions, probe T3 displayed apparent fluorescent color changes from yellowish-green to blue, with a large emission wavelength shift (Δλ = 120 nm). T3 responded to hydrogen sulfite with high sensitivity and the detection limit was determined to be as low as 0.9 μM. At the same time, apparent changes in UV-vis spectra could also be observed. By virtue of the special nucleophilic addition reaction with aldehyde, T3 displayed high selectivity over other anions. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  16. Metal-organic frameworks as selectivity regulators for hydrogenation reactions

    NASA Astrophysics Data System (ADS)

    Zhao, Meiting; Yuan, Kuo; Wang, Yun; Li, Guodong; Guo, Jun; Gu, Lin; Hu, Wenping; Zhao, Huijun; Tang, Zhiyong

    2016-11-01

    Owing to the limited availability of natural sources, the widespread demand of the flavouring, perfume and pharmaceutical industries for unsaturated alcohols is met by producing them from α,β-unsaturated aldehydes, through the selective hydrogenation of the carbon-oxygen group (in preference to the carbon-carbon group). However, developing effective catalysts for this transformation is challenging, because hydrogenation of the carbon-carbon group is thermodynamically favoured. This difficulty is particularly relevant for one major category of heterogeneous catalyst: metal nanoparticles supported on metal oxides. These systems are generally incapable of significantly enhancing the selectivity towards thermodynamically unfavoured reactions, because only the edges of nanoparticles that are in direct contact with the metal-oxide support possess selective catalytic properties; most of the exposed nanoparticle surfaces do not. This has inspired the use of metal-organic frameworks (MOFs) to encapsulate metal nanoparticles within their layers or inside their channels, to influence the activity of the entire nanoparticle surface while maintaining efficient reactant and product transport owing to the porous nature of the material. Here we show that MOFs can also serve as effective selectivity regulators for the hydrogenation of α,β-unsaturated aldehydes. Sandwiching platinum nanoparticles between an inner core and an outer shell composed of an MOF with metal nodes of Fe3+, Cr3+ or both (known as MIL-101; refs 19, 20, 21) results in stable catalysts that convert a range of α,β-unsaturated aldehydes with high efficiency and with significantly enhanced selectivity towards unsaturated alcohols. Calculations reveal that preferential interaction of MOF metal sites with the carbon-oxygen rather than the carbon-carbon group renders hydrogenation of the former by the embedded platinum nanoparticles a thermodynamically favoured reaction. We anticipate that our basic design

  17. Coherent and semi-coherent neutron transfer reactions

    SciTech Connect

    Hagelstein, P.L.

    1992-01-01

    Neutron transfer reactions are proposed to account for anomalies reported in Pons-Fleischmann experiments. The prototypical reaction involves the transfer of a neutron (mediated by low frequency electric or magnetic fields) from a donor nucleus to virtual continuum states, followed by the capture of the virtual neutron by an acceptor nucleus. In this work we summarize basic principles, recent results and the ultimate goals of the theoretical effort.

  18. Coherent and semi-coherent neutron transfer reactions

    SciTech Connect

    Hagelstein, P.L.

    1992-12-31

    Neutron transfer reactions are proposed to account for anomalies reported in Pons-Fleischmann experiments. The prototypical reaction involves the transfer of a neutron (mediated by low frequency electric or magnetic fields) from a donor nucleus to virtual continuum states, followed by the capture of the virtual neutron by an acceptor nucleus. In this work we summarize basic principles, recent results and the ultimate goals of the theoretical effort.

  19. Hydrogen Ion-Molecule Isotopomer Collisions: Charge Transfer and Rearrangement

    NASA Astrophysics Data System (ADS)

    Wang, J. G.; Stancil, P. C.

    A survey of existing data for collisions of isotopes of hydrogen atoms, ions, and molecules is presented. The survey was limited to atom - diatom ionic collisions and to energies generally less than about 10 keV/u. The processes include particle-rearrangement and charge transfer, including both dissociative and non-dissociative channels, with an emphasis on state-to-state (or state-selected) data, where available. Since the last survey (Linder, Janev and Botero 1995), a small number of investigations for deuterium and tritium ion-diatom systems have been performed, with some involving state-resolved data, which include the initial-state-resolved and state-to-state processes. While some progress has been made since the last survey, the database involving hydrogen isotope collisional processes, both total and state- resolved, is far from complete.

  20. Charge transfer in proton-hydrogen collisions under Debye plasma

    SciTech Connect

    Bhattacharya, Arka; Kamali, M. Z. M.; Ghoshal, Arijit; Ratnavelu, K.

    2015-02-15

    The effect of plasma environment on the 1s → nlm charge transfer, for arbitrary n, l, and m, in proton-hydrogen collisions has been investigated within the framework of a distorted wave approximation. The effect of external plasma has been incorporated using Debye screening model of the interacting charge particles. Making use of a simple variationally determined hydrogenic wave function, it has been possible to obtain the scattering amplitude in closed form. A detailed study has been made to investigate the effect of external plasma environment on the differential and total cross sections for electron capture into different angular momentum states for the incident energy in the range of 20–1000 keV. For the unscreened case, our results are in close agreement with some of the most accurate results available in the literature.

  1. Homolytic N–H Activation of Ammonia: Hydrogen Transfer of Parent Iridium Ammine, Amide, Imide, and Nitride Species

    PubMed Central

    2015-01-01

    The redox series [Irn(NHx)(PNP)] (n = II–IV, x = 3–0; PNP = N(CHCHPtBu2)2) was examined with respect to electron, proton, and hydrogen atom transfer steps. The experimental and computational results suggest that the IrIII imido species [Ir(NH)(PNP)] is not stable but undergoes disproportionation to the respective IrII amido and IrIV nitrido species. N–H bond strengths are estimated upon reaction with hydrogen atom transfer reagents to rationalize this observation and are used to discuss the reactivity of these compounds toward E–H bond activation. PMID:26192601

  2. Hydrogen-Borrowing and Interrupted-Hydrogen-Borrowing Reactions of Ketones and Methanol Catalyzed by Iridium**

    PubMed Central

    Shen, Di; Poole, Darren L; Shotton, Camilla C; Kornahrens, Anne F; Healy, Mark P; Donohoe, Timothy J

    2015-01-01

    Reported herein is the use of catalytic [{Ir(cod)Cl}2] to facilitate hydrogen-borrowing reactions of ketone enolates with methanol at 65 °C. An oxygen atmosphere accelerates the process, and when combined with the use of a bulky monodentate phosphine ligand, interrupts the catalytic cycle by preventing enone reduction. Subsequent addition of pro-nucleophiles to the reaction mixture allowed a one-pot methylenation/conjugate addition protocol to be developed, which greatly expands the range of products that can be made by this methodology. PMID:25491653

  3. Catalytic transfer hydrogenation for stabilization of bio-oil oxygenates: reduction of p-cresol and furfural over bimetallic Ni-Cu catalysts using isopropanol

    USDA-ARS?s Scientific Manuscript database

    Transfer hydrogenation and hydrodeoxygenation of model bio-oil compounds (p-cresol and furfural) and bio-oils derived from biomass via traditional pyrolysis and tail-gas reactive pyrolysis (TGRP) were conducted. Mild batch reaction conditions were employed, using isopropanol as a hydrogen donor over...

  4. The reaction of cobaloximes with hydrogen: Products and thermodynamics

    DOE PAGES

    Estes, Deven P.; Grills, David C.; Norton, Jack R.

    2014-11-26

    In this study, a cobalt hydride has been proposed as an intermediate in many reactions of the Co(dmgBF₂)₂L₂ system, but its observation has proven difficult. We have observed the UV–vis spectra of Co(dmgBF₂)₂L₂ (1) in CH₃CN under hydrogen pressures up to 70 atm. A Co(I) compound (6), with an exchangeable proton, is eventually formed. We have determined the bond dissociation free energy and pKa of the new O–H bond in 6 to be 50.5 kcal/mol and 13.4, respectively, in CH₃CN, matching previous reports.

  5. Facile Hydrogen Evolution Reaction on WO3Nanorods

    PubMed Central

    2007-01-01

    Tungsten trioxide nanorods have been generated by the thermal decomposition (450 °C) of tetrabutylammonium decatungstate. The synthesized tungsten trioxide (WO3) nanorods have been characterized by XRD, Raman, SEM, TEM, HRTEM and cyclic voltammetry. High resolution transmission electron microscopy and X-ray diffraction analysis showed that the synthesized WO3nanorods are crystalline in nature with monoclinic structure. The electrochemical experiments showed that they constitute a better electrocatalytic system for hydrogen evolution reaction in acid medium compared to their bulk counterpart.

  6. Do Spin State and Spin Density Affect Hydrogen Atom Transfer Reactivity?

    PubMed Central

    Saouma, Caroline T.

    2013-01-01

    The prevalence of hydrogen atom transfer (HAT) reactions in chemical and biological systems has prompted much interest in establishing and understanding the underlying factors that enable this reactivity. Arguments have been advanced that the electronic spin state of the abstractor and/or the spin-density at the abstracting atom are critical for HAT reactivity. This is consistent with the intuition derived from introductory organic chemistry courses. Herein we present an alternative view on the role of spin state and spin-density in HAT reactions. After a brief introduction, the second section introduces a new and simple fundamental kinetic analysis, which shows that unpaired spin cannot be the dominant effect. The third section examines published computational studies of HAT reactions, which indicates that the spin state affects these reactions indirectly, primarily via changes in driving force. The essay concludes with a broader view of HAT reactivity, including indirect effects of spin and other properties on reactivity. It is suggested that some of the controversy in this area may arise from the diversity of HAT reactions and their overlap with proton-coupled electron transfer (PCET) reactions. PMID:24416504

  7. Coprocessing through fundamental and mechanistic studies in hydrogen transfer and catalysis. Quarterly report, March 28, 1992--June 30, 1992

    SciTech Connect

    Curtis, C.W.

    1992-12-31

    Hydrogen transfer from naphthenes to aromatics, coal, resid, and coal plus resid has been investigated at 430{degree}C in a N{sub 2} atmosphere. The reaction of perhydropyrene (PHP) with anthracene (ANT) resulted in the formation of pyrene (PYR) and dihydroanthracene. The weight percents of the products formed varied according to the initial ratio of ANT/PHP with a minimum appearing at a 2:1 weight ratio. Increased reaction times and high ANT/PHP ratios also yielded tetrahydroanthracene (THA). Reactions of Illinois No. 6 coal from the Argonne Premium Coal Sample Bank with PHP, ANT, and PYR resulted in higher coal conversion with PHP and lower with ANT and PYR. Reactions of PHP with resid resulted in less retrogressive reactions occurring in the resid than with either PYR or ANT. Apparent hydrogen transfer from coal or resid to ANT and PYR was observed. Combining PHP with ANT or PYR with coal, resid or coal plus resid yielded higher conversions and less retrogressive reactions. Hydrogen transfer occurred from PHP to ANT or PYR and to the coal and resid as evinced by the increased conversion.

  8. Mechanism of Triplet Energy Transfer in Photosynthetic Bacterial Reaction Centers.

    PubMed

    Mandal, Sarthak; Carey, Anne-Marie; Locsin, Joshua; Gao, Bing-Rong; Williams, JoAnn C; Allen, James P; Lin, Su; Woodbury, Neal W

    2017-07-13

    In purple bacterial reaction centers, triplet excitation energy transfer occurs from the primary donor P, a bacteriochlorophyll dimer, to a neighboring carotenoid to prevent photodamage from the generation of reactive oxygen species. The BB bacteriochlorophyll molecule that lies between P and the carotenoid on the inactive electron transfer branch is involved in triplet energy transfer between P and the carotenoid. To expand the high-resolution spectral and kinetic information available for describing the mechanism, we investigated the triplet excited state formation and energy transfer pathways in the reaction center of Rhodobacter sphaeroides using pump-probe transient absorption spectroscopy over a broad spectral region on the nanosecond to microsecond time scale at both room temperature and at 77 K. Wild-type reaction centers were compared with a reaction center mutant (M182HL) in which BB is replaced by a bacteriopheophytin (Φ), as well as to reaction centers that lack the carotenoid. In wild-type reaction centers, the triplet energy transfer efficiency from P to the carotenoid was essentially unity at room temperature and at 77 K. However, in the M182HL mutant reaction centers, both the rate and efficiency of triplet energy transfer were decreased at room temperature, and at 77 K, no triplet energy transfer was observed, attributable to a higher triplet state energy of the bacteriopheophytin that replaces bacteriochlorophyll in this mutant. Finally, detailed time-resolved spectral analysis of P, carotenoid, and BB (Φ in the M182HL mutant) reveals that the triplet state of the carotenoid is coupled fairly strongly to the bridging intermediate BB in wild-type and Φ in the M182HL mutant, a fact that is probably responsible for the lack of any obvious intermediate (3)BB/(3)Φ transient formation during triplet energy transfer.

  9. Coprocessing through fundamental and mechanistic studies in hydrogen transfer and catalysis. Quarterly report, September 26, 1991--December 26, 1991

    SciTech Connect

    Curtis, C.W.

    1991-12-31

    The research conducted during this quarter evaluated hydrogen transfer from hydroaromatics and cyclic olefins to aromatics under thermal and catalytic conditions. The reactions under study involved thermal reactions of a cyclic olefin, isotetralin (ISO), with aromatics, anthracene (ANT) and pyrene (PYR). These reactions completed a set of experiments with hydrogen-rich species and aromatics previously reported that included cycloalkanes of perhydropyrene (PHP) and perhydroanthracene (PHA), hydroaromatic donors, tetralin (TET) and dihydroanthracene (DHA), cyclic olefins, hexahydroanthracene (HHA) and ISO, and aromatics, PYR and ANT. Catalytic reactions performed this quarter used a sulfur catalyst that had been shown by Rudnick to affect the hydrogen transfer from cycloalkanes to aromatics and/or coal. Rudnick investigated the dehydrogenation of alicyclic compounds converting them to the corresponding aromatic compounds in a process in which the alicyclic compounds served as hydrogen donors. Thiophenol and thiol were effective catalysts and helped promote the conversion of alicyclic compounds to aromatic compounds. The research performed in our laboratory focused on evaluating the effect of a sulfur catalyst on the transfer of hydrogen from cycloalkanes like perhydropyrene (PHP) to aromatics like anthracene under catalytic conditions. The catalyst used in this study was sulfur generated from thiophenol present at a concentration level of 2000 ppm of sulfur. The reactions were performed under two temperature conditions, 380 and 440{degrees}C; both thermal and catalytic reactions were performed for comparison. In addition, the individual cycloalkane and aromatic compounds were reacted under these conditions so that a direct comparison of the effect of temperature and of catalyst on the reaction products formed could be made.

  10. Hydrogen production from methane through catalytic partial oxidation reactions

    NASA Astrophysics Data System (ADS)

    Freni, S.; Calogero, G.; Cavallaro, S.

    This paper reviews recent developments in syn-gas production processes used for partial methane oxidation with and/or without steam. In particular, we examined different process charts (fixed bed, fluidised bed, membrane, etc.), kinds of catalysts (powders, foams, monoliths, etc.) and catalytically active phases (Ni, Pt, Rh, etc.). The explanation of the various suggested technical solutions accounted for the reaction mechanism that may selectively lead to calibrated mixtures of CO and H 2 or to the unwanted formation of products of total oxidation (CO 2 and H 2O) and pyrolysis (coke). Moreover, the new classes of catalysts allow the use of small reactors to treat large amounts of methane (monoliths) or separate hydrogen in situ from the other reaction products (membrane). This leads to higher conversions and selectivity than could have been expected thermodynamically. Although catalysts based on Rh are extremely expensive, they can be used to minimise H 2O formation by maximising H 2 yield.

  11. Dependence of Vibronic Coupling on Molecular Geometry and Environment: Bridging Hydrogen Atom Transfer and Electron–Proton Transfer

    PubMed Central

    2016-01-01

    The rate constants for typical concerted proton-coupled electron transfer (PCET) reactions depend on the vibronic coupling between the diabatic reactant and product states. The form of the vibronic coupling is different for electronically adiabatic and nonadiabatic reactions, which are associated with hydrogen atom transfer (HAT) and electron–proton transfer (EPT) mechanisms, respectively. Most PCET rate constant expressions rely on the Condon approximation, which assumes that the vibronic coupling is independent of the nuclear coordinates of the solute and the solvent or protein. Herein we test the Condon approximation for PCET vibronic couplings. The dependence of the vibronic coupling on molecular geometry is investigated for an open and a stacked transition state geometry of the phenoxyl-phenol self-exchange reaction. The calculations indicate that the open geometry is electronically nonadiabatic, corresponding to an EPT mechanism that involves significant electronic charge redistribution, while the stacked geometry is predominantly electronically adiabatic, corresponding primarily to an HAT mechanism. Consequently, a single molecular system can exhibit both HAT and EPT character. The dependence of the vibronic coupling on the solvent or protein configuration is examined for the soybean lipoxygenase enzyme. The calculations indicate that this PCET reaction is electronically nonadiabatic with a vibronic coupling that does not depend significantly on the protein environment. Thus, the Condon approximation is shown to be valid for the solvent and protein nuclear coordinates but invalid for the solute nuclear coordinates in certain PCET systems. These results have significant implications for the calculation of rate constants, as well as mechanistic interpretations, of PCET reactions. PMID:26412613

  12. Dependence of Vibronic Coupling on Molecular Geometry and Environment: Bridging Hydrogen Atom Transfer and Electron-Proton Transfer.

    PubMed

    Harshan, Aparna Karippara; Yu, Tao; Soudackov, Alexander V; Hammes-Schiffer, Sharon

    2015-10-28

    The rate constants for typical concerted proton-coupled electron transfer (PCET) reactions depend on the vibronic coupling between the diabatic reactant and product states. The form of the vibronic coupling is different for electronically adiabatic and nonadiabatic reactions, which are associated with hydrogen atom transfer (HAT) and electron-proton transfer (EPT) mechanisms, respectively. Most PCET rate constant expressions rely on the Condon approximation, which assumes that the vibronic coupling is independent of the nuclear coordinates of the solute and the solvent or protein. Herein we test the Condon approximation for PCET vibronic couplings. The dependence of the vibronic coupling on molecular geometry is investigated for an open and a stacked transition state geometry of the phenoxyl-phenol self-exchange reaction. The calculations indicate that the open geometry is electronically nonadiabatic, corresponding to an EPT mechanism that involves significant electronic charge redistribution, while the stacked geometry is predominantly electronically adiabatic, corresponding primarily to an HAT mechanism. Consequently, a single molecular system can exhibit both HAT and EPT character. The dependence of the vibronic coupling on the solvent or protein configuration is examined for the soybean lipoxygenase enzyme. The calculations indicate that this PCET reaction is electronically nonadiabatic with a vibronic coupling that does not depend significantly on the protein environment. Thus, the Condon approximation is shown to be valid for the solvent and protein nuclear coordinates but invalid for the solute nuclear coordinates in certain PCET systems. These results have significant implications for the calculation of rate constants, as well as mechanistic interpretations, of PCET reactions.

  13. A qualitative quantum rate model for hydrogen transfer in soybean lipoxygenase.

    PubMed

    Jevtic, S; Anders, J

    2017-09-21

    The hydrogen transfer reaction catalysed by soybean lipoxygenase (SLO) has been the focus of intense study following observations of a high kinetic isotope effect (KIE). Today high KIEs are generally thought to indicate departure from classical rate theory and are seen as a strong signature of tunnelling of the transferring particle, hydrogen or one of its isotopes, through the reaction energy barrier. In this paper, we build a qualitative quantum rate model with few free parameters that describes the dynamics of the transferring particle when it is exposed to energetic potentials exerted by the donor and the acceptor. The enzyme's impact on the dynamics is modelled by an additional energetic term, an oscillatory contribution known as "gating." By varying two key parameters, the gating frequency and the mean donor-acceptor separation, the model is able to reproduce well the KIE data for SLO wild-type and a variety of SLO mutants over the experimentally accessible temperature range. While SLO-specific constants have been considered here, it is possible to adapt these for other enzymes.

  14. A qualitative quantum rate model for hydrogen transfer in soybean lipoxygenase

    NASA Astrophysics Data System (ADS)

    Jevtic, S.; Anders, J.

    2017-09-01

    The hydrogen transfer reaction catalysed by soybean lipoxygenase (SLO) has been the focus of intense study following observations of a high kinetic isotope effect (KIE). Today high KIEs are generally thought to indicate departure from classical rate theory and are seen as a strong signature of tunnelling of the transferring particle, hydrogen or one of its isotopes, through the reaction energy barrier. In this paper, we build a qualitative quantum rate model with few free parameters that describes the dynamics of the transferring particle when it is exposed to energetic potentials exerted by the donor and the acceptor. The enzyme's impact on the dynamics is modelled by an additional energetic term, an oscillatory contribution known as "gating." By varying two key parameters, the gating frequency and the mean donor-acceptor separation, the model is able to reproduce well the KIE data for SLO wild-type and a variety of SLO mutants over the experimentally accessible temperature range. While SLO-specific constants have been considered here, it is possible to adapt these for other enzymes.

  15. Concerted electron-proton transfer in the optical excitation of hydrogen-bonded dyes.

    PubMed

    Westlake, Brittany C; Brennaman, M Kyle; Concepcion, Javier J; Paul, Jared J; Bettis, Stephanie E; Hampton, Shaun D; Miller, Stephen A; Lebedeva, Natalia V; Forbes, Malcolm D E; Moran, Andrew M; Meyer, Thomas J; Papanikolas, John M

    2011-05-24

    The simultaneous, concerted transfer of electrons and protons--electron-proton transfer (EPT)--is an important mechanism utilized in chemistry and biology to avoid high energy intermediates. There are many examples of thermally activated EPT in ground-state reactions and in excited states following photoexcitation and thermal relaxation. Here we report application of ultrafast excitation with absorption and Raman monitoring to detect a photochemically driven EPT process (photo-EPT). In this process, both electrons and protons are transferred during the absorption of a photon. Photo-EPT is induced by intramolecular charge-transfer (ICT) excitation of hydrogen-bonded-base adducts with either a coumarin dye or 4-nitro-4'-biphenylphenol. Femtosecond transient absorption spectral measurements following ICT excitation reveal the appearance of two spectroscopically distinct states having different dynamical signatures. One of these states corresponds to a conventional ICT excited state in which the transferring H(+) is initially associated with the proton donor. Proton transfer to the base (B) then occurs on the picosecond time scale. The other state is an ICT-EPT photoproduct. Upon excitation it forms initially in the nuclear configuration of the ground state by application of the Franck-Condon principle. However, due to the change in electronic configuration induced by the transition, excitation is accompanied by proton transfer with the protonated base formed with a highly elongated (+)H ─ B bond. Coherent Raman spectroscopy confirms the presence of a vibrational mode corresponding to the protonated base in the optically prepared state.

  16. Rydberg phases of Hydrogen and low energy nuclear reactions

    NASA Astrophysics Data System (ADS)

    Olafsson, Sveinn; Holmlid, Leif

    2016-03-01

    For over the last 26 years the science of cold fusion/LENR has been researched around the world with slow pace of progress. Modest quantity of excess heat and signatures of nuclear transmutation and helium production have been confirmed in experiments and theoretical work has only resulted in a large flora of inadequate theoretical scenarios. Here we review current state of research in Rydberg matter of Hydrogen that is showing strong signature of nuclear processes. In the presentation experimental behavior of Rydberg matter of hydrogen is described. An extensive collaboration effort of surface physics, catalysis, atomic physics, solid state physics, nuclear physics and quantum information is need to tackle the surprising experimental results that have so far been obtained. Rydberg matter of Hydrogen is the only known state of matter that is able to bring huge collection of protons to so short distances and for so long time that tunneling becomes a reasonable process for making low energy nuclear reactions. Nuclear quantum entanglement can also become realistic process at theses conditions.

  17. Charge transfer states of the reaction center

    NASA Astrophysics Data System (ADS)

    Scherer, P. O. J.; Fischer, Sighart F.

    1998-08-01

    The energies of the low lying charge transfer states relevant for the photoinduced charge separation are analysed for Rps. viridis. The main prosthetic groups consisting of the special pair dimer P, the two adjacent monomers BL, and BM and the two pheophytines HL and HM are treated together with the surrounding residues quantum mechanically within a supermolecule approach on the basis of an INDO approximation. High order configuration interactions are incorporated to account for polarization effects and long range electrostatic effects of the protein are considered. The results are analyzed with regard to symmetry breaking effects between the L- and the M-branch. Internal reorganization effects within the dimer are also discussed.

  18. Deep Inelastic Transfer Reactions - A New Way to Exotic Nuclei?

    NASA Astrophysics Data System (ADS)

    Heinz, Sophie; Beliuskina, Olga

    2014-05-01

    We studied deep inelastic multinucleon transfer reactions in collisions of 64Ni+207Pb and 48Ca+238U at energies around the Coulomb barrier. The experiments were performed at the velocity filter SHIP at GSI Darmstadt. One of the goals was to investigate if deep inelastic transfer is superior to fragmentation reactions for producing neutron-rich isotopes in the astrophysically interesting region of nuclei along the magic neutron number N = 126. With both collision systems, rather neutron-rich transfer products were populated, some of them reaching out to the limits of the present chart of nuclides. New isotopes could not be identified. A comparison of the measured transfer cross-sections and yields with those from fragmentation reactions allowed for interesting conclusions.

  19. Concerted hydrogen atom and electron transfer mechanism for catalysis by lysine-specific demethylase.

    PubMed

    Yu, Tao; Higashi, Masahiro; Cembran, Alessandro; Gao, Jiali; Truhlar, Donald G

    2013-07-18

    We calculate the free energy profile for the postulated hydride transfer reaction mechanism for the catalysis of lysine demethylation by lysine-specific demethylase LSD1. The potential energy surface is obtained by using combined electrostatically embedded multiconfiguration molecular mechanics (EE-MCMM) and single-configuration molecular mechanics (MM). We employ a constant valence bond coupling term to obtain analytical energies and gradients of the EE-MCMM subsystem, which contains 45 quantum mechanics (QM) atoms and which is parametrized with density functional calculations employing specific reaction parameters obtained by matching high-level wave function calculations. In the MM region, we employ the Amber ff03 and TIP3P force fields. The free energy of activation at 300 K is calculated by molecular dynamics (MD) umbrella sampling on a system with 102,090 atoms as the maximum of the free energy profile along the reaction coordinate as obtained by the weighted histogram analysis method with 17 umbrella sampling windows. This yields a free energy of activation of only 10 kcal/mol, showing that the previously postulated direct hydride transfer reaction mechanism is plausible, although we find that it is better interpreted as a concerted transfer of a hydrogen atom and an electron.

  20. Hydrogen transfer reduction of polyketones catalyzed by iridium complexes: a novel route towards more biocompatible materials.

    PubMed

    Milani, Barbara; Crottib, Corrado; Farnetti, Erica

    2008-09-14

    Transfer hydrogenation from 2-propanol to CO/4-methylstyrene and CO/styrene polyketones was catalyzed by [Ir(diene)(N-N)X] (N-N = nitrogen chelating ligand; X = halogen) in the presence of a basic cocatalyst. The reactions were performed using dioxane as cosolvent, in order to overcome problems due to low polyketone solubility. The polyalcohols were obtained in yields up to 95%, the conversions being markedly dependent on the nature of the ligands coordinated to iridium as well as on the experimental conditions.

  1. Sorption Enhanced Reaction Process (SERP) for production of hydrogen

    SciTech Connect

    Anand, M.; Hufton, J.; Mayorga, S.

    1996-10-01

    Sorption Enhanced Reaction Process (SERP) is a novel process that is being developed for the production of lower cost hydrogen by steam-methane reforming (SMR). In this process the reaction of methane with steam is carried out in the presence of an admixture of a catalyst and a selective adsorbent for carbon dioxide. The key consequences of SERP are: (i) reformation reaction is carried out at a significantly lower temperature (300-500{degrees}C) than that in a conventional SMR reactor (800-1100{degrees}C), while achieving the same conversion of methane to hydrogen, (ii) the product hydrogen is obtained at reactor pressure (200-400 psig) and at 98+% purity directly from the reactor (compared to only 70-75% H{sub 2} from conventional SMR reactor), (iii) downstream hydrogen purification step is either eliminated or significantly reduced in size. The first phase of the program has focused on the development of a sorbent for CO{sub 2} which has (a) reversible CO{sub 2} capacity >0.3 mmol/g at low partial pressures of CO{sub 2} (0.1 - 1.0 atm) in the presence of excess steam (pH{sub 2}O/pCO{sub 2}>20) at 400-500{degrees}C and (b) fast sorption-desorption kinetics for CO{sub 2}, at 400-500{degrees}C. Several families of supported sorbents have been identified that meet the target CO{sub 2} capacity. A few of these sorbents have been tested under repeated sorption/desorption cycles and extended exposure to high pressure steam at 400-500{degrees}C. One sorbent has been scaled up to larger quantities (2-3 kg) and tested in the laboratory process equipment for sorption and desorption kinetics of CO{sub 2}. The CO{sub 2}, sorption and desorption kinetics are desirably fast. This was a critical path item for the first phase of the program and now has been successfully demonstrated. A reactor has been designed that will allow nearly isothermal operation for SERP-SMR. This reactor was integrated into an overall process flow diagram for the SERP-SMR process.

  2. Concerted proton-electron transfer in the oxidation of hydrogen-bonded phenols.

    PubMed

    Rhile, Ian J; Markle, Todd F; Nagao, Hirotaka; DiPasquale, Antonio G; Lam, Oanh P; Lockwood, Mark A; Rotter, Katrina; Mayer, James M

    2006-05-10

    Three phenols with pendant, hydrogen-bonded bases (HOAr-B) have been oxidized in MeCN with various one-electron oxidants. The bases are a primary amine (-CPh(2)NH(2)), an imidazole, and a pyridine. The product of chemical and quasi-reversible electrochemical oxidations in each case is the phenoxyl radical in which the phenolic proton has transferred to the base, (*)OAr-BH(+), a proton-coupled electron transfer (PCET) process. The redox potentials for these oxidations are lower than for other phenols, predominately from the driving force for proton movement. One-electron oxidation of the phenols occurs by a concerted proton-electron transfer (CPET) mechanism, based on thermochemical arguments, isotope effects, and DeltaDeltaG(++)/DeltaDeltaG degrees . The data rule out stepwise paths involving initial electron transfer to form the phenol radical cations [(*)(+)HOAr-B] or initial proton transfer to give the zwitterions [(-)OAr-BH(+)]. The rate constant for heterogeneous electron transfer from HOAr-NH(2) to a platinum electrode has been derived from electrochemical measurements. For oxidations of HOAr-NH(2), the dependence of the solution rate constants on driving force, on temperature, and on the nature of the oxidant, and the correspondence between the homogeneous and heterogeneous rate constants, are all consistent with the application of adiabatic Marcus theory. The CPET reorganization energies, lambda = 23-56 kcal mol(-)(1), are large in comparison with those for electron transfer reactions of aromatic compounds. The reactions are not highly non-adiabatic, based on minimum values of H(rp) derived from the temperature dependence of the rate constants. These are among the first detailed analyses of CPET reactions where the proton and electron move to different sites.

  3. Reactions of hydrogen halides with clusters of ammonia molecules

    SciTech Connect

    Breen, J.J.; Kilgore, K.; Wei, S.; Tzeng, W.B.; Keesee, R.G.; Castleman, A.W. Jr. )

    1989-11-02

    Reactions between an ammonia cluster beam and an effusive source of hydrogen halide molecules are shown to form mixed clusters containing as many as four hydrogen halide molecules. Multiphoton ionization of the product clusters using the third harmonic of a Q-switched Nd:YAG laser leads mainly to species of the comparison H{sup +}(NH{sub 3}){sub n}(NH){sub m}, where X = Cl or I and n is greater than m. In addition, for the case where X = I the species NH{sub 3}{center dot}HX{sup +} and H{sup +}(NH{sub 4})(HX) are positively observed. Evidently they arise due to the fragmentation of clusters containing more than one HI molecule; H{sup +}(NH{sub 3}){sub 2}HI is the smallest mixed cluster observed to be formed under single collision conditions. These results, along with information contained in the mixed cluster distributions, suggest a replacement reaction mechanism for the formation of the mixed clusters. Evidence is obtained which suggests that a solvated ion pair arises in HI-ammonia clusters containing about 10 NH{sub 3} molecules.

  4. Mechanistic study of hydrogen transfer to imines from a hydroxycyclopentadienyl ruthenium hydride. Experimental support for a mechanism involving coordination of imine to ruthenium prior to hydrogen transfer.

