Science.gov

Sample records for hydroliquefaction solvent-induced scission

  1. Viral Membrane Scission

    PubMed Central

    Rossman, Jeremy S.; Lamb, Robert A.

    2014-01-01

    Virus budding is a complex, multistep process in which viral proteins make specific alterations in membrane curvature. Many different viral proteins can deform the membrane and form a budding virion, but very few can mediate membrane scission to complete the budding process. As a result, enveloped viruses have developed numerous ways of facilitating membrane scission, including hijacking host cellular scission machinery and expressing their own scission proteins. These proteins mediate scission in very different ways, though the biophysical mechanics underlying their actions may be similar. In this review, we explore the mechanisms of membrane scission and the ways in which enveloped viruses use these systems to mediate the release of budding virions. PMID:24099087

  2. Microscopic Description of Scission Configurations

    SciTech Connect

    Dubray, N.; Goutte, H.; Berger, J. F.

    2007-02-26

    Properties of 226Th, 256Fm, 258Fm and 260Fm nuclei in the scission region are described using a full-microscopic Hartree-Fock-Bogoliubov approach with the effective Gogny nucleon-nucleon interaction. In a first step, the Potential Energy Surfaces are computed in the (q 20, q30) plane, the scission lines are found, fulfilling a given criterion on the density in the nuclear neck. Finally a few properties of the fragments along this line are presented.

  3. Evaluation of humic fractions potential to produce bio-oil through catalytic hydroliquefaction.

    PubMed

    Lemée, L; Pinard, L; Beauchet, R; Kpogbemabou, D

    2013-12-01

    Humic substances were extracted from biodegraded lignocellulosic biomass (LCBb) and submitted to catalytic hydroliquefaction. The resulting bio-oils were compared with those of the initial biomass. Compared to fulvic and humic acids, humin presented a high conversion rate (74 wt.%) and the highest amount of liquid fraction (66 wt.%). Moreover it represented 78% of LCBb. Humin produced 43 wt.% of crude oil and 33 wt.% of hexane soluble fraction containing hydrocarbons which is a higher yield than those from other humic substances as well as from the initial biomass. Hydrocarbons were mainly aromatics, but humin produces the highest amount of aliphatics. Considering the quantity, the quality and the molecular composition of the humic fractions, a classification of the potential of the latter to produce fuel using hydroliquefaction process can be assess: Hu>AF>AH. The higher heating value (HHV) and oxygen content of HSF from humin were fully compatible with biofuel characteristics.

  4. Mechanistic studies on the hydroliquefaction of Victorian brown coal and of coal derived products

    SciTech Connect

    Larkins, F.P.; Cassidy, P.J.; Hertan, P.A.; Jackson, W.R.; Marshall, M.; Rush, D.

    1983-08-01

    The overall aim of our recent studies has been to obtain a more complete understanding of the mechanisms for the principal reactions which occur during the catalysed hydroliquefaction of low rank, high oxygen containing (ca. 25 wt% db) coals. The results of 70 ml batch autoclave studies with and without added catalysts on Victorian brown coal, on a number of different coal derived products and on related model ether compounds are discussed herein. More complete details of various aspects of this work may be found elsewhere. On the basis of these investigations a mechanism is proposed for the hydroliquefaction process which emphasises the role of catalysts in inhibiting repolymerisation reactions, the significance of interconvertibility of coal derived products and the importance of hydrogen donation from molecular hydrogen and the vehicle tetralin.

  5. Alternative fuel production by catalytic hydroliquefaction of solid municipal wastes, primary sludges and microalgae.

    PubMed

    Lemoine, F; Maupin, I; Lemée, L; Lavoie, J-M; Lemberton, J-L; Pouilloux, Y; Pinard, L

    2013-08-01

    An alternative fuel production was investigated through catalytic hydroliquefaction of three different carbonaceous sources: solid municipal wastes (MW), primary sludges (PS), and microalgae (MA). The reaction was carried out under hydrogen pressure, at different temperatures (330, 380 and 450°C), with a Raney nickel catalyst and two different hydrogen donor solvents: a "fossil solvent" (tetralin) and a "green solvent" (2-methyl-hydro-furan). The feeds analyses (TDA-TGA, ICP-AES, lipids quantification) showed that MW and PS had similar characteristics and physico-chemical properties, but different from those of MA. The hydroliquefaction of these feeds allowed to obtain high oil yields, with a significant energetic value, similar to that of a bio-petroleum. 2-methyl-hydro-furan was more efficient than tetralin for the treatment of the strongly bio-degraded biomasses MW and PS, while better results were obtained with tetralin in the case of MA.

  6. Mechanistic studies on the hydroliquefaction of Victorian brown coal and of coal derived products

    SciTech Connect

    Larkins, F.P.; Jackson, W.R.; Hertan, P.A.; Cassidy, P.J.; Marshall, M.; Rash, D.

    1983-01-01

    The reaction mechanisms of the hydroliquefaction of Victorian brown coal are studied. In particular, the catalytic effects of iron and tin-based catalyst systems are investigated. Samples were hydrogenated in a 70 mL rocking autoclave using a 1:1 slurry of coal and tetralin at an initial hydrogen pressure of 1-10 mPa for one hour at 385/sup 0/C. Conversions as a function of reaction temperature and initial hydrogen pressure are presented.

  7. Bio-oil from thermo-chemical hydro-liquefaction of wet sewage sludge.

    PubMed

    Malins, Kristaps; Kampars, Valdis; Brinks, Janis; Neibolte, Ilze; Murnieks, Raimonds; Kampare, Ruta

    2015-01-01

    The present work demonstrates the influence of experimental conditions such as weight ratio of sewage sludge to water (1/0-1/15), reaction temperature (200-350°C), initial H2 pressure (2.0-11.0MPa), residence time (10-100min) and type of catalysts (Na2CO3, Raney nickel, FeSO4, MoS2) on hydro-liquefaction process of sewage sludge. High amount of water improves the hydro-liquefaction process of sewage sludge by increasing the yield of bio-oil and the total conversion. The highest yield of bio-oil (47.79 wt.%) from sewage sludge was obtained with initial H2 pressure 5.0MPa, reaction temperature 300°C, and residence time 40min. Under these experimental conditions, using weight ratio of sewage sludge to water 1/5, catalyst (FeSO4) - 5 wt.% of dry SS, mixing speed 350rpm the obtained bio-oil had the highest energy recovery (69.84%), total conversion (70.64%) and its calorific value was 35.22MJ/kg.

  8. Hydro-liquefaction of microcrystalline cellulose, xylan and industrial lignin in different supercritical solvents.

    PubMed

    Li, Qingyin; Liu, Dong; Hou, Xulian; Wu, Pingping; Song, Linhua; Yan, Zifeng

    2016-11-01

    The influences of solvent on hydro-liquefaction of cellulose, xylan, and lignin were investigated using micro-autoclave. The maximum conversion and bio-oil yield obtained from cellulose and xylan liquefaction were achieved in methanol, whereas similar liquefaction characteristics of lignin were observed in methanol and ethanol. The molecular simulation of interactions between solvents and subcomponents indicated that methanol and ethanol were highly miscible with raw materials. GC-MS and FT-ICR MS characterization revealed that the chemical compositions of liquid products highly depended on the utilized feedstocks. Esters, ketones, and aldehydes were mainly produced from cellulose and xylan conversion, whereas aromatic compounds were primarily derived from lignin conversion. EA results showed that methanol favored the hydrogenation and deoxygenation, resulting in the heating value increased. It could be concluded that the oil quality was highly improved in supercritical methanol. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Generalized kinetic model of catalyzed hydroliquefaction of coal incorporating tetralin dehydrogenation reaction

    SciTech Connect

    Ghosh, A.K.; Prasad, G.N.; Sridhar, T.

    1987-09-01

    A three-component kinetic model previously reported for uncatalyzed liquefaction has been used to simulate hydroliquefaction of Victorian brown coal with three different types of catalysts: iron-tin; iron; and haematite. The presence of catalyst is found to enhance hydrogenation of coal as well as the equilibrium hydrogenation-dehydrogenation reactions involving donor solvent. The thermal dissolution and autohydrogenation reaction rates are independent of catalyst used. Iron-tin-based catalyst has been found to be most effective for the hydrogenation reaction step. The simulation shows that the reactions producing hydrogen from tetralin are much slower than the coal-hydrogen reactions; hence, efforts aimed at efficient abstraction of hydrogen from the hydrogen donors may be beneficial.

  10. The scission point configuration of fissioning nuclei

    NASA Astrophysics Data System (ADS)

    Ivanyuk, Fedir

    2016-06-01

    We define the optimal shape which fissioning nuclei attain just before the scission and calculate the deformation energy as function of the mass asymmetry at the scission point. The calculated deformation energy is used in quasi-static approximation for the estimation of mass distribution, total kinetic and excitation energy of fission fragments, and the total number of prompt neutrons. The calculated results reproduce rather well the experimental data on the position of the peaks in the mass distribution of fission fragments, the total kinetic and excitation energy of fission fragments. The calculated value of neutron multiplicity is somewhat larger than experimental results. The saw-tooth structure of neutron multiplicity is qualitatively reproduced.

  11. In vitro DNA scission activity of heterometallocenes.

    PubMed

    Kowalski, Konrad; Suwaki, Natsuko; Zakrzewski, Janusz; White, Andrew J P; Long, Nicholas J; Mann, David J

    2007-02-21

    A comparative DNA scission activity study of azaferrocene, N-methyl-azaferrocene iodide and 3,3',4,4'-tetramethyl-1,1'-diphosphaferrocene (featuring iron in a +2 oxidation state), along with ferrocene (iron +2) and ferrocenium (iron +3) cation is described. Experiments indicate a high cleavage activity of azaferrocene and its N-methyl derivative in DMSO. DNA cleavage activity can be slowed down by addition of a free radical scavenger (thiourea) or triggered by addition of a reductive agent (dithiothreitol, DTT). The X-ray crystal structure of the N-methyl-2,5-dimethylazaferrocene cation (iron +2) with hexafluorophosphate as counter anion is also reported.

  12. Combination of pyrolysis and hydroliquefaction of CCB-treated wood for energy recovery: optimization and products characterization.

    PubMed

    Kinata, Silao Espérance; Loubar, Khaled; Paraschiv, Maria; Belloncle, Christophe; Tazerout, Mohand

    2012-08-01

    In this paper, pyrolysis and hydroliquefaction processes were successively used to convert CCB-treated wood into bio-oil with respect to environment. Pyrolysis temperature has been optimized to produce maximum yield of charcoal with a high metal content (Cu, Cr, and B). The results obtained indicate that the pyrolysis at 300 °C and 30 min are the optimal conditions giving high yield of charcoal about 45% which contains up to 94% of Cu, 100% of Cr and 88% of B. After pyrolysis process, the charcoal has been converted into bio-oil using hydroliquefaction process. The optimization approach for the yield of bio-oil using a complete factorial design with three parameters: charcoal/solvent, temperature and hydrogen pressure was discussed. It is observed that the temperature is the most significant parameter and the optimum yield of bio-oil is around 82%. The metal analysis shows that the metals present in the bio-oil is very negligible.

  13. Prompt Fission Neutrons as Probes to Nuclear Configurations at Scission

    SciTech Connect

    Talou, P.; Kawano, T.; Bonneau, L.

    2008-04-17

    Prompt fission neutrons and gamma-rays emitted by excited primary fission fragments are indirect probes to the nuclear configurations present near the scission point. By studying detailed characteristics of these quantities, it is shown that one can discriminate between various assumptions regarding the sharing of the free energy at scission among the two fragments. The case of low-energy neutron-induced fission on {sup 235}U is studied and interpreted in terms of fission modes.

  14. Visualizing Nuclear Scission through a Multifield Extension of Topological Analysis.

    PubMed

    Duke, D; Carr, H; Knoll, A; Schunck, N; Nam, Hai Ah; Staszczak, A

    2012-12-01

    In nuclear science, density functional theory (DFT) is a powerful tool to model the complex interactions within the atomic nucleus, and is the primary theoretical approach used by physicists seeking a better understanding of fission. However DFT simulations result in complex multivariate datasets in which it is difficult to locate the crucial `scission' point at which one nucleus fragments into two, and to identify the precursors to scission. The Joint Contour Net (JCN) has recently been proposed as a new data structure for the topological analysis of multivariate scalar fields, analogous to the contour tree for univariate fields. This paper reports the analysis of DFT simulations using the JCN, the first application of the JCN technique to real data. It makes three contributions to visualization: (i) a set of practical methods for visualizing the JCN, (ii) new insight into the detection of nuclear scission, and (iii) an analysis of aesthetic criteria to drive further work on representing the JCN.

