USDA-ARS?s Scientific Manuscript database
Water quality issues continue to vex agriculture. Understanding contaminant-specific pathways could help clarify effective water quality management strategies in watersheds. Hypothesis: If conducted at nested scales, hydrograph separation techniques can identify contaminant-specific pathways that co...
Stormflow-hydrograph separation based on isotopes: the thrill is gone--what's next?
Burns, Douglas A.
2002-01-01
Beginning in the 1970s, the promise of a new method for separatingstormflow hydrographs using18O,2H, and3Hprovedanirresistibletemptation, and was a vast improvement over graphical separationand solute tracer methods that were prevalent at the time. Eventu-ally, hydrologists realized that this new method entailed a plethoraof assumptions about temporal and spatial homogeneity of isotopiccomposition (many of which were commonly violated). Nevertheless,hydrologists forged ahead with dozens of isotope-based hydrograph-separation studies that were published in the 1970s and 1980s.Hortonian overland flow was presumed dead. By the late 1980s,the new isotope-based hydrograph separation technique had movedinto adolescence, accompanied by typical adolescent problems suchas confusion and a search for identity. As experienced hydrologistscontinued to use the isotope technique to study stormflow hydrol-ogy in forested catchments in humid climates, their younger peersfollowed obligingly—again and again. Was Hortonian overland flowreally dead and forgotten, though? What about catchments in whichpeople live and work? And what about catchments in dry climatesand the tropics? How useful were study results when several of theassumptions about the homogeneity of source waters were commonlyviolated? What if two components could not explain the variation ofisotopic composition measured in the stream during stormflow? Andwhat about uncertainty? As with many new tools, once the initialshine wore off, the limitations of the method became a concern—oneof which was that isotope-based hydrograph separations alone couldnot reveal much about the flow paths by which water arrives at astream channel during storms.
Effects of timber harvesting on the lag time of Caspar Creek watershed
Karen Hardison Sendek
1985-01-01
Abstract - Hydrograph lag time was analyzed to determine changes after road construction and after selective, tractor-yarded logging in a Caspar Creek watershed, Mendocino County, California. The paired watershed technique was used. Hydrograph lag time for each storm was the time separation between the midpoint of precipitation and the time coordinate of the runoff...
Hydrograph separation techniques in snowmelt-dominated watersheds
NASA Astrophysics Data System (ADS)
Miller, S.; Miller, S. N.
2017-12-01
This study integrates hydrological, geochemical, and isotopic data for a better understanding of different streamflow generation pathways and residence times in a snowmelt-dominated region. A nested watershed design with ten stream gauging sites recording sub-hourly stream stage has been deployed in a snowmelt-dominated region in southeastern Wyoming, heavily impacted by the recent bark beetle epidemic. LiDAR-derived digital elevation models help elucidate effects from topography and watershed metrics. At each stream gauging site, sub-hourly stream water conductivity and temperature data are also recorded. Hydrograph separation is a useful technique for determining different sources of runoff and how volumes from each source vary over time. Following previous methods, diurnal cycles from sub-hourly recorded streamflow and specific conductance data are analyzed and used to separate hydrographs into overland flow and baseflow components, respectively. A final component, vadose-zone flow, is assumed to be the remaining water from the total hydrograph. With access to snowmelt and precipitation data from nearby instruments, runoff coefficients are calculated for the different mechanisms, providing information on watershed response. Catchments are compared to understand how different watershed characteristics translate snowmelt or precipitation events into runoff. Portable autosamplers were deployed at two of the gauging sites for high-frequency analysis of stream water isotopic composition during peak flow to compare methods of hydrograph separation. Sampling rates of one or two hours can detect the diurnal streamflow cycle common during peak snowmelt. Prior research suggests the bark beetle epidemic has had little effect on annual streamflow patterns; however, several results show an earlier shift in the day of year in which peak annual streamflow is observed. The diurnal cycle is likely to comprise a larger percentage of daily streamflow during snowmelt in post-epidemic forests, as more solar radiation is available to penetrate to the ground surface and induce snowmelt, contributing to the effect of an earlier observed peak annual streamflow.
Halford, K.J.; Mayer, G.C.
2000-01-01
Ground water discharge and recharge frequently have been estimated with hydrograph-separation techniques, but the critical assumptions of the techniques have not been investigated. The critical assumptions are that the hydraulic characteristics of the contributing aquifer (recession index) can be estimated from stream-discharge records; that periods of exclusively ground water discharge can be reliably identified; and that stream-discharge peaks approximate the magnitude and tinting of recharge events. The first assumption was tested by estimating the recession index from st earn-discharge hydrographs, ground water hydrographs, and hydraulic diffusivity estimates from aquifer tests in basins throughout the eastern United States and Montana. The recession index frequently could not be estimated reliably from stream-discharge records alone because many of the estimates of the recession index were greater than 1000 days. The ratio of stream discharge during baseflow periods was two to 36 times greater than the maximum expected range of ground water discharge at 12 of the 13 field sites. The identification of the ground water component of stream-discharge records was ambiguous because drainage from bank-storage, wetlands, surface water bodies, soils, and snowpacks frequently exceeded ground water discharge and also decreased exponentially during recession periods. The timing and magnitude of recharge events could not be ascertained from stream-discharge records at any of the sites investigated because recharge events were not directly correlated with stream peaks. When used alone, the recession-curve-displacement method and other hydrograph-separation techniques are poor tools for estimating ground water discharge or recharge because the major assumptions of the methods are commonly and grossly violated. Multiple, alternative methods of estimating ground water discharge and recharge should be used because of the uncertainty associated with any one technique.
Rice, Karen C.; Hornberger, George M.
1998-01-01
Three-component (throughfall, soil water, groundwater) hydrograph separations at peak flow were performed on 10 storms over a 2-year period in a small forested catchment in north-central Maryland using an iterative and an exact solution. Seven pairs of tracers (deuterium and oxygen 18, deuterium and chloride, deuterium and sodium, deuterium and silica, chloride and silica, chloride and sodium, and sodium and silica) were used for three-component hydrograph separation for each storm at peak flow to determine whether or not the assumptions of hydrograph separation routinely can be met, to assess the adequacy of some commonly used tracers, to identify patterns in hydrograph-separation results, and to develop conceptual models for the patterns observed. Results of the three-component separations were not always physically meaningful, suggesting that assumptions of hydrograph separation had been violated. Uncertainties in solutions to equations for hydrograph separations were large, partly as a result of violations of assumptions used in deriving the separation equations and partly as a result of improper identification of chemical compositions of end-members. Results of three-component separations using commonly used tracers were widely variable. Consistent patterns in the amount of subsurface water contributing to peak flow (45-100%) were observed, no matter which separation method or combination of tracers was used. A general conceptual model for the sequence of contributions from the three end-members could be developed for 9 of the 10 storms. Overall results indicated that hydrochemical and hydrometric measurements need to be coupled in order to perform meaningful hydrograph separations.
Application of two direct runoff prediction methods in Puerto Rico
Sepulveda, N.
1997-01-01
Two methods for predicting direct runoff from rainfall data were applied to several basins and the resulting hydrographs compared to measured values. The first method uses a geomorphology-based unit hydrograph to predict direct runoff through its convolution with the excess rainfall hyetograph. The second method shows how the resulting hydraulic routing flow equation from a kinematic wave approximation is solved using a spectral method based on the matrix representation of the spatial derivative with Chebyshev collocation and a fourth-order Runge-Kutta time discretization scheme. The calibrated Green-Ampt (GA) infiltration parameters are obtained by minimizing the sum, over several rainfall events, of absolute differences between the total excess rainfall volume computed from the GA equations and the total direct runoff volume computed from a hydrograph separation technique. The improvement made in predicting direct runoff using a geomorphology-based unit hydrograph with the ephemeral and perennial stream network instead of the strictly perennial stream network is negligible. The hydraulic routing scheme presented here is highly accurate in predicting the magnitude and time of the hydrograph peak although the much faster unit hydrograph method also yields reasonable results.
Estimates of ground-water recharge based on streamflow-hydrograph methods: Pennsylvania
Risser, Dennis W.; Conger, Randall W.; Ulrich, James E.; Asmussen, Michael P.
2005-01-01
This study, completed by the U.S. Geological Survey (USGS) in cooperation with the Pennsylvania Department of Conservation and Natural Resources, Bureau of Topographic and Geologic Survey (T&GS), provides estimates of ground-water recharge for watersheds throughout Pennsylvania computed by use of two automated streamflow-hydrograph-analysis methods--PART and RORA. The PART computer program uses a hydrograph-separation technique to divide the streamflow hydrograph into components of direct runoff and base flow. Base flow can be a useful approximation of recharge if losses and interbasin transfers of ground water are minimal. The RORA computer program uses a recession-curve displacement technique to estimate ground-water recharge from each storm period indicated on the streamflow hydrograph. Recharge estimates were made using streamflow records collected during 1885-2001 from 197 active and inactive streamflow-gaging stations in Pennsylvania where streamflow is relatively unaffected by regulation. Estimates of mean-annual recharge in Pennsylvania computed by the use of PART ranged from 5.8 to 26.6 inches; estimates from RORA ranged from 7.7 to 29.3 inches. Estimates from the RORA program were about 2 inches greater than those derived from the PART program. Mean-monthly recharge was computed from the RORA program and was reported as a percentage of mean-annual recharge. On the basis of this analysis, the major ground-water recharge period in Pennsylvania typically is November through May; the greatest monthly recharge typically occurs in March.
The application of electrical conductivity as a tracer for hydrograph separation in urban catchments
Pellerin, B.A.; Wollheim, W.M.; Feng, X.; Vororsmarty, C.J.
2008-01-01
Two-component hydrograph separation was performed on 19 low-to-moderate intensity rainfall events in a 4.1-km2 urban watershed to infer the relative and absolute contribution of surface runoff (e.g. new water) to stormflow generation between 2001 and 2003. The electrical conductivity (EC) of water was used as a continuous and inexpensive tracer, with order of magnitude differences in precipitation (12-46 ??S/cm) and pre-event streamwater EC values (520-1297 ??S/cm). While new water accounted for most of the increased discharge during storms (61-117%), the contribution of new water to total discharge during events was typically lower (18-78%) and negatively correlated with antecedent stream discharge (r2 = 0??55, p < 0??01). The amount of new water was positively correlated with total rainfall (r2 = 0??77), but hydrograph separation results suggest that less than half (9-46%) of the total rainfall on impervious surfaces is rapidly routed to the stream channel as new water. Comparison of hydrograph separation results using non-conservative tracers (EC and Si) and a conservative isotopic tracer (??D) for two events showed similar results and highlighted the potential application of EC as an inexpensive, high frequency tracer for hydrograph separation studies in urban catchments. The use of a simple tracer-based approach may help hydrologists and watershed managers to better understand impervious surface runoff, stormflow generation and non-point-source pollutant loading to urban streams. Copyright ?? 2007 John Wiley & Sons, Ltd.
The design and implementation of hydrographical information management system (HIMS)
NASA Astrophysics Data System (ADS)
Sui, Haigang; Hua, Li; Wang, Qi; Zhang, Anming
2005-10-01
With the development of hydrographical work and information techniques, the large variety of hydrographical information including electronic charts, documents and other materials are widely used, and the traditional management mode and techniques are unsuitable for the development of the Chinese Marine Safety Administration Bureau (CMSAB). How to manage all kinds of hydrographical information has become an important and urgent problem. A lot of advanced techniques including GIS, RS, spatial database management and VR techniques are introduced for solving these problems. Some design principles and key techniques of the HIMS including the mixed mode base on B/S, C/S and stand-alone computer mode, multi-source & multi-scale data organization and management, multi-source data integration and diverse visualization of digital chart, efficient security control strategies are illustrated in detail. Based on the above ideas and strategies, an integrated system named Hydrographical Information Management System (HIMS) was developed. And the HIMS has been applied in the Shanghai Marine Safety Administration Bureau and obtained good evaluation.
Rice, Karen C.; Bricker, Owen P.
1996-01-01
Hydrologic and water-quality data were collected at a precipitation-collection station and from two small watersheds on Catoctin Mountain, north- central Maryland, as part of an investigation of episodic acidification and its effects on streamwater quality. Data were collected from June 1990 through December 1993. Descriptions of the water shed instrumentation, data-collection techniques, and laboratory methods used to conduct the studies are included. Data that were collected on precipitation, throughfall, soil water, ground water, and streamwater during base flow and stormflow indicate that the streams undergo episodic acidification during storms. Both streams showed decreases in pH to less than 5.0 standard units during stormflow. The acid-neutralizing capacity (ANC) of both streams decreased during stormflow, and the ANC of one of the streams, Bear Branch, became negative. The chemistries of the different types of waters that were sampled indicate that shallow subsurface water with minimal residence time in the watersheds is routed to the streams to become stormflow and is the cause of the episodic acidification observed. Three-component hydrograph separations were performed on the data collected during several storms in each watershed. The hydrograph separations of all of the storms indicate that throughfall contributed 0 to 50 percent of the stormflow, soil water contributed 0 to 80 percent, and ground water contributed 20 to 90 percent. The results of the hydrograph separations indicate that, in general, the watershed with higher hydraulic gradients tends to have shallower and shorter flow paths than the watershed with lower hydraulic gradients.
Simulating double-peak hydrographs from single storms over mixed-use watersheds
Yang Yang; Theodore A. Endreny; David J. Nowak
2015-01-01
Two-peak hydrographs after a single rain event are observed in watersheds and storms with distinct volumes contributing as fast and slow runoff. The authors developed a hydrograph model able to quantify these separate runoff volumes to help in estimation of runoff processes and residence times used by watershed managers. The model uses parallel application of two...
Techniques for estimating flood hydrographs for ungaged urban watersheds
Stricker, V.A.; Sauer, V.B.
1984-01-01
The Clark Method, modified slightly was used to develop a synthetic, dimensionless hydrograph which can be used to estimate flood hydrographs for ungaged urban watersheds. Application of the technique results in a typical (average) flood hydrograph for a given peak discharge. Input necessary to apply the technique is an estimate of basin lagtime and the recurrence interval peak discharge. Equations for this purpose were obtained from a recent nationwide study on flood frequency in urban watersheds. A regression equation was developed which relates flood volumes to drainage area size, basin lagtime, and peak discharge. This equation is useful where storage of floodwater may be a part of design of flood prevention. (USGS)
HYSEP: A Computer Program for Streamflow Hydrograph Separation and Analysis
Sloto, Ronald A.; Crouse, Michele Y.
1996-01-01
HYSEP is a computer program that can be used to separate a streamflow hydrograph into base-flow and surface-runoff components. The base-flow component has traditionally been associated with ground-water discharge and the surface-runoff component with precipitation that enters the stream as overland runoff. HYSEP includes three methods of hydrograph separation that are referred to in the literature as the fixed interval, sliding-interval, and local-minimum methods. The program also describes the frequency and duration of measured streamflow and computed base flow and surface runoff. Daily mean stream discharge is used as input to the program in either an American Standard Code for Information Interchange (ASCII) or binary format. Output from the program includes table,s graphs, and data files. Graphical output may be plotted on the computer screen or output to a printer, plotter, or metafile.
Timothy Callahan; Austin E. Morrison
2016-01-01
Interpreting storm-event runoff in coastal plain watersheds is challenging because of the space- and time-variable nature of different sources that contribute to stream flow. These flow vectors and the magnitude of water flux is dependent on the pre-storm soil moisture (as estimated from depth to water table) in the lower coastal plain (LCP) region.
Technique for simulating peak-flow hydrographs in Maryland
Dillow, Jonathan J.A.
1998-01-01
The efficient design and management of many bridges, culverts, embankments, and flood-protection structures may require the estimation of time-of-inundation and (or) storage of floodwater relating to such structures. These estimates can be made on the basis of information derived from the peak-flow hydrograph. Average peak-flow hydrographs corresponding to a peak discharge of specific recurrence interval can be simulated for drainage basins having drainage areas less than 500 square miles in Maryland, using a direct technique of known accuracy. The technique uses dimensionless hydrographs in conjunction with estimates of basin lagtime and instantaneous peak flow. Ordinary least-squares regression analysis was used to develop an equation for estimating basin lagtime in Maryland. Drainage area, main channel slope, forest cover, and impervious area were determined to be the significant explanatory variables necessary to estimate average basin lagtime at the 95-percent confidence interval. Qualitative variables included in the equation adequately correct for geographic bias across the State. The average standard error of prediction associated with the equation is approximated as plus or minus (+/-) 37.6 percent. Volume correction factors may be applied to the basin lagtime on the basis of a comparison between actual and estimated hydrograph volumes prior to hydrograph simulation. Three dimensionless hydrographs were developed and tested using data collected during 278 significant rainfall-runoff events at 81 stream-gaging stations distributed throughout Maryland and Delaware. The data represent a range of drainage area sizes and basin conditions. The technique was verified by applying it to the simulation of 20 peak-flow events and comparing actual and simulated hydrograph widths at 50 and 75 percent of the observed peak-flow levels. The events chosen are considered extreme in that the average recurrence interval of the selected peak flows is 130 years. The average standard errors of prediction were +/- 61 and +/- 56 percent at the 50 and 75 percent of peak-flow hydrograph widths, respectively.
Fosness, Ryan L.; Dietsch, Benjamin J.
2015-10-21
This report presents the surveying techniques and data-processing methods used to collect, process, and disseminate topographic and hydrographic data. All standard and non‑standard data-collection methods, techniques, and data process methods were documented. Additional discussion describes the quality-assurance and quality-control elements used in this study, along with the limitations for the Torrinha-Itacoatiara study reach data. The topographic and hydrographic geospatial data are published along with associated metadata.
Estimating flood hydrographs for urban basins in North Carolina
Mason, R.R.; Bales, J.D.
1996-01-01
A dimensionless hydrograph for North Carolina was developed from data collected in 29 urban and urbanizing basins in the State. The dimen- sionless hydrograph can be used with an estimate of peak flow and basin lagtime to synthesize a design flood hydrograph for urban basins in North Carolina. Peak flows can be estimated from a number of avail- able techniques; a procedure for estimating basin lagtime from main channel length, stream slope, and percentage of impervious area was developed from data collected at 50 sites and is presented in this report. The North Carolina dimensionless hydrograph provides satis- factory predictions of flood hydrographs in all regions of the State except for basins in or near Asheville where the method overestimated 11 of 12 measured hydrographs. A previously developed dimensionless hydrograph for urban basins in the Piedmont and upper Coastal Plain of South Carolina provides better flood-hydrograph predictions for the Asheville basins and has a standard error of 21 percent as compared to 41 percent for the North Carolina dimensionless hydrograph.
NASA Astrophysics Data System (ADS)
Sebestyen, S. D.; Shanley, J. B.
2015-12-01
There are multiple approaches to quantify quick flow components of streamflow. Physical hydrograph separations of quick flow using recession analysis (RA) are objective, reproducible, and easily calculated for long-duration streamflow records (years to decades). However, this approach has rarely been validated to have a physical basis for interpretation. In contrast, isotopic hydrograph separation (IHS) and end member mixing analysis using multiple solutes (EMMA) have been used to identify flow components and flowpath routing through catchment soils. Nonetheless, these two approaches are limited by data from limited and isolated periods (hours to weeks) during which more-intensive grab samples were analyzed. These limitations oftentimes make IHS and EMMA difficult to generalize beyond brief windows of time. At the Sleepers River Research Watershed (SRRW) in northern Vermont, USA, we have data from multiple snowmelt events over a two decade period and from multiple nested catchments to assess relationships among RA, IHS, and EMMA. Quick flow separations were highly correlated among the three techniques, which shows links among metrics of quick flow, water sources, and flow path routing in a small (41 ha), forested catchment (W-9) The similarity in responses validates a physical interpretation for a particular RA approach (the Ekhardt recursive RA filter). This validation provides a new tool to estimate new water inputs and flowpath routing for more and longer periods when chemical or isotopic tracers may not have been measured. At three other SRRW catchments, we found similar strong correlations among the three techniques. Consistent responses across four catchments provide evidence to support other research at the SRRW that shows that runoff generation mechanisms are similar despite differences in catchment sizes and land covers.
HYDRORECESSION: A toolbox for streamflow recession analysis
NASA Astrophysics Data System (ADS)
Arciniega, S.
2015-12-01
Streamflow recession curves are hydrological signatures allowing to study the relationship between groundwater storage and baseflow and/or low flows at the catchment scale. Recent studies have showed that streamflow recession analysis can be quite sensitive to the combination of different models, extraction techniques and parameter estimation methods. In order to better characterize streamflow recession curves, new methodologies combining multiple approaches have been recommended. The HYDRORECESSION toolbox, presented here, is a Matlab graphical user interface developed to analyse streamflow recession time series with the support of different tools allowing to parameterize linear and nonlinear storage-outflow relationships through four of the most useful recession models (Maillet, Boussinesq, Coutagne and Wittenberg). The toolbox includes four parameter-fitting techniques (linear regression, lower envelope, data binning and mean squared error) and three different methods to extract hydrograph recessions segments (Vogel, Brutsaert and Aksoy). In addition, the toolbox has a module that separates the baseflow component from the observed hydrograph using the inverse reservoir algorithm. Potential applications provided by HYDRORECESSION include model parameter analysis, hydrological regionalization and classification, baseflow index estimates, catchment-scale recharge and low-flows modelling, among others. HYDRORECESSION is freely available for non-commercial and academic purposes.
Gamble, C.R.
1989-01-01
A dimensionless hydrograph developed for a variety of basin conditions in Georgia was tested for its applicability to streams in East and West Tennessee by comparing it to a similar dimensionless hydrograph developed for streams in East and West Tennessee. Hydrographs of observed discharge at 83 streams in East Tennessee and 38 in West Tennessee were used in the study. Statistical analyses were performed by comparing simulated (or computed) hydrographs, derived by application of the Georgia dimensionless hydrograph, and dimensionless hydrographs developed from Tennessee data, with the observed hydrographs at 50 and 75% of their peak-flow widths. Results of the tests indicate that the Georgia dimensionless hydrography is virtually the same as the one developed for streams in East Tennessee, but that it is different from the dimensionless hydrograph developed for streams in West Tennessee. Because of the extensive testing of the Georgia dimensionless hydrograph, it was determined to be applicable for East Tennessee, whereas the dimensionless hydrograph developed from data on streams in West Tennessee was determined to be applicable in West Tennessee. As part of the dimensionless hydrograph development, an average lagtime in hours for each study basin, and the volume in inches of flood runoff for each flood event were computed. By use of multiple-regression analysis, equations were developed that relate basin lagtime to drainage area size, basin length, and percent impervious area. Similarly, flood volumes were related to drainage area size, peak discharge, and basin lagtime. These equations, along with the appropriate dimensionless hydrograph, can be used to estimate a typical (average) flood hydrograph and volume for recurrence-intervals up to 100 years at any ungaged site draining less than 50 sq mi in East and West Tennessee. (USGS)
Miller, Matthew P.; Susong, David D.; Shope, Christopher L.; Heilweil, Victor M.; Stolp, Bernard J.
2014-01-01
Effective science-based management of water resources in large basins requires a qualitative understanding of hydrologic conditions and quantitative measures of the various components of the water budget, including difficult to measure components such as baseflow discharge to streams. Using widely available discharge and continuously collected specific conductance (SC) data, we adapted and applied a long established chemical hydrograph separation approach to quantify daily and representative annual baseflow discharge at fourteen streams and rivers at large spatial (> 1,000 km2 watersheds) and temporal (up to 37 years) scales in the Upper Colorado River Basin. On average, annual baseflow was 21-58% of annual stream discharge, 13-45% of discharge during snowmelt, and 40-86% of discharge during low-flow conditions. Results suggest that reservoirs may act to store baseflow discharged to the stream during snowmelt and release that baseflow during low-flow conditions, and that irrigation return flows may contribute to increases in fall baseflow in heavily irrigated watersheds. The chemical hydrograph separation approach, and associated conceptual model defined here provide a basis for the identification of land use, management, and climate effects on baseflow.
Hydrograph separation for karst watersheds using a two-domain rainfall-discharge model
Long, Andrew J.
2009-01-01
Highly parameterized, physically based models may be no more effective at simulating the relations between rainfall and outflow from karst watersheds than are simpler models. Here an antecedent rainfall and convolution model was used to separate a karst watershed hydrograph into two outflow components: one originating from focused recharge in conduits and one originating from slow flow in a porous annex system. In convolution, parameters of a complex system are lumped together in the impulse-response function (IRF), which describes the response of the system to an impulse of effective precipitation. Two parametric functions in superposition approximate the two-domain IRF. The outflow hydrograph can be separated into flow components by forward modeling with isolated IRF components, which provides an objective criterion for separation. As an example, the model was applied to a karst watershed in the Madison aquifer, South Dakota, USA. Simulation results indicate that this watershed is characterized by a flashy response to storms, with a peak response time of 1 day, but that 89% of the flow results from the slow-flow domain, with a peak response time of more than 1 year. This long response time may be the result of perched areas that store water above the main water table. Simulation results indicated that some aspects of the system are stationary but that nonlinearities also exist.
A methodology for investigation of the seasonal evolution in proglacial hydrograph form
NASA Astrophysics Data System (ADS)
Hannah, David M.; Gurnell, Angela M.; McGregor, Glenn R.
1999-11-01
This paper advances an objective method of diurnal hydrograph classification as an aid to exploring changes in the hydrological functioning of glacierized catchments over the ablation season. The temporal sequencing of different hydrograph classes allows identification of seasonal evolution in hydrograph form and also assists delimitation of hydrologically-meaningful time periods of similar diurnal discharge response. The effectiveness of this approach is illustrated by applying it to two contrasting summer discharge records for a small cirque basin. By comparing the results with patterns of surface energy receipt and glacier ablation, the seasonally transient relative influences of: (i) surface meltwater production and (ii) meltwater routing and storage conditions within the intervening glacier drainage system in determining runoff are elucidated. The method successfully characterizes distinct seasonal-scale changes in the diurnal outflow hydrograph during the ablation-dominated 1995 melt season but is also able to reveal underlying trends and short-term fluctuations in the precipitation-dominated, poorly ablation-regulated 1996 melt season. The limitations and benefits of this hydrograph classification technique are evaluated.
Performance Analysis of Low-Cost Single-Frequency GPS Receivers in Hydrographic Surveying
NASA Astrophysics Data System (ADS)
Elsobeiey, M.
2017-10-01
The International Hydrographic Organization (IHO) has issued standards that provide the minimum requirements for different types of hydrographic surveys execution to collect data to be used to compile navigational charts. Such standards are usually updated from time to time to reflect new survey techniques and practices and must be achieved to assure both surface navigation safety and marine environment protection. Hydrographic surveys can be classified to four orders namely, special order, order 1a, order 1b, and order 2. The order of hydrographic surveys to use should be determined in accordance with the importance to the safety of navigation in the surveyed area. Typically, geodetic-grade dual-frequency GPS receivers are utilized for position determination during data collection in hydrographic surveys. However, with the evolution of high-sensitivity low-cost single-frequency receivers, it is very important to evaluate the performance of such receivers. This paper investigates the performance of low-cost single-frequency GPS receivers in hydrographic surveying applications. The main objective is to examine whether low-cost single-frequency receivers fulfil the IHO standards for hydrographic surveys. It is shown that the low-cost single-frequency receivers meet the IHO horizontal accuracy for all hydrographic surveys orders at any depth. However, the single-frequency receivers meet only order 2 requirements for vertical accuracy at depth more than or equal 100 m.
Ground-water recharge from streamflow data, NW Florida
Vecchioli, John; Bridges, W.C.; Rumenik, Roger P.; Grubbs, J.W.
1991-01-01
Annual base flows of streams draining Okaloosa County and adjacent areas in northwest Florida were determined through hydrograph separation and correlation techniques for purposes of evaluating variations in ground-water recharge rates. Base flows were least in the northern part of the county and greatest in the southern part. Topographic and soils data were then superimposed on the distribution of base flow by subbasin to produce a map showing distribution of ground-water recharge throughout the county. The highest recharge rate occurs in the southern part of the county where relatively flat upland areas underlain by excessively drained sandy soils result in minimal storm runoff and evapotranspiration.
Nelms, David L.; Messinger, Terence; McCoy, Kurt J.
2015-07-14
As part of the U.S. Geological Survey’s Groundwater Resources Program study of the Appalachian Plateaus aquifers, annual and average estimates of water-budget components based on hydrograph separation and precipitation data from parameter-elevation regressions on independent slopes model (PRISM) were determined at 849 continuous-record streamflow-gaging stations from Mississippi to New York and covered the period of 1900 to 2011. Only complete calendar years (January to December) of streamflow record at each gage were used to determine estimates of base flow, which is that part of streamflow attributed to groundwater discharge; such estimates can serve as a proxy for annual recharge. For each year, estimates of annual base flow, runoff, and base-flow index were determined using computer programs—PART, HYSEP, and BFI—that have automated the separation procedures. These streamflow-hydrograph analysis methods are provided with version 1.0 of the U.S. Geological Survey Groundwater Toolbox, which is a new program that provides graphing, mapping, and analysis capabilities in a Windows environment. Annual values of precipitation were estimated by calculating the average of cell values intercepted by basin boundaries where previously defined in the GAGES–II dataset. Estimates of annual evapotranspiration were then calculated from the difference between precipitation and streamflow.
NASA Astrophysics Data System (ADS)
Xu, Bin; Ye, Ming; Dong, Shuning; Dai, Zhenxue; Pei, Yongzhen
2018-07-01
Quantitative analysis of recession curves of karst spring hydrographs is a vital tool for understanding karst hydrology and inferring hydraulic properties of karst aquifers. This paper presents a new model for simulating karst spring recession curves. The new model has the following characteristics: (1) the model considers two separate but hydraulically connected reservoirs: matrix reservoir and conduit reservoir; (2) the model separates karst spring hydrograph recession into three stages: conduit-drainage stage, mixed-drainage stage (with both conduit drainage and matrix drainage), and matrix-drainage stage; and (3) in the mixed-drainage stage, the model uses multiple conduit layers to present different levels of conduit development. The new model outperforms the classical Mangin model and the recently developed Fiorillo model for simulating observed discharge at the Madison Blue Spring located in northern Florida. This is attributed to the latter two characteristics of the new model. Based on the new model, a method is developed for estimating effective porosity of the matrix and conduit reservoirs for the three drainage stages. The estimated porosity values are consistent with measured matrix porosity at the study site and with estimated conduit porosity reported in literature. The new model for simulating karst spring hydrograph recession is mathematically general, and can be applied to a wide range of karst spring hydrographs to understand groundwater flow in karst aquifers. The limitations of the model are discussed at the end of this paper.
Melching, C.S.; Marquardt, J.S.
1997-01-01
Design hydrographs computed from design storms, simple models of abstractions (interception, depression storage, and infiltration), and synthetic unit hydrographs provide vital information for stormwater, flood-plain, and water-resources management throughout the United States. Rainfall and runoff data for small watersheds in Lake County collected between 1990 and 1995 were studied to develop equations for estimation of synthetic unit-hydrograph parameters on the basis of watershed and storm characteristics. The synthetic unit-hydrograph parameters of interest were the time of concentration (TC) and watershed-storage coefficient (R) for the Clark unit-hydrograph method, the unit-graph lag (UL) for the Soil Conservation Service (now known as the Natural Resources Conservation Service) dimensionless unit hydrograph, and the hydrograph-time lag (TL) for the linear-reservoir method for unit-hydrograph estimation. Data from 66 storms with effective-precipitation depths greater than 0.4 inches on 9 small watersheds (areas between 0.06 and 37 square miles (mi2)) were utilized to develop the estimation equations, and data from 11 storms on 8 of these watersheds were utilized to verify (test) the estimation equations. The synthetic unit-hydrograph parameters were determined by calibration using the U.S. Army Corps of Engineers Flood Hydrograph Package HEC-1 (TC, R, and UL) or by manual analysis of the rainfall and run-off data (TL). The relation between synthetic unit-hydrograph parameters, and watershed and storm characteristics was determined by multiple linear regression of the logarithms of the parameters and characteristics. Separate sets of equations were developed with watershed area and main channel length as the starting parameters. Percentage of impervious cover, main channel slope, and depth of effective precipitation also were identified as important characteristics for estimation of synthetic unit-hydrograph parameters. The estimation equations utilizing area had multiple correlation coefficients of 0.873, 0.961, 0.968, and 0.963 for TC, R, UL, and TL, respectively, and the estimation equations utilizing main channel length had multiple correlation coefficients of 0.845, 0.957, 0.961, and 0.963 for TC, R, UL, and TL, respectively. Simulation of the measured hydrographs for the verification storms utilizing TC and R obtained from the estimation equations yielded good results without calibration. The peak discharge for 8 of the 11 storms was estimated within 25 percent and the time-to-peak discharge for 10 of the 11 storms was estimated within 20 percent. Thus, application of the estimation equations to determine synthetic unit-hydrograph parameters for design-storm simulation may result in reliable design hydrographs; as long as the physical characteristics of the watersheds under consideration are within the range of those for the watersheds in this study (area: 0.06-37 mi2, main channel length: 0.33-16.6 miles, main channel slope: 3.13-55.3 feet per mile, and percentage of impervious cover: 7.32-40.6 percent). The estimation equations are most reliable when applied to watersheds with areas less than 25 mi2.
NASA Astrophysics Data System (ADS)
Said, N. M.; Mahmud, M. R.; Hasan, R. C.
2017-10-01
Over the years, the acquisition technique of bathymetric data has evolved from a shipborne platform to airborne and presently, utilising space-borne acquisition. The extensive development of remote sensing technology has brought in the new revolution to the hydrographic surveying. Satellite-Derived Bathymetry (SDB), a space-borne acquisition technique which derives bathymetric data from high-resolution multispectral satellite imagery for various purposes recently considered as a new promising technology in the hydrographic surveying industry. Inspiring by this latest developments, a comprehensive study was initiated by National Hydrographic Centre (NHC) and Universiti Teknologi Malaysia (UTM) to analyse SDB as a means for shallow water area acquisition. By adopting additional adjustment in calibration stage, a marginal improvement discovered on the outcomes from both Stumpf and Lyzenga algorithms where the RMSE values for the derived (predicted) depths were 1.432 meters and 1.728 meters respectively. This paper would deliberate in detail the findings from the study especially on the accuracy level and practicality of SDB over the tropical environmental setting in Malaysia.
NASA Astrophysics Data System (ADS)
Soulsby, Chris; Dunn, Sarah M.
2003-02-01
Hydrochemical tracers (alkalinity and silica) were used in an end-member mixing analysis (EMMA) of runoff sources in the 10 km2 Allt a' Mharcaidh catchment. A three-component mixing model was used to separate the hydrograph and estimate, to a first approximation, the range of likely contributions of overland flow, shallow subsurface storm flow, and groundwater to the annual hydrograph. A conceptual, catchment-scale rainfall-runoff model (DIY) was also used to separate the annual hydrograph in an equivalent set of flow paths. The two approaches produced independent representations of catchment hydrology that exhibited reasonable agreement. This showed the dominance of overland flow in generating storm runoff and the important role of groundwater inputs throughout the hydrological year. Moreover, DIY was successfully adapted to simulate stream chemistry (alkalinity) at daily time steps. Sensitivity analysis showed that whilst a distinct groundwater source at the catchment scale could be identified, there was considerable uncertainty in differentiating between overland flow and subsurface storm flow in both the EMMA and DIY applications. Nevertheless, the study indicated that the complementary use of tracer analysis in EMMA can increase the confidence in conceptual model structure. However, conclusions are restricted to the specific spatial and temporal scales examined.
Payton, Gardner W.; Susong, D.D.; Kip, Solomon D.; Heasler, H.
2010-01-01
Snowmelt hydrograph analysis and groundwater age dates of cool water springs on the Yellowstone volcanic plateau provide evidence of high volumes of groundwater circulation in watersheds comprised of quaternary Yellowstone volcanics. Ratios of maximum to minimum mean daily discharge and average recession indices are calculated for watersheds within and surrounding the Yellowstone volcanic plateau. A model for snowmelt recession is used to separate groundwater discharge from overland runoff, and compare groundwater systems. Hydrograph signal interpretation is corroborated with chlorofluorocarbon (CFC) and tritium concentrations in cool water springs on the Yellowstone volcanic plateau. Hydrograph parameters show a spatial pattern correlated with watershed geology. Watersheds comprised dominantly of quaternary Yellowstone volcanics are characterized by slow streamflow recession, low maximum to minimum flow ratios. Cool springs sampled within the Park contain CFC's and tritium and have apparent CFC age dates that range from about 50 years to modern. Watersheds comprised of quaternary Yellowstone volcanics have a large volume of active groundwater circulation. A large, advecting groundwater field would be the dominant mechanism for mass and energy transport in the shallow crust of the Yellowstone volcanic plateau, and thus control the Yellowstone hydrothermal system. ?? 2009 Elsevier B.V.
Recession curve analysis for groundwater levels: case study in Latvia
NASA Astrophysics Data System (ADS)
Gailuma, A.; Vītola, I.; Abramenko, K.; Lauva, D.; Vircavs, V.; Veinbergs, A.; Dimanta, Z.
2012-04-01
Recession curve analysis is powerful and effective analysis technique in many research areas related with hydrogeology where observations have to be made, such as water filtration and absorption of moisture, irrigation and drainage, planning of hydroelectric power production and chemical leaching (elution of chemical substances) as well as in other areas. The analysis of the surface runoff hydrograph`s recession curves, which is performed to conceive the after-effects of interaction of precipitation and surface runoff, has approved in practice. The same method for analysis of hydrograph`s recession curves can be applied for the observations of the groundwater levels. There are manually prepared hydrograph for analysis of recession curves for observation wells (MG2, BG2 and AG1) in agricultural monitoring sites in Latvia. Within this study from the available monitoring data of groundwater levels were extracted data of declining periods, splitted by month. The drop-down curves were manually (by changing the date) moved together, until to find the best match, thereby obtaining monthly drop-down curves, representing each month separately. Monthly curves were combined and manually joined, for obtaining characterizing drop-down curves of the year for each well. Within the process of decreased recession curve analysis, from the initial curve was cut out upward areas, leaving only the drops of the curve, consequently, the curve is transformed more closely to the groundwater flow, trying to take out the impact of rain or drought periods from the curve. Respectively, the drop-down curve is part of the data, collected with hydrograph, where data with the discharge dominates, without considering impact of precipitation. Using the recession curve analysis theory, ready tool "A Visual Basic Spreadsheet Macro for Recession Curve Analysis" was used for selection of data and logarithmic functions matching (K. Posavec et.al., GROUND WATER 44, no. 5: 764-767, 2006), as well as functions were developed by manual processing of data. For displaying data the mathematical model of data equalization was used, finding the corresponding or closest logarithmic function of the recession for the graph. Obtained recession curves were similar but not identical. With full knowledge of the fluctuations of ground water level, it is possible to indirectly (without taking soil samples) determine the filtration coefficient: more rapid decline in the recession curve correspond for the better filtration conditions. This research could be very useful in construction planning, road constructions, agriculture etc. Acknowledgments The authors gratefully acknowledge the funding from ESF Project "Establishment of interdisciplinary scientist group and modeling system for groundwater research" (Agreement No. 2009/0212/1DP/1.1.1.2.0/09/APIA/VIAA/060EF7)
Fasser, E.T.; Julich, R.J.
2009-01-01
Hydrographs for selected wells in the Lower Skagit River basin, Washington, are presented in an interactive web-based map to illustrate monthly and seasonal changes in ground-water levels in the study area. Ground-water level data and well information were collected by the U.S. Geological Survey using standard techniques and were stored in the USGS National Water Information System (NWIS), Ground-Water Site-Inventory (GWSI) System.
Welch, Alan H.; Bright, Daniel J.; Knochenmus, Lari A.
2008-01-01
INTRODUCTION This report summarizes results of a water-resources study for White Pine County, Nevada, and adjacent areas in east-central Nevada and western Utah. The Basin and Range carbonate-rock aquifer system (BARCAS) study was initiated in December 2004 through Federal legislation (Section 301(e) of the Lincoln County Conservation, Recreation, and Development Act of 2004; PL108-424) directing the Secretary of the Interior to complete a water-resources study through the U.S. Geological Survey, Desert Research Institute, and State of Utah. The study was designed as a regional water-resource assessment, with particular emphasis on summarizing the hydrogeologic framework and hydrologic processes that influence ground-water resources. The study area includes 13 hydrographic areas that cover most of White Pine County; in this report however, results for the northern and central parts of Little Smoky Valley were combined and presented as one hydrographic area. Hydrographic areas are the basic geographic units used by the State of Nevada and Utah and local agencies for water-resource planning and management, and are commonly defined on the basis of surface-water drainage areas. Hydrographic areas were further divided into subbasins that are separated by areas where bedrock is at or near the land surface. Subbasins are the subdivisions used in this study for estimating recharge, discharge, and water budget. Hydrographic areas are the subdivision used for reporting summed and tabulated subbasin estimates.
Welch, Alan H.; Bright, Daniel J.
2007-01-01
Summary of Major Findings This report summarizes results of a water-resources study for White Pine County, Nevada, and adjacent areas in east-central Nevada and western Utah. The Basin and Range carbonate-rock aquifer system (BARCAS) study was initiated in December 2004 through Federal legislation (Section 131 of the Lincoln County Conservation, Recreation, and Development Act of 2004) directing the Secretary of the Interior to complete a water-resources study through the U.S. Geological Survey, Desert Research Institute, and State of Utah. The study was designed as a regional water-resource assessment, with particular emphasis on summarizing the hydrogeologic framework and hydrologic processes that influence ground-water resources. The study area includes 13 hydrographic areas that cover most of White Pine County; in this report however, results for the northern and central parts of Little Smoky Valley were combined and presented as one hydrographic area. Hydrographic areas are the basic geographic units used by the State of Nevada and Utah and local agencies for water-resource planning and management, and are commonly defined on the basis of surface-water drainage areas. Hydrographic areas were further divided into subbasins that are separated by areas where bedrock is at or near the land surface. Subbasins represent subdivisions used in this study for estimating recharge, discharge, and water budget. Hydrographic areas represent the subdivision used for reporting summed and tabulated subbasin estimates.
Isotopic tracing of the outflow during artificial rain-on-snow event
NASA Astrophysics Data System (ADS)
Juras, Roman; Pavlásek, Jirka; Vitvar, Tomáš; Šanda, Martin; Holub, Jirka; Jankovec, Jakub; Linda, Miloslav
2016-10-01
The frequency of rain-on-snow (ROS) occurrence is increasing and this natural phenomenon is beginning to play an important role in temperate climate regions. Present knowledge of outflow generation mechanisms and rainwater dynamics during ROS is still insufficient. The study introduces a combined method of artificial ROS, isotopic tracing and energy balance to partition the event rainwater and the pre-event non-rainwater in the outflow. A rainfall simulator and water enriched with deuterium were used for identifying event rainwater and pre-event non-rainwater during an ROS event. The ROS experiment was conducted in the Krkonoše Mountains in the Czech Republic. An experimental snow block consisting of ripe and isothermal snow was sprayed with deuterium enriched water. The outflow from the snowpack was continuously monitored to gain quantitative and qualitative information about outflow water. The isotopic deuterium content was further analysed from the samples by means of laser spectroscopy in order to separate the hydrograph components. The deuterium content was also analysed from the snow samples gathered before and after the experiment to identify the retention of event rainwater in the snowpack. Isotopic hydrograph separation revealed that although high rain intensity was applied, the event rainwater represented one half (52.7%) of the total outflow volume. The ripe snowpack retained about one third of the rainwater input (33.6%). Significant changes in the outflowing water quality can therefore be expected during ROS events. This experiment also shows that rainwater during ROS firstly pushes-out the non-rainwater and then contributes to the outflow. These results show that the presented technique allows us to gain sufficient information about rainwater dynamics during ROS.
NASA Astrophysics Data System (ADS)
Juras, Roman; Würzer, Sebastian; Pavlásek, Jirka; Vitvar, Tomáš; Jonas, Tobias
2017-09-01
The mechanisms of rainwater propagation and runoff generation during rain-on-snow (ROS) events are still insufficiently known. Understanding storage and transport of liquid water in natural snowpacks is crucial, especially for forecasting of natural hazards such as floods and wet snow avalanches. In this study, propagation of rainwater through snow was investigated by sprinkling experiments with deuterium-enriched water and applying an alternative hydrograph separation technique on samples collected from the snowpack runoff. This allowed us to quantify the contribution of rainwater, snowmelt and initial liquid water released from the snowpack. Four field experiments were carried out during winter 2015 in the vicinity of Davos, Switzerland. Blocks of natural snow were isolated from the surrounding snowpack to inhibit lateral exchange of water and were exposed to artificial rainfall using deuterium-enriched water. The experiments were composed of four 30 min periods of sprinkling, separated by three 30 min breaks. The snowpack runoff was continuously gauged and sampled periodically for the deuterium signature. At the onset of each experiment antecedent liquid water was first pushed out by the sprinkling water. Hydrographs showed four pronounced peaks corresponding to the four sprinkling bursts. The contribution of rainwater to snowpack runoff consistently increased over the course of the experiment but never exceeded 86 %. An experiment conducted on a non-ripe snowpack suggested the development of preferential flow paths that allowed rainwater to efficiently propagate through the snowpack limiting the time for mass exchange processes to take effect. In contrast, experiments conducted on ripe isothermal snowpack showed a slower response behaviour and resulted in a total runoff volume which consisted of less than 50 % of the rain input.
Establishment of Hydrographic Shore Control by Doppler Satellite Techniques.
1984-06-01
entered in 8116,h 20. if different tromn Report) 10.SPAccuNTRaY NSdrs AHOacurcystndrd, raslcaio, IS. AEY WRDC (Continue en roer@e side it necessary And...the Defense Mapping Agency, Hydrographic-Topographlc Center (DMA-HTC); the ephemerides are computed and distributed by the DMA-HTC [Ref. 3J. The...all,_ C: En m zz E-4~E- 0 .4 0 = 0 z 4 .4 z 4 c -4 4 1 0j 0 heU 7 60 VIII. ACCURACY STANDARDS AND SPECIFICATIONS A. CURRENT ACCURACY
Kronholm, Scott C.; Capel, Paul D.
2015-01-01
Quantifying the relative contributions of different sources of water to a stream hydrograph is important for understanding the hydrology and water quality dynamics of a given watershed. To compare the performance of two methods of hydrograph separation, a graphical program [baseflow index (BFI)] and an end-member mixing analysis that used high-resolution specific conductance measurements (SC-EMMA) were used to estimate daily and average long-term slowflow additions of water to four small, primarily agricultural streams with different dominant sources of water (natural groundwater, overland flow, subsurface drain outflow, and groundwater from irrigation). Because the result of hydrograph separation by SC-EMMA is strongly related to the choice of slowflow and fastflow end-member values, a sensitivity analysis was conducted based on the various approaches reported in the literature to inform the selection of end-members. There were substantial discrepancies among the BFI and SC-EMMA, and neither method produced reasonable results for all four streams. Streams that had a small difference in the SC of slowflow compared with fastflow or did not have a monotonic relationship between streamflow and stream SC posed a challenge to the SC-EMMA method. The utility of the graphical BFI program was limited in the stream that had only gradual changes in streamflow. The results of this comparison suggest that the two methods may be quantifying different sources of water. Even though both methods are easy to apply, they should be applied with consideration of the streamflow and/or SC characteristics of a stream, especially where anthropogenic water sources (irrigation and subsurface drainage) are present.
Quantification of sewer system infiltration using delta(18)O hydrograph separation.
Prigiobbe, V; Giulianelli, M
2009-01-01
The infiltration of parasitical water into two sewer systems in Rome (Italy) was quantified during a dry weather period. Infiltration was estimated using the hydrograph separation method with two water components and delta(18)O as a conservative tracer. The two water components were groundwater, the possible source of parasitical water within the sewer, and drinking water discharged into the sewer system. This method was applied at an urban catchment scale in order to test the effective water-tightness of two different sewer networks. The sampling strategy was based on an uncertainty analysis and the errors have been propagated using Monte Carlo random sampling. Our field applications showed that the method can be applied easily and quickly, but the error in the estimated infiltration rate can be up to 20%. The estimated infiltration into the recent sewer in Torraccia is 14% and can be considered negligible given the precision of the method, while the old sewer in Infernetto has an estimated infiltration of 50%.
NASA Astrophysics Data System (ADS)
Bhattacharjya, Rajib Kumar
2018-05-01
The unit hydrograph and the infiltration parameters of a watershed can be obtained from observed rainfall-runoff data by using inverse optimization technique. This is a two-stage optimization problem. In the first stage, the infiltration parameters are obtained and the unit hydrograph ordinates are estimated in the second stage. In order to combine this two-stage method into a single stage one, a modified penalty parameter approach is proposed for converting the constrained optimization problem to an unconstrained one. The proposed approach is designed in such a way that the model initially obtains the infiltration parameters and then searches the optimal unit hydrograph ordinates. The optimization model is solved using Genetic Algorithms. A reduction factor is used in the penalty parameter approach so that the obtained optimal infiltration parameters are not destroyed during subsequent generation of genetic algorithms, required for searching optimal unit hydrograph ordinates. The performance of the proposed methodology is evaluated by using two example problems. The evaluation shows that the model is superior, simple in concept and also has the potential for field application.
Hydrographic Basins Analysis Using Digital Terrain Modelling
NASA Astrophysics Data System (ADS)
Mihaela, Pişleagă; -Minda Codruţa, Bădăluţă; Gabriel, Eleş; Daniela, Popescu
2017-10-01
The paper, emphasis the link between digital terrain modelling and studies of hydrographic basins, concerning the hydrological processes analysis. Given the evolution of computing techniques but also of the software digital terrain modelling made its presence felt increasingly, and established itself as a basic concept in many areas, due to many advantages. At present, most digital terrain modelling is derived from three alternative sources such as ground surveys, photogrammetric data capture or from digitized cartographic sources. A wide range of features may be extracted from digital terrain models, such as surface, specific points and landmarks, linear features but also areal futures like drainage basins, hills or hydrological basins. The paper highlights how the use appropriate software for the preparation of a digital terrain model, a model which is subsequently used to study hydrographic basins according to various geomorphological parameters. As a final goal, it shows the link between digital terrain modelling and hydrographic basins study that can be used to optimize the correlation between digital model terrain and hydrological processes in order to obtain results as close to the real field processes.
Temporal variations in baseflow for the Little River Experimental Watershed in South Georgia
USDA-ARS?s Scientific Manuscript database
Hydrology is the driving force of sediment, nutrient, and pesticide movement. Separation of streamflow hydrographs into rapid surface runoff and baseflow can vastly improve our understanding of watershed processes. Data collected at the Little River Experimental Watershed (LREW) in the South Atlanti...
The role of event water, a rapid shallow flow component, and catchment size in summer stormflow
Brown, V.A.; McDonnell, Jeffery J.; Burns, Douglas A.; Kendall, C.
1999-01-01
Seven nested headwater catchments (8 to 161 ha) were monitored during five summer rain events to evaluate storm runoff components and the effect of catchment size on water sources. Two-component isotopic hydrograph separation showed that event-water contributions near the time of peakflow ranged from 49% to 62% in the 7 catchments during the highest intensity event. The proportion of event water in stormflow was greater than could be accounted for by direct precipitation onto saturated areas. DOC concentrations in stormflow were strongly correlated with stream 18O composition. Bivariate mixing diagrams indicated that the large event water contributions were likely derived from flow through the soil O-horizon. Results from two-tracer, three-component hydrograph separations showed that the throughfall and O-horizon soil-water components together could account for the estimated contributions of event water to stormflow. End-member mixing analysis confirmed these results. Estimated event-water contributions were inversely related to catchment size, but the relation was significant for only the event with greatest rainfall intensity. Our results suggest that perched, shallow subsurface flow provides a substantial contribution to summer stormflow in these small catchments, but the relative contribution of this component decreases with catchment size.Seven nested headwater catchments (8 to 161 ha) were monitored during five summer rain events to evaluate storm runoff components and the effect of catchment size on water sources. Two-component isotopic hydrograph separation showed that event-water contributions near the time of peakflow ranged from 49% to 62% in the 7 catchments during the highest intensity event. The proportion of event water in stormflow was greater than could be accounted for by direct precipitation onto saturated areas. DOC concentrations in stormflow were strongly correlated with stream 18O composition. Bivariate mixing diagrams indicated that the large event water contributions were likely derived from flow through the soil O-horizon. Results from two-tracer, three-component hydrograph separations showed that the throughfall and O-horizon soil-water components together could account for the estimated contributions of event water to stormflow. End-member mixing analysis confirmed these results. Estimated event-water contributions were inversely related to catchment size, but the relation was significant for only the event with greatest rainfall intensity. Our results suggest that perched, shallow subsurface flow provides a substantial contribution to summer stormflow in these small catchments, but the relative contribution of this component decreases with catchment size.
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
SEPHYDRO: An Integrated Multi-Filter Web-Based Tool for Baseflow Separation
NASA Astrophysics Data System (ADS)
Serban, D.; MacQuarrie, K. T. B.; Popa, A.
2017-12-01
Knowledge of baseflow contributions to streamflow is important for understanding watershed scale hydrology, including groundwater-surface water interactions, impact of geology and landforms on baseflow, estimation of groundwater recharge rates, etc. Baseflow (or hydrograph) separation methods can be used as supporting tools in many areas of environmental research, such as the assessment of the impact of agricultural practices, urbanization and climate change on surface water and groundwater. Over the past few decades various digital filtering and graphically-based methods have been developed in an attempt to improve the assessment of the dynamics of the various sources of streamflow (e.g. groundwater, surface runoff, subsurface flow); however, these methods are not available under an integrated platform and, individually, often require significant effort for implementation. Here we introduce SEPHYDRO, an open access, customizable web-based tool, which integrates 11 algorithms allowing for separation of streamflow hydrographs. The streamlined interface incorporates a reference guide as well as additional information that allows users to import their own data, customize the algorithms, and compare, visualise and export results. The tool includes one-, two- and three-parameter digital filters as well as graphical separation methods and has been successfully applied in Atlantic Canada, in studies dealing with nutrient loading to fresh water and coastal water ecosystems. Future developments include integration of additional separation algorithms as well as incorporation of geochemical separation methods. SEPHYDRO has been developed through a collaborative research effort between the Canadian Rivers Institute, University of New Brunswick (Fredericton, New Brunswick, Canada), Agriculture and Agri-Food Canada and Environment and Climate Change Canada and is currently available at http://canadianriversinstitute.com/tool/
Snow survey and vegetation growth in high mountains (Swiss Alps)
NASA Technical Reports Server (NTRS)
Haefner, H. (Principal Investigator)
1973-01-01
The author has identified the following significant results. A method for mapping snow over large areas was developed combining the possibilities of a Quantimet (QTM 72) to evaluate the exact density level of the snow cover for each individual image (or a selected section of the photo) with the higher resolution of photographic techniques. The density level established on the monitor by visual control is used as reference for the exposure time of a lithographic film, producing a clear tonal separation of all snow- and ice-covered areas from uncovered land in black and white. The data is projected onto special maps 1:500,000 or 1:100,000 showing the contour lines and the hydrographic features only. The areal extent of the snow cover may be calculated directly with the QTM 720 or on the map. Bands 4 and 5 provide the most accurate results for mapping snow. Using all four bands a separation of an old melting snow cover from a new one is possible. Regional meteorological studies combining ERTS-1 imagery and conventional sources describe synoptical evolution of meteorological systems over the Alps.
Accuracy of selected techniques for estimating ice-affected streamflow
Walker, John F.
1991-01-01
This paper compares the accuracy of selected techniques for estimating streamflow during ice-affected periods. The techniques are classified into two categories - subjective and analytical - depending on the degree of judgment required. Discharge measurements have been made at three streamflow-gauging sites in Iowa during the 1987-88 winter and used to established a baseline streamflow record for each site. Using data based on a simulated six-week field-tip schedule, selected techniques are used to estimate discharge during the ice-affected periods. For the subjective techniques, three hydrographers have independently compiled each record. Three measures of performance are used to compare the estimated streamflow records with the baseline streamflow records: the average discharge for the ice-affected period, and the mean and standard deviation of the daily errors. Based on average ranks for three performance measures and the three sites, the analytical and subjective techniques are essentially comparable. For two of the three sites, Kruskal-Wallis one-way analysis of variance detects significant differences among the three hydrographers for the subjective methods, indicating that the subjective techniques are less consistent than the analytical techniques. The results suggest analytical techniques may be viable tools for estimating discharge during periods of ice effect, and should be developed further and evaluated for sites across the United States.
NASA Astrophysics Data System (ADS)
Huang, C. L.; Hsu, N. S.; Yeh, W. W. G.; Hsieh, I. H.
2017-12-01
This study develops an innovative calibration method for regional groundwater modeling by using multi-class empirical orthogonal functions (EOFs). The developed method is an iterative approach. Prior to carrying out the iterative procedures, the groundwater storage hydrographs associated with the observation wells are calculated. The combined multi-class EOF amplitudes and EOF expansion coefficients of the storage hydrographs are then used to compute the initial gauss of the temporal and spatial pattern of multiple recharges. The initial guess of the hydrogeological parameters are also assigned according to in-situ pumping experiment. The recharges include net rainfall recharge and boundary recharge, and the hydrogeological parameters are riverbed leakage conductivity, horizontal hydraulic conductivity, vertical hydraulic conductivity, storage coefficient, and specific yield. The first step of the iterative algorithm is to conduct the numerical model (i.e. MODFLOW) by the initial guess / adjusted values of the recharges and parameters. Second, in order to determine the best EOF combination of the error storage hydrographs for determining the correction vectors, the objective function is devised as minimizing the root mean square error (RMSE) of the simulated storage hydrographs. The error storage hydrograph are the differences between the storage hydrographs computed from observed and simulated groundwater level fluctuations. Third, adjust the values of recharges and parameters and repeat the iterative procedures until the stopping criterion is reached. The established methodology was applied to the groundwater system of Ming-Chu Basin, Taiwan. The study period is from January 1st to December 2ed in 2012. Results showed that the optimal EOF combination for the multiple recharges and hydrogeological parameters can decrease the RMSE of the simulated storage hydrographs dramatically within three calibration iterations. It represents that the iterative approach that using EOF techniques can capture the groundwater flow tendency and detects the correction vector of the simulated error sources. Hence, the established EOF-based methodology can effectively and accurately identify the multiple recharges and hydrogeological parameters.
Spatiotemporal tracer variability in glacier melt and its influence on hydrograph separation
NASA Astrophysics Data System (ADS)
Schmieder, Jan; Marke, Thomas; Strasser, Ulrich
2017-04-01
Glaciers are important seasonal water contributors in many mountainous regions. Knowledge on the timing and amount of glacier melt water is crucial for water resources management, especially in downstream regions where the water is needed (hydropower, drinking water) or where it represents a potential risk (drought, flood). This becomes even more relevant in a changing climate. Environmental tracers are a useful tool in the assessment of ice water resources, because they provide information about the sources, flow paths and traveling times of water contributing to streamflow at the catchment scale. Hydrometric and meteorological measurements combined with tracer analyses help to unravel streamflow composition and improve the understanding of hydroclimatological processes. Empirical studies on runoff composition are necessary to parameterize and validate hydrological models in a process-oriented manner, rather than comparing total measured and simulated runoff only. In the present study three approaches of hydrograph separation are compared to decide which sampling frequency is required to capture the spatiotemporal variability of glacier melt, and to draw implications for future studies of streamflow partitioning. Therefore glacier melt contributions to a proglacial stream at the sub-daily, daily, and seasonal scale were estimated using electrical conductivity and oxygen-18 as tracers. The field work was conducted during December 2015 and September 2016 in the glaciated (34%) high-elevation catchment of the Hochjochbach, a small sub-basin (17 km2) of the Oetztaler Ache river in the Austrian Alps, ranging from 2400 to 3500 m a.s.l. in elevation. Hydroclimatological data was provided by an automatic weather station and a streamflow gauging station equipped with a pressure transducer. Water samples of streamflow, glacier melt, and rain were collected throughout the winter period (December to March) and the ablation season (July to September). In the proposed contribution, the experimental setup and preliminary results are described and discussed for the three approaches (sub-daily, daily, seasonal) of three-component hydrograph separations (glacier melt, rain, and groundwater).
A technique for estimating time of concentration and storage coefficient values for Illinois streams
Graf, Julia B.; Garklavs, George; Oberg, Kevin A.
1982-01-01
Values of the unit hydrograph parameters time of concentration (TC) and storage coefficient (R) can be estimated for streams in Illinois by a two-step technique developed from data for 98 gaged basins in the State. The sum of TC and R is related to stream length (L) and main channel slope (S) by the relation (TC + R)e = 35.2L0.39S-0.78. The variable R/(TC + R) is not significantly correlated with drainage area, slope, or length, but does exhibit a regional trend. Regional values of R/(TC + R) are used with the computed values of (TC + R)e to solve for estimated values of time of concentration (TCe) and storage coefficient (Re). The use of the variable R/(TC + R) is thought to account for variations in unit hydrograph parameters caused by physiographic variables such as basin topography, flood-plain development, and basin storage characteristics. (USGS)
Recognition of handprinted characters for automated cartography A progress report
NASA Technical Reports Server (NTRS)
Lybanon, M.; Brown, R. M.; Gronmeyer, L. K.
1980-01-01
A research program for developing handwritten character recognition techniques is reported. The generation of cartographic/hydrographic manuscripts is overviewed. The performance of hardware/software systems is discussed, along with future research problem areas and planned approaches.
NASA Astrophysics Data System (ADS)
Hurst, A. A.; Anderson, R. S.; Tucker, G. E.
2017-12-01
Erosion of bedrock river channels exerts significant control on landscape evolution because it communicates climatic and tectonic signals across a landscape by setting the lower erosional boundaries for hillslopes. Hillslope erosion delivers sediment to the channels, which then either store or transport the sediment. At times of high storage, access to the bedrock floor of the channel is limited, inhibiting bedrock erosion. This affects the timescale of channel response to imposed base-level lowering, which in turn affects hillslope erosion. Because occasional exposure of the bedrock bed is a minimum prerequisite for bedrock erosion, we seek to understand the evolution of sediment cover, or scour history, with sufficient resolution to answer when and where the bed is exposed. The scour history at a site is governed by grain size, bed and channel morphology, sediment concentration in the water, and seasonal flow conditions (hydrograph). The transient nature of bedrock exposure during high-flow events implies that short-term sediment cover dynamics are important for predicting long-term bedrock incision rates. Models of channel profile evolution, or of landscape evolution, generally ignore evolution of sediment cover on the hydrograph timescale. To develop insight into the necessary and sufficient conditions for bedrock exposure followed by reburial, we have developed a 1-D model of the evolution of alluvial cover thickness in a long channel profile in response to a seasonal hydrograph. This model tracks erosion, deposition, and the concentration of sediment in the water column separately, and generates histories of scour and fill over the course of the hydrograph. We compare the model's predictions with net-scour measurements in tributaries of the Grand Canyon and with scour-chain and accelerometer measurements in the Cedar River, Washington. By addressing alluvial scour on short timescales, we acknowledge the processes required to allow bedrock incision and landscape evolution over longer timescales.
Hydrograph simulation models of the Hillsborough and Alafia Rivers, Florida: a preliminary report
Turner, James F.
1972-01-01
Mathematical (digital) models that simulate flood hydrographs from rainfall records have been developed for the following gaging stations in the Hillsborough and Alafia River basins of west-central Florida: Hillsborough River near Tampa, Alafia River at Lithia, and north Prong Alafia River near Keysville. These models, which were developed from historical streamflow and and rainfall records, are based on rainfall-runoff and unit-hydrograph procedures involving an arbitrary separation of the flood hydrograph. These models assume the flood hydrograph to be composed of only two flow components, direct (storm) runoff, and base flow. Expressions describing these two flow components are derived from streamflow and rainfall records and are combined analytically to form algorithms (models), which are programmed for processing on a digital computing system. Most Hillsborough and Alafia River flood discharges can be simulated with expected relative errors less than or equal to 30 percent and flood peaks can be simulated with average relative errors less than 15 percent. Because of the inadequate rainfall network that is used in obtaining input data for the North Prong Alafia River model, simulated peaks are frequently in error by more than 40 percent, particularly for storms having highly variable areal rainfall distribution. Simulation errors are the result of rainfall sample errors and, to a lesser extent, model inadequacy. Data errors associated with the determination of mean basin precipitation are the result of the small number and poor areal distribution of rainfall stations available for use in the study. Model inadequacy, however, is attributed to the basic underlying theory, particularly the rainfall-runoff relation. These models broaden and enhance existing water-management capabilities within these basins by allowing the establishment and implementation of programs providing for continued development in these areas. Specifically, the models serve not only as a basis for forecasting floods, but also for simulating hydrologic information needed in flood-plain mapping and delineating and evaluating alternative flood control and abatement plans.
Sherwood, J.M.
1986-01-01
Methods are presented for estimating peak discharges, flood volumes and hydrograph shapes of small (less than 5 sq mi) urban streams in Ohio. Examples of how to use the various regression equations and estimating techniques also are presented. Multiple-regression equations were developed for estimating peak discharges having recurrence intervals of 2, 5, 10, 25, 50, and 100 years. The significant independent variables affecting peak discharge are drainage area, main-channel slope, average basin-elevation index, and basin-development factor. Standard errors of regression and prediction for the peak discharge equations range from +/-37% to +/-41%. An equation also was developed to estimate the flood volume of a given peak discharge. Peak discharge, drainage area, main-channel slope, and basin-development factor were found to be the significant independent variables affecting flood volumes for given peak discharges. The standard error of regression for the volume equation is +/-52%. A technique is described for estimating the shape of a runoff hydrograph by applying a specific peak discharge and the estimated lagtime to a dimensionless hydrograph. An equation for estimating the lagtime of a basin was developed. Two variables--main-channel length divided by the square root of the main-channel slope and basin-development factor--have a significant effect on basin lagtime. The standard error of regression for the lagtime equation is +/-48%. The data base for the study was established by collecting rainfall-runoff data at 30 basins distributed throughout several metropolitan areas of Ohio. Five to eight years of data were collected at a 5-min record interval. The USGS rainfall-runoff model A634 was calibrated for each site. The calibrated models were used in conjunction with long-term rainfall records to generate a long-term streamflow record for each site. Each annual peak-discharge record was fitted to a Log-Pearson Type III frequency curve. Multiple-regression techniques were then used to analyze the peak discharge data as a function of the basin characteristics of the 30 sites. (Author 's abstract)
Stricker, Virginia
1983-01-01
The base flow component of streamflow was separated from hydrographs for unregulated streams in the Cretaceous and Tertiary clastic outcrop area of South Carolina, Georgia, Alabama, and Mississippi. The base flow values are used in estimating recharge to the sand aquifer. Relations developed between mean annual base flow and stream discharge at the 60- and 65-percent streamflow duration point can be used to approximate mean annual base flow in lieu of hydrograph separation methods for base flows above 10 cu ft/s. Base flow recession curves were used to derive estimates of hydraulic diffusivity of the aquifer which was converted to transmissivity using estimated specific yield. These base-flow-derived transmissivities are in general agreement with transmissivities derived from well data. The shape of flow duration curves of streams is affected by the lithology of the Coastal Plain sediments. Steep flow duration curves appear to be associated with basins underlain by clay or chalk where a low percentage of the discharge is base flow while flatter curves appear to be associated with basins underlain by sand and gravel where a high percentage of the discharge is base flow. (USGS)
SIMULATION OF FLOOD HYDROGRAPHS FOR GEORGIA STREAMS.
