Science.gov

Sample records for hydrogenases related genes

  1. The hoxZ gene of the Azotobacter vinelandii hydrogenase operon is required for activation of hydrogenase.

    PubMed Central

    Sayavedra-Soto, L A; Arp, D J

    1992-01-01

    The roles of the product of the hoxZ gene immediately downstream of the hydrogenase gene (hoxKG) in Azotobacter vinelandii were investigated by constructing and characterizing a mutant with the center of the hoxZ gene deleted. The strain lacking the functional hoxZ gene product exhibited a low rate of H2 oxidation with O2 as the electron acceptor relative to that of the wild-type strain. Nevertheless, when the enzyme was exogenously activated and methylene blue was used as the electron acceptor from hydrogenase, rates of H2 oxidation comparable to those in the wild-type strain were observed. These results suggest that the gene product of hoxZ plays a role in activating and maintaining hydrogenase in a reduced active state. The product of hoxZ could also be the linkage necessary for transfer of electrons from H2 to the electron transport chain. Images PMID:1644756

  2. Identification of a locus within the hydrogenase gene cluster involved in intracellular nickel metabolism in Bradyrhizobium japonicum

    SciTech Connect

    Changlin Fu; Maier, R.J. )

    1991-12-01

    A 0.6-kb fragment of DNA involved in intracellular Ni metabolism was isolated and cloned from a cosmid containing 23.2 kb of hydrogenase-related genes of Bradyrhizobium japonicum. This locus is located 8.3 kb upstream of the hydrogenase structural genes. The hydrogenase activity of a mutant with a gene-directed mutation at this locus (strain JHK7) showed dependency on nickel provided during hydrogenase depression. The hydrogenase activity was only 20% of that in the wild-type strain, JH, at a concentration of 0.5 {mu}M NiCl{sub 2}. The hydrogenase activity in JH reached its maximum at 3 {mu}M NiCl{sub 2}, whereas the mutant (JHK7) reached wild-type levels of hydrogenase activity when derepressed in 50 {mu}M NiCl{sub 2}. Studies with the hup-lacZ transcriptional fusion plasmid pSY7 in JHK7 showed that the mutant JHK7 expressed less promoter activity under low-nickel conditions than did strain JH. The mutant accumulated less nickel during a 45-h hydrogenase under low-nickel conditions than did strain JH. The mutant accumulated less nickel during a 45-h hydrogenase derepression period than did the wild type. However, both JHK7 and the JH wild-type strain had the same short-term Ni transport rates, and the K{sub m}s for Ni of both strains were about 62 {mu}M. When incubated under non-hydrogenase-derepression conditions, the mutant accumulated Ni at the same rate as strain JH. However, this stored source of nickel was unable to restore hydrogenase expression ability of the mutant to wild-type levels during derepression without nickel. The results that the locus identified in B. japonicum is not involved in nickel-specific transport.

  3. Hydrogenase Gene Distribution and H2 Consumption Ability within the Thiomicrospira Lineage

    PubMed Central

    Hansen, Moritz; Perner, Mirjam

    2016-01-01

    Thiomicrospira were originally characterized as sulfur-oxidizing chemolithoautotrophs. Attempts to grow them on hydrogen failed for many years. Only recently we demonstrated hydrogen consumption among two of three tested Thiomicrospira and posited that hydrogen consumption may be more widespread among Thiomicrospira than previously assumed. Here, we investigate and compare the hydrogen consumption ability and the presence of group 1 [NiFe]-hydrogenase genes (enzyme catalyzes H2↔2H+ + 2e-) for sixteen different Thiomicrospira species. Seven of these Thiomicrospira species encoded group 1 [NiFe]-hydrogenase genes and five of these species could also consume hydrogen. All Thiomicrospira species exhibiting hydrogen consumption were from hydrothermal vents along the Mid-Atlantic ridge or Eastern Pacific ridges. The tested Thiomicrospira from Mediterranean and Western Pacific vents could not consume hydrogen. The [NiFe]-hydrogenase genes were categorized into two clusters: those resembling the hydrogenase from Hydrogenovibrio are in cluster I and are related to those from Alpha- and other Gammaproteobacteria. In cluster II, hydrogenases found exclusively in Thiomicrospira crunogena strains are combined and form a monophyletic group with those from Epsilonproteobacteria suggesting they were acquired through horizontal gene transfer. Hydrogen consumption appears to be common among some Thiomicrospira, given that five of the tested sixteen strains carried this trait. The hydrogen consumption ability expands their competitiveness within an environment. PMID:26903978

  4. Process and genes for expression and overexpression of active [FeFe] hydrogenases

    DOEpatents

    Seibert, Michael; King, Paul W; Ghirardi, Maria Lucia; Posewitz, Matthew C; Smolinski, Sharon L

    2014-09-16

    A process for expression of active [FeFe]-hydrogenase in a host organism that does not contain either the structural gene(s) for [FeFe]-hydrogenases and/or homologues for the maturation genes HydE, HydF and HyG, comprising: cloning the structural hydrogenase gene(s) and/or the maturation genes HydE, HydF and HydG from an organisms that contains these genes into expression plasmids; transferring the plasmids into an organism that lacks a native [FeFe]-hydrogenase or that has a disrupted [FeFe]-hydrogenase and culturing it aerobically; and inducing anaerobiosis to provide [FeFe] hydrogenase biosynthesis and H?2#191 production.

  5. Novel [NiFe]- and [FeFe]-hydrogenase gene transcripts indicative of active facultative aerobes and obligate anaerobes in earthworm gut contents.

    PubMed

    Schmidt, Oliver; Wüst, Pia K; Hellmuth, Susanne; Borst, Katharina; Horn, Marcus A; Drake, Harold L

    2011-09-01

    The concomitant occurrence of molecular hydrogen (H(2)) and organic acids along the alimentary canal of the earthworm is indicative of ongoing fermentation during gut passage. Fermentative H(2) production is catalyzed by [FeFe]-hydrogenases and group 4 [NiFe]-hydrogenases in obligate anaerobes (e.g., Clostridiales) and facultative aerobes (e.g., Enterobacteriaceae), respectively, functional groups that might respond differently to contrasting redox conditions. Thus, the objectives of this study were to assess the redox potentials of the alimentary canal of Lumbricus terrestris and analyze the hydrogenase transcript diversities of H(2) producers in glucose-supplemented gut content microcosms. Although redox potentials in the core of the alimentary canal were variable on an individual worm basis, average redox potentials were similar. The lowest redox potentials occurred in the foregut and midgut regions, averaging 40 and 110 mV, respectively. Correlation plots between hydrogenase amino acid sequences and 16S rRNA gene sequences indicated that closely related hydrogenases belonged to closely related taxa, whereas distantly related hydrogenases did not necessarily belong to distantly related taxa. Of 178 [FeFe]-hydrogenase gene transcripts, 177 clustered in 12 Clostridiales-affiliated operational taxonomic units, the majority of which were indicative of heretofore unknown hydrogenases. Of 86 group 4 [NiFe]-hydrogenase gene transcripts, 79% and 21% were affiliated with organisms in the Enterobacteriaceae and Aeromonadaceae, respectively. The collective results (i) suggest that fermenters must cope with variable and moderately oxidative redox conditions along the alimentary canal, (ii) demonstrate that heretofore undetected hydrogenases are present in the earthworm gut, and (iii) corroborate previous findings implicating Clostridiaceae and Enterobacteriaceae as active fermentative taxa in earthworm gut content.

  6. A gene complex coding for the membrane-bound hydrogenase of Alcaligenes eutrophus H16.

    PubMed Central

    Kortlüke, C; Horstmann, K; Schwartz, E; Rohde, M; Binsack, R; Friedrich, B

    1992-01-01

    One of the key enzymes in the chemolithoautotrophic metabolism of Alcaligenes eutrophus H16 is a dimeric, membrane-associated hydrogenase. The genetic determinants of this enzyme are located on the endogenous megaplasmid pHG1 (G. Eberz, C. Hogrefe, C. Kortlüke, A. Kamienski, and B. Friedrich, J. Bacteriol. 168:636-641, 1986). Complementation studies showed that the information required for the formation of active membrane-bound hydrogenase occupies more than 7.5 kb of megaplasmid DNA. We cloned and sequenced this region and identified the genes encoding the two hydrogenase subunits (hoxK and hoxG). The nucleotide sequence contains nine additional closely spaced open reading frames. Immunoelectron microscopy showed that the gene product of one of these open reading frames (hoxM) is involved in the process leading to the attachment of hydrogenase to the membrane. Other open reading frames may encode additional processing functions and components of a hydrogenase-linked electron transport chain. Analysis of Tn5-B21-mediated transcriptional fusions provided evidence that the structural genes and accessory functions belong to at least three coordinately regulated transcriptional units. Images PMID:1383192

  7. A hydrogenase-linked gene in Methanobacterium thermoautotrophicum strain delta H encodes a polyferredoxin.

    PubMed Central

    Reeve, J N; Beckler, G S; Cram, D S; Hamilton, P T; Brown, J W; Krzycki, J A; Kolodziej, A F; Alex, L; Orme-Johnson, W H; Walsh, C T

    1989-01-01

    The genes mvhDGA, which encode the subunit polypeptides of the methyl viologen-reducing hydrogenase in Methanobacterium thermoautotrophicum strain delta H, have been cloned and sequenced. These genes, together with a fourth open reading frame designated mvhB, are tightly linked and appear to form an operon that is transcribed starting 42 base pairs upstream of mvhD. The organization and sequences of the mvhG and mvhA genes indicate a common evolutionary ancestry with genes encoding the small and large subunits of hydrogenases in eubacterial species. The product of the mvhB gene is predicted to contain six tandomly repeated bacterial-ferredoxin-like domains and, therefore, is predicted to be a polyferredoxin that could contain as many as 48 iron atoms in 12 Fe4S4 clusters. PMID:2654933

  8. Relating diffusion along the substrate tunnel and oxygen sensitivity in hydrogenase.

    PubMed

    Liebgott, Pierre-Pol; Leroux, Fanny; Burlat, Bénédicte; Dementin, Sébastien; Baffert, Carole; Lautier, Thomas; Fourmond, Vincent; Ceccaldi, Pierre; Cavazza, Christine; Meynial-Salles, Isabelle; Soucaille, Philippe; Fontecilla-Camps, Juan Carlos; Guigliarelli, Bruno; Bertrand, Patrick; Rousset, Marc; Léger, Christophe

    2010-01-01

    In hydrogenases and many other redox enzymes, the buried active site is connected to the solvent by a molecular channel whose structure may determine the enzyme's selectivity with respect to substrate and inhibitors. The role of these channels has been addressed using crystallography and molecular dynamics, but kinetic data are scarce. Using protein film voltammetry, we determined and then compared the rates of inhibition by CO and O2 in ten NiFe hydrogenase mutants and two FeFe hydrogenases. We found that the rate of inhibition by CO is a good proxy of the rate of diffusion of O2 toward the active site. Modifying amino acids whose side chains point inside the tunnel can slow this rate by orders of magnitude. We quantitatively define the relations between diffusion, the Michaelis constant for H2 and rates of inhibition, and we demonstrate that certain enzymes are slowly inactivated by O2 because access to the active site is slow.

  9. Evolutionary Significance of an Algal Gene Encoding an [FeFe]-Hydrogenase with F-Domain Homology and Hydrogenase Activity in Chlorella Variabilis NC64A

    SciTech Connect

    Meuser, J. E.; Boyd, E. S.; Ananyev, G.; Karns, D.; Radakovits, R.; Murthy, U. M. N.; Ghirardi, M. L.; Dismukes, G. C.; Peters, J. W.; Posewitz, M. C.

    2011-10-01

    [FeFe]-hydrogenases (HYDA) link the production of molecular H{sub 2} to anaerobic metabolism in many green algae. Similar to Chlamydomonas reinhardtii, Chlorella variabilis NC64A (Trebouxiophyceae, Chlorophyta) exhibits [FeFe]-hydrogenase (HYDA) activity during anoxia. In contrast to C. reinhardtii and other chlorophycean algae, which contain hydrogenases with only the HYDA active site (H-cluster), C. variabilis NC64A is the only known green alga containing HYDA genes encoding accessory FeS cluster-binding domains (F-cluster). cDNA sequencing confirmed the presence of F-cluster HYDA1 mRNA transcripts, and identified deviations from the in silico splicing models. We show that HYDA activity in C. variabilis NC64A is coupled to anoxic photosynthetic electron transport (PSII linked, as well as PSII-independent) and dark fermentation. We also show that the in vivo H{sub 2}-photoproduction activity observed is as O2 sensitive as in C. reinhardtii. The two C. variabilis NC64A HYDA sequences are similar to homologs found in more deeply branching bacteria (Thermotogales), diatoms, and heterotrophic flagellates, suggesting that an F-cluster HYDA is the ancestral enzyme in algae. Phylogenetic analysis indicates that the algal HYDA H-cluster domains are monophyletic, suggesting that they share a common origin, and evolved from a single ancestral F-cluster HYDA. Furthermore, phylogenetic reconstruction indicates that the multiple algal HYDA paralogs are the result of gene duplication events that occurred independently within each algal lineage. Collectively, comparative genomic, physiological, and phylogenetic analyses of the C. variabilis NC64A hydrogenase has provided new insights into the molecular evolution and diversity of algal [FeFe]-hydrogenases.

  10. Enhancing hydrogen production of Enterobacter aerogenes by heterologous expression of hydrogenase genes originated from Synechocystis sp.

    PubMed

    Song, Wenlu; Cheng, Jun; Zhao, Jinfang; Zhang, Chuanxi; Zhou, Junhu; Cen, Kefa

    2016-09-01

    The hydrogenase genes (hoxEFUYH) of Synechocystis sp. PCC 6803 were cloned and heterologously expressed in Enterobacter aerogenes ATCC13408 for the first time in this study, and the hydrogen yield was significantly enhanced using the recombinant strain. A recombinant plasmid containing the gene in-frame with Glutathione-S-Transferase (GST) gene was transformed into E. aerogenes ATCC13408 to produce a GST-fusion protein. SDS-PAGE and western blot analysis confirm the successful expression of the hox genes. The hydrogenase activity of the recombinant strain is 237.6±9.3ml/(g-DW·h), which is 152% higher than the wild strain. The hydrogen yield of the recombinant strain is 298.3ml/g-glucose, which is 88% higher than the wild strain. During hydrogen fermentation, the recombinant strain produces more acetate and butyrate, but less ethanol. This is corresponding to the NADH metabolism in the cell due to the higher hydrogenase activity with the heterologous expression of hox genes.

  11. The Alcaligenes eutrophus H16 hoxX gene participates in hydrogenase regulation.

    PubMed Central

    Lenz, O.; Schwartz, E.; Dernedde, J.; Eitinger, M.; Friedrich, B.

    1994-01-01

    Nucleotide sequence analysis revealed a 1,791-bp open reading frame in the hox gene cluster of the gram-negative chemolithotroph Alcaligenes eutrophus H16. In order to investigate the biological role of this open reading frame, we generated an in-frame deletion allele via a gene replacement strategy. The resulting mutant grew significantly more slowly than the wild type under lithoautotrophic conditions (6.1 versus 4.2 h doubling time). A reduction in the level of the soluble NAD-reducing hydrogenase (60% of the wild-type activity) was shown to be the cause of the slow lithoautotrophic growth. We used plasmid-borne gene fusions to monitor the expression of the operons encoding the soluble and membrane-bound hydrogenases. The expression of both operons was lower in the mutant than in the wild-type strain. These results suggest that the newly identified gene, designated hoxX, encodes a regulatory component which, in conjunction with the transcriptional activator HoxA, controls hydrogenase synthesis. Images PMID:8021224

  12. Symbiotic Expression of Cosmid-Borne Bradyrhizobium japonicum Hydrogenase Genes

    PubMed Central

    Lambert, Grant R.; Harker, Alan R.; Cantrell, Michael A.; Hanus, F. Joe; Russell, Sterling A.; Haugland, Richard A.; Evans, Harold J.

    1987-01-01

    The expression of cosmid-borne Bradyrhizobium japonicum hydrogenase genes in alfalfa, clover, and soybean nodules harboring Rhizobium transconjugants was studied. Cosmid pHU52 conferred hydrogen uptake (Hup) activity in both free-living bacteria and in nodules on the different plant hosts, although in nodules the instability of the cosmid resulted in low levels of Hup activity. In contrast, cosmid pHU1, which does not confer Hup activity on free-living bacteria, gave a Hup+ phenotype in nodules on alfalfa and soybean. Nodules formed by B. japonicum USDA 123Spc(pHU1) recycled about 90% of nitrogenase-mediated hydrogen evolution. Both subunits of hydrogenase (30- and 60-kilodalton polypeptides) were detected in enzyme-linked immunosorbent assays of bacteroid preparations from nodules harboring B. japonicum strains with pHU1 or pHU52. Neither pHU53 nor pLAFR1 conferred detectable Hup activity in either nodules or free-living bacteria. Based on the physical maps of pHU1 and pHU52, it is suggested that a 5.5-kilobase EcoRI fragment unique to pHU52 contains a gene or part of a gene required for Hup activity in free-living bacteria but not in nodules. This conclusion is supported by the observation that two Tn5 insertions in the chromosome of B. japonicum USDA 122DES obtained by marker exchange with Tn5-mutagenized pHU1 abolished Hup activity in free-living bacteria but not in nodules. Images PMID:16347291

  13. Organization of the genes encoding [Fe] hydrogenase in Desulfovibrio vulgaris subsp. oxamicus Monticello.

    PubMed Central

    Voordouw, G; Strang, J D; Wilson, F R

    1989-01-01

    The genes encoding the periplasmic [Fe] hydrogenase from Desulfovibrio vulgaris subsp. oxamicus Monticello were cloned by exploiting their homology with the hydAB genes from D. vulgaris subsp. vulgaris Hildenborough, in which this enzyme is present as a heterologous dimer of alpha and beta subunits. Nucleotide sequencing showed that the enzyme is encoded by an operon in which the gene for the 46-kilodalton (kDa) alpha subunit precedes that of the 13.5-kDa beta subunit, exactly as in the Hildenborough strain. The pairs of hydA and hydB genes are highly homologous; both alpha subunits (420 amino acid residues) share 79% sequence identity, while the unprocessed beta subunits (124 and 123 amino acid residues, respectively) share 71% sequence identity. In contrast, there appears to be no sequence homology outside these coding regions, with the exception of a possible promoter element, which was found approximately 90 base pairs upstream from the translational start of the hydA gene. The recently discovered hydC gene, which may code for a 65.8-kDa fusion protein (gamma) of the alpha and beta subunits and is present immediately downstream from the hydAB genes in the Hildenborough strain, was found to be absent from the Monticello strain. The implication of this result for the possible function of the hydC gene product in Desulfovibrio species is discussed. Images PMID:2661538

  14. Use of hupS::lacZ gene fusion to study regulation of hydrogenase expression in Rhodobacter capsulatus: stimulation by H2.

    PubMed Central

    Colbeau, A; Vignais, P M

    1992-01-01

    The Escherichia coli beta-galactosidase enzyme was used as a reporter molecule for genetic fusions in Rhodobacter capsulatus. DNA fragments that were from the upstream region of the hydrogenase structural operon hupSLM and contained 5' hupS sequences were fused in frame to a promoterless lacZ gene, yielding fusion proteins comprising the putative signal sequence and the first 22 amino acids of the HupS protein joined to the eight amino acid of beta-galactosidase. We demonstrate the usefulness of the hupS::lacZ fusion in monitoring regulation of hydrogenase gene expression. The activities of plasmid-determined beta-galactosidase and chromosome-encoded hydrogenase changed in parallel in response to various growth conditions (light or dark, aerobiosis or anaerobiosis, and presence or absence of ammonia or of H2), showing that changes in hydrogenase activity were due to changes in enzyme synthesis. Molecular hydrogen stimulated hydrogenase synthesis in dark, aerobic cultures and in illuminated, anaerobic cultures. Analysis of hupS::lacZ expression in various mutants indicated that neither the hydrogenase structural genes nor NifR4 (sigma 54) was essential for hydrogen regulation of hydrogenase synthesis. PMID:1624420

  15. Cloning and nucleotide sequences of the genes for the subunits of NAD-reducing hydrogenase of Alcaligenes eutrophus H16.

    PubMed Central

    Tran-Betcke, A; Warnecke, U; Böcker, C; Zaborosch, C; Friedrich, B

    1990-01-01

    The genes hoxF, -U, -Y, and -H which encode the four subunit polypeptides alpha, gamma, delta, and beta of the NAD-reducing hydrogenase (HoxS) of Alcaligenes eutrophus H16, were cloned, expressed in Pseudomonas facilis, and sequenced. On the basis of the nucleotide sequence, the predicted amino acid sequences, and the N-terminal amino acid sequences, it was concluded that the structural genes are tightly linked and presumably organized as an operon, denoted hoxS. Two pairs of -24 and -12 consensus sequences resembling RpoN-activatable promoters lie upstream of hoxF, the first of the four genes. Primer extension experiments indicate that the second promoter is responsible for hoxS transcription. hoxF and hoxU code for the flavin-containing dimer (alpha and gamma subunits) of HoxS which exhibits NADH:oxidoreductase activity. A putative flavin-binding region is discussed. The 26.0-kilodalton (kDa) gamma subunit contains two cysteine clusters which may participate in the coordination of two [4F3-4S]centers. The genes hoxY and hoxH code for the small 22.9-kDa delta subunit and the nickel-containing 54.8-kDa beta subunit, respectively, of the hydrogenase dimer of HoxS. The latter dimer exhibits several conserved regions found in all nickel-containing hydrogenases. The roles of these regions in coordinating iron and nickel are discussed. Although the deduced amino acid sequences of the delta and beta subunits share some conserved regions with the corresponding polypeptides of other [NiFe] hydrogenases, the overall amino acid homology is marginal. Nevertheless, significant sequence homology (35%) to the corresponding polypeptides of the soluble methylviologen-reducing hydrogenase of Methanobacterium thermoautotrophicum was found. Unlike the small subunits of the membrane-bound and soluble periplasmic hydrogenases, the HoxS protein does not appear to be synthesized with an N-terminal leader peptide. Images PMID:2188945

  16. Deletion of a gene cluster for [Ni-Fe] hydrogenase maturation in the anaerobic hyperthermophilic bacterium Caldicellulosiruptor bescii identifies its role in hydrogen metabolism.

    PubMed

    Cha, Minseok; Chung, Daehwan; Westpheling, Janet

    2016-02-01

    The anaerobic, hyperthermophlic, cellulolytic bacterium Caldicellulosiruptor bescii grows optimally at ∼80 °C and effectively degrades plant biomass without conventional pretreatment. It utilizes a variety of carbohydrate carbon sources, including both C5 and C6 sugars, released from plant biomass and produces lactate, acetate, CO2, and H2 as primary fermentation products. The C. bescii genome encodes two hydrogenases, a bifurcating [Fe-Fe] hydrogenase and a [Ni-Fe] hydrogenase. The [Ni-Fe] hydrogenase is the most widely distributed in nature and is predicted to catalyze hydrogen production and to pump protons across the cellular membrane creating proton motive force. Hydrogenases are the key enzymes in hydrogen metabolism and their crystal structure reveals complexity in the organization of their prosthetic groups suggesting extensive maturation of the primary protein. Here, we report the deletion of a cluster of genes, hypABFCDE, required for maturation of the [Ni-Fe] hydrogenase. These proteins are specific for the hydrogenases they modify and are required for hydrogenase activity. The deletion strain grew more slowly than the wild type or the parent strain and produced slightly less hydrogen overall, but more hydrogen per mole of cellobiose. Acetate yield per mole of cellobiose was increased ∼67 % and ethanol yield per mole of cellobiose was decreased ∼39 %. These data suggest that the primary role of the [Ni-Fe] hydrogenase is to generate a proton gradient in the membrane driving ATP synthesis and is not the primary enzyme for hydrogen catalysis. In its absence, ATP is generated from increased acetate production resulting in more hydrogen produced per mole of cellobiose.

  17. Cloning and sequencing of the genes encoding the large and small subunits of the periplasmic (NiFeSe) hydrogenase of Desulfovibrio baculatus

    SciTech Connect

    Menon, N.K.; Peck, H.D. Jr.; Le Gall, J.; Przybyla, A.E.

    1987-12-01

    The genes coding for the large and small subunits of the periplasmic hydrogenase from Desulfovibrio baculatus have been cloned and sequenced. The genes are arranged in an operon with the small subunit gene preceding the large subunit gene. The small subunit gene codes for a 32 amino acid leader sequence supporting the periplasmic localization of the protein, however no ferredoxin-like or other characteristic iron-sulfur coordination sites were observed. The periplasmic hydrogenases from D. baculatus (an NiFeSe protein) and D. vulgaris (an Fe protein) exhibit no homology suggesting that they are structurally different, unrelated entities.

  18. Basic studies of hydrogen evolution by Escherichia coli containing a cloned Citrobacter freundii hydrogenase gene.

    PubMed

    Kanayama, H; Sode, K; Karube, I

    1987-08-01

    Citrobacter freundii genes that complemented Escherichia coli hyd-(hydrogenase activity) mutation were cloned in plasmids pCBH4 (6.2 kb) and pCBH6(5.7 kb). Hydrogen evolution by the transformant E. coli HK-8(pCBH4 or pCBH6) was investigated. The optimum culture temperature of recombinant E. coli cells for hydrogen evolution from glucose was in the neighborhood of 18 degrees C. The recombinant E. coli cells cultured at this condition showed a several-fold increase of hydrogen evolution, as compared with that of the wild-type cells. The plasmid-retention stability of this recombinant E. coli was extremely high, especially plasmid pCBH4, which was completely retained during 2 wk without any restriction. Hydrogen production by immobilized recombinant E. coli was then investigated using cells cultured at 18 degrees C. The hydrogen evolution rate from glucose and Lennox-broth were about twofold higher than that of E. coli C600, and this high hydrogen evolution rate was maintained for more than 1 mo.

  19. An [Fe] hydrogenase from the anaerobic hydrogenosome-containing fungus Neocallimastix frontalis L2.

    PubMed

    Davidson, Elizabeth A; van der Giezen, Mark; Horner, David S; Embley, T Martin; Howe, Christopher J

    2002-08-21

    Hydrogenases, oxygen-sensitive enzymes that can make hydrogen gas, are key to the function of hydrogen-producing organelles (hydrogenosomes), which occur in anaerobic eukaryotes scattered throughout the eukaryotic tree. All of the eukaryotic enzymes characterized so far are iron-only [Fe] hydrogenases. In contrast, it has previously been suggested that hydrogenosomes of the best-studied anaerobic fungus Neocallimastix frontalis L2 contain an unrelated iron-nickel-selenium [NiFeSe] hydrogenase. We have isolated a gene from strain L2 that encodes a putative protein containing all of the characteristic features of an iron-only [Fe] hydrogenase, including the cysteine residues required for the co-ordination of the unique 'hydrogen cluster'. As is the case for experimentally verified hydrogenosomal matrix enzymes from N. frontalis, the [Fe] hydrogenase encodes a plausible amino terminal extension that resembles mitochondrial targeting signals. Phylogenetic analyses of an expanded [Fe] hydrogenase dataset reveal a complicated picture that is difficult to interpret in the light of current ideas of species relationships. Nevertheless, our analyses cannot reject the hypothesis that the novel [Fe] hydrogenase gene of Neocallimastix is specifically related to other eukaryote [Fe] hydrogenases, and thus ultimately might be traced to the same ancestral source.

  20. Genetic diversity of Desulfovibrio spp. in environmental samples analyzed by denaturing gradient gel electrophoresis of [NiFe] hydrogenase gene fragments.

    PubMed Central

    Wawer, C; Muyzer, G

    1995-01-01

    The genetic diversity of Desulfovibrio species in environmental samples was determined by denaturing gradient gel electrophoresis (DGGE) of PCR-amplified [NiFe] hydrogenase gene fragments. Five different PCR primers were designed after comparative analysis of [NiFe] hydrogenase gene sequences from three Desulfovibrio species. These primers were tested in different combinations on the genomic DNAs of a variety of hydrogenase-containing and hydrogenase-lacking bacteria. One primer pair was found to be specific for Desulfovibrio species only, while the others gave positive results with other bacteria also. By using this specific primer pair, we were able to amplify the [NiFe] hydrogenase genes of DNAs isolated from environmental samples and to detect the presence of Desulfovibrio species in these samples. However, only after DGGE analysis of these PCR products could the number of different Desulfovibrio species within the samples be determined. DGGE analysis of PCR products from different bioreactors demonstrated up to two bands, while at least five distinguishable bands were detected in a microbial mat sample. Because these bands most likely represent as many Desulfovibrio species present in these samples, we conclude that the genetic diversity of Desulfovibrio species in the natural microbial mat is far greater than that in the experimental bioreactors. PMID:7793940

  1. Genetic determinants of a nickel-specific transport system are part of the plasmid-encoded hydrogenase gene cluster in Alcaligenes eutrophus.

    PubMed Central

    Eberz, G; Eitinger, T; Friedrich, B

    1989-01-01

    Nickel-deficient (Nic-) mutants of Alcaligenes eutrophus requiring high levels of nickel ions for autotrophic growth with hydrogen were characterized. The Nic- mutants carried defined deletions in the hydrogenase gene cluster of the indigenous pHG megaplasmid. Nickel deficiency correlated with a low level of the nickel-containing hydrogenase activity, a slow rate of nickel transport, and reduced activity of urease. The Nic+ phenotype was restored by a cloned DNA sequence (hoxN) of a megaplasmid pHG1 DNA library of A. eutrophus H16. hoxN is part of the hydrogenase gene cluster. The nickel requirement of Nic- mutants was enhanced by increasing the concentration of magnesium. This suggests that the Nic- mutants are impaired in the nickel-specific transport system and thus depend on the second transport activity which normally mediates the uptake of magnesium. PMID:2646280

  2. The product of the hypB gene, which is required for nickel incorporation into hydrogenases, is a novel guanine nucleotide-binding protein.

    PubMed Central

    Maier, T; Jacobi, A; Sauter, M; Böck, A

    1993-01-01

    The products of the hyp operon genes are essential for the formation of catalytically active hydrogenases in Escherichia coli. At least one of these auxiliary proteins, HYPB, appears to be involved in nickel liganding to the hydrogenase apoprotein, since mutations in hypB can be phenotypically suppressed by high nickel concentrations in the medium (R. Waugh and D. H. Boxer, Biochimie 68:157-166, 1986). To approach the identification of the specific function of HYPB, we overexpressed the hypB gene and purified and characterized the gene product. HYPB is a homodimer of 31.6-kDa subunits, and it binds guanine nucleotides, with a Kd for GDP of 1.2 microM. The protein displays a low level of GTPase activity, with a kcat of 0.17 min-1. The apparent Km for GTP, as measured in the GTP hydrolysis reaction, was determined to be 4 microM. A chromatography system was established to measure nickel insertion into hydrogenase 3 from E. coli and to determine the effects of lesions in hypB. Nickel appears to be associated only with the processed large subunit of hydrogenase 3 in the wild type, and hypB mutants accumulate the precursor form of this subunit, which is devoid of nickel. The results are discussed in terms of a model in which HYPB is involved in nickel donation to the hydrogenase apoprotein and in which GTP hydrolysis is thought to reverse the interaction between either HYPB or another nickel-binding protein and the hydrogenase apoprotein after the nickel has been released. Images PMID:8423137

  3. Sequence analysis and interposon mutagenesis of the hupT gene, which encodes a sensor protein involved in repression of hydrogenase synthesis in Rhodobacter capsulatus.

    PubMed Central

    Elsen, S; Richaud, P; Colbeau, A; Vignais, P M

    1993-01-01

    The hupT gene, which represses hydrogenase gene expression in the purple photosynthetic bacterium Rhodobacter capsulatus, has been identified and sequenced. The nucleotide sequence of hupT and of the contiguous downstream open reading frame, hupU, is reported. The HupT protein of 456 amino acids (48,414 Da) has sequence similarity with the FixL, DctB, NtrB, and ArcB proteins and is predicted to be a soluble sensor kinase. Insertional inactivation of the hupT gene led to deregulation of transcriptional control, so that the hydrogenase structural operon hupSLC became overexpressed in cells grown anaerobically or aerobically. The HupT- mutants were complemented in trans by a plasmid containing an intact copy of the hupT gene. The hupU open reading frame, capable of encoding a protein of 84,879 Da, shared identity with [NiFe]hydrogenase subunits; the strongest similarity was observed with the periplasmic hydrogenase of Desulfovibrio baculatus. Images PMID:8226687

  4. H2-Producing Bacterial Community during Rice Straw Decomposition in Paddy Field Soil: Estimation by an Analysis of [FeFe]-Hydrogenase Gene Transcripts.

    PubMed

    Baba, Ryuko; Asakawa, Susumu; Watanabe, Takeshi

    2016-09-29

    The transcription patterns of [FeFe]-hydrogenase genes (hydA), which encode the enzymes responsible for H2 production, were investigated during rice straw decomposition in paddy soil using molecular biological techniques. Paddy soil amended with and without rice straw was incubated under anoxic conditions. RNA was extracted from the soil, and three clone libraries of hydA were constructed using RNAs obtained from samples in the initial phase of rice straw decomposition (day 1 with rice straw), methanogenic phase of rice straw decomposition (day 14 with rice straw), and under a non-amended condition (day 14 without rice straw). hydA genes related to Proteobacteria, Firmicutes, Bacteroidetes, Chloroflexi, and Thermotogae were mainly transcribed in paddy soil samples; however, their proportions markedly differed among the libraries. Deltaproteobacteria-related hydA genes were predominantly transcribed on day 1 with rice straw, while various types of hydA genes related to several phyla were transcribed on day 14 with rice straw. Although the diversity of transcribed hydA was significantly higher in the library on day 14 with rice straw than the other two libraries, the composition of hydA transcripts in the library was similar to that in the library on day 14 without rice straw. These results indicate that the composition of active H2 producers and/or H2 metabolic patterns dynamically change during rice straw decomposition in paddy soil.

  5. H2-Producing Bacterial Community during Rice Straw Decomposition in Paddy Field Soil: Estimation by an Analysis of [FeFe]-Hydrogenase Gene Transcripts

    PubMed Central

    Baba, Ryuko; Asakawa, Susumu; Watanabe, Takeshi

    2016-01-01

    The transcription patterns of [FeFe]-hydrogenase genes (hydA), which encode the enzymes responsible for H2 production, were investigated during rice straw decomposition in paddy soil using molecular biological techniques. Paddy soil amended with and without rice straw was incubated under anoxic conditions. RNA was extracted from the soil, and three clone libraries of hydA were constructed using RNAs obtained from samples in the initial phase of rice straw decomposition (day 1 with rice straw), methanogenic phase of rice straw decomposition (day 14 with rice straw), and under a non-amended condition (day 14 without rice straw). hydA genes related to Proteobacteria, Firmicutes, Bacteroidetes, Chloroflexi, and Thermotogae were mainly transcribed in paddy soil samples; however, their proportions markedly differed among the libraries. Deltaproteobacteria-related hydA genes were predominantly transcribed on day 1 with rice straw, while various types of hydA genes related to several phyla were transcribed on day 14 with rice straw. Although the diversity of transcribed hydA was significantly higher in the library on day 14 with rice straw than the other two libraries, the composition of hydA transcripts in the library was similar to that in the library on day 14 without rice straw. These results indicate that the composition of active H2 producers and/or H2 metabolic patterns dynamically change during rice straw decomposition in paddy soil. PMID:27319579

  6. Fundamental Studies of Recombinant Hydrogenases

    SciTech Connect

    Adams, Michael W

    2014-01-25

    This research addressed the long term goals of understanding the assembly and organization of hydrogenase enzymes, of reducing them in size and complexity, of determining structure/function relationships, including energy conservation via charge separation across membranes, and in screening for novel H2 catalysts. A key overall goal of the proposed research was to define and characterize minimal hydrogenases that are produced in high yields and are oxygen-resistant. Remarkably, in spite of decades of research carried out on hydrogenases, it is not possible to readily manipulate or design the enzyme using molecular biology approaches since a recombinant form produced in a suitable host is not available. Such resources are essential if we are to understand what constitutes a “minimal” hydrogenase and design such catalysts with certain properties, such as resistance to oxygen, extreme stability and specificity for a given electron donor. The model system for our studies is Pyrococcus furiosus, a hyperthermophile that grows optimally at 100°C, which contains three different nickel-iron [NiFe-] containing hydrogenases. Hydrogenases I and II are cytoplasmic while the other, MBH, is an integral membrane protein that functions to both evolve H2 and pump protons. Three important breakthroughs were made during the funding period with P. furiosus soluble hydrogenase I (SHI). First, we produced an active recombinant form of SHI in E. coli by the co-expression of sixteen genes using anaerobically-induced promoters. Second, we genetically-engineered P. furiosus to overexpress SHI by an order of magnitude compared to the wild type strain. Third, we generated the first ‘minimal’ form of SHI, one that contained two rather than four subunits. This dimeric form was stable and active, and directly interacted with a pyruvate-oxidizing enzyme with any intermediate electron carrier. The research resulted in five peer-reviewed publications.

  7. Regulation and genetic organization of hydrogenase: Final progress report for the period June 1, 1985--July 31, 1988

    SciTech Connect

    Krasna, A.I.

    1988-10-01

    Hydrogenase is an enzyme which plays an important role in the anaerobic metabolism of many bacteria. The objectives of the research were to elucidate the regulation and genetic organization of hydrogenase in microorganisms. A mutation in the E. coli hydE gene leads to loss of all hydrogenase activities and isoenzymes as well as all formate-related activities. A 0.9 kb DNA fragment has been cloned from an E. coli genomic DNA library which restored all hydrogenase and formate activities to a hydE mutant strain. This gene coded for a polypeptide of subunit mw 36 kDa which is required for hydrogenase synthesis. It is involved in incorporation of nickel into hydrogenase. A mutation in the E coli hupB gene leads to the loss of the uptake of H/sub 2/ by dyes and the ability to grow on fumarate plus H/sub 2/, but expresses normal levels of hydrogenase when assayed by deuterium exchange. This mutation also leads to loss of all formate-related activities. The mutation mapped near minute 17 and a single mutation was responsible for loss of both activities. A 1.4 kb DNA fragment was isolated which restored the hydrogen uptake activities and coded for a polypeptide of subunit mw 30 kDa. Dna fragments have been isolated from Chromatium vinosum and Proteus vulgaris which restored hydrogenase activities to E. coli strains with mutations in the hydA or hydB regulatory genes and which lack all hydrogenase activities. 6 refs., 12 figs.

  8. Immunological relationship among hydrogenases.

    PubMed Central

    Kovacs, K L; Seefeldt, L C; Tigyi, G; Doyle, C M; Mortenson, L E; Arp, D J

    1989-01-01

    We examined the immunological cross-reactions of 11 different hydrogenase antigens with 9 different hydrogenase antibodies. Included were antibodies and antigens of both subunits of the hydrogenases of Bradyrhizobium japonicum and Thiocapsa roseopersicina. The results showed a strong relationship among the Ni-Fe dimeric hydrogenases. The two subunits of Ni-Fe dimeric hydrogenases appeared immunologically distinct: specific interactions occurred only when antibodies to the 60- and 30-kilodalton subunits reacted with the 60- and 30-kilodalton-subunit antigens. The interspecies cross-reactions suggested that at least one conserved protein region exists among the large subunits of these enzymes, whereas the small subunits are less conserved. Antibodies to the Fe-only bidirectional hydrogenase of Clostridium pasteurianum reacted with the Desulfovibrio vulgaris bidirectional hydrogenase. Surprisingly, antibodies to the clostridial uptake hydrogenase did not react with any of the Fe-only bidirectional hydrogenases but did react with several of the Ni-Fe dimeric hydrogenases. The two hydrogenases from C. pasteurianum were found to be quite different immunologically. The possible relationship of these findings to the structure and catalytic functions of hydrogenase are discussed. Images PMID:2464579

  9. Relation between anaerobic inactivation and oxygen tolerance in a large series of NiFe hydrogenase mutants

    PubMed Central

    Abou Hamdan, Abbas; Liebgott, Pierre-Pol; Fourmond, Vincent; Gutiérrez-Sanz, Oscar; De Lacey, Antonio L.; Infossi, Pascale; Rousset, Marc; Dementin, Sébastien; Léger, Christophe

    2012-01-01

    Nickel-containing hydrogenases, the biological catalysts of oxidation and production, reversibly inactivate under anaerobic, oxidizing conditions. We aim at understanding the mechanism of (in)activation and what determines its kinetics, because there is a correlation between fast reductive reactivation and oxygen tolerance, a property of some hydrogenases that is very desirable from the point of view of biotechnology. Direct electrochemistry is potentially very useful for learning about the redox-dependent conversions between active and inactive forms of hydrogenase, but the voltammetric signals are complex and often misread. Here we describe simple analytical models that we used to characterize and compare 16 mutants, obtained by substituting the position-74 valine of the -sensitive NiFe hydrogenase from Desulfovibrio fructosovorans. We observed that this substitution can accelerate reactivation up to 1,000-fold, depending on the polarity of the position 74 amino acid side chain. In terms of kinetics of anaerobic (in)activation and oxygen tolerance, the valine-to-histidine mutation has the most spectacular effect: The V74H mutant compares favorably with the -tolerant hydrogenase from Aquifex aeolicus, which we use here as a benchmark. PMID:23169623

  10. Expression of Shewanella oneidensis MR-1 [FeFe]-Hydrogenase Genes in Anabaena sp. Strain PCC 7120

    PubMed Central

    Gärtner, Katrin; Lechno-Yossef, Sigal; Cornish, Adam J.; Wolk, C. Peter

    2012-01-01

    H2 generated from renewable resources holds promise as an environmentally innocuous fuel that releases only energy and water when consumed. In biotechnology, photoautotrophic oxygenic diazotrophs could produce H2 from water and sunlight using the cells' endogenous nitrogenases. However, nitrogenases have low turnover numbers and require large amounts of ATP. [FeFe]-hydrogenases found in other organisms can have 1,000-fold higher turnover numbers and no specific requirement for ATP but are very O2 sensitive. Certain filamentous cyanobacteria protect nitrogenase from O2 by sequestering the enzyme within internally micro-oxic, differentiated cells called heterocysts. We heterologously expressed the [FeFe]-hydrogenase operon from Shewanella oneidensis MR-1 in Anabaena sp. strain PCC 7120 using the heterocyst-specific promoter PhetN. Active [FeFe]-hydrogenase was detected in and could be purified from aerobically grown Anabaena sp. strain PCC 7120, but only when the organism was grown under nitrate-depleted conditions that elicited heterocyst formation. These results suggest that the heterocysts protected the [FeFe]-hydrogenase against inactivation by O2. PMID:23023750

  11. Gene Products of the hupGHIJ Operon Are Involved in Maturation of the Iron-Sulfur Subunit of the [NiFe] Hydrogenase from Rhizobium leguminosarum bv. viciae

    PubMed Central

    Manyani, Hamid; Rey, Luis; Palacios, José M.; Imperial, Juan; Ruiz-Argüeso, Tomás

    2005-01-01

    In the present study, we investigate the functions of the hupGHIJ operon in the synthesis of an active [NiFe] hydrogenase in the legume endosymbiont Rhizobium leguminosarum bv. viciae. These genes are clustered with 14 other genes including the hydrogenase structural genes hupSL. A set of isogenic mutants with in-frame deletions (ΔhupG, ΔhupH, ΔhupI, and ΔhupJ) was generated and tested for hydrogenase activity in cultures grown at different oxygen concentrations (0.2 to 2.0%) and in symbiosis with peas. In free-living cultures, deletions in these genes severely reduced hydrogenase activity. The ΔhupH mutant was totally devoid of hydrogenase activity at any of the O2 concentration tested, whereas the requirement of hupGIJ for hydrogenase activity varied with the O2 concentration, being more crucial at higher pO2. Pea bacteroids from the mutant strains affected in hupH, hupI, and hupJ exhibited reduced (20 to 50%) rates of hydrogenase activity compared to the wild type, whereas rates were not affected in the ΔhupG mutant. Immunoblot experiments with HupL- and HupS-specific antisera showed that free-living cultures from ΔhupH, ΔhupI, and ΔhupJ mutants synthesized a fully processed mature HupL protein and accumulated an unprocessed form of HupS (pre-HupS). Both the mature HupL and the pre-HupS forms were located in the cytoplasmic fraction of cultures from the ΔhupH mutant. Affinity chromatography experiments revealed that cytoplasmic pre-HupS binds to the HupH protein before the pre-HupS-HupL complex is formed. From these results we propose that hupGHIJ gene products are involved in the maturation of the HupS hydrogenase subunit. PMID:16199572

  12. Analysis and comparison of nucleotide sequences encoding the genes for [NiFe] and [NiFeSe] hydrogenases from Desulfovibrio gigas and Desulfovibrio baculatus.

    PubMed Central

    Voordouw, G; Menon, N K; LeGall, J; Choi, E S; Peck, H D; Przybyla, A E

    1989-01-01

    The nucleotide sequences encoding the [NiFe] hydrogenase from Desulfovibrio gigas and the [NiFeSe] hydrogenase from Desulfovibrio baculatus (N.K. Menon, H.D. Peck, Jr., J. LeGall, and A.E. Przybyla, J. Bacteriol. 169:5401-5407, 1987; C. Li, H.D. Peck, Jr., J. LeGall, and A.E. Przybyla, DNA 6:539-551, 1987) were analyzed by the codon usage method of Staden and McLachlan. The reported reading frames were found to contain regions of low codon probability which are matched by more probable sequences in other frames. Renewed nucleotide sequencing showed the probable frames to be correct. The corrected sequences of the two small and large subunits share a significant degree of sequence homology. The small subunit, which contains 10 conserved cysteine residues, is likely to coordinate at least 2 iron-sulfur clusters, while the finding of a selenocysteine codon (TGA) near the 3' end of the [NiFeSe] large-subunit gene matched by a regular cysteine codon (TGC) in the [NiFe] large-subunit gene indicates the presence of some of the ligands to the active-site nickel in the large subunit. PMID:2651421

  13. Transcriptional regulation of genes encoding the selenium-free [NiFe]-hydrogenases in the archaeon Methanococcus voltae involves positive and negative control elements.

    PubMed Central

    Noll, I; Müller, S; Klein, A

    1999-01-01

    Methanococcus voltae harbors genetic information for two pairs of homologous [NiFe]-hydrogenases. Two of the enzymes contain selenocysteine, while the other two gene groups encode apparent isoenzymes that carry cysteinyl residues in the homologous positions. The genes coding for the selenium-free enzymes, frc and vhc, are expressed only under selenium limitation. They are transcribed out of a common intergenic region. A series of deletions made in the intergenic region localized a common negative regulatory element for the vhc and frc promoters as well as two activator elements that are specific for each of the two transcription units. Repeated sequences, partially overlapping the frc promoter, were also detected. Mutations in these repeated heptanucleotide sequences led to a weak induction of a reporter gene under the control of the frc promoters in the presence of selenium. This result suggests that the heptamer repeats contribute to the negative regulation of the frc transcription unit. PMID:10430564

  14. Identification and sequence analysis of the hupR1 gene, which encodes a response regulator of the NtrC family required for hydrogenase expression in Rhodobacter capsulatus.

    PubMed Central

    Richaud, P; Colbeau, A; Toussaint, B; Vignais, P M

    1991-01-01

    The hupR1 gene from Rhodobacter capsulatus was cloned and sequenced. It can encode a protein of 53,843 Da which shares significant similarity with several transcriptional regulators and activates transcription of the structural hupSL genes of [NiFe]hydrogenase, as shown by the use of a translational fusion of lacZ with the hupSL promoter. A Hup- mutant having a point mutation in the hupR1 gene is described. PMID:1885559

  15. Differential expression of hydrogenase isoenzymes in Escherichia coli K-12: evidence for a third isoenzyme.

    PubMed Central

    Sawers, R G; Ballantine, S P; Boxer, D H

    1985-01-01

    The cellular contents of the nickel-containing, membrane-bound hydrogenase isoenzymes 1 and 2 (hydrogenases 1 and 2) were analyzed by crossed immunoelectrophoresis. Their expression was differentially influenced by nutritional and genetic factors. Hydrogenase 2 content was enhanced after growth with either hydrogen and fumarate or glycerol and fumarate and correlated reasonably with cellular hydrogen uptake capacity. Hydrogenase 1 content was negligible under the above conditions but was enhanced by exogenous formate. Its expression was greatly reduced in a pfl mutant, which is unable to synthesise formate, but was restored to normal levels when the growth medium included formate. A mutation in the anaerobic regulatory gene, fnr, led to low overall hydrogenase activity and greatly reduced levels of both isoenzymes and abolished the formate enhancement of hydrogenase 1 content. Formate hydrogenlyase activity was similarly reduced in the fnr strain but, in contrast, was restored, as was overall hydrogenase activity, to normal levels by growth in the presence of formate. Low H2 uptake activity was found for the fnr strain under all growth conditions examined. Hydrogenase 1 content, therefore, does not correlate with formate hydrogenlyase activity and its role is unclear. A third hydrogenase isoenzyme, immunologically distinct from hydrogenases 1 and 2, whose expression is enhanced by formate, is present and forms part of the formate hydrogenlyase. We suggest that the effect of the fnr gene product on formate hydrogenlyase expression is mediated via internal formate. Images PMID:3905769

  16. Polarized potential and electrode materials implication on electro-fermentative di-hydrogen production: Microbial assemblages and hydrogenase gene copy variation.

    PubMed

    Arunasri, Kotakonda; Annie Modestra, J; Yeruva, Dileep Kumar; Vamshi Krishna, K; Venkata Mohan, S

    2016-01-01

    This study examined the changes in microbial diversity in response to different electrode materials viz., stainless steel mesh (SS) and graphite plate as anodes in two microbial electrolysis cell (MEC) each poised at 0.2V, 0.4V, 0.6V and 0.8V. Changes in microbiota prior to and after pretreatment along with microbiota enriched in response to various poised potentials with SS and graphite are monitored by 16S rRNA gene based DGGE profiling. Significant shifts in microbial community were noticed at all these experimental conditions. Correspondingly, the level of hydrogenase belonging to genera Bacillus, Pseudomonas, Rhodopseudomonas and Clostridium was studied by quantitative real time PCR (RT-PCR) at various applied potentials. DGGE based 16S rRNA gene profiling revealed enriched members belonging to phylum Firmicutes predominantly present at 0.8V in both MECs contributing to high hydrogen production. This study first time explored the growth behavior of mixed consortia in response to poised potentials and electrode materials.

  17. Engineering Oxidoreductases: Utilization of an Unnatural Amino Acid to Create Artificial Hydrogenases

    DTIC Science & Technology

    2011-11-30

    centers related to [ FeFe ]-hydrogenases, the biological catalysts for the reversible oxidation/production of hydrogen. Although a considerable number of...organometallic small molecule mimics of [ FeFe ]- hydrogenases have been reported, the exquisite functionality of the enzymes has yet to be replicated...metallocenters related to [ FeFe ]- hydrogenases to designed peptides/ proteins. Second, new approaches for interfacing peptides/proteins with electrodes

  18. Distribution Analysis of Hydrogenases in Surface Waters of Marine and Freshwater Environments

    PubMed Central

    Barz, Martin; Beimgraben, Christian; Staller, Torsten; Germer, Frauke; Opitz, Friederike; Marquardt, Claudia; Schwarz, Christoph; Gutekunst, Kirstin; Vanselow, Klaus Heinrich; Schmitz, Ruth; LaRoche, Julie; Schulz, Rüdiger; Appel, Jens

    2010-01-01

    Background Surface waters of aquatic environments have been shown to both evolve and consume hydrogen and the ocean is estimated to be the principal natural source. In some marine habitats, H2 evolution and uptake are clearly due to biological activity, while contributions of abiotic sources must be considered in others. Until now the only known biological process involved in H2 metabolism in marine environments is nitrogen fixation. Principal Findings We analyzed marine and freshwater environments for the presence and distribution of genes of all known hydrogenases, the enzymes involved in biological hydrogen turnover. The total genomes and the available marine metagenome datasets were searched for hydrogenase sequences. Furthermore, we isolated DNA from samples from the North Atlantic, Mediterranean Sea, North Sea, Baltic Sea, and two fresh water lakes and amplified and sequenced part of the gene encoding the bidirectional NAD(P)-linked hydrogenase. In 21% of all marine heterotrophic bacterial genomes from surface waters, one or several hydrogenase genes were found, with the membrane-bound H2 uptake hydrogenase being the most widespread. A clear bias of hydrogenases to environments with terrestrial influence was found. This is exemplified by the cyanobacterial bidirectional NAD(P)-linked hydrogenase that was found in freshwater and coastal areas but not in the open ocean. Significance This study shows that hydrogenases are surprisingly abundant in marine environments. Due to its ecological distribution the primary function of the bidirectional NAD(P)-linked hydrogenase seems to be fermentative hydrogen evolution. Moreover, our data suggests that marine surface waters could be an interesting source of oxygen-resistant uptake hydrogenases. The respective genes occur in coastal as well as open ocean habitats and we presume that they are used as additional energy scavenging devices in otherwise nutrient limited environments. The membrane-bound H2-evolving

  19. Hydrogenases and Hydrogen Metabolism of Cyanobacteria

    PubMed Central

    Tamagnini, Paula; Axelsson, Rikard; Lindberg, Pia; Oxelfelt, Fredrik; Wünschiers, Röbbe; Lindblad, Peter

    2002-01-01

    Cyanobacteria may possess several enzymes that are directly involved in dihydrogen metabolism: nitrogenase(s) catalyzing the production of hydrogen concomitantly with the reduction of dinitrogen to ammonia, an uptake hydrogenase (encoded by hupSL) catalyzing the consumption of hydrogen produced by the nitrogenase, and a bidirectional hydrogenase (encoded by hoxFUYH) which has the capacity to both take up and produce hydrogen. This review summarizes our knowledge about cyanobacterial hydrogenases, focusing on recent progress since the first molecular information was published in 1995. It presents the molecular knowledge about cyanobacterial hupSL and hoxFUYH, their corresponding gene products, and their accessory genes before finishing with an applied aspect—the use of cyanobacteria in a biological, renewable production of the future energy carrier molecular hydrogen. In addition to scientific publications, information from three cyanobacterial genomes, the unicellular Synechocystis strain PCC 6803 and the filamentous heterocystous Anabaena strain PCC 7120 and Nostoc punctiforme (PCC 73102/ATCC 29133) is included. PMID:11875125

  20. Enhancement of photoheterotrophic biohydrogen production at elevated temperatures by the expression of a thermophilic clostridial hydrogenase.

    PubMed

    Lo, Shou-Chen; Shih, Shau-Hua; Chang, Jui-Jen; Wang, Chun-Ying; Huang, Chieh-Chen

    2012-08-01

    The working temperature of a photobioreactor under sunlight can be elevated above the optimal growth temperature of a microorganism. To improve the biohydrogen productivity of photosynthetic bacteria at higher temperatures, a [FeFe]-hydrogenase gene from the thermophile Clostridium thermocellum was expressed in the mesophile Rhodopseudomonas palustris CGA009 (strain CGA-CThydA) using a log-phase expression promoter P( pckA ) to drive the expression of heterogeneous hydrogenase gene. In contrast, a mesophilic Clostridium acetobutylicum [FeFe]-hydrogenase gene was also constructed and expressed in R. palustris (strain CGA-CAhydA). Both transgenic strains were tested for cell growth, in vivo hydrogen production rate, and in vitro hydrogenase activity at elevated temperatures. Although both CGA-CThydA and CGA-CAhydA strains demonstrated enhanced growth over the vector control at temperatures above 38 °C, CGA-CThydA produced more hydrogen than the other strains. The in vitro hydrogenase activity assay, measured at 40 °C, confirmed that the activity of the CGA-CThydA hydrogenase was higher than the CGA-CAhydA hydrogenase. These results showed that the expression of a thermophilic [FeFe]-hydrogenase in R. palustris increased the growth rate and biohydrogen production at elevated temperatures. This transgenic strategy can be applied to a broad range of purple photosynthetic bacteria used to produce biohydrogen under sunlight.

  1. Isotopic fractionation associated with [NiFe]- and [FeFe]-hydrogenases

    SciTech Connect

    Yang, Hui; Gandhi, Hasand; Cornish, Adam J.; Moran, James J.; Kreuzer, Helen W.; Ostrom, Nathaniel; Hegg, Eric L.

    2016-01-30

    Hydrogenases catalyze the reversible formation of H2 from electrons and protons with high efficiency. Understanding the relationships between H2 production, H2 uptake, and H2-H2O exchange can provide insight into the metabolism of microbial communities in which H2 is an essential component in energy cycling. In this manuscript, we used stable H isotopes (1H and 2H) to probe the isotope effects associated with three [FeFe]-hydrogenases and three [NiFe]-hydrogenases. All six hydrogenases displayed fractionation factors for H2 formation that were significantly less than 1, producing H2 that was severely depleted in 2H relative to the substrate, water. Consistent with differences in their active site structure, the fractionation factors for each class appear to cluster, with the three [NiFe]-hydrogenases (α = 0.27-0.40) generally having smaller values than the three [FeFe]-hydrogenases (α = 0.41-0.55). We also obtained isotopic fractionation factors associated with H2 uptake and H2-H2O exchange under conditions similar to those utilized for H2 production, providing us with a more complete picture of the three reactions catalyzed by hydrogenases. The fractionation factors determined in our studies can be used as signatures for different hydrogenases to probe their activity under different growth conditions and to ascertain which hydrogenases are most responsible for H2 production and/or uptake in complex microbial communities.

  2. Nickel availability to pea (Pisum sativum L.) plants limits hydrogenase activity of Rhizobium leguminosarum bv. viciae bacteroids by affecting the processing of the hydrogenase structural subunits.

    PubMed Central

    Brito, B; Palacios, J M; Hidalgo, E; Imperial, J; Ruiz-Argüeso, T

    1994-01-01

    Rhizobium leguminosarum bv. viciae UPM791 induces the synthesis of an [NiFe] hydrogenase in pea (Pisum sativum L.) bacteroids which oxidizes the H2 generated by the nitrogenase complex inside the root nodules. The synthesis of this hydrogenase requires the genes for the small and large hydrogenase subunits (hupS and hupL, respectively) and 15 accessory genes clustered in a complex locus in the symbiotic plasmid. We show here that the bacteroid hydrogenase activity is limited by the availability of nickel to pea plants. Addition of Ni2+ to plant nutrient solutions (up to 10 mg/liter) resulted in sharp increases (up to 15-fold) in hydrogenase activity. This effect was not detected when other divalent cations (Zn2+, Co2+, Fe2+, and Mn2+) were added at the same concentrations. Determinations of the steady-state levels of hupSL-specific mRNA indicated that this increase in hydrogenase activity was not due to stimulation of transcription of structural genes. Immunoblot analysis with antibodies raised against the large and small subunits of the hydrogenase enzyme demonstrated that in the low-nickel situation, both subunits are mainly present in slow-migrating, unprocessed forms. Supplementation of the plant nutrient solution with increasing nickel concentrations caused the conversion of the slow-migrating forms of both subunits into fast-moving, mature forms. This nickel-dependent maturation process of the hydrogenase subunits is mediated by accessory gene products, since bacteroids from H2 uptake-deficient mutants carrying Tn5 insertions in hupG and hupK and in hypB and hypE accumulated the immature forms of both hydrogenase subunits even in the presence of high nickel levels. Images PMID:8071205

  3. Elimination of hydrogenase active site assembly blocks H2 production and increases ethanol yield in Clostridium thermocellum

    SciTech Connect

    Biswas, Ranjita; Zheng, Tianyong; Olson, Daniel G.; Lynd, Lee R.; Guss, Adam M.

    2015-02-01

    The native ability of Clostridium thermocellum to rapidly consume cellulose and produce ethanol makes it a leading candidate for a consolidated bioprocessing (CBP) biofuel production strategy. C. thermocellum also synthesizes lactate, formate, acetate, H2, and amino acids that compete with ethanol production for carbon and electrons. Elimination of H2 production could redirect carbon flux towards ethanol production by making more electrons available for acetyl-CoA reduction to ethanol. C. thermocellum encodes four hydrogenases and rather than delete each individually, we targeted a hydrogenase maturase gene (hydG), involved in converting the three [FeFe] hydrogenase apoenzymes into holoenzymes. Further deletion of the [NiFe] hydrogenase (ech) resulted in a mutant that functionally lacks all four hydrogenases. H2 production in hydG ech was undetectable and ethanol yield increased nearly 2-fold compared to wild type. Interestingly, mutant growth improved upon the addition of acetate, which led to increased expression of genes related to sulfate metabolism, suggesting these mutants may use sulfate as a terminal electron acceptor to balance redox reactions. Genomic analysis of hydG revealed a mutation in adhE, resulting in a strain with both NADH- and NADPH-dependent alcohol dehydrogenase activities. While this same adhE mutation is found in ethanol tolerant C. thermocellum strain E50C, hydG and hydG ech are not more ethanol tolerant than wild type, illustrating the complicated interactions between redox balancing and ethanol tolerance in C. thermocellum. The dramatic increase in ethanol production here suggests that targeting protein post-translational modification is a promising new approach for inactivation of multiple enzymes simultaneously for metabolic engineering.

  4. Elimination of hydrogenase active site assembly blocks H2 production and increases ethanol yield in Clostridium thermocellum

    DOE PAGES

    Biswas, Ranjita; Zheng, Tianyong; Olson, Daniel G.; ...

    2015-02-01

    The native ability of Clostridium thermocellum to rapidly consume cellulose and produce ethanol makes it a leading candidate for a consolidated bioprocessing (CBP) biofuel production strategy. C. thermocellum also synthesizes lactate, formate, acetate, H2, and amino acids that compete with ethanol production for carbon and electrons. Elimination of H2 production could redirect carbon flux towards ethanol production by making more electrons available for acetyl-CoA reduction to ethanol. C. thermocellum encodes four hydrogenases and rather than delete each individually, we targeted a hydrogenase maturase gene (hydG), involved in converting the three [FeFe] hydrogenase apoenzymes into holoenzymes. Further deletion of the [NiFe]more » hydrogenase (ech) resulted in a mutant that functionally lacks all four hydrogenases. H2 production in hydG ech was undetectable and ethanol yield increased nearly 2-fold compared to wild type. Interestingly, mutant growth improved upon the addition of acetate, which led to increased expression of genes related to sulfate metabolism, suggesting these mutants may use sulfate as a terminal electron acceptor to balance redox reactions. Genomic analysis of hydG revealed a mutation in adhE, resulting in a strain with both NADH- and NADPH-dependent alcohol dehydrogenase activities. While this same adhE mutation is found in ethanol tolerant C. thermocellum strain E50C, hydG and hydG ech are not more ethanol tolerant than wild type, illustrating the complicated interactions between redox balancing and ethanol tolerance in C. thermocellum. The dramatic increase in ethanol production here suggests that targeting protein post-translational modification is a promising new approach for inactivation of multiple enzymes simultaneously for metabolic engineering.« less

  5. Compartmentalisation of [FeFe]-hydrogenase maturation in Chlamydomonas reinhardtii.

    PubMed

    Sawyer, Anne; Bai, Yu; Lu, Yinghua; Hemschemeier, Anja; Happe, Thomas

    2017-03-13

    Molecular hydrogen (H2 ) can be produced in green microalgae by [FeFe]-hydrogenases as a direct product of photosynthesis. The Chlamydomonas reinhardtii hydrogenase HYDA1 contains a catalytic site comprising a classic [4Fe4S] cluster linked to a unique 2Fe sub-cluster. From in vitro studies it appears that the [4Fe4S] cluster is incorporated first by the housekeeping FeS cluster assembly machinery, followed by the 2Fe sub-cluster, whose biosynthesis requires the specific maturases HYDEF and HYDG. To investigate the maturation process in vivo, we expressed HYDA1 from the C. reinhardtii chloroplast and nuclear genomes (with and without a chloroplast transit peptide) in a hydrogenase-deficient mutant strain, and examined the cellular enzymatic hydrogenase activity, as well as in vivo H2 production. The transformants expressing HYDA1 from the chloroplast genome displayed H2 production levels comparable to the wild type, as did the transformants expressing full-length HYDA1 from the nuclear genome. In contrast, cells equipped with cytoplasm-targeted HYDA1 produced inactive enzyme, which could only be activated in vitro after reconstitution of the [4Fe4S] cluster. This indicates that the HYDA1 FeS cluster can only be built by the chloroplastic FeS cluster assembly machinery. Further, the expression of a bacterial hydrogenase gene, CPI, from the C. reinhardtii chloroplast genome resulted in H2 -producing strains, demonstrating that a hydrogenase with a very different structure can fulfil the role of HYDA1 in vivo and that overexpression of foreign hydrogenases in C. reinhardtii is possible. All chloroplast transformants were stable and no toxic effects were seen from HYDA1 or CPI expression. This article is protected by copyright. All rights reserved.

  6. Evidence for a Third Uptake Hydrogenase Phenotype among the Soybean Bradyrhizobia

    PubMed Central

    van Berkum, Peter

    1990-01-01

    The existence of a hydrogen uptake host-regulated (Hup-hr) phenotype was established among the soybean bradyrhizobia. The Hup-hr phenotype is characterized by the expression of uptake hydrogenase activity in symbiosis with cowpea but not soybean. Uptake hydrogenase induction is not possible under free-living cultural conditions by using techniques developed for uptake hydrogenase-positive (Hup+) Bradyrhizobium japonicum. Hydrogen oxidation by Hup-hr phenotype USDA 61 in cowpea symbioses was significant because hydrogen evolution from nitrogen-fixing nodules was not detected. An examination for uptake hydrogenase activity in soybean and cowpea with 123 strains diverse in origin and serology identified 16 Hup+ and 28 Hup-hr phenotype strains; the remainder appeared to be Hup−. The Hup-hr phenotype was associated with serogroups 31, 76, and 94, while strains belonging to serogroups 6, 31, 110, 122, 123, and 38/115 were Hup+. Hup+ strains of the 123 serogroup typed positive with USDA 129-specific antiserum. The presence of the uptake hydrogenase protein in cowpea bacteroids of Hup+ strains was demonstrated with immunoblot analyses by using antibodies against the 65-kDa subunit of uptake hydrogenase purified from strain SR470. However, the hydrogenase protein of Hup-hr strains was not detected. Results of Southern hybridization analyses with pHU1 showed the region of DNA with hydrogenase genes among Hup+ strains to be similar. Hybridization was also obtained with Hup-hr strains by using a variety of cloned DNA as probes including hydrogenase structural genes. Both hydrogenase structural genes also hybridized with the DNA of four Hup− strains. Images PMID:16348383

  7. Development of a Rhodobacter capsulatus self-reporting model system for optimizing light-dependent, [FeFe]-hydrogenase-driven H2 production

    DOE PAGES

    Wecker, Matt S. A.; Beaton, Stephen E.; Chado, Robert A.; ...

    2016-08-17

    The photosynthetic bacterium Rhodobacter capsulatus normally photoproduces H2 as a by-product of its nitrogenase-catalyzed nitrogen-fixing activity. Such H2 production, however, is expensive from a metabolic perspective, requiring nearly four times as many photons as the equivalent algal hydrogenase-based system. Here we report the insertion of a Clostridium acetobutylicum [FeFe]-hydrogenase and its three attendant hydrogenase assembly proteins into an R. capsulatus strain lacking its native uptake hydrogenase. Further, this strain is modified to fluoresce upon sensing H2. The resulting strain photoproduces H2 and self-reports its own H2 production through fluorescence. Furthermore, this model system represents a unique method of developing hydrogenase-basedmore » H2 production in R. capsulatus, may serve as a powerful system for in vivo directed evolution of hydrogenases and hydrogenase-associated genes, and provides a means of screening for increased metabolic production of H2.« less

  8. Hydrogenase electrodes for fuel cells.

    PubMed

    Karyakin, A A; Morozov, S V; Karyakina, E E; Zorin, N A; Perelygin, V V; Cosnier, S

    2005-02-01

    Considering crucial problems that limit use of platinum-based fuel cells, i.e. cost and availability, poisoning by fuel impurities and low selectivity, we propose electrocatalysis by enzymes as a valuable alternative to noble metals. Hydrogenase electrodes in neutral media achieve hydrogen equilibrium potential (providing 100% energy conversion), and display high activity in H(2) electrooxidation, which is similar to that of Pt-based electrodes in sulphuric acid. In contrast with platinum, enzyme electrodes are highly selective for their substrates, and are not poisoned by fuel impurities. Hydrogenase electrodes are capable of consuming hydrogen directly from microbial media, which ensures their use as fuel electrodes in treatment of organic wastes.

  9. Multiple and reversible hydrogenases for hydrogen production by Escherichia coli: dependence on fermentation substrate, pH and the F(0)F(1)-ATPase.

    PubMed

    Trchounian, Karen; Poladyan, Anna; Vassilian, Anait; Trchounian, Armen

    2012-01-01

    Molecular hydrogen (H(2)) can be produced via hydrogenases during mixed-acid fermentation by bacteria. Escherichia coli possesses multiple (four) hydrogenases. Hydrogenase 3 (Hyd-3) and probably 4 (Hyd-4) with formate dehydrogenase H (Fdh-H) form two different H(2)-evolving formate hydrogen lyase (FHL) pathways during glucose fermentation. For both FHL forms, the hycB gene coding small subunit of Hyd-3 is required. Formation and activity of FHL also depends on the external pH ([pH](out)) and the presence of formate. FHL is related with the F(0)F(1)-ATPase by supplying reducing equivalents and depending on proton-motive force. Two other hydrogenases, 1 (Hyd-1) and 2 (Hyd-2), are H(2)-oxidizing enzymes during glucose fermentation at neutral and low [pH](out). They operate in a reverse, H(2)-producing mode during glycerol fermentation at neutral [pH](out). Hyd-1 and Hyd-2 activity depends on F(0)F(1). Moreover, Hyd-3 can also work in a reverse mode. Therefore, the operation direction and activity of all Hyd enzymes might determine H(2) production; some metabolic cross-talk between Hyd enzymes is proposed. Manipulating of different Hyd enzymes activity is an effective way to enhance H(2) production by bacteria in biotechnology. Moreover, a novel approach would be the use of glycerol as feedstock in fermentation processes leading to H(2) production, reduced fuels and other chemicals with higher yields than those obtained by common sugars.

  10. Function of periplasmic hydrogenases in the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough.

    PubMed

    Caffrey, Sean M; Park, Hyung-Soo; Voordouw, Johanna K; He, Zhili; Zhou, Jizhong; Voordouw, Gerrit

    2007-09-01

    The sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough possesses four periplasmic hydrogenases to facilitate the oxidation of molecular hydrogen. These include an [Fe] hydrogenase, an [NiFeSe] hydrogenase, and two [NiFe] hydrogenases encoded by the hyd, hys, hyn1, and hyn2 genes, respectively. In order to understand their cellular functions, we have compared the growth rates of existing (hyd and hyn1) and newly constructed (hys and hyn-1 hyd) mutants to those of the wild type in defined media in which lactate or hydrogen at either 5 or 50% (vol/vol) was used as the sole electron donor for sulfate reduction. Only strains missing the [Fe] hydrogenase were significantly affected during growth with lactate or with 50% (vol/vol) hydrogen as the sole electron donor. When the cells were grown at low (5% [vol/vol]) hydrogen concentrations, those missing the [NiFeSe] hydrogenase suffered the greatest impairment. The growth rate data correlated strongly with gene expression results obtained from microarray hybridizations and real-time PCR using mRNA extracted from cells grown under the three conditions. Expression of the hys genes followed the order 5% hydrogen>50% hydrogen>lactate, whereas expression of the hyd genes followed the reverse order. These results suggest that growth with lactate and 50% hydrogen is associated with high intracellular hydrogen concentrations, which are best captured by the higher activity, lower affinity [Fe] hydrogenase. In contrast, growth with 5% hydrogen is associated with a low intracellular hydrogen concentration, requiring the lower activity, higher affinity [NiFeSe] hydrogenase.

  11. Function of Periplasmic Hydrogenases in the Sulfate-Reducing Bacterium Desulfovibrio vulgaris Hildenborough▿ †

    PubMed Central

    Caffrey, Sean M.; Park, Hyung-Soo; Voordouw, Johanna K.; He, Zhili; Zhou, Jizhong; Voordouw, Gerrit

    2007-01-01

    The sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough possesses four periplasmic hydrogenases to facilitate the oxidation of molecular hydrogen. These include an [Fe] hydrogenase, an [NiFeSe] hydrogenase, and two [NiFe] hydrogenases encoded by the hyd, hys, hyn1, and hyn2 genes, respectively. In order to understand their cellular functions, we have compared the growth rates of existing (hyd and hyn1) and newly constructed (hys and hyn-1 hyd) mutants to those of the wild type in defined media in which lactate or hydrogen at either 5 or 50% (vol/vol) was used as the sole electron donor for sulfate reduction. Only strains missing the [Fe] hydrogenase were significantly affected during growth with lactate or with 50% (vol/vol) hydrogen as the sole electron donor. When the cells were grown at low (5% [vol/vol]) hydrogen concentrations, those missing the [NiFeSe] hydrogenase suffered the greatest impairment. The growth rate data correlated strongly with gene expression results obtained from microarray hybridizations and real-time PCR using mRNA extracted from cells grown under the three conditions. Expression of the hys genes followed the order 5% hydrogen > 50% hydrogen > lactate, whereas expression of the hyd genes followed the reverse order. These results suggest that growth with lactate and 50% hydrogen is associated with high intracellular hydrogen concentrations, which are best captured by the higher activity, lower affinity [Fe] hydrogenase. In contrast, growth with 5% hydrogen is associated with a low intracellular hydrogen concentration, requiring the lower activity, higher affinity [NiFeSe] hydrogenase. PMID:17601789

  12. Function of Periplasmic Hydrogenases in the Sulfate-ReducingBacterium Desulfovibrio vulgaris Hildenborough

    SciTech Connect

    Caffrey, Sean M.; Park, Hyung-Soo; Voordouw, Johanna K.; He,Zhili; Zhou, Jizhong; Voordouw, Gerrit

    2007-09-24

    The sulfate-reducing bacterium Desulfovibrio vulgarisHildenborough possesses four periplasmic hydrogenases to facilitate theoxidation of molecular hydrogen. These include an [Fe]hydrogenase, an[NiFeSe]hydrogenase, and two [NiFe]hydrogenases encoded by the hyd,hys, hyn1, and hyn2 genes, respectively. In order to understand theircellular functions, we have compared the growth rates of existing (hydand hyn1) and newly constructed (hys and hyn-1 hyd) mutants to those ofthe wild type in defined media in which lactate or hydrogen at either 5or 50 percent (vol/vol) was used as the sole electron donor for sulfatereduction. Only strains missing the [Fe]hydrogenase were significantlyaffected during growth with lactate or with 50 percent (vol/vol) hydrogenas the sole electron donor. When the cells were grown at low (5 percent[vol/vol]) hydrogen concentrations, those missing the [NiFeSe]hydrogenase suffered the greatest impairment. The growth rate datacorrelated strongly with gene expression results obtained from microarrayhybridizations and real-time PCR using mRNA extracted from cells grownunder the three conditions. Expression of the hys genes followed theorder 5 percent hydrogen>50 percent hydrogen>lactate, whereasexpression of the hyd genes followed the reverse order. These resultssuggest that growth with lactate and 50 percent hydrogen is associatedwith high intracellular hydrogen concentrations, which are best capturedby the higher activity, lower affinity [Fe]hydrogenase. In contrast,growth with 5 percent hydrogen is associated with a low intracellularhydrogen concentration, requiring the lower activity, higher affinity[NiFeSe]hydrogenase.

  13. Mutational analysis of the hyc-operon determining the relationship between hydrogenase-3 and NADH pathway in Enterobacter aerogenes.

    PubMed

    Pi, Jian; Jawed, Muhammad; Wang, Jun; Xu, Li; Yan, Yunjun

    2016-01-01

    In this study, the hydrogenase-3 gene cluster (hycDEFGH) was isolated and identified from Enterobacter aerogenes CCTCC AB91102. All gene products were highly homologous to the reported bacterial hydrogenase-3 (Hyd-3) proteins. The genes hycE, hycF, hycG encoding the subunits of hydrogenase-3 were targeted for genetic knockout to inhibit the FHL hydrogen production pathway via the Red recombination system, generating three mutant strains AB91102-E (ΔhycE), AB91102-F (ΔhycF) and AB91102-G (ΔhycG). Deletion of the three genes affected the integrity of hydrogenase-3. The hydrogen production experiments with the mutant strains showed that no hydrogen was detected compared with the wild type (0.886 mol/mol glucose), demonstrating that knocking out any of the three genes could inhibit NADH hydrogen production pathway. Meanwhile, the metabolites of the mutant strains were significantly changed in comparison with the wild type, indicating corresponding changes in metabolic flux by mutation. Additionally, the activity of NADH-mediated hydrogenase was found to be nil in the mutant strains. The chemostat experiments showed that the NADH/NAD(+) ratio of the mutant strains increased nearly 1.4-fold compared with the wild type. The NADH-mediated hydrogenase activity and NADH/NAD(+) ratio analysis both suggested that NADH pathway required the involvement of the electron transport chain of hydrogenase-3.