  15. The course of chronic solvent induced encephalopathy: a systematic review.

    PubMed

    van Valen, Evelien; Wekking, Ellie; van der Laan, Gert; Sprangers, Mirjam; van Dijk, Frank

    2009-11-01

    Worldwide millions of workers are exposed to organic solvents. Long term exposure leads in some workers to the development of Chronic Solvent induced Encephalopathy (CSE). The first reports about CSE came from the European Nordic countries in the 1970s. In spite of decades of experience with this disease, little is known about the course and prognostic factors of CSE. To provide an overview of the evidence about the course and prognostic factors of CSE. A systematic review was conducted. Databases PubMed, PsycINFO (1970-2008) and EMBASE (1980-2008) were searched with the search strategy: solvent AND follow up AND (encephalopathy OR chronic intoxication). Inclusion criteria were: written in English, study population of CSE patients, follow-up time of at least 1 year. Included articles were assessed on methodological quality. Sixty unique articles were retrieved of which sixteen met the inclusion criteria. Data extraction provided information about domains of neurology, neuropsychology, physical and mental health perceptions, and social consequences. In a number of studies no significant changes, and in other studies improvement of functioning could be measured. Prognostic factors resulting from included studies were summarized for each domain indicating a potential positive influence of younger age and lower exposure variables. Due to the large heterogeneity of methodology no levels of evidence could be obtained. This review shows that there is a need for future research that addresses a variety of domains of functioning, hopefully resulting in an overall prognostic model for CSE. Studies in this review are in agreement about CSE being a non-progressive disease in which no severe deterioration of functioning occurs after diagnosis. In a number of studies no significant changes, and in other studies improvement of functioning could be measured. Presumably cessation of exposure might be one of the causal factors for the non-progressive character of the disease as has

  16. Silk fibroin gelation via non-solvent induced phase separation.

    PubMed

    Kasoju, Naresh; Hawkins, Nicholas; Pop-Georgievski, Ognen; Kubies, Dana; Vollrath, Fritz

    2016-03-01

    Tissue engineering benefits from novel materials with precisely tunable physical, chemical and mechanical properties over a broad range. Here we report a practical approach to prepare Bombyx mori silk fibroin hydrogels using the principle of non-solvent induced phase separation (NIPS). A combination of reconstituted silk fibroin (RSF) and methanol (non-solvent), with a final concentration of 2.5% w/v and 12.5% v/v respectively, maintained at 22 °C temperature turned into a hydrogel within 10 hours. Freeze-drying of this gel gave a foam with a porosity of 88%, a water uptake capacity of 89% and a swelling index of 8.6. The gelation kinetics and the loss tangent of the gels were investigated by rheometry. The changes in the morphology of the porous foams were visualized by SEM. The changes in RSF chemical composition and the relative fraction of its secondary structural elements were analyzed by ATR-FTIR along with Fourier self-deconvolution. And, the changes in the glass transition temperature, specific heat capacity and the relative fraction of crystallinity of RSF were determined by TM-DSC. Data suggested that RSF-water-methanol behaved as a polymer-solvent-non-solvent ternary phase system, wherein the demixing of the water-methanol phases altered the thermodynamic equilibrium of RSF-water phases and resulted in the desolvation and eventual separation of the RSF phase. Systematic analysis revealed that both gelation time and the properties of hydrogels and porous foams could be controlled by the ratios of RSF and non-solvent concentration as well as by the type of non-solvent and incubation temperature. Due to the unique properties we envisage that the herein prepared NIPS induced RSF hydrogels and porous foams can possibly be used for the encapsulation of cells and/or for the controlled release of both hydrophilic and hydrophobic drugs.

  17. Friction Mediates Scission of Tubular Membranes Scaffolded by BAR Proteins.

    PubMed

    Simunovic, Mijo; Manneville, Jean-Baptiste; Renard, Henri-François; Evergren, Emma; Raghunathan, Krishnan; Bhatia, Dhiraj; Kenworthy, Anne K; Voth, Gregory A; Prost, Jacques; McMahon, Harvey T; Johannes, Ludger; Bassereau, Patricia; Callan-Jones, Andrew

    2017-06-29

    Membrane scission is essential for intracellular trafficking. While BAR domain proteins such as endophilin have been reported in dynamin-independent scission of tubular membrane necks, the cutting mechanism has yet to be deciphered. Here, we combine a theoretical model, in vitro, and in vivo experiments revealing how protein scaffolds may cut tubular membranes. We demonstrate that the protein scaffold bound to the underlying tube creates a frictional barrier for lipid diffusion; tube elongation thus builds local membrane tension until the membrane undergoes scission through lysis. We call this mechanism friction-driven scission (FDS). In cells, motors pull tubes, particularly during endocytosis. Through reconstitution, we show that motors not only can pull out and extend protein-scaffolded tubes but also can cut them by FDS. FDS is generic, operating even in the absence of amphipathic helices in the BAR domain, and could in principle apply to any high-friction protein and membrane assembly. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Mechanically Induced Scission and Subsequent Thermal Remending of Perfluorocyclobutane Polymers

    DTIC Science & Technology

    2011-10-03

    first reported by Wudl and co-workers, who devised a polymeric material that would fail through a thermally reversible retro- Diels Alder reaction when...similar to that of other retro- Diels Alder chain scission mechanisms,9,18 but is shown here to proceed through a reactive intermediate that can

  19. Fundamentals of coal depolymerization under hydroliquefaction conditions: kinetic and structural analyses of a bituminous (Powhatan No. 5) coal and its liquefaction products. Quarterly report, July 1-September 30, 1981

    SciTech Connect

    Petrakis, L.; Grandy, D.W.; Gavalas, G.; Allen, D.T.; Oka, M.; Maciel, G.; Sullivan, M.

    1981-09-01

    This is one of the three volumes that constitute the final report for the title project. The objectives of the project included: (a) the use of /sup 13/C solid state NMR to assess the structural features of a given coal (Powhatan No. 5) and how its structure might change upon hydroliquefaction; (b) the petrographic assessment of the maceral make-up of the coal and the petrographic changes upon hydroliquefaction; (c) a better definition of the molecular profile of the products so that eventually reaction pathways of coal molecules upon hydroliquefaction might be delineated. This volume contains material that addresses these objectives. Under a subcontract to Colorado State University, solid state /sup 13/C NMR was used for a very detailed investigation of Powhatan No. 5 coal and to study certain macerals as well as the structural features of the coal under different hydroliquefaction conditions. For some of the macerals, important structural features are obtained other than the usual aromatic/nonaromatic carbon ratio. The petrographic changes under different hydroliquefaction conditions are shown. Some of the work entailed the development and utilization of methodology for the definition of the chemical structures of coal liquids. In addition, the pyrolytic behavior of a model system (tetralin) was pursued using thermochemical techniques. The overall implication and pertinence of these aspects of the work to the fundamentals of the depolymerization of Powhatan No. 5 coal are presented in the Executive Summary for this project (Report FE-14940-8).

  20. Role of the hydrogen-donor solvent in coal hydroliquefaction. Progress report, September 1, 1979-November 30, 1980

    SciTech Connect

    Beishline, R.R.

    1980-07-25

    The principal disproportionation products of 1,2-dihydronaphthalene (1,2-DHN) are naphthalene (Nap) and tetralin (Tet). Dimers of 1,2-DHN constitute 17% and 5% of the respective liquid phase (285 to 315/sup 0/C) and gas phase (385 to 410/sup 0/C) products. The Nap:Tet ratio is one in the presence of solvents, but is > 1 and < 2 in their absence. Gas phase reaction kinetics indicate that 1,2-DHN disappears by simultaneous first and second order reactions. These results are consistent with a concerted second order disappearance of 1,2-DHN to produce equal amounts of Nap and Tet, accompanied by either carbonium ion or free radical side reactions that produce more Nap than Tet, together with 1,2-DHN dimers. Preliminary evaluation of the liquid phase kinetics suggest they follow a similar pattern. The structures of the dimers should reveal whether they were formed by a carbonium ion or free radical mechanism. Isolation of the dimers will be attempted by preparative GC (PGC) followed by TLC to remove thermal decomposition products formed during PGC. Exploratory results suggest that heating 1,2-DHN (300/sup 0/C) in the presence of tetraphenylethane, which dissociates into diphenylmethyl radicals, may constitute a model for the free radical conversion of 1,2-DHN into Nap during coal hydroliquefaction. Further studies of this system will be conducted.

  1. Energy balance and deformation at scission in 240Pu fission

    NASA Astrophysics Data System (ADS)

    Caamaño, Manuel; Farget, Fanny

    2017-07-01

    The experimental determination of the total excitation energy, the total kinetic energy, and the evaporation neutron multiplicity of fully identified fragments produced in transfer-induced fission of 240Pu, combined with reasonable assumptions, permits to extract the intrinsic and collective excitation energy of the fragments as a function of their atomic number, along with their quadrupole deformation and their distance at scission. The results show that the deformation increases with the atomic number, Z, except for a local maximum around Z = 44 and a minimum around Z = 50, associated with the effect of deformed shells at Z ∼ 44, N ∼ 64, and spherical shells in 132Sn, respectively. The distance between the fragments also shows a minimum around Z1 = 44, Z2 = 50, suggesting a mechanism that links the effect of structure with the length of the neck at scission.

  2. On-line Monitoring of Ultrasonic Polymer Chain Scission

    NASA Astrophysics Data System (ADS)

    Akyüz, Ali; Giz, Ahmet; Çatalgil-Giz, Huceste

    2007-03-01

    Poly vinyl pyrrolidone in dilute aqueous solution was subjected to ultrasonic scission. The decrease of the molecular weight was monitored by light scattering via a BIMwA molecular weight analyzer. The on-line data was compared with the theoretical models of Schmid, Malhorta, Price, Madras and Berlin, Doulah,. The models were compared on the bases of χ^2 analysis and fit quality. It is seen that on-line data can discriminate among theoretical models.

  3. Role of dynamical deformation in pre-scission neutron multiplicity

    NASA Astrophysics Data System (ADS)

    Kumar, Neeraj; Mohsina, Shabnam; Sadhukhan, Jhilam; Verma, Shashi

    2017-09-01

    The light-particle emission probability from an excited compound nucleus depends explicitly on the time-evolution of the system as the available internal excitation energy and, consequently, the particle decay widths depend on the instantaneous deformation of the nucleus. The Langevin dynamical model for fission is employed to extract this deformation dependence in pre-scission particle multiplicities by following the propagation of fissioning trajectories up to scission. The variation of particle decay widths with nuclear deformation is accounted more precisely in comparison to the existing calculations. The number of neutrons emitted from different configurations of the compound nucleus are calculated for a detailed analysis. The deformation dependence of particle emission widths is found to be relevant for highly fissile systems where the dynamics is primarily governed by the saddle to scission motion. This dynamical effect essentially predicts the nuclear shape evolution through evaporated light particles and, for a heavy compound system, simultaneous measurement of neutron multiplicities for fission and evaporation residue events can reveal its intricate nature.

  4. Controlling the bond scission sequence of oxygenates for energy applications

    NASA Astrophysics Data System (ADS)

    Stottlemyer, Alan L.