    PubMed

    Samec, Joseph S M; Ell, Alida H; Aberg, Jenny B; Privalov, Timofei; Eriksson, Lars; Bäckvall, Jan-E

    2006-11-08

    Reaction of [2,3,4,5-Ph(4)(eta(5)-C(4)COH)Ru(CO)(2)H] (2) with different imines afforded ruthenium amine complexes at low temperatures. At higher temperatures in the presence of 2, the complexes decomposed to give [Ru(2)(CO)(4)(mu-H)(C(4)Ph(4)COHOCC(4)Ph(4))] (1) and free amine. Electron-rich imines gave ruthenium amine complexes with 2 at a lower temperature than did electron-deficient imines. The negligible deuterium isotope effect (k(RuHOH)/k(RuDOD) = 1.05) observed in the reaction of 2 with N-phenyl[1-(4-methoxyphenyl)ethylidene]amine (12) shows that neither hydride (RuH) nor proton (OH) is transferred to the imine in the rate-determining step. In the dehydrogenation of N-phenyl-1-phenylethylamine (4) to the corresponding imine 8 by [2,3,4,5-Ph(4)(eta(4)-C(4)CO)Ru(CO)(2)] (A), the kinetic isotope effects observed support a stepwise hydrogen transfer where the isotope effect for C-H cleavage (k(CHNH)/k(CDNH) = 3.24) is equal to the combined (C-H, N-H) isotope effect (k(CHNH)/k(CDND) = 3.26). Hydrogenation of N-methyl(1-phenylethylidene)amine (14) by 2 in the presence of the external amine trap N-methyl-1-(4-methoxyphenyl)ethylamine (16) afforded 90-100% of complex [2,3,4,5-Ph(4)(eta(4)-C(4)CO)]Ru(CO)(2)NH(CH(3))(CHPhCH(3)) (15), which is the complex between ruthenium and the amine newly generated from the imine. At -80 degrees C the reaction of hydride 2 with 4-BnNH-C(6)H(9)=NPh (18), with an internal amine trap, only afforded [2,3,4,5-Ph(4)(eta(4)-C(4)CO)](CO)(2)RuNH(Ph)(C(6)H(10)-4-NHBn) (19), where the ruthenium binds to the amine originating from the imine, showing that neither complex A nor the diamine is formed. Above -8 degrees C complex 19 rearranged to the thermodynamically more stable [Ph(4)(eta(4)-C(4)CO)](CO)(2)RuNH(Bn)(C(6)H(10)-4-NHPh) (20). These results are consistent with an inner sphere mechanism in which the substrate coordinates to ruthenium prior to hydrogen transfer and are difficult to explain with the outer sphere pathway previously

  5. Lyman-{alpha} transfer in primordial hydrogen recombination

    SciTech Connect

    Hirata, Christopher M.; Forbes, John

    2009-07-15

    Cosmological constraints from the cosmic microwave background (CMB) anisotropies rely on accurate theoretical calculations of the cosmic recombination history. Recent work has emphasized the importance of radiative transfer calculations due to the high optical depth in the H i Lyman lines. Transfer in the Ly{alpha} line is dominated by true emission and absorption, Hubble expansion, and resonant scattering. Resonant scattering causes photons to diffuse in frequency due to random kicks from the thermal velocities of hydrogen atoms, and also to drift toward lower frequencies due to energy loss via atomic recoil. Past analyses of Ly{alpha} transfer during the recombination era have either considered a subset of these processes, ignored time dependence, or incorrectly assumed identical emission and absorption profiles. We present here a fully time-dependent radiative transfer calculation of the Ly{alpha} line including all of these processes, and compare it to previous results that ignored the resonant scattering. We find a faster recombination due to recoil enhancement of the Ly{alpha} escape rate, leading to a reduction in the free electron density of 0.45% at z=900. This results in an increase in the small-scale CMB power spectrum that is negligible for the current data but will be a 0.9{sigma} correction for Planck. We discuss the reasons why we find a smaller correction than some other recent computations.

  6. Calculation of muon transfer from muonic hydrogen to atomic oxygen

    SciTech Connect

    Dupays, Arnaud; Lepetit, Bruno; Beswick, J. Alberto; Rizzo, Carlo; Bakalov, Dimitar

    2003-06-01

    The muon-transfer probabilities between muonic hydrogen and an oxygen atom are calculated in a constrained geometry one-dimensional model for collision energies between 10{sup -6} and 10{sup 3} eV. For relative translational energies below 10{sup -1} eV, for which the de Broglie wavelength (>1 Aa) is much larger than the characteristic distance of the potential interaction ({approx}0.1 Aa), the problem corresponds to an ultracold collision. The close-coupling time-independent quantum equations are written in terms of hyperspherical coordinates and a diabatic-by-sectors basis set. The muon-transfer probabilities are qualitatively interpreted in terms of a model involving two Landau-Zener crossings together with the threshold energy dependence. Based on this analysis, a simple procedure to estimate the energy dependence of the muon-transfer rate in three dimensions is proposed. These estimated rates are discussed in the light of previous model calculations and available experimental data for this process. It is concluded that the high transfer rates at epithermal energies inferred from experiments are unlikely to be correct.

  7. Non-catalytic transfer hydrogenation in supercritical CO2 for coal liquefaction

    NASA Astrophysics Data System (ADS)

    Elhussien, Hussien

    This thesis presents the results of the investigation on developing and evaluating a low temperature (<150°C) non - catalytic process using a hydrogen transfer agent (instead of molecu-lar hydrogen) for coal dissolution in supercritical CO2. The main idea behind the thesis was that one hydrogen atom from water and one hydrogen atom from the hydrogen transfer agent (HTA) were used to hydrogenate the coal. The products of coal dissolution were non-polar and polar while the supercritical CO2, which enhanced the rates of hydrogenation and dissolution of the non-polar molecules and removal from the reaction site, was non-polar. The polar modifier (PM) for CO2 was added to the freed to aid in the dissolution and removal of the polar components. The addition of a phase transfer agent (PTA) allowed a seamless transport of the ions and by-product between the aqueous and organic phases. DDAB, used as the PTA, is an effective phase transfer catalyst and showed enhancement to the coal dissolution process. COAL + DH- +H 2O → COAL.H2 + DHO-- This process has a great feature due to the fact that the chemicals were obtained without requir-ing to first convert coal to CO and H2 units as in indirect coal liquefaction. The experiments were conducted in a unique reactor set up that can be connected through two lines. one line to feed the reactor with supercritical CO 2 and the other connected to gas chromatograph. The use of the supercritical CO2 enhanced the solvent option due to the chemical extraction, in addition to the low environmental impact and energy cost. In this thesis the experiment were conducted at five different temperatures from atmos-pheric to 140°C, 3000 - 6000 psi with five component of feed mixture, namely water, HTA, PTA, coal, and PM in semi batch vessels reactor system with a volume of 100 mL. The results show that the chemicals were obtained without requiring to first convert coal to CO and H2 units as in indirect coal liquefaction. The results show that

  8. Vibrational control of electron-transfer reactions: a feasibility study for the fast coherent transfer regime.

    PubMed

    Antoniou, P; Ma, Z; Zhang, P; Beratan, D N; Skourtis, S S

    2015-12-14

    Molecular vibrations and electron-vibrational interactions are central to the control of biomolecular electron and energy-transfer rates. The vibrational control of molecular electron-transfer reactions by infrared pulses may enable the precise probing of electronic-vibrational interactions and of their roles in determining electron-transfer mechanisms. This type of electron-transfer rate control is advantageous because it does not alter the electronic state of the molecular electron-transfer system or irreversibly change its molecular structure. For bridge-mediated electron-transfer reactions, infrared (vibrational) excitation of the bridge linking the electron donor to the electron acceptor was suggested as being capable of influencing the electron-transfer rate by modulating the bridge-mediated donor-to-acceptor electronic coupling. This kind of electron-transfer experiment has been realized, demonstrating that bridge-mediated electron-transfer rates can be changed by exciting vibrational modes of the bridge. Here, we use simple models and ab initio computations to explore the physical constraints on one's ability to vibrationally perturb electron-transfer rates using infrared excitation. These constraints stem from the nature of molecular vibrational spectra, the strengths of the electron-vibrational coupling, and the interaction between molecular vibrations and infrared radiation. With these constraints in mind, we suggest parameter regimes and molecular architectures that may enhance the vibrational control of electron transfer for fast coherent electron-transfer reactions.

  9. Photochemical electron transfer reactions of tirapazamine.

    PubMed

    Poole, James S; Hadad, Christopher M; Platz, Matthew S; Fredin, Zachary P; Pickard, Laura; Guerrero, Elisa Levya; Kessler, Margarita; Chowdhury, Goutam; Kotandeniya, Delshanee; Gates, Kent S

    2002-04-01

    The absorption and fluorescence spectra of 3-aminobenzo-1,2,4-triazine di-N-oxide (tirapazamine) have been recorded and exhibit a dependence on solvent that correlates with the Dimroth ET30 parameter. Time-dependent density functional theory calculations reveal that the transition of tirapazamine in the visible region is pi-->pi* in nature. The fluorescence lifetime is 98+/-2 ps in water. The fluorescence quantum yield is approximately 0.002 in water. The fluorescence of tirapazamine is efficiently quenched by electron donors via an electron-transfer process. Linear Stern-Volmer fluorescence quenching plots are observed with sodium azide, potassium thiocyanate, guanosine monophosphate and tryptophan (Trp) methyl ester hydrochloride. Guanosine monophosphate, tyrosine (Tyr) methyl ester hydrochloride and Trp methyl ester hydrochloride appear to quench the fluorescence at a rate greater than diffusion control implying that these substrates complex with tirapazamine in its ground state. This complexation was detected by absorption spectroscopy.

  10. Functionalized Metal-Organic Framework as a Biomimetic Heterogeneous Catalyst for Transfer Hydrogenation of Imines.

    PubMed

    Chen, Jingwen; Zhang, Zhiguo; Bao, Zongbi; Su, Ye; Xing, Huabin; Yang, Qiwei; Ren, Qilong

    2017-03-22

    Mimicking a biocatalytic system has been one of the prevalent strategies for the design of novel and efficient chemical transformations. Among the enzyme-catalyzed reactions, the cooperative interplay of Lewis- and Brønsted-acidic functionalities at active sites represents a common feature in activating reactants. Employing MIL-101(Cr) as a biomimetic platform, we customize a sulfonic group (SO3H) into its hierarchical pores to generate a heterogeneous catalyst for transfer hydrogenation of imines by using Hantzsch ester as the reductant. Both aldimines and ketimines were efficiently converted to their hydrogenated counterparts in a manner similar to metal enzymes. The Cr(3+) node and sulfonic acid functionality encapsulated in MOF cages worked cooperatively in promoting this transformation, resulting in an enhanced reactivity as compared to its homogeneous analogue. Furthermore, MIL-101(Cr)-SO3H could be recycled for many times without considerable loss in reactivity.

  11. Selective ruthenium-catalyzed transfer hydrogenations of nitriles to amines with 2-butanol.

    PubMed

    Werkmeister, Svenja; Bornschein, Christoph; Junge, Kathrin; Beller, Matthias

    2013-04-02

    Transfer your hydrogen: Fast and general transfer hydrogenation of nitriles to form primary amines is possible with a homogeneous Ru/1,4-bis(diphenylphosphino)butane (DPPB) catalyst (see scheme). The use of 2-butanol as the hydrogen-transfer reagent is essential for the selective reduction of aromatic, heteroaromatic, and aliphatic nitriles with this system. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Heavy-Ion Transfer Reactions with Deformed Nuclei

    NASA Astrophysics Data System (ADS)

    Helmer, Karl Gerard

    1992-01-01

    One-neutron transfer reactions involving actinide nuclei are used to investigate the effects of rotational motion on transfer populations. Deexcitation gamma rays were measured using a particle -particle-gamma triple coincidence method. Rotational states up to 28^{+ }(30^{+}) were seen in ^{234}U originating from the reaction ^{235}U( ^{206}Pb, ^ {207}Pb)^{234} U at a laboratory bombarding energy of 1394 MeV. Angular distributions for both inelastic excitation and transfer are presented and the one-neutron transfer reaction cross section as well as the grazing angle have been extracted. This study demonstrates the feasibility of using heavy-ion induced transfer reactions for spectroscopic studies. The second section of this thesis explores the question of diabolical pair transfer in nuclear physics using the reactions ^{206}Pb( ^{156}Gd, ^ {154}Gd)^{208} Pb (diabolical case) and ^{206 }Pb(^{156}Gd, ^{158}Gd)^ {204}Pb (nondiabolic case) at a laboratory bombarding energy of 888 MeV. Early calculations by Nikam, Ring and Canto predicted oscillatory behavior of pair transfer matrix elements as the cranking frequency was varied, within the cranking Hartree-Fock-Bogoliubov (CHFB) model, and explained this behavior as a manifestation of Berry's phase. Significant suppression of the high spin population in the diabolical nucleus was predicted. The diabolical point is supplied by the crossing of the ground-state band with the two-quasiparticle band. The strength of this band interaction is predicted to be oscillatory with chemical potential in the CHFB model. The study of pair transfer populations can therefore shed light not only on the possible existence of Berry's phase in nuclear systems, but also on whether the band interaction goes strictly to zero as predicted by the CHFB model. The results of this experiment agree with the latest calculations that the expected effects are more subtle than the earliest calculations predicted.

  13. Rationalizing the Hydrogen and Oxygen Evolution Reaction Activity of Two-Dimensional Hydrogenated Silicene and Germanene.

    PubMed

    Rupp, Caroline J; Chakraborty, Sudip; Anversa, Jonas; Baierle, Rogério J; Ahuja, Rajeev

    2016-01-20

    We have undertaken first-principles electronic structure calculations to show that the chemical functionalization of two-dimensional hydrogenated silicene (silicane) and germanene (germanane) can become a powerful tool to increase the photocatalytic water-splitting activity. Spin-polarized density functional theory within the GGA-PBE and HSE06 types of exchange correlation functionals has been used to obtain the structural, electronic, and optical properties of silicane and germanane functionalized with a series of nonmetals (N, P, and S), alkali metals (Li, Na, and K) and alkaline-earth metals (Mg and Ca). The surface-adsorbate interaction between the functionalized systems with H2 and O2 molecules that leads to envisaged hydrogen and oxygen evolution reaction activity has been determined.

  14. Path Sampling Methods for Enzymatic Quantum Particle Transfer Reactions.

    PubMed

    Dzierlenga, M W; Varga, M J; Schwartz, S D

    2016-01-01

    The mechanisms of enzymatic reactions are studied via a host of computational techniques. While previous methods have been used successfully, many fail to incorporate the full dynamical properties of enzymatic systems. This can lead to misleading results in cases where enzyme motion plays a significant role in the reaction coordinate, which is especially relevant in particle transfer reactions where nuclear tunneling may occur. In this chapter, we outline previous methods, as well as discuss newly developed dynamical methods to interrogate mechanisms of enzymatic particle transfer reactions. These new methods allow for the calculation of free energy barriers and kinetic isotope effects (KIEs) with the incorporation of quantum effects through centroid molecular dynamics (CMD) and the full complement of enzyme dynamics through transition path sampling (TPS). Recent work, summarized in this chapter, applied the method for calculation of free energy barriers to reaction in lactate dehydrogenase (LDH) and yeast alcohol dehydrogenase (YADH). We found that tunneling plays an insignificant role in YADH but plays a more significant role in LDH, though not dominant over classical transfer. Additionally, we summarize the application of a TPS algorithm for the calculation of reaction rates in tandem with CMD to calculate the primary H/D KIE of YADH from first principles. We found that the computationally obtained KIE is within the margin of error of experimentally determined KIEs and corresponds to the KIE of particle transfer in the enzyme. These methods provide new ways to investigate enzyme mechanism with the inclusion of protein and quantum dynamics.

  15. Experimental and theoretical study of hydrogen thiocarbonate for heterogeneous reaction of carbonyl sulfide on magnesium oxide.

    PubMed

    Liu, Yongchun; He, Hong

    2009-04-09

    In situ diffuse reflectance infrared Fourier transform spectroscopy combined with derivative spectroscopy analysis, two-dimensional correlation spectroscopy analysis, and quantum chemical calculations were used to investigate the infrared absorbance assignment and the molecular structure of hydrogen thiocarbonate on magnesium oxide. The bands at 1283 and 1257 cm(-1), which had the typical characteristic of intermediate, were observed in experiments for the heterogeneous reaction of COS on MgO. On the basis of two-dimensional correlation spectroscopy analysis and quantum chemical calculations, the band at 1283 cm(-1) was assigned to the v(s) band of bridged thiocarbonate which formed on the two neighboring Mg atoms in the (100) face of MgO crystal, and the band at 1257 cm(-1) was the v(s) band of monodentate thiocarbonate on MgO. The v(as)(OCO) band of thiocarbonates was invisible in the experiment due to their weak absorbance and the interruption of surface carbonate. The formation mechanism of thiocarbonates is proposed, which occurred through a nucleophilic attack of preadsorbed COS by surface -OH groups followed by hydrogen atom transfer from the -OH group to the sulfur atom of preadsorbed COS. The activation energy for the intramolecular proton-transfer reaction of bridged thiocarbonate was calculated to be 18.52 kcal x mol(-1) at the B3LYP/6-31+G(d,p) level of theory.

  16. Mechanism of Action of Sulforaphane as a Superoxide Radical Anion and Hydrogen Peroxide Scavenger by Double Hydrogen Transfer: A Model for Iron Superoxide Dismutase.

    PubMed

    Prasad, Ajit Kumar; Mishra, P C

    2015-06-25

    The mechanism of action of sulforaphane as a scavenger of superoxide radical anion (O2(•-)) and hydrogen peroxide (H2O2) was investigated using density functional theory (DFT) in both gas phase and aqueous media. Iron superoxide dismutase (Fe-SOD) involved in scavenging superoxide radical anion from biological media was modeled by a complex consisting of the ferric ion (Fe(3+)) attached to three histidine rings. Reactions related to scavenging of superoxide radical anion by sulforaphane were studied using DFT in the presence and absence of Fe-SOD represented by this model in both gas phase and aqueous media. The scavenging action of sulforaphane toward both superoxide radical anion and hydrogen peroxide was found to involve the unusual mechanism of double hydrogen transfer. It was found that sulforaphane alone, without Fe-SOD, cannot scavenge superoxide radical anion in gas phase or aqueous media efficiently as the corresponding reaction barriers are very high. However, in the presence of Fe-SOD represented by the above-mentioned model, the scavenging reactions become barrierless, and so sulforaphane scavenges superoxide radical anion by converting it to hydrogen peroxide efficiently. Further, sulforaphane was found to scavenge hydrogen peroxide also very efficiently by converting it into water. Thus, the mechanism of action of sulforaphane as an excellent antioxidant has been unravelled.

  17. Exclusive Reactions at High Momentum Transfer

    NASA Astrophysics Data System (ADS)

    Radyushkin, Anatoly; Stoler, Paul

    2008-03-01

    Hard exclusive scattering at JLab / P. Kroll -- AdS/CFT and exclusive processes in QCD / S. J. Brodsky and G. F. de Téramond -- Hadron structure matters in collisions at high energy and momentum / A. W. Thomas -- Inclusive perspectives / P. Hoyer -- Fitting DVCS at NLO and beyond / K. Kumericki, D. Müller and K. Passek-Kumericki -- Spin-orbit correlations and single-spin asymmetries / M. Burkardt -- Electroproduction of soft pions at large momentum transfers / V. M. Braun, D. Yu. Ivanov and A. Peters -- Color transparency: 33 years and still running / M. Strikman -- Meson clouds and nucleon electromagnetic form factors / G. A. Miller -- Covariance, dynamics and symmetries, and hadron form factors / M. S. Bhagwat, I. C. Cloët and C. D. Roberts -- N to [symbol] electromagnetic and axial form factors in full QCD / C. Alexandrou -- Real and virtual compton scattering in perturbative QCD / C.-R. Ji and R. Thomson -- Deeply virtual compton scattering at Jefferson Lab / F. Sabatie -- DVCS at HERMES: recent results / F. Ellinghaus -- Deeply virtual compton scattering with CLAS / F. X. Girod -- Deeply virtual compton scattering off the neutron at JLab Hall A / M. Mazouz -- The future DVCS experiments in Hall A at JLab / J. Roche -- Deeply virtual compton scattering with CLAS12 / L. Elouadrhiri -- Quark helicity flip and the transverse spin dependence of inclusive DIS / A. Afanasev, M. Strikman and C. Weiss -- Deeply virtual pseudoscalar meson production / V. Kubarovsky and P. Stoler -- Exclusive p[symbol] electroproduction on the proton: GPDs or not GPDs? / M. Guidal and S. Morrow -- p[symbol] transverse target spin asymmetry at HERMES / A. Airapetian -- Electroproduction of ø(1020) mesons / J. P. Santoro and E. S. Smith -- Generalized parton distributions from hadronic observables / S. Ahmad ... [et al.] -- Imaging the proton via hard exclusive production in diffractive pp scattering / G. E. Hyde ... [et al.] -- Regge contributions to exclusive electro-production / A

  18. Single Platinum Atoms Electrocatalysts: Oxygen Reduction and Hydrogen Oxidation Reactions

    DOE PAGES

    Vukmirovic, Miomir B.; Teeluck, Krishani M.; Liu, Ping; ...

    2017-08-08

    We prepared atomically dispersed catalyst consisting of Pt atoms arranged in a c(2 × 2) array on RuO2(110) substrate. A large interatomic distance of Pt atoms in a c(2 × 2) phase precludes the reactants to interact with more than one Pt atoms. A strong bond of Pt atoms with RuO2 prevents agglomeration of Pt atoms to form 2D-islands or 3D-clusters. The activities of single Pt atom catalyst for the oxygen reduction and hydrogen oxidation reactions were determined and compared with those of bulk Pt. It has lower catalytic activity for the oxygen reduction reaction and similar activity for hydrogenmore » oxidation reaction compared to Pt(111). This was explained by a large calculated up-shift of the dband center of Pt atoms and larger Pt-Pt interatomic distance than that of Pt(111). Our information is of considerable interest for further development of electrocatalysis.« less

  19. Catalytic Transfer Hydrogenation of Furfural to 2-Methylfuran and 2-Methyltetrahydrofuran over Bimetallic Copper-Palladium Catalysts.

    PubMed

    Chang, Xin; Liu, An-Feng; Cai, Bo; Luo, Jin-Yue; Pan, Hui; Huang, Yao-Bing

    2016-12-08

    The catalytic transfer hydrogenation of furfural to the fuel additives 2-methylfuran (2-MF) and 2-methyltetrahydrofuran (2-MTHF) was investigated over various bimetallic catalysts in the presence of the hydrogen donor 2-propanol. Of all the as-prepared catalysts, bimetallic Cu-Pd catalysts showed the highest catalytic activities towards the formation of 2-MF and 2-MTHF with a total yield of up to 83.9 % yield at 220 °C in 4 h. By modifying the Pd ratios in the Cu-Pd catalyst, 2-MF or 2-MTHF could be obtained selectively as the prevailing product. The other reaction conditions also had a great influence on the product distribution. Mechanistic studies by reaction monitoring and intermediate conversion revealed that the reaction proceeded mainly through the hydrogenation of furfural to furfuryl alcohol, which was followed by deoxygenation to 2-MF in parallel to deoxygenation/ring hydrogenation to 2-MTHF. Finally, the catalyst showed a high reactivity and stability in five catalyst recycling runs, which represents a significant step forward toward the catalytic transfer hydrogenation of furfural.

  20. Observing Proton Transfer Reactions Inside the MALDI Plume: Experimental and Theoretical Insight into MALDI Gas-Phase Reactions

    NASA Astrophysics Data System (ADS)

    Mirabelli, Mario F.; Zenobi, Renato

    2017-08-01

    We evaluated the contribution of gas-phase in-plume proton transfer reactions to the formation of protonated and deprotonated molecules in the MALDI process. A split sample holder was used to separately deposit two different samples, which avoids any mixing during sample preparation. The two samples were brought very close to each other and desorbed/ionized by the same laser pulse. By using a combination of deuterated and non-deuterated matrices, it was possible to observe exclusively in-plume proton transfer processes. The hydrogen/deuterium exchange (HDX) kinetics were evaluated by varying the delayed extraction (DE) time, allowing the desorbed ions and neutrals to interact inside the plume for a variable period of time before being extracted and detected. Quantum mechanical calculations showed that the HDX energy barriers are relatively low for such reactions, corroborating the importance of gas-phase proton transfer in the MALDI plume. The experimental results, supported by theoretical simulations, confirm that the plume is a very reactive environment, where HDX reactions could be observed from 0 ns up to 400 ns after the laser pulse. These results could be used to evaluate the relevance of previously proposed (and partially conflicting) ionization models for MALDI.

  1. Intra- and interspecies transfer and expression of Rhizobium japonicum hydrogen uptake genes and autotrophic growth capability

    PubMed Central

    Lambert, Grant R.; Cantrell, Michael A.; Hanus, F. Joe; Russell, Sterling A.; Haddad, Karen R.; Evans, Harold J.

    1985-01-01

    Cosmids containing hydrogen uptake genes have previously been isolated in this laboratory. Four new cosmids that contain additional hup gene(s) have now been identified by conjugal transfer of a Rhizobium japonicum 122DES gene bank into a Tn5-generated Hup- mutant and screening for the acquisition of Hup activity. The newly isolated cosmids, pHU50-pHU53, contain part of the previously isolated pHU1 but extend as far as 20 kilobases beyond its border. pHU52 complements five of six Hup- mutants and confers activity on several Hup- wild-type R. japonicum strains in the free-living state and where tested in nodules. Transconjugants obtained from interspecies transfer of pHU52 to Rhizobium meliloti 102F28, 102F32, and 102F51 and Rhizobium leguminosarum 128C53 showed hydrogen-dependent methyleneblue reduction, performed the oxyhydrogen reaction, and showed hydrogen-dependent autotrophic growth by virtue of the introduced genes. The identity of the presumptive transconjugants was confirmed by antibiotic-resistance profiles and by plant nodulation tests. Images PMID:16578786

  2. Kinetic study of the reactions between chloramine disinfectants and hydrogen peroxide: temperature dependence and reaction mechanism.

    PubMed

    McKay, Garrett; Sjelin, Brittney; Chagnon, Matthew; Ishida, Kenneth P; Mezyk, Stephen P

    2013-09-01

    The temperature-dependent kinetics for the reaction between hydrogen peroxide and chloramine water disinfectants (NH2Cl, NHCl2, and NCl3) have been determined using stopped flow-UV/Vis spectrophotometry. Rate constants for the mono- and dichloramine-peroxide reaction were on the order of 10(-2)M(-1)s(-1) and 10(-5)M(-1)s(-1), respectively. The reaction of trichloramine with peroxide was negligibly slow compared to its thermal and photolytically-induced decomposition. Arrhenius expressions of ln(kH2O2-NH2Cl)=(17.3±1.5)-(51500±3700)/RT and ln(kH2O2-NHCl2)=(18.2±1.9)-(75800±5100)/RT were obtained for the mono- and dichloramine peroxide reaction over the temperature ranges 11.4-37.9 and 35.0-55.0°C, respectively. Both monochloramine and hydrogen peroxide were first-order in the rate-limiting kinetic step and concomitant measurements made using a chloride ion selective electrode showed that the chloride was produced quantitatively. These data will aid water utilities in predicting chloramine concentrations (and thus disinfection potential) throughout the water distribution system.

  3. Assessing the importance of proton transfer reactions in DNA.

    PubMed

    Jacquemin, Denis; Zúñiga, José; Requena, Alberto; Céron-Carrasco, José Pedro

    2014-08-19

    Although engineered by millions of years of evolution, the cellular machinery is not flawless, and errors regularly appear during DNA replication. The subsequent alteration of the stored genetic message results in a mutation and might be the starting point of important health disorders. The question therefore is what causes DNA mutations? All living organisms are constantly exposed to a number of external agents such as free radicals and to radiation, which may lead to induced mutations. There are also mutations happening without invoking the action of any exogenous element, the so-called spontaneous mutations. The former can be partially controlled by avoiding exposure to high-risk environments, while the latter are more intriguing because their origin is unclear and difficult to determine. As noted by Watson and Crick when they first discovered the DNA structure, the correct replication of DNA rests on the assumption that the base pairs remain in their most stable, canonical form. However, protons along the interbase hydrogen-bond network are not static entities. They can in fact interchange their positions in DNA bases through proton transfer (PT) reactions before strands unwind, giving rise to noncanonical structures defined as rare tautomers. The importance of these rare tautomers was also cleverly anticipated by Watson and Crick and some years later claimed by Löwdin to be a source of spontaneous mutations. In Watson and Crick's words: "It would be of interest to know the precise difference in free energy between the various tautomeric forms under physiological conditions." Unfortunately, rare tautomeric forms are very difficult to detect, so no direct and accurate free energy measure has been discerned. In contrast, theoretical chemistry is making good progress toward the quantification of PT reactions in DNA and their biological consequences. This Account touches upon the theoretical studies devoted to appraising the importance of rare tautomers as

  4. Pt loaded carbon aerogel catalyst for catalytic exchange reactions between water and hydrogen gas

    NASA Astrophysics Data System (ADS)

    Singh, Rashmi; Singh, Ashish; Kohli, D. K.; Singh, M. K.; Gupta, P. K.

    2013-06-01

    We report development and characterization of platinum doped carbon aerogel catalyst for catalytic exchange reactions between water and hydrogen gas. The carbon aerogel with uniformly dispersed platinum nanoparticles was prepared by adding platinum precursor during the sol-gel process. Thereafter colloidal PTFE was mixed with the platinum doped carbon aerogel powder and coated on Dixon rings to obtain hydrophobic catalyst with required mechanical strength. Detailed studies have been carried out to observe the effect of physical characteristics of the catalyst powder (surface area and pore size of aerogels, Pt cluster size and its valence state etc) and the different coating parameters (PTFE to Pt-CA ratio and Pt loading on Dixon ring) on volume transfer rate (Ky.a) for H/D reaction. Ky.a values of ˜0.8 m3 (STP).s-1. m-3 were obtained for Pt loading of 7% and Pt cluster size of 3 nm at atmospheric pressure.

  5. Femtochemistry of Intramolecular Charge and Proton Transfer Reactions in Solution

    SciTech Connect

    Douhal, Abderrazzak; Sanz, Mikel; Carranza, Maria Angeles; Organero, Juan Angel; Tormo, Laura

    2005-03-17

    We report on the first observation of ultrafast intramolecular charge- and proton-transfer reactions in 4'-dimethylaminoflavonol (DAMF) in solution. Upon femtosecond excitation of a non-planar structure of DMAF in apolar medium, the intramolecular charge transfer (ICT) does not occur, and a slow (2 ps) proton motion takes place. However, in polar solvents, the ICT is very fast (100-200 fs) and the produced structure is stabilized that proton motion takes place in few or tens of ps.

  6. Modelling Charge Transfer Reactions and Excitations with Subsystem DFT

    NASA Astrophysics Data System (ADS)

    Pavanello, Michele; Neugebauer, Johannes

    2012-02-01

    The subsystem formulation of DFT known as Frozen Density Embedding (FDE) offers an excellent platform for studying charge transfer reactions in solvated systems, such as biosystems. We present the necessary theory developments for the calculation of the electronic couplings as well as the charge transfer excitations from FDE derived densities. We present preliminary calculations on DNA oligomers radical cations that include donor-bridge, donor-bridge-acceptor, and fully solvated systems.

  7. Continuum effects in transfer reactions induced by heavy ions

    SciTech Connect

    Marta, H.D.; Donangelo, R.; Fernandez Niello, J.O.; Pacheco, A.J.

    2006-02-15

    In the usual treatment of transfer nuclear reactions, the continuum states of the transferred particle are neglected. Here we perform a semiclassical calculation that treats the continuum in an exact way. For comparison purposes, we perform a second calculation in which the continuum is completely disregarded. The results of these two calculations indicates that the influence of the continuum states may be very important in systems with weakly bound reactants.

  8. Graphite oxide and molybdenum disulfide composite for hydrogen evolution reaction

    NASA Astrophysics Data System (ADS)

    Niyitanga, Theophile; Jeong, Hae Kyung

    2017-10-01

    Graphite oxide and molybdenum disulfide (GO-MoS2) composite is prepared through a wet process by using hydrolysis of ammonium tetrathiomolybdate, and it exhibits excellent catalytic activity of the hydrogen evolution reaction (HER) with a low overpotential of -0.47 V, which is almost two and three times lower than those of precursor MoS2 and GO. The high performance of HER of the composite attributes to the reduced GO supporting MoS2, providing a conducting network for fast electron transport from MoS2 to electrodes. The composite also shows high stability after 500 cycles, demonstrating a synergistic effect of MoS2 and GO for efficient HER.