Inman, E.J.; Armbruster, J.T.
1986-01-01
Flood hydrographs are needed for the design of many highway drainage structures and embankments. A method for simulating these flood hydrographs at urban and rural ungauged sites in Georgia is presented. The O'Donnell method was used to compute unit hydrographs from 355 flood events from 80 stations. An average unit hydrograph and an average lag time were computed for each station. These average unit hydrographs were transformed to unit hydrographs having durations of one-fourth, one-third, one-half, and three-fourths lag time and then reduced to dimensionless terms by dividing the time by lag time and the discharge by peak discharge. Hydrographs were simulated for these 355 flood events and their widths were compared with the widths of the observed hydrographs at 50 and 75 percent of peak flow. For simulating hydrographs at sites larger than 500 mi**2, the U. S. Geological Survey computer model CONROUT can be used.
NASA Astrophysics Data System (ADS)
McGlynn, B. L.; McGlynn, B. L.; McDonnell, J. J.; Hooper, R. P.; Shanley, J. B.; Hjerdt, K. N.; Hjerdt, K. N.
2001-12-01
It is often assumed that hillslope and riparian areas constitute the two most important and identifiable landscape units contributing to catchment runoff in upland humid catchments. Nevertheless, the relative amount and timing of hillslope versus riparian contributions to stormflow are poorly understood across different watersheds. We quantified the contributions of hillslopes and riparian zones to stormflow using physical, chemical, and isotopic techniques across 3 diverse ({ ~}15 ha) headwater catchments: a highly responsive steep wet watershed (Maimai, New Zealand), a moderately steep snowmelt dominated watershed (Sleepers, River, VT), and at a highly seasonal relatively low relief watershed (Panola Mt., Georgia). We monitored catchment runoff, internal hydrological response, and isotopic and solute dynamics for discrete riparian and hillslope zones within each catchment. Monitored catchment positions, including hillslope trenches at Maimai and Panola, were used to characterize directly, the hydrologic response and source water signatures for hillslope zones and riparian zones. We also examined the spatial and temporal source components of catchment stormflow using 3-component mass balance hydrograph separation techniques. At Maimai, NZ we found that hillslope runoff comprised 47-55% of total runoff during a 70 mm event. Despite the large amount of subsurface hillslope runoff in total catchment stormflow, riparian and channel zones accounted for 28% out of 29% of the total new water measured catchment runoff. Riparian water dominated the storm hydrograph composition early in the event, although hillslope water reached the catchment outlet soon after hillslope water tables were developed. Preliminary results for Sleepers River, VT and Panola Mountain, GA indicate that the timing and relative proportion of hillslope water in catchment runoff is later and smaller than at Maimai. Our multi-catchment comparison suggests that the ratio of the riparian reservoir to the hillslope reservoir/stormflow flux partially controls the relative contributions of hillslope and riparian zones to catchment runoff and solute dynamics.
15 CFR 996.23 - Audit and decertification of hydrographic products.
Code of Federal Regulations, 2011 CFR
2011-01-01
... ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES Certification of a Hydrographic Product and Decertification. § 996.23 Audit and decertification of hydrographic products. (a) NOAA may audit...
15 CFR 996.23 - Audit and decertification of hydrographic products.
Code of Federal Regulations, 2013 CFR
2013-01-01
... ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES Certification of a Hydrographic Product and Decertification. § 996.23 Audit and decertification of hydrographic products. (a) NOAA may audit...
15 CFR 996.23 - Audit and decertification of hydrographic products.
Code of Federal Regulations, 2014 CFR
2014-01-01
... ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES Certification of a Hydrographic Product and Decertification. § 996.23 Audit and decertification of hydrographic products. (a) NOAA may audit...
15 CFR 996.23 - Audit and decertification of hydrographic products.
Code of Federal Regulations, 2012 CFR
2012-01-01
... ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES Certification of a Hydrographic Product and Decertification. § 996.23 Audit and decertification of hydrographic products. (a) NOAA may audit...
15 CFR 996.20 - Submission of a hydrographic product for certification.
Code of Federal Regulations, 2010 CFR
2010-01-01
... QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES Certification of a Hydrographic Product and Decertification. § 996.20 Submission of a hydrographic product for certification. (a...
NASA Astrophysics Data System (ADS)
Kireeva, Maria; Sazonov, Alexey; Rets, Ekaterina; Ezerova, Natalia; Frolova, Natalia; Samsonov, Timofey
2017-04-01
Detection of the rivers' feeding type is a complex and multifactor task. Such partitioning should be based, on the one hand, on the genesis of the feeding water, on the other hand, on its physical path. At the same time it should consider relationship of the feeding type with corresponding phase of the water regime. Due to the above difficulties and complexity of the approach, there are many different variants of separation of flow hydrograph for feeding types. The most common method is extraction of so called basic component which in one way or another reflects groundwater feeding of the river. In this case, the selection most often is based on the principle of local minima or graphic separation of this component. However, in this case neither origin of the water nor corresponding phase of water regime is considered. In this paper, the authors offer a method of complex automated analysis of genetic components of the river's feeding together with the separation of specific phases of the water regime. The objects of the study are medium and large rivers of European Russia having a pronounced spring flood, formed due to melt water, and summer-autumn and winter low water which is periodically interrupted by rain or thaw flooding. The method is based on genetic separation of hydrograph proposed in 1960s years by B. I. Kudelin. This technique is considered for large rivers having hydraulic connection with groundwater horizons during flood. For better detection of floods genesis the analysis involves reanalysis data on temperature and precipitation. Separation is based on the following fundamental graphic-analytical principles: • Ground feeding during the passage of flood peak tends to zero • Beginning of the flood is determined as the exceeding of critical value of low water discharge • Flood periods are determined on the basis of exceeding the critical low-water discharge; they relate to thaw in case of above-zero temperatures • During thaw and rain floods, ground feeding is determined using interpolation of values before and after the flood • Floods during the rise and fall of high water are determined using depletion curves plotting • Groundwater component of runoff is divided into dynamic and static parts. The algorithm of subdivision described was formalized in the form of a program code in Fortran, with the connection of additional modules of R-Studio. The use of two languages allows, on the one hand, to speed up the processing of a large array of daily water discharges, on the other hand, to facilitate visualization and interpretation of results. The algorithm includes the selection of 15 calibration parameters describing the characteristics of each watershed. Verification and calibration of the program was carried out for 20 rivers of European Russia. According to calculations, there is a significant increase in the groundwater flow component in the most part of watershed and an increase in the role of flooding as the phase of the water regime as a whole. This research was supported by Russian Foundation for Basic Research (contract No. 16-35-60080).
IDENTIFICATION OF SEDIMENT SOURCE AREAS WITHIN A WATERSHED
Two methods, one using a travel time approach and the other based on optimization techniques, were developed to identify sediment generating areas within a watershed. Both methods rely on hydrograph and sedimentograph data collected at the mouth of the watershed. Data from severa...
Farahmand, Touraj; Fleming, Sean W; Quilty, Edward J
2007-10-01
Urbanization often alters catchment storm responses, with a broad range of potentially significant environmental and engineering consequences. At a practical, site-specific management level, efficient and effective assessment and control of such downstream impacts requires a technical capability to rapidly identify development-induced storm hydrograph changes. The method should also speak specifically to alteration of internal watershed dynamics, require few resources to implement, and provide results that are intuitively accessible to all watershed stakeholders. In this short paper, we propose a potential method which might satisfy these criteria. Our emphasis lies upon the integration of existing concepts to provide tools for pragmatic, relatively low-cost environmental monitoring and management. The procedure involves calibration of rainfall-runoff time-series models in each of several successive time windows, which sample varying degrees of watershed urbanization. As implemented here, only precipitation and stream discharge or stage data are required. The readily generated unit impulse response functions of these time-series models might then provide a mathematically formal, yet visually based and intuitive, representation of changes in watershed storm response. Nominally, the empirical response functions capture such changes as soon as they occur, and the assessments of storm hydrograph alteration are independent of variability in meteorological forcing. We provide a preliminary example of how the technique may be applied using a low-order linear ARX model. The technique may offer a fresh perspective on such watershed management issues, and potentially also several advantages over existing approaches. Substantial further testing is required before attempting to apply the concept as a practical environmental management technique; some possible directions for additional work are suggested.
NASA Astrophysics Data System (ADS)
Nichersu, Iulian; Mierla, Marian; Trifanov, Cristian
2013-04-01
Cumulative River Dynamic Assessment using Topo-Hydrographical High Definition Surveying in the Danube River area - Km 347-Km344 Iulian NICHERSU, Cristian TRIFANOV, Marian MIERLA The purpose of this paper is to depict and illustrate the benefits of Topo-Hydrographical High Definition Surveying (THHDS), also known as 3D multi-beam scanning, on a topo-hydrological survey application in Danube Valley. This research investigates the evolution of Danube river dynamics. We start with cross-sections made in 2002, 2007 and 2010 in this area and we coupled with 2012 THHDS. 3D multi-beam scanning method of data acquisition improve the spatial hydrological model and offers better dynamics assessment for future studies, considering that this area is carried out dredging works to improve navigation conditions - THHDS technique true modeling capabilities have applications in hydrotechnical works. Dynamics stands out on all 3 axes and cartographic documents have used both the 1930, 1950, and orthophoto images taken during flight to obtain the 3D model of the floodplain through LIDAR method, in 2007.
Simulation of flood hydrographs for Georgia streams
Inman, Ernest J.
1987-01-01
Flood hydrographs are needed for the design of many highway drainage structures and embankments. A method for simulating these flood hydrographs at ungaged sites in Georgia is presented in this report. The O'Donnell method was used to compute unit hydrographs and lagtimes for 355 floods at 80 gaging stations. An average unit hydrograph and an average lagtime were computed for each station. These average unit hydrographs were transformed to unit hydrographs having durations of one-fourth, one-third, one-half, and three-fourths lagtime, then reduced to dimensionless terms by dividing the time by lagtime and the discharge by peak discharge. Hydrographs were simulated for these 355 floods and their widths were compared with the widths of the observed hydrographs at 50 and 75 percent of peak flow. The dimensionless hydrograph based on one-half lagtime duration provided the best fit of the observed data. Multiple regression analysis was then used to define relations between lagtime and certain physical basin characteristics; of these characteristics, drainage area and slope were found to be significant for the rural-stream equations and drainage area, slope, and impervious area were found to be significant for the Atlanta urban-stream equation. A hydrograph can be simulated from the dimensionless hydrograph, the peak discharge of a specific recurrence interval, and the lagtime obtained from regression equations for any site in Georgia having a drainage area of less than 500 square miles. For simulating hydrographs at sites having basins larger than 500 square miles, the U.S. Geological Survey computer model CONROUT can be used. This model routes streamflow from an upstream channel location to a user-defined location downstream. The product of CONROUT is a simulated discharge hydrograph for the downstream site that has a peak discharge of a specific recurrence interval.
Kronholm, Scott C.; Capel, Paul D.
2016-01-01
Mixing models are a commonly used method for hydrograph separation, but can be hindered by the subjective choice of the end-member tracer concentrations. This work tests a new variant of mixing model that uses high-frequency measures of two tracers and streamflow to separate total streamflow into water from slowflow and fastflow sources. The ratio between the concentrations of the two tracers is used to create a time-variable estimate of the concentration of each tracer in the fastflow end-member. Multiple synthetic data sets, and data from two hydrologically diverse streams, are used to test the performance and limitations of the new model (two-tracer ratio-based mixing model: TRaMM). When applied to the synthetic streams under many different scenarios, the TRaMM produces results that were reasonable approximations of the actual values of fastflow discharge (±0.1% of maximum fastflow) and fastflow tracer concentrations (±9.5% and ±16% of maximum fastflow nitrate concentration and specific conductance, respectively). With real stream data, the TRaMM produces high-frequency estimates of slowflow and fastflow discharge that align with expectations for each stream based on their respective hydrologic settings. The use of two tracers with the TRaMM provides an innovative and objective approach for estimating high-frequency fastflow concentrations and contributions of fastflow water to the stream. This provides useful information for tracking chemical movement to streams and allows for better selection and implementation of water quality management strategies.
Mathematical modeling of synthetic unit hydrograph case study: Citarum watershed
NASA Astrophysics Data System (ADS)
Islahuddin, Muhammad; Sukrainingtyas, Adiska L. A.; Kusuma, M. Syahril B.; Soewono, Edy
2015-09-01
Deriving unit hydrograph is very important in analyzing watershed's hydrologic response of a rainfall event. In most cases, hourly measures of stream flow data needed in deriving unit hydrograph are not always available. Hence, one needs to develop methods for deriving unit hydrograph for ungagged watershed. Methods that have evolved are based on theoretical or empirical formulas relating hydrograph peak discharge and timing to watershed characteristics. These are usually referred to Synthetic Unit Hydrograph. In this paper, a gamma probability density function and its variant are used as mathematical approximations of a unit hydrograph for Citarum Watershed. The model is adjusted with real field condition by translation and scaling. Optimal parameters are determined by using Particle Swarm Optimization method with weighted objective function. With these models, a synthetic unit hydrograph can be developed and hydrologic parameters can be well predicted.
David D. Bosch; Randall G. Williams; Timothy C. Strickland; Jeff G. Arnold; Peter G. Allen
2016-01-01
Hydrology is the driving force of sediment, nutrient, and pesticide movement. Separation of streamflow hydrographs into rapid surface runoff and baseflow can vastly improve our understanding of chemical transport. In addition, characterizing these two components of streamflow can also greatly improve overall watershed hydrologic budgets which are critical for accurate...
Thermographic Data Analyses for Karst Watersheds
NASA Technical Reports Server (NTRS)
Campbell, C. Warren; McCaleb, Rebecca C. (Technical Monitor)
2001-01-01
Aerial thermography is an emerging technology unsurpassed for locating groundwater discharges. Thermography can be used to locate submerged discharges that are extremely difficult to find by other means. In two large projects, thermography was used to identify almost every significant spring at sites underlain by karst aquifers. This technology effectively converts Brown's Type 5 topology to types 1 or 2 (all discharges known), which has a significant impact on dye tracing. At a north Alabama site, springs located by thermography quadrupled the known groundwater discharge in and around the site. For submerged discharges, thermographic temperatures can be measured down the center of the groundwater plume that rises to the surface in the winter. Using the Cornell Mixing (CORMIX) model, flow rate for one submerged spring was estimated. Once identified, estimates of spring recharge area were desired. The size of the area of recharge was estimated by hydrograph separation of flow data from nearby, unregulated surface streams. Monthly recharge estimates were also made and used to show that in north Alabama the mean annual recharge/discharge occurs during May and December. Spring flow measurements for the same county of north Alabama were averaged to obtain mean flows. Then measurements for May only, were averaged. The two averages usually agreed to within 20 percent. This provides evidence that hydrograph separation determinations of recharge are valid.
Uncertainty Assessment of Synthetic Design Hydrographs for Gauged and Ungauged Catchments
NASA Astrophysics Data System (ADS)
Brunner, Manuela I.; Sikorska, Anna E.; Furrer, Reinhard; Favre, Anne-Catherine
2018-03-01
Design hydrographs described by peak discharge, hydrograph volume, and hydrograph shape are essential for engineering tasks involving storage. Such design hydrographs are inherently uncertain as are classical flood estimates focusing on peak discharge only. Various sources of uncertainty contribute to the total uncertainty of synthetic design hydrographs for gauged and ungauged catchments. These comprise model uncertainties, sampling uncertainty, and uncertainty due to the choice of a regionalization method. A quantification of the uncertainties associated with flood estimates is essential for reliable decision making and allows for the identification of important uncertainty sources. We therefore propose an uncertainty assessment framework for the quantification of the uncertainty associated with synthetic design hydrographs. The framework is based on bootstrap simulations and consists of three levels of complexity. On the first level, we assess the uncertainty due to individual uncertainty sources. On the second level, we quantify the total uncertainty of design hydrographs for gauged catchments and the total uncertainty of regionalizing them to ungauged catchments but independently from the construction uncertainty. On the third level, we assess the coupled uncertainty of synthetic design hydrographs in ungauged catchments, jointly considering construction and regionalization uncertainty. We find that the most important sources of uncertainty in design hydrograph construction are the record length and the choice of the flood sampling strategy. The total uncertainty of design hydrographs in ungauged catchments depends on the catchment properties and is not negligible in our case.
Identification of Flood Reactivity Regions via the Functional Clustering of Hydrographs
NASA Astrophysics Data System (ADS)
Brunner, Manuela I.; Viviroli, Daniel; Furrer, Reinhard; Seibert, Jan; Favre, Anne-Catherine
2018-03-01
Flood hydrograph shapes contain valuable information on the flood-generation mechanisms of a catchment. To make good use of this information, we express flood hydrograph shapes as continuous functions using a functional data approach. We propose a clustering approach based on functional data for flood hydrograph shapes to identify a set of representative hydrograph shapes on a catchment scale and use these catchment-specific sets of representative hydrographs to establish regions of catchments with similar flood reactivity on a regional scale. We applied this approach to flood samples of 163 medium-size Swiss catchments. The results indicate that three representative hydrograph shapes sufficiently describe the hydrograph shape variability within a catchment and therefore can be used as a proxy for the flood behavior of a catchment. These catchment-specific sets of three hydrographs were used to group the catchments into three reactivity regions of similar flood behavior. These regions were not only characterized by similar hydrograph shapes and reactivity but also by event magnitudes and triggering event conditions. We envision these regions to be useful in regionalization studies, regional flood frequency analyses, and to allow for the construction of synthetic design hydrographs in ungauged catchments. The clustering approach based on functional data which establish these regions is very flexible and has the potential to be extended to other geographical regions or toward the use in climate impact studies.
Neural network river forecasting through baseflow separation and binary-coded swarm optimization
NASA Astrophysics Data System (ADS)
Taormina, Riccardo; Chau, Kwok-Wing; Sivakumar, Bellie
2015-10-01
The inclusion of expert knowledge in data-driven streamflow modeling is expected to yield more accurate estimates of river quantities. Modular models (MMs) designed to work on different parts of the hydrograph are preferred ways to implement such approach. Previous studies have suggested that better predictions of total streamflow could be obtained via modular Artificial Neural Networks (ANNs) trained to perform an implicit baseflow separation. These MMs fit separately the baseflow and excess flow components as produced by a digital filter, and reconstruct the total flow by adding these two signals at the output. The optimization of the filter parameters and ANN architectures is carried out through global search techniques. Despite the favorable premises, the real effectiveness of such MMs has been tested only on a few case studies, and the quality of the baseflow separation they perform has never been thoroughly assessed. In this work, we compare the performance of MM against global models (GMs) for nine different gaging stations in the northern United States. Binary-coded swarm optimization is employed for the identification of filter parameters and model structure, while Extreme Learning Machines, instead of ANN, are used to drastically reduce the large computational times required to perform the experiments. The results show that there is no evidence that MM outperform global GM for predicting the total flow. In addition, the baseflow produced by the MM largely underestimates the actual baseflow component expected for most of the considered gages. This occurs because the values of the filter parameters maximizing overall accuracy do not reflect the geological characteristics of the river basins. The results indeed show that setting the filter parameters according to expert knowledge results in accurate baseflow separation but lower accuracy of total flow predictions, suggesting that these two objectives are intrinsically conflicting rather than compatible.
Bivariate analysis of floods in climate impact assessments.
Brunner, Manuela Irene; Sikorska, Anna E; Seibert, Jan
2018-03-01
Climate impact studies regarding floods usually focus on peak discharges and a bivariate assessment of peak discharges and hydrograph volumes is not commonly included. A joint consideration of peak discharges and hydrograph volumes, however, is crucial when assessing flood risks for current and future climate conditions. Here, we present a methodology to develop synthetic design hydrographs for future climate conditions that jointly consider peak discharges and hydrograph volumes. First, change factors are derived based on a regional climate model and are applied to observed precipitation and temperature time series. Second, the modified time series are fed into a calibrated hydrological model to simulate runoff time series for future conditions. Third, these time series are used to construct synthetic design hydrographs. The bivariate flood frequency analysis used in the construction of synthetic design hydrographs takes into account the dependence between peak discharges and hydrograph volumes, and represents the shape of the hydrograph. The latter is modeled using a probability density function while the dependence between the design variables peak discharge and hydrograph volume is modeled using a copula. We applied this approach to a set of eight mountainous catchments in Switzerland to construct catchment-specific and season-specific design hydrographs for a control and three scenario climates. Our work demonstrates that projected climate changes have an impact not only on peak discharges but also on hydrograph volumes and on hydrograph shapes both at an annual and at a seasonal scale. These changes are not necessarily proportional which implies that climate impact assessments on future floods should consider more flood characteristics than just flood peaks. Copyright © 2017. Published by Elsevier B.V.
Using diatoms, hydrochemical and stable isotope tracers to infer runoff generation processes
NASA Astrophysics Data System (ADS)
Martínez-Carreras, N.; Wetzel, C. E.; Frentress, J.; Hlúbiková, D.; Ector, L.; McDonnell, J. J.; Hoffmann, L.; Pfister, L.
2012-04-01
Imaginative techniques are needed to improve our understanding of runoff generation processes. In this context, the hydrological community calls to cut across disciplines looking for new and exciting advances in knowledge. In this study, hydrologists and ecologists have worked together to use not only hydrochemical and stable isotope tracers, but also diatoms to infer runoff generation processes. Diatoms, one of the most common and divers algal group, can be easily transported by flowing water due to their small size (~10-200 μm). They are present in most terrestrial habitats and their diversified species distributions are largely controlled by physico-geographical factors (e.g. light, temperature, pH and moisture). Thus, hydrological systems largely control diatom species community composition and distribution. This study was conducted in the schistose Weierbach catchment (0.45 km2, NW Luxembourg). Its runoff regime is characterised by seasonal variation and a delayed shallow groundwater component originating from a saprolite zone. The catchment was instrumented with piezometers, suction cups, an automatic streamwater sampler, a sequential rainfall sampler, and soil moisture and temperature sensors. Samples collected bi-weekly and during storm runoff events allowed the characterisation of the different end-members. Chemical and isotopic hydrograph separations of stream discharge were used to determine not only the geographic sources of water, but also the fractions of old and new water contributing to streamflow. Diatoms intra-storm variability was also analysed and samples of diatoms from various terrestrial and subaerial substrates (bryophytes, litter and leaves), as well as from aquatic habitats (epilithon, epipelon and drift samples) were regularly collected. Diatoms were then used to constrain assumptions and to confirm or reject the hypothesis of existing surface runoff during rainfall-runoff events and to document the intermittent character of hydrological connectivity between upland, riparian and aquatic zones. As an advantage, diatoms do not seem to be subject to some inherent limitations of the classical tracer-based hydrograph separation techniques, such as unrealistic mixing assumptions, unstable end-member solutions and temporally varying input concentrations. Results suggested a substantial contribution of soil water during winter events in the Weierbach catchment, whereas groundwater played a more significant role during summer events. Even though overland flow remained insignificant during most of the sampled events, terrestrial diatom abundance increased with precipitation in all sampled events suggesting a rapid connectivity between soil surface and stream water. We hypothesise the mobilization and flushing away of terrestrial diatoms through a subsurface network of macropores in the shallow soils.
NASA Astrophysics Data System (ADS)
Brunner, Manuela Irene; Seibert, Jan; Favre, Anne-Catherine
2018-02-01
Traditional design flood estimation approaches have focused on peak discharges and have often neglected other hydrograph characteristics such as hydrograph volume and shape. Synthetic design hydrograph estimation procedures overcome this deficiency by jointly considering peak discharge, hydrograph volume, and shape. Such procedures have recently been extended to allow for the consideration of process variability within a catchment by a flood-type specific construction of design hydrographs. However, they depend on observed runoff time series and are not directly applicable in ungauged catchments where such series are not available. To obtain reliable flood estimates, there is a need for an approach that allows for the consideration of process variability in the construction of synthetic design hydrographs in ungauged catchments. In this study, we therefore propose an approach that combines a bivariate index flood approach with event-type specific synthetic design hydrograph construction. First, regions of similar flood reactivity are delineated and a classification rule that enables the assignment of ungauged catchments to one of these reactivity regions is established. Second, event-type specific synthetic design hydrographs are constructed using the pooled data divided by event type from the corresponding reactivity region in a bivariate index flood procedure. The approach was tested and validated on a dataset of 163 Swiss catchments. The results indicated that 1) random forest is a suitable classification model for the assignment of an ungauged catchment to one of the reactivity regions, 2) the combination of a bivariate index flood approach and event-type specific synthetic design hydrograph construction enables the consideration of event types in ungauged catchments, and 3) the use of probabilistic class memberships in regional synthetic design hydrograph construction helps to alleviate the problem of misclassification. Event-type specific synthetic design hydrograph sets enable the inclusion of process variability into design flood estimation and can be used as a compromise between single best estimate synthetic design hydrographs and continuous simulation studies.
NASA Astrophysics Data System (ADS)
O'Brien, R. J.; Deakin, J.; Misstear, B.; Gill, L.; Flynn, R. M.
2012-12-01
An appreciation of the quantity of streamflow derived from the main hydrological groundwater and surface water pathways transporting diffuse pollutants is critical when addressing a wide range of water resource management issues. The Pathways Project, funded by the Irish EPA, is developing a Catchment Management Tool (CMT) as an aid to water resource decision makers. The pollutants investigated by the CMT include phosphorus, nitrogen, sediments, pesticides and pathogens. An important first step in this process is to provide reliable estimates of the slower responding groundwater pathways in conjunction with the quicker overland and interflow pathways. Four watersheds are being investigated, with continuous rainfall, discharge, temperature and conductivity data being collected at gauging points within each of the watersheds. These datasets are being used to populate the semi-distributed, lumped flow model, NAM and also the distributed, finite difference model, MODFLOW. One of the main challenges is to achieve credible separations of the hydrograph into the main pathways in relatively small catchments (sometimes less than 5km2) with short response times. To assist the numerical modelling, physical separation techniques have been used to constrain the separations within probable limits. Physical techniques include: Master Recession Analysis; a modified Lyne and Hollick one-parameter digital separation; an approach developed in Ireland involving the application of recharge coefficients to hydrologically effective rainfall estimates; and finally using the NAM and MODFLOW models themselves as means of investigating separations. The contribution from each of the pathways, combined with an understanding of the attenuation of the contaminants along those pathways, will inform the CMT. This understanding will lay the foundation for linking the parameters of the NAM model to watershed descriptors such as slope, drainage density, watershed area, soil type, etc., in order to predict the response of a watershed to rainfall. This is an important deliverable of this research and will be fundamental for initial investigations in ungauged watersheds. This approach to quantifying hydrological pathways will therefore have wider applicability across Ireland and in hydrological settings elsewhere internationally. The research is being carried out for the Environmental Protection Agency by a consortium involving Queen's University Belfast, University College Dublin and Trinity College Dublin. Pathway separations in a karst watershed. Observed discharge (Black) with separated pathways: quick diffuse flow (Blue); slow diffuse flow (Green); interflow (Light Blue) and overland flow (Red).
Knierim, Katherine J.; Pollock, Erik; Hays, Phillip D.
2013-01-01
Blowing Spring Cave in northwestern Arkansas is representative of cave systems in the karst of the Ozark Plateaus, and stable isotopes of water (δ18O and δ2H) and inorganic carbon (δ13C) were used to quantify soil-water, bedrock-matrix water, and precipitation contributions to cave-spring flow during storm events to understand controls on cave water quality. Water samples from recharge-zone soils and the cave were collected from March to May 2012 to implement a multicomponent hydrograph separation approach using δ18O and δ2H of water and dissolved inorganic carbon (δ13C–DIC). During baseflow, median δ2H and δ18O compositions were –41.6‰ and –6.2‰ for soil water and were –37.2‰ and –5.9‰ for cave water, respectively. Median DIC concentrations for soil and cave waters were 1.8 mg/L and 25.0 mg/L, respectively, and median δ13C–DIC compositions were –19.9‰ and –14.3‰, respectively. During a March storm event, 12.2 cm of precipitation fell over 82 h and discharge increased from 0.01 to 0.59 m3/s. The isotopic composition of precipitation varied throughout the storm event because of rainout, a change of 50‰ and 10‰ for δ2H and δ18O was observed, respectively. Although, at the spring, δ2H and δ18O only changed by approximately 3‰ and 1‰, respectively. The isotopic compositions of precipitation and pre-event (i.e., soil and bedrock matrix) water were isotopically similar and the two-component hydrograph separation was inaccurate, either overestimating (>100%) or underestimating (<0%) the precipitation contribution to the spring. During the storm event, spring DIC and δ13C–DIC decreased to a minimum of 8.6 mg/L and –16.2‰, respectively. If the contribution from precipitation was assumed to be zero, soil water was found to contribute between 23 to 72% of the total volume of discharge. Although the assumption of negligible contributions from precipitation is unrealistic, especially in karst systems where rapid flow through conduits occurs, the hydrograph separation using inorganic carbon highlights the importance of considering vadose-zone soil water when analyzing storm chemohydrographs.
Analog-Based Postprocessing of Navigation-Related Hydrological Ensemble Forecasts
NASA Astrophysics Data System (ADS)
Hemri, S.; Klein, B.
2017-11-01
Inland waterway transport benefits from probabilistic forecasts of water levels as they allow to optimize the ship load and, hence, to minimize the transport costs. Probabilistic state-of-the-art hydrologic ensemble forecasts inherit biases and dispersion errors from the atmospheric ensemble forecasts they are driven with. The use of statistical postprocessing techniques like ensemble model output statistics (EMOS) allows for a reduction of these systematic errors by fitting a statistical model based on training data. In this study, training periods for EMOS are selected based on forecast analogs, i.e., historical forecasts that are similar to the forecast to be verified. Due to the strong autocorrelation of water levels, forecast analogs have to be selected based on entire forecast hydrographs in order to guarantee similar hydrograph shapes. Custom-tailored measures of similarity for forecast hydrographs comprise hydrological series distance (SD), the hydrological matching algorithm (HMA), and dynamic time warping (DTW). Verification against observations reveals that EMOS forecasts for water level at three gauges along the river Rhine with training periods selected based on SD, HMA, and DTW compare favorably with reference EMOS forecasts, which are based on either seasonal training periods or on training periods obtained by dividing the hydrological forecast trajectories into runoff regimes.
Generation of synthetic flood hydrographs by hydrological donors (SHYDONHY method)
NASA Astrophysics Data System (ADS)
Paquet, Emmanuel
2017-04-01
For the design of hydraulic infrastructures like dams, a design hydrograph is required in most of the cases. Some of its features (e.g. peak value, duration, volume) corresponding to a given return period are computed thanks to a wide range of methods: historical records, mono or multivariate statistical analysis, stochastic simulation, etc. Then various methods have been proposed to construct design hydrographs having such characteristics, ranging from traditional unit-hydrograph to statistical methods (Yue et al., 2002). A new method to build design hydrographs (or more generally synthetic hydrographs) is introduced here, named SHYDONHY, French acronym for "Synthèse d'HYdrogrammes par DONneurs HYdrologiques". It is based on an extensive database of 100 000 flood hydrographs recorded at hourly time-step on 1300 gauging stations in France and Switzerland, covering a wide range of catchment size and climatology. For each station, an average of two hydrographs per year of record has been selected by a peak-over-threshold (POT) method with independence criteria (Lang et al., 1999). This sampling ensures that only hydrographs of intense floods are gathered in the dataset. For a given catchment, where few or no hydrograph is available at the outlet, a sub-set of 10 "donor stations" is selected within the complete dataset, considering several criteria: proximity, size, mean annual values and regimes for both total runoff and POT-selected floods. This sub-set of stations (and their corresponding flood hydrographs) will allow to: • Estimate a characteristic duration of flood hydrographs (e.g. duration for which the discharge is above 50% of the peak value). • For a given duration (e.g. one day), estimate the average peak-to- volume ratio of floods. • For a given duration and peak-to-volume ratio, generation of a synthetic reference hydrograph by combining appropriate hydrographs of the sub-set. • For a given daily discharge sequence, being observed or generated for extreme flood estimation, generate a suitable synthetic hydrograph, also by combining selected hydrographs of the sub-set. The reliability of the method is assessed by performing a jackknife validation on the whole dataset of stations, in particular by reconstructing the hydrograph of the biggest flood of each station and comparing it to the actual one. Some applications are presented, e.g. the coupling of SHYDONHY with the SCHADEX method (Paquet et al., 2003) for the stochastic simulation of extreme reservoir level in dams. References: Lang, M., Ouarda, T. B. M. J., & Bobée, B. (1999). Towards operational guidelines for over-threshold modeling. Journal of hydrology, 225(3), 103-117. Paquet, E., Garavaglia, F., Garçon, R., & Gailhard, J. (2013). The SCHADEX method: A semi-continuous rainfall-runoff simulation for extreme flood estimation. Journal of Hydrology, 495, 23-37. Yue, S., Ouarda, T. B., Bobée, B., Legendre, P., & Bruneau, P. (2002). Approach for describing statistical properties of flood hydrograph. Journal of hydrologic engineering, 7(2), 147-153.
Code of Federal Regulations, 2011 CFR
2011-01-01
... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC...: Hydrographic Product Quality Assurance Program, Office of Coast Survey, NOAA, 1315 East West Highway, Silver...
15 CFR 996.12 - Development of standards compliance tests for a hydrographic product or class.
Code of Federal Regulations, 2011 CFR
2011-01-01
..., DEPARTMENT OF COMMERCE QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES The... a hydrographic product or class. (a) NOAA shall work, to the extent practicable, through existing...
15 CFR 996.12 - Development of standards compliance tests for a hydrographic product or class.
Code of Federal Regulations, 2012 CFR
2012-01-01
..., DEPARTMENT OF COMMERCE QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES The... a hydrographic product or class. (a) NOAA shall work, to the extent practicable, through existing...
Code of Federal Regulations, 2012 CFR
2012-01-01
... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC...: Hydrographic Product Quality Assurance Program, Office of Coast Survey, NOAA, 1315 East West Highway, Silver...
15 CFR 996.12 - Development of standards compliance tests for a hydrographic product or class.
Code of Federal Regulations, 2013 CFR
2013-01-01
..., DEPARTMENT OF COMMERCE QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES The... a hydrographic product or class. (a) NOAA shall work, to the extent practicable, through existing...
Code of Federal Regulations, 2013 CFR
2013-01-01
... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC...: Hydrographic Product Quality Assurance Program, Office of Coast Survey, NOAA, 1315 East West Highway, Silver...
15 CFR 996.12 - Development of standards compliance tests for a hydrographic product or class.
Code of Federal Regulations, 2014 CFR
2014-01-01
..., DEPARTMENT OF COMMERCE QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES The... a hydrographic product or class. (a) NOAA shall work, to the extent practicable, through existing...
Code of Federal Regulations, 2014 CFR
2014-01-01
... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC...: Hydrographic Product Quality Assurance Program, Office of Coast Survey, NOAA, 1315 East West Highway, Silver...
15 CFR 996.12 - Development of standards compliance tests for a hydrographic product or class.
Code of Federal Regulations, 2010 CFR
2010-01-01
..., DEPARTMENT OF COMMERCE QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES The Quality Assurance Program for Hydrographic Products § 996.12 Development of standards compliance tests for...
Code of Federal Regulations, 2010 CFR
2010-01-01
... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES The Quality Assurance Program for Hydrographic Products § 996.10 Submission and...
15 CFR 996.13 - Determination of whether to offer certification for a hydrographic product or class.
Code of Federal Regulations, 2010 CFR
2010-01-01
... certification for a hydrographic product or class. 996.13 Section 996.13 Commerce and Foreign Trade Regulations..., DEPARTMENT OF COMMERCE QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES The...
Effect of Hydrograph Characteristics on Vertical Grain Sorting in Gravel Bed Rivers
NASA Astrophysics Data System (ADS)
Hassan, M. A.; Parker, G.; Egozi, R.
2005-12-01
This study focuses on the formation of armour layers over a range of hydrologic conditions that includes two limiting cases; a relatively flat hydrograph that represents conditions produced by continuous snowmelt and a sharply peaked hydrograph that represents conditions associated with flash floods. To achieve our objective we analyzed field evidence, conducted flume experiments and performed numerical simulations. Sediment supply appears to be a first-order control on bed surface armouring, while the shape of the hydrograph plays a secondary role. All constant hydrograph experiments developed a well-armored structured surface while short asymmetrical hydrographs did not show substantial vertical sorting. All symmetrical hydrographs show some degree of sorting, and the sorting tended to become more pronounced with longer duration. Using the numerical framework of Parker, modified Powell, et al. and Wilcock and Crowe, we were able to achieve similar results.
NASA Astrophysics Data System (ADS)
Seo, Y.; Choi, N.-J.; Schmidt, A. R.
2013-05-01
This paper addresses the mass balance error observed in runoff hydrographs in urban watersheds by introducing assumptions regarding the contribution of infiltrated rainfall from pervious areas and isolated impervious area (IIA) to the runoff hydrograph. Rainfall infiltrating into pervious areas has been assumed not to contribute to the runoff hydrograph until Hortonian excess rainfall occurs. However, mass balance analysis in an urban watershed indicates that rainfall infiltrated to pervious areas can contribute to direct runoff hydrograph, thereby offering an explanation for the long hydrograph tail commonly observed in runoff from urban storm sewers. In this study, a hydrologic analysis based on the width function is introduced, with two types of width functions obtained from both pervious and impervious areas, respectively. The width function can be regarded as the direct interpretation of the network response. These two width functions are derived to obtain distinct response functions for directly connected impervious areas (DCIA), IIA, and pervious areas. The results show significant improvement in the estimation of runoff hydrographs and suggest the need to consider the flow contribution from pervious areas to the runoff hydrograph. It also implies that additional contribution from flow paths through joints and cracks in sewer pipes needs to be taken into account to improve the estimation of runoff hydrographs in urban catchments.
NASA Astrophysics Data System (ADS)
Seo, Y.; Choi, N.-J.; Schmidt, A. R.
2013-09-01
This paper addresses the mass balance error observed in runoff hydrographs in urban watersheds by introducing assumptions regarding the contribution of infiltrated rainfall from pervious areas and isolated impervious area (IIA) to the runoff hydrograph. Rainfall infiltrating into pervious areas has been assumed not to contribute to the runoff hydrograph until Hortonian excess rainfall occurs. However, mass balance analysis in an urban watershed indicates that rainfall infiltrated to pervious areas can contribute directly to the runoff hydrograph, thereby offering an explanation for the long hydrograph tail commonly observed in runoff from urban storm sewers. In this study, a hydrologic analysis based on the width function is introduced, with two types of width functions obtained from both pervious and impervious areas, respectively. The width function can be regarded as the direct interpretation of the network response. These two width functions are derived to obtain distinct response functions for directly connected impervious areas (DCIA), IIA, and pervious areas. The results show significant improvement in the estimation of runoff hydrographs and suggest the need to consider the flow contribution from pervious areas to the runoff hydrograph. It also implies that additional contribution from flow paths through joints and cracks in sewer pipes needs to be taken into account to improve the estimation of runoff hydrographs in urban catchments.
Interest of A Morphological Explanation of The Unit Hydrograph Concept: Case of Urban Catchments
NASA Astrophysics Data System (ADS)
Rodriguez, F.; Cudennec, C.; Cellier, G.; Andrieu, H.
Expansion of urbanised areas has put emphasis on related water management prob- lems, such as flooding and pollution control, which requires a good knowledge of the hydrological response of urban catchments. Unfortunately, most of urban catchments are ungauged and their hydrological features must be deduced from existent data. A good description of the urban characteristics can give some advances in the field of urban hydrology : the geographical and physical knowledge of the city is made eas- ier by the emergence of urban data banks, introducing a meter-scale morphological description of the city. Linking the hydrological response of a catchment to its geo- morphology has been successfully implemented in natural settings within the concept of GIUH (Geomorphologic Instantaneous Unit Hydrograph). In the same manner, the available description of urban catchments makes it possible to deduce their hydrolog- ical behaviour throughout the Unit Hydrograph concept. We suggest to compare three complementary methods of determination of Unit Hydrographs, with increasing de- grees of description of the catchment morphology. The first method, presenting a high degree of accounting for the catchment morphology, is called MIUH (Morphologi- cal Instantaneous Unit Hydrograph; Rodriguez et al., 2000), and is derived from the analysis of urban databanks allowing an explicit description of the runoff production areas and their downstream flow channels. The second one, called H2U (Duchesne et al., 1997) and corresponding to a moderate degree, is a gamma law whose 2 pa- rameters are based on the Strahler order of the catchment and the mean hydraulic length of water paths through the drainage system. The third method, called FDTF (First Derivative Transfert Function; Duband et al., 1993) and corresponding to a low degree, is a validation method deriving Unit Hydrograph by a deconvolution itera- tive identification technique, from a sample of observed rainfall and flow data. The three methods are shortly summarised, and applied to two urban catchments of the Nantes urban center (60 and 180 ha), Western France. Their comparison is discussed and shows encouraging results. Deriving Unit Hydrographs from the morphology of ungauged catchment appears to be of high interest for hydrology, and the degree of accounting for informations about this morphology can be adapted according to the availability of geographical data on the studied catchment. Duchesne, J., C. Cudennec, and V. Corbierre, 1997. Relevance of the H2U model to 1 predict the discharge of a catchment, Water Science and Technology, 36(5), 169-175. Duband, D., C. Obled, and J. Rodriguez, 1993. Unit hydrograph revisited : an alterna- tive approach to UH and effective precipitation identification. Journal of Hydrology, 150(1): p 115-150. Rodriguez, F., H. Andrieu, J.D. Creutin, and G. Raimbault, 2000. Hydrological anal- ysis using urban data banks, paper presented at Hydroinformatics, IIHR Iowa City, USA. 2
Ganju, N.K.; Knowles, N.; Schoellhamer, D.H.
2008-01-01
In this study we used hydrologic proxies to develop a daily sediment load time-series, which agrees with decadal sediment load estimates, when integrated. Hindcast simulations of bathymetric change in estuaries require daily sediment loads from major tributary rivers, to capture the episodic delivery of sediment during multi-day freshwater flow pulses. Two independent decadal sediment load estimates are available for the Sacramento/San Joaquin River Delta, California prior to 1959, but they must be downscaled to a daily interval for use in hindcast models. Daily flow and sediment load data to the Delta are available after 1930 and 1959, respectively, but bathymetric change simulations for San Francisco Bay prior to this require a method to generate daily sediment load estimates into the Delta. We used two historical proxies, monthly rainfall and unimpaired flow magnitudes, to generate monthly unimpaired flows to the Sacramento/San Joaquin Delta for the 1851-1929 period. This step generated the shape of the monthly hydrograph. These historical monthly flows were compared to unimpaired monthly flows from the modern era (1967-1987), and a least-squares metric selected a modern water year analogue for each historical water year. The daily hydrograph for the modern analogue was then assigned to the historical year and scaled to match the flow volume estimated by dendrochronology methods, providing the correct total flow for the year. We applied a sediment rating curve to this time-series of daily flows, to generate daily sediment loads for 1851-1958. The rating curve was calibrated with the two independent decadal sediment load estimates, over two distinct periods. This novel technique retained the timing and magnitude of freshwater flows and sediment loads, without damping variability or net sediment loads to San Francisco Bay. The time-series represents the hydraulic mining period with sustained periods of increased sediment loads, and a dramatic decrease after 1910, corresponding to a reduction in available mining debris. The analogue selection procedure also permits exploration of the morphological hydrograph concept, where a limited set of hydrographs is used to simulate the same bathymetric change as the actual set of hydrographs. The final daily sediment load time-series and morphological hydrograph concept will be applied as landward boundary conditions for hindcasting simulations of bathymetric change in San Francisco Bay.
NASA Astrophysics Data System (ADS)
Koskelo, Antti I.; Fisher, Thomas R.; Utz, Ryan M.; Jordan, Thomas E.
2012-07-01
SummaryBaseflow separation methods are often impractical, require expensive materials and time-consuming methods, and/or are not designed for individual events in small watersheds. To provide a simple baseflow separation method for small watersheds, we describe a new precipitation-based technique known as the Sliding Average with Rain Record (SARR). The SARR uses rainfall data to justify each separation of the hydrograph. SARR has several advantages such as: it shows better consistency with the precipitation and discharge records, it is easier and more practical to implement, and it includes a method of event identification based on precipitation and quickflow response. SARR was derived from the United Kingdom Institute of Hydrology (UKIH) method with several key modifications to adapt it for small watersheds (<50 km2). We tested SARR on watersheds in the Choptank Basin on the Delmarva Peninsula (US Mid-Atlantic region) and compared the results with the UKIH method at the annual scale and the hydrochemical method at the individual event scale. Annually, SARR calculated a baseflow index that was ˜10% higher than the UKIH method due to the finer time step of SARR (1 d) compared to UKIH (5 d). At the watershed scale, hydric soils were an important driver of the annual baseflow index likely due to increased groundwater retention in hydric areas. At the event scale, SARR calculated less baseflow than the hydrochemical method, again because of the differences in time step (hourly for hydrochemical) and different definitions of baseflow. Both SARR and hydrochemical baseflow increased with event size, suggesting that baseflow contributions are more important during larger storms. To make SARR easy to implement, we have written a MatLab program to automate the calculations which requires only daily rainfall and daily flow data as inputs.
On river-floodplain interaction and hydrograph skewness
NASA Astrophysics Data System (ADS)
Fleischmann, Ayan S.; Paiva, Rodrigo C. D.; Collischonn, Walter; Sorribas, Mino V.; Pontes, Paulo R. M.
2016-10-01
Understanding hydrological processes occurring within a basin by looking at its outlet hydrograph can improve and foster comprehension of ungauged regions. In this context, we present an extensive examination of the roles that floodplains play on driving hydrograph shapes. Observations of many river hydrographs with large floodplain influence are carried out and indicate that a negative skewness of the hydrographs is present among many of them. Through a series of numerical experiments and analytical reasoning, we show how the relationship between flood wave celerity and discharge in such systems is responsible for determining the hydrograph shapes. The more water inundates the floodplains upstream of the observed point, the more negatively skewed is the observed hydrograph. A case study is performed in the Amazon River Basin, where major rivers with large floodplain attenuation (e.g., Purus, Madeira, and Juruá) are identified with higher negative skewness in the respective hydrographs. Finally, different wetland types could be distinguished by using this feature, e.g., wetlands maintained by endogenous processes, from wetlands governed by overbank flow (along river floodplains). A metric of hydrograph skewness was developed to quantify this effect, based on the time derivative of discharge. Together with the skewness concept, it may be used in other studies concerning the relevance of floodplain attenuation in large, ungauged rivers, where remote sensing data (e.g., satellite altimetry) can be very useful.
Asquith, William H.; Roussel, Meghan C.
2007-01-01
Estimation of representative hydrographs from design storms, which are known as design hydrographs, provides for cost-effective, riskmitigated design of drainage structures such as bridges, culverts, roadways, and other infrastructure. During 2001?07, the U.S. Geological Survey (USGS), in cooperation with the Texas Department of Transportation, investigated runoff hydrographs, design storms, unit hydrographs,and watershed-loss models to enhance design hydrograph estimation in Texas. Design hydrographs ideally should mimic the general volume, peak, and shape of observed runoff hydrographs. Design hydrographs commonly are estimated in part by unit hydrographs. A unit hydrograph is defined as the runoff hydrograph that results from a unit pulse of excess rainfall uniformly distributed over the watershed at a constant rate for a specific duration. A time-distributed, watershed-loss model is required for modeling by unit hydrographs. This report develops a specific time-distributed, watershed-loss model known as an initial-abstraction, constant-loss model. For this watershed-loss model, a watershed is conceptualized to have the capacity to store or abstract an absolute depth of rainfall at and near the beginning of a storm. Depths of total rainfall less than this initial abstraction do not produce runoff. The watershed also is conceptualized to have the capacity to remove rainfall at a constant rate (loss) after the initial abstraction is satisfied. Additional rainfall inputs after the initial abstraction is satisfied contribute to runoff if the rainfall rate (intensity) is larger than the constant loss. The initial abstraction, constant-loss model thus is a two-parameter model. The initial-abstraction, constant-loss model is investigated through detailed computational and statistical analysis of observed rainfall and runoff data for 92 USGS streamflow-gaging stations (watersheds) in Texas with contributing drainage areas from 0.26 to 166 square miles. The analysis is limited to a previously described, watershed-specific, gamma distribution model of the unit hydrograph. In particular, the initial-abstraction, constant-loss model is tuned to the gamma distribution model of the unit hydrograph. A complex computational analysis of observed rainfall and runoff for the 92 watersheds was done to determine, by storm, optimal values of initial abstraction and constant loss. Optimal parameter values for a given storm were defined as those values that produced a modeled runoff hydrograph with volume equal to the observed runoff hydrograph and also minimized the residual sum of squares of the two hydrographs. Subsequently, the means of the optimal parameters were computed on a watershed-specific basis. These means for each watershed are considered the most representative, are tabulated, and are used in further statistical analyses. Statistical analyses of watershed-specific, initial abstraction and constant loss include documentation of the distribution of each parameter using the generalized lambda distribution. The analyses show that watershed development has substantial influence on initial abstraction and limited influence on constant loss. The means and medians of the 92 watershed-specific parameters are tabulated with respect to watershed development; although they have considerable uncertainty, these parameters can be used for parameter prediction for ungaged watersheds. The statistical analyses of watershed-specific, initial abstraction and constant loss also include development of predictive procedures for estimation of each parameter for ungaged watersheds. Both regression equations and regression trees for estimation of initial abstraction and constant loss are provided. The watershed characteristics included in the regression analyses are (1) main-channel length, (2) a binary factor representing watershed development, (3) a binary factor representing watersheds with an abundance of rocky and thin-soiled terrain, and (4) curve numb
Barlow, Paul M.; Cunningham, William L.; Zhai, Tong; Gray, Mark
2015-01-01
This report is a user guide for the streamflow-hydrograph analysis methods provided with version 1.0 of the U.S. Geological Survey (USGS) Groundwater Toolbox computer program. These include six hydrograph-separation methods to determine the groundwater-discharge (base-flow) and surface-runoff components of streamflow—the Base-Flow Index (BFI; Standard and Modified), HYSEP (Fixed Interval, Sliding Interval, and Local Minimum), and PART methods—and the RORA recession-curve displacement method and associated RECESS program to estimate groundwater recharge from streamflow data. The Groundwater Toolbox is a customized interface built on the nonproprietary, open source MapWindow geographic information system software. The program provides graphing, mapping, and analysis capabilities in a Microsoft Windows computing environment. In addition to the four hydrograph-analysis methods, the Groundwater Toolbox allows for the retrieval of hydrologic time-series data (streamflow, groundwater levels, and precipitation) from the USGS National Water Information System, downloading of a suite of preprocessed geographic information system coverages and meteorological data from the National Oceanic and Atmospheric Administration National Climatic Data Center, and analysis of data with several preprocessing and postprocessing utilities. With its data retrieval and analysis tools, the Groundwater Toolbox provides methods to estimate many of the components of the water budget for a hydrologic basin, including precipitation; streamflow; base flow; runoff; groundwater recharge; and total, groundwater, and near-surface evapotranspiration.
NASA Astrophysics Data System (ADS)
Putnam, S. M.; Harman, C. J.
2017-12-01
Many studies have sought to unravel the influence of landscape structure and catchment state on the quantity and composition of water at the catchment outlet. These studies run into issues of equifinality where multiple conceptualizations of flow pathways or storage states cannot be discriminated against on the basis of the quantity and composition of water alone. Here we aim to parse out the influence of landscape structure, flow pathways, and storage on both the observed catchment hydrograph and chemograph, using hydrometric and water isotope data collected from multiple locations within Pond Branch, a 37-hectare Piedmont catchment of the eastern US. This data is used to infer the quantity and age distribution of water stored and released by individual hydrogeomorphic units, and the catchment as a whole, in order to test hypotheses relating landscape structure, flow pathways, and catchment storage to the hydrograph and chemograph. Initial hypotheses relating internal catchment properties or processes to the hydrograph or chemograph are formed at the catchment scale. Data from Pond Branch include spring and catchment discharge measurements, well water levels, and soil moisture, as well as three years of high frequency precipitation and surface water stable water isotope data. The catchment hydrograph is deconstructed using hydrograph separation and the quantity of water associated with each time-scale of response is compared to the quantity of discharge that could be produced from hillslope and riparian hydrogeomorphic units. Storage is estimated for each hydrogeomorphic unit as well as the vadose zone, in order to construct a continuous time series of total storage, broken down by landscape unit. Rank StorAge Selection (rSAS) functions are parameterized for each hydrogeomorphic unit as well as the catchment as a whole, and the relative importance of changing proportions of discharge from each unit as well as storage in controlling the variability in the catchment chemograph is explored. The results suggest that the quantity of quickflow can be accounted for by direct precipitation onto < 5.2% of the catchment area, representing a zero-order swale plus the riparian area. rSAS modeling suggests that quickflow is largely composed of pre-event, stored water, generated through a process such as groundwater ridging.
NASA Astrophysics Data System (ADS)
Bansah, S.; Ali, G.; Haque, M. A.; Tang, V.
2017-12-01
The proportion of precipitation that becomes streamflow is a function of internal catchment characteristics - which include geology, landscape characteristics and vegetation - and influence overall storage dynamics. The timing and quantity of water discharged by a catchment are indeed embedded in event hydrographs. Event hydrograph timing parameters, such as the response lag and time of concentration, are important descriptors of how long it takes the catchment to respond to input precipitation and how long it takes the latter to filter through the catchment. However, the extent to which hydrograph timing parameters relate to average response times derived from fitting transfer functions to annual hydrographs is unknown. In this study, we used a gamma transfer function to determine catchment average response times as well as event-specific hydrograph parameters across a network of eight nested watersheds ranging from 0.19 km2 to 74.6 km2 prairie catchments located in south central Manitoba (Canada). Various statistical analyses were then performed to correlate average response times - estimated using the parameters of the fitted gamma transfer function - to event-specific hydrograph parameters. Preliminary results show significant interannual variations in response times and hydrograph timing parameters: the former were in the order of a few hours to days, while the latter ranged from a few days to weeks. Some statistically significant relationships were detected between response times and event-specific hydrograph parameters. Future analyses will involve the comparison of statistical distributions of event-specific hydrograph parameters with that of runoff response times and baseflow transit times in order to quantity catchment storage dynamics across a range of temporal scales.
15 CFR 996.22 - Certification.
Code of Federal Regulations, 2010 CFR
2010-01-01
... AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES Certification of a Hydrographic Product and Decertification...
T.P. Burt; W.T. Swank
2010-01-01
The Coweeta Hydrologic Laboratory was established in 1934 (originally known as the âCoweeta Experimental Forestâ). A symposium to celebrate its 75th anniversary in 2009 was an opportunity to acknowledge that some of the worldâs most important long-term research in forest hydrology and ecology has been conducted there (Swank and Vose, 2009).
2002-03-01
basin and range characteristics associated with the Great Basin . The base elevation of the area is 5000 feet above Mean Sea Level (MSL) to 6000 MSL...REVEILLE AIRSPACE AT NEVADA TEST AND TRAINING RANGE The area is located within the Great Basin , a physiographic region with no external drainage...characterized by “ basin and range” topography, in which hydrographically isolated basins or valleys are separated by north-south trending low mountain
Hydrological Signature From River-Floodplain Interactions
NASA Astrophysics Data System (ADS)
Paiva, R. C. D.; Fleischmann, A. S.; Collischonn, W.; Sorribas, M.; Pontes, P. R.
2015-12-01
Understanding river-floodplain hydraulic processes is fundamental to promote comprehension of related water paths, biogeochemicalcyclesand ecosystems. Large river basins around the globe present enormous developed floodplains, which strongly affect flood waves and water dynamics. Since most of these river-floodplain interactions are not monitored, it is interesting to develop strategies to understand such processes through characteristic hydrological signatures, e.g. hydrographs. We studied observed hydrographs from large South American rivers and found that in several cases rivers with extensive wetlands present a particular hydrograph shape, with slower rising limb in relation to the receding one, due to storage effects and the associated decrease of wave celerity with stage. A negative asymmetry in the hydrograph is generated, which is higher when more water flows through floodplains upstream of the observed point. Finally, we studied the Amazon basin using gauged information and simulation results from the MGB-IPH regional hydrological model. Major rivers with larger wetland areas (e.g. Purus, Madeira and Juruá) were identified with higher negative asymmetry in their hydrographs. The hydrodynamic model was run in scenarios with and without floodplains, and results supported that floodplain storage affects hydrographs in creating a negative asymmetry, besides attenuating peaks, increasing hydrograph smoothness and increasing minimum flows. Finally, different wetland types could be distinguished with hydrograph shape, e.g. differing wetlands fed by local rainfall from wetlands due to overbank flow (floodplains). These metrics and concepts on hydrograph features have great potential to infer about river-floodplain processes from large rivers and wetland systems.
Sanford, Ward E.; Nelms, David L.; Pope, Jason P.; Selnick, David L.
2012-01-01
This study by the U.S. Geological Survey, prepared in cooperation with the Virginia Department of Environmental Quality, quantifies the components of the hydrologic cycle across the Commonwealth of Virginia. Long-term, mean fluxes were calculated for precipitation, surface runoff, infiltration, total evapotranspiration (ET), riparian ET, recharge, base flow (or groundwater discharge) and net total outflow. Fluxes of these components were first estimated on a number of real-time-gaged watersheds across Virginia. Specific conductance was used to distinguish and separate surface runoff from base flow. Specific-conductance data were collected every 15 minutes at 75 real-time gages for approximately 18 months between March 2007 and August 2008. Precipitation was estimated for 1971–2000 using PRISM climate data. Precipitation and temperature from the PRISM data were used to develop a regression-based relation to estimate total ET. The proportion of watershed precipitation that becomes surface runoff was related to physiographic province and rock type in a runoff regression equation. Component flux estimates from the watersheds were transferred to flux estimates for counties and independent cities using the ET and runoff regression equations. Only 48 of the 75 watersheds yielded sufficient data, and data from these 48 were used in the final runoff regression equation. The base-flow proportion for the 48 watersheds averaged 72 percent using specific conductance, a value that was substantially higher than the 61 percent average calculated using a graphical-separation technique (the USGS program PART). Final results for the study are presented as component flux estimates for all counties and independent cities in Virginia.
15 CFR 996.22 - Certification.
Code of Federal Regulations, 2014 CFR
2014-01-01
... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES Certification of a Hydrographic Product and Decertification... automatically be considered for certification by NOAA. NOAA shall make its certification determination, if its...
15 CFR 996.22 - Certification.
Code of Federal Regulations, 2012 CFR
2012-01-01
... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES Certification of a Hydrographic Product and Decertification... automatically be considered for certification by NOAA. NOAA shall make its certification determination, if its...
15 CFR 996.22 - Certification.
Code of Federal Regulations, 2013 CFR
2013-01-01
... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES Certification of a Hydrographic Product and Decertification... automatically be considered for certification by NOAA. NOAA shall make its certification determination, if its...
15 CFR 996.22 - Certification.
Code of Federal Regulations, 2011 CFR
2011-01-01
... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES Certification of a Hydrographic Product and Decertification... automatically be considered for certification by NOAA. NOAA shall make its certification determination, if its...
15 CFR 996.21 - Performance of compliance testing.
Code of Federal Regulations, 2010 CFR
2010-01-01
... (Continued) NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES Certification of a Hydrographic Product and...
Automated Method to Develop a Clark Synthetic Unit Hydrograph within ArcGIS
2015-08-01
assumption of superposition, a simulated outflow hydrograph is created. Peff represents the fraction of precipitation that contributes to immediate runoff ...the spatial features of the watershed affect the runoff of the basin and therefore the unit hydrograph at the outlet of the basin. BACKGROUND...Rainfall- runoff response within a watershed is a core consideration of hydrologists. The use of unit hydrographs as a way to analyze the rainfall- runoff
Raffensperger, Jeff P.; Baker, Anna C.; Blomquist, Joel D.; Hopple, Jessica A.
2017-06-26
Quantitative estimates of base flow are necessary to address questions concerning the vulnerability and response of the Nation’s water supply to natural and human-induced change in environmental conditions. An objective of the U.S. Geological Survey National Water-Quality Assessment Project is to determine how hydrologic systems are affected by watershed characteristics, including land use, land cover, water use, climate, and natural characteristics (geology, soil type, and topography). An important component of any hydrologic system is base flow, generally described as the part of streamflow that is sustained between precipitation events, fed to stream channels by delayed (usually subsurface) pathways, and more specifically as the volumetric discharge of water, estimated at a measurement site or gage at the watershed scale, which represents groundwater that discharges directly or indirectly to stream reaches and is then routed to the measurement point.Hydrograph separation using a recursive digital filter was applied to 225 sites in the Chesapeake Bay watershed. The recursive digital filter was chosen for the following reasons: it is based in part on the assumption that groundwater acts as a linear reservoir, and so has a physical basis; it has only two adjustable parameters (alpha, obtained directly from recession analysis, and beta, the maximum value of the base-flow index that can be modeled by the filter), which can be determined objectively and with the same physical basis of groundwater reservoir linearity, or that can be optimized by applying a chemical-mass-balance constraint. Base-flow estimates from the recursive digital filter were compared with those from five other hydrograph-separation methods with respect to two metrics: the long-term average fraction of streamflow that is base flow, or base-flow index, and the fraction of days where streamflow is entirely base flow. There was generally good correlation between the methods, with some biased slightly high and some biased slightly low compared to the recursive digital filter. There were notable differences between the days at base flow estimated by the different methods, with the recursive digital filter having a smaller range of values. This was attributed to how the different methods determine cessation of quickflow (the part of streamflow which is not base flow).For 109 Chesapeake Bay watershed sites with available specific conductance data, the parameters of the filter were optimized using a chemical-mass-balance constraint and two different models for the time-dependence of base-flow specific conductance. Sixty-seven models were deemed acceptable and the results compared well with non-optimized results. There are a number of limitations to the optimal hydrograph-separation approach resulting from the assumptions implicit in the conceptual model, the mathematical model, and the approach taken to impose chemical mass balance (including tracer choice). These limitations may be evidenced by poor model results; conversely, poor model fit may provide an indication that two-component separation does not adequately describe the hydrologic system’s runoff response.The results of this study may be used to address a number of questions regarding the role of groundwater in understanding past changes in stream-water quality and forecasting possible future changes, such as the timing and magnitude of land-use and management practice effects on stream and groundwater quality. Ongoing and future modeling efforts may benefit from the estimates of base flow as calibration targets or as a means to filter chemical data to model base-flow loads and trends. Ultimately, base-flow estimation might provide the basis for future work aimed at improving the ability to quantify groundwater discharge, not only at the scale of a gaged watershed, but at the scale of individual reaches as well.
76 FR 32957 - Hydrographic Services Review Panel
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-07
... Review Panel AGENCY: National Ocean Service, National Oceanic and Atmospheric Administration (NOAA), Department of Commerce. ACTION: Notice of membership solicitation for Hydrographic Services Review Panel...), to solicit nominations for membership on the Hydrographic Services Review Panel (HSRP). The HSRP, a...
75 FR 20809 - Hydrographic Services Review Panel
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-21
... Review Panel AGENCY: National Ocean Service, National Oceanic and Atmospheric Administration (NOAA), Department of Commerce. ACTION: Notice of Additional Membership Solicitation for Hydrographic Services Review... applications for membership on the Hydrographic Services Review Panel (the Panel), a Federal advisory committee...
75 FR 20816 - Hydrographic Services Review Panel Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-21
... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration Hydrographic Services... (NOAA), Department of Commerce. ACTION: Notice of open meeting. SUMMARY: The Hydrographic Services Review Panel (HSRP) is a Federal Advisory Committee established to advise the Under Secretary of Commerce...
76 FR 61091 - Hydrographic Services Review Panel Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-03
... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration Hydrographic Services... (NOAA), Department of Commerce. ACTION: Notice of open meeting. SUMMARY: The Hydrographic Services Review Panel (HSRP) is a Federal Advisory Committee established to advise the Under Secretary of Commerce...
76 FR 20323 - Hydrographic Services Review Panel Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-12
... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration Hydrographic Services... (NOAA), Department of Commerce. ACTION: Notice of open meeting. SUMMARY: The Hydrographic Services Review Panel (HSRP) is a Federal Advisory Committee established to advise the Under Secretary of Commerce...
Hydrograph matching method for measuring model performance
NASA Astrophysics Data System (ADS)
Ewen, John
2011-09-01
SummaryDespite all the progress made over the years on developing automatic methods for analysing hydrographs and measuring the performance of rainfall-runoff models, automatic methods cannot yet match the power and flexibility of the human eye and brain. Very simple approaches are therefore being developed that mimic the way hydrologists inspect and interpret hydrographs, including the way that patterns are recognised, links are made by eye, and hydrological responses and errors are studied and remembered. In this paper, a dynamic programming algorithm originally designed for use in data mining is customised for use with hydrographs. It generates sets of "rays" that are analogous to the visual links made by the hydrologist's eye when linking features or times in one hydrograph to the corresponding features or times in another hydrograph. One outcome from this work is a new family of performance measures called "visual" performance measures. These can measure differences in amplitude and timing, including the timing errors between simulated and observed hydrographs in model calibration. To demonstrate this, two visual performance measures, one based on the Nash-Sutcliffe Efficiency and the other on the mean absolute error, are used in a total of 34 split-sample calibration-validation tests for two rainfall-runoff models applied to the Hodder catchment, northwest England. The customised algorithm, called the Hydrograph Matching Algorithm, is very simple to apply; it is given in a few lines of pseudocode.