    The so called "Holy Grail" of heterogeneous catalysis is a fundamental understanding of catalyzed chemical transformations which span multidimensional scales of both length and time, enabling rational catalyst design. Such an undertaking is realizable only with an atomic level understanding of bond formation and destruction with respect to intrinsic properties of the metal catalyst. In this study, we investigate the bond scission sequence of small oxygenates (methanol, ethanol, ethylene glycol) on bimetallic transition metal catalysts and transition metal carbide catalysts. Oxygenates are of interest both as hydrogen carriers for reforming to H2 and CO and as fuels in direct alcohol fuel cells (DAFC). To address the so-called "materials gap" and "pressure gap" this work adopted three parallel research approaches: (1) ultra high vacuum (UHV) studies including temperature programmed desorption (TPD) and high-resolution electron energy loss spectroscopy (HREELS) on polycrystalline surfaces; (2) DFT studies including thermodynamic and kinetic calculations; (3) electrochemical studies including cyclic voltammetry (CV) and chronoamperometry (CA). Recent studies have suggested that tungsten monocarbide (WC) may behave similarly to Pt for the electrooxidation of oxygenates. TPD was used to quantify the activity and selectivity of oxygenate decomposition for WC and Pt-modifiedWC (Pt/WC) as compared to Pt. While decomposition activity was generally higher on WC than on Pt, scission of the C-O bond resulted in alkane/alkene formation on WC, an undesired product for DAFC. When Pt was added to WC by physical vapor deposition C-O bond scission was limited, suggesting that Pt synergistically modifies WC to improve the selectivity toward C-H bond scission to produce H2 and CO. Additionally, TPD confirmed WC and Pt/WC to be more CO tolerant than Pt. HREELS results verified that surface intermediates were different on Pt/WC as compared to Pt or WC and evidence of aldehyde

  5. Constitutive models for rubber networks undergoing simultaneous crosslinking and scission.

    SciTech Connect

    Thompson, Aidan Patrick; Curro, John G.; Rottach, Dana R.; Grest, Gary Stephen; Budzien, Joanne L.; Lo, David Chi S.

    2006-01-01

    Constitutive models for chemically reacting networks are formulated based on a generalization of the independent network hypothesis. These models account for the coupling between chemical reaction and strain histories, and have been tested by comparison with microscopic molecular dynamics simulations. An essential feature of these models is the introduction of stress transfer functions that describe the interdependence between crosslinks formed and broken at various strains. Efforts are underway to implement these constitutive models into the finite element code Adagio. Preliminary results are shown that illustrate the effects of changing crosslinking and scission rates and history.

  6. Membrane remodeling by the M2 amphipathic helix drives influenza virus membrane scission

    PubMed Central

    Martyna, Agnieszka; Bahsoun, Basma; Badham, Matthew D.; Srinivasan, Saipraveen; Howard, Mark J.; Rossman, Jeremy S.

    2017-01-01

    Membrane scission is a crucial step in all budding processes, from endocytosis to viral budding. Many proteins have been associated with scission, though the underlying molecular details of how scission is accomplished often remain unknown. Here, we investigate the process of M2-mediated membrane scission during the budding of influenza viruses. Residues 50–61 of the viral M2 protein bind membrane and form an amphipathic α-helix (AH). Membrane binding requires hydrophobic interactions with the lipid tails but not charged interactions with the lipid headgroups. Upon binding, the M2AH induces membrane curvature and lipid ordering, constricting and destabilizing the membrane neck, causing scission. We further show that AHs in the cellular proteins Arf1 and Epsin1 behave in a similar manner. Together, they represent a class of membrane-induced AH domains that alter membrane curvature and fluidity, mediating the scission of constricted membrane necks in multiple biological pathways. PMID:28317901

  7. Basic results of investigations of scission neutrons in nuclear fission at low excitation energies

    SciTech Connect

    Petrov, G. A. Gagarski, A. M.; Guseva, I. S.; Sokolov, V. E.; Val'ski, G. V.; Vorobiev, A. S.; Krinitcin, D. O.; Shcherbakov, O. A.; Nikolaev, D. V.; Pleva, Yu. S.; Petrova, V. I.; Zavarukhina, T. A.

    2008-07-15

    To estimate the main characteristics of neutrons emitted shortly before the scission of a fissioning nucleus, various experiments sensitive to the presence of these scission neutrons in thermal-neutron-induced fission of {sup 235}U and spontaneous fission of {sup 252}Cf were performed. The results of the experiments were analyzed within theoretical calculations allowing for various possible neutron-emission mechanisms, including the possibility of the emergence of neutrons from the scission of a nucleus.

  8. Two solvent-induced porous hydrogen-bonded organic frameworks: solvent effects on structures and functionalities.

    PubMed

    Wang, Hailong; Bao, Zongbi; Wu, Hui; Lin, Rui-Biao; Zhou, Wei; Hu, Tong-Liang; Li, Bin; Zhao, John Cong-Gui; Chen, Banglin

    2017-09-05

    Two solvent-induced porous hydrogen-bonded organic frameworks have been obtained, and their synthesis, crystal structures, gas sorption behaviours and fluorescence sensing applications have been systematically investigated to elucidate the solvent effects on the structures and functionalities of HOFs.

  9. Oxidative scission of plant cell wall polysaccharides by ascorbate-induced hydroxyl radicals.

    PubMed Central

    Fry, S C

    1998-01-01

    Scission of plant cell wall polysaccharides in vivo has generally been assumed to be enzymic. However, in the presence of l-ascorbate, such polysaccharides are shown to undergo non-enzymic scission under physiologically relevant conditions. Scission of xyloglucan by 1 mM ascorbate had a pH optimum of 4.5, and the maximum scission rate was reached after a 10-25-min delay. Catalase prevented the scission, whereas added H2O2 (0.1-10 mM) increased the scission rate and shortened the delay. Ascorbate caused detectable xyloglucan scission above approx. 5 microM. Dehydroascorbate was much less effective. Added Cu2+ (>0.3 microM) also increased the rate of ascorbate-induced scission; EDTA was inhibitory. The rate of scission in the absence of added metals appeared to be attributable to the traces of Cu (2.8 mg.kg-1) present in the xyloglucan. Ascorbate-induced scission of xyloglucan was inhibited by radical scavengers; their effectiveness was proportional to their rate constants for reaction with hydroxyl radicals (.OH). It is proposed that ascorbate non-enzymically reduces O2 to H2O2, and Cu2+ to Cu+, and that H2O2 and Cu+ react to form .OH, which causes oxidative scission of polysaccharide chains. Evidence is reviewed to suggest that, in the wall of a living plant cell, Cu+ and H2O2 are formed by reactions involving ascorbate and its products, dehydroascorbate and oxalate. Systems may thus be in place to produce apoplastic .OH radicals in vivo. Although .OH radicals are often regarded as detrimental, they are so short-lived that they could act as site-specific oxidants targeted to play a useful role in loosening the cell wall, e.g. during cell expansion, fruit ripening and organ abscission. PMID:9601081

  10. DNA strand scission induced by adriamycin and aclacinomycin A.

    PubMed

    Someya, A; Tanaka, N

    1979-08-01

    The binding of adriamycin and aclacinomycin A with PM2 DNA, and the consequent cleavage of DNA have been demonstrated by agarose gel electrophoresis, using an ethidium bromide assay. Adriamycin was observed to induce a single strand scission of DNA in the presence of a reducing agent, but aclacinomycin A caused much less degree of DNA breaks. The DNA cleavage was enhanced by Cu2+ and Fe2+, but not significantly by Ni2+, Zn2+, Mg2+ and Ca2+, suggesting that reduction and auto-oxidation of the quinone moiety and H2O2 production participate in the DNA-cutting effect. The DNA degradation was dependent upon concentrations of the anthracyclines and CuCl2. The degree of DNA cleavage at 0.04 mM adriamycin was similar to that at 0.4 mM aclacinomycin A in the presence of 1 mM NADPH and 0.4 mM CuCl2. DNA was degraded to small fragments at 0.4 mM adriamycin and 0.2 mM CuCl2. The anthracycline-induced DNA cleavage was stimulated by H2O2, but partially inhibited by potassium iodide, superoxide dismutase, catalase and nitrogen gas atmosphere. The results suggested that both free radical of anthracycline quinones and hydroxyl radical directly react with DNA strands.

  11. Adsorption-induced scission of carbon carbon bonds

    NASA Astrophysics Data System (ADS)

    Sheiko, Sergei S.; Sun, Frank C.; Randall, Adrian; Shirvanyants, David; Rubinstein, Michael; Lee, Hyung-Il; Matyjaszewski, Krzysztof

    2006-03-01

    Covalent carbon-carbon bonds are hard to break. Their strength is evident in the hardness of diamonds and tensile strength of polymeric fibres; on the single-molecule level, it manifests itself in the need for forces of several nanonewtons to extend and mechanically rupture one bond. Such forces have been generated using extensional flow, ultrasonic irradiation, receding meniscus and by directly stretching a single molecule with nanoprobes. Here we show that simple adsorption of brush-like macromolecules with long side chains on a substrate can induce not only conformational deformations, but also spontaneous rupture of covalent bonds in the macromolecular backbone. We attribute this behaviour to the fact that the attractive interaction between the side chains and the substrate is maximized by the spreading of the side chains, which in turn induces tension along the polymer backbone. Provided the side-chain densities and substrate interaction are sufficiently high, the tension generated will be strong enough to rupture covalent carbon-carbon bonds. We expect similar adsorption-induced backbone scission to occur for all macromolecules with highly branched architectures, such as brushes and dendrimers. This behaviour needs to be considered when designing surface-targeted macromolecules of this type-either to avoid undesired degradation, or to ensure rupture at predetermined macromolecular sites.

  12. Interchangeable adaptors regulate mitochondrial dynamin assembly for membrane scission

    PubMed Central

    Koirala, Sajjan; Guo, Qian; Kalia, Raghav; Bui, Huyen T.; Eckert, Debra M.; Frost, Adam; Shaw, Janet M.

    2013-01-01

    Mitochondrial fission is mediated by the dynamin-related GTPases Dnm1/Drp1 (yeast/mammals), which form spirals around constricted sites on mitochondria. Additional membrane-associated adaptor proteins (Fis1, Mdv1, Mff, and MiDs) are required to recruit these GTPases from the cytoplasm to the mitochondrial surface. Whether these adaptors participate in both GTPase recruitment and membrane scission is not known. Here we use a yeast strain lacking all fission proteins to identify the minimal combinations of GTPases and adaptors sufficient for mitochondrial fission. Although Fis1 is dispensable for fission, membrane-anchored Mdv1, Mff, or MiDs paired individually with their respective GTPases are sufficient to divide mitochondria. In addition to their role in Drp1 membrane recruitment, MiDs coassemble with Drp1 in vitro. The resulting heteropolymer adopts a dramatically different structure with a narrower diameter than Drp1 homopolymers assembled in isolation. This result demonstrates that an adaptor protein alters the architecture of a mitochondrial dynamin GTPase polymer in a manner that could facilitate membrane constriction and severing activity. PMID:23530241

  13. Interchangeable adaptors regulate mitochondrial dynamin assembly for membrane scission.

    PubMed

    Koirala, Sajjan; Guo, Qian; Kalia, Raghav; Bui, Huyen T; Eckert, Debra M; Frost, Adam; Shaw, Janet M

    2013-04-09

    Mitochondrial fission is mediated by the dynamin-related GTPases Dnm1/Drp1 (yeast/mammals), which form spirals around constricted sites on mitochondria. Additional membrane-associated adaptor proteins (Fis1, Mdv1, Mff, and MiDs) are required to recruit these GTPases from the cytoplasm to the mitochondrial surface. Whether these adaptors participate in both GTPase recruitment and membrane scission is not known. Here we use a yeast strain lacking all fission proteins to identify the minimal combinations of GTPases and adaptors sufficient for mitochondrial fission. Although Fis1 is dispensable for fission, membrane-anchored Mdv1, Mff, or MiDs paired individually with their respective GTPases are sufficient to divide mitochondria. In addition to their role in Drp1 membrane recruitment, MiDs coassemble with Drp1 in vitro. The resulting heteropolymer adopts a dramatically different structure with a narrower diameter than Drp1 homopolymers assembled in isolation. This result demonstrates that an adaptor protein alters the architecture of a mitochondrial dynamin GTPase polymer in a manner that could facilitate membrane constriction and severing activity.

  14. Cellular Functions and Molecular Mechanisms of the ESCRT Membrane-Scission Machinery.

    PubMed

    Christ, Liliane; Raiborg, Camilla; Wenzel, Eva M; Campsteijn, Coen; Stenmark, Harald

    2017-01-01

    The endosomal sorting complex required for transport (ESCRT) machinery is an assembly of protein subcomplexes (ESCRT I-III) that cooperate with the ATPase VPS4 to mediate scission of membrane necks from the inside. The ESCRT machinery has evolved as a multipurpose toolbox for mediating receptor sorting, membrane remodeling, and membrane scission, with ESCRT-III as the major membrane-remodeling component. Cellular membrane scission processes mediated by ESCRT-III include biogenesis of multivesicular endosomes, budding of enveloped viruses, cytokinetic abscission, neuron pruning, plasma membrane wound repair, nuclear pore quality control, nuclear envelope reformation, and nuclear envelope repair. We describe here the involvement of the ESCRT machinery in these processes and review current models for how ESCRT-III-containing multimeric filaments serve to mediate membrane remodeling and scission.