  9. Aminosulf(ox)ides as ligands for Iridium(I)-catalyzed asymmetric transfer hydrogenation

    PubMed

    Petra; Kamer; Spek; Schoemaker; van Leeuwen PW

    2000-05-19

    A new class of efficient catalysts was developed for the asymmetric transfer hydrogenation of unsymmetrical ketones. A series of chiral N,S-chelates (6-22) was synthesized to serve as ligands in the iridium(I)-catalyzed reduction of ketones. Both formic acid and 2-propanol proved to be suitable as hydrogen donors. Sulfoxidation of an (R)-cysteine-based aminosulfide provided a diastereomeric ligand family containing a chiral sulfur atom. The two chiral centers of these ligands showed a clear effect of chiral cooperativity. In addition, aminosulfides containing two asymmetric carbon atoms in the backbone were synthesized. Both the sulfoxide-containing beta-amino alcohols and the aminosulfides derived from 1,2-disubstituted amino alcohols gave rise to high reaction rates and moderate to excellent enantioselectivities in the reduction of various ketones. The enantioselective outcome of the reaction was favorably affected by selecting the most appropriate hydrogen donor. Enantioselectivities of up to 97% were reached in the reduction of aryl-alkyl ketones.

  10. Highly Active Catalyst of Two-Dimensional CoS2/Graphene Nanocomposites for Hydrogen Evolution Reaction.

    PubMed

    Xing, Wei; Zhang, Yu; Xue, Qingzhong; Yan, Zifeng

    2015-12-01

    Hydrogen evolution reaction (HER) by electrochemical water splitting using new promising non-precious metal catalysts shows great potential for clean energy technology. The design and fabrication of a high-performance electrode material based on cobalt disulfide/reduced graphene oxide (CoS2/RGO) nanocomposites is reported by a one-step hydrothermal method. Benefiting from its structural advantages, namely, large amount of exposed surface, fast charge transfer, and synergistic effect between CoS2 and RGO, the as-prepared nanocomposites are exploited as a catalyst for the HER. The results indicate that CoS2/RGO-5 % exhibits the best performance of hydrogen evolution and the smallest overpotential of 159 mV to achieve a 15 mA cm(-2) current density, possessing the easiest releasing of hydrogen gas and the highest charge transfer rate, as well as remarkable stability.

  11. Ruthenium supported on magnetic nanoparticles: An efficient and recoverable catalyst for hydrogenation of alkynes and transfer hydrogenation of carbonyl compounds

    EPA Science Inventory

    Ruthenium supported on surface modified magnetic nanoparticles (NiFe2O4) has been successfully synthesized and applied for hydrogenation of alkynes at room temperature as well as transfer hydrogenation of a number of carbonyl compounds under microwave irradiation conditions. The ...

  12. Ruthenium supported on magnetic nanoparticles: An efficient and recoverable catalyst for hydrogenation of alkynes and transfer hydrogenation of carbonyl compounds

    EPA Science Inventory

    Ruthenium supported on surface modified magnetic nanoparticles (NiFe2O4) has been successfully synthesized and applied for hydrogenation of alkynes at room temperature as well as transfer hydrogenation of a number of carbonyl compounds under microwave irradiation conditions. The ...

  13. Organosilanols as catalysts in asymmetric aryl transfer reactions.

    PubMed

    Ozçubukçu, Salih; Schmidt, Frank; Bolm, Carsten

    2005-03-31

    [reaction: see text] Various ferrocene-based organosilanols have been synthesized in four steps starting from achiral ferrocene carboxylic acid. Applying these novel planar-chiral ferrocenes as catalysts in asymmetric phenyl transfer reactions to substituted benzaldehydes afforded products with high enantiomeric excesses. The best result (91% ee) was achieved in the addition to p-chlorobenzaldehyde with organosilanol 2b, which has a tert-butyl substituent on the oxazoline ring and an isopropyl group on the silanol fragment.

  14. Probing active electron transfer branch in photosystem I reaction center.

    NASA Astrophysics Data System (ADS)

    Savikhin, Sergei; Dashdorj, Naranbaatar; Xu, Wu; Martinsson, Peter; Chitnis, Parag

    2003-03-01

    Complimentary point mutations were introduced at the primary electron acceptor sites in A and B branches of the photosystem I (PS I) reaction center (RC) from Synechocystis sp. PCC 6803 and their effect on the kinetics of the electron transfer process was studied by means of ultrafast pump-probe spectroscopy. The results indicate that in these species the electron transfer occurs primarily along the A-branch. Previous optical experiments on PS I complexes from Chlorella sorokiniana demonstrated that both branches of RC are equally active. That suggests that the directionality of electron transfer in PS I is species dependent.

  15. Hydrogen transfer between methanogens and fermentative heterotrophs in hyperthermophilic cocultures

    SciTech Connect

    Muralidharan, V.; Hirsh, I.S.; Bouwer, E.J.; Rinker, K.D.; Kelly, R.M.

    1997-11-05

    Interactions involving hydrogen transfer were studied in a coculture of two hyperthermophilic microorganisms: Thermotoga maritima, an anaerobic heterotroph, and Methanococcus jannaschii, a hydrogenotrophic methanogen. Cell densities of T. maritima increased 10-fold when cocultured with M. jannaschii at 85 C, and the methanogen was able to grow in the absence of externally supplied H{sub 2} and CO{sub 2}. The coculture could not be established if the two organisms were physically separated by a dialysis membrane, suggesting the importance of spatial proximity. The significance of spatial proximity was also supported by cell cytometry, where the methanogen was only found in cell sorts at or above 4.5 {micro}m in samples of the coculture in exponential phase. An unstructured mathematical model was used to compare the influence of hydrogen transport and metabolic properties on mesophilic and hyperthermophilic cocultures. Calculations suggest the increases in methanogenesis rates with temperature result from greater interactions between the methanogenic and fermentative organisms, as evidenced by the sharp decline in H{sub 2} concentration in the proximity of a hyperthermophilic methanogen. The experimental and modeling results presented here illustrate the need to consider the interactions within hyperthermophilic consortia when choosing isolation strategies and evaluating biotransformations at elevated temperatures.

  16. Transfer hydrogenation catalysis in cells as a new approach to anticancer drug design

    PubMed Central

    Soldevila-Barreda, Joan J.; Romero-Canelón, Isolda; Habtemariam, Abraha; Sadler, Peter J.

    2015-01-01

    Organometallic complexes are effective hydrogenation catalysts for organic reactions. For example, Noyori-type ruthenium complexes catalyse reduction of ketones by transfer of hydride from formate. Here we show that such catalytic reactions can be achieved in cancer cells, offering a new strategy for the design of safe metal-based anticancer drugs. The activity of ruthenium(II) sulfonamido ethyleneamine complexes towards human ovarian cancer cells is enhanced by up to 50 × in the presence of low non-toxic doses of formate. The extent of conversion of coenzyme NAD+ to NADH in cells is dependent on formate concentration. This novel reductive stress mechanism of cell death does not involve apoptosis or perturbation of mitochondrial membrane potentials. In contrast, iridium cyclopentadienyl catalysts cause cancer cell death by oxidative stress. Organometallic complexes therefore have an extraordinary ability to modulate the redox status of cancer cells. PMID:25791197

  17. Selective conversion of polyenes to monoenes by RuCl(3) -catalyzed transfer hydrogenation: the case of cashew nutshell liquid.

    PubMed

    Perdriau, Sébastien; Harder, Sjoerd; Heeres, Hero J; de Vries, Johannes G

    2012-12-01

    Cardanol, a constituent of cashew nutshell liquid (CNSL), was subjected to transfer hydrogenation catalyzed by RuCl(3) using isopropanol as a reductant. The side chain of cardanol, which is a mixture of a triene, a diene, and a monoene, was selectively reduced to the monoene. Surprisingly, it is the C8-C9 double bond that is retained with high selectivity. A similar transfer hydrogenation of linoleic acid derivatives succeeded only if the substrate contained an aromatic ring, such as a benzyl ester. TEM and a negative mercury test showed that the catalyst was homogeneous. By using ESI-MS, ruthenium complexes were identified that contained one, two, or even three molecules of substrate, most likely as allyl complexes. The interaction between ruthenium and the aromatic ring determines selectivity in the hydrogenation reaction.

  18. Tungsten deposition by hydrogen-atom reaction with tungsten hexafluoride

    SciTech Connect

    Lee, W.W.

    1991-01-01

    Using gaseous hydrogen atoms with WF[sub 6], tungsten atoms can be produced in a gas-phase reaction. The atoms then deposit in a near-room temperature process, which results in the formation of tungsten films. The W atoms (10[sup 10]-10[sup 11]/cm[sup 3]) were measured in situ by atomic absorption spectroscopy during the CVD process. Deposited W films were characterized by Auger electron spectroscopy, Rutherford backscattering, and X-ray diffraction. The surface morphology of the deposited films and filled holes was studied using scanning electron microscopy. The deposited films were highly adherent to different substrates, such as Si, SiO[sub 2], Ti/Si, TiN/Si and Teflon. The reaction mechanism and kinetics were studied. The experimental results indicated that this method has three advantages compared to conventional CVD or PECVD: (1) film growth occurs at low temperatures; (2) deposition takes place in a plasma-free environment; and (3) a low level of impurities results in high-quality adherent films.

  19. Electron Transfer versus Proton Transfer in Gas-Phase Ion/Ion Reactions of Polyprotonated Peptides

    PubMed Central

    Gunawardena, Harsha P.; He, Min; Chrisman, Paul A.; Pitteri, Sharon J.; Hogan, Jason M.; Hodges, Brittany D. M.; McLuckey, Scott A.

    2005-01-01

    The ion/ion reactions of several dozen reagent anions with triply protonated cations of the model peptide KGAILKGAILR have been examined to evaluate predictions of a Landau–Zener-based model for the likelihood for electron transfer. Evidence for electron transfer was provided by the appearance of fragment ions unique to electron transfer or electron capture dissociation. Proton transfer and electron transfer are competitive processes for any combination of anionic and cationic reactants. For reagent anions in reactions with protonated peptides, proton transfer is usually significantly more exothermic than electron transfer. If charge transfer occurs at relatively long distances, electron transfer should, therefore, be favored on kinetic grounds because the reactant and product channels cross at greater distances, provided conditions are favorable for electron transfer at the crossing point. The results are consistent with a model based on Landau–Zener theory that indicates both thermodynamic and geometric criteria apply for electron transfer involving polyatomic anions. Both the model and the data suggest that electron affinities associated with the anionic reagents greater than about 60–70 kcal/mol minimize the likelihood that electron transfer will be observed. Provided the electron affinity is not too high, the Franck–Condon factors associated with the anion and its corresponding neutral must not be too low. When one or the other of these criteria is not met, proton transfer tends to occur essentially exclusively. Experiments involving ion/ion attachment products also suggest that a significant barrier exists to the isomerization between chemical complexes that, if formed, lead to either proton transfer or electron transfer. PMID:16144411

  20. Potential Energy Diagrams: A Conceptual Tool in the Study of Electron Transfer Reactions.

    ERIC Educational Resources Information Center

    Lewis, Nita A.

    1980-01-01

    Describes how the potential energy diagram may be used to theoretically describe the processes involved in a system undergoing electron transfer. Examines factors important in electron transfer reactions and discusses several classes of electron transfer reactions. (CS)

  1. A base-free neutral phase-transfer reaction system.

    PubMed

    Shirakawa, Seiji; Wang, Lijia; He, Rongjun; Arimitsu, Satoru; Maruoka, Keiji

    2014-06-01

    Although phase-transfer reactions catalyzed by using quaternary ammonium salts are generally believed to require base additives, we discovered that, even without any base additives, conjugate additions of 3-substituted oxindoles to nitroolefins proceeded smoothly in the presence of lipophilic quaternary ammonium bromide under water-organic biphasic conditions. The mechanism of this novel base-free neutral phase-transfer reaction system is investigated and the assumed catalytic cycle is presented together with interesting effects of water and lipophilicity of the phase-transfer catalyst. The base-free neutral phase-transfer reaction system can be applied to highly enantioselective conjugate addition and aldol reactions under the influence of chiral bifunctional ammonium bromides as key catalysts. The structure of the chiral ammonium enolate intermediate is discussed based on the single-crystal X-ray structures of relevant ammonium salts and the importance of bifunctional design of catalyst is clearly explained in the model of intermediate. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Saponification reaction system: a detailed mass transfer coefficient determination.

    PubMed

    Pečar, Darja; Goršek, Andreja

    2015-01-01

    The saponification of an aromatic ester with an aqueous sodium hydroxide was studied within a heterogeneous reaction medium in order to determine the overall kinetics of the selected system. The extended thermo-kinetic model was developed compared to the previously used simple one. The reaction rate within a heterogeneous liquid-liquid system incorporates a chemical kinetics term as well as mass transfer between both phases. Chemical rate constant was obtained from experiments within a homogeneous medium, whilst the mass-transfer coefficient was determined separately. The measured thermal profiles were then the bases for determining the overall reaction-rate. This study presents the development of an extended kinetic model for considering mass transfer regarding the saponification of ethyl benzoate with sodium hydroxide within a heterogeneous reaction medium. The time-dependences are presented for the mass transfer coefficient and the interfacial areas at different heterogeneous stages and temperatures. The results indicated an important role of reliable kinetic model, as significant difference in k(L)a product was obtained with extended and simple approach.

  3. Low Energy Transfer Reactions With {sup 11}Be

    SciTech Connect

    Johansen, Jacob

    2009-08-26

    The low-energy transfer reaction {sup 11}Be(d,p){sup 12}Be gives us the opportunity to investigate single particle excitations in {sup 12}Be. The breaking of the magic number N = 8 for {sup 12}Be can be studied by comparing spectroscopic data with theoretical predictions.

  4. Visible light photoredox atom transfer Ueno-Stork reaction.

    PubMed

    Gu, Xiangyong; Lu, Ping; Fan, Weigang; Li, Pixu; Yao, Yingming

    2013-11-07

    A visible light-promoted atom transfer Ueno-Stork reaction was developed using Ir(ppy)2(dtb-bpy)PF6 as the sensitizer. 2-Iodoethyl propargyl ethers or 2-iodoethyl allyl ethers were used as the radical precursors to construct tetrahydrofuran-containing fused [6,5] and [5,5] bicyclic frameworks.

  5. Mechanisms for control of biological electron transfer reactions

    PubMed Central

    Williamson, Heather R.; Dow, Brian A.; Davidson, Victor L.

    2014-01-01

    Electron transfer (ET) through and between proteins is a fundamental biological process. The rates and mechanisms of these ET reactions are controlled by the proteins in which the redox centers that donate and accept electrons reside. The protein influences the magnitudes of the ET parameters, the electronic coupling and reorganization energy that are associated with the ET reaction. The protein can regulate the rates of the ET reaction by requiring reaction steps to optimize the system for ET, leading to kinetic mechanisms of gated or coupled ET. Amino acid residues in the segment of the protein through which long range ET occurs can also modulate the ET rate by serving as staging points for hopping mechanisms of ET. Specific examples are presented to illustrate these mechanisms by which proteins control rates of ET reactions. PMID:25085775

  6. Mechanisms for control of biological electron transfer reactions.

    PubMed

    Williamson, Heather R; Dow, Brian A; Davidson, Victor L

    2014-12-01

    Electron transfer (ET) through and between proteins is a fundamental biological process. The rates and mechanisms of these ET reactions are controlled by the proteins in which the redox centers that donate and accept electrons reside. The protein influences the magnitudes of the ET parameters, the electronic coupling and reorganization energy that are associated with the ET reaction. The protein can regulate the rates of the ET reaction by requiring reaction steps to optimize the system for ET, leading to kinetic mechanisms of gated or coupled ET. Amino acid residues in the segment of the protein through which long range ET occurs can also modulate the ET rate by serving as staging points for hopping mechanisms of ET. Specific examples are presented to illustrate these mechanisms by which proteins control rates of ET reactions. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Photo-induced electron-transfer reactions in heterogeneous media

    NASA Astrophysics Data System (ADS)

    Yang, J. M.

    1981-11-01

    The conversion of solar energy into chemical energy was pursued by two approaches. One is the photo-induced electron transfer reactions in heterogeneous media, and the other is the photo-decomposition of water with liquid-junction solar cells. Photo-induced electron-transfer reactions in heterogeneous media with colloidal silica or poly-acrylate were studied by flash photolysis. In an effort to illustrate that small band-gap semiconductors can be protected from photo-corrosion through surface modification, the surface of polycrystalline ZnO was chemically coated with zinc phthalocyanine and the electron-transfer process across the coated ZnO-electrolyte interface was studied by photo-electrochemical techniques.

  8. Deactivation of Ceria Supported Palladium through C–C Scission during Transfer Hydrogenation of Phenol with Alcohols

    SciTech Connect

    Nelson, Nicholas C.; Manzano, J. Sebastián; Slowing, Igor I.

    2016-11-21

    The stability of palladium supported on ceria (Pd/CeO2) was studied during liquid flow transfer hydrogenation using primary and secondary alcohols as hydrogen donors. For primary alcohols, the ceria support was reduced to cerium hydroxy carbonate within 14 h and was a contributing factor toward catalyst deactivation. For secondary alcohols, cerium hydroxy carbonate was not observed during the same time period and the catalyst was stable upon prolonged reaction. Regeneration through oxidation/reduction does not restore initial activity likely due to irreversible catalyst restructuring. Lastly, a deactivation mechanism involving C–C scission of acyl and carboxylate intermediates is proposed.

  9. Deactivation of Ceria Supported Palladium through C–C Scission during Transfer Hydrogenation of Phenol with Alcohols

    DOE PAGES

    Nelson, Nicholas C.; Manzano, J. Sebastián; Slowing, Igor I.

    2016-11-21

    The stability of palladium supported on ceria (Pd/CeO2) was studied during liquid flow transfer hydrogenation using primary and secondary alcohols as hydrogen donors. For primary alcohols, the ceria support was reduced to cerium hydroxy carbonate within 14 h and was a contributing factor toward catalyst deactivation. For secondary alcohols, cerium hydroxy carbonate was not observed during the same time period and the catalyst was stable upon prolonged reaction. Regeneration through oxidation/reduction does not restore initial activity likely due to irreversible catalyst restructuring. Lastly, a deactivation mechanism involving C–C scission of acyl and carboxylate intermediates is proposed.

  10. Extracting Spectroscopic Factors of Argon Isotopes from Transfer Reactions

    NASA Astrophysics Data System (ADS)

    Manfredi, Juan; Tsang, Betty; Lynch, Bill; Barney, Jon; Estee, Justin; Sweany, Sean; Cerizza, Giordano; Iwasaki, Hironori; Loelius, Charles; Ayyad, Yassid; Anderson, Corinne; Xiao, Zhigang; Li, Zihuang; Lee, Jenny; Xu, Zhengyu; Rogers, Andrew; Brown, Kyle; Pruitt, Cole; Sobotka, Lee; Charity, Robert; Langer, Christoph; Chajecki, Zbigniew; Jones, Kate; Smith, Karl; Winkelbauer, Jack

    2016-09-01

    There is a discrepancy of spectroscopic factors (SFs) of argon isotopes depending on the use of transfer reactions or knockout reactions. Understanding how the SFs of these isotopes change across the isotopic chain is important for understanding how single particle structure changes with neutron number. The transfer reactions 34Ar(p,d) and 46Ar(p,d) were measured at the National Superconducting Cyclotron Laboratory using the High Resolution Array (HiRA) to detect the outgoing deuterons and the S800 Spectrometer to detect the heavy recoil. SFs can be extracted from these angular distributions via DWBA calculations. Preliminary findings on the data will be presented. National Nuclear Security Administration Stewardship Science Graduate Fellowship.

  11. Extracting Spectroscopic Factors of Argon Isotopes from Transfer Reactions

    NASA Astrophysics Data System (ADS)

    Manfredi, Juan; Lee, J.; Tsang, M. B.; Lynch, W. G.; Barney, J.; Estee, J.; Sweany, S.; Brown, K. W.; Cerizza, G.; Anderson, C.; Setiawan, H.; Loelius, C.; Xu, Z.; Rogers, A. M.; Pruitt, C.; Sobotka, L. G.; Elson, J. M.; Langer, C.; Chajecki, Z.; Chen, G.; Jones, K. L.; Smith, K.; Xiao, Z.; Li, Z.; Winkelbauer, J. R.

    2017-01-01

    A spectroscopic factor (SF) quantifies the single particle occupancy of a given state in a nucleus. For the argon isotopes, there is a discrepancy of the SF between studies that use transfer reactions and knockout reactions. Understanding the SFs of these isotopes, and in particular how the SF changes across the isotopic chain, is important for understanding how single particle structure changes with neutron number. The transfer reactions 34Ar(p,d) and 46Ar(p,d) were measured at the National Superconducting Cyclotron Laboratory (NSCL) using the same beam energy (70 MeV/u) as from the previous knockout measurement. Spectroscopic factors were extracted from measured angular distributions via ADWA calculations. Preliminary findings will be presented. The National Superconducting Cyclotron Laboratory is supported by the NSF (PHY 1102511), and Juan Manfredi is supported by the DOE NNSA Stewardship Science Graduate Fellowship.

  12. Quantum-classical Liouville dynamics of proton and deuteron transfer rates in a solvated hydrogen-bonded complex.

    PubMed

    Hanna, Gabriel; Kapral, Raymond

    2008-04-28

    Proton and deuteron transfer reactions in a hydrogen-bonded complex dissolved in a polar solution are studied using quantum-classical Liouville dynamics. Reactive-flux correlation functions that involve quantum-classical Liouville dynamics for species operators and quantum equilibrium sampling are used to calculate the rate constants. Adiabatic and nonadiabatic reaction rates are computed, compared, and analyzed. Large variations of the kinetic isotope effect (KIE) for this reaction have been observed in the literature, which depend on the nature of the approximate calculation used to estimate the proton and deuteron transfer rates. Our estimate of the KIE lies at the low end of the range of previously observed values, suggesting a rather small KIE for this reaction.

  13. Stepwise vs concerted excited state tautomerization of 2-hydroxypyridine: Ammonia dimer wire mediated hydrogen/proton transfer

    SciTech Connect

    Esboui, Mounir

    2015-07-21

    The stepwise and concerted excited state intermolecular proton transfer (PT) and hydrogen transfer (HT) reactions in 2-hydroxypyridine-(NH{sub 3}){sub 2} complex in the gas phase under Cs symmetry constraint and without any symmetry constraints were performed using quantum chemical calculations. It shows that upon excitation, the hydrogen bonded in 2HP-(NH{sub 3}){sub 2} cluster facilitates the releasing of both hydrogen and proton transfer reactions along ammonia wire leading to the formation of the 2-pyridone tautomer. For the stepwise mechanism, it has been found that the proton and the hydrogen may transfer consecutively. These processes are distinguished from each other through charge translocation analysis and the coupling between the motion of the proton and the electron density distribution along ammonia wire. For the complex under Cs symmetry, the excited state HT occurs on the A″({sup 1}πσ{sup ∗}) and A′({sup 1}nσ{sup ∗}) states over two accessible energy barriers along reaction coordinates, and excited state PT proceeds mainly through the A′({sup 1}ππ{sup ∗}) and A″({sup 1}nπ{sup ∗}) potential energy surfaces. For the unconstrained complex, potential energy profiles show two {sup 1}ππ{sup ∗}-{sup 1}πσ{sup ∗} conical intersections along enol → keto reaction path indicating that proton and H atom are localized, respectively, on the first and second ammonia of the wire. Moreover, the concerted excited state PT is competitive to take place with the stepwise process, because it proceeds over low barriers of 0.14 eV and 0.11 eV with respect to the Franck-Condon excitation of enol tautomer, respectively, under Cs symmetry and without any symmetry constraints. These barriers can be probably overcome through tunneling effect.

  14. Synthesis of cyclic imides from nitriles and diols using hydrogen transfer as a substrate-activating strategy.

    PubMed

    Kim, Jaewoon; Hong, Soon Hyeok

    2014-09-05

    An atom-economical and versatile method for the synthesis of cyclic imides from nitriles and diols was developed. The method utilizes a Ru-catalyzed transfer-hydrogenation reaction in which the substrates, diols, and nitriles are simultaneously activated into lactones and amines in a redox-neutral manner to afford the corresponding cyclic imides with evolution of H2 gas as the sole byproduct. This operationally simple and catalytic synthetic method provides a sustainable and easily accessible route to cyclic imides.

  15. Investigation on the Hydrogen Gas Sensor Based on Exothermicity Reaction by Hydrogen Absorption into the Pd Film

    NASA Astrophysics Data System (ADS)

    Takashima, Noriaki; Kimura, Mitsuteru

    We have proposed a novel micro-calorimetric hydrogen sensor based on the temperature difference detection due to the exothermic reaction caused by hydrogen absorption in the palladium (Pd) thin film as a hydrogen absorbing material, and demonstrated using the prototype hydrogen sensor with a microheater and a pair of cantilever SOI thermocouples that this H2 sensor by this proposed mechanism is surely possible. We have ascertained that the sensor output voltage is increased as the H2 concentration is increased, that the exothermic reaction ceases after finish of the hydrogen absorption, the exothermic reaction by hydrogen absorption occurs even in pure N2 gas, that larger output voltage is observed for lower ambient temperature even under no oxygen gas, and that this hydrogen sensor does not respond to the CH4 gas. We have found that the detection of H2 concentration based on the exothermic reaction is preferred to carried out after heating the sensing region rather than during heating it especially in lower H2 concentration than about 5 vol.%, because we can use the null method to detect the extremely low H2 concentration.

  16. Contra-thermodynamic behavior in intermolecular hydrogen transfer of alkylperoxy radicals.

    PubMed

    Pfaendtner, Jim; Broadbelt, Linda J

    2007-09-17

    Quantum chemical investigation of bimolecular hydrogen transfer involving alkylperoxy radicals, a key reaction family in the free-radical oxidation of hydrocarbons, was performed to establish structure-reactivity relationships. Eight different reactions were investigated featuring four different alkane substrates (methane, ethane, propane and isobutane) and two different alkylperoxy radicals (methylperoxy and iso-propylperoxy). Including forward and reverse pairs, sixteen different activation energies and enthalpies of reaction were used to formulate structure-reactivity relationships to describe this chemistry. We observed that the enthalpy of formation of loosely bound intermediate states has a strong inverse correlation with the overall heat of reaction and that this results in unique contra-thermodynamic behavior such that more exothermic reactions have higher activation barriers. A new structure-reactivity relationship was proposed that fits the calculated data extremely well: E(A)=E(o)+alphaDeltaH(rxn) where alpha=-0.10 for DeltaH(rxn)<0, and alpha=1.10 for DeltaH(rxn)>0 and E(o)=3.05 kcal mol(-1).

  17. Sensitive non-radioactive determination of aminotransferase stereospecificity for C-4' hydrogen transfer on the coenzyme.

    PubMed

    Jomrit, Juntratip; Summpunn, Pijug; Meevootisom, Vithaya; Wiyakrutta, Suthep

    2011-02-25

    A sensitive non-radioactive method for determination of the stereospecificity of the C-4' hydrogen transfer on the coenzymes (pyridoxal phosphate, PLP; and pyridoxamine phosphate, PMP) of aminotransferases has been developed. Aminotransferase of unknown stereospecificity in its PLP form was incubated in (2)H(2)O with a substrate amino acid resulted in PMP labeled with deuterium at C-4' in the pro-S or pro-R configuration according to the stereospecificity of the aminotransferase tested. The [4'-(2)H]PMP was isolated from the enzyme protein and divided into two portions. The first portion was incubated in aqueous buffer with apo-aspartate aminotransferase (a reference si-face specific enzyme), and the other was incubated with apo-branched-chain amino acid aminotransferase (a reference re-face specific enzyme) in the presence of a substrate 2-oxo acid. The (2)H at C-4' is retained with the PLP if the aminotransferase in question transfers C-4' hydrogen on the opposite face of the coenzyme compared with the reference aminotransferase, but the (2)H is removed if the test and reference aminotransferases catalyze hydrogen transfer on the same face. PLP formed in the final reactions was analyzed by LC-MS/MS for the presence or absence of (2)H. The method was highly sensitive that for the aminotransferase with ca. 50 kDa subunit molecular weight, only 2mg of the enzyme was sufficient for the whole test. With this method, the use of radioactive substances could be avoided without compromising the sensitivity of the assay.

  18. Sensitive non-radioactive determination of aminotransferase stereospecificity for C-4' hydrogen transfer on the coenzyme

    SciTech Connect

    Jomrit, Juntratip; Summpunn, Pijug; Meevootisom, Vithaya; Wiyakrutta, Suthep

    2011-02-25

    Research highlights: {yields} Stereochemical mechanism of PLP enzymes is important but difficult to determine. {yields} This new method is significantly less complicated than the previous ones. {yields} This assay is as sensitive as the radioactive based method. {yields} LC-MS/MS positively identify the analyte coenzyme. {yields} The method can be used with enzyme whose apo form is unstable. -- Abstract: A sensitive non-radioactive method for determination of the stereospecificity of the C-4' hydrogen transfer on the coenzymes (pyridoxal phosphate, PLP; and pyridoxamine phosphate, PMP) of aminotransferases has been developed. Aminotransferase of unknown stereospecificity in its PLP form was incubated in {sup 2}H{sub 2}O with a substrate amino acid resulted in PMP labeled with deuterium at C-4' in the pro-S or pro-R configuration according to the stereospecificity of the aminotransferase tested. The [4'-{sup 2}H]PMP was isolated from the enzyme protein and divided into two portions. The first portion was incubated in aqueous buffer with apo-aspartate aminotransferase (a reference si-face specific enzyme), and the other was incubated with apo-branched-chain amino acid aminotransferase (a reference re-face specific enzyme) in the presence of a substrate 2-oxo acid. The {sup 2}H at C-4' is retained with the PLP if the aminotransferase in question transfers C-4' hydrogen on the opposite face of the coenzyme compared with the reference aminotransferase, but the {sup 2}H is removed if the test and reference aminotransferases catalyze hydrogen transfer on the same face. PLP formed in the final reactions was analyzed by LC-MS/MS for the presence or absence of {sup 2}H. The method was highly sensitive that for the aminotransferase with ca. 50 kDa subunit molecular weight, only 2 mg of the enzyme was sufficient for the whole test. With this method, the use of radioactive substances could be avoided without compromising the sensitivity of the assay.

  19. Multi-neutron transfer reactions at sub-barrier energies.

    SciTech Connect

    Rehm, K. E.

    1998-01-20

    The optimum conditions for multi-neutron transfer have been studied in the system {sup 58}Ni + {sup 124}Sn at bombarding energies at and below the Coulomb barrier. The experiments were performed in inverse kinematics with a {sup 124}Sn beam bombarding a {sup 58}Ni target. The particles were identified with respect to mass and Z in the split-pole spectrograph with a hybrid focal plane detector with mass and Z-resolutions of A/{Delta}A = 150 and Z/{Delta}Z = 70. At all energies the transfer of up to 6 neutrons was observed. The yields for these transfer reactions are found to decrease by about a factor of four for each transferred neutron.

  20. Defects Engineered Monolayer MoS2 for Improved Hydrogen Evolution Reaction

    DOE PAGES

    Ye, Gonglan; Gong, Yongji; Lin, Junhao; ...

    2016-01-13

    MoS2 is a promising, low-cost material for electrochemical hydrogen production due to its high activity and stability during the reaction. Our work represents an easy method to increase the hydrogen production in electrochemical reaction of MoS2 via defect engineering, and helps to understand the catalytic properties of MoS2.

  1. Enzymatic Catalysis of Proton Transfer and Decarboxylation Reactions.

    PubMed

    Richard, John P

    2011-07-08

    Deprotonation of carbon and decarboxylation at enzyme active sites proceed through the same carbanion intermediates as for the uncatalyzed reactions in water. The mechanism for the enzymatic reactions can be studied at the same level of detail as for nonenzymatic reactions, using the mechanistic tools developed by physical organic chemists. Triosephosphate isomerase (TIM) catalyzed interconversion of D-glyceraldehyde 3-phosphate and dihydroxyacetone phosphate is being studied as a prototype for enzyme catalyzed proton transfer, and orotidine monophosphate decarboxylase (OMPDC) catalyzed decarboxylation of orotidine 5'-monophosphate is being studied as a prototype for enzyme-catalyzed decarboxylation. (1)H NMR spectroscopy is an excellent analytical method to monitor proton transfer to and from carbon catalyzed by these enzymes in D2O. Studies of these partial enzyme-catalyzed exchange reactions provide novel insight into the stability of carbanion reaction intermediates, that is not accessible in studies of the full enzymatic reaction. The importance of flexible enzyme loops and the contribution of interactions between these loops and the substrate phosphodianion to the enzymatic rate acceleration are discussed. The similarity in the interactions of OMPDC and TIM with the phosphodianion of bound substrate is emphasized.