  14. Cyanide inactivation of hydrogenase from Azotobacter vinelandii

    SciTech Connect

    Seefeldt, L.C.; Arp, D.J. )

    1989-06-01

    The effects of cyanide on membrane-associated and purified hydrogenase from Azotobacter vinelandii were characterized. Inactivation of hydrogenase by cyanide was dependent on the activity (oxidation) state of the enzyme. Active (reduced) hydrogenase showed no inactivation when treated with cyanide over several hours. Treatment of reversibly inactive (oxidized) states of both membrane-associated and purified hydrogenase, however, resulted in a time-dependent, irreversible loss of hydrogenase activity. The rate of cyanide inactivation was dependent on the cyanide concentration and was an apparent first-order process for purified enzyme (bimolecular rate constant, 23.1 M{sup {minus}1} min{sup {minus}1} for CN{sup {minus}}). The rate of inactivation decreased with decreasing pH. ({sup 14}C)cyanide remained associated with cyanide-inactivated hydrogenase after gel filtration chromatography, with a stoichiometry of 1.7 mol of cyanide bound per mol of inactive enzyme. The presence of saturating concentrations of CO had no effect on the rate or extent of cyanide inactivation of hydrogenases. The results indicate that cyanide can cause a time-dependent, irreversible inactivation of hydrogenase in the oxidized, activatable state but has no effect when hydrogenase is in the reduced, active state.

  15. Cyanide inactivation of hydrogenase from Azotobacter vinelandii.

    PubMed Central

    Seefeldt, L C; Arp, D J

    1989-01-01

    The effects of cyanide on membrane-associated and purified hydrogenase from Azotobacter vinelandii were characterized. Inactivation of hydrogenase by cyanide was dependent on the activity (oxidation) state of the enzyme. Active (reduced) hydrogenase showed no inactivation when treated with cyanide over several hours. Treatment of reversibly inactive (oxidized) states of both membrane-associated and purified hydrogenase, however, resulted in a time-dependent, irreversible loss of hydrogenase activity. The rate of cyanide inactivation was dependent on the cyanide concentration and was an apparent first-order process for purified enzyme (bimolecular rate constant, 23.1 M-1 min-1 for CN-). The rate of inactivation decreased with decreasing pH. [14C]cyanide remained associated with cyanide-inactivated hydrogenase after gel filtration chromatography, with a stoichiometry of 1.7 mol of cyanide bound per mol of inactive enzyme. The presence of saturating concentrations of CO had no effect on the rate or extent of cyanide inactivation of hydrogenases. The results indicate that cyanide can cause a time-dependent, irreversible inactivation of hydrogenase in the oxidized, activatable state but has no effect when hydrogenase is in the reduced, active state. PMID:2656648

  16. Three trans-acting regulatory functions control hydrogenase synthesis in Alcaligenes eutrophus.

    PubMed Central

    Eberz, G; Friedrich, B

    1991-01-01

    Random Tn5 mutagenesis of the regulatory region of megaplasmid pHG1 of Alcaligenes eutrophus led to the identification of three distinct loci designated hoxA, hoxD, and hoxE. Sequencing of the hoxA locus revealed an open reading frame which could code for a polypeptide of 482 amino acids with a molecular mass of 53.5 kDa. A protein of comparable apparent molecular mass was detected in heterologous expression studies with a plasmid-borne copy of the hoxA gene. Amino acid alignments revealed striking homologies between HoxA and the transcriptional activators NifA and NtrC of Klebsiella pneumoniae and HydG of Escherichia coli. HoxA- mutants of A. eutrophus lacked both NAD-reducing soluble hydrogenase and membrane-bound hydrogenase. In HoxA- mutants, the synthesis of beta-galactosidase from a hoxS'-'lacZ operon fusion was drastically reduced, indicating that HoxA is essential for the transcription of hydrogenase genes. Mutants defective in hoxD and hoxE also lacked the catalytic activities of the two hydrogenases; however, in contrast to HoxA- mutants, they contained immunologically detectable NAD-reducing soluble hydrogenase and membrane-bound hydrogenase proteins, although at a reduced level. The low hydrogenase content in the HoxD- and HoxE- mutants correlated with a decrease in beta-galactosidase synthesized under the direction of a hoxS'-'lacZ operon fusion. Thus, hoxD and hoxE apparently intervene both in the regulation of hydrogenase synthesis and in subsequent steps leading to the formation of catalytically active enzymes. Images PMID:2001989

  17. Non-innocent bma ligand in a dissymetrically disubstituted diiron dithiolate related to the active site of the [FeFe] hydrogenases.

    PubMed

    Si, Youtao; Charreteur, Kévin; Capon, Jean-François; Gloaguen, Frederic; Pétillon, François Y; Schollhammer, Philippe; Talarmin, Jean

    2010-10-01

    The purpose of the present study was to evaluate the use of a non-innocent ligand as a surrogate of the anchored [4Fe4S] cubane in a synthetic mimic of the [FeFe] hydrogenase active site. Reaction of 2,3-bis(diphenylphosphino) maleic anhydride (bma) with [Fe(2)(CO)(6)(mu-pdt)] (propanedithiolate, pdt=S(CH(2))(3)S) in the presence of Me(3)NO-2H(2)O afforded the monosubstituted derivative [Fe(2)(CO)(5)(Me(2)NCH(2)PPh(2))(mu-pdt)] (1). This results from the decomposition of the bma ligand and the apparent C-H bond cleavage in the released trimethylamine. Reaction under photolytic conditions afforded [Fe(2)(CO)(4)(bma)(mu-pdt)] (2). Compounds 1 and 2 were characterized by IR, NMR and X-ray diffraction. Voltammetric study indicated that the primary reduction of 2 is centered on the bma ligand.

  18. Dual role of HupF in the biosynthesis of [NiFe] hydrogenase in Rhizobium leguminosarum

    PubMed Central

    2012-01-01

    Background [NiFe] hydrogenases are enzymes that catalyze the oxidation of hydrogen into protons and electrons, to use H2 as energy source, or the production of hydrogen through proton reduction, as an escape valve for the excess of reduction equivalents in anaerobic metabolism. Biosynthesis of [NiFe] hydrogenases is a complex process that occurs in the cytoplasm, where a number of auxiliary proteins are required to synthesize and insert the metal cofactors into the enzyme structural units. The endosymbiotic bacterium Rhizobium leguminosarum requires the products of eighteen genes (hupSLCDEFGHIJKhypABFCDEX) to synthesize an active hydrogenase. hupF and hupK genes are found only in hydrogenase clusters from bacteria expressing hydrogenase in the presence of oxygen. Results HupF is a HypC paralogue with a similar predicted structure, except for the C-terminal domain present only in HupF. Deletion of hupF results in the inability to process the hydrogenase large subunit HupL, and also in reduced stability of this subunit when cells are exposed to high oxygen tensions. A ΔhupF mutant was fully complemented for hydrogenase activity by a C-terminal deletion derivative under symbiotic, ultra low-oxygen tensions, but only partial complementation was observed in free living cells under higher oxygen tensions (1% or 3%). Co-purification experiments using StrepTag-labelled HupF derivatives and mass spectrometry analysis indicate the existence of a major complex involving HupL and HupF, and a less abundant HupF-HupK complex. Conclusions The results indicate that HupF has a dual role during hydrogenase biosynthesis: it is required for hydrogenase large subunit processing and it also acts as a chaperone to stabilize HupL when hydrogenase is synthesized in the presence of oxygen. PMID:23136881

  19. hypD as a marker for [NiFe]-hydrogenases in microbial communities of surface waters.

    PubMed

    Beimgraben, Christian; Gutekunst, Kirstin; Opitz, Friederike; Appel, Jens

    2014-06-01

    Hydrogen is an important trace gas in the atmosphere. Soil microorganisms are known to be an important part of the biogeochemical H2 cycle, contributing 80 to 90% of the annual hydrogen uptake. Different aquatic ecosystems act as either sources or sinks of hydrogen, but the contribution of their microbial communities is unknown. [NiFe]-hydrogenases are the best candidates for hydrogen turnover in these environments since they are able to cope with oxygen. As they lack sufficiently conserved sequence motifs, reliable markers for these enzymes are missing, and consequently, little is known about their environmental distribution. We analyzed the essential maturation genes of [NiFe]-hydrogenases, including their frequency of horizontal gene transfer, and found hypD to be an applicable marker for the detection of the different known hydrogenase groups. Investigation of two freshwater lakes showed that [NiFe]-hydrogenases occur in many prokaryotic orders. We found that the respective hypD genes cooccur with oxygen-tolerant [NiFe]-hydrogenases (groups 1 and 5) mainly of Actinobacteria, Acidobacteria, and Burkholderiales; cyanobacterial uptake hydrogenases (group 2a) of cyanobacteria; H2-sensing hydrogenases (group 2b) of Burkholderiales, Rhizobiales, and Rhodobacterales; and two groups of multimeric soluble hydrogenases (groups 3b and 3d) of Legionellales and cyanobacteria. These findings support and expand a previous analysis of metagenomic data (M. Barz et al., PLoS One 5:e13846, 2010, http://dx.doi.org/10.1371/journal.pone.0013846) and further identify [NiFe]-hydrogenases that could be involved in hydrogen cycling in aquatic surface waters.

  20. hypD as a Marker for [NiFe]-Hydrogenases in Microbial Communities of Surface Waters

    PubMed Central

    Beimgraben, Christian; Gutekunst, Kirstin; Opitz, Friederike

    2014-01-01

    Hydrogen is an important trace gas in the atmosphere. Soil microorganisms are known to be an important part of the biogeochemical H2 cycle, contributing 80 to 90% of the annual hydrogen uptake. Different aquatic ecosystems act as either sources or sinks of hydrogen, but the contribution of their microbial communities is unknown. [NiFe]-hydrogenases are the best candidates for hydrogen turnover in these environments since they are able to cope with oxygen. As they lack sufficiently conserved sequence motifs, reliable markers for these enzymes are missing, and consequently, little is known about their environmental distribution. We analyzed the essential maturation genes of [NiFe]-hydrogenases, including their frequency of horizontal gene transfer, and found hypD to be an applicable marker for the detection of the different known hydrogenase groups. Investigation of two freshwater lakes showed that [NiFe]-hydrogenases occur in many prokaryotic orders. We found that the respective hypD genes cooccur with oxygen-tolerant [NiFe]-hydrogenases (groups 1 and 5) mainly of Actinobacteria, Acidobacteria, and Burkholderiales; cyanobacterial uptake hydrogenases (group 2a) of cyanobacteria; H2-sensing hydrogenases (group 2b) of Burkholderiales, Rhizobiales, and Rhodobacterales; and two groups of multimeric soluble hydrogenases (groups 3b and 3d) of Legionellales and cyanobacteria. These findings support and expand a previous analysis of metagenomic data (M. Barz et al., PLoS One 5:e13846, 2010, http://dx.doi.org/10.1371/journal.pone.0013846) and further identify [NiFe]-hydrogenases that could be involved in hydrogen cycling in aquatic surface waters. PMID:24727276

  1. Characterization and cloning of oxygen-tolerant hydrogenase from Klebsiella oxytoca HP1.

    PubMed

    Wu, Xiaobing; Liang, Yi; Li, Qianyi; Zhou, Juan; Long, Minnan

    2011-04-01

    Hydrogenase from a hot spring bacterium Klebsiella oxytoca HP1 was purified and found to have a specific activity of 199.8 U/mg of protein and a yield of 7.3%. The purified enzyme was determined to consist of six subunits (65, 33, 28, 23, 21 and 18 kDa), similar to hydrogenase-3 from Escherichia coli, and therefore it was named Hyd3. The enzyme displayed remarkable oxygen tolerance. For the purified enzyme, 50% maximal activity was maintained following incubation for 24 h in air at room temperature. The hydrogenase gene cluster (hyc) was cloned and found to consist of hycD, hycE, hycF, hycdG, hycH and hycI genes. hycE and hycG genes encode for the large and small subunit of the hydrogenase, respectively. A hycE gene deletion mutant, ΔhycE, was constructed for elucidating the function of the hyc-operon in hydrogen metabolism. Compared with the wild type strain HP1, the mutant strain showed a dramatic decrease in hydrogen production in the presence of formate, sodium pyruvate and glucose under O(2)-stressed conditions, while substantial activity was detected under anaerobic conditions. This strongly suggests that K. oxytoca HP1 carries a number of hydrogenases or hydrogen metabolic pathways independently of Hyd3. However, Hyd3 is the main factor responsible for hydrogen production under O(2) stress conditions.

  2. Iron-sulfur clusters of hydrogenase I and hydrogenase II of Clostridium pasteurianum.

    PubMed Central

    Adams, M W; Eccleston, E; Howard, J B

    1989-01-01

    The iron and acid-labile sulfide contents and the electron paramagnetic resonance (EPR) properties of hydrogenase I (bidirectional) and hydrogenase II (uptake) of Clostridium pasteurianum (strain W5) have been determined on the basis of quantitative amino acid analyses. The iron and acid-labile sulfide values are approximately 20 and 18 atoms per molecule of hydrogenase I and 14 and 11 atoms per molecule of hydrogenase II, respectively. These amounts are substantially greater than previously reported values, which relied on protein concentration determined by colorimetric assay. The oxidized hydrogenases exhibit unusual EPR signals that originate from a novel type of iron-sulfur center, termed the hydrogenase or H cluster, which covalently binds the inhibitor CO. This EPR signal represents approximately one unpaired electron per molecule in each enzyme with and without bound CO, which is consistent with the presence of one oxidized H cluster (S = 1/2) per enzyme molecule. The two enzymes also contain ferredoxin-type four-iron centers or F clusters. The EPR signals from the F clusters observed in the reduced forms of hydrogenase I and hydrogenase II account for approximately four and one unpaired electron per molecule, respectively. We conclude from the iron determinations and the EPR results, together with a reevaluation of previous spectroscopic data, that in both hydrogenases the H cluster probably comprises six iron atoms. Mechanistic models of the two hydrogenases are presented that account for their cluster compositions and the dramatic differences in their catalytic activities. PMID:2544883

  3. Common cis-acting region responsible for transcriptional regulation of Bradyrhizobium japonicum hydrogenase by nickel, oxygen, and hydrogen.

    PubMed Central

    Kim, H; Yu, C; Maier, R J

    1991-01-01

    Bradyrhizobium japonicum expresses hydrogenase in microaerophilic free-living conditions in the presence of nickel. Plasmid-borne hup-lacZ transcriptional fusion constructs were used to study the regulation of the hydrogenase gene. The hydrogenase gene was transcriptionally induced under microaerobic conditions (0.1 to 3.0% partial pressure O2). The hydrogenase gene was not transcribed or was poorly transcribed in strictly anaerobic conditions or conditions above 3.0% O2. Hydrogen gas at levels as low as 0.1% partial pressure induced hydrogenase transcription, and a high level of transcription was maintained up to at least 10% H2 concentration. No transcription was observed in the absence of H2. Hydrogenase was regulated by H2, O2, and Ni when the 5'-upstream sequence was pared down to include base number -168. However, when the upstream sequence was pared down to base number -118, the regulatory response to O2, H2, and Ni levels was negated. Thus, a common cis-acting regulatory region localized within 50 bp is critical for the regulation of hydrogenase by hydrogen, oxygen, and nickel. As a control, the B. japonicum hemA gene which codes for delta-aminolevulinic acid synthase was also fused to the promoterless lacZ gene, and its regulation was tested in the presence of various concentrations of O2 and H2. hemA-lacZ transcription was not dependent on levels of Ni, O2, or H2. Two different hup-lacZ fusions were tested in a Hup- background, strain JH47; these hup-lacZ constructs in JH47 demonstrated dependency on nickel, O2, and H2, indicating that the hydrogenase protein itself is not a sensor for regulation by O2, H2, or nickel. PMID:2061281

  4. [FeFe]-hydrogenase abundance and diversity along a vertical redox gradient in Great Salt Lake, USA.

    PubMed

    Boyd, Eric S; Hamilton, Trinity L; Swanson, Kevin D; Howells, Alta E; Baxter, Bonnie K; Meuser, Jonathan E; Posewitz, Matthew C; Peters, John W

    2014-11-28

    The use of [FeFe]-hydrogenase enzymes for the biotechnological production of H2 or other reduced products has been limited by their sensitivity to oxygen (O2). Here, we apply a PCR-directed approach to determine the distribution, abundance, and diversity of hydA gene fragments along co-varying salinity and O2 gradients in a vertical water column of Great Salt Lake (GSL), UT. The distribution of hydA was constrained to water column transects that had high salt and relatively low O2 concentrations. Recovered HydA deduced amino acid sequences were enriched in hydrophilic amino acids relative to HydA from less saline environments. In addition, they harbored interesting variations in the amino acid environment of the complex H-cluster metalloenzyme active site and putative gas transfer channels that may be important for both H2 transfer and O2 susceptibility. A phylogenetic framework was created to infer the accessory cluster composition and quaternary structure of recovered HydA protein sequences based on phylogenetic relationships and the gene contexts of known complete HydA sequences. Numerous recovered HydA are predicted to harbor multiple N- and C-terminal accessory iron-sulfur cluster binding domains and are likely to exist as multisubunit complexes. This study indicates an important role for [FeFe]-hydrogenases in the functioning of the GSL ecosystem and provides new target genes and variants for use in identifying O2 tolerant enzymes for biotechnological applications.

  5. Occurrence of H2-Uptake Hydrogenases in Bradyrhizobium sp. (Lupinus) and Their Expression in Nodules of Lupinus spp. and Ornithopus compressus1

    PubMed Central

    Murillo, Jesús; Villa, Ana; Chamber, Manuel; Ruiz-Argüeso, Tomás

    1989-01-01

    Fifty-four strains of Bradyrhizobium sp. (Lupinus) from worldwide collections were screened by a colony hybridization method for the presence of DNA sequences homologous to the structural genes of the Bradyrhizobium japonicum hydrogenase. Twelve strains exhibited strong colony hybridization signals, and subsequent Southern blot hybridization experiments showed that they fell into two different groups on the basis of the pattern of EcoRI fragments containing the homology to the hup probe. All strains in the first group (UPM860, UPM861, and 750) expressed uptake hydrogenase activity in symbiosis with Lupinus albus, Lupinus angustifolius, Lupinus luteus, and Ornithopus compressus, but both the rate of H2 uptake by bacteroids and the relative efficiency of N2 fixation (RE = 1 - [H2 evolved in air/acetylene reduced]) by nodules were markedly affected by the legume host. L. angustifolius was the less permissive host for hydrogenase expression in symbiosis with the three strains (average RE = 0.76), and O. compressus was the more permissive (average RE = 1.0). None of the strains in the second group expressed hydrogenase activity in lupine nodules, and only one exhibited low H2-uptake activity in symbiosis with O. compressus. The inability of these putative Hup+ strains to induce hydrogenase activity in lupine nodules is discussed on the basis of the legume host effect. Among the 42 strains showing no homology to the B. japonicum hup-specific probe in the colony hybridization assay, 10 were examined in symbiosis with L. angustifolius. The average RE for these strains was 0.51. However, one strain, IM43B, exhibited high RE values (higher than 0.80) and high levels of hydrogenase activity in symbiosis with L. angustifolius, L. albus, and L. luteus. In Southern blot hybridization experiments, no homology was detected between the B. japonicum hup-specific DNA probe and total DNA from vegetative cells or bacteroids from strain IM43B even under low stringency hybridization

  6. Heterologous Expression and Maturation of an NADP-Dependent [NiFe]-Hydrogenase: A Key Enzyme in Biofuel Production

    PubMed Central

    Jenney, Francis E.; McTernan, Patrick M.; Adams, Michael W. W.

    2010-01-01

    Hydrogen gas is a major biofuel and is metabolized by a wide range of microorganisms. Microbial hydrogen production is catalyzed by hydrogenase, an extremely complex, air-sensitive enzyme that utilizes a binuclear nickel-iron [NiFe] catalytic site. Production and engineering of recombinant [NiFe]-hydrogenases in a genetically-tractable organism, as with metalloprotein complexes in general, has met with limited success due to the elaborate maturation process that is required, primarily in the absence of oxygen, to assemble the catalytic center and functional enzyme. We report here the successful production in Escherichia coli of the recombinant form of a cytoplasmic, NADP-dependent hydrogenase from Pyrococcus furiosus, an anaerobic hyperthermophile. This was achieved using novel expression vectors for the co-expression of thirteen P. furiosus genes (four structural genes encoding the hydrogenase and nine encoding maturation proteins). Remarkably, the native E. coli maturation machinery will also generate a functional hydrogenase when provided with only the genes encoding the hydrogenase subunits and a single protease from P. furiosus. Another novel feature is that their expression was induced by anaerobic conditions, whereby E. coli was grown aerobically and production of recombinant hydrogenase was achieved by simply changing the gas feed from air to an inert gas (N2). The recombinant enzyme was purified and shown to be functionally similar to the native enzyme purified from P. furiosus. The methodology to generate this key hydrogen-producing enzyme has dramatic implications for the production of hydrogen and NADPH as vehicles for energy storage and transport, for engineering hydrogenase to optimize production and catalysis, as well as for the general production of complex, oxygen-sensitive metalloproteins. PMID:20463892

  7. Hydrogenase polypeptide and methods of use

    DOEpatents

    Adams, Michael W.W.; Hopkins, Robert C.; Jenney, JR, Francis E.; Sun, Junsong

    2016-02-02

    Provided herein are polypeptides having hydrogenase activity. The polypeptide may be multimeric, and may have hydrogenase activity of at least 0.05 micromoles H.sub.2 produced min.sup.-1 mg protein.sup.-1. Also provided herein are polynucleotides encoding the polypeptides, genetically modified microbes that include polynucleotides encoding one or more subunits of the multimeric polypeptide, and methods for making and using the polypeptides.

  8. Genomic and metagenomic surveys of hydrogenase distribution indicate H2 is a widely utilised energy source for microbial growth and survival.

    PubMed

    Greening, Chris; Biswas, Ambarish; Carere, Carlo R; Jackson, Colin J; Taylor, Matthew C; Stott, Matthew B; Cook, Gregory M; Morales, Sergio E

    2016-03-01

    Recent physiological and ecological studies have challenged the long-held belief that microbial metabolism of molecular hydrogen (H2) is a niche process. To gain a broader insight into the importance of microbial H2 metabolism, we comprehensively surveyed the genomic and metagenomic distribution of hydrogenases, the reversible enzymes that catalyse the oxidation and evolution of H2. The protein sequences of 3286 non-redundant putative hydrogenases were curated from publicly available databases. These metalloenzymes were classified into multiple groups based on (1) amino acid sequence phylogeny, (2) metal-binding motifs, (3) predicted genetic organisation and (4) reported biochemical characteristics. Four groups (22 subgroups) of [NiFe]-hydrogenase, three groups (6 subtypes) of [FeFe]-hydrogenases and a small group of [Fe]-hydrogenases were identified. We predict that this hydrogenase diversity supports H2-based respiration, fermentation and carbon fixation processes in both oxic and anoxic environments, in addition to various H2-sensing, electron-bifurcation and energy-conversion mechanisms. Hydrogenase-encoding genes were identified in 51 bacterial and archaeal phyla, suggesting strong pressure for both vertical and lateral acquisition. Furthermore, hydrogenase genes could be recovered from diverse terrestrial, aquatic and host-associated metagenomes in varying proportions, indicating a broad ecological distribution and utilisation. Oxygen content (pO2) appears to be a central factor driving the phylum- and ecosystem-level distribution of these genes. In addition to compounding evidence that H2 was the first electron donor for life, our analysis suggests that the great diversification of hydrogenases has enabled H2 metabolism to sustain the growth or survival of microorganisms in a wide range of ecosystems to the present day. This work also provides a comprehensive expanded system for classifying hydrogenases and identifies new prospects for investigating H2

  9. Improving cyanobacterail O2-tolerance using CBS hydrogenase for hydrogen production

    SciTech Connect

    Maness, Pin-Ching; Eckert, Carrie; Wawrousek, Karen; Noble, Scott; Pennington, Grant; Yu, Jianping

    2016-11-11

    Cyanobacterial H2 production is a viable path to renewable H2 with water serving as the electron donor and sunlight the energy source. A grand challenge is the sensitivity of the underlying hydrogenase to O2, the latter an inherent byproduct of oxygenic photosynthesis. This challenge has been identified as a technical barrier in the Fuel Cell Technologies Office (FCTO) Multi-year Research, Development and Deployment Plan. One solution is to express in cyanobacterium an O2-tolerant hydrogenase to circumvent this barrier. We have uncovered an O2-tolerant hydrogenase from a photosynthetic bacterium Rubrivivax gelatinosus CBS (Casa Bonita Strain; hereafter “CBS”) with a half-life near 21 h when exposed to ambient O2. We sequenced the CBS genome and identified two sets of maturation machineries hyp1 and hyp2. Transcripts expression analysis and mutagenesis revealed that hyp1 is responsible for the assembly of the O2-tolerant CO-oxidation (Coo) hydrogenase and hyp2 is involved in the maturation of a H2-uptake hydrogenase. The structural genes encoding the O2-tolerant hydrogenase (cooLXUH) and maturation genes hyp1FABCDE were therefore cloned and expressed in the model cyanobacterium Synechocystis sp. PCC 6803. We obtained several recombinants displaying hydrogenase activity in a Synechocystis host lacking background activity, suggesting that the CBS hydrogenase is active in Synechocystis. Yet the activity is extremely low. To ensure balanced protein expression, we systematically optimized heterologous expression of 10 CBS genes by using stronger promoters and better ribosome binding site. Moreover we attempted the expression of cooM and cooK genes, verified to be important in CBS to afford activity. CooM is a very large protein and both CooM and CooK are membrane-associated. These properties limited our success in expressing both genes in Synechocystis, although they

  10. Uptake Hydrogenase (Hup) in Common Bean (Phaseolus vulgaris) Symbioses

    PubMed Central

    Navarro, Rosangela B.; Vargas, Alvaro A. T.; Schröder, Eduardo C.; van Berkum, Peter

    1993-01-01

    Strains of Rhizobium forming nitrogen-fixing symbioses with common bean were systematically examined for the presence of the uptake hydrogenase (hup) structural genes and expression of uptake hydrogenase (Hup) activity. DNA with homology to the hup structural genes of Bradyrhizobium japonicum was present in 100 of 248 strains examined. EcoRI fragments with molecular sizes of approximately 20.0 and 2.2 kb hybridized with an internal SacI fragment, which contains part of both bradyrhizobial hup structural genes. The DNA with homology to the hup genes was located on pSym of one of the bean rhizobia. Hup activity was observed in bean symbioses with 13 of 30 strains containing DNA homologous with the hup structural genes. However, the Hup activity was not sufficient to eliminate hydrogen evolution from the nodules. Varying the host plant with two of the Hup+ strains indicated that expression of Hup activity was host regulated, as has been reported with soybean, pea, and cowpea strains. Images PMID:16349115

  11. Determining Semantically Related Significant Genes.

    PubMed

    Taha, Kamal

    2014-01-01

    GO relation embodies some aspects of existence dependency. If GO term xis existence-dependent on GO term y, the presence of y implies the presence of x. Therefore, the genes annotated with the function of the GO term y are usually functionally and semantically related to the genes annotated with the function of the GO term x. A large number of gene set enrichment analysis methods have been developed in recent years for analyzing gene sets enrichment. However, most of these methods overlook the structural dependencies between GO terms in GO graph by not considering the concept of existence dependency. We propose in this paper a biological search engine called RSGSearch that identifies enriched sets of genes annotated with different functions using the concept of existence dependency. We observe that GO term xcannot be existence-dependent on GO term y, if x- and y- have the same specificity (biological characteristics). After encoding into a numeric format the contributions of GO terms annotating target genes to the semantics of their lowest common ancestors (LCAs), RSGSearch uses microarray experiment to identify the most significant LCA that annotates the result genes. We evaluated RSGSearch experimentally and compared it with five gene set enrichment systems. Results showed marked improvement.

  12. Expression of a clostridial [FeFe]-hydrogenase in Chlamydomonas reinhardtii prolongs photo-production of hydrogen from water splitting

    DOE PAGES

    Noone, Seth; Ratcliff, Kathleen; Davis, ReAnna; ...

    2016-12-24

    The high oxygen (O2) sensitivity of green algal [FeFe]-hydrogenases is a significant limitation for the sustained production of hydrogen gas (H2) from photosynthetic water splitting. To address this limitation we replaced the native [FeFe]-hydrogenases with a more O2-tolerant clostridial [FeFe]-hydrogenase CaI in Chlamydomonas reinhardtii strain D66ΔHYD (hydA1–hydA2–) that contains insertionally inactivated [FeFe]-hydrogenases genes. Expression and translocation of CaI in D66ΔHYD led to the recovery of H2 photoproduction at ~ 20% of the rates of the wild-type parent strain D66. We show for the first time that a bacterial [FeFe]-hydrogenase can be expressed, localized and matured to a catalytically active formmore » that couples to photosynthetic electron transport in the green alga C. reinhardtii. The lower rates of O2 inactivation of CaI led to more sustained H2 photoproduction when cultures were challenged with O2 or kept under prolonged illumination at solar intensities. Lastly, these results provide new insights into the requisites for attaining photobiological H2 production from water splitting using a more O2-tolerant hydrogenase.« less

  13. Genomic analysis reveals multiple [FeFe] hydrogenases and hydrogen sensors encoded by treponemes from the H(2)-rich termite gut.

    PubMed

    Ballor, Nicholas R; Paulsen, Ian; Leadbetter, Jared R

    2012-02-01

    We have completed a bioinformatic analysis of the hydrogenases encoded in the genomes of three termite gut treponeme isolates: hydrogenotrophic, homoacetogenic Treponema primitia strains ZAS-1 and ZAS-2, and the hydrogen-producing, sugar-fermenting Treponema azotonutricium ZAS-9. H(2) is an important free intermediate in the breakdown of wood by termite gut microbial communities, reaching concentrations in some species exceeding those measured for any other biological system. The spirochetes encoded 4, 8, and 5 [FeFe] hydrogenase-like proteins, identified by their H domains, respectively, but no other recognizable hydrogenases. The [FeFe] hydrogenases represented many sequence families previously proposed in an analysis of termite gut metagenomic data. Each strain encoded both putative [FeFe] hydrogenase enzymes and evolutionarily related hydrogen sensor/transducer proteins likely involved in phosphorelay or methylation pathways, and possibly even chemotaxis. A new family of [FeFe] hydrogenases (FDH-Linked) is proposed that may form a multimeric complex with formate dehydrogenase to provide reducing equivalents for reductive acetogenesis in T. primitia. The many and diverse [FeFe] hydrogenase-like proteins encoded within the sequenced genomes of the termite gut treponemes has enabled the discovery of a putative new class of [FeFe] hydrogenase proteins potentially involved in acetogenesis and furthered present understanding of many families, including sensory, of H domain proteins beyond what was possible through the use of fragmentary termite gut metagenome sequence data alone, from which they were initially defined.

  14. Evolutionary and Biotechnological Implications of Robust Hydrogenase Activity in Halophilic Strains of Tetraselmis

    PubMed Central

    D'Adamo, Sarah; Jinkerson, Robert E.; Boyd, Eric S.; Brown, Susan L.; Baxter, Bonnie K.; Peters, John W.; Posewitz, Matthew C.

    2014-01-01

    Although significant advances in H2 photoproduction have recently been realized in fresh water algae (e.g. Chlamydomonas reinhardtii), relatively few studies have focused on H2 production and hydrogenase adaptations in marine or halophilic algae. Salt water organisms likely offer several advantages for biotechnological H2 production due to the global abundance of salt water, decreased H2 and O2 solubility in saline and hypersaline systems, and the ability of extracellular NaCl levels to influence metabolism. We screened unialgal isolates obtained from hypersaline ecosystems in the southwest United States and identified two distinct halophilic strains of the genus Tetraselmis (GSL1 and QNM1) that exhibit both robust fermentative and photo H2-production activities. The influence of salinity (3.5%, 5.5% and 7.0% w/v NaCl) on H2 production was examined during anoxic acclimation, with the greatest in vivo H2-production rates observed at 7.0% NaCl. These Tetraselmis strains maintain robust hydrogenase activity even after 24 h of anoxic acclimation and show increased hydrogenase activity relative to C. reinhardtii after extended anoxia. Transcriptional analysis of Tetraselmis GSL1 enabled sequencing of the cDNA encoding the FeFe-hydrogenase structural enzyme (HYDA) and its maturation proteins (HYDE, HYDEF and HYDG). In contrast to freshwater Chlorophyceae, the halophilic Tetraselmis GSL1 strain likely encodes a single HYDA and two copies of HYDE, one of which is fused to HYDF. Phylogenetic analyses of HYDA and concatenated HYDA, HYDE, HYDF and HYDG in Tetraselmis GSL1 fill existing knowledge gaps in the evolution of algal hydrogenases and indicate that the algal hydrogenases sequenced to date are derived from a common ancestor. This is consistent with recent hypotheses that suggest fermentative metabolism in the majority of eukaryotes is derived from a common base set of enzymes that emerged early in eukaryotic evolution with subsequent losses in some organisms. PMID

  15. Development of a Rhodobacter capsulatus self-reporting model system for optimizing light-dependent, [FeFe]-hydrogenase-driven H2 production.

    PubMed

    Wecker, Matt S A; Beaton, Stephen E; Chado, Robert A; Ghirardi, Maria L

    2017-02-01

    The photosynthetic bacterium Rhodobacter capsulatus normally photoproduces H2 as a by-product of its nitrogenase-catalyzed nitrogen-fixing activity. Such H2 production, however, is expensive from a metabolic perspective, requiring nearly four times as many photons as the equivalent algal hydrogenase-based system (Ghirardi et al., 2009 Photobiological hydrogen-producing systems. Chem Soc Rev 38(1):52-61). Here, we report the insertion of a Clostridium acetobutylicum [FeFe]-hydrogenase and its three attendant hydrogenase assembly proteins into an R. capsulatus strain lacking its native uptake hydrogenase. Further, this strain is modified to fluoresce upon sensing H2 . The resulting strain photoproduces H2 and self-reports its own H2 production through fluorescence. This model system represents a unique method of developing hydrogenase-based H2 production in R. capsulatus, may serve as a powerful system for in vivo directed evolution of hydrogenases and hydrogenase-associated genes, and provides a means of screening for increased metabolic production of H2 . Biotechnol. Bioeng. 2017;114: 291-297. © 2016 Wiley Periodicals, Inc.

  16. Development of an In Vitro Compartmentalization Screen for High-Throughput Directed Evolution of [FeFe] Hydrogenases

    PubMed Central

    Stapleton, James A.; Swartz, James R.

    2010-01-01

    Background [FeFe] hydrogenase enzymes catalyze the formation and dissociation of molecular hydrogen with the help of a complex prosthetic group composed of common elements. The development of energy conversion technologies based on these renewable catalysts has been hindered by their extreme oxygen sensitivity. Attempts to improve the enzymes by directed evolution have failed for want of a screening platform capable of throughputs high enough to adequately sample heavily mutated DNA libraries. In vitro compartmentalization (IVC) is a powerful method capable of screening for multiple-turnover enzymatic activity at very high throughputs. Recent advances have allowed [FeFe] hydrogenases to be expressed and activated in the cell-free protein synthesis reactions on which IVC is based; however, IVC is a demanding technique with which many enzymes have proven incompatible. Methodology/Principal Findings Here we describe an extremely high-throughput IVC screen for oxygen-tolerant [FeFe] hydrogenases. We demonstrate that the [FeFe] hydrogenase CpI can be expressed and activated within emulsion droplets, and identify a fluorogenic substrate that links activity after oxygen exposure to the generation of a fluorescent signal. We present a screening protocol in which attachment of mutant genes and the proteins they encode to the surfaces of microbeads is followed by three separate emulsion steps for amplification, expression, and evaluation of hydrogenase mutants. We show that beads displaying active hydrogenase can be isolated by fluorescence-activated cell-sorting, and we use the method to enrich such beads from a mock library. Conclusions/Significance [FeFe] hydrogenases are the most complex enzymes to be produced by cell-free protein synthesis, and the most challenging targets to which IVC has yet been applied. The technique described here is an enabling step towards the development of biocatalysts for a biological hydrogen economy. PMID:21151915

  17. Hydrogen Formation and Its Regulation in Ruminococcus albus: Involvement of an Electron-Bifurcating [FeFe]-Hydrogenase, of a Non-Electron-Bifurcating [FeFe]-Hydrogenase, and of a Putative Hydrogen-Sensing [FeFe]-Hydrogenase

    PubMed Central

    Zheng, Yanning; Kahnt, Jörg; Kwon, In Hyuk; Mackie, Roderick I.

    2014-01-01

    Ruminococcus albus 7 has played a key role in the development of the concept of interspecies hydrogen transfer. The rumen bacterium ferments glucose to 1.3 acetate, 0.7 ethanol, 2 CO2, and 2.6 H2 when growing in batch culture and to 2 acetate, 2 CO2, and 4 H2 when growing in continuous culture in syntrophic association with H2-consuming microorganisms that keep the H2 partial pressure low. The organism uses NAD+ and ferredoxin for glucose oxidation to acetyl coenzyme A (acetyl-CoA) and CO2, NADH for the reduction of acetyl-CoA to ethanol, and NADH and reduced ferredoxin for the reduction of protons to H2. Of all the enzymes involved, only the enzyme catalyzing the formation of H2 from NADH remained unknown. Here, we report that R. albus 7 grown in batch culture on glucose contained, besides a ferredoxin-dependent [FeFe]-hydrogenase (HydA2), a ferredoxin- and NAD-dependent electron-bifurcating [FeFe]-hydrogenase (HydABC) that couples the endergonic formation of H2 from NADH to the exergonic formation of H2 from reduced ferredoxin. Interestingly, hydA2 is adjacent to the hydS gene, which is predicted to encode an [FeFe]-hydrogenase with a C-terminal PAS domain. We showed that hydS and hydA2 are part of a larger transcriptional unit also harboring putative genes for a bifunctional acetaldehyde/ethanol dehydrogenase (Aad), serine/threonine protein kinase, serine/threonine protein phosphatase, and a redox-sensing transcriptional repressor. Since HydA2 and Aad are required only when R. albus grows at high H2 partial pressures, HydS could be a H2-sensing [FeFe]-hydrogenase involved in the regulation of their biosynthesis. PMID:25157086

  18. Elucidating hydrogenase surfaces and tracing the intramolecular tunnels for hydrogenase inhibition in microalgal species

    PubMed Central

    Dixit, Kritika; Rahman, Md.Akhlaqur; Nath, Adi; Sundaram, Shanthy

    2016-01-01

    Intramolecular tunnels are majorly attracting attention as possible pathways for entry of inhibitors like oxygen and carbon monoxide to the active sites of the enzymes, hydrogenases. The results of homology modeling of the HydSL protein, a NiFe-hydrogenase from Chlamydomonas reinhardtii and Chlorella vulgaris are presented in this work. Here we identify and describe molecular tunnels observed in HydSL hydrogenase enzyme systems. The possible determinant of the oxygen stability of already studied hydrogenases could be the lack of several intramolecular tunnels. The possible tunnels were traced out using MOLE 2 software, which showed several intramolecular pathways that may be connecting the active sites of the enzyme. The RMSD value showed a great deal of significance in the enzyme homology. This is the first report of its kind in which mapping of the intramolecular tunnels in the four-hydrogenase enzymes disclosed potential variations between designed models and acknowledged structures. We are seeking out the explanations for oxygen sensitivity of studied hydrogenases within the structure of intramolecular tunnels. Local and Global RMSD (Root mean square deviation) was calculated for models and templates, which showed value of 1.284 indicating a successful homology model. The tunnel tracing study by Mole 2 indicated two tunnels joined into one in C. reinhardtii model whereas C. vulgaris model showed one tunnel almost like two tunnels. Templates of both the A. vinosum and D. vulgaris hydrogenase consisted of six tunnels. For HydSL from Chlamydomonas and Chlorella Species the maximal potential was set to 250 kcal/mol (1,046 kJ/mol) and the positive potential areas were marked. Electrostatic studies define electrostatic potential (ESP) that help shuttle protons to the active site. PMID:28149051

  19. Structure and function of [NiFe] hydrogenases.

    PubMed

    Ogata, Hideaki; Lubitz, Wolfgang; Higuchi, Yoshiki

    2016-11-01

    Hydrogenases catalyze the reversible conversion of molecular hydrogen to protons and electrons via a heterolytic splitting mechanism. The active sites of [NiFe] hydrogenases comprise a dinuclear Ni-Fe center carrying CO and CN(-) ligands. The catalytic activity of the standard (O2-sensitive) [NiFe] hydrogenases vanishes under aerobic conditions. The O2-tolerant [NiFe] hydrogenases can sustain H2 oxidation activity under atmospheric conditions. These hydrogenases have very similar active site structures that change the ligand sphere during the activation/catalytic process. An important structural difference between these hydrogenases has been found for the proximal iron-sulphur cluster located in the vicinity of the active site. This unprecedented [4Fe-3S]-6Cys cluster can supply two electrons, which lead to rapid recovery of the O2 inactivation, to the [NiFe] active site.

  20. [FeFe]-Hydrogenase Abundance and Diversity along a Vertical Redox Gradient in Great Salt Lake, USA

    PubMed Central

    Boyd, Eric S.; Hamilton, Trinity L.; Swanson, Kevin D.; Howells, Alta E.; Baxter, Bonnie K.; Meuser, Jonathan E.; Posewitz, Matthew C.; Peters, John W.

    2014-01-01

    The use of [FeFe]-hydrogenase enzymes for the biotechnological production of H2 or other reduced products has been limited by their sensitivity to oxygen (O2). Here, we apply a PCR-directed approach to determine the distribution, abundance, and diversity of hydA gene fragments along co-varying salinity and O2 gradients in a vertical water column of Great Salt Lake (GSL), UT. The distribution of hydA was constrained to water column transects that had high salt and relatively low O2 concentrations. Recovered HydA deduced amino acid sequences were enriched in hydrophilic amino acids relative to HydA from less saline environments. In addition, they harbored interesting variations in the amino acid environment of the complex H-cluster metalloenzyme active site and putative gas transfer channels that may be important for both H2 transfer and O2 susceptibility. A phylogenetic framework was created to infer the accessory cluster composition and quaternary structure of recovered HydA protein sequences based on phylogenetic relationships and the gene contexts of known complete HydA sequences. Numerous recovered HydA are predicted to harbor multiple N- and C-terminal accessory iron-sulfur cluster binding domains and are likely to exist as multisubunit complexes. This study indicates an important role for [FeFe]-hydrogenases in the functioning of the GSL ecosystem and provides new target genes and variants for use in identifying O2 tolerant enzymes for biotechnological applications. PMID:25464382

  1. The Hyb Hydrogenase Permits Hydrogen-Dependent Respiratory Growth of Salmonella enterica Serovar Typhimurium

    PubMed Central

    Lamichhane-Khadka, Reena; Kwiatkowski, Andrea; Maier, Robert J.

    2010-01-01

    Salmonella enterica serovar Typhimurium contains three distinct respiratory hydrogenases, all of which contribute to virulence. Addition of H2 significantly enhanced the growth rate and yield of S. Typhimurium in an amino acid-containing medium; this occurred with three different terminal respiratory electron acceptors. Based on studies with site-specific double-hydrogenase mutant strains, most of this H2-dependent growth increase was attributed to the Hyb hydrogenase, rather than to the Hya or Hyd respiratory H2-oxidizing enzymes. The wild type strain with H2 had 4.0-fold greater uptake of 14C-labeled amino acids over a period of minutes than did cells incubated without H2. The double-uptake hydrogenase mutant containing only the Hyb hydrogenase transported amino acids H2 dependently like the wild type. The Hyb-only-containing strain produced a membrane potential comparable to that of the wild type. The H2-stimulated amino acid uptake of the wild type and the Hyb-only strain was inhibited by the protonophore carbonyl cyanide m-chlorophenylhydrazone but was less affected by the ATP synthase inhibitor sodium orthovanadate. In the wild type, proteins TonB and ExbD, which are known to couple proton motive force (PMF) to transport processes, were induced by H2 exposure, as were the genes corresponding to these periplasmic PMF-coupling factors. However, studies on tonB and exbD single mutant strains could not confirm a major role for these proteins in amino acid transport. The results link H2 oxidation via the Hyb enzyme to growth, amino acid transport, and expression of periplasmic proteins that facilitate PMF-mediated transport across the outer membrane. PMID:21157514

  2. The surprising diversity of clostridial hydrogenases: a comparative genomic perspective.

    PubMed

    Calusinska, Magdalena; Happe, Thomas; Joris, Bernard; Wilmotte, Annick

    2010-06-01

    Among the large variety of micro-organisms capable of fermentative hydrogen production, strict anaerobes such as members of the genus Clostridium are the most widely studied. They can produce hydrogen by a reversible reduction of protons accumulated during fermentation to dihydrogen, a reaction which is catalysed by hydrogenases. Sequenced genomes provide completely new insights into the diversity of clostridial hydrogenases. Building on previous reports, we found that [FeFe] hydrogenases are not a homogeneous group of enzymes, but exist in multiple forms with different modular structures and are especially abundant in members of the genus Clostridium. This unusual diversity seems to support the central role of hydrogenases in cell metabolism. In particular, the presence of multiple putative operons encoding multisubunit [FeFe] hydrogenases highlights the fact that hydrogen metabolism is very complex in this genus. In contrast with [FeFe] hydrogenases, their [NiFe] hydrogenase counterparts, widely represented in other bacteria and archaea, are found in only a few clostridial species. Surprisingly, a heteromultimeric Ech hydrogenase, known to be an energy-converting [NiFe] hydrogenase and previously described only in methanogenic archaea and some sulfur-reducing bacteria, was found to be encoded by the genomes of four cellulolytic strains: Clostridum cellulolyticum, Clostridum papyrosolvens, Clostridum thermocellum and Clostridum phytofermentans.

  3. RAPD analysis and sequencing of ITS1/5.8S rRNA/ITS2 and Fe-hydrogenase as tools for genetic classification of potentially pathogenic isolates of Trichomonas gallinae.

    PubMed

    Sansano-Maestre, José; Martínez-Herrero, María Del Carmen; Garijo-Toledo, María Magdalena; Gómez-Muñoz, María Teresa

    2016-08-01

    Trichomonas gallinae is a worldwide parasite that causes oropharyngeal avian trichomonosis. During eight years, 60 axenic isolates were obtained from different bird species and characterized by three molecular methods: RAPD analysis and PCR-sequencing of ITS1/5.8S rRNA/ITS2 fragment and Fe-hydrogenase gene. We have found two genotypes of ITS1/5.8S rRNA/ITS2 widely distributed among bird populations, a new variant and also two sequences with mixed pattern. Genotype ITS-OBT-Tg-1 was associated with the presence of gross lesions in birds. We have found eight genotypes of the Fe-hydrogenase (A1, A2, C2, C2.1, C4, C5, C6 and C7), three of them are new reports (C5, C6 and C7), and also three sequences with mixed pattern. Subtype A1 of the Fe-hydrogenase was also related with the presence of lesions. RAPD analyses included most of the strains isolated from animals with lesions in one of the sub-clusters. Potentially pathogenic isolates of T. gallinae obtained in this study fulfill the following criteria with one exception: isolated from lesions+ITS-OBT-Tg-1 genotype+FeHyd A1+RAPD sub-cluster I2.

  4. A Bacterial Electron-bifurcating Hydrogenase*

    PubMed Central

    Schuchmann, Kai; Müller, Volker

    2012-01-01

    The Wood-Ljungdahl pathway of anaerobic CO2 fixation with hydrogen as reductant is considered a candidate for the first life-sustaining pathway on earth because it combines carbon dioxide fixation with the synthesis of ATP via a chemiosmotic mechanism. The acetogenic bacterium Acetobacterium woodii uses an ancient version of the pathway that has only one site to generate the electrochemical ion potential used to drive ATP synthesis, the ferredoxin-fueled, sodium-motive Rnf complex. However, hydrogen-based ferredoxin reduction is endergonic, and how the steep energy barrier is overcome has been an enigma for a long time. We have purified a multimeric [FeFe]-hydrogenase from A. woodii containing four subunits (HydABCD) which is predicted to have one [H]-cluster, three [2Fe2S]-, and six [4Fe4S]-clusters consistent with the experimental determination of 32 mol of Fe and 30 mol of acid-labile sulfur. The enzyme indeed catalyzed hydrogen-based ferredoxin reduction, but required NAD+ for this reaction. NAD+ was also reduced but only in the presence of ferredoxin. NAD+ and ferredoxin reduction both required flavin. Spectroscopic analyses revealed that NAD+ and ferredoxin reduction are strictly coupled and that they are reduced in a 1:1 stoichiometry. Apparently, the multimeric hydrogenase of A. woodii is a soluble energy-converting hydrogenase that uses electron bifurcation to drive the endergonic ferredoxin reduction by coupling it to the exergonic NAD+ reduction. PMID:22810230

  5. Effects of anaerobic regulatory mutations and catabolite repression on regulation of hydrogen metabolism and hydrogenase isoenzyme composition in Salmonella typhimurium.

    PubMed

    Jamieson, D J; Sawers, R G; Rugman, P A; Boxer, D H; Higgins, C F

    1986-10-01

    Hydrogen metabolism in Salmonella typhimurium is differentially regulated by mutations in the two anaerobic regulatory pathways, defined by the fnr (oxrA) and oxrC genes, and is controlled by catabolite repression. The synthesis of the individual hydrogenase isoenzymes is also specifically influenced by fnr and oxrC mutations and by catabolite repression in a manner entirely consistent with the proposed role for each isoenzyme in hydrogen metabolism. Synthesis of hydrogenase isoenzyme 2 was found to be fnr dependent and oxrC independent, consistent with a role in respiration-linked hydrogen uptake which was shown to be similarly regulated. Also in keeping with such a respiratory role was the finding that both hydrogen uptake and the expression of isoenzyme 2 are under catabolite repression. In contrast, formate hydrogenlyase-dependent hydrogen evolution, characteristic of fermentative growth, was reduced in oxrC strains but not in fnr strains. Hydrogenase 3 activity was similarly regulated, consistent with a role in hydrogen evolution. Unlike the expression of hydrogenases 2 and 3, hydrogenase 1 expression was both fnr and oxrC dependent. Hydrogen uptake during fermentative growth was also both fnr and oxrC dependent. This provided good evidence for a distinction between hydrogen uptake during fermentation- and respiration-dependent growth and for a hydrogen-recycling process. The pattern of anaerobic control of hydrogenase activities illustrated the functional diversity of the isoenzymes and, in addition, the physiological distinction between the two anaerobic regulatory pathways, anaerobic respiratory genes being fnr dependent and enzymes required during fermentative growth being oxrC dependent.

  6. Insights into [FeFe]-hydrogenase structure, mechanism, and maturation.

    PubMed

    Mulder, David W; Shepard, Eric M; Meuser, Jonathan E; Joshi, Neelambari; King, Paul W; Posewitz, Matthew C; Broderick, Joan B; Peters, John W

    2011-08-10

    Hydrogenases are metalloenzymes that are key to energy metabolism in a variety of microbial communities. Divided into three classes based on their metal content, the [Fe]-, [FeFe]-, and [NiFe]-hydrogenases are evolutionarily unrelated but share similar nonprotein ligand assemblies at their active site metal centers that are not observed elsewhere in biology. These nonprotein ligands are critical in tuning enzyme reactivity, and their synthesis and incorporation into the active site clusters require a number of specific maturation enzymes. The wealth of structural information on different classes and different states of hydrogenase enzymes, biosynthetic intermediates, and maturation enzymes has contributed significantly to understanding the biochemistry of hydrogen metabolism. This review highlights the unique structural features of hydrogenases and emphasizes the recent biochemical and structural work that has created a clearer picture of the [FeFe]-hydrogenase maturation pathway.

  7. Gene expression by the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough grown on an iron electrode under cathodic protection conditions.

    PubMed

    Caffrey, Sean M; Park, Hyung Soo; Been, Jenny; Gordon, Paul; Sensen, Christoph W; Voordouw, Gerrit

    2008-04-01

    The genome sequence of the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough was reanalyzed to design unique 70-mer oligonucleotide probes against 2,824 probable protein-coding regions. These included three genes not previously annotated, including one that encodes a c-type cytochrome. Using microarrays printed with these 70-mer probes, we analyzed the gene expression profile of wild-type D. vulgaris grown on cathodic hydrogen, generated at an iron electrode surface with an imposed negative potential of -1.1 V (cathodic protection conditions). The gene expression profile of cells grown on cathodic hydrogen was compared to that of cells grown with gaseous hydrogen bubbling through the culture. Relative to the latter, the electrode-grown cells overexpressed two hydrogenases, the hyn-1 genes for [NiFe] hydrogenase 1 and the hyd genes, encoding [Fe] hydrogenase. The hmc genes for the high-molecular-weight cytochrome complex, which allows electron flow from the hydrogenases across the cytoplasmic membrane, were also overexpressed. In contrast, cells grown on gaseous hydrogen overexpressed the hys genes for [NiFeSe] hydrogenase. Cells growing on the electrode also overexpressed genes encoding proteins which promote biofilm formation. Although the gene expression profiles for these two modes of growth were distinct, they were more closely related to each other than to that for cells grown in a lactate- and sulfate-containing medium. Electrochemically measured corrosion rates were lower for iron electrodes covered with hyn-1, hyd, and hmc mutant biofilms than for wild-type biofilms. This confirms the importance, suggested by the gene expression studies, of the corresponding gene products in D. vulgaris-mediated iron corrosion.

  8. Development of a Rhodobacter capsulatus self-reporting model system for optimizing light-dependent, [FeFe]-hydrogenase-driven H2 production

    SciTech Connect

    Wecker, Matt S. A.; Beaton, Stephen E.; Chado, Robert A.; Ghirardi, Maria L.

    2016-08-17

    The photosynthetic bacterium Rhodobacter capsulatus normally photoproduces H2 as a by-product of its nitrogenase-catalyzed nitrogen-fixing activity. Such H2 production, however, is expensive from a metabolic perspective, requiring nearly four times as many photons as the equivalent algal hydrogenase-based system. Here we report the insertion of a Clostridium acetobutylicum [FeFe]-hydrogenase and its three attendant hydrogenase assembly proteins into an R. capsulatus strain lacking its native uptake hydrogenase. Further, this strain is modified to fluoresce upon sensing H2. The resulting strain photoproduces H2 and self-reports its own H2 production through fluorescence. Furthermore, this model system represents a unique method of developing hydrogenase-based H2 production in R. capsulatus, may serve as a powerful system for in vivo directed evolution of hydrogenases and hydrogenase-associated genes, and provides a means of screening for increased metabolic production of H2.

  9. Development of a Rhodobacter capsulatus self-reporting model system for optimizing light-dependent, [FeFe]-hydrogenase-driven H 2 production: A Model System for Optimizing H 2 Production

    DOE PAGES

    Wecker, Matt S. A.; Beaton, Stephen E.; Chado, Robert A.; ...

    2016-08-23

    The photosynthetic bacterium Rhodobacter capsulatus normally photoproduces H2 as a by-product of its nitrogenase-catalyzed nitrogen-fixing activity. Such H2 production, however, is expensive from a metabolic perspective, requiring nearly four times as many photons as the equivalent algal hydrogenase-based system (Ghirardi et al. 2009). Here we report the insertion of a Clostridium acetobutylicum [FeFe]-hydrogenase and its three attendant hydrogenase assembly proteins into an R. capsulatus strain lacking its native uptake hydrogenase. Further, this strain is modified to fluoresce upon sensing H2. The resulting strain photoproduces H2 and self-reports its own H2 production through fluorescence. This model system represents a unique methodmore » of developing hydrogenase-based H2 production in R. capsulatus, may serve as a powerful system for in vivo directed evolution of hydrogenases and hydrogenase-associated genes, and provides a means of screening for increased metabolic production of H2.« less

  10. Initial cloning and sequencing of hydHG, an operon homologous to ntrBC and regulating the labile hydrogenase activity in Escherichia coli K-12.

    PubMed Central

    Stoker, K; Reijnders, W N; Oltmann, L F; Stouthamer, A H

    1989-01-01

    To isolate genes from Escherichia coli which regulate the labile hydrogenase activity, a plasmid library was used to transform hydL mutants lacking the labile hydrogenase. A single type of gene, designated hydG, was isolated. This gene also partially restored the hydrogenase activity in hydF mutants (which are defective in all hydrogenase isoenzymes), although the low hydrogenase 1 and 2 levels were not induced. Therefore, hydG apparently regulates, specifically, the labile hydrogenase activity. Restoration of this latter activity in hydF mutants was accompanied by a proportional increase of the H2 uptake activity, suggesting a functional relationship. H2:fumarate oxidoreductase activity was not restored in complemented hydL mutants. These latter strains may therefore lack, in addition to the labile hydrogenase, a second component (provisionally designated component R), possibly an electron carrier coupling H2 oxidation to the anerobic respiratory chain. Sequence analysis showed an open reading frame of 1,314 base pairs for hydG. It was preceded by a ribosome-binding site but apparently lacked a promoter. Minicell experiments revealed a single polypeptide of approximately 50 kilodaltons. Comparison of the predicted amino acid sequence with a protein sequence data base revealed strong homology to NtrC from Klebsiella pneumoniae, a DNA-binding transcriptional activator. The 411 base pairs upstream from pHG40 contained a second open reading frame overlapping hydG by four bases. The deduced amino acid sequence showed considerable homology with the C-terminal part of NtrB. This sequence was therefore assumed to be part of a second gene, encoding the NtrB-like component, and was designated hydH. The labile hydrogenase activity in E. coli is apparently regulated by a multicomponent system analogous to the NtrB-NtrC system. This conclusion is in agreement with the results of Birkmann et al. (A. Birkmann, R. G. Sawers, and A. Böck, Mol. Gen. Genet. 210:535-542, 1987), who

  11. Gene Expression by the Sulfate-Reducing Bacterium Desulfovibrio vulgaris Hildenborough Grown on an Iron Electrode under Cathodic Protection Conditions▿ †

    PubMed Central

    Caffrey, Sean M.; Park, Hyung Soo; Been, Jenny; Gordon, Paul; Sensen, Christoph W.; Voordouw, Gerrit

    2008-01-01

    The genome sequence of the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough was reanalyzed to design unique 70-mer oligonucleotide probes against 2,824 probable protein-coding regions. These included three genes not previously annotated, including one that encodes a c-type cytochrome. Using microarrays printed with these 70-mer probes, we analyzed the gene expression profile of wild-type D. vulgaris grown on cathodic hydrogen, generated at an iron electrode surface with an imposed negative potential of −1.1 V (cathodic protection conditions). The gene expression profile of cells grown on cathodic hydrogen was compared to that of cells grown with gaseous hydrogen bubbling through the culture. Relative to the latter, the electrode-grown cells overexpressed two hydrogenases, the hyn-1 genes for [NiFe] hydrogenase 1 and the hyd genes, encoding [Fe] hydrogenase. The hmc genes for the high-molecular-weight cytochrome complex, which allows electron flow from the hydrogenases across the cytoplasmic membrane, were also overexpressed. In contrast, cells grown on gaseous hydrogen overexpressed the hys genes for [NiFeSe] hydrogenase. Cells growing on the electrode also overexpressed genes encoding proteins which promote biofilm formation. Although the gene expression profiles for these two modes of growth were distinct, they were more closely related to each other than to that for cells grown in a lactate- and sulfate-containing medium. Electrochemically measured corrosion rates were lower for iron electrodes covered with hyn-1, hyd, and hmc mutant biofilms than for wild-type biofilms. This confirms the importance, suggested by the gene expression studies, of the corresponding gene products in D. vulgaris-mediated iron corrosion. PMID:18310429

  12. Hydrogenase in actinorhizal root nodules and root nodule homogenates.

    PubMed Central

    Benson, D R; Arp, D J; Burris, R H

    1980-01-01

    Hydrogenases were measured in intact actinorhizal root nodules and from disrupted nodules of Alnus glutinosa, Alnus rhombifolia, Alnus rubra, and Myrica pensylvanica. Whole nodules took up H2 in an O2-dependent reaction. Endophyte preparations oxidized H2 through the oxyhydrogen reaction, but rates were enhanced when hydrogen uptake was coupled to artificial electron acceptors. Oxygen inhibited artifical acceptor-dependent H2 uptake. The hydrogenase system from M. pensylvanica had a different pattern of coupling to various electron acceptors than the hydrogenase systems from the alders; only the bayberry system evolved H2 from reduced viologen dyes. PMID:6989799

  13. Activity-Based Screening of Metagenomic Libraries for Hydrogenase Enzymes.

    PubMed

    Adam, Nicole; Perner, Mirjam

    2017-01-01

    Here we outline how to identify hydrogenase enzymes from metagenomic libraries through an activity-based screening approach. A metagenomic fosmid library is constructed in E. coli and the fosmids are transferred into a hydrogenase deletion mutant of Shewanella oneidensis (ΔhyaB) via triparental mating. If a fosmid exhibits hydrogen uptake activity, S. oneidensis' phenotype is restored and hydrogenase activity is indicated by a color change of the medium from yellow to colorless. This new method enables screening of 48 metagenomic fosmid clones in parallel.

  14. Comparison of carbon materials as electrodes for enzyme electrocatalysis: hydrogenase as a case study.

    PubMed

    Quinson, Jonathan; Hidalgo, Ricardo; Ash, Philip A; Dillon, Frank; Grobert, Nicole; Vincent, Kylie A

    2014-01-01

    We present a study of electrocatalysis by an enzyme adsorbed on a range of carbon materials, with different size, surface area, morphology and graphitic structure, which are either commercially available or prepared via simple, established protocols. We choose as our model enzyme the hydrogenase I from E. coli (Hyd-1), which is an active catalyst for H2 oxidation, is relatively robust and has been demonstrated in H2 fuel cells and H2-driven chemical synthesis. The carbon materials were characterised according to their surface area, surface morphology and graphitic character, and we use the electrocatalytic H2 oxidation current for Hyd-1 adsorbed on these materials to evaluate their effectiveness as enzyme electrodes. Here, we show that a variety of carbon materials are suitable for adsorbing hydrogenases in an electroactive configuration. This unified study provides insight into selection and design of carbon materials for study of redox enzymes and different applications of enzyme electrocatalysis.

  15. Photosensitized Production of Hydrogen by Hydrogenase in Reversed Micelles

    NASA Astrophysics Data System (ADS)

    Hilhorst, Riet; Laane, Colja; Veeger, Cees

    1982-06-01

    Hydrogenase (hydrogen:ferricytochrome c3 oxidoreductase, EC 1.12.2.1) from Desulfovibrio vulgaris was encapsulated in reversed micelles with cetyltrimethylammonium bromide as surfactant and a chloroform/octane mixture as solvent. Reducing equivalents for hydrogenase-catalyzed hydrogen production were provided by vectorial photosensitized electron transfer from a donor (thiophenol) in the organic phase through a surfactant-Ru2+ sensitizer located in the interphase to methyl viologen concentrated in the aqueous core of the reversed micelle. The results show that reversed micelles provide a microenvironment that (i) stabilizes hydrogenase against inactivation and (ii) allows an efficient vectorial photosensitized electron and proton flow from the organic phase to hydrogenase in the aqueous phase.

  16. Hydrogenases in sulfate-reducing bacteria function as chromium reductase.

    PubMed

    Chardin, B; Giudici-Orticoni, M-T; De Luca, G; Guigliarelli, B; Bruschi, M

    2003-12-01

    The ability of sulfate-reducing bacteria (SRB) to reduce chromate VI has been studied for possible application to the decontamination of polluted environments. Metal reduction can be achieved both chemically, by H(2)S produced by the bacteria, and enzymatically, by polyhemic cytochromes c(3). We demonstrate that, in addition to low potential polyheme c-type cytochromes, the ability to reduce chromate is widespread among [Fe], [NiFe], and [NiFeSe] hydrogenases isolated from SRB of the genera Desulfovibrio and Desulfomicrobium. Among them, the [Fe] hydrogenase from Desulfovibrio vulgaris strain Hildenborough reduces Cr(VI) with the highest rate. Both [Fe] and [NiFeSe] enzymes exhibit the same K(m) towards Cr(VI), suggesting that Cr(VI) reduction rates are directly correlated with hydrogen consumption rates. Electron paramagnetic resonance spectroscopy enabled us to probe the oxidation by Cr(VI) of the various metal centers in both [NiFe] and [Fe] hydrogenases. These experiments showed that Cr(VI) is reduced to paramagnetic Cr(III), and revealed inhibition of the enzyme at high Cr(VI) concentrations. The significant decrease of both hydrogenase and Cr(VI)-reductase activities in a mutant lacking [Fe] hydrogenase demonstrated the involvement of this enzyme in Cr(VI) reduction in vivo. Experiments with [3Fe-4S] ferredoxin from Desulfovibrio gigas demonstrated that the low redox [Fe-S] (non-heme iron) clusters are involved in the mechanism of metal reduction by hydrogenases.

  17. Stepwise [FeFe]-hydrogenase H-cluster assembly revealed in the structure of HydA(DeltaEFG).

    PubMed

    Mulder, David W; Boyd, Eric S; Sarma, Ranjana; Lange, Rachel K; Endrizzi, James A; Broderick, Joan B; Peters, John W

    2010-05-13

    Complex enzymes containing Fe-S clusters are ubiquitous in nature, where they are involved in a number of fundamental processes including carbon dioxide fixation, nitrogen fixation and hydrogen metabolism. Hydrogen metabolism is facilitated by the activity of three evolutionarily and structurally unrelated enzymes: the [NiFe]-hydrogenases, [FeFe]-hydrogenases and [Fe]-hydrogenases (Hmd). The catalytic core of the [FeFe]-hydrogenase (HydA), termed the H-cluster, exists as a [4Fe-4S] subcluster linked by a cysteine thiolate to a modified 2Fe subcluster with unique non-protein ligands. The 2Fe subcluster and non-protein ligands are synthesized by the hydrogenase maturation enzymes HydE, HydF and HydG; however, the mechanism, synthesis and means of insertion of H-cluster components remain unclear. Here we show the structure of HydA(DeltaEFG) (HydA expressed in a genetic background devoid of the active site H-cluster biosynthetic genes hydE, hydF and hydG) revealing the presence of a [4Fe-4S] cluster and an open pocket for the 2Fe subcluster. The structure indicates that H-cluster synthesis occurs in a stepwise manner, first with synthesis and insertion of the [4Fe-4S] subcluster by generalized host-cell machinery and then with synthesis and insertion of the 2Fe subcluster by specialized hydE-, hydF- and hydG-encoded maturation machinery. Insertion of the 2Fe subcluster presumably occurs through a cationically charged channel that collapses following incorporation, as a result of conformational changes in two conserved loop regions. The structure, together with phylogenetic analysis, indicates that HydA emerged within bacteria most likely from a Nar1-like ancestor lacking the 2Fe subcluster, and that this was followed by acquisition in several unicellular eukaryotes.

  18. The NiFe Hydrogenases of the Tetrachloroethene-Respiring Epsilonproteobacterium Sulfurospirillum multivorans: Biochemical Studies and Transcription Analysis

    PubMed Central

    Kruse, Stefan; Goris, Tobias; Wolf, Maria; Wei, Xi; Diekert, Gabriele

    2017-01-01

    The organohalide-respiring Epsilonproteobacterium Sulfurospirillum multivorans is able to grow with hydrogen as electron donor and with tetrachloroethene (PCE) as electron acceptor; PCE is reductively dechlorinated to cis-1,2-dichloroethene. Recently, a genomic survey revealed the presence of four gene clusters encoding NiFe hydrogenases in its genome, one of which is presumably periplasmic and membrane-bound (MBH), whereas the remaining three are cytoplasmic. To explore the role and regulation of the four hydrogenases, quantitative real-time PCR and biochemical studies were performed with S. multivorans cells grown under different growth conditions. The large subunit genes of the MBH and of a cytoplasmic group 4 hydrogenase, which is assumed to be membrane-associated, show high transcript levels under nearly all growth conditions tested, pointing toward a constitutive expression in S. multivorans. The gene transcripts encoding the large subunits of the other two hydrogenases were either not detected at all or only present at very low amounts. The presence of MBH under all growth conditions tested, even with oxygen as electron acceptor under microoxic conditions, indicates that MBH gene transcription is not regulated in contrast to other facultative hydrogen-oxidizing bacteria. The MBH showed quinone-reactivity and a characteristic UV/VIS spectrum implying a cytochrome b as membrane-integral subunit. Cell extracts of S. multivorans were subjected to native polyacrylamide gel electrophoresis (PAGE) and hydrogen oxidizing activity was tested by native staining. Only one band was detected at about 270 kDa in the particulate fraction of the extracts, indicating that there is only one hydrogen-oxidizing enzyme present in S. multivorans. An enrichment of this enzyme and SDS PAGE revealed a subunit composition corresponding to that of the MBH. From these findings we conclude that the MBH is the electron-donating enzyme system in the PCE respiratory chain. The roles for

  19. Characterization of the nickel-iron periplasmic hydrogenase from Desulfovibrio fructosovorans.

    PubMed

    Hatchikian, C E; Traore, A S; Fernandez, V M; Cammack, R

    1990-02-14

    The periplasmic hydrogenase from Desulfovibrio fructosovorans grown on fructose/sulfate medium was purified to homogeneity. It exhibits a molecular mass of 88 kDa and is composed of two different subunits of 60 kDa and 28.5 kDa. The absorption spectrum of the enzyme is characteristic of an iron-sulfur protein and its absorption coefficients at 400 and 280 nm are 50 and 180 mM-1 cm-1, respectively. D. fructosovorans hydrogenase contains 11 +/- 1 iron atoms, 0.9 +/- 0.15 nickel atom and 12 +/- 1 acid-labile sulfur atoms/molecule but does not contain selenium. The amino acid composition of the protein and of its subunits, as well as the N-terminal sequences of the small and large subunits, have been determined. The cysteine residues of the protein are distributed between the large (9 residues) and the small subunits (11 residues). Electron spin resonance (ESR) properties of the enzyme are consistent with the presence of nickel(III), [3Fe-4S] and [4Fe-4S] clusters. The hydrogenase of D. fructosovorans isolated under aerobic conditions required an incubation with hydrogen or other reductants in order to express its full catalytic activity. H2 uptake and H2 evolution activities doubled after a 3-h incubation under reducing conditions. Comparison with the (NiFe) hydrogenase from D. gigas shows great structural similarities between the two proteins. However, there are significant differences between the catalytic properties of the two enzymes which can be related to the respective state of their nickel atom. ESR showed a higher proportion of the Ni-B species (g = 2.33, 2.16, 2.01) which can be related to a more facile conversion to the ready state. The periplasmic location of the enzyme and the presence of hydrogenase activity in other cellular compartments are discussed in relation to the ability of D. fructosovorans to participate actively in interspecies hydrogen transfer.

  20. Structure of an Actinobacterial-Type [NiFe]-Hydrogenase Reveals Insight into O2-Tolerant H2 Oxidation.

    PubMed

    Schäfer, Caspar; Bommer, Martin; Hennig, Sandra E; Jeoung, Jae-Hun; Dobbek, Holger; Lenz, Oliver

    2016-02-02

    A novel group of bacterial [NiFe]-hydrogenases is responsible for high-affinity H2 uptake from the troposphere, and is therefore thought to play an important role in the global H2 cycle. Here we present the first crystal structure at 2.85-Å resolution of such an actinobacterial-type hydrogenase (AH), which was isolated from the dihydrogen oxidizing bacterium, Ralstonia eutropha. The enzyme has a dimeric structure carrying two active [NiFe] sites that are interconnected by six [4Fe4S] clusters over a range of approximately 90 Å. Unlike most other [NiFe]-hydrogenases, the [4Fe4S] cluster proximal to the [NiFe] site is coordinated by three cysteines and one aspartate. Mutagenesis experiments revealed that this aspartate residue is related to the apparent O2 insensitivity of the AH. Our data provide first structural insight into specialized hydrogenases that are supposed to consume atmospheric H2 under challenging conditions, i.e. at high O2 concentration and wide temperature and pH ranges.

  1. Nucleotide sequence of the genetic loci encoding subunits of Bradyrhizobium japonicum uptake hydrogenase.

    PubMed Central

    Sayavedra-Soto, L A; Powell, G K; Evans, H J; Morris, R O

    1988-01-01

    An indispensable part of the hydrogen-recycling system in Bradyrhizobium japonicum is the uptake hydrogenase, which is composed of 34.5- and 65.9-kDa subunits. The gene encoding the large subunit is located on a 5.9-kilobase fragment of the H2-uptake-complementing cosmid pHU52 [Zuber, M., Harker, A.R., Sultana, M.A. & Evans, H.J. (1986) Proc. Natl. Acad. Sci. USA 83, 7668-7672]. We have now determined that the structural genes for both subunits are present on this fragment. Two open reading frames are present that correspond in size and deduced amino acid sequence to the hydrogenase subunits, except that the small-subunit coding region contains a leader peptide of 46 amino acids. The two genes are separated by a 32-nucleotide intergenic region and likely constitute an operon. Comparison of the deduced amino acid sequences of the B. japonicum genes with those from Desulfovibrio gigas, Desulfovibrio baculatus, and Rhodobacter capsulatus indicates significant sequence identity. Images PMID:3054886

  2. Solar powered biohydrogen production requires specific localization of the hydrogenase

    SciTech Connect

    Burroughs, Nigel J.; Boehm, Marko; Eckert, Carrie; Mastroianni, Giulia; Spence, Edward M.; Yu, Jianfeng; Nixon, Peter J.; Appel, Jens; Mullineaux, Conrad W.; Bryan, Samantha J.

    2014-09-04

    Cyanobacteria contain a bidirectional [NiFe] hydrogenase which transiently produces hydrogen upon exposure of anoxic cells to light, potentially acting as a “valve” releasing excess electrons from the electron transport chain. However, its interaction with the photosynthetic electron transport chain remains unclear. By GFP-tagging the HoxF diaphorase subunit we show that the hydrogenase is thylakoid associated, comprising a population dispersed uniformly through the thylakoids and a subpopulation localized to discrete puncta in the distal thylakoid. Thylakoid localisation of both the HoxH and HoxY hydrogenase subunits is confirmed by immunogold electron microscopy. The diaphorase HoxE subunit is essential for recruitment to the dispersed thylakoid population, potentially anchoring the hydrogenase to the membrane, but aggregation to puncta occurs through a distinct HoxE-independent mechanism. Membrane association does not require NDH-1. Localization is dynamic on a scale of minutes, with anoxia and high light inducing a significant redistribution between these populations in favour of puncta. Lastly, since HoxE is essential for access to its electron donor, electron supply to the hydrogenase depends on a physiologically controlled localization, potentially offering a new avenue to enhance photosynthetic hydrogen production by exploiting localization/aggregation signals.

  3. Solar powered biohydrogen production requires specific localization of the hydrogenase

    DOE PAGES

    Burroughs, Nigel J.; Boehm, Marko; Eckert, Carrie; ...

    2014-09-04

    Cyanobacteria contain a bidirectional [NiFe] hydrogenase which transiently produces hydrogen upon exposure of anoxic cells to light, potentially acting as a “valve” releasing excess electrons from the electron transport chain. However, its interaction with the photosynthetic electron transport chain remains unclear. By GFP-tagging the HoxF diaphorase subunit we show that the hydrogenase is thylakoid associated, comprising a population dispersed uniformly through the thylakoids and a subpopulation localized to discrete puncta in the distal thylakoid. Thylakoid localisation of both the HoxH and HoxY hydrogenase subunits is confirmed by immunogold electron microscopy. The diaphorase HoxE subunit is essential for recruitment to themore » dispersed thylakoid population, potentially anchoring the hydrogenase to the membrane, but aggregation to puncta occurs through a distinct HoxE-independent mechanism. Membrane association does not require NDH-1. Localization is dynamic on a scale of minutes, with anoxia and high light inducing a significant redistribution between these populations in favour of puncta. Lastly, since HoxE is essential for access to its electron donor, electron supply to the hydrogenase depends on a physiologically controlled localization, potentially offering a new avenue to enhance photosynthetic hydrogen production by exploiting localization/aggregation signals.« less

  4. [FeFe]-hydrogenase in Yellowstone National Park: evidence for dispersal limitation and phylogenetic niche conservatism.

    PubMed

    Boyd, Eric S; Hamilton, Trinity L; Spear, John R; Lavin, Matthew; Peters, John W

    2010-12-01

    Hydrogen (H₂) has an important role in the anaerobic degradation of organic carbon and is the basis for many syntrophic interactions that commonly occur in microbial communities. Little is known, however, with regard to the biotic and/or abiotic factors that control the distribution and phylogenetic diversity of organisms which produce H₂ in microbial communities. In this study, we examined the [FeFe]-hydrogenase gene (hydA) as a proxy for fermentative bacterial H₂ production along physical and chemical gradients in various geothermal springs in Yellowstone National Park (YNP), WY, USA. The distribution of hydA in YNP geothermal springs was constrained by pH to environments co-inhabited by oxygenic phototrophs and to environments predicted to have low inputs of abiotic H₂. The individual HydA asssemblages from YNP springs were more closely related when compared with randomly assembled communities, which suggests ecological filtering. Model selection approaches revealed that geographic distance was the best explanatory variable to predict the phylogenetic relatedness of HydA communities. This evinces the dispersal limitation imposed by the geothermal spring environment on HydA phylogenetic diversity even at small spatial scales. pH differences between sites is the second highest ranked explanatory variable of HydA phylogenetic relatedness, which suggests that the ecology related to pH imposes strong phylogenetic niche conservatism. Collectively, these results indicate that pH has imposed strong niche conservatism on fermentative bacteria and that, within a narrow pH realm, YNP springs are dispersal limited with respect to fermentative bacterial communities.