  15. Antioxidant activity and protective effect on DNA strand scission of Rooibos tea (Aspalathus linearis).

    PubMed

    Lee, Eun-Jung; Jang, Hae-Dong

    2004-01-01

    Rooibos tea (Aspalathus linearis) was extracted by refluxing with water and 75% ethanol as a solvent. Antioxidant activity and protective effect on DNA strand scission were investigated by using different antioxidant assay systems and DNA strand nicking assay, respectively. 75% Ethanol extract has higher content of total soluble phenolics and flavonoid than water extract. Antioxidant activities such as hydrogen donating capacity and scavenging activity of hydrogen peroxide were higher in 75% ethanol extract than in water extract except the rate constant with hydroxyl radical. Peroxyl radical induced DNA strand scission was prevented by both 75% ethanol and water extract and hydroxyl radical induced DNA strand scission was not. This result indicates that total soluble phenolics, specially flavonoid, of Rooibos tea are responsible for several kinds of antioxidant activities and preventive activity on peroxyl radical induced DNA strand scission.

  16. Catalytic coal hydroliquefaction process

    DOEpatents

    Garg, Diwakar

    1984-01-01

    A process is described for the liquefaction of coal in a hydrogen donor solvent in the presence of hydrogen and a co-catalyst combination of iron and a Group VI or Group VIII non-ferrous metal or compounds of the catalysts.

  17. Hydroliquefaction of coal

    DOEpatents

    Sze, Morgan C.; Schindler, Harvey D.

    1982-01-01

    Coal is catalytically hydroliquefied by passing coal dispersed in a liquefaction solvent and hydrogen upwardly through a plurality of parallel expanded catalyst beds, in a single reactor, in separate streams, each having a cross-sectional flow area of no greater than 255 inches square, with each of the streams through each of the catalyst beds having a length and a liquid and gas superficial velocity to maintain an expanded catalyst bed and provide a Peclet Number of at least 3. If recycle is employed, the ratio of recycle to total feed (coal and liquefaction solvent) is no greater than 2:1, based on volume. Such conditions provide for improved selectivity to liquid product to thereby reduce hydrogen consumption. The plurality of beds are formed by partitions in the reactor.

  18. Multiple Stages of Crosslinking and Scission in Coarse-Grained Polymers

    NASA Astrophysics Data System (ADS)

    Budzien, Joanne

    2015-03-01

    Coarse-grained polymer chains were crosslinked, deformed, crosslinked a second time, and deformed again with stress measured at each deformation. Scissioning of crosslinks occurred at various deformations. By varying the level of scissioning and crosslinking at the deformation states, information is gathered about effective crosslink density that includes contributions from physical entanglements. This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation Grant Number ACI-1053575.

  19. Solvent-induced interactions between hydrophobic and hydrophilic polyatomic sheets in water and hypothetical nonpolar water

    NASA Astrophysics Data System (ADS)

    Koga, Kenichiro; Zeng, X. C.; Tanaka, Hideki

    1997-06-01

    Hydrophobic and hydrophilic interactions are two major intermolecular forces between hydrophobic nonpolar and hydrophilic polar sites of macromolecules or materials surfaces in solvents. To further understand these two interactions at the microscopic level, an idealized polyatomic model is devised, which includes hydrophobic, hydrophilic, and partially hydrophilic polyatomic planar square molecular sheets. The hydrophobic molecular sheet is composed of the Lennard-Jones particles while the hydrophilic molecular sheet consists of positive and negative charge sites. In the framework of the extended reference interaction site model integral equation theory the solvent-induced interactions (or the potential of mean forces) between two parallel molecular sheets in water and in the hypothetical nonpolar water are investigated in a systematic fashion. Such a highly idealized model allows us to isolate and to explore the important effects of molecular size, relative intermolecular position (e.g., in- or out-of-registry configuration), and hydrophilic site distribution on the hydrophobic and hydrophilic interactions in both water and the hypothetical nonpolar water. Significant insight into these effects at the molecular level is obtained. For the hydrophobic planar molecules in water we find solvent separated hydrophobic interaction becomes less favored as sheet size increases. Moreover, the contact hydrophobic interaction between two molecular sheets in the out-of-registry configuration is always most favorable. For the latter case we find it is the van der Waals attraction, rather than the hydrophobic attraction, that dominates the total interaction. We also find that in both water and the hypothetical nonpolar water the solvent-induced interaction between two hydrophobic sheets behaves similarly. One possible explanation is that the hydrophobic hydration originating from the hydrogen bonding network in water plays an insignificant role in the solvent-induced interaction

  20. Endophilin-A2 functions in membrane scission in clathrin-independent endocytosis.

    PubMed

    Renard, Henri-François; Simunovic, Mijo; Lemière, Joël; Boucrot, Emmanuel; Garcia-Castillo, Maria Daniela; Arumugam, Senthil; Chambon, Valérie; Lamaze, Christophe; Wunder, Christian; Kenworthy, Anne K; Schmidt, Anne A; McMahon, Harvey T; Sykes, Cécile; Bassereau, Patricia; Johannes, Ludger

    2015-01-22

    During endocytosis, energy is invested to narrow the necks of cargo-containing plasma membrane invaginations to radii at which the opposing segments spontaneously coalesce, thereby leading to the detachment by scission of endocytic uptake carriers. In the clathrin pathway, dynamin uses mechanical energy from GTP hydrolysis to this effect, assisted by the BIN/amphiphysin/Rvs (BAR) domain-containing protein endophilin. Clathrin-independent endocytic events are often less reliant on dynamin, and whether in these cases BAR domain proteins such as endophilin contribute to scission has remained unexplored. Here we show, in human and other mammalian cell lines, that endophilin-A2 (endoA2) specifically and functionally associates with very early uptake structures that are induced by the bacterial Shiga and cholera toxins, which are both clathrin-independent endocytic cargoes. In controlled in vitro systems, endoA2 reshapes membranes before scission. Furthermore, we demonstrate that endoA2, dynamin and actin contribute in parallel to the scission of Shiga-toxin-induced tubules. Our results establish a novel function of endoA2 in clathrin-independent endocytosis. They document that distinct scission factors operate in an additive manner, and predict that specificity within a given uptake process arises from defined combinations of universal modules. Our findings highlight a previously unnoticed link between membrane scaffolding by endoA2 and pulling-force-driven dynamic scission.

  1. Solvent-Induced Shift of Spectral Lines in Polar–Polarizable Solvents

    DOE PAGES

    Matyushov, Dmitry V.; Newton, Marshall D.

    2017-03-09

    Solvent-induced shift of optical transition lines is traditionally described by the Lippert- McRae equation given in terms of the Onsager theory for dipole solvation. It splits the overall shift into the equilibrium solvation by induced dipoles and the reaction field by the permanent dipoles in equilibrium with the chromophore in the ground state. Here we have reconsidered this classical problem from the perspective of microscopic solvation theories. A microscopic solvation functional is derived and continuum solvation is consistently introduced by taking the limit of zero wavevector in the reciprocal-space solvation susceptibility functions. We show that the phenomenological expression for themore » reaction field of permanent dipoles in the Lippert-McRae equation is not consistent with the microscopic theory. The main deficiency of the Lippert- McRae equation equation is the use of additivity of the response by permanent and induced dipoles of the liquid. An alternative closed-form equation for the spectral shift is derived. Its continuum limit allows a new, non-additive functionality for the solvent-induced shift in terms of the high-frequency and static dielectric constants. Finally, the main qualitative outcome of the theory is a significantly weaker dependence of the spectral shift on the polarizability of the solvent than predicted by the Lippert-McRae formula.« less

  2. Solvent-induced frequency shifts: configuration interaction singles combined with the effective fragment potential method.

    PubMed

    Arora, Pooja; Slipchenko, Lyudmila V; Webb, Simon P; DeFusco, Albert; Gordon, Mark S

    2010-07-01

    The simplest variational method for treating electronic excited states, configuration interaction with single excitations (CIS), has been interfaced with the effective fragment potential (EFP) method to provide an effective and computationally efficient approach for studying the qualitative effects of solvents on the electronic spectra of molecules. Three different approaches for interfacing a non-self-consistent field (SCF) excited-state quantum mechanics (QM) method and the EFP method are discussed. The most sophisticated and complex approach (termed fully self consistent) calculates the excited-state electron density with fully self-consistent accounting for the polarization (induction) energy of effective fragments. The simplest approach (method 1) includes a strategy that indirectly adds the EFP perturbation to the CIS wave function and energy via modified Hartree-Fock molecular orbitals, so that there is no direct EFP interaction with the excited-state density. An intermediate approach (method 2) accomplishes the latter in a noniterative perturbative manner. Theoretical descriptions of the three approaches are presented, and test results of solvent-induced shifts using methods 1 and 2 are compared with fully ab initio values. These comparisons illustrate that, at least for the test cases examined here, modification of the ground-state Hartree-Fock orbitals is the largest and most important factor in the calculated solvent-induced shifts. Method 1 is then employed to study the aqueous solvation of coumarin 151 and compared with experimental measurements.

  3. Solvent-Induced Shift of Spectral Lines in Polar-Polarizable Solvents

    DOE PAGES

    Matyushov, Dmitry V.; Newton, Marshall D.

    2017-02-28

    Solvent-induced shift of optical transition lines is traditionally described by the Lippert- McRae equation given in terms of the Onsager theory for dipole solvation. It splits the overall shift into the equilibrium solvation by induced dipoles and the reaction field by the permanent dipoles in equilibrium with the chromophore in the ground state. Here we have reconsidered this classical problem from the perspective of microscopic solvation theories. A microscopic solvation functional is derived and continuum solvation is consistently introduced by taking the limit of zero wavevector in the reciprocal-space solvation susceptibility functions. We show that the phenomenological expression for themore » reaction field of permanent dipoles in the Lippert-McRae equation is not consistent with the microscopic theory. The main deficiency of the Lippert- McRae equation equation is the use of additivity of the response by permanent and induced dipoles of the liquid. An alternative closed-form equation for the spectral shift is derived. Its continuum limit allows a new, non-additive functionality for the solvent-induced shift in terms of the high-frequency and static dielectric constants. Finally, the main qualitative outcome of the theory is a significantly weaker dependence of the spectral shift on the polarizability of the solvent than predicted by the Lippert-McRae formula.« less

  4. Can solvent induced surface modifications applied to screen-printed platforms enhance their electroanalytical performance?

    PubMed

    Blanco, Elias; Foster, Christopher W; Cumba, Loanda R; do Carmo, Devaney R; Banks, Craig E

    2016-04-25

    In this paper the effect of solvent induced chemical surface enhancements upon graphitic screen-printed electrodes (SPEs) is explored. Previous literature has indicated that treating the working electrode of a SPE with the solvent N,N-dimethylformamide (DMF) offers improvements within the electroanalytical response, resulting in a 57-fold increment in the electrode surface area compared to their unmodified counterparts. The protocol involves two steps: (i) the SPE is placed into DMF for a selected time, and (ii) it is cured in an oven at a selected time and temperature. Beneficial electroanalytical outputs are reported to be due to the increased surface area attributed to the binder within the bulk surface of the SPEs dissolving out during the immersion step (step i). We revisit this exciting concept and explore these solvent induced chemical surface enhancements using edge- and basal-plane like SPEs and a new bespoke SPE, utilising the solvent DMF and explore, in detail, the parameters utilised in steps (i) and (ii). The electrochemical performance following steps (i) and (ii) is evaluated using the outer-sphere redox probe hexaammineruthenium(iii) chloride/0.1 M KCl, where it is found that the largest improvement is obtained using DMF with an immersion time of 10 minutes and a curing time of 30 minutes at 100 °C. Solvent induced chemical surface enhancement upon the electrochemical performance of SPEs is also benchmarked in terms of their electroanalytical sensing of NADH (dihydronicotinamide adenine dinucleotide reduced form) and capsaicin both of which are compared to their unmodified SPE counterparts. In both cases, it is apparent that a marginal improvement in the electroanalytical sensitivity (i.e. gradient of calibration plots) of 1.08-fold and 1.38-fold are found respectively. Returning to the original exciting concept, interestingly it was found that when a poor experimental technique was employed, only then significant increases within the working

  5. Kinetics and mechanisms of hydroliquefaction and hydrogasification of lignite. [Cellulose, wood, manure, municipal waste, coal of various ranks, fuel oil and natural gas

    SciTech Connect

    Weiss, A.H.; Kranich, W.L.; Geureuz, K.