  2. Competition between Hydrogen Bonding and Proton Transfer during Specific Anion Recognition by Dihomooxacalix[4]arene Bidentate Ureas.

    PubMed

    Martínez-González, Eduardo; González, Felipe J; Ascenso, José R; Marcos, Paula M; Frontana, Carlos

    2016-08-05

    Competition between hydrogen bonding and proton transfer reactions was studied for systems composed of electrogenerated dianionic species from dinitrobenzene isomers and substituted dihomooxacalix[4]arene bidentate urea derivatives. To analyze this competition, a second-order ErCrCi mechanism was considered where the binding process is succeeded by proton transfer and the voltammetric responses depend on two dimensionless parameters: the first related to hydrogen bonding reactions, and the second one to proton transfer processes. Experimental results indicated that, upon an increase in the concentration of phenyl-substituted dihomooxacalix[4]arene bidentate urea, voltammetric responses evolve from diffusion-controlled waves (where the binding process is at chemical equilibrium) into irreversible kinetic responses associated with proton transfer. In particular, the 1,3-dinitrobenzene isomer showed a higher proton transfer rate constant (∼25 M(-1) s(-1)) compared to that of the 1,2-dinitrobenzene (∼5 M(-1) s(-1)), whereas the 1,4-dinitrobenzene did not show any proton transfer effect in the experimental conditions employed.

  3. Reactions of hydrogen with V-Cr-Ti alloys

    SciTech Connect

    DiStefano, J.R.; DeVan, J.H.; Chitwood, L.D.; Roehrig, D.H.

    1998-09-01

    In the absence of increases in oxygen concentration, additions of up to 400 ppm hydrogen to V-4 Cr-4 Ti did not result in significant embrittlement as determined by room temperature tensile tests. However, when hydrogen approached 700 ppm after exposure at 325 C, rapid embrittlement occurred. In this latter case, hydride formation is the presumed embrittlement cause. When oxygen was added during or prior to hydrogen exposure, synergistic effects led to significant embrittlement by 100 ppm hydrogen.

  4. Microscale Enhancement of Heat and Mass Transfer for Hydrogen Energy Storage

    SciTech Connect

    Drost, Kevin; Jovanovic, Goran; Paul, Brian

    2015-09-30

    The document summarized the technical progress associated with OSU’s involvement in the Hydrogen Storage Engineering Center of Excellence. OSU focused on the development of microscale enhancement technologies for improving heat and mass transfer in automotive hydrogen storage systems. OSU’s key contributions included the development of an extremely compact microchannel combustion system for discharging hydrogen storage systems and a thermal management system for adsorption based hydrogen storage using microchannel cooling (the Modular Adsorption Tank Insert or MATI).

  5. Key Role of Active-Site Water Molecules in Bacteriorhodopsin Proton-Transfer Reactions

    SciTech Connect

    Bondar, A.N.; Baudry, Jerome Y; Suhai, Sandor; Fischer, S.; Smith, Jeremy C

    2008-10-01

    The functional mechanism of the light-driven proton pump protein bacteriorhodopsin depends on the location of water molecules in the active site at various stages of the photocycle and on their roles in the proton-transfer steps. Here, free energy computations indicate that electrostatic interactions favor the presence of a cytoplasmic-side water molecule hydrogen bonding to the retinal Schiff base in the state preceding proton transfer from the retinal Schiff base to Asp85. However, the nonequilibrium nature of the pumping process means that the probability of occupancy of a water molecule in a given site depends both on the free energies of insertion of the water molecule in this and other sites during the preceding photocycle steps and on the kinetic accessibility of these sites on the time scale of the reaction steps. The presence of the cytoplasmic-side water molecule has a dramatic effect on the mechanism of proton transfer: the proton is channeled on the Thr89 side of the retinal, whereas the transfer on the Asp212 side is hindered. Reaction-path simulations and molecular dynamics simulations indicate that the presence of the cytoplasmic-side water molecule permits a low-energy bacteriorhodopsin conformer in which the water molecule bridges the twisted retinal Schiff base and the proton acceptor Asp85. From this low-energy conformer, proton transfer occurs via a concerted mechanism in which the water molecule participates as an intermediate proton carrier.

  6. Electron transfer reaction dynamics of p-nitroaniline in water from liquid to supercritical conditions.

    PubMed

    Osawa, Koji; Terazima, Masahide; Kimura, Yoshifumi

    2012-09-20

    Photoexcitation dynamics of p-nitroaniline (pNA) have been investigated by femto-second transient absorption spectroscopy in water from liquid to supercritical conditions; along the isochoric line from the ambient condition to 664 K at 40.1 MPa and along the isothermal line from 40.1 to 36.1 MPa at 664 K. The rates of the back electron transfer reaction from the photoexcited charge transfer state to the electronic ground state was determined by the bleach recovery of the ground state absorption, and the successive vibrational relaxation in the electronic ground state was determined by the hot-band decay which was apparent at the red edge of the absorption. The variation of the back electron transfer rate was compared with the prediction based on the electron transfer theory including the Franck-Condon active vibrational modes. The results indicated that both the free energy change of the reaction and the change of the intramolecular vibrational reorganization energy cause the characteristic density (or temperature) dependence of the back electron transfer rate. The density dependence of the vibrational relaxation rate was compared with the collision frequency and the coordination number of the solvent molecule around the solute estimated by the molecular dynamics simulations. The density dependence of the coordination of a water oxygen atom to an amino hydrogen atom of pNA was found to be correlated with the density dependence of vibrational relaxation rate.

  7. [Spectrophotometric determination of codeine through charge-transfer reaction].

    PubMed

    Du, Li-ming; Li, Li; Wu, Hao

    2007-02-01

    The charge-transfer reaction of 7,7,8,8-tetracyano-quinodimethane (TCNQ) as a pi-electron acceptor with codeine as electron donors was investigated by spectrophotometry. TCNQ was found to react with codeine to produce stable charge-transfer complexes in acetone. Meanwhile, the studied drugs suffer a considerable bathochromic shift (from 216 to 843 nm). The influential factor of charge-transfer reaction and the optimum conditions for the determination of codeine were investigated in detail. Therefore a simple, rapid and accurate method with a good selectivity for the determination of codeine has been developed. The results show that Beer's law is obeyed in the ranges 0.1-1.6 microg x mL(-1) for codeine. The apparent molar absorptivity of the complex at 843 nm is 1.7 x 10(4) L x mol(-1) x cm(-1). Furthermore, the association constants and standard free energy changes were studied, and the mechanism of charge-transfer reaction was explored elementarily. The proposed method has been applied successfully to the determination of codeine in pharmaceutical preparations. The recoveries are from (98.94+/-0.96)% to (99.12+/-1.21)%.

  8. Concerted electron-proton transfer in the optical excitation of hydrogen-bonded dyes

    SciTech Connect

    Westlake, Brittany C.; Brennaman, Kyle M.; Concepcion, Javier J.; Paul, Jared J.; Bettis, Stephanie E.; Hampton, Shaun D.; Miller, Stephen A.; Lebedeva, Natalia V.; Forbes, Malcolm D. E.; Moran, Andrew M.; Meyer, Thomas J.; Papanikolas, John M.

    2011-05-24

    The simultaneous, concerted transfer of electrons and protons—electron-proton transfer (EPT)—is an important mechanism utilized in chemistry and biology to avoid high energy intermediates. There are many examples of thermally activated EPT in ground-state reactions and in excited states following photoexcitation and thermal relaxation. Here we report application of ultrafast excitation with absorption and Raman monitoring to detect a photochemically driven EPT process (photo-EPT). In this process, both electrons and protons are transferred during the absorption of a photon. Photo-EPT is induced by intramolecular charge-transfer (ICT) excitation of hydrogen-bonded-base adducts with either a coumarin dye or 4-nitro-4'-biphenylphenol. Femtosecond transient absorption spectral measurements following ICT excitation reveal the appearance of two spectroscopically distinct states having different dynamical signatures. One of these states corresponds to a conventional ICT excited state in which the transferring H⁺ is initially associated with the proton donor. Proton transfer to the base (B) then occurs on the picosecond time scale. The other state is an ICT-EPT photoproduct. Upon excitation it forms initially in the nuclear configuration of the ground state by application of the Franck–Condon principle. However, due to the change in electronic configuration induced by the transition, excitation is accompanied by proton transfer with the protonated base formed with a highly elongated ⁺H–B bond. Coherent Raman spectroscopy confirms the presence of a vibrational mode corresponding to the protonated base in the optically prepared state.

  9. Concerted electron-proton transfer in the optical excitation of hydrogen-bonded dyes

    PubMed Central

    Westlake, Brittany C.; Brennaman, M. Kyle; Concepcion, Javier J.; Paul, Jared J.; Bettis, Stephanie E.; Hampton, Shaun D.; Miller, Stephen A.; Lebedeva, Natalia V.; Forbes, Malcolm D. E.; Moran, Andrew M.; Meyer, Thomas J.; Papanikolas, John M.

    2011-01-01

    The simultaneous, concerted transfer of electrons and protons—electron-proton transfer (EPT)—is an important mechanism utilized in chemistry and biology to avoid high energy intermediates. There are many examples of thermally activated EPT in ground-state reactions and in excited states following photoexcitation and thermal relaxation. Here we report application of ultrafast excitation with absorption and Raman monitoring to detect a photochemically driven EPT process (photo-EPT). In this process, both electrons and protons are transferred during the absorption of a photon. Photo-EPT is induced by intramolecular charge-transfer (ICT) excitation of hydrogen-bonded-base adducts with either a coumarin dye or 4-nitro-4′-biphenylphenol. Femtosecond transient absorption spectral measurements following ICT excitation reveal the appearance of two spectroscopically distinct states having different dynamical signatures. One of these states corresponds to a conventional ICT excited state in which the transferring H+ is initially associated with the proton donor. Proton transfer to the base (B) then occurs on the picosecond time scale. The other state is an ICT-EPT photoproduct. Upon excitation it forms initially in the nuclear configuration of the ground state by application of the Franck–Condon principle. However, due to the change in electronic configuration induced by the transition, excitation is accompanied by proton transfer with the protonated base formed with a highly elongated +H─B bond. Coherent Raman spectroscopy confirms the presence of a vibrational mode corresponding to the protonated base in the optically prepared state. PMID:21555541

  10. Enhanced Hydrogen Evolution Reactions on Nanostructured Cu2ZnSnS4 (CZTS) Electrocatalyst

    NASA Astrophysics Data System (ADS)

    Digraskar, Renuka V.; Mulik, Balaji B.; Walke, Pravin S.; Ghule, Anil V.; Sathe, Bhaskar R.

    2017-08-01

    A novel and facile one-step sonochemical method is used to synthesize Cu2ZnSnS4 (CZTS) nanoparticles (2.6 ± 0.4 nm) as cathode electrocatalyst for hydrogen evolution reactions. The detailed morphology, crystal and surface structure, and composition of the CZTS nanostructures were characterized by high resolution transmission electron microscopy (HR-TEM), Selected area electron diffraction (SAED), X-ray diffraction, Raman spectroscopy, FTIR analysis, Brunauer-Emmett-Teller (BET) surface area measurements, Electron dispersive analysis, X-ray photoelectron spectroscopy respectively. Electrocatalytic abilities of the nanoparticles toward Hydrogen Evolution Reactions (HER) were verified through cyclic voltammograms (CV) and Linear sweep voltammetry (LSV), electrochemical impedance spectroscopy (EIS), and Tafel polarization measurements. It reveals enhanced activity at lower onset potential 300 mV v/s RHE, achieved at exceptionally high current density -130 mA/cm2, which is higher than the existing non-nobel metal based cathodes. Further result exhibits Tafel slope of 85 mV/dec, exchange current density of 882 mA/cm2, excellent stability (> 500 cycles) and lower charge transfer resistance. This sonochemically fabricated CZTSs nanoparticles are leading to significantly reduce cell cost and simplification of preparation process over existing high efficiency Pt and other nobel metal-free cathode electrocatalyst.

  11. Explicit inclusion of nonlocality in (d,p) transfer reactions

    DOE PAGES

    Titus, L. J.; Nunes, F. M.; Potel, G.

    2016-01-06

    Traditionally, nucleon-nucleus optical potentials are made local for convenience. In recent work we studied the effects of including nonlocal interactions explicitly in the final state for (d,p) reactions, within the distorted wave Born approximation. Our goal in this work is to develop an improved formalism for nonlocal interactions that includes deuteron breakup and to use it to study the effects of including nonlocal interactions in transfer (d,p) reactions, in both the deuteron and the proton channel. We extend the finite-range adiabatic distorted wave approximation to include nonlocal nucleon optical potentials. We apply our method to (d,p) reactions on 16O, 40Ca,more » 48Ca, 126Sn, 132Sn, and 208Pb at 10, 20 and 50 MeV. Here, we find that nonlocality in the deuteron scattering state reduces the amplitude of the wave function in the nuclear interior, and shifts the wave function outward. In many cases, this has the effect of increasing the transfer cross section at the first peak of the angular distributions. This increase was most significant for heavy targets and for reactions at high energies. Lastly, our systematic study shows that, if only local optical potentials are used in the analysis of experimental (d, p) transfer cross sections, the extracted spectroscopic factors may be incorrect by up to 40% due to the local approximation.« less

  12. Dielectron attachment and hydrogen evolution reaction in water clusters.

    PubMed

    Barnett, Robert N; Giniger, Rina; Cheshnovsky, Ori; Landman, Uzi

    2011-06-30

    Binding of excess electrons to nanosize water droplets, with a focus on the hitherto largely unexplored properties of doubly-charged clusters, were investigated experimentally using mass spectrometry and theoretically with large-scale first-principles simulations based on spin-density-functional theory, with all the valence electrons (that is, 8e per water molecule) and excess electrons treated quantum mechanically. Singly-charged clusters (H(2)O)(n)(-1) were detected for n = 6-250, and our calculated vertical detachment energies agree with previously measured values in the entire range 15 ≤ n ≤ 105, giving a consistent interpretation in terms of internal, surface and diffuse states of the excess electron. Doubly-charged clusters were measured in the range of 83 ≤ n ≤ 123, with (H(2)O)(n)(-2) clusters found for 83 ≤ n < 105, and mass-shifted peaks corresponding to (H(2)O)(n-2)(OH(-))(2) detected for n ≥ 105. The simulations revealed surface and internal dielectron, e(-)(2), localization modes and elucidated the mechanism of the reaction (H(2)O)(n)(-2) → (H(2)O)(n-2) (OH(-))(2) + H(2) (for n ≥ 105), which was found to occur via concerted approach of a pair of protons belonging to two water molecules located in the first shell of the dielectron internal hydration cavity, culminating in formation of a hydrogen molecule 2H(+) + e(-)(2) → H(2). Instability of the dielectron internal localization impedes the reaction for smaller (n < 105) doubly-charged clusters.

  13. Sorption enhanced reaction process (SERP) for the production of hydrogen

    SciTech Connect

    Hufton, J.; Mayorga, S.; Gaffney, T.; Nataraj, S.; Rao, M.; Sircar, S.

    1998-08-01

    The novel Sorption Enhanced Reaction Process has the potential to decrease the cost of hydrogen production by steam methane reforming. Current effort for development of this technology has focused on adsorbent development, experimental process concept testing, and process development and design. A preferred CO{sub 2} adsorbent, K{sub 2}CO{sub 3} promoted hydrotalcite, satisfies all of the performance targets and it has been scaled up for process testing. A separate class of adsorbents has been identified which could potentially improve the performance of the H{sub 2}-SER process. Although this material exhibits improved CO{sub 2} adsorption capacity compared to the HTC adsorbent, its hydrothermal stability must be improved. Single-step process experiments (not cyclic) indicate that the H{sub 2}-SER reactor performance during the reaction step improves with decreasing pressure and increasing temperature and steam to methane ratio in the feed. Methane conversion in the H{sub 2}-SER reactor is higher than for a conventional catalyst-only reactor operated at similar temperature and pressure. The reactor effluent gas consists of 90+% H{sub 2}, balance CH{sub 4}, with only trace levels (< 50 ppm) of carbon oxides. A best-case process design (2.5 MMSCFD of 99.9+% H{sub 2}) based on the HTC adsorbent properties and a revised SER process cycle has been generated. Economic analysis of this design indicates the process has the potential to reduce the H{sub 2} product cost by 25--31% compared to conventional steam methane reforming.

  14. A RhxSy/C Catalyst for the Hydrogen Oxidation and Hydrogen Evolution Reactions in HBr

    DOE PAGES

    Masud, Jahangir; Nguyena, Trung V.; Singh, Nirala; ...

    2015-02-01

    Rhodium sulfide (Rh2S3) on carbon support was synthesized by refluxing rhodium chloride with ammonium thiosulfate. Thermal treatment of Rh2S3 at high temperatures (600°C to 850°C) in presence of argon resulted in the transformation of Rh2S3 into Rh3S4, Rh17S15 and Rh which were characterized by TGA/DTA, XRD, EDX, and deconvolved XPS analyses. The catalyst particle size distribution ranged from 3 to 12 nm. Cyclic voltammetry and rotating disk electrode measurements were used to evaluate the catalytic activity for hydrogen oxidation and evolution reactions in H2SO4 and HBr solutions. The thermally treated catalysts show high activity for the hydrogen reactions. The exchangemore » current densities (io) of the synthesized RhxSy catalysts in H2-saturated 1M H2SO4 and 1M HBr for HER and HOR were 0.9 mA/cm2 to 1.0 mA/cm2 and 0.8 to 0.9 mA/cm2, respectively. The lower io values obtained in 1M HBr solution compared to in H2SO4 might be due to the adsorption of Br- on the active surface. Stable electrochemical active surface area (ECSA) of RhxSy catalyst was obtained for CV scan limits between 0 V and 0.65 V vs. RHE. Scans with upper voltage limit beyond 0.65 V led to decreased and unreproducible ECSA measurements.« less

  15. A RhxSy/C Catalyst for the Hydrogen Oxidation and Hydrogen Evolution Reactions in HBr

    SciTech Connect

    Masud, J; Nguyen, TV; Singh, N; McFarland, E; Ikenberry, M; Hohn, K; Pan, CJ; Hwang, BJ

    2015-01-13

    Rhodium sulfide (Rh2S3) on carbon support was synthesized by refluxing rhodium chloride with ammonium thiosulfate. Thermal treatment of Rh2S3 at high temperatures (600 degrees C to 850 degrees C) in presence of argon resulted in the transformation of Rh2S3 into Rh3S4, Rh17S15 and Rh which were characterized by TGA/DTA, XRD, EDX, and deconvolved XPS analyses. The catalyst particle size distribution ranged from 3 to 12 nm. Cyclic voltammetry and rotating disk electrode measurements were used to evaluate the catalytic activity for hydrogen oxidation and evolution reactions in H2SO4 and HBr solutions. The thermally treated catalysts show high activity for the hydrogen reactions. The exchange current densities (i(o)) of the synthesized RhxSy catalysts in H-2-saturated 1M H2SO4 and 1M HBr for HER and HOR were 0.9 mA/cm(2) to 1.0 mA/cm(2) and 0.8 to 0.9 mA/cm(2), respectively. The lower i(o) values obtained in 1M HBr solution compared to in H2SO4 might be due to the adsorption of Br- on the active surface. Stable electrochemical active surface area (ECSA) of RhxSy catalyst was obtained for CV scan limits between 0 V and 0.65 V vs. RHE. Scans with upper voltage limit beyond 0.65 V led to decreased and unreproducible ECSA measurements. (C) The Author(s) 2015. Published by ECS. All rights reserved.

  16. Study of multi-nucleon transfer reactions with light nuclei

    SciTech Connect

    Benzoni, G.; Montanari, D.; Bracco, A.; Blasi, N.; Camera, F.; Crespi, F. C. L.; Corsi, A.; Leoni, S.; Million, B.; Nicolini, R.; Wieland, O.; Zalite, A.; Zocca, F.; Azaiez, F.; Franchoo, S.; Stefan, I.; Ibrahim, F.; Verney, D.; Battacharyya, S.; De France, G.

    2008-05-12

    Multi-nucleon transfer reactions are useful tools to populate exotic nuclei, particularly the neutron-rich ones. In this view, two different experiments have been performed employing a stable ({sup 22}Ne) and a radioactive ({sup 24}Ne) beam, both impinging on a {sup 208}Pb target. The first reaction has been studied using the CLARA-PRISMA-DANTE set-up at Laboratori Nazionali di Legnaro (Legnaro-Italy), while the second reaction was performed at Ganil (Caen-France) employing a SPIRAL radioactive beam of {sup 24}Ne. In this case recoils and coincident {gamma} rays were detected with the VAMOS-EXOGAM set-up.The data show that MNT reactions can selectively populate states of different nature and, therefore, are a good tool to study nuclear structure further away from stability.

  17. Mass transfer model for two-layer TBP oxidation reactions

    SciTech Connect

    Laurinat, J.E.

    1994-09-28

    To prove that two-layer, TBP-nitric acid mixtures can be safely stored in the canyon evaporators, it must be demonstrated that a runaway reaction between TBP and nitric acid will not occur. Previous bench-scale experiments showed that, at typical evaporator temperatures, this reaction is endothermic and therefore cannot run away, due to the loss of heat from evaporation of water in the organic layer. However, the reaction would be exothermic and could run away if the small amount of water in the organic layer evaporates before the nitric acid in this layer is consumed by the reaction. Provided that there is enough water in the aqueous layer, this would occur if the organic layer is sufficiently thick so that the rate of loss of water by evaporation exceeds the rate of replenishment due to mixing with the aqueous layer. This report presents measurements of mass transfer rates for the mixing of water and butanol in two-layer, TBP-aqueous mixtures, where the top layer is primarily TBP and the bottom layer is comprised of water or aqueous salt solution. Mass transfer coefficients are derived for use in the modeling of two-layer TBP-nitric acid oxidation experiments. Three cases were investigated: (1) transfer of water into the TBP layer with sparging of both the aqueous and TBP layers, (2) transfer of water into the TBP layer with sparging of just the TBP layer, and (3) transfer of butanol into the aqueous layer with sparging of both layers. The TBP layer was comprised of 99% pure TBP (spiked with butanol for the butanol transfer experiments), and the aqueous layer was comprised of either water or an aluminum nitrate solution. The liquid layers were air sparged to simulate the mixing due to the evolution of gases generated by oxidation reactions. A plastic tube and a glass frit sparger were used to provide different size bubbles. Rates of mass transfer were measured using infrared spectrophotometers provided by SRTC/Analytical Development.

  18. Chemically Reversible Reactions of Hydrogen Sulfide with Metal Phthalocyanines

    PubMed Central

    2015-01-01

    Hydrogen sulfide (H2S) is an important signaling molecule that exerts action on various bioinorganic targets. Despite this importance, few studies have investigated the differential reactivity of the physiologically relevant H2S and HS– protonation states with metal complexes. Here we report the distinct reactivity of H2S and HS– with zinc(II) and cobalt(II) phthalocyanine (Pc) complexes and highlight the chemical reversibility and cyclability of each metal. ZnPc reacts with HS–, but not H2S, to generate [ZnPc-SH]−, which can be converted back to ZnPc by protonation. CoPc reacts with HS–, but not H2S, to form [CoIPc]−, which can be reoxidized to CoPc by air. Taken together, these results demonstrate the chemically reversible reaction of HS– with metal phthalocyanine complexes and highlight the importance of H2S protonation state in understanding the reactivity profile of H2S with biologically relevant metal scaffolds. PMID:24785654

  19. Chiral induction effects in ruthenium(II) amino alcohol catalysed asymmetric transfer hydrogenation of ketones: an experimental and theoretical approach

    PubMed

    Petra; Reek; Handgraaf; Meijer; Dierkes; Kamer; Brussee; Schoemaker; van Leeuwen PW

    2000-08-04

    The enantioselective outcome of transfer hydrogenation reactions that are catalysed by ruthenium(II) amino alcohol complexes was studied by means of a systematically varied series of ligands. It was found that both the substituent at the 1-position in the 2-amino-1-alcohol ligand and the substituent at the amine functionality influence the enantioselectivity of the reaction to a large extent: enantioselectivities (ee values) of up to 95% were obtained for the reduction of acetophenone. The catalytic cycle of ruthenium(II) amino alcohol catalysed transfer hydrogenation was examined at the density functional theory level. The formation of a hydrogen bond between the carbonyl functionality of the substrate and the amine proton of the ligand, as well as the formation of an intramolecular H...H bond and a planar H-Ru-N-H moiety are crucially important for the reaction mechanism. The enantioselective outcome of the reaction can be illustrated with the aid of molecular modelling by the visualisation of the steric interactions between the ketone and the ligand backbone in the ruthenium(II) catalysts.

  20. Liquid-Phase Catalytic Transfer Hydrogenation of Furfural over Homogeneous Lewis Acid-Ru/C Catalysts.

    PubMed

    Panagiotopoulou, Paraskevi; Martin, Nickolas; Vlachos, Dionisios G

    2015-06-22

    The catalytic performance of homogeneous Lewis acid catalysts and their interaction with Ru/C catalyst are studied in the catalytic transfer hydrogenation of furfural by using 2-propanol as a solvent and hydrogen donor. We find that Lewis acid catalysts hydrogenate the furfural to furfuryl alcohol, which is then etherified with 2-propanol. The catalytic activity is correlated with an empirical scale of Lewis acid strength and exhibits a volcano behavior. Lanthanides are the most active, with DyCl3 giving complete furfural conversion and a 97 % yield of furfuryl alcohol at 180 °C after 3 h. The combination of Lewis acid and Ru/C catalysts results in synergy for the stronger Lewis acid catalysts, with a significant increase in the furfural conversion and methyl furan yield. Optimum results are obtained by using Ru/C combined with VCl3 , AlCl3 , SnCl4 , YbCl3 , and RuCl3 . Our results indicate that the combination of Lewis acid/metal catalysts is a general strategy for performing tandem reactions in the upgrade of furans. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Transfer hydrogenation over sodium-modified ceria: Enrichment of redox sites active for alcohol dehydrogenation

    DOE PAGES

    Nelson, Nicholas C.; Boote, Brett W.; Naik, Pranjali; ...

    2017-01-17

    Ceria (CeO2) and sodium-modified ceria (Ce-Na) were prepared through combustion synthesis. Palladium was deposited onto the supports (Pd/CeO2 and Pd/Ce-Na) and their activity for the aqueous-phase transfer hydrogenation of phenol using 2-propanol under liquid flow conditions was studied. Pd/Ce-Na showed a marked increase (6×) in transfer hydrogenation activity over Pd/CeO2. Material characterization indicated that water-stable sodium species were not doped into the ceria lattice, but rather existed as subsurface carbonates. Modification of ceria by sodium provided more adsorption and redox active sites (i.e. defects) for 2-propanol dehydrogenation. This effect was an intrinsic property of the Ce-Na support and independent ofmore » Pd. The redox sites active for 2-propanol dehydrogenation were thermodynamically equivalent on both supports/catalysts. At high phenol concentrations, the reaction was limited by 2-propanol adsorption. Furthermore, the difference in catalytic activity was attributed to the different numbers of 2-propanol adsorption and redox active sites on each catalyst.« less

  2. Stereoselective synthesis of 4-substituted-cyclic sulfamidate-5-carboxylates by asymmetric transfer hydrogenation accompanied by dynamic kinetic resolution and applications to concise stereoselective syntheses of (-)-epi-cytoxazone and the taxotere side-chain.

    PubMed

    Kim, Jin-ah; Seo, Yeon Ji; Kang, Soyeong; Han, Juae; Lee, Hyeon-Kyu

    2014-11-18

    Dynamic kinetic resolution driven, asymmetric transfer hydrogenation reactions of cyclic sulfamidate imine-5-carboxylate esters were developed. Applications of the new methodology to stereoselective syntheses of the taxotere side-chain and (-)-epi-cytoxazone are described.

  3. Factors affecting hydrogen-tunneling contribution in hydroxylation reactions promoted by oxoiron(IV) porphyrin π-cation radical complexes.

    PubMed

    Cong, Zhiqi; Kinemuchi, Haruki; Kurahashi, Takuya; Fujii, Hiroshi

    2014-10-06

    Hydrogen atom transfer with a tunneling effect (H-tunneling) has been proposed to be involved in aliphatic hydroxylation reactions catalyzed by cytochrome P450 and synthetic heme complexes as a result of the observation of large hydrogen/deuterium kinetic isotope effects (KIEs). In the present work, we investigate the factors controlling the H-tunneling contribution to the H-transfer process in hydroxylation reaction by examining the kinetics of hydroxylation reactions at the benzylic positions of xanthene and 1,2,3,4-tetrahydronaphthalene by oxoiron(IV) 5,10,15,20-tetramesitylporphyrin π-cation radical complexes ((TMP(+•))Fe(IV)O(L)) under single-turnover conditions. The Arrhenius plots for these hydroxylation reactions of H-isotopomers have upwardly concave profiles. The Arrhenius plots of D-isotopomers, clear isosbestic points, and product analysis rule out the participation of thermally dependent other reaction processes in the concave profiles. These results provide evidence for the involvement of H-tunneling in the rate-limiting H-transfer process. These profiles are simulated using an equation derived from Bell's tunneling model. The temperature dependence of the KIE values (k(H)/k(D)) determined for these reactions indicates that the KIE value increases as the reaction temperature becomes lower, the bond dissociation energy (BDE) of the C-H bond of a substrate becomes higher, and the reactivity of (TMP(+•))Fe(IV)O(L) decreases. In addition, we found correlation of the slope of the ln(k(H)/k(D)) - 1/T plot and the bond strengths of the Fe═O bond of (TMP(+•))Fe(IV)O(L) estimated from resonance Raman spectroscopy. These observations indicate that these factors modulate the extent of the H-tunneling contribution by modulating the ratio of the height and thickness of the reaction barrier.

  4. Slush hydrogen propellant production, transfer, and expulsion studies at the NASA K-Site Facility

    NASA Technical Reports Server (NTRS)

    Hardy, Terry L.; Whalen, Margaret V.

    1991-01-01

    Slush hydrogen is currently being considered as a fuel for the National Aero-Space Plane (NASP) because it offers the potential for decreased vehicle size and weight. However, no large-scale data was available on the production, transfer, and tank pressure control characteristics required to use the fuel for the NASP. Therefore, experiments were conducted at the NASA Lewis Research Center K-Site Facility to improve the slush hydrogen database. Slush hydrogen was produced using the evaporative cooling, or freeze-thaw, technique in batches of about 800 gallons. This slush hydrogen was pressure transferred to a 5 ft diameter spherical test tank following production, and flow characteristics were measured during this transfer process. The slush hydrogen in the test tank was pressurized and expelled using a pressurized expulsion technique to obtain information on tank pressure control for the NASP. Results from the production, transfer, pressurization, and pressurized expulsion tests are described.

  5. Slush hydrogen propellant production, transfer, and expulsion studies at the NASA K-Site Facility

    NASA Technical Reports Server (NTRS)

    Hardy, Terry L.; Whalen, Margaret V.

    1991-01-01

    Slush hydrogen is currently being considered as a fuel for the National AeroSpace Plane (NASP) because it offers the potential for decreased vehicle size and weight. However, no large scale data was available on the production, transfer, and tank pressure control characteristics required to use the fuel for the NASP. Therefore, experiments were conducted at NASA-Lewis K-Site Facility to improve the slush hydrogen data base. Slush hydrogen was produced using the evaporative cooling, or freeze-thaw, technique in batches for approx. 800 gallons. This slush hydrogen was pressure transferred to a 5 ft diameter spherical test tank following production, and flow characteristics were measured during this transfer process. The slush hydrogen in the test tank was pressurized and expelled using a pressurized expulsion technique to obtain information on tank pressure control for the NASP. Results from the production, transfer, pressurization, and pressurized expulsion tests are described.