  5. Expression of a clostridial [FeFe]-hydrogenase in Chlamydomonas reinhardtii prolongs photo-production of hydrogen from water splitting

    SciTech Connect

    Noone, Seth; Ratcliff, Kathleen; Davis, ReAnna; Subramanian, Venkataramanan; Meuser, Jonathan; Posewitz, Matthew C.; King, Paul W.; Ghirardi, Maria L.

    2016-12-24

    The high oxygen (O2) sensitivity of green algal [FeFe]-hydrogenases is a significant limitation for the sustained production of hydrogen gas (H2) from photosynthetic water splitting. To address this limitation we replaced the native [FeFe]-hydrogenases with a more O2-tolerant clostridial [FeFe]-hydrogenase CaI in Chlamydomonas reinhardtii strain D66ΔHYD (hydA1hydA2) that contains insertionally inactivated [FeFe]-hydrogenases genes. Expression and translocation of CaI in D66ΔHYD led to the recovery of H2 photoproduction at ~ 20% of the rates of the wild-type parent strain D66. We show for the first time that a bacterial [FeFe]-hydrogenase can be expressed, localized and matured to a catalytically active form that couples to photosynthetic electron transport in the green alga C. reinhardtii. The lower rates of O2 inactivation of CaI led to more sustained H2 photoproduction when cultures were challenged with O2 or kept under prolonged illumination at solar intensities. Lastly, these results provide new insights into the requisites for attaining photobiological H2 production from water splitting using a more O2-tolerant hydrogenase.

  6. Oxygen-tolerant hydrogenases in hydrogen-based technologies.

    PubMed

    Friedrich, Bärbel; Fritsch, Johannes; Lenz, Oliver

    2011-06-01

    To develop a viable H2 technology, production of H2 has to be significantly enlarged by using renewable resources. One option of generating H2 is the photosynthetic conversion of sunlight and water directly to H2 and O2. Photosystems and hydrogenases are currently being exploited for the design of efficient H2-producing systems that require highly active and O2-tolerant biocatalysts. This communication focuses on two challenging features: hydrogenases that produce H2 in the presence of O2, and direct electron transfer between photosystem I (PS I) and hydrogenase. The latter is accomplished by connecting both modules through a protein fusion or a synthetic molecular wire. These are first steps toward a photosynthetic microbial cell or a semi-synthetic system that may be employed in future H2-based technologies.

  7. [Computer databases on cancer-related genes].

    PubMed

    Shimizu, N; Minoshima, S

    2000-06-01

    A database of mutations in various cancer-related genes has been constructed and named as KMcancerDB (Keio Mutation DataBase for cancer-related genes). This KMcancerDB utilizes a database software called MutationView which we designed to compile various mutation data and to provide graphical presentation of data analysis through the network using ordinary internet browser softwares such as Netscape. Currently, the KMcancerDB accommodates 1261 mutation data of different genes for cancers in 9 different organs/tissues (breast, stomach, uterus, liver, prostate, colon, ovary, thymus and retinoblastoma). KMcancerDB is accessible through http:¿mutview.dmb.med.keio.ac.jp. OMIM is an important document database for human Mendelian traits and hereditary diseases. The information from OMIM is also used in MutationView/KMcancerDB. Some display windows of OMIM and KMcancerDB are presented.

  8. Metagenomic and PCR-Based Diversity Surveys of [FeFe]-Hydrogenases Combined with Isolation of Alkaliphilic Hydrogen-Producing Bacteria from the Serpentinite-Hosted Prony Hydrothermal Field, New Caledonia

    PubMed Central

    Mei, Nan; Postec, Anne; Monnin, Christophe; Pelletier, Bernard; Payri, Claude E.; Ménez, Bénédicte; Frouin, Eléonore; Ollivier, Bernard; Erauso, Gaël; Quéméneur, Marianne

    2016-01-01

    High amounts of hydrogen are emitted in the serpentinite-hosted hydrothermal field of the Prony Bay (PHF, New Caledonia), where high-pH (~11), low-temperature (< 40°C), and low-salinity fluids are discharged in both intertidal and shallow submarine environments. In this study, we investigated the diversity and distribution of potentially hydrogen-producing bacteria in Prony hyperalkaline springs by using metagenomic analyses and different PCR-amplified DNA sequencing methods. The retrieved sequences of hydA genes, encoding the catalytic subunit of [FeFe]-hydrogenases and, used as a molecular marker of hydrogen-producing bacteria, were mainly related to those of Firmicutes and clustered into two distinct groups depending on sampling locations. Intertidal samples were dominated by new hydA sequences related to uncultured Firmicutes retrieved from paddy soils, while submarine samples were dominated by diverse hydA sequences affiliated with anaerobic and/or thermophilic submarine Firmicutes pertaining to the orders Thermoanaerobacterales or Clostridiales. The novelty and diversity of these [FeFe]-hydrogenases may reflect the unique environmental conditions prevailing in the PHF (i.e., high-pH, low-salt, mesothermic fluids). In addition, novel alkaliphilic hydrogen-producing Firmicutes (Clostridiales and Bacillales) were successfully isolated from both intertidal and submarine PHF chimney samples. Both molecular and cultivation-based data demonstrated the ability of Firmicutes originating from serpentinite-hosted environments to produce hydrogen by fermentation, potentially contributing to the molecular hydrogen balance in situ. PMID:27625634

  9. Gene Transfers Between Distantly Related Organisms

    NASA Technical Reports Server (NTRS)

    Doolittle, Russell F.

    2003-01-01

    With the completion of numerous microbial genome sequences, reports of individual gene transfers between distantly related prokaryotes have become commonplace. On the other hand, transfers between prokaryotes and eukaryotes still excite the imagination. Many of these claims may be premature, but some are certainly valid. In this chapter, the kinds of supporting data needed to propose transfers between distantly related organisms and cite some interesting examples are considered.

  10. Distribution and activity of hydrogenase enzymes in subsurface sediments

    NASA Astrophysics Data System (ADS)

    Adhikari, R.; Nickel, J.; Glombitza, C.; Spivack, A. J.; D'Hondt, S. L.; Kallmeyer, J.

    2013-12-01

    Metabolically active microbial communities are present in a wide range of subsurface environments. Techniques like enumeration of microbial cells, activity measurements with radiotracer assays and the analysis of porewater constituents are currently being used to explore the subsurface biosphere, alongside with molecular biological analyses. However, many of these techniques reach their detection limits due to low microbial activity and abundance. Direct measurements of microbial turnover not just face issues of insufficient sensitivity, they only provide information about a single specific process rather than an overall microbial activity. Since hydrogenase enzymes are intracellular and ubiquitous in subsurface microbial communities, the enzyme activity represents a measure of total activity of the entire microbial community. A hydrogenase activity assay could quantify total metabolic activity without having to identify specific processes. This would be a major advantage in subsurface biosphere studies, where several metabolic processes can occur simultaneously. We quantified hydrogenase enzyme activity and distribution in sediment samples from different aquatic subsurface environments (Lake Van, Barents Sea, Equatorial Pacific and Gulf of Mexico) using a tritium-based assay. We found enzyme activity at all sites and depths. Volumetric hydrogenase activity did not show much variability between sites and sampling depths, whereas cell-specific activity ranged from 10-5 to 1 nmol H2 cell-1 d-1. Activity was lowest in sediment layers where nitrate was detected. Higher activity was associated with samples in which sulfate was the predominant electron acceptor. We found highest activity in samples from environments with >10 ppm methane in the pore water. The results show that cell-specific hydrogenase enzyme activity increases with decreasing energy yield of the electron acceptor used. It is not possible to convert volumetric or cell-specific hydrogenase activity into a

  11. Recombinant antibodies for specific detection of clostridial [Fe-Fe] hydrogenases.

    PubMed

    Mangayil, Rahul; Karp, Matti; Lamminmäki, Urpo; Santala, Ville

    2016-10-27

    Biological hydrogen production is based on activity of specific enzymes called hydrogenases. Hydrogenases are oxygen sensitive metalloenzymes containing Ni and/or Fe atoms at the active site, catalyzing reversible reduction of protons. Generally, [Fe-Fe] hydrogenases prefer proton reduction to molecular hydrogen, a potential energy carrier molecule that can be produced by bioprocesses in sustainable manner. Thus, monitoring tools have been developed to study the relationship between [Fe-Fe] hydrogenases and biohydrogen production in bioreactors at DNA and RNA levels. In the present study, novel molecular tools are introduced for quantitative monitoring of clostridial [Fe-Fe] hydrogenases at the protein level. Aerobic and anaerobic biopanning (for inactive and active [Fe-Fe] hydrogenase, respectively) of phage displayed single-chain variable fragment (scFv) antibody libraries aided in isolating nine potential scFvs. The enriched antibodies demonstrated high specificity towards Clostridium spp. [Fe-Fe] hydrogenases allowing detection from pure and mixed cultures. Additionally, the antibodies showed different binding characteristics towards hydrogenase catalytic states, providing a possible means for functional detection of clostridial [Fe-Fe] hydrogenases. From hydrogenase-antibody interaction studies we observed that though antibody binding reduced the enzyme catalytic activity, it facilitated to retain hydrogen evolution from oxygen exposed hydrogenases.

  12. Recombinant antibodies for specific detection of clostridial [Fe-Fe] hydrogenases

    PubMed Central

    Mangayil, Rahul; Karp, Matti; Lamminmäki, Urpo; Santala, Ville

    2016-01-01

    Biological hydrogen production is based on activity of specific enzymes called hydrogenases. Hydrogenases are oxygen sensitive metalloenzymes containing Ni and/or Fe atoms at the active site, catalyzing reversible reduction of protons. Generally, [Fe-Fe] hydrogenases prefer proton reduction to molecular hydrogen, a potential energy carrier molecule that can be produced by bioprocesses in sustainable manner. Thus, monitoring tools have been developed to study the relationship between [Fe-Fe] hydrogenases and biohydrogen production in bioreactors at DNA and RNA levels. In the present study, novel molecular tools are introduced for quantitative monitoring of clostridial [Fe-Fe] hydrogenases at the protein level. Aerobic and anaerobic biopanning (for inactive and active [Fe-Fe] hydrogenase, respectively) of phage displayed single-chain variable fragment (scFv) antibody libraries aided in isolating nine potential scFvs. The enriched antibodies demonstrated high specificity towards Clostridium spp. [Fe-Fe] hydrogenases allowing detection from pure and mixed cultures. Additionally, the antibodies showed different binding characteristics towards hydrogenase catalytic states, providing a possible means for functional detection of clostridial [Fe-Fe] hydrogenases. From hydrogenase-antibody interaction studies we observed that though antibody binding reduced the enzyme catalytic activity, it facilitated to retain hydrogen evolution from oxygen exposed hydrogenases. PMID:27786270

  13. Rhizobitoxine inhibition of hydrogenase synthesis in free-living Bradyrhizobium japonicum.

    PubMed Central

    Minamisawa, K; Fukai, K; Asami, T

    1990-01-01

    Rhizobitoxine produced by Bradyrhizobium species strongly prevented derepression of hydrogenase expression in free-living Bradyrhizobium japonicum, although the toxin had no effect on the activity of cells which had already synthesized hydrogenase protein. Dihydrorhizobitoxine, a structural analog of rhizobitoxine, proved to be a less potent inhibitor of hydrogenase derepression. Rhizobitoxine did not cause cell death at a concentration sufficient to eliminate hydrogenase expression. The large subunit of hydrogenase was not detectable with antibody after derepression in the presence of rhizobitoxine. The general pattern of proteins synthesized from 14C-labeled amino acids during derepression was not significantly different in the presence or absence of rhizobitoxine. These results indicated that rhizobitoxine inhibited hydrogenase synthesis in free-living B. japonicum. Cystathionine and methionine strongly prevented the inhibition of hydrogenase derepression by rhizobitoxine, suggesting that the inhibition involves the level of sulfur-containing amino acids in the cell. Images PMID:2198262

  14. From enzyme maturation to synthetic chemistry: the case of hydrogenases.

    PubMed

    Artero, Vincent; Berggren, Gustav; Atta, Mohamed; Caserta, Giorgio; Roy, Souvik; Pecqueur, Ludovic; Fontecave, Marc

    2015-08-18

    Water splitting into oxygen and hydrogen is one of the most attractive strategies for storing solar energy and electricity. Because the processes at work are multielectronic, there is a crucial need for efficient and stable catalysts, which in addition have to be cheap for future industrial developments (electrolyzers, photoelectrochemicals, and fuel cells). Specifically for the water/hydrogen interconversion, Nature is an exquisite source of inspiration since this chemistry contributes to the bioenergetic metabolism of a number of living organisms via the activity of fascinating metalloenzymes, the hydrogenases. In this Account, we first briefly describe the structure of the unique dinuclear organometallic active sites of the two classes of hydrogenases as well as the complex protein machineries involved in their biosynthesis, their so-called maturation processes. This knowledge allows for the development of a fruitful bioinspired chemistry approach, which has already led to a number of interesting and original catalysts mimicking the natural active sites. More specifically, we describe our own attempts to prepare artificial hydrogenases. This can be achieved via the standard bioinspired approach using the combination of a synthetic bioinspired catalyst and a polypeptide scaffold. Such hybrid complexes provide the opportunity to optimize the system by manipulating both the catalyst through chemical synthesis and the protein component through mutagenesis. We also raise the possibility to reach such artificial systems via an original strategy based on mimicking the enzyme maturation pathways. This is illustrated in this Account by two examples developed in our laboratory. First, we show how the preparation of a lysozyme-{Mn(I)(CO)3} hybrid and its clean reaction with a nickel complex led us to generate a new class of binuclear Ni-Mn H2-evolving catalysts mimicking the active site of [NiFe]-hydrogenases. Then we describe how we were able to rationally design and

  15. Mediastinal paragangliomas related to SDHx gene mutations

    PubMed Central

    Ćwikła, Jarosław; Prejbisz, Aleksander; Kwiatek, Paweł; Szperl, Małgorzata; Michalski, Wojciech; Wyrwicz, Lucjan; Kuśmierczyk, Mariusz; Januszewicz, Andrzej; Maciejczyk, Anna; Roszczynko, Marta; Pęczkowska, Mariola

    2016-01-01

    Introduction Paragangliomas (PGLs) related to hereditary syndromes are rare mediastinal tumors. Paragangliomas are caused by mutations in genes encoding subunits of succinate dehydrogenase enzyme (SDH). Aim To evaluate clinical, anatomical and functional characteristics of mediastinal paragangliomas related to SDHx gene mutations. Material and methods Retrospective analysis of 75 patients with confirmed SDHx gene mutations (24 patients with SDHB, 5 SDHC, 46 with SDHD mutations) was performed. Patients underwent evaluation using computed tomography (CT), somatostatin receptor scintigraphy (SRS) (99mTc-[HYNIC,Tyr3]-octreotide), 123I mIBG scintigraphy and urinary excretion of total methoxycatecholamines. Results Out of 75 patients, 16 (21%) patients (1 SDHB, 15 SDHD mutations) had 17 PGLs localized in the mediastinum. Fourteen PGLs were localized in the middle mediastinum (intrapericardial) and 3 PGLs in the posterior mediastinum. The median diameter of paragangliomas measured on the axial slice was 24.3 mm (interquartile range (IQR): 14.7–36.6), and the median volume was 2.78 ml (IQR: 0.87–16.16). Twelve out of 16 patients (75%) underwent SRS, and 11 of them (92.3%) had pathological uptake of the radiotracer. Eleven (68.75%) out of 16 patients underwent 123 I mIBG, with only 3 positive results. Symptoms of catecholamine excretion were observed in 3 patients with PGLs localized in the posterior mediastinum. All PGLs were benign except in 1 patient with the SDHB mutation and PGL detected in the posterior mediastinum, who had a metastatic disease. Conclusions Most mediastinal paragangliomas were related to SDHD gene mutations. They were asymptomatic, localized in the medial mediastinum, intrapericardially. PMID:27785149

  16. Genome data mining and soil survey for the novel group 5 [NiFe]-hydrogenase to explore the diversity and ecological importance of presumptive high-affinity H(2)-oxidizing bacteria.

    PubMed

    Constant, Philippe; Chowdhury, Soumitra Paul; Hesse, Laura; Pratscher, Jennifer; Conrad, Ralf

    2011-09-01

    Streptomyces soil isolates exhibiting the unique ability to oxidize atmospheric H(2) possess genes specifying a putative high-affinity [NiFe]-hydrogenase. This study was undertaken to explore the taxonomic diversity and the ecological importance of this novel functional group. We propose to designate the genes encoding the small and large subunits of the putative high-affinity hydrogenase hhyS and hhyL, respectively. Genome data mining revealed that the hhyL gene is unevenly distributed in the phyla Actinobacteria, Proteobacteria, Chloroflexi, and Acidobacteria. The hhyL gene sequences comprised a phylogenetically distinct group, namely, the group 5 [NiFe]-hydrogenase genes. The presumptive high-affinity H(2)-oxidizing bacteria constituting group 5 were shown to possess a hydrogenase gene cluster, including the genes encoding auxiliary and structural components of the enzyme and four additional open reading frames (ORFs) of unknown function. A soil survey confirmed that both high-affinity H(2) oxidation activity and the hhyL gene are ubiquitous. A quantitative PCR assay revealed that soil contained 10(6) to 10(8) hhyL gene copies g (dry weight)(-1). Assuming one hhyL gene copy per genome, the abundance of presumptive high-affinity H(2)-oxidizing bacteria was higher than the maximal population size for which maintenance energy requirements would be fully supplied through the H(2) oxidation activity measured in soil. Our data indicate that the abundance of the hhyL gene should not be taken as a reliable proxy for the uptake of atmospheric H(2) by soil, because high-affinity H(2) oxidation is a facultatively mixotrophic metabolism, and microorganisms harboring a nonfunctional group 5 [NiFe]-hydrogenase may occur.

  17. Photosensitivity of the Ni-A state of [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F with visible light

    SciTech Connect

    Osuka, Hisao; Shomura, Yasuhito; Komori, Hirofumi; Shibata, Naoki; Nagao, Satoshi; Higuchi, Yoshiki; Hirota, Shun

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer Ni-A state of [NiFe] hydrogenase showed light sensitivity. Black-Right-Pointing-Pointer New FT-IR bands were observed with light irradiation of the Ni-A state. Black-Right-Pointing-Pointer EPR g-values of the Ni-A state shifted upon light irradiation. Black-Right-Pointing-Pointer The light-induced state converted back to the Ni-A state under the dark condition. -- Abstract: [NiFe] hydrogenase catalyzes reversible oxidation of molecular hydrogen. Its active site is constructed of a hetero dinuclear Ni-Fe complex, and the oxidation state of the Ni ion changes according to the redox state of the enzyme. We found that the Ni-A state (an inactive unready, oxidized state) of [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F (DvMF) is light sensitive and forms a new state (Ni-AL) with irradiation of visible light. The Fourier transform infrared (FT-IR) bands at 1956, 2084 and 2094 cm{sup -1} of the Ni-A state shifted to 1971, 2086 and 2098 cm{sup -1} in the Ni-AL state. The g-values of g{sub x} = 2.30, g{sub y} = 2.23 and g{sub z} = 2.01 for the signals in the electron paramagnetic resonance (EPR) spectrum of the Ni-A state at room temperature varied for -0.009, +0.012 and +0.010, respectively, upon light irradiation. The light-induced Ni-AL state converted back immediately to the Ni-A state under dark condition at room temperature. These results show that the coordination structure of the Fe site of the Ni-A state of [NiFe] hydrogenase is perturbed significantly by light irradiation with relatively small coordination change at the Ni site.

  18. Photosensitivity of the Ni-A state of [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F with visible light.

    PubMed

    Osuka, Hisao; Shomura, Yasuhito; Komori, Hirofumi; Shibata, Naoki; Nagao, Satoshi; Higuchi, Yoshiki; Hirota, Shun

    2013-01-04

    [NiFe] hydrogenase catalyzes reversible oxidation of molecular hydrogen. Its active site is constructed of a hetero dinuclear Ni-Fe complex, and the oxidation state of the Ni ion changes according to the redox state of the enzyme. We found that the Ni-A state (an inactive unready, oxidized state) of [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F (DvMF) is light sensitive and forms a new state (Ni-AL) with irradiation of visible light. The Fourier transform infrared (FT-IR) bands at 1956, 2084 and 2094 cm(-1) of the Ni-A state shifted to 1971, 2086 and 2098 cm(-1) in the Ni-AL state. The g-values of g(x)=2.30, g(y)=2.23 and g(z)=2.01 for the signals in the electron paramagnetic resonance (EPR) spectrum of the Ni-A state at room temperature varied for -0.009, +0.012 and +0.010, respectively, upon light irradiation. The light-induced Ni-AL state converted back immediately to the Ni-A state under dark condition at room temperature. These results show that the coordination structure of the Fe site of the Ni-A state of [NiFe] hydrogenase is perturbed significantly by light irradiation with relatively small coordination change at the Ni site.

  19. Structure and function of photosystem I–[FeFe] hydrogenase protein fusions: An all-atom molecular dynamics study

    DOE PAGES

    Harris, Bradley J.; Cheng, Xiaolin; Frymier, Paul

    2015-12-15

    All-atom molecular dynamics (MD) simulation was used to study the solution dynamics and protein protein interactions of protein fusions of photosystem I (PSI) from Thermosynechococcus elongatus and an [FeFe]-hydrogenase (FeFe H2ase) from Clostridium pasteurianum, a unique complex capable of photocatalytic hydrogen production. This study involved fusions of these two proteins via dithiol linkers of different length including decanedithiol, octanedithiol, and hexanedithiol, for which experimental data had previously been obtained. Evaluation of root-mean-squared deviations (RMSDs) relative to the respective crystal structures of PSI and the FeFe H2ase shows that these fusion complexes approach stable equilibrium conformations during the MD simulations. Investigatingmore » protein mobility via root-mean-squared fluctuations (RMSFs) reveals that tethering via the shortest hexanedithiol linker results in increased atomic fluctuations of both PSI and the hydrogenase in these fusion complexes. Furthermore, evaluation of the inter- and intraprotein electron transfer distances in these fusion complexes indicates that the structural changes in the FeFe H2ase arising from ligation to PSI via the shortest hexanedithiol linker may hinder electron transport in the hydrogenase, thus providing a molecular level explanation for the observation that the medium-length octanedithiol linker gives the highest hydrogen production rate.« less

  20. Structure and function of photosystem I–[FeFe] hydrogenase protein fusions: An all-atom molecular dynamics study

    SciTech Connect

    Harris, Bradley J.; Cheng, Xiaolin; Frymier, Paul

    2015-12-15

    All-atom molecular dynamics (MD) simulation was used to study the solution dynamics and protein protein interactions of protein fusions of photosystem I (PSI) from Thermosynechococcus elongatus and an [FeFe]-hydrogenase (FeFe H2ase) from Clostridium pasteurianum, a unique complex capable of photocatalytic hydrogen production. This study involved fusions of these two proteins via dithiol linkers of different length including decanedithiol, octanedithiol, and hexanedithiol, for which experimental data had previously been obtained. Evaluation of root-mean-squared deviations (RMSDs) relative to the respective crystal structures of PSI and the FeFe H2ase shows that these fusion complexes approach stable equilibrium conformations during the MD simulations. Investigating protein mobility via root-mean-squared fluctuations (RMSFs) reveals that tethering via the shortest hexanedithiol linker results in increased atomic fluctuations of both PSI and the hydrogenase in these fusion complexes. Furthermore, evaluation of the inter- and intraprotein electron transfer distances in these fusion complexes indicates that the structural changes in the FeFe H2ase arising from ligation to PSI via the shortest hexanedithiol linker may hinder electron transport in the hydrogenase, thus providing a molecular level explanation for the observation that the medium-length octanedithiol linker gives the highest hydrogen production rate.

  1. Discovery of External Modulators of the Fe-Fe Hydrogenase Enzyme in Clostridium acetobutylicum

    DTIC Science & Technology

    2015-02-01

    ARL-TR-7189 ● FEB 2015 US Army Research Laboratory Discovery of External Modulators of the Fe-Fe Hydrogenase...ARL-TR-7189 ● FEB 2015 US Army Research Laboratory Discovery of External Modulators of the Fe-Fe Hydrogenase Enzyme in Clostridium...October 2014 4. TITLE AND SUBTITLE Discovery of External Modulators of the Fe-Fe Hydrogenase Enzyme in Clostridium acetobutylicum 5a. CONTRACT

  2. Oxygen-resistant hydrogenases and methods for designing and making same

    DOEpatents

    King, Paul; Ghirardi, Maria L; Seibert, Michael

    2009-03-10

    The invention provides oxygen- resistant iron-hydrogenases ([Fe]-hydrogenases) for use in the production of H2. Methods used in the design and engineering of the oxygen-resistant [Fe]-hydrogenases are disclosed, as are the methods of transforming and culturing appropriate host cells with the oxygen-resistant [Fe]-hydrogenases. Finally, the invention provides methods for utilizing the transformed, oxygen insensitive, host cells in the bulk production of H.sub.2 in a light catalyzed reaction having water as the reactant.

  3. Oxygen-resistant hydrogenases and methods for designing and making same

    DOEpatents

    King, Paul; Ghirardi, Maria Lucia; Seibert, Michael

    2014-03-04

    The invention provides oxygen-resistant iron-hydrogenases ([Fe]-hydrogenases) for use in the production of H.sub.2. Methods used in the design and engineering of the oxygen-resistant [Fe]-hydrogenases are disclosed, as are the methods of transforming and culturing appropriate host cells with the oxygen-resistant [Fe]-hydrogenases. Finally, the invention provides methods for utilizing the transformed, oxygen insensitive, host cells in the bulk production of H.sub.2 in a light catalyzed reaction having water as the reactant.

  4. Spontaneous activation of [FeFe]-hydrogenases by an inorganic [2Fe] active site mimic

    PubMed Central

    Esselborn, Julian; Berggren, Gustav; Noth, Jens; Siebel, Judith; Hemschemeier, Anja; Artero, Vincent; Reijerse, Edward; Fontecave, Marc; Lubitz, Wolfgang; Happe, Thomas

    2013-01-01

    Hydrogenases catalyze the formation of hydrogen. The cofactor (H-cluster) of [FeFe]-hydrogenases consists of a [4Fe-4S]-cluster bridged to a unique [2Fe]-subcluster whose biosynthesis in vivo requires hydrogenase-specific maturases. Here we show that a chemical mimic of the [2Fe]-subcluster can reconstitute apo-hydrogenase to full activity, independent of helper proteins. The assembled H-cluster is virtually indistinguishable from the native cofactor. This procedure will be a powerful tool for developing novel artificial H2-producing catalysts. PMID:23934246

  5. Krypton Derivatization of an O2 -Tolerant Membrane-Bound [NiFe] Hydrogenase Reveals a Hydrophobic Tunnel Network for Gas Transport.

    PubMed

    Kalms, Jacqueline; Schmidt, Andrea; Frielingsdorf, Stefan; van der Linden, Peter; von Stetten, David; Lenz, Oliver; Carpentier, Philippe; Scheerer, Patrick

    2016-04-25

    [NiFe] hydrogenases are metalloenzymes catalyzing the reversible heterolytic cleavage of hydrogen into protons and electrons. Gas tunnels make the deeply buried active site accessible to substrates and inhibitors. Understanding the architecture and function of the tunnels is pivotal to modulating the feature of O2 tolerance in a subgroup of these [NiFe] hydrogenases, as they are interesting for developments in renewable energy technologies. Here we describe the crystal structure of the O2 -tolerant membrane-bound [NiFe] hydrogenase of Ralstonia eutropha (ReMBH), using krypton-pressurized crystals. The positions of the krypton atoms allow a comprehensive description of the tunnel network within the enzyme. A detailed overview of tunnel sizes, lengths, and routes is presented from tunnel calculations. A comparison of the ReMBH tunnel characteristics with crystal structures of other O2 -tolerant and O2 -sensitive [NiFe] hydrogenases revealed considerable differences in tunnel size and quantity between the two groups, which might be related to the striking feature of O2 tolerance.

  6. Artificial hydrogenase: biomimetic approaches controlling active molecular catalysts.

    PubMed

    Onoda, Akira; Hayashi, Takashi

    2015-04-01

    Hydrogenase catalyses reversible transformation of H2 to H(+) using an active site which includes an iron or nickel atom. Synthetic model complexes and molecular catalysts inspired by nature have unveiled the structural and functional basis of the active site with remarkable accuracy and this has led to the discovery of active synthetic catalysts. To further improve the activity of such molecular catalysts, both the first and outer coordination spheres should be well-organized and harmonized for an efficient shuttling of H(+), electrons, and H2. This article reviews recent advances in the design and catalytic properties of artificial enzymes that mimic the hydrogenase active site and the outer coordination sphere in combination with a peptide or protein scaffold.

  7. Production and Application of a Soluble Hydrogenase from Pyrococcus furiosus

    PubMed Central

    Wu, Chang-Hao; McTernan, Patrick M.; Walter, Mary E.; Adams, Michael W. W.

    2015-01-01

    Hydrogen gas is a potential renewable alternative energy carrier that could be used in the future to help supplement humanity's growing energy needs. Unfortunately, current industrial methods for hydrogen production are expensive or environmentally unfriendly. In recent years research has focused on biological mechanisms for hydrogen production and specifically on hydrogenases, the enzyme responsible for catalyzing the reduction of protons to generate hydrogen. In particular, a better understanding of this enzyme might allow us to generate hydrogen that does not use expensive metals, such as platinum, as catalysts. The soluble hydrogenase I (SHI) from the hyperthermophile Pyrococcus furiosus, a member of the euryarchaeota, has been studied extensively and used in various biotechnological applications. This review summarizes the strategies used in engineering and characterizing three different forms of SHI and the properties of the recombinant enzymes. SHI has also been used in in vitro systems for hydrogen production and NADPH generation and these systems are also discussed. PMID:26543406

  8. Overproduction of the membrane-bound [NiFe]-hydrogenase in Thermococcus kodakarensis and its effect on hydrogen production.

    PubMed

    Kanai, Tamotsu; Simons, Jan-Robert; Tsukamoto, Ryohei; Nakajima, Akihito; Omori, Yoshiyuki; Matsuoka, Ryoji; Beppu, Haruki; Imanaka, Tadayuki; Atomi, Haruyuki

    2015-01-01

    The hyperthermophilic archaeon Thermococcus kodakarensis can utilize sugars or pyruvate for growth. In the absence of elemental sulfur, the electrons via oxidation of these substrates are accepted by protons, generating molecular hydrogen (H2). The hydrogenase responsible for this reaction is a membrane-bound [NiFe]-hydrogenase (Mbh). In this study, we have examined several possibilities to increase the protein levels of Mbh in T. kodakarensis by genetic engineering. Highest levels of intracellular Mbh levels were achieved when the promoter of the entire mbh operon (TK2080-TK2093) was exchanged to a strong constitutive promoter from the glutamate dehydrogenase gene (TK1431) (strain MHG1). When MHG1 was cultivated under continuous culture conditions using pyruvate-based medium, a nearly 25% higher specific hydrogen production rate (SHPR) of 35.3 mmol H2 g-dcw(-1) h(-1) was observed at a dilution rate of 0.31 h(-1). We also combined mbh overexpression using an even stronger constitutive promoter from the cell surface glycoprotein gene (TK0895) with disruption of the genes encoding the cytosolic hydrogenase (Hyh) and an alanine aminotransferase (AlaAT), both of which are involved in hydrogen consumption (strain MAH1). At a dilution rate of 0.30 h(-1), the SHPR was 36.2 mmol H2 g-dcw(-1) h(-1), corresponding to a 28% increase compared to that of the host T. kodakarensis strain. Increasing the dilution rate to 0.83 h(-1) or 1.07 h(-1) resulted in a SHPR of 120 mmol H2 g-dcw(-1) h(-1), which is one of the highest production rates observed in microbial fermentation.

  9. Overproduction of the membrane-bound [NiFe]-hydrogenase in Thermococcus kodakarensis and its effect on hydrogen production

    PubMed Central

    Kanai, Tamotsu; Simons, Jan-Robert; Tsukamoto, Ryohei; Nakajima, Akihito; Omori, Yoshiyuki; Matsuoka, Ryoji; Beppu, Haruki; Imanaka, Tadayuki; Atomi, Haruyuki

    2015-01-01

    The hyperthermophilic archaeon Thermococcus kodakarensis can utilize sugars or pyruvate for growth. In the absence of elemental sulfur, the electrons via oxidation of these substrates are accepted by protons, generating molecular hydrogen (H2). The hydrogenase responsible for this reaction is a membrane-bound [NiFe]-hydrogenase (Mbh). In this study, we have examined several possibilities to increase the protein levels of Mbh in T. kodakarensis by genetic engineering. Highest levels of intracellular Mbh levels were achieved when the promoter of the entire mbh operon (TK2080-TK2093) was exchanged to a strong constitutive promoter from the glutamate dehydrogenase gene (TK1431) (strain MHG1). When MHG1 was cultivated under continuous culture conditions using pyruvate-based medium, a nearly 25% higher specific hydrogen production rate (SHPR) of 35.3 mmol H2 g-dcw−1 h−1 was observed at a dilution rate of 0.31 h−1. We also combined mbh overexpression using an even stronger constitutive promoter from the cell surface glycoprotein gene (TK0895) with disruption of the genes encoding the cytosolic hydrogenase (Hyh) and an alanine aminotransferase (AlaAT), both of which are involved in hydrogen consumption (strain MAH1). At a dilution rate of 0.30 h−1, the SHPR was 36.2 mmol H2 g-dcw−1 h−1, corresponding to a 28% increase compared to that of the host T. kodakarensis strain. Increasing the dilution rate to 0.83 h−1 or 1.07 h−1 resulted in a SHPR of 120 mmol H2 g-dcw−1 h−1, which is one of the highest production rates observed in microbial fermentation. PMID:26379632

  10. De novo design of functional proteins: Toward artificial hydrogenases.

    PubMed

    Faiella, Marina; Roy, Anindya; Sommer, Dayn; Ghirlanda, Giovanna

    2013-11-01

    Over the last 25 years, de novo design has proven to be a valid approach to generate novel, well-folded proteins, and most recently, functional proteins. In response to societal needs, this approach is been used increasingly to design functional proteins developed with an eye toward sustainable fuel production. This review surveys recent examples of bioinspired de novo designed peptide based catalysts, focusing in particular on artificial hydrogenases.

  11. Reduction of the amount of periplasmic hydrogenase in Desulfovibrio vulgaris (Hildenborough) with antisense RNA: direct evidence for an important role of this hydrogenase in lactate metabolism.

    PubMed Central

    van den Berg, W A; van Dongen, W M; Veeger, C

    1991-01-01

    To establish the function of the periplasmic Fe-only hydrogenase in the anaerobic sulfate reducer Desulfovibrio vulgaris (Hildenborough), derivatives with a reduced content of this enzyme were constructed by introduction of a plasmid that directs the synthesis of antisense RNA complementary to hydrogenase mRNA. It was demonstrated that the antisense RNA technique allowed specific suppression of the synthesis of this hydrogenase in D. vulgaris by decreasing the amount of hydrogenase mRNA but did not result in the complete elimination of the enzyme, as is usual with most conventional mutagenesis techniques. The hydrogenase content in these antisense RNA-producing D. vulgaris clones was two- to threefold lower than in the parental strain when the strains were grown in batch cultures with lactate as a substrate and sulfate as a terminal electron acceptor. Under these conditions, several differences in growth parameters were measured between the hydrogenase-suppressed clones and wild-type D. vulgaris: growth rates of the clones decreased two- to threefold, and at excess lactate, growth yields were reduced by 20%. Furthermore, the amount of hydrogen measured in the culture headspaces was reduced three- to fivefold for the clones. These observations indicate that this hydrogenase has an important function during growth on lactate and is involved in hydrogen production from protons and electrons originating from at least one of the two oxidation reactions in the conversion of lactate to acetate. The implications for the energy metabolism of D. vulgaris are discussed. Images PMID:1711025

  12. Molecular evolution of gas cavity in [NiFeSe] hydrogenases resurrected in silico

    PubMed Central

    Tamura, Takashi; Tsunekawa, Naoki; Nemoto, Michiko; Inagaki, Kenji; Hirano, Toshiyuki; Sato, Fumitoshi

    2016-01-01

    Oxygen tolerance of selenium-containing [NiFeSe] hydrogenases (Hases) is attributable to the high reducing power of the selenocysteine residue, which sustains the bimetallic Ni–Fe catalytic center in the large subunit. Genes encoding [NiFeSe] Hases are inherited by few sulphate-reducing δ-proteobacteria globally distributed under various anoxic conditions. Ancestral sequences of [NiFeSe] Hases were elucidated and their three-dimensional structures were recreated in silico using homology modelling and molecular dynamic simulation, which suggested that deep gas channels gradually developed in [NiFeSe] Hases under absolute anaerobic conditions, whereas the enzyme remained as a sealed edifice under environmental conditions of a higher oxygen exposure risk. The development of a gas cavity appears to be driven by non-synonymous mutations, which cause subtle conformational changes locally and distantly, even including highly conserved sequence regions. PMID:26818780

  13. Wiring of Photosystem II to Hydrogenase for Photoelectrochemical Water Splitting.

    PubMed

    Mersch, Dirk; Lee, Chong-Yong; Zhang, Jenny Zhenqi; Brinkert, Katharina; Fontecilla-Camps, Juan C; Rutherford, A William; Reisner, Erwin

    2015-07-08

    In natural photosynthesis, light is used for the production of chemical energy carriers to fuel biological activity. The re-engineering of natural photosynthetic pathways can provide inspiration for sustainable fuel production and insights for understanding the process itself. Here, we employ a semiartificial approach to study photobiological water splitting via a pathway unavailable to nature: the direct coupling of the water oxidation enzyme, photosystem II, to the H2 evolving enzyme, hydrogenase. Essential to this approach is the integration of the isolated enzymes into the artificial circuit of a photoelectrochemical cell. We therefore developed a tailor-made hierarchically structured indium-tin oxide electrode that gives rise to the excellent integration of both photosystem II and hydrogenase for performing the anodic and cathodic half-reactions, respectively. When connected together with the aid of an applied bias, the semiartificial cell demonstrated quantitative electron flow from photosystem II to the hydrogenase with the production of H2 and O2 being in the expected two-to-one ratio and a light-to-hydrogen conversion efficiency of 5.4% under low-intensity red-light irradiation. We thereby demonstrate efficient light-driven water splitting using a pathway inaccessible to biology and report on a widely applicable in vitro platform for the controlled coupling of enzymatic redox processes to meaningfully study photocatalytic reactions.

  14. EPR Spectroscopic Studies of [FeFe]-Hydrogenase Maturation.

    PubMed

    Suess, Daniel L M; Britt, R David

    2015-09-01

    Proton reduction and H2 oxidation are key elementary reactions for solar fuel production. Hydrogenases interconvert H(+) and H2 with remarkable efficiency and have therefore received much attention in this context. For [FeFe]-hydrogenases, catalysis occurs at a unique cofactor called the H-cluster. In this article, we discuss ways in which EPR spectroscopy has elucidated aspects of the bioassembly of the H-cluster, with a focus on four case studies: EPR spectroscopic identification of a radical en route to the CO and CN(-) ligands of the H-cluster, tracing (57)Fe from the maturase HydG into the H-cluster, characterization of the auxiliary Fe-S cluster in HydG, and isotopic labeling of the CN(-) ligands of HydA for electronic structure studies of its Hox state. Advances in cell-free maturation protocols have enabled several of these mechanistic studies, and understanding H-cluster maturation may in turn provide insights leading to improvements in hydrogenase production for biotechnological applications.

  15. Structural Characterization of the Novel and Thermal Stable Hydrogenases from the Purple Sulfur Bacteria Thiocapsa Roseopersicina and Lamprobacter Modestohalophilus

    DTIC Science & Technology

    2011-08-01

    fall into three main classes: [NiFe]-, [ FeFe ] and [Fe]- hydrogenases. [NiFe] – hydrogenases are represented in details as the most numerous class...of the effects of coupling model light harvesting complexes to both [NiFe]- and [ FeFe ]-hydrogenases that are the targets of our studies and in...Technical Report Page 20 / 20 characterization are the 1) [ FeFe ]-hydrogenase from Chlamydomonous reinhardtii and 2) the structural characterization of

  16. Clustering of genes necessary for hydrogen oxidation in Rhodobacter capsulatus.

    PubMed Central

    Xu, H W; Wall, J D

    1991-01-01

    Three cosmids previously shown to contain information necessary for the expression of uptake of hydrogenase in Rhodobacter capsulatus were found to be present in a cluster on the chromosome. Earlier genetic experiments suggested the presence of at least six genes essential for hydrogenase activity that are now shown to be in a region of approximately 18 kb that includes the structural genes for the enzyme. A potential response regulator gene was sequenced as a part of the hup gene region. PMID:2007559

  17. Cloning and sequencing of a putative Escherichia coli [NiFe] hydrogenase-1 operon containing six open reading frames.

    PubMed Central

    Menon, N K; Robbins, J; Peck, H D; Chatelus, C Y; Choi, E S; Przybyla, A E

    1990-01-01

    DNA encompassing the structural genes of an Escherichia coli [NiFe] hydrogenase has been cloned and sequenced. The genes were identified as those encoding the large and small subunits of hydrogenase isozyme 1 based on NH2-terminal sequences of purified subunits (kindly provided by K. Francis and K. T. Shanmugam). The structural genes formed part of a putative operon that contained four additional open reading frames. We have designated the operon hya and the six open reading frames hyaA through F. hyaA and hyaB encode the small and large structural subunits, respectively. The nucleotide-derived amino acid sequence of hyaC has a calculated molecular mass of 27.6 kilodaltons, contains 20% aromatic residues, and has four potential membrane-spanning regions. Open reading frames hyaD through F could encode polypeptides of 21.5, 14.9, and 31.5 kilodaltons, respectively. These putative peptides have no homology to other reported protein sequences, and their functions are unknown. Images FIG. 2 FIG. 3 PMID:2180913

  18. Enhanced Hydrogen Production by Co-cultures of Hydrogenase and Nitrogenase in Escherichia coli.

    PubMed

    Lee, Hyun Jeong; Sekhon, Simranjeet Singh; Kim, Young Su; Park, Ju-Yong; Kim, Yang-Hoon; Min, Jiho

    2016-03-01

    Rhodobacter sphaeroides is a bacterium that can produce hydrogen by interaction with hydrogenase and nitrogenase. We report a hydrogen production system using co-cultivation of hydrogenase in liquid medium and immobilized nitrogenase in Escherichia coli. The recombinant plasmid has been constructed to analyze the effect of hydrogen production on the expression of hupSL hydrogenase and nifHDK nitrogenase isolated from R. sphaeroides. All recombinant E. coli strains were cultured anaerobically, and cells for nitrogenase were immobilized in agar gel, whereas cells for hydrogenase were supplemented on the nitrogenase agar gel. The hupSL hydrogenase has been observed to enhance hydrogen production and hydrogenase activity under co-culture with nifHDK nitrogenase. The maximum hydrogen production has been obtained at an agar gel concentration and a cell concentration for co-culture of 2 % and 6.4 × 10(8) CFU. Thus, co-culture of hupSL hydrogenase and nifHDK nitrogenase provides a promising route for enhancing the hydrogen production and hydrogenase activity.

  19. Single crystal EPR study of the Ni center of NiFe hydrogenase

    NASA Astrophysics Data System (ADS)

    Geßner, Ch.; Trofanchuk, O.; Kawagoe, K.; Higuchi, Y.; Yasuoka, N.; Lubitz, W.

    1996-07-01

    EPR spectra of single crystals of NiFe hydrogenase from Desulfovibrio vulgaris Miyazaki F were evaluated and yielded the g-tensors of the Ni center for two different states of enzyme. The g-values associated with these states are identical to those measured in frozen solutions for the ready (NiB) and the unready (NiA) form of the Ni center. Directions of the g-tensor axes were determined relative to the crystal symmetry axes. The obtained changes of g-values and tensor axes orientations between NiA and NiB can be explained by a structural difference involving modification of a cysteine sulfur ligand.

  20. In vitro hydrogen production by glucose dehydrogenase and hydrogenase

    SciTech Connect

    Woodward, J.

    1996-10-01

    A new in vitro enzymatic pathway for the generation of molecular hydrogen from glucose has been demonstrated. The reaction is based upon the oxidation of glucose by Thermoplasma acidophilum glucose dehydrogenase with the concomitant oxidation of NADPH by Pyrococcus furiosus hydrogenase. Stoichiometric yields of hydrogen were produced from glucose with continuous cofactor recycle. This simple system may provide a method for the biological production of hydrogen from renewable sources. In addition, the other product of this reaction, gluconic acid, is a high-value commodity chemical.

  1. Identification of cancer-related genes and motifs in the human gene regulatory network.

    PubMed

    Carson, Matthew B; Gu, Jianlei; Yu, Guangjun; Lu, Hui

    2015-08-01

    The authors investigated the regulatory network motifs and corresponding motif positions of cancer-related genes. First, they mapped disease-related genes to a transcription factor regulatory network. Next, they calculated statistically significant motifs and subsequently identified positions within these motifs that were enriched in cancer-related genes. Potential mechanisms of these motifs and positions are discussed. These results could be used to identify other disease- and cancer-related genes and could also suggest mechanisms for how these genes relate to co-occurring diseases.

  2. Intracellular Location and O2 Sensitivity of Uptake Hydrogenase in Azospirillum spp

    PubMed Central

    Fu, Changlin; Knowles, Roger

    1989-01-01

    Uptake hydrogenase activity of Azospirillum brasilense in vitro (cell-free extract) was very much more sensitive to O2 than was that of A. amazonense, and the O2 pressure optima for uptake hydrogenase activities were 0.01 and 0.4 to 3 kPa for A. brasilense and A. amazonense, respectively. The addition of superoxide dismutase did not increase uptake hydrogenase activity of A. brasilense either in vivo or in vitro. The O2 uptake rates of A. brasilense and A. amazonense were nearly the same. Inhibition of A. brasilense O2-dependent uptake hydrogenase activity by O2 was highly reversible under the conditions tested. O2 also markedly inhibited in vitro methylene blue-dependent uptake hydrogenase activity of A. brasilense, and this inhibition was highly reversible. It is concluded that the difference in O2 tolerance of the uptake hydrogenases is not due to a difference in respiratory protection in the two species and may be due to inherent differences in the two enzymes. For the three species, A. brasilense, A. amazonense, and A. lipoferum, almost all the recovered methylene blue-dependent uptake hydrogenase activity was associated with the membrane fraction. PMID:16348011

  3. The direct role of selenocysteine in [NiFeSe] hydrogenase maturation and catalysis.

    PubMed

    Marques, Marta C; Tapia, Cristina; Gutiérrez-Sanz, Oscar; Ramos, Ana Raquel; Keller, Kimberly L; Wall, Judy D; De Lacey, Antonio L; Matias, Pedro M; Pereira, Inês A C

    2017-03-20

    Hydrogenases are highly active enzymes for hydrogen production and oxidation. [NiFeSe] hydrogenases, in which selenocysteine is a ligand to the active site Ni, have high catalytic activity and a bias for H2 production. In contrast to [NiFe] hydrogenases, they display reduced H2 inhibition and are rapidly reactivated after contact with oxygen. Here we report an expression system for production of recombinant [NiFeSe] hydrogenase from Desulfovibrio vulgaris Hildenborough and study of a selenocysteine-to-cysteine variant (Sec489Cys) in which, for the first time, a [NiFeSe] hydrogenase was converted to a [NiFe] type. This modification led to severely reduced Ni incorporation, revealing the direct involvement of this residue in the maturation process. The Ni-depleted protein could be partly reconstituted to generate an enzyme showing much lower activity and inactive states characteristic of [NiFe] hydrogenases. The Ni-Sec489Cys variant shows that selenium has a crucial role in protection against oxidative damage and the high catalytic activities of the [NiFeSe] hydrogenases.

  4. HydDB: A web tool for hydrogenase classification and analysis

    PubMed Central

    Søndergaard, Dan; Pedersen, Christian N. S.; Greening, Chris

    2016-01-01

    H2 metabolism is proposed to be the most ancient and diverse mechanism of energy-conservation. The metalloenzymes mediating this metabolism, hydrogenases, are encoded by over 60 microbial phyla and are present in all major ecosystems. We developed a classification system and web tool, HydDB, for the structural and functional analysis of these enzymes. We show that hydrogenase function can be predicted by primary sequence alone using an expanded classification scheme (comprising 29 [NiFe], 8 [FeFe], and 1 [Fe] hydrogenase classes) that defines 11 new classes with distinct biological functions. Using this scheme, we built a web tool that rapidly and reliably classifies hydrogenase primary sequences using a combination of k-nearest neighbors’ algorithms and CDD referencing. Demonstrating its capacity, the tool reliably predicted hydrogenase content and function in 12 newly-sequenced bacteria, archaea, and eukaryotes. HydDB provides the capacity to browse the amino acid sequences of 3248 annotated hydrogenase catalytic subunits and also contains a detailed repository of physiological, biochemical, and structural information about the 38 hydrogenase classes defined here. The database and classifier are freely and publicly available at http://services.birc.au.dk/hyddb/ PMID:27670643

  5. Production and Application of a Soluble Hydrogenase from Pyrococcus furiosus

    DOE PAGES

    Wu, Chang-Hao; McTernan, Patrick M.; Walter, Mary E.; ...

    2015-01-01

    Hydrogen gas is a potential renewable alternative energy carrier that could be used in the future to help supplement humanity’s growing energy needs. Unfortunately, current industrial methods for hydrogen production are expensive or environmentally unfriendly. In recent years research has focused on biological mechanisms for hydrogen production and specifically on hydrogenases, the enzyme responsible for catalyzing the reduction of protons to generate hydrogen. In particular, a better understanding of this enzyme might allow us to generate hydrogen that does not use expensive metals, such as platinum, as catalysts. The soluble hydrogenase I (SHI) from the hyperthermophile Pyrococcus furiosus ,more » a member of the euryarchaeota, has been studied extensively and used in various biotechnological applications. This review summarizes the strategies used in engineering and characterizing three different forms of SHI and the properties of the recombinant enzymes. SHI has also been used in in vitro systems for hydrogen production and NADPH generation and these systems are also discussed.« less

  6. Fractionation of sulfur isotopes by Desulfovibrio vulgaris mutants lacking hydrogenases or type I tetraheme cytochrome c 3.

    PubMed

    Sim, Min Sub; Wang, David T; Zane, Grant M; Wall, Judy D; Bosak, Tanja; Ono, Shuhei

    2013-01-01

    The sulfur isotope effect produced by sulfate reducing microbes is commonly used to trace biogeochemical cycles of sulfur and carbon in aquatic and sedimentary environments. To test the contribution of intracellular coupling between carbon and sulfur metabolisms to the overall magnitude of the sulfur isotope effect, this study compared sulfur isotope fractionations by mutants of Desulfovibrio vulgaris Hildenborough. We tested mutant strains lacking one or two periplasmic (Hyd, Hyn-1, Hyn-2, and Hys) or cytoplasmic hydrogenases (Ech and CooL), and a mutant lacking type I tetraheme cytochrome (TpI-c 3). In batch culture, wild-type D. vulgaris and its hydrogenase mutants had comparable growth kinetics and produced the same sulfur isotope effects. This is consistent with the reported redundancy of hydrogenases in D. vulgaris. However, the TpI-c 3 mutant (ΔcycA) exhibited slower growth and sulfate reduction rates in batch culture, and produced more H2 and an approximately 50% larger sulfur isotope effect, compared to the wild type. The magnitude of sulfur isotope fractionation in the CycA deletion strain, thus, increased due to the disrupted coupling of the carbon oxidation and sulfate reduction pathways. In continuous culture, wild-type D. vulgaris and the CycA mutant produced similar sulfur isotope effects, underscoring the influence of environmental conditions on the relative contribution of hydrogen cycling to the electron transport. The large sulfur isotope effects associated with the non-ideal stoichiometry of sulfate reduction in this study imply that simultaneous fermentation and sulfate reduction may be responsible for some of the large naturally-occurring sulfur isotope effects. Overall, mutant strains provide a powerful tool to test the effect of specific redox proteins and pathways on sulfur isotope fractionation.

  7. Construction and use of a Cupriavidus necator H16 soluble hydrogenase promoter (PSH) fusion to gfp (green fluorescent protein)

    PubMed Central

    Jugder, Bat-Erdene; Welch, Jeffrey; Braidy, Nady

    2016-01-01

    Hydrogenases are metalloenzymes that reversibly catalyse the oxidation or production of molecular hydrogen (H2). Amongst a number of promising candidates for application in the oxidation of H2 is a soluble [Ni–Fe] uptake hydrogenase (SH) produced by Cupriavidus necator H16. In the present study, molecular characterisation of the SH operon, responsible for functional SH synthesis, was investigated by developing a green fluorescent protein (GFP) reporter system to characterise PSH promoter activity using several gene cloning approaches. A PSH promoter-gfp fusion was successfully constructed and inducible GFP expression driven by the PSH promoter under de-repressing conditions in heterotrophic growth media was demonstrated in the recombinant C. necator H16 cells. Here we report the first successful fluorescent reporter system to study PSH promoter activity in C. necator H16. The fusion construct allowed for the design of a simple screening assay to evaluate PSH activity. Furthermore, the constructed reporter system can serve as a model to develop a rapid fluorescent based reporter for subsequent small-scale process optimisation experiments for SH expression. PMID:27547572

  8. Fruit growth-related genes in tomato.

    PubMed

    Azzi, Lamia; Deluche, Cynthia; Gévaudant, Frédéric; Frangne, Nathalie; Delmas, Frédéric; Hernould, Michel; Chevalier, Christian

    2015-02-01

    Tomato (Solanum lycopersicum Mill.) represents a model species for all fleshy fruits due to its biological cycle and the availability of numerous genetic and molecular resources. Its importance in human nutrition has made it one of the most valuable worldwide commodities. Tomato fruit size results from the combination of cell number and cell size, which are determined by both cell division and expansion. As fruit growth is mainly driven by cell expansion, cells from the (fleshy) pericarp tissue become highly polyploid according to the endoreduplication process, reaching a DNA content rarely encountered in other plant species (between 2C and 512C). Both cell division and cell expansion are under the control of complex interactions between hormone signalling and carbon partitioning, which establish crucial determinants of the quality of ripe fruit, such as the final size, weight, and shape, and organoleptic and nutritional traits. This review describes the genes known to contribute to fruit growth in tomato.

  9. Physiological Factors Determining Hydrogenase Activity in Nitrogen-Fixing Heterocystous Cyanobacteria 1

    PubMed Central

    Chen, Pei-Chung; Almon, Helmar; Böger, Peter

    1989-01-01

    Four species of nitrogen-fixing heterocystous cyanobacteria were compared with respect to induction of hydrogenase activity. Two of the strains contained phycoerythrin and built up high levels of carbohydrate storage material when grown in batch culture under nitrogen-fixing conditions and continuous illumination. These strains did not exhibit hydrogenase activity. Lack of activity in the phycoerythrin-containing species was determined by cell-free assays measuring both hydrogen-evolving and hydrogen-uptake activities. Apparently, expression of hydrogenase is negatively correlated with the carbohydrate pool present and concurrent respiration. Furthermore, there is an apparent relationship between the presence of phycoerythrin, carbohydrate accumulation, and the absence of hydrogenase activity. PMID:16666659

  10. The uptake hydrogenase in the unicellular diazotrophic cyanobacterium Cyanothece sp. strain PCC 7822 protects nitrogenase from oxygen toxicity.

    PubMed

    Zhang, Xiaohui; Sherman, Debra M; Sherman, Louis A

    2014-02-01

    Cyanothece sp. strain PCC 7822 is a unicellular, diazotrophic cyanobacterium that can produce large quantities of H2 when grown diazotrophically. This strain is also capable of genetic manipulations and can represent a good model for improving H2 production from cyanobacteria. To this end, a knockout mutation was made in the hupL gene (ΔhupL), and we determined how this would affect the amount of H2 produced. The ΔhupL mutant demonstrated virtually no nitrogenase activity or H2 production when grown under N2-fixing conditions. To ensure that this mutation only affected the hupL gene, a complementation strain was constructed readily with wild-type properties; this indicated that the original insertion was only in hupL. The mutant had no uptake hydrogenase activity but had increased bidirectional hydrogenase (Hox) activity. Western blotting and immunocytochemistry under the electron microscope indicated that the mutant had neither HupL nor NifHDK, although the nif genes were transcribed. Interestingly, biochemical analysis demonstrated that both HupL and NifH could be membrane associated. The results indicated that the nif genes were transcribed but that NifHDK was either not translated or was translated but rapidly degraded. We hypothesized that the Nif proteins were made but were unusually susceptible to O2 damage. Thus, we grew the mutant cells under anaerobic conditions and found that they grew well under N2-fixing conditions. We conclude that in unicellular diazotrophs, like Cyanothece sp. strain PCC 7822, the HupLS complex helps remove oxygen from the nitrogenase, and that this is a more important function than merely oxidizing the H2 produced by the nitrogenase.

  11. The Uptake Hydrogenase in the Unicellular Diazotrophic Cyanobacterium Cyanothece sp. Strain PCC 7822 Protects Nitrogenase from Oxygen Toxicity

    PubMed Central

    Zhang, Xiaohui; Sherman, Debra M.

    2014-01-01

    Cyanothece sp. strain PCC 7822 is a unicellular, diazotrophic cyanobacterium that can produce large quantities of H2 when grown diazotrophically. This strain is also capable of genetic manipulations and can represent a good model for improving H2 production from cyanobacteria. To this end, a knockout mutation was made in the hupL gene (ΔhupL), and we determined how this would affect the amount of H2 produced. The ΔhupL mutant demonstrated virtually no nitrogenase activity or H2 production when grown under N2-fixing conditions. To ensure that this mutation only affected the hupL gene, a complementation strain was constructed readily with wild-type properties; this indicated that the original insertion was only in hupL. The mutant had no uptake hydrogenase activity but had increased bidirectional hydrogenase (Hox) activity. Western blotting and immunocytochemistry under the electron microscope indicated that the mutant had neither HupL nor NifHDK, although the nif genes were transcribed. Interestingly, biochemical analysis demonstrated that both HupL and NifH could be membrane associated. The results indicated that the nif genes were transcribed but that NifHDK was either not translated or was translated but rapidly degraded. We hypothesized that the Nif proteins were made but were unusually susceptible to O2 damage. Thus, we grew the mutant cells under anaerobic conditions and found that they grew well under N2-fixing conditions. We conclude that in unicellular diazotrophs, like Cyanothece sp. strain PCC 7822, the HupLS complex helps remove oxygen from the nitrogenase, and that this is a more important function than merely oxidizing the H2 produced by the nitrogenase. PMID:24317398

  12. (Catalytic mechanism of hydrogenase from aerobic N sub 2 -fixing microorganisms)

    SciTech Connect

    Arp, D.J.

    1991-01-01

    The results of this DOE-sponsored project have contributed to our understanding of the catalytic mechanism of A. vinelandii hydrogenase. A group of inhibitors have been characterized. These provide information about the different types of redox clusters involved in catalysis and the roles of each. One group has already used acetylene in a study of three desulfovibrian hydrogenases and shown that only the NiFe hydrogenases are inhibited. We have characterized a number of spectral properties of A. vinelandii hydrogenase. The EPR signals associated with this hydrogenase in the reduced state are reminiscent of other NiFe dimeric hydrogenases such as A. eutrophus, but distinctly difference from others such as D. gigas and Chromatium vinosum. Thus, while the NiFe dimeric hydrogenases are now recognized as a large group of similar enzymes, there are differences in the spectral and catalytic properties which are not explained by their similar redox inventories, identical subunit structures, immunological cross reactivity and conserved sequences. The inhibitors we have characterized are also proving of value in the spectral characterizations. Surprisingly, we only see a significant EP signal attributable to Ni after the enzyme has been inactivated with O{sub 2} and then reduced (though not reactivated). No spectral perterbations (EPR or UV-V is) of active enzyme can be attributed to binding of H{sub 2}, even though H{sub 2} clearly binds to this form of the enzyme. Acetylene, which does not substantially perterb the EPR signal of active hydrogenase, does result in a new absorption envelope in the UV-V is spectrum. Overall, the results of this project have revealed the complex interactions of the redox clusters in catalysis through studies of inhibitor mechanisms and spectral properties. 14 refs., 9 figs.

  13. Catalytic mechanism of hydrogenase from Azotobacter vinelandii. Final technical report, August 1, 1994--July 31, 1997

    SciTech Connect

    Arp, D.J.

    1997-10-01

    This project is focused on investigations of the catalytic mechanism of the hydrogenase found in the aerobic, N{sub 2}-fixing microorganism Azotobacter vinelandii. This report summarizes the progress during the first two years of the current project and include the anticipated course of the research for the remaining year of the current project. Because the current proposal represents a change in direction, the authors also include a brief progress report of prior DOE-sponsored research dealing with hydrogenases.

  14. [Research progress in relative crystallin genes of congenital cataract].

    PubMed

    Wang, D D; Yang, H J; Yi, J L

    2016-02-01

    Congenital cataract is the common cause of visual disability in children. Nearly one third of congenital cataract cases may have a related genetic mutation. With the development of molecular genetics, especially gentechnik, more and more genes, such as crystallin genes, membrane protein genes, eytoskeletal protein genes and regulatory protein genes have been confirmed to participate in the process of congenital cataract. Furthermore, crystallin genes account for most of these genes and the crystallin has the highest amount of the whole protein in lens.It has been found that nearly one hundred mutations in crystallin genes are associated with the onset of congenital cataract. Researchers are exploring how these mutations further affect the function of cellular biology and eventually lead to cataract. Although more and more research results gradually reveal the pathogenesis of congenital cataract from the level of gene and protein, the specific pathogenesis is still unclear. The recent progression about inherited congenital cataract related with crysallin genes is summarized in this review.

  15. Nuclear resonance vibrational spectroscopy reveals the FeS cluster composition and active site vibrational properties of an O2-tolerant NAD+-reducing [NiFe] hydrogenase

    DOE PAGES

    Lauterbach, Lars; Wang, Hongxin; Horch, Marius; ...

    2014-10-30

    Hydrogenases are complex metalloenzymes that catalyze the reversible splitting of molecular hydrogen into protons and electrons essentially without overpotential. The NAD+-reducing soluble hydrogenase (SH) from Ralstonia eutropha is capable of H2 conversion even in the presence of usually toxic dioxygen. The molecular details of the underlying reactions are largely unknown, mainly because of limited knowledge of the structure and function of the various metal cofactors present in the enzyme. Here, all iron-containing cofactors of the SH were investigated by 57Fe specific nuclear resonance vibrational spectroscopy (NRVS). Our data provide experimental evidence for one [2Fe2S] center and four [4Fe4S] clusters, whichmore » is consistent with the amino acid sequence composition. Only the [2Fe2S] cluster and one of the four [4Fe4S] clusters were reduced upon incubation of the SH with NADH. This finding explains the discrepancy between the large number of FeS clusters and the small amount of FeS cluster-related signals as detected by electron paramagnetic resonance spectroscopic analysis of several NAD+-reducing hydrogenases. For the first time, Fe–CO and Fe–CN modes derived from the [NiFe] active site could be distinguished by NRVS through selective 13C labeling of the CO ligand. This strategy also revealed the molecular coordinates that dominate the individual Fe–CO modes. The present approach explores the complex vibrational signature of the Fe–S clusters and the hydrogenase active site, thereby showing that NRVS represents a powerful tool for the elucidation of complex biocatalysts containing multiple cofactors.« less

  16. Integration of an [FeFe]-hydrogenase into the anaerobic metabolism of Escherichia coli

    PubMed Central

    Kelly, Ciarán L.; Pinske, Constanze; Murphy, Bonnie J.; Parkin, Alison; Armstrong, Fraser; Palmer, Tracy; Sargent, Frank

    2015-01-01

    Biohydrogen is a potentially useful product of microbial energy metabolism. One approach to engineering biohydrogen production in bacteria is the production of non-native hydrogenase activity in a host cell, for example Escherichia coli. In some microbes, hydrogenase enzymes are linked directly to central metabolism via diaphorase enzymes that utilise NAD+/NADH cofactors. In this work, it was hypothesised that heterologous production of an NAD+/NADH-linked hydrogenase could connect hydrogen production in an E. coli host directly to its central metabolism. To test this, a synthetic operon was designed and characterised encoding an apparently NADH-dependent, hydrogen-evolving [FeFe]-hydrogenase from Caldanaerobacter subterranus. The synthetic operon was stably integrated into the E. coli chromosome and shown to produce an active hydrogenase, however no H2 production was observed. Subsequently, it was found that heterologous co-production of a pyruvate::ferredoxin oxidoreductase and ferredoxin from Thermotoga maritima was found to be essential to drive H2 production by this system. This work provides genetic evidence that the Ca.subterranus [FeFe]-hydrogenase could be operating in vivo as an electron-confurcating enzyme. PMID:26839796

  17. (Catalytic mechanism of hydrogenase from aerobic N2-fixing microorganisms). [Azotobacter vinelandii:a1

    SciTech Connect

    Not Available

    1991-01-01

    The results of this DOE-sponsored project have contributed to our understanding of the catalytic mechanism of A. vinelandii hydrogenase. A group of inhibitors have been characterized. These provide information about the different types of redox clusters involved in catalysis and the roles of each. One group has already used acetylene in a study of three desulfovibrian hydrogenases and shown that onbly the NiFe hydrogenases are inhibited. The inhibitor studies are also being extended to other enzymes. We have characterized a number of special properties of A. vinelandii hydrogenase. While the NiFe dimeric hydrogenases are now recognized as a large group of similar enzymes, there are differences in the spectral and catalytic properties which are not explained by their similar redox inventories, identical subunit structures, immunological cross reactivity and conserved sequences. Surprisingly, we only see a significant EPR signal attributable to Ni after the enzyme has been inactivated with O{sub 2} and then re-reduced (though not reactivated). Acetylene, which does not substantially perterb the EPR signal of active hydrogenase, does result in a new absorption envelope in the UV-Vis spectrum. Overall, the results of this project have revealed the complex interactions of the redox clusters in catalysis through studies of inhibitor mechanisms and spectral properties. 14 refs., 9 figs.

  18. Studies of Hybrid Nano-Bio-System: Single-Walled Carbon Nanotubes and Hydrogenase

    SciTech Connect

    Svedruzic-Chang, D.; Blackburn, J. L.; McDonald, T. J.; Heben, M. J.; King, P. W.

    2008-01-01

    We have examined changes in single-walled carbon nanotubes (SWNT) optical signals upon addition of recombinant [FeFe] hydrogenases from Clostridium acetobutylicum or Chlamydomonas reinhardtii. We found evidence that novel and stable charge-transfer complexes are formed only under conditions of hydrogenase catalytic turnover. Formation of the complex sensitizes the nanotubes to the proton-to-hydrogen redox half-reaction. Thus, the experimental potential can be altered by changing the pH or molecular hydrogen concentration. In the presence of molecular hydrogen, hydrogenase mediates electron injection into the conduction band of semiconducting SWNT, which was observed as a quenching of the photoluminescence signals. Here, we will present recent Raman studies, which revealed that SWNTs in a complex with hydrogenase may undergo either oxidation or reduction, depending on the electronic structure of the SWNT and the oxidation state of the enzyme. In addition, we will describe our efforts to prepare stable, solubilized SWNT/hydrogenase complexes in the absence of detergent. This work shows that SWNT/hydrogenase complexes have potential applications as a component of an energy conversion device.

  19. Identification of Development and Pathogenicity Related Gene in Botrytis cinerea via Digital Gene Expression Profile

    PubMed Central

    Zhao, Bin; Si, He Long; Sun, Zhi Ying; Xu, Zheng; Chen, Zhan; Zhang, Jin lin; Xing, Ji Hong; Dong, Jin Gao

    2015-01-01

    Background: Botrytis cinerea, a haploid Euascomycete fungus that infects numerous crops, has been used as a model system for studying molecular phytopathology. Botrytis cinerea adopts various modes of infection, which are mediated by a number of pathogenicity and virulence-related genes. Many of these genes have not been reported previously. Objectives: This study aimed to investigate development and pathogenicity-related genes between a novel nonpathogenic mutant and the Wild Type (WT) in B. cinerea. Materials and Methods: Digital Gene Expression (DGE) tag profiling can reveal novel genes that may be involved in development and pathogenicity of plant pathogen. A large volume of B. cinerea tag-seq was generated to identify differential expressed genes by the Illumina DGE tag profiling technology. Results: A total of 4,182,944 and 4,182,021 clean tags were obtained from the WT and a nonpathogenic mutant stain (BCt89), respectively, and 10,410 differentially expressed genes were identified. In addition, 84 genes were expressed in the WT only while 34 genes were expressed in the mutant only. A total of 664 differentially expressed genes were involved in 91 Kyoto Encyclopedia of Genes and Genome pathways, including signaling and metabolic pathways. Conclusions: Expression levels of 1,426 genes were significantly up-regulated in the mutant compared to WT. Furthermore, 301 genes were down-regulated with False Discovery Rates (FDR) of < 0.001 and absolute value of log2 Ratio of ≥ 1. PMID:26034553

  20. CO and CN- syntheses by [FeFe]-hydrogenase maturase HydG are catalytically differentiated events.

    PubMed

    Pagnier, Adrien; Martin, Lydie; Zeppieri, Laura; Nicolet, Yvain; Fontecilla-Camps, Juan C

    2016-01-05

    The synthesis and assembly of the active site [FeFe] unit of [FeFe]-hydrogenases require at least three maturases. The radical S-adenosyl-l-methionine HydG, the best characterized of these proteins, is responsible for the synthesis of the hydrogenase CO and CN(-) ligands from tyrosine-derived dehydroglycine (DHG). We speculated that CN(-) and the CO precursor (-):CO2H may be generated through an elimination reaction. We tested this hypothesis with both wild type and HydG variants defective in second iron-sulfur cluster coordination by measuring the in vitro production of CO, CN(-), and (-):CO2H-derived formate. We indeed observed formate production under these conditions. We conclude that HydG is a multifunctional enzyme that produces DHG, CN(-), and CO at three well-differentiated catalytic sites. We also speculate that homocysteine, cysteine, or a related ligand could be involved in Fe(CO)x(CN)y transfer to the HydF carrier/scaffold.

  1. CO and CN− syntheses by [FeFe]-hydrogenase maturase HydG are catalytically differentiated events

    PubMed Central

    Pagnier, Adrien; Martin, Lydie; Zeppieri, Laura; Nicolet, Yvain; Fontecilla-Camps, Juan C.

    2016-01-01

    The synthesis and assembly of the active site [FeFe] unit of [FeFe]-hydrogenases require at least three maturases. The radical S-adenosyl-l-methionine HydG, the best characterized of these proteins, is responsible for the synthesis of the hydrogenase CO and CN− ligands from tyrosine-derived dehydroglycine (DHG). We speculated that CN− and the CO precursor −:CO2H may be generated through an elimination reaction. We tested this hypothesis with both wild type and HydG variants defective in second iron-sulfur cluster coordination by measuring the in vitro production of CO, CN−, and −:CO2H-derived formate. We indeed observed formate production under these conditions. We conclude that HydG is a multifunctional enzyme that produces DHG, CN−, and CO at three well-differentiated catalytic sites. We also speculate that homocysteine, cysteine, or a related ligand could be involved in Fe(CO)x(CN)y transfer to the HydF carrier/scaffold. PMID:26699472

  2. Vitamin D and Related Genes, Race, and Prostate Cancer Aggressiveness

    DTIC Science & Technology

    2014-10-01

    SUBTITLE 5a. CONTRACT NUMBER Vitamin D and Related Genes, Race, and Prostate Cancer 5b. GRANT NUMBER W81XWH-11-1-0568 Aggressiveness 5c. PROGRAM...examine whether altered vitamin D status (as measured by serum metabolites and by functional polymorphisms within genes related to vitamin D...potential to provide insights into a chronically underserved population carrying an unequal burden of disease. 15. SUBJECT TERMS Vitamin D, prostate

  3. DRUMS: a human disease related unique gene mutation search engine.

    PubMed

    Li, Zuofeng; Liu, Xingnan; Wen, Jingran; Xu, Ye; Zhao, Xin; Li, Xuan; Liu, Lei; Zhang, Xiaoyan

    2011-10-01

    With the completion of the human genome project and the development of new methods for gene variant detection, the integration of mutation data and its phenotypic consequences has become more important than ever. Among all available resources, locus-specific databases (LSDBs) curate one or more specific genes' mutation data along with high-quality phenotypes. Although some genotype-phenotype data from LSDB have been integrated into central databases little effort has been made to integrate all these data by a search engine approach. In this work, we have developed disease related unique gene mutation search engine (DRUMS), a search engine for human disease related unique gene mutation as a convenient tool for biologists or physicians to retrieve gene variant and related phenotype information. Gene variant and phenotype information were stored in a gene-centred relational database. Moreover, the relationships between mutations and diseases were indexed by the uniform resource identifier from LSDB, or another central database. By querying DRUMS, users can access the most popular mutation databases under one interface. DRUMS could be treated as a domain specific search engine. By using web crawling, indexing, and searching technologies, it provides a competitively efficient interface for searching and retrieving mutation data and their relationships to diseases. The present system is freely accessible at http://www.scbit.org/glif/new/drums/index.html.

  4. High-throughput comparison of gene fitness among related bacteria

    PubMed Central

    2012-01-01

    Background The contribution of a gene to the fitness of a bacterium can be assayed by whether and to what degree the bacterium tolerates transposon insertions in that gene. We use this fact to compare the fitness of syntenic homologous genes among related Salmonella strains and thereby reveal differences not apparent at the gene sequence level. Results A transposon Tn5 derivative was used to construct mutants in Salmonella Typhimurium ATCC14028 (STM1) and Salmonella Typhi Ty2 (STY1), which were then grown in rich media. The locations of 234,152 and 53,556 integration sites, respectively, were mapped by sequencing. These data were compared to similar data available for a different Ty2 isolate (STY2) and essential genes identified in E. coli K-12 (ECO). Of 277 genes considered essential in ECO, all had syntenic homologs in STM1, STY1, and STY2, and all but nine genes were either devoid of transposon insertions or had very few. For three of these nine genes, part of the annotated gene lacked transposon integrations (yejM, ftsN and murB). At least one of the other six genes, trpS, had a potentially functionally redundant gene encoded elsewhere in Salmonella but not in ECO. An additional 165 genes were almost entirely devoid of transposon integrations in all three Salmonella strains examined, including many genes associated with protein and DNA synthesis. Four of these genes (STM14_1498, STM14_2872, STM14_3360, and STM14_5442) are not found in E. coli. Notable differences in the extent of gene selection were also observed among the three different Salmonella isolates. Mutations in hns, for example, were selected against in STM1 but not in the two STY strains, which have a defect in rpoS rendering hns nonessential. Conclusions Comparisons among transposon integration profiles from different members of a species and among related species, all grown in similar conditions, identify differences in gene contributions to fitness among syntenic homologs. Further differences in

  5. Identification of feature genes for smoking-related lung adenocarcinoma based on gene expression profile data

    PubMed Central

    Liu, Ying; Ni, Ran; Zhang, Hui; Miao, Lijun; Wang, Jing; Jia, Wenqing; Wang, Yuanyuan

    2016-01-01

    This study aimed to identify the genes and pathways associated with smoking-related lung adenocarcinoma. Three lung adenocarcinoma associated datasets (GSE43458, GSE10072, and GSE50081), the subjects of which included smokers and nonsmokers, were downloaded to screen the differentially expressed feature genes between smokers and nonsmokers. Based on the identified feature genes, we constructed the protein–protein interaction (PPI) network and optimized feature genes using closeness centrality (CC) algorithm. Then, the support vector machine (SVM) classification model was constructed based on the feature genes with higher CC values. Finally, pathway enrichment analysis of the feature genes was performed. A total of 213 down-regulated and 83 up-regulated differentially expressed genes were identified. In the constructed PPI network, the top ten nodes with higher degrees and CC values included ANK3, EPHA4, FGFR2, etc. The SVM classifier was constructed with 27 feature genes, which could accurately identify smokers and nonsmokers. Pathways enrichment analysis for the 27 feature genes revealed that they were significantly enriched in five pathways, including proteoglycans in cancer (EGFR, SDC4, SDC2, etc.), and Ras signaling pathway (FGFR2, PLA2G1B, EGFR, etc.). The 27 feature genes, such as EPHA4, FGFR2, and EGFR for SVM classifier construction and cancer-related pathways of Ras signaling pathway and proteoglycans in cancer may play key roles in the progression and development of smoking-related lung adenocarcinoma. PMID:27994470

  6. Breathing air to save energy--new insights into the ecophysiological role of high-affinity [NiFe]-hydrogenase in Streptomyces avermitilis.