    1981-01-01

    A high pressure, continuous, stirred-tank reactor system has been constructed for the study of the catalytic liquefaction of North Dakota lignite slurried in anthracene oil. The conversion of lignite using a cobalt-molybdenum on alumina catalyst and the distribution of products as preasphaltenes, asphaltenes, oils and gases has been studied at the following conditions: temperature, 375 to 440/sup 0/C; pressure, 1000 to 1600 psig; agitator speed, 800 to 1500 rpm; catalyst concentration, 0 to 10% (based on lignite); initial lignite concentration, 5 to 30%; and space time, 16 to 52 minutes. At reactor pressures above 1500 psig and agitator speeds above 1000 rpm, reaction rate was essentially independent of pressure. At catalyst concentrations above 1% (based on lignite), the conversion of lignite was essentially independent of catalyst concentration. Experiments were conducted above these limits to find the effect on lignite conversion rate, of initial lignite concentration, and space time, or degree of conversion. The results at constant temperature were correlated by an equation which is given in the report. The relationship between the rate constant, K, and temperature, and between the maximum conversion and temperature was established. The effect of reaction conditions on the distribution of products was studied. In the presence of catalyst, the oil yield was increased, even under conditions where the catalyst did not affect overall lignite conversion. Under the most favorable conditions the oil yield was a little better than that obtained by Cronauer in the uncatalyzed hydroliquefaction of subbituminous coal at similar temperature and pressure.

  6. Solvent-induced chirality control in the enantioseparation of 1-phenylethylamine via diastereomeric salt formation.

    PubMed

    Kodama, Koichi; Kimura, Yuria; Shitara, Hiroaki; Yasutake, Mikio; Sakurai, Rumiko; Hirose, Takuji

    2011-04-01

    Solvent-induced chirality control in the enantioseparation of 1-phenylethylamine 1 by N-(p-toluenesulfonyl)-(S)-phenylalanine 2 via diastereomeric salt formation was studied. (S)-1·(S)-2 was preferentially crystallized as a less-soluble salt from aqueous alcohol, while (R)-1·(S)-2 salt was mainly obtained by addition of solvents with a six-membered ring such as dioxane, cyclohexane, tetrahydropyran, and cyclohexene to 2-propanol. Further investigations were carried out from the viewpoints of molecular structures, optical rotation measurement, and X-ray crystallographic analyses. Crystallographic analyses have revealed that incorporation of the six-membered ring solvent molecule in (R)-1·(S)-2 without hydrogen bonds changed the molecular conformation of (S)-2 to stabilize the salt, which changed the selectivity of 1 in the enantioseparation.

  7. Desalination membranes from functional block copolymer via non-solvent induced phase inversion

    NASA Astrophysics Data System (ADS)

    Sung, Hyemin; Poelma, Justin; Leibfarth, Frank; Hawker, Craig; Bang, Joona

    2012-02-01

    Commercially available reverse osmosis (RO) and forward osmosis (FO) membranes are most commonly derived from materials such as polysulfone, polyimide, and cellulose acetate. While these membranes have improved the efficiency of the desalination process, they suffer from mechanical and chemical stability, fouling issues, and low fluxes. In this study, we combine a well-established membrane formation method, non-solvent-induced phase separation, with the self-assembly of a functional amphiphilic block copolymersAn amine and acid functional polystyrene-block-poly(ethylene oxide-co-allyl glycidyl ether) were chosen for the membranes. Membranes were formed by casting a concentrated polymer solution (12 to 25 wt% polymer) on PET fabric followed by immersion in a non-solvent bath. Scanning electron microscopy revealed an asymmetric porous structure consisting of a dense skin layer on top of a highly porous layer. Membrane performance was investigating using an FO test cell under the seawater condition.

  8. Solvent-induced polarization dynamics and coherent two-dimensional spectroscopy: Dissipaton equation of motion approach

    NASA Astrophysics Data System (ADS)

    Zhang, Hou-Dao; Qiao, Qin; Xu, Rui-Xue; Yan, YiJing

    2016-12-01

    This work exploits the dissipaton equation of motion (DEOM) approach to study the solvent-induced non-Condon polarization dynamics and its two-dimensional coherent spectroscopy for model excitonic systems. DEOM is a second quantization generation of the celebrated hierarchical equations of motion theory, with the capability of accurate evaluation for both reduced system and hybrid bath dynamics. The underlying dissipaton algebra includes the generalized Wick's theorem and DEOM-space techniques for hybrid bath dynamics. Methods discussed also involve an efficient derivative-resum level truncation scheme that preserves the prescription invariance, and the mixed Heisenberg-Schrödinger picture approach for efficient simulation of nonlinear response functions. Our model simulations show clearly the correlated system-and-bath interference and the resulting Fano entanglement spectroscopy profiles.

  9. Solvent induced modifications to fiber nanostructure and morphology for 12HSA molecular gels

    NASA Astrophysics Data System (ADS)

    Gao, Jie

    Molecular organogels are thermo reversible quasi-solid materials, which are formed by low molecular weight organogelators (LMOGs) undergoing supramolecular aggregation via non-covalent interactions, forming a three-dimensional fibrillar network. Numerous applications of molecular organogels are been investigated as edible oils, drug release matrices and personal care products. The chemistry of the organic phase (i.e., solvent) influences every level of structure in organogels. Different solvents induce LMOG to assemble into "crystal like" fibers, which have more than one crystal form, lamellar arrangement and domain size. Differences in these solid states are known to affect the macroscopic properties of the gel, including critical gelator concentration (CGC), melting point, melting enthalpy and opacity.12-hydroxystearic acid (12HSA) was examined in several classes of organic solvents with different function groups. These gels, sols or precipitates were analyzed using a series of techniques including: powder x-ray diffraction (XRD), differential scanning calorimetry (DSC), fourier-transform infrared spectroscopy (FT-IR), pulsed nuclear magnetic resonance spectroscopy (pNMR) and microscopy. Specifically, certain solvents caused 12HSA to self-assemble into a triclinic parallel polymorphic form with subcell spacing of ~4.6, 3.9, and 3.8 A and an interdigitated unit cell with a lamellar arrangement (38~44 A). This polymorphic form corresponded to a less effective sphereultic supramolecular crystalline network, which immobilizes solvents at CGC greater than 1.5 wt %. The other group of solvents induce a hexagonal subcell spacing (i.e., unit sub cell spacing ~4.1 A) and are arranged in a multi lamellar fashion with a unit cell greater than the bimolecular length of 12HSA (~54 A).This polymorphic form corresponds to fibrillar aggregates with a CGC less than 1 wt %.

  10. SPY: A new scission point model based on microscopic ingredients to predict fission fragments properties

    NASA Astrophysics Data System (ADS)

    Lemaître, J.-F.; Dubray, N.; Hilaire, S.; Panebianco, S.; Sida, J.-L.

    2013-12-01

    Our purpose is to determine fission fragments characteristics in a framework of a scission point model named SPY for Scission Point Yields. This approach can be considered as a theoretical laboratory to study fission mechanism since it gives access to the correlation between the fragments properties and their nuclear structure, such as shell correction, pairing, collective degrees of freedom, odd-even effects. Which ones are dominant in final state? What is the impact of compound nucleus structure? The SPY model consists in a statistical description of the fission process at the scission point where fragments are completely formed and well separated with fixed properties. The most important property of the model relies on the nuclear structure of the fragments which is derived from full quantum microscopic calculations. This approach allows computing the fission final state of extremely exotic nuclei which are inaccessible by most of the fission model available on the market.

  11. New statistical scission-point model to predict fission fragment observables

    NASA Astrophysics Data System (ADS)

    Lemaître, Jean-François; Panebianco, Stefano; Sida, Jean-Luc; Hilaire, Stéphane; Heinrich, Sophie

    2015-09-01

    The development of high performance computing facilities makes possible a massive production of nuclear data in a full microscopic framework. Taking advantage of the individual potential calculations of more than 7000 nuclei, a new statistical scission-point model, called SPY, has been developed. It gives access to the absolute available energy at the scission point, which allows the use of a parameter-free microcanonical statistical description to calculate the distributions and the mean values of all fission observables. SPY uses the richness of microscopy in a rather simple theoretical framework, without any parameter except the scission-point definition, to draw clear answers based on perfect knowledge of the ingredients involved in the model, with very limited computing cost.

  12. Membrane deformation and scission by the HSV-1 nuclear egress complex

    NASA Astrophysics Data System (ADS)

    Bigalke, Janna M.; Heuser, Thomas; Nicastro, Daniela; Heldwein, Ekaterina E.

    2014-06-01

    The nuclear egress complex (NEC) of herpesviruses such as HSV-1 is essential for the exit of nascent capsids from the cell nucleus. The NEC drives nuclear envelope vesiculation in cells, but the precise budding mechanism and the potential involvement of cellular proteins are unclear. Here we report that HSV-1 NEC alone is sufficient for membrane budding in vitro and thus represents a complete membrane deformation and scission machinery. It forms ordered coats on the inner surface of the budded vesicles, suggesting that it mediates scission by scaffolding the membrane bud and constricting the neck to the point of scission. The inward topology of NEC-mediated budding in vitro resembles capsid budding into the inner nuclear membrane during HSV-1 infection and nuclear envelope vesiculation in NEC-transfected cells. We propose that the NEC functions as minimal virus-encoded membrane-budding machinery during nuclear egress and does not require additional cellular factors.

  13. Membrane deformation and scission by the HSV-1 nuclear egress complex

    PubMed Central

    Bigalke, Janna M.; Heuser, Thomas; Nicastro, Daniela; Heldwein, Ekaterina E.

    2014-01-01

    The nuclear egress complex (NEC) of herpesviruses such as HSV-1 is essential for the exit of nascent capsids from the cell nucleus. The NEC drives nuclear envelope vesiculation in cells, but the precise budding mechanism and the potential involvement of cellular proteins are unclear. Here we report that HSV-1 NEC alone is sufficient for membrane budding in vitro and thus represents a complete membrane deformation and scission machinery. It forms ordered coats on the inner surface of budded vesicles, suggesting that it mediates scission by scaffolding the membrane bud and constricting the neck to the point of scission. The inward topology of NEC-mediated budding in vitro resembles capsid budding into the inner nuclear membrane during HSV-1 infection and nuclear envelope vesiculation in NEC-transfected cells. We propose that the NEC functions as minimal virus-encoded membrane-budding machinery during nuclear egress and does not require additional cellular factors. PMID:24916797

  14. Coatomer and dimeric ADP ribosylation factor 1 promote distinct steps in membrane scission

    PubMed Central

    Beck, Rainer; Prinz, Simone; Diestelkötter-Bachert, Petra; Röhling, Simone; Adolf, Frank; Hoehner, Kathrin; Welsch, Sonja; Ronchi, Paolo; Brügger, Britta

    2011-01-01

    Formation of coated vesicles requires two striking manipulations of the lipid bilayer. First, membrane curvature is induced to drive bud formation. Second, a scission reaction at the bud neck releases the vesicle. Using a reconstituted system for COPI vesicle formation from purified components, we find that a dimerization-deficient Arf1 mutant, which does not display the ability to modulate membrane curvature in vitro or to drive formation of coated vesicles, is able to recruit coatomer to allow formation of COPI-coated buds but does not support scission. Chemical cross-linking of this Arf1 mutant restores vesicle release. These experiments show that initial curvature of the bud is defined primarily by coatomer, whereas the membrane curvature modulating activity of dimeric Arf1 is required for membrane scission. PMID:21893600

  15. Regulation of yeast ESCRT-III membrane scission activity by the Doa4 ubiquitin hydrolase.

    PubMed

    Johnson, Natalie; West, Matt; Odorizzi, Greg

    2017-03-01

    ESCRT-III executes membrane scission during the budding of intralumenal vesicles (ILVs) at endosomes. The scission mechanism is unknown but appears to be linked to the cycle of assembly and disassembly of ESCRT-III complexes at membranes. Regulating this cycle is therefore expected to be important for determining the timing of ESCRT-III-mediated membrane scission. We show that in Saccharomyces cerevisiae, ESCRT-III complexes are stabilized and ILV membrane scission is delayed by Doa4, which is the ubiquitin hydrolase that deubiquitinates transmembrane proteins sorted as cargoes into ILVs. These results suggest a mechanism to delay ILV budding while cargoes undergo deubiquitination. We further show that deubiquitination of ILV cargoes is inhibited via Doa4 binding to Vps20, which is the subunit of ESCRT-III that initiates assembly of the complex. Current models suggest that ESCRT-III complexes surround ubiquitinated cargoes to trap them at the site of ILV budding while the cargoes undergo deubiquitination. Thus our results also propose a mechanism to prevent the onset of ILV cargo deubiquitination at the initiation of ESCRT-III complex assembly.