  6. Development of a liquid hydrogen transfer pump system with MgB2 wires

    NASA Astrophysics Data System (ADS)

    Kajikawa, Kazuhiro; Kuga, Hirotsugu; Inoue, Takuro; Watanabe, Kazuki; Uchida, Yushi; Nakamura, Taketsune; Kobayashi, Hiroaki; Hongo, Motoyuki; Kojima, Takayuki; Taguchi, Hideyuki; Naruo, Yoshihiro; Wakuda, Tsuyoshi; Tanaka, Kazuhide

    An electric pump composed of an MgB2 motor is combined with superconducting level sensors using thin CuNi-sheathed MgB2 wires to transfer liquid hydrogen. An impeller is attached to the lower end of a rotating shaft on the MgB2 motor and covered with an outer casing to form a centrifugal pump. Then, the MgB2 motor and impeller are placed vertically inside a cryostat with an infill of liquid hydrogen. A glass Dewar vessel is prepared to receive the liquid hydrogen transferred from the cryostat containing the MgB2 motor. The MgB2 sensors are used not only to detect the level of liquid hydrogen but also to control the electric pump on the basis of their pre-estimated calibration curves. By using the assembled pump system, the liquid hydrogen is successfully transferred from the cryostat to the glass Dewar vessel via a transfer tube.

  7. Effects of copper catalytic reactions on the development of supersonic hydrogen flames

    SciTech Connect

    Chang, S.L.; Lottes, S.A.; Berry, G.F.

    1992-10-01

    Copper species are present in hydrogen flames in arc heated supersonic ramjet testing facilities. Homogeneous and heterogeneous copper catalytic reactions may affect the flame development by enhancing the recombination of hydrogen atoms. Computer simulation is used to investigate the effects of the catalytic reactions on the reaction and ignition times of the flames. The simulation uses a modified general chemical kinetics computer program to simulate the development of copper-contaminated hydrogen flames under scramjet testing conditions. Reaction times of hydrogen flames are found to be reduced due to the copper catalytic effects, but ignition times are much less sensitive to such effects. The reduction of reaction time depends on copper concentration, particle size (if copper is in the condensed phase), and Mach number (or initial temperature and pressure). As copper concentration increases or the particle size decreases, reaction time decreases. As Mach number increases (or pressure and temperature decrease), the copper catalytic effects are greater.

  8. The activity of nanocrystalline Fe-based alloys as electrode materials for the hydrogen evolution reaction

    NASA Astrophysics Data System (ADS)

    Müller, Christian Immanuel; Sellschopp, Kai; Tegel, Marcus; Rauscher, Thomas; Kieback, Bernd; Röntzsch, Lars

    2016-02-01

    In view of alkaline water electrolysis, the activities for the hydrogen evolution reaction of nanocrystalline Fe-based electrode materials were investigated and compared with the activities of polycrystalline Fe and Ni. Electrochemical methods were used to elucidate the overpotential value, the charge transfer resistance and the double layer capacity. Structural properties of the electrode surface were determined with SEM, XRD and XPS analyses. Thus, a correlation between electrochemical and structural parameters was found. In this context, we report on a cyclic voltammetric activation procedure which causes a significant increase of the surface area of Fe-based electrodes leading to a boost in effective activity of the activated electrodes. It was found that the intrinsic activity of activated Fe-based electrodes is very high due to the formation of a nanocrystalline surface layer. In contrast, the activation procedure influences only the intrinsic activity of the Ni electrodes without the formation of a porous surface layer.

  9. Molecular Modeling of the Reaction Pathway and Hydride Transfer Reactions of HMG-CoA Reductase

    PubMed Central

    Haines, Brandon E.; Steussy, C. Nicklaus; Stauffacher, Cynthia V.; Wiest, Olaf

    2012-01-01

    HMG-CoA reductase catalyzes the four electron reduction of HMG-CoA to mevalonate and is an enzyme of considerable biomedical relevance due to the impact of its statin inhibitors on public health. Although the reaction has been studied extensively using x-ray crystallography, there are surprisingly no computational studies that test the mechanistic hypotheses suggested for this complex reaction. Theozyme and QM/MM calculations up to the B3LYP/6-31g(d,p)//B3LYP/6-311++g(2d,2p) level of theory were employed to generate an atomistic description of the enzymatic reaction process and its energy profile. The models generated here predict that the catalytically important Glu83 is protonated prior to hydride transfer and that it acts as the general acid/base in the reaction. With Glu83 protonated, the activation energy calculated for the sequential hydride transfer reactions, 21.8 and 19.3 kcal/mol, are in qualitative agreement with the experimentally determined rate constant for the entire reaction (1/s–1/min). When Glu83 is not protonated, the first hydride transfer reaction is predicted to be disfavored by over 20 kcal/mol, and the activation energy is predicted to be higher by over 10 kcal/mol. While not involved in the reaction as an acid/base, Lys267 is critical for stabilization of the transition state in forming an oxyanion hole with the protonated Glu83. Molecular dynamics simulations and MM/PBSA free energy calculations predict that the enzyme active site stabilizes the hemithioacetal intermediate better than the aldehyde intermediate. This suggests a mechanism where cofactor exchange occurs before the breakdown of the hemithioacetal. Slowing the conversion to aldehyde would provide the enzyme with a mechanism to protect it from solvent and explain why the free aldehyde is not observed experimentally. Our results support the hypothesis that the pKa of an active site acidic group is modulated by the redox state of the cofactor. The oxidized cofactor and

  10. Ligand reorganization and activation energies in nonadiabatic electron transfer reactions

    NASA Astrophysics Data System (ADS)

    Zhu, Jianjun; Wang, Jianji; Stell, George

    2006-10-01

    The activation energy and ligand reorganization energy for nonadiabatic electron transfer reactions in chemical and biological systems are investigated in this paper. The free energy surfaces and the activation energy are derived exactly in the general case in which the ligand vibration frequencies are not equal. The activation energy is derived by free energy minimization at the transition state. Our formulation leads to the Marcus-Hush [J. Chem. Phys. 24, 979 (1956); 98, 7170 (1994); 28, 962 (1958)] results in the equal-frequency limit and also generalizes the Marcus-Sumi [J. Chem. Phys. 84, 4894 (1986)] model in the context of studying the solvent dynamic effect on electron transfer reactions. It is found that when the ligand vibration frequencies are different, the activation energy derived from the Marcus-Hush formula deviates by 5%-10% from the exact value. If the reduced reorganization energy approximation is introduced in the Marcus-Hush formula, the result is almost exact.

  11. Modelling charge transfer reactions with the frozen density embedding formalism.

    PubMed

    Pavanello, Michele; Neugebauer, Johannes

    2011-12-21

    The frozen density embedding (FDE) subsystem formulation of density-functional theory is a useful tool for studying charge transfer reactions. In this work charge-localized, diabatic states are generated directly with FDE and used to calculate electronic couplings of hole transfer reactions in two π-stacked nucleobase dimers of B-DNA: 5'-GG-3' and 5'-GT-3'. The calculations rely on two assumptions: the two-state model, and a small differential overlap between donor and acceptor subsystem densities. The resulting electronic couplings agree well with benchmark values for those exchange-correlation functionals that contain a high percentage of exact exchange. Instead, when semilocal GGA functionals are used the electronic couplings are grossly overestimated.

  12. Proton Transfer Reactions Studied Using the VANDLE Neutron Detector Array

    NASA Astrophysics Data System (ADS)

    Thornsberry, C. R.; Burcher, S.; Gryzwacz, R.; Jones, K. L.; Paulauskas, S. V.; Smith, K.; Vostinar, M.; Allen, J.; Bardayan, D. W.; Blankstein, D.; Deboer, J.; Hall, M.; O'Malley, P. D.; Reingold, C.; Tan, W.; Cizewski, J. A.; Lepailleur, A.; Walter, D.; Febbraro, M.; Pain, S. D.; Marley, S. T.

    2016-09-01

    Proton transfer reactions, such as (d,n), are powerful tools for the study of single particle proton states of exotic nuclei. Measuring the outgoing neutron allows for the extraction of spectroscopic information from the recoil nucleus. With the development of new radioactive ion beam facilities, such as FRIB in the U.S., comes the need for new tools for the study of reactions involving radioactive nuclei. Neutron detectors, such as VANDLE, are sensitive to gamma rays in addition to neutrons. This results in high background rates for measurements with high external trigger rates. The use of discriminating recoil particle detectors, such as phoswich detectors, allow for the selection of a clean recoil tag by separating the recoil nucleus of interest from unreacted RIB components. Developments of low energy proton transfer measurements in inverse kinematics and recent (d,n) results will be presented. This work supported in part by the U.S. Department of Energy and the National Science Foundation.

  13. Modelling charge transfer reactions with the frozen density embedding formalism

    NASA Astrophysics Data System (ADS)

    Pavanello, Michele; Neugebauer, Johannes

    2011-12-01

    The frozen density embedding (FDE) subsystem formulation of density-functional theory is a useful tool for studying charge transfer reactions. In this work charge-localized, diabatic states are generated directly with FDE and used to calculate electronic couplings of hole transfer reactions in two π-stacked nucleobase dimers of B-DNA: 5'-GG-3' and 5'-GT-3'. The calculations rely on two assumptions: the two-state model, and a small differential overlap between donor and acceptor subsystem densities. The resulting electronic couplings agree well with benchmark values for those exchange-correlation functionals that contain a high percentage of exact exchange. Instead, when semilocal GGA functionals are used the electronic couplings are grossly overestimated.

  14. Modelling charge transfer reactions with the frozen density embedding formalism

    SciTech Connect

    Pavanello, Michele; Neugebauer, Johannes

    2011-12-21

    The frozen density embedding (FDE) subsystem formulation of density-functional theory is a useful tool for studying charge transfer reactions. In this work charge-localized, diabatic states are generated directly with FDE and used to calculate electronic couplings of hole transfer reactions in two {pi}-stacked nucleobase dimers of B-DNA: 5{sup '}-GG-3{sup '} and 5{sup '}-GT-3{sup '}. The calculations rely on two assumptions: the two-state model, and a small differential overlap between donor and acceptor subsystem densities. The resulting electronic couplings agree well with benchmark values for those exchange-correlation functionals that contain a high percentage of exact exchange. Instead, when semilocal GGA functionals are used the electronic couplings are grossly overestimated.

  15. Cu/MgAl(2)O(4) as bifunctional catalyst for aldol condensation of 5-hydroxymethylfurfural and selective transfer hydrogenation.

    PubMed

    Pupovac, Kristina; Palkovits, Regina

    2013-11-01

    Copper supported on mesoporous magnesium aluminate has been prepared as noble-metal-free solid catalyst for aldol condensation of 5-hydroxymethylfurfural with acetone, followed by hydrogenation of the aldol condensation products. The investigated mesoporous spinels possess high activity as solid-base catalysts. Magnesium aluminate exhibits superior activity compared to zinc and cobalt-based aluminates, reaching full conversion and up to 81 % yield of the 1:1 aldol product. The high activity can be correlated to a higher concentration of basic surface sites on magnesium aluminate. Applying continuous regeneration, the catalysts can be recycled without loss of activity. Focusing on the subsequent hydrogenation of aldol condensation products, Cu/MgAl2 O4 allows a selective hydrogenation and CO bond cleavage, delivering 3-hydroxybutyl-5-methylfuran as the main product with up to 84 % selectivity avoiding ring saturation. Analysis of the hydrogenation activity reveals that the reaction proceeds in the following order: CC>CO>CO cleavage>ring hydrogenation. Comparable activity and selectivity can be also achieved utilizing 2-propanol as solvent in the transfer hydrogenation, providing the possibility for partial recycling of acetone and optimization of the hydrogen management.

  16. Momentum transfer in relativistic heavy ion charge-exchange reactions

    NASA Technical Reports Server (NTRS)

    Townsend, L. W.; Wilson, J. W.; Khan, F.; Khandelwal, G. S.

    1991-01-01

    Relativistic heavy ion charge-exchange reactions yield fragments (Delta-Z = + 1) whose longitudinal momentum distributions are downshifted by larger values than those associated with the remaining fragments (Delta-Z = 1, -2,...). Kinematics alone cannot account for the observed downshifts; therefore, an additional contribution from collision dynamics must be included. In this work, an optical model description of collision momentum transfer is used to estimate the additional dynamical momentum downshift. Good agreement between theoretical estimates and experimental data is obtained.

  17. Nucleon Transfer Reactions in Few-Body Nuclear Systems

    NASA Astrophysics Data System (ADS)

    Deltuva, A.

    2017-03-01

    Three- and four-body scattering is described solving Faddeev-Yakubovsky or equivalent Alt-Grassberger-Sandhas integral equations for transition operators in momentum-space. Several realistic nuclear interaction models are used; the Coulomb force between charged particles is taken into account via the screening and renormalization method. Differential cross sections and spin observables for various nucleon transfer reactions are calculated and compared with experimental data.

  18. Fission of actinide nuclei using multi-nucleon transfer reactions

    NASA Astrophysics Data System (ADS)

    Léguillon, Romain; Nishio, Katsuhisa; Hirose, Kentaro; Orlandi, Riccardo; Makii, Hiroyuki; Nishinaka, Ichiro; Ishii, Tetsuro; Tsukada, Kazuaki; Asai, Masato; Chiba, Satoshi; Ohtsuki, Tsutomu; Araki, Shohei; Watanabe, Yukinobu; Tatsuzawa, Ryotaro; Takaki, Naoyuki

    2014-09-01

    We are promoting a campaign to measure fission-fragment mass distributions for neutron-rich actinide nuclei populated by transfer reactions from their ground state up to an excitation energy of several tens MeV. We thus obtain the excitation energy dependence of the mass distribution. The experiment was carried out at the 20 MV JAEA tandem facility at Tokai. We report on the data obtained in the direct reaction 18 O + 232 Th . Transfer-channels and excitation energies of the fissioning nuclei were identified using silicon dE-E detectors located at forward angle. Two fission fragments were detected in coincidence using multi-wire proportional counters. Fission fragment masses were determined by kinematic consideration. We obtained the fission fragment mass distributions for 13 nuclei from actinium to uranium and some fission barrier heights. We are promoting a campaign to measure fission-fragment mass distributions for neutron-rich actinide nuclei populated by transfer reactions from their ground state up to an excitation energy of several tens MeV. We thus obtain the excitation energy dependence of the mass distribution. The experiment was carried out at the 20 MV JAEA tandem facility at Tokai. We report on the data obtained in the direct reaction 18 O + 232 Th . Transfer-channels and excitation energies of the fissioning nuclei were identified using silicon dE-E detectors located at forward angle. Two fission fragments were detected in coincidence using multi-wire proportional counters. Fission fragment masses were determined by kinematic consideration. We obtained the fission fragment mass distributions for 13 nuclei from actinium to uranium and some fission barrier heights. Present study is supported by the Ministry of Education, Culture, Sports, Science and Technology of Japan.

  19. Calculation of vibronic couplings for phenoxyl/phenol and benzyl/toluene self-exchange reactions: implications for proton-coupled electron transfer mechanisms.

    PubMed

    Skone, Jonathan H; Soudackov, Alexander V; Hammes-Schiffer, Sharon

    2006-12-27

    The vibronic couplings for the phenoxyl/phenol and the benzyl/toluene self-exchange reactions are calculated with a semiclassical approach, in which all electrons and the transferring hydrogen nucleus are treated quantum mechanically. In this formulation, the vibronic coupling is the Hamiltonian matrix element between the reactant and product mixed electronic-proton vibrational wavefunctions. The magnitude of the vibronic coupling and its dependence on the proton donor-acceptor distance can significantly impact the rates and kinetic isotope effects, as well as the temperature dependences, of proton-coupled electron transfer reactions. Both of these self-exchange reactions are vibronically nonadiabatic with respect to a solvent environment at room temperature, but the proton tunneling is electronically nonadiabatic for the phenoxyl/phenol reaction and electronically adiabatic for the benzyl/toluene reaction. For the phenoxyl/phenol system, the electrons are unable to rearrange fast enough to follow the proton motion on the electronically adiabatic ground state, and the excited electronic state is involved in the reaction. For the benzyl/toluene system, the electrons can respond virtually instantaneously to the proton motion, and the proton moves on the electronically adiabatic ground state. For both systems, the vibronic coupling decreases exponentially with the proton donor-acceptor distance for the range of distances studied. When the transferring hydrogen is replaced with deuterium, the magnitude of the vibronic coupling decreases and the exponential decay with distance becomes faster. Previous studies designated the phenoxyl/phenol reaction as proton-coupled electron transfer and the benzyl/toluene reaction as hydrogen atom transfer. In addition to providing insights into the fundamental physical differences between these two types of reactions, the present analysis provides a new diagnostic for differentiating between the conventionally defined hydrogen atom

  20. Experimental fission study using multi-nucleon transfer reactions

    NASA Astrophysics Data System (ADS)

    Nishio, Katsuhisa; Hirose, Kentaro; Léguillon, Romain; Makii, Hiroyuki; Orlandi, Riccardo; Tsukada, Kazuaki; Smallcombe, James; Chiba, Satoshi; Aritomo, Yoshihiro; Tanaka, Shouya; Ohtsuki, Tsutomu; Tsekhanovich, Igor; Petrache, Costel M.; Andreyev, Andrei

    2017-09-01

    It is shown that the multi-nucleon transfer reactions is a powerful tool to study fission of exotic neutron-rich actinide nuclei, which cannot be accessed by particle-capture or heavy-ion fusion reactions. In this work, multi-nucleon transfer channels of the reactions of 18O+232Th, 18O+238U and 18O+248Cm are used to study fission for various nuclei from many excited states. Identification of fissioning nuclei and of their excitation energy is performed on an event-by-event basis, through the measurement of outgoing ejectile particle in coincidence with fission fragments. Fission fragment mass distributions are measured for each transfer channel. Predominantly asymmetric fission is observed at low excitation energies for all studied cases, with a gradual increase of the symmetric mode towards higher excitation energy. The experimental distributions are found to be in general agreement with predictions of the fluctuation-dissipation model. Role of multi-chance fission in fission fragment mass distributions is discussed, where it is shown that mass-asymmetric structure remaining at high excitation energies originates from low-excited nuclei by evaporation of neutrons.

  1. Search for an Average Potential describing Transfer Reactions

    NASA Astrophysics Data System (ADS)

    Suehiro, Teruo; Nakagawa, Takemi

    2001-10-01

    Variety of attempts such as coupled channels, non-locality corrections of optical potentials, projectile breakup etc. were made to resolve discrepancies between the distorted-wave Born approximation (DWBA) calculations and experimental differential cross section data of the transfer reactions initiated by light ions. The present work assumes that these discrepancies basically reflect detailed structure of the average interaction exerting on the nucleons involved in the transfer. Computations were carried out searching a potential that successfully describe both transfer reactions and the ordering and energies of neutron shells in the relevant nuclei. The (p,d) reactions on ^54,56Fe and ^58Ni at 40 and 50 MeV were taken for example, for which experimental data exist with good statistics in wider angular range. The potential was simulated by a sum of the volume and the derivative Wood-Saxon potential with seven free parameters. Finite-range DWBA calculations were done with the code DWUCK5(We are much indebted to Prof. P. D. Kunz for providing us with a PC version of the code DWUCK5, without which this work was impossible.). One set of such interaction potential was obtained which is markedly different from the volume Wood-Saxon potential customary used in the previous calculations. Implications of this potential will be discussed with regard to matter distributions of nuclei.

  2. Advances of zeolite based membrane for hydrogen production via water gas shift reaction

    NASA Astrophysics Data System (ADS)

    Makertihartha, I. G. B. N.; Zunita, M.; Rizki, Z.; Dharmawijaya, P. T.

    2017-07-01

    Hydrogen is considered as a promising energy vector which can be obtained from various renewable sources. However, an efficient hydrogen production technology is still challenging. One technology to produce hydrogen with very high capacity with low cost is through water gas shift (WGS) reaction. Water gas shift reaction is an equilibrium reaction that produces hydrogen from syngas mixture by the introduction of steam. Conventional WGS reaction employs two or more reactors in series with inter-cooling to maximize conversion for a given volume of catalyst. Membrane reactor as new technology can cope several drawbacks of conventional reactor by removing reaction product and the reaction will favour towards product formation. Zeolite has properties namely high temperature, chemical resistant, and low price makes it suitable for membrane reactor applications. Moreover, it has been employed for years as hydrogen selective layer. This review paper is focusing on the development of membrane reactor for efficient water gas shift reaction to produce high purity hydrogen and carbon dioxide. Development of membrane reactor is discussed further related to its modification towards efficient reaction and separation from WGS reaction mixture. Moreover, zeolite framework suitable for WGS membrane reactor will be discussed more deeply.

  3. Proton transfer reactions from H3/+/ ions to N2, O2, and CO molecules

    NASA Technical Reports Server (NTRS)

    Kim, J. K.; Theard, L. P.; Huntress, W. T., Jr.

    1975-01-01

    The rate constants for proton transfer from H3(+) ions to N2, O2, and CO have been measured as function of hydrogen-buffer-gas partial pressure. The rate constant for proton transfer from H3(+) to N2 shows a very large pressure dependence, increasing from 1.0 by 10 to the -9th power cu cm/s at low H2 partial pressures to 1.7 by 10 to the -9th power cu cm/s at high H2 partial pressures. The rate constants for proton transfer from H3(+) to O2 and CO are constant with partial pressure of H2. The roles of excess vibrational energy in H3(+) ions and of equilibrium between forward and back reactions are discussed. Back reaction is observed only for the reaction of H3(+) ions with O2, and an equilibrium constant of 2.0 (plus or minus 0.4) at 298 K has been determined. From these data, the proton affinity of O2 is deduced to be 0.47 (plus or minus 0.11) kcal/mole higher than that of H2.

  4. Ruthenium-catalyzed transfer-hydrogenative cyclization of 1,6-diynes with hantzsch 1,4-dihydropyridine as a H2 surrogate.

    PubMed

    Yamamoto, Yoshihiko; Mori, Shota; Shibuya, Masatoshi

    2013-09-02

    The transfer-hydrogenative cyclization of 1,6-diynes with Hantzsch 1,4-dihydropyridine as a H2 surrogate was performed in the presence of a cationic ruthenium catalyst of the type [Cp'Ru(MeCN)3PF6]. Exocyclic 1,3-dienes or their 1,4-hydrogenation products, cycloalkenes, were selectively obtained, depending on the substrate structure and the reaction conditions.

  5. An ab initio molecular-orbital study on hydrogen-abstraction reactions at the growing surface of hydrogenated amorphous silicon

    NASA Astrophysics Data System (ADS)

    Nakajima, Kenji; Miyazaki, Kaori; Koinuma, Hideomi; Sato, Kota

    1998-07-01

    Energy profiles have been evaluated by an ab initio molecular-orbital method for hydrogen-abstraction reactions from surface model compounds of growing hydrogenated amorphous silicon (a-Si:H) by a SiH3 radical, a presumed main precursor to a-Si:H, as well as by a hydrogen radical which should coexist in the silane plasma chemical vapor deposition. The activation energies calculated for these two reactions decrease as the cluster size of the film surface model SinH2n+2 increases from n=1 to n=4 to converge for n⩾4. This trend is in parallel with the variation of atomic charge delocalization. Both activation energies (0.22 and 0.28 eV, respectively) for the largest model, Si7H16, were low enough to induce the hydrogen abstractions from the surface to form dangling bonds, which spontaneously react with SiH3 radicals to form Si-Si bond. From thus produced H3Si-Si≡surface, hydrogen can be eliminated with SiH3 (or H) to reproduce a dangling bond. The initial step of the a-Si:H film growth is deduced by the calculation to proceed through sequential reactions of spontaneous addition of SiH3 to the dangling bonds, and the hydrogen abstraction to reproduce dangling bonds.

  6. Numerical Radiative Transfer and the Hydrogen Reionization of the Universe

    NASA Astrophysics Data System (ADS)

    Petkova, M.

    2011-03-01

    ) simulation code GADGET. It is based on a fast, robust and photon-conserving integration scheme where the radiation transport problem is approximated in terms of moments of the transfer equation and by using a variable Eddington tensor as a closure relation, following the "OTVET"-suggestion of Gnedin & Abel. We derive a suitable anisotropic diffusion operator for use in the SPH discretization of the local photon transport, and we combine this with an implicit solver that guarantees robustness and photon conservation. This entails a matrix inversion problem of a huge, sparsely populated matrix that is distributed in memory in our parallel code. We solve this task iteratively with a conjugate gradient scheme. Finally, to model photon sink processes we consider ionization and recombination processes of hydrogen, which is represented with a chemical network that is evolved with an implicit time integration scheme. We present several tests of our implementation, including single and multiple sources in static uniform density fields with and without temperature evolution, shadowing by a dense clump, and multiple sources in a static cosmological density field. All tests agree quite well with analytical computations or with predictions from other radiative transfer codes, except for shadowing. However, unlike most other radiative transfer codes presently in use for studying reionization, our new method can be used on-the-fly during dynamical cosmological simulations, allowing simultaneous treatments of galaxy formation and the reionization process of the Universe. We carry out hydrodynamical simulations of galaxy formation that simultaneously follow radiative transfer of hydrogen-ionizing photons, based on the optically-thin variable Eddington tensor approximation as implemented in the GADGET code. We consider only star-forming galaxies as sources and examine to what extent they can yield a reasonable reionization history and thermal state of the intergalactic medium at redshifts

  7. Light and heavy transfer products in 136Xe+238U multinucleon transfer reactions

    NASA Astrophysics Data System (ADS)

    Vogt, A.; Birkenbach, B.; Reiter, P.; Corradi, L.; Mijatović, T.; Montanari, D.; Szilner, S.; Bazzacco, D.; Bowry, M.; Bracco, A.; Bruyneel, B.; Crespi, F. C. L.; de Angelis, G.; Désesquelles, P.; Eberth, J.; Farnea, E.; Fioretto, E.; Gadea, A.; Geibel, K.; Gengelbach, A.; Giaz, A.; Görgen, A.; Gottardo, A.; Grebosz, J.; Hess, H.; John, P. R.; Jolie, J.; Judson, D. S.; Jungclaus, A.; Korten, W.; Leoni, S.; Lunardi, S.; Menegazzo, R.; Mengoni, D.; Michelagnoli, C.; Montagnoli, G.; Napoli, D.; Pellegri, L.; Pollarolo, G.; Pullia, A.; Quintana, B.; Radeck, F.; Recchia, F.; Rosso, D.; Şahin, E.; Salsac, M. D.; Scarlassara, F.; Söderström, P.-A.; Stefanini, A. M.; Steinbach, T.; Stezowski, O.; Szpak, B.; Theisen, Ch.; Ur, C.; Valiente-Dobón, J. J.; Vandone, V.; Wiens, A.

    2015-08-01

    Background: Multinucleon transfer reactions (MNT) are a competitive tool to populate exotic neutron-rich nuclei in a wide region of nuclei, where other production methods have severe limitations or cannot be used at all. Purpose: Experimental information on the yields of MNT reactions in comparison with theoretical calculations are necessary to make predictions for the production of neutron-rich heavy nuclei. It is crucial to determine the fraction of MNT reaction products which are surviving neutron emission or fission at the high excitation energy after the nucleon exchange. Method: Multinucleon transfer reactions in +238U 136Xe have been measured in a high-resolution γ -ray/particle coincidence experiment. The large solid-angle magnetic spectrometer PRISMA coupled to the high-resolution Advanced Gamma Tracking Array (AGATA) has been employed. Beamlike reaction products after multinucleon transfer in the Xe region were identified and selected with the PRISMA spectrometer. Coincident particles were tagged by multichannel plate detectors placed at the grazing angle of the targetlike recoils inside the scattering chamber. Results: Mass yields have been extracted and compared with calculations based on the grazing model for MNT reactions. Kinematic coincidences between the binary reaction products, i.e., beamlike and targetlike nuclei, were exploited to obtain population yields for nuclei in the actinide region and compared to x-ray yields measured by AGATA. Conclusions: No sizable yield of actinide nuclei beyond Z =93 is found to perform nuclear structure investigations. In-beam γ -ray spectroscopy is feasible for few-neutron transfer channels in U and the -2 p channel populating Th isotopes.

  8. Production of macromolecular chloramines by chlorine-transfer reactions.

    PubMed

    Bedner, Mary; MacCrehan, William A; Helz, George R

    2004-03-15

    Chlorination of treated wastewaters is undertaken to prevent dispersal of human pathogens into the environment. Except in well-nitrified effluents, the primary agents in chlorination, Cl2(g) or NaOCl(aq), are short-lived and quickly transfer oxidative chlorine to secondary agents (N-chloramines), which then participate in the disinfection process. Maturation of residual chlorine resulting from chlorine-transfer reactions is still poorly characterized. Using gel permeation and reversed-phase liquid chromatography combined with a novel, oxidant-specific detector, unanticipated trends during the maturation of residual chlorine in wastewater are identified. Within 2 min after addition of NaOCl, and continuing for several hours at least, significant amounts of oxidative chlorine are transferred to secondary agents that are moderately to strongly hydrophobic and to agents that have high relative molecular masses (Mr 1300-25000). It is hypothesized that hydrophobic stabilization of organic chloramines (RNHCl(o)) thermodynamically drives these transfers, making macromolecular chloramines the ultimate oxidative chlorine carriers. Macromolecular chloramines are expected to be sluggish oxidants, as observed in their reduction by sulfite, and are expected to be poor disinfectants. If transfer of oxidative chlorine to high Mr components occurs widely at treatment plants, then this phenomenon offers a new, physicochemical explanation for the well-known impotency of organic chloramines in wastewater disinfection.

  9. Anomalous Doppler broadening caused by exothermic reactions: application to hydrogen Balmer lines

    NASA Astrophysics Data System (ADS)

    Loureiro, J.; Amorim, J.

    2011-08-01

    The three- and one-dimensional velocity distributions of a product species created by an exothermic reaction are calculated using the energy conservation, with the aim of evaluating the impact of such processes on the anomalous broadening of Doppler lines. The calculations are performed to the reaction H{2/+} + H2 → H{3/+} + H, in which according to Christoffersen (1964) an amount of 1.56 eV is transferred to the product species. It is shown that the deviations relatively to Maxwell-Boltzmann distributions are significant as the internal energy defect ΔE increases, even within energies lower than 1.56 eV, and hence the profiles of excited H∗ atoms, associated with the emission of hydrogen Balmer lines, created in the sequence of H( n = 1) produced by the above reaction are not of Gaussian-type. The profiles are markedly flatter and squarer than Gaussian distributions. The validity of the species temperature determined from the full width at half maximum (FWHM) of the lines, as well as the fit of the lines by multimodal Gaussian functions, is then analyzed.

  10. Hydrogen Photogeneration Promoted by Efficient Electron Transfer from Iridium Sensitizers to Colloidal MoS2 Catalysts

    PubMed Central

    Yuan, Yong-Jun; Yu, Zhen-Tao; Liu, Xiao-Jie; Cai, Jian-Guang; Guan, Zhong-Jie; Zou, Zhi-Gang

    2014-01-01

    We report the utilization of colloidal MoS2 nanoparticles (NPs) for multicomponent photocatalytic water reduction systems in cooperation with a series of cyclometalated Ir(III) sensitizers. The effects of the particle size and particle dispersion of MoS2 NPs catalyst, reaction solvent and the concentration of the components on hydrogen evolution efficiency were investigated. The MoS2 NPs exhibited higher catalytic performance than did other commonly used water reduction catalysts under identical experiment conditions. The introduction of the carboxylate anchoring groups in the iridium complexes allows the species to be favorably chem-adsorbed onto the MoS2 NPs surface to increase the electron transfer, resulting in enhancement of hydrogen evolution relative to the non-attached systems. The highest apparent quantum yield, which was as high as 12.4%, for hydrogen evolution, was obtained (λ = 400 nm). PMID:24509729

  11. Paramagnetic products of the reaction of hydrogen atoms with sodium azide

    SciTech Connect

    Vasil'ev, A.A.; Lisetskii, V.N.; Kulikov, N.F.; Savel'ev, G.G.

    1987-09-01

    The reaction of hydrogen atoms with sodium azide in high-frequency discharges has been postulated to lead to NaNH and molecular nitrogen as reaction products. This article investigates these products via electron spin resonance spectroscopy. Data are given on reaction and ionization kinetics as well as on the electronic structure and hyperfine interaction of the products.

  12. 40 CFR 721.10445 - 2-Propen-1-ol, reaction products with hydrogen sulfide, distn. residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false 2-Propen-1-ol, reaction products with... Significant New Uses for Specific Chemical Substances § 721.10445 2-Propen-1-ol, reaction products with...) The chemical substance identified as 2-propen-1-ol, reaction products with hydrogen sulfide,...