    PubMed

    Liot, Quentin; Constant, Philippe

    2016-02-01

    The Streptomyces avermitilis genome encodes a putative high-affinity [NiFe]-hydrogenase conferring the ability to oxidize tropospheric H2 in mature spores. Here, we used a combination of transcriptomic and mutagenesis approaches to shed light on the potential ecophysiological role of the enzyme. First, S. avermitilis was either exposed to low or hydrogenase-saturating levels of H2 to investigate the impact of H2 on spore transcriptome. In total, 1293 genes were differentially expressed, with 1127 and 166 showing lower and higher expression under elevated H2 concentration, respectively. High H2 exposure lowered the expression of the Sec protein secretion pathway and ATP-binding cassette-transporters, with increased expression of genes encoding proteins directing carbon metabolism toward sugar anabolism and lower expression of NADH dehydrogenase in the respiratory chain. Overall, the expression of relA responsible for the synthesis of the pleiotropic alarmone ppGpp decreased upon elevated H2 exposure, which likely explained the reduced expression of antibiotic synthesis and stress response genes. Finally, deletion of hhySL genes resulted in a loss of H2 uptake activity and a dramatic loss of viability in spores. We propose that H2 is restricted to support the seed bank of Streptomyces under a unique survival-mixotrophic energy mode and discuss important ecological implications of this finding.

  7. Hydrogenase Activity of Mineral-Associated and Suspended Populations of Desulfovibrio desulfuricans Essex 6

    SciTech Connect

    C.L. Reardon; T.S. Magnuson; E.S. Boyd; W.D. Leavitt; D.W. Reed; G.G. Geesey

    2014-02-01

    The interactions between sulfate-reducing microorganisms and iron oxides influence a number of important redox-sensitive biogeochemical processes including the formation of iron sulfides. Enzymes, such as hydrogenase which catalyze the reversible oxidation of molecular hydrogen, are known to mediate electron transfer to metals and may contribute to the formation and speciation of ferrous sulfides formed at the cell–mineral interface. In the present study, we compared the whole cell hydrogenase activity of Desulfovibrio desulfuricans strain Essex 6 growing as biofilms on hematite (hematite-associated) or as suspended populations using different metabolic pathways. Hematite-associated cells exhibited significantly greater hydrogenase activity than suspended populations during sulfate respiration but not during pyruvate fermentation. The enhanced activity of the hematite-associated, sulfate-grown cells appears to be dependent on iron availability rather than a general response to surface attachment since the activity of glass-associated cells did not differ from that of suspended populations. Hydrogenase activity of pyruvate-fermenting cells was stimulated by addition of iron as soluble Fe(II)Cl2 and, in the absence of added iron, both sulfate-reducing and pyruvate-fermenting cells displayed similar rates of hydrogenase activity. These data suggest that iron exerts a stronger influence on whole cell hydrogenase activity than either metabolic pathway or mode of growth. The location of hydrogenase to the cell envelope and the enhanced activity at the hematite surface in sulfate-reducing cells may influence the redox conditions that control the species of iron sulfides on the mineral surface.

  8. The Investigation and Characterization of the Group 3 [Nickel-Iron]-Hydrogenases Using Protein Film Electrochemistry

    NASA Astrophysics Data System (ADS)

    McIntosh, Chelsea Lee

    Hydrogenases, the enzymes that reversibly convert protons and electrons to hydrogen, are used in all three domains of life. [NiFe]-hydrogenases are considered best suited for biotechnological applications because of their reversible inactivation with oxygen. Phylogenetically, there are four groups of [NiFe]-hydrogenases. The best characterized group, "uptake" hydrogenases, are membrane-bound and catalyze hydrogen oxidation in vivo. In contrast, the group 3 [NiFe]-hydrogenases are heteromultimeric, bifunctional enzymes that fulfill various cellular roles. In this dissertation, protein film electrochemistry (PFE) is used to characterize the catalytic properties of two group 3 [NiFe]-hydrogenases: HoxEFUYH from Synechocystsis sp. PCC 6803 and SHI from Pyrococcus furiosus. First, HoxEFUYH is shown to be biased towards hydrogen production. Upon exposure to oxygen, HoxEFUYH inactivates to two states, both of which can be reactivated on the timescale of seconds. Second, we show that PfSHI is the first example of an oxygen tolerant [NiFe]-hydrogenase that produces two inactive states upon exposure to oxygen. Both inactive states are analogous to those characterized for HoxEFUYH, but oxygen exposed PfSHI produces a greater fraction that reactivates at high potentials, enabling hydrogen oxidation in the presence of oxygen. Third, it is shown that removing the NAD(P)-reducing subunits from PfSHI leads to a decrease in bias towards hydrogen oxidation and renders the enzyme oxygen sensitive. Both traits are likely due to impaired intramolecular electron transfer. Mechanistic hypotheseses for these functional differences are considered.

  9. Transcription of functionally related constitutive genes is not coordinated.

    PubMed

    Gandhi, Saumil J; Zenklusen, Daniel; Lionnet, Timothée; Singer, Robert H

    2011-01-01

    Expression of an individual gene can vary considerably among genetically identical cells because of stochastic fluctuations in transcription. However, proteins comprising essential complexes or pathways have similar abundances and lower variability. It is not known whether coordination in the expression of subunits of essential complexes occurs at the level of transcription, mRNA abundance or protein expression. To directly measure the level of coordination in the expression of genes, we used highly sensitive fluorescence in situ hybridization (FISH) to count individual mRNAs of functionally related and unrelated genes within single Saccharomyces cerevisiae cells. Our results revealed that transcript levels of temporally induced genes are highly correlated in individual cells. In contrast, transcription of constitutive genes encoding essential subunits of complexes is not coordinated because of stochastic fluctuations. The coordination of these functional complexes therefore must occur post-transcriptionally, and likely post-translationally.

  10. Distribution of Hydrogenases in Cyanobacteria: A Phylum-Wide Genomic Survey.

    PubMed

    Puggioni, Vincenzo; Tempel, Sébastien; Latifi, Amel

    2016-01-01

    Microbial Molecular hydrogen (H2) cycling plays an important role in several ecological niches. Hydrogenases (H2ases), enzymes involved in H2 metabolism, are of great interest for investigating microbial communities, and producing BioH2. To obtain an overall picture of the genetic ability of Cyanobacteria to produce H2ases, we conducted a phylum wide analysis of the distribution of the genes encoding these enzymes in 130 cyanobacterial genomes. The concomitant presence of the H2ase and genes involved in the maturation process, and that of well-conserved catalytic sites in the enzymes were the three minimal criteria used to classify a strain as being able to produce a functional H2ase. The [NiFe] H2ases were found to be the only enzymes present in this phylum. Fifty-five strains were found to be potentially able produce the bidirectional Hox enzyme and 33 to produce the uptake (Hup) enzyme. H2 metabolism in Cyanobacteria has a broad ecological distribution, since only the genomes of strains collected from the open ocean do not possess hox genes. In addition, the presence of H2ase was found to increase in the late branching clades of the phylogenetic tree of the species. Surprisingly, five cyanobacterial genomes were found to possess homologs of oxygen tolerant H2ases belonging to groups 1, 3b, and 3d. Overall, these data show that H2ases are widely distributed, and are therefore probably of great functional importance in Cyanobacteria. The present finding that homologs to oxygen-tolerant H2ases are present in this phylum opens new perspectives for applying the process of photosynthesis in the field of H2 production.

  11. Distribution of Hydrogenases in Cyanobacteria: A Phylum-Wide Genomic Survey

    PubMed Central

    Puggioni, Vincenzo; Tempel, Sébastien; Latifi, Amel

    2016-01-01

    Microbial Molecular hydrogen (H2) cycling plays an important role in several ecological niches. Hydrogenases (H2ases), enzymes involved in H2 metabolism, are of great interest for investigating microbial communities, and producing BioH2. To obtain an overall picture of the genetic ability of Cyanobacteria to produce H2ases, we conducted a phylum wide analysis of the distribution of the genes encoding these enzymes in 130 cyanobacterial genomes. The concomitant presence of the H2ase and genes involved in the maturation process, and that of well-conserved catalytic sites in the enzymes were the three minimal criteria used to classify a strain as being able to produce a functional H2ase. The [NiFe] H2ases were found to be the only enzymes present in this phylum. Fifty-five strains were found to be potentially able produce the bidirectional Hox enzyme and 33 to produce the uptake (Hup) enzyme. H2 metabolism in Cyanobacteria has a broad ecological distribution, since only the genomes of strains collected from the open ocean do not possess hox genes. In addition, the presence of H2ase was found to increase in the late branching clades of the phylogenetic tree of the species. Surprisingly, five cyanobacterial genomes were found to possess homologs of oxygen tolerant H2ases belonging to groups 1, 3b, and 3d. Overall, these data show that H2ases are widely distributed, and are therefore probably of great functional importance in Cyanobacteria. The present finding that homologs to oxygen-tolerant H2ases are present in this phylum opens new perspectives for applying the process of photosynthesis in the field of H2 production. PMID:28083017

  12. Unification of [FeFe]-hydrogenases into three structural and functional groups

    DOE PAGES

    Poudel, Saroj; Tokmina-Lukaszewska, Monika; Colman, Daniel R.; ...

    2016-05-27

    [FeFe]-hydrogenases (Hyd) are structurally diverse enzymes that catalyze the reversible oxidation of hydrogen (H2). Recent biochemical data demonstrate new functional roles for these enzymes, including those that function in electron bifurcation where an exergonic reaction is coupled with an endergonic reaction to drive the reversible oxidation/production of H2. To identify the structural determinants that underpin differences in enzyme functionality, a total of 714 homologous sequences of the catalytic subunit, HydA, were compiled. Bioinformatics approaches informed by biochemical data were then used to characterize differences in inferred quaternary structure, HydA active site protein environment, accessory iron-sulfur clusters in HydA, and regulatorymore » proteins encoded in HydA gene neighborhoods. HydA homologs were clustered into one of three classification groups, Group 1 (G1), Group 2 (G2), and Group 3 (G3). G1 enzymes were predicted to be monomeric while those in G2 and G3 were predicted to be multimeric and include HydB, HydC (G2/G3) and HydD (G3) subunits. Variation in the HydA active site and accessory iron-sulfur clusters did not vary by group type. Group-specific regulatory genes were identified in the gene neighborhoods of both G2 and G3 Hyd. Analyses of purified G2 and G3 enzymes by mass spectrometry strongly suggests that they are post-translationally modified by phosphorylation. In conclusion, these results suggest that bifurcation capability is dictated primarily by the presence of both HydB and HydC in Hyd complexes, rather than by variation in HydA.« less

  13. Unification of [FeFe]-hydrogenases into three structural and functional groups

    SciTech Connect

    Poudel, Saroj; Tokmina-Lukaszewska, Monika; Colman, Daniel R.; Refai, Mohammed; Schut, Gerrit J.; King, Paul W.; Maness, Pin-Ching; Adams, Michael W. W.; Peters, John W.; Bothner, Brian; Boyd, Eric S.

    2016-05-27

    [FeFe]-hydrogenases (Hyd) are structurally diverse enzymes that catalyze the reversible oxidation of hydrogen (H2). Recent biochemical data demonstrate new functional roles for these enzymes, including those that function in electron bifurcation where an exergonic reaction is coupled with an endergonic reaction to drive the reversible oxidation/production of H2. To identify the structural determinants that underpin differences in enzyme functionality, a total of 714 homologous sequences of the catalytic subunit, HydA, were compiled. Bioinformatics approaches informed by biochemical data were then used to characterize differences in inferred quaternary structure, HydA active site protein environment, accessory iron-sulfur clusters in HydA, and regulatory proteins encoded in HydA gene neighborhoods. HydA homologs were clustered into one of three classification groups, Group 1 (G1), Group 2 (G2), and Group 3 (G3). G1 enzymes were predicted to be monomeric while those in G2 and G3 were predicted to be multimeric and include HydB, HydC (G2/G3) and HydD (G3) subunits. Variation in the HydA active site and accessory iron-sulfur clusters did not vary by group type. Group-specific regulatory genes were identified in the gene neighborhoods of both G2 and G3 Hyd. Analyses of purified G2 and G3 enzymes by mass spectrometry strongly suggests that they are post-translationally modified by phosphorylation. In conclusion, these results suggest that bifurcation capability is dictated primarily by the presence of both HydB and HydC in Hyd complexes, rather than by variation in HydA.

  14. A graphic method for identification of novel glioma related genes.

    PubMed

    Gao, Yu-Fei; Shu, Yang; Yang, Lei; He, Yi-Chun; Li, Li-Peng; Huang, GuaHua; Li, Hai-Peng; Jiang, Yang

    2014-01-01

    Glioma, as the most common and lethal intracranial tumor, is a serious disease that causes many deaths every year. Good comprehension of the mechanism underlying this disease is very helpful to design effective treatments. However, up to now, the knowledge of this disease is still limited. It is an important step to understand the mechanism underlying this disease by uncovering its related genes. In this study, a graphic method was proposed to identify novel glioma related genes based on known glioma related genes. A weighted graph was constructed according to the protein-protein interaction information retrieved from STRING and the well-known shortest path algorithm was employed to discover novel genes. The following analysis suggests that some of them are related to the biological process of glioma, proving that our method was effective in identifying novel glioma related genes. We hope that the proposed method would be applied to study other diseases and provide useful information to medical workers, thereby designing effective treatments of different diseases.

  15. A complex network analysis of hypertension-related genes

    NASA Astrophysics Data System (ADS)

    Wang, Huan; Xu, Chuan-Yun; Hu, Jing-Bo; Cao, Ke-Fei

    2014-01-01

    In this paper, a network of hypertension-related genes is constructed by analyzing the correlations of gene expression data among the Dahl salt-sensitive rat and two consomic rat strains. The numerical calculations show that this sparse and assortative network has small-world and scale-free properties. Further, 16 key hub genes (Col4a1, Lcn2, Cdk4, etc.) are determined by introducing an integrated centrality and have been confirmed by biological/medical research to play important roles in hypertension.

  16. Consequences of recurrent gene flow from crops to wild relatives.

    PubMed Central

    Haygood, Ralph; Ives, Anthony R; Andow, David A

    2003-01-01

    Concern about gene flow from crops to wild relatives has become widespread with the increasing cultivation of transgenic crops. Possible consequences of such gene flow include genetic assimilation, wherein crop genes replace wild ones, and demographic swamping, wherein hybrids are less fertile than their wild parents, and wild populations shrink. Using mathematical models of a wild population recurrently receiving pollen from a genetically fixed crop, we find that the conditions for genetic assimilation are not stringent, and progress towards replacement can be fast, even for disfavoured crop genes. Demographic swamping and genetic drift relax the conditions for genetic assimilation and speed progress towards replacement. Genetic assimilation can involve thresholds and hysteresis, such that a small increase in immigration can lead to fixation of a disfavoured crop gene that had been maintained at a moderate frequency, even if the increase in immigration is cancelled before the gene fixes. Demographic swamping can give rise to 'migrational meltdown', such that a small increase in immigration can lead to not only fixation of a disfavoured crop gene but also drastic shrinkage of the wild population. These findings suggest that the spread of crop genes in wild populations should be monitored more closely. PMID:14561300

  17. Spectroscopic and electrochemical characterization of the [NiFeSe] hydrogenase from Desulfovibrio vulgaris Miyazaki F: reversible redox behavior and interactions between electron transfer centers.

    PubMed

    Riethausen, Jana; Rüdiger, Olaf; Gärtner, Wolfgang; Lubitz, Wolfgang; Shafaat, Hannah S

    2013-09-23

    Characterizing a new hydrogenase: The newly isolated [NiFeSe] hydrogenase from Desulfovibrio vulgaris Miyazaki F displays catalytic properties distinct from other hydrogenase proteins. Here we apply site-specific spectroscopic and electrochemical techniques to characterize these unique features at the molecular level.

  18. [NiFe]-hydrogenases: spectroscopic and electrochemical definition of reactions and intermediates.

    PubMed

    Armstrong, Fraser A; Albracht, Simon P J

    2005-04-15

    Production and usage of di-hydrogen, H2, in micro-organisms is catalysed by highly active, 'ancient' metalloenzymes known as hydrogenases. Based on the number and identity of metal atoms in their active sites, hydrogenases fall into three main classes, [NiFe]-, [FeFe]- and [Fe]-. All contain the unusual ligand CO (and in most cases CN- as well) making them intriguing examples of 'organometallic' cofactors. These ligands render the active sites superbly 'visible' using infrared spectroscopy, which complements the use of electron paramagnetic resonance spectroscopy in studying mechanisms and identifying intermediates. Hydrogenases are becoming a focus of attention for research into future energy technologies, not only H2 production but also H2 oxidation in fuel cells. Hydrogenases immobilized on electrodes exhibit high electrocatalytic activity, providing not only an important new technique for their investigation, but also a basis for novel fuel cells either using the enzyme itself, or inspired synthetic catalysts. Favourable comparisons have been made with platinum electrocatalysts, an advantage of enzymes being their specificity for H2 and tolerance of CO. A challenge for exploiting hydrogenases is their sensitivity to O2, but some organisms are known to produce enzymes that overcome this problem by subtle alterations of the active site and gas access channels.

  19. Age-related macular degeneration: Evidence of a major gene

    SciTech Connect

    Bhatt, S.; Warren, C.; Yang, H.

    1994-09-01

    Age-related macular degeneration is a major cause of blindness in developing countries. It remains a very poorly understood disorder. Although environmental and genetic factors have been implicated in its pathogenesis, none have been firmly implicated. The purpose of this study was to use pedigree analysis to evaluate the possible role of a major gene as a determinant of familial aggregation. Information was collected regarding occupation, smoking, sun exposure, associated medical problems and family history. 50 probands with age-related macular degeneration (ARMD) and 39 age, race and sex-matched controls were included in the study. In the ARMD group 15/50 (30%) of probands reported a positive family history; 22 out of 222 first degree relatives over age 60 were reported to be affected. In the control groups, none of the 138 first degree relatives over age 50 had a history of ARMD. This difference is statistically significant (p = 0.0003), indicating that genetic factors may play an important role in the pathogenesis of ARMD. In the ARMD group more siblings as compared to parents (16/127 vs. 5/82) were affected. 5/50 (10%) of the ARMD probands also gave a history of a second degree relative affected with ARMD, compared to none known among the relatives of controls. Data from 50 pedigrees were analyzed by complex segregation analysis under a class A regressive logistic model using the REGD program implemented in the SAGE package. Preliminary results allow rejection of a polygenic model and suggest there is a major gene for ARMD in these families. The inheritance model most compatible with the observed familial aggregation is autosomal recessive. In conclusion, these results are suggestive of a major gene effect in the etiology of ARMD. Identification of a major gene effect is a first step to further pursue linkage analysis and to search for the gene(s) involved in the causation of ARMD.

  20. Sunlight-Dependent Hydrogen Production by Photosensitizer/Hydrogenase Systems.

    PubMed

    Adam, David; Bösche, Lisa; Castañeda-Losada, Leonardo; Winkler, Martin; Apfel, Ulf-Peter; Happe, Thomas

    2017-03-09

    We report a sustainable in vitro system for enzyme-based photohydrogen production. The [FeFe]-hydrogenase HydA1 from Chlamydomonas reinhardtii was tested for photohydrogen production as a proton-reducing catalyst in combination with eight different photosensitizers. Using the organic dye 5-carboxyeosin as a photosensitizer and plant-type ferredoxin PetF as an electron mediator, HydA1 achieves the highest light-driven turnover number (TONHydA1 ) yet reported for an enzyme-based in vitro system (2.9×10(6)  mol(H2 ) mol(cat)(-1) ) and a maximum turnover frequency (TOFHydA1 ) of 550 mol(H2 ) mol(HydA1)(-1)  s(-1) . The system is fueled very effectively by ambient daylight and can be further simplified by using 5-carboxyeosin and HydA1 as a two-component photosensitizer/biocatalyst system without an additional redox mediator.

  1. Regulation of carbon monoxide dehydrogenase and hydrogenase in Rhodospirillum rubrum: effects of CO and oxygen on synthesis and activity.

    PubMed Central

    Bonam, D; Lehman, L; Roberts, G P; Ludden, P W

    1989-01-01

    Exposure of the photosynthetic bacterium Rhodospirillum rubrum to carbon monoxide led to increased carbon monoxide dehydrogenase and hydrogenase activities due to de novo protein synthesis of both enzymes. Two-dimensional gels of [35S]methionine-pulse-labeled cells showed that induction of CO dehydrogenase synthesis was rapidly initiated (less than 5 min upon exposure to CO) and was inhibited by oxygen. Both CO dehydrogenase and the CO-induced hydrogenase were inactivated by oxygen in vivo and in vitro. In contrast to CO dehydrogenase, the CO-induced hydrogenase was 95% inactivated by heating at 70 degrees C for 5 min. Unlike other hydrogenases, this CO-induced hydrogenase was inhibited only 60% by a 100% CO gas phase. Images PMID:2498285

  2. Visually Relating Gene Expression and in vivo DNA Binding Data

    SciTech Connect

    Huang, Min-Yu; Mackey, Lester; Ker?,; nen, Soile V. E.; Weber, Gunther H.; Jordan, Michael I.; Knowles, David W.; Biggin, Mark D.; Hamann, Bernd

    2011-09-20

    Gene expression and in vivo DNA binding data provide important information for understanding gene regulatory networks: in vivo DNA binding data indicate genomic regions where transcription factors are bound, and expression data show the output resulting from this binding. Thus, there must be functional relationships between these two types of data. While visualization and data analysis tools exist for each data type alone, there is a lack of tools that can easily explore the relationship between them. We propose an approach that uses the average expression driven by multiple of ciscontrol regions to visually relate gene expression and in vivo DNA binding data. We demonstrate the utility of this tool with examples from the network controlling early Drosophila development. The results obtained support the idea that the level of occupancy of a transcription factor on DNA strongly determines the degree to which the factor regulates a target gene, and in some cases also controls whether the regulation is positive or negative.

  3. Hepatitis-related hepatocellular carcinoma: Insights into cytokine gene polymorphisms

    PubMed Central

    Dondeti, Mahmoud Fathy; El-Maadawy, Eman Anwar; Talaat, Roba Mohamed

    2016-01-01

    Hepatocellular carcinoma (HCC) is a primary liver cancer, which is one of the most prevalent cancers among humans. Many factors are involved in the liver carcinogenesis as lifestyle and environmental factors. Hepatitis virus infections are now recognized as the chief etiology of HCC; however, the precise mechanism is still enigmatic till now. The inflammation triggered by the cytokine-mediated immune response, was reported to be the closest factor of HCC development. Cytokines are immunoregulatory proteins produced by immune cells, functioning as orchestrators of the immune response. Genes of cytokines and their receptors are known to be polymorphic, which give rise to variations in their genes. These variations have a great impact on the expression levels of the secreted cytokines. Therefore, cytokine gene polymorphisms are involved in the molecular mechanisms of several diseases. This piece of work aims to shed much light on the role of cytokine gene polymorphisms as genetic host factor in hepatitis related HCC. PMID:27570418

  4. Characterization of Starch Degradation Related Genes in Postharvest Kiwifruit

    PubMed Central

    Hu, Xiong; Kuang, Sheng; Zhang, Ai-Di; Zhang, Wang-Shu; Chen, Miao-Jin; Yin, Xue-Ren; Chen, Kun-Song

    2016-01-01

    Starch is one of the most important storage carbohydrates in plants. Kiwifruit typically accumulate large amounts of starch during development. The fruit retain starch until commercial maturity, and its postharvest degradation is essential for consumer acceptance. The activity of genes related to starch degradation has, however, rarely been investigated. Based on the kiwifruit genome sequence and previously reported starch degradation-related genes, 17 novel genes were isolated and the relationship between their expression and starch degradation was examined using two sets of materials: ethylene-treated (100 µL/L, 20 °C; ETH) vs. control (20 °C; CK) and controlled atmosphere stored (CA, 5% CO2 + 2% O2, 0 °C) vs. normal atmosphere in cold storage (NA, 0 °C). Physiological analysis indicated that ETH accelerated starch degradation and increased soluble solids content (SSC) and soluble sugars (glucose, fructose and sucrose), while CA inhibited starch reduction compared with NA. Using these materials, expression patterns of 24 genes that may contribute to starch degradation (seven previously reported and 17 newly isolated) were analyzed. Among the 24 genes, AdAMY1, AdAGL3 and AdBAM3.1/3L/9 were significantly induced by ETH and positively correlated with starch degradation. Furthermore, these five genes were also inhibited by CA, conforming the likely involvement of these genes in starch degradation. Thus, the present study has identified the genes with potential for involvement in starch degradation in postharvest kiwifruit, which will be useful for understanding the regulation of kiwifruit starch content and metabolism. PMID:27983700

  5. Characterization of Starch Degradation Related Genes in Postharvest Kiwifruit.

    PubMed

    Hu, Xiong; Kuang, Sheng; Zhang, Ai-Di; Zhang, Wang-Shu; Chen, Miao-Jin; Yin, Xue-Ren; Chen, Kun-Song

    2016-12-15

    Starch is one of the most important storage carbohydrates in plants. Kiwifruit typically accumulate large amounts of starch during development. The fruit retain starch until commercial maturity, and its postharvest degradation is essential for consumer acceptance. The activity of genes related to starch degradation has, however, rarely been investigated. Based on the kiwifruit genome sequence and previously reported starch degradation-related genes, 17 novel genes were isolated and the relationship between their expression and starch degradation was examined using two sets of materials: ethylene-treated (100 µL/L, 20 °C; ETH) vs. control (20 °C; CK) and controlled atmosphere stored (CA, 5% CO₂ + 2% O₂, 0 °C) vs. normal atmosphere in cold storage (NA, 0 °C). Physiological analysis indicated that ETH accelerated starch degradation and increased soluble solids content (SSC) and soluble sugars (glucose, fructose and sucrose), while CA inhibited starch reduction compared with NA. Using these materials, expression patterns of 24 genes that may contribute to starch degradation (seven previously reported and 17 newly isolated) were analyzed. Among the 24 genes, AdAMY1, AdAGL3 and AdBAM3.1/3L/9 were significantly induced by ETH and positively correlated with starch degradation. Furthermore, these five genes were also inhibited by CA, conforming the likely involvement of these genes in starch degradation. Thus, the present study has identified the genes with potential for involvement in starch degradation in postharvest kiwifruit, which will be useful for understanding the regulation of kiwifruit starch content and metabolism.

  6. Functional Analysis by Site-Directed Mutagenesis of the NAD+-Reducing Hydrogenase from Ralstonia eutropha

    PubMed Central

    Burgdorf, Tanja; De Lacey, Antonio L.; Friedrich, Bärbel

    2002-01-01

    The tetrameric cytoplasmic [NiFe] hydrogenase (SH) of Ralstonia eutropha couples the oxidation of hydrogen to the reduction of NAD+ under aerobic conditions. In the catalytic subunit HoxH, all six conserved motifs surrounding the [NiFe] site are present. Five of these motifs were altered by site-directed mutagenesis in order to dissect the molecular mechanism of hydrogen activation. Based on phenotypic characterizations, 27 mutants were grouped into four different classes. Mutants of the major class, class I, failed to grow on hydrogen and were devoid of H2-oxidizing activity. In one of these isolates (HoxH I64A), H2 binding was impaired. Class II mutants revealed a high D2/H+ exchange rate relative to a low H2-oxidizing activity. A representative (HoxH H16L) displayed D2/H+ exchange but had lost electron acceptor-reducing activity. Both activities were equally affected in class III mutants. Mutants forming class IV showed a particularly interesting phenotype. They displayed O2-sensitive growth on hydrogen due to an O2-sensitive SH protein. PMID:12399498

  7. The Innate Immune-Related Genes in Catfish

    PubMed Central

    Gao, Lei; He, Chongbo; Liu, Xueguang; Su, Hao; Gao, Xianggang; Li, Yunfeng; Liu, Weidong

    2012-01-01

    Catfish is one of the most important aquaculture species in America (as well as in Asia and Africa). In recent years, the production of catfish has suffered massive financial losses due to pathogen spread and breakouts. Innate immunity plays a crucial role in increasing resistance to pathogenic organisms and has generated increasing interest in the past few years. This review summarizes the current understanding of innate immune-related genes in catfish, including pattern recognition receptors, antimicrobial peptides, complements, lectins, cytokines, transferrin and gene expression profiling using microarrays and next generation sequencing technologies. This review will benefit the understanding of innate immune system in catfish and further efforts in studying the innate immune-related genes in fish. PMID:23203058

  8. Crystallographic studies of nitrogenase and hydrogenase. Progress report, June 1, 1992--April 1, 1994

    SciTech Connect

    Bolin, J.T.

    1994-05-01

    The long term goal of this project is to obtain detailed knowledge of the structure and function of nitrogenase and hydrogenase through the analysis of physical, chemical, and biological data with reference to three-dimensional, atomic resolution crystal structures of components of the enzyme and/or complexes of the components. The current objectives to determine the crystal structure of wild-type Av1, the nitrogenase MoFe protein from Azotobacter vinelandii; to refine this structure at high resolution; and to initiate studies of mutant MoFe proteins that express altered chemical and physical properties. Further we seek to determine the crystal structure of the bi-directional all-Fe hydrogenase from C. pasteurianum, Cp-hydrI, and to initiate studies of the uptake hydrogenase from the same organism, Cp-hydrII.

  9. Validation of internal reference genes for relative quantitation studies of gene expression in human laryngeal cancer

    PubMed Central

    Wang, Xiaofeng; He, Jinting; Wang, Wei; Ren, Ming; Gao, Sujie; Zhao, Guanjie

    2016-01-01

    Background The aim of this study was to determine the expression stabilities of 12 common internal reference genes for the relative quantitation analysis of target gene expression performed by reverse transcription real-time quantitative polymerase chain reaction (RT-qPCR) in human laryngeal cancer. Methods Hep-2 cells and 14 laryngeal cancer tissue samples were investigated. The expression characteristics of 12 internal reference gene candidates (18S rRNA, GAPDH, ACTB, HPRT1, RPL29, HMBS, PPIA, ALAS1, TBP, PUM1, GUSB, and B2M) were assessed by RT-qPCR. The data were analyzed by three commonly used software programs: geNorm, NormFinder, and BestKeeper. Results The use of the combination of four internal reference genes was more appropriate than the use of a single internal reference gene. The optimal combination was PPIA + GUSB + RPL29 + HPRT1 for both the cell line and tissues; while the most appropriate combination was GUSB + RPL29 + HPRT1 + HMBS for the tissues. Conclusions Our recommended internal reference genes may improve the accuracy of relative quantitation analysis of target gene expression performed by the RT-qPCR method in further gene expression research on laryngeal tumors. PMID:27957397

  10. Novel, Oxygen-Insensitive Group 5 [NiFe]-Hydrogenase in Ralstonia eutropha

    PubMed Central

    Schäfer, Caspar; Friedrich, Bärbel

    2013-01-01

    Recently, a novel group of [NiFe]-hydrogenases has been defined that appear to have a great impact in the global hydrogen cycle. This so-called group 5 [NiFe]-hydrogenase is widespread in soil-living actinobacteria and can oxidize molecular hydrogen at atmospheric levels, which suggests a high affinity of the enzyme toward H2. Here, we provide a biochemical characterization of a group 5 hydrogenase from the betaproteobacterium Ralstonia eutropha H16. The hydrogenase was designated an actinobacterial hydrogenase (AH) and is catalytically active, as shown by the in vivo H2 uptake and by activity staining in native gels. However, the enzyme does not sustain autotrophic growth on H2. The AH was purified to homogeneity by affinity chromatography and consists of two subunits with molecular masses of 65 and 37 kDa. Among the electron acceptors tested, nitroblue tetrazolium chloride was reduced by the AH at highest rates. At 30°C and pH 8, the specific activity of the enzyme was 0.3 μmol of H2 per min and mg of protein. However, an unexpectedly high Michaelis constant (Km) for H2 of 3.6 ± 0.5 μM was determined, which is in contrast to the previously proposed low Km of group 5 hydrogenases and makes atmospheric H2 uptake by R. eutropha most unlikely. Amperometric activity measurements revealed that the AH maintains full H2 oxidation activity even at atmospheric oxygen concentrations, showing that the enzyme is insensitive toward O2. PMID:23793632

  11. Respiratory Membrane endo-Hydrogenase Activity in the Microaerophile Azorhizobium caulinodans Is Bidirectional

    PubMed Central

    Sprecher, Brittany N.; Gittings, Margo E.; Ludwig, Robert A.

    2012-01-01

    Background The microaerophilic bacterium Azorhizobium caulinodans, when fixing N2 both in pure cultures held at 20 µM dissolved O2 tension and as endosymbiont of Sesbania rostrata legume nodules, employs a novel, respiratory-membrane endo-hydrogenase to oxidize and recycle endogenous H2 produced by soluble Mo-dinitrogenase activity at the expense of O2. Methods and Findings From a bioinformatic analysis, this endo-hydrogenase is a core (6 subunit) version of (14 subunit) NADH:ubiquinone oxidoreductase (respiratory complex I). In pure A. caulinodans liquid cultures, when O2 levels are lowered to <1 µM dissolved O2 tension (true microaerobic physiology), in vivo endo-hydrogenase activity reverses and continuously evolves H2 at high rates. In essence, H+ ions then supplement scarce O2 as respiratory-membrane electron acceptor. Paradoxically, from thermodynamic considerations, such hydrogenic respiratory-membrane electron transfer need largely uncouple oxidative phosphorylation, required for growth of non-phototrophic aerobic bacteria, A. caulinodans included. Conclusions A. caulinodans in vivo endo-hydrogenase catalytic activity is bidirectional. To our knowledge, this study is the first demonstration of hydrogenic respiratory-membrane electron transfer among aerobic (non-fermentative) bacteria. When compared with O2 tolerant hydrogenases in other organisms, A. caulinodans in vivo endo-hydrogenase mediated H2 production rates (50,000 pmol 109·cells−1 min−1) are at least one-thousandfold higher. Conceivably, A. caulinodans respiratory-membrane hydrogenesis might initiate H2 crossfeeding among spatially organized bacterial populations whose individual cells adopt distinct metabolic states in response to variant O2 availability. Such organized, physiologically heterogeneous cell populations might benefit from augmented energy transduction and growth rates of the populations, considered as a whole. PMID:22662125

  12. Proton Transfer in the Catalytic Cycle of [NiFe] Hydrogenases: Insight from Vibrational Spectroscopy

    PubMed Central

    2017-01-01

    Catalysis of H2 production and oxidation reactions is critical in renewable energy systems based around H2 as a clean fuel, but the present reliance on platinum-based catalysts is not sustainable. In nature, H2 is oxidized at minimal overpotential and high turnover frequencies at [NiFe] catalytic sites in hydrogenase enzymes. Although an outline mechanism has been established for the [NiFe] hydrogenases involving heterolytic cleavage of H2 followed by a first and then second transfer of a proton and electron away from the active site, details remain vague concerning how the proton transfers are facilitated by the protein environment close to the active site. Furthermore, although [NiFe] hydrogenases from different organisms or cellular environments share a common active site, they exhibit a broad range of catalytic characteristics indicating the importance of subtle changes in the surrounding protein in controlling their behavior. Here we review recent time-resolved infrared (IR) spectroscopic studies and IR spectroelectrochemical studies carried out in situ during electrocatalytic turnover. Additionally, we re-evaluate the significant body of IR spectroscopic data on hydrogenase active site states determined through more conventional solution studies, in order to highlight mechanistic steps that seem to apply generally across the [NiFe] hydrogenases, as well as steps which so far seem limited to specific groups of these enzymes. This analysis is intended to help focus attention on the key open questions where further work is needed to assess important aspects of proton and electron transfer in the mechanism of [NiFe] hydrogenases.

  13. [FeFe]- and [NiFe]-hydrogenase diversity, mechanism, and maturation.

    PubMed

    Peters, John W; Schut, Gerrit J; Boyd, Eric S; Mulder, David W; Shepard, Eric M; Broderick, Joan B; King, Paul W; Adams, Michael W W

    2015-06-01

    The [FeFe]- and [NiFe]-hydrogenases catalyze the formal interconversion between hydrogen and protons and electrons, possess characteristic non-protein ligands at their catalytic sites and thus share common mechanistic features. Despite the similarities between these two types of hydrogenases, they clearly have distinct evolutionary origins and likely emerged from different selective pressures. [FeFe]-hydrogenases are widely distributed in fermentative anaerobic microorganisms and likely evolved under selective pressure to couple hydrogen production to the recycling of electron carriers that accumulate during anaerobic metabolism. In contrast, many [NiFe]-hydrogenases catalyze hydrogen oxidation as part of energy metabolism and were likely key enzymes in early life and arguably represent the predecessors of modern respiratory metabolism. Although the reversible combination of protons and electrons to generate hydrogen gas is the simplest of chemical reactions, the [FeFe]- and [NiFe]-hydrogenases have distinct mechanisms and differ in the fundamental chemistry associated with proton transfer and control of electron flow that also help to define catalytic bias. A unifying feature of these enzymes is that hydrogen activation itself has been restricted to one solution involving diatomic ligands (carbon monoxide and cyanide) bound to an Fe ion. On the other hand, and quite remarkably, the biosynthetic mechanisms to produce these ligands are exclusive to each type of enzyme. Furthermore, these mechanisms represent two independent solutions to the formation of complex bioinorganic active sites for catalyzing the simplest of chemical reactions, reversible hydrogen oxidation. As such, the [FeFe]- and [NiFe]-hydrogenases are arguably the most profound case of convergent evolution. This article is part of a Special Issue entitled: Fe/S proteins: Analysis, structure, function, biogenesis and diseases.

  14. Purification and characterization of the hydrogen uptake hydrogenase from the hyperthermophilic archaebacterium Pyrodictium brockii.

    PubMed Central

    Pihl, T D; Maier, R J

    1991-01-01

    Pyrodictium brockii is a hyperthermophilic archaebacterium with an optimal growth temperature of 105 degrees C. P. brockii is also a chemolithotroph, requiring H2 and CO2 for growth. We have purified the hydrogen uptake hydrogenase from membranes of P. brockii by reactive red affinity chromatography and sucrose gradient centrifugation. The molecular mass of the holoenzyme was 118,000 +/- 19,000 Da in sucrose gradients. The holoenzyme consisted of two subunits by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The large subunit had a molecular mass of 66,000 Da, and the small subunit had a molecular mass of 45,000 Da. Colorometric analysis of Fe and S content in reactive red-purified hydrogenase revealed 8.7 +/- 0.6 mol of Fe and 6.2 +/- 1.2 mol of S per mol of hydrogenase. Growth of cells in 63NiCl2 resulted in label incorporation into reactive red-purified hydrogenase. Growth of cells in 63NiCl2 resulted in label incorporation into reactive red-purified hydrogenase. Temperature stability studies indicated that the membrane-bound form of the enzyme was more stable than the solubilized purified form over a period of minutes with respect to temperature. However, the membranes were not able to protect the enzyme from thermal inactivation over a period of hours. The artificial electron acceptor specificity of the pure enzyme was similar to that of the membrane-bound form, but the purified enzyme was able to evolve H2 in the presence of reduced methyl viologen. The Km of membrane-bound hydrogenase for H2 was approximately 19 microM with methylene blue as the electron acceptor, whereas the purified enzyme had a higher Km value. Images PMID:1900502

  15. Hydrogen Production by a Hyperthermophilic Membrane-Bound Hydrogenase in Soluble Nanolipoprotein Particles

    SciTech Connect

    Baker, S E; Hopkins, R C; Blanchette, C; Walsworth, V; Sumbad, R; Fischer, N; Kuhn, E; Coleman, M; Chromy, B; Letant, S; Hoeprich, P; Adams, M W; Henderson, P T

    2008-10-22

    Hydrogenases constitute a promising class of enzymes for ex vivo hydrogen production. Implementation of such applications is currently hindered by oxygen sensitivity and, in the case of membrane-bound hydrogenases (MBH), poor water solubility. Nanolipoprotein particles (NLPs), formed from apolipoproteins and phospholipids, offer a novel means to incorporate MBH into in a well-defined water-soluble matrix that maintains the enzymatic activity and is amenable to incorporation into more complex architectures. We report the synthesis, hydrogen-evolving activity and physical characterization of the first MBH-NLP assembly. This may ultimately lead to the development of biomimetic hydrogen production devices.

  16. Determination of the hydrogenase status of individual legume nodules by a methylene blue reduction assay.

    PubMed

    Lambert, G R; Hanus, F J; Russell, S A; Evans, H J

    1985-08-01

    We adapted a method for the rapid screening of colonies of free-living Rhizobium japonicum for hydrogenase activity to determine the hydrogenase status of individual soybean nodules. Crude bacteroid suspensions from nodules containing strains known to be hydrogen uptake positive (Hup) caused a localized decolorization of filter paper disks, whereas suspensions from nodules arising from inoculation with hydrogen uptake-negative (Hup) mutants or strains did not decolorize the disks. The reliability of the method was demonstrated by its successful application to 29 slow-growing rhizobia. The Hup phenotype on methylene blue filters agreed with that determined amperometrically with either methylene blue or oxygen as the electron acceptor.

  17. Production and purification of a soluble hydrogenase from Ralstonia eutropha H16 for potential hydrogen fuel cell applications.

    PubMed

    Jugder, Bat-Erdene; Lebhar, Helene; Aguey-Zinsou, Kondo-Francois; Marquis, Christopher P

    2016-01-01

    The soluble hydrogenase (SH) from Ralstonia eutropha H16 is a promising candidate enzyme for H2-based biofuel application as it favours H2 oxidation and is relatively oxygen-tolerant. In this report, bioprocess development studies undertaken to produce and purify an active SH are described, based on the methods previously reported [1], [2], [3], [4]. Our modifications are: •Upstream method optimizations were undertaken on heterotrophic growth media and cell lysis involving ultrasonication.•Two anion exchangers (Q Sepharose and RESOURCE Q) and size exclusion chromatographic (Superdex 200) matrices were successfully employed for purification of a hexameric SH from R. eutropha.•The H2 oxidizing activity of the SH was demonstrated spectrophotometrically in solution and also immobilized on an EPG electrode using cyclic voltammetry.

  18. Macular xanthophylls, lipoprotein-related genes, and age-related macular degeneration1234

    PubMed Central

    Koo, Euna; Neuringer, Martha; SanGiovanni, John Paul

    2014-01-01

    Plant-based macular xanthophylls (MXs; lutein and zeaxanthin) and the lutein metabolite meso-zeaxanthin are the major constituents of macular pigment, a compound concentrated in retinal areas that are responsible for fine-feature visual sensation. There is an unmet need to examine the genetics of factors influencing regulatory mechanisms and metabolic fates of these 3 MXs because they are linked to processes implicated in the pathogenesis of age-related macular degeneration (AMD). In this work we provide an overview of evidence supporting a molecular basis for AMD-MX associations as they may relate to DNA sequence variation in AMD- and lipoprotein-related genes. We recognize a number of emerging research opportunities, barriers, knowledge gaps, and tools offering promise for meaningful investigation and inference in the field. Overviews on AMD- and high-density lipoprotein (HDL)–related genes encoding receptors, transporters, and enzymes affecting or affected by MXs are followed with information on localization of products from these genes to retinal cell types manifesting AMD-related pathophysiology. Evidence on the relation of each gene or gene product with retinal MX response to nutrient intake is discussed. This information is followed by a review of results from mechanistic studies testing gene-disease relations. We then present findings on relations of AMD with DNA sequence variants in MX-associated genes. Our conclusion is that AMD-associated DNA variants that influence the actions and metabolic fates of HDL system constituents should be examined further for concomitant influence on MX absorption, retinal tissue responses to MX intake, and the capacity to modify MX-associated factors and processes implicated in AMD pathogenesis. PMID:24829491

  19. Gene-environment interactions of circadian-related genes for cardiometabolic traits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Common circadian-related gene variants associate with increased risk for metabolic alterations including type 2 diabetes. However, little is known about whether diet and sleep could modify associations between circadian-related variants (CLOCK-rs1801260, CRY2-rs11605924, MTNR1B-rs1387153, MTNR1B-rs1...

  20. Validation of commonly used reference genes for sleep-related gene expression studies

    PubMed Central

    Lee, Kil S; Alvarenga, Tathiana A; Guindalini, Camila; Andersen, Monica L; Castro, Rosa MRPS; Tufik, Sergio

    2009-01-01

    Background Sleep is a restorative process and is essential for maintenance of mental and physical health. In an attempt to understand the complexity of sleep, multidisciplinary strategies, including genetic approaches, have been applied to sleep research. Although quantitative real time PCR has been used in previous sleep-related gene expression studies, proper validation of reference genes is currently lacking. Thus, we examined the effect of total or paradoxical sleep deprivation (TSD or PSD) on the expression stability of the following frequently used reference genes in brain and blood: beta-actin (b-actin), beta-2-microglobulin (B2M), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and hypoxanthine guanine phosphoribosyl transferase (HPRT). Results Neither TSD nor PSD affected the expression stability of all tested genes in both tissues indicating that b-actin, B2M, GAPDH and HPRT are appropriate reference genes for the sleep-related gene expression studies. In order to further verify these results, the relative expression of brain derived neurotrophic factor (BDNF) and glycerol-3-phosphate dehydrogenase1 (GPD1) was evaluated in brain and blood, respectively. The normalization with each of four reference genes produced similar pattern of expression in control and sleep deprived rats, but subtle differences in the magnitude of expression fold change were observed which might affect the statistical significance. Conclusion This study demonstrated that sleep deprivation does not alter the expression stability of commonly used reference genes in brain and blood. Nonetheless, the use of multiple reference genes in quantitative RT-PCR is required for the accurate results. PMID:19445681

  1. Combinatorial gene regulation by modulation of relative pulse timing

    PubMed Central

    Lin, Yihan; Sohn, Chang Ho; Dalal, Chiraj K.; Cai, Long; Elowitz, Michael B.

    2015-01-01

    Studies of individual living cells have revealed that many transcription factors activate in dynamic, and often stochastic, pulses within the same cell. However, it has remained unclear whether cells might modulate the relative timing of these pulses to control gene expression. Here, using quantitative single-cell time-lapse imaging of Saccharomyces cerevisiae, we show that the pulsatile transcription factors Msn2 and Mig1 combinatorially regulate their target genes through modulation of their relative pulse timing. The activator Msn2 and repressor Mig1 pulsed in either a temporally overlapping or non-overlapping manner during their transient response to different inputs, with only the non-overlapping dynamics efficiently activating target gene expression. Similarly, under constant environmental conditions, where Msn2 and Mig1 exhibit sporadic pulsing, glucose concentration modulated the temporal overlap between pulses of the two factors. Together, these results reveal a time-based mode of combinatorial gene regulation. Regulation through relative signal timing is common in engineering and neurobiology, and these results suggest that it could also function broadly within the signaling and regulatory systems of the cell. PMID:26466562

  2. Highlights of glycosylation and adhesion related genes involved in myogenesis

    PubMed Central

    2014-01-01

    Background Myogenesis is initiated by myoblast differentiation and fusion to form myotubes and muscle fibres. A population of myoblasts, known as satellite cells, is responsible for post-natal growth of muscle and for its regeneration. This differentiation requires many changes in cell behaviour and its surrounding environment. These modifications are tightly regulated over time and can be characterized through the study of changes in gene expression associated with this process. During the initial myogenesis steps, using the myoblast cell line C2C12 as a model, Janot et al. (2009) showed significant variations in expression for genes involved in pathways of glycolipid synthesis. In this study we used murine satellite cells (MSC) and their ability to differentiate into myotubes or early fat storage cells to select glycosylation related genes whose variation of expression is myogenesis specific. Results The comparison of variant genes in both MSC differentiation pathways identified 67 genes associated with myogenesis. Comparison with data obtained for C2C12 revealed that only 14 genes had similar expression profiles in both cell types and that 17 genes were specifically regulated in MSC. Results were validated statistically by without a priori clustering. Classification according to protein function encoded by these 31 genes showed that the main regulated cellular processes during this differentiation were (i) remodeling of the extracellular matrix, particularly, sulfated structures, (ii) down-regulation of O-mannosyl glycan biosynthesis, and (iii) an increase in adhesion protein expression. A functional study was performed on Itga11 and Chst5 encoding two highly up-regulated proteins. The inactivation of Chst5 by specific shRNA delayed the fusion of MSC. By contrast, the inactivation of Itga11 by specific shRNA dramatically decreased the fusion ability of MSC. This result was confirmed by neutralization of Itga11 product by specific antibodies. Conclusions Our

  3. Gene expression profiles of autophagy-related genes in multiple sclerosis.

    PubMed

    Igci, Mehri; Baysan, Mehmet; Yigiter, Remzi; Ulasli, Mustafa; Geyik, Sirma; Bayraktar, Recep; Bozgeyik, İbrahim; Bozgeyik, Esra; Bayram, Ali; Cakmak, Ecir Ali

    2016-08-15

    Multiple sclerosis (MS) is an imflammatory disease of central nervous system caused by genetic and environmental factors that remain largely unknown. Autophagy is the process of degradation and recycling of damaged cytoplasmic organelles, macromolecular aggregates, and long-lived proteins. Malfunction of autophagy contributes to the pathogenesis of neurological diseases, and autophagy genes may modulate the T cell survival. We aimed to examine the expression levels of autophagy-related genes. The blood samples of 95 unrelated patients (aged 17-65years, 37 male, 58 female) diagnosed as MS and 95 healthy controls were used to extract the RNA samples. After conversion to single stranded cDNA using polyT priming: the targeted genes were pre-amplified, and 96×78 (samples×primers) qRT-PCR reactions were performed for each primer pair on each sample on a 96.96 array of Fluidigm BioMark™. Compared to age- and sex-matched controls, gene expression levels of ATG16L2, ATG9A, BCL2, FAS, GAA, HGS, PIK3R1, RAB24, RGS19, ULK1, FOXO1, HTT were significantly altered (false discovery rate<0.05). Thus, altered expression levels of several autophagy related genes may affect protein levels, which in turn would influence the activity of autophagy, or most probably, those genes might be acting independent of autophagy and contributing to MS pathogenesis as risk factors. The indeterminate genetic causes leading to alterations in gene expressions require further analysis.

  4. Gene-Diet Interactions in Age-Related Macular Degeneration.

    PubMed

    Rowan, Sheldon; Taylor, Allen

    2016-01-01

    Age-related macular degeneration (AMD) is a prevalent blinding disease, accounting for roughly 50 % of blindness in developed nations. Very significant advances have been made in terms of discovering genetic susceptibilities to AMD as well as dietary risk factors. To date, nutritional supplementation is the only available treatment option for the dry form of the disease known to slow progression of AMD. Despite an excellent understanding of genes and nutrition in AMD, there is remarkably little known about gene-diet interactions that may identify efficacious approaches to treat individuals. This review will summarize our current understanding of gene-diet interactions in AMD with a focus on animal models and human epidemiological studies.

  5. Th17-Related Genes and Celiac Disease Susceptibility

    PubMed Central

    Medrano, Luz María; García-Magariños, Manuel; Dema, Bárbara; Espino, Laura; Maluenda, Carlos; Polanco, Isabel; Figueredo, M. Ángeles; Fernández-Arquero, Miguel; Núñez, Concepción

    2012-01-01

    Th17 cells are known to be involved in several autoimmune or inflammatory diseases. In celiac disease (CD), recent studies suggest an implication of those cells in disease pathogenesis. We aimed at studying the role of genes relevant for the Th17 immune response in CD susceptibility. A total of 101 single nucleotide polymorphisms (SNPs), mainly selected to cover most of the variability present in 16 Th17-related genes (IL23R, RORC, IL6R, IL17A, IL17F, CCR6, IL6, JAK2, TNFSF15, IL23A, IL22, STAT3, TBX21, SOCS3, IL12RB1 and IL17RA), were genotyped in 735 CD patients and 549 ethnically matched healthy controls. Case-control comparisons for each SNP and for the haplotypes resulting from the SNPs studied in each gene were performed using chi-square tests. Gene-gene interactions were also evaluated following different methodological approaches. No significant results emerged after performing the appropriate statistical corrections. Our results seem to discard a relevant role of Th17 cells on CD risk. PMID:22359581

  6. Structural aspects and immunolocalization of the F420-reducing and non-F420-reducing hydrogenases from Methanobacterium thermoautotrophicum Marburg.

    PubMed Central

    Braks, I J; Hoppert, M; Roge, S; Mayer, F

    1994-01-01

    The F420-reducing hydrogenase and the non-F420-reducing hydrogenase (EC 1.12.99.1.) were isolated from a crude extract of Methanobacterium thermoautotrophicum Marburg. Electron microscopy of the negatively stained F420-reducing hydrogenase revealed that the enzyme is a complex with a diameter of 15.6 nm. It consists of two ring-like, stacked, parallel layers each composed of three major protein masses arranged in rotational symmetry. Each of these masses appeared to be subdivided into smaller protein masses. Electron microscopy of negatively stained samples taken from intermediate steps of the purification process revealed the presence of enzyme particles bound to inside-out membrane vesicles. Linker particles of 10 to 20 kDa which mediate the attachment of the hydrogenase to the cytoplasmic membrane were seen. Immunogold labelling confirmed that the F420-reducing hydrogenase is a membrane-bound enzyme. Electron microscopy of the negatively stained purified non-F420-reducing hydrogenase revealed that the enzyme is composed of three subunits exhibiting different diameters (5, 4, and 2 to 3 nm). According to immunogold labelling experiments, approximately 70% of the non-F420-reducing hydrogenase protein molecules were located at the cell periphery; the remaining 30% were cytoplasmic. No linker particles were observed for this enzyme. Images PMID:8002593

  7. Flexible plastic bioreactors for photobiological hydrogen production by hydrogenase-deficient cyanobacteria.

    PubMed

    Kitashima, Masaharu; Masukawa, Hajime; Sakurai, Hidehiro; Inoue, Kazuhito

    2012-01-01

    Uptake hydrogenase mutant cells of the cyanobacterium Nostoc sp. PCC 7422 photobiologically produced H(2) catalyzed by nitrogenase for several days in H(2)-barrier transparent plastic bags, and accumulated H(2) in the presence of O(2) evolved by photosynthesis. Their H(2) production activity was higher in the sealed flexible bags than in stoppered serum bottles of fixed gas volume.

  8. Hydrogenase activity of mineral-associated and suspended populations of Desulfovibrio Desulfuricans Essex 6

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The interactions between sulfate-reducing microorganisms and iron oxides influence a number of important redox-sensitive biogeochemical processes including the formation of iron sulfides. Enzymes, such as hydrogenase which catalyze the reversible oxidation of molecular hydrogen, are known to mediate...

  9. Lyophilization protects [FeFe]-hydrogenases against O2-induced H-cluster degradation

    PubMed Central

    Noth, Jens; Kositzki, Ramona; Klein, Kathrin; Winkler, Martin; Haumann, Michael; Happe, Thomas

    2015-01-01

    Nature has developed an impressive repertoire of metal-based enzymes that perform complex chemical reactions under moderate conditions. Catalysts that produce molecular hydrogen (H2) are particularly promising for renewable energy applications. Unfortunately, natural and chemical H2-catalysts are often irreversibly degraded by molecular oxygen (O2). Here we present a straightforward procedure based on freeze-drying (lyophilization), that turns [FeFe]-hydrogenases, which are excellent H2-producers, but typically extremely O2-sensitive in solution, into enzymes that are fully resistant against O2. Complete dryness protects and conserves both, the [FeFe]-hydrogenase proteins and their inorganic active-site cofactor (H-cluster), when exposed to 100% O2 for days. The full H2-formation capacity is restored after solvation of the lyophilized enzymes. However, even minimal moisturizing re-establishes O2-sensitivity. The dry [FeFe]-hydrogenase material is superior also for advanced spectroscopic investigations on the H-cluster reaction mechanism. Our method provides a convenient way for long-term storage and impacts on potential biotechnological hydrogen production applications of hydrogenase enzymes. PMID:26364994

  10. The quest for a functional substrate access tunnel in FeFe hydrogenase.

    PubMed

    Lautier, Thomas; Ezanno, Pierre; Baffert, Carole; Fourmond, Vincent; Cournac, Laurent; Fontecilla-Camps, Juan C; Soucaille, Philippe; Bertrand, Patrick; Meynial-Salles, Isabelle; Léger, Christophe

    2011-01-01

    We investigated di-hydrogen transport between the solvent and the active site of FeFe hydrogenases. Substrate channels supposedly exist and serve various functions in certain redox enzymes which use or produce O2, H2, NO, CO, or N2, but the preferred paths have not always been unambiguously identified, and whether a continuous, permanent channel is an absolute requirement for transporting diatomic molecules is unknown. Here, we review the literature on gas channels in proteins and enzymes and we report on the use of site-directed mutagenesis and various kinetic methods, which proved useful for characterizing substrate access to the active site of NiFe hydrogenase to test the putative "static" H2 channel of FeFe hydrogenases. We designed 8 mutations in attempts to interfere with intramolecular diffusion by remodeling this putative route in Clostridium acetobutylicum FeFe hydrogenase, and we observed that none of them has a strong effect on any of the enzyme's kinetic properties. We suggest that H2 may diffuse either via transient cavities, or along a conserved water-filled channel. Nitrogenase sets a precedent for the involvement of a hydrophilic channel to conduct hydrophobic molecules.

  11. Coordinate expression of hydrogenase and ribulose bisphosphate carboxylase in Rhizobium japonicum Hupc mutants.

    PubMed Central

    Merberg, D; Maier, R J

    1984-01-01

    In contrast to the wild type, H2 uptake-constitutive mutants of Rhizobium japonicum expressed both hydrogenase and ribulose bisphosphate carboxylase activities when grown heterotrophically. However, as bacteroids from soybean root nodules, the H2 uptake-constitutive mutants, like the wild type, did not express ribulose bisphosphate carboxylase activity. PMID:6384199

  12. Role of the NiFe Hydrogenase Hya in Oxidative Stress Defense in Geobacter sulfurreducens

    PubMed Central

    Lovley, Derek R.

    2012-01-01

    Geobacter sulfurreducens, an Fe(III)-reducing deltaproteobacterium found in anoxic subsurface environments, contains 4 NiFe hydrogenases. Hyb, a periplasmically oriented membrane-bound NiFe hydrogenase, is essential for hydrogen-dependent growth. The functions of the three other hydrogenases are unknown. We show here that the other periplasmically oriented membrane-bound NiFe hydrogenase, Hya, is necessary for growth after exposure to oxidative stress when hydrogen or a highly limiting concentration of acetate is the electron source. The beneficial impact of Hya on growth was dependent on the presence of H2 in the atmosphere. Moreover, the Hya-deficient strain was more sensitive to the presence of superoxide or hydrogen peroxide. Hya was also required to safeguard Hyb hydrogen oxidation activity after exposure to O2. Overexpression studies demonstrated that Hya was more resistant to oxidative stress than Hyb. Overexpression of Hya also resulted in the creation of a recombinant strain better fitted for exposure to oxidative stress than wild-type G. sulfurreducens. These results demonstrate that one of the physiological roles of the O2-resistant Hya is to participate in the oxidative stress defense of G. sulfurreducens. PMID:22366414

  13. A Cell-Free Microtiter Plate Screen for Improved [FeFe] Hydrogenases

    PubMed Central

    Stapleton, James A.; Swartz, James R.

    2010-01-01

    Background [FeFe] hydrogenase enzymes catalyze the production and dissociation of H2, a potential renewable fuel. Attempts to exploit these catalysts in engineered systems have been hindered by the biotechnologically inconvenient properties of the natural enzymes, including their extreme oxygen sensitivity. Directed evolution has been used to improve the characteristics of a range of natural catalysts, but has been largely unsuccessful for [FeFe] hydrogenases because of a lack of convenient screening platforms. Methodology/Principal Findings Here we describe an in vitro screening technology for oxygen-tolerant and highly active [FeFe] hydrogenases. Despite the complexity of the protocol, we demonstrate a level of reproducibility that allows moderately improved mutants to be isolated. We have used the platform to identify a mutant of the Chlamydomonas reinhardtii [FeFe] hydrogenase HydA1 with a specific activity ∼4 times that of the wild-type enzyme. Conclusions/Significance Our results demonstrate the feasibility of using the screen presented here for large-scale efforts to identify improved biocatalysts for energy applications. The system is based on our ability to activate these complex enzymes in E. coli cell extracts, which allows unhindered access to the protein maturation and assay environment. PMID:20479937

  14. Molecular cloning of allelopathy related genes and their relation to HHO in Eupatorium adenophorum.

    PubMed

    Guo, Huiming; Pei, Xixiang; Wan, Fanghao; Cheng, Hongmei

    2011-10-01

    In this study, conserved sequence regions of HMGR, DXR, and CHS (encoding 3-hydroxy-3-methylglutaryl-CoA reductase, 1-deoxyxylulose-5-phosphate reductoisomerase and chalcone synthase, respectively) were amplified by reverse transcriptase (RT)-PCR from Eupatorium adenophorum. Quantitative real-time PCR showed that the expression of CHS was related to the level of HHO, an allelochemical isolated from E. adenophorum. Semi-quantitative RT-PCR showed that there was no significant difference in expression of genes among three different tissues, except for CHS. Southern blotting indicated that at least three CHS genes are present in the E. adenophorum genome. A full-length cDNA from CHS genes (named EaCHS1, GenBank ID: FJ913888) was cloned. The 1,455 bp cDNA contained an open reading frame (1,206 bp) encoding a protein of 401 amino acids. Preliminary bioinformatics analysis of EaCHS1 revealed that EaCHS1 was a member of CHS family, the subcellular localization predicted that EaCHS1 was a cytoplasmic protein. To the best of our knowledge, this is the first report of conserved sequences of these genes and of a full-length EaCHS1 gene in E. adenophorum. The results indicated that CHS gene is related to allelopathy of E. adenophorum.

  15. Novel H2-oxidizing [NiFeSe]hydrogenase from Desulfovibrio vulgaris Miyazaki F.

    PubMed

    Nonaka, Kyoshiro; Nguyen, Nga T; Yoon, Ki-Seok; Ogo, Seiji

    2013-04-01

    [NiFeSe]hydrogenases are promising biocatalysts in H2-based technology due to their high catalytic activity and O2-stability. Here, we report purification and characterization of a new membrane-associated [NiFeSe]hydrogenase from Desulfovibrio vulgaris Miyazaki F ([NiFeSe]DvMF). The [NiFeSe]DvMF was composed of two subunits, corresponding to a large subunit of 58.3 kDa and a small subunit of 29.3 kDa determined by SDS-PAGE. Unlike conventional [NiFeSe]hydrogenases having catalytic bias toward H2-production, the [NiFeSe]DvMF showed 11-fold higher specific activity of H2-oxidation (2444 U/mg) than that of H2-production (217 U/mg). At the optimal reaction temperature of the enzyme (65°C), the specific activity of H2-oxidation could reach up to 21,553 U/mg. Amperometric assays of the [NiFeSe]DvMF clearly indicated that the enzyme had a remarkable O2-stability. According to the amino acid sequence alignment, the conserved cysteine residue at position 281 in medial cluster of other [NiFeSe]hydrogenases was specifically replaced by a serine residue (Ser281) in the [NiFeSe]DvMF. These results indicate that the [NiFeSe]DvMF can play as a new H2-oxidizing and O2-stable biocatalyst, along with providing helpful insights into the structure-function relationship of [NiFeSe]hydrogenases.

  16. Purification and properties of the membrane-associated coenzyme F420-reducing hydrogenase from Methanobacterium formicicum.

    PubMed Central

    Baron, S F; Ferry, J G

    1989-01-01

    The membrane-associated coenzyme F420-reducing hydrogenase of Methanobacterium formicicum was purified 87-fold to electrophoretic homogeneity. The enzyme contained alpha, beta, and gamma subunits (molecular weights of 43,000, 36,700, and 28,800, respectively) and formed aggregates (molecular weight, 1,020,000) of a coenzyme F420-active alpha 1 beta 1 gamma 1 trimer (molecular weight, 109,000). The hydrogenase contained 1 mol of flavin adenine dinucleotide (FAD), 1 mol of nickel, 12 to 14 mol of iron, and 11 mol of acid-labile sulfide per mol of the 109,000-molecular-weight species, but no selenium. The isoelectric point was 5.6. The amino acid sequence I-N3-P-N2-R-N1-EGH-N6-V (where N is any amino acid) was conserved in the N-termini of the alpha subunits of the F420-hydrogenases from M. formicicum and Methanobacterium thermoautotrophicum and of the largest subunits of nickel-containing hydrogenases from Desulfovibrio baculatus, Desulfovibrio gigas, and Rhodobacter capsulatus. The purified F420-hydrogenase required reductive reactivation before assay. FAD dissociated from the enzyme during reactivation unless potassium salts were present, yielding deflavoenzyme that was unable to reduce coenzyme F420. Maximal coenzyme F420-reducing activity was obtained at 55 degrees C and pH 7.0 to 7.5, and with 0.2 to 0.8 M KCl in the reaction mixture. The enzyme catalyzed H2 production at a rate threefold lower than that for H2 uptake and reduced coenzyme F420, methyl viologen, flavins, and 7,8-didemethyl-8-hydroxy-5-deazariboflavin. Specific antiserum inhibited the coenzyme F420-dependent but not the methyl viologen-dependent activity of the purified enzyme. Images PMID:2738024

  17. Impact of obesity-related genes in Spanish population

    PubMed Central

    2013-01-01

    Background The objective was to investigate the association between BMI and single nucleotide polymorphisms previously identified of obesity-related genes in two Spanish populations. Forty SNPs in 23 obesity-related genes were evaluated in a rural population characterized by a high prevalence of obesity (869 subjects, mean age 46 yr, 62% women, 36% obese) and in an urban population (1425 subjects, mean age 54 yr, 50% women, 19% obese). Genotyping was assessed by using SNPlex and PLINK for the association analysis. Results Polymorphisms of the FTO were significantly associated with BMI, in the rural population (beta 0.87, p-value <0.001). None of the other SNPs showed significant association after Bonferroni correction in the two populations or in the pooled analysis. A weighted genetic risk score (wGRS) was constructed using the risk alleles of the Tag-SNPs with a positive Beta parameter in both populations. From the first to the fifth quintile of the score, the BMI increased 0.45 kg/m2 in Hortega and 2.0 kg/m2 in Pizarra. Overall, the obesity predictive value was low (less than 1%). Conclusion The risk associated with polymorphisms is low and the overall effect on BMI or obesity prediction is minimal. A weighted genetic risk score based on genes mainly acting through central nervous system mechanisms was associated with BMI but it yields minimal clinical prediction for the obesity risk in the general population. PMID:24267414

  18. Primary function analysis of human mental retardation related gene CRBN.

    PubMed

    Xin, Wang; Xiaohua, Ni; Peilin, Chen; Xin, Chen; Yaqiong, Sun; Qihan, Wu

    2008-06-01

    The mutation of human cereblon gene (CRBN) is revealed to be related with mild mental retardation. Since the molecular characteristics of CRBN have not been well presented, we investigated the general properties of CRBN. We analyzed its gene structure and protein homologues. The CRBN protein might belong to a family of adenosine triphosphate (ATP)-dependent Lon protease. We also found that CRBN was widely expressed in different tissues, and the expression level in testis is significantly higher than other tissues. This may suggested it could play some important roles in several other tissues besides brain. Transient transfection experiment in AD 293 cell lines suggested that both CRBN and CRBN mutant (nucleotide position 1,274(C > T)) are located in the whole cells. This may suggest new functions of CRBN in cell nucleolus besides its mitochondria protease activity in cytoplasm.

  19. [Progress on the research of apomixis related genes in plant].

    PubMed

    Hu, Long-Xing

    2008-02-01

    Apomixis is a special asexual reproduction that plants can form embryo and produce progenies via seeds without sperm-egg fusion. Since apomitic embryo is a complete genetic clone of maternal parent without the participation of sperm, it is an ideal pathway to fix and utilize hybrid vigor and has unpredictable potential value in crop breeding, thus be called "the asexual revolution". According to the formation of the apomitic embryos, apomixis could be divided into three major types: diplospory, apospory and adventive embryony. This review is focused on the recent research progresses of related genes in the development of embryo, endosperm, and miosis, and several genes may involved in the regulation of apomitic development.

  20. Glycan-related gene expression signatures in breast cancer subtypes; relation to survival.

    PubMed

    Potapenko, Ivan O; Lüders, Torben; Russnes, Hege G; Helland, Åslaug; Sørlie, Therese; Kristensen, Vessela N; Nord, Silje; Lingjærde, Ole C; Børresen-Dale, Anne-Lise; Haakensen, Vilde D

    2015-04-01

    Alterations in glycan structures are early signs of malignancy and have recently been proposed to be in part a driving force behind malignant transformation. Here, we explore whether differences in expression of genes related to the process of glycosylation exist between breast carcinoma subtypes - and look for their association to clinical parameters. Five expression datasets of 454 invasive breast carcinomas, 31 ductal carcinomas in situ (DCIS), and 79 non-malignant breast tissue samples were analysed. Results were validated in 1960 breast carcinomas. 419 genes encoding glycosylation-related proteins were selected. The DCIS samples appeared expression-wise similar to carcinomas, showing altered gene expression related to glycosaminoglycans (GAGs) and N-glycans when compared to non-malignant samples. In-situ lesions with different aggressiveness potentials demonstrated changes in glycosaminoglycan sulfation and adhesion proteins. Subtype-specific expression patterns revealed down-regulation of genes encoding glycan-binding proteins in the luminal A and B subtypes. Clustering basal-like samples using a consensus list of genes differentially expressed across discovery datasets produced two clusters with significantly differing prognosis in the validation dataset. Finally, our analyses suggest that glycolipids may play an important role in carcinogenesis of breast tumors - as demonstrated by association of B3GNT5 and UGCG genes to patient survival. In conclusion, most glycan-specific changes occur early in the carcinogenic process. We have identified glycan-related alterations specific to breast cancer subtypes including a prognostic signature for two basal-like subgroups. Future research in this area may potentially lead to markers for better prognostication and treatment stratification of breast cancer patients.

  1. Aging related methylation influences the gene expression of key control genes in colorectal cancer and adenoma

    PubMed Central

    Galamb, Orsolya; Kalmár, Alexandra; Barták, Barbara Kinga; Patai, Árpád V; Leiszter, Katalin; Péterfia, Bálint; Wichmann, Barnabás; Valcz, Gábor; Veres, Gábor; Tulassay, Zsolt; Molnár, Béla

    2016-01-01

    AIM To analyze colorectal carcinogenesis and age-related DNA methylation alterations of gene sequences associated with epigenetic clock CpG sites. METHODS In silico DNA methylation analysis of 353 epigenetic clock CpG sites published by Steve Horvath was performed using methylation array data for a set of 123 colonic tissue samples [64 colorectal cancer (CRC), 42 adenoma, 17 normal; GEO accession number: GSE48684]. Among the differentially methylated age-related genes, secreted frizzled related protein 1 (SFRP1) promoter methylation was further investigated in colonic tissue from 8 healthy adults, 19 normal children, 20 adenoma and 8 CRC patients using bisulfite-specific PCR followed by methylation-specific high resolution melting (MS-HRM) analysis. mRNA expression of age-related “epigenetic clock” genes was studied using Affymetrix HGU133 Plus2.0 whole transcriptome data of 153 colonic biopsy samples (49 healthy adult, 49 adenoma, 49 CRC, 6 healthy children) (GEO accession numbers: GSE37364, GSE10714, GSE4183, GSE37267). Whole promoter methylation analysis of genes showing inverse DNA methylation-gene expression data was performed on 30 colonic samples using methyl capture sequencing. RESULTS Fifty-seven age-related CpG sites including hypermethylated PPP1R16B, SFRP1, SYNE1 and hypomethylated MGP, PIPOX were differentially methylated between CRC and normal tissues (P < 0.05, Δβ ≥ 10%). In the adenoma vs normal comparison, 70 CpG sites differed significantly, including hypermethylated DKK3, SDC2, SFRP1, SYNE1 and hypomethylated CEMIP, SPATA18 (P < 0.05, Δβ ≥ 10%). In MS-HRM analysis, the SFRP1 promoter region was significantly hypermethylated in CRC (55.0% ± 8.4 %) and adenoma tissue samples (49.9% ± 18.1%) compared to normal adult (5.2% ± 2.7%) and young (2.2% ± 0.7%) colonic tissue (P < 0.0001). DNA methylation of SFRP1 promoter was slightly, but significantly increased in healthy adults compared to normal young samples (P < 0.02). This correlated

  2. Gene mutations in primary ciliary dyskinesia related to otitis media.

    PubMed

    Mata, Manuel; Milian, Lara; Armengot, Miguel; Carda, Carmen

    2014-03-01

    Otitis media with effusion (OME) is the most common cause of conductive hearing loss in children and is strongly associated with primary ciliary dyskinesia (PCD). Approximately half of the children with PCD require otolaryngology care, posing a major problem in this population. Early diagnosis of PCD is critical in these patients to minimise the collateral damage related to OME. The current gold standard for PCD diagnosis requires determining ciliary structure defects by transmission electron microscopy (TEM) or clearly documenting ciliary dysfunction via digital high-speed video microscopy (DHSV). Although both techniques are useful for PCD diagnosis, they have limitations and need to be supported by new methodologies, including genetic analysis of genes related to PCD. In this article, we review classical and recently associated mutations related to ciliary alterations leading to PCD, which can be useful for early diagnosis of the disease and subsequent early management of OME.

  3. Association and gene-gene interactions study of reelin signaling pathway related genes with autism in the Han Chinese population.

    PubMed

    Shen, Yidong; Xun, Guanglei; Guo, Hui; He, Yiqun; Ou, Jianjun; Dong, Huixi; Xia, Kun; Zhao, Jingping

    2016-04-01

    Autism is a neurodevelopmental disorder with unclear etiology. Reelin had been proposed to participate in the etiology of autism due to its important role in brain development. The goal of this study was to explore the association and gene-gene interactions of reelin signaling pathway related genes (RELN, VLDLR, LRP8, DAB1, FYN, and CDK5) with autism in Han Chinese population. Genotyping data of the six genes were obtained from a recent genome-wide association study performed in 430 autistic children who fulfilled the DSM-IV-TR criteria for autistic disorder, and 1,074 healthy controls. Single marker case-control association analysis and haplotype case-control association analysis were conducted after the data was screened. Multifactor dimensionality reduction (MDR) was applied to further test gene-gene interactions. Neither the single marker nor the haplotype association tests found any significant difference between the autistic group and the control group after permutation test of 1,000 rounds. The 4-locus MDR model (comprising rs6143734, rs1858782, rs634500, and rs1924267 which belong to RELN and DAB1) was determined to be the model with the highest cross-validation consistency (CVC) and testing balanced accuracy. The results indicate that an interaction between RELN and DAB1 may increase the risk of autism in the Han Chinese population. Furthermore, it can also be inferred that the involvement of RELN in the etiology of autism would occur through interaction with DAB1.

  4. A redox hydrogel protects the O2 -sensitive [FeFe]-hydrogenase from Chlamydomonas reinhardtii from oxidative damage.

    PubMed

    Oughli, Alaa Alsheikh; Conzuelo, Felipe; Winkler, Martin; Happe, Thomas; Lubitz, Wolfgang; Schuhmann, Wolfgang; Rüdiger, Olaf; Plumeré, Nicolas

    2015-10-12

    The integration of sensitive catalysts in redox matrices opens up the possibility for their protection from deactivating molecules such as O2 . [FeFe]-hydrogenases are enzymes catalyzing H2 oxidation/production which are irreversibly deactivated by O2 . Therefore, their use under aerobic conditions has never been achieved. Integration of such hydrogenases in viologen-modified hydrogel films allows the enzyme to maintain catalytic current for H2 oxidation in the presence of O2 , demonstrating a protection mechanism independent of reactivation processes. Within the hydrogel, electrons from the hydrogenase-catalyzed H2 oxidation are shuttled to the hydrogel-solution interface for O2 reduction. Hence, the harmful O2 molecules do not reach the hydrogenase. We illustrate the potential applications of this protection concept with a biofuel cell under H2 /O2 mixed feed.

  5. The AbrB2 autorepressor, expressed from an atypical promoter, represses the hydrogenase operon to regulate hydrogen production in Synechocystis strain PCC6803.

    PubMed

    Dutheil, Jérémy; Saenkham, Panatda; Sakr, Samer; Leplat, Christophe; Ortega-Ramos, Marcia; Bottin, Hervé; Cournac, Laurent; Cassier-Chauvat, Corinne; Chauvat, Franck

    2012-10-01

    We have thoroughly investigated the abrB2 gene (sll0822) encoding an AbrB-like regulator in the wild-type strain of the model cyanobacterium Synechocystis strain PCC6803. We report that abrB2 is expressed from an active but atypical promoter that possesses an extended -10 element (TGTAATAT) that compensates for the absence of a -35 box. Strengthening the biological significance of these data, we found that the occurrence of an extended -10 promoter box and the absence of a -35 element are two well-conserved features in abrB2 genes from other cyanobacteria. We also show that AbrB2 is an autorepressor that is dispensable to cell growth under standard laboratory conditions. Furthermore, we demonstrate that AbrB2 also represses the hox operon, which encodes the Ni-Fe hydrogenase of biotechnological interest, and that the hox operon is weakly expressed even though it possesses the two sequences resembling canonical -10 and -35 promoter boxes. In both the AbrB2-repressed promoters of the abrB2 gene and the hox operon, we found a repeated DNA motif [TT-(N(5))-AAC], which could be involved in AbrB2 repression. Supporting this hypothesis, we found that a TT-to-GG mutation of one of these elements increased the activity of the abrB2 promoter. We think that our abrB2-deleted mutant with increased expression of the hox operon and hydrogenase activity, together with the reporter plasmids we constructed to analyze the abrB2 gene and the hox operon, will serve as useful tools to decipher the function and the regulation of hydrogen production in Synechocystis.