  16. A dynamin-actin interaction is required for vesicle scission during endocytosis in yeast.

    PubMed

    Palmer, Sarah E; Smaczynska-de Rooij, Iwona I; Marklew, Christopher J; Allwood, Ellen G; Mishra, Ritu; Johnson, Simeon; Goldberg, Martin W; Ayscough, Kathryn R

    2015-03-30

    Actin is critical for endocytosis in yeast cells, and also in mammalian cells under tension. However, questions remain as to how force generated through actin polymerization is transmitted to the plasma membrane to drive invagination and scission. Here, we reveal that the yeast dynamin Vps1 binds and bundles filamentous actin. Mutational analysis of Vps1 in a helix of the stalk domain identifies a mutant RR457-458EE that binds actin more weakly. In vivo analysis of Vps1 function demonstrates that the mutation disrupts endocytosis but not other functions of Vps1 such as vacuolar trafficking or peroxisome fission. The mutant Vps1 is stably expressed in cells and co-localizes with the endocytic reporters Abp1 and the amphiphysin Rvs167. Detailed analysis of individual endocytic patch behavior indicates that the mutation causes aberrant movements in later stages of endocytosis, consistent with a scission defect. Ultrastructural analysis of yeast cells using electron microscopy reveals a significant increase in invagination depth, further supporting a role for the Vps1-actin interaction during scission. In vitro analysis of the mutant protein demonstrates that--like wild-type Vps1--it is able to form oligomeric rings, but, critically, it has lost its ability to bundle actin filaments into higher-order structures. A model is proposed in which actin filaments bind Vps1 during invagination, and this interaction is important to transduce the force of actin polymerization to the membrane to drive successful scission.

  17. Solvent induced conformational fluctuation of alanine dipeptide studied by using vibrational probes.

    PubMed

    Cai, Kaicong; Du, Fenfen; Liu, Jia; Su, Tingting

    2015-02-25

    The solvation effect on the three dimensional structure and the vibrational feature of alanine dipeptide (ALAD) was evaluated by applying the implicit solvents from polarizable continuum solvent model (PCM) through ab initio calculations, by using molecular dynamic (MD) simulations with explicit solvents, and by combining these two approaches. The implicit solvent induced potential energy fluctuations of ALAD in CHCl3, DMSO and H2O are revealed by means of ab initio calculations, and a global view of conformational and solvation environmental dependence of amide I frequencies is achieved. The results from MD simulations with explicit solvents show that ALAD trends to form PPII, αL, αR, and C5 in water, PPII and C5 in DMSO, and C5 in CHCl3, ordered by population, and the demonstration of the solvated structure, the solute-solvent interaction and hydrogen bonding is therefore enhanced. Representative ALAD-solvent clusters were sampled from MD trajectories and undergone ab initio calculations. The explicit solvents reveal the hydrogen bonding between ALAD and solvents, and the correlation between amide I frequencies and the CO bond length is built. The implicit solvents applied to the ALAD-solvent clusters further compensate the solvation effect from the bulk, and thus enlarge the degree of structural distortion and the amide I frequency red shift. The combination of explicit solvent in the first hydration shell and implicit solvent in the bulk is helpful for our understanding about the conformational fluctuation of solvated polypeptides through vibrational probes.

  18. Tuning PEG-DA hydrogel properties via solvent-induced phase separation (SIPS)†

    PubMed Central

    Bailey, Brennan Margaret; Hui, Vivian; Fei, Ruochong

    2012-01-01

    Poly(ethylene glycol) diacrylate (PEG-DA) hydrogels are widely utilized to probe cell-material interactions and ultimately for a material-guided approach to tissue regeneration. In this study, PEG-DA hydrogels were fabricated via solvent-induced phase separation (SIPS) to obtain hydrogels with a broader range of tunable physical properties including morphology (e.g. porosity), swelling and modulus (G′). In contrast to conventional PEG-DA hydrogels prepared from an aqueous precursor solution, the reported SIPS protocol utilized a dichloromethane (DCM) precursor solution which was sequentially photopolymerized, dried and hydrated. Physical properties were further tailored by varying the PEG-DA wt% concentration (5 wt%–25 wt%) and Mn (3.4k and 6k g mol −1). SIPS produced PEG-DA hydrogels with a macroporous morphology as well as increased G′ values versus the corresponding conventional PEG-DA hydrogels. Notably, since the total swelling was not significantly changed versus the corresponding conventional PEG-DA hydrogels, pairs or series of hydrogels represent scaffolds in which morphology and hydration or G′ and hydration are uncoupled. In addition, PEG-DA hydrogels prepared via SIPS exhibited enhanced degradation rates. PMID:22956857

  19. Solvent-Induced Crystallization in Poly(Ethylene Terephthalate) during Mass Transport

    NASA Astrophysics Data System (ADS)

    Ouyang, Hao

    2001-03-01

    The solvent transport in poly(ethylene terephthalate) (PET) and related phase transformation were investigated. The data of mass sorption were analyzed according to Harmon¡¦s model for Case I (Fickian), Case II (swelling) and anomalous transport. This transport process in PET is accompanied by the induced crystallization of the original amorphous state. The transformation was studied by wide angle x-ray scattering (WAXS), small angle x-ray scattering (SAXS), Differential Scanning Calorimeter (DSC), density gradient column, and Fourier Transform Infra-Red (FTIR). During this process, the matrix is under a compressive strain that causes different kinetic path of crystallization as compared to that by thermal annealing. This state of strain will assist the development of the solvent-induced crystallization. It also can be explained in terms of the principle of Le Chatelier if the local equilibrium is assumed. The model regarding the crystallization was proposed in terms of the study of long period L, the crystal thickness lc and the thickness of amorphous layer la, obtained from the linear correlation function and interface distribution function.

  20. Solvent induced conformational fluctuation of alanine dipeptide studied by using vibrational probes

    NASA Astrophysics Data System (ADS)

    Cai, Kaicong; Du, Fenfen; Liu, Jia; Su, Tingting

    2015-02-01

    The solvation effect on the three dimensional structure and the vibrational feature of alanine dipeptide (ALAD) was evaluated by applying the implicit solvents from polarizable continuum solvent model (PCM) through ab initio calculations, by using molecular dynamic (MD) simulations with explicit solvents, and by combining these two approaches. The implicit solvent induced potential energy fluctuations of ALAD in CHCl3, DMSO and H2O are revealed by means of ab initio calculations, and a global view of conformational and solvation environmental dependence of amide I frequencies is achieved. The results from MD simulations with explicit solvents show that ALAD trends to form PPII, αL, αR, and C5 in water, PPII and C5 in DMSO, and C5 in CHCl3, ordered by population, and the demonstration of the solvated structure, the solute-solvent interaction and hydrogen bonding is therefore enhanced. Representative ALAD-solvent clusters were sampled from MD trajectories and undergone ab initio calculations. The explicit solvents reveal the hydrogen bonding between ALAD and solvents, and the correlation between amide I frequencies and the Cdbnd O bond length is built. The implicit solvents applied to the ALAD-solvent clusters further compensate the solvation effect from the bulk, and thus enlarge the degree of structural distortion and the amide I frequency red shift. The combination of explicit solvent in the first hydration shell and implicit solvent in the bulk is helpful for our understanding about the conformational fluctuation of solvated polypeptides through vibrational probes.

  1. Polymorphs and solvatomorphs of azilsartan medoxomil: Elucidation of solvent-induced construction and conformational diversity

    NASA Astrophysics Data System (ADS)

    Zhang, Xian-Rui; He, Sai-Fei; Zhang, Shuo; Li, Jing; Li, Shan; Liu, Jin-Song; Zhang, Lei

    2017-02-01

    Two polymorphs (AM-A and AM-B) of azilsartan medoxomil (AM) and four AM solvatomorphs with toluene (AM-TOL), 1,4-dioxane (AM-DIO), chloroform (AM-TCM) and N,N-dimethylacetamide (AM-DMA) have been prepared by the hydrolysis of azilsartan medoxomil potassium in aqueous-organic solutions. In the crystal structures of two polymorphs and three solvatomorphs (AM-TOL, AM-DIO and AM-TCM), two asymmetric AM molecules form the dimeric cycle-like structures via intermolecular Nsbnd H⋯N hydrogen bonds in R22 (26) ring, while AM-DMA shows intramolecular Nsbnd H⋯O hydrogen bond between AM and DMA molecules. The hydrogen bonds (Csbnd H⋯O or Csbnd H⋯N) and π···π (or Csbnd H···π) interactions are helpful to stabilize the conformational diversity of AM. The solvent-induced experiment shows that solvent molecules have great influence on the solvatomorph formation and DIO can form the most steady solvatomorph than other solvents. The thermal study demonstrates that toluene molecules in three solvatomorphs (AM-TOL, AM-DIO and AM-TCM) are the most difficult to remove from the cage. Our results illustrate that the solvent plays significant role in tuning the size of the cage and producing the conformational diversity of AM molecules.

  2. Polymerization- and solvent-induced phase separation in hydrophilic-rich dentin adhesive mimic.

    PubMed

    Abedin, Farhana; Ye, Qiang; Good, Holly J; Parthasarathy, Ranganathan; Spencer, Paulette

    2014-07-01

    Current dental resin undergoes phase separation into hydrophobic-rich and hydrophilic-rich phases during infiltration of the over-wet demineralized collagen matrix. Such phase separation undermines the integrity and durability of the bond at the composite/tooth interface. This study marks the first time that the polymerization kinetics of model hydrophilic-rich phase of dental adhesive has been determined. Samples were prepared by adding varying water content to neat resins made from 95 and 99 wt.% hydroxyethylmethacrylate and 5 and 1 wt.% (2,2-bis[4-(2-hydroxy-3-methacryloxypropoxy)phenyl1]-propane prior to light curing. Viscosity of the formulations decreased with increased water content. The photopolymerization kinetics study was carried out with a time-resolved Fourier transform infrared spectrometer. All of the samples exhibited two-stage polymerization behavior which has not been reported previously for dental resin formulation. The lowest secondary rate maxima were observed for water contents of 10-30 wt.%. Differential scanning calorimetry (DSC) showed two glass transition temperatures for the hydrophilic-rich phase of dental adhesive. The DSC results indicate that the heterogeneity within the final polymer structure decreased with increasing water content. The results suggest a reaction mechanism involving both polymerization-induced phase separation and solvent-induced phase separation for the model hydrophilic-rich phase of dental resin.

  3. Scission neutrons and other scission properties as function of mass asymmetry in {sup 235}U(n{sub th},f)

    SciTech Connect

    Carjan, N.; Rizea, M.

    2010-07-15

    The emission of scission neutrons is studied in the frame of the sudden approximation, i.e., under the assumption that fission motion is adiabatic until the neck ruptures at finite radius and that this rupture is followed by a sudden absorbtion of the neck pieces by the fragments. We are therefore dealing with a transition between two different nuclear configurations (epsilon{sub i}->epsilon{sub f}) and we only need to know the corresponding two sets of neutron eigenstates. The accent in the present work is put on the dependence on the mass asymetry A{sub L}/A{sub H} of the primary fission fragments during the thermal neutron fission of {sup 235}U. At epsilon{sub i}, i.e., just before scission, the neutrons are considered both independent and pairing correlated. We estimate the scission neutron multiplicity nu{sub sc}, the spatial distribution of the emission points S{sub em}(rho,z) and the primary fragments' excitation energy E{sub sc}*. nu{sub sc} is found to depend only slightly on A{sub L}. The multiplicity has an average value of 0.76 (which represents one third of the prompt neutron multiplicity) with a maximum deviation from this value of less than 0.1. S{sub em}(rho,z) is mainly concentrated in the region between the fragments giving a useful detail of the emission mechanism. E{sub sc}* together with the extradeformation energy is used to evaporate neutrons and emit gamma rays from fully accelerated fragments.

  4. Prediction of enhanced solvent-induced enantioselectivity for a ring opening with a bifurcating reaction path

    SciTech Connect

    Carpenter, Barry K.; Harvey, Jeremy N.; Glowacki, David R.