  13. 40 CFR 721.10445 - 2-Propen-1-ol, reaction products with hydrogen sulfide, distn. residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false 2-Propen-1-ol, reaction products with... Significant New Uses for Specific Chemical Substances § 721.10445 2-Propen-1-ol, reaction products with...) The chemical substance identified as 2-propen-1-ol, reaction products with hydrogen sulfide,...

  14. Operando NMR spectroscopic analysis of proton transfer in heterogeneous photocatalytic reactions

    PubMed Central

    Wang, Xue Lu; Liu, Wenqing; Yu, Yan-Yan; Song, Yanhong; Fang, Wen Qi; Wei, Daxiu; Gong, Xue-Qing; Yao, Ye-Feng; Yang, Hua Gui

    2016-01-01

    Proton transfer (PT) processes in solid–liquid phases play central roles throughout chemistry, biology and materials science. Identification of PT routes deep into the realistic catalytic process is experimentally challenging, thus leaving a gap in our understanding. Here we demonstrate an approach using operando nuclear magnetic resonance (NMR) spectroscopy that allows to quantitatively describe the complex species dynamics of generated H2/HD gases and liquid intermediates in pmol resolution during photocatalytic hydrogen evolution reaction (HER). In this system, the effective protons for HER are mainly from H2O, and CH3OH evidently serves as an outstanding sacrificial agent reacting with holes, further supported by our density functional theory calculations. This results rule out controversy about the complicated proton sources for HER. The operando NMR method provides a direct molecular-level insight with the methodology offering exciting possibilities for the quantitative studies of mechanisms of proton-involved catalytic reactions in solid–liquid phases. PMID:27311326

  15. Operando NMR spectroscopic analysis of proton transfer in heterogeneous photocatalytic reactions.

    PubMed

    Wang, Xue Lu; Liu, Wenqing; Yu, Yan-Yan; Song, Yanhong; Fang, Wen Qi; Wei, Daxiu; Gong, Xue-Qing; Yao, Ye-Feng; Yang, Hua Gui

    2016-06-17

    Proton transfer (PT) processes in solid-liquid phases play central roles throughout chemistry, biology and materials science. Identification of PT routes deep into the realistic catalytic process is experimentally challenging, thus leaving a gap in our understanding. Here we demonstrate an approach using operando nuclear magnetic resonance (NMR) spectroscopy that allows to quantitatively describe the complex species dynamics of generated H2/HD gases and liquid intermediates in pmol resolution during photocatalytic hydrogen evolution reaction (HER). In this system, the effective protons for HER are mainly from H2O, and CH3OH evidently serves as an outstanding sacrificial agent reacting with holes, further supported by our density functional theory calculations. This results rule out controversy about the complicated proton sources for HER. The operando NMR method provides a direct molecular-level insight with the methodology offering exciting possibilities for the quantitative studies of mechanisms of proton-involved catalytic reactions in solid-liquid phases.

  16. Monodisperse Ag/Pd core/shell nanoparticles assembled on reduced graphene oxide as highly efficient catalysts for the transfer hydrogenation of nitroarenes.

    PubMed

    Metin, Önder; Can, Hasan; Şendil, Kıvılcım; Gültekin, Mehmet Serdar

    2017-07-15

    Addressed herein is a facile seed-mediated synthesis of Ag/Pd core/shell nanoparticles (NPs) and their assembly on reduced graphene oxide (rGO) to catalyze the transfer hydrogenation of nitroarenes to anilines using ammonia borane (AB) as a hydrogen donor under ambient conditions. Monodisperse Ag/Pd core/shell NPs with controllable Pd shell-thickness were synthesized by the means of thermal decomposition of palladium(II) bromide over as-prepared Ag NPs in the mixture of oleylamine and oleic acid at 220°C. As-synthesized Ag/Pd core/shell NPs were characterized by TEM, HR-TEM, XRD, XPS, UV-Vis spectroscopy and ICP-MS and then they were assembled on reduced graphene oxide (rGO). Next, rGO@Ag/Pd catalysts were tested in the transfer hydrogenation of nitroarenes in which ammonia borane (AB) was used as a hydrogen donor at room temperature. It was demonstrated that the thickness of the Pd shell has a significant effect on the catalytic activity of rGO@Ag/Pd catalysts and the 1.75nm Pd shell provided the highest performance in the transfer hydrogenation reactions. The rGO@Ag/Pd catalyzed transfer hydrogenation reactions were tested over a variety of nitroarenes (total 16 examples) and they were all converted to the corresponding aniline derivatives with high yields in 5-15min under ambient conditions. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Revisited reaction-diffusion model of thermal desorption spectroscopy experiments on hydrogen retention in material

    SciTech Connect

    Guterl, Jerome Smirnov, R. D.; Krasheninnikov, S. I.

    2015-07-28

    Desorption phase of thermal desorption spectroscopy (TDS) experiments performed on tungsten samples exposed to flux of hydrogen isotopes in fusion relevant conditions is analyzed using a reaction-diffusion model describing hydrogen retention in material bulk. Two regimes of hydrogen desorption are identified depending on whether hydrogen trapping rate is faster than hydrogen diffusion rate in material during TDS experiments. In both regimes, a majority of hydrogen released from material defects is immediately outgassed instead of diffusing deeply in material bulk when the evolution of hydrogen concentration in material is quasi-static, which is the case during TDS experiments performed with tungsten samples exposed to flux of hydrogen isotopes in fusion related conditions. In this context, analytical expressions of the hydrogen outgassing flux as a function of the material temperature are obtained with sufficient accuracy to describe main features of thermal desorption spectra (TDSP). These expressions are then used to highlight how characteristic temperatures of TDSP depend on hydrogen retention parameters, such as trap concentration or activation energy of detrapping processes. The use of Arrhenius plots to characterize retention processes is then revisited when hydrogen trapping takes place during TDS experiments. Retention processes are also characterized using the shape of desorption peaks in TDSP, and it is shown that diffusion of hydrogen in material during TDS experiment can induce long desorption tails visible aside desorption peaks at high temperature in TDSP. These desorption tails can be used to estimate activation energy of diffusion of hydrogen in material.

  18. TDDFT study on the excited-state proton transfer of 8-hydroxyquinoline: key role of the excited-state hydrogen-bond strengthening.

    PubMed

    Lan, Sheng-Cheng; Liu, Yu-Hui

    2015-03-15

    Density functional theory (DFT) and time-dependent density functional theory (TDDFT) calculations have been employed to study the excited-state intramolecular proton transfer (ESIPT) reaction of 8-hydroxyquinoline (8HQ). Infrared spectra of 8HQ in both the ground and the lowest singlet excited states have been calculated, revealing a red-shift of the hydroxyl group (-OH) stretching band in the excited state. Hence, the intramolecular hydrogen bond (O-H···N) in 8HQ would be significantly strengthened upon photo-excitation to the S1 state. As the intramolecular proton-transfer reaction occurs through hydrogen bonding, the ESIPT reaction of 8HQ is effectively facilitated by strengthening of the electronic excited-state hydrogen bond (O-H···N). As a result, the intramolecular proton-transfer reaction would occur on an ultrafast timescale with a negligible barrier in the calculated potential energy curve for the ESIPT reaction. Therefore, although the intramolecular proton-transfer reaction is not favorable in the ground state, the ESIPT process is feasible in the excited state. Finally, we have identified that radiationless deactivation via internal conversion (IC) becomes the main dissipative channel for 8HQ by analyzing the energy gaps between the S1 and S0 states for the enol and keto forms.

  19. Consistency in Quenching of ``Absolute'' Spectroscopic Factors from Transfer Reactions

    NASA Astrophysics Data System (ADS)

    Schiffer, J. P.; Kay, B. P.; Freeman, S. J.

    2013-04-01

    The strengths of single-particle transitions in (e,e'p) knockout reactions on closed-shell nuclei are lower than expected,footnotetextG. J. Kramer et al., Nucl. Phys. A679, 267 (2001). due to limitations of the mean-field description imposed by correlations. This quenching of single-particle strength by ˜0.5 appeared to be a general property of nuclei from ^16O to ^208Pb. In our work, the combined sums of neutron-adding and neutron-removing strengths from (d,p) and (p,d) transfer reactions on four Ni isotopes yield very similar quenching factors of ˜0.53 (varying by ˜10% with reasonable choices of optical-model parameters).footnotetextJ. P. Schiffer et al., Phys. Rev. Lett. 108, 022501 (2012). Recently, spectroscopic overlaps between ^4He and ^3He were extracted from GFMC calculations.footnotetextI. Brida et al., Phys. Rev. C 84, 024319 (2011). With these, our data on (α,^3He) and (^3He,α) on the Ni isotopes yields ˜0.62. Additional data for proton transfer on Ni and transfer on other nuclei are also being analyzed. This work was supported by the U.S. Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357 and the U.K. Science and Technology Facilities Council.

  20. Fluctuations in Biological and Bioinspired Electron-Transfer Reactions

    PubMed Central

    Skourtis, Spiros S.; Waldeck, David H.; Beratan, David N.

    2010-01-01

    Central to theories of electron transfer (ET) is the idea that nuclear motion generates a transition state that enables electron flow to proceed, but nuclear motion also induces fluctuations in the donor-acceptor (DA) electronic coupling that is the rate-limiting parameter for nonadiabatic ET. The interplay between the DA energy gap and DA coupling fluctuations is particularly noteworthy in biological ET, where flexible protein and mobile water bridges take center stage. Here, we discuss the critical timescales at play for ET reactions in fluctuating media, highlighting issues of the Condon approximation, average medium versus fluctuation-controlled electron tunneling, gated and solvent relaxation controlled electron transfer, and the influence of inelastic tunneling on electronic coupling pathway interferences. Taken together, one may use this framework to establish principles to describe how macromolecular structure and structural fluctuations influence ET reactions. This framework deepens our understanding of ET chemistry in fluctuating media. Moreover, it provides a unifying perspective for biophysical charge-transfer processes and helps to frame new questions associated with energy harvesting and transduction in fluctuating media. PMID:20192814

  1. Iridium-catalyzed hydrogen transfer: synthesis of substituted benzofurans, benzothiophenes, and indoles from benzyl alcohols.

    PubMed

    Anxionnat, Bruno; Gomez Pardo, Domingo; Ricci, Gino; Rossen, Kai; Cossy, Janine

    2013-08-02

    An iridium-catalyzed hydrogen transfer has been developed in the presence of p-benzoquinone, allowing the synthesis of a diversity of substituted benzofurans, benzothiophenes, and indoles from substituted benzylic alcohols.

  2. Neutral transition metal hydrides as acids in hydrogen bonding and proton transfer: media polarity and specific solvation effects.

    PubMed

    Levina, Vladislava A; Filippov, Oleg A; Gutsul, Evgenii I; Belkova, Natalia V; Epstein, Lina M; Lledos, Agusti; Shubina, Elena S

    2010-08-18

    Structural, spectroscopic, and electronic features of weak hydrogen-bonded complexes of CpM(CO)(3)H (M = Mo (1a), W (1b)) hydrides with organic bases (phosphine oxides R(3)PO (R = n-C(8)H(17), NMe(2)), amines NMe(3), NEt(3), and pyridine) are determined experimentally (variable temperature IR) and computationally (DFT/M05). The intermediacy of these complexes in reversible proton transfer is shown, and the thermodynamic parameters (DeltaH degrees , DeltaS degrees ) of each reaction step are determined in hexane. Assignment of the product ion pair structure is made with the help of the frequency calculations. The solvent effects were studied experimentally using IR spectroscopy in CH(2)Cl(2), THF, and CH(3)CN and computationally using conductor-like polarizable continuum model (CPCM) calculations. This complementary approach reveals the particular importance of specific solvation for the hydrogen-bond formation step. The strength of the hydrogen bond between hydrides 1 and the model bases is similar to that of the M-H...X hydrogen bond between 1 and THF (X = O) or CH(3)CN (X = N) or between CH(2)Cl(2) and the same bases. The latter competitive weak interactions lower the activities of both the hydrides and the bases in the proton transfer reaction. In this way, these secondary effects shift the proton transfer equilibrium and lead to the counterintuitive hampering of proton transfer upon solvent change from hexane to moderately polar CH(2)Cl(2) or THF.

  3. Reaction mechanism and isotope effects derived from centroid transition state theory in intramolecular proton transfer reactions

    NASA Astrophysics Data System (ADS)

    Iftimie, Radu; Schofield, Jeremy

    2001-10-01

    In this article the tautomerization reaction of the enol form of malonaldehyde is used to investigate the magnitude and origin of changes in centroid transition state theory proton transfer reaction rate predictions caused by the quantum dispersion of heavy nuclei. Using an empirical valence bond method to construct the potential energy surface, it is found that quantization of the nuclear degrees of freedom of the carbon atoms significantly influences the centroid potential of mean force used to describe the proton transfer reaction. In contrast, an ab initio simulation carried out using a recently developed molecular mechanics based importance sampling method [J. Chem. Phys. 114, 6763 (2001)] in combination with an accurate density functional theory evaluation of the electronic energies shows a substantially smaller influence of the quantum nuclear degrees of freedom of the secondary atoms on the centroid potential of mean force. A detailed analysis of the different influence of quantization of the nuclear degrees of freedom of secondary atoms observed in the ab initio and empirical valence bond centroid potential of mean force was carried out. It is shown that for the empirical valence bond potential, a significant decrease of the centroid potential of mean force arises through the quantum tunneling of carbon atoms in the molecular backbone. Furthermore, it is demonstrated that in molecular mechanics potentials aimed to describe intramolecular proton transfer reactions, the functional form of the potential energy terms coupling the primary and secondary atom motions as the reaction proceeds as well as the mass of the primary particle can significantly influence the centroid transition state theory predictions of secondary kinetic isotope effects. Finally, the dependence of the reaction rate predictions and isotope effects on the choice of reaction coordinate is investigated and the validity of calculating kinetic isotope effects using the centroid transition

  4. Removal of multiple air pollutants by gas-phase reactions of hydrogen peroxide

    SciTech Connect

    Zamansky, V.M.; Ho, L.; Maly, P.M.; Seeker, W.R.

    1995-12-31

    Hydrogen peroxide is a large-volume chemical with a wide range of applications in different industries. If properly stored, hydrogen peroxide solutions in water are stable, with no loss of the effective substance. Environmental applications have become a major area of use for hydrogen peroxide because it is not itself a source of pollution, and water and oxygen are the only reaction by- products. There is a variety of developed or developing environmental technologies which use H{sub 2}O{sub 2} as an active reagent: detoxification and deodorization of industrial and municipal effluents; low temperature removal of nitrogen oxides, sulfur dioxide, cyanides, chlorine, hydrogen sulfide, organic compounds; low temperature treatment for catalytic NO-to-NO{sub 2} conversion, etc. This study develops a concept of high-temperature hydrogen peroxide injection into combustion gases or other off-gases followed by reactions of hydrogen peroxide with nitric oxide, sulfur trioxide, carbon monoxide and organic compounds.

  5. Application of the electron nuclear dynamics method to hydrogen abstraction and exchange reactions of hydrogen + HOD and deuterium + ammonium ion

    NASA Astrophysics Data System (ADS)

    Coutinho Neto, Mauricio Domingues

    2001-07-01

    The field of quantum molecular dynamics have flourished in the last 20 years. Methods that propose the solution of the time dependent Schrodinger equation for a molecular reactive process abound in the literature. However the majority of these methods focus on solving the nuclear Schrodinger equation subject to a known electronic potential. The electron nuclear dynamics (END) method proposes a framework of a hierarchy of approximations to the Schrodinger equation based on the time dependent variational Principle (TDVP). A general approach is sought to solve the electronic and nuclear problem simultaneously without making use of the Born-Oppenheimer approximation. The purpose of this work is to apply the minimal END to areas where its unique qualities can give new insight into the relevant dynamics of a chemical or physical process. Minimal END is a method for direct non-adiabatic dynamics. It describes the electrons with a family of complex determinantal wave-functions in terms of non-orthogonal spin orbitals and treats the nuclei as classical particles. In the first two studies, we apply the END method to hydrogen abstraction and exchange reactions at hyper-thermal collision energies. We investigate the D2+ NH+3 reaction at collision energies ranging from 6 to 16 eV and the H + HOD reaction at a collision energy of 1.575 eV. Collision energies refer to center of mass energies. Emphasis is put on the details of the abstraction and exchange reaction mechanisms for ground state reactants. In a final application we use minimal END to study the interaction of a strong laser field with the diatomic molecules HF and LiH. Effects of the polarization of the electronic potential on the dynamics are investigated. Emphasis is also placed on the development of a general method for interpreting the final time dependent wave-function of the product fragments. The purpose is to analyze the final state wave-function in terms of charge transfer channels as well as individual

  6. Catalysts for initiating the hydrogen-oxygen reaction at 78 K.

    NASA Technical Reports Server (NTRS)

    Jennings, T. J.; Voge, H. H.; Armstrong, W. E.

    1972-01-01

    Catalysts for initiating reaction of hydrogen with oxygen in gas mixtures at temperatures down to 78 K (-195 C) were sought. A rising-temperature reactor was used for detecting onset of reaction. The platinum metals, especially iridium, platinum, and ruthenium, were the most active. With high concentrations of iridium on an alumina support, reaction initiation was observed at -195 C for a helium stream containing 3% hydrogen and 1% oxygen. Best results were obtained when the catalyst had been preheated in hydrogen and cooled in a hydrogen environment before being contacted with oxygen-containing gas. The initiation is interpreted to be the result of transient phenomena which occur when a hydrogen-oxygen mixture contacts an active catalyst. Chemisorption of oxygen and formation of some water, along with water adsorption on the support, serve to raise the temperature to a point where true catalysis can proceed.

  7. MPW1K Performs Much Better than B3LYP in DFT Calculations on Reactions that Proceed by Proton-Coupled Electron Transfer (PCET)

    PubMed Central

    Lingwood, Mark; Hammond, Jeff R.; Hrovat, David A.; Mayer, James M.; Borden, Weston Thatcher

    2008-01-01

    DFT calculations have been performed with the B3LYP and MPW1K functional on the hydrogen atom abstraction reactions of ethenoxyl with ethenol and of phenoxyl with both phenol and α-naphthol. Comparison with the results of G3 calculations shows that B3LYP seriously underestimates the barrier heights for the reaction of ethenoxyl with ethenol by both proton-coupled electron transfer (PCET) and hydrogen atom transfer (HAT) mechanisms. The MPW1K functional also underestimates the barrier heights, but by much less than B3LYP. Similarly, comparison with the results of experiments on the reaction of phenoxyl radical with α-naphthol indicates that the barrier height for the preferred PCET mechanism is calculated more accurately by MPW1K than by B3LYP. These findings indicate that the MPW1K functional is much better suited than B3LYP for calculations on hydrogen abstraction reactions by both HAT and PCET mechanisms. PMID:18725967

  8. Smooth landscape solvent dynamics in electron transfer reactions

    NASA Astrophysics Data System (ADS)

    Leite, Vitor B. P.

    1999-05-01

    Solvent effects play a major role in controlling electron-transfer reactions. The solvent dynamics happens on a very high-dimensional surface, and this complex landscape is populated by a large number of minima. A critical problem is to understand the conditions under which the solvent dynamics can be represented by a single collective reaction coordinate. When this unidimensional representation is valid, one recovers the successful Marcus theory. In this study the approach used in a previous work [V. B. P. Leite and J. N. Onuchic; J. Phys. Chem. 100, 7680 (1996)] is extended to treat a more realistic solvent model, which includes energy correlation. The dynamics takes place in a smooth and well behaved landscape. The single shell of solvent molecules around a cavity is described by a two-dimensional system with periodic boundary conditions with nearest neighbor interaction. It is shown how the polarization-dependent effects can be inferred. The existence of phase transitions depends on a factor γ proportional to the contribution from the two parameters of the model. For the present model, γ suggests the existence of "weak kinetic phase transitions," which are used in the analysis of solvent effects in charge-transfer reactions.

  9. Hot hydrogen atoms - Initiators of reactions of interest in interstellar chemistry and evolution

    NASA Technical Reports Server (NTRS)

    Hong, K.-Y.; Hong, J.-H.; Becker, R. S.

    1974-01-01

    Hot hydrogen atoms possess kinetic (or translational) energy in excess of that to be expected if the atoms were in thermal equilibrium with the surroundings. In the investigation reported the hot hydrogen atoms were generated by the photolysis of donor molecules. The light sources for the photolysis were 1000-watt xenon or 500-watt mercury lamps combined with a filter system. The experiments show that hot hydrogen atoms can initiate reactions among simple molecules to produce biomolecules of significance.

  10. Hot hydrogen atoms - Initiators of reactions of interest in interstellar chemistry and evolution

    NASA Technical Reports Server (NTRS)

    Hong, K.-Y.; Hong, J.-H.; Becker, R. S.

    1974-01-01

    Hot hydrogen atoms possess kinetic (or translational) energy in excess of that to be expected if the atoms were in thermal equilibrium with the surroundings. In the investigation reported the hot hydrogen atoms were generated by the photolysis of donor molecules. The light sources for the photolysis were 1000-watt xenon or 500-watt mercury lamps combined with a filter system. The experiments show that hot hydrogen atoms can initiate reactions among simple molecules to produce biomolecules of significance.

  11. The role of hydrogen in the hydrogenation and hydrogenolysis of aniline on the nickel single crystal surfaces: Its implication on the mechanisms of HDN reactions

    SciTech Connect

    Huang, S.X.; Gland, J.L.; Fischer, D.A.

    1995-02-01

    The selectivity of hydrogenation and hydrogenolysis reactions for organonitrogen compounds on transition metal surfaces depends heavily on the availability of surface hydrogen surface under reaction conditions. The surface hydrogen produced during dehydrogenation of adsorbed aniline upon thermal activation does not significantly modify hydrogenolysis reactions because it desorbs below the reaction temperatures. A series of experiments which use external hydrogen to control the concentration of surface hydrogen at reaction temperatures are reported here. In situ kinetic measurements in the presence of reactive hydrogen environments have been used to probe the details of the adsorbed species and reaction mechanisms. Nickel single crystals have been used as well defined model catalysts for hydrodenitrogenation (HDN) reactions. Previously, the effect of external hydrogen on aniline hydrogenolysis on the Pt(111) surface has been reported. On Pt(111), C-N bond activation is substantially enhanced in the presence of hydrogen. The increased C-N bond cleavage is facilitated by hydrogen which maintains a parallel adsorption of the aromatic derivative of aniline. In the absence of surface hydrogen, the adsorbed intermediate tilts away from surface because of partial dehydrogenation with increasing temperature at about 400 K. This paper will discuss a recent study of aniline reactions on the Ni(100) and Ni(111) surfaces both in the presence and absence of hydrogen. Reactivity comparisons will also be made for these two nickel surfaces towards adsorbed aniline.

  12. Multinucleon transfer reactions in the 40Ar+208Pb system

    NASA Astrophysics Data System (ADS)

    Mijatović, T.; Szilner, S.; Corradi, L.; Montanari, D.; Pollarolo, G.; Fioretto, E.; Gadea, A.; Goasduff, A.; Malenica, D. Jelavić; Mǎrginean, N.; Milin, M.; Montagnoli, G.; Scarlassara, F.; Soić, N.; Stefanini, A. M.; Ur, C. A.; Valiente-Dobón, J. J.

    2016-12-01

    We measured multinucleon transfer reactions in the 40Ar+208Pb system at an energy close to the Coulomb barrier, by employing the PRISMA magnetic spectrometer. We extracted differential and total cross sections of the different transfer channels, with a careful investigation of the total kinetic energy loss distributions. Comparisons between different systems having the same 208Pb target and with projectiles going from neutron-poor to neutron-rich nuclei, i.e., 40Ca, 58Ni, and 40Ar, as well as between the data and GRAZING calculations have been carried out. The neutron-rich (stable) 40Ar beam allowed us to get access to the channels involving proton pickup, whose behavior in connection with the production of neutron-rich heavy partner has been outlined.

  13. Liquid composition having ammonia borane and decomposing to form hydrogen and liquid reaction product

    DOEpatents

    Davis, Benjamin L; Rekken, Brian D

    2014-04-01

    Liquid compositions of ammonia borane and a suitably chosen amine borane material were prepared and subjected to conditions suitable for their thermal decomposition in a closed system that resulted in hydrogen and a liquid reaction product.

  14. Photo-Induced Atom-Transfer Radical Reactions Using Charge-Transfer Complex between Iodine and Tertiary Amine.

    PubMed

    Yoshioka, Eito; Kohtani, Shigeru; Hashimoto, Takurou; Takebe, Tomoko; Miyabe, Hideto

    2017-01-01

    In the presence of charge-transfer complexes between iodine and tertiary amines, the aqueous-medium atom-transfer radical reactions proceeded under visible light irradiation without the typical photocatalysts.

  15. Ligand and Tetrathiometalate Effects in Induced Internal Electron Transfer Reactions.

    PubMed

    McConnachie, C. A.; Stiefel, E. I.

    1999-03-08

    New rhenium sulfide complexes, [Re(IV)(2)(&mgr;-S)(2)(&mgr;-S(2))(&mgr;-S(2)COR)(S(2)COR)(2)](-) and [Re(IV)(2)(&mgr;-S)(2)(S(2)COR)(4)], and a new tungsten sulfide complex, [WS(S(2))(S(2)CC(6)H(5))(2)], have been synthesized and isolated via induced internal redox reactions involving the appropriate tetrathiometalate and 1,1-dithiolate disulfide. The red complex [Re(IV)(2)(&mgr;-S)(2)(&mgr;-S(2))(&mgr;-S(2)COR)(S(2)COR)(2)](-), 1, was isolated from the reaction of dialkylxanthogen disulfide, [(ROCS(2))(2)], and tetraethylammonium tetrathioperrhenate, [Et(4)N][Re(VII)S(4)]. Crystal structure analysis of 1 reveals an edge-sharing (&mgr;-S)(2) bioctahedron containing both bridging disulfide and xanthate ligands. This reaction is compared to the known reaction between tetraalkylthiuram disulfide, [(R(2)NCS(2))(2)], and [Et(4)N][ReS(4)], which produces the green complex [Re(IV)(2)(&mgr;-S)(2)(S(2)CNR(2))(4)]. The corresponding green alkyl xanthate analogue, [Re(IV)(2)(&mgr;-S)(2)(S(2)COR)(4)], 2, was synthesized by a simple redox reaction between rhenium pentachloride, ReCl(5), and potassium alkyl xanthate, [K(S(2)COR)]. Comparing 1 with other known [ReS(4)](-)/1,1-dithiolate disulfide reaction products, such as [Re(IV)(2)(&mgr;-S)(2)(S(2)CNR(2))(4)] and [Re(III)(S(2)CC(6)H(5))(S(3)CC(6)H(5))(2)], shows a correlation between the electron-donating ability of the ligand and the nature of the reaction product. Reactions of [Et(4)N](2)[Mo(VI)S(4)], [Et(4)N][Re(VII)S(4)], or [Et(4)N](2)[W(VI)S(4)] with dithiobenzoate disulfide, [(S(2)CC(6)H(5))(2)], reveal a correlation between the ligand-to-metal charge transfer energy band (LMCT(1)) of the tetrathiometalate and the reaction product. The known purple complex [Mo(IV)(S(2)CC(6)H(5))(4)] and two new green complexes, [Re(III)(S(2)CC(6)H(5))(S(3)CC(6)H(5))(2)] (recently communicated) and [W(VI)S(S(2))(S(2)CC(6)H(5))(2)], were isolated from related reactions.

  16. Hydrogenation of Graphene by Reaction at High Pressure and High Temperature.

    PubMed

    Smith, Dean; Howie, Ross T; Crowe, Iain F; Simionescu, Cristina L; Muryn, Chris; Vishnyakov, Vladimir; Novoselov, Konstantin S; Kim, Yong-Jin; Halsall, Matthew P; Gregoryanz, Eugene; Proctor, John E

    2015-08-25

    The chemical reaction between hydrogen and purely sp(2)-bonded graphene to form graphene's purely sp(3)-bonded analogue, graphane, potentially allows the synthesis of a much wider variety of novel two-dimensional materials by opening a pathway to the application of conventional chemistry methods in graphene. Graphene is currently hydrogenated by exposure to atomic hydrogen in a vacuum, but these methods have not yielded a complete conversion of graphene to graphane, even with graphene exposed to hydrogen on both sides of the lattice. By heating graphene in molecular hydrogen under compression to modest high pressure in a diamond anvil cell (2.6-5.0 GPa), we are able to react graphene with hydrogen and propose a method whereby fully hydrogenated graphane may be synthesized for the first time.

  17. Analysis of surface, subsurface, and bulk hydrogen in ZnO using nuclear reaction analysis

    SciTech Connect

    Traeger, F.; Kauer, M.; Woell, Ch.; Rogalla, D.; Becker, H.-W.

    2011-08-15

    Hydrogen concentrations in ZnO single crystals exposing different surfaces have been determined to be in the range of (0.02-0.04) at.% with an error of {+-}0.01 at.% using nuclear reaction analysis. In the subsurface region, the hydrogen concentration has been determined to be higher by up to a factor of 10. In contrast to the hydrogen in the bulk, part of the subsurface hydrogen is less strongly bound, can be removed by heating to 550 deg. C, and reaccommodated by loading with atomic hydrogen. By exposing the ZnO(1010) surface to water above room temperature and to atomic hydrogen, respectively, hydroxylation with the same coverage of hydrogen is observed.

  18. Chemical reaction fouling model for single-phase heat transfer

    SciTech Connect

    Panchal, C.B.; Watkinson, A.P.

    1993-08-01

    A fouling model was developed on the premise that the chemical reaction for generation of precursor can take place in the bulk fluid, in the thermalboundary layer, or at the fluid/wall interface, depending upon the interactive effects of flu id dynamics, heat and mass transfer, and the controlling chemical reaction. The analysis was used to examine the experimental data for fouling deposition of polyperoxides produced by autoxidation of indene in kerosene. The effects of fluid and wall temperatures for two flow geometries were analyzed. The results showed that the relative effects of physical parameters on the fouling rate would differ for the three fouling mechanisms; therefore, it is important to identify the controlling mechanism in applying the closed-flow-loop data to industrial conditions.

  19. Hydrogenolysis Of 5-Carbon Sugars, Sugar Alcohols And Compositions For Reactions Involving Hydrogen

    DOEpatents

    Werpy, Todd A.; Frye, Jr., John G.; Zacher, Alan H.; Miller, Dennis J.

    2004-01-13

    Methods and compositions for reactions of hydrogen over a Re-containing catalyst with compositions containing a 5-carbon sugar, sugar alcohol, or lactic acid are described. It has been surprisingly discovered that reaction with hydrogen over a Re-containing multimetallic catalyst resulted in superior conversion and selectivity to desired products such as propylene glycol. A process for the synthesis of PG from lactate or lactic acid is also described.

  20. Hydrogenolysis of 5-carbon sugars, sugar alcohols, and other methods and compositions for reactions involving hydrogen

    DOEpatents

    Werpy, Todd A [West Richland, WA; Zacher, Alan H [Kennewick, WA

    2002-11-12

    Methods and compositions for reactions of hydrogen over a Re-containing catalyst with compositions containing a 5-carbon sugar, sugar alcohol, or lactic acid are described. It has been surprisingly discovered that reaction with hydrogen over a Re-containing multimetallic catalyst resulted in superior conversion and selectivity to desired products such as propylene glycol. A process for the synthesis of PG from lactate or lactic acid is also described.

  1. Defects Engineered Monolayer MoS2 for Improved Hydrogen Evolution Reaction

    SciTech Connect

    Ye, Gonglan; Gong, Yongji; Lin, Junhao; Li, Bo; He, Yongmin; Pantelides, Sokrates T.; Zhou, Wu; Vajtai, Robert; Ajayan, Pulickel M.

    2016-01-13

    MoS2 is a promising, low-cost material for electrochemical hydrogen production due to its high activity and stability during the reaction. Our work represents an easy method to increase the hydrogen production in electrochemical reaction of MoS2 via defect engineering, and helps to understand the catalytic properties of MoS2.

  2. 40 CFR 721.10325 - Cyclosilazanes, di-Me, Me hydrogen, polymers with di-Me, Me hydrogen silazanes, reaction products...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., polymers with di-Me, Me hydrogen silazanes, reaction products with 3-(triethoxysilyl)-1-propanamine. 721..., reaction products with 3-(triethoxysilyl)-1-propanamine. (a) Chemical substance and significant new uses..., polymers with di-Me, Me hydrogen silazanes, reaction products with 3-(triethoxysilyl)-1-propanamine (PMN...