Determination of rainfall losses in Virginia, phase II : final report.
DOT National Transportation Integrated Search
1982-01-01
A procedure is presented by which regional unit hydrograph and loss rate parameters are estimated for the generation of design storm hydrographs for watershed in Virginia. The state is divided into seven hydrological regions, and unit hydrograph and ...
NASA Astrophysics Data System (ADS)
Litt, Guy Finley
As the Panama Canal Authority faces sensitivity to water shortages, managing water resources becomes crucial for the global shipping industry's security. These studies address knowledge gaps in tropical water resources to aid hydrological model development and validation. Field-based hydrological investigations in the Agua Salud Project within the Panama Canal Watershed employed multiple tools across a variety of land covers to investigate hydrological processes. Geochemical tracers informed where storm runoff in a stream comes from and identified electrical conductivity (EC) as an economical, high sample frequency tracer during small storms. EC-based hydrograph separation coupled with hydrograph recession rate analyses identified shallow and deep groundwater storage-discharge relationships that varied by season and land cover. A series of plot-scale electrical resistivity imaging geophysical experiments coupled with rainfall simulation characterized subsurface flow pathway behavior and quantified respectively increasing infiltration rates across pasture, 10 year old secondary succession forest, teak (tectona grandis), and 30 year old secondary succession forest land covers. Additional soil water, groundwater, and geochemical studies informed conceptual model development in subsurface flow pathways and groundwater, and identified future research needs.
NASA Astrophysics Data System (ADS)
Schmieder, Jan; Marke, Thomas; Strasser, Ulrich
2016-04-01
Glaciers are important seasonal water contributors in many mountainous landscapes. For water resources management it is important to know about the timing and amount of released glacier melt water, especially in downstream regions where the water is needed (hydropower, drinking water) or where it represents a potential risk (drought, flood). Seasonal availability of melt water is strongly dependent on boundary layer atmospheric processes and becomes even more relevant in a changing climate. Environmental tracers are a useful tool in the assessment of snow and ice water resources, because they provide information about the sources, flow paths and traveling times of water contributing to streamflow at the catchment scale. Previously, high-elevation tracer studies throughout the Alps have been scarce as they require intense field work in remote areas. However, hydrometric and meteorological measurements combined with tracer analyses help to unravel streamflow composition and improve the understanding of hydroclimatological processes. On top of that, empirical studies are necessary to parameterize and validate hydrological models in more process-oriented ways, rather than comparing total measured and simulated runoff only. In the present study three approaches are applied to derive glacier melt contributions to a proglacial stream at the seasonal scale and to identify their individual advances and limitations. Tracers used for each approach are (1) electrical conductivity, (2) stable isotopes of water and (3) heavy metals. The field work was conducted during the summer of 2015 in the glaciated (35%) high-elevation catchment of the Hochjochbach, a small sub-basin (17 km²) of the Ötztaler Ache river in the Austrian Alps, ranging from 2400 to 3500 m.a.s.l. in elevation. Hydroclimatological data was provided by an automatic weather station and a gauging station equipped with a pressure transducer. Water samples from shallow groundwater, streamflow, glacier and snow melt, as well as rain were collected throughout the ablation season and analysed for electrical conductivity, stable isotopes and heavy metals. Hydrograph separation is applied with tracer signatures of potential end-members identified by principal component analysis. The proposed contribution describes the experimental setup and discusses preliminary results of the three approaches of hydrograph separation.
NASA Astrophysics Data System (ADS)
Serinaldi, Francesco; Kilsby, Chris G.
2013-06-01
The information contained in hyetographs and hydrographs is often synthesized by using key properties such as the peak or maximum value Xp, volume V, duration D, and average intensity I. These variables play a fundamental role in hydrologic engineering as they are used, for instance, to define design hyetographs and hydrographs as well as to model and simulate the rainfall and streamflow processes. Given their inherent variability and the empirical evidence of the presence of a significant degree of association, such quantities have been studied as correlated random variables suitable to be modeled by multivariate joint distribution functions. The advent of copulas in geosciences simplified the inference procedures allowing for splitting the analysis of the marginal distributions and the study of the so-called dependence structure or copula. However, the attention paid to the modeling task has overlooked a more thorough study of the true nature and origin of the relationships that link Xp,V,D, and I. In this study, we apply a set of ad hoc bootstrap algorithms to investigate these aspects by analyzing the hyetographs and hydrographs extracted from 282 daily rainfall series from central eastern Europe, three 5 min rainfall series from central Italy, 80 daily streamflow series from the continental United States, and two sets of 200 simulated universal multifractal time series. Our results show that all the pairwise dependence structures between Xp,V,D, and I exhibit some key properties that can be reproduced by simple bootstrap algorithms that rely on a standard univariate resampling without resort to multivariate techniques. Therefore, the strong similarities between the observed dependence structures and the agreement between the observed and bootstrap samples suggest the existence of a numerical generating mechanism based on the superposition of the effects of sampling data at finite time steps and the process of summing realizations of independent random variables over random durations. We also show that the pairwise dependence structures are weakly dependent on the internal patterns of the hyetographs and hydrographs, meaning that the temporal evolution of the rainfall and runoff events marginally influences the mutual relationships of Xp,V,D, and I. Finally, our findings point out that subtle and often overlooked deterministic relationships between the properties of the event hyetographs and hydrographs exist. Confusing these relationships with genuine stochastic relationships can lead to an incorrect application of multivariate distributions and copulas and to misleading results.
15 CFR 996.21 - Performance of compliance testing.
Code of Federal Regulations, 2011 CFR
2011-01-01
... CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES Certification of a Hydrographic Product and Decertification. § 996.21 Performance of compliance testing. (a) NOAA and the applicant shall submit the applicant...
15 CFR 996.21 - Performance of compliance testing.
Code of Federal Regulations, 2014 CFR
2014-01-01
... CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES Certification of a Hydrographic Product and Decertification. § 996.21 Performance of compliance testing. (a) NOAA and the applicant shall submit the applicant...
15 CFR 996.21 - Performance of compliance testing.
Code of Federal Regulations, 2013 CFR
2013-01-01
... CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES Certification of a Hydrographic Product and Decertification. § 996.21 Performance of compliance testing. (a) NOAA and the applicant shall submit the applicant...
15 CFR 996.21 - Performance of compliance testing.
Code of Federal Regulations, 2012 CFR
2012-01-01
... CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES Certification of a Hydrographic Product and Decertification. § 996.21 Performance of compliance testing. (a) NOAA and the applicant shall submit the applicant...
Turco, Michael J.; East, Jeffery W.; Milburn, Matthew S.
2007-01-01
During 2006?07, the U.S. Geological Survey (USGS), in cooperation with the Texas Water Development Board, did a study to quantify historical (water years 1966?2005) base flow and streamflow gains and losses from two streamflow-measuring surveys (March and August 2006) in the Brazos River from McLennan County to Fort Bend County, Texas. The Brazos River is hydraulically connected to the Brazos River alluvium aquifer, which in turn is hydraulically connected to several underlying aquifers, the outcrops of which occur in laterally adjacent layers generally parallel to the coast (major aquifers, Carrizo-Wilcox and Gulf Coast, and minor aquifers, Queen City, Sparta, and Yegua-Jackson). Hydrograph separation was done using the USGS computer program Hydrograph Separation and Analysis with historical streamflow from 10 USGS gaging stations, three on the Brazos River and seven on selected tributaries to the Brazos River. Streamflow data for computation of gains and losses were collected in March 2006 from 36 sites on the Brazos River and 19 sites on 19 tributaries to the Brazos River; and in August 2006 from 28 sites on the Brazos River and 16 sites on tributaries. Hydrograph separation and associated analyses indicate an appreciable increase in base flow as a percentage of streamflow in the reach of the Brazos River that crosses the outcrops of the Carrizo-Wilcox, Queen City, Sparta, and Yegua-Jackson aquifers compared to that in the adjacent upstream reach (on average from about 43 percent to about 60 percent). No increase in base flow as a percentage of streamflow in the reach of the Brazos River crossing the Gulf Coast aquifer compared to that in the adjacent upstream reach was indicated. Streamflow gains and losses computed for March 2006 for 35 reaches defined by pairs of sites on the Brazos River indicated that five reaches were verifiably gaining streamflow (computed gain exceeded potential flow measurement error) and none were verifiably losing streamflow. Four of the five gaining reaches are in the outcrop areas of the Carrizo-Wilcox and Yegua-Jackson aquifers. The results of the synoptic gain and loss surveys are consistent with the results of the base-flow analysis of historical streamflow. Appreciable increases in streamflow, apparently the result of increases in base flow, occur in the reach of the Brazos River that crosses the outcrops of the Carrizo-Wilcox, Queen City, Sparta, and Yegua-Jackson aquifers.
Excel Spreadsheet Tools for Analyzing Groundwater Level Records and Displaying Information in ArcMap
Tillman, Fred D.
2009-01-01
When beginning hydrologic investigations, a first action is often to gather existing sources of well information, compile this information into a single dataset, and visualize this information in a geographic information system (GIS) environment. This report presents tools (macros) developed using Visual Basic for Applications (VBA) for Microsoft Excel 2007 to assist in these tasks. One tool combines multiple datasets into a single worksheet and formats the resulting data for use by the other tools. A second tool produces summary information about the dataset, such as a list of unique site identification numbers, the number of water-level observations for each, and a table of the number of sites with a listed number of water-level observations. A third tool creates subsets of the original dataset based on user-specified options and produces a worksheet with water-level information for each well in the subset, including the average and standard deviation of water-level observations and maximum decline and rise in water levels between any two observations, among other information. This water-level information worksheet can be imported directly into ESRI ArcMap as an 'XY Data' file, and each of the fields of summary well information can be used for custom display. A separate set of VBA tools distributed in an additional Excel workbook creates hydrograph charts of each of the wells in the data subset produced by the aforementioned tools and produces portable document format (PDF) versions of the hydrograph charts. These PDF hydrographs can be hyperlinked to well locations in ArcMap or other GIS applications.
15 CFR 996.20 - Submission of a hydrographic product for certification.
Code of Federal Regulations, 2014 CFR
2014-01-01
... QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES Certification of a...) Upon adoption by NOAA of standards and compliance tests, any non-Federal entity may submit a...
15 CFR 996.20 - Submission of a hydrographic product for certification.
Code of Federal Regulations, 2012 CFR
2012-01-01
... QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES Certification of a...) Upon adoption by NOAA of standards and compliance tests, any non-Federal entity may submit a...
15 CFR 996.20 - Submission of a hydrographic product for certification.
Code of Federal Regulations, 2011 CFR
2011-01-01
... QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES Certification of a...) Upon adoption by NOAA of standards and compliance tests, any non-Federal entity may submit a...
15 CFR 996.11 - Development of standards for a hydrographic product or class.
Code of Federal Regulations, 2012 CFR
2012-01-01
... COMMERCE QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES The Quality... class. (a) NOAA shall work, to the extent practicable, through existing, recognized, standards bodies in...
15 CFR 996.11 - Development of standards for a hydrographic product or class.
Code of Federal Regulations, 2013 CFR
2013-01-01
... COMMERCE QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES The Quality... class. (a) NOAA shall work, to the extent practicable, through existing, recognized, standards bodies in...
15 CFR 996.11 - Development of standards for a hydrographic product or class.
Code of Federal Regulations, 2011 CFR
2011-01-01
... COMMERCE QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES The Quality... class. (a) NOAA shall work, to the extent practicable, through existing, recognized, standards bodies in...
15 CFR 996.20 - Submission of a hydrographic product for certification.
Code of Federal Regulations, 2013 CFR
2013-01-01
... QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES Certification of a...) Upon adoption by NOAA of standards and compliance tests, any non-Federal entity may submit a...
15 CFR 996.11 - Development of standards for a hydrographic product or class.
Code of Federal Regulations, 2014 CFR
2014-01-01
... COMMERCE QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES The Quality... class. (a) NOAA shall work, to the extent practicable, through existing, recognized, standards bodies in...
15 CFR 996.11 - Development of standards for a hydrographic product or class.
Code of Federal Regulations, 2010 CFR
2010-01-01
... COMMERCE QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES The Quality... adopt or reject the standard as the NOAA Quality Assurance Program Standard for the particular...
Estimating flood hydrographs and volumes for Alabama streams
Olin, D.A.; Atkins, J.B.
1988-01-01
The hydraulic design of highway drainage structures involves an evaluation of the effect of the proposed highway structures on lives, property, and stream stability. Flood hydrographs and associated flood volumes are useful tools in evaluating these effects. For design purposes, the Alabama Highway Department needs information on flood hydrographs and volumes associated with flood peaks of specific recurrence intervals (design floods) at proposed or existing bridge crossings. This report will provide the engineer with a method to estimate flood hydrographs, volumes, and lagtimes for rural and urban streams in Alabama with drainage areas less than 500 sq mi. Existing computer programs and methods to estimate flood hydrographs and volumes for ungaged streams have been developed in Georgia. These computer programs and methods were applied to streams in Alabama. The report gives detailed instructions on how to estimate flood hydrographs for ungaged rural or urban streams in Alabama with drainage areas less than 500 sq mi, without significant in-channel storage or regulations. (USGS)
Flood type specific construction of synthetic design hydrographs
NASA Astrophysics Data System (ADS)
Brunner, Manuela I.; Viviroli, Daniel; Sikorska, Anna E.; Vannier, Olivier; Favre, Anne-Catherine; Seibert, Jan
2017-02-01
Accurate estimates of flood peaks, corresponding volumes, and hydrographs are required to design safe and cost-effective hydraulic structures. In this paper, we propose a statistical approach for the estimation of the design variables peak and volume by constructing synthetic design hydrographs for different flood types such as flash-floods, short-rain floods, long-rain floods, and rain-on-snow floods. Our approach relies on the fitting of probability density functions to observed flood hydrographs of a certain flood type and accounts for the dependence between peak discharge and flood volume. It makes use of the statistical information contained in the data and retains the process information of the flood type. The method was tested based on data from 39 mesoscale catchments in Switzerland and provides catchment specific and flood type specific synthetic design hydrographs for all of these catchments. We demonstrate that flood type specific synthetic design hydrographs are meaningful in flood-risk management when combined with knowledge on the seasonality and the frequency of different flood types.
15 CFR 996.23 - Audit and decertification of hydrographic products.
Code of Federal Regulations, 2010 CFR
2010-01-01
... hydrographic products it has certified. NOAA may conduct audits without advance notification. However, visits... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Audit and decertification of... ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND...
NASA Astrophysics Data System (ADS)
Bellos, Vasilis; Tsakiris, George
2016-09-01
The study presents a new hybrid method for the simulation of flood events in small catchments. It combines a physically-based two-dimensional hydrodynamic model and the hydrological unit hydrograph theory. Unit hydrographs are derived using the FLOW-R2D model which is based on the full form of two-dimensional Shallow Water Equations, solved by a modified McCormack numerical scheme. The method is tested at a small catchment in a suburb of Athens-Greece for a storm event which occurred in February 2013. The catchment is divided into three friction zones and unit hydrographs of 15 and 30 min are produced. The infiltration process is simulated by the empirical Kostiakov equation and the Green-Ampt model. The results from the implementation of the proposed hybrid method are compared with recorded data at the hydrometric station at the outlet of the catchment and the results derived from the fully hydrodynamic model FLOW-R2D. It is concluded that for the case studied, the proposed hybrid method produces results close to those of the fully hydrodynamic simulation at substantially shorter computational time. This finding, if further verified in a variety of case studies, can be useful in devising effective hybrid tools for the two-dimensional flood simulations, which are lead to accurate and considerably faster results than those achieved by the fully hydrodynamic simulations.
15 CFR 996.13 - Determination of whether to offer certification for a hydrographic product or class.
Code of Federal Regulations, 2012 CFR
2012-01-01
..., DEPARTMENT OF COMMERCE QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES The... at the option of NOAA. NOAA may decide at any time whether or not to offer certification for a...
15 CFR 996.13 - Determination of whether to offer certification for a hydrographic product or class.
Code of Federal Regulations, 2011 CFR
2011-01-01
..., DEPARTMENT OF COMMERCE QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES The... at the option of NOAA. NOAA may decide at any time whether or not to offer certification for a...
15 CFR 996.13 - Determination of whether to offer certification for a hydrographic product or class.
Code of Federal Regulations, 2013 CFR
2013-01-01
..., DEPARTMENT OF COMMERCE QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES The... at the option of NOAA. NOAA may decide at any time whether or not to offer certification for a...
15 CFR 996.13 - Determination of whether to offer certification for a hydrographic product or class.
Code of Federal Regulations, 2014 CFR
2014-01-01
..., DEPARTMENT OF COMMERCE QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES The... at the option of NOAA. NOAA may decide at any time whether or not to offer certification for a...
Green, W. Reed; Haggard, Brian E.
2001-01-01
Water-quality sampling consisting of every other month (bimonthly) routine sampling and storm event sampling (six storms annually) is used to estimate annual phosphorus and nitrogen loads at Illinois River south of Siloam Springs, Arkansas. Hydrograph separation allowed assessment of base-flow and surfacerunoff nutrient relations and yield. Discharge and nutrient relations indicate that water quality at Illinois River south of Siloam Springs, Arkansas, is affected by both point and nonpoint sources of contamination. Base-flow phosphorus concentrations decreased with increasing base-flow discharge indicating the dilution of phosphorus in water from point sources. Nitrogen concentrations increased with increasing base-flow discharge, indicating a predominant ground-water source. Nitrogen concentrations at higher base-flow discharges often were greater than median concentrations reported for ground water (from wells and springs) in the Springfield Plateau aquifer. Total estimated phosphorus and nitrogen annual loads for calendar year 1997-1999 using the regression techniques presented in this paper (35 samples) were similar to estimated loads derived from integration techniques (1,033 samples). Flow-weighted nutrient concentrations and nutrient yields at the Illinois River site were about 10 to 100 times greater than national averages for undeveloped basins and at North Sylamore Creek and Cossatot River (considered to be undeveloped basins in Arkansas). Total phosphorus and soluble reactive phosphorus were greater than 10 times and total nitrogen and dissolved nitrite plus nitrate were greater than 10 to 100 times the national and regional averages for undeveloped basins. These results demonstrate the utility of a strategy whereby samples are collected every other month and during selected storm events annually, with use of regression models to estimate nutrient loads. Annual loads of phosphorus and nitrogen estimated using regression techniques could provide similar results to estimates using integration techniques, with much less investment.
NASA Technical Reports Server (NTRS)
1996-01-01
The Hatizyo Hydrographic Observatory, which is one of the essential magnetic observatories in Japan, was established in 1979 and is currently operated by the Hydrographic Department, Maritime Safety Agency. This is the annual report compiled from the results of magnetic observations carried out at the observatory in 1994. As to the instruments used for magnetic observations, the digital recording variometer was replaced by a fluxgate magnetometer in 1986, and one set each of the proton and fluxgate magnetometers was additionally installed in January and October 1992, respectively.
NASA Technical Reports Server (NTRS)
1995-01-01
The Hatizyo Hydrographic Observatory, which is one of the essential magnetic observatories in Japan, was established in 1979 and is currently operated by the Hydrographic Department, Maritime Safety Agency. This is the annual report compiled from the results of magnetic observations carried out at the observatory in 1993. As to the instruments used for magnetic observations, the digital recording variometer was replaced by a fluxgate magnetometer in 1986, and one set each of the proton and fluxgate magnetometers was additionally installed in January and October 1992, respectively.
Kogelbauer, Ilse; Heine, Erwin; D'Amboise, Christopher; Müllebner, Christoph; Sokol, Wolfgang; Loiskandl, Willibald
2013-01-01
For many water management issues of shallow lakes with non-consolidated sediments hydrographic surveys of the open water area and reed belt areas are required. In the frame of water management strategy for the steppe lake Neusiedler See, located between Austria and Hungary, a hydrographic survey was conducted. In the open water area (water depth ≥1 m) a sediment echosounder was used. To validate these measurements and to distinguish between water, mud, and sediment layers in the shallow lake and reed belt area additional measurements were needed. As no common standard methods are available yet, we developed a measurement system based on two commonly applied soil physical measurement techniques providing reproducible physical values: a capacitive sensor and a cone penetrometer combined with GNSS-positioning enable dynamic measurements of georeferenced vertical water-mud-bedsediments profiles. The system bases on site-specific calibrated sensors and allows instantaneous, in situ measurements. The measurements manifest a sharp water-mud interface by a sudden decline to smaller water content which is a function of the dielectric permittivity. A second decline indicates the transition to compacted mud. That is concurrently the density where the penetrometer starts registering significant penetration resistance. The penetrometer detects shallow lakebed-sediment layers. Within the lake survey this measurement system was successfully tested. PMID:24351626
NASA Astrophysics Data System (ADS)
Stander, E. K.; Ehrenfeld, J. G.
2006-12-01
Wetlands are increasingly being used as management tools to combat the widespread problem of excess nitrogen in surface waters of the United States. This is particularly true in urban or urbanizing watersheds. However, due to hypothesized higher rates of atmospheric nitrogen deposition and altered hydrology in the urban context, urban wetlands may actually be acting as sources of nitrate to receiving bodies of water. Fourteen palustrine, forested wetlands in northeastern New Jersey, the most urban part of the state, were sampled for hydrology and rates of nitrogen cycling processes. One autowell in each site recorded water table measurements four times daily. In situ rates of net nitrogen mineralization and nitrification were measured monthly during the same time period using the static core technique. Denitrification rates were measured monthly in laboratory incubations using the acetylene block technique. Additionally, in nine of the 14 sites, which represent a gradient of urban intensity from very urban to less urban, we measured inorganic nitrogen in throughfall and leachate on a weekly basis. Throughfall collectors and lysimeters to 50cm depth were installed in three locations in each of the nine sites. Throughfall and leachate samples were analyzed for 15N and 18O isotopes to distinguish between atmospheric versus nitrification sources of nitrate in soil leachate. Hydrographs demonstrated that many sites have water table depths below 30 cm (i.e., below the biologically active zone) for long periods of time. Many wetlands display uncharacteristically flashy hydrographs. Wetlands with dry or flashy hydrographs had higher rates of nitrification and lower rates of denitrification than wetlands with more normal hydrology. Rates of atmospheric N deposition were higher in wetlands located in municipalities with higher population densities. Population density, however, was not a good predictor of nitrification or denitrification rates. Results from the isotopic analysis are forthcoming.
NASA Astrophysics Data System (ADS)
Prakash, K.; Mohanty, T.; Pati, J. K.; Singh, S.; Chaubey, K.
2017-11-01
Morphological and morphotectonic analyses have been used to obtain information that influence hydrographic basins, predominantly these are modifications of tectonic elements and the quantitative description of landforms. Discrimination of morphotectonic indices of active tectonics of the Jamini river basin consists the analyses of asymmetry factor, ruggedness number, basin relief, gradient, basin elongation ratio, drainage density analysis, and drainage pattern analysis, which have been completed for each drainage basin using remote sensing and GIS techniques. The Jamini river is one of the major tributaries of the Betwa river in central India. The Jamini river basin is divided into five subwatersheds viz. Jamrar, Onri, Sainam, Shahzad and Baragl subwatershed. The quantitative approach of watershed development of the Jamini river basin, and its four sixth (SW1-SW4) and one fifth (SW5) order subwatersheds, was carried out using Survey of India toposheets (parts of 54I, 54K, 54L, 54O, and 54P), Landsat 7 ETM+, ASTER (GDEM) data, and field data. The Jamini river has low bifurcation index which is a positive marker of tectonic imprint on the hydrographic network. The analyses show that the geomorphological progression of the study area was robustly influenced by tectonics. The analysis demonstrates to extensional tectonics system with the following alignments: NE-SW, NW-SE, NNE-SSW, ENE-WSW, E-W, and N-S. Three major trends are followed by lower order streams viz. NE-SW, NW-SE, and E-W directions which advocate that these tectonic trends were active at least up to the Late Pleistocene. The assessment of morphotectonic indices may be used to evaluate the control of active faults on the hydrographic system. The analysis points out westward tilting of the drainage basins with strong asymmetry in some reaches, marked elongation ratio of subwatersheds, and lower order streams having close alignment with lineaments (active faults). The study facilitated to considerate the function of active tectonism in the advancement of the basin.
NASA Astrophysics Data System (ADS)
Hugenschmidt, C.; Ingwersen, J.; Sangchan, W.; Sukvanachaikul, Y.; Duffner, A.; Uhlenbrook, S.; Streck, T.
2014-02-01
Land-use change in the mountainous parts of northern Thailand is reflected by an increased application of agrochemicals, which may be lost to surface and groundwater. The close relation between flow paths and contaminant transport within hydrological systems requires recognizing and understanding the dominant hydrological processes. To date, the vast majority of studies on runoff generation have been conducted in temperate regions. Tropical regions suffer from a general lack of data, and little is known about runoff generation processes. To fill this knowledge gap, a three-component hydrograph separation based on geochemical tracers was carried out in a steep, remote and monsoon-dominated study site (7 km2) in northern Thailand. Silica and electrical conductivity (EC) were identified as useful tracers and were applied to calculate the fractions of groundwater (similar to pre-event water), shallow subsurface flow and surface runoff on stormflow. K+ was a useful indicator for surface runoff dynamics, and Ca2+ provided insights into groundwater behaviour. Nevertheless, neither measure was applicable for the quantification of runoff components. Cl- and further parameters (e.g. Na+, K+, and Mg2+) were also not helpful for flow path identification, nor were their concentrations distinguishable among the components. Groundwater contributed the largest fractions to stormflow (62-80%) throughout all events, followed by shallow subsurface flow (17-36%) and surface runoff (2-13%). Our results provide important insights into the dynamics of the runoff processes in the study area and may be used to assess the transport pattern of contaminants (i.e. agrochemicals) here.
Temporal dynamics in dominant runoff sources and flow paths in the Andean Páramo
NASA Astrophysics Data System (ADS)
Correa, Alicia; Windhorst, David; Tetzlaff, Doerthe; Crespo, Patricio; Célleri, Rolando; Feyen, Jan; Breuer, Lutz
2017-07-01
The relative importance of catchment's water provenance and flow paths varies in space and time, complicating the conceptualization of the rainfall-runoff responses. We assessed the temporal dynamics in source areas, flow paths, and age by End Member Mixing Analysis (EMMA), hydrograph separation, and Inverse Transit Time Proxies (ITTPs) estimation within a headwater catchment in the Ecuadorian Andes. Twenty-two solutes, stable isotopes, pH, and electrical conductivity from a stream and 12 potential sources were analyzed. Four end-members were required to satisfactorily represent the hydrological system, i.e., rainfall, spring water, and water from the bottom layers of Histosols and Andosols. Water from Histosols in and near the riparian zone was the highest source contributor to runoff throughout the year (39% for the drier season, 45% for the wetter season), highlighting the importance of the water that is stored in the riparian zone. Spring water contributions to streamflow tripled during the drier season, as evidenced by geochemical signatures that are consistent with deeper flow paths rather than shallow interflow through Andosols. Rainfall exhibited low seasonal variation in this contribution. Hydrograph separation revealed that 94% and 84% is preevent water in the drier and wetter seasons, respectively. From low-flow to high-flow conditions, all the sources increased their contribution except spring water. The relative age of stream water decreased during wetter periods, when the contributing area of the riparian zone expands. The multimethod and multitracer approach enabled to closely study the interchanging importance of flow processes and water source dynamics from an interannual perspective.
Integrated Hydrographical Basin Management. Study Case - Crasna River Basin
NASA Astrophysics Data System (ADS)
Visescu, Mircea; Beilicci, Erika; Beilicci, Robert
2017-10-01
Hydrographical basins are important from hydrological, economic and ecological points of view. They receive and channel the runoff from rainfall and snowmelt which, when adequate managed, can provide fresh water necessary for water supply, irrigation, food industry, animal husbandry, hydrotechnical arrangements and recreation. Hydrographical basin planning and management follows the efficient use of available water resources in order to satisfy environmental, economic and social necessities and constraints. This can be facilitated by a decision support system that links hydrological, meteorological, engineering, water quality, agriculture, environmental, and other information in an integrated framework. In the last few decades different modelling tools for resolving problems regarding water quantity and quality were developed, respectively water resources management. Watershed models have been developed to the understanding of water cycle and pollution dynamics, and used to evaluate the impacts of hydrotechnical arrangements and land use management options on water quantity, quality, mitigation measures and possible global changes. Models have been used for planning monitoring network and to develop plans for intervention in case of hydrological disasters: floods, flash floods, drought and pollution. MIKE HYDRO Basin is a multi-purpose, map-centric decision support tool for integrated hydrographical basin analysis, planning and management. MIKE HYDRO Basin is designed for analyzing water sharing issues at international, national and local hydrographical basin level. MIKE HYDRO Basin uses a simplified mathematical representation of the hydrographical basin including the configuration of river and reservoir systems, catchment hydrology and existing and potential water user schemes with their various demands including a rigorous irrigation scheme module. This paper analyzes the importance and principles of integrated hydrographical basin management and develop a case study for Crasna river basin, with the use of MIKE HYDRO Basin advanced hydroinformatic tool for integrated hydrographical basin analysis, planning and management.
Como, Michael D.; Noll, Michael L.; Finkelstein, Jason S.; Monti, Jack; Busciolano, Ronald J.
2015-01-01
Hydrographs are included on these maps for selected wells that have digital recording equipment. These hydrographs are representative of the 2013 water year to show the changes that have occurred throughout that period. The synoptic survey water level measured at the well is included on each hydrograph.
Lagtime relations for urban streams in Georgia
Inman, Ernest J.
2000-01-01
Urban flood hydrographs are needed for the design of many highway drainage structures, embankments, and entrances to detention ponds. The three components that are needed to simulate urban flood hydrographs at ungaged sites are the design flood, the dimensionless hydrograph, and lagtime. The design flood and the dimensionless hydrograph have been presented in earlier studies for urban streams in Georgia. The objective of this study was to develop equations for estimating lagtime for urban streams in Georgia. Lagtimes were computed for 329 floods at 69 urban gaging stations in 11 cities in Georgia. These data were used to compute an average lagtime for each gaging station. Multiple regression analysis was then used to define relations between lagtime and certain physical basin characteristics, of which drainage area, slope, and impervious area were found to be significant. A qualitative variable was used to account for a geographical bias in flood-frequency region 4, a small area of southwestern Georgia. Information from this report can be used to simulate a flood hydrograph using a dimensionless hydrograph, the design flood, and the lagtime obtained from regression equations for any urban site with less than a 25-square-mile drainage area in Georgia.
NASA Astrophysics Data System (ADS)
Koloskov, Evgenii
2017-04-01
The report examines modern hydrographic technologies for the Russian northern seas investigations. The new hydro acoustics methods for seabed study are discussed. It presents stages of seafloor relief studies in the Russian Arctic seas since the 1950s and the obtained results. At the beginning of the 21st century an entirely new phase of bathymetric investigations began with the use of Multibeam Echosounders (MB) and modern hydrographic software. The software tools to process and analyze the bathymetry, and more recently to characterize the seabed from the backscatter, are available in a majority of modern sonar systems. Besides the bathymetry and sonar data, modern MB can produce water column images. These hydrographic technologies provide the possibility to achieve a high level of the seafloor topography. The latest generation of hydrographic MB now has the ability to provide the water column images along with the seafloor. The gas seeps from multibeam water column data can be distantly discerned against the seabed relief background with the aid of the Fledermause software package ("FMMidwater" module). The ability to integrate the water column data with the seafoor and other information,in an integrated geospatial and temporal environment, enhanced the analysis and interpretation of the data which is essential for marine geological research and investigations. The modern hydrographic equipment presents the ability to integrate the MB digital relief models (DTM) and sub bottom profiler data. This provide the possibility to obtain not only the detailed seabed topography, but also the additional information concerning the structure of under bottom soil layers and presence of the endogenous objects in near bottom environment. The importance of the hydrographic software tools needed to process and analyze the bathymetry and water column data are emphasized. The practical importance of the water column and bottom profiler data processing for the submarine gas-hydrates survey is stated. The attention is paid to the implementation of the parametric sub bottom profilers - the low frequency sonar for the sea bottom vertical section investigation. The ability for the integrated presentation of the multibeam bathymetry and vertical curtains in the 3D environment are discussed. As an example of the modern swath survey results achieved with Kongsberg EM2040CD MB and hydrographic information technology QINSy/ Fledermause, are discussed and presented. This survey was performed for the RosNeft company in the Kara sea. Recommendations for the implementation of the multi beam echo sounder and parametric sub bottom profiler for the combined hydrographic and submarine gas-hydrates survey in the Russian northern seas are delivered.The gas-hydrate survey guidelines using MB and QINSy/Fledermause software are provided. The hydrographic software tools used to process and analyze the bathymetry can create the seafloor DTM with the high degree of resolution and provide 3D visualization.These new possibilities provide such realistic view of the sea bottom relief and environment that can be characterized as the marine landscapes. Thus it became possible to investigate the relief morphological peculiarities and obtain the information about the relief genesis. This opens the new opportunities for using the acoustic techniques for varies types of marine activity including the bottom environmental study. The appearance of the bottom thermokarst activity derived from the high resolution DTM generated from the real time MB data is presented. The bottom thermokarst provides the potential threat for underwater pipelines and other submarine communications. The arctic bottom relief peculiarities are also covered including grounded hummock traces and dome-shaped elevations. The investigation of such bottom land forms has become possible recently as the result of implementing the wide swath survey methods. Such unique relief features are in general related to seabed gas venting in the form of the submarine gas-hydrates seeps. The opportunities for investigation of the morphological relief peculiarities and getting the new information is mportant also for varies types of marine activity including the marine ecology study. The arctic sea specific microrelief images are provided to show the abnormality of the bottom surface. The main attention is paid to specific and bottom features such as trenches the grounded hummock traces and dome-shaped elevations of the Pingo-type-unique forms of microrelief usually confined to the bottom gas flow in the form of methane emissions. The attention is also paid to the consequences of the global climate change and its influence on the bottom sole. Key words: hydrographic technologies, hydro acoustics methods, swathe survey, sea bottom vertical section, submarine gas-hydrates, submarine permafrost, seafloor gas venting,multi beam echo sounder, parametric sub bottom profiler.
Alvarez-Berastegui, Diego; Ciannelli, Lorenzo; Aparicio-Gonzalez, Alberto; Reglero, Patricia; Hidalgo, Manuel; López-Jurado, Jose Luis; Tintoré, Joaquín; Alemany, Francisco
2014-01-01
Seascape ecology is an emerging discipline focused on understanding how features of the marine habitat influence the spatial distribution of marine species. However, there is still a gap in the development of concepts and techniques for its application in the marine pelagic realm, where there are no clear boundaries delimitating habitats. Here we demonstrate that pelagic seascape metrics defined as a combination of hydrographic variables and their spatial gradients calculated at an appropriate spatial scale, improve our ability to model pelagic fish distribution. We apply the analysis to study the spawning locations of two tuna species: Atlantic bluefin and bullet tuna. These two species represent a gradient in life history strategies. Bluefin tuna has a large body size and is a long-distant migrant, while bullet tuna has a small body size and lives year-round in coastal waters within the Mediterranean Sea. The results show that the models performance incorporating the proposed seascape metrics increases significantly when compared with models that do not consider these metrics. This improvement is more important for Atlantic bluefin, whose spawning ecology is dependent on the local oceanographic scenario, than it is for bullet tuna, which is less influenced by the hydrographic conditions. Our study advances our understanding of how species perceive their habitat and confirms that the spatial scale at which the seascape metrics provide information is related to the spawning ecology and life history strategy of each species.
NASA Astrophysics Data System (ADS)
Farmer, W. H.; Kiang, J. E.
2017-12-01
The development, deployment and maintenance of water resources management infrastructure and practices rely on hydrologic characterization, which requires an understanding of local hydrology. With regards to streamflow, this understanding is typically quantified with statistics derived from long-term streamgage records. However, a fundamental problem is how to characterize local hydrology without the luxury of streamgage records, a problem that complicates water resources management at ungaged locations and for long-term future projections. This problem has typically been addressed through the development of point estimators, such as regression equations, to estimate particular statistics. Physically-based precipitation-runoff models, which are capable of producing simulated hydrographs, offer an alternative to point estimators. The advantage of simulated hydrographs is that they can be used to compute any number of streamflow statistics from a single source (the simulated hydrograph) rather than relying on a diverse set of point estimators. However, the use of simulated hydrographs introduces a degree of model uncertainty that is propagated through to estimated streamflow statistics and may have drastic effects on management decisions. We compare the accuracy and precision of streamflow statistics (e.g. the mean annual streamflow, the annual maximum streamflow exceeded in 10% of years, and the minimum seven-day average streamflow exceeded in 90% of years, among others) derived from point estimators (e.g. regressions, kriging, machine learning) to that of statistics derived from simulated hydrographs across the continental United States. Initial results suggest that the error introduced through hydrograph simulation may substantially bias the resulting hydrologic characterization.
NASA Astrophysics Data System (ADS)
Santos, Léonard; Thirel, Guillaume; Perrin, Charles
2018-04-01
In many conceptual rainfall-runoff models, the water balance differential equations are not explicitly formulated. These differential equations are solved sequentially by splitting the equations into terms that can be solved analytically with a technique called operator splitting
. As a result, only the solutions of the split equations are used to present the different models. This article provides a methodology to make the governing water balance equations of a bucket-type rainfall-runoff model explicit and to solve them continuously. This is done by setting up a comprehensive state-space representation of the model. By representing it in this way, the operator splitting, which makes the structural analysis of the model more complex, could be removed. In this state-space representation, the lag functions (unit hydrographs), which are frequent in rainfall-runoff models and make the resolution of the representation difficult, are first replaced by a so-called Nash cascade
and then solved with a robust numerical integration technique. To illustrate this methodology, the GR4J model is taken as an example. The substitution of the unit hydrographs with a Nash cascade, even if it modifies the model behaviour when solved using operator splitting, does not modify it when the state-space representation is solved using an implicit integration technique. Indeed, the flow time series simulated by the new representation of the model are very similar to those simulated by the classic model. The use of a robust numerical technique that approximates a continuous-time model also improves the lag parameter consistency across time steps and provides a more time-consistent model with time-independent parameters.
The role of varying flow on channel morphology: a flume experiment
NASA Astrophysics Data System (ADS)
Hempel, L. A.; Grant, G.; Eaton, B. C.; Hassan, M. A.; Lewis, S.
2017-12-01
Numerous studies have explored how alluvial channels develop under different sediment and flow conditions, yet we still know very little about how channels adjust and respond to changing flow conditions. One reason for this oversight is the long-held idea that channels with complex flow regimes are adjusted to a single, channel-forming discharge. But growing evidence shows that channel form reflects time-dependent processes occuring over multiple flows. To better understand how stream channels adjust to a range of flows, and identify the timescales associated with those adjustments, we conducted a series of hydrograph experiments in a freely-adjustable flume that developed a self-formed, meander pattern with pool-riffle morphology. Hydrographs had different shapes, magnitudes, and durations, but the total sediment volume fed under equilibrium conditions was kept constant among experiments. We found that hydrograph shape controlled channel morphology, the rate of channel development, and degree of regularity in the pool-riffle pattern. Hydrographs with slowly rising rates of rise and fall produced channels that were equivalent in size to channels generated from constant flow experiments, and had regularly spaced pool-riffle and meander patterns, while hydrographs with fast rates of rise and fall produced undersized channels with a chaotic bed structure and pool-riffle pattern. The latter suggests that during quickly rising hydrographs, the flow rate increases faster than the channel capacity and planform pattern adjusts. We confirmed these observations by comparing the timescales associated with pool-riffle and planform curvature development, which were identified under simple, constant flow conditions, to the total duration of the hydrograph. Hydrographs with step durations equal to or longer than the channel adjustment time produced channels with a more regular pool-riffle patterns compared to channels with step durations shorter than the adjustment time. This work points to the importance of the hydrograph as a fundamental control on channel adjustment and offers the prospect of better understanding of how changes in the flow regime, either through climate, land use, or dams, translate into morphodynamic changes.
Risser, Dennis W.; Gburek, William J.; Folmar, Gordon J.
2005-01-01
This study by the U.S. Geological Survey (USGS), in cooperation with the Agricultural Research Service (ARS), U.S. Department of Agriculture, compared multiple methods for estimating ground-water recharge and base flow (as a proxy for recharge) at sites in east-central Pennsylvania underlain by fractured bedrock and representative of a humid-continental climate. This study was one of several within the USGS Ground-Water Resources Program designed to provide an improved understanding of methods for estimating recharge in the eastern United States. Recharge was estimated on a monthly and annual basis using four methods?(1) unsaturated-zone drainage collected in gravity lysimeters, (2) daily water balance, (3) water-table fluctuations in wells, and (4) equations of Rorabaugh. Base flow was estimated by streamflow-hydrograph separation using the computer programs PART and HYSEP. Estimates of recharge and base flow were compared for an 8-year period (1994-2001) coinciding with operation of the gravity lysimeters at an experimental recharge site (Masser Recharge Site) and a longer 34-year period (1968-2001), for which climate and streamflow data were available on a 2.8-square-mile watershed (WE-38 watershed). Estimates of mean-annual recharge at the Masser Recharge Site and WE-38 watershed for 1994-2001 ranged from 9.9 to 14.0 inches (24 to 33 percent of precipitation). Recharge, in inches, from the various methods was: unsaturated-zone drainage, 12.2; daily water balance, 12.3; Rorabaugh equations with PULSE, 10.2, or RORA, 14.0; and water-table fluctuations, 9.9. Mean-annual base flow from streamflow-hydrograph separation ranged from 9.0 to 11.6 inches (21-28 percent of precipitation). Base flow, in inches, from the various methods was: PART, 10.7; HYSEP Local Minimum, 9.0; HYSEP Sliding Interval, 11.5; and HYSEP Fixed Interval, 11.6. Estimating recharge from multiple methods is useful, but the inherent differences of the methods must be considered when comparing results. For example, although unsaturated-zone drainage from the gravity lysimeters provided the most direct measure of potential recharge, it does not incorporate spatial variability that is contained in watershed-wide estimates of net recharge from the Rorabaugh equations or base flow from streamflow-hydrograph separation. This study showed that water-level fluctuations, in particular, should be used with caution to estimate recharge in low-storage fractured-rock aquifers because of the variability of water-level response among wells and sensitivity of recharge to small errors in estimating specific yield. To bracket the largest range of plausible recharge, results from this study indicate that recharge derived from RORA should be compared with base flow from the Local-Minimum version of HYSEP.
Sen. Murkowski, Lisa [R-AK
2009-07-24
Senate - 07/24/2009 Read twice and referred to the Committee on Commerce, Science, and Transportation. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:
1983-07-01
storage areas were taken into account during the flood routings. AI.36 The computer program REVPULS, developed for this report, reverse Modified Puls...routed the hydrograph at Batavia through the storage upstream of the LVRR embankment. Subtracting this reverse -routed hydrograph from the combined...segments to form a more accurate reconstitution. The hydrographs upstream of Batavia were derived by reverse -routing and prorating by drainage area. Table
Rep. Young, Don [R-AK-At Large
2009-06-12
Senate - 07/15/2010 Received in the Senate and Read twice and referred to the Committee on Commerce, Science, and Transportation. (All Actions) Tracker: This bill has the status Passed HouseHere are the steps for Status of Legislation:
Rep. Young, Don [R-AK-At Large
2011-01-12
Senate - 10/31/2011 Received in the Senate and Read twice and referred to the Committee on Commerce, Science, and Transportation. (All Actions) Tracker: This bill has the status Passed HouseHere are the steps for Status of Legislation:
NASA Astrophysics Data System (ADS)
Field, Malcolm S.; Goldscheider, Nico; Li, Guangquan
2018-02-01
We are pleased to learn that the model presented in our paper dealing with the "modeling karst spring hydrograph recession based on head drop at sinkholes," published in the Journal of Hydrology in 2016 (Li et al., 2016), is of interest to readers of this journal. Our study presented a new non-exponential model for assessing spring hydrographs in terms of head drop at flooded sinkholes, as an extension of an earlier model proposed by Li and Field (2014). In both papers, we used two spring hydrographs measured in the St. Marks Karst Watershed in northwest Florida to test the applicability and to verify the validity of our models.
NASA Astrophysics Data System (ADS)
Munyaneza, O.; Mukubwa, A.; Maskey, S.; Uhlenbrook, S.; Wenninger, J.
2014-12-01
In the present study, we developed a catchment hydrological model which can be used to inform water resources planning and decision making for better management of the Migina Catchment (257.4 km2). The semi-distributed hydrological model HEC-HMS (Hydrologic Engineering Center - the Hydrologic Modelling System) (version 3.5) was used with its soil moisture accounting, unit hydrograph, liner reservoir (for baseflow) and Muskingum-Cunge (river routing) methods. We used rainfall data from 12 stations and streamflow data from 5 stations, which were collected as part of this study over a period of 2 years (May 2009 and June 2011). The catchment was divided into five sub-catchments. The model parameters were calibrated separately for each sub-catchment using the observed streamflow data. Calibration results obtained were found acceptable at four stations with a Nash-Sutcliffe model efficiency index (NS) of 0.65 on daily runoff at the catchment outlet. Due to the lack of sufficient and reliable data for longer periods, a model validation was not undertaken. However, we used results from tracer-based hydrograph separation from a previous study to compare our model results in terms of the runoff components. The model performed reasonably well in simulating the total flow volume, peak flow and timing as well as the portion of direct runoff and baseflow. We observed considerable disparities in the parameters (e.g. groundwater storage) and runoff components across the five sub-catchments, which provided insights into the different hydrological processes on a sub-catchment scale. We conclude that such disparities justify the need to consider catchment subdivisions if such parameters and components of the water cycle are to form the base for decision making in water resources planning in the catchment.
Quantifying new water fractions and water age distributions using ensemble hydrograph separation
NASA Astrophysics Data System (ADS)
Kirchner, James
2017-04-01
Catchment transit times are important controls on contaminant transport, weathering rates, and runoff chemistry. Recent theoretical studies have shown that catchment transit time distributions are nonstationary, reflecting the temporal variability in precipitation forcing, the structural heterogeneity of catchments themselves, and the nonlinearity of the mechanisms controlling storage and transport in the subsurface. The challenge of empirically estimating these nonstationary transit time distributions in real-world catchments, however, has only begun to be explored. Long, high-frequency tracer time series are now becoming available, creating new opportunities to study how rainfall becomes streamflow on timescales of minutes to days following the onset of precipitation. Here I show that the conventional formula used for hydrograph separation can be converted into an equivalent linear regression equation that quantifies the fraction of current rainfall in streamflow across ensembles of precipitation events. These ensembles can be selected to represent different discharge ranges, different precipitation intensities, or different levels of antecedent moisture, thus quantifying how the fraction of "new water" in streamflow varies with forcings such as these. I further show how this approach can be generalized to empirically determine the contributions of precipitation inputs to streamflow across a range of time lags. In this way the short-term tail of the transit time distribution can be directly quantified for an ensemble of precipitation events. Benchmark testing with a simple, nonlinear, nonstationary catchment model demonstrates that this approach quantitatively measures the short tail of the transit time distribution for a wide range of catchment response characteristics. In combination with reactive tracer time series, this approach can potentially be extended to measure short-term chemical reaction rates at the catchment scale. High-frequency tracer time series from several experimental catchments will be used to demonstrate the utility of the new approach outlined here.
NASA Astrophysics Data System (ADS)
Huang, Chien-Lin; Hsu, Nien-Sheng; Wei, Chih-Chiang; Yao, Chun-Hao
2017-10-01
Multi-objective reservoir operation considering the trade-off of discharge-desiltation-turbidity during typhoons and sediment concentration (SC) simulation modeling are the vital components for sustainable reservoir management. The purposes of this study were (1) to analyze the multi-layer release trade-offs between reservoir desiltation and intake turbidity of downstream purification plants and thus propose a superior conjunctive operation strategy and (2) to develop ANFIS-based (adaptive network-based fuzzy inference system) and RTRLNN-based (real-time recurrent learning neural networks) substitute SC simulation models. To this end, this study proposed a methodology to develop (1) a series of multi-phase and multi-layer sediment-flood conjunctive release modes and (2) a specialized SC numerical model for a combined reservoir-reach system. The conjunctive release modes involve (1) an optimization model where the decision variables are multi-phase reduction/scaling ratios and the timings to generate a superior total release hydrograph for flood control (Phase I: phase prior to flood arrival, Phase II/III: phase prior to/subsequent to peak flow) and (2) a combination method with physical limitations regarding separation of the singular hydrograph into multi-layer release hydrographs for sediment control. This study employed the featured signals obtained from statistical quartiles/sediment duration curve in mesh segmentation, and an iterative optimization model with a sediment unit response matrix and corresponding geophysical-based acceleration factors, for efficient parameter calibration. This research applied the developed methodology to the Shihmen Reservoir basin in Taiwan. The trade-off analytical results using Typhoons Sinlaku and Jangmi as case examples revealed that owing to gravity current and re-suspension effects, Phase I + II can de-silt safely without violating the intake's turbidity limitation before reservoir discharge reaches 2238 m3/s; however, Phase III can only de-silt after the release at spillway reaches 827 m3/s, and before reservoir discharge reaches 1924 m3/s, with corresponding maximum desiltation ratio being 0.221 and 0.323, respectively. Moreover, the model construction results demonstrated that the self-adaption/fuzzy inference of ANFIS can effectively simulate the SC hydrograph in an unsteady state for suspended load-dominated water bodies, and that the real-time recurrent deterministic routing of RTRLNN can accurately simulate that of a bedload-dominated flow regime.
Code of Federal Regulations, 2014 CFR
2014-01-01
... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES General § 996.4 Liability. The Government of the United States...
Code of Federal Regulations, 2013 CFR
2013-01-01
... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES General § 996.4 Liability. The Government of the United States...
Code of Federal Regulations, 2012 CFR
2012-01-01
... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES General § 996.4 Liability. The Government of the United States...
Code of Federal Regulations, 2011 CFR
2011-01-01
... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES General § 996.4 Liability. The Government of the United States...
NASA Astrophysics Data System (ADS)
Smith, Murray J.; Walker, Carolyn F.; Bell, Thomas G.; Harvey, Mike J.; Saltzman, Eric S.; Law, Cliff S.
2018-04-01
Direct measurements of marine dimethylsulfide (DMS) fluxes are sparse, particularly in the Southern Ocean. The Surface Ocean Aerosol Production (SOAP) voyage in February-March 2012 examined the distribution and flux of DMS in a biologically active frontal system in the southwest Pacific Ocean. Three distinct phytoplankton blooms were studied with oceanic DMS concentrations as high as 25 nmol L-1. Measurements of DMS fluxes were made using two independent methods: the eddy covariance (EC) technique using atmospheric pressure chemical ionization-mass spectrometry (API-CIMS) and the gradient flux (GF) technique from an autonomous catamaran platform. Catamaran flux measurements are relatively unaffected by airflow distortion and are made close to the water surface, where gas gradients are largest. Flux measurements were complemented by near-surface hydrographic measurements to elucidate physical factors influencing DMS emission. Individual DMS fluxes derived by EC showed significant scatter and, at times, consistent departures from the Coupled Ocean-Atmosphere Response Experiment gas transfer algorithm (COAREG). A direct comparison between the two flux methods was carried out to separate instrumental effects from environmental effects and showed good agreement with a regression slope of 0.96 (r2 = 0.89). A period of abnormal downward atmospheric heat flux enhanced near-surface ocean stratification and reduced turbulent exchange, during which GF and EC transfer velocities showed good agreement but modelled COAREG values were significantly higher. The transfer velocity derived from near-surface ocean turbulence measurements on a spar buoy compared well with the COAREG model in general but showed less variation. This first direct comparison between EC and GF fluxes of DMS provides confidence in compilation of flux estimates from both techniques, as well as in the stable periods when the observations are not well predicted by the COAREG model.
Stauffer, Beth A.; Miksis-Olds, Jennifer; Goes, Joaquim I.
2015-01-01
Variability of hydrographic conditions and primary and secondary productivity between cold and warm climatic regimes in the Bering Sea has been the subject of much study in recent years, while interannual variability within a single regime and across multiple trophic levels has been less well-documented. Measurements from an instrumented mooring on the southeastern shelf of the Bering Sea were analyzed for the spring-to-summer transitions within the cold regime years of 2009–2012 to investigate the interannual variability of hydrographic conditions, primary producer biomass, and acoustically-derived secondary producer and consumer abundance and community structure. Hydrographic conditions in 2012 were significantly different than in 2009, 2010, and 2011, driven largely by increased ice extent and thickness, later ice retreat, and earlier stratification of the water column. Primary producer biomass was more tightly coupled to hydrographic conditions in 2012 than in 2009 or 2011, and shallow and mid-column phytoplankton blooms tended to occur independent of one another. There was a high degree of variability in the relationships between different classes of secondary producers and hydrographic conditions, evidence of significant intra-consumer interactions, and trade-offs between different consumer size classes in each year. Phytoplankton blooms stimulated different populations of secondary producers in each year, and summer consumer populations appeared to determine dominant populations in the subsequent spring. Overall, primary producers and secondary producers were more tightly coupled to each other and to hydrographic conditions in the coldest year compared to the warmer years. The highly variable nature of the interactions between the atmospherically-driven hydrographic environment, primary and secondary producers, and within food webs underscores the need to revisit how climatic regimes within the Bering Sea are defined and predicted to function given changing climate scenarios. PMID:26110822
Stauffer, Beth A; Miksis-Olds, Jennifer; Goes, Joaquim I
2015-01-01
Variability of hydrographic conditions and primary and secondary productivity between cold and warm climatic regimes in the Bering Sea has been the subject of much study in recent years, while interannual variability within a single regime and across multiple trophic levels has been less well-documented. Measurements from an instrumented mooring on the southeastern shelf of the Bering Sea were analyzed for the spring-to-summer transitions within the cold regime years of 2009-2012 to investigate the interannual variability of hydrographic conditions, primary producer biomass, and acoustically-derived secondary producer and consumer abundance and community structure. Hydrographic conditions in 2012 were significantly different than in 2009, 2010, and 2011, driven largely by increased ice extent and thickness, later ice retreat, and earlier stratification of the water column. Primary producer biomass was more tightly coupled to hydrographic conditions in 2012 than in 2009 or 2011, and shallow and mid-column phytoplankton blooms tended to occur independent of one another. There was a high degree of variability in the relationships between different classes of secondary producers and hydrographic conditions, evidence of significant intra-consumer interactions, and trade-offs between different consumer size classes in each year. Phytoplankton blooms stimulated different populations of secondary producers in each year, and summer consumer populations appeared to determine dominant populations in the subsequent spring. Overall, primary producers and secondary producers were more tightly coupled to each other and to hydrographic conditions in the coldest year compared to the warmer years. The highly variable nature of the interactions between the atmospherically-driven hydrographic environment, primary and secondary producers, and within food webs underscores the need to revisit how climatic regimes within the Bering Sea are defined and predicted to function given changing climate scenarios.
OCEANOGRAPHIC SURVEY OF THE GULF OF MEXICO
psychrometer readings were taken at 3 levels and wind, cloud, and other auxiliary data were taken at 6-hr intervals. A short hydrographic survey was made of...upon the loss of a hydrographic cable. The second cruise covered about 2160 mi. No hydrographic casts were made below 1200 m. Thirty-four stations were...occupied, of which 11 were in the water deeper than 1000 fathoms. Sixty-six bathy-thermographic observations were made , 2 on each deep station and the
NASA Astrophysics Data System (ADS)
Candela, A.; Brigandì, G.; Aronica, G. T.
2014-07-01
In this paper a procedure to derive synthetic flood design hydrographs (SFDH) using a bivariate representation of rainfall forcing (rainfall duration and intensity) via copulas, which describes and models the correlation between two variables independently of the marginal laws involved, coupled with a distributed rainfall-runoff model, is presented. Rainfall-runoff modelling (R-R modelling) for estimating the hydrological response at the outlet of a catchment was performed by using a conceptual fully distributed procedure based on the Soil Conservation Service - Curve Number method as an excess rainfall model and on a distributed unit hydrograph with climatic dependencies for the flow routing. Travel time computation, based on the distributed unit hydrograph definition, was performed by implementing a procedure based on flow paths, determined from a digital elevation model (DEM) and roughness parameters obtained from distributed geographical information. In order to estimate the primary return period of the SFDH, which provides the probability of occurrence of a hydrograph flood, peaks and flow volumes obtained through R-R modelling were treated statistically using copulas. Finally, the shapes of hydrographs have been generated on the basis of historically significant flood events, via cluster analysis. An application of the procedure described above has been carried out and results presented for the case study of the Imera catchment in Sicily, Italy.
A Hybrid of Optical Remote Sensing and Hydrological Modeling Improves Water Balance Estimation
NASA Astrophysics Data System (ADS)
Gleason, Colin J.; Wada, Yoshihide; Wang, Jida
2018-01-01
Declining gauging infrastructure and fractious water politics have decreased available information about river flows globally. Remote sensing and water balance modeling are frequently cited as potential solutions, but these techniques largely rely on these same in-decline gauge data to make accurate discharge estimates. A different approach is therefore needed, and we here combine remotely sensed discharge estimates made via at-many-stations hydraulic geometry (AMHG) and the PCR-GLOBWB hydrological model to estimate discharge over the Lower Nile. Specifically, we first estimate initial discharges from 87 Landsat images and AMHG (1984-2015), and then use these flow estimates to tune the model, all without using gauge data. The resulting tuned modeled hydrograph shows a large improvement in flow magnitude: validation of the tuned monthly hydrograph against a historical gauge (1978-1984) yields an RMSE of 439 m3/s (40.8%). By contrast, the original simulation had an order-of-magnitude flow error. This improvement is substantial but not perfect: tuned flows have a 1-2 month wet season lag and a negative base flow bias. Accounting for this 2 month lag yields a hydrograph RMSE of 270 m3/s (25.7%). Thus, our results coupling physical models and remote sensing is a promising first step and proof of concept toward future modeling of ungauged flows, especially as developments in cloud computing for remote sensing make our method easily applicable to any basin. Finally, we purposefully do not offer prescriptive solutions for Nile management, and rather hope that the methods demonstrated herein can prove useful to river stakeholders in managing their own water.
NASA Astrophysics Data System (ADS)
Lafare, Antoine E. A.; Peach, Denis W.; Hughes, Andrew G.
2016-02-01
The daily groundwater level (GWL) response in the Permo-Triassic Sandstone aquifers in the Eden Valley, England (UK), has been studied using the seasonal trend decomposition by LOESS (STL) technique. The hydrographs from 18 boreholes in the Permo-Triassic Sandstone were decomposed into three components: seasonality, general trend and remainder. The decomposition was analysed first visually, then using tools involving a variance ratio, time-series hierarchical clustering and correlation analysis. Differences and similarities in decomposition pattern were explained using the physical and hydrogeological information associated with each borehole. The Penrith Sandstone exhibits vertical and horizontal heterogeneity, whereas the more homogeneous St Bees Sandstone groundwater hydrographs characterize a well-identified seasonality; however, exceptions can be identified. A stronger trend component is obtained in the silicified parts of the northern Penrith Sandstone, while the southern Penrith, containing Brockram (breccias) Formation, shows a greater relative variability of the seasonal component. Other boreholes drilled as shallow/deep pairs show differences in responses, revealing the potential vertical heterogeneities within the Penrith Sandstone. The differences in bedrock characteristics between and within the Penrith and St Bees Sandstone formations appear to influence the GWL response. The de-seasonalized and de-trended GWL time series were then used to characterize the response, for example in terms of memory effect (autocorrelation analysis). By applying the STL method, it is possible to analyse GWL hydrographs leading to better conceptual understanding of the groundwater flow. Thus, variation in groundwater response can be used to gain insight into the aquifer physical properties and understand differences in groundwater behaviour.
15 CFR 995.3 - Availability of other publications.
Code of Federal Regulations, 2014 CFR
2014-01-01
... CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS General § 995.3 Availability of other publications. (a) For further...
15 CFR 995.3 - Availability of other publications.
Code of Federal Regulations, 2012 CFR
2012-01-01
... CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS General § 995.3 Availability of other publications. (a) For further...
Code of Federal Regulations, 2011 CFR
2011-01-01
... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS Certification and Procedures § 995.14 Auditing. NOAA reserves the right to audit CED or...
Code of Federal Regulations, 2014 CFR
2014-01-01
... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS Certification and Procedures § 995.14 Auditing. NOAA reserves the right to audit CED or...
15 CFR 995.3 - Availability of other publications.
Code of Federal Regulations, 2013 CFR
2013-01-01
... CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS General § 995.3 Availability of other publications. (a) For further...
Code of Federal Regulations, 2012 CFR
2012-01-01
... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS Certification and Procedures § 995.14 Auditing. NOAA reserves the right to audit CED or...
15 CFR 995.22 - Training of data users.
Code of Federal Regulations, 2013 CFR
2013-01-01
... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS Requirements for Certified Distributors and Value Added Distributors of NOAA ENC Products...
Code of Federal Regulations, 2013 CFR
2013-01-01
... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS Certification and Procedures § 995.14 Auditing. NOAA reserves the right to audit CED or...
15 CFR 995.22 - Training of data users.
Code of Federal Regulations, 2010 CFR
2010-01-01
... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS Requirements for Certified Distributors and Value Added Distributors of NOAA ENC Products...
Unit Hydrograph Peaking Analysis for Goose Creek Watershed in Virginia: A Case Study
2017-05-01
ER D C/ CH L TR -1 7- 6 Unit Hydrograph Peaking Analysis for Goose Creek Watershed in Virginia: A Case Study Co as ta l a nd H yd ra...default. ERDC/CHL TR-17-6 May 2017 Unit Hydrograph Peaking Analysis for Goose Creek Watershed in Virginia: A Case Study Nawa Raj Pradhan and...confidence interval precipitation depths to the watershed in addition to the 50% value. This study concluded that a design event with a return period greater
Lane, R.C.; Julich, R.J.; Justin, G.B.
2013-01-01
Hydrographs of groundwater levels for selected wells in and adjacent to the Puyallup River watershed in Pierce and King Counties, Washington, are presented using an interactive Web-based map of the study area to illustrate changes in groundwater levels on a monthly and seasonal basis. The interactive map displays well locations that link to the hydrographs, which in turn link to the U.S. Geological Survey National Water Information System, Groundwater Site Inventory System.
1983-01-01
eastwards of MORESBY’s 1981 survey. The ship suffered considerable problems in establishing her ARGO stations on this barren and inhospitable coast...on 6 months exchange whilst an RFMF officer pined experience in Australia. A CPOSR has continued the loan service arrang-ments in support of the...training in hydrographic surveying is undertaken at the Royal Navy’s Hydrographic School in Plymouth . It is expected that an average of four officers will
NASA Astrophysics Data System (ADS)
Schulz, Karsten; Burgholzer, Reinhard; Klotz, Daniel; Wesemann, Johannes; Herrnegger, Mathew
2018-05-01
The unit hydrograph (UH) has been one of the most widely employed hydrological modelling techniques to predict rainfall-runoff behaviour of hydrological catchments, and is still used to this day. Its concept is based on the idea that a unit of effective precipitation per time unit (e.g. mm h-1) will always lead to a specific catchment response in runoff. Given its relevance, the UH is an important topic that is addressed in most (engineering) hydrology courses at all academic levels. While the principles of the UH seem to be simple and easy to understand, teaching experiences in the past suggest strong difficulties in students' perception of the UH theory and application. In order to facilitate a deeper understanding of the theory and application of the UH for students, we developed a simple and cheap lecture theatre experiment which involved active student participation. The seating of the students in the lecture theatre represented the hydrological catchment
in its size and form. A set of plastic balls, prepared with a piece of magnetic strip to be tacked to any white/black board, each represented a unit amount of effective precipitation. The balls are evenly distributed over the lecture theatre and routed by some given rules down the catchment to the catchment outlet
, where the resulting hydrograph is monitored and illustrated at the black/white board. The experiment allowed an illustration of the underlying principles of the UH, including stationarity, linearity, and superposition of the generated runoff and subsequent routing. In addition, some variations of the experimental setup extended the UH concept to demonstrate the impact of elevation, different runoff regimes, and non-uniform precipitation events on the resulting hydrograph. In summary, our own experience in the classroom, a first set of student exams, as well as student feedback and formal evaluation suggest that the integration of such an experiment deepened the learning experience by active participation. The experiment also initialized a more experienced based discussion of the theory and assumptions behind the UH. Finally, the experiment was a welcome break within a 3 h lecture setting, and great fun to prepare and run.