    2014-12-11

    Classical molecular dynamics simulations are reported for the deazetisation and ring opening of meso-2,3-difluoro-2,3-dimethyldiazocyclopropane in three solvents: CHCl3, CHFClBr and CH3CH(OH)CF3 (TFIPA). In this study, the achiral reactant leads to enantiomeric allene products, and the question addressed in the study is whether either of the chiral, enantiomerically pure solvents can induce significant enantiomeric excess in the products. The direct dynamics calculations use an empirical valence bond potential for the solute, with empirical parameters optimised against M06-2X/cc-pVTZ density functional results. The results reveal that the exothermic N2 loss and ring opening promote transient strong solvent–solute interactions within the first ~100 fs of the reaction. Because of the bifurcating reaction path, these interactions occur at time when the “decision” about which enantiomer of the product to form has yet to be made (at least for many of the trajectories). Hence, it is possible in principle that the solvent could exert a larger-than-normal influence on the course of the reaction. In fact, the results reveal no such effect for CHFClBr but do predict that TFIPA should induce 15.2 ± 2.1% enantiomeric excess. This is roughly an order of magnitude larger than solvent-induced enantiomeric excesses found experimentally in reactions where the conversion of reactant(s) to enantiomeric products occur over separate transition states.

  5. Prediction of enhanced solvent-induced enantioselectivity for a ring opening with a bifurcating reaction path

    DOE PAGES

    Carpenter, Barry K.; Harvey, Jeremy N.; Glowacki, David R.

    2014-12-11

    Classical molecular dynamics simulations are reported for the deazetisation and ring opening of meso-2,3-difluoro-2,3-dimethyldiazocyclopropane in three solvents: CHCl3, CHFClBr and CH3CH(OH)CF3 (TFIPA). In this study, the achiral reactant leads to enantiomeric allene products, and the question addressed in the study is whether either of the chiral, enantiomerically pure solvents can induce significant enantiomeric excess in the products. The direct dynamics calculations use an empirical valence bond potential for the solute, with empirical parameters optimised against M06-2X/cc-pVTZ density functional results. The results reveal that the exothermic N2 loss and ring opening promote transient strong solvent–solute interactions within the first ~100 fsmore » of the reaction. Because of the bifurcating reaction path, these interactions occur at time when the “decision” about which enantiomer of the product to form has yet to be made (at least for many of the trajectories). Hence, it is possible in principle that the solvent could exert a larger-than-normal influence on the course of the reaction. In fact, the results reveal no such effect for CHFClBr but do predict that TFIPA should induce 15.2 ± 2.1% enantiomeric excess. This is roughly an order of magnitude larger than solvent-induced enantiomeric excesses found experimentally in reactions where the conversion of reactant(s) to enantiomeric products occur over separate transition states.« less

  6. Controlling Palladium Nanocrystals by Solvent-Induced Strategy for Efficient Multiple Liquid Fuels Electrooxidation.

    PubMed

    Zhang, Ying; Zhu, Xing; Guo, Jun; Huang, Xiaoqing

    2016-08-17

    Pd has been considered as the possible economical substitute of rare Pt for catalyzing the liquid fuels electrooxidation reaction. However, the biggest problem of Pd nanocatalysts for alcohol oxidations is that they show the limited stability and activity, greatly impacting the development of liquid fuels-based fuel cell technology. We report herein a new solvent-induced procedure for making distinct Pd NCs with geometry tuning from Pd nanosheets, Pd tetrapods, to Pd concave tetrahedra by switching the solvent from 1-methyl-2-pyrrolidone, formamide, to acetylacetonate. The key features for the preparation of dimension-controlled Pd NCs herein are that the use of molybdenum carbonyl (Mo(CO)6) determines the exposed {111} facet in the final Pd NCs, while different solvents control the reduction kinetics to induce the growth of Pd NCs with distinct morphologies. The as-prepared distinct Pd NCs show the interesting shape-dependent electrocatalytic activities toward multiple liquid fuels electrooxidation reactions including ethylene glycol oxidation reaction, glycerol oxidation reaction, ethanol oxidation reaction, and also methanol oxidation reaction with Pd nanosheets exhibiting higher activity than all the other Pd catalysts and higher activity than the commercial Pd/C and also Pd black due to the thin character of Pd nanosheets. Most importantly, the Pd nanosheets exhibit much higher stability for multiple liquid fuels electrooxidation than all the other Pd catalysts tested. The present work gives the first example in exploring the effect of solvent in tuning the dimensions of Pd NCs, and thus optimizing the electrocatalytic performance for liquid fuels electrooxidation.

  7. Dynamical interpretation of average fission-fragment kinetic energy systematics and nuclear scission

    SciTech Connect

    Nadtochy, P.N.; Adeev, G.D.

    2005-11-01

    A dynamical interpretation of the well-known systematics for average total kinetic energy of fission fragments over a wide range of the Coulomb parameter (600scission criteria traditionally employed in fission theory--at zero neck radius and at finite neck radius--have been applied in dynamical calculations. Both have resulted in a fairly good description of the dependence of on the Coulomb parameter. The results of dynamical calculations of within three-dimensional Langevin dynamics show that the mean distance between the centers of mass of nascent fragments at the scission configuration increases linearly with the parameter Z{sup 2}/A{sup 1/3}. This distance changes approximately from 2.35R{sub 0} for {sup 119}Xe to 2.6R{sub 0} for {sup 256}Fm. In spite of this increase in mean distance between future fragments at scission, the linear dependence of on the parameter Z{sup 2}/A{sup 1/3} remains approximately valid over a wide range of the Coulomb parameter Z{sup 2}/A{sup 1/3}.

  8. SPY: a new scission-point model based on microscopic inputs to predict fission fragment properties

    NASA Astrophysics Data System (ADS)

    Panebianco, Stefano; Dubray, Nöel; Goriely, Stéphane; Hilaire, Stéphane; Lemaître, Jean-François; Sida, Jean-Luc

    2014-04-01

    Despite the difficulty in describing the whole fission dynamics, the main fragment characteristics can be determined in a static approach based on a so-called scission-point model. Within this framework, a new Scission-Point model for the calculations of fission fragment Yields (SPY) has been developed. This model, initially based on the approach developed by Wilkins in the late seventies, consists in performing a static energy balance at scission, where the two fragments are supposed to be completely separated so that their macroscopic properties (mass and charge) can be considered as fixed. Given the knowledge of the system state density, averaged quantities such as mass and charge yields, mean kinetic and excitation energy can then be extracted in the framework of a microcanonical statistical description. The main advantage of the SPY model is the introduction of one of the most up-to-date microscopic descriptions of the nucleus for the individual energy of each fragment and, in the future, for their state density. These quantities are obtained in the framework of HFB calculations using the Gogny nucleon-nucleon interaction, ensuring an overall coherence of the model. Starting from a description of the SPY model and its main features, a comparison between the SPY predictions and experimental data will be discussed for some specific cases, from light nuclei around mercury to major actinides. Moreover, extensive predictions over the whole chart of nuclides will be discussed, with particular attention to their implication in stellar nucleosynthesis. Finally, future developments, mainly concerning the introduction of microscopic state densities, will be briefly discussed.

  9. Role of chain scission in cross-slot flow of wormlike micellar solutions

    NASA Astrophysics Data System (ADS)

    Kalb, Arthur; Villasmil U., Larry A.; Cromer, Michael

    2017-07-01

    In addition to the commonly observed elastic asymmetric instability, experiments of wormlike micellar solutions in a cross-slot device have shown the formation of lip vortices along the walls of the inlet channels. For these highly viscoelastic solutions the secondary flow can develop prior to the symmetry breaking. This indicates that these instabilities are complex phenomena whose behavior is likely influenced by a combination of factors. This work extends previous computational studies of the elastic instability predicted using the upper-convected Maxwell and Oldroyd-B models showing that one important factor may be the scission and reforming of the micelles.

  10. Nonadiabatic effects in C-Br bond scission in the photodissociation of bromoacetyl chloride

    NASA Astrophysics Data System (ADS)

    Valero, Rosendo; Truhlar, Donald G.

    2006-11-01

    Bromoacetyl chloride photodissociation has been interpreted as a paradigmatic example of a process in which nonadiabatic effects play a major role. In molecular beam experiments by Butler and co-workers [J. Chem. Phys. 95, 3848 (1991); J. Chem. Phys. 97, 355 (1992)], BrCH2C(O )Cl was prepared in its ground electronic state (S0) and excited with a laser at 248nm to its first excited singlet state (S1). The two main ensuing photoreactions are the ruptures of the C-Cl bond and of the C-Br bond. A nonadiabatic model was proposed in which the C-Br scission is strongly suppressed due to nonadiabatic recrossing at the barrier formed by the avoided crossing between the S1 and S2 states. Recent reduced-dimensional dynamical studies lend support to this model. However, another interpretation that has been given for the experimental results is that the reduced probability of C-Br scission is a consequence of incomplete intramolecular energy redistribution. To provide further insight into this problem, we have studied the energetically lowest six singlet electronic states of bromoacetyl chloride by using an ab initio multiconfigurational perturbative electronic structure method. Stationary points (minima and saddle points) and minimum energy paths have been characterized on the S0 and S1 potential energy surfaces. The fourfold way diabatization method has been applied to transform five adiabatic excited electronic states to a diabatic representation. The diabatic potential energy matrix of the first five excited singlet states has been constructed along several cuts of the potential energy hypersurfaces. The thermochemistry of the photodissociation reactions and a comparison with experimental translational energy distributions strongly suggest that nonadiabatic effects dominate the C-Br scission, but that the reaction proceeds along the energetically allowed diabatic pathway to excited-state products instead of being nonadiabatically suppressed. This conclusion is also

  11. Stereospecific Metabolism of Itraconazole by CYP3A4: Dioxolane Ring Scission of Azole Antifungals

    PubMed Central

    Peng, Chi-Chi; Shi, Wei; Lutz, Justin D.; Kunze, Kent L.; Liu, Jun O.; Nelson, Wendel L.

    2012-01-01

    Itraconazole (ITZ) is a mixture of four cis-stereoisomers that inhibit CYP3A4 potently and coordinate CYP3A4 heme via the triazole nitrogen. However, (2R,4S,2′R)-ITZ and (2R,4S,2′S)-ITZ also undergo stereoselective sequential metabolism by CYP3A4 at a site distant from the triazole ring to 3′-OH-ITZ, keto-ITZ, and N-desalkyl-ITZ. This stereoselective metabolism demonstrates specific interactions of ITZ within the CYP3A4 active site. To further investigate this process, the binding and metabolism of the four trans-ITZ stereoisomers by CYP3A4 were characterized. All four trans-ITZ stereoisomers were tight binding inhibitors of CYP3A4-mediated midazolam hydroxylation (IC50 16–26 nM), and each gave a type II spectrum upon binding to CYP3A4. However, instead of formation of 3′-OH-ITZ, they were oxidized at the dioxolane ring, leading to ring scission and formation of two new metabolites of ITZ. These two metabolites were also formed from the four cis-ITZ stereoisomers, although not as efficiently. The catalytic rates of dioxolane ring scission were similar to the dissociation rates of ITZ stereoisomers from CYP3A4, suggesting that the heme iron is reduced while the triazole moiety coordinates to it and no dissociation of ITZ is necessary before catalysis. The triazole containing metabolite [1-(2,4-dichlorophenyl)-2-(1H-1,2,4-triazol-1-yl)ethanone] also inhibited CYP3A4 (IC50 >15 μM) and showed type II binding with CYP3A4. The dioxolane ring scission appears to be clinically relevant because this metabolite was detected in urine samples from subjects that had been administered the mixture of cis-ITZ isomers. These data suggest that the dioxolane ring scission is a metabolic pathway for drugs that contain this moiety. PMID:22106171

  12. Analysis of pre- and post-scission neutrons emitted in the reaction sup 169 Tm( sup 36 Ar, f ) at E sub lab =205 MeV

    SciTech Connect

    Rossner, H.; Hilscher, D.; Hinde, D.J.; Gebauer, B.; Lehmann, M.; Wilpert, M. ); Mordhorst, E. )

    1989-12-01

    Pre- and post-scission neutron multiplicities for the reaction {sup 169}Tm({sup 36}Ar,{ital f}) at {ital E}{sub lab}=205 MeV were measured in coincidence with fission fragments of different masses and total kinetic energies. The mass and total kinetic energy dependence of the total neutron multiplicity as well as the width of the out-of-plane fission fragment correlation angle are well described by evaporation calculations. An average time before scission of several 10{sup {minus}20} s is deduced from the average pre-scission neutron multiplicity. The mass dependence of the post-scission neutron multiplicity is consistent with an energy division at scission proportional to the mass of the fragments. For the first time clear evidence for an increase in pre-scission neutrons with increasing total kinetic energy values has been observed. Possible interpretations of this unexpected behavior are discussed.