  6. Gene duplication, exon gain and neofunctionalization of OEP16-related genes in land plants.

    PubMed

    Drea, Sinéad C; Lao, Nga T; Wolfe, Kenneth H; Kavanagh, Tony A

    2006-06-01

    OEP16, a channel protein of the outer membrane of chloroplasts, has been implicated in amino acid transport and in the substrate-dependent import of protochlorophyllide oxidoreductase A. Two major clades of OEP16-related sequences were identified in land plants (OEP16-L and OEP16-S), which arose by a gene duplication event predating the divergence of seed plants and bryophytes. Remarkably, in angiosperms, OEP16-S genes evolved by gaining an additional exon that extends an interhelical loop domain in the pore-forming region of the protein. We analysed the sequence, structure and expression of the corresponding Arabidopsis genes (atOEP16-S and atOEP16-L) and demonstrated that following duplication, both genes diverged in terms of expression patterns and coding sequence. AtOEP16-S, which contains multiple G-box ABA-responsive elements (ABREs) in the promoter region, is regulated by ABI3 and ABI5 and is strongly expressed during the maturation phase in seeds and pollen grains, both desiccation-tolerant tissues. In contrast, atOEP-L, which lacks promoter ABREs, is expressed predominantly in leaves, is induced strongly by low-temperature stress and shows weak induction in response to osmotic stress, salicylic acid and exogenous ABA. Our results indicate that gene duplication, exon gain and regulatory sequence evolution each played a role in the divergence of OEP16 homologues in plants.

  7. Estrogen-related receptor alpha modulates the expression of adipogenesis-related genes during adipocyte differentiation.

    PubMed

    Ijichi, Nobuhiro; Ikeda, Kazuhiro; Horie-Inoue, Kuniko; Yagi, Ken; Okazaki, Yasushi; Inoue, Satoshi

    2007-07-06

    Estrogen-related receptor alpha (ERRalpha) is an orphan nuclear receptor that regulates cellular energy metabolism by modulating gene expression involved in fatty acid oxidation and mitochondrial biogenesis in brown adipose tissue. However, the physiological role of ERRalpha in adipogenesis and white adipose tissue development has not been well studied. Here, we show that ERRalpha and ERRalpha-related transcriptional coactivators, peroxisome proliferator-activated receptor gamma (PPARgamma) coactivator-1alpha (PGC-1alpha) and PGC-1beta, can be up-regulated in 3T3-L1 preadipocytes at mRNA levels under the adipogenic differentiation condition including the inducer of cAMP, glucocorticoid, and insulin. Gene knockdown by ERRalpha-specific siRNA results in mRNA down-regulation of fatty acid binding protein 4, PPARgamma, and PGC-1alpha in 3T3-L1 cells in the adipogenesis medium. ERRalpha and PGC-1beta mRNA expression can be also up-regulated in another preadipocyte lineage DFAT-D1 cells and a pluripotent mesenchymal cell line C3H10T1/2 under the differentiation condition. Furthermore, stable expression of ERRalpha in 3T3-L1 cells up-regulates adipogenic marker genes and promotes triglyceride accumulation during 3T3-L1 differentiation. These results suggest that ERRalpha may play a critical role in adipocyte differentiation by modulating the expression of various adipogenesis-related genes.

  8. Purification and characterization of the [NiFe]-hydrogenase of Shewanella oneidensis MR-1.

    PubMed

    Shi, Liang; Belchik, Sara M; Plymale, Andrew E; Heald, Steve; Dohnalkova, Alice C; Sybirna, Kateryna; Bottin, Hervé; Squier, Thomas C; Zachara, John M; Fredrickson, James K

    2011-08-15

    Shewanella oneidensis MR-1 possesses a periplasmic [NiFe]-hydrogenase (MR-1 [NiFe]-H(2)ase) that has been implicated in H(2) production and oxidation as well as technetium [Tc(VII)] reduction. To characterize the roles of MR-1 [NiFe]-H(2)ase in these proposed reactions, the genes encoding both subunits of MR-1 [NiFe]-H(2)ase were cloned and then expressed in an MR-1 mutant without hyaB and hydA genes. Expression of recombinant MR-1 [NiFe]-H(2)ase in trans restored the mutant's ability to produce H(2) at 37% of that for the wild type. Following purification, MR-1 [NiFe]-H(2)ase coupled H(2) oxidation to reduction of Tc(VII)O(4)(-) and methyl viologen. Change of the buffers used affected MR-1 [NiFe]-H(2)ase-mediated reduction of Tc(VII)O(4)(-) but not methyl viologen. Under the conditions tested, all Tc(VII)O(4)(-) used was reduced in Tris buffer, while in HEPES buffer, only 20% of Tc(VII)O(4)(-) was reduced. The reduced products were soluble in Tris buffer but insoluble in HEPES buffer. Transmission electron microscopy analysis revealed that Tc precipitates reduced in HEPES buffer were aggregates of crystallites with diameters of ∼5 nm. Measurements with X-ray absorption near-edge spectroscopy revealed that the reduction products were a mixture of Tc(IV) and Tc(V) in Tris buffer but only Tc(IV) in HEPES buffer. Measurements with extended X-ray adsorption fine structure showed that while the Tc bonding environment in Tris buffer could not be determined, the Tc(IV) product in HEPES buffer was very similar to Tc(IV)O(2)·nH(2)O, which was also the product of Tc(VII)O(4)(-) reduction by MR-1 cells. These results shows for the first time that MR-1 [NiFe]-H(2)ase catalyzes Tc(VII)O(4)(-) reduction directly by coupling to H(2) oxidation.

  9. Nuclear resonance vibrational spectroscopy reveals the FeS cluster composition and active site vibrational properties of an O2-tolerant NAD+-reducing [NiFe] hydrogenase

    SciTech Connect

    Lauterbach, Lars; Wang, Hongxin; Horch, Marius; Gee, Leland B.; Yoda, Yoshitaka; Tanaka, Yoshihito; Zebger, Ingo; Lenz, Oliver; Cramer, Stephen P.

    2014-10-30

    Hydrogenases are complex metalloenzymes that catalyze the reversible splitting of molecular hydrogen into protons and electrons essentially without overpotential. The NAD+-reducing soluble hydrogenase (SH) from Ralstonia eutropha is capable of H2 conversion even in the presence of usually toxic dioxygen. The molecular details of the underlying reactions are largely unknown, mainly because of limited knowledge of the structure and function of the various metal cofactors present in the enzyme. Here, all iron-containing cofactors of the SH were investigated by 57Fe specific nuclear resonance vibrational spectroscopy (NRVS). Our data provide experimental evidence for one [2Fe2S] center and four [4Fe4S] clusters, which is consistent with the amino acid sequence composition. Only the [2Fe2S] cluster and one of the four [4Fe4S] clusters were reduced upon incubation of the SH with NADH. This finding explains the discrepancy between the large number of FeS clusters and the small amount of FeS cluster-related signals as detected by electron paramagnetic resonance spectroscopic analysis of several NAD+-reducing hydrogenases. For the first time, Fe–CO and Fe–CN modes derived from the [NiFe] active site could be distinguished by NRVS through selective 13C labeling of the CO ligand. This strategy also revealed the molecular coordinates that dominate the individual Fe–CO modes. The present approach explores the complex vibrational signature of the Fe–S clusters and the hydrogenase active site, thereby showing that NRVS represents a powerful tool for the elucidation of complex biocatalysts containing multiple cofactors.

  10. Light-driven hydrogen production by a hybrid complex of a [NiFe]-hydrogenase and the cyanobacterial photosystem I.

    PubMed

    Ihara, Masaki; Nishihara, Hirofumi; Yoon, Ki-Seok; Lenz, Oliver; Friedrich, Bärbel; Nakamoto, Hitoshi; Kojima, Kouji; Honma, Daisuke; Kamachi, Toshiaki; Okura, Ichiro

    2006-01-01

    In order to generate renewable and clean fuels, increasing efforts are focused on the exploitation of photosynthetic microorganisms for the production of molecular hydrogen from water and light. In this study we engineered a 'hard-wired' protein complex consisting of a hydrogenase and photosystem I (hydrogenase-PSI complex) as a direct light-to-hydrogen conversion system. The key component was an artificial fusion protein composed of the membrane-bound [NiFe] hydrogenase from the beta-proteobacterium Ralstonia eutropha H16 and the peripheral PSI subunit PsaE of the cyanobacterium Thermosynechococcus elongatus. The resulting hydrogenase-PsaE fusion protein associated with PsaE-free PSI spontaneously, thereby forming a hydrogenase-PSI complex as confirmed by sucrose-gradient ultracentrifuge and immunoblot analysis. The hydrogenase-PSI complex displayed light-driven hydrogen production at a rate of 0.58 mumol H(2).mg chlorophyll(-1).h(-1). The complex maintained its accessibility to the native electron acceptor ferredoxin. This study provides the first example of a light-driven enzymatic reaction by an artificial complex between a redox enzyme and photosystem I and represents an important step on the way to design a photosynthetic organism that efficiently converts solar energy and water into hydrogen.

  11. Impact of the chemicals, essential for the purification process of strict Fe-hydrogenase, on the corrosion of mild steel.

    PubMed

    Rouvre, Ingrid; Gauquelin, Charles; Meynial-Salles, Isabelle; Basseguy, Régine

    2016-06-01

    The influence of additional chemical molecules, necessary for the purification process of [Fe]-hydrogenase from Clostridium acetobutylicum, was studied on the anaerobic corrosion of mild steel. At the end of the purification process, the pure [Fe-Fe]-hydrogenase was recovered in a Tris-HCl medium containing three other chemicals at low concentration: DTT, dithionite and desthiobiotin. Firstly, mild steel coupons were exposed in parallel to a 0.1 M pH7 Tris-HCl medium with or without pure hydrogenase. The results showed that hydrogenase and the additional molecules were in competition, and the electrochemical response could not be attributed solely to hydrogenase. Then, solutions with additional chemicals of different compositions were studied electrochemically. DTT polluted the electrochemical signal by increasing the Eoc by 35 mV 24 h after the injection of 300 μL of control solutions with DTT, whereas it drastically decreased the corrosion rate by increasing the charge transfer resistance (Rct 10 times the initial value). Thus, DTT was shown to have a strong antagonistic effect on corrosion and was removed from the purification process. An optimal composition of the medium was selected (0.5 mM dithionite, 7.5 mM desthiobiotin) that simultaneously allowed a high activity of hydrogenase and a lower impact on the electrochemical response for corrosion tests.

  12. Isolation of tumor suppressor genes from MEN-1 related neoplasms

    SciTech Connect

    Yavari, R.; Kinder, B.; Bale, A.E.

    1994-09-01

    Multiple Endocrine Neoplasia type 1 (MEN 1) is a cancer predisposition syndrome marked by the development of tumors in specific endocrine tissues such as the pituitary, parathyroid and pancreatic islets. Genetic linkage studies have mapped the MEN 1 gene to 11q13, and allelic loss in related tumors suggests that the gene is a tumor suppressor. Because inactivation of tumor suppressors may be accompanied by underexpression, subtractive hybridization was used to isolate potential candidate genes underexpressed in MEN 1 tumors. cDNA was synthesized from tumor and normal parathyroid tissue by RT-PCR. Biotinylated tumor cDNA was used as a driver and normal cDNA as a tester in subtractive hybridization. Following annealing of the driver and tester amplicons, the biotinylated strands were removed with streptavidin. The subtracted material was then used as a probe to isolate clones from a normal pancreatic islet library. Screening 2 x 10{sup 5} plaques yielded 14 positive clones. Of 6 clones analyzed, 3 were confirmed to be underexpressed in parathyroid tumors. Sequence analysis identified 2 clones as human ribosomal protein S10 (RPS10, chromosome 6) and 1 as the islet amyloid polypeptide (1AP, chromosome 12). The precise function of human RPS10 is not known but the related RPS6 functions as a tumor suppressor in Drosophila. 1AP has been implicated in modulation of G protein activity. The remaining positive clones will be mapped to determine if any fall on chromosome 11q13, and additional subtractions with parathyroid and pancreatic islet neoplasms are underway.

  13. Transport of Magnesium by a Bacterial Nramp-Related Gene

    PubMed Central

    Rodionov, Dmitry A.; Freedman, Benjamin G.; Senger, Ryan S.; Winkler, Wade C.

    2014-01-01

    Magnesium is an essential divalent metal that serves many cellular functions. While most divalent cations are maintained at relatively low intracellular concentrations, magnesium is maintained at a higher level (∼0.5–2.0 mM). Three families of transport proteins were previously identified for magnesium import: CorA, MgtE, and MgtA/MgtB P-type ATPases. In the current study, we find that expression of a bacterial protein unrelated to these transporters can fully restore growth to a bacterial mutant that lacks known magnesium transporters, suggesting it is a new importer for magnesium. We demonstrate that this transport activity is likely to be specific rather than resulting from substrate promiscuity because the proteins are incapable of manganese import. This magnesium transport protein is distantly related to the Nramp family of proteins, which have been shown to transport divalent cations but have never been shown to recognize magnesium. We also find gene expression of the new magnesium transporter to be controlled by a magnesium-sensing riboswitch. Importantly, we find additional examples of riboswitch-regulated homologues, suggesting that they are a frequent occurrence in bacteria. Therefore, our aggregate data discover a new and perhaps broadly important path for magnesium import and highlight how identification of riboswitch RNAs can help shed light on new, and sometimes unexpected, functions of their downstream genes. PMID:24968120

  14. Tumor-related gene changes in immunosuppressive Syrian hamster cholangiocarcinoma.

    PubMed

    Juasook, Amornrat; Aukkanimart, Ratchadawan; Boonmars, Thidarut; Sudsarn, Pakkayanee; Wonkchalee, Nadchanan; Laummaunwai, Porntip; Sriraj, Pranee

    2013-10-01

    The results of a previous study demonstrated that prednisolone enhanced cholangiocarcinogenesis. Therefore, to clarify molecular changes during immunosuppressive cholangiocarcinogenesis, Syrian hamsters were divided into 8 groups: uninfected controls; immunosuppressed Syrian hamsters using prednisolone (P); normal Syrian hamsters administered N-nitrosodimethylamine (ND); immunosuppressed Syrian hamsters administered N-nitrosodimethylamine (NDis); normal Syrian hamsters infected with Opisthorchis viverrini (OV); immunosuppressed Syrian hamsters infected with O. viverrini (OVis); normal Syrian hamsters infected with O. viverrini and administered N-nitrosodimethylamine (CCA); and immunosuppressed Syrian hamsters infected with O. viverrini and administered N-nitrosodimethylamine (CCAis). Syrian hamster livers were used for analysis of tumor-related gene expression and immunohistochemistry through cytokeratin 19 (CK19) and proliferating cell nuclear antigen (PCNA) staining. The tumor-related gene expression results show that CCAis groups at all time points exhibited upregulation of COX-2, IL-6, SOD1, CAT and iNOS and downregulation of p53, which correlated with the predominant expression of CK19 and PCNA in liver tissue. These results suggest that prednisolone enhances cholangiocarcinoma development, which was confirmed by molecular changes.

  15. Transport of magnesium by a bacterial Nramp-related gene.

    PubMed

    Shin, Jung-Ho; Wakeman, Catherine A; Goodson, Jonathan R; Rodionov, Dmitry A; Freedman, Benjamin G; Senger, Ryan S; Winkler, Wade C

    2014-06-01

    Magnesium is an essential divalent metal that serves many cellular functions. While most divalent cations are maintained at relatively low intracellular concentrations, magnesium is maintained at a higher level (∼0.5-2.0 mM). Three families of transport proteins were previously identified for magnesium import: CorA, MgtE, and MgtA/MgtB P-type ATPases. In the current study, we find that expression of a bacterial protein unrelated to these transporters can fully restore growth to a bacterial mutant that lacks known magnesium transporters, suggesting it is a new importer for magnesium. We demonstrate that this transport activity is likely to be specific rather than resulting from substrate promiscuity because the proteins are incapable of manganese import. This magnesium transport protein is distantly related to the Nramp family of proteins, which have been shown to transport divalent cations but have never been shown to recognize magnesium. We also find gene expression of the new magnesium transporter to be controlled by a magnesium-sensing riboswitch. Importantly, we find additional examples of riboswitch-regulated homologues, suggesting that they are a frequent occurrence in bacteria. Therefore, our aggregate data discover a new and perhaps broadly important path for magnesium import and highlight how identification of riboswitch RNAs can help shed light on new, and sometimes unexpected, functions of their downstream genes.

  16. Gene Therapy for Age-Related Macular Degeneration.

    PubMed

    Constable, Ian Jeffery; Blumenkranz, Mark Scott; Schwartz, Steven D; Barone, Sam; Lai, Chooi-May; Rakoczy, Elizabeth Piroska

    2016-01-01

    The purpose of this article was to evaluate safety and signals of efficacy of gene therapy with subretinal rAAV.sFlt-1 for wet age-related macular degeneration (wet AMD). A phase 1 dose-escalating single-center controlled unmasked human clinical trial was followed up by extension of the protocol to a phase 2A single-center trial. rAAV.sFlt-1 vector was used to deliver a naturally occurring anti-vascular endothelial growth factor agent, sFlt-1, into the subretinal space. In phase 1, step 1 randomized 3 subjects to low-dose rAAV.sFlt-1 (1 × 10 vector genomes) and 1 subject to the control arm; step 2 randomized an additional 3 subjects to treatment with high-dose rAAV.sFlt-1 (1 × 10 vector genomes) and 1 subject to the control arm. Follow-up studies demonstrated that rAAV.sFlt-1 was well tolerated with a favorable safety profile in these elderly subjects with wet AMD. Subretinal injection was highly reproducible, and no drug-related adverse events were reported. Procedure-related adverse events were mild and self-resolving. Two phakic patients developed cataract and underwent cataract surgery. Four of the 6 patients responded better than the small control group in this study and historical controls in terms of maintaining vision and a relatively dry retina with zero ranibizumab retreatments per annum. Two patients required 1 ranibizumab injection over the 52-week follow-up period. rAAV.sFlt-1 gene therapy may prove to be a potential adjunct or alternative to conventional intravitreal injection for patients with wet AMD by providing extended delivery of a naturally occurring antiangiogenic protein.

  17. A strenuous experimental journey searching for spectroscopic evidence of a bridging nickel–iron–hydride in [NiFe] hydrogenase

    PubMed Central

    Wang, Hongxin; Yoda, Yoshitaka; Ogata, Hideaki; Tanaka, Yoshihito; Lubitz, Wolfgang

    2015-01-01

    Direct spectroscopic evidence for a hydride bridge in the Ni–R form of [NiFe] hydrogenase has been obtained using iron-specific nuclear resonance vibrational spectroscopy (NRVS). The Ni–H–Fe wag mode at 675 cm−1 is the first spectroscopic evidence for a bridging hydride in Ni–R as well as the first iron-hydride-related NRVS feature observed for a biological system. Although density function theory (DFT) calculation assisted the determination of the Ni–R structure, it did not predict the Ni–H–Fe wag mode at ∼675 cm−1 before NRVS. Instead, the observed Ni–H–Fe mode provided a critical reference for the DFT calculations. While the overall science about Ni–R is presented and discussed elsewhere, this article focuses on the long and strenuous experimental journey to search for and experimentally identify the Ni–H–Fe wag mode in a Ni–R sample. As a methodology, the results presented here will go beyond Ni–R and hydrogenase research and will also be of interest to other scientists who use synchrotron radiation for measuring dilute samples or weak spectroscopic features. PMID:26524296

  18. Bcl-2-related protein family gene expression during oligodendroglial differentiation.

    PubMed

    Itoh, Takayuki; Itoh, Aki; Pleasure, David

    2003-06-01

    Oligodendroglial lineage cells (OLC) vary in susceptibility to both necrosis and apoptosis depending on their developmental stages, which might be regulated by differential expression of Bcl-2-related genes. As an initial step to test this hypothesis, we examined the expression of 19 Bcl-2-related genes in purified cultures of rat oligodendroglial progenitors, immature and mature oligodendrocytes. All 'multidomain' anti-apoptotic members (Bcl-x, Bcl-2, Mcl-1, Bcl-w and Bcl2l10/Diva/Boo) except Bcl2a1/A1 are expressed in OLC. Semiquantitative and real-time RT-PCR revealed that Bcl-xL and Mcl-1 mRNAs are the dominant anti-apoptotic members and increase four- and twofold, respectively, with maturation. Bcl-2 mRNA is less abundant than Bcl-xL mRNA in progenitors and falls an additional 10-fold during differentiation. Bcl-w mRNA also increases, with significant changes in its splicing pattern, as OLC mature. Transfection studies demonstrated that Bcl-xL overexpression protects against kainate-induced excitotoxicity, whereas Bcl-2 overexpression does not. As for 'multidomain' pro-apoptotic members (Bax, Bad and Bok/Mtd), Bax and Bak are highly expressed throughout differentiation. Among 'BH3 domain-only' members examined (Bim, Biklk, DP5/Hrk, Bad, Bid, Noxa, Puma/Bbc3, Bmf, BNip3 and BNip3L), BNip3 and Bmf mRNAs increase markedly during differentiation. These results provide basic information to guide further studies on the roles for Bcl-2-related family proteins in OLC death.

  19. Clique-based data mining for related genes in a biomedical database

    PubMed Central

    Matsunaga, Tsutomu; Yonemori, Chikara; Tomita, Etsuji; Muramatsu, Masaaki

    2009-01-01

    Background Progress in the life sciences cannot be made without integrating biomedical knowledge on numerous genes in order to help formulate hypotheses on the genetic mechanisms behind various biological phenomena, including diseases. There is thus a strong need for a way to automatically and comprehensively search from biomedical databases for related genes, such as genes in the same families and genes encoding components of the same pathways. Here we address the extraction of related genes by searching for densely-connected subgraphs, which are modeled as cliques, in a biomedical relational graph. Results We constructed a graph whose nodes were gene or disease pages, and edges were the hyperlink connections between those pages in the Online Mendelian Inheritance in Man (OMIM) database. We obtained over 20,000 sets of related genes (called 'gene modules') by enumerating cliques computationally. The modules included genes in the same family, genes for proteins that form a complex, and genes for components of the same signaling pathway. The results of experiments using 'metabolic syndrome'-related gene modules show that the gene modules can be used to get a coherent holistic picture helpful for interpreting relations among genes. Conclusion We presented a data mining approach extracting related genes by enumerating cliques. The extracted gene sets provide a holistic picture useful for comprehending complex disease mechanisms. PMID:19566964

  20. Calcitonin Gene-Related Peptide: Physiology and Pathophysiology

    PubMed Central

    Russell, F. A.; King, R.; Smillie, S.-J.; Kodji, X.; Brain, S. D.

    2014-01-01

    Calcitonin gene-related peptide (CGRP) is a 37-amino acid neuropeptide. Discovered 30 years ago, it is produced as a consequence of alternative RNA processing of the calcitonin gene. CGRP has two major forms (α and β). It belongs to a group of peptides that all act on an unusual receptor family. These receptors consist of calcitonin receptor-like receptor (CLR) linked to an essential receptor activity modifying protein (RAMP) that is necessary for full functionality. CGRP is a highly potent vasodilator and, partly as a consequence, possesses protective mechanisms that are important for physiological and pathological conditions involving the cardiovascular system and wound healing. CGRP is primarily released from sensory nerves and thus is implicated in pain pathways. The proven ability of CGRP antagonists to alleviate migraine has been of most interest in terms of drug development, and knowledge to date concerning this potential therapeutic area is discussed. Other areas covered, where there is less information known on CGRP, include arthritis, skin conditions, diabetes, and obesity. It is concluded that CGRP is an important peptide in mammalian biology, but it is too early at present to know if new medicines for disease treatment will emerge from our knowledge concerning this molecule. PMID:25287861

  1. Breast and Prostate Cancer and Hormone-Related Gene Variant Study

    Cancer.gov

    The Breast and Prostate Cancer and Hormone-Related Gene Variant Study allows large-scale analyses of breast and prostate cancer risk in relation to genetic polymorphisms and gene-environment interactions that affect hormone metabolism.

  2. From hydrogenases to noble metal-free catalytic nanomaterials for H2 production and uptake.

    PubMed

    Le Goff, Alan; Artero, Vincent; Jousselme, Bruno; Tran, Phong Dinh; Guillet, Nicolas; Métayé, Romain; Fihri, Aziz; Palacin, Serge; Fontecave, Marc

    2009-12-04

    Interconversion of water and hydrogen in unitized regenerative fuel cells is a promising energy storage framework for smoothing out the temporal fluctuations of solar and wind power. However, replacement of presently available platinum catalysts by lower-cost and more abundant materials is a requisite for this technology to become economically viable. Here, we show that the covalent attachment of a nickel bisdiphosphine-based mimic of the active site of hydrogenase enzymes onto multiwalled carbon nanotubes results in a high-surface area cathode material with high catalytic activity under the strongly acidic conditions required in proton exchange membrane technology. Hydrogen evolves from aqueous sulfuric acid solution with very low overvoltages (20 millivolts), and the catalyst exhibits exceptional stability (more than 100,000 turnovers). The same catalyst is also very efficient for hydrogen oxidation in this environment, exhibiting current densities similar to those observed for hydrogenase-based materials.

  3. Artificial hydrogenases: biohybrid and supramolecular systems for catalytic hydrogen production or uptake.

    PubMed

    Caserta, Giorgio; Roy, Souvik; Atta, Mohamed; Artero, Vincent; Fontecave, Marc

    2015-04-01

    There is an urgent need for cheap, abundant and efficient catalysts as an alternative to platinum for hydrogen production and oxidation in (photo)electrolyzers and fuel cells. Hydrogenases are attractive solutions. These enzymes use exclusively nickel and iron in their active sites and function with high catalytic rates at the thermodynamic equilibrium. As an alternative, a number of biomimetic and bioinspired catalysts for H2 production and/or uptake, based on Ni, Fe and Co, have been developed and shown to display encouraging performances. In this review we discuss specifically recent approaches aiming at incorporating these compounds within oligomeric and polymeric hosts. The latter are most often biological compounds (peptides, proteins, polysaccharides, etc.) but we also discuss non-biological scaffolds (synthetic polymers, Metal-organic-Frameworks, etc.) which can provide the appropriate environment to tune the activity and stability of the synthetic catalysts. These supramolecular catalytic systems thus define a class of original compounds so-called artificial hydrogenases.

  4. Mechanism of O2 diffusion and reduction in FeFe hydrogenases

    NASA Astrophysics Data System (ADS)

    Kubas, Adam; Orain, Christophe; de Sancho, David; Saujet, Laure; Sensi, Matteo; Gauquelin, Charles; Meynial-Salles, Isabelle; Soucaille, Philippe; Bottin, Hervé; Baffert, Carole; Fourmond, Vincent; Best, Robert B.; Blumberger, Jochen; Léger, Christophe

    2017-01-01

    FeFe hydrogenases are the most efficient H2-producing enzymes. However, inactivation by O2 remains an obstacle that prevents them being used in many biotechnological devices. Here, we combine electrochemistry, site-directed mutagenesis, molecular dynamics and quantum chemical calculations to uncover the molecular mechanism of O2 diffusion within the enzyme and its reactions at the active site. We propose that the partial reversibility of the reaction with O2 results from the four-electron reduction of O2 to water. The third electron/proton transfer step is the bottleneck for water production, competing with formation of a highly reactive OH radical and hydroxylated cysteine. The rapid delivery of electrons and protons to the active site is therefore crucial to prevent the accumulation of these aggressive species during prolonged O2 exposure. These findings should provide important clues for the design of hydrogenase mutants with increased resistance to oxidative damage.

  5. Solution-phase photochemistry of a [FeFe]hydrogenase model compound: evidence of photoinduced isomerisation.

    PubMed

    Kania, Rafal; Frederix, Pim W J M; Wright, Joseph A; Ulijn, Rein V; Pickett, Christopher J; Hunt, Neil T

    2012-01-28

    The solution-phase photochemistry of the [FeFe] hydrogenase subsite model (μ-S(CH(2))(3)S)Fe(2)(CO)(4)(PMe(3))(2) has been studied using ultrafast time-resolved infrared spectroscopy supported by density functional theory calculations. In three different solvents, n-heptane, methanol, and acetonitrile, relaxation of the tricarbonyl intermediate formed by UV photolysis of a carbonyl ligand leads to geminate recombination with a bias towards a thermodynamically less stable isomeric form, suggesting that facile interconversion of the ligand groups at the Fe center is possible in the unsaturated species. In a polar or hydrogen bonding solvent, this process competes with solvent substitution leading to the formation of stable solvent adduct species. The data provide further insight into the effect of incorporating non-carbonyl ligands on the dynamics and photochemistry of hydrogenase-derived biomimetic compounds.

  6. Solution-phase photochemistry of a [FeFe]hydrogenase model compound: Evidence of photoinduced isomerisation

    SciTech Connect

    Kania, Rafal; Hunt, Neil T.; Frederix, Pim W. J. M.; Wright, Joseph A.; Pickett, Christopher J.; Ulijn, Rein V.

    2012-01-28

    The solution-phase photochemistry of the [FeFe] hydrogenase subsite model ({mu}-S(CH{sub 2}){sub 3}S)Fe{sub 2}(CO){sub 4}(PMe{sub 3}){sub 2} has been studied using ultrafast time-resolved infrared spectroscopy supported by density functional theory calculations. In three different solvents, n-heptane, methanol, and acetonitrile, relaxation of the tricarbonyl intermediate formed by UV photolysis of a carbonyl ligand leads to geminate recombination with a bias towards a thermodynamically less stable isomeric form, suggesting that facile interconversion of the ligand groups at the Fe center is possible in the unsaturated species. In a polar or hydrogen bonding solvent, this process competes with solvent substitution leading to the formation of stable solvent adduct species. The data provide further insight into the effect of incorporating non-carbonyl ligands on the dynamics and photochemistry of hydrogenase-derived biomimetic compounds.

  7. Electrochemical insights into the mechanism of NiFe membrane-bound hydrogenases

    PubMed Central

    Flanagan, Lindsey A.; Parkin, Alison

    2016-01-01

    Hydrogenases are enzymes of great biotechnological relevance because they catalyse the interconversion of H2, water (protons) and electricity using non-precious metal catalytic active sites. Electrochemical studies into the reactivity of NiFe membrane-bound hydrogenases (MBH) have provided a particularly detailed insight into the reactivity and mechanism of this group of enzymes. Significantly, the control centre for enabling O2 tolerance has been revealed as the electron-transfer relay of FeS clusters, rather than the NiFe bimetallic active site. The present review paper will discuss how electrochemistry results have complemented those obtained from structural and spectroscopic studies, to present a complete picture of our current understanding of NiFe MBH. PMID:26862221

  8. Solution-phase photochemistry of a [FeFe]hydrogenase model compound: Evidence of photoinduced isomerisation

    NASA Astrophysics Data System (ADS)

    Kania, Rafal; Frederix, Pim W. J. M.; Wright, Joseph A.; Ulijn, Rein V.; Pickett, Christopher J.; Hunt, Neil T.

    2012-01-01

    The solution-phase photochemistry of the [FeFe] hydrogenase subsite model (μ-S(CH2)3S)Fe2(CO)4(PMe3)2 has been studied using ultrafast time-resolved infrared spectroscopy supported by density functional theory calculations. In three different solvents, n-heptane, methanol, and acetonitrile, relaxation of the tricarbonyl intermediate formed by UV photolysis of a carbonyl ligand leads to geminate recombination with a bias towards a thermodynamically less stable isomeric form, suggesting that facile interconversion of the ligand groups at the Fe center is possible in the unsaturated species. In a polar or hydrogen bonding solvent, this process competes with solvent substitution leading to the formation of stable solvent adduct species. The data provide further insight into the effect of incorporating non-carbonyl ligands on the dynamics and photochemistry of hydrogenase-derived biomimetic compounds.

  9. Isolation, purification and characterization of the hydrogen evolution promoting factor of hydrogenase of Spirulina platensis

    NASA Astrophysics Data System (ADS)

    Gu, Tian-Qing; Zhang, Hui-Miao; Sun, Shi-Hua

    1996-03-01

    A component (s-factor) with obvious promoting effect on hydrogen evolution of hydrogenase has been isolated and extracted from a cell-free preparation of Spirulina platensis. The effect of the s-factor in the reaction system is similar to that of Na2S2O4, but is coupled with light. The s-factor has the maximum absorption peak at 620 nm in the oxidized state, at 590 nm in the reduced state. The partially purified s-factor showed two bands by SDS-PAGE and is distinctly different from phycocyanin, which has no change of oxidized state and reduced state absorption spectra, and also has no promoting effect on hydrogenase of Spirulina platensis under the light.

  10. Hydrogenase Enzymes and Their Synthetic Models: The Role of Metal Hydrides.

    PubMed

    Schilter, David; Camara, James M; Huynh, Mioy T; Hammes-Schiffer, Sharon; Rauchfuss, Thomas B

    2016-08-10

    Hydrogenase enzymes efficiently process H2 and protons at organometallic FeFe, NiFe, or Fe active sites. Synthetic modeling of the many H2ase states has provided insight into H2ase structure and mechanism, as well as afforded catalysts for the H2 energy vector. Particularly important are hydride-bearing states, with synthetic hydride analogues now known for each hydrogenase class. These hydrides are typically prepared by protonation of low-valent cores. Examples of FeFe and NiFe hydrides derived from H2 have also been prepared. Such chemistry is more developed than mimicry of the redox-inactive monoFe enzyme, although functional models of the latter are now emerging. Advances in physical and theoretical characterization of H2ase enzymes and synthetic models have proven key to the study of hydrides in particular, and will guide modeling efforts toward more robust and active species optimized for practical applications.

  11. Pathways of H2 toward the Active Site of [NiFe]-Hydrogenase

    PubMed Central

    Teixeira, Vitor H.; Baptista, António M.; Soares, Cláudio M.

    2006-01-01

    Hydrogenases catalyze the reversible oxidation of molecular hydrogen (H2), but little is known about the diffusion of H2 toward the active site. Here we analyze pathways for H2 permeation using molecular dynamics (MD) simulations in explicit solvent. Various MD simulation replicates were done, to improve the sampling of the system states. H2 easily permeates hydrogenase in every simulation and it moves preferentially in channels. All H2 molecules that reach the active site made their approach from the side of the Ni ion. H2 is able to reach distances of <4 Å from the active site, although after 6 Å permeation is difficult. In this region we mutated Val-67 into alanine and perform new MD simulations. These simulations show an increase of H2 inside the protein and at lower distances from the active site. This valine can be a control point in the H2 access to the active center. PMID:16731562

  12. Gene Therapies for Neovascular Age-Related Macular Degeneration.

    PubMed

    Pechan, Peter; Wadsworth, Samuel; Scaria, Abraham

    2014-12-18

    Pathological neovascularization is a key component of the neovascular form (also known as the wet form) of age-related macular degeneration (AMD) and proliferative diabetic retinopathy. Several preclinical studies have shown that antiangiogenesis strategies are effective for treating neovascular AMD in animal models. Vascular endothelial growth factor (VEGF) is one of the main inducers of ocular neovascularization, and several clinical trials have shown the benefits of neutralizing VEGF in patients with neovascular AMD or diabetic macular edema. In this review, we summarize several preclinical and early-stage clinical trials with intraocular gene therapies, which have the potential to reduce or eliminate the repeated intravitreal injections that are currently required for the treatment of neovascular AMD.

  13. Glia-related genes and their contribution to schizophrenia.

    PubMed

    Wang, Chenyao; Aleksic, Branko; Ozaki, Norio

    2015-08-01

    Schizophrenia, a debilitating disease with 1% prevalence in the general population, is characterized by major neuropsychiatric symptoms, including delusions, hallucinations, and deficits in emotional and social behavior. Previous studies have directed their investigations on the mechanism of schizophrenia towards neuronal dysfunction and have defined schizophrenia as a 'neuron-centric' disorder. However, along with the development of genetics and systematic biology approaches in recent years, the crucial role of glial cells in the brain has also been shown to contribute to the etiopathology of schizophrenia. Here, we summarize comprehensive data that support the involvement of glial cells (including oligodendrocytes, astrocytes, and microglial cells) in schizophrenia and list several acknowledged glia-related genes or molecules associated with schizophrenia. Instead of purely an abnormality of neurons in schizophrenia, an additional 'glial perspective' provides us a novel and promising insight into the causal mechanisms and treatment for this disease.

  14. Estrogen-related receptor {alpha} modulates the expression of adipogenesis-related genes during adipocyte differentiation

    SciTech Connect

    Ijichi, Nobuhiro; Ikeda, Kazuhiro; Horie-Inoue, Kuniko; Yagi, Ken; Okazaki, Yasushi; Inoue, Satoshi . E-mail: INOUE-GER@h.u-tokyo.ac.jp

    2007-07-06

    Estrogen-related receptor {alpha} (ERR{alpha}) is an orphan nuclear receptor that regulates cellular energy metabolism by modulating gene expression involved in fatty acid oxidation and mitochondrial biogenesis in brown adipose tissue. However, the physiological role of ERR{alpha} in adipogenesis and white adipose tissue development has not been well studied. Here, we show that ERR{alpha} and ERR{alpha}-related transcriptional coactivators, peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) coactivator-1{alpha} (PGC-1{alpha}) and PGC-1{beta}, can be up-regulated in 3T3-L1 preadipocytes at mRNA levels under the adipogenic differentiation condition including the inducer of cAMP, glucocorticoid, and insulin. Gene knockdown by ERR{alpha}-specific siRNA results in mRNA down-regulation of fatty acid binding protein 4, PPAR{gamma}, and PGC-1{alpha} in 3T3-L1 cells in the adipogenesis medium. ERR{alpha} and PGC-1{beta} mRNA expression can be also up-regulated in another preadipocyte lineage DFAT-D1 cells and a pluripotent mesenchymal cell line C3H10T1/2 under the differentiation condition. Furthermore, stable expression of ERR{alpha} in 3T3-L1 cells up-regulates adipogenic marker genes and promotes triglyceride accumulation during 3T3-L1 differentiation. These results suggest that ERR{alpha} may play a critical role in adipocyte differentiation by modulating the expression of various adipogenesis-related genes.

  15. Alcaligenes Eutrophus as a Source of Hydrogenase: An Evaluation of Techniques for Its Large Scale Production

    DTIC Science & Technology

    1990-08-01

    block number) -A Alcaligenes eutroplus H16 (AICC 17699), an aerobic H, oxidizing bacteria, has been selected as the most sutable enzyme source for a NAD...laboratory animals (Wistar rats). 2. SELECTION OF Alcaligenes eutrophus AS THE HYDROGENASE SOURCE. 2.1. Hydrogen-oxidizing bacteria: Historical...among strains, and therefore 2 the indMdual species have been placed later under preexisting genera of heterotrophic bacteria - such as Alcaligenes

  16. Optimized Expression and Purification for High-Activity Preparations of Algal [FeFe]-Hydrogenase

    SciTech Connect

    Yacoby, I.; Tegler, L. T.; Pochekailov, S.; Zhang, S.; King, P. W.

    2012-04-01

    Recombinant expression and purification of metallo-enzymes, including hydrogenases, at high-yields is challenging due to complex, and enzyme specific, post-translational maturation processes. Low fidelities of maturation result in preparations containing a significant fraction of inactive, apo-protein that are not suitable for biophysical or crystallographic studies. We describe the construction, overexpression and high-yield purification of a fusion protein consisting of the algal [2Fe2S]-ferredoxin PetF (Fd) and [FeFe]-hydrogenase HydA1. The maturation of Fd-HydA1 was optimized through improvements in culture conditions and media components used for expression. We also demonstrated that fusion of Fd to the N-terminus of HydA1, in comparison to the C-terminus, led to increased expression levels that were 4-fold higher. Together, these improvements led to enhanced HydA1 activity and improved yield after purification. The strong binding-affinity of Fd for DEAE allowed for two-step purification by ion exchange and StrepTactin affinity chromatography. In addition, the incorporation of a TEV protease site in the Fd-HydA1 linker allowed for the proteolytic removal of Fd after DEAE step, and purification of HydA1 alone by StrepTactin. In combination, this process resulted in HydA1 purification yields of 5 mg L{sup -1} of culture from E. coli with specific activities of 1000 U (U = 1 {micro}mol hydrogen evolved mg{sup -1} min{sup -1}). The [FeFe]-hydrogenases are highly efficient enzymes and their catalytic sites provide model structures for synthetic efforts to develop robust hydrogen activation catalysts. In order to characterize their structure-function properties in greater detail, and to use hydrogenases for biotechnological applications, reliable methods for rapid, high-yield expression and purification are required.

  17. Proton-coupled electron transfer dynamics in the catalytic mechanism of a [NiFe]-hydrogenase.

    PubMed

    Greene, Brandon L; Wu, Chang-Hao; McTernan, Patrick M; Adams, Michael W W; Dyer, R Brian

    2015-04-08

    The movement of protons and electrons is common to the synthesis of all chemical fuels such as H2. Hydrogenases, which catalyze the reversible reduction of protons, necessitate transport and reactivity between protons and electrons, but a detailed mechanism has thus far been elusive. Here, we use a phototriggered chemical potential jump method to rapidly initiate the proton reduction activity of a [NiFe] hydrogenase. Coupling the photochemical initiation approach to nanosecond transient infrared and visible absorbance spectroscopy afforded direct observation of interfacial electron transfer and active site chemistry. Tuning of intramolecular proton transport by pH and isotopic substitution revealed distinct concerted and stepwise proton-coupled electron transfer mechanisms in catalysis. The observed heterogeneity in the two sequential proton-associated reduction processes suggests a highly engineered protein environment modulating catalysis and implicates three new reaction intermediates; Nia-I, Nia-D, and Nia-SR(-). The results establish an elementary mechanistic understanding of catalysis in a [NiFe] hydrogenase with implications in enzymatic proton-coupled electron transfer and biomimetic catalyst design.

  18. Electron microscopy of nickel-containing methanogenic enzymes: methyl reductase and F420-reducing hydrogenase.

    PubMed Central

    Wackett, L P; Hartwieg, E A; King, J A; Orme-Johnson, W H; Walsh, C T

    1987-01-01

    Methanogens catalyze the hydrogen-dependent eight-electron reduction of carbon dioxide to methane. Two of the key catalysts in the eight-electron reduction pathway are the nickel-containing enzymes F420-reducing hydrogenase and methyl reductase. In the present study, the structures of these archaebacterial enzymes from Methanobacterium thermoautotrophicum delta H have been determined by electron microscopy. By negative stain techniques, F420 hydrogenase was found to be a ring structure with a diameter of 15.7 nm and an inner channel 4 nm in diameter. Shadow-casting experiments demonstrated that the rings were 8.5 nm deep, indicating a holoenzyme molecular weight of 8.0 X 10(5). Methyl reductase appeared to be an oligomeric complex of dimensions 8.5 by 9 by 11 nm, with a central stain-penetrating region. The morphology and known subunit composition suggest a model in which the subunits are arranged as an eclipsed pair of open trimers. Methyl reductase was also found in the form of larger aggregates and in paracrystalline arrays derived from highly concentrated solutions. The extremely large size of F420 hydrogenase and the methyl reductase supramolecular assemblies may have relevance in vivo in the construction of multiprotein arrays that function in methane biogenesis. Images PMID:3804976

  19. Hydrogenase-independent uptake and metabolism of electrons by the archaeon Methanococcus maripaludis.

    PubMed

    Lohner, Svenja T; Deutzmann, Jörg S; Logan, Bruce E; Leigh, John; Spormann, Alfred M

    2014-08-01

    Direct, shuttle-free uptake of extracellular, cathode-derived electrons has been postulated as a novel mechanism of electron metabolism in some prokaryotes that may also be involved in syntrophic electron transport between two microorganisms. Experimental proof for direct uptake of cathodic electrons has been mostly indirect and has been based on the absence of detectable concentrations of molecular hydrogen. However, hydrogen can be formed as a transient intermediate abiotically at low cathodic potentials (<-414 mV) under conditions of electromethanogenesis. Here we provide genetic evidence for hydrogen-independent uptake of extracellular electrons. Methane formation from cathodic electrons was observed in a wild-type strain of the methanogenic archaeon Methanococcus maripaludis as well as in a hydrogenase-deletion mutant lacking all catabolic hydrogenases, indicating the presence of a hydrogenase-independent mechanism of electron catabolism. In addition, we discovered a new route for hydrogen or formate production from cathodic electrons: Upon chemical inhibition of methanogenesis with 2-bromo-ethane sulfonate, hydrogen or formate accumulated in the bioelectrochemical cells instead of methane. These results have implications for our understanding on the diversity of microbial electron uptake and metabolism.

  20. Atomic resolution modeling of the ferredoxin:[FeFe] hydrogenase complex from Chlamydomonas reinhardtii.

    PubMed

    Chang, Christopher H; King, Paul W; Ghirardi, Maria L; Kim, Kwiseon

    2007-11-01

    The [FeFe] hydrogenases HydA1 and HydA2 in the green alga Chlamydomonas reinhardtii catalyze the final reaction in a remarkable metabolic pathway allowing this photosynthetic organism to produce H(2) from water in the chloroplast. A [2Fe-2S] ferredoxin is a critical branch point in electron flow from Photosystem I toward a variety of metabolic fates, including proton reduction by hydrogenases. To better understand the binding determinants involved in ferredoxin:hydrogenase interactions, we have modeled Chlamydomonas PetF1 and HydA2 based on amino-acid sequence homology, and produced two promising electron-transfer model complexes by computational docking. To characterize these models, quantitative free energy calculations at atomic resolution were carried out, and detailed analysis of the interprotein interactions undertaken. The protein complex model we propose for ferredoxin:HydA2 interaction is energetically favored over the alternative candidate by 20 kcal/mol. This proposed model of the electron-transfer complex between PetF1 and HydA2 permits a more detailed view of the molecular events leading up to H(2) evolution, and suggests potential mutagenic strategies to modulate electron flow to HydA2.

  1. Proton Reduction Using a Hydrogenase-Modified Nanoporous Black Silicon Photoelectrode

    SciTech Connect

    Zhao, Yixin; Anderson, Nicholas C.; Ratzloff, Michael W.; Mulder, David W.; Zhu, Kai; Turner, John A.; Neale, Nathan R.; King, Paul W.; Branz, Howard M.

    2016-06-15

    Metalloenzymes featuring earth-abundant metal-based cores exhibit rates for catalytic processes such as hydrogen evolution comparable to those of noble metals. Realizing these superb catalytic properties in artificial systems is challenging owing to the difficulty of effectively interfacing metalloenzymes with an electrode surface in a manner that supports efficient charge-transfer. Here, we demonstrate that a nanoporous 'black' silicon (b-Si) photocathode provides a unique interface for binding an adsorbed [FeFe]-hydrogenase enzyme ([FeFe]-H2ase). The resulting [FeFe]-H2ase/b-Si photoelectrode displays a 280 mV more positive onset potential for hydrogen generation than bare b-Si without hydrogenase, similar to that observed for a b-Si/Pt photoelectrode at the same light intensity. Additionally, we show that this H2ase/b-Si electrode exhibits a turnover frequency of >/=1300 s-1 and a turnover number above 107 and sustains current densities of at least 1 mA/cm2 based on the actual surface area of the electrode (not the smaller projected geometric area), orders of magnitude greater than that observed for previous enzyme-catalyzed electrodes. While the long-term stability of hydrogenase on the b-Si surface remains too low for practical applications, this work extends the proof-of-concept that biologically derived metalloenzymes can be interfaced with inorganic substrates to support technologically relevant current densities.

  2. Hydrogenase-independent uptake and metabolism of electrons by the archaeon Methanococcus maripaludis

    PubMed Central

    Lohner, Svenja T; Deutzmann, Jörg S; Logan, Bruce E; Leigh, John; Spormann, Alfred M

    2014-01-01

    Direct, shuttle-free uptake of extracellular, cathode-derived electrons has been postulated as a novel mechanism of electron metabolism in some prokaryotes that may also be involved in syntrophic electron transport between two microorganisms. Experimental proof for direct uptake of cathodic electrons has been mostly indirect and has been based on the absence of detectable concentrations of molecular hydrogen. However, hydrogen can be formed as a transient intermediate abiotically at low cathodic potentials (<−414 mV) under conditions of electromethanogenesis. Here we provide genetic evidence for hydrogen-independent uptake of extracellular electrons. Methane formation from cathodic electrons was observed in a wild-type strain of the methanogenic archaeon Methanococcus maripaludis as well as in a hydrogenase-deletion mutant lacking all catabolic hydrogenases, indicating the presence of a hydrogenase-independent mechanism of electron catabolism. In addition, we discovered a new route for hydrogen or formate production from cathodic electrons: Upon chemical inhibition of methanogenesis with 2-bromo-ethane sulfonate, hydrogen or formate accumulated in the bioelectrochemical cells instead of methane. These results have implications for our understanding on the diversity of microbial electron uptake and metabolism. PMID:24844759

  3. Inhibition of Desulfovibrio gigas hydrogenase with copper salts and other metal ions.

    PubMed

    Fernandez, V M; Rua, M L; Reyes, P; Cammack, R; Hatchikian, E C

    1989-11-06

    The effect of several transition metals on the activity of Desulfovibrio gigas hydrogenase has been studied. Co(II) and Ni(II) at a concentration of 1 mM did not modify the activity of the enzyme; nor did they affect the pattern of activation/deactivation. Cu(II) inhibited the active hydrogenase, prepared by treatment with hydrogen, but had little effect on the 'unready' enzyme unless a reductant such as ascorbate was present, in which case inactivation took place either in air or under argon. Hg(II) also inactivated the enzyme irreversible in the 'unready' state without the requirement for reductants. The reaction of H2 uptake with methyl viologen was much more sensitive to inhibition than the H2/tritium exchange activity. EPR spectra of this preparation showed that the rates of decline were [3Fe-4S] signal greater than H2-uptake activity greater than Ni-A signal. Similar results were obtained when the protein was treated with Hg(II). The results demonstrate that the [3Fe-4S] cluster is not essential for H2-uptake activity with methyl viologen, but the integrity of [4Fe-4S] clusters is probably necessary to catalyze the reduction of methyl viologen with hydrogen. D. gigas hydrogenase was found to be highly resistant to digestion by proteases.

  4. Odd-skipped related 2 regulates genes related to proliferation and development

    SciTech Connect

    Kawai, Shinji; Abiko, Yoshimitsu; Amano, Atsuo

    2010-07-23

    Cell proliferation is a biological process in which chromosomes replicate in one cell and equally divide into two daughter cells. Our previous findings suggested that Odd-skipped related 2 (Osr2) plays an important role in cellular quiescence and proliferation under epigenetic regulation. However, the mechanism used by Osr2 to establish and maintain proliferation is unknown. To examine the functional role of Osr2 in cell proliferation, we analyzed its downstream target genes using microarray analysis following adenovirus-induced overexpression of Osr2 as well as knockdown with Osr2 siRNA, which showed that Osr2 regulates a multitude of genes involved in proliferation and the cell cycle, as well as development. Additional proliferation assays also indicated that Osr2 likely functions to elicit cell proliferation. Together, these results suggest that Osr2 plays important roles in proliferation and development.

  5. Evolution of xyloglucan-related genes in green plants

    PubMed Central

    2010-01-01

    Background The cell shape and morphology of plant tissues are intimately related to structural modifications in the primary cell wall that are associated with key processes in the regulation of cell growth and differentiation. The primary cell wall is composed mainly of cellulose immersed in a matrix of hemicellulose, pectin, lignin and some structural proteins. Xyloglucan is a hemicellulose polysaccharide present in the cell walls of all land plants (Embryophyta) and is the main hemicellulose in non-graminaceous angiosperms. Results In this work, we used a comparative genomic approach to obtain new insights into the evolution of the xyloglucan-related enzymatic machinery in green plants. Detailed phylogenetic analyses were done for enzymes involved in xyloglucan synthesis (xyloglucan transglycosylase/hydrolase, α-xylosidase, β-galactosidase, β-glucosidase and α-fucosidase) and mobilization/degradation (β-(1→4)-glucan synthase, α-fucosyltransferases, β-galactosyltransferases and α-xylosyl transferase) based on 12 fully sequenced genomes and expressed sequence tags from 29 species of green plants. Evidence from Chlorophyta and Streptophyta green algae indicated that part of the Embryophyta xyloglucan-related machinery evolved in an aquatic environment, before land colonization. Streptophyte algae have at least three enzymes of the xyloglucan machinery: xyloglucan transglycosylase/hydrolase, β-(1→4)-glucan synthase from the celullose synthase-like C family and α-xylosidase that is also present in chlorophytes. Interestingly, gymnosperm sequences orthologs to xyloglucan transglycosylase/hydrolases with exclusively hydrolytic activity were also detected, suggesting that such activity must have emerged within the last common ancestor of spermatophytes. There was a positive correlation between the numbers of founder genes within each gene family and the complexity of the plant cell wall. Conclusions Our data support the idea that a primordial xyloglucan

  6. Halotolerant and Resistant to High pH Hydrogenase from Haloalkaliphilic Sulfate-Reducing Bacterium Desulfonatronum thiodismutans

    NASA Technical Reports Server (NTRS)

    Detkova, Ekaterina N.; Pikuta, Elena V.; Hoover, Richard B.

    2004-01-01

    Hydrogenase is the key enzyme of energetic metabolism in cells, it catalyzing the converse reaction of hydrogen oxidation and responsible for consumption and excretion of hydrogen in bacteria. Hydrogenases are proteins containing either Nickel and Iron, or the only Iron in theirs active center. Hydrogenases have been found in many microorganisms, such as Methanogenic, acetogenic, nitrogen-fixing, photosynthetic and sulfate-reducing bacteria that could utilize the hydrogen as energy source or use it as electron sink. Hydrogenases are subject for wide physiological, biochemical, physicochemical and genetic studies due to theirs abilities produce the molecular hydrogen as alternative source of pure energy. Notwithstanding on enough large quantity of works that deal with intracellular and extrasellular enzymes of halophilic bacteria, the data about hydrogenases and theirs functions of salts practically are absent. The study of hydrogenase in cell-free extracts of extremely halophilic eubacterium Acetohalobium mabaticum showed dramatic increasing activity of the enzyme at high concentrations of NaCl and KCI (close to saturated solution). Here we present the data of free-cells extracted hydrogenase from new haloalkaliphilic sulfate-reducing bacterium Desulfonatronum thiodismutans, which grow on highly miniralized carbonate-bicarbonate medium in salinity range 1 to 7 % and at pH 7.8 - 10.5. Studied enzyme was active in Concentration range from 0 to 4.3 M NaCl with optimum at 1.0 M NaCl. At 1.0 M NaCl the enzyme activity was increased on 20 %, but with changing concentration from 2.1 M to 3.4 M the activity decreased and was kept on constant level. NaHCO3 inhibited hydrogenase activity on more then 30 %. The maximum of enzyme activity was observed at pH 9.5 with limits 7.5 and 11.5 that practically equal to pH optimum of bacterial growth. Therefore the hydrogenase of Desulfanatronum thiodismutans is tolerant to high concentrations of sodium salts and it also resistant to

  7. Identification of hepatic microvascular adhesion-related genes of human colon cancer cells using random homozygous gene perturbation.

    PubMed

    Márquez, Joana; Kohli, Manu; Arteta, Beatriz; Chang, Shaojing; Li, Wu-Bo; Goldblatt, Michael; Vidal-Vanaclocha, Fernando

    2013-11-01

    Random homozygous gene perturbation (RHGP), in combination with liver sinusoidal endothelial cell (LSEC) adhesion screening of clonal colon cancer cells with perturbed genes, was used to identify genes contributing to the hepatic microvascular adhesion of colon cancer cells. Plasmid vector encoding transactivator and gene search vector were transfected into HT-29 human colorectal cancer cells to create a HT-29 RHGP cell library; the adhesion of these library cells to primary cultured mouse LSEC significantly decreased in the presence of RSL1 ligand (inducer), indicating that most of the genes contributing to HT-29 adhesion to LSEC were altered. Next, HT-29 RHGP cell library fractions with upregulated or silenced LSEC adhesion-related genes were isolated. Around 160 clones having altered expression in LSEC adhesion-related genes were obtained, and nine relevant protein-coding genes were identified. Some were proadhesive genes detected because of their overexpression in adherent HT-29 cells (DGCR8 and EFEMP1 genes) and their silenced status in nonadherent HT-29 cells (DGKE, DPY19L1, KIAA0753, PVR and USP11 genes). Others were antiadhesive genes detected because of their overexpression in nonadherent HT-29 cells (ITPKC gene) and their silenced status in adherent HT-29 cells (PPP6R2 gene). Silencing of PVR, DGCR8 and EFEMP1 genes decreased adhesion to LSEC and hepatic microvascular retention of HT-29 cells. The results conclude that RHGP was a valuable strategy for the discovery of mechanisms regulating microvascular adhesion of circulating colon cancer cells before hepatic metastasis formation. Identified genes may contribute to understand the metastatic process of colon cancer and to discovering molecular targets for hepatic metastasis therapeutics.

  8. Hydrogen-dependent growth of Escherichia coli in anaerobic respiration and the presence of hydrogenases with different functions.

    PubMed

    Yamamoto, I; Ishimoto, M

    1978-09-01

    E. coli K10 was found to grow anaerobically on molecular hydrogen by reducing nitrate, fumarate, and trimethylamine N-oxide when peptone was added to the culture medium. Molar growth yields based on consumed hydrogen estimated from the amounts of reduction products were all 7.8 g cells/mol, suggesting that 1 mol of ATP was produced in the oxidation of 1 mol of hydrogen. Hydrogenase activity measured in terms of hydrogen evolution was several times higher in cells grown on glucose than in cells grown on hydrogen in the presence of fumarate and trimethylamine N-oxide, while hydrogenase activity measured in terms of hydrogen uptake was unchanged in both cases. The ratio of hydrogenase activities measured in terms of hydrogen uptake and evolution was also high in the extract and centrifugal fractions from cells grown in hydrogen. The soluble fraction and trypsin digest of the precipitate at 100,000 X g were subjected to polyacrylamide disc gel electrophoresis and hydrogenase bands were stained by reduction of benzyl viologen with hydrogen and by oxidation of reduced methyl viologen. The resulting patterns suggest that multiple forms of hydrogenase are present and that the amounts of forms functioning in hydrogen evolution were greatly decresed in cells grown on hydrogen in the presence of acceptors.

  9. Identification, cloning and heterologous expression of active [NiFe]-hydrogenase 2 from Citrobacter sp. SG in Escherichia coli.

    PubMed

    Maier, Johannes A H; Ragozin, Sergey; Jeltsch, Albert

    2015-04-10

    Hydrogen (H2) is a potential alternative energy carrier which only produces water and heat upon combustion. Today, industrial hydrogen production mainly uses thermochemical processes based on fossil fuels or electrolysis of water. Therefore, biotechnological approaches to produce H2 from biomass are an interesting alternative. We introduce here a novel direct hydrogen measurement system using a semiconducting device specific for hydrogen detection. Using this device, a bacterium producing considerable amounts of hydrogen under aerobic cultivation was isolated and identified by 16S ribosomal DNA sequencing as Citrobacter sp. The enzyme responsible for the observed hydrogenase activity was partially purified by 3 chromatographic purification steps and could be identified by peptide mass fingerprinting to be a type 2 [NiFe]-hydrogenase. Expression of the [NiFe]-hydrogenase 2 containing operon from Citrobacter sp. SG in Escherichia coli allowed recombinant hydrogen production. The [NiFe]-hydrogenase 2 identified here may be useful for biotechnological hydrogen production. We speculate that the expression of the hydrogenase in Citrobacter may be an adaptation to growth in acidic conditions.

  10. Connection between the membrane electron transport system and Hyn hydrogenase in the purple sulfur bacterium, Thiocapsa roseopersicina BBS.

    PubMed

    Tengölics, Roland; Mészáros, Lívia; Győri, E; Doffkay, Zsolt; Kovács, Kornél L; Rákhely, Gábor

    2014-10-01

    Thiocapsa. roseopersicina BBS has four active [NiFe] hydrogenases, providing an excellent opportunity to examine their metabolic linkages to the cellular redox processes. Hyn is a periplasmic membrane-associated hydrogenase harboring two additional electron transfer subunits: Isp1 is a transmembrane protein, while Isp2 is located on the cytoplasmic side of the membrane. In this work, the connection of HynSL to various electron transport pathways is studied. During photoautotrophic growth, electrons, generated from the oxidation of thiosulfate and sulfur, are donated to the photosynthetic electron transport chain via cytochromes. Electrons formed from thiosulfate and sulfur oxidation might also be also used for Hyn-dependent hydrogen evolution which was shown to be light and proton motive force driven. Hyn-linked hydrogen uptake can be promoted by both sulfur and nitrate. The electron flow from/to HynSL requires the presence of Isp2 in both directions. Hydrogenase-linked sulfur reduction could be inhibited by a QB site competitive inhibitor, terbutryne, suggesting a redox coupling between the Hyn hydrogenase and the photosynthetic electron transport chain. Based on these findings, redox linkages of Hyn hydrogenase are modeled.

  11. Age-related changes in cellular protection, purification, and inflammation-related gene expression: role of dietary phytonutrients.

    PubMed

    Mastaloudis, Angela; Wood, Steven M

    2012-07-01

    Oxidative injury and inflammation are intimately involved in the aging process and the development of age-related diseases. To date, most nutritional antiaging strategies have focused solely on the delivery of exogenous antioxidants to combat the negative effects of aging. A promising new strategy is to identify nutrients and phytochemicals that can directly target intrinsic cytoprotective mechanisms, including modulation of the expression of (1) genes involved in the detoxification of xenobiotics, (2) genes involved in the synthesis and regulation of intrinsic antioxidants and antioxidant enzymes, (3) genes involved in the regulation of inflammation, and (4) vitagenes. The purpose of this review is to provide an overview of the age-related changes in gene expression related to oxidative stress, detoxification, and inflammatory processes, and to discuss natural compounds with the potential to oppose age-related changes in gene expression related to these processes, which therefore may be suitable for use in human antiaging research.

  12. Identifying genes related with rheumatoid arthritis via system biology analysis.

    PubMed

    Liu, Tao; Lin, Xinmei; Yu, Hongjian

    2015-10-15

    Rheumatoid arthritis (RA) is a chronic, inflammatory joint disease that mainly attacks synovial joints. However, the underlying systematic relationship among different genes and biological processes involved in the pathogenesis are still unclear. By analyzing and comparing the transcriptional profiles from RA, OA (osteoarthritis) patients as well as ND (normal donors) with bioinformatics methods, we tend to uncover the potential molecular networks and critical genes which play important roles in RA and OA development. Initially, hierarchical clustering was performed to classify the overall transcriptional profiles. Differentially expressed genes (DEGs) between ND and RA and OA patients were identified. Furthermore, PPI networks were constructed, functional modules were extracted, and functional annotation was also applied. Our functional analysis identifies 22 biological processes and 2 KEGG pathways enriched in the commonly-regulated gene set. However, we found that number of set of genes differentially expressed genes only between RA and ND reaches up to 244, indicating this gene set may specifically accounts for processing to disease of RA. Additionally, 142 biological processes and 19 KEGG pathways are over-represented by these 244 genes. Meanwhile, although another 21 genes were differentially expressed only in OA and ND, no biological process nor pathway is over-represented by them.

  13. Calcitonin gene-related peptide as inflammatory mediator.

    PubMed

    Springer, Jochen; Geppetti, Pierangelo; Fischer, Axel; Groneberg, David A

    2003-01-01

    Sensory neuropeptides have been proposed to play a key role in the pathogenesis of a number of respiratory diseases such as asthma, chronic obstructive pulmonary disease or chronic cough. Next to prominent neuropeptides such as tachykinins or vasoactive intestinal polypeptide (VIP), calcitonin gene-related peptide (CGRP) has long been suggested to participate in airway physiology and pathophysiology. CGRP is a 37 amino-acid peptide which is expressed by nerve fibers projecting to the airways and by pulmonary neuroendocrine cells. The most prominent effects of CGRP in the airways are vasodilatation and in a few instances bronchoconstriction. A further pulmonary effect of CGRP is the induction of eosinophil migration and the stimulation of beta-integrin-mediated T cell adhesion to fibronectin at the site of inflammation. By contrast, CGRP inhibits macrophage secretion and the capacity of macrophages to activate T-cells, indicating a potential anti-inflammatory effect. Due to the complex pulmonary effects of CGRP with bronchoconstriction and vasodilatation and diverse immunomodulatory actions, potential anti-asthma drugs based on this peptide have not been established so far. However, targeting the effects of CGRP may be of value for future strategies in nerve modulation.

  14. Regulation of Gene Expression by Exercise-Related Micrornas.

    PubMed

    Masi, Laureane Nunes; Serdan, Tamires Duarte Afonso; Levada-Pires, Adriana Cristina; Hatanaka, Elaine; Silveira, Leonardo Dos Reis; Cury-Boaventura, Maria Fernanda; Pithon-Curi, Tania Cristina; Curi, Rui; Gorjão, Renata; Hirabara, Sandro Massao

    2016-01-01

    Gene expression control by microRNAs (miRs) is an important mechanism for maintenance of cellular homeostasis in physiological and pathological conditions as well as in response to different stimuli including nutritional factors and exercise. MiRs are involved in regulation of several processes such as growth and development, fuel metabolism, insulin secretion, immune function, miocardium remodeling, cell proliferation, differenciation, survival, and death. These molecules have also been proposed to be potential biomarkers and/or therapeutical targets in obesity, type 2 diabetes mellitus, cardiovascular diseases, metabolic syndrome, and cancer. MiRs are released by most cells and potentially act on intercellular communication to borderer or distant cells. Various studies have been performed to elucidate the involvement of miRs in exercise-induced effects. The aims of this review are: 1) to bring up the main advances for the comprehension of the mechanisms of action of miRs; 2) to present the main results on miR involvement in physical exercise; 3) to discuss the physiological effects of miRs modified by exercise. The state of the art and the perspectives on miRs associated with physical exercise will be presented. Thus, this review is important for updating recent advances and driving further strategies and studies on the exercise-related miR research.

  15. Gene transfer for neovascular age-related macular degeneration.

    PubMed

    Campochiaro, Peter A

    2011-05-01

    Age-related macular degeneration (AMD) is a complex disease that has two phases: a degenerative phase often referred to as nonneovascular AMD (non-NVAMD) or dry AMD and a phase dominated by growth of new blood vessels in the subretinal space, referred to as NVAMD or wet AMD. Advances in the understanding of the molecular pathogenesis of NVAMD have led to new drug therapies that have provided major benefits to patients. However, those treatments require frequent intraocular injections that in many patients must be continued indefinitely to maintain visual benefits. Gene transfer to augment expression of endogenous antiangiogenic proteins is an alternative approach that has the potential to provide long-term stability in patients with NVAMD. Studies in animal models that mimic aspects of NVAMD have identified several possible transgenes, and a clinical trial in patients with advanced NVAMD has suggested that the approach may be feasible. Many important questions remain, but the rationale and preliminary data are compelling. The results of two ongoing clinical trials may answer several of the questions and help direct future research.

  16. Calcitonin gene related peptide as inhibitory neurotransmitter in the ureter.

    PubMed

    Maggi, C A; Giuliani, S; Meini, S; Santicioli, P

    1995-07-01

    A dense plexus of calcitonin gene related peptide (CGRP) containing nerve fibres is present in the mammalian ureter, from which CGRP is released by depolarizing stimuli, including chemical normally present in the urine. CGRP exerts a profound, receptor-mediated, inhibitory effect on the evoked motility of the ureter by suppressing latent pacemakers in the smooth muscle. This effect is largely glibenclamide sensitive, indicating the activation of potassium (K) channels in its genesis. Electrical stimulation of intramural nerves in the guinea-pig ureter produces a transient membrane hyperpolarization, which is blocked by glibenclamide or by capsaicin pretreatment, enhanced in a low-K medium, and inhibited by a CGRP receptor antagonist. Thus endogenous CGRP acts as a neurotransmitter K channel opener in the ureter. The refractory period of the guinea-pig ureter is markedly and similarly reduced by capsaicin pretreatment or administration of a CGRP receptor antagonist, indicating that endogenous CGRP can modulate the maximal frequency of ureteral peristalsis. Using a three-chamber organ bath that enabled the separate perfusion of the renal, middle, and bladder regions of the organ, evidence was obtained that CGRP blocks propagation of impulses along the ureter through a glibenclamide-sensitive mechanism. These findings indicate a role of CGRP in the local regulation of ureteral motility and peristalsis.

  17. Differential expression of genes related to gain and intake in the liver of beef cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: To better understand which genes play a role in cattle feed intake and gain, we evaluated differential expression of genes related to gain and intake in the liver of crossbred beef steers. Based on past transcriptomics studies on cattle liver, we hypothesized that genes related to metabo...

  18. Apoptosis-related genes change their expression with age and hearing loss in the mouse cochlea

    PubMed Central

    Tadros, Sherif F.; D’Souza, Mary; Zhu, Xiaoxia

    2010-01-01

    To understand possible causative roles of apoptosis gene regulation in age-related hearing loss (presbycusis), apoptotic gene expression patterns in the CBA mouse cochlea of four different age and hearing loss groups were compared, using GeneChip and real-time (qPCR) microarrays. GeneChip transcriptional expression patterns of 318 apoptosis-related genes were analyzed. Thirty eight probes (35 genes) showed significant differences in expression. The significant gene families include Caspases, B-cell leukemia/lymphoma2 family, P53, Cal-pains, Mitogen activated protein kinase family, Jun oncogene, Nuclear factor of kappa light chain gene enhancer in B-cells inhibitor-related and tumor necrosis factor-related genes. The GeneChip results of 31 genes were validated using the new TaqMan® Low Density Array (TLDA). Eight genes showed highly correlated results with the GeneChip data. These genes are: activating transcription factor3, B-cell leukemia/lymphoma2, Bcl2-like1, caspase4 apoptosis-related cysteine protease 4, Calpain2, dual specificity phosphatase9, tumor necrosis factor receptor superfamily member12a, and Tumor necrosis factor superfamily member13b, suggesting they may play critical roles in inner ear aging. PMID:18839313

  19. Gene-Environment Interactions of Circadian-Related Genes for Cardiometabolic Traits

    PubMed Central

    Follis, Jack L.; Smith, Caren E.; Tanaka, Toshiko; Garaulet, Marta; Gottlieb, Daniel J.; Hruby, Adela; Jacques, Paul F.; Kiefte-de Jong, Jessica C.; Lamon-Fava, Stefania; Scheer, Frank A.J.L.; Bartz, Traci M.; Kovanen, Leena; Wojczynski, Mary K.; Frazier-Wood, Alexis C.; Ahluwalia, Tarunveer S.; Perälä, Mia-Maria; Jonsson, Anna; Muka, Taulant; Kalafati, Ioanna P.; Mikkilä, Vera; Ordovás, José M.

    2015-01-01

    OBJECTIVE Common circadian-related gene variants associate with increased risk for metabolic alterations including type 2 diabetes. However, little is known about whether diet and sleep could modify associations between circadian-related variants (CLOCK-rs1801260, CRY2-rs11605924, MTNR1B-rs1387153, MTNR1B-rs10830963, NR1D1-rs2314339) and cardiometabolic traits (fasting glucose [FG], HOMA-insulin resistance, BMI, waist circumference, and HDL-cholesterol) to facilitate personalized recommendations. RESEARCH DESIGN AND METHODS We conducted inverse-variance weighted, fixed-effect meta-analyses of results of adjusted associations and interactions between dietary intake/sleep duration and selected variants on cardiometabolic traits from 15 cohort studies including up to 28,190 participants of European descent from the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium. RESULTS We observed significant associations between relative macronutrient intakes and glycemic traits and short sleep duration (<7 h) and higher FG and replicated known MTNR1B associations with glycemic traits. No interactions were evident after accounting for multiple comparisons. However, we observed nominally significant interactions (all P < 0.01) between carbohydrate intake and MTNR1B-rs1387153 for FG with a 0.003 mmol/L higher FG with each additional 1% carbohydrate intake in the presence of the T allele, between sleep duration and CRY2-rs11605924 for HDL-cholesterol with a 0.010 mmol/L higher HDL-cholesterol with each additional hour of sleep in the presence of the A allele, and between long sleep duration (≥9 h) and MTNR1B-rs1387153 for BMI with a 0.60 kg/m2 higher BMI with long sleep duration in the presence of the T allele relative to normal sleep duration (≥7 to <9 h). CONCLUSIONS Our results suggest that lower carbohydrate intake and normal sleep duration may ameliorate cardiometabolic abnormalities conferred by common circadian-related genetic variants

  20. An Innovative Cloning Platform Enables Large-Scale Production and Maturation of an Oxygen-Tolerant [NiFe]-Hydrogenase from Cupriavidus necator in Escherichia coli

    PubMed Central

    Schiffels, Johannes; Pinkenburg, Olaf; Schelden, Maximilian; Aboulnaga, El-Hussiny A. A.; Baumann, Marcus E. M.; Selmer, Thorsten

    2013-01-01

    Expression of multiple heterologous genes in a dedicated host is a prerequisite for approaches in synthetic biology, spanning from the production of recombinant multiprotein complexes to the transfer of tailor-made metabolic pathways. Such attempts are often exacerbated, due in most cases to a lack of proper directional, robust and readily accessible genetic tools. Here, we introduce an innovative system for cloning and expression of multiple genes in Escherichia coli BL21 (DE3). Using the novel methodology, genes are equipped with individual promoters and terminators and subsequently assembled. The resulting multiple gene cassettes may either be placed in one vector or alternatively distributed among a set of compatible plasmids. We demonstrate the effectiveness of the developed tool by production and maturation of the NAD+reducing soluble [NiFe]-hydrogenase (SH) from Cupriavidus necator H16 (formerly Ralstonia eutropha H16) in E. coli BL21Star™ (DE3). The SH (encoded in hoxFUYHI) was successfully matured by co-expression of a dedicated set of auxiliary genes, comprising seven hyp genes (hypC1D1E1A2B2F2X) along with hoxW, which encodes a specific endopeptidase. Deletion of genes involved in SH maturation reduced maturation efficiency substantially. Further addition of hoxN1, encoding a high-affinity nickel permease from C. necator, considerably increased maturation efficiency in E. coli. Carefully balanced growth conditions enabled hydrogenase production at high cell-densities, scoring mg·(Liter culture)−1 yields of purified functional SH. Specific activities of up to 7.2±1.15 U·mg−1 were obtained in cell-free extracts, which is in the range of the highest activities ever determined in C. necator extracts. The recombinant enzyme was isolated in equal purity and stability as previously achieved with the native form, yielding ultrapure preparations with anaerobic specific activities of up to 230 U·mg−1. Owing to the combinatorial power exhibited by the

  1. Molecular and biochemical characterization of two tungsten- and selenium-containing formate dehydrogenases from Eubacterium acidaminophilum that are associated with components of an iron-only hydrogenase.

    PubMed

    Graentzdoerffer, Andrea; Rauh, David; Pich, Andreas; Andreesen, Jan R

    2003-01-01

    Two gene clusters encoding similar formate dehydrogenases (FDH) were identified in Eubacterium acidaminophilum. Each cluster is composed of one gene coding for a catalytic subunit ( fdhA-I, fdhA-II) and one for an electron-transferring subunit ( fdhB-I, fdhB-II). Both fdhA genes contain a TGA codon for selenocysteine incorporation and the encoded proteins harbor five putative iron-sulfur clusters in their N-terminal region. Both FdhB subunits resemble the N-terminal region of FdhA on the amino acid level and contain five putative iron-sulfur clusters. Four genes thought to encode the subunits of an iron-only hydrogenase are located upstream of the FDH gene cluster I. By sequence comparison, HymA and HymB are predicted to contain one and four iron-sulfur clusters, respectively, the latter protein also binding sites for FMN and NAD(P). Thus, HymA and HymB seem to represent electron-transferring subunits, and HymC the putative catalytic subunit containing motifs for four iron-sulfur clusters and one H-cluster specific for Fe-only hydrogenases. HymD has six predicted transmembrane helices and might be an integral membrane protein. Viologen-dependent FDH activity was purified from serine-grown cells of E. acidaminophilum and the purified protein complex contained four subunits, FdhA and FdhB, encoded by FDH gene cluster II, and HymA and HymB, identified after determination of their N-terminal sequences. Thus, this complex might represent the most simple type of a formate hydrogen lyase. The purified formate dehydrogenase fraction contained iron, tungsten, a pterin cofactor, and zinc, but no molybdenum. FDH-II had a two-fold higher K(m) for formate (0.37 mM) than FDH-I and also catalyzed CO(2) reduction to formate. Reverse transcription (RT)-PCR pointed to increased expression of FDH-II in serine-grown cells, supporting the isolation of this FDH isoform. The fdhA-I gene was expressed as inactive protein in Escherichia coli. The in-frame UGA codon for selenocysteine

  2. The evolution of reproduction-related NLRP genes.

    PubMed

    Duéñez-Guzmán, Edgar A; Haig, David

    2014-04-01

    NLRP proteins are important components of inflammasomes with a major role in innate immunity. A subset of NLRP genes, with unknown functions, are expressed in oocytes and early embryos. Mutations of Nlrp5 in mice are associated with maternal-effect embryonic lethality and mutations of NLRP7 in women are associated with conception of biparental complete hydatidiform moles (biCHMs), suggesting perturbed processes of genomic imprinting. Recessive mutations on NLRP2/7 in humans are associated with reproductive disorders and appear to be induced by a demethylation of the maternal pronucleus. In this study, we find that radiation of NLRP genes occurred before the common ancestor of Afrotheria and Boreoeutheria, with the clade of oocyte-expressed genes originating before the divergence of marsupial and eutherian mammals. There have been multiple independent duplications of NLRP2 genes one of which produced the NLRP7 gene associated with biCHMs.