2015-11-10
of the ensemble method o the estimation of sensitivities was demonstrated in meteorological Ancell and Hakim, 2007 ; Torn and Hakim, 2008) and...to predetermined low- dimensional subspaces spanned either by the reduced-order approx- imations of the model Green’s functions ( Stammer and Wunsch...2005; Qui et al., 2007 ; Hoteit, 2008). In fact, the 4dEnVar technique pursues a similar, but more general approach, pa- rameterizing the search
Spatially distributed storm runoff modeling using remote sensing and geographic information systems
NASA Astrophysics Data System (ADS)
Melesse, Assefa Mekonnen
Advances in scientific knowledge and new techniques of remote sensing permit a better understanding of the physical land features governing hydrologic processes, and make possible efficient, large-scale hydrologic modeling. The need for land-cover and hydrologic response change detection at a larger scale and at times of the year when hydrologic studies are critical makes satellite imagery the most cost effective, efficient and reliable source of data. The use of a Geographic Information System (GIS) to store, manipulate and visualize these data, and ultimately to estimate runoff from watersheds, has gained increasing attention in recent years. In this work, remotely-sensed data and GIS tools were used to estimate the changes in land-cover, and to estimate runoff response, for three watersheds (Etonia, Econlockhatchee, and S-65A sub-basins) in Florida. Land-use information from Digital Orthophoto Quarter Quadrangles (DOQQ), Landsat Thematic Mapper (TM), and Enhanced Thematic Mapper Plus (ETM+) were analyzed for the years 1973, 1984, 1990, 1995, and 2000. Spatial distribution of land-cover was assessed over time. The corresponding infiltration excess runoff response of the study areas due to these changes was estimated using the United States Department of Agriculture, Natural Resources Conservation Service Curve Number (USDA-NRCS-CN) method. A Digital Elevation Model (DEM)-GIS technique was developed to predict stream response to runoff events based on the travel time from each grid cell to the watershed outlet. The method was tested on a representative watershed (Simms Creek) in the Etonia sub-basin. Simulated and observed runoff volume and hydrographs were compared for 17 storm events. Isolated storms, with volumes of not less than 12.75 mm (0.5 inch) were selected. This is the minimum amount of rainfall volume recommended for the NRCS-CN method. Results show that the model predicts the runoff response of the study area with an average efficiency of 57%. Comparison of the runoff prediction to Snyder's synthetic Unit hydrograph method and TOPMODEL shows the spatially distributed infiltration excess travel time model performs better than both the Snyder's method and TOPMODEL. The model is applicable to ungaged watersheds and useful for predicting runoff hydrographs resulting from changes in the land-cover.
Isotopic separation of snowmelt runoff during an artificial rain-on-snow event
NASA Astrophysics Data System (ADS)
Juras, Roman; Pavlasek, Jirka; Šanda, Martin; Jankovec, Jakub; Linda, Miloslav
2013-04-01
Rain-on-snow events are common phenomenon in the climate conditions of central Europe, mainly during the spring snowmelt period. These events can cause serious floods in areas with seasonal snow. The snowpack hit by rain is able to store a fraction of rain water, but runoff caused by additional snowmelt also increases. Assessment of the rainwater ratio contributing to the outflow from the snowpack is therefore critical for discharge modelling. A rainfall simulator and water enriched by deuterium were used for the study of rainwater behaviour during an artificial rain-on-snow event. An area of 1 m2 of the snow sample, which was 1.2 m deep, consisting of ripped coarse-grained snow, was sprayed during the experiment with deuterium enriched water. The outflow from the snowpack was measured and samples of outflow water were collected. The isotopic content of deuterium was further analyzed from these samples by means of laser spectroscopy for the purpose of hydrograph separation. The concentration of deuterium in snow before and after the experiment was also investigated. The deuterium enriched water above the natural concentration of deuterium in snowpack was detected in the outflow in 7th minute from start of spraying, but the significant increase of deuterium concentration in outflow was observed in 19th minute. The isotopic hydrograph separation estimated, that deuterium enriched rainwater became the major part (> 50% volumetric) of the outflow in 28th minute. The culmination of the outflow (1.23 l min-1) as well as deuterium enriched rainwater fraction (63.5%) in it occurred in 63th minute, i.e. right after the end of spraying. In total, 72.7 l of deuterium enriched water was sprayed on the snowpack in 62 minutes. Total volume of outflow (after 12.3 hours) water was 97.4 l, which contained 48.3 l of deuterium enriched water (i.e. 49.6 %) and 49.1 l (50.4 %) of the melted snowpack. The volume of 24.4 l of deuterium enriched spray-water was stored in the snowpack. The increased total output v. input of the water volume was caused by the warmer spray-water induced snowmelt also connecting separated liquid layers in the snowpack within the process of infiltration and drainage. Key words: deuterium tracer, rainfall simulator, snowmelt
Eogenetic karst hydrology: insights from the 2004 hurricanes, peninsular Florida.
Florea, Lee J; Vacher, H L
2007-01-01
Eogenetic karst lies geographically and temporally close to the depositional environment of limestone in warm marine water at low latitude, in areas marked by midafternoon thunderstorms during a summer rainy season. Spring hydrographs from such an environment in north-central Florida are characterized by smooth, months-long, seasonal maxima. The passage of Hurricanes Frances and Jeanne in September 2004 over three field locations shows how the eogenetic karst of the Upper Floridan Aquifer responds to unequivocal recharge events. Hydrographs at wells in the High Springs area, Rainbow Springs, and at Morris, Briar, and Bat Caves all responded promptly with a similar drawn-out rise to a maximum that extended long into the winter dry season. The timing indicates that the typical hydrograph of eogenetic karst is not the short-term fluctuations of springs in epigenic, telogenetic karst, or the smoothed response to all the summer thunderstorms, but rather the protracted response of the system to rainfall that exceeds a threshold. The similarity of cave and noncave hydrographs indicates distributed autogenic recharge and a free communication between secondary porosity and permeable matrix-both of which differ from the hydrology of epigenic, telogenetic karst. At Briar Cave, drip rates lagged behind the water table rise, suggesting that recharge was delivered by fractures, which control the cave's morphology. At High Springs, hydrographs at the Santa Fe River and a submerged conduit apparently connected to it show sharp maxima after the storms, unlike the other cave hydrographs. Our interpretation is that the caves, in general, are discontinuous.
Regional-scale, fully coupled modelling of stream aquifer interaction in a tropical catchment
NASA Astrophysics Data System (ADS)
Werner, Adrian D.; Gallagher, Mark R.; Weeks, Scott W.
2006-09-01
SummaryThe planning and management of water resources in the Pioneer Valley, north-eastern Australia requires a tool for assessing the impact of groundwater and stream abstractions on water supply reliabilities and environmental flows in Sandy Creek (the main surface water system studied). Consequently, a fully coupled stream-aquifer model has been constructed using the code MODHMS, calibrated to near-stream observations of watertable behaviour and multiple components of gauged stream flow. This model has been tested using other methods of estimation, including stream depletion analysis and radon isotope tracer sampling. The coarseness of spatial discretisation, which is required for practical reasons of computational efficiency, limits the model's capacity to simulate small-scale processes (e.g., near-stream groundwater pumping, bank storage effects), and alternative approaches are required to complement the model's range of applicability. Model predictions of groundwater influx to Sandy Creek are compared with baseflow estimates from three different hydrograph separation techniques, which were found to be unable to reflect the dynamics of Sandy Creek stream-aquifer interactions. The model was also used to infer changes in the water balance of the system caused by historical land use change. This led to constraints on the recharge distribution which can be implemented to improve model calibration performance.
Code of Federal Regulations, 2010 CFR
2010-01-01
... AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES Other Quality Assurance Program Matters § 996.32 Appeals. (a...
1985-01-01
Mapping Council which will be held in October 1985. IJS. COMPTONAPTAIN RAN HYDROGRAPHER RAN Accesion For NTIS -CRAMI LDrIC TAB U,.annournced 0 J ...itifcation By .-........ . Di.. t ibution Availability Codes Dit Avail ar-.I or A-1 QUALITYSSPECTED - 2 L. 2. GENERAL The RAN Hydrographic Service, the...FLINDERS used Side Scan Sonar and her diving team to find, and determine the least depths over, the wrecks SAFARI and ERICA J lying on the sea-bed in the
Hydrograph Shape Controls Channel Morphology and Organization in a Sand-Gravel Flume
NASA Astrophysics Data System (ADS)
Hempel, L. A.; Grant, G.; Hassan, M. A.; Eaton, B. C.
2016-12-01
A fundamental research question in fluvial geomorphology is to understand what flows shape river channels. Historically, the prevailing view has been that channel dimensions adjust to a so-termed "dominant discharge", which is often approximated as the bankfull flow. But using a single flow to reference the geomorphic effectiveness of an entire flow regime discounts many observations showing that different flows control different channel processes. Some flows entrain fine sediment, some entrain the full size distribution of bed sediment; some destabilize or build bars, some erode the banks, and so forth. To explore the relation between the full flow regime and channel morphology, we conducted a series of flume experiments to examine how hydrographs with different shapes, durations, and magnitudes result in different degrees of channel organization, which we define in terms of the regularity, spacing and architecture of self-formed channel features, such as bed patches, geometry and spacing of bedforms, and channel planform. Our experiments were run in a 12m long adjustable-width flume that developed a self-formed meandering, pool-riffle pattern. We found that hydrograph shape does control channel organization. In particular, channels formed by hydrographs with slower rising limbs and broader peaks were more organized than those formed by flashier hydrographs. To become organized, hydrographs needed to exceed a minimum flow threshold, defined by the intensity of sediment transport; below which the channel lacked bedforms and a regular meander pattern. Above an upper flow threshold, bars became disorganized and the channel planform transitioned towards braiding. Field studies of channels with different flow regimes but located in a similar physiographic setting support our experimental findings. Taken together, this work points to the importance of the hydrograph as a fundamental control on channel morphology, and offers the prospect of better understanding how changing hydrologic regimes, either through climate, land use, or dams, translates into geomorphic changes.
Densmore, Brenda K.; Strauch, Kellan R.; Ziegeweid, Jeffrey R.
2013-01-01
The U.S. Geological Survey performed multibeam echosounder hydrographic surveys of four narrows in the Namakan reservoir system in August 2011, in cooperation with the International Joint Commission and Environment Canada. The data-collection effort was completed to provide updated and detailed hydrographic data to Environment Canada for inclusion in a Hydrologic Engineering Centers River Analysis System hydraulic model. The Namakan reservoir system is composed of Namakan, Kabetogama, Sand Point, Crane, and Little Vermilion Lakes. Water elevations in the Namakan reservoir system are regulated according to rule curves, or guidelines for water-level management based on the time of year, established by the International Joint Commission. Water levels are monitored by established gages on Crane Lake and the outlet of Namakan Lake at Kettle Falls, but water elevations throughout the system may deviate from these measured values by as much as 0.3 meters, according to lake managers and residents. Deviations from expected water elevations may be caused by between-lake constrictions (narrows). According to the 2000 Rule Curve Assessment Workgroup, hydrologic models of the reservoir system are needed to better understand the system and to evaluate the recent changes made to rule curves in 2000. Hydrographic surveys were performed using a RESON SeaBat™7125 multibeam echosounder system. Surveys were completed at Namakan Narrows, Harrison Narrows, King Williams Narrows, and Little Vermilion Narrows. Hydrographic survey data were processed using Caris HIPSTM and SIPSTM software that interpolated a combined uncertainty and bathymetric estimator (CUBE) surface. Quality of the survey results was evaluated in relation to standards set by the International Hydrographic Organization (IHO) for describing the uncertainty of hydrographic surveys. More than 90 percent of the surveyed areas at the four narrows have resulting bed elevations that meet the IHO “Special Order” quality. Survey datasets published in this report are formatted as text files of x-y-z coordinates and as CARIS Spatial ArchiveTM (CSARTM) files with corresponding metadata.
Asquith, William H.; Thompson, David B.; Cleveland, Theodore G.; Fang, Xing
2004-01-01
In the early 2000s, the Texas Department of Transportation funded several research projects to examine the unit hydrograph and rainfall hyetograph techniques for hydrologic design in Texas for the estimation of design flows for stormwater drainage systems. A research consortium comprised of Lamar University, Texas Tech University, the University of Houston, and the U.S. Geological Survey (USGS), was chosen to examine the unit hydrograph and rainfall hyetograph techniques. Rainfall and runoff data collected by the USGS at 91 streamflow-gaging stations in Texas formed a basis for the research. These data were collected as part of USGS small-watershed projects and urban watershed studies that began in the late 1950s and continued through most of the 1970s; a few gages were in operation in the mid-1980s. Selected hydrologic events from these studies were available in the form of over 220 printed reports, which offered the best aggregation of hydrologic data for the research objectives. Digital versions of the data did not exist. Therefore, significant effort was undertaken by the consortium to manually enter the data into a digital database from the printed record. The rainfall and runoff data for over 1,650 storms were entered. To enhance data integrity, considerable quality-control and quality-assurance efforts were conducted as the database was assembled and after assembly to enhance data integrity. This report documents the database and informs interested parties on its usage.
15 CFR 995.10 - Correspondence and applications.
Code of Federal Regulations, 2012 CFR
2012-01-01
... CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS Certification and Procedures § 995.10 Correspondence and applications. (a) Distributors or value-added distributors desiring certification from NOAA shall provide a...
15 CFR 995.10 - Correspondence and applications.
Code of Federal Regulations, 2014 CFR
2014-01-01
... CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS Certification and Procedures § 995.10 Correspondence and applications. (a) Distributors or value-added distributors desiring certification from NOAA shall provide a...
15 CFR 995.10 - Correspondence and applications.
Code of Federal Regulations, 2011 CFR
2011-01-01
... CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS Certification and Procedures § 995.10 Correspondence and applications. (a) Distributors or value-added distributors desiring certification from NOAA shall provide a...
15 CFR 995.10 - Correspondence and applications.
Code of Federal Regulations, 2013 CFR
2013-01-01
... CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS Certification and Procedures § 995.10 Correspondence and applications. (a) Distributors or value-added distributors desiring certification from NOAA shall provide a...
Code of Federal Regulations, 2010 CFR
2010-01-01
... AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES General § 996.4 Liability. The Government of the United States...
15 CFR 995.10 - Correspondence and applications.
Code of Federal Regulations, 2010 CFR
2010-01-01
... CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS Certification and Procedures § 995.10 Correspondence and applications. (a) Distributors or value-added distributors desiring certification from NOAA shall provide a...
User's guide for a general purpose dam-break flood simulation model (K-634)
Land, Larry F.
1981-01-01
An existing computer program for simulating dam-break floods for forecast purposes has been modified with an emphasis on general purpose applications. The original model was formulated, developed and documented by the National Weather Service. This model is based on the complete flow equations and uses a nonlinear implicit finite-difference numerical method. The first phase of the simulation routes a flood wave through the reservoir and computes an outflow hydrograph which is the sum of the flow through the dam 's structures and the gradually developing breach. The second phase routes this outflow hydrograph through the stream which may be nonprismatic and have segments with subcritical or supercritical flow. The results are discharge and stage hydrographs at the dam as well as all of the computational nodes in the channel. From these hydrographs, peak discharge and stage profiles are tabulated. (USGS)
Eogenetic karst hydrology: Insights from the 2004 hurricanes, peninsular Florida
Florea, L.J.; Vacher, H. Leonard
2007-01-01
Eogenetic karst lies geographically and temporally close to the depositional environment of limestone in warm marine water at low latitude, in areas marked by midafternoon thunderstorms during a summer rainy season. Spring hydrographs from such an environment in north-central Florida are characterized by smooth, months-long, seasonal maxima. The passage of Hurricanes Frances and Jeanne in September 2004 over three field locations shows how the eogenetic karst of the Upper Floridan Aquifer responds to unequivocal recharge events. Hydrographs at wells in the High Springs area, Rainbow Springs, and at Morris, Briar, and Bat Caves all responded promptly with a similar drawn-out rise to a maximum that extended long into the winter dry season. The timing indicates that the typical hydrograph of eogenetic karst is not the short-term fluctuations of springs in epigenic, telogenetic karst, or the smoothed response to all the summer thunderstorms, but rather the protracted response of the system to rainfall that exceeds a threshold. The similarity of cave and noncave hydrographs indicates distributed autogenic recharge and a free communication between secondary porosity and permeable matrix - both of which differ from the hydrology of epigenic, telogenetic karst. At Briar Cave, drip rates lagged behind the water table rise, suggesting that recharge was delivered by fractures, which control the cave's morphology. At High Springs, hydrographs at the Santa Fe River and a submerged conduit apparently connected to it show sharp maxima after the storms, unlike the other cave hydrographs. Our interpretation is that the caves, in general, are discontinuous. ?? 2007 National Ground Water Association.
A computer program for predicting recharge with a master recession curve
Heppner, Christopher S.; Nimmo, John R.
2005-01-01
Water-table fluctuations occur in unconfined aquifers owing to ground-water recharge following precipitation and infiltration, and ground-water discharge to streams between storm events. Ground-water recharge can be estimated from well hydrograph data using the water-table fluctuation (WTF) principle, which states that recharge is equal to the product of the water-table rise and the specific yield of the subsurface porous medium. The water-table rise, however, must be expressed relative to the water level that would have occurred in the absence of recharge. This requires a means for estimating the recession pattern of the water-table at the site. For a given site there is often a characteristic relation between the water-table elevation and the water-table decline rate following a recharge event. A computer program was written which extracts the relation between decline rate and water-table elevation from well hydrograph data and uses it to construct a master recession curve (MRC). The MRC is a characteristic water-table recession hydrograph, representing the average behavior for a declining water-table at that site. The program then calculates recharge using the WTF method by comparing the measured well hydrograph with the hydrograph predicted by the MRC and multiplying the difference at each time step by the specific yield. This approach can be used to estimate recharge in a continuous fashion from long-term well records. Presented here is a description of the code including the WTF theory and instructions for running it to estimate recharge with continuous well hydrograph data.
77 FR 76001 - Hydrographic Services Review Panel
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-26
... Review Panel AGENCY: National Ocean Service, National Oceanic and Atmospheric Administration (NOAA), Department of Commerce. ACTION: Notice of membership solicitation for Hydrographic Services Review Panel... Review Panel (HSRP). The HSRP, a Federal advisory committee, advises the Administrator on matters related...
Code of Federal Regulations, 2012 CFR
2012-01-01
... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES General § 996.3 Fees. NOAA may charge for its Quality Assurance Program activities...
Code of Federal Regulations, 2013 CFR
2013-01-01
... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES General § 996.3 Fees. NOAA may charge for its Quality Assurance Program activities...
Code of Federal Regulations, 2014 CFR
2014-01-01
... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES General § 996.3 Fees. NOAA may charge for its Quality Assurance Program activities...
Code of Federal Regulations, 2011 CFR
2011-01-01
... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES General § 996.3 Fees. NOAA may charge for its Quality Assurance Program activities...
Code of Federal Regulations, 2010 CFR
2010-01-01
... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES General § 996.3 Fees. NOAA may charge for its Quality Assurance Program activities...
15 CFR 996.1 - Purpose and scope.
Code of Federal Regulations, 2010 CFR
2010-01-01
... AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES General § 996.1 Purpose and scope. The National Oceanic and...
78 FR 23909 - Hydrographic Services Review Panel Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-23
... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration Hydrographic Services... (NOAA), Department of Commerce. ACTION: Notice of open meeting (via webinar and teleconference). SUMMARY... the Under Secretary of Commerce for Oceans and Atmosphere on matters related to the responsibilities...
15 CFR 995.29 - Limitation on endorsements.
Code of Federal Regulations, 2013 CFR
2013-01-01
... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS Requirements for Certified Distributors and Value Added Distributors of NOAA ENC Products § 995.29 Limitation on endorsements. By certifying compliance with this part, NOAA does not...
15 CFR 995.29 - Limitation on endorsements.
Code of Federal Regulations, 2014 CFR
2014-01-01
... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS Requirements for Certified Distributors and Value Added Distributors of NOAA ENC Products § 995.29 Limitation on endorsements. By certifying compliance with this part, NOAA does not...
Code of Federal Regulations, 2014 CFR
2014-01-01
... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS Requirements for Certified Distributors and Value Added Distributors of NOAA ENC Products § 995.20 General. The requirements for certification as a “Certified NOAA ENC Distributor” (CED) and...
Code of Federal Regulations, 2012 CFR
2012-01-01
... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS Requirements for Certified Distributors and Value Added Distributors of NOAA ENC Products § 995.20 General. The requirements for certification as a “Certified NOAA ENC Distributor” (CED) and...
Code of Federal Regulations, 2013 CFR
2013-01-01
... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS Requirements for Certified Distributors and Value Added Distributors of NOAA ENC Products § 995.20 General. The requirements for certification as a “Certified NOAA ENC Distributor” (CED) and...
15 CFR 995.29 - Limitation on endorsements.
Code of Federal Regulations, 2011 CFR
2011-01-01
... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS Requirements for Certified Distributors and Value Added Distributors of NOAA ENC Products § 995.29 Limitation on endorsements. By certifying compliance with this part, NOAA does not...
Code of Federal Regulations, 2011 CFR
2011-01-01
... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS Requirements for Certified Distributors and Value Added Distributors of NOAA ENC Products § 995.20 General. The requirements for certification as a “Certified NOAA ENC Distributor” (CED) and...
15 CFR 995.29 - Limitation on endorsements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS Requirements for Certified Distributors and Value Added Distributors of NOAA ENC Products § 995.29 Limitation on endorsements. By certifying compliance with this part, NOAA does not...
75 FR 59697 - Hydrographic Services Review Panel Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-28
... Health, Columbia River and Northwest Regional navigation and hydrographic surveying, climate change and... Review Panel Meeting AGENCY: National Ocean Service, National Oceanic and Atmospheric Administration... for Oceans and Atmosphere on matters related to the responsibilities and authorities set forth in...
15 CFR 996.33 - Acceptance of program by non-Federal entities.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Trade (Continued) NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES Other Quality Assurance Program Matters...
15 CFR 995.29 - Limitation on endorsements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS Requirements for Certified Distributors and Value Added Distributors of NOAA ENC Products § 995.29 Limitation on endorsements. By certifying compliance with this part, NOAA does not...
Code of Federal Regulations, 2010 CFR
2010-01-01
... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS Requirements for Certified Distributors and Value Added Distributors of NOAA ENC Products § 995.20 General. The requirements for certification as a “Certified NOAA ENC Distributor” (CED) and...
Justin, G.B.; Julich, R.; Payne, K.L.
2009-01-01
Selected groundwater level hydrographs for the Chambers-Clover Creek watershed (CCCW) and vicinity, Washington, are presented in an interactive web-based map to illustrate changes in groundwater levels in and near the CCCW on a monthly and seasonal basis. Hydrographs are linked to points corresponding to the well location on an interactive map of the study area. Groundwater level data and well information from Federal, State, and local agencies were obtained from the U.S. Geological Survey National Water Information System (NWIS), Groundwater Site Inventory (GWSI) System.
Code of Federal Regulations, 2013 CFR
2013-01-01
... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES Other Quality Assurance Program Matters § 996.32 Appeals. (a... Coastal Zone Management, NOAA, using procedures to be established at the time of the appeal, and which...
Code of Federal Regulations, 2011 CFR
2011-01-01
... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS General § 995.6 Fees. (a) The Office of Coast Survey, NOAA, may charge a fee for costs incurred to process...
Code of Federal Regulations, 2011 CFR
2011-01-01
... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES Other Quality Assurance Program Matters § 996.32 Appeals. (a... Coastal Zone Management, NOAA, using procedures to be established at the time of the appeal, and which...
15 CFR 996.1 - Purpose and scope.
Code of Federal Regulations, 2014 CFR
2014-01-01
... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES General § 996.1 Purpose and scope. The National Oceanic and Atmospheric Administration (NOAA) was mandated to develop and implement a quality assurance program that is...
Code of Federal Regulations, 2013 CFR
2013-01-01
... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS General § 995.6 Fees. (a) The Office of Coast Survey, NOAA, may charge a fee for costs incurred to process...
15 CFR 996.1 - Purpose and scope.
Code of Federal Regulations, 2011 CFR
2011-01-01
... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES General § 996.1 Purpose and scope. The National Oceanic and Atmospheric Administration (NOAA) was mandated to develop and implement a quality assurance program that is...
Code of Federal Regulations, 2012 CFR
2012-01-01
... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES Other Quality Assurance Program Matters § 996.32 Appeals. (a... Coastal Zone Management, NOAA, using procedures to be established at the time of the appeal, and which...
15 CFR 996.1 - Purpose and scope.
Code of Federal Regulations, 2012 CFR
2012-01-01
... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES General § 996.1 Purpose and scope. The National Oceanic and Atmospheric Administration (NOAA) was mandated to develop and implement a quality assurance program that is...
Code of Federal Regulations, 2014 CFR
2014-01-01
... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS General § 995.6 Fees. (a) The Office of Coast Survey, NOAA, may charge a fee for costs incurred to process...
15 CFR 996.1 - Purpose and scope.
Code of Federal Regulations, 2013 CFR
2013-01-01
... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES General § 996.1 Purpose and scope. The National Oceanic and Atmospheric Administration (NOAA) was mandated to develop and implement a quality assurance program that is...
Code of Federal Regulations, 2012 CFR
2012-01-01
... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS General § 995.6 Fees. (a) The Office of Coast Survey, NOAA, may charge a fee for costs incurred to process...
Code of Federal Regulations, 2014 CFR
2014-01-01
... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES Other Quality Assurance Program Matters § 996.32 Appeals. (a... Coastal Zone Management, NOAA, using procedures to be established at the time of the appeal, and which...
Methods of Hydrographic Surveying Used by Different Countries.
1983-03-01
902 Greece 16. Training and Education Division Hellenic Navy General Staff GENIKO EPITELIO NAYTIKOY (GEN) Greece 17. Hellenic Naval Academy SHOLI...Maratos Hellenic Navy Hydrographic Service Athens BST 902 Greece 21. Hellenic Army Geographic Service V. GENIKO EPITELIO STRATOU Athens, Greece 22. LT
15 CFR 996.30 - Use of the NOAA emblem.
Code of Federal Regulations, 2010 CFR
2010-01-01
...) NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES Other Quality Assurance Program Matters § 996.30 Use of the...
Code of Federal Regulations, 2010 CFR
2010-01-01
... ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS General § 995.6 Fees. (a) The Office of Coast Survey, NOAA, may charge a fee for costs incurred to process...
Shanley, James B.; Sebestyen, Stephen D.; McDonnell, Jeffrey J.; McGlynn, Brian L.; Dunne, Thomas
2015-01-01
The Sleepers River Research Watershed (SRRW) in Vermont, USA, has been the site of active hydrologic research since 1959 and was the setting where Dunne and Black demonstrated the importance and controls of saturation-excess overland flow (SOF) on streamflow generation. Here, we review the early studies from the SRRW and show how they guided our conceptual approach to hydrologic research at the SRRW during the most recent 25 years. In so doing, we chronicle a shift in the field from early studies that relied exclusively on hydrometric measurements to today's studies that include chemical and isotopic approaches to further elucidate streamflow generation mechanisms. Highlights of this evolution in hydrologic understanding include the following: (i) confirmation of the importance of SOF to streamflow generation, and at larger scales than first imagined; (ii) stored catchment water dominates stream response, except under unusual conditions such as deep frozen ground; (iii) hydrometric, chemical and isotopic approaches to hydrograph separation yield consistent and complementary results; (iv) nitrate and sulfate isotopic compositions specific to atmospheric inputs constrain new water contributions to streamflow; and (v) convergent areas, or ‘hillslope hollows’, contribute disproportionately to event hydrographs. We conclude by summarizing some remaining challenges that lead us to a vision for the future of research at the SRRW to address fundamental questions in the catchment sciences.
Hunt, Randall J.; Walker, John F.; Krabbenhoft, David P.
1999-01-01
Although considered the most important component for the establishment and persistence of wetlands, hydrology has been hard to characterize and linkages between hydrology and other environmental conditions are often poorly understood. In this work, methods for characterizing a wetland’s hydrology from hydrographs were developed, and the importance of ground water to the physical and geochemical conditions in the root zone was investigated. Detailed sampling of nearly continuous hydrographs showed that sites with greater ground-water discharge had higher water tables and more stable hydrographs. Subsampling of the continuous hydrograph failed to characterize the sites correctly, even though the wetland complex is located in a strong regional ground-water-discharge area. By comparing soil-moisture-potential measurements to the water-table hydrograph at one site, we noted that the amount of root-zone saturation was not necessarily driven by the water-table hydrograph but can be a result of other soil parameters (i.e., soil texture and associated capillary fringe). Ground-water discharge was not a significant determinant of maximum or average temperatures in the root zone. High ground-water discharge was associated with earliest date of thaw and shortest period of time that the root zone was frozen, however. Finally, the direction and magnitude of shallow ground-water flow was found to affect the migration and importance of a geochemical species. Areas of higher ground-water discharge had less downward penetration of CO2 generated in the root zone. In contrast, biotically derived CO2 was able to penetrate the deeper ground-water system in areas of ground-water recharge. Although ground-water flows are difficult to characterize, understanding these components is critical to the success of wetland restoration and creation efforts.
15 CFR 996.31 - Termination of the Quality Assurance Program.
Code of Federal Regulations, 2011 CFR
2011-01-01
... ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES Other Quality Assurance Program Matters § 996.31 Termination of the Quality Assurance Program. (a) NOAA reserves the right to terminate the...
15 CFR 996.31 - Termination of the Quality Assurance Program.
Code of Federal Regulations, 2013 CFR
2013-01-01
... ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES Other Quality Assurance Program Matters § 996.31 Termination of the Quality Assurance Program. (a) NOAA reserves the right to terminate the...
15 CFR 996.31 - Termination of the Quality Assurance Program.
Code of Federal Regulations, 2014 CFR
2014-01-01
... ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES Other Quality Assurance Program Matters § 996.31 Termination of the Quality Assurance Program. (a) NOAA reserves the right to terminate the...
15 CFR 996.31 - Termination of the Quality Assurance Program.
Code of Federal Regulations, 2012 CFR
2012-01-01
... ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES Other Quality Assurance Program Matters § 996.31 Termination of the Quality Assurance Program. (a) NOAA reserves the right to terminate the...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-24
... Collection; Comment Request; Certification Requirements for NOAA's Hydrographic Product Quality Assurance... hydrographic products are proposed for certification; by which standards and compliance tests are developed, adopted, and applied for those products; and by which certification is awarded or denied. These procedures...
NASA Astrophysics Data System (ADS)
Grant, G.; Hempel, L. A.; Marwan, H.; Eaton, B. C.; Lewis, S.
2017-12-01
Predicting how alluvial channels adjust to changes in their flow and sediment regimes is one of the Holy Grails of geomorphology. Consider Lane's balance - one of the most widely recognized conceptual models in geomorphology - which graphically shows how a change in any one of the driving variables of slope, grain size, sediment transport rate, or discharge can be accommodated by changes in the other variables. Much of the history of process geomorphology addresses how channels respond to these controlling factors. Yet the emphasis has been disproportionately focused on the effects and consequences of changing sediment transport rates or grain size. Much less attention has been paid to how changing discharge itself, particularly over short, event-based timescales influences the channel. Discharge has typically been treated as a single value - often the bankfull discharge - with little attention paid to how the unsteady nature of flow during floods may influence the morphology of the channel. More attention has been paid recently to the effect of hydrograph shape on channel characteristics, notably the texture of the channel bed. There is little theory and scant data, however, that highlights how the hydrograph affects the channel. We have begun to address this problem through models and targeted experiments. Our goal is to explore the idea of the geomorphically effective hydrograph: the concept that hydrographs with different forms, durations, and sequences play a major, controlling role in shaping the form and organization of alluvial channels. We report on results from both field studies and flume experiments that lend support to this hypothesis. We compare channel forms in channels with radically different flow regimes. The distinctive rectangular shape, constant slope, and absence of alluvial bars in spring-fed channels are in sharp contrast to the more asymmetric channels with regular pool/riffle patterns observed in systems where discharge varies over orders of magnitude. Flume studies reveal how channel organization, defined as the tendency to form regularly-spaced pools, riffles, and bars, is related to the flashiness of the hydrograph. Drawing on these and other studies, we develop a conceptual model that accounts for hydrograph shape as an overarching control on channel development and evolution.
Effect of reservoir storage on peak flow
Mitchell, William D.
1962-01-01
For observation of small-basin flood peaks, numerous crest-stage gages now are operated at culverts in roadway embankments. To the extent that they obstruct the natural flood plains of the streams, these embankments serve to create detention reservoirs, and thus to reduce the magnitude of observed peak flows. Hence, it is desirable to obtain a factor, I/O, by which the observed outflow peaks may be adjusted to corresponding inflow peaks. The problem is made more difficult by the fact that, at most of these observation sites, only peak stages and discharges are observed, and complete hydrographs are not available. It is postulated that the inflow hydrographs may be described in terms of Q, the instantaneous discharge; A, the size of drainage area; Pe, the amount of rainfall excess; H, the time from beginning of rainfall excess; D, the duration of rainfall excess; and T and k, characteristic times for the drainage area, and indicative of the time lag between rainfall and runoff. These factors are combined into the dimensionless ratios (QT/APe), (H/T), (k/T), and (D/T), leading to families of inflow hydrographs in which the first ratio is the ordinate, the second is the abscissa, and the third and fourth are distinguishing parameters. Sixteen dimensionless inflow hydrographs have been routed through reservoir storage to obtain 139 corresponding outflow hydrographs. In most of the routings it has been assumed that the storage-outflow relation is linear; that is, that storage is some constant, K, times the outflow. The existence of nonlinear storage is recognized, and exploratory nonlinear routings are described, but analyses and conclusions are confined to the problems of linear storage. Comparisons between inflow hydrographs and outflow hydrographs indicate that, at least for linear storage, I/O=f(k/T, D/T, K/T) in which I and O are, respectively, the magnitudes of the inflow and the outflow peaks, and T, k, D, and K are as defined above. Diagrams are presented to show the functional relation indicated by the foregoing equation.
NASA Astrophysics Data System (ADS)
Plancherel, Yves
2015-01-01
Comparison of the volumetric θ/S distribution of models participating in the Climate Model Intercomparison Project 3 (CMIP3) indicates that these models differ widely in their ability to represent the thermohaline properties of water masses. Relationships between features of the quasi-equilibrium hydrographic mean state of these models and aspects of their overturning circulations are investigated. This is achieved quantitatively with the help of seven diagnostic hydrographic stations. These few stations were specifically selected to provide a minimalist schematic of the global water mass system. Relationships between hydrographic conditions in the North Atlantic measured with a subset of these stations suggest that hydrographic properties in the subpolar North Atlantic are set by the circulation field of each model, pointing towards deficiencies in the models ability to resolve the Gulf Stream-North Atlantic Current system as a major limitation. Since diapycnal mixing and viscosity parameterizations differ across CMIP3 models and exert a strong control on the overturning, it is likely that these architectural differences ultimately explain the main across-model differences in overturning circulation, temperature and salinity in the North Atlantic. The analysis of properties across the quasi-equilibrium states of the CMIP3 models agrees with previously reported relationships between meridional steric height gradients or horizontal density contrasts at depth and the strength of the deep water cell. Robust relationships are also found in the Southern Ocean linking measures of vertical stratification with the strength of the abyssal circulations across the CMIP3 models. Consistent correlations between aspects of the quasi-equilibrium hydrography in the Southern Ocean and the sensitivity of the abyssal cell to increasing radiative forcing by 2100 were found. Using these relations in conjunction with modern hydrographic observations to interpolate the fate of the abyssal cell suggests that the Southern abyssal cell may decrease by roughly 20 % by the end of the century. Similar systematic relationships between the quasi-equilibrium hydrographic states of the models and the sensitivity of their Atlantic deep water cell could not be found.
15 CFR 996.33 - Acceptance of program by non-Federal entities.
Code of Federal Regulations, 2014 CFR
2014-01-01
... ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES Other Quality Assurance Program Matters... information submitted to NOAA under this Program shall be deemed to be in the public domain, and no...
15 CFR Appendix A to Subpart C of... - Certification Application Templates
Code of Federal Regulations, 2013 CFR
2013-01-01
... ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS Requirements for Certified Distributors and Value Added Distributors of NOAA ENC Products Pt. 995, Subpt. C, App. A Appendix A to Subpart C of Part 995...
15 CFR 996.33 - Acceptance of program by non-Federal entities.
Code of Federal Regulations, 2013 CFR
2013-01-01
... ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES Other Quality Assurance Program Matters... information submitted to NOAA under this Program shall be deemed to be in the public domain, and no...
15 CFR 995.21 - Registry of data users.
Code of Federal Regulations, 2012 CFR
2012-01-01
... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS Requirements for Certified Distributors and Value Added Distributors of NOAA ENC Products § 995.21 Registry of data users. (a) CED or CEVAD shall maintain a registry of customers receiving NOAA...
15 CFR Appendix A to Subpart C of... - Certification Application Templates
Code of Federal Regulations, 2014 CFR
2014-01-01
... ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS Requirements for Certified Distributors and Value Added Distributors of NOAA ENC Products Pt. 995, Subpt. C, App. A Appendix A to Subpart C of Part 995...
15 CFR Appendix A to Subpart C of... - Certification Application Templates
Code of Federal Regulations, 2012 CFR
2012-01-01
... ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS Requirements for Certified Distributors and Value Added Distributors of NOAA ENC Products Pt. 995, Subpt. C, App. A Appendix A to Subpart C of Part 995...
15 CFR 996.33 - Acceptance of program by non-Federal entities.
Code of Federal Regulations, 2012 CFR
2012-01-01
... ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES Other Quality Assurance Program Matters... information submitted to NOAA under this Program shall be deemed to be in the public domain, and no...
15 CFR 996.33 - Acceptance of program by non-Federal entities.
Code of Federal Regulations, 2011 CFR
2011-01-01
... ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES Other Quality Assurance Program Matters... information submitted to NOAA under this Program shall be deemed to be in the public domain, and no...
15 CFR 995.21 - Registry of data users.
Code of Federal Regulations, 2014 CFR
2014-01-01
... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS Requirements for Certified Distributors and Value Added Distributors of NOAA ENC Products § 995.21 Registry of data users. (a) CED or CEVAD shall maintain a registry of customers receiving NOAA...
15 CFR 995.21 - Registry of data users.
Code of Federal Regulations, 2013 CFR
2013-01-01
... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS Requirements for Certified Distributors and Value Added Distributors of NOAA ENC Products § 995.21 Registry of data users. (a) CED or CEVAD shall maintain a registry of customers receiving NOAA...
Virtual experiments: a new approach for improving process conceptualization in hillslope hydrology
NASA Astrophysics Data System (ADS)
Weiler, Markus; McDonnell, Jeff
2004-01-01
We present an approach for process conceptualization in hillslope hydrology. We develop and implement a series of virtual experiments, whereby the interaction between water flow pathways, source and mixing at the hillslope scale is examined within a virtual experiment framework. We define these virtual experiments as 'numerical experiments with a model driven by collective field intelligence'. The virtual experiments explore the first-order controls in hillslope hydrology, where the experimentalist and modeler work together to cooperatively develop and analyze the results. Our hillslope model for the virtual experiments (HillVi) in this paper is based on conceptualizing the water balance within the saturated and unsaturated zone in relation to soil physical properties in a spatially explicit manner at the hillslope scale. We argue that a virtual experiment model needs to be able to capture all major controls on subsurface flow processes that the experimentalist might deem important, while at the same time being simple with few 'tunable parameters'. This combination makes the approach, and the dialog between experimentalist and modeler, a useful hypothesis testing tool. HillVi simulates mass flux for different initial conditions under the same flow conditions. We analyze our results in terms of an artificial line source and isotopic hydrograph separation of water and subsurface flow. Our results for this first set of virtual experiments showed how drainable porosity and soil depth variability exert a first order control on flow and transport at the hillslope scale. We found that high drainable porosity soils resulted in a restricted water table rise, resulting in more pronounced channeling of lateral subsurface flow along the soil-bedrock interface. This in turn resulted in a more anastomosing network of tracer movement across the slope. The virtual isotope hydrograph separation showed higher proportions of event water with increasing drainable porosity. When combined with previous experimental findings and conceptualizations, virtual experiments can be an effective way to isolate certain controls and examine their influence over a range of rainfall and antecedent wetness conditions.
Evaluating Snowmelt Runoff Processes Using Stable Isotopes in a Permafrost Hillslope
NASA Astrophysics Data System (ADS)
Carey, S. K.
2004-05-01
Conceptual understanding of runoff generation in permafrost regions have been derived primarily from hydrometric information, with isotope and hydrochemical data having only limited application in delineating sources and pathways of water. Furthermore, when stable isotope data are used to infer runoff processes, it often provides conflicting results from hydrometric measurements. In a small subarctic alpine catchment within the Wolf Creek Research Basin, Yukon, Canada, experiments were conducted during the melt period of 2002 and 2003 to trace the stable isotopic signature (d18O) of meltwater from a melting snowpack into permafrost soils and laterally to the stream to identify runoff processes and evaluate sources of error for traditional hydrograph separation studies in snowmelt-dominated permafrost basins. Isotopic variability in the snowpack was recorded at 0.1 m depth intervals during the melt period and compared with the meltwater isotopic signature at the snowpack base collected in lysimeters. Throughout the melt period in both years, there was an isotopic enrichment of meltwater as the season progressed. A downslope transect of wells and piezometers were used to evaluate the influence of infiltrating meltwater and thawing ground on the subsurface d18O signature. As melt began, meltwater infiltrated the frozen porous organic layer, leading to liquid water saturation in the unsaturated pore spaces. Water sampled during this initial melt stage show soil water d18O mirroring that of the meltwater signal. As the melt season progressed, frozen soil began to melt, mixing enriched pre-melt soil water with meltwater. This mixing increased the overall value of d18O obtained from the soil, which gradually increased as thaw progressed. At the end of snowmelt, soil water had a d18O value similar to values from the previous fall, suggesting that much of the initial snowmelt water had been flushed from the hillslope. Results from the hillslope scale are compared with two-component hydrograph separations and sources of error are discussed.
A look inside 'black box' hydrograph separation models: A study at the hydrohill catchment
Kendall, C.; McDonnell, Jeffery J.; Gu, W.
2001-01-01
Runoff sources and dominant flowpaths are still poorly understood in most catchments; consequently, most hydrograph separations are essentially 'black box' models where only external information is used. The well-instrumented 490 m2 Hydrohill artificial grassland catchment located near Nanjing (China) was used to examine internal catchment processes. Since groundwater levels never reach the soil surface at this site, two physically distinct flowpaths can unambiguously be defined: surface and subsurface runoff. This study combines hydrometric, isotopic and geochemical approaches to investigating the relations between the chloride, silica, and oxygen isotopic compositions of subsurface waters and rainfall. During a 120 mm storm over a 24 h period in 1989, 55% of event water input infiltrated and added to soil water storage; the remainder ran off as infiltration-excess overland flow. Only about 3-5% of the pre-event water was displaced out of the catchment by in-storm rainfall. About 80% of the total flow was quickflow, and 10% of the total flow was pre-event water, mostly derived from saturated flow from deeper soils. Rain water with high ??18O values from the beginning of the storm appeared to be preferentially stored in shallow soils. Groundwater at the end of the storm shows a wide range of isotopic and chemical compositions, primarily reflecting the heterogeneous distribution of the new and mixed pore waters. High chloride and silica concentrations in quickflow runoff derived from event water indicate that these species are not suitable conservative tracers of either water sources or flowpaths in this catchment. Determining the proportion of event water alone does not constrain the possible hydrologic mechanisms sufficiently to distinguish subsurface and surface flowpaths uniquely, even in this highly controlled artificial catchment. We reconcile these findings with a perceptual model of stormflow sources and flowpaths that explicitly accounts for water, isotopic, and chemical mass balance. Copyright ?? 2001 John Wiley & Sons, Ltd.
Rainwater propagation through snow during artificial rain-on-snow events
NASA Astrophysics Data System (ADS)
Juras, Roman; Würzer, Sebastian; Pavlasek, Jiri; Jonas, Tobias
2016-04-01
The mechanism of rainwater propagation and runoff generation during rain-on-snow (ROS) is still insufficiently known. Understanding rainwater behaviour within the natural snowpack is crucial especially for forecasting of natural hazards like floods and wet snow avalanches. In this study, rainwater percolation through snow was investigated by sprinkling the naturally stable isotope deuterium on snow and conduct hydrograph separation on samples collected from the snowpack runoff. This allowed quantifying the contribution of rainwater and snowmelt in the water released from the snowpack. Four field experiments were carried out during the winter 2015 in the vicinity of Davos, Switzerland. A 1 by 1 m block of natural snow cover was isolated from the surrounding snowpack to enable a closed water balance. This experimental snow sample was exposed to artificial rainfall with 41 mm of deuterium enriched water. The sprinkling was run in four 30 minutes intervals separated by three 30 minutes non-sprinkling intervals. The runoff from the snow cube was monitored quantitatively by a snow lysimeter and output water was continuously sampled for the deuterium concentration. Further, snowpack properties were analysed before and after the sprinkling, including vertical profiles of snow density, liquid water content (LWC) and deuterium concentration. One experiment conducted on cold snowpack showed that rainwater propagated much faster as compared to three experiments conducted on ripe isothermal snowpack. Our data revealed that sprinkled rainwater initially pushed out pre-event LWC or mixed with meltwater created within the snowpack. Hydrographs from every single experiment showed four pronounced peaks, with the first peak always consisted of less rainwater than the following ones. The partial contribution of rainwater to the total runoff consistently increased over the course of the experiment, but never exceeded 63 %. Moreover, the development of preferential paths after the first sprinkling period caused a quicker runoff response in subsequent periods.
NASA Astrophysics Data System (ADS)
Zongxing, Li; Qi, Feng; Wei, Liu; Tingting, Wang; Aifang, Cheng; Yan, Gao; Xiaoyan, Guo; Yanhui, Pan; Jianguo, Li; Rui, Guo; Bing, Jia
2014-11-01
Global warming would inevitably lead to the increased glacier-snow meltwater and mountainous discharge. Taking an example the Hulugou River Basin in the Qilian Mountains, this study confirmed the contribution of cryosphere to runoff by means of the isotope hydrograph separation. The hydro-geochemistry and the isotope geochemistry suggested that both the meltwater and rainwater infiltrated into the subsurface and fed into the river runoff of the Hulugou River Basin in the form of springs. The isotopic composition of river water and underground water was close to the Local Meteoric Water Line, and the δ18O and δD ranged among precipitation, glacier-snow meltwater and frozen soil meltwater. The results indicated that 68% of the recharge of the Hulugou River water was the precipitation, thereinto, glacier-snow meltwater and frozen soil meltwater contributing 11% and 21%, respectively. For tributary-1, precipitation accounted for 77% of the total stream runoff, with frozen soil meltwater accounting for 17%, and glacier-snow meltwater only supplied 6%. During the sampling period, the contribution of surface runoff from precipitation was 44% to tributary-2, and glacier-snow meltwater had contributed 42%; only 14% from frozen soil meltwater. For tributary-3, precipitation accounted for 63% of the total runoff, and other 37% originated from the frozen soil meltwater. According to the latest observational data, the glacier-snow meltwater has accounted for 11.36% of the total runoff in the stream outlet, in which the calculation has been verified by hydrograph separation. It is obvious that the contribution of cryosphere has accounted for 1/3 of the outlet runoff in the Hulugou River Basin, which has been an important part of river sources. This study demonstrated that the alpine regions of western China, especially those basins with glaciers, snow and frozen soil, have played a crucial role in regional water resource provision under global warming.
The Development and Validation of a New Land Surface Model for Regional and Global Climate Modeling
NASA Astrophysics Data System (ADS)
Lynch-Stieglitz, Marc
1995-11-01
A new land-surface scheme intended for use in mesoscale and global climate models has been developed and validated. The ground scheme consists of 6 soil layers. Diffusion and a modified tipping bucket model govern heat and water flow respectively. A 3 layer snow model has been incorporated into a modified BEST vegetation scheme. TOPMODEL equations and Digital Elevation Model data are used to generate baseflow which supports lowland saturated zones. Soil moisture heterogeneity represented by saturated lowlands subsequently impacts watershed evapotranspiration, the partitioning of surface fluxes, and the development of the storm hydrograph. Five years of meteorological and hydrological data from the Sleepers river watershed located in the eastern highlands of Vermont where winter snow cover is significant were then used to drive and validate the new scheme. Site validation data were sufficient to evaluate model performance with regard to various aspects of the watershed water balance, including snowpack growth/ablation, the spring snowmelt hydrograph, storm hydrographs, and the seasonal development of watershed evapotranspiration and soil moisture. By including topographic effects, not only are the main spring hydrographs and individual storm hydrographs adequately resolved, but the mechanisms generating runoff are consistent with current views of hydrologic processes. The seasonal movement of the mean water table depth and the saturated area of the watershed are consistent with site data and the overall model hydroclimatology, including the surface fluxes, seems reasonable.
A comparison of hydrographically and optically derived mixed layer depths
Zawada, D.G.; Zaneveld, J.R.V.; Boss, E.; Gardner, W.D.; Richardson, M.J.; Mishonov, A.V.
2005-01-01
Efforts to understand and model the dynamics of the upper ocean would be significantly advanced given the ability to rapidly determine mixed layer depths (MLDs) over large regions. Remote sensing technologies are an ideal choice for achieving this goal. This study addresses the feasibility of estimating MLDs from optical properties. These properties are strongly influenced by suspended particle concentrations, which generally reach a maximum at pycnoclines. The premise therefore is to use a gradient in beam attenuation at 660 nm (c660) as a proxy for the depth of a particle-scattering layer. Using a global data set collected during World Ocean Circulation Experiment cruises from 1988-1997, six algorithms were employed to compute MLDs from either density or temperature profiles. Given the absence of published optically based MLD algorithms, two new methods were developed that use c660 profiles to estimate the MLD. Intercomparison of the six hydrographically based algorithms revealed some significant disparities among the resulting MLD values. Comparisons between the hydrographical and optical approaches indicated a first-order agreement between the MLDs based on the depths of gradient maxima for density and c660. When comparing various hydrographically based algorithms, other investigators reported that inherent fluctuations of the mixed layer depth limit the accuracy of its determination to 20 m. Using this benchmark, we found a ???70% agreement between the best hydrographical-optical algorithm pairings. Copyright 2005 by the American Geophysical Union.
15 CFR 996.30 - Use of the NOAA emblem.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 15 Commerce and Foreign Trade 3 2011-01-01 2011-01-01 false Use of the NOAA emblem. 996.30 Section... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES Other Quality Assurance Program Matters § 996.30 Use of the...
15 CFR 995.28 - Use of NOAA emblem.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 15 Commerce and Foreign Trade 3 2011-01-01 2011-01-01 false Use of NOAA emblem. 995.28 Section 995... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS Requirements for Certified Distributors and Value Added Distributors of NOAA ENC Products...
15 CFR 996.30 - Use of the NOAA emblem.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 15 Commerce and Foreign Trade 3 2013-01-01 2013-01-01 false Use of the NOAA emblem. 996.30 Section... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES Other Quality Assurance Program Matters § 996.30 Use of the...
15 CFR 996.30 - Use of the NOAA emblem.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 15 Commerce and Foreign Trade 3 2014-01-01 2014-01-01 false Use of the NOAA emblem. 996.30 Section... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES Other Quality Assurance Program Matters § 996.30 Use of the...
15 CFR 995.26 - Conversion of NOAA ENC ® files to other formats.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 15 Commerce and Foreign Trade 3 2013-01-01 2013-01-01 false Conversion of NOAA ENC ® files to... ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS Requirements for Certified Distributors and Value...
15 CFR 995.26 - Conversion of NOAA ENC ® files to other formats.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 15 Commerce and Foreign Trade 3 2012-01-01 2012-01-01 false Conversion of NOAA ENC ® files to... ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS Requirements for Certified Distributors and Value...
15 CFR 996.30 - Use of the NOAA emblem.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 15 Commerce and Foreign Trade 3 2012-01-01 2012-01-01 false Use of the NOAA emblem. 996.30 Section... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES QUALITY ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES Other Quality Assurance Program Matters § 996.30 Use of the...
15 CFR 995.26 - Conversion of NOAA ENC ® files to other formats.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 15 Commerce and Foreign Trade 3 2014-01-01 2014-01-01 false Conversion of NOAA ENC ® files to... ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS Requirements for Certified Distributors and Value...
15 CFR 995.28 - Use of NOAA emblem.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 15 Commerce and Foreign Trade 3 2012-01-01 2012-01-01 false Use of NOAA emblem. 995.28 Section 995... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS Requirements for Certified Distributors and Value Added Distributors of NOAA ENC Products...
15 CFR 995.28 - Use of NOAA emblem.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 15 Commerce and Foreign Trade 3 2013-01-01 2013-01-01 false Use of NOAA emblem. 995.28 Section 995... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS Requirements for Certified Distributors and Value Added Distributors of NOAA ENC Products...
15 CFR 995.28 - Use of NOAA emblem.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 15 Commerce and Foreign Trade 3 2014-01-01 2014-01-01 false Use of NOAA emblem. 995.28 Section 995... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS Requirements for Certified Distributors and Value Added Distributors of NOAA ENC Products...
Hydrographic Service Royal Australian Navy
1993-01-01
relocation of the Hydrographic Office to Wollongong, NSW; "* A marked decline in chart production caused by workforce changes as a result of the impending...amalgamate the plans of Clinton Coal Loader Wharf and Auckland Point to Barney Point in one plan at scale 1:10 000. The chart now provides continuous
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-20
... Draft Programmatic Environmental Assessment for Office of Coast Survey Hydrographic Survey Projects... Programmatic Environmental Assessment; Request for comments. SUMMARY: NOAA's Office of Coast Survey (OCS) seeks comment on a draft programmatic environmental assessment (PEA) of the hydrographic surveys and related...
15 CFR 995.26 - Conversion of NOAA ENC ® files to other formats.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Conversion of NOAA ENC ® files to... ASSURANCE AND CERTIFICATION REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS Requirements for Certified Distributors and Value...
15 CFR 995.28 - Use of NOAA emblem.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Use of NOAA emblem. 995.28 Section 995... REQUIREMENTS FOR NOAA HYDROGRAPHIC PRODUCTS AND SERVICES CERTIFICATION REQUIREMENTS FOR DISTRIBUTORS OF NOAA HYDROGRAPHIC PRODUCTS Requirements for Certified Distributors and Value Added Distributors of NOAA ENC Products...
CHARACTERIZING STORM HYDROGRAPH RISE AND FALL DYNAMICS AND THEIR RELATIONSHIP WITH STREAM STAGE DATA
Stormflow transients (i.e., hydrograph rise and fall dynamics) have been shown to impact stream biota through impacts on habitat quality and availability. However, little is known about how climate variability and temporal resolution of transient data may color the putative relat...
Streamflow characterization using functional data analysis of the Potomac River
NASA Astrophysics Data System (ADS)
Zelmanow, A.; Maslova, I.; Ticlavilca, A. M.; McKee, M.
2013-12-01
Flooding and droughts are extreme hydrological events that affect the United States economically and socially. The severity and unpredictability of flooding has caused billions of dollars in damage and the loss of lives in the eastern United States. In this context, there is an urgent need to build a firm scientific basis for adaptation by developing and applying new modeling techniques for accurate streamflow characterization and reliable hydrological forecasting. The goal of this analysis is to use numerical streamflow characteristics in order to classify, model, and estimate the likelihood of extreme events in the eastern United States, mainly the Potomac River. Functional data analysis techniques are used to study yearly streamflow patterns, with the extreme streamflow events characterized via functional principal component analysis. These methods are merged with more classical techniques such as cluster analysis, classification analysis, and time series modeling. The developed functional data analysis approach is used to model continuous streamflow hydrographs. The forecasting potential of this technique is explored by incorporating climate factors to produce a yearly streamflow outlook.
Daily values flow comparison and estimates using program HYCOMP, version 1.0
Sanders, Curtis L.
2002-01-01
A method used by the U.S. Geological Survey for quality control in computing daily value flow records is to compare hydrographs of computed flows at a station under review to hydrographs of computed flows at a selected index station. The hydrographs are placed on top of each other (as hydrograph overlays) on a light table, compared, and missing daily flow data estimated. This method, however, is subjective and can produce inconsistent results, because hydrographers can differ when calculating acceptable limits of deviation between observed and estimated flows. Selection of appropriate index stations also is judgemental, giving no consideration to the mathematical correlation between the review station and the index station(s). To address the limitation of the hydrograph overlay method, a set of software programs, written in the SAS macrolanguage, was developed and designated Program HYDCOMP. The program automatically selects statistically comparable index stations by correlation and regression, and performs hydrographic comparisons and estimates of missing data by regressing daily mean flows at the review station against -8 to +8 lagged flows at one or two index stations and day-of-week. Another advantage that HYDCOMP has over the graphical method is that estimated flows, the criteria for determining the quality of the data, and the selection of index stations are determined statistically, and are reproducible from one user to another. HYDCOMP will load the most-correlated index stations into another file containing the ?best index stations,? but will not overwrite stations already in the file. A knowledgeable user should delete unsuitable index stations from this file based on standard error of estimate, hydrologic similarity of candidate index stations to the review station, and knowledge of the individual station characteristics. Also, the user can add index stations not selected by HYDCOMP, if desired. Once the file of best-index stations is created, a user may do hydrographic comparison and data estimates by entering the number of the review station, selecting an index station, and specifying the periods to be used for regression and plotting. For example, the user can restrict the regression to ice-free periods of the year to exclude flows estimated during iced conditions. However, the regression could still be used to estimate flow during iced conditions. HYDCOMP produces the standard error of estimate as a measure of the central scatter of the regression and R-square (coefficient of determination) for evaluating the accuracy of the regression. Output from HYDCOMP includes plots of percent residuals against (1) time within the regression and plot periods, (2) month and day of the year for evaluating seasonal bias in the regression, and (3) the magnitude of flow. For hydrographic comparisons, it plots 2-month segments of hydrographs over the selected plot period showing the observed flows, the regressed flows, the 95 percent confidence limit flows, flow measurements, and regression limits. If the observed flows at the review station remain outside the 95 percent confidence limits for a prolonged period, there may be some error in the flows at the review station or at the index station(s). In addition, daily minimum and maximum temperatures and daily rainfall are shown on the hydrographs, if available, to help indicate whether an apparent change in flow may result from rainfall or from changes in backwater from melting ice or freezing water. HYDCOMP statistically smooths estimated flows from non-missing flows at the edges of the gaps in data into regressed flows at the center of the gaps using the Kalman smoothing algorithm. Missing flows are automatically estimated by HYDCOMP, but the user also can specify that periods of erroneous, but nonmissing flows, be estimated by the program.
NASA Technical Reports Server (NTRS)
Nerem, R. S.; Tapley, B. D.; Shum, C. K.; Yuan, D. N.
1989-01-01
If the geoid and the satellite position are known accurately, satellite altimetry can be used to determine the geostrophic velocity of the surface ocean currents. The purpose of this investigation is to simultaneously estimate the sea surface topography, zeta, the model for the gravity field, and the satellite orbit. Satellite tracking data from fourteen satellites were used; along with Seasat and Geosat altimeter data as well as surface gravity data for the solution. The estimated model of zeta compares well at long wavelengths with the hydrographic model of zeta. Covariance studies show that the geoid is separable from zeta up to degree 9, at which point geoid error becomes comparable to the signal of zeta.
15 CFR 995.3 - Availability of other publications.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Hydrographic Data, edition 2.0, dated October 2003, describes the validation checks to be used on ENC data... the 1974 SOLAS Convention. IEC Publication 61174, dated August 1998, can be purchased from the IEC Web site: http://www.iec.ch. (2) IHO Special Publication S57—The IHO Transfer Standard for Hydrographic...
15 CFR 995.3 - Availability of other publications.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Hydrographic Data, edition 2.0, dated October 2003, describes the validation checks to be used on ENC data... the 1974 SOLAS Convention. IEC Publication 61174, dated August 1998, can be purchased from the IEC Web site: http://www.iec.ch. (2) IHO Special Publication S57—The IHO Transfer Standard for Hydrographic...
Catchment land use impacts the rise and fall dynamic of hydrographs, and may also help explain variation in biological assemblages known to be sensitive to flow regime. We collected continuous stream depth records for the 2002 water year (5 min. intervals) from eight streams dra...
Automatic dilution gaging of rapidly varying flow
Duerk, M.D.
1983-01-01
The analysis showed that the discharges measured by dye-dilution techniques were generally within ± 10 percent of the discharges determined from ratings established by current-meter measurements. Larger differences were noted at the start of and on the rising limb of four hydrographs. Of the 20 storms monitored, dilution measurements on 17 were of acceptable accuracy. Peak discharges from the open-channel site ranged from 0 to 12 percent departures from the existing rating whereas the comparison of peak discharge at the storm sewer site ranged from 0 to 5 percent departures from the existing rating.
NASA Astrophysics Data System (ADS)
Predescu, C.; Stancalie, G.; Savin, E.
Floodings represent an important risk in many areas around the globe and especially in Romania. In the latest years floodings occurred quite frequently in Romania, some of which isolated, others were affecting wide areas of the countrySs territory. The paper assumes a modern approach for the flooding risk indices, associated to the physic- geographical, morpho-hydrographical and vulnerability characteristics of a region, in view to establish a methodology which should further allow to determine the flooding risk, using representatives indices at a scale compatible with a synthetic representa- tion of the territory. There are stressed the facilities supplied by the Geographic Infor- mation System (GIS) and the remotely sensed data to manage flooding during their characteristic phases: before, during and after flooding. Accent is laid on the pre and post-crisis phases. An important research topic was the study of the parameters that can be extracted from satellite images in view of organising a hierarchy of the geo- graphical space versus the flooding risk. Information obtained from satellite images proved to be useful for the determination of certain parameters necessary to monitor flooding: hydrographic network, water accumulation, size of floodable surface, land impermeability degree, water absorption capacity over the basin surface, resilience to in-soil water infiltration. The study encompassed both the risk degree levels related with various parameters, which condition and determine floodings, and the one, which takes into consideration the human presence in the sensitive areas. It was planned to design and build a database, which will help to elaborate the flooding hydrological risk indices. The application was developed for the Arges hydrographic basin in Romania, a critical area, keeping in mind that it withholds many localities, including the capital and also important economic centres. The database allows obtaining synthetic repre- sentations of the hydrologic risk for the Arges basin, through separate or combined use of the risk parameters as well as for interfacing with the hydrological models in view to improve them as regards recovering results and the possibility to achieve scenarios.
NASA Astrophysics Data System (ADS)
Wesemann, Johannes; Burgholzer, Reinhard; Herrnegger, Mathew; Schulz, Karsten
2017-04-01
In recent years, a lot of research in hydrological modelling has been invested to improve the automatic calibration of rainfall-runoff models. This includes for example (1) the implementation of new optimisation methods, (2) the incorporation of new and different objective criteria and signatures in the optimisation and (3) the usage of auxiliary data sets apart from runoff. Nevertheless, in many applications manual calibration is still justifiable and frequently applied. The hydrologist performing the manual calibration, with his expert knowledge, is able to judge the hydrographs simultaneously concerning details but also in a holistic view. This integrated eye-ball verification procedure available to man can be difficult to formulate in objective criteria, even when using a multi-criteria approach. Comparing the results of automatic and manual calibration is not straightforward. Automatic calibration often solely involves objective criteria such as Nash-Sutcliffe Efficiency Coefficient or the Kling-Gupta-Efficiency as a benchmark during the calibration. Consequently, a comparison based on such measures is intrinsically biased towards automatic calibration. Additionally, objective criteria do not cover all aspects of a hydrograph leaving questions concerning the quality of a simulation open. This contribution therefore seeks to examine the quality of manually and automatically calibrated hydrographs by interactively involving expert knowledge in the evaluation. Simulations have been performed for the Mur catchment in Austria with the rainfall-runoff model COSERO using two parameter sets evolved from a manual and an automatic calibration. A subset of resulting hydrographs for observation and simulation, representing the typical flow conditions and events, will be evaluated in this study. In an interactive crowdsourcing approach experts attending the session can vote for their preferred simulated hydrograph without having information on the calibration method that produced the respective hydrograph. Therefore, the result of the poll can be seen as an additional quality criterion for the comparison of the two different approaches and help in the evaluation of the automatic calibration method.
Scaling of peak flows with constant flow velocity in random self-similar networks
Troutman, Brent M.; Mantilla, Ricardo; Gupta, Vijay K.
2011-01-01
A methodology is presented to understand the role of the statistical self-similar topology of real river networks on scaling, or power law, in peak flows for rainfall-runoff events. We created Monte Carlo generated sets of ensembles of 1000 random self-similar networks (RSNs) with geometrically distributed interior and exterior generators having parameters pi and pe, respectively. The parameter values were chosen to replicate the observed topology of real river networks. We calculated flow hydrographs in each of these networks by numerically solving the link-based mass and momentum conservation equation under the assumption of constant flow velocity. From these simulated RSNs and hydrographs, the scaling exponents β and φ characterizing power laws with respect to drainage area, and corresponding to the width functions and flow hydrographs respectively, were estimated. We found that, in general, φ > β, which supports a similar finding first reported for simulations in the river network of the Walnut Gulch basin, Arizona. Theoretical estimation of β and φ in RSNs is a complex open problem. Therefore, using results for a simpler problem associated with the expected width function and expected hydrograph for an ensemble of RSNs, we give heuristic arguments for theoretical derivations of the scaling exponents β(E) and φ(E) that depend on the Horton ratios for stream lengths and areas. These ratios in turn have a known dependence on the parameters of the geometric distributions of RSN generators. Good agreement was found between the analytically conjectured values of β(E) and φ(E) and the values estimated by the simulated ensembles of RSNs and hydrographs. The independence of the scaling exponents φ(E) and φ with respect to the value of flow velocity and runoff intensity implies an interesting connection between unit hydrograph theory and flow dynamics. Our results provide a reference framework to study scaling exponents under more complex scenarios of flow dynamics and runoff generation processes using ensembles of RSNs.
Modern and Unconventional Approaches to Karst Hydrogeology
NASA Astrophysics Data System (ADS)
Sukop, M. C.
2017-12-01
Karst hydrogeology is frequently approached from a hydrograph/statistical perspective where precipitation/recharge inputs are converted to output hydrographs and the conversion process reflects the hydrology of the system. Karst catchments show hydrological response to short-term meteorological events and to long-term variation of large-scale atmospheric circulation. Modern approaches to analysis of these data include, for example, multiresolution wavelet techniques applied to understand relations between karst discharge and climate fields. Much less effort has been directed towards direct simulation of flow fields and transport phenomena in karst settings. This is primarily due to the lack of information on the detailed physical geometry of most karst systems. New mapping, sampling, and modeling techniques are beginning to enable direct simulation of flow and transport. A Conduit Flow Process (CFP) add-on to the USGS ModFlow model became available in 2007. FEFLOW and similar models are able to represent flows in individual conduits. Lattice Boltzmann models have also been applied to flow modeling in karst systems. Regarding quantitative measurement of karst system geometry, at scales to 0.1 m, X-ray computed tomography enables good detection of detailed (sub-millimeter) pore space in karstic rocks. Three-dimensional printing allows reconstruction of fragile high porosity rocks, and surrogate samples generated this way can then be subjected to laboratory testing. Borehole scales can be accessed with high-resolution ( 0.001 m) Digital Optical Borehole Imaging technologies and can provide virtual samples more representative of the true nature of karst aquifers than can obtained from coring. Subsequent extrapolation of such samples can generate three-dimensional models suitable for direct modeling of flow and transport. Finally, new cave mapping techniques are beginning to provide information than can be applied to direct simulation of flow. Due to flow rates and cave diameter, very high Reynolds number flows may be encountered.