  3. 40 CFR 721.10325 - Cyclosilazanes, di-Me, Me hydrogen, polymers with di-Me, Me hydrogen silazanes, reaction products...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., polymers with di-Me, Me hydrogen silazanes, reaction products with 3-(triethoxysilyl)-1-propanamine. 721..., reaction products with 3-(triethoxysilyl)-1-propanamine. (a) Chemical substance and significant new uses..., polymers with di-Me, Me hydrogen silazanes, reaction products with 3-(triethoxysilyl)-1-propanamine (PMN...

  4. 40 CFR 721.10325 - Cyclosilazanes, di-Me, Me hydrogen, polymers with di-Me, Me hydrogen silazanes, reaction products...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., polymers with di-Me, Me hydrogen silazanes, reaction products with 3-(triethoxysilyl)-1-propanamine. 721..., reaction products with 3-(triethoxysilyl)-1-propanamine. (a) Chemical substance and significant new uses..., polymers with di-Me, Me hydrogen silazanes, reaction products with 3-(triethoxysilyl)-1-propanamine (PMN...

  5. Femtosecond dynamics of fundamental reaction processes in liquids: Proton transfer, geminate recombination, isomerization and vibrational relaxation

    SciTech Connect

    Schwartz, Benjamin Joel

    1992-11-01

    The fast excited state intramolecular proton transfer of 3-hydroxyflavone is measured and effects of external hydrogen-bonding interactions on the proton transfer are studied. The proton transfer takes place in ~240 fsec in nonpolar environments, but becomes faster than instrumental resolution of 110 fsec in methanol solution. The dynamics following photodissociation of CH2I2 and other small molecules provide the first direct observations of geminate recombination. The recombination of many different photodissociating species occurs on a ~350 fsec time scale. Results show that recombination yields but not rates depend on the solvent environment and suggest that recombination kinetics are dominated by a single collision with surrounding solvent cage. Studies of sterically locked phenyl-substituted butadienes offer new insights into the electronic structure and isomerization behavior of conjugated polyenes. Data show no simple correlation between hinderance of specific large amplitude motions and signatures of isomerizative behavior such as viscosity dependent excited state lifetimes, implying that the isomerization does not provide a suitable for simple condensed phase reaction rate theories. The spectral dynamics of a photochromic spiropyran indicate that recombination, isomerization and vibrational relaxation all play important roles in photoreactivity of complex molecules. The interplay of these microscopic phenomena and their effect on macroscopic properties such as photochromism are discussed. All the results indicate that the initial steps of the photochromic reaction process occur extremely rapidly. Laser system and computer codes for data analysis are discussed.

  6. Sorption enhanced reaction process for production of hydrogen. Phase 1 final report

    SciTech Connect

    Mayorga, S.G.; Hufton, J.R.; Sircar, S.; Gaffney, T.R.

    1997-07-01

    Hydrogen is one of the most suitable energy sources from both technological and environmental perspectives for the next century, especially in the context of a sustainable global energy economy. The most common industrial process to produce high-purity (99.99+ mol%) hydrogen is to reform natural gas by a catalytic reaction with steam at a high temperature. Conventional steam-methane reforming (SMR) contributed to approximately 2.4 billion standard cubic feet per day (SCFD) of hydrogen production in the US. By 1998, the growth of SMR-produced hydrogen in the US is expected to reach 3.4 billion SCFD, with the increased demand attributed to hydrogen`s use in reformulated gasolines required by the Clean Air Act. The goal of this work is to develop an even more efficient process for reforming steam and methane to hydrogen product than the conventional SMR process. The application of Sorption Enhanced Reaction (SER) technology to SMR has the potential to markedly reduce the cost of hydrogen through lower capital and energy requirements. The development of a more cost-effective route to hydrogen production based on natural gas as the primary energy source will accelerate the transition to a more hydrogen-based economy in the future. The paper describes the process, which includes a sorbent for CO{sub 2} removal, and the various tasks involved in its development.

  7. Plasmonic Properties of Bimetallic Nanostructures and Their Applications in Hydrogen Sensing and Chemical Reactions

    NASA Astrophysics Data System (ADS)

    Jiang, Ruibin

    their photocatalytic performance for Suzuki coupling reactions. The results indicate that plasmonic Au/Pd bimetallic nanostructures can efficiently harvest light energy for chemical reactions. The intimate integration of plasmonic and catalytic components in one nanostructure enables the light energy absorbed by the plasmonic component to be directly transferred to the catalytic component. Both hot electron transfer and photothermal heating contribute to the plasmon-enhanced chemical reactions. The photothermal effect is a nonlocal heating and the contribution of the hot electron transfer effect is dependent on the environmental temperature. Therefore, the photothermal heating effect can promote the hot electron transfer effect. I believe that my research work will be very helpful for the design and application of plasmonic bimetallic nanostructures. My study on the plasmonic properties of Au/Ag bimetallic nanocrystals has deepened the understanding of the plasmons of Au/Ag nanorods and will be helpful for utilizing the different modes to achieve specific functions. The hydrogen sensing and photocatalysis of Au/Pd bimetallic nanostructures have shown that the integration of functional components with plasmonic nanostructures can achieve unconventional properties, which will flourish the applications of plasmons in life sciences, energy, and environmental areas.

  8. Noncatalytic hydrogenation of naphthalene in nanosized membrane reactors with accumulated hydrogen and controlled adjustment of their reaction zone volumes

    NASA Astrophysics Data System (ADS)

    Soldatov, A. P.

    2017-05-01

    As part of ongoing studies aimed at designing the next generation of nanosized membrane reactors (NMRs) with accumulated hydrogen, the noncatalytic hydrogenation of naphthalene in pores of ceramic membranes (TRUMEM ultrafiltration membranes with D av = 50 and 90 nm) is performed for the first time, using hydrogen preadsorbed in a hybrid carbon nanostructure: mono- and multilayered oriented carbon nanotubes with graphene walls (OCNTGs) that form on inner pore surfaces. In this technique, the reaction proceeds in the temperature range of 330-390°C at contact times of 10-16 h. The feedstock is an 8% naphthalene solution in decane. The products are analyzed via chromatography on a quartz capillary column coated with polydimethylsiloxane (SE-30). It is established for the first time that in NMRs, the noncatalytic hydrogenation of naphthalene occurs at 370-390°C, forming 1,2,3,4-tetrahydronaphthalene in amounts of up to 0.61%. The rate constants and activation energy (123.5 kJ/mol) of the noncatalytic hydrogenation reaction are determined for the first time. The possibility of designing an NMR with an adjustable reaction zone volume is explored. Changes in the pore structure of the membranes after their modification with pyrocarbon nanosized crystallites (PNCs) are therefore studied as well. It is shown that lengthening the process time reduces pore size: within 23 h after the deposition of PNCs, the average pore radius ( r av) falls from 25 to 3.1 nm. The proposed approach would allow us to design nanoreactors of molecular size and conduct hydrogenation reactions within certain guidelines to synthesize new chemical compounds.

  9. The reaction of hydrogen peroxide with nitrogen dioxide and nitric oxide.

    NASA Technical Reports Server (NTRS)

    Gray, D.; Lissi, E.; Heicklen, J.

    1972-01-01

    The reactions were studied with the aid of a mass spectrometer. A pinhole bleed system provided continuous sampling of the gas mixture in the cell during the reaction. It was found that the homogeneous reactions of nitric oxide and nitrogen dioxide with hydrogen peroxide are too slow to be of any significance in the upper atmosphere. However, the heterogeneous reactions may be important in the conversion of nitric oxide to nitrogen dioxide in the case of polluted urban atmospheres.

  10. Reactions of the cumyloxyl and benzyloxyl radicals with strong hydrogen bond acceptors. Large enhancements in hydrogen abstraction reactivity determined by substrate/radical hydrogen bonding.

    PubMed

    Salamone, Michela; DiLabio, Gino A; Bietti, Massimo

    2012-12-07

    A kinetic study on hydrogen abstraction from strong hydrogen bond acceptors such as DMSO, HMPA, and tributylphosphine oxide (TBPO) by the cumyloxyl (CumO(•)) and benzyloxyl (BnO(•)) radicals was carried out in acetonitrile. The reactions with CumO(•) were described in terms of a direct hydrogen abstraction mechanism, in line with the kinetic deuterium isotope effects, k(H)/k(D), of 2.0 and 3.1 measured for reaction of this radical with DMSO/DMSO-d(6) and HMPA/HMPA-d(18). Very large increases in reactivity were observed on going from CumO(•) to BnO(•), as evidenced by k(H)(BnO(•))/k(H)(CumO(•)) ratios of 86, 4.8 × 10(3), and 1.6 × 10(4) for the reactions with HMPA, TBPO, and DMSO, respectively. The k(H)/k(D) of 0.91 and 1.0 measured for the reactions of BnO(•) with DMSO/DMSO-d(6) and HMPA/HMPA-d(18), together with the k(H)(BnO(•))/k(H)(CumO(•)) ratios, were explained on the basis of the formation of a hydrogen-bonded prereaction complex between the benzyloxyl α-C-H and the oxygen atom of the substrates followed by hydrogen abstraction. This is supported by theoretical calculations that show the formation of relatively strong prereaction complexes. These observations confirm that in alkoxyl radical reactions specific hydrogen bond interactions can dramatically influence the hydrogen abstraction reactivity, pointing toward the important role played by structural and electronic effects.

  11. DFT/B3LYP study of the substituent effect on the reaction enthalpies of the individual steps of single electron transfer-proton transfer and sequential proton loss electron transfer mechanisms of phenols antioxidant action.

    PubMed

    Klein, Erik; Lukes, Vladimír

    2006-11-09

    The reaction enthalpies related to the individual steps of two phenolic antioxidants action mechanisms, single electron transfer-proton transfer (SET-PT) and sequential proton loss electron transfer (SPLET), for 30 meta and para-substituted phenols (ArOH) were calculated using DFT/B3LYP method. These mechanisms represent the alternative ways to the extensively studied hydrogen atom transfer (HAT) mechanism. Except the comparison of calculated reaction enthalpies with available experimental and/or theoretical values, obtained enthalpies were correlated with Hammett constants. We have found that electron-donating substituents induce the rise in the enthalpy of proton dissociation (PDE) from ArOH+* radical cation (second step in SET-PT) and in the proton affinities of phenoxide ions ArO- (reaction enthalpy of the first step in SPLET). Electron-withdrawing groups cause the increase in the reaction enthalpies of the processes where electron is abstracted, i.e., in the ionization potentials of ArOH (first step in SET-PT) and in the enthalpy of electron transfer from ArO- (second step in SPLET). Found results indicate that all dependences of reaction enthalpies on Hammett constants of the substituents are linear. The calculations of liquid-phase reaction enthalpies for several para-substituted phenols indicate that found trends hold also in water, although substituent effects are weaker. From the thermodynamic point of view, entering SPLET mechanism represents the most probable process in water.

  12. Correlation of hydrogen-atom abstraction reaction efficiencies for aryl radicals with their vertical electron affinities and the vertical ionization energies of the hydrogen-atom donors.

    PubMed

    Jing, Linhong; Nash, John J; Kenttämaa, Hilkka I

    2008-12-31

    The factors that control the reactivities of aryl radicals toward hydrogen-atom donors were studied by using a dual-cell Fourier-transform ion cyclotron resonance mass spectrometer. Hydrogen-atom abstraction reaction efficiencies for two substrates, cyclohexane and isopropyl alcohol, were measured for 23 structurally different, positively charged aryl radicals, which included dehydrobenzenes, dehydronaphthalenes, dehydropyridines, and dehydro(iso)quinolines. A logarithmic correlation was found between the hydrogen-atom abstraction reaction efficiencies and the (calculated) vertical electron affinities (EA) of the aryl radicals. Transition state energies calculated for the reaction of three of the aryl radicals with isopropyl alcohol were found to correlate linearly with their (calculated) EAs. No correlation was found between the hydrogen-atom abstraction reaction efficiencies and the (calculated) enthalpy changes for the reactions. Measurement of the reaction efficiencies for the reactions of 15 different hydrogen-atom donors with two selected aryl radicals revealed a logarithmic correlation between the hydrogen-atom abstraction reaction efficiencies and the vertical ionization energies (IE) of the hydrogen-atom donors, but not the lowest homolytic X-H (X = heavy atom) bond dissociation energies of the hydrogen-atom donors. Examination of the hydrogen-atom abstraction reactions of 29 different aryl radicals and 18 different hydrogen-atom donors showed that the reaction efficiency increases (logarithmically) as the difference between the IE of the hydrogen-atom donor and the EA of the aryl radical decreases. This dependence is likely to result from the increasing polarization, and concomitant stabilization, of the transition state. Thus, the hydrogen-atom abstraction reaction efficiency for an aryl radical can be "tuned" by structural changes that influence either the vertical EA of the aryl radical or the vertical IE of the hydrogen atom donor.

  13. TDDFT study of the polarity controlled ion-pair separation in an excited-state proton transfer reaction

    NASA Astrophysics Data System (ADS)

    Liu, Yu-Hui; Mehata, Mohan Singh; Lan, Sheng-Cheng

    2014-07-01

    6-Hydroxyquinoline (6HQ) is an ideal photoacid system for exploring excited-state proton transfer (ESPT) reactions. We have previously (Mahata et al. (2002) [40]) shown that the ESPT reaction between 6HQ and trimethylamine (TMA) leads to an “unusual” emission in the 440-450 nm range, containing two decay components (∼5 ns and ∼12 ns). The observed results suggest the presence of a contact ion-pair and a solvent separated ion-pair. In this work, density functional theory (DFT) and time-dependent density functional theory (TD-DFT) have been employed to study the nature of the contact ion-pair formed between 6HQ and TMA and to determine why the decay component ∼12 ns is absent in a non-polar solvent. Calculations of the hydrogen-bonded complexes formed between 6HQ and TMA and its ESPT reaction product, namely 6HQ-TMA and 6HQ-TMA-PT, respectively, have been carried out, both in the electronic ground and excited states. Moreover, by using the CPCM model, different dielectric constants have been introduced into the calculations. On increasing the dielectric constant, the hydrogen bond in 6HQ-TMA-PT becomes weaker and the hydrogen bond length becomes larger; this effectively facilitates the proton transfer reaction and formation of separated ion-pair. Thus, the separation and diffusion of the contact ion-pair can be controlled by changing the polarity of the surroundings.

  14. TDDFT study of the polarity controlled ion-pair separation in an excited-state proton transfer reaction.

    PubMed

    Liu, Yu-Hui; Mehata, Mohan Singh; Lan, Sheng-Cheng

    2014-07-15

    6-Hydroxyquinoline (6HQ) is an ideal photoacid system for exploring excited-state proton transfer (ESPT) reactions. We have previously (Mahata et al. (2002)) shown that the ESPT reaction between 6HQ and trimethylamine (TMA) leads to an "unusual" emission in the 440-450 nm range, containing two decay components (∼5 ns and ∼12 ns). The observed results suggest the presence of a contact ion-pair and a solvent separated ion-pair. In this work, density functional theory (DFT) and time-dependent density functional theory (TD-DFT) have been employed to study the nature of the contact ion-pair formed between 6HQ and TMA and to determine why the decay component ∼12 ns is absent in a non-polar solvent. Calculations of the hydrogen-bonded complexes formed between 6HQ and TMA and its ESPT reaction product, namely 6HQ-TMA and 6HQ-TMA-PT, respectively, have been carried out, both in the electronic ground and excited states. Moreover, by using the CPCM model, different dielectric constants have been introduced into the calculations. On increasing the dielectric constant, the hydrogen bond in 6HQ-TMA-PT becomes weaker and the hydrogen bond length becomes larger; this effectively facilitates the proton transfer reaction and formation of separated ion-pair. Thus, the separation and diffusion of the contact ion-pair can be controlled by changing the polarity of the surroundings.

  15. Electrochemical Impedance Spectroscopy (bio)sensing through hydrogen evolution reaction induced by gold nanoparticles.

    PubMed

    Mayorga-Martinez, Carmen C; Chamorro-Garcia, Alejandro; Merkoçi, Arben

    2015-05-15

    A new gold nanoparticle (AuNP) based detection strategy using Electrochemical Impedance Spectroscopy (EIS) through hydrogen evolution reaction (HER) is proposed. This EIS-HER method is used as an alternative to the conventional EIS based on [Fe(CN)6](3-/4-) or [Ru(NH3)6](3+/2+) indicators. The proposed method is based on the HER induced by AuNPs. EIS measurements for different amounts of AuNP are registered and the charge transfer resistance (Rct) was found to correlate and be useful for their quantification. Moreover the effect of AuNP size on electrical properties of AuNPs for HER using this sensitive technique has been investigated. Different EIS-HER signals generated in the presence of AuNPs of different sizes (2, 5, 10, 15, 20, and 50 nm) are observed, being the corresponding phenomena extendible to other nanoparticles and related catalytic reactions. This EIS-HER sensing technology is applied to a magneto-immunosandwich assay for the detection of a model protein (IgG) achieving improvements of the analytical performance in terms of a wide linear range (2-500 ng mL(-1)) with a good limit of detection (LOD) of 0.31 ng mL(-1) and high sensitivity. Moreover, with this methodology a reduction of one order of magnitude in the LOD for IgG detection, compared with a chroamperometric technique normally used was achieved.

  16. Charge-transfer reactions, energy gaps, and electron-transfer diabatic surfaces

    NASA Astrophysics Data System (ADS)

    Marzari, Nicola; Sit, P. H.-L.

    2007-03-01

    Density-functional theory in the LDA or GGA approximation has become the widely-used standard model of condensed matter theory. I will discuss shortcomings and solutions to some of the problems that arise when addressing complex chemical reactions. These challenges include the correct description of electron-transfer processes, where electrons become delocalized and shared between ions that should be in different oxidation states. An effective solution can be obtained by introducing a penalty functional that imposes the correct charge state on the ions involved in the reaction [1]. This approach is validated in a model system, showing that the ground state and the charge-transfer excited state can be calculated with negligible errors, and then applied to the determination of the diabatic free-energy surfaces for ferrous and ferric ions in solution. [1] P. H.-L. Sit, Matteo Cococcioni and Nicola Marzari, Phys. Rev. Lett. 97, 028303 (2006).

  17. Zeolite Membrane Reactor for Water Gas Shift Reaction for Hydrogen Production

    SciTech Connect

    Lin, Jerry Y.S.

    2013-01-29

    Gasification of biomass or heavy feedstock to produce hydrogen fuel gas using current technology is costly and energy-intensive. The technology includes water gas shift reaction in two or more reactor stages with inter-cooling to maximize conversion for a given catalyst volume. This project is focused on developing a membrane reactor for efficient conversion of water gas shift reaction to produce a hydrogen stream as a fuel and a carbon dioxide stream suitable for sequestration. The project was focused on synthesizing stable, hydrogen perm-selective MFI zeolite membranes for high temperature hydrogen separation; fabricating tubular MFI zeolite membrane reactor and stable water gas shift catalyst for membrane reactor applications, and identifying experimental conditions for water gas shift reaction in the zeolite membrane reactor that will produce a high purity hydrogen stream. The project has improved understanding of zeolite membrane synthesis, high temperature gas diffusion and separation mechanisms for zeolite membranes, synthesis and properties of sulfur resistant catalysts, fabrication and structure optimization of membrane supports, and fundamentals of coupling reaction with separation in zeolite membrane reactor for water gas shift reaction. Through the fundamental study, the research teams have developed MFI zeolite membranes with good perm-selectivity for hydrogen over carbon dioxide, carbon monoxide and water vapor, and high stability for operation in syngas mixture containing 500 part per million hydrogen sulfide at high temperatures around 500°C. The research teams also developed a sulfur resistant catalyst for water gas shift reaction. Modeling and experimental studies on the zeolite membrane reactor for water gas shift reaction have demonstrated the effective use of the zeolite membrane reactor for production of high purity hydrogen stream.

  18. Cation–hydroxide–water coadsorption inhibits the alkaline hydrogen oxidation reaction

    SciTech Connect

    Chung, Hoon Taek; Martinez, Ulises; Matanovic, Ivana; Kim, Yu Seung

    2016-10-24

    Rotating disk electrode voltammograms and infrared reflection absorption spectra indicate that the hydrogen oxidation reaction of platinum in 0.1 M tetramethylammonium hydroxide solution is adversely impacted by time-dependent and potential-driven cation–hydroxide–water coadsorption. Impedance analysis suggests that the hydrogen oxidation reaction inhibition is mainly caused by the hydrogen diffusion barrier of the coadsorbed trilayer rather than intuitive catalyst site blocking by the adsorbed cation species. Finally, these results give useful insights on how to design ionomeric binders for advanced alkaline membrane fuel cells.

  19. Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices.

    PubMed

    McCrory, Charles C L; Jung, Suho; Ferrer, Ivonne M; Chatman, Shawn M; Peters, Jonas C; Jaramillo, Thomas F

    2015-04-08

    Objective comparisons of electrocatalyst activity and stability using standard methods under identical conditions are necessary to evaluate the viability of existing electrocatalysts for integration into solar-fuel devices as well as to help inform the development of new catalytic systems. Herein, we use a standard protocol as a primary screen for evaluating the activity, short-term (2 h) stability, and electrochemically active surface area (ECSA) of 18 electrocatalysts for the hydrogen evolution reaction (HER) and 26 electrocatalysts for the oxygen evolution reaction (OER) under conditions relevant to an integrated solar water-splitting device in aqueous acidic or alkaline solution. Our primary figure of merit is the overpotential necessary to achieve a magnitude current density of 10 mA cm(-2) per geometric area, the approximate current density expected for a 10% efficient solar-to-fuels conversion device under 1 sun illumination. The specific activity per ECSA of each material is also reported. Among HER catalysts, several could operate at 10 mA cm(-2) with overpotentials <0.1 V in acidic and/or alkaline solutions. Among OER catalysts in acidic solution, no non-noble metal based materials showed promising activity and stability, whereas in alkaline solution many OER catalysts performed with similar activity achieving 10 mA cm(-2) current densities at overpotentials of ~0.33-0.5 V. Most OER catalysts showed comparable or better specific activity per ECSA when compared to Ir and Ru catalysts in alkaline solutions, while most HER catalysts showed much lower specific activity than Pt in both acidic and alkaline solutions. For select catalysts, additional secondary screening measurements were conducted including Faradaic efficiency and extended stability measurements.

  20. Variable photosynthetic units, energy transfer and light-induced evolution of hydrogen in algae and bacteria.

    NASA Technical Reports Server (NTRS)

    Gaffron, H.

    1971-01-01

    The present state of knowledge regarding the truly photochemical reactions in photosynthesis is considered. Nine-tenths of the available knowledge is of a biochemical nature. Questions regarding the activities of the chlorophyll system are examined. The simplest photochemical response observed in living hydrogen-adapted algal cells is the release of molecular hydrogen, which continues even after all other known natural reactions have been eliminated either by heating or the action of poisons.

  1. Variable photosynthetic units, energy transfer and light-induced evolution of hydrogen in algae and bacteria.

    NASA Technical Reports Server (NTRS)

    Gaffron, H.

    1971-01-01

    The present state of knowledge regarding the truly photochemical reactions in photosynthesis is considered. Nine-tenths of the available knowledge is of a biochemical nature. Questions regarding the activities of the chlorophyll system are examined. The simplest photochemical response observed in living hydrogen-adapted algal cells is the release of molecular hydrogen, which continues even after all other known natural reactions have been eliminated either by heating or the action of poisons.

  2. Uncertainty Analysis of Heat Transfer to Supercritical Hydrogen in Cooling Channels

    NASA Technical Reports Server (NTRS)

    Locke, Justin M.; Landrum, D. Brian

    2005-01-01

    Sound understanding of the cooling efficiency of supercritical hydrogen is crucial to the development of high pressure thrust chambers for regeneratively cooled LOX/LH2 rocket engines. This paper examines historical heat transfer correlations for supercritical hydrogen and the effects of uncertainties in hydrogen property data. It is shown that uncertainty due to property data alone can be as high as 10%. Previous heated tube experiments with supercritical hydrogen are summarized, and data from a number of heated tube experiments are analyzed to evaluate conditions for which the available correlations are valid.

  3. Stereoselectivity of the hydrogen-atom transfer in benzophenone-tyrosine dyads: an intramolecular kinetic solvent effect.

    PubMed

    Hörner, Gerald; Hug, Gordon L; Lewandowska, Anna; Kazmierczak, Franciszek; Marciniak, Bronislaw

    2009-01-01

    To be or not to be solvated is the decisive parameter that controls the photoinduced hydrogen-atom transfer in diastereomeric ketone/phenol dyads. A kinetic solvent effect that refers to hydrogen bonding between the phenol and the solvent is suggested to be the main source of the stereoselective discrimination in the hydrogen transfer (see figure).

  4. Bimetallic promotion of cooperative hydrogen transfer and heteroatom removal in coal liquefaction

    SciTech Connect

    Eisch, J.J.

    1991-10-01

    The ultimate objective of this research is to uncover new catalytic processes for the liquefaction of coal and for upgrading coal-derived fuels by removing undesirable organosulfur, organonitrogen and organooxygen constituents. Basic to both the liquefaction of coal and the purification of coal liquids is the transfer of hydrogen from such sources as dihydrogen, metal hydrides or partially reduced aromatic hydrocarbons to the extensive aromatic rings in coal itself or to aromatic sulfides, amines or ethers. Accordingly, this study is exploring how such crucial hydrogen-transfer processes might be catalyzed by soluble, low-valent transition metal complexes and/or Lewis acids under moderate conditions of temperature and pressure. By learning the mechanism whereby H{sub 2}, metal hydrides or partially hydrogenated aromatics do transfer hydrogen to model aromatic compounds, with the aid of homogeneous, bimetallic catalysts, we hope to identify new methods for producing superior fuels from coal.

  5. Ab Initio Vibrational Levels For HO2 and Vibrational Splittings for Hydrogen Atom Transfer

    NASA Technical Reports Server (NTRS)

    Barclay, V. J.; Dateo, Christopher E.; Hamilton, I. P.; Arnold, James O. (Technical Monitor)

    1994-01-01

    We calculate vibrational levels and wave functions for HO2 using the recently reported ab initio potential energy surface of Walch and Duchovic. There is intramolecular hydrogen atom transfer when the hydrogen atom tunnels through a T-shaped saddle point separating two equivalent equilibrium geometries, and correspondingly, the energy levels are split. We focus on vibrational levels and wave functions with significant splitting. The first three vibrational levels with splitting greater than 2/cm are (15 0), (0 7 1) and (0 8 0) where V(sub 2) is the O-O-H bend quantum number. We discuss the dynamics of hydrogen atom transfer; in particular, the O-O distances at which hydrogen atom transfer is most probable for these vibrational levels. The material of the proposed presentation was reviewed and the technical content will not reveal any information not already in the public domain and will not give any foreign industry or government a competitive advantage.

  6. Ab Initio Vibrational Levels For HO2 and Vibrational Splittings for Hydrogen Atom Transfer

    NASA Technical Reports Server (NTRS)

    Barclay, V. J.; Dateo, Christopher E.; Hamilton, I. P.; Arnold, James O. (Technical Monitor)

    1994-01-01

    We calculate vibrational levels and wave functions for HO2 using the recently reported ab initio potential energy surface of Walch and Duchovic. There is intramolecular hydrogen atom transfer when the hydrogen atom tunnels through a T-shaped saddle point separating two equivalent equilibrium geometries, and correspondingly, the energy levels are split. We focus on vibrational levels and wave functions with significant splitting. The first three vibrational levels with splitting greater than 2/cm are (15 0), (0 7 1) and (0 8 0) where V(sub 2) is the O-O-H bend quantum number. We discuss the dynamics of hydrogen atom transfer; in particular, the O-O distances at which hydrogen atom transfer is most probable for these vibrational levels. The material of the proposed presentation was reviewed and the technical content will not reveal any information not already in the public domain and will not give any foreign industry or government a competitive advantage.

  7. Hydrogen production from carbonaceous material

    DOEpatents

    Lackner, Klaus S.; Ziock, Hans J.; Harrison, Douglas P.

    2004-09-14

    Hydrogen is produced from solid or liquid carbon-containing fuels in a two-step process. The fuel is gasified with hydrogen in a hydrogenation reaction to produce a methane-rich gaseous reaction product, which is then reacted with water and calcium oxide in a hydrogen production and carbonation reaction to produce hydrogen and calcium carbonate. The calcium carbonate may be continuously removed from the hydrogen production and carbonation reaction zone and calcined to regenerate calcium oxide, which may be reintroduced into the hydrogen production and carbonation reaction zone. Hydrogen produced in the hydrogen production and carbonation reaction is more than sufficient both to provide the energy necessary for the calcination reaction and also to sustain the hydrogenation of the coal in the gasification reaction. The excess hydrogen is available for energy production or other purposes. Substantially all of the carbon introduced as fuel ultimately emerges from the invention process in a stream of substantially pure carbon dioxide. The water necessary for the hydrogen production and carbonation reaction may be introduced into both the gasification and hydrogen production and carbonation reactions, and allocated so as transfer the exothermic heat of reaction of the gasification reaction to the endothermic hydrogen production and carbonation reaction.

  8. Correlation of Hydrogen-Atom Abstraction Reaction Efficiencies for Aryl Radicals with their Vertical Electron Affinities and the Vertical Ionization Energies of the Hydrogen Atom Donors

    PubMed Central

    Jing, Linhong; Nash, John J.

    2009-01-01

    The factors that control the reactivities of aryl radicals toward hydrogen-atom donors were studied by using a dual-cell Fourier-transform ion cyclotron resonance mass spectrometer (FT – ICR). Hydrogen-atom abstraction reaction efficiencies for two substrates, cyclohexane and isopropanol, were measured for twenty-three structurally different, positively-charged aryl radicals, which included dehydrobenzenes, dehydronaphthalenes, dehydropyridines, and dehydro(iso)quinolines. A logarithmic correlation was found between the hydrogen-atom abstraction reaction efficiencies and the (calculated) vertical electron affinities (EA) of the aryl radicals. Transition state energies calculated for three of the aryl radicals with isopropanol were found to correlate linearly with their (calculated) EAs. No correlation was found between the hydrogen-atom abstraction reaction efficiencies and the (calculated) enthalpy changes for the reactions. Measurement of the reaction efficiencies for the reactions of several different hydrogen-atom donors with a few selected aryl radicals revealed a logarithmic correlation between the hydrogen-atom abstraction reaction efficiencies and the vertical ionization energies (IE) of the hydrogen-atom donors, but not the lowest homolytic X – H (X = heavy atom) bond dissociation energies of the hydrogen-atom donors. Examination of the hydrogen-atom abstraction reactions of twenty-nine different aryl radicals and eighteen different hydrogen-atom donors showed that the reaction efficiency increases (logarithmically) as the difference between the IE of the hydrogen-atom donor and the EA of the aryl radical decreases. This dependence is likely to result from the increasing polarization, and concomitant stabilization, of the transition state as the energy difference between the neutral and ionic reactants decreases. Thus, the hydrogen-atom abstraction reaction efficiency for an aryl radical can be “tuned” by structural changes that influence either

  9. Functionalization of Hydrogenated Chemical Vapour Deposition-Grown Graphene by On-Surface Chemical Reactions.

    PubMed

    Drogowska, Karolina; Kovaříček, Petr; Kalbáč, Martin

    2017-03-23

    The reactivity of hydrogenated graphene when treated with oxidising agents, KMnO4 and KIO4 , as well as alkylated with benzyl bromide (BnBr) was studied. The probed reactions are strictly limited to the partly hydrogenated form of graphene in which most of the hydrogen atoms are located in activated benzylic/allylic positions. This, in turn, clearly demonstrates the presence of hydrogen attached to the graphene lattice. Attachment of the benzyl group was also unequivocally demonstrated by characteristic vibrations recorded in the surface-enhanced Raman spectra, and all reactions were shown to proceed solely on hydrogenated graphene as evidenced by the comparison with pristine chemical vapour deposition-grown graphene.

  10. Defects Engineered Monolayer MoS2 for Improved Hydrogen Evolution Reaction.

    PubMed

    Ye, Gonglan; Gong, Yongji; Lin, Junhao; Li, Bo; He, Yongmin; Pantelides, Sokrates T; Zhou, Wu; Vajtai, Robert; Ajayan, Pulickel M

    2016-02-10

    MoS2 is a promising and low-cost material for electrochemical hydrogen production due to its high activity and stability during the reaction. However, the efficiency of hydrogen production is limited by the amount of active sites, for example, edges, in MoS2. Here, we demonstrate that oxygen plasma exposure and hydrogen treatment on pristine monolayer MoS2 could introduce more active sites via the formation of defects within the monolayer, leading to a high density of exposed edges and a significant improvement of the hydrogen evolution activity. These as-fabricated defects are characterized at the scale from macroscopic continuum to discrete atoms. Our work represents a facile method to increase the hydrogen production in electrochemical reaction of MoS2 via defect engineering, and helps to understand the catalytic properties of MoS2.