  3. Isolation and characterization of Agouti: a diabetes/obesity related gene

    DOEpatents

    Woychik, Richard P.

    2000-06-27

    The present invention relates to the cloning and expression of the Agouti gene and analogous genes in transformed, transfected and transgenic mice. The present invention provides an animal model for the study of diabetes, obesity and tumors for the testing of potential therapeutic agents. The present invention provides oligonucleotide probes for the detection of the Agouti gene and mutations in the gene. The present invention also relates to the isolation and recombinant production of the Agouti gene product, production of antibodies to the Agouti gene product and their use as diagnostic and therapeutic agents.

  4. Isolation and characterization of Agouti: a diabetes/obesity related gene

    DOEpatents

    Woychik, Richard P.

    1998-01-01

    The present invention relates to the cloning and expression of the Agouti gene and analogous genes in transformed, transfected and transgenic mice. The present invention provides an animal model for the study of diabetes, obesity and tumors for the testing of potential therapeutic agents. The present invention provides oligonucleotide probes for the detection of the Agouti gene and mutations in the gene. The present invention also relates to the isolation and recombinant production of the Agouti gene product, production of antibodies to the Agouti gene product and their use as diagnostic and therapeutic agents.

  5. High-performance hydrogen production and oxidation electrodes with hydrogenase supported on metallic single-wall carbon nanotube networks.

    PubMed

    Svedružić, Draženka; Blackburn, Jeffrey L; Tenent, Robert C; Rocha, John-David R; Vinzant, Todd B; Heben, Michael J; King, Paul W

    2011-03-30

    We studied the electrocatalytic activity of an [FeFe]-hydrogenase from Clostridium acetobutylicum (CaH2ase) immobilized on single-wall carbon nanotube (SWNT) networks. SWNT networks were prepared on carbon cloth by ultrasonic spraying of suspensions with predetermined ratios of metallic and semiconducting nanotubes. Current densities for both proton reduction and hydrogen oxidation electrocatalytic activities were at least 1 order of magnitude higher when hydrogenase was immobilized onto SWNT networks with high metallic tube (m-SWNT) content in comparison to hydrogenase supported on networks with low metallic tube content or when SWNTs were absent. We conclude that the increase in electrocatalytic activities in the presence of SWNTs was mainly due to the m-SWNT fraction and can be attributed to (i) substantial increases in the active electrode surface area, and (ii) improved electronic coupling between CaH2ase redox-active sites and the electrode surface.

  6. Calcitonin Gene-Related Peptide: Key Regulator of Cutaneous Immunity

    PubMed Central

    Granstein, Richard D.; Wagner, John A.; Stohl, Lori L.; Ding, Wanhong

    2014-01-01

    Calcitonin gene-related peptide (CGRP) has been viewed as a neuropeptide and vasodilator. However, CGRP is more appropriately thought of as a pleiotropic signaling molecule. Indeed, CGRP has key regulatory functions on immune and inflammatory processes within the skin. CGRP-containing nerves are intimately associated with epidermal LCs and CGRP has profound regulatory effects on Langerhans cell antigen-presenting capability. When LCs are exposed to CGRP in vitro, their ability to present antigen for in vivo priming of naïve mice or elicitation of delayed-type hypersensitivity is inhibited in at least some situations. Administration of CGRP intradermally inhibits acquisition of immunity to Th1-dominant haptens applied to the injected site while augmenting immunity to Th2-dominant haptens, although the cellular targets of activity in these experiments remains unclear. Although CGRP can be a pro-inflammatory agent, several studies have demonstrated that administration of CGRP can inhibit the elicitation of inflammation by inflammatory stimuli in vivo. In this regard, CGRP inhibits the release of certain chemokines by stimulated endothelial cells. This is likely to be physiologically relevant since cutaneous blood vessels are innervated by sensory nerves. Exciting new studies suggest a significant role for CGRP in the pathogenesis of psoriasis and, most strikingly, that CGRP inhibit the ability of LCs to transmit the human immunodeficiency virus 1 to T lymphocytes. A more complete understanding of the role of CGRP in the skin immune system may lead to new and novel approaches for the therapy of immune mediated skin disorders. PMID:25534428

  7. Ossification of the posterior longitudinal ligament related genes identification using microarray gene expression profiling and bioinformatics analysis.

    PubMed

    He, Hailong; Mao, Lingzhou; Xu, Peng; Xi, Yanhai; Xu, Ning; Xue, Mingtao; Yu, Jiangming; Ye, Xiaojian

    2014-01-10

    Ossification of the posterior longitudinal ligament (OPLL) is a kind of disease with physical barriers and neurological disorders. The objective of this study was to explore the differentially expressed genes (DEGs) in OPLL patient ligament cells and identify the target sites for the prevention and treatment of OPLL in clinic. Gene expression data GSE5464 was downloaded from Gene Expression Omnibus; then DEGs were screened by limma package in R language, and changed functions and pathways of OPLL cells compared to normal cells were identified by DAVID (The Database for Annotation, Visualization and Integrated Discovery); finally, an interaction network of DEGs was constructed by string. A total of 1536 DEGs were screened, with 31 down-regulated and 1505 up-regulated genes. Response to wounding function and Toll-like receptor signaling pathway may involve in the development of OPLL. Genes, such as PDGFB, PRDX2 may involve in OPLL through response to wounding function. Toll-like receptor signaling pathway enriched genes such as TLR1, TLR5, and TLR7 may involve in spine cord injury in OPLL. PIK3R1 was the hub gene in the network of DEGs with the highest degree; INSR was one of the most closely related genes of it. OPLL related genes screened by microarray gene expression profiling and bioinformatics analysis may be helpful for elucidating the mechanism of OPLL.

  8. Guiding Principles of Hydrogenase Catalysis Instigated and Clarified by Protein Film Electrochemistry.

    PubMed

    Armstrong, Fraser A; Evans, Rhiannon M; Hexter, Suzannah V; Murphy, Bonnie J; Roessler, Maxie M; Wulff, Philip

    2016-05-17

    Protein film electrochemistry (PFE) is providing cutting-edge insight into the chemical principles underpinning biological hydrogen. Attached to an electrode, many enzymes exhibit "reversible" electrocatalytic behavior, meaning that a catalyzed redox reaction appears reversible or quasi-reversible when viewed by cyclic voltammetry. This efficiency is most relevant for enzymes that are inspiring advances in renewable energy, such as hydrogen-activating and CO2-reducing enzymes. Exploiting the rich repertoire of available instrumental methods, PFE experiments yield both a general snapshot and fine detail, all from tiny samples of enzyme. The dynamic electrochemical investigations blaze new trails and add exquisite detail to the information gained from structural and spectroscopic studies. This Account describes recent investigations of hydrogenases carried out in Oxford, including ideas initiated with PFE and followed through with complementary techniques, all contributing to an eventual complete picture of fast and efficient H2 activation without Pt. By immobilization of an enzyme on an electrode, catalytic electron flow and the chemistry controlling it can be addressed at the touch of a button. The buried nature of the active site means that structures that have been determined by crystallography or spectroscopy are likely to be protected, retained, and fully relevant in a PFE experiment. An electrocatalysis model formulated for the PFE of immobilized enzymes predicts interesting behavior and gives insight into why some hydrogenases are H2 producers and others are H2 oxidizers. Immobilization also allows for easy addition and removal of inhibitors along with precise potential control, one interesting outcome being that formaldehyde forms a reversible complex with reduced [FeFe]-hydrogenases, thereby providing insight into the order of electron and proton transfers. Experiments on O2-tolerant [NiFe]-hydrogenases show that O2 behaves like a reversible inhibitor: it

  9. LGscore: A method to identify disease-related genes using biological literature and Google data.

    PubMed

    Kim, Jeongwoo; Kim, Hyunjin; Yoon, Youngmi; Park, Sanghyun

    2015-04-01

    Since the genome project in 1990s, a number of studies associated with genes have been conducted and researchers have confirmed that genes are involved in disease. For this reason, the identification of the relationships between diseases and genes is important in biology. We propose a method called LGscore, which identifies disease-related genes using Google data and literature data. To implement this method, first, we construct a disease-related gene network using text-mining results. We then extract gene-gene interactions based on co-occurrences in abstract data obtained from PubMed, and calculate the weights of edges in the gene network by means of Z-scoring. The weights contain two values: the frequency and the Google search results. The frequency value is extracted from literature data, and the Google search result is obtained using Google. We assign a score to each gene through a network analysis. We assume that genes with a large number of links and numerous Google search results and frequency values are more likely to be involved in disease. For validation, we investigated the top 20 inferred genes for five different diseases using answer sets. The answer sets comprised six databases that contain information on disease-gene relationships. We identified a significant number of disease-related genes as well as candidate genes for Alzheimer's disease, diabetes, colon cancer, lung cancer, and prostate cancer. Our method was up to 40% more accurate than existing methods.

  10. Discovering Implicit Entity Relation with the Gene-Citation-Gene Network

    PubMed Central

    Song, Min; Han, Nam-Gi; Kim, Yong-Hwan; Ding, Ying; Chambers, Tamy

    2013-01-01

    In this paper, we apply the entitymetrics model to our constructed Gene-Citation-Gene (GCG) network. Based on the premise there is a hidden, but plausible, relationship between an entity in one article and an entity in its citing article, we constructed a GCG network of gene pairs implicitly connected through citation. We compare the performance of this GCG network to a gene-gene (GG) network constructed over the same corpus but which uses gene pairs explicitly connected through traditional co-occurrence. Using 331,411 MEDLINE abstracts collected from 18,323 seed articles and their references, we identify 25 gene pairs. A comparison of these pairs with interactions found in BioGRID reveal that 96% of the gene pairs in the GCG network have known interactions. We measure network performance using degree, weighted degree, closeness, betweenness centrality and PageRank. Combining all measures, we find the GCG network has more gene pairs, but a lower matching rate than the GG network. However, combining top ranked genes in both networks produces a matching rate of 35.53%. By visualizing both the GG and GCG networks, we find that cancer is the most dominant disease associated with the genes in both networks. Overall, the study indicates that the GCG network can be useful for detecting gene interaction in an implicit manner. PMID:24358368

  11. The urease gene cluster of Vibrio parahaemolyticus does not influence the expression of the thermostable direct hemolysin (TDH) gene or the TDH-related hemolysin gene.

    PubMed

    Nakaguchi, Yoshitsugu; Okuda, Jun; Iida, Tetsuya; Nishibuchi, Mitsuaki

    2003-01-01

    In order to investigate why the thermostable direct hemolysin (TDH) and the TDH-related hemolysin (TRH) of Vibrio parahaemolyticus are produced at low levels from urease-positive strains, the effect of the functional urease gene cluster of V. parahaemolyticus on the expression of the tdh and trh genes was examined. Transcriptional lacZ fusions with the tdh1, tdh2, trh1 and trh2 genes representing variants of the tdh and trh genes were integrated into the chromosome of an Escherichia coli strain and a urease-negative V. parahaemolyticus strain. The plasmid-borne urease gene cluster introduced and expressed in these constructs did not affect expression of any of the fusion genes. The amount of TDH produced from a Kanagawa phenomenon-positive V. parahaemolyticus did not change by introduction of the urease gene cluster either. It was concluded therefore that the urease gene cluster is not involved in the regulation of tdh and trh expression.

  12. Requirements for construction of a functional hybrid complex of photosystem I and [NiFe]-hydrogenase.

    PubMed

    Schwarze, Alexander; Kopczak, Marta J; Rögner, Matthias; Lenz, Oliver

    2010-04-01

    The development of cellular systems in which the enzyme hydrogenase is efficiently coupled to the oxygenic photosynthesis apparatus represents an attractive avenue to produce H(2) sustainably from light and water. Here we describe the molecular design of the individual components required for the direct coupling of the O(2)-tolerant membrane-bound hydrogenase (MBH) from Ralstonia eutropha H16 to the acceptor site of photosystem I (PS I) from Synechocystis sp. PCC 6803. By genetic engineering, the peripheral subunit PsaE of PS I was fused to the MBH, and the resulting hybrid protein was purified from R. eutropha to apparent homogeneity via two independent affinity chromatographical steps. The catalytically active MBH-PsaE (MBH(PsaE)) hybrid protein could be isolated only from the cytoplasmic fraction. This was surprising, since the MBH is a substrate of the twin-arginine translocation system and was expected to reside in the periplasm. We conclude that the attachment of the additional PsaE domain to the small, electron-transferring subunit of the MBH completely abolished the export competence of the protein. Activity measurements revealed that the H(2) production capacity of the purified MBH(PsaE) fusion protein was very similar to that of wild-type MBH. In order to analyze the specific interaction of MBH(PsaE) with PS I, His-tagged PS I lacking the PsaE subunit was purified via Ni-nitrilotriacetic acid affinity and subsequent hydrophobic interaction chromatography. Formation of PS I-hydrogenase supercomplexes was demonstrated by blue native gel electrophoresis. The results indicate a vital prerequisite for the quantitative analysis of the MBH(PsaE)-PS I complex formation and its light-driven H(2) production capacity by means of spectroelectrochemistry.

  13. A Redox Active [2Fe-2S] Cluster on the Hydrogenase Maturase HydF.

    PubMed

    Shepard, Eric M; Byer, Amanda S; Betz, Jeremiah N; Peters, John W; Broderick, Joan B

    2016-06-28

    [FeFe]-hydrogenases are nature's most prolific hydrogen catalysts, excelling at facilely interconverting H2 and protons. The catalytic core common to all [FeFe]-hydrogenases is a complex metallocofactor, referred to as the H-cluster, which is composed of a standard [4Fe-4S] cluster linked through a bridging thiolate to a 2Fe subcluster harboring dithiomethylamine, carbon monoxide, and cyanide ligands. This 2Fe subcluster is synthesized and inserted into [FeFe]-hydrogenase by three maturase enzymes denoted HydE, HydF, and HydG. HydE and HydG are radical S-adenosylmethionine enzymes and synthesize the nonprotein ligands of the H-cluster. HydF is a GTPase that functions as a scaffold or carrier for 2Fe subcluster production. Herein, we utilize UV-visible, circular dichroism, and electron paramagnetic resonance spectroscopic studies to establish the existence of redox active [4Fe-4S] and [2Fe-2S] clusters bound to HydF. We have used spectroelectrochemical titrations to assign iron-sulfur cluster midpoint potentials, have shown that HydF purifies with a reduced [2Fe-2S] cluster in the absence of exogenous reducing agents, and have tracked iron-sulfur cluster spectroscopic changes with quaternary structural perturbations. Our results provide an important foundation for understanding the maturation process by defining the iron-sulfur cluster content of HydF prior to its interaction with HydE and HydG. We speculate that the [2Fe-2S] cluster of HydF either acts as a placeholder for HydG-derived Fe(CO)2CN species or serves as a scaffold for 2Fe subcluster assembly.

  14. A Transmissible Plant Shoot Factor Promotes Uptake Hydrogenase Activity in Rhizobium Symbionts 1

    PubMed Central

    Bedmar, Eulogio J.; Phillips, Donald A.

    1984-01-01

    Shoot/root grafting studies showed organ and host cultivar effects on net H2 evolution from Pisum sativum L. root nodules. Net H2 evolution from those nodules represents the sum of H2 formed by Rhizobium nitrogenase and H2 oxidized by any uptake hydrogenase present in the bacteria. Grafts between pea cultivars `JI1205' or `Alaska' and `Feltham First' in symbioses with R. leguminosarum 128C53 showed that shoots of both JI1205 and Alaska increased H2 uptake significantly (P ≤ 0.05) in Feltham First root nodules. The same plants also had less net H2 evolution at similar rates of C2H2 reduction than plants formed by grafting Feltham First shoots on Feltham First roots. Although JI1205 and Alaska shoots increased H2-uptake activity of Feltham First root nodules 28 days after the graft was made, intermediate to high levels of H2 uptake activity were still present in nodules on roots of both JI1205 and Alaska grafted to Feltham First shoots. These results indicate the presence of a transmissible shoot factor(s) which can increase uptake hydrogenase activity in a Rhizobium symbiont and show that root genotype also can influence that parameter. Parallel grafting experiments using the same pea cultivars in symbioses with R. leguminosarum strain 300, which lacks uptake hydrogenase activity, suggested that a transmissible shoot factor(s) altered H2 formation from nitrogenase by changing the electron allocation coefficient of that enzyme complex. The root and shoot factor(s) detected in this study had no permanent effect on strain 128C53. Bacterial cells isolated from Feltham First nodules with low H2 uptake activity formed root nodules on JI1205 and Alaska with high H2 uptake activity. Bacteroids isolated from nodules on intact JI1205, Alaska, or Feltham First plants with high, medium, or low H2 uptake activity, respectively, maintained those phenotypes during in vitro assays. PMID:16663677

  15. A transmissible plant shoot factor promotes uptake hydrogenase activity in Rhizobium symbionts.

    PubMed

    Bedmar, E J; Phillips, D A

    1984-07-01

    Shoot/root grafting studies showed organ and host cultivar effects on net H(2) evolution from Pisum sativum L. root nodules. Net H(2) evolution from those nodules represents the sum of H(2) formed by Rhizobium nitrogenase and H(2) oxidized by any uptake hydrogenase present in the bacteria. Grafts between pea cultivars ;JI1205' or ;Alaska' and ;Feltham First' in symbioses with R. leguminosarum 128C53 showed that shoots of both JI1205 and Alaska increased H(2) uptake significantly (P hydrogenase activity in a Rhizobium symbiont and show that root genotype also can influence that parameter.Parallel grafting experiments using the same pea cultivars in symbioses with R. leguminosarum strain 300, which lacks uptake hydrogenase activity, suggested that a transmissible shoot factor(s) altered H(2) formation from nitrogenase by changing the electron allocation coefficient of that enzyme complex.The root and shoot factor(s) detected in this study had no permanent effect on strain 128C53. Bacterial cells isolated from Feltham First nodules with low H(2) uptake activity formed root nodules on JI1205 and Alaska with high H(2) uptake activity. Bacteroids isolated from nodules on intact JI1205, Alaska, or Feltham First plants with high, medium, or low H(2) uptake activity, respectively, maintained those phenotypes during in vitro assays.

  16. Rates and Routes of Electron Transfer of [NiFe]-Hydrogenase in an Enzymatic Fuel Cell.

    PubMed

    Petrenko, Alexander; Stein, Matthias

    2015-10-29

    Hydrogenase enzymes are being used in enzymatic fuel cells immobilized on a graphite or carbon electrode surface, for example. The enzyme is used for the anodic oxidation of molecular hydrogen (H2) to produce protons and electrons. The association and orientation of the enzyme at the anode electrode for a direct electron transfer is not completely resolved. The distal FeS-cluster in [NiFe]-hydrogenases contains a histidine residue which is known to play a critical role in the intermolecular electron transfer between the enzyme and the electrode surface. The [NiFe]-hydrogenase graphite electrode association was investigated using Brownian Dynamics simulations. Residues that were shown to be in proximity to the electrode surface were identified (His184, Ser196, Glu461, Glu464), and electron transfer routes connecting the distal FeS-cluster with the surface residues were investigated. Several possible pathways for electron transfer between the distal FeS-cluster and the terminal amino acid residues were probed in terms of their rates of electron transfer using DFT methods. The reorganization energies λ of the distal iron-sulfur cluster and coronene as a molecular model for graphite were calculated. The reorganization energy of the distal (His)(Cys)3 cluster was found to be not very different from that of a standard cubane clusters with a (Cys)4 coordination. Electronic coupling matrix elements and rates of electron transfer for the different pathways were calculated according to the Marcus equation. The rates for glutamate-mediated electrode binding were found to be incompatible with experimental data. A direct electron transfer from the histidine ligand of the distal FeS-cluster to the electrode yielded rates of electron transfer in excellent agreement with experiment. A second pathway, however, from the distal FeS-cluster to the Ser196 residue was found to be equally efficient and feasible.

  17. Frequency and potential dependence of reversible electrocatalytic hydrogen interconversion by [FeFe]-hydrogenases.

    PubMed

    Pandey, Kavita; Islam, Shams T A; Happe, Thomas; Armstrong, Fraser A

    2017-04-11

    The kinetics of hydrogen oxidation and evolution by [FeFe]-hydrogenases have been investigated by electrochemical impedance spectroscopy-resolving factors that determine the exceptional activity of these enzymes, and introducing an unusual and powerful way of analyzing their catalytic electron transport properties. Attached to an electrode, hydrogenases display reversible electrocatalytic behavior close to the 2H(+)/H2 potential, making them paradigms for efficiency: the electrocatalytic "exchange" rate (measured around zero driving force) is therefore an unusual parameter with theoretical and practical significance. Experiments were carried out on two [FeFe]-hydrogenases, CrHydA1 from the green alga Chlamydomonas reinhardtii, which contains only the active-site "H cluster," and CpI from the fermentative anaerobe Clostridium pasteurianum, which contains four low-potential FeS clusters that serve as an electron relay in addition to the H cluster. Data analysis yields catalytic exchange rates (at the formal 2H(+)/H2 potential, at 0 °C) of 157 electrons (78 molecules H2) per second for CpI and 25 electrons (12 molecules H2) per second for CrHydA1. The experiments show how the potential dependence of catalytic electron flow comprises frequency-dependent and frequency-independent terms that reflect the proficiencies of the catalytic site and the electron transfer pathway in each enzyme. The results highlight the "wire-like" behavior of the Fe-S electron relay in CpI and a low reorganization energy for electron transfer on/off the H cluster.

  18. The crystal structure of an oxygen-tolerant hydrogenase uncovers a novel iron-sulphur centre.

    PubMed

    Fritsch, Johannes; Scheerer, Patrick; Frielingsdorf, Stefan; Kroschinsky, Sebastian; Friedrich, Bärbel; Lenz, Oliver; Spahn, Christian M T

    2011-10-16

    Hydrogenases are abundant enzymes that catalyse the reversible interconversion of H(2) into protons and electrons at high rates. Those hydrogenases maintaining their activity in the presence of O(2) are considered to be central to H(2)-based technologies, such as enzymatic fuel cells and for light-driven H(2) production. Despite comprehensive genetic, biochemical, electrochemical and spectroscopic investigations, the molecular background allowing a structural interpretation of how the catalytic centre is protected from irreversible inactivation by O(2) has remained unclear. Here we present the crystal structure of an O(2)-tolerant [NiFe]-hydrogenase from the aerobic H(2) oxidizer Ralstonia eutropha H16 at 1.5 Å resolution. The heterodimeric enzyme consists of a large subunit harbouring the catalytic centre in the H(2)-reduced state and a small subunit containing an electron relay consisting of three different iron-sulphur clusters. The cluster proximal to the active site displays an unprecedented [4Fe-3S] structure and is coordinated by six cysteines. According to the current model, this cofactor operates as an electronic switch depending on the nature of the gas molecule approaching the active site. It serves as an electron acceptor in the course of H(2) oxidation and as an electron-delivering device upon O(2) attack at the active site. This dual function is supported by the capability of the novel iron-sulphur cluster to adopt three redox states at physiological redox potentials. The second structural feature is a network of extended water cavities that may act as a channel facilitating the removal of water produced at the [NiFe] active site. These discoveries will have an impact on the design of biological and chemical H(2)-converting catalysts that are capable of cycling H(2) in air.

  19. Three-dimensional structure of the nickel-containing hydrogenase from Thiocapsa roseopersicina.

    PubMed Central

    Sherman, M B; Orlova, E V; Smirnova, E A; Hovmöller, S; Zorin, N A

    1991-01-01

    The three-dimensional structure of the nickel-containing hydrogenase from Thiocapsa roseopersicina has been determined at a resolution of 2 nm in the plane and 4 nm in the vertical direction by electron microscopy and computerized image processing on microcrystals of the enzyme. The enzyme forms a large ring-shaped complex containing six each of the large (62-kDa) and small (26-kDa) subunits. The complex is very open, with six well-separated dumbbell-shaped masses surrounding a large cylindrical hole. Each dumbbell is interpreted as consisting of one large and one small subunit. Images PMID:1901570

  20. Metagenomic Analyses Reveal That Energy Transfer Gene Abundances Can Predict the Syntrophic Potential of Environmental Microbial Communities

    PubMed Central

    Oberding, Lisa; Gieg, Lisa M.

    2016-01-01

    Hydrocarbon compounds can be biodegraded by anaerobic microorganisms to form methane through an energetically interdependent metabolic process known as syntrophy. The microorganisms that perform this process as well as the energy transfer mechanisms involved are difficult to study and thus are still poorly understood, especially on an environmental scale. Here, metagenomic data was analyzed for specific clusters of orthologous groups (COGs) related to key energy transfer genes thus far identified in syntrophic bacteria, and principal component analysis was used in order to determine whether potentially syntrophic environments could be distinguished using these syntroph related COGs as opposed to universally present COGs. We found that COGs related to hydrogenase and formate dehydrogenase genes were able to distinguish known syntrophic consortia and environments with the potential for syntrophy from non-syntrophic environments, indicating that these COGs could be used as a tool to identify syntrophic hydrocarbon biodegrading environments using metagenomic data. PMID:27681901

  1. Megakaryocyte- and megakaryocyte precursor–related gene therapies

    PubMed Central

    2016-01-01

    Hematopoietic stem cells (HSCs) can be safely collected from the body, genetically modified, and re-infused into a patient with the goal to express the transgene product for an individual’s lifetime. Hematologic defects that can be corrected with an allogeneic bone marrow transplant can theoretically also be treated with gene replacement therapy. Because some genetic disorders affect distinct cell lineages, researchers are utilizing HSC gene transfer techniques using lineage-specific endogenous gene promoters to confine transgene expression to individual cell types (eg, ITGA2B for inherited platelet defects). HSCs appear to be an ideal target for platelet gene therapy because they can differentiate into megakaryocytes which are capable of forming several thousand anucleate platelets that circulate within blood vessels to establish hemostasis by repairing vascular injury. Platelets play an essential role in other biological processes (immune response, angiogenesis) as well as diseased states (atherosclerosis, cancer, thrombosis). Thus, recent advances in genetic manipulation of megakaryocytes could lead to new and improved therapies for treating a variety of disorders. In summary, genetic manipulation of megakaryocytes has progressed to the point where clinically relevant strategies are being developed for human trials for genetic disorders affecting platelets. Nevertheless, challenges still need to be overcome to perfect this field; therefore, strategies to increase the safety and benefit of megakaryocyte gene therapy will be discussed. PMID:26787735

  2. Megakaryocyte- and megakaryocyte precursor-related gene therapies.

    PubMed

    Wilcox, David A

    2016-03-10

    Hematopoietic stem cells (HSCs) can be safely collected from the body, genetically modified, and re-infused into a patient with the goal to express the transgene product for an individual's lifetime. Hematologic defects that can be corrected with an allogeneic bone marrow transplant can theoretically also be treated with gene replacement therapy. Because some genetic disorders affect distinct cell lineages, researchers are utilizing HSC gene transfer techniques using lineage-specific endogenous gene promoters to confine transgene expression to individual cell types (eg, ITGA2B for inherited platelet defects). HSCs appear to be an ideal target for platelet gene therapy because they can differentiate into megakaryocytes which are capable of forming several thousand anucleate platelets that circulate within blood vessels to establish hemostasis by repairing vascular injury. Platelets play an essential role in other biological processes (immune response, angiogenesis) as well as diseased states (atherosclerosis, cancer, thrombosis). Thus, recent advances in genetic manipulation of megakaryocytes could lead to new and improved therapies for treating a variety of disorders. In summary, genetic manipulation of megakaryocytes has progressed to the point where clinically relevant strategies are being developed for human trials for genetic disorders affecting platelets. Nevertheless, challenges still need to be overcome to perfect this field; therefore, strategies to increase the safety and benefit of megakaryocyte gene therapy will be discussed.

  3. Evolutionary history of the Rh blood group-related genes in vertebrates.

    PubMed

    Kitano, T; Saitou, N

    2000-08-01

    Rh and its homologous Rh50 gene products are considered to form heterotetramers on erythrocyte membranes. Rh protein has Rh blood group antigen sites, while Rh50 protein does not, and is more conserved than Rh protein. We previously determined both Rh and Rh50 gene cDNA coding regions from mouse and rat, and carried out phylogenetic analyses. In this study, we determined Rh50 gene cDNA coding regions from African clawed frog and Japanese medaka fish, and examined the long-term evolution of the Rh blood group and related genes. We constructed the phylogenetic tree from amino acid sequences. Rh50 genes of African clawed frog and Japanese medaka fish formed a cluster with mammalian Rh50 genes. The gene duplication time between Rh and Rh50 genes was estimated to be about 510 million years ago based on this tree. This period roughly corresponds to the Cambrian, before the divergence between jawless fish and jawed vertebrates. We also BLAST-searched an amino acid sequence database, and the Rh blood group and related genes were found to have homology with ammonium transporter genes of many organisms. Ammonium transporter genes can be classified into two major groups (amt alpha and amt beta). Both groups contain genes from three domains (bacteria, archaea, and eukaryota). The Rh blood group and related genes are separated from both amt alpha and beta groups.

  4. Gene expression profile analysis of testis and ovary of oriental river prawn, Macrobrachium nipponense, reveals candidate reproduction-related genes.

    PubMed

    Qiao, H; Xiong, Y W; Jiang, S F; Fu, H T; Sun, S M; Jin, S B; Gong, Y S; Zhang, W Y

    2015-03-20

    This study utilized high-throughput RNA sequencing technology to identify reproduction- and development-related genes of Macrobrachium nipponense by analyzing gene expression profiles of testis and ovary. More than 20 million 1 x 51-bp reads were obtained by Illumina sequencing, generating more than 7.7 and 11.7 million clean reads in the testis and ovary library, respectively. As a result, 10,018 unitags were supposed to be differentially expressed genes (DEGs) between ovary and testis. Compared to the ovary library, 4563 (45.5%) of these DEGs exhibited at least 6-fold upregulated expression, while 5455 (54.5%) DEGs exhibited at least 2-fold downregulated expression in the testis. The Gene Ontology (GO) enrichment analysis showed that 113 GO terms had potential molecular functions in reproduction. The Kyoto Encyclopedia of Genes and Genomes results revealed that the most important pathways may be relevant to reproduction and included 7 pathways. Forty-two genes were identified as reproduction-, development-, and sex-related genes based on GO classification and sequence comparison with other publications, including male reproductive-related LIM protein, spermatogenesis-associated protein, gametocyte-specific factor 1, VASA-like protein, vitellogenin, sex-determining protein fem-1, and other potential candidates. These results will advance research in the field of molecular genetics in M. nipponense and offer a valuable resource for further research related to reproduction in crustaceans.

  5. Characterization of rainbow trout (Oncorhynchus mykiss) spleen transcriptome and identification of immune-related genes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Resistance against specific diseases is affecting profitability in fish production systems including rainbow trout. Limited information is known about functions and mechanisms of the immune gene pathways in teleosts. Immunogenomics are powerful tools to determine immune-related genes/gene pathways a...

  6. Characterization and expression analysis of a Retinoblastoma-related gene from Chinese wild Vitis pseudoreticulata

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Retinoblastoma-related (RBR) genes, a conserved gene family in higher eukaryotes, plays an important role in cell differentiation, development and mammalian cell death in animals; however, little is known about its function in plants. In this study, an RBR gene was isolated from the Chinese wild gr...

  7. Understanding the Role of Housekeeping and Stress-Related Genes in Transcription-Regulatory Networks

    NASA Astrophysics Data System (ADS)

    Heath, Allison; Kavraki, Lydia; Balázsi, Gábor

    2008-03-01

    Despite the increasing number of completely sequenced genomes, much remains to be learned about how living cells process environmental information and respond to changes in their surroundings. Accumulating evidence indicates that eukaryotic and prokaryotic genes can be classified in two distinct categories that we will call class I and class II. Class I genes are housekeeping genes, often characterized by stable, noise resistant expression levels. In contrast, class II genes are stress-related genes and often have noisy, unstable expression levels. In this work we analyze the large scale transcription-regulatory networks (TRN) of E. coli and S. cerevisiae and preliminary data on H. sapien. We find that stable, housekeeping genes (class I) are preferentially utilized as transcriptional inputs while stress related, unstable genes (class II) are utilized as transcriptional integrators. This might be the result of convergent evolution that placed the appropriate genes in the appropriate locations within transcriptional networks according to some fundamental principles that govern cellular information processing.

  8. Contribution of hydrogenase 2 to stationary phase H2 production by Escherichia coli during fermentation of glycerol.

    PubMed

    Trchounian, Karen; Soboh, Basem; Sawers, R Gary; Trchounian, Armen

    2013-05-01

    Escherichia coli has four hydrogenases (Hyd), three genes of which are encoded by the hya, hyb, and hyc operons. The proton-reducing and hydrogen-oxidizing activities of Hyd-2 (hyb) were analyzed in whole cells grown to stationary phase and cell extracts, respectively, during glycerol fermentation using novel double mutants. H2 production rate at pH 7.5 was decreased by ~3.5- and ~7-fold in hya and hyc (HDK 103) or hyb and hyc (HDK 203) operon double mutants, respectively, compared with the wild type. At pH 6.5, H2 production decreased by ~2- and ~5-fold in HDK103 and HDK203, respectively, compared with the wild type. At pH 5.5, H2 production was reduced by ~4.5-fold in the mutants compared with the wild type. The total hydrogen-oxidizing activity was shown to depend on the pH of the growth medium in agreement with previous findings and was significantly reduced in the HDK103 or HDK203 mutants. At pH 7.5, Hyd-2 activity was 0.26 U (mg protein)(-1) and Hyd-1 activity was 0.1 U (mg protein)(-1). As the pH of the growth medium decreased to 6.5, Hyd-2 activity was 0.16 U (mg protein)(-1), and Hyd-1 was absent. Surprisingly, at pH 5.5, there was an increase in Hyd-2 activity (0.33 U mg protein)(-1) but not in that of Hyd-1. These findings show a major contribution of Hyd-2 to H2 production during glycerol fermentation that resulted from altered metabolism which surprisingly influenced proton reduction.

  9. A hybrid computational method for the discovery of novel reproduction-related genes.

    PubMed

    Chen, Lei; Chu, Chen; Kong, Xiangyin; Huang, Guohua; Huang, Tao; Cai, Yu-Dong

    2015-01-01

    Uncovering the molecular mechanisms underlying reproduction is of great importance to infertility treatment and to the generation of healthy offspring. In this study, we discovered novel reproduction-related genes with a hybrid computational method, integrating three different types of method, which offered new clues for further reproduction research. This method was first executed on a weighted graph, constructed based on known protein-protein interactions, to search the shortest paths connecting any two known reproduction-related genes. Genes occurring in these paths were deemed to have a special relationship with reproduction. These newly discovered genes were filtered with a randomization test. Then, the remaining genes were further selected according to their associations with known reproduction-related genes measured by protein-protein interaction score and alignment score obtained by BLAST. The in-depth analysis of the high confidence novel reproduction genes revealed hidden mechanisms of reproduction and provided guidelines for further experimental validations.

  10. Identification of Cancer Related Genes Using a Comprehensive Map of Human Gene Expression.

    PubMed

    Torrente, Aurora; Lukk, Margus; Xue, Vincent; Parkinson, Helen; Rung, Johan; Brazma, Alvis

    2016-01-01

    Rapid accumulation and availability of gene expression datasets in public repositories have enabled large-scale meta-analyses of combined data. The richness of cross-experiment data has provided new biological insights, including identification of new cancer genes. In this study, we compiled a human gene expression dataset from ∼40,000 publicly available Affymetrix HG-U133Plus2 arrays. After strict quality control and data normalisation the data was quantified in an expression matrix of ∼20,000 genes and ∼28,000 samples. To enable different ways of sample grouping, existing annotations where subjected to systematic ontology assisted categorisation and manual curation. Groups like normal tissues, neoplasmic tissues, cell lines, homoeotic cells and incompletely differentiated cells were created. Unsupervised analysis of the data confirmed global structure of expression consistent with earlier analysis but with more details revealed due to increased resolution. A suitable mixed-effects linear model was used to further investigate gene expression in solid tissue tumours, and to compare these with the respective healthy solid tissues. The analysis identified 1,285 genes with systematic expression change in cancer. The list is significantly enriched with known cancer genes from large, public, peer-reviewed databases, whereas the remaining ones are proposed as new cancer gene candidates. The compiled dataset is publicly available in the ArrayExpress Archive. It contains the most diverse collection of biological samples, making it the largest systematically annotated gene expression dataset of its kind in the public domain.

  11. Selection of Reference Genes for Gene Expression Studies related to lung injury in a preterm lamb model

    PubMed Central

    Pereira-Fantini, Prue M.; Rajapaksa, Anushi E.; Oakley, Regina; Tingay, David G.

    2016-01-01

    Preterm newborns often require invasive support, however even brief periods of supported ventilation applied inappropriately to the lung can cause injury. Real-time quantitative reverse transcriptase-PCR (qPCR) has been extensively employed in studies of ventilation-induced lung injury with the reference gene 18S ribosomal RNA (18S RNA) most commonly employed as the internal control reference gene. Whilst the results of these studies depend on the stability of the reference gene employed, the use of 18S RNA has not been validated. In this study the expression profile of five candidate reference genes (18S RNA, ACTB, GAPDH, TOP1 and RPS29) in two geographical locations, was evaluated by dedicated algorithms, including geNorm, Normfinder, Bestkeeper and ΔCt method and the overall stability of these candidate genes determined (RefFinder). Secondary studies examined the influence of reference gene choice on the relative expression of two well-validated lung injury markers; EGR1 and IL1B. In the setting of the preterm lamb model of lung injury, RPS29 reference gene expression was influenced by tissue location; however we determined that individual ventilation strategies influence reference gene stability. Whilst 18S RNA is the most commonly employed reference gene in preterm lamb lung studies, our results suggest that GAPDH is a more suitable candidate. PMID:27210246

  12. Laughter up-regulates the genes related to NK cell activity in diabetes.

    PubMed

    Hayashi, Takashi; Tsujii, Satoru; Iburi, Tadao; Tamanaha, Tamiko; Yamagami, Keiko; Ishibashi, Rieko; Hori, Miyo; Sakamoto, Shigeko; Ishii, Hitoshi; Murakami, Kazuo

    2007-12-01

    To elucidate the sustainable effects of laughter on gene expression, we recruited type 2 diabetic patients who were in-patient for receiving self-management education and examined time-dependent regulation for gene expression by laughter. Two-day experiment was performed. On one day, the patients watched comic video and laughed together with hospital staffs. On the other day, they participated in an inpatient diabetes educational program. Blood samples were collected before and 1.5, 4 h after watching comic video or spending lecture time, and changes in gene expression were comprehensively analyzed by microarray technique. Of the 41,000 genes analyzed, the laughter relatively up-regulated 39 genes, among which, 27 genes were relatively increased in the expression for all the observation period after watching comic video. By functional classification of these genes, 14 genes were found to be related to natural killer cell activity. No genes were included that are directly involved in blood glucose regulation, though successive suppression of postprandial blood glucose levels was observed. These results suggest that the laughter influences the expression of many genes classified into immune responses, and may contribute to amelioration of postprandial blood glucose elevation through a modulation of NK cell activity caused by up-regulation of relating genes.

  13. Proton Coupled Electronic Rearrangement within the H-Cluster as an Essential Step in the Catalytic Cycle of [FeFe] Hydrogenases.

    PubMed

    Sommer, Constanze; Adamska-Venkatesh, Agnieszka; Pawlak, Krzysztof; Birrell, James A; Rüdiger, Olaf; Reijerse, Edward J; Lubitz, Wolfgang

    2017-02-01

    The active site of [FeFe] hydrogenases, the H-cluster, consists of a [4Fe-4S] cluster connected via a bridging cysteine to a [2Fe] complex carrying CO and CN(-) ligands as well as a bridging aza-dithiolate ligand (ADT) of which the amine moiety serves as a proton shuttle between the protein and the H-cluster. During the catalytic cycle, the two subclusters change oxidation states: [4Fe-4S]H(2+) ⇔ [4Fe-4S]H(+) and [Fe(I)Fe(II)]H ⇔ [Fe(I)Fe(I)]H thereby enabling the storage of the two electrons needed for the catalyzed reaction 2H(+) + 2e(-) ⇄ H2. Using FTIR spectro-electrochemistry on the [FeFe] hydrogenase from Chlamydomonas reinhardtii (CrHydA1) at different pH values, we resolve the redox and protonation events in the catalytic cycle and determine their intrinsic thermodynamic parameters. We show that the singly reduced state Hred of the H-cluster actually consists of two species: Hred = [4Fe-4S]H(+) - [Fe(I)Fe(II)]H and HredH(+) = [4Fe-4S]H(2+) - [Fe(I)Fe(I)]H (H(+)) related by proton coupled electronic rearrangement. The two redox events in the catalytic cycle occur on the [4Fe-4S]H subcluster at similar midpoint-potentials (-375 vs -418 mV); the protonation event (Hred/HredH(+)) has a pKa ≈ 7.2.

  14. HupO, a Novel Regulator Involved in Thiosulfate-Responsive Control of HupSL [NiFe]-Hydrogenase Synthesis in Thiocapsa roseopersicina

    PubMed Central

    Nagy, Ildikó K.; Kovács, Kornél L.

    2016-01-01

    [NiFe]-hydrogenases are regulated by various factors to fulfill their physiological functions in bacterial cells. The photosynthetic purple sulfur bacterium Thiocapsa roseopersicina harbors four functional [NiFe]-hydrogenases: HynSL, HupSL, Hox1, and Hox2. Most of these hydrogenases are functionally linked to sulfur metabolism, and thiosulfate has a central role in this organism. The membrane-associated Hup hydrogenases have been shown to play a role in energy conservation through hydrogen recycling. The expression of Hup-type hydrogenases is regulated by H2 in Rhodobacter capsulatus and Cupriavidus necator; however, it has been shown that the corresponding hydrogen-sensing system is nonfunctional in T. roseopersicina and that thiosulfate is a regulating factor of hup expression. Here, we describe the discovery and analysis of mutants of a putative regulator (HupO) of the Hup hydrogenase in T. roseopersicina. HupO appears to mediate the transcriptional repression of Hup enzyme synthesis under low-thiosulfate conditions. We also demonstrate that the presence of the Hox1 hydrogenase strongly influences Hup enzyme synthesis in that hup expression was decreased significantly in the hox1 mutant. This reduction in Hup synthesis could be reversed by mutation of hupO, which resulted in strongly elevated hup expression, as well as Hup protein levels, and concomitant in vivo hydrogen uptake activity in the hox1 mutant. However, this regulatory control was observed only at low thiosulfate concentrations. Additionally, weak hydrogen-dependent hup expression was shown in the hupO mutant strain lacking the Hox1 hydrogenase. HupO-mediated Hup regulation therefore appears to link thiosulfate metabolism and the hydrogenase network in T. roseopersicina. PMID:26801573

  15. Transcriptome-Wide Differential Gene Expression in Bicyclus anynana Butterflies: Female Vision-Related Genes Are More Plastic.

    PubMed

    Macias-Muñoz, Aide; Smith, Gilbert; Monteiro, Antónia; Briscoe, Adriana D

    2016-01-01

    Vision is energetically costly to maintain. Consequently, over time many cave-adapted species downregulate the expression of vision genes or even lose their eyes and associated eye genes entirely. Alternatively, organisms that live in fluctuating environments, with different requirements for vision at different times, may evolve phenotypic plasticity for expression of vision genes. Here, we use a global transcriptomic and candidate gene approach to compare gene expression in the heads of a polyphenic butterfly. Bicyclus anynana have two seasonal forms that display sexual dimorphism and plasticity in eye morphology, and female-specific plasticity in opsin gene expression. Nonchoosy dry season females downregulate opsin expression, consistent with the high physiological cost of vision. To identify other genes associated with sexually dimorphic and seasonally plastic differences in vision, we analyzed RNA-sequencing data from whole head tissues. We identified two eye development genes (klarsicht and warts homologs) and an eye pigment biosynthesis gene (henna) differentially expressed between seasonal forms. By comparing sex-specific expression across seasonal forms, we found that klarsicht, warts, henna, and another eye development gene (domeless) were plastic in a female-specific manner. In a male-only analysis, white (w) was differentially expressed between seasonal forms. Reverse transcription polymerase chain reaction confirmed that warts and white are expressed in eyes only, whereas klarsicht, henna and domeless are expressed in both eyes and brain. We find that differential expression of eye development and eye pigment genes is associated with divergent eye phenotypes in B. anynana seasonal forms, and that there is a larger effect of season on female vision-related genes.

  16. Identifying and Analyzing Novel Epilepsy-Related Genes Using Random Walk with Restart Algorithm

    PubMed Central

    Guo, Wei; Shang, Dong-Mei; Cao, Jing-Hui; Feng, Kaiyan; Wang, ShaoPeng

    2017-01-01

    As a pathological condition, epilepsy is caused by abnormal neuronal discharge in brain which will temporarily disrupt the cerebral functions. Epilepsy is a chronic disease which occurs in all ages and would seriously affect patients' personal lives. Thus, it is highly required to develop effective medicines or instruments to treat the disease. Identifying epilepsy-related genes is essential in order to understand and treat the disease because the corresponding proteins encoded by the epilepsy-related genes are candidates of the potential drug targets. In this study, a pioneering computational workflow was proposed to predict novel epilepsy-related genes using the random walk with restart (RWR) algorithm. As reported in the literature RWR algorithm often produces a number of false positive genes, and in this study a permutation test and functional association tests were implemented to filter the genes identified by RWR algorithm, which greatly reduce the number of suspected genes and result in only thirty-three novel epilepsy genes. Finally, these novel genes were analyzed based upon some recently published literatures. Our findings implicate that all novel genes were closely related to epilepsy. It is believed that the proposed workflow can also be applied to identify genes related to other diseases and deepen our understanding of the mechanisms of these diseases. PMID:28255556

  17. Distal [FeS]-Cluster Coordination in [NiFe]-Hydrogenase Facilitates Intermolecular Electron Transfer

    PubMed Central

    Petrenko, Alexander; Stein, Matthias

    2017-01-01

    Biohydrogen is a versatile energy carrier for the generation of electric energy from renewable sources. Hydrogenases can be used in enzymatic fuel cells to oxidize dihydrogen. The rate of electron transfer (ET) at the anodic side between the [NiFe]-hydrogenase enzyme distal iron–sulfur cluster and the electrode surface can be described by the Marcus equation. All parameters for the Marcus equation are accessible from Density Functional Theory (DFT) calculations. The distal cubane FeS-cluster has a three-cysteine and one-histidine coordination [Fe4S4](His)(Cys)3 first ligation sphere. The reorganization energy (inner- and outer-sphere) is almost unchanged upon a histidine-to-cysteine substitution. Differences in rates of electron transfer between the wild-type enzyme and an all-cysteine mutant can be rationalized by a diminished electronic coupling between the donor and acceptor molecules in the [Fe4S4](Cys)4 case. The fast and efficient electron transfer from the distal iron–sulfur cluster is realized by a fine-tuned protein environment, which facilitates the flow of electrons. This study enables the design and control of electron transfer rates and pathways by protein engineering. PMID:28067774

  18. Nickel-centred proton reduction catalysis in a model of [NiFe] hydrogenase

    NASA Astrophysics Data System (ADS)

    Brazzolotto, Deborah; Gennari, Marcello; Queyriaux, Nicolas; Simmons, Trevor R.; Pécaut, Jacques; Demeshko, Serhiy; Meyer, Franc; Orio, Maylis; Artero, Vincent; Duboc, Carole

    2016-11-01

    Hydrogen production through water splitting is one of the most promising solutions for the storage of renewable energy. [NiFe] hydrogenases are organometallic enzymes containing nickel and iron centres that catalyse hydrogen evolution with performances that rival those of platinum. These enzymes provide inspiration for the design of new molecular catalysts that do not require precious metals. However, all heterodinuclear NiFe models reported so far do not reproduce the Ni-centred reactivity found at the active site of [NiFe] hydrogenases. Here, we report a structural and functional NiFe mimic that displays reactivity at the Ni site. This is shown by the detection of two catalytic intermediates that reproduce structural and electronic features of the Ni-L and Ni-R states of the enzyme during catalytic turnover. Under electrocatalytic conditions, this mimic displays high rates for H2 evolution (second-order rate constant of 2.5 × 104 M-1 s-1 turnover frequency of 250 s-1 at 10 mM H+ concentration) from mildly acidic solutions.

  19. Hydride bridge in [NiFe]-hydrogenase observed by nuclear resonance vibrational spectroscopy

    DOE PAGES

    Ogata, Hideaki; Krämer, Tobias; Wang, Hongxin; ...

    2015-08-10

    The metabolism of many anaerobes relies on [NiFe]-hydrogenases, whose characterization when bound to substrates has proven non-trivial. Presented here is direct evidence for a hydride bridge in the active site of the 57Fe-labelled fully reduced Ni-R form of Desulfovibrio vulgaris Miyazaki F [NiFe]-hydrogenase. A unique ‘wagging’ mode involving H- motion perpendicular to the Ni(μ-H)57Fe plane was studied using 57Fe-specific nuclear resonance vibrational spectroscopy and density functional theory (DFT) calculations. On Ni(μ-D)57Fe deuteride substitution, this wagging causes a characteristic perturbation of Fe–CO/CN bands. Spectra have been interpreted by comparison with Ni(μ-H/D)57Fe enzyme mimics [(dppe)Ni(μ-pdt)(μ-H/D)57Fe(CO)3]+ and DFT calculations, which collectively indicate amore » low-spin Ni(II)(μ-H)Fe(II) core for Ni-R, with H- binding Ni more tightly than Fe. Lastly, the present methodology is also relevant to characterizing Fe–H moieties in other important natural and synthetic catalysts.« less

  20. Hydride bridge in [NiFe]-hydrogenase observed by nuclear resonance vibrational spectroscopy

    SciTech Connect

    Ogata, Hideaki; Krämer, Tobias; Wang, Hongxin; Schilter, David; Pelmenschikov, Vladimir; van Gastel, Maurice; Neese, Frank; Rauchfuss, Thomas B.; Gee, Leland B.; Scott, Aubrey D.; Yoda, Yoshitaka; Lubitz, Wolfgang; Cramer, Stephen P.

    2015-08-10

    The metabolism of many anaerobes relies on [NiFe]-hydrogenases, whose characterization when bound to substrates has proven non-trivial. Presented here is direct evidence for a hydride bridge in the active site of the 57Fe-labelled fully reduced Ni-R form of Desulfovibrio vulgaris Miyazaki F [NiFe]-hydrogenase. A unique ‘wagging’ mode involving H- motion perpendicular to the Ni(μ-H)57Fe plane was studied using 57Fe-specific nuclear resonance vibrational spectroscopy and density functional theory (DFT) calculations. On Ni(μ-D)57Fe deuteride substitution, this wagging causes a characteristic perturbation of Fe–CO/CN bands. Spectra have been interpreted by comparison with Ni(μ-H/D)57Fe enzyme mimics [(dppe)Ni(μ-pdt)(μ-H/D)57Fe(CO)3]+ and DFT calculations, which collectively indicate a low-spin Ni(II)(μ-H)Fe(II) core for Ni-R, with H- binding Ni more tightly than Fe. Lastly, the present methodology is also relevant to characterizing Fe–H moieties in other important natural and synthetic catalysts.

  1. Stepwise isotope editing of [FeFe]-hydrogenases exposes cofactor dynamics

    PubMed Central

    Senger, Moritz; Mebs, Stefan; Duan, Jifu; Wittkamp, Florian; Apfel, Ulf-Peter; Heberle, Joachim; Haumann, Michael; Stripp, Sven Timo

    2016-01-01

    The six-iron cofactor of [FeFe]-hydrogenases (H-cluster) is the most efficient H2-forming catalyst in nature. It comprises a diiron active site with three carbon monoxide (CO) and two cyanide (CN−) ligands in the active oxidized state (Hox) and one additional CO ligand in the inhibited state (Hox-CO). The diatomic ligands are sensitive reporter groups for structural changes of the cofactor. Their vibrational dynamics were monitored by real-time attenuated total reflection Fourier-transform infrared spectroscopy. Combination of 13CO gas exposure, blue or red light irradiation, and controlled hydration of three different [FeFe]-hydrogenase proteins produced 8 Hox and 16 Hox-CO species with all possible isotopic exchange patterns. Extensive density functional theory calculations revealed the vibrational mode couplings of the carbonyl ligands and uniquely assigned each infrared spectrum to a specific labeling pattern. For Hox-CO, agreement between experimental and calculated infrared frequencies improved by up to one order of magnitude for an apical CN− at the distal iron ion of the cofactor as opposed to an apical CO. For Hox, two equally probable isomers with partially rotated ligands were suggested. Interconversion between these structures implies dynamic ligand reorientation at the H-cluster. Our experimental protocol for site-selective 13CO isotope editing combined with computational species assignment opens new perspectives for characterization of functional intermediates in the catalytic cycle. PMID:27432985

  2. Hydride bridge in [NiFe]-hydrogenase observed by nuclear resonance vibrational spectroscopy

    NASA Astrophysics Data System (ADS)

    Ogata, Hideaki; Krämer, Tobias; Wang, Hongxin; Schilter, David; Pelmenschikov, Vladimir; van Gastel, Maurice; Neese, Frank; Rauchfuss, Thomas B.; Gee, Leland B.; Scott, Aubrey D.; Yoda, Yoshitaka; Tanaka, Yoshihito; Lubitz, Wolfgang; Cramer, Stephen P.

    2015-08-01

    The metabolism of many anaerobes relies on [NiFe]-hydrogenases, whose characterization when bound to substrates has proven non-trivial. Presented here is direct evidence for a hydride bridge in the active site of the 57Fe-labelled fully reduced Ni-R form of Desulfovibrio vulgaris Miyazaki F [NiFe]-hydrogenase. A unique `wagging' mode involving H- motion perpendicular to the Ni(μ-H)57Fe plane was studied using 57Fe-specific nuclear resonance vibrational spectroscopy and density functional theory (DFT) calculations. On Ni(μ-D)57Fe deuteride substitution, this wagging causes a characteristic perturbation of Fe-CO/CN bands. Spectra have been interpreted by comparison with Ni(μ-H/D)57Fe enzyme mimics [(dppe)Ni(μ-pdt)(μ-H/D)57Fe(CO)3]+ and DFT calculations, which collectively indicate a low-spin Ni(II)(μ-H)Fe(II) core for Ni-R, with H- binding Ni more tightly than Fe. The present methodology is also relevant to characterizing Fe-H moieties in other important natural and synthetic catalysts.

  3. Hydride bridge in [NiFe]-hydrogenase observed by nuclear resonance vibrational spectroscopy

    PubMed Central

    Ogata, Hideaki; Krämer, Tobias; Wang, Hongxin; Schilter, David; Pelmenschikov, Vladimir; van Gastel, Maurice; Neese, Frank; Rauchfuss, Thomas B.; Gee, Leland B.; Scott, Aubrey D.; Yoda, Yoshitaka; Tanaka, Yoshihito; Lubitz, Wolfgang; Cramer, Stephen P.

    2015-01-01

    The metabolism of many anaerobes relies on [NiFe]-hydrogenases, whose characterization when bound to substrates has proven non-trivial. Presented here is direct evidence for a hydride bridge in the active site of the 57Fe-labelled fully reduced Ni-R form of Desulfovibrio vulgaris Miyazaki F [NiFe]-hydrogenase. A unique ‘wagging' mode involving H− motion perpendicular to the Ni(μ-H)57Fe plane was studied using 57Fe-specific nuclear resonance vibrational spectroscopy and density functional theory (DFT) calculations. On Ni(μ-D)57Fe deuteride substitution, this wagging causes a characteristic perturbation of Fe–CO/CN bands. Spectra have been interpreted by comparison with Ni(μ-H/D)57Fe enzyme mimics [(dppe)Ni(μ-pdt)(μ-H/D)57Fe(CO)3]+ and DFT calculations, which collectively indicate a low-spin Ni(II)(μ-H)Fe(II) core for Ni-R, with H− binding Ni more tightly than Fe. The present methodology is also relevant to characterizing Fe–H moieties in other important natural and synthetic catalysts. PMID:26259066

  4. Selenium makes the difference: protonation of [FeFe]-hydrogenase mimics with diselenolato ligands.

    PubMed

    Abul-Futouh, Hassan; El-Khateeb, Mohammad; Görls, Helmar; Asali, Khalil Jamil; Weigand, Wolfgang

    2017-02-28

    The synthetic models of the active site of an [FeFe]-hydrogenase containing a Sn atom in the bridgehead of the diselenato ligand, namely [Fe2(CO)6{μ-(SeCH2Se)SnMe2}], 3 and [Fe2(CO)6{μ-(SeCH2)2SnMe2}], 4 have been synthesized and characterized by different spectroscopic methods. The protonation properties of complex 4 have been investigated by monitoring the IR spectra in the carbonyl stretching region, (1)H NMR in the hydride region as well as the (77)Se{H} NMR upon addition of strong and moderate acids wherein the protonation of the active site of the [FeFe]-hydrogenase at one of its internal basic sites is considered an essential step in the catalytic cycle. Furthermore, we investigated the redox properties and the catalytic behaviour of complexes 3 and 4 in the presence of AcOH as a source of protons suggesting an ECE (E = electrochemical process, C = chemical process) mechanism.

  5. Electron transfer activation of a second water channel for proton transport in [FeFe]-hydrogenase

    SciTech Connect

    Sode, Olaseni; Voth, Gregory A.

    2014-12-14

    Hydrogenase enzymes are important because they can reversibly catalyze the production of molecular hydrogen. Proton transport mechanisms have been previously studied in residue pathways that lead to the active site of the enzyme via residues Cys299 and Ser319. The importance of this pathway and these residues has been previously exhibited through site-specific mutations, which were shown to interrupt the enzyme activity. It has been shown recently that a separate water channel (WC2) is coupled with electron transport to the active site of the [FeFe]-hydrogenase. The water-mediated proton transport mechanisms of the enzyme in different electronic states have been studied using the multistate empirical valence bond reactive molecular dynamics method, in order to understand any role WC2 may have in facilitating the residue pathway in bringing an additional proton to the enzyme active site. In a single electronic state A{sup 2−}, a water wire was formed through which protons can be transported with a low free energy barrier. The remaining electronic states were shown, however, to be highly unfavorable to proton transport in WC2. A double amino acid substitution is predicted to obstruct proton transport in electronic state A{sup 2-} by closing a cavity that could otherwise fill with water near the proximal Fe of the active site.

  6. Identification of genes related to beak deformity of chickens using digital gene expression profiling.

    PubMed

    Bai, Hao; Zhu, Jing; Sun, Yanyan; Liu, Ranran; Liu, Nian; Li, Dongli; Wen, Jie; Chen, Jilan

    2014-01-01

    Frequencies of up to 3% of beak deformity (normally a crossed beak) occur in some indigenous chickens in China, such as and Beijing-You. Chickens with deformed beaks have reduced feed intake, growth rate, and abnormal behaviors. Beak deformity represents an economic as well as an animal welfare problem in the poultry industry. Because the genetic basis of beak deformity remains incompletely understood, the present study sought to identify important genes and metabolic pathways involved in this phenotype. Digital gene expression analysis was performed on deformed and normal beaks collected from Beijing-You chickens to detect global gene expression differences. A total of >11 million cDNA tags were sequenced, and 5,864,499 and 5,648,877 clean tags were obtained in the libraries of deformed and normal beaks, respectively. In total, 1,156 differentially expressed genes (DEG) were identified in the deformed beak with 409 being up-regulated and 747 down-regulated in the deformed beaks. qRT-PCR using eight genes was performed to verify the results of DGE profiling. Gene ontology (GO) analysis highlighted that genes of the keratin family on GGA25 were abundant among the DEGs. Pathway analysis showed that many DEGs were linked to the biosynthesis of unsaturated fatty acids and glycerolipid metabolism. Combining the analyses, 11 genes (MUC, LOC426217, BMP4, ACAA1, LPL, ALDH7A1, GLA, RETSAT, SDR16C5, WWOX, and MOGAT1) were highlighted as potential candidate genes for beak deformity in chickens. Some of these genes have been identified previously, while others have unknown function with respect to thus phenotype. To the best of our knowledge, this is the first genome-wide study to investigate the transcriptome differences in the deformed and normal beaks of chickens. The DEGs identified here are worthy of further functional characterization.

  7. Identification of Genes Related to Beak Deformity of Chickens Using Digital Gene Expression Profiling

    PubMed Central

    Sun, Yanyan; Liu, Ranran; Liu, Nian; Li, Dongli; Wen, Jie; Chen, Jilan

    2014-01-01

    Frequencies of up to 3% of beak deformity (normally a crossed beak) occur in some indigenous chickens in China, such as and Beijing-You. Chickens with deformed beaks have reduced feed intake, growth rate, and abnormal behaviors. Beak deformity represents an economic as well as an animal welfare problem in the poultry industry. Because the genetic basis of beak deformity remains incompletely understood, the present study sought to identify important genes and metabolic pathways involved in this phenotype. Digital gene expression analysis was performed on deformed and normal beaks collected from Beijing-You chickens to detect global gene expression differences. A total of >11 million cDNA tags were sequenced, and 5,864,499 and 5,648,877 clean tags were obtained in the libraries of deformed and normal beaks, respectively. In total, 1,156 differentially expressed genes (DEG) were identified in the deformed beak with 409 being up-regulated and 747 down-regulated in the deformed beaks. qRT-PCR using eight genes was performed to verify the results of DGE profiling. Gene ontology (GO) analysis highlighted that genes of the keratin family on GGA25 were abundant among the DEGs. Pathway analysis showed that many DEGs were linked to the biosynthesis of unsaturated fatty acids and glycerolipid metabolism. Combining the analyses, 11 genes (MUC, LOC426217, BMP4, ACAA1, LPL, ALDH7A1, GLA, RETSAT, SDR16C5, WWOX, and MOGAT1) were highlighted as potential candidate genes for beak deformity in chickens. Some of these genes have been identified previously, while others have unknown function with respect to thus phenotype. To the best of our knowledge, this is the first genome-wide study to investigate the transcriptome differences in the deformed and normal beaks of chickens. The DEGs identified here are worthy of further functional characterization. PMID:25198128

  8. The PMP22 Gene and Its Related Diseases

    PubMed Central

    Li, Jun; Parker, Brett; Martyn, Colin; Natarajan, Chandramohan; Guo, Jiasong

    2012-01-01

    Peripheral myelin protein-22 (PMP22) is primarily expressed in the compact myelin of the peripheral nervous system. Levels of PMP22 have to be tightly regulated since alterations of PMP22 levels by mutations of the PMP22 gene are responsible for >50% of all patients with inherited peripheral neuropathies, including Charcot-Marie-Tooth type-1A (CMT1A) with trisomy of PMP22, hereditary neuropathy with liability to pressure palsies (HNPP) with heterozygous deletion of PMP22, and CMT1E with point mutations of PMP22. While over-expression and point-mutations of the PMP22 gene may produce gain-of-function phenotypes, deletion of PMP22 results in a loss-of-function phenotype that reveals the normal physiological functions of the PMP22 protein. In this article, we will review the basic genetics, biochemistry and molecular structure of PMP22, followed by discussion of the current understanding of pathogenic mechanisms involving in the inherited neuropathies with mutations in PMP22 gene. PMID:23224996

  9. Replicon-dependent differentiation of symbiosis-related genes in Sinorhizobium strains nodulating Glycine max.

    PubMed

    Guo, Hui Juan; Wang, En Tao; Zhang, Xing Xing; Li, Qin Qin; Zhang, Yan Ming; Tian, Chang Fu; Chen, Wen Xin

    2014-02-01

    In order to investigate the genetic differentiation of Sinorhizobium strains nodulating Glycine max and related microevolutionary mechanisms, three housekeeping genes (SMc00019, truA, and thrA) and 16 symbiosis-related genes on the chromosome (7 genes), pSymA (6 genes), and pSymB (3 genes) were analyzed. Five distinct species were identified among the test strains by calculating the average nucleotide identity (ANI) of SMc00019-truA-thrA: Sinorhizobium fredii, Sinorhizobium sojae, Sinorhizobium sp. I, Sinorhizobium sp. II, and Sinorhizobium sp. III. These species assignments were also supported by population genetics and phylogenetic analyses of housekeeping genes and symbiosis-related genes on the chromosome and pSymB. Different levels of genetic differentiation were observed among these species or different replicons. S. sojae was the most divergent from the other test species and was characterized by its low intraspecies diversity and limited geographic distribution. Intergenic recombination dominated the evolution of 19 genes from different replicons. Intraspecies recombination happened frequently in housekeeping genes and symbiosis-related genes on the chromosome and pSymB, whereas pSymA genes showed a clear pattern of lateral-transfer events between different species. Moreover, pSymA genes were characterized by a lower level of polymorphism and recombination than those on the chromosome and pSymB. Taken together, genes from different replicons of rhizobia might be involved in the establishment of symbiosis with legumes, but these symbiosis-related genes might have evolved differently according to their corresponding replicons.

  10. THE USE OF A HYDROGENASE-METHYLENE BLUE SYSTEM IN A BIOCHEMICAL FUEL CELL (AN ANODE REACTION)

    DTIC Science & Technology

    An electron carrier system similar to one found in living cells has been studied in vitro at the anode of a biochemical fuel cell . The action of an...the anode of a biochemical fuel cell . A current of 0.16 mA/(sq. cm.) has been shown using a hydrogenase solution obtained from E. coli. It gave

  11. Photo-induced hydrogen production in a helical peptide incorporating a [FeFe] hydrogenase active site mimic.

    PubMed

    Roy, Anindya; Madden, Christopher; Ghirlanda, Giovanna

    2012-10-11

    There is growing interest in the development of hydrogenase mimics for solar fuel production. Here, we present a bioinspired mimic designed by anchoring a diiron hexacarbonyl cluster to a model helical peptide via an artificial dithiol amino acid. The [FeFe]-peptide complex catalyses photo-induced production of hydrogen in water.

  12. Adrenomedullin and calcitonin gene-related peptide receptors in endocrine-related cancers: opportunities and challenges.

    PubMed

    Hay, Debbie L; Walker, Christopher S; Poyner, David R

    2011-02-01

    Adrenomedullin (AM), adrenomedullin 2 (AM2/intermedin) and calcitonin gene-related peptide (CGRP) are members of the calcitonin family of peptides. They can act as growth or survival factors for a number of tumours, including those that are endocrine-related. One mechanism through which this occurs is stimulating angiogenesis and lymphangiogenesis. AM is expressed by numerous tumour types and for some cancers, plasma AM levels can be correlated with the severity of the disease. In cancer models, lowering AM content or blocking AM receptors can reduce tumour mass. AM receptors are complexes formed between a seven transmembrane protein, calcitonin receptor-like receptor and one of the two accessory proteins, receptor activity-modifying proteins (RAMPs) 2 or 3 to give the AM1 and AM2 receptors respectively. AM also has affinity at the CGRP receptor, which uses RAMP1. Unfortunately, due to a lack of selective pharmacological tools or antibodies to distinguish AM and CGRP receptors, the precise receptors and signal transduction pathways used by the peptides are often uncertain. Two other membrane proteins, RDC1 and L1/G10D (the 'ADMR'), are not currently considered to be genuine CGRP or AM receptors. In order to properly evaluate whether AM or CGRP receptor inhibition has a role in cancer therapy, it is important to identify which receptors mediate the effects of these peptides. To effectively distinguish AM1 and AM2 receptors, selective receptor antagonists need to be developed. The development of specific CGRP receptor antagonists suggests that this is now feasible.

  13. A Genome-Wide Screen Indicates Correlation between Differentiation and Expression of Metabolism Related Genes

    PubMed Central

    Shende, Akhilesh; Singh, Anupama; Meena, Anil; Ghosal, Ritika; Ranganathan, Madhav; Bandyopadhyay, Amitabha

    2013-01-01

    Differentiated tissues may be considered as materials with distinct properties. The differentiation program of a given tissue ensures that it acquires material properties commensurate with its function. It may be hypothesized that some of these properties are acquired through production of tissue-specific metabolites synthesized by metabolic enzymes. To establish correlation between metabolism and organogenesis we have carried out a genome-wide expression study of metabolism related genes by RNA in-situ hybridization. 23% of the metabolism related genes studied are expressed in a tissue-restricted but not tissue-exclusive manner. We have conducted the screen on whole mount chicken (Gallus gallus) embryos from four distinct developmental stages to correlate dynamic changes in expression patterns of metabolic enzymes with spatio-temporally unique developmental events. Our data strongly suggests that unique combinations of metabolism related genes, and not specific metabolic pathways, are upregulated during differentiation. Further, expression of metabolism related genes in well established signaling centers that regulate different aspects of morphogenesis indicates developmental roles of some of the metabolism related genes. The database of tissue-restricted expression patterns of metabolism related genes, generated in this study, should serve as a resource for systematic identification of these genes with tissue-specific functions during development. Finally, comprehensive understanding of differentiation is not possible unless the downstream genes of a differentiation cascade are identified. We propose, metabolic enzymes constitute a significant portion of these downstream target genes. Thus our study should help elucidate different aspects of tissue differentiation. PMID:23717462

  14. A genome-wide screen indicates correlation between differentiation and expression of metabolism related genes.

    PubMed

    Roy, Priti; Kumar, Brijesh; Shende, Akhilesh; Singh, Anupama; Meena, Anil; Ghosal, Ritika; Ranganathan, Madhav; Bandyopadhyay, Amitabha

    2013-01-01

    Differentiated tissues may be considered as materials with distinct properties. The differentiation program of a given tissue ensures that it acquires material properties commensurate with its function. It may be hypothesized that some of these properties are acquired through production of tissue-specific metabolites synthesized by metabolic enzymes. To establish correlation between metabolism and organogenesis we have carried out a genome-wide expression study of metabolism related genes by RNA in-situ hybridization. 23% of the metabolism related genes studied are expressed in a tissue-restricted but not tissue-exclusive manner. We have conducted the screen on whole mount chicken (Gallus gallus) embryos from four distinct developmental stages to correlate dynamic changes in expression patterns of metabolic enzymes with spatio-temporally unique developmental events. Our data strongly suggests that unique combinations of metabolism related genes, and not specific metabolic pathways, are upregulated during differentiation. Further, expression of metabolism related genes in well established signaling centers that regulate different aspects of morphogenesis indicates developmental roles of some of the metabolism related genes. The database of tissue-restricted expression patterns of metabolism related genes, generated in this study, should serve as a resource for systematic identification of these genes with tissue-specific functions during development. Finally, comprehensive understanding of differentiation is not possible unless the downstream genes of a differentiation cascade are identified. We propose, metabolic enzymes constitute a significant portion of these downstream target genes. Thus our study should help elucidate different aspects of tissue differentiation.

  15. Human speech- and reading-related genes display partially overlapping expression patterns in the marmoset brain.

    PubMed

    Kato, Masaki; Okanoya, Kazuo; Koike, Taku; Sasaki, Erika; Okano, Hideyuki; Watanabe, Shigeru; Iriki, Atsushi

    2014-06-01

    Language is a characteristic feature of human communication. Several familial language impairments have been identified, and candidate genes for language impairments already isolated. Studies comparing expression patterns of these genes in human brain are necessary to further understanding of these genes. However, it is difficult to examine gene expression in human brain. In this study, we used a non-human primate (common marmoset; Callithrix jacchus) as a biological model of the human brain to investigate expression patterns of human speech- and reading-related genes. Expression patterns of speech disorder- (FoxP2, FoxP1, CNTNAP2, and CMIP) and dyslexia- (ROBO1, DCDC2, and KIAA0319) related genes were analyzed. We found the genes displayed overlapping expression patterns in the ocular, auditory, and motor systems. Our results enhance understanding of the molecular mechanisms underlying language impairments.

  16. [The effect of topology of quorum sensing-related genes in Pectobacterium atrosepticumon their expression].

    PubMed

    Gogoleva, N E; Shlykova, L V; Gorshkov, V Iu; Daminova, A G; Gogolev, Iu V

    2014-01-01

    In prokaryotic genomes, the neighboring genes are often located on the complementary DNA strands and adjoin each other by their 5'- or 3'-ends or even overlap by their open reading frames. It was suggested that such gene topology hasfunctional purpose providing the regulation of their expression. For those genes that overlap by their coding 3'-termini this assumption has not been confirmed experimentally. In a broad group of bacteria that belong to proteobacteria such a convergent gene arrangement is typical for functionally connected quorum sensing-related genes "P" and "R" that encode synthases of N-acyl homoserine lactones and their sensors, respectively. In the present study on the example of overlapping quorum sensing-related genes of plant pathogenic bacterium Pectobacterium atrosepticum SCRI1043--expI and expR it was shown that the topology of these genes determines the regula- tion of their expression.

  17. FT-IR Characterization of the Light-Induced Ni-L2 and Ni-L3 States of [NiFe] Hydrogenase from Desulfovibrio vulgaris Miyazaki F.

    PubMed

    Tai, Hulin; Nishikawa, Koji; Inoue, Seiya; Higuchi, Yoshiki; Hirota, Shun

    2015-10-29

    Different light-induced Ni-L states of [NiFe] hydrogenase from its Ni-C state have previously been observed by EPR spectroscopy. Herein, we succeeded in detecting simultaneously two Ni-L states of [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F by FT-IR spectroscopy. A new light-induced νCO band at 1890 cm(-1) and νCN bands at 2034 and 2047 cm(-1) were detected in the FT-IR spectra of the H2-activated enzyme under N2 atmosphere at basic conditions, in addition to the 1910 cm(-1) νCO band and 2047 and 2061 cm(-1) νCN bands of the Ni-L2 state. The new bands were attributed to the Ni-L3 state by comparison of the FT-IR and EPR spectra. The νCO and νCN frequencies of the Ni-L3 state are the lowest frequencies observed among the corresponding frequencies of standard-type [NiFe] hydrogenases in various redox states. These results indicate that a residue, presumably Ni-coordinating Cys546, is protonated and deprotonated in the Ni-L2 and Ni-L3 states, respectively. Relatively small ΔH (6.4 ± 0.8 kJ mol(-1)) and ΔS (25.5 ± 10.3 J mol(-1) K(-1)) values were obtained for the conversion from the Ni-L2 to Ni-L3 state, which was in agreement with the previous proposals that deprotonation of Cys546 is important for the catalytic reaction of the enzyme.

  18. Identification of Cancer Related Genes Using a Comprehensive Map of Human Gene Expression

    PubMed Central

    Lukk, Margus; Xue, Vincent; Parkinson, Helen; Rung, Johan; Brazma, Alvis

    2016-01-01

    Rapid accumulation and availability of gene expression datasets in public repositories have enabled large-scale meta-analyses of combined data. The richness of cross-experiment data has provided new biological insights, including identification of new cancer genes. In this study, we compiled a human gene expression dataset from ∼40,000 publicly available Affymetrix HG-U133Plus2 arrays. After strict quality control and data normalisation the data was quantified in an expression matrix of ∼20,000 genes and ∼28,000 samples. To enable different ways of sample grouping, existing annotations where subjected to systematic ontology assisted categorisation and manual curation. Groups like normal tissues, neoplasmic tissues, cell lines, homoeotic cells and incompletely differentiated cells were created. Unsupervised analysis of the data confirmed global structure of expression consistent with earlier analysis but with more details revealed due to increased resolution. A suitable mixed-effects linear model was used to further investigate gene expression in solid tissue tumours, and to compare these with the respective healthy solid tissues. The analysis identified 1,285 genes with systematic expression change in cancer. The list is significantly enriched with known cancer genes from large, public, peer-reviewed databases, whereas the remaining ones are proposed as new cancer gene candidates. The compiled dataset is publicly available in the ArrayExpress Archive. It contains the most diverse collection of biological samples, making it the largest systematically annotated gene expression dataset of its kind in the public domain. PMID:27322383

  19. Connecting myelin-related and synaptic dysfunction in schizophrenia with SNP-rich gene expression hubs

    PubMed Central

    Hegyi, Hedi

    2017-01-01

    Combining genome-wide mapping of SNP-rich regions in schizophrenics and gene expression data in all brain compartments across the human life span revealed that genes with promoters most frequently mutated in schizophrenia are expression hubs interacting with far more genes than the rest of the genome. We summed up the differentially methylated “expression neighbors” of genes that fall into one of 108 distinct schizophrenia-associated loci with high number of SNPs. Surprisingly, the number of expression neighbors of the genes in these loci were 35 times higher for the positively correlating genes (32 times higher for the negatively correlating ones) than for the rest of the ~16000 genes. While the genes in the 108 loci have little known impact in schizophrenia, we identified many more known schizophrenia-related important genes with a high degree of connectedness (e.g. MOBP, SYNGR1 and DGCR6), validating our approach. Both the most connected positive and negative hubs affected synapse-related genes the most, supporting the synaptic origin of schizophrenia. At least half of the top genes in both the correlating and anti-correlating categories are cancer-related, including oncogenes (RRAS and ALDOA), providing further insight into the observed inverse relationship between the two diseases. PMID:28382934

  20. Genome-Wide Gene Expression in relation to Age in Large Laboratory Cohorts of Drosophila melanogaster

    PubMed Central

    Carlson, Kimberly A.; Gardner, Kylee; Pashaj, Anjeza; Carlson, Darby J.; Yu, Fang; Eudy, James D.; Zhang, Chi; Harshman, Lawrence G.