A Bivariate return period for levee failure monitoring
NASA Astrophysics Data System (ADS)
Isola, M.; Caporali, E.
2017-12-01
Levee breaches are strongly linked with the interaction processes among water, soil and structure, thus many are the factors that affect the breach development. One of the main is the hydraulic load, characterized by intensity and duration, i.e. by the flood event hydrograph. On the magnitude of the hydraulic load is based the levee design, generally without considering the fatigue failure due to the load duration. Moreover, many are the cases in which the levee breach are characterized by flood of magnitude lower than the design one. In order to implement the strategies of flood risk management, we built here a procedure based on a multivariate statistical analysis of flood peak and volume together with the analysis of the past levee failure events. Particularly, in order to define the probability of occurrence of the hydraulic load on a levee, a bivariate copula model is used to obtain the bivariate joint distribution of flood peak and volume. Flood peak is the expression of the load magnitude, while the volume is the expression of the stress over time. We consider the annual flood peak and the relative volume. The volume is given by the hydrograph area between the beginning and the end of event. The beginning of the event is identified as an abrupt rise of the discharge by more than 20%. The end is identified as the point from which the receding limb is characterized by the baseflow, using a nonlinear reservoir algorithm as baseflow separation technique. By this, with the aim to define warning thresholds we consider the past levee failure events and the relative bivariate return period (BTr) compared with the estimation of a traditional univariate model. The discharge data of 30 hydrometric stations of Arno River in Tuscany, Italy, in the period 1995-2016 are analysed. The database of levee failure events, considering for each event the location as well as the failure mode, is also created. The events were registered in the period 2000-2014 by EEA-Europe Environment Agency, the Italian Civil Protection and ISPRA (the Italian National Institute for Environmental Protection and Research). Only two levee failures events occurred in the sub-basin of Era River have been detected and analysed. The estimated return period with the univariate model of flood peak is greater than 2 and 5 years while the BTr is greater of 25 and 30 years respectively.
An Amphibious Being: How Maritime Surveying Reshaped Darwin's Approach to Natural History.
Sponsel, Alistair
2016-06-01
This essay argues that Charles Darwin's distinctive approach to studying distribution and diversity was shaped by his face-to-face interactions with maritime surveyors during the voyage of H.M.S. Beagle (1831-1836). Introducing their hydrographic surveying methods into natural history enabled him to compare fossil and living marine organisms, to compare sedimentary rocks to present-day marine sediments, and to compare landscapes to submarine topology, thereby realizing Charles Lyell's fanciful ambition for a superior form of geology that might be practiced by an "amphibious being." Darwin's theories of continental uplift, coral reef formation, and the origin of species all depended on his amphibious natural history. This essay contributes to our understanding of theorizing in nineteenth-century natural history by illustrating that specific techniques of observing and collecting could themselves help to generate a particular theoretical orientation and, indeed, that such practical experiences were a more proximate source of Darwin's "Humboldtian" interest in distribution and diversity than Alexander von Humboldt's writings themselves. Darwin's debt to the hydrographers became obscured in two ways: through the "funneling" of credit produced by single-authorship publication in natural history and the "telescoping" of memory by which Darwin's new theories made him recall his former researches as though he had originally undertaken them for the very purpose of producing the later theory.
NASA Astrophysics Data System (ADS)
Goyal, A.; Yadav, H.; Tyagi, H.; Gosain, A. K.; Khosa, R.
2017-12-01
Increased imperviousness due to rapid urbanization have changed the urban hydrological cycle. As watersheds are urbanized, infiltration and groundwater recharge have decreased, surface runoff hydrograph shows higher peak indicating large volumes of surface runoff in lesser time durations. The ultimate panacea is to reduce the peak of hydrograph or increase the retention time of surface flow. SWMM is widely used hydrologic and hydraulic software which helps to simulate the urban storm water management with the provision to apply different techniques to prevent flooding. A model was setup to simulate the surface runoff and channel flow in a small urban catchment. It provides the temporal and spatial information of flooding in a catchment. Incorporating the detention storages in the drainage network helps achieve reduced flooding. Detention storages provided with predefined algorithms were for controlling the pluvial flooding in urban watersheds. The algorithm based on control theory, automated the functioning of detention storages ensuring that the storages become active on occurrence of flood in the storm water drains and shuts down when flooding is over. Detention storages can be implemented either at source or at several downstream control points. The proposed piece of work helps to mitigate the wastage of rainfall water, achieve desirable groundwater and attain a controlled urban storm water management system.
Geologic Controls of Sand Boil Formation at Buck Chute, Mississippi
2017-06-30
12 Figure 6. 1915 MRC hydrographic survey of Buck Chute (Modified from MRC 1975, sheet 48). ............ 13 Figure 7. 1926 MRC...hydrographic survey of Buck Chute (Modified from MRC 1975, sheet 48). ............ 14 Figure 8. Diagram of the evolution of the Mississippi River...library). .................... 17 Figure 11. AGI SuperSting 8 ERT survey equipment
Ken Vance-Borland; Kelly Burnett; Sharon Clarke
2009-01-01
1. Digital hydrographic data are commonly employed in research, planning, and monitoring for freshwater conservation, but hydrographic data sets differ in spatial resolution and accuracy of spatial representation, possibly leading to inaccurate conclusions or unsuitable policies for streams and streamside areas. 2. To examine and illustrate the potential for...
Report of the Hydrographic Service, Royal Australian Navy for the Year Ending 30 June 1991
1991-06-01
1992. A survey of the approaches to the Antarctic bases of Casey and Mawson . (Area 12 on Figure 12). 11 m 4 A I. 12 TIDAL SECTION The Tidal Section’s...Australian Antarctic Territory Australian Construction Services Mawson , Casey, Davis RN Hydrographic Office, Taunton Pravda Coast 51 Boatn Charts Dept of
Reed M. Perkins; Julia A. Jones
2008-01-01
Large floods are often attributed to the melting of snow during a rain event. This study tested how climate variability, snowpack presence, and basin physiography were related to storm hydrograph shape in three small (2) basins with old-growth forest in western Oregon. Relationships between hydrograph characteristics and precipitation...
Hydrographic Data Curation and Stewardship: GO-SHIP
NASA Astrophysics Data System (ADS)
Stephen, Diggs; Lynne, Talley; Martin, Kramp; Bernadette, Sloyan
2014-05-01
Expert data management (access, formats, data life-cycle) facilitates the successful re-use of information which address many important scientific questions such as detecting decadal and longer-term changes in global ocean heat and freshwater content. Modern hydrographic data management has its origins in the WOCE program where new and existing distributed resources were identified and organized into an effective "super DAC". Data from this program are referenced in hundreds of scientific papers. The distributed hydrographic data system, now under the name GO-SHIP, exists today and has adapted to the new geoscience demands of the 21st century. This presentation will describe science drivers and the required data center resources (CCHDO, CDIAC, JCOMMOPS) which together provide reliable access for the global research community.
Woods, Paul F.
2001-01-01
Hysteresis effects on concentrations and loads over the ascending and descending limbs of the snowmelt-runoff hydrograph were quite apparent, especially for whole-water recoverable constituents. Hysteresis is present when a property, such as constituent concentration or load, has different values for a given discharge over the ascending and descending limbs of a hydrograph. During this study, loads of whole-water recoverable constituents on the ascending limb were between 1.5 and 3.6 times larger than those mea- sured on the descending limb at nearly equal discharge. In contrast, dissolved constituents showed minimal hysteresis effects.
NASA Astrophysics Data System (ADS)
Ramage, J. M.; McKenney, R. A.; Thorson, B.; Maltais, P.; Kopczynski, S. E.
2006-03-01
Snow volume and melt timing are major factors influencing the water cycle at northern high altitudes and latitudes, yet both are hard to quantify or monitor in remote mountainous regions. Twice-daily special sensor microwave imager (SSM/I) passive microwave observations of seasonal snow melt onset in the Wheaton River basin, Yukon Territory, Canada (60 ° 0805N, 134 ° 5345W), are used to test the idea that melt onset date and duration of snowpack melt-refreeze fluctuations control the timing of the early hydrograph peaks with predictable lags. This work uses the SSM/I satellite data from 1988 to 2002 to evaluate the chronology of melt and runoff patterns in the upper Yukon River basin. The Wheaton River is a small (875 km2) tributary to the Yukon, and is a subarctic, partly glacierized heterogeneous basin with near-continuous hydrographic records dating back to 1966. SSM/I pixels are sensitive to melt onset due to the strong increase in snow emissivity, and have a robust signal, in spite of coarse (>25 × 25 km2) pixel resolution and varied terrain. Results show that Wheaton River peak flows closely follow the end of large daily variations in brightness temperature of pixels covering the Wheaton River, but the magnitude of flow is highly variable, as might be expected from interannual snow mass variability. Spring rise in the hydrograph follows the end of high diurnal brightness temperature (Tb) amplitude variations (DAV) by 0 to 5 days approximately 90% of the time for this basin. Subsequent work will compare these findings for a larger (7250 km2), unglacierized tributary, the Ross River, which is farther northeast (61 ° 5940N, 132 ° 2240W) in the Yukon Territory. These techniques will also be used to try to determine the improvement in melt detection and runoff prediction from the higher resolution (15 × 15 km2) advanced microwave scanning radiometer for EOS (AMSR-E) sensor.
NASA Astrophysics Data System (ADS)
Haaf, Ezra; Barthel, Roland
2016-04-01
When assessing hydrogeological conditions at the regional scale, the analyst is often confronted with uncertainty of structures, inputs and processes while having to base inference on scarce and patchy data. Haaf and Barthel (2015) proposed a concept for handling this predicament by developing a groundwater systems classification framework, where information is transferred from similar, but well-explored and better understood to poorly described systems. The concept is based on the central hypothesis that similar systems react similarly to the same inputs and vice versa. It is conceptually related to PUB (Prediction in ungauged basins) where organization of systems and processes by quantitative methods is intended and used to improve understanding and prediction. Furthermore, using the framework it is expected that regional conceptual and numerical models can be checked or enriched by ensemble generated data from neighborhood-based estimators. In a first step, groundwater hydrographs from a large dataset in Southern Germany are compared in an effort to identify structural similarity in groundwater dynamics. A number of approaches to group hydrographs, mostly based on a similarity measure - which have previously only been used in local-scale studies, can be found in the literature. These are tested alongside different global feature extraction techniques. The resulting classifications are then compared to a visual "expert assessment"-based classification which serves as a reference. A ranking of the classification methods is carried out and differences shown. Selected groups from the classifications are related to geological descriptors. Here we present the most promising results from a comparison of classifications based on series correlation, different series distances and series features, such as the coefficients of the discrete Fourier transform and the intrinsic mode functions of empirical mode decomposition. Additionally, we show examples of classes corresponding to geological descriptors. Haaf, E., Barthel, R., 2015. Methods for assessing hydrogeological similarity and for classification of groundwater systems on the regional scale, EGU General Assembly 2015, Vienna, Austria.
A. Srivastava; M. Dobre; E. Bruner; W. J. Elliot; I. S. Miller; J. Q. Wu
2011-01-01
Assessment of water yields from watersheds into streams and rivers is critical to managing water supply and supporting aquatic life. Surface runoff typically contributes the most to peak discharge of a hydrograph while subsurface flow dominates the falling limb of hydrograph and baseflow contributes to streamflow from shallow unconfined aquifers primarily during the...
Utilizing Wavelet Analysis to assess hydrograph change in northwestern North America
NASA Astrophysics Data System (ADS)
Tang, W.; Carey, S. K.
2017-12-01
Historical streamflow data in the mountainous regions of northwestern North America suggest that changes flows are driven by warming temperature, declining snowpack and glacier extent, and large-scale teleconnections. However, few sites exist that have robust long-term records for statistical analysis, and pervious research has focussed on high and low-flow indices along with trend analysis using Mann-Kendal test and other similar approaches. Furthermore, there has been less emphasis on ascertaining the drivers of change in changes in shape of the streamflow hydrograph compared with traditional flow metrics. In this work, we utilize wavelet analysis to evaluate changes in hydrograph characteristics for snowmelt driven rivers in northwestern North America across a range of scales. Results suggest that wavelets can be used to detect a lengthening and advancement of freshet with a corresponding decline in peak flows. Furthermore, the gradual transition of flows from nival to pluvial regimes in more southerly catchments is evident in the wavelet spectral power through time. This method of change detection is challenged by evaluating the statistical significance of changes in wavelet spectra as related to hydrograph form, yet ongoing work seeks to link these patters to driving weather and climate along with larger scale teleconnections.
Granato, Gregory E.
2012-01-01
A nationwide study to better define triangular-hydrograph statistics for use with runoff-quality and flood-flow studies was done by the U.S. Geological Survey (USGS) in cooperation with the Federal Highway Administration. Although the triangular hydrograph is a simple linear approximation, the cumulative distribution of stormflow with a triangular hydrograph is a curvilinear S-curve that closely approximates the cumulative distribution of stormflows from measured data. The temporal distribution of flow within a runoff event can be estimated using the basin lagtime, (which is the time from the centroid of rainfall excess to the centroid of the corresponding runoff hydrograph) and the hydrograph recession ratio (which is the ratio of the duration of the falling limb to the rising limb of the hydrograph). This report documents results of the study, methods used to estimate the variables, and electronic files that facilitate calculation of variables. Ten viable multiple-linear regression equations were developed to estimate basin lagtimes from readily determined drainage basin properties using data published in 37 stormflow studies. Regression equations using the basin lag factor (BLF, which is a variable calculated as the main-channel length, in miles, divided by the square root of the main-channel slope in feet per mile) and two variables describing development in the drainage basin were selected as the best candidates, because each equation explains about 70 percent of the variability in the data. The variables describing development are the USGS basin development factor (BDF, which is a function of the amount of channel modifications, storm sewers, and curb-and-gutter streets in a basin) and the total impervious area variable (IMPERV) in the basin. Two datasets were used to develop regression equations. The primary dataset included data from 493 sites that have values for the BLF, BDF, and IMPERV variables. This dataset was used to develop the best-fit regression equation using the BLF and BDF variables. The secondary dataset included data from 896 sites that have values for the BLF and IMPERV variables. This dataset was used to develop the best-fit regression equation using the BLF and IMPERV variables. Analysis of hydrograph recession ratios and basin characteristics for 41 sites indicated that recession ratios are random variables. Thus, recession ratios cannot be estimated quantitatively using multiple linear regression equations developed using the data available for these sites. The minimums of recession ratios for different streamgages are well characterized by a value of one. The most probable values and maximum values of recession ratios for different streamgages are, however, more variable than the minimums. The most probable values of recession ratios for the 41 streamgages analyzed ranged from 1.0 to 3.52 and had a median of 1.85. The maximum values ranged from 2.66 to 11.3 and had a median of 4.36.
The Upper Mississippi River System—Topobathy
Stone, Jayme M.; Hanson, Jenny L.; Sattler, Stephanie R.
2017-03-23
The Upper Mississippi River System (UMRS), the navigable part of the Upper Mississippi and Illinois Rivers, is a diverse ecosystem that contains river channels, tributaries, shallow-water wetlands, backwater lakes, and flood-plain forests. Approximately 10,000 years of geologic and hydrographic history exist within the UMRS. Because it maintains crucial wildlife and fish habitats, the dynamic ecosystems of the Upper Mississippi River Basin and its tributaries are contingent on the adjacent flood plains and water-level fluctuations of the Mississippi River. Separate data for flood-plain elevation (lidar) and riverbed elevation (bathymetry) were collected on the UMRS by the U.S. Army Corps of Engineers’ (USACE) Upper Mississippi River Restoration (UMRR) Program. Using the two elevation datasets, the U.S. Geological Survey (USGS) Upper Midwest Environmental Sciences Center (UMESC) developed a systemic topobathy dataset.
Gas-rich submarine exhalations during the 1989 eruption of Macdonald Seamount
NASA Astrophysics Data System (ADS)
C´e, J.-L.; Stoffers, P.; McMurtry, G.; Richnow, H.; Puteanus, D.; Sedwick, P.
1991-11-01
In January 1989 we observed submarine eruptions on the summit of Macdonald volcano during a French-German diving programme with the IFREMER submersible Cyana. Gas-streaming of large amounts of CH 4, CO 2 and SO 2 from summit vents, inferred from water column anomalies and observed by submersible, was accompanied on the sea surface by steam bursts, turbulence, red-glowing gases, and black bubbles comprising volcanic ash, sulphur and sulphides. Chloride depletion of water sampled on the floor of an actively degassing summit crater suggests either boiling and phase separation or additions of magmatic water vapour. Submersible observations, in-situ sampling and shipboard geophysical and hydrographic measurements show that the hydrothermal system of this hotspot volcano is distinguished by the influence of magmatic gases released from its shallow summit.
NASA Astrophysics Data System (ADS)
Wan, X. Y.
2017-12-01
The extensive constructions of reservoirs change the hydrologic characteristics of the associated watersheds, which obviously increases the complexity of watershed flood control decisions. By evaluating the impacts of the multi-reservoir system on the flood hydrograph, it becomes possible to improve the effectiveness of the flood control decisions. In this paper we compare the non-reservoir flood hydrograph with the actual observed flood hydrograph using the Lutaizi upstream of Huai river in East China as a representative case, where 20 large-scale/large-sized reservoirs have been built. Based on the total impact of the multi-reservoir system, a novel strategy, namely reservoir successively added (RSA) method, is presented to evaluate the contribution of each reservoir to the total impact. According each reservoir contribution, the "highly effective" reservoirs for watershed flood control are identified via hierarchical clustering. Moreover, we estimate further the degree of impact of the reservoir current operation rules on the flood hydrograph on the base of the impact of dams themselves. As a result, we find that the RSA method provides a useful method for analysis of multi-reservoir systems by partitioning the contribution of each reservoir to the total impacts on the flooding at the downstream section. For all the historical large floods examined, the multi-reservoir system in the Huai river watershed has a significant impact on flooding at the downstream Lutaizi section, on average reducing the flood volume and peak discharge by 13.92 × 108 m3 and 18.7% respectively. It is more informative to evaluate the maximum impact of each reservoir (on flooding at the downstream section) than to examine the average impact. Each reservoir has a different impact on the flood hydrograph at the Lutaizi section. In particular, the Meishan, Xianghongdian, Suyahu, Nanwan, Nianyushan and Foziling reservoirs exert a strong influence on the flood hydrograph, and are therefore important for flood control on the Huai river. Under the current operation rules, the volume and peak discharge of flooding at the Lutaizi section are reduced by 13.69 × 108m3 and 1429 m3/s respectively, accounting for 98% and 80.5% of the real reduction respectively.
NASA Astrophysics Data System (ADS)
Fritz, H. M.; Phillips, D. A.; Okayasu, A.; Shimozono, T.; Liu, H.; Takeda, S.; Mohammed, F.; Skanavis, V.; Synolakis, C.; Takahashi, T.
2014-12-01
The 2004 Indian Ocean tsunami marked the advent of survivor videos mainly from tourist areas in Thailand and basin-wide locations. Near-field video recordings on Sumatra's north tip at Banda Aceh were limited to inland areas a few kilometres off the beach (Fritz et al., 2006). The March 11, 2011, magnitude Mw 9.0 earthquake off the Tohoku coast of Japan caused catastrophic damage and loss of life resulting in the costliest natural disaster in recorded history. The mid-afternoon tsunami arrival combined with survivors equipped with cameras on top of vertical evacuation buildings provided numerous inundation recordings with unprecedented spatial and temporal resolution. High quality tsunami video recording sites at Yoriisohama, Kesennuma, Kamaishi and Miyako along Japan's Sanriku coast were surveyed, eyewitnesses interviewed and precise topographic data recorded using terrestrial laser scanning (TLS). The original video recordings were recovered from eyewitnesses and the Japanese Coast Guard (JCG). The analysis of the tsunami videos follows an adapted four step procedure (Fritz et al., 2012). Measured overland flow velocities during tsunami runup exceed 13 m/s at Yoriisohama. The runup hydrograph at Yoriisohama highlights the under sampling at the Onagawa Nuclear Power Plant (NPP) pressure gauge, which skips the shorter period second crest. Combined tsunami and runup hydrographs are derived from the videos based on water surface elevations at surface piercing objects and along slopes identified in the acquired topographic TLS data. Several hydrographs reveal a draw down to minus 10 m after a first wave crest exposing harbor bottoms at Yoriisohama and Kamaishi. In some cases ship moorings resist the main tsunami crest only to be broken by the extreme draw down. A multi-hour ship track for the Asia Symphony with the vessels complete tsunami drifting motion in Kamaishi Bay is recovered from the universal ship borne AIS (Automatic Identification System). Multiple hydrographs corroborate the tsunami propagation through Miyako Bay and up the Hei River. Tsunami outflow currents up to 11 m/s were measured in Kesennuma Bay making navigation impossible. Further we discuss the complex effects of coastal structures on inundation and outflow hydrographs as well as associated flow velocities.
NASA Technical Reports Server (NTRS)
Yost, E. (Principal Investigator)
1972-01-01
The author has identified the following significant results. The synoptic repetitive coverage of the multispectral imagery from the ERTS-1 satellite, when photographically reprocessed using the state-of-the-art techniques, has given indication of spectral differences in Block Island and adjacent New England waters which were heretofore unknown. Of particular interest was the possible detection of relatively small amounts of phytoplankton prior to the occurrence of the red tide in Massachusetts waters. Preparation of spatial and temporal hydrographic charts using ERTS-1 imagery and ground truth analysis will hopefully determine the environmental impact on New York coastal waters.
NASA Astrophysics Data System (ADS)
Abell, J. T.; Jacobsen, J.; Bjorkstedt, E.
2016-02-01
Determining aragonite saturation state (Ω) in seawater requires measurement of two parameters of the carbonate system: most commonly dissolved inorganic carbon (DIC) and total alkalinity (TA). The routine measurement of DIC and TA is not always possible on frequently repeated hydrographic lines or at moored-time series that collect hydrographic data at short time intervals. In such cases a proxy can be developed that relates the saturation state as derived from one time or infrequent DIC and TA measurements (Ωmeas) to more frequently measured parameters such as dissolved oxygen (DO) and temperature (Temp). These proxies are generally based on best-fit parameterizations that utilize references values of DO and Temp and adjust linear coefficients until the error between the proxy-derived saturation state (Ωproxy) and Ωmeas is minimized. Proxies have been used to infer Ω from moored hydrographic sensors and gliders which routinely collect DO and Temp data but do not include carbonate parameter measurements. Proxies can also calculate Ω in regional oceanographic models which do not explicitly include carbonate parameters. Here we examine the variability and accuracy of Ωproxy along a near-shore hydrographic line and a moored-time series stations at Trinidad Head, CA. The saturation state is determined using proxies from different coastal regions of the California Current Large Marine Ecosystem and from different years of sampling along the hydrographic line. We then calculate the variability and error associated with the use of different proxy coefficients, the sensitivity to reference values and the inclusion of additional variables. We demonstrate how this variability affects estimates of the intensity and duration of exposure to aragonite corrosive conditions on the near-shore shelf and in the water column.
The National Hydrography Dataset
,
1999-01-01
The National Hydrography Dataset (NHD) is a newly combined dataset that provides hydrographic data for the United States. The NHD is the culmination of recent cooperative efforts of the U.S. Environmental Protection Agency (USEPA) and the U.S. Geological Survey (USGS). It combines elements of USGS digital line graph (DLG) hydrography files and the USEPA Reach File (RF3). The NHD supersedes RF3 and DLG files by incorporating them, not by replacing them. Users of RF3 or DLG files will find the same data in a new, more flexible format. They will find that the NHD is familiar but greatly expanded and refined. The DLG files contribute a national coverage of millions of features, including water bodies such as lakes and ponds, linear water features such as streams and rivers, and also point features such as springs and wells. These files provide standardized feature types, delineation, and spatial accuracy. From RF3, the NHD acquires hydrographic sequencing, upstream and downstream navigation for modeling applications, and reach codes. The reach codes provide a way to integrate data from organizations at all levels by linking the data to this nationally consistent hydrographic network. The feature names are from the Geographic Names Information System (GNIS). The NHD provides comprehensive coverage of hydrographic data for the United States. Some of the anticipated end-user applications of the NHD are multiuse hydrographic modeling and water-quality studies of fish habitats. Although based on 1:100,000-scale data, the NHD is planned so that it can incorporate and encourage the development of the higher resolution data that many users require. The NHD can be used to promote the exchange of data between users at the national, State, and local levels. Many users will benefit from the NHD and will want to contribute to the dataset as well.
Equations for estimating Clark Unit-hydrograph parameters for small rural watersheds in Illinois
Straub, Timothy D.; Melching, Charles S.; Kocher, Kyle E.
2000-01-01
Simulation of the measured discharge hydrographs for the verification storms utilizing TC and R obtained from the estimation equations yielded good results. The error in peak discharge for 21 of the 29 verification storms was less than 25 percent, and the error in time-to-peak discharge for 18 of the 29 verification storms also was less than 25 percent. Therefore, applying the estimation equations to determine TC and R for design-storm simulation may result in reliable design hydrographs, as long as the physical characteristics of the watersheds under consideration are within the range of those characteristics for the watersheds in this study [area: 0.02-2.3 mi2, main-channel length: 0.17-3.4 miles, main-channel slope: 10.5-229 feet per mile, and insignificant percentage of impervious cover].
Applications of the Coastal Zone Color Scanner in oceanography
NASA Technical Reports Server (NTRS)
Mcclain, C. R.
1988-01-01
Research activity has continued to be focused on the applications of the Coastal Zone Color Scanner (CZCS) imagery in oceanography. A number of regional studies were completed including investigations of temporal and spatial variability of phytoplankton populations in the South Atlantic Bight, Northwest Spain, Weddell Sea, Bering Sea, Caribbean Sea and in tropical Atlantic Ocean. In addition to the regional studies, much work was dedicated to developing ancillary global scale meteorological and hydrographic data sets to complement the global CZCS processing products. To accomplish this, SEAPAK's image analysis capability was complemented with an interface to GEMPAK (Severe Storm Branch's meteorological analysis software package) for the analysis and graphical display of gridded data fields. Plans are being made to develop a similar interface to SEAPAK for hydrographic data using EPIC (a hydrographic data analysis package developed by NOAA/PMEL).
Nonlinear scaling of the Unit Hydrograph Peaking Factor for dam safety
NASA Astrophysics Data System (ADS)
Pradhan, N. R.; Loney, D.
2017-12-01
Existing U.S. Army Corps of Engineers (USACE) policy suggests unit hydrograph peaking factor (UHPF), the ratio of an observed and modeled event unit hydrograph peak, range between 1.25 and 1.50 to ensure dam safety. It is pertinent to investigate the impact of extreme flood events on the validity of this range through physically based rainfall-runoff models not available during the planning and design of most USACE dams. The UHPF range was analyzed by deploying the Gridded Surface Subsurface Hydrologic Analysis (GSSHA) model in the Goose Creek, VA, watershed to develop a UHPF relationship with excess rainfall across various return-period events. An effective rainfall factor (ERF) is introduced to validate existing UHPF guidance as well as provide a nonlinear UHPF scaling relation when effective rainfall does not match that of the UH design event.
Takahiro Sayama; Jeffrey J. McDonnell
2009-01-01
Hydrograph source components and stream water residence time are fundamental behavioral descriptors of watersheds but, as yet, are poorly represented in most rainfall-runoff models. We present a new time-space accounting scheme (T-SAS) to simulate the pre-event and event water fractions, mean residence time, and spatial source of streamflow at the watershed scale. We...
Hydrography for the non-Hydrographer: A Paradigm shift in Data Processing
NASA Astrophysics Data System (ADS)
Malzone, C.; Bruce, S.
2017-12-01
Advancements in technology have led to overall systematic improvements including; hardware design, software architecture, data transmission/ telepresence. Historically, utilization of this technology has required a high knowledge level obtained with many years of experience, training and/or education. High training costs are incurred to achieve and maintain an acceptable level proficiency within an organization. Recently, engineers have developed off-the-shelf software technology called Qimera that has simplified the processing of hydrographic data. The core technology is centered around the isolation of tasks within the work- flow to capitalize on the technological advances in computing technology to automate the mundane error prone tasks to bring more value to the stages in which the human brain brings value. Key design features include: guided workflow, transcription automation, processing state management, real-time QA, dynamic workflow for validation, collaborative cleaning and production line processing. Since, Qimera is designed to guide the user, it allows expedition leaders to focus on science while providing an educational opportunity for students to quickly learn the hydrographic processing workflow including ancillary data analysis, trouble-shooting, calibration and cleaning. This paper provides case studies on how Qimera is currently implemented in scientific expeditions, benefits of implementation and how it is directing the future of on-board research for the non-hydrographer.
NASA Astrophysics Data System (ADS)
Seo, Y.; Hwang, J.; Kwon, Y.
2017-12-01
The existence of impervious areas is one of the most distinguishing characteristics of urban catchments. It decreases infiltration and increases direct runoff in urban catchments. The recent introduction of green infrastructure in urban catchments for the purpose of sustainable development contributes to the decrease of the directly connected impervious areas (DCIA) by isolating existing impervious areas and consequently, to the flood risk mitigation. This study coupled the width function-based instantaneous hydrograph (WFIUH), which is able to handle the spatial distribution of the impervious areas, with the concept of the DCIA to assess the impact of decreasing DCIA on the shape of direct runoff hydrographs. Using several scenarios for typical green infrastructure and corresponding changes of DCIA in a test catchment, this study evaluated the effect of green infrastructure on the shape of the resulting direct runoff hydrographs and peak flows. The results showed that the changes in the DCIA immediately affects the shape of the direct runoff hydrograph and decreases peak flows depending on spatial implementation scenarios. The quantitative assessment of the spatial distribution of impervious areas and also the changes to the DCIA suggests effective and well-planned green infrastructure can be introduced in urban environments for flood risk management.
Changes in baseflow patterns in water-limited shale oil and gas regions: the Eagle Ford play
NASA Astrophysics Data System (ADS)
Arciniega, S.; Brena-Naranjo, J. A.; Hernández-Espriú, A.; Pedrozo-Acuña, A.
2016-12-01
Quantifying and analyzing the contribution of groundwater from shallow aquifers to rivers as baseflow is very important for water supply and riverine ecosystem health, especially in water-limited catchments. Baseflow depends on the water available (precipitation), vegetation (land use, water use), aquifer properties and water-table depth. In this context, human activities such as groundwater abstraction for multiple purposes can alter the relationship between aquifer storage and baseflow. In this study, we analyzed observed changes in baseflow patterns of 40 catchments located across the Eagle Ford shale gas/oil play (Texas) during the period 1986-2015. The Eagle Ford sedimentary formation is actually the largest shale oil producing region in the US with large production in shale gas. Intensive unconventional resources extraction in the Eagle Ford play started in 2009 and gas/oil production increased faster than in other plays, accompanied by a rise in groundwater consumption for HF purposes. Spatial and temporal impacts on baseflow at the Eagle Ford play derived from HF were assessed by means of different patterns such as baseflow hydrograph separation, flow-duration curves, empirical storage-discharge relationships and streamflow recession curve analysis. A comparison during different periods of water use for HF activities was performed: pre-development period (1986-2000); moderate period (2001-2008); and intensive period (2009-2015). The pre-development period was considered as a baseline and catchments located inside and outside the play area were separately analyzed. The results show negative changes on baseflow patterns during the intensive HF period that were not observed during the moderate period, especially in catchments located inside the play. These changes were also characterized by a decline on mean annual baseflow volume and shorter hydrograph recession times, that led to a shift in the streamflow regime in some catchments from perennial to intermittent and from intermittent to ephemeral regimes. However, the intensive HF period occurred during the exceptional drought in Texas in 2011-2013, associated to an increase in groundwater demand for irrigation and municipal consumption, which may explain most of the observed prolonged decline in annual baseflow volume.
NASA Astrophysics Data System (ADS)
Munyaneza, O.; Mukubwa, A.; Maskey, S.; Wenninger, J.; Uhlenbrook, S.
2013-12-01
In the last couple of years, different hydrological research projects were undertaken in the Migina catchment (243.2 km2), a tributary of the Kagera river in Southern Rwanda. These projects were aimed to understand hydrological processes of the catchment using analytical and experimental approaches and to build a pilot case whose experience can be extended to other catchments in Rwanda. In the present study, we developed a hydrological model of the catchment, which can be used to inform water resources planning and decision making. The semi-distributed hydrological model HEC-HMS (version 3.5) was used with its soil moisture accounting, unit hydrograph, liner reservoir (for base flow) and Muskingum-Cunge (river routing) methods. We used rainfall data from 12 stations and streamflow data from 5 stations, which were collected as part of this study over a period of two years (May 2009 and June 2011). The catchment was divided into five sub-catchments each represented by one of the five observed streamflow gauges. The model parameters were calibrated separately for each sub-catchment using the observed streamflow data. Calibration results obtained were found acceptable at four stations with a Nash-Sutcliffe Model Efficiency of 0.65 on daily runoff at the catchment outlet. Due to the lack of sufficient and reliable data for longer periods, a model validation (split sample test) was not undertaken. However, we used results from tracer based hydrograph separation from a previous study to compare our model results in terms of the runoff components. It was shown that the model performed well in simulating the total flow volume, peak flow and timing as well as the portion of direct runoff and base flow. We observed considerable disparities in the parameters (e.g. groundwater storage) and runoff components across the five sub-catchments, that provided insights into the different hydrological processes at sub-catchment scale. We conclude that such disparities justify the need to consider catchment subdivisions, if such parameters and components of the water cycle are to form the base for decision making in water resources planning in the Migina catchment.
Using Chemical Tracers to Estimate Pesticide Mass Discharge in an Agricultural Watershed
NASA Astrophysics Data System (ADS)
Simmons, A. N.; Allen-King, R. M.; Van Biersel, T. P.; Keller, C. K.; Smith, J. L.
2001-12-01
The goal of this research is to use environmental tracers to quantify the contributions of subsurface and surface runoff to predict the mass discharge of non-point source agricultural pollutants to rivers at multiple scales of study. Easily measured chemical tracers, such as electrical conductivity (EC), are used to distinguish ground and surface water contributions to the river system. The study area is the Missouri Flat Creek watershed, a 14,400 ha semi-arid dryland agricultural setting located near Pullman, WA. Ground and surface water samples are collected at approximately two-week intervals from an ephemeral stream and a tile drain located in actively farmed and topographically constrained fields ( ~20 ha), and from seven stream-gaging stations. Surface water discharge is monitored continuously. Samples are routinely analyzed for two pesticides (the insecticide lindane or gamma-hexachlorocyclohexane (HCH) and the herbicide triallate, S-(2,3,3-trichloroallyl) diisopropylthiocarbamate), a nutrient (nitrate), and the tracers EC and silica. Lindane is applied as a seed coating on most spring and fall crops in the region. Observed lindane concentrations in the different hydrologic reservoirs ranged over approximately two orders of magnitude, from typically less than the detection limit ( ~0.005 μ g/L) in most soil pore water and groundwater samples to a weighted mean of 0.25 μ g/L in field (ephemeral stream) surface runoff. A two-component, ground and surface water, hydrograph separation was performed using tile drain and ephemeral stream tracer concentrations from field plots to represent groundwater and surface runoff end-members. The hydrograph separation was used to predict lindane discharge. Reasonable agreement between model and observed lindane discharge timing and trend supports the hypothesis that in-stream pesticide is derived from annual surface runoff. During the high flow winter months, the model predictions are two to five times greater than observed. The differences between the model and observed mass discharges are likely attributable to dilution (from fields to which the chemical was not applied) or attenuation by biological processes. These are the subjects of continued work.
NASA Astrophysics Data System (ADS)
Holland, M.; Hoggarth, A.; Nicholson, J.
2016-04-01
The quantity of information generated by survey sensors for ocean and coastal zone mapping has reached the “Big Data” age. This is influenced by the number of survey sensors available to conduct a survey, high data resolution, commercial availability, as well as an increased use of autonomous platforms. The number of users of sophisticated survey information is also growing with the increase in data volume. This is leading to a greater demand and broader use of the processed results, which includes marine archeology, disaster response, and many other applications. Data processing and exchange techniques are evolving to ensure this increased accuracy in acquired data meets the user demand, and leads to an improved understanding of the ocean environment. This includes the use of automated processing, models that maintain the best possible representation of varying resolution data to reduce duplication, as well as data plug-ins and interoperability standards. Through the adoption of interoperable standards, data can be exchanged between stakeholders and used many times in any GIS to support an even wider range of activities. The growing importance of Marine Spatial Data Infrastructure (MSDI) is also contributing to the increased access of marine information to support sustainable use of ocean and coastal environments. This paper offers an industry perspective on trends in hydrographic surveying and processing, and the increased use of marine spatial data.
Capillary electrophoresis in two-dimensional separation systems: Techniques and applications.
Kohl, Felix J; Sánchez-Hernández, Laura; Neusüß, Christian
2015-01-01
The analysis of complex samples requires powerful separation techniques. Here, 2D chromatographic separation techniques (e.g. LC-LC, GC-GC) are increasingly applied in many fields. Electrophoretic separation techniques show a different selectivity in comparison to LC and GC and very high separation efficiency. Thus, 2D separation systems containing at least one CE-based separation technique are an interesting alternative featuring potentially a high degree of orthogonality. However, the generally small volumes and strong electrical fields in CE require special coupling techniques. These technical developments are reviewed in this work, discussing benefits and drawbacks of offline and online systems. Emphasis is placed on the design of the systems, their coupling, and the detector used. Moreover, the employment of strategies to improve peak capacity, resolution, or sensitivity is highlighted. Various applications of 2D separations with CE are summarized. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2012-12-01
positive definite approximation of the Hessian is updated according to the modified Broyden–Fletcher–Goldfarb– Shanno method (Powell 1978). 3. Data Evident...averaged observational hydrographic data . This method adjusts the temperature and salinity profiles fDTk,DSk,k5 1, 2, . . . ,Kg simultaneously and...in data assimilations since it does not simply reject profiles with static instability. This method edits the profiles with the inequality constraint
Ground-water levels in the alluvial aquifer at Louisville, Kentucky, 1982-87
Faust, R.J.; Lyverse, M.A.
1987-01-01
Water level data have been collected in the alluvial aquifer at Louisville, Kentucky by the U.S. Geological Survey since 1943. Interpretations of these data have been published in several reports by the Survey, but none have been published since 1983. Contour maps and hydrographs are presented in this report to document and to help interpret water level changes for the period 1982-87. Maps and hydrographs show that groundwater levels generally stabilized in the 1980 's after rising for many years. Two areas of groundwater withdrawals are apparent in the maps and hydrographs. Withdrawals in an industrial area in west Louisville disrupt the typical pattern of the contours to curve landward around the area of withdrawal. Resumption of pumping of groundwater for heating and cooling of some buildings in the downtown area in 1985 caused declines of about 3 to 4 ft in the downtown area. (Author 's abstract)
Groundwater-level data from an earthen dam site in southern Westchester County, New York
Noll, Michael L.; Chu, Anthony
2018-05-01
In 2005, the U.S. Geological Survey began a cooperative study with New York City Department of Environmental Protection to characterize the local groundwater-flow system and identify potential sources of seeps on the southern embankment of the Hillview Reservoir in Westchester County, New York. Groundwater levels were collected at 49 wells at Hillview Reservoir, and 1 well in northern Bronx County, from April 2005 through November 2016. Groundwater levels were measured discretely with a chalked steel or electric tape, or continuously with a digital pressure transducer, or both, in accordance with U.S. Geological Survey groundwatermeasurement standards. These groundwater-level data were plotted as time series and are presented in this report as hydrographs. Twenty-eight of the 50 hydrographs have continuous record and discrete field groundwater-level measurements, 22 of the hydrographs contain only discrete measurements.
Comparing English, Mandarin, and Russian Hydrographic and Terrain Categories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Chen-Chieh; Sorokine, Alexandre
The paper compares hydrographic and terrain categories in the geospatial data standards of the US, Taiwan, and Russian Federation where the dominant languages used are from di erent language families. It aims to identify structural and semantic di erences between similar categories across three geospatial data standards. By formalizing the data standard structures and identifying the properties that di erentiate sibling categories in each geospatial data standard using well-known formal relations and quality universals, we develop a common basis on which hydrographic and terrain categories in the three data standards can be compared. The result suggests that all three datamore » standards structure categories with a mixture of relations with di erent meaning even though most of them are well-known relations in top-level ontologies. Similar categories can be found across all three standards but exact match between similar categories are rare.« less
NASA Astrophysics Data System (ADS)
Willebrand, J.; KäSe, R. H.; Stammer, D.; Hinrichsen, H.-H.; Krauss, W.
1990-03-01
Altimeter data from Geosat have been analyzed in the Gulf Stream extension area. Horizontal maps of the sea surface height anomaly relative to an annual mean for various 17-day intervals were constructed using an objective mapping procedure. The mean sea level was approximated by the dynamic topography from climatological hydrographic data. Geostrophic surface velocities derived from the composite maps (mean plus anomaly) are significantly correlated with surface drifter velocities observed during an oceanographie experiment in the spring of 1987. The drifter velocities contain much energy on scales less than 100 km which are not resolved in the altimetric maps. It is shown that the composite sea surface height also agrees well with ground verification from hydrographic data along sections in a triangle between the Azores, Newfoundland, and Bermuda, except in regions of high mean gradients.
Imes, Jeffrey L.; Plummer, Niel; Kleeschulte, Michael J.; Schumacher, John G.
2007-01-01
Exploration for lead deposits has occurred in a mature karst area of southeast Missouri that is highly valued for its scenic beauty and recreational opportunities. The area contains the two largest springs in Missouri (Big Spring and Greer Spring), both of which flow into federally designated scenic rivers. Concerns about potential mining effects on the area ground water and aquatic biota prompted an investigation of Big Spring. Water-level measurements made during 2000 helped define the recharge area of Big Spring, Greer Spring, Mammoth Spring, and Boze Mill Spring. The data infer two distinct potentiometric surfaces. The shallow potentiometric surface, where the depth-to-water is less than about 250 feet, tends to mimic topographic features and is strongly controlled by streams. The deep potentiometric surface, where the depth-to-water is greater than about 250 feet represents ground-water hydraulic heads within the more mature karst areas. A highly permeable zone extends about 20 mile west of Big Spring toward the upper Hurricane Creek Basin. Deeper flowing water in the Big Spring recharge area is directed toward this permeable zone. The estimated sizes of the spring recharge areas are 426 square miles for Big Spring, 352 square miles for Greer Spring, 290 square miles for Mammoth Spring, and 54 square miles for Boze Mill Spring. A discharge accumulation curve using Big Spring daily mean discharge data shows no substantial change in the discharge pattern of Big Spring during the period of record (water years 1922 through 2004). The extended periods when the spring flow deviated from the trend line can be attributed to prolonged departures from normal precipitation. The maximum possible instantaneous flow from Big Spring has not been adequately defined because of backwater effects from the Current River during high-flow conditions. Physical constraints within the spring conduit system may restrict its maximum flow. The largest discharge measured at Big Spring during the period of record (water years 1922 through 2004) was 1,170 cubic feet per second on December 7, 1982. The daily mean water temperature of Big Spring was monitored during water years 2001 through 2004 and showed little variability, ranging from 13 to 15? C (degree Celsius). Water temperatures generally vary less than 1? C throughout the year. The warmest temperatures occur during October and November and decrease until April, indicating Big Spring water temperature does show a slight seasonal variation. The use of the traditional hydrograph separation program HYSEP to determine the base flow and quick flow or runoff components at Big Spring failed to yield base-flow and quick-flow discharge curves that matched observations of spring characteristics. Big Spring discharge data were used in combination with specific conductance data to develop an improved hydrograph separation method for the spring. The estimated annual mean quick flow ranged from 15 to 48 cubic feet per second for the HYSEP analysis and ranged from 26 to 154 cubic feet per second for the discharge and specific conductance method for water years 2001 to 2004. Using the discharge and specific conductance method, the estimated base-flow component rises abruptly as the spring hydrograph rises, attains a peak value on the same day as the discharge peak, and then declines abruptly from its peak value. Several days later, base flow begins to increase again at an approximately linear trend, coinciding with the time at which the percentage of quick flow has reached a maximum after each recharge-induced discharge peak. The interval between the discharge peak and the peak in percentage quick flow ranges from 8 to 11 days for seven hydrograph peaks, consistent with quick-flow traveltime estimates by dye-trace tests from the mature karst Hurricane Creek Basin in the central part of the recharge area. Concentrations of environmental tracers chlorofluorocarbons (CFCs: CFC-11, CFC-12, CFC-113)
Diversity and community structure of pelagic fishes to 5000 m depth in the Sargasso Sea
NASA Astrophysics Data System (ADS)
Sutton, Tracey T.; Wiebe, Peter H.; Madin, Laurence; Bucklin, Ann
2010-12-01
The diversity, abundance and distribution of pelagic fishes from 0-5000 m in the Sargasso Sea, northwestern Atlantic Ocean, were investigated, with primary focus on fishes between 1000-5000 m. A large-volume, fine-mesh (335-μm), discrete-depth sampling system was used to sample the latter strata in 1000-m intervals. Species composition and total biomass of fishes collected in these strata were compared with samples taken 0-1000 m using a smaller midwater trawl. Samples were collected in association with the Census of Marine Zooplankton at-sea DNA-sequencing effort, allowing the determination of genetic barcodes of taxa for which species descriptions do not currently exist (e.g., many male ceratioid anglerfishes). A total of 3965 fish specimens were collected, representing minimally 127 species (84 genera), from 42 families. The bristlemouth, Cyclothone braueri, dominated the catches both above (47%) and below (41%) 1000 m. The Myctophidae and Stomiidae were the most species-rich taxa, while the deep-sea anglerfish suborder Ceratioidei was the most diverse bathypelagic taxon. Thirty species of fish were sequenced and data submitted to GenBank. New Ocean Biogeographic Information System location records for the Saragasso Sea were logged for 84 fish species. Hydrographic data revealed separation of the region into three physical regimes within the top 1000 m (northern, transition, and southern), while the sub-1000 m stratum was fairly homogeneous. Though species richness, abundance, and diversity were highest in the southern Sargasso, diversity indices of whole water column (0-5000 m) samples were not significantly different between regions. Below 1000 m, the 1000-2000 m stratum held the most diverse assemblage across the entire transect, but high diversity was exhibited below 3000 m at two of four stations. Ordination discriminated 13 pelagic fish assemblages, with these related to depth far more than region. Geometric abundance class analysis revealed profound differences in relative species abundances between the meso- and bathypelagic zones with the former demonstrating a much higher percentage of common species. This finding tracks the hydrographic patterns observed: increased stability in the bathypelagic zone favors increased numbers of rare species relative to the mesopelagic zone, where hydrographic complexity favors higher numbers of common species.
NASA Astrophysics Data System (ADS)
Ball, M. C.; Al-Qudah, O.; Jones, K.
2017-12-01
The Arroyo Colorado, located within the Rio Grande Valley of South Texas, has been on the list for the State of Texas's most impaired rivers since the 1990's. Few models for the watershed discharge and contaminates transport have been developed, but all require specialized understanding of modeling and input data which must either be assumed, estimated or which is difficult, time-consuming and expensive to collect. It makes sense to see if a general, simpler `catchment-scale' lumping model would be feasible to model water discharge along the Arroyo. Due to its simplicity and the hypothesized diffusive nature of the drainage in the alluvial floodplain deposits of the Arroyo watershed, the Criss and Winston model was chosen for this study. Hydrographs were characterized, clearly demonstrating that the discharge to the Arroyo is greatly affected by precipitation, and which provided clear rain events for evaluation: 62 rain events over a ten-year time span (2007 - 2017) were selected. Best fit curves using the Criss and Winston lag time were plotted, but better fitting curves were created by modifying the Criss and Winston lag time which improved the fit for the rising limb portion of the hydrograph but had no effect on the receding limb portion of the graph. This model provided some insights into the nature of water transport along the Arroyo within two separate sub-basins: El Fuste and Harlingen. The value for the apparent diffusivity constant "b", a constant which encompasses all diffusive characteristics of the watershed or sub-basins in the watershed (i.e. the lumping constant), was calculated to be 0.85 and 0.93 for El Fuste and Harlingen, respectively, indicating that each sub-basin within the watershed is somewhat unique. Due to the lumping nature of the "b" constant, no specific factor can be attributed to this difference. More research could provide additional insight. It is suggested that water diffusion takes longer in the Harlingen sub-basin (larger "b") not only because its sub-basin is larger than El Fuste's, but also because Harlingen is a larger city with more impervious surfaces and a more developed stormwater distribution system - all of which likely delay the time it takes rain to percolate into the ground.
NASA Astrophysics Data System (ADS)
Gibson, J. J.; Birks, S. J.; Stadnyk, T.; Delavau, C. J.
2017-12-01
Stable isotopes of water have been measured since the 1990's as part of hydrometric monitoring programs within Canada's Water Survey of Canada gauging network and Alberta's Long-Term River Network. These datasets are being applied for hydrograph separation of streamflow sources, including rain, snow, groundwater, and surface water, as well as for estimation of watershed evaporation losses and evaporation/transpiration partitioning. Here we describe an innovative isotope mass balance approach, discuss benefits and limitations of the method, and present selected results that illustrate important regional trends in the contemporary hydrology of Canada. Overall, isotopes are shown to be useful for constraining water balance variations across regions with low monitoring density. Recommendations for future activities are identified, including regional comparisons with outputs from isotope-capable distributed hydrologic models.
Reach-Scale Channel Adjustments to Channel Network Geometry in Mountain Bedrock Streams
NASA Astrophysics Data System (ADS)
Plitzuweit, S. J.; Springer, G. S.
2008-12-01
Channel network geometry (CNG) is a critical determinant of hydrological response and may significantly affect incision processes within the Appalachian Plateau near Richwood, West Virginia. The Williams, Cherry, and Cranberry Rivers share drainage divides and their lower reaches flow atop resistant, quartz-rich sandstones. The lower two-thirds of the Cranberry and Williams Rivers display linear profiles atop the sandstones; whereas the Cherry is concave upwards atop the sandstones. Because lithologies and geological structures are similar among the watersheds, we tested whether differences in CNGs explain the profile shapes and reach-scale channel properties. Specifically, we quantified CNG by calculating reach- specific area-distance functions using DEMs. The area-distance functions were then converted into synthetic hydrographs to model hydrological responses. The Cherry River exhibits a classic dendritic drainage pattern, producing peaked hydrographs and low interval transit times. The Cranberry River displays a trellis-like drainage pattern, which produces attenuated hydrographs and high interval transit times. The upstream reaches of the Williams River have a dendritic drainage pattern, but the lower two-thirds of the watershed transitions into an elongated basin with trellis-like CNG. Reach gradients are steeper in the lower reaches of the Williams and Cranberry Rivers where hydrographs are attenuated. In contrast, peaked hydrographs within the Cherry River are associated with lower reach gradients despite resistant sandstone channel beds. Trellis-like CNG may restrict the ability of downstream reaches within the Williams and Cranberry Rivers to achieve the critical discharge needed to cause incision during floods (all other things being equal). If so, increased reach gradients may be hydraulic adjustments that compensate for comparatively low discharges. We are now applying the synthetic hydrographs to HEC-RAS flow models generated from field channel surveys in order to analyze whether stream power and shear stress are adjusted to reflect CNG at the reach- scale. These models are compared to those with discharges calculated using drainage area and precipitation totals alone. We conclude that gradients in bedrock mountain streams may reflect basin-scale hydrology (CNG) and not simply local geological or geomorphic factors. This challenges the conclusions of others who ascribe local channel adjustments to: i) lithology and structure alone, or ii) local colluvium grain sizes.
Column-coupling strategies for multidimensional electrophoretic separation techniques.
Kler, Pablo A; Sydes, Daniel; Huhn, Carolin
2015-01-01
Multidimensional electrophoretic separations represent one of the most common strategies for dealing with the analysis of complex samples. In recent years we have been witnessing the explosive growth of separation techniques for the analysis of complex samples in applications ranging from life sciences to industry. In this sense, electrophoretic separations offer several strategic advantages such as excellent separation efficiency, different methods with a broad range of separation mechanisms, and low liquid consumption generating less waste effluents and lower costs per analysis, among others. Despite their impressive separation efficiency, multidimensional electrophoretic separations present some drawbacks that have delayed their extensive use: the volumes of the columns, and consequently of the injected sample, are significantly smaller compared to other analytical techniques, thus the coupling interfaces between two separations components must be very efficient in terms of providing geometrical precision with low dead volume. Likewise, very sensitive detection systems are required. Additionally, in electrophoretic separation techniques, the surface properties of the columns play a fundamental role for electroosmosis as well as the unwanted adsorption of proteins or other complex biomolecules. In this sense the requirements for an efficient coupling for electrophoretic separation techniques involve several aspects related to microfluidics and physicochemical interactions of the electrolyte solutions and the solid capillary walls. It is interesting to see how these multidimensional electrophoretic separation techniques have been used jointly with different detection techniques, for intermediate detection as well as for final identification and quantification, particularly important in the case of mass spectrometry. In this work we present a critical review about the different strategies for coupling two or more electrophoretic separation techniques and the different intermediate and final detection methods implemented for such separations.
Trommer, J.T.; Loper, J.E.; Hammett, K.M.
1996-01-01
Several traditional techniques have been used for estimating stormwater runoff from ungaged watersheds. Applying these techniques to water- sheds in west-central Florida requires that some of the empirical relationships be extrapolated beyond tested ranges. As a result, there is uncertainty as to the accuracy of these estimates. Sixty-six storms occurring in 15 west-central Florida watersheds were initially modeled using the Rational Method, the U.S. Geological Survey Regional Regression Equations, the Natural Resources Conservation Service TR-20 model, the U.S. Army Corps of Engineers Hydrologic Engineering Center-1 model, and the Environmental Protection Agency Storm Water Management Model. The techniques were applied according to the guidelines specified in the user manuals or standard engineering textbooks as though no field data were available and the selection of input parameters was not influenced by observed data. Computed estimates were compared with observed runoff to evaluate the accuracy of the techniques. One watershed was eliminated from further evaluation when it was determined that the area contributing runoff to the stream varies with the amount and intensity of rainfall. Therefore, further evaluation and modification of the input parameters were made for only 62 storms in 14 watersheds. Runoff ranged from 1.4 to 99.3 percent percent of rainfall. The average runoff for all watersheds included in this study was about 36 percent of rainfall. The average runoff for the urban, natural, and mixed land-use watersheds was about 41, 27, and 29 percent, respectively. Initial estimates of peak discharge using the rational method produced average watershed errors that ranged from an underestimation of 50.4 percent to an overestimation of 767 percent. The coefficient of runoff ranged from 0.20 to 0.60. Calibration of the technique produced average errors that ranged from an underestimation of 3.3 percent to an overestimation of 1.5 percent. The average calibrated coefficient of runoff for each watershed ranged from 0.02 to 0.72. The average values of the coefficient of runoff necessary to calibrate the urban, natural, and mixed land-use watersheds were 0.39, 0.16, and 0.08, respectively. The U.S. Geological Survey regional regression equations for determining peak discharge produced errors that ranged from an underestimation of 87.3 percent to an over- estimation of 1,140 percent. The regression equations for determining runoff volume produced errors that ranged from an underestimation of 95.6 percent to an overestimation of 324 percent. Regression equations developed from data used for this study produced errors that ranged between an underestimation of 82.8 percent and an over- estimation of 328 percent for peak discharge, and from an underestimation of 71.2 percent to an overestimation of 241 percent for runoff volume. Use of the equations developed for west-central Florida streams produced average errors for each type of watershed that were lower than errors associated with use of the U.S. Geological Survey equations. Initial estimates of peak discharges and runoff volumes using the Natural Resources Conservation Service TR-20 model, produced average errors of 44.6 and 42.7 percent respectively, for all the watersheds. Curve numbers and times of concentration were adjusted to match estimated and observed peak discharges and runoff volumes. The average change in the curve number for all the watersheds was a decrease of 2.8 percent. The average change in the time of concentration was an increase of 59.2 percent. The shape of the input dimensionless unit hydrograph also had to be adjusted to match the shape and peak time of the estimated and observed flood hydrographs. Peak rate factors for the modified input dimensionless unit hydrographs ranged from 162 to 454. The mean errors for peak discharges and runoff volumes were reduced to 18.9 and 19.5 percent, respectively, using the average calibrated input parameters for ea
Dunn, David D.; Solis, R.S.; Ockerman, D.J.
1997-01-01
A hydrographic survey of Sabine Lake, a broad, shallow estuary lying on the Texas-Louisiana border, was conducted in June 1996 to help address questions relating to potential environmental effects of future water demands in Texas. The use of a variety of new instruments in this study is one means by which automation is improving efficiency and effectiveness of these efforts by increasing the quality and quantity of data collected.
NASA Astrophysics Data System (ADS)
Penny, M. F.; Phillips, D. M.
1981-03-01
At this Symposium, research on laser hydrography and related development programs currently in progress in the United States of America, Canada, and Australia, were reported. The depth sounding systems described include the US Airborne Oceanographic Lidar and Hydrographic Airborne Laser Sounder, the Canadian Profiling Lidar Bathymeter, and the Australian Laser Airborne Depth Sounder. Other papers presented research on blue-green lasers, theoretical modelling, position fixing, and data processing.
CCHDO: Data Management for US and International GO-SHIP and Related Programs
NASA Astrophysics Data System (ADS)
Diggs, S. C.
2016-02-01
An ever-expanding universe of oceanographic data that includes ship-based measurements (CTD, Nutrients, CFCs, etc.) - as well as the data collected from floats, drifters, gliders and moorings - are continuously gathered, scrutinized, documented and disseminated by the CLIVAR and Carbon Hydrographic Data Office (CCHDO) at Scripps Institution of Oceanography. As the official data assembly center for US GO-SHIP (a decadal global hydrography program) the CCHDO is involved in setting and promoting standards of modern data exchange - from observations at sea to final archive. Established in 1996, the CCHDO has a solid history of curating the highest quality full-depth hydrographic data and associated documentation, metadata and DOIs on an API-based web site that provides data in multiple formats and platforms that have been specifically requested by the hydrographic research community. The CCHDO's website, programming platforms, and documentation standards constantly evolve, based on the feedback we receive from the hydrographic community. Technical convergence and collaboration with organizations that include CDIAC, Princeton, NOAA/NCEI, Argo, OceanSITES, BCO-DMO and GO-SHIP is central to our success. We were early adopters of small crowd-sourcing for quality control, and by being involved in all aspects of data use we reintegrate suggested changes to the data, flags and documentation supplied by the most highly recognized and regarded hydrography researchers and institutions in the world.
NASA Astrophysics Data System (ADS)
He, Zhihua; Vorogushyn, Sergiy; Unger-Shayesteh, Katy; Gafurov, Abror; Kalashnikova, Olga; Omorova, Elvira; Merz, Bruno
2018-03-01
This study refines the method for calibrating a glacio-hydrological model based on Hydrograph Partitioning Curves (HPCs), and evaluates its value in comparison to multidata set optimization approaches which use glacier mass balance, satellite snow cover images, and discharge. The HPCs are extracted from the observed flow hydrograph using catchment precipitation and temperature gradients. They indicate the periods when the various runoff processes, such as glacier melt or snow melt, dominate the basin hydrograph. The annual cumulative curve of the difference between average daily temperature and melt threshold temperature over the basin, as well as the annual cumulative curve of average daily snowfall on the glacierized areas are used to identify the starting and end dates of snow and glacier ablation periods. Model parameters characterizing different runoff processes are calibrated on different HPCs in a stepwise and iterative way. Results show that the HPC-based method (1) delivers model-internal consistency comparably to the tri-data set calibration method; (2) improves the stability of calibrated parameter values across various calibration periods; and (3) estimates the contributions of runoff components similarly to the tri-data set calibration method. Our findings indicate the potential of the HPC-based approach as an alternative for hydrological model calibration in glacierized basins where other calibration data sets than discharge are often not available or very costly to obtain.
NASA Astrophysics Data System (ADS)
Bonniwell, Everett C.; Matisoff, Gerald; Whiting, Peter J.
1999-02-01
Targeting of erosion and pollution control programs is much more effective if the time for fine particles to be transported through a watershed, the travel distance, the proportions of old and new sediment in suspension, and the rate of erosion of the landscape can be estimated. In this paper we present a novel technique for tracing suspended sediment in a mountain stream using fallout radionuclides sorbed to sediment. Atmospherically-delivered 7Be, 210Pb, and 137Cs accumulate in the snowpack, are released with its melting and sorb to fine particulates, a portion of which are carried downslope into stream channels. The half-life of cosmogenic 7Be is short (53.4 days), thus, sediment residing on the stream bed should contain little of the radionuclide. The different signatures of newly delivered sediment from the landscape with its 7Be tag and older untagged sediment from the channel is the basis for the tracing. The total flux of such radionuclides, compared to the inventory in the soil, permits estimates of the rates of erosion of the landscape. Fine suspended particulates in the Gold Fork River, ID, are transported downstream through the drainage in one or more steps having lengths of tens of kilometers. Length of the step decreases from about 60 km near the peak of the hydrograph to about 12 km near baseflow. The percent of sediment in suspension that is `new' (i.e., recently delivered from the landscape) ranges from 96 to 12%. The remaining sediment is resuspended older channel sediment. Residence times for particulates range from 1.6 days, early in the hydrograph at the upper site, to 103 days late in the hydrograph at the lowest elevation location. Rates of erosion of fine sediment calculated from the flux of radionuclides average 0.0023 cm/year. The long distance transport of fine particles suggests that delivery through the Gold Fork drainage to the basin outlet is fairly rapid once particles reach the channel and perhaps is also rapid in similar and smaller basins.
Asquith, William H.; Cleveland, Theodore G.; Roussel, Meghan C.
2011-01-01
Estimates of peak and time of peak streamflow for small watersheds (less than about 640 acres) in a suburban to urban, low-slope setting are needed for drainage design that is cost-effective and risk-mitigated. During 2007-10, the U.S. Geological Survey (USGS), in cooperation with the Harris County Flood Control District and the Texas Department of Transportation, developed a method to estimate peak and time of peak streamflow from excess rainfall for 10- to 640-acre watersheds in the Houston, Texas, metropolitan area. To develop the method, 24 watersheds in the study area with drainage areas less than about 3.5 square miles (2,240 acres) and with concomitant rainfall and runoff data were selected. The method is based on conjunctive analysis of rainfall and runoff data in the context of the unit hydrograph method and the rational method. For the unit hydrograph analysis, a gamma distribution model of unit hydrograph shape (a gamma unit hydrograph) was chosen and parameters estimated through matching of modeled peak and time of peak streamflow to observed values on a storm-by-storm basis. Watershed mean or watershed-specific values of peak and time to peak ("time to peak" is a parameter of the gamma unit hydrograph and is distinct from "time of peak") of the gamma unit hydrograph were computed. Two regression equations to estimate peak and time to peak of the gamma unit hydrograph that are based on watershed characteristics of drainage area and basin-development factor (BDF) were developed. For the rational method analysis, a lag time (time-R), volumetric runoff coefficient, and runoff coefficient were computed on a storm-by-storm basis. Watershed-specific values of these three metrics were computed. A regression equation to estimate time-R based on drainage area and BDF was developed. Overall arithmetic means of volumetric runoff coefficient (0.41 dimensionless) and runoff coefficient (0.25 dimensionless) for the 24 watersheds were used to express the rational method in terms of excess rainfall (the excess rational method). Both the unit hydrograph method and excess rational method are shown to provide similar estimates of peak and time of peak streamflow. The results from the two methods can be combined by using arithmetic means. A nomograph is provided that shows the respective relations between the arithmetic-mean peak and time of peak streamflow to drainage areas ranging from 10 to 640 acres. The nomograph also shows the respective relations for selected BDF ranging from undeveloped to fully developed conditions. The nomograph represents the peak streamflow for 1 inch of excess rainfall based on drainage area and BDF; the peak streamflow for design storms from the nomograph can be multiplied by the excess rainfall to estimate peak streamflow. Time of peak streamflow is readily obtained from the nomograph. Therefore, given excess rainfall values derived from watershed-loss models, which are beyond the scope of this report, the nomograph represents a method for estimating peak and time of peak streamflow for applicable watersheds in the Houston metropolitan area. Lastly, analysis of the relative influence of BDF on peak streamflow is provided, and the results indicate a 0:04log10 cubic feet per second change of peak streamflow per positive unit of change in BDF. This relative change can be used to adjust peak streamflow from the method or other hydrologic methods for a given BDF to other BDF values; example computations are provided.
NASA Astrophysics Data System (ADS)
Widyastuti, M.; Fatchurohman, H.; Fathoni, W. A.; Hakim, A. A.; Haryono, E.
2018-04-01
Karst aquifer stores abundant water resources within its matrix, conduits, and intergranular pores. Karst aquifer plays an important role in providing water supply, especially in the areas nearby that commonly dry and lack of surface water resources. Karst spring hydrograph analysis is very fundamental step to–assess and determines the condition of the catchment area in karst terrain. Recession curve is believed to be the most stable part in single flood hydrograph that represents the aquifer characteristics. Nyadeng is one of the most significant karst springs that located in Merabu Karst Area, East Borneo. Villagers in Merabu highly depend on Nyadeng Spring for fulfilled their freshwater need. Hydrograph monitoring has been initiated for one year in Nyadeng Spring as a preliminary action for karst water management in Merabu. Water level data series obtained using automatic water level data logger and then correlated with manual discharge measurement to generate stage-discharge rating curve. The stage-discharge rating curve formula for Nyadeng Spring calculated as y = 0,0102e5,8547x with r2 value = 0.8759. From the combination of several single flood events, Master Recession Curve (MRC) was generated to determine flow regime as the main consideration for karstification degree calculation. From the MRC result, flow regimes formula determined as Qt = 3.2-0.001t + 1.2(1-0.012t)+1.6(1-0.035t) indicated that one sub-regime with laminar flow and two sub-regimes with turbulent flow existed. From the MRC formula, the degree of karstification in Nyadeng Spring classified at seventh scale (developed karstification of the aquifer) based on Malik’s karstification degree (2012). The degree of karstification in Nyadeng Spring indicates that the aquifer formed by large conduit channels, fissures, and macro fissures which are able to provide significant water sources that can be utilized for multi purposes. Therefore, it is concluded that spring hydrograph monitoring provide essential information in order to establish a careful water resources management actions.