  11. Excited-state double-proton transfer of pyrimidines mediated by hydrogen-bonded complexes

    NASA Astrophysics Data System (ADS)

    El-Kemary, M. A.; El-Gezawy, H. S.; El-Baradie, H. Y.; Issa, R. M.

    2001-04-01

    The spectroscopy and dynamics of the excited-state double-proton transfer (ESDPT) in 2-amino-4,6-dimethyl pyrimidine (ADMP) and 2-amino-4-methoxy-6-methyl pyrimidine (AMMP) have been studied by means of steady-state and time-resolved measurements. The thermodynamic data indicating that dual hydrogen-bonding formation for ADMP/acid and AMMP/acid complexes are stronger than those obtained from ADMP and AMMP self-association. The fluorescence from the ADMP dimer in cyclohexane decays with rate ( kf) of (1.1±0.1)×10 9 s -1 (0.9 ns), where the fluorescence from its tautomeric excited state formed by the proton transfer reaction decays with rate of (8.26±0.2)×10 8 s -1 (1.21 ns). However, the obtained kf (1.7±0.1)×10 9 s -1 for ADMP/acid tautomer of (0.58 ns) in cyclohexane is higher than that of the dimer. The results show that ˜89% molecules form dimers in the ground state and ˜86% of the excited molecules are present as dimers while the rest are present as monomers in 1×10 -2 M cyclohexane solution.

  12. Direct Observation of Double Hydrogen Transfer via Quantum Tunneling in a Single Porphycene Molecule on a Ag(110) Surface.

    PubMed

    Koch, Matthias; Pagan, Mark; Persson, Mats; Gawinkowski, Sylwester; Waluk, Jacek; Kumagai, Takashi

    2017-09-13

    Quantum tunneling of hydrogen atoms (or protons) plays a crucial role in many chemical and biological reactions. Although tunneling of a single particle has been examined extensively in various one-dimensional potentials, many-particle tunneling in high-dimensional potential energy surfaces remains poorly understood. Here we present a direct observation of a double hydrogen atom transfer (tautomerization) within a single porphycene molecule on a Ag(110) surface using a cryogenic scanning tunneling microscope (STM). The tautomerization rates are temperature independent below ∼10 K, and a large kinetic isotope effect (KIE) is observed upon substituting the transferred hydrogen atoms by deuterium, indicating that the process is governed by tunneling. The observed KIE for three isotopologues and density functional theory calculations reveal that a stepwise transfer mechanism is dominant in the tautomerization. It is also found that the tautomerization rate is increased by vibrational excitation via an inelastic electron tunneling process. Moreover, the STM tip can be used to manipulate the tunneling dynamics through modification of the potential landscape.

  13. Ketone-alcohol hydrogen-transfer equilibria: is the biooxidation of halohydrins blocked?

    PubMed

    Bisogno, Fabricio R; García-Urdiales, Eduardo; Valdés, Haydee; Lavandera, Iván; Kroutil, Wolfgang; Suárez, Dimas; Gotor, Vicente

    2010-09-24

    To ensure the quasi-irreversibility of the oxidation of alcohols coupled with the reduction of ketones in a hydrogen-transfer (HT) fashion, stoichiometric amounts of α-halo carbonyl compounds have been employed as hydrogen acceptors. The reason that these substrates lead to quasi-quantitative conversions has been tacitly attributed to both thermodynamic and kinetic effects. To provide a clear rationale for this behavior, we investigate herein the redox equilibrium of a selected series of ketones and 2-propanol by undertaking a study that combines experimental and theoretical approaches. First, the activity of the (R)-specific alcohol dehydrogenase from Lactobacillus brevis (LBADH) with these substrates was studied. The docking of acetophenone/(R)-1-phenyethanol and α-chloroacetophenone/(S)-2-chloro-1-phenylethanol in the active site of the enzyme confirms that there seems to be no structural reason for the lack of reactivity of halohydrins. This assumption is confirmed by the fact that the corresponding aluminum-catalyzed Meerwein-Ponndorf-Verley-Oppenauer (MPVO) reactions afford similar conversions to those obtained with LBADH, showing that the observed reactivity is independent of the catalyst employed. While the initial rates of the enzymatic reductions and the IR ν(C=O) values contradict the general belief that electron-withdrawing groups increase the electrophilicity of the carbonyl group, the calculated ΔG values of the isodesmic redox transformations of these series of ketones/alcohols with 2-propanol/acetone support the thermodynamic control of the reaction. As a result, a general method to predict the degree of conversion obtained in the HT-reduction process of a given ketone based on the IR absorption band of the carbonyl group is proposed, and a strategy to achieve the HT oxidation of halohydrins is also shown.

  14. A simple iridicycle catalyst for efficient transfer hydrogenation of N-heterocycles in water.

    PubMed

    Talwar, Dinesh; Li, Ho Yin; Durham, Emma; Xiao, Jianliang

    2015-03-27

    A cyclometalated iridium complex is shown to catalyse the transfer hydrogenation of various nitrogen heterocycles, including but not limited to quinolines, isoquinolines, indoles and pyridinium salts, in an aqueous solution of HCO2H/HCO2Na under mild conditions. The catalyst shows excellent functional-group compatibility and high turnover number (up to 7500), with catalyst loadings as low as 0.01 mol % being feasible. Mechanistic investigation of the quinoline reduction suggests that the transfer hydrogenation proceeds via both 1,2- and 1,4-addition pathways, with the catalytic turnover being limited by the step of hydride transfer.

  15. Studies of Hydrogen Getter Material Self-decomposition and Reaction Capacity

    SciTech Connect

    Saab, A P; Dinh, L N

    2007-03-19

    Diacetylene based hydrogen getters are examined in order to gauge their self decomposition products, as well as to determine possible origins for observed losses in origins getter capacity. Simple long term (several months) thermal aging tests were conducted, with periodic solid solid-phase micro micro-extraction (SPME) sampling followed by GC/MS analysis. The results suggest that bis(diphenylethynyl) benzene tends to decompose to give phenyl contaminants more readily than diphenylbutadiyne. Transmission electron microscopy (TEM) and electron diffraction studies of the palladium catalyst following varying extents of reaction with hydrogen show that there is no change to the catalyst particles, indicating that any change in capacity originates from other causes. These causes are suggested by Sievert's-type experiments on the reaction of the getter with a low pressure (about 10 Torr) hydrogen atmosphere. The reaction data indicate that the getter capacity depends on the pressure of hydrogen to which the material is exposed, and also its thermal history.

  16. Electrocatalysis of anodic and cathodic oxygen-transfer reactions

    SciTech Connect

    Wels, B.R.

    1990-09-21

    The electrocatalysis of oxygen-transfer reactions is discussed in two parts. In Part I, the reduction of iodate (IO{sub 3}{sup {minus}}) is examined as an example of cathodic oxygen transfer. On oxide-covered Pt electrodes (PtO), a large cathodic current is observed in the presence of IO{sub 3}{sup {minus}} to coincide with the reduction of PtO. The total cathodic charge exceeds the amount required for reduction of PtO and IO{sub 3}{sup {minus}} to produce an adsorbed product. An electrocatalytic link between reduction of IO{sub 3}{sup {minus}} and reduction of PtO is indicated. In addition, on oxide-free Pt electrodes, the reduction of IO{sub 3}{sup {minus}} is determined to be sensitive to surface treatment. The electrocatalytic oxidation of CN{sup {minus}} is presented as an example of anodic oxygen transfer in Part II. The voltametric response of CN{sup {minus}} is virtually nonexistent at PbO{sub 2} electrodes. The response is significantly improved by doping PbO{sub 2} with Cu. Cyanide is also oxidized effectively at CuO-film electrodes. Copper is concluded to serve as an adsorption site for CN{sup {minus}}. It is proposed that an oxygen tunneling mechanism comparable to electron tunneling does not occur at the electrode-solution interface. The adsorption of CN{sup {minus}} is therefore considered to be a necessary prerequisite for oxygen transfer. 201 refs., 23 figs., 2 tabs.

  17. Insight into methanol synthesis from CO2 hydrogenation on Cu(111): Complex reaction network and the effects of H2O

    SciTech Connect

    Zhao, Yafan; Yang, Yong; Mims, Charles A.; Peden, Charles HF; Li, Jun; Mei, Donghai

    2011-05-31

    Methanol synthesis from CO2 hydrogenation on supported Cu catalysts is of considerable importance in the chemical and energy industries. Although extensive experimental and theoretical efforts have been carried out in the past decades, the most fundamental questions such as the reaction mechanisms and the key reaction intermediates are still in debate. In the present work, a comprehensive reaction network for CO2 hydrogenation to methanol on Cu(111) was studied using periodic density functional theory (DFT) calculations. All of the elementary reaction steps in the reaction network were identified in an unbiased way with the dimer method. Our calculation results show that methanol synthesis from direct hydrogenation of formate on Cu(111) is not feasible due to the high activation barriers for some of the elementary steps. Instead, we find that CO2 hydrogenation to hydrocarboxyl (trans-COOH) is kinetically more favorable than formate in the presence of H2O via a unique proton transfer mechanism. The trans-COOH is then converted into hydroxymethylidyne (COH) via dihydroxycarbene (COHOH) intermediates, followed by three consecutive hydrogenation steps to form hydroxymethylene (HCOH), hydroxymethyl (H2COH), and methanol. This is consistent with recent experimental observations [1], which indicate that direct hydrogenation of formate will not produce methanol under dry hydrogen conditions. Thus, both experiment and computational modeling clearly demonstrate the important role of trace amounts of water in methanol synthesis from CO2 hydrogenation on Cu catalysts. The proposed methanol synthesis route on Cu(111) not only provides new insights into methanol synthesis chemistry, but also demonstrates again that spectroscopically observed surface species are often not critical reaction intermediates but rather spectator species. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  18. Reaction of hydrogen sulfide with oxygen in the presence of sulfite

    SciTech Connect

    Weres, O.; Tsao, L.

    1983-01-14

    Commonly, abatement of hydrogen sulfide emission from a geothermal powerplant requires that hydrogen sulfide dissolved in the cooling water be eliminated by chemical reaction. Oxidation by atmospheric oxygen is the preferred reaction, but requires a suitable catalyst. Nickel is the most potent and thereby cheapest catalyst for this purpose. One mg/L nickel in the cooling water would allow 99% removal of hydrogen sulfide to be attained. A major drawback of catalytic air oxidation is that colloidal sulfur is a major reaction product; this causes rapid sludge accumulation and deposition of sulfur scale. We studied the kinetics and product distribution of the reaction of hydrogen sulfide with oxygen, catalyzed by nickel. Adding sodium sulfite to the solution completely suppresses formation of colloidal sulfur by converting it to thiosulfate. The oxidation reaction is an autocatalytic, free radical chain reaction. A rate expression for this reaction and a detailed reaction mechanism were developed. Nickel catalyzes the chain initiation step, and polysulfidoradical ions propagate the chains. Several complexes of iron and cobalt were also studied. Iron citrate and iron N-hydroxyEDTA are the most effective iron based catalysts. Uncomplexed cobalt is as effective as nickel, but forms a precipitate of cobalt oxysulfide and is too expensive for practical use. 33 figures, 9 tables.

  19. CHROMATOGRAPHIC SEPARATION AND IDENTIFICATION OF PRODUCTS FROM THE REACTION OF DIMETHYLARSINIC ACID WITH HYDROGEN SULFIDE

    EPA Science Inventory

    The reaction of dimethylarsinic acid (DMAV) with hydrogen sulfide (H2S) is of biological significance and may be implicated in the overall toxicity and carcinogenicity of arsenic. The course of the reaction in aqueous phase was monitored and an initial product, dimethylthioarsin...

  20. Anion-exchange synthesis of nanoporous FeP nanosheets as electrocatalysts for hydrogen evolution reaction.

    PubMed

    Xu, You; Wu, Rui; Zhang, Jingfang; Shi, Yanmei; Zhang, Bin

    2013-07-28

    Nanoporous FeP nanosheets are successfully synthesized via the anion-exchange reaction of inorganic-organic hybrid Fe18S25-TETAH (TETAH = protonated triethylenetetramine) nanosheets with P ions. The as-prepared nanoporous FeP nanosheets exhibit high electrochemical hydrogen evolution reaction activity in acidic medium.

  1. Reaction of Hydrogen Sulfide with Oxygen in the Presence ofSulfite

    SciTech Connect

    Weres, Oleh; Tsao, Leon

    1983-01-01

    Commonly, abatement of hydrogen sulfide emissions from a geothermal powerplant requires that hydrogen sulfide dissolved in the cooling water be eliminated by chemical reaction. Oxidation by atmospheric oxygen is the preferred reaction, but requires a suitable catalyst. Nickel is the most potent and thereby cheapest catalyst for this purpose. One Mg/L nickel in the cooling water would allow 99% removal of hydrogen sulfide to be attained. A major drawback of catalytic air oxidation is that colloidal sulfur is a major reaction product; this causes rapid sludge accumulation and deposition of sulfur scale. The authors studied the kinetics and product distribution of the reaction of hydrogen sulfide with oxygen, catalyzed by nickel. Adding sodium sulfite to the solution completely suppresses formation of colloidal sulfur by converting it to thiosulfate. The oxidation reaction is an autocatalytic, free radical chain reaction. A rate expression for this reaction and a detailed reaction mechanism were developed. Nickel catalyzes the chain initiation step, and polysulfidoradical ions propagate the chains. Several complexes of iron and cobalt were also studied. Iron citrate and iron N-hydroxyEDT are the most effective iron based catalysts. Uncomplexed cobalt is as effective as nickel, but forms a precipitate of cobalt oxysulfide and is too expensive for practical use.

  2. CHROMATOGRAPHIC SEPARATION AND IDENTIFICATION OF PRODUCTS FROM THE REACTION OF DIMETHYLARSINIC ACID WITH HYDROGEN SULFIDE

    EPA Science Inventory

    The reaction of dimethylarsinic acid (DMAV) with hydrogen sulfide (H2S) is of biological significance and may be implicated in the overall toxicity and carcinogenicity of arsenic. The course of the reaction in aqueous phase was monitored and an initial product, dimethylthioarsin...

  3. Proton transfer dependence on hydrogen-bonding of solvent to the water wire: a theoretical study.

    PubMed

    Mai, Binh Khanh; Park, Kisoo; Duong, My Phu Thi; Kim, Yongho

    2013-01-10

    The mechanism and dynamics of double proton transfer dependence on hydrogen-bonding of solvent molecules to the bridging water in a water wire were studied by a direct ab initio dynamics approach with variational transition-state theory including multidimensional tunneling. Long-range proton transfers in solution and within enzymes may have very different mechanisms depending on the pK(a) values of participating groups and their electrostatic interactions with their environment. For end groups that have acidic or basic pK(a) values, proton transfers by the classical Grotthuss and "proton-hole" transfer mechanisms, respectively, are energetically favorable. This study shows that these processes are facilitated by hydrogen-bond accepting and donating solvent molecule interactions with the water wire in the transition state (TS), respectively. Tunneling also depends very much on the hydrogen bonding to the water wire. All molecules hydrogen bonded to the water wire, even if they raised and narrowed energy barriers, reduced the tunneling coefficients of double proton transfer, which was attributed to the increased effective mass of transferring protons near the TS. The theoretical HH/DD KIE, including tunneling, was in good agreement with experimental KIE values. These results suggest that the classical Grotthuss and proton-hole transfer mechanisms require quite different solvent (or protein) environments near the TS for the most efficient processes.

  4. Deformylation Reaction by a Nonheme Manganese(III)-Peroxo Complex via Initial Hydrogen-Atom Abstraction.

    PubMed

    Barman, Prasenjit; Upadhyay, Pranav; Faponle, Abayomi S; Kumar, Jitendra; Nag, Sayanta Sekhar; Kumar, Devesh; Sastri, Chivukula V; de Visser, Sam P

    2016-09-05

    Metal-peroxo intermediates are key species in the catalytic cycles of nonheme metalloenzymes, but their chemical properties and reactivity patterns are still poorly understood. The synthesis and characterization of a manganese(III)-peroxo complex with a pentadentate bispidine ligand system and its reactivity with aldehydes was studied. Manganese(III)-peroxo can react through hydrogen-atom abstraction reactions instead of the commonly proposed nucleophilic addition reaction. Evidence of the mechanism comes from experiments which identify a primary kinetic isotope effect of 5.4 for the deformylation reaction. Computational modeling supports the established mechanism and identifies the origin of the reactivity preference of hydrogen-atom abstraction over nucleophilic addition.

  5. Structure and Reactions of Carbon and Hydrogen on Ru(0001): A Scanning Tunneling Microscopy Study

    SciTech Connect

    Shimizu, Tomoko K.; Mugarza, Aitor; Cerda, Jorge; Salmeron, Miquel

    2008-09-09

    The interaction between carbon and hydrogen atoms on a Ru(0001) surface was studied using scanning tunneling microscopy (STM), Density Functional Theory (DFT) and STM image calculations. Formation of CH species by reaction between adsorbed H and C was observed to occur readily at 100 K. When the coverage of H increased new complexes of the form CH+nH (n = 1, 2 and 3) were observed. These complexes, never observed before, might be precursors for further hydrogenation reactions. DFT analysis reveals that a considerable energy barrier exists for the CH+H {yields} CH{sub 2} reaction.

  6. An experimental investigation of the reaction of hydrogen chloride with lead oxide under simulated hazardous waste incineration conditions

    SciTech Connect

    Shor, J.T.; Frazier, G.C.

    1996-04-01

    To simulate the behavior of lead during hazardous waste incineration, pellets of sintered lead oxide were treated with hydrogen chloride at concentrations of 2000 and 4000 ppm in air in a laboratory tube furnace. The chemical reaction kinetics and mass transfer properties of the solid-gas and solid-liquid reactions were examined at temperatures between 260 and 680{degrees}C. Lead dichloride was found to form and became more volatile at elevated temperatures. At temperatures above 300{degrees}C, chemical reaction kinetic limitations were absent and mass transfer resistance in the developing liquid lead oxide, lead dichloride eutectic phases were controlling. Above 590{degrees}C, a curious anomaly occurred: The observed global reaction rate appeared to increase slightly while the volatilization of lead dichloride dropped during the initial stages of the reaction. A thick film of a lead oxychloride compound was found which displayed low lead dichloride activity. Below 590{degrees}C, a different lead oxychloride compound was identified by x-ray diffraction in which lead dichloride activity was high, and this compound was much more volatile than the oxychloride formed above 5900{degrees}C.

  7. Using first principles calculations to identify new destabilized metal hydride reactions for reversible hydrogen storage.

    PubMed

    Alapati, Sudhakar V; Karl Johnson, J; Sholl, David S

    2007-03-28

    Hydrides of period 2 and 3 elements are promising candidates for hydrogen storage, but typically have heats of reaction that are too high to be of use for fuel cell vehicles. Recent experimental work has focused on destabilizing metal hydrides through mixing metal hydrides with other compounds. A very large number of possible destabilized metal hydride reaction schemes exist, but the thermodynamic data required to assess the enthalpies of these reactions are not available in many cases. We have used density functional theory calculations to predict the reaction enthalpies for more than 300 destabilization reactions that have not previously been reported. The large majority of these reactions are predicted not to be useful for reversible hydrogen storage, having calculated reaction enthalpies that are either too high or too low, and hence these reactions need not be investigated experimentally. Our calculations also identify multiple promising reactions that have large enough hydrogen storage capacities to be useful in practical applications and have reaction thermodynamics that appear to be suitable for use in fuel cell vehicles and are therefore promising candidates for experimental work.

  8. Chain reaction mechanism in hydrogen/fluorine combustion.

    PubMed

    Matsugi, Akira; Shiina, Hiroumi; Tsuchiya, Kentaro; Miyoshi, Akira

    2013-12-27

    Vibrationally excited species have been considered to play significant roles in H2/F2 reaction systems. In the present study, in order to obtain further understanding of the chain reaction mechanism in the combustion of mixtures containing H2 and F2, burning velocities for H2/F2/O2/N2 flames were measured and compared to that obtained from kinetic simulations using a detailed kinetic model, which involves the vibrationally excited species, HF(ν) and H2(ν), and the chain-branching reactions, HF(ν > 2) + F2 = HF + F + F (R1) and H2(ν = 1) + F2 = HF + H + F (R2). The results indicated that reaction R1 is not responsible for chain branching, whereas reaction R2 plays a dominant role in the chain reaction mechanism. The kinetic model reproduced the experimental burning velocities with the presumed rate constant of k2 = 6.6 × 10(-10) exp(-59 kJ mol(-1)/RT) cm(3) s(-1) for R2. The suggested chain-branching reaction was also investigated by quantum chemical calculations at the MRCI-F12+CV+Q/cc-pCVQZ-F12 level of theory.

  9. Lewis acid-water/alcohol complexes as hydrogen atom donors in radical reactions.

    PubMed

    Povie, Guillaume; Renaud, Philippe

    2013-01-01

    Water or low molecular weight alcohols are, due to their availability, low price and low toxicity ideal reagents for organic synthesis. Recently, it was reported that, despite the very strong BDE of the O-H bond, they can be used as hydrogen atom donors in place of expensive and/or toxic group 14 metal hydrides when boron and titanium(III) Lewis acids are present. This finding represents a considerable innovation and uncovers a new perspective on the paradigm of hydrogen atom transfers to radicals. We discuss here the influence of complex formation and other association processes on the efficacy of the hydrogen transfer step. A delicate balance between activation by complex formation and deactivation by further hydrogen bonding is operative.

  10. Rate constant for reaction of atomic hydrogen with germane

    NASA Technical Reports Server (NTRS)

    Nava, David F.; Payne, Walter A.; Marston, George; Stief, Louis J.

    1990-01-01

    Due to the interest in the chemistry of germane in the atmospheres of Jupiter and Saturn, and because previously reported kinetic reaction rate studies at 298 K gave results differing by a factor of 200, laboratory measurements were performed to determine the reaction rate constant for H + GeH4. Results of the study at 298 K, obtained via the direct technique of flash photolysis-resonance fluorescence, yield the reaction rate constant, k = (4.08 + or - 0.22) x 10(exp -12) cu cm/s.

  11. Investigating the mechanism of the selective hydrogenation reaction of cinnamaldehyde catalyzed by Ptn clusters.

    PubMed

    Li, Laicai; Wang, Wei; Wang, Xiaolan; Zhang, Lin

    2016-08-01

    Cinnamaldehyde (CAL) belongs to the group of aromatic α,β-unsaturated aldehydes; the selective hydrogenation of CAL plays an important role in the fine chemical and pharmaceutical industries. Using Ptn clusters as catalytic models, we studied the selective hydrogenation reaction mechanism for CAL catalyzed by Ptn (n = 6, 10, 14, 18) clusters by means of B3LYP in density functional theory at the 6-31+ G(d) level (the LanL2DZ extra basis set was used for the Pt atom). The rationality of the transition state was proved by vibration frequency analysis and intrinsic reaction coordinate computation. Moreover, atoms in molecules theory and nature bond orbital theory were applied to discuss the interaction among orbitals and the bonding characteristics. The results indicate that three kinds of products, namely 3-phenylpropyl aldehyde, 3-phenyl allyl alcohol and cinnamyl alcohol, are produced in the selective hydrogenation reaction catalyzed by Ptn clusters; each pathway possesses two reaction channels. Ptn clusters are more likely to catalyze the activation and hydrogenation of the C = O bond in CAL molecules, eventually producing cinnamic alcohol, which proves that Ptn clusters have a strong reaction selectivity to catalyze CAL. The reaction selectivity of the catalyzer cluster is closely related to the size of the Ptn cluster, with Pt14 clusters having the greatest reaction selectivity. Graphical Abstract The reaction mechanism for the selective hydrogenation reaction ofcinnamaldehyde catalyzed by Ptn clusters was studied by densityfunctional theory. The reactionselectivity of cluster catalyzer was concluded to be closely related to the size of Ptn clusters, with Pt14 clusters having the greatest reaction selectivity.

  12. GaN CVD Reactions: Hydrogen and Ammonia Decomposition and the Desorption of Gallium

    SciTech Connect

    Bartram, Michael E.; Creighton, J. Randall

    1999-05-26

    Isotopic labeling experiments have revealed correlations between hydrogen reactions, Ga desorption, and ammonia decomposition in GaN CVD. Low energy electron diffraction (LEED) and temperature programmed desorption (TPD) were used to demonstrate that hydrogen atoms are available on the surface for reaction after exposing GaN(0001) to deuterium at elevated temperatures. Hydrogen reactions also lowered the temperature for Ga desorption significantly. Ammonia did not decompose on the surface before hydrogen exposure. However, after hydrogen reactions altered the surface, N15H3 did undergo both reversible and irreversible decomposition. This also resulted in the desorption of N2 of mixed isotopes below the onset of GaN sublimation, This suggests that the driving force of the high nitrogen-nitrogen bond strength (226 kcal/mol) can lead to the removal of nitrogen from the substrate when the surface is nitrogen rich. Overall, these findings indicate that hydrogen can influence G-aN CVD significantly, being a common factor in the reactivity of the surface, the desorption of Ga, and the decomposition of ammonia.

  13. Chemiluminescence from the Reaction of 2-Methylene-3-acetyloxazoline-4,5-dione with Hydrogen Peroxide.

    DTIC Science & Technology

    1982-08-20

    l-- Al’- 7 7 ’ -’ J11 t: Di -.t Noon- Chemical reactions that generate visible light have been actively 1 investigated for the past 50 years. Recent...details of the structure of the peroxide. One of the most efficient chemiluminescent systems yet dis - covered is based on the reaction of hydrogen...new reaction of aliphatic imides with oxalyl chloride to give oxazolidinediones, eq 1. We set out to examine the possibility that these "derivatives

  14. Population of high spin states in very heavy ion transfer reactions. The experimental evidence

    SciTech Connect

    Guidry, M.W.

    1985-01-01

    Transfer reactions have been studied for some time with light heavy ions such as oxygen. Although states of spin I approx.10 h are sometimes populated in such reactions, it is assumed that collective excitation is small, and the transferred particles are responsible for the angular momentum transfer. In this paper we will discuss a qualitatively different kind of transfer reaction using very heavy ions (A greater than or equal to 40). In these reactions the collective excitation in both the entrance and exit channels is strong, and there may be appreciable angular momentum transfer associated with inelastic excitation. 12 refs., 13 figs.

  15. Electron transfer in native and mutated photosystem I reaction centers

    NASA Astrophysics Data System (ADS)

    Savikhin, Sergei; Xu, Wu; Chitnis, Parag; Struve, Walter

    2002-03-01

    Femtosecond time-resolved absorption difference studies were performed on photosystem I complexes from the cyanobacterium Synechocystis sp. PCC 6803. The overal electron transfer from the special pair P700 to the secondary acceptor A1 has been shown to be 10 ps, twice shorter than the previously estimated value. Similar studies were performed on more than 10 genetically engineered species, where protein structure was altered in the visinity of the reaction center (RC). The functioning of the PS I complex was found to be extremelly sensitive to the protein sequence in the immediate proximity of the RC: less than half of the studied mutations resulted in photosynthetically active complexes, and all of the latter had electron transfer dynamics indistinguishable from that of the wild type. Most of the mutations in the other areas of the PS I, including antenna, did not affect the photosynthetic function of this complex radically. These results confirm the extreme importance of the precise RC structure and demonstrate why millions of years of evolution resulted in only two types of topologically similar RC's shared by all photosynthetic organisms.

  16. Dynamics of the reaction glucose-catalase-glucose oxidase-hydrogen peroxide

    NASA Astrophysics Data System (ADS)

    Číp, M.; Schreiberová, L.; Schreiber, I.

    2011-12-01

    Glucose-catalase-glucose oxidase-hydrogen peroxide reaction is one of the few known enzymatic systems studied in vitro in the field of nonlinear chemical dynamics. This reaction belongs to the family of oscillatory enzymatic reactions, which form a natural basis of oscillations in biological systems. A parametric study of dependence on mixing, temperature and initial concentrations of components in a batch stirred reactor was carried out. A newly proposed mathematical model of the reaction conforms to the obtained experimental data. Results of our experiments and simulations hint at further directions of research of non-linear dynamics in this reaction.

  17. A light water excess heat reaction suggests that cold fusion may be alkali-hydrogen fusion

    SciTech Connect

    Bush, R.T. )

    1992-09-01

    This paper reports that Mills and Kneizys presented data in support of a light water excess heat reaction obtained with an electrolytic cell highly reminiscent of the Fleischmann-Pons cold fusion cell. The claim of Mills and Kneizys that their excess heat reaction can be explained on the basis of a novel chemistry, which supposedly also explains cold fusion, is rejected in favor of their reaction being, instead, a light water cold fusion reaction. It is the first known light water cold fusion reaction to exhibit excess heat, it may serve as a prototype to expand our understanding of cold fusion. From this new reactions are deduced, including those common to past cold fusion studies. This broader pattern of nuclear reactions is typically seen to involve a fusion of the nuclides of the alkali atoms with the simplest of the alkali-type nuclides, namely, protons, deuterons, and tritons. Thus, the term alkali-hydrogen fusion seems appropriate for this new type of reaction with three subclasses: alkali-hydrogen fusion, alkali-deuterium fusion, and alkali-tritium fusion. A new three-dimensional transmission resonance model (TRM) is sketched. Finally, preliminary experimental evidence in support of the hypothesis of a light water nuclear reaction and alkali-hydrogen fusion is reported. Evidence is presented that appears to strongly implicate the transmission resonance phenomenon of the new TRM.

  18. Modeling the reaction kinetics of a hydrogen generator onboard a fuel cell -- Electric hybrid motorcycle

    NASA Astrophysics Data System (ADS)

    Ganesh, Karthik

    Owing to the perceived decline of the fossil fuel reserves in the world and environmental issues like pollution, conventional fuels may be replaced by cleaner alternative fuels. The potential of hydrogen as a fuel in vehicular applications is being explored. Hydrogen as an energy carrier potentially finds applications in internal combustion engines and fuel cells because it is considered a clean fuel and has high specific energy. However, at 6 to 8 per kilogram, not only is hydrogen produced from conventional methods like steam reforming expensive, but also there are storage and handling issues, safety concerns and lack of hydrogen refilling stations across the country. The purpose of this research is to suggest a cheap and viable system that generates hydrogen on demand through a chemical reaction between an aluminum-water slurry and an aqueous sodium hydroxide solution to power a 2 kW fuel cell on a fuel cell hybrid motorcycle. This reaction is essentially an aluminum-water reaction where sodium hydroxide acts as a reaction promoter or catalyst. The Horizon 2000 fuel cell used for this purpose has a maximum hydrogen intake rate of 28 lpm. The study focuses on studying the exothermic reaction between the reactants and proposes a rate law that best describes the rate of generation of hydrogen in connection to the surface area of aluminum available for the certain reaction and the concentration of the sodium hydroxide solution. Further, the proposed rate law is used in the simulation model of the chemical reactor onboard the hybrid motorcycle to determine the hydrogen flow rate to the fuel cell with time. Based on the simulated rate of production of hydrogen from the chemical system, its feasibility of use on different drive cycles is analyzed. The rate of production of hydrogen with a higher concentration of sodium hydroxide and smaller aluminum powder size was found to enable the installation of the chemical reactor on urban cycles with frequent stops and starts

  19. Light ion transfer reactions with the HELIOS spectrometer

    SciTech Connect

    Back, B. B.; Collaboration: HELIOS Collaboration

    2012-10-20

    Light-ion induced transfer and inelastic scattering reactions on stable or long-lived targets have been used extensively to study the structure of nuclei near the line of {beta}-stability, and much of the detailed information on the single-particle structure of nuclei has been derived from such studies. Recently, however, a substantial expansion of the range of isotopes, for which this nuclear structure information can be obtained, has presented itself by using radioactive beams in inverse kinematics reactions. Such beams are now available at a number of facilities around the world, including the in-flight production method and CARIBU facility at ATLAS. The HELIOS spectrometer, which has been used since August 2008 at ATLAS, circumvents many of the problems associated with inverse kinematics. In this talk I will discuss the principle of the spectrometer as well as some of main physics results that have been obtained to date in nuclei ranging from {sup 13}B to {sup 137}Xe using both stable and radioactive beams.

  20. Thermal Stress Analysis for a Transfer Line of Hydrogen Modera