    2015-01-01

    Aging is a complex process characterized by a steady decline in an organism's ability to perform life-sustaining tasks. In the present study, two cages of approximately 12,000 mated Drosophila melanogaster females were used as a source of RNA from individuals sampled frequently as a function of age. A linear model for microarray data method was used for the microarray analysis to adjust for the box effect; it identified 1,581 candidate aging genes. Cluster analyses using a self-organizing map algorithm on the 1,581 significant genes identified gene expression patterns across different ages. Genes involved in immune system function and regulation, chorion assembly and function, and metabolism were all significantly differentially expressed as a function of age. The temporal pattern of data indicated that gene expression related to aging is affected relatively early in life span. In addition, the temporal variance in gene expression in immune function genes was compared to a random set of genes. There was an increase in the variance of gene expression within each cohort, which was not observed in the set of random genes. This observation is compatible with the hypothesis that D. melanogaster immune function genes lose control of gene expression as flies age. PMID:26090231

  1. Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes

    SciTech Connect

    Elferink, M.G.L.; Olinga, P.; van Leeuwen, E.M.; Bauerschmidt, S.; Polman, J.; Schoonen, W.G.; Heisterkamp, S.H.; Groothuis, G.M.M.

    2011-05-15

    In the process of drug development it is of high importance to test the safety of new drugs with predictive value for human toxicity. A promising approach of toxicity testing is based on shifts in gene expression profiling of the liver. Toxicity screening based on animal liver cells cannot be directly extrapolated to humans due to species differences. The aim of this study was to evaluate precision-cut human liver slices as in vitro method for the prediction of human specific toxicity by toxicogenomics. The liver slices contain all cell types of the liver in their natural architecture. This is important since drug-induced toxicity often is a multi-cellular process. Previously we showed that toxicogenomic analysis of rat liver slices is highly predictive for rat in vivo toxicity. In this study we investigated the levels of gene expression during incubation up to 24 h with Affymetrix microarray technology. The analysis was focused on a broad spectrum of genes related to stress and toxicity, and on genes encoding for phase-I, -II and -III metabolizing enzymes and transporters. Observed changes in gene expression were associated with cytoskeleton remodeling, extracellular matrix and cell adhesion, but for the ADME-Tox related genes only minor changes were observed. PCA analysis showed that changes in gene expression were not associated with age, sex or source of the human livers. Slices treated with acetaminophen showed patterns of gene expression related to its toxicity. These results indicate that precision-cut human liver slices are relatively stable during 24 h of incubation and represent a valuable model for human in vitro hepatotoxicity testing despite the human inter-individual variability.

  2. Regulation of lux Genes in Vibrio fischeri: Control of Symbiosis-Related Gene Expression System in a Marine Bacterium

    DTIC Science & Technology

    1989-11-04

    The pool of mutagenized plasmids was used to transform E . coli cells containing pHIK555 a plasmid compatible with pHK724 which possesses functional...inclusion bodies form upon overexpression of a foreign protein in E . coli . WORK PLAN (Year 2): The mutations described define two regions in the terminal...RR04106 411d019 11 TITLE (Include Security Classification) U. Regulation of lux Genes in Vibrio fischeri : Control of a Symbiosis-Related Gene Expression

  3. Gene regulations in HBV-related liver cirrhosis closely correlate with disease severity.

    PubMed

    Lee, Seram; Kim, Soyoun

    2007-09-30

    Liver cirrhosis (LC) is defined as comprising diffuse fibrosis and regenerating nodules of the liver. The biochemical and anatomical dysfunction in LC results from both reduced liver cell number and portal vascular derangement. Although several studies have investigated dysregulated genes in cirrhotic nodules, little is known about the genes implicated in the pathophysiologic change of LC or about their relationship with the degree of decompensation. Here, we applied cDNA microarray analysis using 38 HBsAg-positive LC specimens to identify the genes dysregulated in HBV-associated LC and to evaluate their relation to disease severity. Among 1063 known cancer- and apoptosis-related genes, we identified 104 genes that were significantly up- (44) or down- (60) regulated in LC. Interestingly, this subset of 104 genes was characteristically correlated with the degree of decompensation, called the Pugh-Child classification (20 Pugh-Child A, 10 Pugh-Child B, and 8 Pugh-Child C). Patient samples from Pugh-Child C exhibited a distinct pattern of gene expression relative to those of Pugh-Child A and B. Especially in Pugh-Child C, genes encoding hepatic proteins and metabolizing enzymes were significantly down-regulated, while genes encoding various molecules related to cell replication were up-regulated. Our results suggest that subsets of genes in liver cells correspond to the pathophysiologic change of LC according to disease severity and possibly to hepatocarcinogenesis.

  4. Novel strategies to mine alcoholism-related haplotypes and genes by combining existing knowledge framework.

    PubMed

    Zhang, RuiJie; Li, Xia; Jiang, YongShuai; Liu, GuiYou; Li, ChuanXing; Zhang, Fan; Xiao, Yun; Gong, BinSheng

    2009-02-01

    High-throughout single nucleotide polymorphism detection technology and the existing knowledge provide strong support for mining the disease-related haplotypes and genes. In this study, first, we apply four kinds of haplotype identification methods (Confidence Intervals, Four Gamete Tests, Solid Spine of LD and fusing method of haplotype block) into high-throughout SNP genotype data to identify blocks, then use cluster analysis to verify the effectiveness of the four methods, and select the alcoholism-related SNP haplotypes through risk analysis. Second, we establish a mapping from haplotypes to alcoholism-related genes. Third, we inquire NCBI SNP and gene databases to locate the blocks and identify the candidate genes. In the end, we make gene function annotation by KEGG, Biocarta, and GO database. We find 159 haplotype blocks, which relate to the alcoholism most possibly on chromosome 1 approximately 22, including 227 haplotypes, of which 102 SNP haplotypes may increase the risk of alcoholism. We get 121 alcoholism-related genes and verify their reliability by the functional annotation of biology. In a word, we not only can handle the SNP data easily, but also can locate the disease-related genes precisely by combining our novel strategies of mining alcoholism-related haplotypes and genes with existing knowledge framework.

  5. Age-related regulation of genes: slow homeostatic changes and age-dimension technology

    NASA Astrophysics Data System (ADS)

    Kurachi, Kotoku; Zhang, Kezhong; Huo, Jeffrey; Ameri, Afshin; Kuwahara, Mitsuhiro; Fontaine, Jean-Marc; Yamamoto, Kei; Kurachi, Sumiko

    2002-11-01

    Through systematic studies of pro- and anti-blood coagulation factors, we have determined molecular mechanisms involving two genetic elements, age-related stability element (ASE), GAGGAAG and age-related increase element (AIE), a unique stretch of dinucleotide repeats (AIE). ASE and AIE are essential for age-related patterns of stable and increased gene expression patterns, respectively. Such age-related gene regulatory mechanisms are also critical for explaining homeostasis in various physiological reactions as well as slow homeostatic changes in them. The age-related increase expression of the human factor IX (hFIX) gene requires the presence of both ASE and AIE, which apparently function additively. The anti-coagulant factor protein C (hPC) gene uses an ASE (CAGGAG) to produce age-related stable expression. Both ASE sequences (G/CAGAAG) share consensus sequence of the transcriptional factor PEA-3 element. No other similar sequences, including another PEA-3 consensus sequence, GAGGATG, function in conferring age-related gene regulation. The age-regulatory mechanisms involving ASE and AIE apparently function universally with different genes and across different animal species. These findings have led us to develop a new field of research and applications, which we named “age-dimension technology (ADT)”. ADT has exciting potential for modifying age-related expression of genes as well as associated physiological processes, and developing novel, more effective prophylaxis or treatments for age-related diseases.

  6. Identifying Novel Candidate Genes Related to Apoptosis from a Protein-Protein Interaction Network

    PubMed Central

    Wang, Baoman; Yuan, Fei; Kong, Xiangyin; Hu, Lan-Dian; Cai, Yu-Dong

    2015-01-01

    Apoptosis is the process of programmed cell death (PCD) that occurs in multicellular organisms. This process of normal cell death is required to maintain the balance of homeostasis. In addition, some diseases, such as obesity, cancer, and neurodegenerative diseases, can be cured through apoptosis, which produces few side effects. An effective comprehension of the mechanisms underlying apoptosis will be helpful to prevent and treat some diseases. The identification of genes related to apoptosis is essential to uncover its underlying mechanisms. In this study, a computational method was proposed to identify novel candidate genes related to apoptosis. First, protein-protein interaction information was used to construct a weighted graph. Second, a shortest path algorithm was applied to the graph to search for new candidate genes. Finally, the obtained genes were filtered by a permutation test. As a result, 26 genes were obtained, and we discuss their likelihood of being novel apoptosis-related genes by collecting evidence from published literature. PMID:26543496

  7. Circadian rhythm-related genes: implication in autoimmunity and type 1 diabetes.

    PubMed

    Lebailly, B; Boitard, C; Rogner, U C

    2015-09-01

    Recent gene association and functional studies have proven the implication of several circadian rhythm-related genes in diabetes. Diabetes has been related to variation in central circadian regulation and peripheral oscillation. Different transcriptional regulators have been identified. Circadian genes are clearly implicated in metabolic pathways, pancreatic function and in type 2 diabetes. Much less evidence has been shown for the link between circadian regulation and type 1 diabetes. The hypothesis that circadian genes are involved in type 1 diabetes is reinforced by findings that the immune system undergoes circadian variation and that several autoimmune diseases are associated with circadian genes. Recent findings in the non-obese diabetic mouse model pinpoint to specific mechanisms controlling type 1 diabetes by the clock-related gene Arntl2 in the immune system.

  8. Catalytic Properties of the Isolated Diaphorase Fragment of the NAD+-Reducing [NiFe]-Hydrogenase from Ralstonia eutropha

    PubMed Central

    Lauterbach, Lars; Idris, Zulkifli; Vincent, Kylie A.; Lenz, Oliver

    2011-01-01

    The NAD+-reducing soluble hydrogenase (SH) from Ralstonia eutropha H16 catalyzes the H2-driven reduction of NAD+, as well as reverse electron transfer from NADH to H+, in the presence of O2. It comprises six subunits, HoxHYFUI2, and incorporates a [NiFe] H+/H2 cycling catalytic centre, two non-covalently bound flavin mononucleotide (FMN) groups and an iron-sulfur cluster relay for electron transfer. This study provides the first characterization of the diaphorase sub-complex made up of HoxF and HoxU. Sequence comparisons with the closely related peripheral subunits of Complex I in combination with UV/Vis spectroscopy and the quantification of the metal and FMN content revealed that HoxFU accommodates a [2Fe2S] cluster, FMN and a series of [4Fe4S] clusters. Protein film electrochemistry (PFE) experiments show clear electrocatalytic activity for both NAD+ reduction and NADH oxidation with minimal overpotential relative to the potential of the NAD+/NADH couple. Michaelis-Menten constants of 56 µM and 197 µM were determined for NADH and NAD+, respectively. Catalysis in both directions is product inhibited with KI values of around 0.2 mM. In PFE experiments, the electrocatalytic current was unaffected by O2, however in aerobic solution assays, a moderate superoxide production rate of 54 nmol per mg of protein was observed, meaning that the formation of reactive oxygen species (ROS) observed for the native SH can be attributed mainly to HoxFU. The results are discussed in terms of their implications for aerobic functioning of the SH and possible control mechanism for the direction of catalysis. PMID:22016788

  9. A functional and phylogenetic comparison of quorum sensing related genes in Brucella melitensis 16M.

    PubMed

    Brambila-Tapia, Aniel Jessica Leticia; Pérez-Rueda, Ernesto

    2014-08-01

    A quorum-sensing (QS) system is involved in Brucella melitensis survival inside the host cell. Two transcriptional regulators identified in B. melitensis, BlxR and VjbR, regulate the expression of virB, an operon required for bacterial intracellular persistence. In this work, 628 genes affected by VjbR and 124 by BlxR were analyzed to gain insights into their functional and taxonomical distributions among the Bacteria and Archaea cellular domains. In this regard, the Cluster of Orthologous Groups (COG) genes and orthologous genes in 789 nonredundant bacterial and archaeal genomes were obtained and compared against a group of randomly selected genes. From these analyses, we found 71 coaffected genes between VjbR and BlxR. In the COG comparison, VjbR activated genes associated with intracellular trafficking, secretion and vesicular transport and defense mechanisms, while BlxR affected genes related to energy production and conversion (with an equal effect) and translation, ribosomal structure and biogenesis, posttranslational modifications and carbohydrate and amino acid metabolism (with a negative effect). When the taxonomical distribution of orthologous genes was evaluated, the VjbR- and BlxR-related genes presented more orthologous genes in Crenarchaeota (Archaea), Firmicutes, and Tenericutes and fewer genes in Proteobacteria than expected by chance. These findings suggest that QS system exert a fine-tuning modulation of gene expression, by which VjbR activates genes related to infection persistence and defense, while BlxR represses general bacterial metabolism for intracellular adaptations. Finally, these affected genes present a degree of presence among Bacteria and Archaea genomes that is different from that expected by chance.

  10. Characteristics analysis of the luzA gene encoding chaperone from Photobacterium leiognathi related to bioluminescence.

    PubMed

    Lin, J W; Lin, B J; Chen, H Y; Weng, S F

    1998-03-27

    Nucleotide sequence of the luzA gene (GenBank accession No. AF039303) from Photobacterium leiognathi ATCC 25521 (NCIMB 2193) has been determined, and the chaperone encoded by the luzA gene was deduced. The LuzA chaperone has a calculated M(r) 26,295 and comprises 230 amino acid residues; the hydrophobic alpha-helix N-terminal 21 amino acid residues MKKTIFALLFMSVFI SYPSFA is the leader peptide, therefore the matured LuzA chaperone has a calculated M(r) 23,871 and comprises 209 amino acid residues only. The periplasmic LuzA chaperone is the protein concerned with the protein folding, assembly and stability. The luzA gene and the related genes are closely linked to the sod gene, that encoding Cu/Zn superoxide dismutase enables to enhance bioluminescence of the lux operon; the gene order of the luzA gene and related genes is -ufo'-luzA-ufoI-ufoII-ter->-R&R'-sod-ufo-- >. In trans complementation bioluminoassays in vivo elicit that the LuzA chaperone might be not directly concerned with bioluminescence of the lux operon from P. leiognathi in E. coli, but might enable to stabilize the proteins related to bioluminescence. The unidentified ufoII gene closely linked to the luzA gene is able to enhance bioluminescence.

  11. An integrated database of wood-formation related genes in plants.

    PubMed

    Xu, Ting; Ma, Tao; Hu, Quanjun; Liu, Jianquan

    2015-06-16

    Wood, which consists mainly of plant cell walls, is an extremely important resource in daily lives. Genes whose products participate in the processes of cell wall and wood formation are therefore major subjects of plant science research. The Wood-Formation Related Genes database (WFRGdb, http://me.lzu.edu.cn/woodformation/) serves as a data resource center for genes involved in wood formation. To create this database, we collected plant genome data published in other online databases and predicted all cell wall and wood formation related genes using BLAST and HMMER. To date, 47 gene families and 33 transcription factors from 57 genomes (28 herbaceous, 22 woody and 7 non-vascular plants) have been covered and more than 122,000 genes have been checked and recorded. To provide easy access to these data, we have developed several search methods, which make it easy to download targeted genes or groups of genes free of charge in FASTA format. Sequence and phylogenetic analyses are also available online. WFRGdb brings together cell wall and wood formation related genes from all available plant genomes, and provides an integrative platform for gene inquiry, downloading and analysis. This database will therefore be extremely useful for those who focuses on cell wall and wood research.

  12. Evolutionary analysis of the jacalin-related lectin family genes in 11 fishes.

    PubMed

    Cao, Jun; Lv, Yueqing

    2016-09-01

    Jacalin-related lectins are a type of carbohydrate-binding proteins, which are distributed across a wide variety of organisms and involved in some important biological processes. The evolution of this gene family in fishes is unknown. Here, 47 putative jacalin genes in 11 fish species were identified and divided into 4 groups through phylogenetic analysis. Conserved gene organization and motif distribution existed in each group, suggesting their functional conservation. Some fishes have eleven jacalin genes, while others have only one or zero gene in their genomes, suggesting dynamic changes in the number of jacalin genes during the evolution of fishes. Intragenic recombination played a key role in the evolution of jacalin genes. Synteny analyses of jacalin genes in some fishes implied conserved and dynamic evolution characteristics of this gene family and related genome segments. Moreover, a few functional divergence sites were identified within each group pairs. Divergent expression profiles of the zebra fish jacalin genes were further investigated in different stresses. The results provided a foundation for exploring the characterization of the jacalin genes in fishes and will offer insights for additional functional studies.

  13. Antioxidant response and related gene expression in aged oat seed.

    PubMed

    Kong, Lingqi; Huo, Heqiang; Mao, Peisheng

    2015-01-01

    To evaluate deterioration of oat seeds during storage, we analyzed oxygen radicals, antioxidant enzyme activity, proline content, and gene transcript levels in oat seeds with different moisture contents (MCs; 4, 16, and 28% w/w) during storage for 0, 6, and 12 months (CK, LT-6, and LT-12 treatments, respectively) at 4°C. The germination percentage decreased significantly with higher seed MCs and longer storage duration. The concentrations of superoxide radical and hydrogen peroxide increased with seed MC increasing. The activities of catalase (CAT), ascorbate peroxidase (APX), and superoxide dismutase (SOD) may have had a complementary or interacting role to scavenge reactive oxygen species. As the storage duration extended, the proline content decreased in seeds with 4 and 16% MC and increased in 28%. These findings suggest that proline played the main role in adaptation to oxidative stress in seeds with higher MC (28%), while antioxidant enzymes played the main role in seeds with lower MCs (4%, 16%). In the gene transcript analyses, SOD1 transcript levels were not consistent with total SOD activity. The transcript levels of APX1 and CAT1 showed similar trends to those of APX and CAT activity. The transcript levels of P5CS1, which encodes a proline biosynthetic enzyme, increased with seed MC increasing in CK. Compared with changing of proline content in seeds stored 12 months, PDH1 transcript levels showed the opposite trend and maintained the lower levels in seeds of 16 and 28% MCs. The transcript level of P5CS1 was significantly affected by MC, and PDH1 could improve stress resistance for seed aging and maintain seed vigor during long-term storage.

  14. Genome-Wide Comparative Analysis of Flowering-Related Genes in Arabidopsis, Wheat, and Barley

    PubMed Central

    Peng, Fred Y.; Hu, Zhiqiu; Yang, Rong-Cai

    2015-01-01

    Early flowering is an important trait influencing grain yield and quality in wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) in short-season cropping regions. However, due to large and complex genomes of these species, direct identification of flowering genes and their molecular characterization remain challenging. Here, we used a bioinformatic approach to predict flowering-related genes in wheat and barley from 190 known Arabidopsis (Arabidopsis thaliana (L.) Heynh.) flowering genes. We identified 900 and 275 putative orthologs in wheat and barley, respectively. The annotated flowering-related genes were clustered into 144 orthologous groups with one-to-one, one-to-many, many-to-one, and many-to-many orthology relationships. Our approach was further validated by domain and phylogenetic analyses of flowering-related proteins and comparative analysis of publicly available microarray data sets for in silico expression profiling of flowering-related genes in 13 different developmental stages of wheat and barley. These further analyses showed that orthologous gene pairs in three critical flowering gene families (PEBP, MADS, and BBX) exhibited similar expression patterns among 13 developmental stages in wheat and barley, suggesting similar functions among the orthologous genes with sequence and expression similarities. The predicted candidate flowering genes can be confirmed and incorporated into molecular breeding for early flowering wheat and barley in short-season cropping regions. PMID:26435710

  15. Discovery of new candidate genes related to brain development using protein interaction information.

    PubMed

    Chen, Lei; Chu, Chen; Kong, Xiangyin; Huang, Tao; Cai, Yu-Dong

    2015-01-01

    Human brain development is a dramatic process composed of a series of complex and fine-tuned spatiotemporal gene expressions. A good comprehension of this process can assist us in developing the potential of our brain. However, we have only limited knowledge about the genes and gene functions that are involved in this biological process. Therefore, a substantial demand remains to discover new brain development-related genes and identify their biological functions. In this study, we aimed to discover new brain-development related genes by building a computational method. We referred to a series of computational methods used to discover new disease-related genes and developed a similar method. In this method, the shortest path algorithm was executed on a weighted graph that was constructed using protein-protein interactions. New candidate genes fell on at least one of the shortest paths connecting two known genes that are related to brain development. A randomization test was then adopted to filter positive discoveries. Of the final identified genes, several have been reported to be associated with brain development, indicating the effectiveness of the method, whereas several of the others may have potential roles in brain development.

  16. Sodium Stimulation of Uptake Hydrogenase Activity In Symbiotic Rhizobium1

    PubMed Central

    Kapulnik, Yoram; Phillips, Donald A.

    1986-01-01

    Initial observations showed a 100% increase in H2-uptake (Hup) activity of Rhizobium leguminosarum strain 3855 in pea root nodules (Pisum sativum L. cv Alaska) on plants growing in a baked clay substrate relative to those growing in vermiculite, and an investigation of nutrient factors responsible for the phenomenon was initiated. Significantly greater Hup activity was first measured in the clay-grown plants 24 days after germination, and higher activity was maintained relative to the vermiculite treatment until experiments were terminated at day 32. The increase in Hup activity was associated with a decrease in H2 evolution for plants with comparable rates of acetylene reduction. Analyses of the clay showed that it contained more Na+ (29 versus 9 milligrams per kilogram) and less K+ (6 versus 74 milligrams per kilogram) than the vermiculite. Analyses of plants, however, showed a large increase in Na+ concentration of clay-grown plants with a much smaller reduction in K+ concentration. In tests with the same organisms in a hydroponic system with controlled pH, 40 millimolar NaCl increased Hup activity more than 100% over plants grown in solutions lacking NaCl. Plants with increased Hup activity, however, did not have greater net carbon or total nitrogen assimilation. KCl treatments from 5 to 80 millimolar produced slight increased in Hup activity at 10 millimolar KCl, and tests with other salts in the hydroponic system indicated that only Na+ strongly promoted Hup activity. Treating vermiculite with 50 millimolar NaCl increased Na+ concentration in pea plant tissue and greatly promoted Hup activity of root nodules in a manner analogous to the original observation with the clay rooting medium. A wider generality of the phenomenon was suggested by demonstrating that exogenous Na+ increased Hup activity of other R. leguminosarum strains and promoted Hup activity of R. meliloti strain B300 in alfalfa (Medicago sativa L.). PMID:16665057

  17. Quantitative structure-activity relationships and docking studies of calcitonin gene-related peptide antagonists.

    PubMed

    Kyani, Anahita; Mehrabian, Mohadeseh; Jenssen, Håvard

    2012-02-01

    Defining the role of calcitonin gene-related peptide in migraine pathogenesis could lead to the application of calcitonin gene-related peptide antagonists as novel migraine therapeutics. In this work, quantitative structure-activity relationship modeling of biological activities of a large range of calcitonin gene-related peptide antagonists was performed using a panel of physicochemical descriptors. The computational studies evaluated different variable selection techniques and demonstrated shuffling stepwise multiple linear regression to be superior over genetic algorithm-multiple linear regression. The linear quantitative structure-activity relationship model revealed better statistical parameters of cross-validation in comparison with the non-linear support vector regression technique. Implementing only five peptide descriptors into this linear quantitative structure-activity relationship model resulted in an extremely robust and highly predictive model with calibration, leave-one-out and leave-20-out validation R(2) of 0.9194, 0.9103, and 0.9214, respectively. We performed docking of the most potent calcitonin gene-related peptide antagonists with the calcitonin gene-related peptide receptor and demonstrated that peptide antagonists act by blocking access to the peptide-binding cleft. We also demonstrated the direct contact of residues 28-37 of the calcitonin gene-related peptide antagonists with the receptor. These results are in agreement with the conclusions drawn from the quantitative structure-activity relationship model, indicating that both electrostatic and steric factors should be taken into account when designing novel calcitonin gene-related peptide antagonists.

  18. Myelination-related genes are associated with decreased white matter integrity in schizophrenia.

    PubMed

    Chavarria-Siles, Ivan; White, Tonya; de Leeuw, Christiaan; Goudriaan, Andrea; Lips, Esther; Ehrlich, Stefan; Turner, Jessica A; Calhoun, Vince D; Gollub, Randy L; Magnotta, Vincent A; Ho, Beng-Choon; Smit, August B; Verheijen, Mark H G; Posthuma, Danielle

    2016-03-01

    Disruptions in white matter (WM) tract structures have been implicated consistently in the pathophysiology of schizophrenia. Global WM integrity--as measured by fractional anisotropy (FA)--is highly heritable and may provide a good endophenotype for genetic studies of schizophrenia. WM abnormalities in schizophrenia are not localized to one specific brain region but instead reflect global low-level decreases in FA coupled with focal abnormalities. In this study, we sought to investigate whether functional gene sets associated with schizophrenia are also associated with WM integrity. We analyzed FA and genetic data from the Mind Research Network Clinical Imaging Consortium to study the effect of multiple oligodendrocyte gene sets on schizophrenia and WM integrity using a functional gene set analysis in 77 subjects with schizophrenia and 104 healthy controls. We found that a gene set involved in myelination was significantly associated with schizophrenia and FA. This gene set includes 17 genes that are expressed in oligodendrocytes and one neuronal gene (NRG1) that is known to regulate myelination. None of the genes within the gene set were associated with schizophrenia or FA individually, suggesting that no single gene was driving the association of the gene set. Our findings support the hypothesis that multiple genetic variants in myelination-related genes contribute to the observed correlation between schizophrenia and decreased WM integrity as measured by FA.

  19. Identification of Immunity Related Genes to Study the Physalis peruviana – Fusarium oxysporum Pathosystem

    PubMed Central

    Enciso-Rodríguez, Felix E.; González, Carolina; Rodríguez, Edwin A.; López, Camilo E.; Landsman, David; Barrero, Luz Stella; Mariño-Ramírez, Leonardo

    2013-01-01

    The Cape gooseberry (Physalisperuviana L) is an Andean exotic fruit with high nutritional value and appealing medicinal properties. However, its cultivation faces important phytosanitary problems mainly due to pathogens like Fusarium oxysporum, Cercosporaphysalidis and Alternaria spp. Here we used the Cape gooseberry foliar transcriptome to search for proteins that encode conserved domains related to plant immunity including: NBS (Nucleotide Binding Site), CC (Coiled-Coil), TIR (Toll/Interleukin-1 Receptor). We identified 74 immunity related gene candidates in P. peruviana which have the typical resistance gene (R-gene) architecture, 17 Receptor like kinase (RLKs) candidates related to PAMP-Triggered Immunity (PTI), eight (TIR-NBS-LRR, or TNL) and nine (CC–NBS-LRR, or CNL) candidates related to Effector-Triggered Immunity (ETI) genes among others. These candidate genes were categorized by molecular function (98%), biological process (85%) and cellular component (79%) using gene ontology. Some of the most interesting predicted roles were those associated with binding and transferase activity. We designed 94 primers pairs from the 74 immunity-related genes (IRGs) to amplify the corresponding genomic regions on six genotypes that included resistant and susceptible materials. From these, we selected 17 single band amplicons and sequenced them in 14 F. oxysporum resistant and susceptible genotypes. Sequence polymorphisms were analyzed through preliminary candidate gene association, which allowed the detection of one SNP at the PpIRG-63 marker revealing a nonsynonymous mutation in the predicted LRR domain suggesting functional roles for resistance. PMID:23844210

  20. Identification of immunity related genes to study the Physalis peruviana--Fusarium oxysporum pathosystem.

    PubMed

    Enciso-Rodríguez, Felix E; González, Carolina; Rodríguez, Edwin A; López, Camilo E; Landsman, David; Barrero, Luz Stella; Mariño-Ramírez, Leonardo

    2013-01-01

    The Cape gooseberry (Physalisperuviana L) is an Andean exotic fruit with high nutritional value and appealing medicinal properties. However, its cultivation faces important phytosanitary problems mainly due to pathogens like Fusarium oxysporum, Cercosporaphysalidis and Alternaria spp. Here we used the Cape gooseberry foliar transcriptome to search for proteins that encode conserved domains related to plant immunity including: NBS (Nucleotide Binding Site), CC (Coiled-Coil), TIR (Toll/Interleukin-1 Receptor). We identified 74 immunity related gene candidates in P. peruviana which have the typical resistance gene (R-gene) architecture, 17 Receptor like kinase (RLKs) candidates related to PAMP-Triggered Immunity (PTI), eight (TIR-NBS-LRR, or TNL) and nine (CC-NBS-LRR, or CNL) candidates related to Effector-Triggered Immunity (ETI) genes among others. These candidate genes were categorized by molecular function (98%), biological process (85%) and cellular component (79%) using gene ontology. Some of the most interesting predicted roles were those associated with binding and transferase activity. We designed 94 primers pairs from the 74 immunity-related genes (IRGs) to amplify the corresponding genomic regions on six genotypes that included resistant and susceptible materials. From these, we selected 17 single band amplicons and sequenced them in 14 F. oxysporum resistant and susceptible genotypes. Sequence polymorphisms were analyzed through preliminary candidate gene association, which allowed the detection of one SNP at the PpIRG-63 marker revealing a nonsynonymous mutation in the predicted LRR domain suggesting functional roles for resistance.

  1. Discovery of rice essential genes by characterizing a CRISPR-edited mutation of closely related rice MAP kinase genes.

    PubMed

    Minkenberg, Bastian; Xie, Kabin; Yang, Yinong

    2017-02-01

    The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 nuclease (Cas9) system depends on a guide RNA (gRNA) to specify its target. By efficiently co-expressing multiple gRNAs that target different genomic sites, the polycistronic tRNA-gRNA gene (PTG) strategy enables multiplex gene editing in the family of closely related mitogen-activated protein kinase (MPK) genes in Oryza sativa (rice). In this study, we identified MPK1 and MPK6 (Arabidopsis AtMPK6 and AtMPK4 orthologs, respectively) as essential genes for rice development by finding the preservation of MPK functional alleles and normal phenotypes in CRISPR-edited mutants. The true knock-out mutants of MPK1 were severely dwarfed and sterile, and homozygous mpk1 seeds from heterozygous parents were defective in embryo development. By contrast, heterozygous mpk6 mutant plants completely failed to produce homozygous mpk6 seeds. In addition, the functional importance of specific MPK features could be evaluated by characterizing CRISPR-induced allelic variation in the conserved kinase domain of MPK6. By simultaneously targeting between two and eight genomic sites in the closely related MPK genes, we demonstrated 45-86% frequency of biallelic mutations and the successful creation of single, double and quadruple gene mutants. Indels and fragment deletion were both stably inherited to the next generations, and transgene-free mutants of rice MPK genes were readily obtained via genetic segregation, thereby eliminating any positional effects of transgene insertions. Taken together, our study reveals the essentiality of MPK1 and MPK6 in rice development, and enables the functional discovery of previously inaccessible genes or domains with phenotypes masked by lethality or redundancy.

  2. Comparison of N(2) Fixation and Yields in Cajanus cajan between Hydrogenase-Positive and Hydrogenase-Negative Rhizobia by In Situ Acetylene Reduction Assays and Direct N Partitioning.

    PubMed

    La Favre, J S; Focht, D D

    1983-08-01

    Pigeon peas [Cajanus cajan (L.) Millsp.] were grown in soil columns containing (15)N-enriched organic matter. Seasonal N(2) fixation activity was determined by periodically assaying plants for reduction of C(2)H(2). N(2) fixation rose sharply from the first assay period at 51 days after planting to a peak of activity between floral initiation and fruit set. N(2) fixation (acetylene reduction) activity dropped concomitantly with pod maturation but recovered after pod harvests. Analysis of (15)N content of plant shoots revealed that approximately 91 to 94% of plant N was derived from N(2) fixation. The effect of inoculation with hydrogenase-positive and hydrogenase-negative rhizobia was examined. Pigeon peas inoculated with strain P132 (hydrogenase-positive) yielded significantly more total shoot N than other inoculated or uninoculated treatments. However, two other hydrogenase-positive strains did not yield significantly more total shoot N than a hydrogenase-negative strain. The extent of nodulation by inoculum strains compared to indigenous rhizobia was determined by typing nodules according to intrinsic antibiotic resistance of the inoculum strains. The inoculum strains were detected in almost all typed nodules of inoculated plants.Gas samples were taken from soil columns several times during the growth cycle of the plants. H(2) was never detected, even in columns containing pigeon peas inoculated with hydrogenase-negative rhizobia. This was attributed to H(2) consumption by soil bacteria. Estimation of N(2) fixation by acetylene reduction activity was closest to the direct (15)N method when ethylene concentrations in the gas headspace (between the column lid and soil surface) were extrapolated to include the soil pore space as opposed solely to measurement in the headspace. There was an 8-fold difference between the two acetylene reduction assay methods of estimation. Based on a planting density of 15,000 plants per hectare, the direct (15)N fixation rates ranged

  3. Autophagy-related genes from a tick, Haemaphysalis longicornis.

    PubMed

    Umemiya, Rika; Matsuo, Tomohide; Hatta, Takeshi; Sakakibara, Shin-Ichi; Boldbaatar, Damdinsuren; Fujisaki, Kozo

    2008-01-01

    Ticks are gorging-fasting organisms;(1) their life cycle is characterized by alternate off-host (starvation) and on-host (meal) conditions. Their generation time is estimated in several years and many ticks spend more than 95% of their life off the host. They seem to have a unique strategy to endure the off-host state for a long period. Thus, we focused on autophagy, which is induced by starvation and is essential for extension of the lifespan,(2-4) and hypothesized that ticks also have a system of autophagy to overcome the starved condition. Recently, we showed the existence of a homologue of an ATG gene, ATG12, and its expression pattern from nymphal to adult stages in a three-host tick, Haemaphysalis longicornis. The expression level of HlATG12 was downregulated at the beginning of feeding and was highest at 3 months after engorgement. In addition, the HlAtg12 protein was localized to the region around granule-like structures within midgut cells of unfed adults. These results indicate that HlATG12 functions during unfed stages. Here, a potential role of autophagy in unfed ticks is discussed with regard to reports in other animals, such as yeast, mammal, and fruit fly.

  4. Identification of immune response-related genes in the Chinese oak silkworm, Antheraea pernyi by suppression subtractive hybridization.

    PubMed

    Liu, Qiu-Ning; Zhu, Bao-Jian; Wang, Lei; Wei, Guo-Qing; Dai, Li-Shang; Lin, Kun-Zhang; Sun, Yu; Qiu, Jian-Feng; Fu, Wei-Wei; Liu, Chao-Liang

    2013-11-01

    Insects possess an innate immune system that responds to invading microorganisms. In this study, a subtractive cDNA library was constructed to screen for immune response-related genes in the fat bodies of Antheraea pernyi (Lepidoptera: Saturniidae) pupa challenged with Escherichia coli. Four hundred putative EST clones were identified by suppression subtractive hybridization (SSH), including 50 immune response-related genes, three cytoskeleton genes, eight cell cycle and apoptosis genes, five respiration and energy metabolism genes, five transport genes, 40 metabolism genes, ten stress response genes, four transcription and translation regulation genes and 77 unknown genes. To verify the reliability of the SSH data, the transcription of a set of randomly selected immune response-related genes were confirmed by semi-quantitative reverse transcription-PCR (RT-PCR) and real-time quantitative reverse transcription-PCR (qRT-PCR). These identified immune response-related genes provide insight into understanding the innate immunity in A. pernyi.

  5. The Bidirectional NiFe-hydrogenase in Synechocystis sp. PCC 6803 Is Reduced by Flavodoxin and Ferredoxin and Is Essential under Mixotrophic, Nitrate-limiting Conditions*

    PubMed Central

    Gutekunst, Kirstin; Chen, Xi; Schreiber, Karoline; Kaspar, Ursula; Makam, Srinivas; Appel, Jens

    2014-01-01

    Cyanobacteria are able to use solar energy for the production of hydrogen. It is generally accepted that cyanobacterial NiFe-hydrogenases are reduced by NAD(P)H. This is in conflict with thermodynamic considerations, as the midpoint potentials of NAD(P)H do not suffice to support the measured hydrogen production under physiological conditions. We show that flavodoxin and ferredoxin directly reduce the bidirectional NiFe-hydrogenase of Synechocystis sp. PCC 6803 in vitro. A merodiploid ferredoxin-NADP reductase mutant produced correspondingly more photohydrogen. We furthermore found that the hydrogenase receives its electrons via pyruvate:flavodoxin/ferredoxin oxidoreductase (PFOR)-flavodoxin/ferredoxin under fermentative conditions, enabling the cells to gain ATP. These results strongly support that the bidirectional NiFe-hydrogenases in cyanobacteria function as electron sinks for low potential electrons from photosystem I and as a redox balancing device under fermentative conditions. However, the selective advantage of this enzyme is not known. No strong phenotype of mutants lacking the hydrogenase has been found. Because bidirectional hydrogenases are widespread in aquatic nutrient-rich environments that are capable of triggering phytoplankton blooms, we mimicked those conditions by growing cells in the presence of increased amounts of dissolved organic carbon and dissolved organic nitrogen. Under these conditions the hydrogenase was found to be essential. As these conditions close the two most important sinks for reduced flavodoxin/ferredoxin (CO2-fixation and nitrate reduction), this discovery further substantiates the connection between flavodoxin/ferredoxin and the NiFe-hydrogenase. PMID:24311779

  6. Identification and characterization of stress resistance related genes of Brassica rapa.

    PubMed

    Ahmed, Nasar Uddin; Park, Jong-In; Jung, Hee-Jeong; Seo, Mi-Suk; Kumar, Thamilarasan Senthil; Lee, In-Ho; Nou, Ill-Sup

    2012-05-01

    Two biotic stress resistance related genes from the full-length cDNA library of Brassica rapa cv. Osome were identified from EST analysis and determined to be pathogenesis-related (PR) 12 Brassica defensin-like family protein (BrDLFP) and PR-10 Brassica Betv1 allergen family protein (BrBetv1AFP) after sequence analysis and homology study with other stress resistance related same family genes. In the expression analysis, both genes expressed in different organs and during all developmental growth stages in healthy plants. Expression of BrDLFP significantly increased and BrBetv1AFP gradually decreased after infection with Pectobacterium carotovorum subsp. carotovorum in Chinese cabbage. Expression of these two genes significantly changed after cold, salt, drought and ABA stress treatments. These two PR genes may therefore be involved in the plant resistance against biotic and abiotic stresses.

  7. SARS-CoV regulates immune function-related gene expression in human monocytic cells.

    PubMed

    Hu, Wanchung; Yen, Yu-Ting; Singh, Sher; Kao, Chuan-Liang; Wu-Hsieh, Betty A

    2012-08-01

    Severe acute respiratory syndrome (SARS) is characterized by acute respiratory distress syndrome (ARDS) and pulmonary fibrosis, and monocytes/macrophages are the key players in the pathogenesis of SARS. In this study, we compared the transcriptional profiles of SARS coronavirus (SARS-CoV)-infected monocytic cells against that infected by coronavirus 229E (CoV-229E). Total RNA was extracted from infected DC-SIGN-transfected monocytes (THP-1-DC-SIGN) at 6 and 24 h after infection, and the gene expression was profiled in oligonucleotide-based microarrays. Analysis of immune-related gene expression profiles showed that at 24 h after SARS-CoV infection: (1) IFN-α/β-inducible and cathepsin/proteasome genes were downregulated; (2) hypoxia/hyperoxia-related genes were upregulated; and (3) TLR/TLR-signaling, cytokine/cytokine receptor-related, chemokine/chemokine receptor-related, lysosome-related, MHC/chaperon-related, and fibrosis-related genes were differentially regulated. These results elucidate that SARS-CoV infection regulates immune-related genes in monocytes/macrophages, which may be important to the pathogenesis of SARS.

  8. Measured Gene-by-Environment Interaction in Relation to Attention-Deficit/Hyperactivity Disorder

    ERIC Educational Resources Information Center

    Nigg, Joel; Nikolas, Molly; Burt, S. Alexandra

    2010-01-01

    Objective: To summarize and evaluate the state of knowledge regarding the role of measured gene-by-environment interactions in relation to attention-deficit/hyperactivity disorder. Method: A selective review of methodologic issues was followed by a systematic search for relevant articles on measured gene-by-environment interactions; the search…

  9. The human gene map for performance and health-related fitness phenotypes: the 2005 update

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The current review presents the 2005 update of the human gene map for physical performance and health-related fitness phenotypes. It is based on peer-reviewed papers published by the end of 2005. The genes and markers with evidence of association or linkage with a performance or fitness phenotype in...

  10. Centrin protein and genes in Trichomonas vaginalis and close relatives.

    PubMed

    Brugerolle, G; Bricheux, G; Coffe, G

    2000-01-01

    Anti-centrin monoclonal antibodies 20H5 and 11B2 produced against Clamydomononas centrin decorated the group of basal bodies as well as very closely attached structures in all trichomonads studied and in the devescovinids Foaina and Devescovina. Moreover, these antibodies decorated the undulating membrane in Trichomonas vaginalis, Trichomitus batrachorum, and Tritrichomonas foetus, and the cresta in Foaina. Centrin was not demonstrated in the dividing spindle and paradesmosis. Immunogold labeling, both in pre- and post-embedding, confirmed that centrin is associated with the basal body cylinder and is a component of the nine anchoring arms between the terminal plate of flagellar bases and the plasma-membrane. Centrin is also associated with the hook-shaped fibers attached to basal bodies (F1, F3), the X-fiber, and along sigmoid fibers (F2) at the pelta-axostyle junction, which is the microtubule organizing center for pelta-axostyle microtubules. There was no labeling on the striated costa and parabasal fibers nor on microtubular pelta-axostyle, but the fibrous structure inside the undulating membrane was labeled in T. vaginalis. Two proteins of 22-20 kDa corresponding to the centrin molecular mass were recognized by immunoblotting using these antibodies in the three trichomonad species examined. By screening a T. vaginalis cDNA library with 20H5 antibody, two genes encoding identical protein sequences were found. The sequence comprises the 4 typical EF-hand Ca++-binding domains present in every known centrin. Trichomonad centrin is closer to the green algal cluster (70% identity) than to the yeast Cdc31 cluster (55% identity) or the Alveolata cluster (46% identity).

  11. Gene Expression Profile Related to the Progression of Preneoplastic Nodules toward Hepatocellular Carcinoma in Rats1*

    PubMed Central

    Pérez-Carreón, Julio Isael; López-García, Cristina; Fattel-Fazenda, Samia; Arce-Popoca, Evelia; Alemán-Lazarini, Leticia; Hernández-García, Sergio; Le Berre, Véronique; Sokol, Sergueï; Francois, Jean Marie; Villa-Treviño, Saúl

    2006-01-01

    Abstract In this study, we investigated the time course gene expression profile of preneoplastic nodules and hepatocellular carcinomas (HCC) to define the genes implicated in cancer progression in a resistant hepatocyte model. Tissues that included early nodules (1 month, ENT-1), persistent nodules (5 months, ENT-5), dissected HCC (12 months), and normal livers (NL) from adult rats were analyzed by cDNA arrays including 1185 rat genes. Differential genes were derived in each type of sample (n = 3) by statistical analysis. The relationship between samples was described in a Venn diagram for 290 genes. From these, 72 genes were shared between tissues with nodules and HCC. In addition, 35 genes with statistical significance only in HCC and with extreme ratios were identified. Differential expression of 11 genes was confirmed by comparative reverse transcription-polymerase chain reaction, whereas that of 2 genes was confirmed by immunohistochemistry. Members involved in cytochrome P450 and second-phase metabolism were downregulated, whereas genes involved in glutathione metabolism were upregulated, implicating a possible role of glutathione and oxidative regulation. We provide a gene expression profile related to the progression of nodules into HCC, which contributes to the understanding of liver cancer development and offers the prospect for chemoprevention strategies or early treatment of HCC. PMID:16790086

  12. Utilization of digital differential display to identify differentially expressed genes related to rumen development.

    PubMed

    Kato, Daichi; Suzuki, Yutaka; Haga, Satoshi; So, KyoungHa; Yamauchi, Eri; Nakano, Miwa; Ishizaki, Hiroshi; Choi, Kichoon; Katoh, Kazuo; Roh, Sang-Gun

    2016-04-01

    This study aimed to identify the genes associated with the development of the rumen epithelium by screening for candidate genes by digital differential display (DDD) in silico. Using DDD in NCBI's UniGene database, expressed sequence tag (EST)-based gene expression profiles were analyzed in rumen, reticulum, omasum, abomasum and other tissues in cattle. One hundred and ten candidate genes with high expression in the rumen were derived from a library of all tissues. The expression levels of 11 genes in all candidate genes were analyzed in the rumen, reticulum, omasum and abomasum of nine Japanese Black male calves (5-week-old pre-weaning: n = 3; 15-week-old weaned calves: n = 6). Among the 11 genes, only 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2), aldo-keto reductase family 1, member C1-like (AKR1C1), and fatty acid binding protein 3 (FABP3) showed significant changes in the levels of gene expression in the rumen between the pre- and post-weaning of calves. These results indicate that DDD analysis in silico can be useful for screening candidate genes related to rumen development, and that the changes in expression levels of three genes in the rumen may have been caused by weaning, aging or both.

  13. [Conditions for effective hydrogen photoevolution by chloroplasts in the presence of bacterial hydrogenase].

    PubMed

    Krasnovskiĭ, A A; Chan-van-Ni; Nikandrov, V V; Brin, G P

    1980-01-01

    The hydrogen photoevolution was studied to compare the efficiency of chloroplasts or solubilized chlorophyll in the presence of hydrogenase from Clostridium butyricum and methylviologen which links the electron transfer from photosystems to the exogenous enzyme. The hydrogen evolution by chloroplasts in the absence of exogeneous electron donors (or in the presence of irreversibly oxidized dithiotreitol or cysteine) is probably limited by cyclic electron flow shot-circuiting the photosystem 1. Efficiency of hydrogen photoproduction when ascorbate or NADP.H are used as electron donors is probably limited by reverse reaction of photoreduced methylviologen with the oxidized electron donor. The combination of both dithiotreitol and ascorbate prevents the shot-circuiting of photosystem 1 by methylviologen; in this case the maximum efficiency of hydrogen photoevolution was achieved up to 400 mumol H2 per 1 mg chlorophyll per hour.

  14. Femtosecond to microsecond photochemistry of a [FeFe]hydrogenase enzyme model compound.

    PubMed

    Kaziannis, Spyridon; Santabarbara, Stefano; Wright, Joseph A; Greetham, Gregory M; Towrie, Michael; Parker, Anthony W; Pickett, Christopher J; Hunt, Neil T

    2010-11-25

    The photochemistry and dynamics of a model compound of the active site of the [FeFe]hydrogenase enzyme system have been studied on a wide range of time scales using a unique combination of femtosecond time-resolved infrared spectroscopy, nanosecond time-resolved infrared spectroscopy, and steady-state UV-FTIR methods. Using three different solvents, heptane, acetonitrile, and cyanoheptane, we have observed the rapid formation of solvent adduct species from the first solvation shell of the solute following photolysis of a carbonyl ligand and global fitting techniques have been employed to provide new insights into the ultrafast dynamics of this process. In addition, the use of solvent mixtures has enabled the observation of competitive ligand substitution processes at the newly created coordination site on time scales of a few nanoseconds, shedding new light on the chemical behavior of these enzyme models.

  15. Photocatalytic Hydrogen Production using Polymeric Carbon Nitride with a Hydrogenase and a Bioinspired Synthetic Ni Catalyst**

    PubMed Central

    Caputo, Christine A; Gross, Manuela A; Lau, Vincent W; Cavazza, Christine; Lotsch, Bettina V; Reisner, Erwin

    2014-01-01

    Solar-light-driven H2 production in water with a [NiFeSe]-hydrogenase (H2ase) and a bioinspired synthetic nickel catalyst (NiP) in combination with a heptazine carbon nitride polymer, melon (CNx), is reported. The semibiological and purely synthetic systems show catalytic activity during solar light irradiation with turnover numbers (TONs) of more than 50 000 mol H2 (mol H2ase)−1 and approximately 155 mol H2 (mol NiP)−1 in redox-mediator-free aqueous solution at pH 6 and 4.5, respectively. Both systems maintained a reduced photoactivity under UV-free solar light irradiation (λ>420 nm). PMID:26300567

  16. Photocatalytic Hydrogen Production using Polymeric Carbon Nitride with a Hydrogenase and a Bioinspired Synthetic Ni Catalyst**

    PubMed Central

    Caputo, Christine A; Gross, Manuela A; Lau, Vincent W; Cavazza, Christine; Lotsch, Bettina V; Reisner, Erwin

    2014-01-01

    Solar-light-driven H2 production in water with a [NiFeSe]-hydrogenase (H2ase) and a bioinspired synthetic nickel catalyst (NiP) in combination with a heptazine carbon nitride polymer, melon (CNx), is reported. The semibiological and purely synthetic systems show catalytic activity during solar light irradiation with turnover numbers (TONs) of more than 50 000 mol H2 (mol H2ase)−1 and approximately 155 mol H2 (mol NiP)−1 in redox-mediator-free aqueous solution at pH 6 and 4.5, respectively. Both systems maintained a reduced photoactivity under UV-free solar light irradiation (λ>420 nm). PMID:25205168

  17. Induction of Photosynthetic Carbon Fixation in Anoxia Relies on Hydrogenase Activity and Proton-Gradient Regulation-Like1-Mediated Cyclic Electron Flow in Chlamydomonas reinhardtii1

    PubMed Central

    Bailleul, Benjamin; Berne, Nicolas

    2015-01-01

    The model green microalga Chlamydomonas reinhardtii is frequently subject to periods of dark and anoxia in its natural environment. Here, by resorting to mutants defective in the maturation of the chloroplastic oxygen-sensitive hydrogenases or in Proton-Gradient Regulation-Like1 (PGRL1)-dependent cyclic electron flow around photosystem I (PSI-CEF), we demonstrate the sequential contribution of these alternative electron flows (AEFs) in the reactivation of photosynthetic carbon fixation during a shift from dark anoxia to light. At light onset, hydrogenase activity sustains a linear electron flow from photosystem II, which is followed by a transient PSI-CEF in the wild type. By promoting ATP synthesis without net generation of photosynthetic reductants, the two AEF are critical for restoration of the capacity for carbon dioxide fixation in the light. Our data also suggest that the decrease in hydrogen evolution with time of illumination might be due to competition for reduced ferredoxins between ferredoxin-NADP+ oxidoreductase and hydrogenases, rather than due to the sensitivity of hydrogenase activity to oxygen. Finally, the absence of the two alternative pathways in a double mutant pgrl1 hydrogenase maturation factor G-2 is detrimental for photosynthesis and growth and cannot be compensated by any other AEF or anoxic metabolic responses. This highlights the role of hydrogenase activity and PSI-CEF in the ecological success of microalgae in low-oxygen environments. PMID:25931521

  18. H₂-dependent azoreduction by Shewanella oneidensis MR-1: involvement of secreted flavins and both [Ni-Fe] and [Fe-Fe] hydrogenases.

    PubMed

    Le Laz, Sébastien; Kpebe, Arlette; Lorquin, Jean; Brugna, Myriam; Rousset, Marc

    2014-03-01

    In this paper, the hydrogen (H2)-dependent discoloration of azo dye amaranth by Shewanella oneidensis MR-1 was investigated. Experiments with hydrogenase-deficient strains demonstrated that periplasmic [Ni-Fe] hydrogenase (HyaB) and periplasmic [Fe-Fe] hydrogenase (HydA) are both respiratory hydrogenases of dissimilatory azoreduction in S. oneidensis MR-1. These findings suggest that HyaB and HydA can function as uptake hydrogenases that couple the oxidation of H2 to the reduction of amaranth to sustain cellular growth. This constitutes to our knowledge the first report of the involvement of [Fe-Fe] hydrogenase in a bacterial azoreduction process. Assays with respiratory inhibitors indicated that a menaquinone pool and different cytochromes were involved in the azoreduction process. High-performance liquid chromatography analysis revealed that flavin mononucleotide and riboflavin were secreted in culture supernatant by S. oneidensis MR-1 under H2-dependent conditions with concentration of 1.4 and 2.4 μmol g protein(-1), respectively. These endogenous flavins were shown to significantly accelerate the reduction of amaranth at micromolar concentrations acting as electron shuttles between the cell surface and the extracellular azo dye. This work may facilitate a better understanding of the mechanisms of azoreduction by S. oneidensis MR-1 and may have practical applications for microbiological treatments of dye-polluted industrial effluents.

  19. Age-dependent expression of osteochondrosis-related genes in equine leukocytes

    PubMed Central

    Mendoza, L.; Piquemal, D.; Lejeune, J. P.; Vander Heyden, L.; Noguier, F.; Bruno, R.; Sandersen, C.; Serteyn, D.

    2015-01-01

    Introduction:  Osteochondrosis (OC) is a developmental disease in horses which has a significant impact on the horse's welfare and performance. The early disturbance in the process of endochondral ossification progresses to inflammatory and repair processes in older horses. Previously, differentially expressed genes in leukocytes of OC-affected horses have been identified. The aim of the present study is to detect age-related changes in these differentially expressed genes. Materials and Methods:  The expression of OC-related genes was analysed by real-time PCR and subsequent statistical analysis (ΔΔCT) in the leukocytes of 135 Belgian Warmblood horses divided into three different age groups: <12 months (n=47), 18–24 months (n=50) >30 months (n=38). Results:  Relative expression of genes of horses less than 12 months of age showed significant induction of the genes MGAT4A, PRKCG, MHCI, ApoB, ApoB3G, B4GALT6 and a significantly lower expression of the genes OAS3. Horses of 18–24 months of age, showed a significantly higher expression of the genes TBC1D9, MGAT4A, IFIH1, MHCIIa and MMP1. Horses of more than 30 months of age showed a significantly higher expression of the genes MGAT4A, HP, SECTM1 compared with their age-matched control groups. Conclusions:  The study demonstrates that OC-related genes are differentially expressed in horses of different ages compared with their age-matched controls. Some of the genes may be implicated in cell signalling and differentiation as well as carbohydrate and lipid metabolism and inflammation. However, the causal relationship between the differentially expressed genes and the development and progression of the OC lesions needs to be determined. PMID:26392886

  20. Cloning of apoptosis-related genes by representational difference analysis of cDNA.

    PubMed

    Hubank, Michael; Bryntesson, Fredrik; Regan, Jennifer; Schatz, David G

    2004-01-01

    Apoptosis is frequently triggered by events that alter the expression of key target genes. Under these circumstances, the genes involved can be identified by techniques that analyze gene expression. Researchers now have a choice of reliable and effective methods for differential gene expression analysis. Comparative approaches, including gene microarray analysis, serial analysis of gene expression, and differential display provide global information about expression levels. Subtractive approaches like complementary DNA representational difference analysis (cDNA RDA) and suppression subtraction polymerase chain reaction identify a focused set of differentially expressed genes. The most suitable technique to apply depends on individual circumstances. cDNA RDA is particularly useful in nonstandard model organisms for which comprehensive gene microarrays are not available and is best used for the identification of genes with a large difference in expression levels between two populations. The technique involves the generation of amplified mixtures of cDNA fragments that are typically smaller than 1000 base pairs and represent >86% of mRNA species from each starting population. Transcriptional differences between two populations can then be identified by subtraction of cDNA amplicons followed by further polymerase chain reaction amplification. The technique is capable of detecting differences for genes expressed at less than one copy per cell and is achievable using standard laboratory apparatus. cDNA RDA can identify genes not previously described in the database, can detect low abundance transcripts (e.g., from mixed cell populations), and is best applied in experiments where relatively few differentially expressed genes are expected. Here, we describe the application of cDNA RDA to the identification of apoptosis-related genes.

  1. Cysteine as a ligand platform in the biosynthesis of the FeFe hydrogenase H cluster.

    PubMed

    Suess, Daniel L M; Bürstel, Ingmar; De La Paz, Liliana; Kuchenreuther, Jon M; Pham, Cindy C; Cramer, Stephen P; Swartz, James R; Britt, R David

    2015-09-15

    Hydrogenases catalyze the redox interconversion of protons and H2, an important reaction for a number of metabolic processes and for solar fuel production. In FeFe hydrogenases, catalysis occurs at the H cluster, a metallocofactor comprising a [4Fe-4S]H subcluster coupled to a [2Fe]H subcluster bound by CO, CN(-), and azadithiolate ligands. The [2Fe]H subcluster is assembled by the maturases HydE, HydF, and HydG. HydG is a member of the radical S-adenosyl-L-methionine family of enzymes that transforms Fe and L-tyrosine into an [Fe(CO)2(CN)] synthon that is incorporated into the H cluster. Although it is thought that the site of synthon formation in HydG is the "dangler" Fe of a [5Fe] cluster, many mechanistic aspects of this chemistry remain unresolved including the full ligand set of the synthon, how the dangler Fe initially binds to HydG, and how the synthon is released at the end of the reaction. To address these questions, we herein show that L-cysteine (Cys) binds the auxiliary [4Fe-4S] cluster of HydG and further chelates the dangler Fe. We also demonstrate that a [4Fe-4S]aux[CN] species is generated during HydG catalysis, a process that entails the loss of Cys and the [Fe(CO)2(CN)] fragment; on this basis, we suggest that Cys likely completes the coordination sphere of the synthon. Thus, through spectroscopic analysis of HydG before and after the synthon is formed, we conclude that Cys serves as the ligand platform on which the synthon is built and plays a role in both Fe(2+) binding and synthon release.

  2. Mapping of a family of heterogeneous nuclear ribonucleoprotein [hnRNP] genes related to the fragile X gene - fmr1

    SciTech Connect

    Srinivasan, S.; Siomi, M.; Siomi, H.

    1994-09-01

    RNA binding proteins are involved in a wide range of cellular processes in the nucleus and cytoplasm including regulation of pre-mRNA splicing, mRNA stability, translation efficiency and the transport of RNAs between the nucleus and the cytoplasm. The gene involved in the Fragile X syndrome encodes a protein that contains two types of sequence motifs found in RNA binding proteins: an RGG box as seen in hnRNP U and two KH (hnRNP K homology) domains. The FMR1 gene product binds RNA in vitro and a missense mutation in a highly conserved isoleucine residue in the KH domain of fmr1 impairs RNA binding, demonstrating the importance of the KH domain in the RNA binding ability of FMR1. We have identified a new gene, fxr1 (fmr1 cross-hybridizing related), that bears striking homology to the fmr1 gene. The two genes are highly homologous at the amino acid level. Fxr1 has two KH domains, as does fmr1. This suggests that fmr1 may be only one of a family of RNA binding proteins that have yet to be characterized, but are potentially important for normal cellular function. We are systematically mapping hnRNP genes related to fmrl as a first step towards investigating the role of these proteins in human disease states. We have mapped fxr1 to chromosome 12 using a somatic cell hybrid panel and are currently using YACs containing fxr1 to perform FISH to further pinpoint the exact location of fxr1. HnRNP K and U share common sequence motifs with fmr1 and fxr1 that seem to be important for RNA binding function. We are also mapping these genes by both somatic cell hybrid panels and by FISH with the corresponding YACs.

  3. SVM-T-RFE: a novel gene selection algorithm for identifying metastasis-related genes in colorectal cancer using gene expression profiles.

    PubMed

    Li, Xiaobo; Peng, Sihua; Chen, Jian; Lü, Bingjian; Zhang, Honghe; Lai, Maode

    2012-03-09

    Although metastasis is the principal cause of death cause for colorectal cancer (CRC) patients, the molecular mechanisms underlying CRC metastasis are still not fully understood. In an attempt to identify metastasis-related genes in CRC, we obtained gene expression profiles of 55 early stage primary CRCs, 56 late stage primary CRCs, and 34 metastatic CRCs from the expression project in Oncology (http://www.intgen.org/expo/). We developed a novel gene selection algorithm (SVM-T-RFE), which extends support vector machine recursive feature elimination (SVM-RFE) algorithm by incorporating T-statistic. We achieved highest classification accuracy (100%) with smaller gene subsets (10 and 6, respectively), when classifying between early and late stage primary CRCs, as well as between metastatic CRCs and late stage primary CRCs. We also compared the performance of SVM-T-RFE and SVM-RFE gene selection algorithms on another large-scale CRC dataset and the five public microarray datasets. SVM-T-RFE bestowed SVM-RFE algorithm in identifying more differentially expressed genes, and achieving highest prediction accuracy using equal or smaller number of selected genes. A fraction of selected genes have been reported to be associated with CRC development or metastasis.

  4. Contribution of WUSCHEL-related homeobox (WOX) genes to identify the phylogenetic relationships among Petunia species.

    PubMed

    Segatto, Ana Lúcia Anversa; Thompson, Claudia Elizabeth; Freitas, Loreta Brandão

    2016-01-01

    Developmental genes are believed to contribute to major changes during plant evolution, from infrageneric to higher levels. Due to their putative high sequence conservation, developmental genes are rarely used as molecular markers, and few studies including these sequences at low taxonomic levels exist. WUSCHEL-related homeobox genes (WOX) are transcription factors exclusively present in plants and are involved in developmental processes. In this study, we characterized the infrageneric genetic variation of Petunia WOX genes. We obtained phylogenetic relationships consistent with other phylogenies based on nuclear markers, but with higher statistical support, resolution in terminals, and compatibility with flower morphological changes.

  5. Contribution of WUSCHEL-related homeobox (WOX) genes to identify the phylogenetic relationships among Petunia species

    PubMed Central

    Segatto, Ana Lúcia Anversa; Thompson, Claudia Elizabeth; Freitas, Loreta Brandão

    2016-01-01

    Abstract Developmental genes are believed to contribute to major changes during plant evolution, from infrageneric to higher levels. Due to their putative high sequence conservation, developmental genes are rarely used as molecular markers, and few studies including these sequences at low taxonomic levels exist. WUSCHEL-related homeobox genes (WOX) are transcription factors exclusively present in plants and are involved in developmental processes. In this study, we characterized the infrageneric genetic variation of Petunia WOX genes. We obtained phylogenetic relationships consistent with other phylogenies based on nuclear markers, but with higher statistical support, resolution in terminals, and compatibility with flower morphological changes. PMID:27768156

  6. Gene regulatory mechanisms orchestrated by p63 in epithelial development and related disorders.

    PubMed

    Kouwenhoven, Evelyn N; van Bokhoven, Hans; Zhou, Huiqing

    2015-06-01

    The transcription factor p63 belongs to the p53 family and is a key regulator in epithelial commitment and development. Mutations in p63 give rise to several epithelial related disorders with defects in skin, limb and orofacial structures. Since the discovery of p63, efforts have been made to identify its target genes using individual gene approaches and to understand p63 function in normal epithelial development and related diseases. Recent genome-wide approaches have identified tens of thousands of potential p63-regulated target genes and regulatory elements, and reshaped the concept of gene regulation orchestrated by p63. These data also provide insights into p63-related disease mechanisms. In this review, we discuss the regulatory role of p63 in normal and diseased epithelial development in light of these novel findings. We also propose future perspectives for dissecting the molecular mechanism of p63-mediated epithelial development and related disorders as well as for potential therapeutic strategies.

  7. AGE-RELATED GENE EXPRESSION CHANGES IN HUMAN SKIN FIBROBLASTS INDUCED BY MMS

    EPA Science Inventory

    Age-Related Gene Expression Changes In Human Skin Fibroblasts Induced By methyl methanesulfonate. Geremy W. Knapp, Alan H. Tennant, and Russell D. Owen. Environmental Carcinogenesis Division, National Health and Environmental Effects Research Laboratory, U. S. Environmental Prote...

  8. Genes related to xylose fermentation and methods of using same for enhanced biofuel production

    DOEpatents

    Wohlbach, Dana J.; Gasch, Audrey P.

    2014-08-05

    The present invention provides isolated gene sequences involved in xylose fermentation and related recombinant yeast which are useful in methods of enhanced biofuel production, particularly ethanol production. Methods of bioengineering recombinant yeast useful for biofuel production are also provided.

  9. Genes related to xylose fermentation and methods of using same for enhanced biofuel production

    SciTech Connect

    Wohlbach, Dana J.; Gasch, Audrey P.

    2015-09-29

    The present invention provides isolated gene sequences involved in xylose fermentation and related recombinant yeast which are useful in methods of enhanced biofuel production, particularly ethanol production. Methods of bioengineering recombinant yeast useful for biofuel production are also provided.

  10. Genes related to xylose fermentation and methods of using same for enhanced biofuel production

    DOEpatents

    Wohlbach, Dana J.; Gasch, Audrey P.

    2016-11-29

    The present invention provides isolated gene sequences involved in xylose fermentation and related recombinant yeast which are useful in methods of enhanced biofuel production, particularly ethanol production. Methods of bioengineering recombinant yeast useful for biofuel production are also provided.

  11. Identification and Expression Profiles of Sex Pheromone Biosynthesis and Transport Related Genes in Spodoptera litura

    PubMed Central

    Zhang, Ya-Nan; Zhu, Xiu-Yun; Fang, Li-Ping; He, Peng; Wang, Zhi-Qiang; Chen, Geng; Sun, Liang; Ye, Zhan-Feng; Deng, Dao-Gui; Li, Jin-Bu

    2015-01-01

    Although the general pathway of sex pheromone synthesis in moth species has been established, the molecular mechanisms remain poorly understood. The common cutworm Spodoptera litura is an important agricultural pest worldwide and causes huge economic losses annually. The female sex pheromone of S. litura comprises Z9,E11-14:OAc, Z9,E12-14:OAc, Z9-14:OAc, and E11-14:OAc. By sequencing and analyzing the transcriptomic data of the sex pheromone glands, we identified 94 candidate genes related to pheromone biosynthesis (55 genes) or chemoreception (39 genes). Gene expression patterns and phylogenetic analysis revealed that two desaturase genes (SlitDes5 and SlitDes11) and one fatty acyl reductase gene (SlitFAR3) showed pheromone gland (PG) biased or specific expression, and clustered with genes known to be involved in pheromone synthesis in other moth species. Furthermore, 4 chemoreception related genes (SlitOBP6, SlitOBP11, SlitCSP3, and SlitCSP14) also showed higher expression in the PG, and could be additional candidate genes involved in sex pheromone transport. This study provides the first solid background information that should facilitate further elucidation of sex pheromone biosynthesis and transport, and indicates potential targets to disrupt sexual communication in S. litura for a novel pest management strategy. PMID:26445454

  12. Altered Clock and Lipid Metabolism-Related Genes in Atherosclerotic Mice Kept with Abnormal Lighting Condition

    PubMed Central

    Zhu, Zhu; Hua, Bingxuan; Shang, Zhanxian; Yuan, Gongsheng; Xu, Lirong; Li, Ermin; Li, Xiaobo; Yan, Zuoqin; Qian, Ruizhe

    2016-01-01

    Background. The risk of atherosclerosis is elevated in abnormal lipid metabolism and circadian rhythm disorder. We investigated whether abnormal lighting condition would have influenced the circadian expression of clock genes and clock-controlled lipid metabolism-related genes in ApoE-KO mice. Methods. A mouse model of atherosclerosis with circadian clock genes expression disorder was established using ApoE-KO mice (ApoE-KO LD/DL mice) by altering exposure to light. C57 BL/6J mice (C57 mice) and ApoE-KO mice (ApoE-KO mice) exposed to normal day and night and normal diet served as control mice. According to zeitgeber time samples were acquired, to test atheromatous plaque formation, serum lipids levels and rhythmicity, clock genes, and lipid metabolism-related genes along with Sirtuin 1 (Sirt1) levels and rhythmicity. Results. Atherosclerosis plaques were formed in the aortic arch of ApoE-KO LD/DL mice. The serum lipids levels and oscillations in ApoE-KO LD/DL mice were altered, along with the levels and diurnal oscillations of circadian genes, lipid metabolism-associated genes, and Sirt1 compared with the control mice. Conclusions. Abnormal exposure to light aggravated plaque formation and exacerbated disorders of serum lipids and clock genes, lipid metabolism genes and Sirt1 levels, and circadian oscillation. PMID:27631008

  13. Identification and Expression Profiles of Sex Pheromone Biosynthesis and Transport Related Genes in Spodoptera litura.

    PubMed

    Zhang, Ya-Nan; Zhu, Xiu-Yun; Fang, Li-Ping; He, Peng; Wang, Zhi-Qiang; Chen, Geng; Sun, Liang; Ye, Zhan-Feng; Deng, Dao-Gui; Li, Jin-Bu

    2015-01-01

    Although the general pathway of sex pheromone synthesis in moth species has been established, the molecular mechanisms remain poorly understood. The common cutworm Spodoptera litura is an important agricultural pest worldwide and causes huge economic losses annually. The female sex pheromone of S. litura comprises Z9,E11-14:OAc, Z9,E12-14:OAc, Z9-14:OAc, and E11-14:OAc. By sequencing and analyzing the transcriptomic data of the sex pheromone glands, we identified 94 candidate genes related to pheromone biosynthesis (55 genes) or chemoreception (39 genes). Gene expression patterns and phylogenetic analysis revealed that two desaturase genes (SlitDes5 and SlitDes11) and one fatty acyl reductase gene (SlitFAR3) showed pheromone gland (PG) biased or specific expression, and clustered with genes known to be involved in pheromone synthesis in other moth species. Furthermore, 4 chemoreception related genes (SlitOBP6, SlitOBP11, SlitCSP3, and SlitCSP14) also showed higher expression in the PG, and could be additional candidate genes involved in sex pheromone transport. This study provides the first solid background information that should facilitate further elucidation of sex pheromone biosynthesis and transport, and indicates potential targets to disrupt sexual communication in S. litura for a novel pest management strategy.

  14. Addiction and reward-related genes show altered expression in the postpartum nucleus accumbens

    PubMed Central

    Zhao, Changjiu; Eisinger, Brian Earl; Driessen, Terri M.; Gammie, Stephen C.

    2014-01-01

    Motherhood involves a switch in natural rewards, whereby offspring become highly rewarding. Nucleus accumbens (NAC) is a key CNS region for natural rewards and addictions, but to date no study has evaluated on a large scale the events in NAC that underlie the maternal change in natural rewards. In this study we utilized microarray and bioinformatics approaches to evaluate postpartum NAC gene expression changes in mice. Modular Single-set Enrichment Test (MSET) indicated that postpartum (relative to virgin) NAC gene expression profile was significantly enriched for genes related to addiction and reward in five of five independently curated databases (e.g., Malacards, Phenopedia). Over 100 addiction/reward related genes were identified and these included: Per1, Per2, Arc, Homer2, Creb1, Grm3, Fosb, Gabrb3, Adra2a, Ntrk2, Cry1, Penk, Cartpt, Adcy1, Npy1r, Htr1a, Drd1a, Gria1, and Pdyn. ToppCluster analysis found maternal NAC expression profile to be significantly enriched for genes related to the drug action of nicotine, ketamine, and dronabinol. Pathway analysis indicated postpartum NAC as enriched for RNA processing, CNS development/differentiation, and transcriptional regulation. Weighted Gene Coexpression Network Analysis (WGCNA) identified possible networks for transcription factors, including Nr1d1, Per2, Fosb, Egr1, and Nr4a1. The postpartum state involves increased risk for mental health disorders and MSET analysis indicated postpartum NAC to be enriched for genes related to depression, bipolar disorder (BPD), and schizophrenia. Mental health related genes included: Fabp7, Grm3, Penk, and Nr1d1. We confirmed via quantitative PCR Nr1d1, Per2, Grm3, Penk, Drd1a, and Pdyn. This study indicates for the first time that postpartum NAC involves large scale gene expression alterations linked to addiction and reward. Because the postpartum state also involves decreased response to drugs, the findings could provide insights into how to mitigate addictions. PMID:25414651

  15. Endocrine-related genes are altered by antibacterial agent triclosan in Chironomus riparius aquatic larvae.

    PubMed

    Martínez-Paz, Pedro; Morales, Mónica; Urien, Josune; Morcillo, Gloria; Martínez-Guitarte, José Luis

    2017-06-01

    Triclosan (TCS) is an antibacterial agent widely used in personal care and consumer products and commonly detected in aquatic ecosystems. In the present study, the effects of TCS on endocrine-related genes of Chironomus riparius aquatic larvae, a reference organism in aquatic toxicology, were evaluated. Twenty-four-hour in vivo exposures at 10µg/L, 100µg/L, and 1000µg/L TCS revealed that this xenobiotic was able to alter the transcriptional activity of ecdysone receptor gene (EcR), the ultraspiracle gene (usp), the estrogen-related receptor gene (ERR), and the E74 early ecdysone-inducible gene, as measured by real-time RT-PCR. Moreover, the hsp70 gene, a heat shock protein gene, was upregulated after exposure to TCS. The results of the present work provide the first evidence of the potential disruptive effects of TCS in endocrine-related genes suggesting a mode of action that mimics ecdysteroid hormones in insects.

  16. Viral oncogenes, proto-oncogenes and homoeotic genes related to cell proliferation and differentiation.

    PubMed

    Antohi, S; Antohi-Talle, O

    1987-01-01

    Molecular studies on viral oncogenes and their products have led to the discovery of physiological proto-oncogenes, involved in the control of cell proliferation and gene activation. Other genetic and molecular investigations, initiated in Drosophila melanogaster and continued in different multicellular eukaryotes, have made evident the homoeotic genes, which are directly correlated with cell specialization, in the complex processes of differentiation and morphogenesis. Both gene classes are conserved to a high extent during evolution. They are involved in the eukaryotic mechanisms of differentiation control and proto-oncogenes, in particular, are related to malignant transformation. Some available data suggest a certain extent of relatedness between the gene products of both gene classes. A differentiation trigger model, including retroviral transposition, homoeotic genes and proto-oncogenes is discussed.

  17. Prediction of the Ebola virus infection related human genes using protein-protein interaction network.

    PubMed

    Cao, HuanHuan; Zhang, YuHang; Zhao, Jia; Zhu, Liucun; Wang, Yi; Li, JiaRui; Feng, Yuanming; Zhang, Ning

    2017-03-10

    Ebola hemorrhagic fever (EHF) is caused by Ebola virus (EBOV). It is reported that human could be infected by EBOV with a high fatality rate. However, association factors between EBOV and host still tend to be ambiguous. According to the "guilt by association" (GBA) principle, proteins interacting with each other are very likely to function similarly or the same. Based on this assumption, we tried to obtain EBOV infection-related human genes in a protein-protein interaction network using Dijkstra algorithm. We hope it could contribute to the discovery of novel effective treatments. Finally, 15 genes were selected as potential EBOV infection-related human genes.

  18. Differences in driver genes between smoking-related and non-smoking-related lung cancer in the Chinese population.

    PubMed

    Gou, Lan-Ying; Niu, Fei-Yu; Wu, Yi-Long; Zhong, Wen-Zhao

    2015-09-01

    Recently, non-smoking-related lung cancer was classified as an independent disease entity because it is different from tobacco-associated lung cancer. Non-smoking-related lung cancer occurs more often in women than men, and the predominant histological type is adenocarcinoma (ADC) rather than squamous cell carcinoma. Most of the driver gene alterations that have been identified in ADC in never-smokers include epidermal growth factor receptor mutations, KRAS mutations, echinoderm microtubule-associated protein like 4/anaplastic lymphoma kinase fusion, and ROS1 fusion, among others. Meanwhile, significant progress has been made in the treatment of ADC. However, in comparison with ADC, no such available molecular targets exist for smoking-associated lung cancer, for which treatment strategies are limited. Next-generation sequencing has been widely applied to the discovery of more genetic profiles of lung cancers. This review summarizes the differences between smoking-related and non-smoking-related lung cancer as follows: different somatic mutation burdens, C:G→A:T transversions, common and novel driver genes, and treatment strategies. Overall, smoking-related lung cancer is more complicated than non-smoking-related lung cancer. Furthermore, we review the prevalence of driver genes in smoking-associated and non-smoking-associated lung cancers in the Chinese population.