NASA Astrophysics Data System (ADS)
Bond, C. E.; Howell, J.; Butler, R.
2016-12-01
With an increase in flood and storm events affecting infrastructure the role of weather systems, in a changing climate, and their impact is of increasing interest. Here we present a new workflow integrating crowd sourced imagery from the public with UAV photogrammetry to create, the first 3D hydrograph of a major flooding event. On December 30th 2015, Storm Frank resulted in high magnitude rainfall, within the Dee catchment in Aberdeenshire, resulting in the highest ever-recorded river level for the Dee, with significant impact on infrastructure and river morphology. The worst of the flooding occurred during daylight hours and was digitally captured by the public on smart phones and cameras. After the flood event a UAV was used to shoot photogrammetry to create a textured elevation model of the area around Aboyne Bridge on the River Dee. A media campaign aided crowd sourced digital imagery from the public, resulting in over 1,000 images submitted by the public. EXIF data captured by the imagery of the time, date were used to sort the images into a time series. Markers such as signs, walls, fences and roads within the images were used to determine river level height through the flood, and matched onto the elevation model to contour the change in river level. The resulting 3D hydrograph shows the build up of water on the up-stream side of the Bridge that resulted in significant scouring and under-mining in the flood. We have created the first known data based 3D hydrograph for a river section, from a UAV photogrammetric model and crowd sourced imagery. For future flood warning and infrastructure management a solution that allows a realtime hydrograph to be created utilising augmented reality to integrate the river level information in crowd sourced imagery directly onto a 3D model, would significantly improve management planning and infrastructure resilience assessment.
Application of remote sensing techniques to hydrography with emphasis on bathymetry. M.S. Thesis
NASA Technical Reports Server (NTRS)
Dejesusparada, N. (Principal Investigator); Meireles, D. S.
1980-01-01
Remote sensing techniques are utilized for the determination of hydrographic characteristics, with emphasis in bathymetry. Two sensor systems were utilized: the Metric Camera Wild RC-10 and the Multispectral Scanner of LANDSAT Satellite (MSS-LANDSAT). From photographs of the metric camera, data of photographic density of points with known depth are obtained. A correlation between the variables density x depth is calculated through a regression straight line. From this line, the depth of points with known photographic density is determined. The LANDSAT MSS images are interpreted automatically in the Iterative Multispectral Analysis System (I-100) with the obtention of point subareas with the same gray level. With some simplifications done, it is assumed that the depth of a point is directly related with its gray level. Subareas with points of the same depth are then determined and isobathymetric curves are drawn. The coast line is obtained through the sensor systems already mentioned. Advantages and limitations of the techniques and of the sensor systems utilized are discussed and the results are compared with ground truth.
Hydrography synthesis using LANDSAT remote sensing and the SCS models
NASA Technical Reports Server (NTRS)
Ragan, R. M.; Jackson, T. J.
1976-01-01
The land cover requirements of the Soil Conservation Service (SCS) Model used for hydrograph synthesis in urban areas were modified to be LANDSAT compatible. The Curve Numbers obtained with these alternate land cover categories compare well with those obtained in published example problems using the conventional categories. Emergency spillway hydrographs and synthetic flood frequency flows computed for a 21.1 sq. mi. test area showed excellent agreement between the conventional aerial photo-based and the Landsat-based SCS approaches.
Analysis of water-level fluctuations in Wisconsin wells
Patterson, G.L.; Zaporozec, A.
1987-01-01
Long-term trends are apparent on hydrographs of wells Br-46, Mr-2S, Pt-276, Ro-3, and Ve-8. The trend of average annual water levels has been generally increasing since the late 1950's and is in general agreement with the increasing trend of precipitation. Hydrographs of well Ve-8, which has the longest period of record in Wisconsin, indicate that the generally rising trend started even earlier at the end of an extensive drought period in the 1930's.
Soenksen, P.J.
1990-01-01
Tracer-dilution discharge measurements were made during 14 flow periods at six stations from 1986 through 1988 water years. Ratings were developed at three stations with the aid of these measurements. A loop rating was identified at one station during rapidly-changing flow conditions. Incomplete mixing and dye loss to sediment apparently were problems at some stations. Stage hydrographs were recorded for 38 flows at seven stations. Limited data on background fluorescence during high flows were also obtained.
Prediction of Baseflow Index of Catchments using Machine Learning Algorithms
NASA Astrophysics Data System (ADS)
Yadav, B.; Hatfield, K.
2017-12-01
We present the results of eight machine learning techniques for predicting the baseflow index (BFI) of ungauged basins using a surrogate of catchment scale climate and physiographic data. The tested algorithms include ordinary least squares, ridge regression, least absolute shrinkage and selection operator (lasso), elasticnet, support vector machine, gradient boosted regression trees, random forests, and extremely randomized trees. Our work seeks to identify the dominant controls of BFI that can be readily obtained from ancillary geospatial databases and remote sensing measurements, such that the developed techniques can be extended to ungauged catchments. More than 800 gauged catchments spanning the continental United States were selected to develop the general methodology. The BFI calculation was based on the baseflow separated from daily streamflow hydrograph using HYSEP filter. The surrogate catchment attributes were compiled from multiple sources including digital elevation model, soil, landuse, climate data, other publicly available ancillary and geospatial data. 80% catchments were used to train the ML algorithms, and the remaining 20% of the catchments were used as an independent test set to measure the generalization performance of fitted models. A k-fold cross-validation using exhaustive grid search was used to fit the hyperparameters of each model. Initial model development was based on 19 independent variables, but after variable selection and feature ranking, we generated revised sparse models of BFI prediction that are based on only six catchment attributes. These key predictive variables selected after the careful evaluation of bias-variance tradeoff include average catchment elevation, slope, fraction of sand, permeability, temperature, and precipitation. The most promising algorithms exceeding an accuracy score (r-square) of 0.7 on test data include support vector machine, gradient boosted regression trees, random forests, and extremely randomized trees. Considering both the accuracy and the computational complexity of these algorithms, we identify the extremely randomized trees as the best performing algorithm for BFI prediction in ungauged basins.
An assessment of the tracer-based approach to quantifying groundwater contributions to streamflow
NASA Astrophysics Data System (ADS)
Jones, J. P.; Sudicky, E. A.; Brookfield, A. E.; Park, Y.-J.
2006-02-01
The use of conservative geochemical and isotopic tracers along with mass balance equations to determine the pre-event groundwater contributions to streamflow during a rainfall event is widely used for hydrograph separation; however, aspects related to the influence of surface and subsurface mixing processes on the estimates of the pre-event contribution remain poorly understood. Moreover, the lack of a precise definition of "pre-event" versus "event" contributions on the one hand and "old" versus "new" water components on the other hand has seemingly led to confusion within the hydrologic community about the role of Darcian-based groundwater flow during a storm event. In this work, a fully integrated surface and subsurface flow and solute transport model is used to analyze flow system dynamics during a storm event, concomitantly with advective-dispersive tracer transport, and to investigate the role of hydrodynamic mixing processes on the estimates of the pre-event component. A number of numerical experiments are presented, including an analysis of a controlled rainfall-runoff experiment, that compare the computed Darcian-based groundwater fluxes contributing to streamflow during a rainfall event with estimates of these contributions based on a tracer-based separation. It is shown that hydrodynamic mixing processes can dramatically influence estimates of the pre-event water contribution estimated by a tracer-based separation. Specifically, it is demonstrated that the actual amount of bulk flowing groundwater contributing to streamflow may be much smaller than the quantity indirectly estimated from a separation based on tracer mass balances, even if the mixing processes are weak.
Sea Ice and Hydrographic Variability in the Northwest North Atlantic
NASA Astrophysics Data System (ADS)
Fenty, I. G.; Heimbach, P.; Wunsch, C. I.
2010-12-01
Sea ice anomalies in the Northwest North Atlantic's Labrador Sea are of climatic interest because of known and hypothesized feedbacks with hydrographic anomalies, deep convection/mode water formation, and Northern Hemisphere atmospheric patterns. As greenhouse gas concentrations increase, hydrographic anomalies formed in the Arctic Ocean associated with warming will propagate into the Labrador Sea via the Fram Strait/West Greenland Current and the Canadian Archipelago/Baffin Island Current. Therefore, understanding the dynamical response of sea ice in the basin to hydrographic anomalies is essential for the prediction and interpretation of future high-latitude climate change. Historically, efforts to quantify the link between the observed sea ice and hydrographic variability in the region has been limited due to in situ observation paucity and technical challenges associated with synthesizing ocean and sea ice observations with numerical models. To elaborate the relationship between sea ice and ocean variability, we create three one-year (1992-1993, 1996-1997, 2003-2004) three-dimensional time-varying reconstructions of the ocean and sea ice state in Labrador Sea and Baffin Bay. The reconstructions are syntheses of a regional coupled 32 km ocean-sea ice model with a suite of contemporary in situ and satellite hydrographic and ice data using the adjoint method. The model and data are made consistent, in a least-squares sense, by iteratively adjusting several model control variables (e.g., ocean initial and lateral boundary conditions and the atmospheric state) to minimize an uncertainty-weighted model-data misfit cost function. The reconstructions reveal that the ice pack attains a state of quasi-equilibrium in mid-March (the annual sea ice maximum) in which the total ice-covered area reaches a steady state -ice production and dynamical divergence along the coasts balances dynamical convergence and melt along the pack’s seaward edge. Sea ice advected to the marginal ice zone is mainly ablated via large sustained turbulent ocean enthalpy fluxes. The sensible heat required for these sustained fluxes is drawn from a reservoir of warm subsurface waters of subtropical origin entrained into the mixed layer via convective mixing. Analysis of ocean surface buoyancy fluxes during the period preceding quasi-equilibrium reveals that low-salinity upper ocean anomalies are required for ice to advance seaward of the Arctic Water/Irminger Water thermohaline front in the northern Labrador Sea. Anomalous low-salinity waters inhibit mixed layer deepening, shielding the advancing ice pack from the subsurface heat reservoir, and are conducive to a positive surface stratification enhancement feedback from ice meltwater release. Interestingly, the climatological location of the front coincides with the minimum observed wintertime ice extent; positive ice extent anomalies may require hydrographic preconditioning. If true, the export of low-salinity anomalies from melting Arctic ice associated with future warming may be predicted to lead positive ice extent anomalies in Labrador Sea via the positive surface stratification enhancement mechanism feedback outlined above.
A Flash Flood Study on the Small Montaneous River Catchments in Western Romania
NASA Astrophysics Data System (ADS)
Győri, Maria-Mihaela; Haidu, Ionel; Humbert, Joël
2013-04-01
The present study focuses on flash flood modeling on several mountaneous catchments situated in Western Romania by the use of two methodologies, when rainfall and catchment characteristics are known. Hence, the Soil Conservation Service (SCS) Method and the Rational Method will be employed for the generation of the 1%, 2% and 10% historical flash flood hydrographs on the basis of data spanning from 1989-2009. The SCS Method has been applied on the three gauged catchments in the study area: Petris, Troas and Monorostia making use of the existing interconnection between GIS and the rainfall-runoff models. The DEM, soil data and land use preprocessing in GIS allowed a determination of the hydrologic parameters needed for the rainfall-runoff model, with special emphasis on determining the time of concentration, Lag time and the weighted Curve Number according to Antecedent Moisture Conditions II, adapted for the Romanian territory. HEC-HMS rainfall-runoff model (Hydrologic Engineering Center- Hydrologic Modeling System) facilitates the historical 1%, 2% and 10% flash flood hydrograph generation for the three afore mentioned watersheds. The model is calibrated against measured streamflow data from the three existing gauging stations. The results show a good match between the resulted hydrographs and the observed hydrographs under the form of the Peak Weighted Error RMS values. The hydrographs generated by surface runoff on the ungauged catchments in the area is based on an automation of a workflow in GIS, built with ArcGIS Model Builder graphical interface, as a large part of the functions needed were available as ArcGIS tools. The several components of this model calculate: the runoff depth in mm, the runoff coefficient, the travel time and finally the discharge module which is an application of the rational method, allowing the discharge computation for every cell within the catchment. The result consists of discharges for each isochrones that will be subsequently interpolated in order to obtain the hydrograph of the historical flash floods. The two methodologies employed offer the hydrologist the opportunity of computing the historical hydrographs be it on a section of the river at choice, or for every affluent within the small river basins studied, the graphical data being easily accessed both in GIS and HEC-HMS. The peak discharge values of the main rivers as well as those of their tributaries are of great importance in establishing the hydrologic hazard under the form of floodplain maps that are inexistent for the studied watersheds. Key words: flash flood modeling, ungauged catchments, GIS, HEC-HMS rainfall-runoff model. Aknowledgements This work was possible with the financial support of the Sectoral Operational Programme for Human Resources Development 2007-2013, co-financed by the European Social Fund, under the project number POSDRU/107/1.5/S/76841 with the title "Modern Doctoral Studies: Internationalization and Interdisciplinarity".
Granato, Gregory E.
2014-01-01
The U.S. Geological Survey (USGS) developed the Stochastic Empirical Loading and Dilution Model (SELDM) in cooperation with the Federal Highway Administration (FHWA) to indicate the risk for stormwater concentrations, flows, and loads to be above user-selected water-quality goals and the potential effectiveness of mitigation measures to reduce such risks. SELDM models the potential effect of mitigation measures by using Monte Carlo methods with statistics that approximate the net effects of structural and nonstructural best management practices (BMPs). In this report, structural BMPs are defined as the components of the drainage pathway between the source of runoff and a stormwater discharge location that affect the volume, timing, or quality of runoff. SELDM uses a simple stochastic statistical model of BMP performance to develop planning-level estimates of runoff-event characteristics. This statistical approach can be used to represent a single BMP or an assemblage of BMPs. The SELDM BMP-treatment module has provisions for stochastic modeling of three stormwater treatments: volume reduction, hydrograph extension, and water-quality treatment. In SELDM, these three treatment variables are modeled by using the trapezoidal distribution and the rank correlation with the associated highway-runoff variables. This report describes methods for calculating the trapezoidal-distribution statistics and rank correlation coefficients for stochastic modeling of volume reduction, hydrograph extension, and water-quality treatment by structural stormwater BMPs and provides the calculated values for these variables. This report also provides robust methods for estimating the minimum irreducible concentration (MIC), which is the lowest expected effluent concentration from a particular BMP site or a class of BMPs. These statistics are different from the statistics commonly used to characterize or compare BMPs. They are designed to provide a stochastic transfer function to approximate the quantity, duration, and quality of BMP effluent given the associated inflow values for a population of storm events. A database application and several spreadsheet tools are included in the digital media accompanying this report for further documentation of methods and for future use. In this study, analyses were done with data extracted from a modified copy of the January 2012 version of International Stormwater Best Management Practices Database, designated herein as the January 2012a version. Statistics for volume reduction, hydrograph extension, and water-quality treatment were developed with selected data. Sufficient data were available to estimate statistics for 5 to 10 BMP categories by using data from 40 to more than 165 monitoring sites. Water-quality treatment statistics were developed for 13 runoff-quality constituents commonly measured in highway and urban runoff studies including turbidity, sediment and solids; nutrients; total metals; organic carbon; and fecal coliforms. The medians of the best-fit statistics for each category were selected to construct generalized cumulative distribution functions for the three treatment variables. For volume reduction and hydrograph extension, interpretation of available data indicates that selection of a Spearman’s rho value that is the average of the median and maximum values for the BMP category may help generate realistic simulation results in SELDM. The median rho value may be selected to help generate realistic simulation results for water-quality treatment variables. MIC statistics were developed for 12 runoff-quality constituents commonly measured in highway and urban runoff studies by using data from 11 BMP categories and more than 167 monitoring sites. Four statistical techniques were applied for estimating MIC values with monitoring data from each site. These techniques produce a range of lower-bound estimates for each site. Four MIC estimators are proposed as alternatives for selecting a value from among the estimates from multiple sites. Correlation analysis indicates that the MIC estimates from multiple sites were weakly correlated with the geometric mean of inflow values, which indicates that there may be a qualitative or semiquantitative link between the inflow quality and the MIC. Correlations probably are weak because the MIC is influenced by the inflow water quality and the capability of each individual BMP site to reduce inflow concentrations.
NASA Technical Reports Server (NTRS)
Schmidt, Gordon S.; Mueller, Thomas J.
1987-01-01
The use of flow visualization to study separation bubbles is evaluated. The wind tunnel, two NACA 66(3)-018 airfoil models, and kerosene vapor, titanium tetrachloride, and surface flow visualizations techniques are described. The application of the three visualization techniques to the two airfoil models reveals that the smoke and vapor techniques provide data on the location of laminar separation and the onset of transition, and the surface method produces information about the location of turbulent boundary layer separation. The data obtained with the three flow visualization techniques are compared to pressure distribution data and good correlation is detected. It is noted that flow visualization is an effective technique for examining separation bubbles.
Natural Attenuation of Arsenic, Cadmium, Lead, and Zinc Using Hydrograph Separation
NASA Astrophysics Data System (ADS)
Burrows, J. E.; Peters, S. C.
2009-12-01
Strategies for remediating contaminated sites range from complete removal of the contaminated soil to in-situ monitored natural attenuation. The decision to let a property naturally attenuate is partially based on the estimated time it will take to return to ambient conditions. The Lehigh Gap Wildlife Refuge at Palmerton, PA was historically contaminated with arsenic, cadmium, lead, and zinc from a zinc smelting operation that ceased emissions twenty-nine years ago. This property provides an opportunity to assess whether the length of time required for the natural attenuation of metals in soil has been achieved using a watershed mass balance approach, focusing particularly on perturbations observed in the concentration-discharge relationships of contaminants compared to the conservative tracers sodium and chloride, and silicon as an indicator of rock-water interactions. Water samples were collected from 3 springs in the Wildlife Refuge for approximately 4 days following the onset of storm events and analyzed for cation and anion concentrations. Preliminary results show that while the concentrations of arsenic and lead were below detection limits, the fluxes of zinc and cadmium increase corresponding with the peak in the hydrograph relative to the fluxes of the tracers, indicating the solutes are being released from adsorption sites located in an unsaturated zone that is temporarily inundated during storm events. In comparison, the flux of the tracers remains constant, indicative of a steady-state leakage of the solutes from their respective reservoirs in the soil. Along with flux, the concentrations of zinc and cadmium also increase following the rise in discharge after storm events, further suggesting that these contaminants are being mobilized out of the soil profile.
NASA Astrophysics Data System (ADS)
Piquet, A. M.-T.; van de Poll, W. H.; Visser, R. J. W.; Wiencke, C.; Bolhuis, H.; Buma, A. G. J.
2014-04-01
The hydrographic properties of the Kongsfjorden-Krossfjorden system (79° N, Spitsbergen) are affected by Atlantic water incursions as well as glacier meltwater runoff. This results in strong physical gradients (temperature, salinity and irradiance) within the fjords. Here, we tested the hypothesis that glaciers affect phytoplankton dynamics as early as the productive spring bloom period. During two campaigns in 2007 (late spring) and 2008 (early spring) we studied hydrographic characteristics and phytoplankton variability along two transects in both fjords, using high-performance liquid chromatography (HPLC)-CHEMTAX pigment fingerprinting, molecular fingerprinting (denaturing gradient gel electrophoresis, or DGGE) and sequencing of 18S rRNA genes. The sheltered inner fjord locations remained colder during spring as opposed to the outer locations. Vertical light attenuation coefficients increased from early spring onwards, at all locations, but in particular at the inner locations. In late spring meltwater input caused stratification of surface waters in both fjords. The inner fjord locations were characterized by overall lower phytoplankton biomass. Furthermore HPLC-CHEMTAX data revealed that diatoms and Phaeocystis sp. were replaced by small nano- and picophytoplankton during late spring, coinciding with low nutrient availability. The innermost stations showed higher relative abundances of nano- and picophytoplankton throughout, notably of cyanophytes and cryptophytes. Molecular fingerprinting revealed a high similarity between inner fjord samples from early spring and late spring samples from all locations, while outer samples from early spring clustered separately. We conclude that glacier influence, mediated by early meltwater input, modifies phytoplankton biomass and composition already during the spring bloom period, in favor of low biomass and small cell size communities. This may affect higher trophic levels especially when regional warming further increases the period and volume of meltwater.
NASA Astrophysics Data System (ADS)
Piquet, A. M.-T.; van de Poll, W. H.; Visser, R. J. W.; Wiencke, C.; Bolhuis, H.; Buma, A. G. J.
2013-10-01
The hydrographic properties of the Kongsfjorden - Krossfjorden system (79° N, Spitsbergen) are affected by Atlantic water incursions as well as glacier meltwater runoff. This results in strong physical gradients (temperature, salinity and irradiance) within the fjords. Here, we tested the hypothesis that glaciers affect phytoplankton dynamics as early as the productive spring bloom period. During two campaigns in 2007 (late spring) and 2008 (early spring) we studied hydrographic characteristics and phytoplankton variability along 2 transects in both fjords, using HPLC-CHEMTAX pigment fingerprinting, molecular fingerprinting (DGGE) and sequencing of 18S rRNA genes. The sheltered inner fjord locations remained colder during spring as opposed to the outer locations. Vertical light attenuation coefficients increased from early spring onwards, at all locations, but in particular at the inner locations. During the end of spring, meltwater input had stratified surface waters throughout the fjords. The inner fjord locations were characterized by overall lower phytoplankton biomass. Furthermore HPLC-CHEMTAX data revealed that diatoms and Phaeocystis sp. were replaced by small nano- and picophytoplankton during late spring, coinciding with low nutrient availability. The innermost stations showed higher relative abundances of nano- and picophytoplankton throughout, notably of cyanophytes and cryptophytes. Molecular fingerprinting revealed a high similarity between inner fjord samples from early spring and late spring samples from all locations, while outer samples from early spring clustered separately. We conclude that glacier influence, mediated by early meltwater input, modifies phytoplankton biomass and composition already during the spring bloom period, in favor of low biomass and small cell size communities. This may affect higher trophic levels especially when regional warming further increases the period and volume of meltwater.
NASA Astrophysics Data System (ADS)
Gardner, Christopher B.; Litt, Guy F.; Lyons, W. Berry; Ogden, Fred L.
2017-10-01
In humid tropical watersheds, the hydrologic flow paths taken by rain event waters and how they interact with groundwater and soil matrix water to form streamflow are poorly understood. Preferential flow paths (PFPs) confound storm infiltration processes, especially in the humid tropics where PFPs are common. This work applies germanium (Ge) and silicon (Si) as natural flow path tracers in conjunction with water stable isotopes and electrical conductivity to examine the rapid delivery of shallow soil water, the activation of PFPs, and event water partitioning in an experimental catchment in central Panama. We employed a three-component mixing model for hydrograph separation using the following end-member waters: (i) base flow (high [Si], low [Ge], and low Ge/Si ratio), (ii) dilute canopy throughfall (low [Si] and low [Ge]), and (iii) shallow (<15 cm) soil matrix water (low [Si], high [Ge], and high Ge/Si ratio). These three end-members bounded all observed Ge/Si streamflow ratios. During small rain events (<˜24 mm), base flow and dilute canopy throughfall components dominated stormflow. During larger precipitation events (>˜35 mm), we detected the third shallow soil water component with an elevated [Ge] and Ge/Si ratio. This component reached its maximum during the hydrograph's receding limb coincident with the maximum event fraction, and increased proportionally to the total storm rainfall exceeding ˜35 mm. Only shallow (<15 cm) soil matrix water exhibited elevated Ge concentrations and high Ge/Si ratios. This third component represents rapidly delivered soil matrix water combined with shallow lateral PFP activation through which event waters interact with soil minerals.
NASA Astrophysics Data System (ADS)
Weingartner, Thomas; Fang, Ying-Chih; Winsor, Peter; Dobbins, Elizabeth; Potter, Rachel; Statscewich, Hank; Mudge, Todd; Irving, Brita; Sousa, Leandra; Borg, Keath
2017-10-01
We used shipboard and towed CTD, current meter, and satellite-tracked drifter data to examine the hydrographic structure in the northeastern Chukchi Sea in August-September of 2011, 2012, and 2013. In all years the densest winter water was around and east of Hanna Shoal. In 2012 and 2013, a 15 m deep layer of cold, dilute meltwater overlaid the dense water north of the shelf region between 71.2 and 71.5°N. A front extends from the southwest side of Hanna Shoal toward the head of Barrow Canyon, separated meltwaters from warmer, saltier Bering Sea Summer Waters to the south. Stratification was stronger and the surface density variances in the meso- and sub-mesoscale range were higher north of the front than to the south. No meltwater or surface fronts were present in 2011 due to a very early ice retreat. Differences in summer ice cover may be due to differences in the amount of grounded ice atop Hanna Shoal associated with the previous winter's regional ice drift. Along the north side of Hanna Shoal the model-predicted clockwise barotropic flow carrying waters from the western side of the Shoal appears to converge with a counterclockwise, baroclinic flow on the northeast side. The baroclinic tendency is confined to the upper 30 m and can include waters transported from the shelfbreak. The inferred zonal convergence implies that north of the Shoal: a) near-surface waters are a mixture of waters from the western and eastern Chukchi Sea and b) the cross-isobath pressure gradient collapses thereby facilitating leakage of upper layer waters northward across the shelf.
Mizukami, Naoki; Clark, Martyn P.; Sampson, Kevin; Nijssen, Bart; Mao, Yixin; McMillan, Hilary; Viger, Roland; Markstrom, Steven; Hay, Lauren E.; Woods, Ross; Arnold, Jeffrey R.; Brekke, Levi D.
2016-01-01
This paper describes the first version of a stand-alone runoff routing tool, mizuRoute. The mizuRoute tool post-processes runoff outputs from any distributed hydrologic model or land surface model to produce spatially distributed streamflow at various spatial scales from headwater basins to continental-wide river systems. The tool can utilize both traditional grid-based river network and vector-based river network data. Both types of river network include river segment lines and the associated drainage basin polygons, but the vector-based river network can represent finer-scale river lines than the grid-based network. Streamflow estimates at any desired location in the river network can be easily extracted from the output of mizuRoute. The routing process is simulated as two separate steps. First, hillslope routing is performed with a gamma-distribution-based unit-hydrograph to transport runoff from a hillslope to a catchment outlet. The second step is river channel routing, which is performed with one of two routing scheme options: (1) a kinematic wave tracking (KWT) routing procedure; and (2) an impulse response function – unit-hydrograph (IRF-UH) routing procedure. The mizuRoute tool also includes scripts (python, NetCDF operators) to pre-process spatial river network data. This paper demonstrates mizuRoute's capabilities to produce spatially distributed streamflow simulations based on river networks from the United States Geological Survey (USGS) Geospatial Fabric (GF) data set in which over 54 000 river segments and their contributing areas are mapped across the contiguous United States (CONUS). A brief analysis of model parameter sensitivity is also provided. The mizuRoute tool can assist model-based water resources assessments including studies of the impacts of climate change on streamflow.
Gustafson, L; Remmenga, M; Sandoval Del Valle, O; Ibarra, R; Antognoli, M; Gallardo, A; Rosenfeld, C; Doddis, J; Enriquez Sais, R; Bell, E; Lara Fica, M
2016-03-01
Area management, the coordination of production and biosecurity practices across neighboring farms, is an important disease control strategy in aquaculture. Area management in aquaculture escalated in prominence in response to outbreaks of infectious salmon anemia (ISA) internationally. Successes in disease control have been attributed to the separation achieved through area-level synchronized stocking, fallowing, movement restrictions, and fomite or pest control. Area management, however, is costly; often demanding extra biosecurity, lengthy or inconveniently timed fallows, and localization of equipment, personnel, and services. Yet, this higher-order organizational structure has received limited epidemiologic attention. Chile's National Fisheries and Aquaculture Service instigated area management practices in response to the 2007 emergence of ISA virus (ISAV). Longitudinal data simultaneously collected allowed retrospective evaluation of the impact of component tenets on virus control. Spatiotemporal analyses identified hydrographic linkages, shared ports, and fish transfers from areas with recent occurrence of ISAV as the strongest predictors of virus spread between areas, though specifics varied by ISAV type (here categorized as HPR0 for the non-virulent genotypes, and HPRv otherwise). Hydrographic linkages were most predictive in the period before implementation of enhanced biosecurity and fallowing regulations, suggesting that viral load can impact spread dynamics. HPR0 arose late in the study period, so few HPRv events were available by which to explore the hypothesis of HPR0 as progenitor of outbreaks. However, spatiotemporal patterns in HPRv occurrence were predictive of subsequent patterns in HPR0 detection, suggesting a parallel, or dependent, means of spread. Better data precision, breadth and consistency, common challenges for retrospective studies, could improve model fit; and, for HPR0, specification of diagnostic test accuracy would improve interpretation. Published by Elsevier B.V.
Utility of 222Rn as a passive tracer of subglacial distributed system drainage
NASA Astrophysics Data System (ADS)
Linhoff, Benjamin S.; Charette, Matthew A.; Nienow, Peter W.; Wadham, Jemma L.; Tedstone, Andrew J.; Cowton, Thomas
2017-03-01
Water flow beneath the Greenland Ice Sheet (GrIS) has been shown to include slow-inefficient (distributed) and fast-efficient (channelized) drainage systems, in response to meltwater delivery to the bed via both moulins and surface lake drainage. This partitioning between channelized and distributed drainage systems is difficult to quantify yet it plays an important role in bulk meltwater chemistry and glacial velocity, and thus subglacial erosion. Radon-222, which is continuously produced via the decay of 226Ra, accumulates in meltwater that has interacted with rock and sediment. Hence, elevated concentrations of 222Rn should be indicative of meltwater that has flowed through a distributed drainage system network. In the spring and summer of 2011 and 2012, we made hourly 222Rn measurements in the proglacial river of a large outlet glacier of the GrIS (Leverett Glacier, SW Greenland). Radon-222 activities were highest in the early melt season (10-15 dpm L-1), decreasing by a factor of 2-5 (3-5 dpm L-1) following the onset of widespread surface melt. Using a 222Rn mass balance model, we estimate that, on average, greater than 90% of the river 222Rn was sourced from distributed system meltwater. The distributed system 222Rn flux varied on diurnal, weekly, and seasonal time scales with highest fluxes generally occurring on the falling limb of the hydrograph and during expansion of the channelized drainage system. Using laboratory based estimates of distributed system 222Rn, the distributed system water flux generally ranged between 1-5% of the total proglacial river discharge for both seasons. This study provides a promising new method for hydrograph separation in glacial watersheds and for estimating the timing and magnitude of distributed system fluxes expelled at ice sheet margins.
Stutter, Marc; Dawson, Julian J C; Glendell, Miriam; Napier, Fiona; Potts, Jacqueline M; Sample, James; Vinten, Andrew; Watson, Helen
2017-12-31
Accurate quantification of suspended sediments (SS) and particulate phosphorus (PP) concentrations and loads is complex due to episodic delivery associated with storms and management activities often missed by infrequent sampling. Surrogate measurements such as turbidity can improve understanding of pollutant behaviour, providing calibrations can be made cost-effectively and with quantified uncertainties. Here, we compared fortnightly and storm intensive water quality sampling with semi-continuous turbidity monitoring calibrated against spot samples as three potential methods for determining SS and PP concentrations and loads in an agricultural catchment over two-years. In the second year of sampling we evaluated the transferability of turbidity calibration relationships to an adjacent catchment with similar soils and land cover. When data from nine storm events were pooled, both SS and PP concentrations (all in log space) were better related to turbidity than they were to discharge. Developing separate calibration relationship for the rising and falling limbs of the hydrograph provided further improvement. However, the ability to transfer calibrations between adjacent catchments was not evident as the relationships of both SS and PP with turbidity differed both in gradient and intercept on the rising limb of the hydrograph between the two catchments. We conclude that the reduced uncertainty in load estimation derived from the use of turbidity as a proxy for specific water quality parameters in long-term regulatory monitoring programmes, must be considered alongside the increased capital and maintenance costs of turbidity equipment, potentially noisy turbidity data and the need for site-specific prolonged storm calibration periods. Copyright © 2017 Elsevier B.V. All rights reserved.
Al-Yamani, Faiza; Yamamoto, Takahiro; Al-Said, Turki; Alghunaim, Aws
2017-09-15
Hydrographic variables were monitored in northwestern Arabian Gulf over the past three decades and the time-series data were statistically analyzed. The results show that while salinity has undergone several shifts, seawater temperature exhibited a steady increasing trend since the 1980s. The observed salinity shows strong correlation with Shatt Al-Arab River discharge indicating primary contribution of freshwater to salinity among other factors (evaporation and desalination effluent). Recent data show that salinity is at its highest level in the last 30years with less pronounced seasonal variability in response to severe decline in the freshwater runoff into the northwestern Arabian Gulf. The changes in hydrographic conditions may have significant implications on hydrodynamics, water quality, and ecosystems in the Gulf. Thus, cooperation among the concerned countries - both coastal and riparian nations - would be essential for prevention of further major changes in the Gulf. Copyright © 2017 Elsevier Ltd. All rights reserved.
Partial polygon pruning of hydrographic features in automated generalization
Stum, Alexander K.; Buttenfield, Barbara P.; Stanislawski, Larry V.
2017-01-01
This paper demonstrates a working method to automatically detect and prune portions of waterbody polygons to support creation of a multi-scale hydrographic database. Water features are known to be sensitive to scale change; and thus multiple representations are required to maintain visual and geographic logic at smaller scales. Partial pruning of polygonal features—such as long and sinuous reservoir arms, stream channels that are too narrow at the target scale, and islands that begin to coalesce—entails concurrent management of the length and width of polygonal features as well as integrating pruned polygons with other generalized point and linear hydrographic features to maintain stream network connectivity. The implementation follows data representation standards developed by the U.S. Geological Survey (USGS) for the National Hydrography Dataset (NHD). Portions of polygonal rivers, streams, and canals are automatically characterized for width, length, and connectivity. This paper describes an algorithm for automatic detection and subsequent processing, and shows results for a sample of NHD subbasins in different landscape conditions in the United States.
Karlinger, M.R.; Troutman, B.M.
1985-01-01
An instantaneous unit hydrograph (iuh) based on the theory of topologically random networks (topological iuh) is evaluated in terms of sets of basin characteristics and hydraulic parameters. Hydrographs were computed using two linear routing methods for each of two drainage basins in the southeastern United States and are the basis of comparison for the topological iuh's. Elements in the sets of basin characteristics for the topological iuh's are the number of first-order streams only, (N), or the nuber of sources together with the number of channel links in the topological diameter (N, D); the hydraulic parameters are values of the celerity and diffusivity constant. Sensitivity analyses indicate that the mean celerity of the internal links in the network is the critical hydraulic parameter for determining the shape of the topological iuh, while the diffusivity constant has minimal effect on the topological iuh. Asymptotic results (source-only) indicate the number of sources need not be large to approximate the topological iuh with the Weibull probability density function.
Streamflow simulation studies of the Hillsborough, Alafia, and Anclote Rivers, west-central Florida
Turner, J.F.
1979-01-01
A modified version of the Georgia Tech Watershed Model was applied for the purpose of flow simulation in three large river basins of west-central Florida. Calibrations were evaluated by comparing the following synthesized and observed data: annual hydrographs for the 1959, 1960, 1973 and 1974 water years, flood hydrographs (maximum daily discharge and flood volume), and long-term annual flood-peak discharges (1950-72). Annual hydrographs, excluding the 1973 water year, were compared using average absolute error in annual runoff and daily flows and correlation coefficients of monthly and daily flows. Correlations coefficients for simulated and observed maximum daily discharges and flood volumes used for calibrating range from 0.91 to 0.98 and average standard errors of estimate range from 18 to 45 percent. Correlation coefficients for simulated and observed annual flood-peak discharges range from 0.60 to 0.74 and average standard errors of estimate range from 33 to 44 percent. (Woodard-USGS)
Identifying and preserving high-water mark data
Koenig, Todd A.; Bruce, Jennifer L.; O'Connor, Jim; McGee, Benton D.; Holmes, Robert R.; Hollins, Ryan; Forbes, Brandon T.; Kohn, Michael S.; Schellekens, Mathew; Martin, Zachary W.; Peppler, Marie C.
2016-03-08
High-water marks provide valuable data for understanding recent and historical flood events. The proper collection and recording of high-water mark data from perishable and preserved evidence informs flood assessments, research, and water resource management. Given the high cost of flooding in developed areas, experienced hydrographers, using the best available techniques, can contribute high-quality data toward efforts such as public education of flood risk, flood inundation mapping, flood frequency computations, indirect streamflow measurement, and hazard assessments.This manual presents guidance for skilled high-water mark identification, including marks left behind in natural and man-made environments by tranquil and rapid flowing water. This manual also presents pitfalls and challenges associated with various types of flood evidence that help hydrographers identify the best high-water marks and assess the uncertainty associated with a given mark. Proficient high-water mark data collection contributes to better understanding of the flooding process and reduces risk through greater ability to estimate flood probability.The U.S. Geological Survey, operating the Nation’s premier water data collection network, encourages readers of this manual to familiarize themselves with the art and science of high-water mark collection. The U.S. Geological survey maintains a national database at http://water.usgs.gov/floods/FEV/ that includes high-water mark information for many flood events, and local U.S. Geological Survey Water Science Centers can provide information to interested readers about participation in data collection and flood documentation efforts as volunteers or observers.
NASA Astrophysics Data System (ADS)
Cooper, C.; Nayegandhi, A.; Faux, R.
2013-12-01
Small-footprint, green wavelength airborne LiDAR systems can provide seamless topography across the land-water interface at very high spatial resolution. These data have the potential to improve floodplain modeling, fisheries habitat assessments, stream restoration efforts, and other applications by continuously mapping shallow water depths that are difficult or impossible to measure using traditional ground-based or water-borne survey techniques. WSI (Corvallis, Oregon) in collaboration with Dewberry, (Tampa, Florida) and Riegl (Orlando, Florida), deployed the Riegl VQ-820-G hydrographic airborne laser scanner to map riverine and lacustrine environments from Oregon to Minnesota. Discussion will focus on the ability to accurately map depth and underwater structure, as well as riparian vegetation and terrain under different conditions. Results indicate that depth penetration varies with both water (i.e. clarity and surface conditions) and bottom conditions (i.e. substrate, depth, and landform). Depth penetration was typically limited to 1 Secchi depth or less across selected project areas. As an example, the green LiDAR system effectively mapped 83% of a shallow water river system, the Sandy River, with typical depths ranging from 0-2.5 meters. WSI will show quantitative comparisons of Green LiDAR surveys against more traditional methods such as rod or sonar surveys. WSI will also discuss advantages and limitations of Green LiDAR surveys for bathymetric modeling including survey accuracy, density, and efficiency along with data processing challenges not inherent with traditional NIR LiDAR processing.
NASA Astrophysics Data System (ADS)
Zhang, X.; Roman, M.; Kimmel, D.; McGilliard, C.; Boicourt, W.
2006-05-01
High-resolution, axial sampling surveys were conducted in Chesapeake Bay during April, July, and October from 1996 to 2000 using a towed sampling device equipped with sensors for depth, temperature, conductivity, oxygen, fluorescence, and an optical plankton counter (OPC). The results suggest that the axial distribution and variability of hydrographic and biological parameters in Chesapeake Bay were primarily influenced by the source and magnitude of freshwater input. Bay-wide spatial trends in the water column-averaged values of salinity were linear functions of distance from the main source of freshwater, the Susquehanna River, at the head of the bay. However, spatial trends in the water column-averaged values of temperature, dissolved oxygen, chlorophyll-a and zooplankton biomass were nonlinear along the axis of the bay. Autocorrelation analysis and the residuals of linear and quadratic regressions between each variable and latitude were used to quantify the patch sizes for each axial transect. The patch sizes of each variable depended on whether the data were detrended, and the detrending techniques applied. However, the patch size of each variable was generally larger using the original data compared to the detrended data. The patch sizes of salinity were larger than those for dissolved oxygen, chlorophyll-a and zooplankton biomass, suggesting that more localized processes influence the production and consumption of plankton. This high-resolution quantification of the zooplankton spatial variability and patch size can be used for more realistic assessments of the zooplankton forage base for larval fish species.
NASA Astrophysics Data System (ADS)
Kirchner, James
2017-04-01
Making hydrological models more realistic requires both better physical understanding of their underlying processes, and more rigorous tests of the hypotheses that they embody. In the current model-testing paradigm, multiple interdependent hypotheses are combined to generate model predictions, which are then compared with observational time series that reflect multiple interdependent forcings. This approach is problematic in several respects. If the modeled time series does not match the observations, which of the model's many embedded hypotheses is falsified? Conversely, even if the model matches the data, how many of its underlying hypotheses could still be wrong, perhaps in offsetting ways? The essence of the problem is that if model simulations depend on many interacting hypotheses, and if observational data reflect many different environmental forcings, then comparisons of simulations against data will rarely be diagnostic tests of specific hypotheses in the model. For this reason, I have long argued for a different approach to hypothesis testing, in which key signatures of behavior are extracted from both model and data before they are compared (Kirchner et al., 1996; Kirchner, 2006). This approach allows one to isolate the model/data comparison as much as possible from potentially confounding factors in both the model and the data. One key signature of catchment behavior, which has challenged many hydrologic models, is the contrast between the relatively short timescales of hydrologic response to precipitation events, reflecting the celerity of hydraulic potentials, and the much longer timescales of water transport through the landscape, reflecting the velocity of water movement as tracked by passive tracers (Kirchner, 2003). Here I show how both the velocity and celerity of transport at the catchment scale can be quantified from hydrologic and isotopic time series. The conventional formula used for hydrograph separation can be converted into an equivalent linear regression equation that quantifies the fraction of current rainfall in streamflow across ensembles of precipitation events. These ensembles can be selected to represent different discharge ranges, different precipitation intensities, or different levels of antecedent moisture, thus quantifying how the fraction of "new water" in streamflow varies with forcings such as these. This approach can be generalized to determine the contributions of precipitation inputs to streamflow across a range of time lags. In this way the short-term tail of the transit time distribution can be directly quantified for an ensemble of precipitation events, for direct comparison with the unit hydrograph, which quantifies the distribution of hydraulic celerities. High-frequency tracer time series from several experimental catchments will be used to demonstrate how this approach can be used to generate distinctive signatures of catchment behavior for testing model hypotheses. Kirchner, J.W., R.P. Hooper, C. Kendall, C. Neal, and G. Leavesley, Testing and validating environmental models, Science of the Total Environment, 183, 33-47, 1996. Kirchner, J.W., A double paradox in catchment hydrology and geochemistry, Hydrological Processes, 17, 871-874, 2003. Kirchner, J.W., Getting the right answers for the right reasons: linking measurements, analyses, and models to advance the science of hydrology, Water Resources Research, 42, Art. No. WR004362, 2006.
NASA Astrophysics Data System (ADS)
Harahap, Rumilla; Jeumpa, Kemala; Hadibroto, Bambang
2018-03-01
The problem in this research is how in the rainy season the water does not overflow, does not occur flood and during the dry season does not occur drought so it can adjust the condition or existence of Deli river which is around Medan city. Deli River floods often occur, either caused by a smaller capacity than the existing discharge, lack of maintenance and drainage and disposal systems that do not fit with the environment, resulting in flood subscriptions every year. The purpose of this research is to know flood discharge at Deli river as Flood control in Medan city. This research is analyzed on several methods such as log Pearson, Gumbel and hydrograph unit, while HEC-RAS method is modeling conducted in analyzing the water profile of the Deli River. Furthermore, the calculation of the periodic flood discharge using the Nakayasu Method. Calculation result at Deli River return period flood discharge 2 years with an area of 14.8 km2 annual flood hydrograph the total is 26.79 m3/sec on the hours at the 4th time. Return period flood discharge 5 years with an area of 14.8 km2 annual flood hydrograph the total is 73,44 m3/sec. While 25 annual return period total flood hydrograph is 146.50 m3/sec. With flood analysis can reduce and minimize the risk of losses and land can be mapped if in the area there is flooding.
Dick, Meghan; Kjos, Adam
2017-12-07
From January to April 2016, the U.S. Geological Survey (USGS), the Mojave Water Agency, and other local water districts made approximately 1,200 water-level measurements in about 645 wells located within 15 separate groundwater basins, collectively referred to as the Mojave River and Morongo groundwater basins. These data document recent conditions and, when compared with older data, changes in groundwater levels. A water-level contour map was drawn using data measured in 2016 that shows the elevation of the water table and general direction of groundwater movement for most of the groundwater basins. Historical water-level data stored in the USGS National Water Information System (https://waterdata.usgs.gov/nwis/) database were used in conjunction with data collected for this study to construct 37 hydrographs to show long-term (1930–2016) and short-term (1990–2016) water-level changes in the study area.
Ocean data assimilation using optimal interpolation with a quasi-geostrophic model
NASA Technical Reports Server (NTRS)
Rienecker, Michele M.; Miller, Robert N.
1991-01-01
A quasi-geostrophic (QG) stream function is analyzed by optimal interpolation (OI) over a 59-day period in a 150-km-square domain off northern California. Hydrographic observations acquired over five surveys were assimilated into a QG open boundary ocean model. Assimilation experiments were conducted separately for individual surveys to investigate the sensitivity of the OI analyses to parameters defining the decorrelation scale of an assumed error covariance function. The analyses were intercompared through dynamical hindcasts between surveys. The best hindcast was obtained using the smooth analyses produced with assumed error decorrelation scales identical to those of the observed stream function. The rms difference between the hindcast stream function and the final analysis was only 23 percent of the observation standard deviation. The two sets of OI analyses were temporally smoother than the fields from statistical objective analysis and in good agreement with the only independent data available for comparison.
Separation of cells from the rat anterior pituitary gland
NASA Technical Reports Server (NTRS)
Hymer, Wesley C.; Hatfield, J. Michael
1983-01-01
Various techniques for separating the hormone-producing cell types from the rat anterior pituitary gland are examined. The purity, viability, and responsiveness of the separated cells depend on the physiological state of the donor, the tissue dissociation procedures, the staining technique used for identification of cell type, and the cell separation technique. The chamber-gradient setup and operation, the characteristics of the gradient materials, and the separated cell analysis of velocity sedimentation techniques (in particular Staput and Celsep) are described. Consideration is given to the various types of materials used in density gradient centrifugation and the operation of a gradient generating device. The use of electrophoresis to separate rat pituitary cells is discussed.
NASA Astrophysics Data System (ADS)
Inamdar, S.; Mitchell, M.; McDonnell, J.; McGlynn, B.; Shanley, J.
2001-05-01
The significance of variable source areas (VSAs) in storm runoff generation and as loci for mixing of event and pre-event waters has long been recognized. Recent research suggests that VSAs may also play an important role in regulating the export of C and N solutes from catchments. We hypothesize that the spatial distribution of VSAs in the catchment and their connectedness with the stream network is a first order control on the temporal dynamics and expression of water and solutes from the catchment. We examined two contrasting scenarios of VSA distribution: (1) VSAs located lower in the catchment and well connected to the stream network, versus, (2) discrete VSAs located in the upper portions of the catchment and disconnected from the stream network. We evaluated the potential impact of these scenarios on: (a) the timing and peak of event water contributions, and (b) the timing and peak of solute signatures. We hypothesized that if VSAs are well connected to the stream network (Scenario 1), then event water contributions would be distinct and would predominate early on during the rising limb of the hydrograph of stream discharge. In contrast, if VSAs are isolated and disconnected (Scenario 2), then event water contributions would be damped and delayed and possibly continue to be observed through hydrograph recession. We believe solutes such as dissolved organic carbon (DOC), which are primarily flushed from near surface soil horizons, will follow an event water trajectory. We tested these hypotheses for a 135 ha forested headwater catchment in the Adirondack Mountains of New York. Detailed storm runoff and solute data for the catchment are available since 1994. A two-component separation model using base cations (Na, Mg, Ca, and K) was used to partition stormflow discharge into pre-event and event components. Event water contributions were small on the rising limb of the hydrograph, reached their maximum just after the discharge peak, and continued through the recession limb, hours after cessation of rainfall. DOC concentrations followed a temporal pattern very similar to the event water contributions, with a peak at or just after peak discharge. In contrast, the timing of the nitrate peak appeared to vary seasonally, indicating availability of nitrate in the soil profile as a controlling mechanism. Nitrate peaks appeared to match DOC and event water peaks for spring events, but occurred much earlier on the rising limb of the discharge hydrograph during fall events. Results from this study appear to confirm our hypothesis for scenario 2, where the disconnected nature of VSAs is displayed by the delayed expression of event water and DOC. These results also confirm our hypothesis that the spatial distribution of VSAs will have a greater impact on the temporal expression of solutes that are available in near surface soil horizons, as opposed to solutes whose availability in the near surface soil varies with seasons. These hypotheses are also being evaluated for a forested subcatchment of the Sleepers River watershed in Vermont.
Peak flow estimation in ungauged basins by means of water level data analysis
NASA Astrophysics Data System (ADS)
Corato, G.; Moramarco, T.; Tucciarelli, T.
2009-04-01
Discharge hydrograph estimation in rivers is usually carried out by means of water level measurements and the use of a water depth - discharge relationship. The water depth - discharge curve is obtained by integrating local velocities measured in a given section at specified water depth values. To build up such curve is very expensive and very often the highest points, used for the peak flow estimation, are the result of rough extrapolation of points corresponding to much lower water depths. Recently, discharge estimation methodologies based only on the analysis of synchronous water level data recorded in two different river sections far some kilometers from each other have been developed. These methodologies are based only on the analysis of the water levels, the knowledge of the river bed elevations within the two sections, and the use of a diffusive flow routing numerical model. The bed roughness estimation, in terms of average Manning coefficient, is carried out along with the discharge hydrograph estimation. The 1D flow routing model is given by the following Saint Venant equations, simplified according to the diffusive hypothesis: -+ q-= 0 t x (1) h+ (Sf - S0) = 0 x (2) where q(x,t) is the discharge, h(x,t) is the water depth, Sf is the energy slope and S0 is the bed slope. The energy slope is related to the average n Manning coefficient by the Chezy relationship: -q2n2- Sf = 2â43 (3) whereâ is the hydraulic radius and gs the river section. The upstream boundary condition of the flow routing model is given by the measured upstream water level hydrograph. The computational domain is extended some kilometers downstream the second measurement section and the downstream boundary condition is properly approximated. This avoids the use of the downstream measured data for the solution of the system (1)-(3) and limits the model error even in the case of subcritical flow. The optimal average Manning coefficient is obtained by fitting the water level data available in the downstream measurement section with the computed ones. The optimal discharge hydrograph estimated in the upstream measurement section is given by the function q(0,t) computed in the first section (where x = 0) using the optimal Manning coefficient. Two different fitting quality criteria are compared and their practical implications are discussed; the first one is the equality of the computed and the measured time peak lag between the first and the second measurement section; the second one is the minimization of the total square error between the measured and the computed downstream water level hydrographs. The uniqueness and identifiability properties of the associated inverse problem are analyzed, and a model error analysis is carried out addressing the most relevant sources of error arising from the adopted approximations. Three case studies previously used for the validation of the proposed methodology are reviewed. The first two are water level hydrographs collected in two sections of the Arno river (Tuscany, Italy) and the Tiber river (Umbria, Italy). Water level and discharge hydrographs recorded during many storm events were available in both cases. The optimal average Manning coefficient has been estimated in both cases using the data of a single event, properly selected among all the available ones. In the third case, concerning hystorical data collected in a small tributary of the Tanagro river (Campania, Italy), three water level hydrographs were measured in three different sections of the channel. This allowed to carry on the discharge estimation using the data collected in only two of the three sections, using the data of the third one for validation. The results obtained in the three test cases highlight the advantages and the limits of the adopted analysis. The advantage is the simplicity of the hardware required for the data acquisition, that can be easily performed continuously in time, also during very bad weather conditions and using a long distance control. A first limit is the assumption of negligible inflow between the two measurement sections. Because the distance between the two sections must be large enough to measure the time lag between the two hydrographs, this limit can result in a difficult selection of the measurement sections. A second limit is the real heterogeneity of the bed roughness, that provides a shape of the water level hydrograph different from the computed one. Preliminary results of a new, multiparametric data analysis, are finally presented.
Turbulent flow separation control through passive techniques
NASA Technical Reports Server (NTRS)
Lin, J. C.; Howard, F. G.; Selby, G. V.
1989-01-01
Several passive separation control techniques for controlling moderate two-dimensional turbulent flow separation over a backward-facing ramp are studied. Small transverse and swept grooves, passive porous surfaces, large longitudinal grooves, and vortex generators were among the techniques used. It was found that, unlike the transverse and longitudinal grooves of an equivalent size, the 45-deg swept-groove configurations tested tended to enhance separation.
Cartographic modeling of snow avalanche path location within Glacier National Park, Montana
NASA Technical Reports Server (NTRS)
Walsh, Stephen J.; Brown, Daniel G.; Bian, Ling; Butler, David R.
1990-01-01
Geographic information system (GIS) techniques were applied to the study of snow-avalanche path location within Glacier National Park, Montana. Aerial photointerpretation and field surveys confirmed the location of 121 avalanche paths within the selected study area. Spatial and nonspatial information on each path were integrated using the ARC/INFO GIS. Lithologic, structural, hydrographic, topographic, and land-cover impacts on path location were analyzed. All path frequencies within variable classes were normalized by the area of class occurrence relative to the total area of the study area and were added to the morphometric information contained within INFO tables. The normalized values for each GIS coverage were used to cartographically model, by means of composite factor weightings, avalanche path locations.
NASA Technical Reports Server (NTRS)
Blanco, J.; Thomas, A.; Strub, T.; Carr, M.
2000-01-01
The evolution of oceanographic conditions in the upwelling region off northern Chile (18(sup o) - 24(sup o)S) betweeen 1996 and 1998 (including 1997-1998 El Nino) is presented using hydrographic measurements acquired on quarterly cruises of the Chilean Fisheries Institute, sea-surface temperature (SST), sea level, and wind speeds from Arica (18.5(sup o)S), Iquique (20.5(sup o)S), and Antofagasta (23.5(sup o)S), and a time series of vertical temperature profiles off Iquique.
1990-09-01
1893 and 1921 Mississippi River Commission Chart 72; ca. 1930s Caving Bank Survey Map; Mississippi River Hydrographic Survey Chart 41; and the U.S.G.S...of 1876-1893 and 1921 Mississippi River Commission Charts 72, the Caving Bank survey (ca. 1940s-1970s) map, the Mississippi River Hydrographic Survey... Chart (41), and the U.S.G.S. 7.5’ Lutcher, LA quadrangle, were used to examine patterns of erosion, stability, and bankline aggradation. The batture
1988-06-30
Issue Number 24 .n .D A u tio U nb~ t d "’(’jj ’)[ Commonwealth of Australia ’ -I REPORT by the Hydrographer, Royal Australian Navy Commodore J . S...Remotely Operated Vehicles - HYDLAPS Data Management System - G.P.S. - HP85 Replacement j I /I 4 i 4 Cc t ~ (4 0 I a A w --- -- - - -- - - - 0 Alii aja, 0U...Australian Oceanographic Data Centre.............................................10l""*,,**"",,11*".*,,I t Naval Weather Centre
Brinda, S; Bragadeeswaran, S
2005-01-01
Studies on the economically important juvenile fin-fishes such as Elops machnata, Chanos chanos, Lates calcarifer, Epinephelus sp., Sillago sihama, Etroplus suratensis, Mugil cephalus, Liza parsia and Liza tade with relation to the hydrographical parameters as rainfall, temperature, salinity, dissolved oxygen and pH of Vellar estuary during September 2001 to August 2002. The simple correlation co-efficient showed positive significance against juvenile density with water temperature and dissolved oxygen. The influence of hydrographical parameters to the fin-fishes and its abundance is discussed.
Daniel, C. C.; Harned, D.A.
1998-01-01
Quantitative information concerning recharge rates to aquifers and ground water in storage is needed to manage the development of ground- water resources. The amount of ground water available from the regolith-fractured crystalline rock aquifer system in Guilford County, North Carolina, is largely unknown. If historical patterns seen throughout the Piedmont continue into the future, the number of ground- water users in the county can be expected to increase. In order to determine the maximum population that can be supplied by ground water, planners and managers of suburban development must know the amount of ground water that can be withdrawn without exceeding recharge and(or) overdrafting water in long-term storage. Results of the study described in this report help provide this information. Estimates of seasonal and long-term recharge rates were estimated for 15 selected drainage basins and subbasins using streamflow data and an anlytical technique known as hydrograph separation. Methods for determining the quantity of ground water in storage also are described. Guilford County covers approximately 658 square miles in the central part of the Piedmont Province. The population of the county in 1990 was about 347,420; approximately 21 percent of the population depends on ground water as a source of potable supplies. Ground water is obtained from wells tapping the regolith-fractured crystalline rock aquifer system that underlies all of the county. Under natural conditions, recharge to the ground-water system in the county is derived from infiltration of precipitation. Ground-water recharge from precipitation cannot be measured directly; however, an estimate of the amount of precipitation that infiltrates into the ground and ultimately reaches the streams of the region can be determined by the technique of hydrograph separation. Data from 19 gaging stations that measure streamflow within or from Guilford County were analyzed to produce daily estimates of ground-water recharge in 15 drainage basins and subbasins in the county. The recharge estimates were further analyzed to determine seasonal and long-term recharge rates, as well as recharge duration statistics. Mean annual recharge in the 15 basins and subbasins ranges from 4.03 to 9.69 inches per year, with a mean value of 6.28 inches per year for all basins. In general, recharge rates are highest for basins in the northern and northwestern parts of the county and lowest in the southern and southeastern parts of the county. Median recharge rates in the 15 basins range from 2.47 inches per year (184 gallons per day per acre) to 9.15 inches per year (681 gallons per day per acre), with a median value of 4.65 inches per year (346 gallons per day per acre) for all basins. The distribution of recharge rates in the county suggests a correlation between recharge rates and hydrogeologic units (and derived regolith). The highest recharge estimates occur in the northwestern part of Guilford County in basins unlain by felsic igneous intrusive rocks and lesser areas of metasedimentary rocks. Recharge estimates in this area range from 6.37 to 9.33 inches per year. Basins in the southwestern, central, and northeastern parts of the county are underlain primarily by metaigneous rocks of felsic and intermediate compositions, and recharge estimates range from 5.32 to 5.51 inches per year. In the extreme southern and southeastern parts of the county, the lower Deep River subbasin and the lower Haw River subbasins have the lowest estimated recharges at 4.15 and 4.03 inches per year, respectively. Although the areas of these subbasins that lie within Guilford County are underlain primarily by metaigneous rocks of felsic and intermediate compositions, the larger part of these subbasins lies south and southeast of Guilford County in areas underlain by hydrogeologic units of metavolcanic origin. The distribution of recharge rates in the study area is almost the reverse of the distributio
NASA Astrophysics Data System (ADS)
Lim, Kyoung Jae; Park, Youn Shik; Kim, Jonggun; Shin, Yong-Chul; Kim, Nam Won; Kim, Seong Joon; Jeon, Ji-Hong; Engel, Bernard A.
2010-07-01
Many hydrologic and water quality computer models have been developed and applied to assess hydrologic and water quality impacts of land use changes. These models are typically calibrated and validated prior to their application. The Long-Term Hydrologic Impact Assessment (L-THIA) model was applied to the Little Eagle Creek (LEC) watershed and compared with the filtered direct runoff using BFLOW and the Eckhardt digital filter (with a default BFI max value of 0.80 and filter parameter value of 0.98), both available in the Web GIS-based Hydrograph Analysis Tool, called WHAT. The R2 value and the Nash-Sutcliffe coefficient values were 0.68 and 0.64 with BFLOW, and 0.66 and 0.63 with the Eckhardt digital filter. Although these results indicate that the L-THIA model estimates direct runoff reasonably well, the filtered direct runoff values using BFLOW and Eckhardt digital filter with the default BFI max and filter parameter values do not reflect hydrological and hydrogeological situations in the LEC watershed. Thus, a BFI max GA-Analyzer module (BFI max Genetic Algorithm-Analyzer module) was developed and integrated into the WHAT system for determination of the optimum BFI max parameter and filter parameter of the Eckhardt digital filter. With the automated recession curve analysis method and BFI max GA-Analyzer module of the WHAT system, the optimum BFI max value of 0.491 and filter parameter value of 0.987 were determined for the LEC watershed. The comparison of L-THIA estimates with filtered direct runoff using an optimized BFI max and filter parameter resulted in an R2 value of 0.66 and the Nash-Sutcliffe coefficient value of 0.63. However, L-THIA estimates calibrated with the optimized BFI max and filter parameter increased by 33% and estimated NPS pollutant loadings increased by more than 20%. This indicates L-THIA model direct runoff estimates can be incorrect by 33% and NPS pollutant loading estimation by more than 20%, if the accuracy of the baseflow separation method is not validated for the study watershed prior to model comparison. This study shows the importance of baseflow separation in hydrologic and water quality modeling using the L-THIA model.
Scholl, Martha A.; Shanley, James B.; Murphy, Sheila F.; Willenbring, Jane K; Occhi, Marcie; González, Grizelle
2015-01-01
The prospect of changing climate has led to uncertainty about the resilience of forested mountain watersheds in the tropics. In watersheds where frequent, high rainfall provides ample runoff, we often lack understanding of how the system will respond under conditions of decreased rainfall or drought. Factors that govern water supply, such as recharge rates and groundwater storage capacity, may be poorly quantified. This paper describes 8-year data sets of water stable isotope composition (δ2H and δ18O) of precipitation (4 sites) and a stream (1 site), and four contemporaneous stream sample sets of solute chemistry and isotopes, used to investigate watershed response to precipitation inputs in the 1780-ha Río Mameyes basin in the Luquillo Mountains of northeastern Puerto Rico. Extreme δ2H and δ18O values from low-pressure storm systems and the deuterium excess (d-excess) were useful tracers of watershed response in this tropical system. A hydrograph separation experiment performed in June 2011 yielded different but complementary information from stable isotope and solute chemistry data. The hydrograph separation results indicated that 36% of the storm rain that reached the soil surface left the watershed in a very short time as runoff. Weathering-derived solutes indicated near-stream groundwater was displaced into the stream at the beginning of the event, followed by significant dilution. The more biologically active solutes exhibited a net flushing behavior. The d-excess analysis suggested that streamflow typically has a recent rainfall component (∼25%) with transit time less than the sampling resolution of 7 days, and a more well-mixed groundwater component (∼75%). The contemporaneous stream sample sets showed an overall increase in dissolved solute concentrations with decreasing elevation that may be related to groundwater inputs, different geology, and slope position. A considerable amount of water from rain events runs off as quickflow and bypasses subsurface watershed flowpaths, and better understanding of shallow hillslope and deeper groundwater processes in the watershed will require sub-weekly data and detailed transit time modeling. A combined isotopic and solute chemistry approach can guide further studies to a more comprehensive model of the hydrology, and inform decisions for managing water supply with future changes in climate and land use.
Kish, G.R.; Stringer, C.E.; Stewart, M.T.; Rains, M.C.; Torres, A.E.
2010-01-01
Geochemical mass-balance (GMB) and conductivity mass-balance (CMB) methods for hydrograph separation were used to determine the contribution of base flow to total stormflow at two sites in the upper Hillsborough River watershed in west-central Florida from 2003-2005 and at one site in 2009. The chemical and isotopic composition of streamflow and precipitation was measured during selected local and frontal low- and high-intensity storm events and compared to the geochemical and isotopic composition of groundwater. Input for the GMB method included cation, anion, and stable isotope concentrations of surface water and groundwater, whereas input for the CMB method included continuous or point-sample measurement of specific conductance. The surface water is a calcium-bicarbonate type water, which closely resembles groundwater geochemically, indicating that much of the surface water in the upper Hillsborough River basin is derived from local groundwater discharge. This discharge into the Hillsborough River at State Road 39 and at Hillsborough River State Park becomes diluted by precipitation and runoff during the wet season, but retains the calcium-bicarbonate characteristics of Upper Floridan aquifer water. Field conditions limited the application of the GMB method to low-intensity storms but the CMB method was applied to both low-intensity and high-intensity storms. The average contribution of base flow to total discharge for all storms ranged from 31 to 100 percent, whereas the contribution of base flow to total discharge during peak discharge periods ranged from less than 10 percent to 100 percent. Although calcium, magnesium, and silica were consistent markers of Upper Floridan aquifer chemistry, their use in calculating base flow by the GMB method was limited because the frequency of point data collected in this study was not sufficient to capture the complete hydrograph from pre-event base-flow to post-event base-flow concentrations. In this study, pre-event water represented somewhat diluted groundwater. Streamflow conductivity integrates the concentrations of the major ions, and the logistics of acquiring specific conductance at frequent time intervals are less complicated than data collection, sample processing, shipment, and analysis of water samples in a laboratory. The acquisition of continuous specific conductance data reduces uncertainty associated with less-frequently collected geochemical point data.
A framework for quantification of groundwater dynamics - concepts and hydro(geo-)logical metrics
NASA Astrophysics Data System (ADS)
Haaf, Ezra; Heudorfer, Benedikt; Stahl, Kerstin; Barthel, Roland
2017-04-01
Fluctuation patterns in groundwater hydrographs are generally assumed to contain information on aquifer characteristics, climate and environmental controls. However, attempts to disentangle this information and map the dominant controls have been few. This is due to the substantial heterogeneity and complexity of groundwater systems, which is reflected in the abundance of morphologies of groundwater time series. To describe the structure and shape of hydrographs, descriptive terms like "slow"/ "fast" or "flashy"/ "inert" are frequently used, which are subjective, irreproducible and limited. This lack of objective and refined concepts limit approaches for regionalization of hydrogeological characteristics as well as our understanding of dominant processes controlling groundwater dynamics. Therefore, we propose a novel framework for groundwater hydrograph characterization in an attempt to categorize morphologies explicitly and quantitatively based on perceptual concepts of aspects of the dynamics. This quantitative framework is inspired by the existing and operational eco-hydrological classification frameworks for streamflow. The need for a new framework for groundwater systems is justified by the fundamental differences between the state variable groundwater head and the flow variable streamflow. Conceptually, we extracted exemplars of specific dynamic patterns, attributing descriptive terms for means of systematisation. Metrics, primarily taken from streamflow literature, were subsequently adapted to groundwater and assigned to the described patterns for means of quantification. In this study, we focused on the particularities of groundwater as a state variable. Furthermore, we investigated the descriptive skill of individual metrics as well as their usefulness for groundwater hydrographs. The ensemble of categorized metrics result in a framework, which can be used to describe and quantify groundwater dynamics. It is a promising tool for the setup of a successful similarity classification framework for groundwater hydrographs. However, the overabundance of metrics available calls for a systematic redundancy analysis of the metrics, which we describe in a second study (Heudorfer et al., 2017). Heudorfer, B., Haaf, E., Barthel, R., Stahl, K., 2017. A framework for quantification of groundwater dynamics - redundancy and transferability of hydro(geo-)logical metrics. EGU General Assembly 2017, Vienna, Austria.
Hydrological modelling in sandstone rocks watershed
NASA Astrophysics Data System (ADS)
Ponížilová, Iva; Unucka, Jan
2015-04-01
The contribution is focused on the modelling of surface and subsurface runoff in the Ploučnice basin. The used rainfall-runoff model is HEC-HMS comprising of the method of SCS CN curves and a recession method. The geological subsurface consisting of sandstone is characterised by reduced surface runoff and, on the contrary, it contributes to subsurface runoff. The aim of this paper is comparison of the rate of influence of sandstone on reducing surface runoff. The recession method for subsurface runoff was used to determine the subsurface runoff. The HEC-HMS model allows semi- and fully distributed approaches to schematisation of the watershed and rainfall situations. To determine the volume of runoff the method of SCS CN curves is used, which results depend on hydrological conditions of the soils. The rainfall-runoff model assuming selection of so-called methods of event of the SCS-CN type is used to determine the hydrograph and peak flow rate based on simulation of surface runoff in precipitation exceeding the infiltration capacity of the soil. The recession method is used to solve the baseflow (subsurface) runoff. The method is based on the separation of hydrograph to direct runoff and subsurface or baseflow runoff. The study area for the simulation of runoff using the method of SCS CN curves to determine the hydrological transformation is the Ploučnice basin. The Ploučnice is a hydrologically significant river in the northern part of the Czech Republic, it is a right tributary of the Elbe river with a total basin area of 1.194 km2. The average value of CN curves for the Ploučnice basin is 72. The geological structure of the Ploučnice basin is predominantly formed by Mesozoic sandstone. Despite significant initial loss of rainfall the basin response to the causal rainfall was demonstrated by a rapid rise of the surface runoff from the watershed and reached culmination flow. Basically, only surface runoff occures in the catchment during the initial phase of this extreme event. The increase of the baseflow runoff is slower and remains constant after reaching a certain level. The rise of the baseflow runoff is showed in a descending part of the hydrograph. The recession method in this case shows almost 20 hours delay. Results from the HEC-HMS prove availability of both methods for the runoff modeling in this type of catchment. When simulating extreme short-term rainfall-runoff episodes, the influence of geological subsurface is not significant, but it is manifested. Using more relevant rainfall events would bring more satisfactory results.
A statistical analysis of the daily streamflow hydrograph
NASA Astrophysics Data System (ADS)
Kavvas, M. L.; Delleur, J. W.
1984-03-01
In this study a periodic statistical analysis of daily streamflow data in Indiana, U.S.A., was performed to gain some new insight into the stochastic structure which describes the daily streamflow process. This analysis was performed by the periodic mean and covariance functions of the daily streamflows, by the time and peak discharge -dependent recession limb of the daily streamflow hydrograph, by the time and discharge exceedance level (DEL) -dependent probability distribution of the hydrograph peak interarrival time, and by the time-dependent probability distribution of the time to peak discharge. Some new statistical estimators were developed and used in this study. In general features, this study has shown that: (a) the persistence properties of daily flows depend on the storage state of the basin at the specified time origin of the flow process; (b) the daily streamflow process is time irreversible; (c) the probability distribution of the daily hydrograph peak interarrival time depends both on the occurrence time of the peak from which the inter-arrival time originates and on the discharge exceedance level; and (d) if the daily streamflow process is modeled as the release from a linear watershed storage, this release should depend on the state of the storage and on the time of the release as the persistence properties and the recession limb decay rates were observed to change with the state of the watershed storage and time. Therefore, a time-varying reservoir system needs to be considered if the daily streamflow process is to be modeled as the release from a linear watershed storage.
NASA Astrophysics Data System (ADS)
Rodriguez, J. M.; Gonzalez-Pola, C.; Lopez-Urrutia, A.; Nogueira, E.
2011-09-01
During summer, wind driven coastal upwelling dominates in the Central Cantabrian Sea (southern Bay of Biscay). Nevertheless, atmospheric forcing is highly variable and wind pulses may cause noticeable and fast hydrographic responses in the shelf region. In this paper, the composition and vertical distribution of the summer ichthyoplankton assemblage during the daytime at a fixed station, located on the Central Cantabrian Sea shelf, are documented. Also, the impact of a short-time scale hydrographic event on the abundance and structure of the larval fish assemblage is examined. Significant small-scale temporal hydrographic variability was observed. Currents showed changes in speed and direction and significant changes in thermocline depth were also observed. A total of 34 taxa of fish larvae were identified. Engraulis encrasicolus eggs and larvae of the shelf-dwelling species Trachurus trachurus, Capros aper and E. encrasicolus dominated the ichthyoplankton assemblage. The distribution of E. encrasicolus eggs and fish larvae was vertically structured. E. encrasicolus egg concentration increased exponentially towards the surface. Fish larvae showed a subsurface peak of concentration and their vertical distribution was not conditioned by thermocline depths. The short term hydrographic event did not affect the vertical distribution of fish larvae but it accounted for significant temporal changes in larval fish assemblage structure and abundance. Results suggest that temperature and light intensity are important factors in the vertical distribution of fish larvae. They also indicate that the temporal monitoring of the larval fish assemblage in this region requires multiple sampling sites.
NASA Astrophysics Data System (ADS)
Fleischmann, Ayan; Collischonn, Walter; Jardim, Pedro; Meyer, Aline; Paiva, Rodrigo
2017-04-01
The non-linear relationship between flood wave celerity (C) and discharge (Q) plays an important role on defining how flood waves are routed through the river network. The behavior of this curve is driven by cross section geometry, which leads to increasing celerity with discharge in rivers without floodplains. In reaches with floodplain storage, C may decrease after bankfull Q. Thus, in a set of studies we investigate the effects of C x Q relationships on the basin hydrological response. (i) We studied these curves for several Brazilian river reaches, and analyzed to which extent they are related to river channel geometry and other characteristics (e.g., slope, width, drainage area and sinuosity). (ii) It is shown through empirical, analytical and numerical experiments how C x Q relation affects hydrograph skewness, and how the decreasing relationship existent in rivers with important floodplain storage leads to negatively skewed hydrographs, such as in the Amazon and Pantanal regions, which could be used to infer important floodplain processes (e.g., presence of overbank flow wetlands, which feature negatively skewed hydrographs or interfluvial wetlands not directly connected to rivers). (iii) Finally, we found that it is possible to use these concepts to calibrate the effective bathymetry of a hydrodynamic model by fitting the C x Q relationship using SCE-UA optimization method. Our results show how important it is to investigate the non-linear hydraulic processes occurring throughout river basins to understand the overall hydrological response, and propose new frameworks to assist such studies, including the evaluation of hydrograph skewness and estimation of hydraulic geometry.
Hydrographic observations by instrumented marine mammals in the Sea of Okhotsk
NASA Astrophysics Data System (ADS)
Nakanowatari, Takuya; Ohshima, Kay I.; Mensah, Vigan; Mitani, Yoko; Hattori, Kaoru; Kobayashi, Mari; Roquet, Fabien; Sakurai, Yasunori; Mitsudera, Humio; Wakatsuchi, Masaaki
2017-09-01
The Sea of Okhotsk is a challenging environment for obtaining in situ data and satellite observation in winter due to sea ice cover. In this study, we evaluated the validity of hydrographic observations by marine mammals (e.g., seals and sea lions) equipped with oceanographic conductivity-temperature-depth (CTD) sensors. During 4-yr operations from 2011 to 2014, we obtained total of 997 temperature-salinity profiles in and around the Soya Strait, Iony Island, and Urup Strait. The hydrographic data were mainly obtained from May to August and the maximum profile depth in shelf regions almost reaches to the seafloor, while valuable hydrographic data under sea ice cover were also obtained. In strong thermoclines, the seal-derived data sometimes showed positive biases in salinity with spike-like signal. For these salinity biases, we applied a new thermal mass inertia correction scheme, effectively reducing spurious salinity biases in the seasonal thermocline. In the Soya Strait and the adjacent region, the detailed structure of the Soya Warm Current including the cold-water belt was well identified. Dense water up to 27.0σθ, which can be a potential source of Okhotsk Sea Intermediate Water, has flowed from the Soya Strait into the Sea of Okhotsk in mid-winter (February). In summer, around the Iony Island and Urup Strait, remarkable cold and saline waters are localized in the surface layers. These regions are also characterized by weak stratification, suggesting the occurrence of tidally induced vertical mixing. Thus, CTD-tag observations have a great potential in monitoring data-sparse regions in the Sea of Okhotsk.
A dimensionless approach for the runoff peak assessment: effects of the rainfall event structure
NASA Astrophysics Data System (ADS)
Gnecco, Ilaria; Palla, Anna; La Barbera, Paolo
2018-02-01
The present paper proposes a dimensionless analytical framework to investigate the impact of the rainfall event structure on the hydrograph peak. To this end a methodology to describe the rainfall event structure is proposed based on the similarity with the depth-duration-frequency (DDF) curves. The rainfall input consists of a constant hyetograph where all the possible outcomes in the sample space of the rainfall structures can be condensed. Soil abstractions are modelled using the Soil Conservation Service method and the instantaneous unit hydrograph theory is undertaken to determine the dimensionless form of the hydrograph; the two-parameter gamma distribution is selected to test the proposed methodology. The dimensionless approach is introduced in order to implement the analytical framework to any study case (i.e. natural catchment) for which the model assumptions are valid (i.e. linear causative and time-invariant system). A set of analytical expressions are derived in the case of a constant-intensity hyetograph to assess the maximum runoff peak with respect to a given rainfall event structure irrespective of the specific catchment (such as the return period associated with the reference rainfall event). Looking at the results, the curve of the maximum values of the runoff peak reveals a local minimum point corresponding to the design hyetograph derived according to the statistical DDF curve. A specific catchment application is discussed in order to point out the dimensionless procedure implications and to provide some numerical examples of the rainfall structures with respect to observed rainfall events; finally their effects on the hydrograph peak are examined.
Hydrograph variances over different timescales in hydropower production networks
NASA Astrophysics Data System (ADS)
Zmijewski, Nicholas; Wörman, Anders
2016-08-01
The operation of water reservoirs involves a spectrum of timescales based on the distribution of stream flow travel times between reservoirs, as well as the technical, environmental, and social constraints imposed on the operation. In this research, a hydrodynamically based description of the flow between hydropower stations was implemented to study the relative importance of wave diffusion on the spectrum of hydrograph variance in a regulated watershed. Using spectral decomposition of the effluence hydrograph of a watershed, an exact expression of the variance in the outflow response was derived, as a function of the trends of hydraulic and geomorphologic dispersion and management of production and reservoirs. We show that the power spectra of involved time-series follow nearly fractal patterns, which facilitates examination of the relative importance of wave diffusion and possible changes in production demand on the outflow spectrum. The exact spectral solution can also identify statistical bounds of future demand patterns due to limitations in storage capacity. The impact of the hydraulic description of the stream flow on the reservoir discharge was examined for a given power demand in River Dalälven, Sweden, as function of a stream flow Peclet number. The regulation of hydropower production on the River Dalälven generally increased the short-term variance in the effluence hydrograph, whereas wave diffusion decreased the short-term variance over periods of <1 week, depending on the Peclet number (Pe) of the stream reach. This implies that flow variance becomes more erratic (closer to white noise) as a result of current production objectives.
NASA Astrophysics Data System (ADS)
Lebedeva, Liudmila; Semenova, Olga
2013-04-01
One of widely claimed problems in modern modelling hydrology is lack of available information to investigate hydrological processes and improve their representation in the models. In spite of this, one hardly might confidently say that existing "traditional" data sources have been already fully analyzed and made use of. There existed the network of research watersheds in USSR called water-balance stations where comprehensive and extensive hydrometeorological measurements were conducted according to more or less single program during the last 40-60 years. The program (where not ceased) includes observations of discharges in several, often nested and homogeneous, small watersheds, meteorological elements, evaporation, soil temperature and moisture, snow depths, etc. The network covered different climatic and landscape zones and was established in the middle of the last century with the aim of investigation of the runoff formation in different conditions. Until recently the long-term observational data accompanied by descriptions and maps had existed only in hard copies. It partly explains why these datasets are not enough exploited yet and very rarely or even never were used for the purposes of hydrological modelling although they seem to be much more promising than implementation of the completely new measuring techniques not detracting from its importance. The goal of the presented work is development of a database of observational data and supportive materials from small research watersheds across the territory of the former Soviet Union. The first version of the database will include the following information for 12 water-balance stations across Russia, Ukraine, Kazahstan and Turkmenistan: daily values of discharges (one or several watersheds), air temperature, humidity, precipitation (one or several gauges), soil and snow state variables, soil and snow evaporation. The stations will cover desert and semi desert, steppe and forest steppe, forest, permafrost and mountainous zones. Supportive material will include maps of watershed boundaries and location of observational sites. Text descriptions of the data, measuring techniques and hydrometeorological conditions related to each of the water-balance station will accompany the datasets. The database is supposed to be expanded with time in number of the stations (by 20) and available data series for each of them. It will be uploaded to the internet with open access to everyone interested in. Such a database allows one to test hydrological models and separate modules for their adequacy and workability in different conditions and can serve as a base for models comparison and evaluation. Special profit of the database will gain models that don't rely on calibration but on the adequate process representation and use of the observable parameters. One of such models, process-based Hydrograph model, will be tested against the data from every watershed from the developed database. The aim of the Hydrograph model application to the as many as possible number of research data-rich watersheds in different climatic zones is both amending the algorithms and creation and adjustment of the model parameters that allow using the model across the geographic spectrum.
Lee, Hae-Lee; Kim, Sue-Hee; Ji, Dong-Beom; Kim, Yong-Jun
2009-09-01
The aim of this study was to compare the effects of spermatozoa separation techniques on sperm quality and in-vitro fertilization (IVF) results for cryopreserved bovine semen. Sephadex, glass wool and Percoll gradient separation techniques were used for sperm separation and sperm motility, morphology and membrane integrity were evaluated before and after separation. Also, cleavage and blastocyst developmental rate were investigated after IVF with sperm recovered by each separation technique. The motility of samples obtained by the three separation techniques were greater compared to the control samples (p < 0.05). The percentage of spermatozoa with intact plasma-membrane integrity, identified by 6-carboxyfluoresceindiacetate/ propidium iodide fluorescent staining and the hypo-osmotic swelling test, was highest in the glass wool filtration samples (p < 0.05). The cleavage and blastocyst rate of total oocytes produced from glass wool filtration samples were also higher than the control and Sephadex filtration samples (p < 0.05), but were not significantly different from Percoll separation samples. However, a significantly greater number of cleaved embryos produced by glass wool filtration developed to blastocyst stage than those produced by Percoll separation (p < 0.05). These results indicate that spermatozoa with good quality can be achieved by these three separation techniques and can be used for bovine IVF. In particular, it suggests that glass wool filtration would be the most effective method of the three for improving sperm quality and embryo production for cryopreserved bovine spermatozoa.
Stanislawski, Larry V.; Liu, Yan; Buttenfield, Barbara P.; Survila, Kornelijus; Wendel, Jeffrey; Okok, Abdurraouf
2016-01-01
The National Hydrography Dataset (NHD) for the United States furnishes a comprehensive set of vector features representing the surface-waters in the country (U.S. Geological Survey 2000). The high-resolution (HR) layer of the NHD is largely comprised of hydrographic features originally derived from 1:24,000-scale (24K) U.S. Topographic maps. However, in recent years (2009 to present) densified hydrographic feature content, from sources as large as 1:2,400, have been incorporated into some watersheds of the HR NHD within the conterminous United States to better support the needs of various local and state organizations. As such, the HR NHD is a multiresolution dataset with obvious data density variations because of scale changes. In addition, data density variations exist within the HR NHD that are particularly evident in the surface-water flow network (NHD flowlines) because of natural variations of local geographic conditions; and also because of unintentional compilation inconsistencies due to variations in data collection standards and climate conditions over the many years of 24K hydrographic data collection (US Geological Survey 1955).
Zhao, Longshan; Wu, Faqi
2015-01-01
In this study, a simple travel time-based runoff model was proposed to simulate a runoff hydrograph on soil surfaces with different microtopographies. Three main parameters, i.e., rainfall intensity (I), mean flow velocity (v m) and ponding time of depression (t p), were inputted into this model. The soil surface was divided into numerous grid cells, and the flow length of each grid cell (l i) was then calculated from a digital elevation model (DEM). The flow velocity in each grid cell (v i) was derived from the upstream flow accumulation area using v m. The total flow travel time through each grid cell to the surface outlet was the sum of the sum of flow travel times along the flow path (i.e., the sum of l i/v i) and t p. The runoff rate at the slope outlet for each respective travel time was estimated by finding the sum of the rain rate from all contributing cells for all time intervals. The results show positive agreement between the measured and predicted runoff hydrographs. PMID:26103635
Dietsch, Benjamin J.; Densmore, Brenda K.; Wilson, Richard C.
2014-01-01
Detailed hydrographic maps of Mekong, Tonlé Sap, and Bassac Rivers showing the riverbed elevations surveyed April 21–May 2, 2012, referenced to Ha Tien 1960 were produced. The surveyed area included a 2-km stretch of the Mekong River between the confluence with the Tonlé Sap and Bassac Rivers, and extended 4 km upstream and 3.6 km downstream from the 2,000-m confluence stretch of the Mekong River. In addition, 0.7 km of the Bassac River downstream and 3.5 km of the Tonlé Sap River (from the confluence to Chroy Changvar Bridge) upstream from their confluence with the Mekong River were surveyed. Riverbed features (such as dunes, shoals, and the effects of sediment mining, which were observed during data collection) are visible on the hydrographic maps. All surveys were completed at low annual water levels as referenced to nearby Mekong River Commission streamflow-gaging stations. Riverbed elevations surveyed ranged from 24.08 m below to 1.54 m above Ha Tien 1960.
Zhao, Longshan; Wu, Faqi
2015-01-01
In this study, a simple travel time-based runoff model was proposed to simulate a runoff hydrograph on soil surfaces with different microtopographies. Three main parameters, i.e., rainfall intensity (I), mean flow velocity (vm) and ponding time of depression (tp), were inputted into this model. The soil surface was divided into numerous grid cells, and the flow length of each grid cell (li) was then calculated from a digital elevation model (DEM). The flow velocity in each grid cell (vi) was derived from the upstream flow accumulation area using vm. The total flow travel time through each grid cell to the surface outlet was the sum of the sum of flow travel times along the flow path (i.e., the sum of li/vi) and tp. The runoff rate at the slope outlet for each respective travel time was estimated by finding the sum of the rain rate from all contributing cells for all time intervals. The results show positive agreement between the measured and predicted runoff hydrographs.
Trapp, Oliver
2010-02-12
Highly efficient and sophisticated separation techniques are available to analyze complex compound mixtures with superior sensitivities and selectivities often enhanced by a 2nd dimension, e.g. a separation technique or spectroscopic and spectrometric techniques. For enantioselective separations numerous chiral stationary phases (CSPs) exist to cover a broad range of chiral compounds. Despite these advances enantioselective separations can become very challenging for mixtures of stereolabile constitutional isomers, because the on-column interconversion can lead to completely overlapping peak profiles. Typically, multidimensional separation techniques, e.g. multidimensional GC (MDGC), using an achiral 1st separation dimension and transferring selected analytes to a chiral 2nd separation are the method of choice to approach such problems. However, this procedure is very time consuming and only predefined sections of peaks can be transferred by column switching to the second dimension. Here we demonstrate for stereolabile 1,2-dialkylated diaziridines a technique to experimentally deconvolute overlapping gas chromatographic elution profiles of constitutional isomers based on multiple-reaction-monitoring MS (MRM-MS). The here presented technique takes advantage of different fragmentation probabilities and pathways to isolate the elution profile of configurational isomers. Copyright 2009 Elsevier B.V. All rights reserved.
Abd Aziz, Mohd Aizudin; Md Isa, Khairuddin; Ab Rashid, Radzuwan
2017-06-01
This article aims to provide insights into the factors that contribute to the separation efficiency of solid particles. In this study, a pneumatic jigging technique was used to assess the separation of solid waste materials that consisted of copper, glass and rubber insulator. Several initial experiments were carried out to evaluate the strengths and limitations of the technique. It is found that despite some limitations of the technique, all the samples prepared for the experiments were successfully separated. The follow-up experiments were then carried out to further assess the separation of copper wire and rubber insulator. The effects of air flow and pulse rates on the separation process were examined. The data for these follow-up experiments were analysed using a sink float analysis technique. The analysis shows that the air flow rate was very important in determining the separation efficiency. However, the separation efficiency may be influenced by the type of materials used.
Effective separation technique for small diameter whiskers.
NASA Technical Reports Server (NTRS)
Westfall, L. J.
1972-01-01
Description of a technique for separating small-diameter whiskers from the as-grown matt by gently agitating the whisker matts in a solution of deionized or distilled water for six to eight hours. High-strength Al2O3 whiskers were effectively separated by this technique, comprising an average 48% of the original weight of the whisker matt. According to estimation, more than 90% of separated whiskers had diameters between 0.7 and 2.0 microns.
New diagnostic technique for the study of turbulent boundary-layer separation
NASA Technical Reports Server (NTRS)
Horstman, C. C.; Owen, F. K.
1974-01-01
Description of a diagnostic technique for determining the unsteady character of turbulent boundary-layer separation. The technique uses thin platinum films mounted flush with the model surface. Voltages from these films provide measurements related to the flow character above the film. For illustration, results obtained by this technique are presented for the interaction of a hypersonic shock wave and a turbulent boundary layer, with and without separation.
Nelson, Jonathan M.; Shimizu, Yasuyuki; Giri, Sanjay; McDonald, Richard R.
2010-01-01
Uncertainties in flood stage prediction and bed evolution in rivers are frequently associated with the evolution of bedforms over a hydrograph. For the case of flood prediction, the evolution of the bedforms may alter the effective bed roughness, so predictions of stage and velocity based on assuming bedforms retain the same size and shape over a hydrograph will be incorrect. These same effects will produce errors in the prediction of the sediment transport and bed evolution, but in this latter case the errors are typically larger, as even small errors in the prediction of bedform form drag can make very large errors in predicting the rates of sediment motion and the associated erosion and deposition. In situations where flows change slowly, it may be possible to use empirical results that relate bedform morphology to roughness and effective form drag to avoid these errors; but in many cases where the bedforms evolve rapidly and are in disequilibrium with the instantaneous flow, these empirical methods cannot be accurately applied. Over the past few years, computational models for bedform development, migration, and adjustment to varying flows have been developed and tested with a variety of laboratory and field data. These models, which are based on detailed multidimensional flow modeling incorporating large eddy simulation, appear to be capable of predicting bedform dimensions during steady flows as well as their time dependence during discharge variations. In the work presented here, models of this type are used to investigate the impacts of bedform on stage and bed evolution in rivers during flood hydrographs. The method is shown to reproduce hysteresis in rating curves as well as other more subtle effects in the shape of flood waves. Techniques for combining the bedform evolution models with larger-scale models for river reach flow, sediment transport, and bed evolution are described and used to show the importance of including dynamic bedform effects in river modeling. For example calculations for a flood on the Kootenai River, errors of almost 1m in predicted stage and errors of about a factor of two in the predicted maximum depths of erosion can be attributed to bedform evolution. Thus, treating bedforms explicitly in flood and bed evolution models can decrease uncertainty and increase the accuracy of predictions.
Comparison of Shallow Survey 2012 Multibeam Datasets
NASA Astrophysics Data System (ADS)
Ramirez, T. M.
2012-12-01
The purpose of the Shallow Survey common dataset is a comparison of the different technologies utilized for data acquisition in the shallow survey marine environment. The common dataset consists of a series of surveys conducted over a common area of seabed using a variety of systems. It provides equipment manufacturers the opportunity to showcase their latest systems while giving hydrographic researchers and scientists a chance to test their latest algorithms on the dataset so that rigorous comparisons can be made. Five companies collected data for the Common Dataset in the Wellington Harbor area in New Zealand between May 2010 and May 2011; including Kongsberg, Reson, R2Sonic, GeoAcoustics, and Applied Acoustics. The Wellington harbor and surrounding coastal area was selected since it has a number of well-defined features, including the HMNZS South Seas and HMNZS Wellington wrecks, an armored seawall constructed of Tetrapods and Akmons, aquifers, wharves and marinas. The seabed inside the harbor basin is largely fine-grained sediment, with gravel and reefs around the coast. The area outside the harbor on the southern coast is an active environment, with moving sand and exposed reefs. A marine reserve is also in this area. For consistency between datasets, the coastal research vessel R/V Ikatere and crew were used for all surveys conducted for the common dataset. Using Triton's Perspective processing software multibeam datasets collected for the Shallow Survey were processed for detail analysis. Datasets from each sonar manufacturer were processed using the CUBE algorithm developed by the Center for Coastal and Ocean Mapping/Joint Hydrographic Center (CCOM/JHC). Each dataset was gridded at 0.5 and 1.0 meter resolutions for cross comparison and compliance with International Hydrographic Organization (IHO) requirements. Detailed comparisons were made of equipment specifications (transmit frequency, number of beams, beam width), data density, total uncertainty, and IHO compliance. Results from an initial analysis indicate that more factors need to be considered to properly compare sonar quality from processed results than just utilizing the same vessel with the same vessel configuration. Survey techniques such as focusing the beams over a narrower beam width can greatly increase data quality. While each sonar manufacturer was required to meet Special Order IHO specifications, line spacing was not specified and allowed for a greater data density despite equipment specification.
Outlaw, G.S.; Butner, D.E.; Kemp, R.L.; Oaks, A.T.; Adams, G.S.
1992-01-01
Rainfall, stage, and streamflow data in the Murfreesboro area, Middle Tennessee, were collected from March 1989 through July 1992 from a network of 68 gaging stations. The network consists of 10 tipping-bucket rain gages, 2 continuous-record streamflow gages, 4 partial-record flood hydrograph gages, and 72 crest-stage gages. Data collected by the gages includes 5minute time-step rainfall hyetographs, 15-minute time-step flood hydrographs, and peak-stage elevations. Data are stored in a computer data base and are available for many computer modeling and engineering applications.
Disentangling nutrient concentrations trends in transfer pathways of agricultural watersheds
NASA Astrophysics Data System (ADS)
Mellander, P. E.; Jordan, P.
2017-12-01
Targeted schemes designed to attenuate agricultural pollution to water are needed to reach goals of sustainable food production. Such approaches require insight into temporal and spatial variability in the most representative flows and active pollution transfer pathways. Interpreting changes in total stream flow can be misleading since some changes may only be apparent in specific pathways. The aim of this study was to investigate changing land use pressures on water quality. The objectives were to assess intra-annual and inter-annual changes in phosphorus (P) and nitrogen (N) concentrations and loads in apportioned pathways. Pathways were separated using hydrograph and loadograph separation techniques on a seven-year dataset of sub-hourly river discharge and concentrations of NO3-N, reactive P and total P in two intensively managed agricultural watersheds of contrasting hydrology in Ireland. Active transfer pathways were dictated by soil drainage. There were intra-annual variability in both P and N concentrations in different pathways and loads, and these had the largest influence of all-year baseflow (BF) concentrations and summer quickflow (QF) concentrations. Nutrient loss responded to seasonality in the river discharge in all pathways in both watersheds and was mostly transport limited. In both watersheds there were inter-annual trends in P concentration in some pathways and seasons that did not correspond to the trend of total river P concentration. The response in stream water quality to management, mitigation measures and changes in weather may be hidden by counteracting responses in different pathways. The hydrology had a major impact on seasonal changes in N and P loss. By apportioning different transfer pathways more information on the temporal and site-specific nature of nutrient transfer was provided. BF and QF pathways largely contributed to the river P concentrations in summer while all pathways contributed to the P and N loads in wintertime. The data indicated that increasing trends in river P concentrations were mostly linked to trends in BF concentration in both catchment types. This may be explained by increased point source influence, increased vertical transfer through increased soil P loading, or decreased stream bed attenuation. Each will require different policy considerations.
Simulating Glacial Outburst Lake Releases for Suicide Basin, Mendenhall Glacier, Juneau, Alaska
NASA Astrophysics Data System (ADS)
Jacobs, A. B.; Moran, T.; Hood, E. W.
2017-12-01
Glacial Lake outbursts from Suicide Basin are recent phenomenon first characterized in 2011. The 2014 event resulted in record river stage and moderate flooding on the Mendenhall River in Juneau. Recognizing that these events can adversely impact residential areas of Juneau's Mendenhall Valley, the Alaska-Pacific River Forecast Center developed a real-time modeling technique capable of forecasting the timing and magnitude of the flood-wave crest due to releases from Suicide Basin. The 2014 event was estimated at about 37,000 acre feet with water levels cresting within 36 hours from the time the flood wave hit Mendenhall Lake. Given the magnitude of possible impacts to the public, accurate hydrological forecasting is essential for public safety and Emergency Managers. However, the data needed to effectively forecast magnitudes of specific jökulhlaup events are limited. Estimating this event as related to river stage depended upon three variables: 1) the timing of the lag between Suicide Basin water level declines and the related rise of Mendenhall Lake, 2) continuous monitoring of Mendenhall Lake water levels, and 3) estimating the total water volume stored in Suicide Basin. Real-time modeling of the event utilized a Time of Concentration hydrograph with independent power equations representing the rising and falling limbs of the hydrograph. The initial accuracy of the model — as forecasted about 24 hours prior to crest — resulted in an estimated crest within 0.5 feet of the actual with a timing error of about six hours later than the actual crest.
HydroSHEDS: A global comprehensive hydrographic dataset
NASA Astrophysics Data System (ADS)
Wickel, B. A.; Lehner, B.; Sindorf, N.
2007-12-01
The Hydrological data and maps based on SHuttle Elevation Derivatives at multiple Scales (HydroSHEDS) is an innovative product that, for the first time, provides hydrographic information in a consistent and comprehensive format for regional and global-scale applications. HydroSHEDS offers a suite of geo-referenced data sets, including stream networks, watershed boundaries, drainage directions, and ancillary data layers such as flow accumulations, distances, and river topology information. The goal of developing HydroSHEDS was to generate key data layers to support regional and global watershed analyses, hydrological modeling, and freshwater conservation planning at a quality, resolution and extent that had previously been unachievable. Available resolutions range from 3 arc-second (approx. 90 meters at the equator) to 5 minute (approx. 10 km at the equator) with seamless near-global extent. HydroSHEDS is derived from elevation data of the Shuttle Radar Topography Mission (SRTM) at 3 arc-second resolution. The original SRTM data have been hydrologically conditioned using a sequence of automated procedures. Existing methods of data improvement and newly developed algorithms have been applied, including void filling, filtering, stream burning, and upscaling techniques. Manual corrections were made where necessary. Preliminary quality assessments indicate that the accuracy of HydroSHEDS significantly exceeds that of existing global watershed and river maps. HydroSHEDS was developed by the Conservation Science Program of the World Wildlife Fund (WWF) in partnership with the U.S. Geological Survey (USGS), the International Centre for Tropical Agriculture (CIAT), The Nature Conservancy (TNC), and the Center for Environmental Systems Research (CESR) of the University of Kassel, Germany.
Rhea, Lee; Jarnagin, Taylor; Hogan, Dianna; Loperfido, J. V.; Shuster, William
2015-01-01
Understanding the efficacy of revised watershed management methods is important to mitigating the impacts of urbanization on streamflow. We evaluated the influence of land use change, primarily as urbanization, and stormwater control measures on the relationship between precipitation and stream discharge over an 8-year period for five catchments near Clarksburg, Montgomery County, Maryland, USA. A unit-hydrograph model based on a temporal transfer function was employed to account for and standardize temporal variation in rainfall pattern, and properly apportion rainfall to streamflow at different time lags. From these lagged relationships, we quantified a correction to the precipitation time series to achieve a hydrograph that showed good agreement between precipitation and discharge records. Positive corrections appeared to include precipitation events that were of limited areal extent and therefore not captured by our rain gages. Negative corrections were analysed for potential causal relationships. We used mixed-model statistical techniques to isolate different sources of variance as drivers that mediate the rainfall–runoff dynamic before and after management. Seasonal periodicity mediated rainfall–runoff relationships, and land uses (i.e. agriculture, natural lands, wetlands and stormwater control measures) were statistically significant predictors of precipitation apportionment to stream discharge. Our approach is one way to evaluate actual effectiveness of management efforts in the face of complicating circumstances and could be paired with cost data to understand economic efficiency or life cycle aspects of watershed management. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.
Bohman, L.R.
1984-01-01
A study to determine the impact of two alternative construction plans for proposed interchange between the existing Interstate Highway 26 and Interstate Highway 526 in the Filbin Creek drainage basin near North Charleston, South Carolina was performed by the U.S. Geological Survey, in cooperation with the South Carolina Department of Highways and Public Transportation. A computerized reservoir routing technique was used to route synthetic flood hydrographs through the basin system. Simulation results indicate that the new roadway will cause little or no change in water-surface elevations downstream of Interstate Highway 26. Upstream of Interstate Highway 26, approximately 0.5 foot of backwater will be created by either alternative during a 100-year flood as a result of the Interstate Highway 526 embankments and structures. (USGS)
3D SPH numerical simulation of the wave generated by the Vajont rockslide
NASA Astrophysics Data System (ADS)
Vacondio, R.; Mignosa, P.; Pagani, S.
2013-09-01
A 3D numerical modeling of the wave generated by the Vajont slide, one of the most destructive ever occurred, is presented in this paper. A meshless Lagrangian Smoothed Particle Hydrodynamics (SPH) technique was adopted to simulate the highly fragmented violent flow generated by the falling slide in the artificial reservoir. The speed-up achievable via General Purpose Graphic Processing Units (GP-GPU) allowed to adopt the adequate resolution to describe the phenomenon. The comparison with the data available in literature showed that the results of the numerical simulation reproduce satisfactorily the maximum run-up, also the water surface elevation in the residual lake after the event. Moreover, the 3D velocity field of the flow during the event and the discharge hydrograph which overtopped the dam, were obtained.
Chromatographic Techniques for Rare Earth Elements Analysis
NASA Astrophysics Data System (ADS)
Chen, Beibei; He, Man; Zhang, Huashan; Jiang, Zucheng; Hu, Bin
2017-04-01
The present capability of rare earth element (REE) analysis has been achieved by the development of two instrumental techniques. The efficiency of spectroscopic methods was extraordinarily improved for the detection and determination of REE traces in various materials. On the other hand, the determination of REEs very often depends on the preconcentration and separation of REEs, and chromatographic techniques are very powerful tools for the separation of REEs. By coupling with sensitive detectors, many ambitious analytical tasks can be fulfilled. Liquid chromatography is the most widely used technique. Different combinations of stationary phases and mobile phases could be used in ion exchange chromatography, ion chromatography, ion-pair reverse-phase chromatography and some other techniques. The application of gas chromatography is limited because only volatile compounds of REEs can be separated. Thin-layer and paper chromatography are techniques that cannot be directly coupled with suitable detectors, which limit their applications. For special demands, separations can be performed by capillary electrophoresis, which has very high separation efficiency.
NASA Astrophysics Data System (ADS)
Ascott, M.; Bloomfield, J.; Macdonald, D.; Marchant, B.; McKenzie, A.
2017-12-01
The Cretaceous Chalk, the most important aquifer in the United Kingdom (UK) for public water supply, underlies many large cities in southern and eastern England including parts of London, however, it is prone to groundwater flooding. We have developed a new approach to analyse the spatio-temporal extent of groundwater flooding using statistical analysis of groundwater level hydrographs and impulse response functions (IRFs) applied to a major Chalk groundwater flooding event in the UK during winter 2013/14. Using monthly groundwater levels for 26 boreholes in the Chalk and a new standardised index for groundwater flooding, we have: estimated standardised series; grouped them using k-means cluster analysis; and, cross-correlated the cluster centroids with the Standardised Precipitation Index accumulated over time intervals between 1 and 60 months. This analysis reveals two spatially coherent groups of standardised hydrographs which respond to precipitation over different timescales. We estimate IRF models of the groundwater level response to effective precipitation for three boreholes in each group. The IRF models support the SPI analysis showing different response functions between the two groups. If we apply identical effective precipitation inputs to each of the IRF models we see differences between the hydrographs from each group. It is proposed that these differences are due to the intrinsic, hydrogeological properties of the Chalk and of overlying relatively low permeability superficial deposits. Consequently, it is concluded that the overarching controls on groundwater flood response are a complex combination of antecedent conditions, rainfall and catchment hydrogeological properties. These controls should be taken into consideration when anticipating and managing future groundwater flood events.
Recent advances in microparticle continuous separation.
Kersaudy-Kerhoas, M; Dhariwal, R; Desmulliez, M P Y
2008-03-01
Recent advances in microparticle separation in continuous flow are presented. It is intended for scientists in the field of separation science in biology, chemistry and microsystems engineering. Recent techniques of micron-sized particle separation within microsystems are described with emphasis on five different categories: optical, magnetic, fluidic-only, electrical and minor separation methods. Examples from the growing literature are explained with insights on separation efficiency and microengineering challenges. Current applications of the techniques are discussed.
Floating-point scaling technique for sources separation automatic gain control
NASA Astrophysics Data System (ADS)
Fermas, A.; Belouchrani, A.; Ait-Mohamed, O.
2012-07-01
Based on the floating-point representation and taking advantage of scaling factor indetermination in blind source separation (BSS) processing, we propose a scaling technique applied to the separation matrix, to avoid the saturation or the weakness in the recovered source signals. This technique performs an automatic gain control in an on-line BSS environment. We demonstrate the effectiveness of this technique by using the implementation of a division-free BSS algorithm with two inputs, two outputs. The proposed technique is computationally cheaper and efficient for a hardware implementation compared to the Euclidean normalisation.
Zuckerman, Scott L; Laufer, Ilya; Sahgal, Arjun; Yamada, Yoshiya J; Schmidt, Meic H; Chou, Dean; Shin, John H; Kumar, Naresh; Sciubba, Daniel M
2016-10-15
Systematic review. The aim of this study was to review the techniques, indications, and outcomes of minimally invasive surgery (MIS) and separation surgery with subsequent radiosurgery in the treatment of patients with metastatic spine disease. The utilization of MIS techniques in patients with spine metastases is a growing area within spinal oncology. Separation surgery represents a novel paradigm where radiosurgery provides long-term control after tumor is surgically separated from the neural elements. PubMed, Embase, and CINAHL databases were systematically queried for literature reporting MIS techniques or separation surgery in patients with metastatic spine disease. PRISMA guidelines were followed. Of the initial 983 articles found, 29 met inclusion criteria. Twenty-five articles discussed MIS techniques and were grouped according to the primary objective: percutaneous stabilization (8), tubular retractors (4), mini-open approach (8), and thoracoscopy/endoscopy (5). The remaining 4 studies reported separation surgery. Indications were similar across all studies and included patients with instability, refractory pain, or neurologic compromise. Intraoperative variables, outcomes, and complications were similar in MIS studies compared to traditional approaches, and some MIS studies showed a statistically significant improvement in outcomes. Studies of mini-open techniques had the strongest evidence for superiority. Low-quality evidence currently exists for MIS techniques and separation surgery in the treatment of metastatic spine disease. Given the early promising results, the next iteration of research should include higher-quality studies with sufficient power, and will be able to provide higher-level evidence on the outcomes of MIS approaches and separation surgery. N/A.
Capillary electrophoresis of inorganic anions.
Kaniansky, D; Masár, M; Marák, J; Bodor, R
1999-02-26
This review deals with the separation mechanisms applied to the separation of inorganic anions by capillary electrophoresis (CE) techniques. It covers various CE techniques that are suitable for the separation and/or determination of inorganic anions in various matrices, including capillary zone electrophoresis, micellar electrokinetic chromatography, electrochromatography and capillary isotachophoresis. Detection and sample preparation techniques used in CE separations are also reviewed. An extensive part of this review deals with applications of CE techniques in various fields (environmental, food and plant materials, biological and biomedical, technical materials and industrial processes). Attention is paid to speciations of anions of arsenic, selenium, chromium, phosphorus, sulfur and halogen elements by CE.
Export of nutrients and major ionic solutes from a rain forest catchment in the Central Amazon Basin
NASA Astrophysics Data System (ADS)
Lesack, Lance F. W.
1993-03-01
The relative roles of base flow runoff versus storm flow runoff versus subsurface outflow in controlling total export of solutes from a 23.4-ha catchment of undisturbed rain forest in the central Amazon Basin were evaluated from water and solute flux measurements performed over a 1 year period. Solutes exported via 173 storms during the study were estimated from stream water samples collected during base flow conditions and during eight storms, and by utilizing a hydrograph separation technique in combination with a mixing model to partition storm flow from base flow fluxes. Solutes exported by subsurface outflow were estimated from groundwater samples from three nests of piezometers installed into the streambed, and concurrent measurements of hydraulic conductivity and hydraulic head gradients. Base flow discharge represented 92% of water outflow from the basin and was the dominant pathway of solute export. Although storm flow discharge represented only 5% of total water outflow, storm flow solute fluxes represented up to 25% of the total annual export flux, though for many solutes the portion was less. Subsurface outflow represented only 2.5% of total water outflow, and subsurface solute fluxes never represented more than 5% of the total annual export flux. Measurement errors were relatively high for storm flow and subsurface outflow fluxes, but cumulative measurement errors associated with the total solute fluxes exported from the catchment, in most cases, ranged from only ±7% to 14% because base flow fluxes were measured relatively well. The export fluxes of most solutes are substantially less than previously reported for comparable small catchments in the Amazon basin, and these differences cannot be reconciled by the fact that storm flow and subsurface outflows were not appropriately measured in previous studies.
Brahimi, Amina; Tarai, Nacer; Benhassane, Abdelkrim; Henrard, Arnaud; Libois, Roland
2016-02-01
Climatic variations during the Quaternary period had a considerable impact on landscapes and habitat fragmentation (rivers) in North Africa. These historical events can have significant consequences on the genetic structure of the populations. Indeed, geographically separated and genetically isolated populations tend to differentiate themselves through time, eventually becoming distinct lineages, allowing new species to emerge in later generations. The aim of the present study is to use genetic and morphological techniques to evaluate the major role of the Saalian glaciation (Middle Quaternary) in the establishment of the geographic space and in the evolution of the intraspecific genetic diversity, by tracing the demographic history of barbels belonging to the Luciobarbus pallaryi (Cyprinidae) species in the Guir Basin (Algeria). In this context, two populations, from two distinct and isolated sites, were studied. Analysis of the cytochrome b (cyt b) mitochondrial markers and of the "D-loop" control region has shown that the "upstream" and "downstream" Guir populations are genetically differentiated. The molecular analyses suggest that the upstream population was disconnected from this hydrographic system during the Saalian glaciation period of the Quaternary. Subsequently, it was isolated in the foggaras underground waters in the Great Western Erg, at approximately 320 000 years BP, creating, through a bottleneck effect, a new allopatric lineage referred to as "Adrar". Conversely, the high genetic diversity in the upstream Guir (Bechar) population suggests that the stock is globally in expansion. These barbels (n=52) were also examined with meristic, morphometric, osteological, and biological features. These data also reveal a complete discrimination between the two populations, with a remarkable and distinctive behavioural adaptation for the Adrar specimens: neoteny. Copyright © 2016 Académie des sciences. Published by Elsevier SAS. All rights reserved.
Miller, C.V.; Foster, G.D.; Majedi, B.F.
2003-01-01
Annual yields (fluxes per unit area) of Al, Mn, Fe, Ni, Cd, Pb, Zn, Cu, Cr, Co, As and Se were estimated for two small non-tidal stream catchments on the Eastern Shore of the Chesapeake Bay, United States - a poorly drained dissected-upland watershed in the Nanticoke River Basin, and a well-drained feeder tributary in the lower reaches of the Chester River Basin. Both watersheds are dominated by agriculture. A hydrograph-separation technique was used to determine the baseflow and stormflow components of metal yields, thus providing important insights into the effects of hydrology and climate on the transport of metals. Concentrations of suspended-sediment were used as a less-costly proxy of metal concentrations which are generally associated with particles. Results were compared to other studies in Chesapeake Bay and to general trends in metal concentrations across the United States. The study documented a larger than background yield of Zn and Co from the upper Nanticoke River Basin and possibly enriched concentrations of As, Cd and Se from both the upper Nanticoke River and the Chesterville Branch (a tributary of the lower Chester River). The annual yield of total Zn from the Nanticoke River Basin in 1998 was 18,000 g/km2/a, and was two to three times higher than yields reported from comparable river basins in the region. Concentrations of Cd also were high in both basins when compared to crustal concentrations and to other national data, but were within reasonable agreement with other Chesapeake Bay studies. Thus, Cd may be enriched locally either in natural materials or from agriculture.
Song, Hyung Keun; Yoo, Je Hyun; Byun, Young Soo; Yang, Kyu Hyun
2014-05-01
Among patients over 50 years of age, separate vertical wiring alone may be insufficient for fixation of fractures of the inferior pole of the patella. Therefore, mechanical and clinical studies were performed in patients over the age of 50 to test the strength of augmentation of separate vertical wiring with cerclage wire (i.e., combined technique). Multiple osteotomies were performed to create four-part fractures in the inferior poles of eight pairs of cadaveric patellae. One patella from each pair was fixed with the separate wiring technique, while the other patella was fixed with a combined technique. The ultimate load to failure and stiffness of the fixation were subsequently measured. In a clinical study of 21 patients (average age of 64 years), comminuted fractures of the inferior pole of the patellae were treated using the combined technique. Operative parameters were recorded from which post-operative outcomes were evaluated. For cadaveric patellae, whose mean age was 69 years, the mean ultimate loads to failure for the separate vertical wiring technique and the combined technique were 216.4±72.4 N and 324.9±50.6 N, respectively (p=0.012). The mean stiffness for the separate vertical wiring technique and the combined technique was 241.1±68.5 N/mm and 340.8±45.3 N/mm, respectively (p=0.012). In the clinical study, the mean clinical score at final follow-up was 28.1 points. Augmentation of separate vertical wiring with cerclage wire provides enough strength for protected early exercise of the knee joint and uneventful healing.
Integrality and separability of multitouch interaction techniques in 3D manipulation tasks.
Martinet, Anthony; Casiez, Géry; Grisoni, Laurent
2012-03-01
Multitouch displays represent a promising technology for the display and manipulation of data. While the manipulation of 2D data has been widely explored, 3D manipulation with multitouch displays remains largely unexplored. Based on an analysis of the integration and separation of degrees of freedom, we propose a taxonomy for 3D manipulation techniques with multitouch displays. Using that taxonomy, we introduce Depth-Separated Screen-Space (DS3), a new 3D manipulation technique based on the separation of translation and rotation. In a controlled experiment, we compared DS3 with Sticky Tools and Screen-Space. Results show that separating the control of translation and rotation significantly affects performance for 3D manipulation, with DS3 performing faster than the two other techniques.
1987-01-01
0- 67°30"S aa S..we1 Rocks HYDROGRAPHIC OFFICE DETACHED SURVEY UNIT APPROACHES TO MAWSON FEBRUARY 1967 Welch I$Lwl 1 25000 1 10000 PLATE XVII / J 0 0i...AD-A19S 765 REPOROF THE HYJRGJAPHIC ’ERICE AOYAl AUSTRALIAN 1/1 NAIJ H N ( VAL A SgALIAN NYY NY NO ElAR1989 DA- t_ u rADE ~, j 111.0IIW~=~ ’ W 22 Z.1...Services Chart Production and Maintenance In Chart Distribution II Records and Libra. .............. .. . ......... . I S u rv e y S u p p o r t
NASA Astrophysics Data System (ADS)
Owen, Gareth; Quinn, Paul; O'Donnell, Greg
2014-05-01
This paper explains how flood management projects might be better informed in the future by using more observations and a novel impact modelling tool in a simple transparent framework. The understanding of how local scale impacts propagate downstream to impact on the downstream hydrograph is difficult to determine using traditional rainfall runoff and hydraulic routing methods. The traditional approach to modelling essentially comprises selecting a fixed model structure and then calibrating to an observational hydrograph, which make those model predictions highly uncertain. Here, a novel approach is used in which the structure of the runoff generation is not specified a priori and incorporates expert knowledge. Rather than using externally for calibration, the observed outlet hydrographs are used directly within the model. Essentially the approach involves the disaggregation of the outlet hydrograph by making assumptions about the spatial distribution of runoff generated. The channel network is parameterised through a comparison of the timing of observed hydrographs at a number of nested locations within the catchment. The user is then encouraged to use their expert knowledge to define how runoff is generated locally and what the likely impact of any local mitigation is. Therefore the user can specify any hydrological model or flow estimation method that captures their expertise. Equally, the user is encouraged to install as many instruments as they can afford to cover the catchment network. A Decision Support Matrix (DSM) is used to encapsulate knowledge of the runoff dynamics gained from simulation in a simple visual way and hence to convey the likely impacts that arise from a given flood management scenario. This tool has been designed primarily to inform and educate landowners, catchment managers and decision makers. The DSM outlines scenarios that are likely to increase or decrease runoff rates and allows the user to contemplate the implications and uncertainty of their decisions. The tool can also be used to map the likely changes in flood peak due to land use management options. An example case study will be shown for a 35km2 catchment in Northern England which is prone to flooding. The method encourages end users to instrument and quantify their own catchment network and to make informed, evidence based decisions appropriate to their own flooding problems.
Variable parameter McCarthy-Muskingum routing method considering lateral flow
NASA Astrophysics Data System (ADS)
Yadav, Basant; Perumal, Muthiah; Bardossy, Andras
2015-04-01
The fully mass conservative variable parameter McCarthy-Muskingum (VPMM) method recently proposed by Perumal and Price (2013) for routing floods in channels and rivers without considering lateral flow is extended herein for accounting uniformly distributed lateral flow contribution along the reach. The proposed procedure is applied for studying flood wave movement in a 24.2 km river stretch between Rottweil and Oberndorf gauging stations of Neckar River in Germany wherein significant lateral flow contribution by intermediate catchment rainfall prevails during flood wave movement. The geometrical elements of the cross-sectional information of the considered routing river stretch without considering lateral flow are estimated using the Robust Parameter Estimation (ROPE) algorithm that allows for arriving at the best performing set of bed width and side slope of a trapezoidal section. The performance of the VPMM method is evaluated using the Nash-Sutcliffe model efficiency criterion as the objective function to be maximized using the ROPE algorithm. The twenty-seven flood events in the calibration set are considered to identify the relationship between 'total rainfall' and 'total losses' as well as to optimize the geometric characteristics of the prismatic channel (width and slope of the trapezoidal section). Based on this analysis, a relationship between total rainfall and total loss of the intermediate catchment is obtained and then used to estimate the lateral flow in the reach. Assuming the lateral flow hydrograph is of the form of inflow hydrograph and using the total intervening catchment runoff estimated from the relationship, the uniformly distributed lateral flow rate qL at any instant of time is estimated for its use in the VPMM routing method. All the 27 flood events are simulated using this routing approach considering lateral flow along the reach. Many of these simulations are able to simulate the observed hydrographs very closely. The proposed approach of accounting lateral flow using the VPMM method is independently verified by routing flood hydrograph of 6 flood events which are not used in the total rainfall vs total loss relationship established for the intervening catchment of the studied river reach. Close reproduction of the outflow hydrographs of these independent events using the proposed VPMM method accounting for lateral flow demonstrate the practical utility of the method.
Analysis of transitional separation bubbles on infinite swept wings
NASA Technical Reports Server (NTRS)
Davis, R. L.; Carter, J. E.
1986-01-01
A previously developed two-dimensional local inviscid-viscous interaction technique for the analysis of airfoil transitional separation bubbles, ALESEP (Airfoil Leading Edge Separation), has been extended for the calculation of transitional separation bubbles over infinite swept wings. As part of this effort, Roberts' empirical correlation, which is interpreted as a separated flow empirical extension of Mack's stability theory for attached flows, has been incorporated into the ALESEP procedure for the prediction of the transition location within the separation bubble. In addition, the viscous procedure used in the ALESEP techniques has been modified to allow for wall suction. A series of two-dimensional calculations is presented as a verification of the prediction capability of the interaction techniques with the Roberts' transition model. Numerical tests have shown that this two-dimensional natural transition correlation may also be applied to transitional separation bubbles over infinite swept wings. Results of the interaction procedure are compared with Horton's detailed experimental data for separated flow over a swept plate which demonstrates the accuracy of the present technique. Wall suction has been applied to a similar interaction calculation to demonstrate its effect on the separation bubble. The principal conclusion of this paper is that the prediction of transitional separation bubbles over two-dimensional or infinite swept geometries is now possible using the present interacting boundary layer approach.
Hydrographic data from R/V endeavor cruise #90
NASA Technical Reports Server (NTRS)
Stalcup, M. D.; Joyce, T. M.; Barbour, R. L.; Dunworth, J. A.
1986-01-01
The final cruise of the NSF sponsored Warm Core Rings Program studied a Warm Core Ring (WCR) in the Fall of 1982 as it formed from a large northward meander of the Gulf Stream. This ring, known as 82-H or the eighth ring identified in 1982, formed over the New England Seamounts near 39.5 deg N, 65 deg W. Surveys using Expendable Bathythermographs, Conductivity-Temperature-Depth-Oxygen stations and Doppler Current Profiling provide a look at the genesis of a WCR. These measurements reveal that WCR 82-H separated from the Gulf Stream sometime between October 2-5. This ring was a typical WCR with a diameter of about 200 km and speeds in the high velocity core of the 175 cm/sec. Satellite imagery of 82-H following the cruise showed that it drifted WSW in the Slope Water region at almost 9 km/day, had at least one interaction with the Gulf Stream and was last observed on February 8, 1983 at 39 deg N, 72 deg W.
NASA Technical Reports Server (NTRS)
1974-01-01
The Stanford Watershed Model, the Kentucky Watershed Model and OPSET program, and the NASA-IBM system for simulation and analysis of watersheds are described in terms of their applications to the study of remote sensing of water resources. Specific calibration processes and input and output parameters that are instrumental in the simulations are explained for the following kinds of data: (1) hourly precipitation data; (2) daily discharge data; (3) flood hydrographs; (4) temperature and evaporation data; and (5) snowmelt data arrays. The Sensitivity Analysis Task, which provides a method for evaluation of any of the separate simulation runs in the form of performance indices, is also reported. The method is defined and a summary of results is given which indicates the values obtained in the simulation runs performed for Town Creek, Alabama; Alamosa Creek, Colorado; and Pearl River, Louisiana. The results are shown in tabular and plot graph form. For Vol. 1, see N74-27813.
NASA Astrophysics Data System (ADS)
Ashjian, C. J.; Okkonen, S. R.; Campbell, R. G.; Alatalo, P.
2014-12-01
Late summer physical and biological conditions along a 37-km transect crossing Barrow Canyon have been described for the past ten years as part of an ongoing program, supported by multiple funding sources including the NSF AON, focusing on inter-annual variability and the formation of a bowhead whale feeding hotspot near Barrow. These repeated transects (at least two per year, separated in time by days-weeks) provide an opportunity to assess the inter-annual and shorter term (days-weeks) changes in hydrographic structure, ocean temperature, current velocity and transport, chlorophyll fluorescence, nutrients, and micro- and mesozooplankton community composition and abundance. Inter-annual variability in all properties was high and was associated with larger scale, meteorological forcing. Shorter-term variability could also be high but was strongly influenced by changes in local wind forcing. The sustained sampling at this location provided critical measures of inter-annual variability that should permit detection of longer-term trends that are associated with ongoing climate change.
Effect of uncertainty in Digital Surface Models on the boundary of inundated areas
NASA Astrophysics Data System (ADS)
Nalbantis, I.; Papageorgaki, I.; Sioras, P.; Ioannidis, Ch.
2012-04-01
The planning, design and operation of flood damage reduction works or non-structural measures require the construction of maps that indicate zones to be potentially inundated during floods. Referring to floods due to heavy rainfall, the common procedure for flood mapping consists of the following five computational steps: (1) Frequency analysis of extreme rainfall; (2) construction of design hyetographs for various return periods; (3) construction of the related direct runoff hydrographs; (4) routing of these hydrographs through the hydrographic network; (5) mapping of the inundated area that corresponds to the temporally maximum depth for each location in the flood plain. Steps 3 through 5 require the use of spatial information which can be easily obtained from a Digital Surface Model (DSM). The DSM contains grid-based elevations of the ground or overlying objects that influence the propagation of flood waves. In this work, the SCS-CN method is used in step 3 in combination with a synthetic Unit Hydrograph based on the SCS dimensionless Unit Hydrograph. In step 4, the full one-dimensional Saint Venant equations for non-uniform unsteady flow on fixed bed are used, which are numerically solved. The impact of uncertainty in the DSM on the inundated area boundary is investigated. For this the Monte Carlo simulation method is employed to produce a large number of erroneous DSMs through introducing errors in elevation with a standard deviation equal to σ. These DSMs are then used for delineating potentially flooded areas. The standard deviation of the distance (from the riverbed axis) of the boundary of these areas, herein denoted as σF, is used as the measure of the resulting uncertainty. The link between σ and σF is examined for a spectrum of large return periods (100 to 10000). A computer experiment was set up based on data from two drainage basins. The first basin is located in East Attica and is drained by a branch of the Erasinos Torrent named the South-East Kalyvia Torrent; it extends over an area of about 17 square kilometres. The second basin is that of the Kerynitis River in north-western Peloponnesus; it covers an area of 89 square kilometres. In each one of the two basins hydrographs at the outlet of the upper part of the basin are estimated with the aid of hydrological modelling, while, for the lower part hydraulic routing is employed. The South-East Kalyvia basin is hilly, whereas the Kerynitis Basin shows high ground slopes in its upper part and low slopes in the lower part. Graphs of σ vs. σF and maps showing the mean position μF of the boundary of flooded area along with limits of this boundary that reflect positions μF±2σF help visualize the impact of the uncertainty in DSM. To acquire a better feeling of the effect of DSM uncertainty, results are compared to those obtained from uncertain rainfall depths of the design hyetographs.
NASA Astrophysics Data System (ADS)
Tyulenev, Maxim; Lesin, Yury; Litvin, Oleg; Maliukhina, Elena; Abay, Asmelash
2017-11-01
Features of geological structure of the Kuznetsk coal basin stipulate the application of a low-cost open technique of coal mining, which is more advantageous both from the economic standpoint, and by safety criteria of mining. However, open mining affects significantly the water resources of region. Intensive pollution of reservoirs and water courses, exhaustion of the underground water-bearing layers, violation of a hydrographic network, etc. be-long to the main disadvantages of an open technique of coal mining. Besides, the volume of the water coming into the mining producers exceeds signi-ficantly the needed quantity. According to the data of annual reports of ecology and natural resources department, 348.277 million m3 of water were ta-ken away during production of soft coal, brown coal and lignum fossil from waters of Kemerovo region in 2013 (mostly from underground water objects (96,5%) when draining of mine openings). At the same time, only 87.018 million m3 of water (25%) has been used within a year.
Song, Hyung Keun; Yoo, Je Hyun; Byun, Young Soo
2014-01-01
Purpose Among patients over 50 years of age, separate vertical wiring alone may be insufficient for fixation of fractures of the inferior pole of the patella. Therefore, mechanical and clinical studies were performed in patients over the age of 50 to test the strength of augmentation of separate vertical wiring with cerclage wire (i.e., combined technique). Materials and Methods Multiple osteotomies were performed to create four-part fractures in the inferior poles of eight pairs of cadaveric patellae. One patella from each pair was fixed with the separate wiring technique, while the other patella was fixed with a combined technique. The ultimate load to failure and stiffness of the fixation were subsequently measured. In a clinical study of 21 patients (average age of 64 years), comminuted fractures of the inferior pole of the patellae were treated using the combined technique. Operative parameters were recorded from which post-operative outcomes were evaluated. Results For cadaveric patellae, whose mean age was 69 years, the mean ultimate loads to failure for the separate vertical wiring technique and the combined technique were 216.4±72.4 N and 324.9±50.6 N, respectively (p=0.012). The mean stiffness for the separate vertical wiring technique and the combined technique was 241.1±68.5 N/mm and 340.8±45.3 N/mm, respectively (p=0.012). In the clinical study, the mean clinical score at final follow-up was 28.1 points. Conclusion Augmentation of separate vertical wiring with cerclage wire provides enough strength for protected early exercise of the knee joint and uneventful healing. PMID:24719149
Magnetic separation techniques in sample preparation for biological analysis: a review.
He, Jincan; Huang, Meiying; Wang, Dongmei; Zhang, Zhuomin; Li, Gongke
2014-12-01
Sample preparation is a fundamental and essential step in almost all the analytical procedures, especially for the analysis of complex samples like biological and environmental samples. In past decades, with advantages of superparamagnetic property, good biocompatibility and high binding capacity, functionalized magnetic materials have been widely applied in various processes of sample preparation for biological analysis. In this paper, the recent advancements of magnetic separation techniques based on magnetic materials in the field of sample preparation for biological analysis were reviewed. The strategy of magnetic separation techniques was summarized. The synthesis, stabilization and bio-functionalization of magnetic nanoparticles were reviewed in detail. Characterization of magnetic materials was also summarized. Moreover, the applications of magnetic separation techniques for the enrichment of protein, nucleic acid, cell, bioactive compound and immobilization of enzyme were described. Finally, the existed problems and possible trends of magnetic separation techniques for biological analysis in the future were proposed. Copyright © 2014 Elsevier B.V. All rights reserved.
Bibliography of articles and reports on mineral-separation techniques, processes, and applications
NASA Technical Reports Server (NTRS)
Harmon, R. S.
1971-01-01
A bibliography of published articles and reports on mineral-separation techniques, processes, and applications is presented along with an author and subject index. This information is intended for use in the mineral-separation facility of the Lunar Receiving Laboratory at the NASA Manned Spacecraft Center and as an aid and reference to persons involved or interested in mineral separation.
Consistency of patterns in concentration‐discharge plots
Chanat, Jeffrey G.; Rice, Karen C.; Hornberger, George M.
2002-01-01
Concentration‐discharge (c‐Q) plots have been used to infer how flow components such as event water, soil water, and groundwater mix to produce the observed episodic hydrochemical response of small catchments. Because c‐Q plots are based only on observed streamflow and solute concentration, their interpretation requires assumptions about the relative volume, hydrograph timing, and solute concentration of the streamflow end‐members. Evans and Davies [1998] present a taxonomy of c‐Q loops resulting from three‐component conservative mixing. Their analysis, based on a fixed template of end‐member hydrograph volume, timing, and concentration, suggests a unique relationship between c‐Q loop form and the rank order of end‐member concentrations. Many catchments exhibit variability in component contributions to storm flow in response to antecedent conditions or rainfall characteristics, but the effects of such variation on c‐Q relationships have not been studied systematically. Starting with a “baseline” condition similar to that assumed by Evans and Davies [1998], we use a simple computer model to characterize the variability in c‐Q plot patterns resulting from variation in end‐member volume, timing, and solute concentration. Variability in these three factors can result in more than one c‐Q loop shape for a given rank order of end‐member solute concentrations. The number of resulting hysteresis patterns and their relative frequency depends on the rank order of solute concentrations and on their separation in absolute value. In ambiguous cases the c‐Q loop shape is determined by the relative “prominence” of the event water versus soil water components. This “prominence” is broadly defined as a capacity to influence the total streamflow concentration and may result from a combination of end‐member volume, timing, or concentration. The modeling results indicate that plausible hydrological variability in field situations can confound the interpretation of c‐Q plots, even when fundamental end‐member mixing assumptions are satisfied.
Asymmetry in convection and restratification in the Nordic Seas: an idealized model study
NASA Astrophysics Data System (ADS)
Ypma, Stefanie L.; Brüggemann, Nils; Pietrzak, Julie D.; Katsman, Caroline A.
2017-04-01
The Nordic Seas are an important production region for dense water masses that feed the lower limb of the Atlantic Meridional Overturning Circulation. They display a pronounced hydrographic asymmetry, with a warm eastern basin, and a cold western basin. Previous studies have shown that this asymmetry is set by the interplay between large eddies shed near the coast of Norway where the continental slope steepens, and the Mohn-Knipovich ridge that separates the Lofoten Basin in the east from the Greenland Basin in the west. While it is known from earlier studies that eddies play a crucial role for the yearly cycle of wintertime convection and summertime restratification in marginal seas like the Labrador Sea, the situation in the Nordic Seas is different as the large eddies can only restratify the eastern part of the Nordic Seas due to the presence of the ridge. Possibly due to this asymmetry in eddy activity and a weaker stratification as a result, the western basin is more sensitive for intense deep convection. The question remains how this area is restratified after a deep convection event in the absence of large eddies and how the dense water is able to leave the basin. An high resolution, idealized model configuration of the MITgcm is used that reproduces the main characteristics of the Nordic Seas, including a warm cyclonic boundary current, a strong eddy field in the east and the hydrographic asymmetry between east and west. The idealized approach enables multiple sensitivity studies to changes in the eddy field and the boundary current and provides the possibility to investigate cause and effect, while keeping the set-up simple. We will present results of tracer studies where the sensitivity of the spreading and the restratification of dense water to the formation location in both basins is studied.