  19. Increased expression of neutrophil-related genes in patients with early sepsis-induced ARDS.

    PubMed

    Kangelaris, Kirsten Neudoerffer; Prakash, Arun; Liu, Kathleen D; Aouizerat, Bradley; Woodruff, Prescott G; Erle, David J; Rogers, Angela; Seeley, Eric J; Chu, Jeffrey; Liu, Tom; Osterberg-Deiss, Thomas; Zhuo, Hanjing; Matthay, Michael A; Calfee, Carolyn S

    2015-06-01

    The early sequence of events leading to the development of the acute respiratory distress syndrome (ARDS) in patients with sepsis remains inadequately understood. The purpose of this study was to identify changes in gene expression early in the course of illness, when mechanisms of injury may provide the most relevant treatment and prognostic targets. We collected whole blood RNA in critically ill patients admitted from the Emergency Department to the intensive care unit within 24 h of admission at a tertiary care center. Whole genome expression was compared in patients with sepsis and ARDS to patients with sepsis alone. We selected genes with >1 log2 fold change and false discovery rate <0.25, determined their significance in the literature, and performed pathway analysis. Several genes were upregulated in 29 patients with sepsis with ARDS compared with 28 patients with sepsis alone. The most differentially expressed genes included key mediators of the initial neutrophil response to infection: olfactomedin 4, lipocalin 2, CD24, and bactericidal/permeability-increasing protein. These gene expression differences withstood adjustment for age, sex, study batch, white blood cell count, and presence of pneumonia or aspiration. Pathway analysis demonstrated overrepresentation of genes involved in known respiratory and infection pathways. These data indicate that several neutrophil-related pathways may be involved in the early pathogenesis of sepsis-related ARDS. In addition, identifiable gene expression differences occurring early in the course of sepsis-related ARDS may further elucidate understanding of the neutrophil-related mechanisms in progression to ARDS.

  20. Sexual dimorphism in the expression of mitochondria-related genes in rat heart at different ages.

    PubMed

    Vijay, Vikrant; Han, Tao; Moland, Carrie L; Kwekel, Joshua C; Fuscoe, James C; Desai, Varsha G

    2015-01-01

    Cardiovascular disease (CVD) is the leading cause of mortality worldwide. Moreover, sex and age are considered major risk factors in the development of CVDs. Mitochondria are vital for normal cardiac function, and regulation of mitochondrial structure and function may impact susceptibility to CVD. To identify potential role of mitochondria in sex-related differences in susceptibility to CVD, we analyzed the basal expression levels of mitochondria-related genes in the hearts of male and female rats. Whole genome expression profiling was performed in the hearts of young (8-week), adult (21-week), and old (78-week) male and female Fischer 344 rats and the expression of 670 unique genes related to various mitochondrial functions was analyzed. A significant (p<0.05) sexual dimorphism in expression levels of 46, 114, and 41 genes was observed in young, adult and old rats, respectively. Gene Ontology analysis revealed the influence of sex on various biological pathways related to cardiac energy metabolism at different ages. The expression of genes involved in fatty acid metabolism was significantly different between the sexes in young and adult rat hearts. Adult male rats also showed higher expression of genes associated with the pyruvate dehydrogenase complex compared to females. In young and adult hearts, sexual dimorphism was not noted in genes encoding oxidative phosphorylation. In old rats, however, a majority of genes involved in oxidative phosphorylation had higher expression in females compared to males. Such basal differences between the sexes in cardiac expression of genes associated with energy metabolism may indicate a likely involvement of mitochondria in susceptibility to CVDs. In addition, female rats showed lower expression levels of apoptotic genes in hearts compared to males at all ages, which may have implications for better preservation of cardiac mass in females than in males.

  1. Sexual Dimorphism in the Expression of Mitochondria-Related Genes in Rat Heart at Different Ages

    PubMed Central

    Vijay, Vikrant; Han, Tao; Moland, Carrie L.; Kwekel, Joshua C.; Fuscoe, James C.; Desai, Varsha G.

    2015-01-01

    Cardiovascular disease (CVD) is the leading cause of mortality worldwide. Moreover, sex and age are considered major risk factors in the development of CVDs. Mitochondria are vital for normal cardiac function, and regulation of mitochondrial structure and function may impact susceptibility to CVD. To identify potential role of mitochondria in sex-related differences in susceptibility to CVD, we analyzed the basal expression levels of mitochondria-related genes in the hearts of male and female rats. Whole genome expression profiling was performed in the hearts of young (8-week), adult (21-week), and old (78-week) male and female Fischer 344 rats and the expression of 670 unique genes related to various mitochondrial functions was analyzed. A significant (p<0.05) sexual dimorphism in expression levels of 46, 114, and 41 genes was observed in young, adult and old rats, respectively. Gene Ontology analysis revealed the influence of sex on various biological pathways related to cardiac energy metabolism at different ages. The expression of genes involved in fatty acid metabolism was significantly different between the sexes in young and adult rat hearts. Adult male rats also showed higher expression of genes associated with the pyruvate dehydrogenase complex compared to females. In young and adult hearts, sexual dimorphism was not noted in genes encoding oxidative phosphorylation. In old rats, however, a majority of genes involved in oxidative phosphorylation had higher expression in females compared to males. Such basal differences between the sexes in cardiac expression of genes associated with energy metabolism may indicate a likely involvement of mitochondria in susceptibility to CVDs. In addition, female rats showed lower expression levels of apoptotic genes in hearts compared to males at all ages, which may have implications for better preservation of cardiac mass in females than in males. PMID:25615628

  2. Identification of developmental competence-related genes in mature porcine oocytes.

    PubMed

    Yuan, Ye; Ida, Jennifer M; Paczkowski, Melissa; Krisher, Rebecca L

    2011-08-01

    Oocyte competence is a key factor limiting female fertility, yet the underlying molecular mechanisms that contribute to oocyte competence remain unclear. The objective of this study was to elucidate specific genes whose function contributes to oocyte competence. We observed that 6 of 20 target genes examined were differentially expressed between adult (more competent) and prepubertal (less competent) porcine in vitro matured (IVM) oocytes. These genes were the cholesterol synthesis-related gene HMG-CoA reductase (HMGCR), fatty acid oxidation genes acyl-CoA synthetase long-chain family member 3 (ACSL3) and long-chain acyl-CoA dehydrogenase (ACADL), glycolytic genes fructose 1,6 bisphosphate aldolase (ALDOA) and lactate dehydrogenase C (LDHC), and tumor necrosis factor-α (TNF). These 6 genes, as well as 3 other genes [porcine endogenous retrovirus (PERV), transcribed loci 10 (TL10), serine/arginine-rich splicing factor 1 (SRSF1)], were further analyzed by comparing transcript abundance in IVM and in vivo matured (VVM) prepubertal and adult porcine oocytes. Among these 9 target genes, 5 were differentially expressed between IVM and VVM prepubertal oocytes, while 8 genes were differentially expressed between IVM and VVM adult oocytes. No genes were differentially expressed between VVM prepubertal and adult oocytes. A functional study of TNF demonstrated that depletion of endogenous TNF decreased oocyte competence and TNFAIP6 expression in cumulus cells, while TNF in IVM medium regulated TNFAIP6 expression in cumulus cells. Differential expression of the genes identified in this study suggests that these genes may be functionally relevant to oocyte competence.

  3. Visible light-driven H(2) production by hydrogenases attached to dye-sensitized TiO(2) nanoparticles.

    PubMed

    Reisner, Erwin; Powell, Daniel J; Cavazza, Christine; Fontecilla-Camps, Juan C; Armstrong, Fraser A

    2009-12-30

    A study of hybrid, enzyme-modified nanoparticles able to produce H(2) using visible light as the energy source has been carried out to establish per-site performance standards for H(2) production catalysts able to operate under ambient conditions. The [NiFeSe]-hydrogenase from Desulfomicrobium baculatum (Db [NiFeSe]-H) is identified as a particularly proficient catalyst. The optimized system consisting of Db [NiFeSe]-H attached to Ru dye-sensitized TiO(2), with triethanolamine as a sacrificial electron donor, produces H(2) at a turnover frequency of approximately 50 (mol H(2)) s(-1) (mol total hydrogenase)(-1) at pH 7 and 25 degrees C, even under the typical solar irradiation of a northern European sky. The system shows high electrocatalytic stability not only under anaerobic conditions but also after prolonged exposure to air, thus making it sufficiently robust for benchtop applications.

  4. O₂migration rates in [NiFe] hydrogenases. A joint approach combining free-energy calculations and kinetic modeling.

    PubMed

    Topin, Jérémie; Diharce, Julien; Fiorucci, Sébastien; Antonczak, Serge; Golebiowski, Jérôme

    2014-01-23

    Hydrogenases are promising candidates for the catalytic production of green energy by means of biological ways. The major impediment to such a production is rooted in their inhibition under aerobic conditions. In this work, we model dioxygen migration rates in mutants of a hydrogenase of Desulfovibrio fructusovorans. The approach relies on the calculation of the whole potential of mean force for O2 migration within the wild-type as well as in V74M, V74F, and V74Q mutant channels. The three free-energy barriers along the entire migration pathway are converted into chemical rates through modeling based on Transition State Theory. The use of such a model recovers the trend of O2 migration rates among the series.

  5. miRTex: A Text Mining System for miRNA-Gene Relation Extraction

    PubMed Central

    Li, Gang; Ross, Karen E.; Arighi, Cecilia N.; Peng, Yifan; Wu, Cathy H.; Vijay-Shanker, K.

    2015-01-01

    MicroRNAs (miRNAs) regulate a wide range of cellular and developmental processes through gene expression suppression or mRNA degradation. Experimentally validated miRNA gene targets are often reported in the literature. In this paper, we describe miRTex, a text mining system that extracts miRNA-target relations, as well as miRNA-gene and gene-miRNA regulation relations. The system achieves good precision and recall when evaluated on a literature corpus of 150 abstracts with F-scores close to 0.90 on the three different types of relations. We conducted full-scale text mining using miRTex to process all the Medline abstracts and all the full-length articles in the PubMed Central Open Access Subset. The results for all the Medline abstracts are stored in a database for interactive query and file download via the website at http://proteininformationresource.org/mirtex. Using miRTex, we identified genes potentially regulated by miRNAs in Triple Negative Breast Cancer, as well as miRNA-gene relations that, in conjunction with kinase-substrate relations, regulate the response to abiotic stress in Arabidopsis thaliana. These two use cases demonstrate the usefulness of miRTex text mining in the analysis of miRNA-regulated biological processes. PMID:26407127

  6. miRTex: A Text Mining System for miRNA-Gene Relation Extraction.

    PubMed

    Li, Gang; Ross, Karen E; Arighi, Cecilia N; Peng, Yifan; Wu, Cathy H; Vijay-Shanker, K

    2015-01-01

    MicroRNAs (miRNAs) regulate a wide range of cellular and developmental processes through gene expression suppression or mRNA degradation. Experimentally validated miRNA gene targets are often reported in the literature. In this paper, we describe miRTex, a text mining system that extracts miRNA-target relations, as well as miRNA-gene and gene-miRNA regulation relations. The system achieves good precision and recall when evaluated on a literature corpus of 150 abstracts with F-scores close to 0.90 on the three different types of relations. We conducted full-scale text mining using miRTex to process all the Medline abstracts and all the full-length articles in the PubMed Central Open Access Subset. The results for all the Medline abstracts are stored in a database for interactive query and file download via the website at http://proteininformationresource.org/mirtex. Using miRTex, we identified genes potentially regulated by miRNAs in Triple Negative Breast Cancer, as well as miRNA-gene relations that, in conjunction with kinase-substrate relations, regulate the response to abiotic stress in Arabidopsis thaliana. These two use cases demonstrate the usefulness of miRTex text mining in the analysis of miRNA-regulated biological processes.

  7. Recognition- and defense-related gene expression at 3 resynthesis stages in lichen symbionts.

    PubMed

    Athukorala, Sarangi N P; Piercey-Normore, Michele D

    2015-01-01

    Recognition and defense responses are early events in plant-pathogen interactions and between lichen symbionts. The effect of elicitors on responses between lichen symbionts is not well understood. The objective of this study was to compare the difference in recognition- and defense-related gene expression as a result of culture extracts (containing secreted water-soluble elicitors) from compatible and incompatible interactions at each of 3 resynthesis stages in the symbionts of Cladonia rangiferina. This study investigated gene expression by quantitative PCR in cultures of C. rangiferina and its algal partner, Asterochloris glomerata/irregularis, after incubation with liquid extracts from cultures of compatible and incompatible interactions at 3 early resynthesis stages. Recognition-related genes were significantly upregulated only after physical contact, demonstrating symbiont recognition in later resynthesis stages than expected. One of 3 defense-related genes, chit, showed significant downregulation in early resynthesis stages and upregulation in the third resynthesis stage, demonstrating a need for the absence of chitinase early in thallus formation and a need for its presence in later stages as an algal defense reaction. This study revealed that recognition- and defense-related genes are triggered by components in culture extracts at 3 stages of resynthesis, and some defense-related genes may be induced throughout thallus growth. The parasitic nature of the interaction shows parallels between lichen symbionts and plant pathogenic systems.

  8. Relationship between DNA mismatch repair genes expression, Ku-genes expression and ploidy-related parameters in the progression of pigmented lesions of the skin.

    PubMed

    Korabiowska, Monika; Tscherny, Michael; Stachura, Jerzy; Ruschenburg, Ilka; Cordon-Cardo, Carlos; Brinck, Ulrich

    2002-01-01

    Defects of DNA repair systems in cutaneous tumours are related to DNA mismatch repair genes (MLH1, MSH2, PMS1, PMS2) and Ku70/80 genes involved in double- strand repair. In this study we investigated the statistical relationship between these systems and DNA-ploidy-related parameters in 19 naevus cell naevi, 23 lentigos maligna, 76 primary melanomas and 31 melanoma metastases, applying the correlation coefficient according to Spearman. In naevi significant correlations were found between Ku70/80 gene expression and some ploidy-related parameters. In lentigos, additionally, some significant correlations between the expression of DNA mismatch repair genes were found. Similar results were demonstrated for primary melanomas. In metastases no one significant correlation between DNA mismatch repair genes and Ku-genes was present. We postulate that DNA mismatch repair genes and Ku70/80 genes are functionally independent and that some of them are able to influence ploidy-related parameters.

  9. Expression of immune-related genes of common carp during cyprinid herpesvirus 3 infection.

    PubMed

    Sunarto, Agus; McColl, Kenneth A

    2015-03-09

    Fish herpesviruses and their hosts may have coevolved for 400 to 450 million yr. During this coexistence, the hosts have equipped themselves with an elaborate immune system to defend themselves from invading viruses, whereas the viruses have developed strategies to evade host immunity, including the expression of cytokine genes that have been captured from the host. Taking advantage of our experimental model for cyprinid herpesvirus 3 (CyHV-3) persistence in carp, we studied the gene expression of host and virus immune-related genes in each stage of infection: acute, persistent and reactivation phases. IFNγ-1, IFNγ-2, IL-12 and IL-10 host genes, and the CyHV-3 vIL-10 gene (khvIL-10) were highly significantly up-regulated in different phases of CyHV-3 infection. Similarly, host IL-1β was up-regulated in the acute phase of CyHV-3 infection. There was no significant difference in the expression of host TNFα-1 and MHC-II genes during all phases of CyHV-3 infection. Based on the expression profile of carp immune-related genes in each stage of CyHV-3 infection, we propose a possible interaction between carp IL-12, carp IL-10 and khvIL-10 during the course of viral infection. To our knowledge, this is the first report on the expression of cytokine genes during all phases (acute, persistent and reactivation) of CyHV-3 infection.

  10. Age-related changes in the expression of schizophrenia susceptibility genes in the human prefrontal cortex.

    PubMed

    Colantuoni, Carlo; Hyde, Thomas M; Mitkus, Shruti; Joseph, Andrew; Sartorius, Leah; Aguirre, Claudia; Creswell, Johanna; Johnson, Elizabeth; Deep-Soboslay, Amy; Herman, Mary M; Lipska, Barbara K; Weinberger, Daniel R; Kleinman, Joel E

    2008-09-01

    The molecular basis of complex neuropsychiatric disorders most likely involves many genes. In recent years, specific genetic variations influencing risk for schizophrenia and other neuropsychiatric disorders have been reported. We have used custom DNA microarrays and qPCR to investigate the expression of putative schizophrenia susceptibility genes and related genes of interest in the normal human brain. Expression of 31 genes was measured in Brodmann's area 10 (BA10) in the prefrontal cortex of 72 postmortem brain samples spanning half a century of human aging (18-67 years), each without history of neuropsychiatric illness, neurological disease, or drug abuse. Examination of expression across age allowed the identification of genes whose expression patterns correlate with age, as well as genes that share common expression patterns and that possibly participate in common cellular mechanisms related to the emergence of schizophrenia in early adult life. The expression of GRM3 and RGS4 decreased across the entire age range surveyed, while that of PRODH and DARPP-32 was shown to increase with age. NRG1, ERBB3, and NGFR show expression changes during the years of greatest risk for the development of schizophrenia. Expression of FEZ1, GAD1, and RGS4 showed especially high correlation with one another, in addition to the strongest mean levels of absolute correlation with all other genes studied here. All microarray data are available at NCBI's Gene Expression Omnibus: GEO Series accession number GSE11546 (http://www.ncbi.nlm.nih.gov/geo) [corrected

  11. Glycosylation-related genes in NS0 cells are insensitive to moderately elevated ammonium concentrations.

    PubMed

    Brodsky, Arthur Nathan; Caldwell, Mary; Bae, Sooneon; Harcum, Sarah W

    2014-10-10

    NS0 and Chinese hamster ovary (CHO) cell lines are used to produce recombinant proteins for human therapeutics; however, ammonium accumulation can negatively impact cell growth, recombinant protein production, and protein glycosylation. To improve product quality and decrease costs, the relationship between ammonium and protein glycosylation needs to be elucidated. While ammonium has been shown to adversely affect glycosylation-related gene expression in CHO cells, NS0 studies have not been performed. Therefore, this study sought to determine if glycosylation in NS0 cells were ammonium-sensitive at the gene expression level. Using a DNA microarray that contained mouse glycosylation-related and housekeeping genes, these genes were analyzed in response to various culture conditions - elevated ammonium, elevated salt, and elevated ammonium with proline. Surprisingly, no significant differences in gene expression levels were observed between the control and these conditions. Further, the elevated ammonium cultures were analyzed using real-time quantitative reverse transcriptase PCR (qRT-PCR) for key glycosylation genes, and the qRT-PCR results corroborated the DNA microarray results, demonstrating that NS0 cells are ammonium-insensitive at the gene expression level. Since NS0 are known to have elevated nucleotide sugar pools under ammonium stress, and none of the genes directly responsible for these metabolic pools were changed, consequently cellular control at the translational or substrate-level must be responsible for the universally observed decreased glycosylation quality under elevated ammonium.

  12. Identification of Genes Related to Paulownia Witches’ Broom by AFLP and MSAP

    PubMed Central

    Cao, Xibing; Fan, Guoqiang; Deng, Minjie; Zhao, Zhenli; Dong, Yanpeng

    2014-01-01

    DNA methylation is believed to play important roles in regulating gene expression in plant growth and development. Paulownia witches’ broom (PaWB) infection has been reported to be related to gene expression changes in paulownia plantlets. To determine whether DNA methylation is associated with gene expression changes in response to phytoplasma, we investigated variations in genomic DNA sequence and methylation in PaWB plantlets treated with methyl methane sulfonate (MMS) using amplified fragment length polymorphism (AFLP) and methylation-sensitive amplification polymorphism (MSAP) techniques, respectively. The results indicated that PaWB seedings recovered a normal morphology after treatment with more than 15 mg·L−1 MMS. PaWB infection did not cause changes of the paulownia DNA sequence at the AFLP level; However, DNA methylation levels and patterns were altered. Quantitative real-time PCR (qRT-PCR) showed that three of the methylated genes were up-regulated and three were down-regulated in the MMS-treated PaWB plantlets that had regained healthy morphology. These six genes might be involved in transcriptional regulation, plant defense, signal transduction and energy. The possible roles of these genes in PaWB are discussed. The results showed that changes of DNA methylation altered gene expression levels, and that MSAP might help identify genes related to PaWB. PMID:25196603

  13. NHR-23 dependent collagen and hedgehog-related genes required for molting

    SciTech Connect

    Kouns, Nathaniel A.; Nakielna, Johana; Behensky, Frantisek; Krause, Michael W.; Kostrouch, Zdenek; Kostrouchova, Marta

    2011-10-07

    Highlights: {yields} NHR-23 is a critical regulator of nematode development and molting. {yields} The manuscript characterizes the loss-of-function phenotype of an nhr-23 mutant. {yields} Whole genome expression analysis identifies new potential targets of NHR-23. {yields} Hedgehog-related genes are identified as NHR-23 dependent genes. {yields} New link between sterol mediated signaling and regulation by NHR-23 is found. -- Abstract: NHR-23, a conserved member of the nuclear receptor family of transcription factors, is required for normal development in Caenorhabditis elegans where it plays a critical role in growth and molting. In a search for NHR-23 dependent genes, we performed whole genome comparative expression microarrays on both control and nhr-23 inhibited synchronized larvae. Genes that decreased in response to nhr-23 RNAi included several collagen genes. Unexpectedly, several hedgehog-related genes were also down-regulated after nhr-23 RNAi. A homozygous nhr-23 deletion allele was used to confirm the RNAi knockdown phenotypes and the changes in gene expression. Our results indicate that NHR-23 is a critical co-regulator of functionally linked genes involved in growth and molting and reveal evolutionary parallels among the ecdysozoa.

  14. Massive Expansion of Ubiquitination-Related Gene Families within the Chlamydiae

    PubMed Central

    Domman, Daryl; Collingro, Astrid; Lagkouvardos, Ilias; Gehre, Lena; Weinmaier, Thomas; Rattei, Thomas; Subtil, Agathe; Horn, Matthias

    2014-01-01

    Gene loss, gain, and transfer play an important role in shaping the genomes of all organisms; however, the interplay of these processes in isolated populations, such as in obligate intracellular bacteria, is less understood. Despite a general trend towards genome reduction in these microbes, our phylogenomic analysis of the phylum Chlamydiae revealed that within the family Parachlamydiaceae, gene family expansions have had pronounced effects on gene content. We discovered that the largest gene families within the phylum are the result of rapid gene birth-and-death evolution. These large gene families are comprised of members harboring eukaryotic-like ubiquitination-related domains, such as F-box and BTB-box domains, marking the largest reservoir of these proteins found among bacteria. A heterologous type III secretion system assay suggests that these proteins function as effectors manipulating the host cell. The large disparity in copy number of members in these families between closely related organisms suggests that nonadaptive processes might contribute to the evolution of these gene families. Gene birth-and-death evolution in concert with genomic drift might represent a previously undescribed mechanism by which isolated bacterial populations diversify. PMID:25069652

  15. Identification of genes related to Paulownia witches' broom by AFLP and MSAP.

    PubMed

    Cao, Xibing; Fan, Guoqiang; Deng, Minjie; Zhao, Zhenli; Dong, Yanpeng

    2014-08-21

    DNA methylation is believed to play important roles in regulating gene expression in plant growth and development. Paulownia witches' broom (PaWB) infection has been reported to be related to gene expression changes in paulownia plantlets. To determine whether DNA methylation is associated with gene expression changes in response to phytoplasma, we investigated variations in genomic DNA sequence and methylation in PaWB plantlets treated with methyl methane sulfonate (MMS) using amplified fragment length polymorphism (AFLP) and methylation-sensitive amplification polymorphism (MSAP) techniques, respectively. The results indicated that PaWB seedings recovered a normal morphology after treatment with more than 15 mg·L(-1) MMS. PaWB infection did not cause changes of the paulownia DNA sequence at the AFLP level; However, DNA methylation levels and patterns were altered. Quantitative real-time PCR (qRT-PCR) showed that three of the methylated genes were up-regulated and three were down-regulated in the MMS-treated PaWB plantlets that had regained healthy morphology. These six genes might be involved in transcriptional regulation, plant defense, signal transduction and energy. The possible roles of these genes in PaWB are discussed. The results showed that changes of DNA methylation altered gene expression levels, and that MSAP might help identify genes related to PaWB.

  16. Microevolution of Virulence-Related Genes in Helicobacter pylori Familial Infection

    PubMed Central

    Furuta, Yoshikazu; Konno, Mutsuko; Osaki, Takako; Yonezawa, Hideo; Ishige, Taichiro; Imai, Misaki; Shiwa, Yuh; Shibata-Hatta, Mari; Kanesaki, Yu; Yoshikawa, Hirofumi; Kamiya, Shigeru; Kobayashi, Ichizo

    2015-01-01

    Helicobacter pylori, a bacterial pathogen that can infect human stomach causing gastritis, ulcers and cancer, is known to have a high degree of genome/epigenome diversity as the result of mutation and recombination. The bacteria often infect in childhood and persist for the life of the host. One of the reasons of the rapid evolution of H. pylori is that it changes its genome drastically for adaptation to a new host. To investigate microevolution and adaptation of the H. pylori genome, we undertook whole genome sequencing of the same or very similar sequence type in multi-locus sequence typing (MLST) with seven genes in members of the same family consisting of parents and children in Japan. Detection of nucleotide substitutions revealed likely transmission pathways involving children. Nonsynonymous (amino acid changing) mutations were found in virulence-related genes (cag genes, vacA, hcpDX, tnfα, ggt, htrA and the collagenase gene), outer membrane protein (OMP) genes and other cell surface-related protein genes, signal transduction genes and restriction-modification genes. We reconstructed various pathways by which H. pylori can adapt to a new human host, and our results raised the possibility that the mutational changes in virulence-related genes have a role in adaptation to a child host. Changes in restriction-modification genes might remodel the methylome and transcriptome to help adaptation. This study has provided insights into H. pylori transmission and virulence and has implications for basic research as well as clinical practice. PMID:25978460

  17. Bilateral ovarian carcinomas differ in the expression of metastasis-related genes

    PubMed Central

    Smebye, Marianne Lislerud; Haugom, Lisbeth; Davidson, Ben; Trope, Claes Göran; Heim, Sverre; Skotheim, Rolf Inge; Micci, Francesca

    2017-01-01

    The mechanisms behind bilaterality of ovarian carcinomas are not fully understood, as the two tumors could possibly represent two primary tumors, a primary tumor and a metastasis, or two metastases. The gene expression profiles from bilateral high-grade serous carcinomas (HGSCs) and clear cell carcinomas (CCCs) of the ovary were compared to study the association between the tumors of the two sides. A separate analysis of genes from chromosome 19 was also performed, since this chromosome is frequently rearranged in ovarian carcinomas. Tumors from four patients were included (three pairs of HGSC and one pair of CCC). The gene expression was analyzed at the exon level, and bilateral tumors were compared to identify within-pair differences. Gene expression data were also compared with genomic information on the same tumors. Similarities in gene expression were observed between the tumors within each pair, as expected if the two tumors were clonally related. However, certain genes exhibited differences in expression between the two sides, indicating metastasis involvement. Among the most differently expressed genes, one gene was common to all four pairs: Immunoglobulin J. In all HGSC pairs, serpin peptidase inhibitor, clade B (ovalbumin), member 2, serpin family E member 1 and phospholipase A2, group IIA (platelets, synovial fluid) were also among the differentially expressed genes. The specific analysis of chromosome 19 highlighted expression differences in the zinc finger protein 36 gene. These results indicate that bilateral ovarian tumors represent different stages during progression of a single clonal process. Several of the genes observed to be differently expressed are known to be metastasis-related, and are likely to be also involved in spreading from one side to the other in the bilateral cancer cases examined. PMID:28123539

  18. Force-field development and molecular dynamics simulations of ferrocene-peptide conjugates as a scaffold for hydrogenase mimics

    SciTech Connect

    De Hatten, Xavier; Cournia, Zoe; Smith, Jeremy C; Huc, I; Metzler-Nolte, Nils

    2007-08-01

    The increasing importance of hydrogenase enzymes in the new energy research field has led us to examine the structure and dynamics of potential hydrogenase mimics, based on a ferrocene-peptide scaffold, using molecular dynamics (MD) simulations. To enable this MD study, a molecular mechanics force field for ferrocene-bearing peptides was developed and implemented in the CHARMM simulation package, thus extending the usefulness of the package into peptide-bioorganometallic chemistry. Using the automated frequency-matching method (AFMM), optimized intramolecular force-field parameters were generated through quantum chemical reference normal modes. The partial charges for ferrocene were derived by fitting point charges to quantum-chemically computed electrostatic potentials. The force field was tested against experimental X-ray crystal structures of dipeptide derivatives of ferrocene-1,1'-dicarboxylic acid. The calculations reproduce accurately the molecular geometries, including the characteristic C{sub 2}-symmetrical intramolecular hydrogen-bonding pattern, that were stable over 0.1 {micro}s MD simulations. The crystal packing properties of ferrocene-1-(D)alanine-(D)proline-1'-(D)alanine-(D)proline were also accurately reproduced. The lattice parameters of this crystal were conserved during a 0.1 {micro}s MD simulation and match the experimental values almost exactly. Simulations of the peptides in dichloromethane are also in good agreement with experimental NMR and circular dichroism (CD) data in solution. The developed force field was used to perform MD simulations on novel, as yet unsynthesized peptide fragments that surround the active site of [Ni-Fe] hydrogenase. The results of this simulation lead us to propose an improved design for synthetic peptide-based hydrogenase models. The presented MD simulation results of metallocenes thereby provide a convincing validation of our proposal to use ferrocene-peptides as minimal enzyme mimics.

  19. Force-field development and molecular dynamics simulations of ferrocene-peptide conjugates as a scaffold for hydrogenase mimics.

    SciTech Connect

    De Hatten, Xavier; Cournia, Zoe; Smith, Jeremy C; Metzler-Nolte, Nils

    2007-08-01

    The increasing importance of hydrogenase enzymes in the new energy research field has led us to examine the structure and dynamics of potential hydrogenase mimics, based on a ferrocene-peptide scaffold, using molecular dynamics (MD) simulations. To enable this MD study, a molecular mechanics force field for ferrocene-bearing peptides was developed and implemented in the CHARMM simulation package, thus extending the usefulness of the package into peptide-bioorganometallic chemistry. Using the automated frequency-matching method (AFMM), optimized intramolecular force-field parameters were generated through quantum chemical reference normal modes. The partial charges for ferrocene were derived by fitting point charges to quantum-chemically computed electrostatic potentials. The force field was tested against experimental X-ray crystal structures of dipeptide derivatives of ferrocene-1,1{prime}-dicarboxylic acid. The calculations reproduce accurately the molecular geometries, including the characteristic C2-symmetrical intramolecular hydrogen-bonding pattern, that were stable over 0.1{micro}s MD simulations. The crystal packing properties of ferrocene-1-(D)alanine-(D)proline{prime}-1-(D)alanine-(D)proline were also accurately reproduced. The lattice parameters of this crystal were conserved during a 0.1 s MD simulation and match the experimental values almost exactly. Simulations of the peptides in dichloromethane are also in good agreement with experimental NMR and circular dichroism (CD) data in solution. The developed force field was used to perform MD simulations on novel, as yet unsynthesized peptide fragments that surround the active site of [Ni-Fe] hydrogenase. The results of this simulation lead us to propose an improved design for synthetic peptide-based hydrogenase models. The presented MD simulation results of metallocenes thereby provide a convincing validation of our proposal to use ferrocene-peptides as minimal enzyme mimics.

  20. Salmonella Typhimurium Strain ATCC14028 Requires H2-Hydrogenases for Growth in the Gut, but Not at Systemic Sites

    PubMed Central

    Maier, Lisa; Barthel, Manja; Stecher, Bärbel; Maier, Robert J.; Gunn, John S.; Hardt, Wolf-Dietrich

    2014-01-01

    Salmonella enterica is a common cause of diarrhea. For eliciting disease, the pathogen has to colonize the gut lumen, a site colonized by the microbiota. This process/initial stage is incompletely understood. Recent work established that one particular strain, Salmonella enterica subspecies 1 serovar Typhimurium strain SL1344, employs the hyb H2-hydrogenase for consuming microbiota-derived H2 to support gut luminal pathogen growth: Protons from the H2-splitting reaction contribute to the proton gradient across the outer bacterial membrane which can be harvested for ATP production or for import of carbon sources. However, it remained unclear, if other Salmonella strains would use the same strategy. In particular, earlier work had left unanswered if strain ATCC14028 might use H2 for growth at systemic sites. To clarify the role of the hydrogenases, it seems important to establish if H2 is used at systemic sites or in the gut and if Salmonella strains may differ with respect to the host sites where they require H2 in vivo. In order to resolve this, we constructed a strain lacking all three H2-hydrogenases of ATCC14028 (14028hyd3) and performed competitive infection experiments. Upon intragastric inoculation, 14028hyd3 was present at 100-fold lower numbers than 14028WT in the stool and at systemic sites. In contrast, i.v. inoculation led to equivalent systemic loads of 14028hyd3 and the wild type strain. However, the pathogen population spreading to the gut lumen featured again up to 100-fold attenuation of 14028hyd3. Therefore, ATCC14028 requires H2-hydrogenases for growth in the gut lumen and not at systemic sites. This extends previous work on ATCC14028 and supports the notion that H2-utilization might be a general feature of S. Typhimurium gut colonization. PMID:25303479

  1. Molecular Evolution of Candidate Genes for Crop-Related Traits in Sunflower (Helianthus annuus L.)

    PubMed Central

    Mandel, Jennifer R.; McAssey, Edward V.; Nambeesan, Savithri; Garcia-Navarro, Elena; Burke, John M.

    2014-01-01

    Evolutionary analyses aimed at detecting the molecular signature of selection during crop domestication and/or improvement can be used to identify genes or genomic regions of likely agronomic importance. Here, we describe the DNA sequence-based characterization of a pool of candidate genes for crop-related traits in sunflower. These genes, which were identified based on homology to genes of known effect in other study systems, were initially sequenced from a panel of improved lines. All genes that exhibited a paucity of sequence diversity, consistent with the possible effects of selection during the evolution of cultivated sunflower, were then sequenced from a panel of wild sunflower accessions an outgroup. These data enabled formal tests for the effects of selection in shaping sequence diversity at these loci. When selection was detected, we further sequenced these genes from a panel of primitive landraces, thereby allowing us to investigate the likely timing of selection (i.e., domestication vs. improvement). We ultimately identified seven genes that exhibited the signature of positive selection during either domestication or improvement. Genetic mapping of a subset of these genes revealed co-localization between candidates for genes involved in the determination of flowering time, seed germination, plant growth/development, and branching and QTL that were previously identified for these traits in cultivated × wild sunflower mapping populations. PMID:24914686

  2. X-linked intellectual disability related genes disrupted by balanced X-autosome translocations.

    PubMed

    Moysés-Oliveira, Mariana; Guilherme, Roberta Santos; Meloni, Vera Ayres; Di Battista, Adriana; de Mello, Claudia Berlim; Bragagnolo, Silvia; Moretti-Ferreira, Danilo; Kosyakova, Nadezda; Liehr, Thomas; Carvalheira, Gianna Maria; Melaragno, Maria Isabel

    2015-12-01

    Detailed molecular characterization of chromosomal rearrangements involving X-chromosome has been a key strategy in identifying X-linked intellectual disability-causing genes. We fine-mapped the breakpoints in four women with balanced X-autosome translocations and variable phenotypes, in order to investigate the corresponding genetic contribution to intellectual disability. We addressed the impact of the gene interruptions in transcription and discussed the consequences of their functional impairment in neurodevelopment. Three patients presented with cognitive impairment, reinforcing the association between the disrupted genes (TSPAN7-MRX58, KIAA2022-MRX98, and IL1RAPL1-MRX21/34) and intellectual disability. While gene expression analysis showed absence of TSPAN7 and KIAA2022 expression in the patients, the unexpected expression of IL1RAPL1 suggested a fusion transcript ZNF611-IL1RAPL1 under the control of the ZNF611 promoter, gene disrupted at the autosomal breakpoint. The X-chromosomal breakpoint definition in the fourth patient, a woman with normal intellectual abilities, revealed disruption of the ZDHHC15 gene (MRX91). The expression assays did not detect ZDHHC15 gene expression in the patient, thus questioning its involvement in intellectual disability. Revealing the disruption of an X-linked intellectual disability-related gene in patients with balanced X-autosome translocation is a useful tool for a better characterization of critical genes in neurodevelopment. © 2015 Wiley Periodicals, Inc.

  3. Predicting Gene Expression Level from Relative Codon Usage Bias: An Application to Escherichia coli Genome

    PubMed Central

    Roymondal, Uttam; Das, Shibsankar; Sahoo, Satyabrata

    2009-01-01

    We present an expression measure of a gene, devised to predict the level of gene expression from relative codon bias (RCB). There are a number of measures currently in use that quantify codon usage in genes. Based on the hypothesis that gene expressivity and codon composition is strongly correlated, RCB has been defined to provide an intuitively meaningful measure of an extent of the codon preference in a gene. We outline a simple approach to assess the strength of RCB (RCBS) in genes as a guide to their likely expression levels and illustrate this with an analysis of Escherichia coli (E. coli) genome. Our efforts to quantitatively predict gene expression levels in E. coli met with a high level of success. Surprisingly, we observe a strong correlation between RCBS and protein length indicating natural selection in favour of the shorter genes to be expressed at higher level. The agreement of our result with high protein abundances, microarray data and radioactive data demonstrates that the genomic expression profile available in our method can be applied in a meaningful way to the study of cell physiology and also for more detailed studies of particular genes of interest. PMID:19131380

  4. An integrative evolution theory of histo-blood group ABO and related genes

    PubMed Central

    Yamamoto, Fumiichiro; Cid, Emili; Yamamoto, Miyako; Saitou, Naruya; Bertranpetit, Jaume; Blancher, Antoine

    2014-01-01

    The ABO system is one of the most important blood group systems in transfusion/transplantation medicine. However, the evolutionary significance of the ABO gene and its polymorphism remained unknown. We took an integrative approach to gain insights into the significance of the evolutionary process of ABO genes, including those related not only phylogenetically but also functionally. We experimentally created a code table correlating amino acid sequence motifs of the ABO gene-encoded glycosyltransferases with GalNAc (A)/galactose (B) specificity, and assigned A/B specificity to individual ABO genes from various species thus going beyond the simple sequence comparison. Together with genome information and phylogenetic analyses, this assignment revealed early appearance of A and B gene sequences in evolution and potentially non-allelic presence of both gene sequences in some animal species. We argue: Evolution may have suppressed the establishment of two independent, functional A and B genes in most vertebrates and promoted A/B conversion through amino acid substitutions and/or recombination; A/B allelism should have existed in common ancestors of primates; and bacterial ABO genes evolved through horizontal and vertical gene transmission into 2 separate groups encoding glycosyltransferases with distinct sugar specificities. PMID:25307962

  5. An integrative evolution theory of histo-blood group ABO and related genes.

    PubMed

    Yamamoto, Fumiichiro; Cid, Emili; Yamamoto, Miyako; Saitou, Naruya; Bertranpetit, Jaume; Blancher, Antoine

    2014-10-13

    The ABO system is one of the most important blood group systems in transfusion/transplantation medicine. However, the evolutionary significance of the ABO gene and its polymorphism remained unknown. We took an integrative approach to gain insights into the significance of the evolutionary process of ABO genes, including those related not only phylogenetically but also functionally. We experimentally created a code table correlating amino acid sequence motifs of the ABO gene-encoded glycosyltransferases with GalNAc (A)/galactose (B) specificity, and assigned A/B specificity to individual ABO genes from various species thus going beyond the simple sequence comparison. Together with genome information and phylogenetic analyses, this assignment revealed early appearance of A and B gene sequences in evolution and potentially non-allelic presence of both gene sequences in some animal species. We argue: Evolution may have suppressed the establishment of two independent, functional A and B genes in most vertebrates and promoted A/B conversion through amino acid substitutions and/or recombination; A/B allelism should have existed in common ancestors of primates; and bacterial ABO genes evolved through horizontal and vertical gene transmission into 2 separate groups encoding glycosyltransferases with distinct sugar specificities.

  6. Molecular evolution of candidate genes for crop-related traits in sunflower (Helianthus annuus L.).

    PubMed

    Mandel, Jennifer R; McAssey, Edward V; Nambeesan, Savithri; Garcia-Navarro, Elena; Burke, John M

    2014-01-01

    Evolutionary analyses aimed at detecting the molecular signature of selection during crop domestication and/or improvement can be used to identify genes or genomic regions of likely agronomic importance. Here, we describe the DNA sequence-based characterization of a pool of candidate genes for crop-related traits in sunflower. These genes, which were identified based on homology to genes of known effect in other study systems, were initially sequenced from a panel of improved lines. All genes that exhibited a paucity of sequence diversity, consistent with the possible effects of selection during the evolution of cultivated sunflower, were then sequenced from a panel of wild sunflower accessions an outgroup. These data enabled formal tests for the effects of selection in shaping sequence diversity at these loci. When selection was detected, we further sequenced these genes from a panel of primitive landraces, thereby allowing us to investigate the likely timing of selection (i.e., domestication vs. improvement). We ultimately identified seven genes that exhibited the signature of positive selection during either domestication or improvement. Genetic mapping of a subset of these genes revealed co-localization between candidates for genes involved in the determination of flowering time, seed germination, plant growth/development, and branching and QTL that were previously identified for these traits in cultivated × wild sunflower mapping populations.

  7. Identification of a catalytic iron-hydride at the H-cluster of [FeFe]-hydrogenase

    SciTech Connect

    Mulder, David W.; Guo, Yisong; Ratzloff, Michael W.; King, Paul W.

    2016-12-14

    Hydrogenases couple electrochemical potential to the reversible chemical transformation of H2 and protons, yet the reaction mechanism and composition of intermediates are not fully understood. In this Communication we describe the biophysical properties of a hydride-bound state (Hhyd) of the [FeFe]-hydrogenase from Chlamydomonas reinhardtii. The catalytic H-cluster of [FeFe]-hydrogenase consists of a [4Fe-4S] subcluster ([4Fe-4S]H) linked by a cysteine thiol to an azadithiolate-bridged 2Fe subcluster ([2Fe]H) with CO and CN- ligands. Mossbauer analysis and density functional theory (DFT) calculations show that Hhyd consists of a reduced [4Fe-4S]H+ coupled to a diferrous [2Fe]H with a terminally bound Fe-hydride. The existence of the Fe-hydride in Hhyd was demonstrated by an unusually low Mossbauer isomer shift of the distal Fe of the [2Fe]H subcluster. As a result, a DFT model of Hhyd shows that the Fe-hydride is part of a H-bonding network with the nearby bridging azadithiolate to facilitate fast proton exchange and catalytic turnover.

  8. Identification of a catalytic iron-hydride at the H-cluster of [FeFe]-hydrogenase

    DOE PAGES

    Mulder, David W.; Guo, Yisong; Ratzloff, Michael W.; ...

    2016-12-14

    Hydrogenases couple electrochemical potential to the reversible chemical transformation of H2 and protons, yet the reaction mechanism and composition of intermediates are not fully understood. In this Communication we describe the biophysical properties of a hydride-bound state (Hhyd) of the [FeFe]-hydrogenase from Chlamydomonas reinhardtii. The catalytic H-cluster of [FeFe]-hydrogenase consists of a [4Fe-4S] subcluster ([4Fe-4S]H) linked by a cysteine thiol to an azadithiolate-bridged 2Fe subcluster ([2Fe]H) with CO and CN- ligands. Mossbauer analysis and density functional theory (DFT) calculations show that Hhyd consists of a reduced [4Fe-4S]H+ coupled to a diferrous [2Fe]H with a terminally bound Fe-hydride. The existence ofmore » the Fe-hydride in Hhyd was demonstrated by an unusually low Mossbauer isomer shift of the distal Fe of the [2Fe]H subcluster. As a result, a DFT model of Hhyd shows that the Fe-hydride is part of a H-bonding network with the nearby bridging azadithiolate to facilitate fast proton exchange and catalytic turnover.« less

  9. Photoelectrochemical H2 Evolution with a Hydrogenase Immobilized on a TiO2‐Protected Silicon Electrode

    PubMed Central

    Lee, Chong‐Yong; Park, Hyun S.; Fontecilla‐Camps, Juan C.

    2016-01-01

    Abstract The combination of enzymes with semiconductors enables the photoelectrochemical characterization of electron‐transfer processes at highly active and well‐defined catalytic sites on a light‐harvesting electrode surface. Herein, we report the integration of a hydrogenase on a TiO2‐coated p‐Si photocathode for the photo‐reduction of protons to H2. The immobilized hydrogenase exhibits activity on Si attributable to a bifunctional TiO2 layer, which protects the Si electrode from oxidation and acts as a biocompatible support layer for the productive adsorption of the enzyme. The p‐Si|TiO2|hydrogenase photocathode displays visible‐light driven production of H2 at an energy‐storing, positive electrochemical potential and an essentially quantitative faradaic efficiency. We have thus established a widely applicable platform to wire redox enzymes in an active configuration on a p‐type semiconductor photocathode through the engineering of the enzyme–materials interface. PMID:27570301

  10. Photoelectrochemical H2 Evolution with a Hydrogenase Immobilized on a TiO2‐Protected Silicon Electrode

    PubMed Central

    Lee, Chong‐Yong; Park, Hyun S.; Fontecilla‐Camps, Juan C.

    2016-01-01

    Abstract The combination of enzymes with semiconductors enables the photoelectrochemical characterization of electron‐transfer processes at highly active and well‐defined catalytic sites on a light‐harvesting electrode surface. Herein, we report the integration of a hydrogenase on a TiO2‐coated p‐Si photocathode for the photo‐reduction of protons to H2. The immobilized hydrogenase exhibits activity on Si attributable to a bifunctional TiO2 layer, which protects the Si electrode from oxidation and acts as a biocompatible support layer for the productive adsorption of the enzyme. The p‐Si|TiO2|hydrogenase photocathode displays visible‐light driven production of H2 at an energy‐storing, positive electrochemical potential and an essentially quantitative faradaic efficiency. We have thus established a widely applicable platform to wire redox enzymes in an active configuration on a p‐type semiconductor photocathode through the engineering of the enzyme–materials interface. PMID:27061334

  11. Insertion/deletion-related polymorphisms in the human T cell receptor beta gene complex

    PubMed Central

    1989-01-01

    Insertion/deletion related polymorphisms (IDRP) involving stretches of 15-30 kb within the human TCR-beta gene complex were revealed by pulse- field gel electrophoresis. Two independent IDRP systems were detected by analysis of Sfi I- and Sal I-digested human DNA samples using probes for TCR C and V region gene segments. The allelic nature of these systems was verified in family studies, and mapping data allowed localization of one area of insertion/deletion among the V gene segments and the other near the C region genes. All but one of 50 individuals tested could be typed for the two allelic systems, and gene frequencies for the two allelic forms were 0.37/0.61 and 0.46/0.54, indicating that these polymorphisms are widespread. PMID:2571667

  12. Environment effect on fruit ripening related gene to develop a new post harvest technology

    NASA Astrophysics Data System (ADS)

    Dwivany, Fenny; Esyanti, Rizkita Rahmi; Robertlee, Jekson; Paramaputra, Indra Chandra; Permatadewi, Rinda Kania; Tambun, Dina Hermawaty; Handayani, Resnanti Utami; Pratiwi, Aksarani'Sa; Zaskia, Herafi

    2014-03-01

    Ripening process of fruits is a very complex process, which involves ethylene production, causing alteration on molecular and physiology level. Environmental stress caused by biotic and abiotic stress conditions (such as pathogen, mechanical stress, physical and physiology stress) can stimulate ethylene production. High levels of ethylene in turn can also inhibit growth, cause premature ripening and induce the onset of senescence, which then potentially reduce plant productivity. The ACC Synthase (ACS) and ACC Oxidase (ACO) genes are genes that have role in the ethylene production. By regulating those genes, especially ethylene biosynthesis genes, we might improve the quality of fruit at post harvest condition. Therefore, in this research we studied fruit ripening related genes expression on banana such as MaACS family at different environment condition. The result of study can give contributions in developing of new plants with desired traits or new post harvest technologies.

  13. Accelerated alcoholic fermentation caused by defective gene expression related to glucose derepression in Saccharomyces cerevisiae.

    PubMed

    Watanabe, Daisuke; Hashimoto, Naoya; Mizuno, Megumi; Zhou, Yan; Akao, Takeshi; Shimoi, Hitoshi

    2013-01-01

    Sake yeast strains maintain high fermentation rates, even after the stationary growth phase begins. To determine the molecular mechanisms underlying this advantageous brewing property, we compared the gene expression profiles of sake and laboratory yeast strains of Saccharomyces cerevisiae during the stationary growth phase. DNA microarray analysis revealed that the sake yeast strain examined had defects in expression of the genes related to glucose derepression mediated by transcription factors Adr1p and Cat8p. Furthermore, deletion of the ADR1 and CAT8 genes slightly but statistically significantly improved the fermentation rate of a laboratory yeast strain. We also identified two loss-of-function mutations in the ADR1 gene of existing sake yeast strains. Taken together, these results indicate that the gene expression program associated with glucose derepression for yeast acts as an impediment to effective alcoholic fermentation under glucose-rich fermentative conditions.

  14. Age-related decreased inhibitory vs. excitatory gene expression in the adult autistic brain.

    PubMed

    van de Lagemaat, Louie N; Nijhof, Bonnie; Bosch, Daniëlle G M; Kohansal-Nodehi, Mahdokht; Keerthikumar, Shivakumar; Heimel, J Alexander

    2014-01-01

    Autism spectrum disorders (ASDs) are neurodevelopmental disorders characterized by impaired social interaction and communication, and restricted behavior and interests. A disruption in the balance of excitatory and inhibitory neurotransmission has been hypothesized to underlie these disorders. Here we demonstrate that genes of both pathways are affected by ASD, and that gene expression of inhibitory and excitatory genes is altered in the cerebral cortex of adult but not younger autistic individuals. We have developed a measure for the difference in the level of excitation and inhibition based on gene expression and observe that in this measure inhibition is decreased relative to excitation in adult ASD compared to control. This difference was undetectable in young autistic brains. Given that many psychiatric features of autism are already present at an early age, this suggests that the observed imbalance in gene expression is an aging phenomenon in ASD rather than its underlying cause.

  15. DNMT3B modulates the expression of cancer-related genes and downregulates the expression of the gene VAV3 via methylation.

    PubMed

    Peralta-Arrieta, Irlanda; Hernández-Sotelo, Daniel; Castro-Coronel, Yaneth; Leyva-Vázquez, Marco Antonio; Illades-Aguiar, Berenice

    2017-01-01

    Altered promoter DNA methylation is one of the most important epigenetic abnormalities in human cancer. DNMT3B, de novo methyltransferase, is clearly related to abnormal methylation of tumour suppressor genes, DNA repair genes and its overexpression contributes to oncogenic processes and tumorigenesis in vivo. The purpose of this study was to assess the effect of the overexpression of DNMT3B in HaCaT cells on global gene expression and on the methylation of selected genes to the identification of genes that can be target of DNMT3B. We found that the overexpression of DNMT3B in HaCaT cells, modulate the expression of genes related to cancer, downregulated the expression of 151 genes with CpG islands and downregulated the expression of the VAV3 gene via methylation of its promoter. These results highlight the importance of DNMT3B in gene expression and human cancer.

  16. DNMT3B modulates the expression of cancer-related genes and downregulates the expression of the gene VAV3 via methylation

    PubMed Central

    Peralta-Arrieta, Irlanda; Hernández-Sotelo, Daniel; Castro-Coronel, Yaneth; Leyva-Vázquez, Marco Antonio; Illades-Aguiar, Berenice

    2017-01-01

    Altered promoter DNA methylation is one of the most important epigenetic abnormalities in human cancer. DNMT3B, de novo methyltransferase, is clearly related to abnormal methylation of tumour suppressor genes, DNA repair genes and its overexpression contributes to oncogenic processes and tumorigenesis in vivo. The purpose of this study was to assess the effect of the overexpression of DNMT3B in HaCaT cells on global gene expression and on the methylation of selected genes to the identification of genes that can be target of DNMT3B. We found that the overexpression of DNMT3B in HaCaT cells, modulate the expression of genes related to cancer, downregulated the expression of 151 genes with CpG islands and downregulated the expression of the VAV3 gene via methylation of its promoter. These results highlight the importance of DNMT3B in gene expression and human cancer. PMID:28123849

  17. Evolution of Mhc class II B genes in Darwin's finches and their closest relatives: birth of a new gene.

    PubMed

    Sato, A; Mayer, W E; Tichy, H; Grant, P R; Grant, B R; Klein, J

    2001-12-01

    The 15 extant species of Darwin's finches on the Galápagos and Cocos Islands are the products of an unfinished adaptive radiation from a founder flock of birds related to the South American species Tiaris obscura. Molecular characterization of their major histocompatibility complex ( Mhc) class II B genes has revealed the existence of several related groups of sequences (presumably encoded in distinct loci) from which one (group 5) stands out because of its low divergence over extended time periods. Analysis of group 5 exon 2 and intron 2 sequences has revealed that the encoding locus apparently arose 2-3 million years ago in the Tiaris group of South and Central American Thraupini. The locus shows no evidence of inactivation, but displays a very low degree of polymorphism, both in terms of number of alleles and genetic distances between alleles. Some of the polymorphism, however, appears to be trans-specific. All the observed intergenic differences can be explained by point mutations and most of the exon 2 changes represent non-synonymous substitutions, although the rate of non-synonymous and synonymous substitutions appears to be the same. The origin of the new locus is explained by the birth-and-death model of Mhc evolution with two important extensions. First, the ancestor of the group 5 genes may have arisen without new gene duplication and second, the birth of the new group may have been brought about by a switch from balancing to directional selection. The ancestor of the group 5 genes may have been a classical class II B allele (one of many) which directional selection fixed in the ancestral population and drove into the category of nonclassical genes.

  18. Conservation in Mammals of Genes Associated with Aggression-Related Behavioral Phenotypes in Honey Bees.

    PubMed

    Liu, Hui; Robinson, Gene E; Jakobsson, Eric

    2016-06-01

    The emerging field of sociogenomics explores the relations between social behavior and genome structure and function. An important question is the extent to which associations between social behavior and gene expression are conserved among the Metazoa. Prior experimental work in an invertebrate model of social behavior, the honey bee, revealed distinct brain gene expression patterns in African and European honey bees, and within European honey bees with different behavioral phenotypes. The present work is a computational study of these previous findings in which we analyze, by orthology determination, the extent to which genes that are socially regulated in honey bees are conserved across the Metazoa. We found that the differentially expressed gene sets associated with alarm pheromone response, the difference between old and young bees, and the colony influence on soldier bees, are enriched in widely conserved genes, indicating that these differences have genomic bases shared with many other metazoans. By contrast, the sets of differentially expressed genes associated with the differences between African and European forager and guard bees are depleted in widely conserved genes, indicating that the genomic basis for this social behavior is relatively specific to honey bees. For the alarm pheromone response gene set, we found a particularly high degree of conservation with mammals, even though the alarm pheromone itself is bee-specific. Gene Ontology identification of human orthologs to the strongly conserved honey bee genes associated with the alarm pheromone response shows overrepresentation of protein metabolism, regulation of protein complex formation, and protein folding, perhaps associated with remodeling of critical neural circuits in response to alarm pheromone. We hypothesize that such remodeling may be an adaptation of social animals to process and respond appropriately to the complex patterns of conspecific communication essential for social organization.

  19. Conservation in Mammals of Genes Associated with Aggression-Related Behavioral Phenotypes in Honey Bees

    PubMed Central

    Robinson, Gene E.; Jakobsson, Eric

    2016-01-01

    The emerging field of sociogenomics explores the relations between social behavior and genome structure and function. An important question is the extent to which associations between social behavior and gene expression are conserved among the Metazoa. Prior experimental work in an invertebrate model of social behavior, the honey bee, revealed distinct brain gene expression patterns in African and European honey bees, and within European honey bees with different behavioral phenotypes. The present work is a computational study of these previous findings in which we analyze, by orthology determination, the extent to which genes that are socially regulated in honey bees are conserved across the Metazoa. We found that the differentially expressed gene sets associated with alarm pheromone response, the difference between old and young bees, and the colony influence on soldier bees, are enriched in widely conserved genes, indicating that these differences have genomic bases shared with many other metazoans. By contrast, the sets of differentially expressed genes associated with the differences between African and European forager and guard bees are depleted in widely conserved genes, indicating that the genomic basis for this social behavior is relatively specific to honey bees. For the alarm pheromone response gene set, we found a particularly high degree of conservation with mammals, even though the alarm pheromone itself is bee-specific. Gene Ontology identification of human orthologs to the strongly conserved honey bee genes associated with the alarm pheromone response shows overrepresentation of protein metabolism, regulation of protein complex formation, and protein folding, perhaps associated with remodeling of critical neural circuits in response to alarm pheromone. We hypothesize that such remodeling may be an adaptation of social animals to process and respond appropriately to the complex patterns of conspecific communication essential for social organization

  20. Genotype relative risks: Methods for design and analysis of candidate-gene association studies

    SciTech Connect

    Shaid, D.J.; Sommer, S.S. )

    1993-11-01

    Design and analysis methods are presented for studying the association of a candidate gene with a disease by using parental data in place of nonrelated controls. This alternating design eliminates spurious differences in allele frequencies between cases and nonrelated controls resulting from different ethnic origins and population stratification for these two groups. The authors present analysis methods which are based on two genetic relative risks: (1) the relative risk of disease for homozygotes with two copies of the candidate gene versus homozygotes without the candidate gene and (2) the relative risk for heterozygotes with one copy of the candidate gene versus homozygotes without the candidate gene. In addition to estimating the magnitude of these relative risks, likelihood methods allow specific hypotheses to be tested, namely, a test for overall association of the candidate gene with disease, as well as specific genetic hypotheses, such as dominant or recessive inheritance. Two likelihood methods are presented: (1) a likelihood method appropriate when Hardy-Weinberg equilibrium holds and (2) a likelihood method in which the authors condition on parental genotype data when Hardy-Weinberg equilibrium does not hold. The results for the relative efficiency of these two methods suggest that the conditional approach may at times be preferable, even when equilibrium holds. Sample-size and power calculations are presented for a multitiered design. Tier 1 detects the presence of an abnormal sequence for a postulated candidate gene among a small group of cases. Tier 2 tests for association of the abnormal variant with disease, such as by the likelihood methods presented. Tier 3 confirms positive results from tier 2. Results indicate that required sample sizes are smaller when expression of disease is recessive, rather than dominant, and that, for recessive disease and large relative risks, necessary sample sizes may be feasible. 19 refs., 2 figs., 2 tabs.

  1. History of a prolific family: the Hes/Hey-related genes of the annelid Platynereis

    PubMed Central

    2014-01-01

    Background The Hes superfamily or Hes/Hey-related genes encompass a variety of metazoan-specific bHLH genes, with somewhat fuzzy phylogenetic relationships. Hes superfamily members are involved in a variety of major developmental mechanisms in metazoans, notably in neurogenesis and segmentation processes, in which they often act as direct effector genes of the Notch signaling pathway. Results We have investigated the molecular and functional evolution of the Hes superfamily in metazoans using the lophotrochozoan Platynereis dumerilii as model. Our phylogenetic analyses of more than 200 Metazoan Hes/Hey-related genes revealed the presence of five families, three of them (Hes, Hey and Helt) being pan-metazoan. Those families were likely composed of a unique representative in the last common metazoan ancestor. The evolution of the Hes family was shaped by many independent lineage specific tandem duplication events. The expression patterns of 13 of the 15 Hes/Hey-related genes in Platynereis indicate a broad functional diversification. Nevertheless, a majority of these genes are involved in two crucial developmental processes in annelids: neurogenesis and segmentation, resembling functions highlighted in other animal models. Conclusions Combining phylogenetic and expression data, our study suggests an unusual evolutionary history for the Hes superfamily. An ancestral multifunctional annelid Hes gene may have undergone multiples rounds of duplication-degeneration-complementation processes in the lineage leading to Platynereis, each gene copies ensuring their maintenance in the genome by subfunctionalisation. Similar but independent waves of duplications are at the origin of the multiplicity of Hes genes in other metazoan lineages. PMID:25250171

  2. The transcription factor ultraspiracle influences honey bee social behavior and behavior-related gene expression.

    PubMed

    Ament, Seth A; Wang, Ying; Chen, Chieh-Chun; Blatti, Charles A; Hong, Feng; Liang, Zhengzheng S; Negre, Nicolas; White, Kevin P; Rodriguez-Zas, Sandra L; Mizzen, Craig A; Sinha, Saurabh; Zhong, Sheng; Robinson, Gene E

    2012-01-01

    Behavior is among the most dynamic animal phenotypes, modulated by a variety of internal and external stimuli. Behavioral differences are associated with large-scale changes in gene expression, but little is known about how these changes are regulated. Here we show how a transcription factor (TF), ultraspiracle (usp; the insect homolog of the Retinoid X Receptor), working in complex transcriptional networks, can regulate behavioral plasticity and associated changes in gene expression. We first show that RNAi knockdown of USP in honey bee abdominal fat bodies delayed the transition from working in the hive (primarily "nursing" brood) to foraging outside. We then demonstrate through transcriptomics experiments that USP induced many maturation-related transcriptional changes in the fat bodies by mediating transcriptional responses to juvenile hormone. These maturation-related transcriptional responses to USP occurred without changes in USP's genomic binding sites, as revealed by ChIP-chip. Instead, behaviorally related gene expression is likely determined by combinatorial interactions between USP and other TFs whose cis-regulatory motifs were enriched at USP's binding sites. Many modules of JH- and maturation-related genes were co-regulated in both the fat body and brain, predicting that usp and cofactors influence shared transcriptional networks in both of these maturation-related tissues. Our findings demonstrate how "single gene effects" on behavioral plasticity can involve complex transcriptional networks, in both brain and peripheral tissues.

  3. The Transcription Factor Ultraspiracle Influences Honey Bee Social Behavior and Behavior-Related Gene Expression

    PubMed Central

    Chen, Chieh-Chun; Blatti, Charles A.; Hong, Feng; Liang, Zhengzheng S.; Negre, Nicolas; White, Kevin P.; Rodriguez-Zas, Sandra L.; Mizzen, Craig A.; Sinha, Saurabh; Zhong, Sheng; Robinson, Gene E.

    2012-01-01

    Behavior is among the most dynamic animal phenotypes, modulated by a variety of internal and external stimuli. Behavioral differences are associated with large-scale changes in gene expression, but little is known about how these changes are regulated. Here we show how a transcription factor (TF), ultraspiracle (usp; the insect homolog of the Retinoid X Receptor), working in complex transcriptional networks, can regulate behavioral plasticity and associated changes in gene expression. We first show that RNAi knockdown of USP in honey bee abdominal fat bodies delayed the transition from working in the hive (primarily “nursing” brood) to foraging outside. We then demonstrate through transcriptomics experiments that USP induced many maturation-related transcriptional changes in the fat bodies by mediating transcriptional responses to juvenile hormone. These maturation-related transcriptional responses to USP occurred without changes in USP's genomic binding sites, as revealed by ChIP–chip. Instead, behaviorally related gene expression is likely determined by combinatorial interactions between USP and other TFs whose cis-regulatory motifs were enriched at USP's binding sites. Many modules of JH– and maturation-related genes were co-regulated in both the fat body and brain, predicting that usp and cofactors influence shared transcriptional networks in both of these maturation-related tissues. Our findings demonstrate how “single gene effects” on behavioral plasticity can involve complex transcriptional networks, in both brain and peripheral tissues. PMID:22479195

  4. Identifying novel genes and chemicals related to nasopharyngeal cancer in a heterogeneous network

    PubMed Central

    Li, Zhandong; An, Lifeng; Li, Hao; Wang, ShaoPeng; Zhou, You; Yuan, Fei; Li, Lin

    2016-01-01

    Nasopharyngeal cancer or nasopharyngeal carcinoma (NPC) is the most common cancer originating in the nasopharynx. The factors that induce nasopharyngeal cancer are still not clear. Additional information about the chemicals or genes related to nasopharyngeal cancer will promote a better understanding of the pathogenesis of this cancer and the factors that induce it. Thus, a computational method NPC-RGCP was proposed in this study to identify the possible relevant chemicals and genes based on the presently known chemicals and genes related to nasopharyngeal cancer. To extensively utilize the functional associations between proteins and chemicals, a heterogeneous network was constructed based on interactions of proteins and chemicals. The NPC-RGCP included two stages: the searching stage and the screening stage. The former stage is for finding new possible genes and chemicals in the heterogeneous network, while the latter stage is for screening and removing false discoveries and selecting the core genes and chemicals. As a result, five putative genes, CXCR3, IRF1, CDK1, GSTP1, and CDH2, and seven putative chemicals, iron, propionic acid, dimethyl sulfoxide, isopropanol, erythrose 4-phosphate, β-D-Fructose 6-phosphate, and flavin adenine dinucleotide, were identified by NPC-RGCP. Extensive analyses provided confirmation that the putative genes and chemicals have significant associations with nasopharyngeal cancer. PMID:27149165

  5. Molecular characterization of stress resistance-related chitinase genes of Brassica rapa.

    PubMed

    Ahmed, Nasar Uddin; Park, Jong-In; Jung, Hee-Jeong; Kang, Kwon-Kyoo; Hur, Yoonkang; Lim, Yong-Pyo; Nou, Ill-Sup

    2012-09-01

    Brassica is an important vegetable group worldwide that is impacted by biotic and abiotic stresses. Molecular biology techniques offer the most efficient approach to address these concerns. Inducible plant defense responses include the production of pathogenesis-related (PR) proteins, and chitinases are very important PR proteins. We collected 30 chitinase like genes, three from our full-length cDNA library of Brassica rapa cv. Osome and 27 from Brassica databases. Sequence analysis and comparison study confirmed that they were all class I-V and VII chitinase genes. These genes also showed a high degree of homology with other biotic stress resistance-related plant chitinases. An organ-specific expression of these genes was observed and among these, seven genes showed significant responses after infection with Fusarium oxysporum f.sp. conglutinans in cabbage and sixteen genes showed responsive expression after abiotic stress treatments in Chinese cabbage. BrCLP1, 8, 10, 17 and 18 responded commonly after biotic and abiotic stress treatments indicating their higher potentials. Taken together, the results presented herein suggest that these chitinase genes may be useful resources in the development of stress resistant Brassica.

  6. Identifying novel genes and chemicals related to nasopharyngeal cancer in a heterogeneous network.

    PubMed

    Li, Zhandong; An, Lifeng; Li, Hao; Wang, ShaoPeng; Zhou, You; Yuan, Fei; Li, Lin

    2016-05-05

    Nasopharyngeal cancer or nasopharyngeal carcinoma (NPC) is the most common cancer originating in the nasopharynx. The factors that induce nasopharyngeal cancer are still not clear. Additional information about the chemicals or genes related to nasopharyngeal cancer will promote a better understanding of the pathogenesis of this cancer and the factors that induce it. Thus, a computational method NPC-RGCP was proposed in this study to identify the possible relevant chemicals and genes based on the presently known chemicals and genes related to nasopharyngeal cancer. To extensively utilize the functional associations between proteins and chemicals, a heterogeneous network was constructed based on interactions of proteins and chemicals. The NPC-RGCP included two stages: the searching stage and the screening stage. The former stage is for finding new possible genes and chemicals in the heterogeneous network, while the latter stage is for screening and removing false discoveries and selecting the core genes and chemicals. As a result, five putative genes, CXCR3, IRF1, CDK1, GSTP1, and CDH2, and seven putative chemicals, iron, propionic acid, dimethyl sulfoxide, isopropanol, erythrose 4-phosphate, β-D-Fructose 6-phosphate, and flavin adenine dinucleotide, were identified by NPC-RGCP. Extensive analyses provided confirmation that the putative genes and chemicals have significant associations with nasopharyngeal cancer.

  7. Expression of mitochondria-related genes is elevated in overfeeding-induced goose fatty liver.

    PubMed

    Osman, Rashid H; Shao, Dan; Liu, Long; Xia, Lili; Sun, Xiaoxian; Zheng, Yun; Wang, Laidi; Zhang, Rui; Zhang, Yihui; Zhang, Jun; Gong, Daoqing; Geng, Tuoyu

    2016-02-01

    Mitochondrion, the power house of the cell, is an important organelle involving in energy homeostasis. Change in mitochondrial mass and function may lead to metabolic disorders. Previous studies indicate that mitochondrial mass loss and dysfunction are associated with non-alcoholic fatty liver disease (NAFLD) in human and mouse. However, it is unclear whether mitochondrial genes are involved in the development of goose fatty liver. To address this, we determined the response of goose mitochondrial genes to overfeeding and other fatty liver-related factors (e.g., hyperinsulinemia, hyperglycemia, and hyperlipidemia). We first employed RNA-seq technology to determine the differentially expressed genes in the livers from normally-fed vs. overfed geese, followed by bioinformatics analysis and quantitative PCR validation. Data indicated that a majority of mitochondrial genes in the liver were induced by overfeeding. To understand how these genes are regulated in the context of fatty liver, we treated goose primary hepatocytes with high levels of glucose, fatty acids and insulin. The results indicated that these factors had an influence on the expression of some mitochondria related genes. Together, these findings suggest that the induction of mitochondrial gene expression by overfeeding is required for the development of goose fatty liver, and this induction is partially attributable to hyperglycemia, hyperlipidemia and hyperinsulinemia.

  8. Transcriptional profiling of immune-related genes in Pacific white shrimp (Litopenaeus vannamei) during ontogenesis.

    PubMed

    Quispe, Ruth L; Justino, Emily B; Vieira, Felipe N; Jaramillo, Michael L; Rosa, Rafael D; Perazzolo, Luciane M

    2016-11-01

    We have performed here a gene expression analysis to determine the developmental stage at the main genes involved in crustacean immune response begin to be expressed and their changes in mRNA abundance during shrimp development. By using a quantitative PCR-based approach, we have measured the mRNA abundance of 24 immune-related genes from different functional categories in twelve developmental stages ranging from fertilized eggs to larval and postlarval stages and also in juveniles. We showed for the first time that the main genes from the RNAi-based post-transcriptional pathway involved in shrimp antiviral immunity are transcribed in all developmental stages, but exhibit a diverse pattern of gene expression during shrimp ontogenesis. On the other hand, hemocyte-expressed genes mainly involved in antimicrobial defenses appeared to be transcribed in larval stages, indicating that hematopoiesis initiates early in development. Moreover, transcript levels of some genes were early detected in fertilized eggs at 0-4 h post-spawning, suggesting a maternal contribution of immune-related transcripts to shrimp progeny. Altogether, our results provide important clues regarding the ontogenesis of hemocytes as well the establishment of antiviral and antimicrobial defenses in shrimp.

  9. Characterization of the gene encoding a fibrinogen-related protein expressed in Crassostrea gigas hemocytes.

    PubMed

    Skazina, M A; Gorbushin, A M

    2016-07-01

    Four exons of the CgFrep1 gene (3333 bp long) encode a putative fibrinogen-related protein (324 aa) bearing a single C-terminal FBG domain. Transcripts of the gene obtained from hemocytes of different Pacific oysters show prominent individual variation based on SNP and indels of tandem repeats resulted in polymorphism of N-terminus of the putative CgFrep1 polypeptide. The polypeptide chain bears N-terminal coiled-coil region potentially acting as inter-subunit interface in the protein oligomerization. It is suggested that CgFrep1 gene encodes the oligomeric lectin composed of at least two subunits.

  10. Associations between DNA methylation and schizophrenia-related intermediate phenotypes - a gene set enrichment analysis.

    PubMed

    Hass, Johanna; Walton, Esther; Wright, Carrie; Beyer, Andreas; Scholz, Markus; Turner, Jessica; Liu, Jingyu; Smolka, Michael N; Roessner, Veit; Sponheim, Scott R; Gollub, Randy L; Calhoun, Vince D; Ehrlich, Stefan

    2015-06-03

    Multiple genetic approaches have identified microRNAs as key effectors in psychiatric disorders as they post-transcriptionally regulate expression of thousands of target genes. However, their role in specific psychiatric diseases remains poorly understood. In addition, epigenetic mechanisms such as DNA methylation, which affect the expression of both microRNAs and coding genes, are critical for our understanding of molecular mechanisms in schizophrenia. Using clinical, imaging, genetic, and epigenetic data of 103 patients with schizophrenia and 111 healthy controls of the Mind Clinical Imaging Consortium (MCIC) study of schizophrenia, we conducted gene set enrichment analysis to identify markers for schizophrenia-associated intermediate phenotypes. Genes were ranked based on the correlation between DNA methylation patterns and each phenotype, and then searched for enrichment in 221 predicted microRNA target gene sets. We found the predicted hsa-miR-219a-5p target gene set to be significantly enriched for genes (EPHA4, PKNOX1, ESR1, among others) whose methylation status is correlated with hippocampal volume independent of disease status. Our results were strengthened by significant associations between hsa-miR-219a-5p target gene methylation patterns and hippocampus-related neuropsychological variables. IPA pathway analysis of the respective predicted hsa-miR-219a-5p target genes revealed associated network functions in behavior and developmental disorders. Altered methylation patterns of predicted hsa-miR-219a-5p target genes are associated with a structural aberration of the brain that has been proposed as a possible biomarker for schizophrenia. The (dys)regulation of microRNA target genes by epigenetic mechanisms may confer additional risk for developing psychiatric symptoms. Further study is needed to understand possible interactions between microRNAs and epigenetic changes and their impact on risk for brain-based disorders such as schizophrenia.

  11. Identification of differentially expressed genes related to aphid resistance in cucumber (Cucumis sativus L.)

    PubMed Central

    Liang, Danna; Liu, Min; Hu, Qijing; He, Min; Qi, Xiaohua; Xu, Qiang; Zhou, Fucai; Chen, Xuehao

    2015-01-01

    Cucumber, a very important vegetable crop worldwide, is easily damaged by pests. Aphids (Aphis gossypii Glover) are among the most serious pests in cucumber production and often cause severe loss of yield and make fruit quality get worse. Identifying genes that render cucumbers resistant to aphid-induced damage and breeding aphid-resistant cucumber varieties have become the most promising control strategies. In this study, a Illumina Genome Analyzer platform was applied to monitor changes in gene expression in the whole genome of the cucumber cultivar ‘EP6392’ which is resistant to aphids. Nine DGE libraries were constructed from infected and uninfected leaves. In total, 49 differentially expressed genes related to cucumber aphid resistance were screened during the treatment period. These genes are mainly associated with signal transduction, plant-pathogen interactions, flavonoid biosynthesis, amino acid metabolism and sugar metabolism pathways. Eight of the 49 genes may be associated with aphid resistance. Finally, expression of 9 randomly selected genes was evaluated by qRT-PCR to verify the results for the tag-mapped genes. With the exception of 1-aminocyclopropane-1-carboxylate oxidase homolog 6, the expression of the chosen genes was in agreement with the results of the tag-sequencing analysis patterns. PMID:25959296

  12. Resistant starch manipulated hyperglycemia/hyperlipidemia and related genes expression in diabetic rats.

    PubMed

    Zhou, ZhongKai; Wang, Fang; Ren, XiaoChong; Wang, Yuyang; Blanchard, Chris

    2015-04-01

    The effect of resistant starch (RS) administration on biological parameters including blood glucose, lipids composition and oxidative stress of type 2 diabetic rats was investigated. The results showed blood glucose level, total cholesterol and triglycerides concentrations significantly reduced, and high-density lipoprotein cholesterol concentration was doubly increased in the rats of RS administration group compared to model control group (P<0.01). The analyses of genes involved in glucose and lipid metabolism pathways demonstrated that the expression levels of lipid oxidation gene Acox1, glycogen synthesis genes, GS2 and GYG1, and insulin-induced genes, Insig-1 and Insig-2, were significantly up-regulated (P<0.01). In contrast, fatty acids and triglycerides synthesis and metabolism-related gene SREBP-1, fatty acid synthesis gene Fads1 and gluconeogenesis gene G6PC1 were greatly down-regulated. The mechanism study shows that the lowering of blood glucose level in diabetic rats by feeding RS is regulated through promoting glycogen synthesis and inhibiting gluconeogenesis, and the increased lipid metabolism is modulated through promoting lipid oxidation and cholesterol homeostasis. Our study revealed for the first time that the regulation of hepatic genes expression involved in glucose and lipids metabolisms in diabetic rats could be achieved even at a moderate level of RS consumption.

  13. Evolutionary analyses of hedgehog and Hoxd-10 genes in fish species closely related to the zebrafish

    PubMed Central

    Zardoya, Rafael; Abouheif, Ehab; Meyer, Axel

    1996-01-01

    The study of development has relied primarily on the isolation of mutations in genes with specific functions in development and on the comparison of their expression patterns in normal and mutant phenotypes. Comparative evolutionary analyses can complement these approaches. Phylogenetic analyses of Sonic hedgehog (Shh) and Hoxd-10 genes from 18 cyprinid fish species closely related to the zebrafish provide novel insights into the functional constraints acting on Shh. Our results confirm and extend those gained from expression and crystalline structure analyses of this gene. Unexpectedly, exon 1 of Shh is found to be almost invariant even in third codon positions among these morphologically divergent species suggesting that this exon encodes for a functionally important domain of the hedgehog protein. This is surprising because the main functional domain of Shh had been thought to be that encoded by exon 2. Comparisons of Shh and Hoxd-10 gene sequences and of resulting gene trees document higher evolutionary constraints on the former than on the latter. This might be indicative of more general evolutionary patterns in networks of developmental regulatory genes interacting in a hierarchical fashion. The presence of four members of the hedgehog gene family in cyprinid fishes was documented and their homologies to known hedgehog genes in other vertebrates were established. PMID:8917540

  14. Identification