Partitioning Hydrologic and Biological Drivers of Discharge Loss in Arctic Headwater Streams
NASA Astrophysics Data System (ADS)
Koch, J. C.; Carey, M.; O'Donnell, J. A.; Records, M. K.; Sjoberg, Y.; Zimmerman, C. E.
2017-12-01
The Arctic-Boreal transition (ABT) zone of Alaska is experiencing unprecedented warming, leading to permafrost thaw and vegetation change. Both of these processes are likely to affect streams and stream ecosystems, but there is little direct empirical evidence regarding the magnitude of these effects and their relative importance. To understand how permafrost thaw and vegetation are affecting streams at the ABT, we monitored 8 first-order streams that drain catchments varying in elevation, aspect, and vegetation cover. Data were obtained from meteorological stations, continuous stream discharge, seepage runs, and stream tracer experiments. Hydrograph analysis indicated that runoff ratios in south-facing catchments were lower than north-facing catchments and decreased over the season. Seepage runs indicated that south-facing catchments lost a large portion of water (up to 50% per km stream reach) in the late summer, while north-facing catchments were gaining water. All streams displayed diel variability in discharge, but with different daily and seasonal trends related to aspect and elevation. South-facing, forested catchment streams showed diel discharge timing consistent with cycles in evapotranspiration rates, while the signal in north-facing catchments and those dominated by tundra was more consistent with thermal controls on water viscosity and groundwater discharge to streams. Together, these signals indicate that the warmer, south-facing catchments are losing a large portion of water to a combination of infiltration and evapotranspiration. The seasonal trends are consistent with higher infiltration rates beneath south-facing streams as the ground thaws over the summer. The magnitude and seasonal dynamics of the diel signatures help separate biological (i.e. evapotranspiration) vs. physical controls (i.e. frozen ground hydrology) on stream-catchment interactions, which vary depending on aspect, elevation, and vegetation cover. Warming, and subsequent increases in infiltration and evapotranspiration rates may cause some south-facing streams to become ephemeral in the near future. This infiltration feeds aquifers and ultimately larger rivers, potentially explaining hydrograph shifts observed on the larger, river scale in permafrost environments.
Gibson, C.A.; Meyer, J.L.; Poff, N.L.; Hay, L.E.; Georgakakos, A.
2005-01-01
We examined impacts of future climate scenarios on flow regimes and how predicted changes might affect river ecosystems. We examined two case studies: Cle Elum River, Washington, and Chattahoochee-Apalachicola River Basin, Georgia and Florida. These rivers had available downscaled global circulation model (GCM) data and allowed us to analyse the effects of future climate scenarios on rivers with (1) different hydrographs, (2) high future water demands, and (3) a river-floodplain system. We compared observed flow regimes to those predicted under future climate scenarios to describe the extent and type of changes predicted to occur. Daily stream flow under future climate scenarios was created by either statistically downscaling GCMs (Cle Elum) or creating a regression model between climatological parameters predicted from GCMs and stream flow (Chattahoochee-Apalachicola). Flow regimes were examined for changes from current conditions with respect to ecologically relevant features including the magnitude and timing of minimum and maximum flows. The Cle Elum's hydrograph under future climate scenarios showed a dramatic shift in the timing of peak flows and lower low flow of a longer duration. These changes could mean higher summer water temperatures, lower summer dissolved oxygen, and reduced survival of larval fishes. The Chattahoochee-Apalachicola basin is heavily impacted by dams and water withdrawals for human consumption; therefore, we made comparisons between pre-large dam conditions, current conditions, current conditions with future demand, and future climate scenarios with future demand to separate climate change effects and other anthropogenic impacts. Dam construction, future climate, and future demand decreased the flow variability of the river. In addition, minimum flows were lower under future climate scenarios. These changes could decrease the connectivity of the channel and the floodplain, decrease habitat availability, and potentially lower the ability of the river to assimilate wastewater treatment plant effluent. Our study illustrates the types of changes that river ecosystems might experience under future climates. Copyright ?? 2005 John Wiley & Sons, Ltd.
Considerations for use of the RORA program to estimate ground-water recharge from streamflow records
Rutledge, A.T.
2000-01-01
The RORA program can be used to estimate ground-water recharge in a basin from analysis of a streamflow record. The program can be appropriate for use if the ground-water flow system is characterized by diffuse areal recharge to the water table and discharge to a stream. The use of the program requires an estimate of a recession index, which is the time required for ground-water discharge to recede by one log cycle after recession becomes linear or near-linear on the semilog hydrograph. Although considerable uncertainty is inherent in the recession index, the results of the RORA program may not be sensitive to this variable. Testing shows that the program can yield consistent estimates under conditions that include leakage to or from deeper aquifers and ground-water evapotranspiration. These tests indicate that RORA estimates the net recharge, which is recharge to the water table minus leakage to a deeper aquifer, or recharge minus ground-water evapotranspiration. Before the program begins making calculations it designates days that fit a requirement of antecedent recession, and these days are used in calculations. The program user might increase the antecedent-recession requirement above its default value to reduce the influence of errors that are caused by direct-surface runoff, but other errors can result from the reduction in the number of peaks detected. To obtain an understanding of flow systems, results from the RORA program might be used in conjunction with other methods such as analysis of ground-water levels, estimates of ground-water discharge from other forms of hydrograph separation, and low-flow variables. Relations among variables may be complex for a variety of reasons; for example, there may not be a unique relation between ground-water level and ground-water discharge, ground-water recharge and discharge are not synchronous, and low-flow variables can be related to other factors such as the recession index.
Catchment-scale hydrologic implications of parcel-level stormwater management (Ohio USA)
NASA Astrophysics Data System (ADS)
Shuster, William; Rhea, Lee
2013-04-01
SummaryThe effectiveness of stormwater management strategies is a key issue affecting decision making on urban water resources management, and so proper monitoring and analysis of pilot studies must be addressed before drawing conclusions. We performed a pilot study in the suburban Shepherd Creek watershed located in Cincinnati, Ohio to evaluate the practicality of voluntary incentives for stormwater quantity reduction on privately owned suburban properties. Stream discharge and precipitation were monitored 3 years before and after implementation of the stormwater management treatments. To implement stormwater control measures, we elicited the participation of citizen landowners with two successive reverse-auctions. Auctions were held in spring 2007, and 2008, resulting in the installation of 85 rain gardens and 174 rain barrels. We demonstrated an analytic process of increasing model flexibility to determine hydrologic effectiveness of stormwater management at the sub-catchment level. A significant albeit small proportion of total variance was explained by both the effects of study period (˜69%) and treatment-vs.-control (˜7%). Precipitation-discharge relationships were synthesized in estimated unit hydrographs, which were decomposed and components tested for influence of treatments. Analysis of unit hydrograph parameters showed a weakened correlation between precipitation and discharge, and support the output from the initial model that parcel-level green infrastructure added detention capacity to treatment basins. We conclude that retrofit management of stormwater runoff quantity with green infrastructure in a small suburban catchment can be successfully initiated with novel economic incentive programs, and that these measures can impart a small, but statistically significant decrease in otherwise uncontrolled runoff volume. Given consistent monitoring data and analysis, water resource managers can use our approach as a way to estimate actual effectiveness of stormwater runoff volume management, with potential benefits for management of both separated and combined sewer systems. We also discuss lessons-learned with regard to monitoring design for catchment-scale hydrologic studies.
Ensuring Safety of Navigation: A Three-Tiered Approach
NASA Astrophysics Data System (ADS)
Johnson, S. D.; Thompson, M.; Brazier, D.
2014-12-01
The primary responsibility of the Hydrographic Department at the Naval Oceanographic Office (NAVOCEANO) is to support US Navy surface and sub-surface Safety of Navigation (SoN) requirements. These requirements are interpreted, surveys are conducted, and accurate products are compiled and archived for future exploitation. For a number of years NAVOCEANO has employed a two-tiered data-basing structure to support SoN. The first tier (Data Warehouse, or DWH) provides access to the full-resolution sonar and lidar data. DWH preserves the original data such that any scale product can be built. The second tier (Digital Bathymetric Database - Variable resolution, or DBDB-V) served as the final archive for SoN chart scale, gridded products compiled from source bathymetry. DBDB-V has been incorporated into numerous DoD tactical decision aids and serves as the foundation bathymetry for ocean modeling. With the evolution of higher density survey systems and the addition of high-resolution gridded bathymetry product requirements, a two-tiered model did not provide an efficient solution for SoN. The two-tiered approach required scientists to exploit full-resolution data in order to build any higher resolution product. A new perspective on the archival and exploitation of source data was required. This new perspective has taken the form of a third tier, the Navigation Surface Database (NSDB). NSDB is an SQLite relational database populated with International Hydrographic Organization (IHO), S-102 compliant Bathymetric Attributed Grids (BAGs). BAGs archived within NSDB are developed at the highest resolution that the collection sensor system can support and contain nodal estimates for depth, uncertainty, separation values and metadata. Gridded surface analysis efforts culminate in the generation of the source resolution BAG files and their storage within NSDB. Exploitation of these resources eliminates the time and effort needed to re-grid and re-analyze native source file formats.
Review of anhydrous zirconium-hafnium separation techniques. Information circular/1984
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skaggs, R.L.; Rogers, D.T.; Hunter, D.B.
1983-12-01
Sixteen nonaqueous techniques conceived to replace the current aqueous scheme for separating hafnium and zirconium tetrachlorides were reviewed and evaluated by the Bureau of Mines. The methods are divided into two classes: separation by fractional volatilization of the tetrachlorides, which takes advantage of the higher volatility of hafnium tetrachloride; and separation by chemical techniques, based on differences in chemical behavior of the two tetrachlorides. The criteria used to evaluate separation methods were temperature, pressure, separation factor per equilibrium stage, complexity, compatibility with existing technology, and potential for continuous operation. Three processes were selected as being most promising: (1) high-pressure distillation,more » (2) extractive distillation from a molten salt, and (3) preferential reduction of gaseous ZrCl4. Any of the proposed nonaqueous Hf-Zr separation schemes must be supplemented with additional purification to remove trace impurities.« less
Bullard, K M; Hietpas, P B; Ewing, A G
1998-01-01
Polymerase chain reaction (PCR) amplified short tandem repeat (STR) samples from the HUMVWF locus have been analyzed using a unique sample introduction and separation technique. A single capillary is used to transfer samples onto an ultrathin slab gel (57 microm thin). This ultrathin nondenaturing polyacrylamide gel is used to separate the amplified fragments, and laser-induced fluorescence with ethidium bromide is used for detection. The feasibility of performing STR analysis using this system has been investigated by examining the reproducibility for repeated samples. Reproducibility is examined by comparing the migration of the 14 and 17 HUMVWF alleles on three consecutive separations on the ultrathin slab gel. Using one locus, separations match in migration time with the two alleles 42 s apart for each of the three consecutive separations. This technique shows potential to increase sample throughput in STR analysis techniques although separation resolution still needs to be improved.
A Reliability Estimation in Modeling Watershed Runoff With Uncertainties
NASA Astrophysics Data System (ADS)
Melching, Charles S.; Yen, Ben Chie; Wenzel, Harry G., Jr.
1990-10-01
The reliability of simulation results produced by watershed runoff models is a function of uncertainties in nature, data, model parameters, and model structure. A framework is presented here for using a reliability analysis method (such as first-order second-moment techniques or Monte Carlo simulation) to evaluate the combined effect of the uncertainties on the reliability of output hydrographs from hydrologic models. For a given event the prediction reliability can be expressed in terms of the probability distribution of the estimated hydrologic variable. The peak discharge probability for a watershed in Illinois using the HEC-1 watershed model is given as an example. The study of the reliability of predictions from watershed models provides useful information on the stochastic nature of output from deterministic models subject to uncertainties and identifies the relative contribution of the various uncertainties to unreliability of model predictions.
Evaluation of a physically based quasi-linear and a conceptually based nonlinear Muskingum methods
NASA Astrophysics Data System (ADS)
Perumal, Muthiah; Tayfur, Gokmen; Rao, C. Madhusudana; Gurarslan, Gurhan
2017-03-01
Two variants of the Muskingum flood routing method formulated for accounting nonlinearity of the channel routing process are investigated in this study. These variant methods are: (1) The three-parameter conceptual Nonlinear Muskingum (NLM) method advocated by Gillin 1978, and (2) The Variable Parameter McCarthy-Muskingum (VPMM) method recently proposed by Perumal and Price in 2013. The VPMM method does not require rigorous calibration and validation procedures as required in the case of NLM method due to established relationships of its parameters with flow and channel characteristics based on hydrodynamic principles. The parameters of the conceptual nonlinear storage equation used in the NLM method were calibrated using the Artificial Intelligence Application (AIA) techniques, such as the Genetic Algorithm (GA), the Differential Evolution (DE), the Particle Swarm Optimization (PSO) and the Harmony Search (HS). The calibration was carried out on a given set of hypothetical flood events obtained by routing a given inflow hydrograph in a set of 40 km length prismatic channel reaches using the Saint-Venant (SV) equations. The validation of the calibrated NLM method was investigated using a different set of hypothetical flood hydrographs obtained in the same set of channel reaches used for calibration studies. Both the sets of solutions obtained in the calibration and validation cases using the NLM method were compared with the corresponding solutions of the VPMM method based on some pertinent evaluation measures. The results of the study reveal that the physically based VPMM method is capable of accounting for nonlinear characteristics of flood wave movement better than the conceptually based NLM method which requires the use of tedious calibration and validation procedures.
Geosat Data Assimilation with Application to the Eastern North Atlantic
NASA Technical Reports Server (NTRS)
Stammer, Detlef
1997-01-01
An attempt is made to determine the three-dimensional ocean circulation from satellite altimeter measurements by assimilating Geosat sea surface height data into an eddy-resolving QuasiGeostrophic (QG) model of the eastern North Atlantic Ocean. Results are tested against independent information from hydrographic field observations and moored current meter data collected during the Geosat ERM. The comparison supports the concept of inferring aspects of the three-dimensional flow field from sea surface height observations by combining altimetric measurements with the dynamics of ocean circulation models. A Holland-type QG model with open boundaries is set up on a 2000 km X 2000 km domain of the eastern North Atlantic between 25 deg. and 45 deg. N, 32 deg. and 8 deg. W. By using a simple nudging technique, about two years of Geosat altimeter data are assimilated into the model every five days as space-time objective analyses on the model grid. The error information resulting from the analysis is used during the assimilation procedure to account for data uncertainties. Results show an intense eddy field, which in the surface layer interacts with a meandering Azores Front. Compared to Geosat, the model leads to smoothed fields that follow the observations. Model simulations are significantly correlated with hydrographic data from March 1988 and June 1989, both close to the surface and in the subsurface. Good agreement is also found between the model velocity fields and moored current meter data in the top two model layers. The agreement is visually weak in the bottom layer, although a coherence analysis reveals an agreement between the model simulation and current meter data over the full water column at periods exceeding 80 days.
Experiments on Pool-riffle Sequences with Multi-fractional Sediment Bed During Floods
NASA Astrophysics Data System (ADS)
Rodriguez, J. F.; Vahidi, E.; Bayat, E.; de Almeida, G. A. M.; Saco, P. M.
2017-12-01
The morphodynamics of pools and riffles has been the subject of research for over a century and has more recently attracted intense attention for their central role in providing habitat diversity conditions, both in terms of flow and substrate. Initial efforts to explain the long-term stability of the pool-riffle (PR) sequences (often referred to as self-maintenance) focused almost exclusively on cross sectional flow characteristics (either average or near bed velocity or shear stress), using episodic shifts in higher shear stress or velocities from riffles to pools during floods (i.e. reversal conditions) as an indication of the long-term self-maintenance of the structures.. However, less attention has been paid to the interactions of flow unsteadiness, sediment supply and sedimentological contrasts as the drivers for maintaining PR sequences. Here we investigate these effects through laboratory experiments on a scaled-down PR sequence of an existing gravel bed river. Froude similitude and equality of Shields' number were applied to scale one- to four-year recurrence flood events and sediment size distributions, respectively. We conducted experiments with different hydrographs and different sedimentological conditions. In each experiment we continuously measured velocities and shear stresses (using acoustic velocity profilers) bed levels (using a bed profiler) and bed grain size distribution (using an automatic digital technique on the painted bed sediments) during the hydrographs. Our results show that the most important factors for self-maintenance were the sediment bed composition, the level of infilling of the pool and the sediment supply grainsize distribution. These results highlight the need to consider the time varying sedimentological characteristics of a PR sequence to assess its capacity for self-maintenance.
Tile drainage as karst: Conduit flow and diffuse flow in a tile-drained watershed
Schilling, K.E.; Helmers, M.
2008-01-01
The similarity of tiled-drained watersheds to karst drainage basins can be used to improve understanding of watershed-scale nutrient losses from subsurface tile drainage networks. In this study, short-term variations in discharge and chemistry were examined from a tile outlet collecting subsurface tile flow from a 963 ha agricultural watershed. Study objectives were to apply analytical techniques from karst springs to tile discharge to evaluate water sources and estimate the loads of agricultural pollutants discharged from the tile with conduit, intermediate and diffuse flow regimes. A two-member mixing model using nitrate, chloride and specific conductance was used to distinguish rainwater versus groundwater inputs. Results indicated that groundwater comprised 75% of the discharge for a three-day storm period and rainwater was primarily concentrated during the hydrograph peak. A contrasting pattern of solute concentrations and export loads was observed in tile flow. During base flow periods, tile flow consisted of diffuse flow from groundwater sources and contained elevated levels of nitrate, chloride and specific conductance. During storm events, suspended solids and pollutants adhered to soil surfaces (phosphorus, ammonium and organic nitrogen) were concentrated and discharged during the rapid, conduit flow portion of the hydrograph. During a three-day period, conduit flow occurred for 5.6% of the time but accounted for 16.5% of the total flow. Nitrate and chloride were delivered primarily with diffuse flow (more than 70%), whereas 80-94% of total suspended sediment, phosphorus and ammonium were exported with conduit and intermediate flow regimes. Understanding the water sources contributing to tile drainage and the manner by which pollutant discharge occurs from these systems (conduit, intermediate or diffuse flow) may be useful for designing, implementing and evaluating non-point source reduction strategies in tile-drained landscapes. ?? 2007 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Dzierzbicka-Głowacka, Lidia
2005-01-01
A nutrient-phytoplankton-zooplankton-detritus (1D-NPZD) `phytoplankton {Phyt} and Pseudocalanus elongatus {Zoop} dynamics in the spring bloom time in the Gdańsk Gulf. The 1D-NPZD model consists of three coupled, partial second-order differential equations of the diffusion type for phytoplankton {Phyt}, zooplankton {Zoop}, nutrients {Nutr} and one ordinary first-order differential equation for benthic detritus pool {Detr}, together with initial and boundary conditions. In this model, the {Zoop} is presented by only one species of copepod ( P. elongatus) and {Zoop} is composed of six cohorts of copepods with weights ( Wi) and numbers ( Zi); where Zoop= limit∑i=16W iZ i. The calculations were made for 90 days (March, April, May) for two stations at Gdańsk Gulf with a vertical space step of 0.5m and a time step of 900 s. The flow field and water temperature used as the inputs in the biological model 1D-NPZD were reproduced by the prognostic numerical simulation technique using hydrographic climatological data. The results of the numerical investigations described here were compared with the mean observed values of surface chlorophyll- a and depth integrated P. elongatus biomass for 10 years, 1980-1990. The slight differences between the calculated and mean observed values of surface chlorophyll- a and zooplankton biomass are ca. 10-60 mg C m -3 and ca. 5-23 mg C m -2, respectively, depending on the location of the hydrographic station. The 1D-NPZD model with a high-resolution zooplankton module for P. elongatus can be used to describe the temporal patterns for phytoplankton biomass and P. elongatus in the centre of the Gdańsk Gulf.
Hydrographic and sedimentation survey of Kajakai Reservoir, Afghanistan
Perkins, Don C.; Culbertson, James K.
1970-01-01
A hydrographic and sedimentation survey of Band-e Kajakai (Kajakai Reservoir) on the Darya-ye Hirmand (Helmand River) was carried out during the period September through December 1968. Underwater mapping techniques were used to determine the reservoir capacity as of 1968. Sediment range lines were established and monumented to facilitate future sedimentation surveys. Afghanistan engineers and technicians were trained to carry out future reservoir surveys. Samples were obtained of the reservoir bed and in the river upstream from the reservoir. Virtually no sediments coarser than about 0.063 millimeter were found on the reservoir bed surface. The median diameter of sands being transported into the reservoir ranged from 0.040 to 0.110 millimeter. The average annual rate of sedimentation was 7,800 acre-feet. Assuming an average density of 50 pounds per cubic foot (800 kilograms per cubic meter), the estimated average sediment inflow to the reservoir was about 8,500,000 tons (7,700,000 metric tons) per year. The decrease in capacity at spillway elevation for the period 1953 to 1968 due to sediment deposition was 7.8 percent, or 117,700 acre-feet. Redefinition of several contours above the fill area resulted in an increase in capacity at spillway elevation of 13,600 acre-feet; thus, the net change in capacity was 7.0 percent, or 104,800 acre-feet. Based on current data and an estimated rate of compaction of deposited sediment, the assumption of no appreciable change in hydrologic conditions in the drainage area, the leading edge of the principal delta will reach the irrigation outlet in 40-45 years. It is recommended that a resurvey of sediment range lines be made during the period 1973-75.
Binary Oscillatory Crossflow Electrophoresis
NASA Technical Reports Server (NTRS)
Molloy, Richard F.; Gallagher, Christopher T.; Leighton, David T., Jr.
1996-01-01
We present preliminary results of our implementation of a novel electrophoresis separation technique: Binary Oscillatory Cross flow Electrophoresis (BOCE). The technique utilizes the interaction of two driving forces, an oscillatory electric field and an oscillatory shear flow, to create an active binary filter for the separation of charged species. Analytical and numerical studies have indicated that this technique is capable of separating proteins with electrophoretic mobilities differing by less than 10%. With an experimental device containing a separation chamber 20 cm long, 5 cm wide, and 1 mm thick, an order of magnitude increase in throughput over commercially available electrophoresis devices is theoretically possible.
NASA Astrophysics Data System (ADS)
Branger, Flora; Dramais, Guillaume; Horner, Ivan; Le Boursicaud, Raphaël; Le Coz, Jérôme; Renard, Benjamin
2015-04-01
Continuous river discharge data are crucial for the study and management of floods. In most river discharge monitoring networks, these data are obtained at gauging stations, where the stage-discharge relation is modelled with a rating curve to derive discharge from the measurement of water level in the river. Rating curves are usually established using individual ratings (or gaugings). However, using traditional gauging methods during flash floods is challenging for many reasons including hazardous flow conditions (for both equipment and people), short duration of the flood events, transient flows during the time needed to perform the gauging, etc. The lack of gaugings implies that the rating curve is often extrapolated well beyond the gauged range for the highest floods, inducing large uncertainties in the computed discharges. We deployed two remote techniques for gauging floods and improving stage-discharge relations for high flow conditions at several hydrometric stations throughout the Ardèche river catchment in France : (1) permanent video-recording stations enabling the implementation of the image analysis LS-PIV technique (Large Scale Particle Image Velocimetry) ; (2) and mobile gaugings using handheld Surface Velocity Radars (SVR). These gaugings were used to estimate the rating curve and its uncertainty using the Bayesian method BaRatin (Le Coz et al., 2014). Importantly, this method explicitly accounts for the uncertainty of individual gaugings, which is especially relevant for remote gaugings since their uncertainty is generally much higher than that of standard intrusive gauging methods. Then, the uncertainty of streamflow records was derived by combining the uncertainty of the rating curve and the uncertainty of stage records. We assessed the impact of these methodological developments for peak flow estimation and for flood descriptors at various time steps. The combination of field measurement innovation and statistical developments allows efficiently quantifying and reducing the uncertainties of flood peak estimates and flood descriptors at gauging stations. The noncontact streamgauging techniques used in our field campaign strategy have complementary interests. Permanent LSPIV stations, once installed and calibrated, can monitor floods automatically and perform many gaugings during a single event, thus documenting the rise, peak and recession of floods. SVR gaugings are more "one shot" gaugings but can be deployed quickly and at minimal cost over a large territory. Both of these noncontact techniques contribute to a significant reduction of uncertainty on peak hydrographs and flood descriptors at different time steps for a given catchment. Le Coz, J.; Renard, B.; Bonnifait, L.; Branger, F. & Le Boursicaud, R. (2014), 'Combining hydraulic knowledge and uncertain gaugings in the estimation of hydrometric rating curves: A Bayesian approach', Journal of Hydrology 509, 573-587.
Ground-water levels and quality data for Georgia
,
1979-01-01
This report begins a publication format that will present annually both water-level and water-quality data in Georgia. In this format the information is presented in two-page units: the left page includes text which summarizes the information for an area or subject and the right page consists of one or more illustrations. Daily mean water-level fluctuations and trends are shown in hydrographs for the previous year and fluctuations for the monthly mean water level the previous 10 years for selected observation wells. The well data best illustrate the effects of changes in recharge and discharge in the various ground-water reservoirs in the State. A short narrative explains fluctuations and trends in each hydrograph. (Woodard-USGS)
Parsley, M.J.; Kofoot, P.
2006-01-01
River discharge and water temperatures that occurred during April through July 2004 provided conditions suitable for spawning by white sturgeon downstream from Bonneville, The Dalles, John Day, and McNary dams. Optimal spawning temperatures in the four tailraces occurred for 3-4 weeks and coincided with the peak of the river hydrograph. However, the peak of the hydrograph was relatively low compared to past years, which is reflected in the relatively low monthly and annual indices of suitable spawning habitat. Bottom-trawl sampling in the Bonneville Reservoir revealed the presence of young-of-theyear (YOY) white sturgeon.
Long term hydrographic variability near Bermuda and relation to surface forcing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joyce, T.M.
1997-11-01
This paper provides an extremely brief description of long-term hydrographic observations at Bermuda. The time series of observations near the island goes back to 1922. A secular increase of temperature of approximately 0.5 C per century in the deep water pressure range has been observed; this depth layer is the only one observed at Bermuda to have such a long-term increase. Decadal time scale fluctuations have also been identified, and are correlated to decadal variations in the Labrador Sea. The recent period of decreasing temperature at Bermuda may be a reflection of the increased cooling in the Labrador Sea inmore » recent years. 2 figs.« less
Probability distribution functions for unit hydrographs with optimization using genetic algorithm
NASA Astrophysics Data System (ADS)
Ghorbani, Mohammad Ali; Singh, Vijay P.; Sivakumar, Bellie; H. Kashani, Mahsa; Atre, Atul Arvind; Asadi, Hakimeh
2017-05-01
A unit hydrograph (UH) of a watershed may be viewed as the unit pulse response function of a linear system. In recent years, the use of probability distribution functions (pdfs) for determining a UH has received much attention. In this study, a nonlinear optimization model is developed to transmute a UH into a pdf. The potential of six popular pdfs, namely two-parameter gamma, two-parameter Gumbel, two-parameter log-normal, two-parameter normal, three-parameter Pearson distribution, and two-parameter Weibull is tested on data from the Lighvan catchment in Iran. The probability distribution parameters are determined using the nonlinear least squares optimization method in two ways: (1) optimization by programming in Mathematica; and (2) optimization by applying genetic algorithm. The results are compared with those obtained by the traditional linear least squares method. The results show comparable capability and performance of two nonlinear methods. The gamma and Pearson distributions are the most successful models in preserving the rising and recession limbs of the unit hydographs. The log-normal distribution has a high ability in predicting both the peak flow and time to peak of the unit hydrograph. The nonlinear optimization method does not outperform the linear least squares method in determining the UH (especially for excess rainfall of one pulse), but is comparable.
A methodology to derive Synthetic Design Hydrographs for river flood management
NASA Astrophysics Data System (ADS)
Tomirotti, Massimo; Mignosa, Paolo
2017-12-01
The design of flood protection measures requires in many cases not only the estimation of the peak discharges, but also of the volume of the floods and its time distribution. A typical solution to this kind of problems is the formulation of Synthetic Design Hydrographs (SDHs). In this paper a methodology to derive SDHs is proposed on the basis of the estimation of the Flow Duration Frequency (FDF) reduction curve and of a Peak-Duration (PD) relationship furnishing respectively the quantiles of the maximum average discharge and the average peak position in each duration. The methodology is intended to synthesize the main features of the historical floods in a unique SDH for each return period. The shape of the SDH is not selected a priori but is a result of the behaviour of FDF and PD curves, allowing to account in a very convenient way for the variability of the shapes of the observed hydrographs at local time scale. The validation of the methodology is performed with reference to flood routing problems in reservoirs, lakes and rivers. The results obtained demonstrate the capability of the SDHs to describe the effects of different hydraulic systems on the statistical regime of floods, even in presence of strong modifications induced on the probability distribution of peak flows.
Runoff prediction using rainfall data from microwave links: Tabor case study.
Stransky, David; Fencl, Martin; Bares, Vojtech
2018-05-01
Rainfall spatio-temporal distribution is of great concern for rainfall-runoff modellers. Standard rainfall observations are, however, often scarce and/or expensive to obtain. Thus, rainfall observations from non-traditional sensors such as commercial microwave links (CMLs) represent a promising alternative. In this paper, rainfall observations from a municipal rain gauge (RG) monitoring network were complemented by CMLs and used as an input to a standard urban drainage model operated by the water utility of the Tabor agglomeration (CZ). Two rainfall datasets were used for runoff predictions: (i) the municipal RG network, i.e. the observation layout used by the water utility, and (ii) CMLs adjusted by the municipal RGs. The performance was evaluated in terms of runoff volumes and hydrograph shapes. The use of CMLs did not lead to distinctively better predictions in terms of runoff volumes; however, CMLs outperformed RGs used alone when reproducing a hydrograph's dynamics (peak discharges, Nash-Sutcliffe coefficient and hydrograph's rising limb timing). This finding is promising for number of urban drainage tasks working with dynamics of the flow. Moreover, CML data can be obtained from a telecommunication operator's data cloud at virtually no cost. That makes their use attractive for cities unable to improve their monitoring infrastructure for economic or organizational reasons.
NASA Astrophysics Data System (ADS)
Fenty, I. G.; Willis, J. K.; Rignot, E. J.
2016-12-01
Motivated by the need to understand the connection between the warming North Atlantic Ocean and increasing ice mass loss from the Greenland Ice Sheet, in 2015 we initiated "Oceans Melting Greenland" (OMG), a 5-year NASA sub-orbital mission. One component of OMG is a once-yearly sampling of full-depth vertical profiles of ocean temperature and salinity around Greenland's continental shelf at 250 locations. These measurements have the potential to provide an unprecedented view of ocean properties around Greenland, especially the warm, salty subsurface Atlantic Waters that have been implicated in tidewater glacier retreat, acceleration, and thinning. However, OMG'S ocean measurements are essentially large-scale synoptic snapshots of an ocean state whose characteristic scales of temporal and spatial variability around Greenland are largely unknown. In this talk we discuss how high-resolution numerical ocean modelling is being employed to quantitatively estimate the region's natural hydrographic variability for the dual purposes of (1) informing our pan-Greenland ocean sampling strategy and (2) informing our interpretation of temperature trends in the data. OMG hydrographic shelf data collected in ship-based CTDs (2015, 2016) and Airborne eXpendable CTDs (2016) will be examined in the context of this estimated ocean variability.
NASA Astrophysics Data System (ADS)
Garcia Leal, Julio A.; Lopez-Baeza, Ernesto; Khodayar, Samiro; Estrela, Teodoro; Fidalgo, Arancha; Gabaldo, Onofre; Kuligowski, Robert; Herrera, Eddy
Surface runoff is defined as the amount of water that originates from precipitation, does not infiltrates due to soil saturation and therefore circulates over the surface. A good estimation of runoff is useful for the design of draining systems, structures for flood control and soil utilisation. For runoff estimation there exist different methods such as (i) rational method, (ii) isochrone method, (iii) triangular hydrograph, (iv) non-dimensional SCS hydrograph, (v) Temez hydrograph, (vi) kinematic wave model, represented by the dynamics and kinematics equations for a uniforme precipitation regime, and (vii) SCS-CN (Soil Conservation Service Curve Number) model. This work presents a way of estimating precipitation runoff through the SCS-CN model, using SMOS (Soil Moisture and Ocean Salinity) mission soil moisture observations and rain-gauge measurements, as well as satellite precipitation estimations. The area of application is the Jucar River Basin Authority area where one of the objectives is to develop the SCS-CN model in a spatial way. The results were compared to simulations performed with the 7-km COSMO-CLM (COnsortium for Small-scale MOdelling, COSMO model in CLimate Mode) model. The use of SMOS soil moisture as input to the COSMO-CLM model will certainly improve model simulations.
Sources and routing of the Amazon River Flood Wave
NASA Astrophysics Data System (ADS)
Richey, Jeffrey E.; Mertes, Leal A. K.; Dunne, Thomas; Victoria, Reynaldo L.; Forsberg, Bruce R.; Tancredi, AntôNio C. N. S.; Oliveira, Eurides
1989-09-01
We describe the sources and routing of the Amazon River flood wave through a 2000-km reach of the main channel, between São Paulo de Olivença and Obidos, Brazil. The damped hydrograph of the main stem reflects the large drainage basin area, the 3-month phase lag in peak flows between the north and south draining tributaries due to seasonal differences in precipitation, and the large volume of water stored on the floodplain. We examined several aspects of the valley floor hydrology that are important for biogeochemistry. These include volumes of water storage in the channel and the floodplain and the rates of transfer between these two storage elements at various seasons and in each segment of the valley. We estimate that up to 30% of the water in the main stem is derived from water that has passed through the floodplain. To predict the discharge at any cross section within the study reach, we used the Muskingum formula to predict the hydrograph at downriver cross sections from a known hydrograph at upstream cross-sections and inputs and outputs along each reach. The model was calibrated using three years of data and was successfully tested against an additional six years of data. With this model it is possible to interpolate discharges for unsampled times and sites.
Itaipu royalties: The role of the hydroelectric sector in water resource management.
Lorenzon, Alexandre Simões; Alvares Soares Ribeiro, Carlos Antonio; Rosa Dos Santos, Alexandre; Marcatti, Gustavo Eduardo; Domingues, Getulio Fonseca; Soares, Vicente Paulo; Martins de Castro, Nero Lemos; Teixeira, Thaisa Ribeiro; Martins da Costa de Menezes, Sady Júnior; Silva, Elias; de Oliveira Barros, Kelly; Amaral Dino Alves Dos Santos, Gleissy Mary; Ferreira da Silva, Samuel; Santos Mota, Pedro Henrique
2017-02-01
For countries dependent on hydroelectricity, water scarcity poses a real risk. Hydroelectric plants are among the most vulnerable enterprises to climate change. Investing in the conservation of the hydrographic basin is a solution found by the hydropower sector. Given the importance of the Itaipu plant to the energy matrix of Brazil and Paraguay, the aim of this study is to review the current distribution of royalties from Itaipu, using the hydrographic basin as a of criterion of analysis. Approximately 98.73% of the Itaipu basin is in Brazil. The flow contributes 99% of the total electricity generated there, while the drop height of the water contributes only 1%. Under the current policy, royalties are shared equally between Brazil and Paraguay. In the proposed approach, each country would receive a percentage for their participation in the drop height and water flow in the output of the turbines, which are intrinsic factors for electricity generation. Thus, Brazil would receive 98.35% of the royalties and Paraguay, 1.65%. The inclusion of the hydrographic basin as a criterion for the distribution of royalties will promote more efficient water resource management, since the payment will be distributed throughout the basin of the plant. The methodology can be applied to hydroelectric projects worldwide. Copyright © 2016 Elsevier Ltd. All rights reserved.
Separation techniques: Chromatography
Coskun, Ozlem
2016-01-01
Chromatography is an important biophysical technique that enables the separation, identification, and purification of the components of a mixture for qualitative and quantitative analysis. Proteins can be purified based on characteristics such as size and shape, total charge, hydrophobic groups present on the surface, and binding capacity with the stationary phase. Four separation techniques based on molecular characteristics and interaction type use mechanisms of ion exchange, surface adsorption, partition, and size exclusion. Other chromatography techniques are based on the stationary bed, including column, thin layer, and paper chromatography. Column chromatography is one of the most common methods of protein purification. PMID:28058406
Using dynamic mode decomposition for real-time background/foreground separation in video
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kutz, Jose Nathan; Grosek, Jacob; Brunton, Steven
The technique of dynamic mode decomposition (DMD) is disclosed herein for the purpose of robustly separating video frames into background (low-rank) and foreground (sparse) components in real-time. Foreground/background separation is achieved at the computational cost of just one singular value decomposition (SVD) and one linear equation solve, thus producing results orders of magnitude faster than robust principal component analysis (RPCA). Additional techniques, including techniques for analyzing the video for multi-resolution time-scale components, and techniques for reusing computations to allow processing of streaming video in real time, are also described herein.
Application of separable parameter space techniques to multi-tracer PET compartment modeling.
Zhang, Jeff L; Michael Morey, A; Kadrmas, Dan J
2016-02-07
Multi-tracer positron emission tomography (PET) can image two or more tracers in a single scan, characterizing multiple aspects of biological functions to provide new insights into many diseases. The technique uses dynamic imaging, resulting in time-activity curves that contain contributions from each tracer present. The process of separating and recovering separate images and/or imaging measures for each tracer requires the application of kinetic constraints, which are most commonly applied by fitting parallel compartment models for all tracers. Such multi-tracer compartment modeling presents challenging nonlinear fits in multiple dimensions. This work extends separable parameter space kinetic modeling techniques, previously developed for fitting single-tracer compartment models, to fitting multi-tracer compartment models. The multi-tracer compartment model solution equations were reformulated to maximally separate the linear and nonlinear aspects of the fitting problem, and separable least-squares techniques were applied to effectively reduce the dimensionality of the nonlinear fit. The benefits of the approach are then explored through a number of illustrative examples, including characterization of separable parameter space multi-tracer objective functions and demonstration of exhaustive search fits which guarantee the true global minimum to within arbitrary search precision. Iterative gradient-descent algorithms using Levenberg-Marquardt were also tested, demonstrating improved fitting speed and robustness as compared to corresponding fits using conventional model formulations. The proposed technique overcomes many of the challenges in fitting simultaneous multi-tracer PET compartment models.
Application of separable parameter space techniques to multi-tracer PET compartment modeling
NASA Astrophysics Data System (ADS)
Zhang, Jeff L.; Morey, A. Michael; Kadrmas, Dan J.
2016-02-01
Multi-tracer positron emission tomography (PET) can image two or more tracers in a single scan, characterizing multiple aspects of biological functions to provide new insights into many diseases. The technique uses dynamic imaging, resulting in time-activity curves that contain contributions from each tracer present. The process of separating and recovering separate images and/or imaging measures for each tracer requires the application of kinetic constraints, which are most commonly applied by fitting parallel compartment models for all tracers. Such multi-tracer compartment modeling presents challenging nonlinear fits in multiple dimensions. This work extends separable parameter space kinetic modeling techniques, previously developed for fitting single-tracer compartment models, to fitting multi-tracer compartment models. The multi-tracer compartment model solution equations were reformulated to maximally separate the linear and nonlinear aspects of the fitting problem, and separable least-squares techniques were applied to effectively reduce the dimensionality of the nonlinear fit. The benefits of the approach are then explored through a number of illustrative examples, including characterization of separable parameter space multi-tracer objective functions and demonstration of exhaustive search fits which guarantee the true global minimum to within arbitrary search precision. Iterative gradient-descent algorithms using Levenberg-Marquardt were also tested, demonstrating improved fitting speed and robustness as compared to corresponding fits using conventional model formulations. The proposed technique overcomes many of the challenges in fitting simultaneous multi-tracer PET compartment models.
Ries(compiler), Kernell G.; With sections by Atkins, J. B.; Hummel, P.R.; Gray, Matthew J.; Dusenbury, R.; Jennings, M.E.; Kirby, W.H.; Riggs, H.C.; Sauer, V.B.; Thomas, W.O.
2007-01-01
The National Streamflow Statistics (NSS) Program is a computer program that should be useful to engineers, hydrologists, and others for planning, management, and design applications. NSS compiles all current U.S. Geological Survey (USGS) regional regression equations for estimating streamflow statistics at ungaged sites in an easy-to-use interface that operates on computers with Microsoft Windows operating systems. NSS expands on the functionality of the USGS National Flood Frequency Program, and replaces it. The regression equations included in NSS are used to transfer streamflow statistics from gaged to ungaged sites through the use of watershed and climatic characteristics as explanatory or predictor variables. Generally, the equations were developed on a statewide or metropolitan-area basis as part of cooperative study programs. Equations are available for estimating rural and urban flood-frequency statistics, such as the 1 00-year flood, for every state, for Puerto Rico, and for the island of Tutuila, American Samoa. Equations are available for estimating other statistics, such as the mean annual flow, monthly mean flows, flow-duration percentiles, and low-flow frequencies (such as the 7-day, 0-year low flow) for less than half of the states. All equations available for estimating streamflow statistics other than flood-frequency statistics assume rural (non-regulated, non-urbanized) conditions. The NSS output provides indicators of the accuracy of the estimated streamflow statistics. The indicators may include any combination of the standard error of estimate, the standard error of prediction, the equivalent years of record, or 90 percent prediction intervals, depending on what was provided by the authors of the equations. The program includes several other features that can be used only for flood-frequency estimation. These include the ability to generate flood-frequency plots, and plots of typical flood hydrographs for selected recurrence intervals, estimates of the probable maximum flood, extrapolation of the 500-year flood when an equation for estimating it is not available, and weighting techniques to improve flood-frequency estimates for gaging stations and ungaged sites on gaged streams. This report describes the regionalization techniques used to develop the equations in NSS and provides guidance on the applicability and limitations of the techniques. The report also includes a users manual and a summary of equations available for estimating basin lagtime, which is needed by the program to generate flood hydrographs. The NSS software and accompanying database, and the documentation for the regression equations included in NSS, are available on the Web at http://water.usgs.gov/software/.
Inverse boundary-layer theory and comparison with experiment
NASA Technical Reports Server (NTRS)
Carter, J. E.
1978-01-01
Inverse boundary layer computational procedures, which permit nonsingular solutions at separation and reattachment, are presented. In the first technique, which is for incompressible flow, the displacement thickness is prescribed; in the second technique, for compressible flow, a perturbation mass flow is the prescribed condition. The pressure is deduced implicitly along with the solution in each of these techniques. Laminar and turbulent computations, which are typical of separated flow, are presented and comparisons are made with experimental data. In both inverse procedures, finite difference techniques are used along with Newton iteration. The resulting procedure is no more complicated than conventional boundary layer computations. These separated boundary layer techniques appear to be well suited for complete viscous-inviscid interaction computations.
Hydrographic Variability off the Coast of Oman
NASA Astrophysics Data System (ADS)
Belabbassi, L.; Dimarco, S. F.; Jochens, A. E.; Al Gheilani, H.; Wang, Z.
2010-12-01
Data from hydrographic transects made in 2001 and 2002 and between 2007 and 2009 were obtained from the Oman Ministry of Fisheries Wealth. Property-depth plots of temperature, salinity, and dissolved oxygen were produced for all transects and in all months for which data were available. These were analyzed for temporal and spatial variability. For all transects, there exist large variability on various timescales, with strong spatial variability. Two common features that are seen in the hydrographic data sets are the Persian Gulf Water (PGW) and a layer of continuous low oxygen concentrations in the lower part of the water column. Plots of salinity produced for transects located in the northern part of the Gulf of Oman show a one-unit increase in salinity of the water at the bottom of deepest station during the months of August and September as compared to the other months. Similarly, cross-shelf contour plots of temperature shows an increase in water temperature near the bottom station during the months of August and September. These indicate the presence of the PGW outflow in the northern part of the Gulf of Oman. For dissolved oxygen distributions, hydrographic transects that did not extend far offshore show monthly differences in the presence of water with low oxygen concentrations. For transects that do extend far offshore and also show a layer of low oxygen water throughout the year, there is generally a monthly difference on whether this water is found close to the surface or deeper in the water column. The variability seen in the data could only be explained by comparing these data to data collected from the real time cable ocean observing system installed by Lighthouse R &D Enterprise in the Oman Sea and the Arabian Sea in 2005. The analysis of these data reveal that the variability observed is related to processes such as ocean conditions, monsoonal cycle, and extreme weather events.
NASA Astrophysics Data System (ADS)
Hernandez, Fabrice; Le Traon, Pierre-Yves; Morrow, Rosemary
1995-12-01
The SEMAPHORE mesoscale air/sea experiment was conducted in the Azores-Madeira region from July to November 1993. TOPEX/POSEIDON (T/P) and ERS 1 were flying simultaneously at that time. The main purposes of this paper are to evaluate the estimation of the oceanic mesoscale circulation from the two different sets of altimetric data (T/P and ERS 1) and to compare the results with in situ measurements provided by the SEMAPHORE hydrographic surveys and surface drifters (three expendable bathytermograph conductivity-temperature-depth surveys in a 500-km2 box and a set of 47 Lagrangian surface drifters drogued at 150 m). Comparisons are carried out through the maps obtained by objective analysis from the four data sets. The mapping accuracy of T/P, ERS 1, T/P and ERS 1 combined, and in situ data is investigated, as well as the sensitivity of the mapping to the correlation functions used. There is a good qualitative agreement between altimetric maps and corresponding drifter and hydrographic maps for the three hydrographic surveys. Correlations are about 0.8, and the regression fit is about 0.6-0.7; the lower values are due to the smooth climatology used to reference the altimetric maps. The correlation for time differences is better, with regression lines not significantly different from 1, especially when ERS 1 and T/P are combined. T/P mapping is almost as good as ERS 1 mapping, which was rather unexpected since the ERS 1 space-time sampling is better suited for the mesoscale. This may reflect the fact that the signal mapped by the hydrography and drifters does not contain the high frequency/wavenumber components. T/P and ERS 1 combined provide better results, although the improvement is not as large as expected, probably for the same reason.
Singer, M.B.
2007-01-01
This paper reports basinwide patterns of hydrograph alteration via statistical and graphical analysis from a network of long-term streamflow gauges located various distances downstream of major dams and confluences in the Sacramento River basin in California, USA. Streamflow data from 10 gauging stations downstream of major dams were divided into hydrologic series corresponding to the periods before and after dam construction. Pre- and post-dam flows were compared with respect to hydrograph characteristics representing frequency, magnitude and shape: annual flood peak, annual flow trough, annual flood volume, time to flood peak, flood drawdown time and interarrival time. The use of such a suite of characteristics within a statistical and graphical framework allows for generalising distinct strategies of flood control operation that can be identified without any a priori knowledge of operations rules. Dam operation is highly dependent on the ratio of reservoir capacity to annual flood volume (impounded runoff index). Dams with high values of this index generally completely cut off flood peaks thus reducing time to peak, drawdown time and annual flood volume. Those with low values conduct early and late flow releases to extend the hydrograph, increasing time to peak, drawdown time and annual flood volume. The analyses reveal minimal flood control benefits from foothill dams in the lower Sacramento River (i.e. dissipation of the down-valley flood control signal). The lower part of the basin is instead reliant on a weir and bypass system to control lowland flooding. Data from a control gauge (i.e. with no upstream dams) suggest a background signature of global climate change expressed as shortened flood hydrograph falling limbs and lengthened flood interarrival times at low exceedence probabilities. This research has implications for flood control, water resource management, aquatic and riparian ecosystems and for rehabilitation strategies involving flow alteration and/or manipulation of sediment supplies. Copyright ?? 2006 John Wiley & Sons, Ltd.
Vaill, J.E.
1995-01-01
A bridge-scour study by the U.S. Geological Survey, in cooperation with the Colorado Department of Transportation, was begun in 1991 to evaluate bridges in the State for potential scour during floods. A part of that study was to apply a computer model for sediment-transport routing to simulate channel aggradation or degradation and pier scour during floods at three bridge sites in Colorado. Stream-channel reaches upstream and downstream from the bridges were simulated using the Bridge Stream Tube model for Alluvial River Simulation (BRI-STARS). Synthetic flood hydrographs for the 500-year floods were developed for Surveyor Creek near Platner and for the Rio Grande at Wagon Wheel Gap. A part of the recorded mean daily hydrograph for the peak flow of record was used for the Yampa River near Maybell. The recorded hydrograph for the peak flow of record exceeded the computed 500-year-flood magnitude for this stream by about 22 percent. Bed-material particle-size distributions were determined from samples collected at Surveyor Creek and the Rio Grande. Existing data were used for the Yampa River. The model was used to compute a sediment-inflow hydrograph using particle-size data collected and a specified sediment-transport equation at each site. Particle sizes ranged from less than 0.5 to 16 millimeters for Surveyor Creek, less than 4 to 128 millimeters for the Yampa River, and 22.5 to 150 millimeters for the Rio Grande. Computed scour at the peak steamflows ranged from -2.32 feet at Surveyor Creek near Platner to +0.63 foot at the Rio Grande at Wagon Wheel Gap. Pier- scour depths computed at the peak streamflows ranged from 4.46 feet at the Rio Grande at Wagon Wheel Gap to 5.94 feet at the Yampa River near Maybell. The number of streamtubes used in the model varied at each site.
NASA Astrophysics Data System (ADS)
Niedzielski, Tomasz; Mizinski, Bartlomiej
2016-04-01
The HydroProg system has been elaborated in frame of the research project no. 2011/01/D/ST10/04171 of the National Science Centre of Poland and is steadily producing multimodel ensemble predictions of hydrograph in real time. Although there are six ensemble members available at present, the longest record of predictions and their statistics is available for two data-based models (uni- and multivariate autoregressive models). Thus, we consider 3-hour predictions of water levels, with lead times ranging from 15 to 180 minutes, computed every 15 minutes since August 2013 for the Nysa Klodzka basin (SW Poland) using the two approaches and their two-model ensemble. Since the launch of the HydroProg system there have been 12 high flow episodes, and the objective of this work is to present the performance of the two-model ensemble in the process of forecasting these events. For a sake of brevity, we limit our investigation to a single gauge located at the Nysa Klodzka river in the town of Klodzko, which is centrally located in the studied basin. We identified certain regular scenarios of how the models perform in predicting the high flows in Klodzko. At the initial phase of the high flow, well before the rising limb of hydrograph, the two-model ensemble is found to provide the most skilful prognoses of water levels. However, while forecasting the rising limb of hydrograph, either the two-model solution or the vector autoregressive model offers the best predictive performance. In addition, it is hypothesized that along with the development of the rising limb phase, the vector autoregression becomes the most skilful approach amongst the scrutinized ones. Our simple two-model exercise confirms that multimodel hydrologic ensemble predictions cannot be treated as universal solutions suitable for forecasting the entire high flow event, but their superior performance may hold only for certain phases of a high flow.
Stanislawski, Larry V.; Falgout, Jeff T.; Buttenfield, Barbara P.
2015-01-01
Hydrographic networks form an important data foundation for cartographic base mapping and for hydrologic analysis. Drainage density patterns for these networks can be derived to characterize local landscape, bedrock and climate conditions, and further inform hydrologic and geomorphological analysis by indicating areas where too few headwater channels have been extracted. But natural drainage density patterns are not consistently available in existing hydrographic data for the United States because compilation and capture criteria historically varied, along with climate, during the period of data collection over the various terrain types throughout the country. This paper demonstrates an automated workflow that is being tested in a high-performance computing environment by the U.S. Geological Survey (USGS) to map natural drainage density patterns at the 1:24,000-scale (24K) for the conterminous United States. Hydrographic network drainage patterns may be extracted from elevation data to guide corrections for existing hydrographic network data. The paper describes three stages in this workflow including data pre-processing, natural channel extraction, and generation of drainage density patterns from extracted channels. The workflow is concurrently implemented by executing procedures on multiple subbasin watersheds within the U.S. National Hydrography Dataset (NHD). Pre-processing defines parameters that are needed for the extraction process. Extraction proceeds in standard fashion: filling sinks, developing flow direction and weighted flow accumulation rasters. Drainage channels with assigned Strahler stream order are extracted within a subbasin and simplified. Drainage density patterns are then estimated with 100-meter resolution and subsequently smoothed with a low-pass filter. The extraction process is found to be of better quality in higher slope terrains. Concurrent processing through the high performance computing environment is shown to facilitate and refine the choice of drainage density extraction parameters and more readily improve extraction procedures than conventional processing.
Discovery of Marine Datasets and Geospatial Metadata Visualization
NASA Astrophysics Data System (ADS)
Schwehr, K. D.; Brennan, R. T.; Sellars, J.; Smith, S.
2009-12-01
NOAA's National Geophysical Data Center (NGDC) provides the deep archive of US multibeam sonar hydrographic surveys. NOAA stores the data as Bathymetric Attributed Grids (BAG; http://www.opennavsurf.org/) that are HDF5 formatted files containing gridded bathymetry, gridded uncertainty, and XML metadata. While NGDC provides the deep store and a basic ERSI ArcIMS interface to the data, additional tools need to be created to increase the frequency with which researchers discover hydrographic surveys that might be beneficial for their research. Using Open Source tools, we have created a draft of a Google Earth visualization of NOAA's complete collection of BAG files as of March 2009. Each survey is represented as a bounding box, an optional preview image of the survey data, and a pop up placemark. The placemark contains a brief summary of the metadata and links to directly download of the BAG survey files and the complete metadata file. Each survey is time tagged so that users can search both in space and time for surveys that meet their needs. By creating this visualization, we aim to make the entire process of data discovery, validation of relevance, and download much more efficient for research scientists who may not be familiar with NOAA's hydrographic survey efforts or the BAG format. In the process of creating this demonstration, we have identified a number of improvements that can be made to the hydrographic survey process in order to make the results easier to use especially with respect to metadata generation. With the combination of the NGDC deep archiving infrastructure, a Google Earth virtual globe visualization, and GeoRSS feeds of updates, we hope to increase the utilization of these high-quality gridded bathymetry. This workflow applies equally well to LIDAR topography and bathymetry. Additionally, with proper referencing and geotagging in journal publications, we hope to close the loop and help the community create a true “Geospatial Scholar” infrastructure.
Liscum, Fred
2001-01-01
A study was done to estimate the effects of urban development in the Houston, Texas, metropolitan area on nine stormwater runoff characteristics. Three of the nine characteristics define the magnitude of stormwater runoff, and the remaining six characteristics describe the shape and duration of a storm hydrograph. Multiple linear regression was used to develop equations to estimate the nine stormwater runoff characteristics from basin and rainfall characteristics. Five basin characteristics and five rainfall characteristics were tested in the regressions to determine which basin and rainfall characteristics significantly affect stormwater runoff characteristics. Basin development factor was found to be significant in equations for eight of the nine stormwater runoff characteristics. Two sets of equations were developed, one for each of two regions based on soil type, from a database containing 1,089 storm discharge hydrographs for 42 sites compiled during 1964–89.The effects of urban development on the eight stormwater runoff characteristics were quantified by varying basin development factor in the equations and recomputing the stormwater runoff characteristics. The largest observed increase in basin development factor for region 1 (north of Buffalo Bayou) during the study resulted in corresponding increases in the characteristics that define magnitude of stormwater runoff ranging from about 40 percent (for direct runoff) to 235 percent (for peak yield); and corresponding decreases in the characteristics that describe hydrograph shape and duration ranging from about 22 percent (for direct runoff duration) to about 58 percent (for basin lag). The largest observed increase in basin development factor for region 2 (south of Buffalo Bayou) during the study resulted in corresponding increases in the characteristics that define magnitude of stormwater runoff ranging from about 33 percent (for direct runoff) to about 210 percent (for both peak flow and peak yield); and corresponding decreases in the characteristics that describe hydrograph shape and duration ranging from about 38 percent (for direct runoff duration) to about 64 percent (for basin lag).
Griffin, Eleanor R.; Wiele, Stephen M.
1996-01-01
A one-dimensional model of unsteady discharge waves was applied to research flowr that were released from Glen Canyon Dam in support of the Glen Canyon Environmental Studies. These research flows extended over periods of 11 days during which the discharge followed specific, regular patterns repeated on a daily cycle that were similar to the daily releases for power generation. The model was used to produce discharge hydrographs at 38 selected sites in Marble and Grand Canyons for each of nine unsteady flows released from the dam in 1990 and 1991. In each case, the discharge computed from stage measurements and the associated stage-discharge relation at the streamflow-gaging station just below the dam (09379910 Colorado River Hlow Glen Canyon Dam) was routed to Diamond Creek, which is 386 kilometers downstream. Steady and unsteady tributary inflows downstream from the dam were included in the model calculations. Steady inflow to the river from tributaries downstream from the dam was determined for each case by comparing the steady base flow preceding and following the unsteady flow measured at six streamflow-gaging stations between Glen Canyon Dam and Diamond Creek. During three flow periods, significant unsteady inflow was received from the Paria River, or the Little Colorado River, or both. The amount and timing of unsteady inflow was determined using the discharge computed from records of streamflow-gaging stations on the tributaries. Unsteady flow then was added to the flow calculated by the model at the appropriate location. Hydrographs were calculated using the model at 5 streamflow-gaging stations downstream from the dam and at 33 beach study sites. Accuracy of model results was evaluated by comparing the results to discharge hydrographs computed from the records of the five streamflow-gaging stations between Lees Ferry and Lake Mead. Results show that model predictions of wave speed and shape agree well with data from the five streamflow-gaging stations.
NASA Astrophysics Data System (ADS)
Arsenault, Richard; Gatien, Philippe; Renaud, Benoit; Brissette, François; Martel, Jean-Luc
2015-10-01
This study aims to test whether a weighted combination of several hydrological models can simulate flows more accurately than the models taken individually. In addition, the project attempts to identify the most efficient model averaging method and the optimal number of models to include in the weighting scheme. In order to address the first objective, streamflow was simulated using four lumped hydrological models (HSAMI, HMETS, MOHYSE and GR4J-6), each of which were calibrated with three different objective functions on 429 watersheds. The resulting 12 hydrographs (4 models × 3 metrics) were weighted and combined with the help of 9 averaging methods which are the simple arithmetic mean (SAM), Akaike information criterion (AICA), Bates-Granger (BGA), Bayes information criterion (BICA), Bayesian model averaging (BMA), Granger-Ramanathan average variant A, B and C (GRA, GRB and GRC) and the average by SCE-UA optimization (SCA). The same weights were then applied to the hydrographs in validation mode, and the Nash-Sutcliffe Efficiency metric was measured between the averaged and observed hydrographs. Statistical analyses were performed to compare the accuracy of weighted methods to that of individual models. A Kruskal-Wallis test and a multi-objective optimization algorithm were then used to identify the most efficient weighted method and the optimal number of models to integrate. Results suggest that the GRA, GRB, GRC and SCA weighted methods perform better than the individual members. Model averaging from these four methods were superior to the best of the individual members in 76% of the cases. Optimal combinations on all watersheds included at least one of each of the four hydrological models. None of the optimal combinations included all members of the ensemble of 12 hydrographs. The Granger-Ramanathan average variant C (GRC) is recommended as the best compromise between accuracy, speed of execution, and simplicity.
Dual-band frequency selective surface with large band separation and stable performance
NASA Astrophysics Data System (ADS)
Zhou, Hang; Qu, Shao-Bo; Peng, Wei-Dong; Lin, Bao-Qin; Wang, Jia-Fu; Ma, Hua; Zhang, Jie-Qiu; Bai, Peng; Wang, Xu-Hua; Xu, Zhuo
2012-05-01
A new technique of designing a dual-band frequency selective surface with large band separation is presented. This technique is based on a delicately designed topology of L- and Ku-band microwave filters. The two band-pass responses are generated by a capacitively-loaded square-loop frequency selective surface and an aperture-coupled frequency selective surface, respectively. A Faraday cage is located between the two frequency selective surface structures to eliminate undesired couplings. Based on this technique, a dual-band frequency selective surface with large band separation is designed, which possesses large band separation, high selectivity, and stable performance under various incident angles and different polarizations.
Analysis of flood hazard under consideration of dike breaches
NASA Astrophysics Data System (ADS)
Vorogushyn, S.; Apel, H.; Lindenschmidt, K.-E.; Merz, B.
2009-04-01
The study focuses on the development and application of a new modelling system which allows a comprehensive flood hazard assessment along diked river reaches under consideration of dike failures. The proposed Inundation Hazard Assessment Model (IHAM) represents a hybrid probabilistic-deterministic model. It comprises three models interactively coupled at runtime. These are: (1) 1D unsteady hydrodynamic model of river channel and floodplain flow between dikes, (2) probabilistic dike breach model which determines possible dike breach locations, breach widths and breach outflow discharges, and (3) 2D raster-based diffusion wave storage cell model of the hinterland areas behind the dikes. Due to the unsteady nature of the 1D and 2D coupled models, the dependence between hydraulic load at various locations along the reach is explicitly considered. The probabilistic dike breach model describes dike failures due to three failure mechanisms: overtopping, piping and slope instability caused by the seepage flow through the dike core (micro-instability). Dike failures for each mechanism are simulated based on fragility functions. The probability of breach is conditioned by the uncertainty in geometrical and geotechnical dike parameters. The 2D storage cell model driven by the breach outflow boundary conditions computes an extended spectrum of flood intensity indicators such as water depth, flow velocity, impulse, inundation duration and rate of water rise. IHAM is embedded in a Monte Carlo simulation in order to account for the natural variability of the flood generation processes reflected in the form of input hydrographs and for the randomness of dike failures given by breach locations, times and widths. The scenario calculations for the developed synthetic input hydrographs for the main river and tributary were carried out for floods with return periods of T = 100; 200; 500; 1000 a. Based on the modelling results, probabilistic dike hazard maps could be generated that indicate the failure probability of each discretised dike section for every scenario magnitude. Besides the binary inundation patterns that indicate the probability of raster cells being inundated, IHAM generates probabilistic flood hazard maps. These maps display spatial patterns of the considered flood intensity indicators and their associated return periods. The probabilistic nature of IHAM allows for the generation of percentile flood hazard maps that indicate the median and uncertainty bounds of the flood intensity indicators. The uncertainty results from the natural variability of the flow hydrographs and randomness of dike breach processes. The same uncertainty sources determine the uncertainty in the flow hydrographs along the study reach. The simulations showed that the dike breach stochasticity has an increasing impact on hydrograph uncertainty in downstream direction. Whereas in the upstream part of the reach the hydrograph uncertainty is mainly stipulated by the variability of the flood wave form, the dike failures strongly shape the uncertainty boundaries in the downstream part of the reach. Finally, scenarios of polder deployment for the extreme floods with T = 200; 500; 1000 a were simulated with IHAM. The results indicate a rather weak reduction of the mean and median flow hydrographs in the river channel. However, the capping of the flow peaks resulted in a considerable reduction of the overtopping failures downstream of the polder with a simultaneous slight increase of the piping and slope micro-instability frequencies explained by a more durable average impoundment. The developed IHAM simulation system represents a new scientific tool for studying fluvial inundation dynamics under extreme conditions incorporating effects of technical flood protection measures. With its major outputs in form of novel probabilistic inundation and dike hazard maps, the IHAM system has a high practical value for decision support in flood management.
Forecasting approaches to the Mekong River
NASA Astrophysics Data System (ADS)
Plate, E. J.
2009-04-01
Hydrologists distinguish between flood forecasts, which are concerned with events of the immediate future, and flood predictions, which are concerned with events that are possible, but whose date of occurrence is not determined. Although in principle both involve the determination of runoff from rainfall, the analytical approaches differ because of different objectives. The differences between the two approaches will be discussed, starting with an analysis of the forecasting process. The Mekong River in south-east Asia is used as an example. Prediction is defined as forecast for a hypothetical event, such as the 100-year flood, which is usually sufficiently specified by its magnitude and its probability of occurrence. It forms the basis for designing flood protection structures and risk management activities. The method for determining these quantities is hydrological modeling combined with extreme value statistics, today usually applied both to rainfall events and to observed river discharges. A rainfall-runoff model converts extreme rainfall events into extreme discharges, which at certain gage points along a river are calibrated against observed discharges. The quality of the model output is assessed against the mean value by means of the Nash-Sutcliffe quality criterion. The result of this procedure is a design hydrograph (or a family of design hydrographs) which are used as inputs into a hydraulic model, which converts the hydrograph into design water levels according to the hydraulic situation of the location. The accuracy of making a prediction in this sense is not particularly high: hydrologists know that the 100-year flood is a statistical quantity which can be estimated only within comparatively wide error bounds, and the hydraulics of a river site, in particular under conditions of heavy sediment loads has many uncertainties. Safety margins, such as additional freeboards are arranged to compensate for the uncertainty of the prediction. Forecasts, on the other hand, have as objective to obtain an accurate hydrograph of the near future. The method by means of which this is done is not as important as the accuracy of the forecast. A mathematical rainfall-runoff model is not necessarily a good forecast model. It has to be very carefully designed, and in many cases statistical models are found to give better results than mathematical models. Forecasters have the advantage of knowing the course of the hydrographs up to the point in time where forecasts have to be made. Therefore, models can be calibrated on line against the hydrograph of the immediate past. To assess the quality of a forecast, the quality criterion should not be based on the mean value, as does the Nash-Sutcliffe criterion, but should be based on the best forecast given the information up to the forecast time. Without any additional information, the best forecast when only the present day value is known is to assume a no-change scenario, i.e. to assume that the present value does not change in the immediate future. For the Mekong there exists a forecasting system which is based on a rainfall-runoff model operated by the Mekong River Commission. This model is found not to be adequate for forecasting for periods longer than one or two days ahead. Improvements are sought through two approaches: a strictly deterministic rainfall-runoff model, and a strictly statistical model based on regression with upstream stations. The two approaches are com-pared, and suggestions are made how to best combine the advantages of both approaches. This requires that due consideration is given to critical hydraulic conditions of the river at and in between the gauging stations. Critical situations occur in two ways: when the river overtops, in which case the rainfall-runoff model is incomplete unless overflow losses are considered, and at the confluence with tributaries. Of particular importance is the role of the large Tonle Sap Lake, which dampens the hydrograph downstream of Phnom Penh. The effect of these components of river hydraulics on forecasting accuracy will be assessed.