  13. Comparing different energy partitions at scission used in prompt emission model codes GEF and Point-by-Point

    NASA Astrophysics Data System (ADS)

    Tudora, A.; Hambsch, F.-J.; Visan, I.; Giubega, G.

    2015-08-01

    Different methods to partition the total excitation energy (TXE) of fully accelerated fragments, presently used in prompt emission calculations include different assumptions about what is happening at scission. In fact the energy partition takes place at scission or even before scission, depending on the physical assumptions supporting the models used in different methods of TXE partition. The paper discusses two TXE partition methods in which the amount of energy to be shared (at scission and before scission, respectively) is very different. These methods (based on different principles and physical considerations) are: A. The method used in the Point-by-Point (PbP) treatment of prompt emission in which the available excitation energy at scission is shared between complementary nascent fragments. The amount of energy to be shared is sufficiently high to consider the nascent fragments in the Fermi-gas regime of the level density. B. The method used in the GEF code, in which the intrinsic energy before scission is shared between pre-nascent fragments according to the "energy sorting mechanism". This sorting mechanism is based on the assumption of level densities in the constant temperature regime, only. This is supported by the low amount of the shared intrinsic energy in the case of thermal and low energy neutron induced fission. Taking into account that the principles and physical considerations of any TXE partition method are independent on the way to treat the prompt emission (i.e. deterministically as in the PbP model or probabilistically by Monte-Carlo as in the code GEF) the methods A and B are applied to the same fission fragment range (built as in the PbP treatment). Extreme hypotheses are made for the fragment level densities on which the partitions are based (only in the Fermi-gas regime or only in the constant temperature regime). The results are compared with the energy partition obtained with fragment level densities described by the composite Gilbert

  14. Crosslink density, oxidation and chain scission in retrieved, highly cross-linked UHMWPE tibial bearings.

    PubMed

    Reinitz, Steven D; Currier, Barbara H; Levine, Rayna A; Van Citters, Douglas W

    2014-05-01

    Irradiated, thermally stabilized, highly cross-linked UHMWPE bearings have demonstrated superior wear performance and improved in vitro oxidation resistance compared with terminally gamma-sterilized bearings, yet retrieval analysis reveals unanticipated in vivo oxidation in these materials despite fewer or no measurable free radicals. There has been little evidence to date that the oxidation mechanism in thermally stabilized materials is the same as that in conventional materials, and so it is unknown whether oxidation in these materials is leading to chain scission and a degradation of mechanical properties, molecular weight, and crosslink density. The aim of this study was to determine whether measured in vivo oxidation in retrieved, highly cross-linked tibial bearings corresponds with a decreasing crosslink density. Analysis of three tibial bearing materials revealed that crosslink density decreased following in vivo duration, and that the change in crosslink density was strongly correlated with oxidation. The results suggest that oxidation in highly cross-linked materials is causing chain scissions that may, in time, impact the material properties. If in vivo oxidation continues over longer durations, there is potential for a clinically significant degradation of mechanical properties. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. ESCRT-III and Vps4: a dynamic multipurpose tool for membrane budding and scission.

    PubMed

    Alonso Y Adell, Manuel; Migliano, Simona M; Teis, David

    2016-09-01

    Complex molecular machineries bud, scission and repair cellular membranes. Components of the multi-subunit endosomal sorting complex required for transport (ESCRT) machinery are enlisted when multivesicular bodies are generated, extracellular vesicles are formed, the plasma membrane needs to be repaired, enveloped viruses bud out of host cells, defective nuclear pores have to be cleared, the nuclear envelope must be resealed after mitosis and for final midbody abscission during cytokinesis. While some ESCRT components are only required for specific processes, the assembly of ESCRT-III polymers on target membranes and the action of the AAA-ATPase Vps4 are mandatory for every process. In this review, we summarize the current knowledge of structural and functional features of ESCRT-III/Vps4 assemblies in the growing pantheon of ESCRT-dependent pathways. We describe specific recruitment processes for ESCRT-III to different membranes, which could be useful to selectively inhibit ESCRT function during specific processes, while not affecting other ESCRT-dependent processes. Finally, we speculate how ESCRT-III and Vps4 might function together and highlight how the characterization of their precise spatiotemporal organization will improve our understanding of ESCRT-mediated membrane budding and scission in vivo.

  16. Polysulfide-Scission Reagents for the Suppression of the Shuttle Effect in Lithium-Sulfur Batteries.

    PubMed

    Hua, Wuxing; Yang, Zhi; Nie, Huagui; Li, Zhongyu; Yang, Jizhang; Guo, Zeqing; Ruan, Chunping; Chen, Xi'an; Huang, Shaoming

    2017-02-28

    Lithium-sulfur batteries have become an appealing candidate for next-generation energy-storage technologies because of their low cost and high energy density. However, one of their major practical problems is the high solubility of long-chain lithium polysulfides and their infamous shuttle effect, which causes low Coulombic efficiency and sulfur loss. Here, we introduced a concept involving the dithiothreitol (DTT) assisted scission of polysulfides into lithium-sulfur system. Our designed porous carbon nanotube/S cathode coupling with a lightweight graphene/DTT interlayer (PCNTs-S@Gra/DTT) exhibited ultrahigh cycle-ability even at 5 C over 1100 cycles, with a capacity degradation rate of 0.036% per cycle. Additionally, the PCNTs-S@Gra/DTT electrode with a 3.51 mg cm(-2) sulfur mass loading delivered a high initial areal capacity of 5.29 mAh cm(-2) (1509 mAh g(-1)) at current density of 0.58 mA cm(-2), and the reversible areal capacity of the cell was maintained at 3.45 mAh cm(-2) (984 mAh g(-1)) over 200 cycles at a higher current density of 1.17 mA cm(-2). Employing this molecule scission principle offers a promising avenue to achieve high-performance lithium-sulfur batteries.

  17. Fabrication of nanobeads from nanocups by controlling scission/crosslinking in organic polymer materials.

    PubMed

    Oyama, Tomoko Gowa; Oshima, Akihiro; Washio, Masakazu; Tagawa, Seiichi

    2012-12-14

    The development of several kinds of micro/nanofabrication techniques has resulted in many innovations in the micro/nanodevices that support today's science and technology. With feature miniaturization, the fabrication tools have shifted from light to ionizing radiation. Here, we propose a simple micro/nanofabrication technique for organic materials using a scanning beam (SB) of ionizing radiation. By controlling the scission/crosslinking of the material via three-dimensional energy-deposition distribution of the SB, appropriate solvents can easily peel off only the crosslinked region from the bulk material. The technique was demonstrated using a focused ion beam and a chlorinated organic polymer. The polymer underwent main-chain scission upon irradiation, but it crosslinked after high-dose irradiation. Appropriate solvents could easily peel off only the crosslinked region from the bulk material. The technique, 'nanobead from nanocup', enabled the production of desired structures such as nanowires and nanomembranes. It can be also applied to the micro/nanofabrication of functional materials.

  18. Scission neutrons for U, Pu, Cm, and Cf isotopes: Relative multiplicities calculated in the sudden limit

    NASA Astrophysics Data System (ADS)

    Capote, R.; Carjan, N.; Chiba, S.

    2016-02-01

    The multiplicities of scission neutrons νs c are calculated for series of U, Pu, Cm, and Cf isotopes assuming a sudden transition between two different nuclear configurations (αi→αf ): one just before the neck rupture and one immediately after the disappearance of the neck. This calculation requires only the knowledge of the corresponding two sets of neutron eigenstates. The nuclear shapes around the scission point are described in terms of Cassinian ovals with only two parameters: α (that positions the shape with respect to the zero-neck shape) and α1 (that defines the mass asymmetry). Based on these shapes, a neutron mean field of the Woods-Saxon type is constructed using two prescriptions to calculate the distance to the nuclear surface. The accent in the present work is put on the dependence of νs c on the neutron number Nf of the fissioning nucleus and on the mass asymmetry AL/AH of the primary fission fragments. The relative dependence of these multiplicities, averaged over the mass yields, <νs c> , are finally compared with existing experimental data on prompt fission neutrons <νp> .

  19. Induction of single strand scission in bacteriophage phi X174 replicative form I DNA by mitomycin C.

    PubMed

    Ueda, K; Morita, J; Komano, T

    1981-03-01

    The action of mitomycin C on double-stranded replicative form I DNA (RF I DNA; supercoiled, covalently closed, circular duplex DNA) of bacteriophage phi X174 was investigated using the technique of agarose gel electrophoresis. Mitomycin C reduced with sodium hydrosulfite (sodium dithionite, Na2S2O4) caused single strand scission in phi X174 RF I DNA in the presence of Cu2+. Cu2+ was essential for this DNA cleave action, and other transition metal ions such as Fe2+, Fe3+, Mn2+, Co2+ and Zn2+ were of no effect. This DNA strand scission was inhibited by catalase (EC 1.11.1.6) and various radical scavengers. This DNA strand scission was caused by free oxygen radicals generated during autoxidation of reduced mitomycin C in the presence of Cu2+.

  20. A QSPR study on the solvent-induced frequency shifts of acetone and dimethyl sulfoxide in organic solvents.

    PubMed

    Ou, Yu Heng; Chang, Chia Ming; Chen, Ying Shao

    2016-06-05

    In this study, solvent-induced frequency shifts (SIFS) in the infrared spectrum of acetone and dimethyl sulfoxide in organic solvents were investigated by using four types of quantum-chemical reactivity descriptors. The results showed that the SIFS of acetone is mainly affected by the electron-acceptance chemical potential and the maximum nucleophilic condensed local softness of organic solvents, which represent the electron flow and the polarization between acetone and solvent molecules. On the other hand, the SIFS of dimethyl sulfoxide changes with the maximum positive charge of hydrogen atom and the inverse of apolar surface area of solvent molecules, showing that the electrostatic and hydrophilic interactions are main mechanisms between dimethyl sulfoxide and solvent molecules. The introduction of the four-element theory model-based quantitative structure-property relationship approach improved the assessing quality and provided a basis for interpreting the solute-solvent interactions.

  1. Solvent-induced crystallization for hybrid perovskite thin-film photodetector with high-performance and low working voltage

    NASA Astrophysics Data System (ADS)

    Hu, Wei; Wu, Runsheng; Yang, Shuzhen; Fan, Peng; Yang, Junliang; Pan, Anlian

    2017-09-01

    Organometal trihalide perovskites have emerged as a class of solution-processed semiconductors exhibiting remarkable optoelectronic properties. Using a high-quality perovskite thin film prepared by solvent-induced crystallization method and adopting a novel device configuration based on photon recycling effect, a perovskite thin-film photodetector has been constructed with the highest external quantum efficiency of 4.1  ×  104% and responsivity of 219 A W-1 at a low bias of 1 V so far. The device working mechanism was further disclosed based on energy band bending model. The high-performance and low working-voltage perovskite thin-film photodetector will find potential applications in photodetection and optoelectronic integrated circuits.

  2. A QSPR study on the solvent-induced frequency shifts of acetone and dimethyl sulfoxide in organic solvents

    NASA Astrophysics Data System (ADS)

    Ou, Yu Heng; Chang, Chia Ming; Chen, Ying Shao

    2016-06-01

    In this study, solvent-induced frequency shifts (SIFS) in the infrared spectrum of acetone and dimethyl sulfoxide in organic solvents were investigated by using four types of quantum-chemical reactivity descriptors. The results showed that the SIFS of acetone is mainly affected by the electron-acceptance chemical potential and the maximum nucleophilic condensed local softness of organic solvents, which represent the electron flow and the polarization between acetone and solvent molecules. On the other hand, the SIFS of dimethyl sulfoxide changes with the maximum positive charge of hydrogen atom and the inverse of apolar surface area of solvent molecules, showing that the electrostatic and hydrophilic interactions are main mechanisms between dimethyl sulfoxide and solvent molecules. The introduction of the four-element theory model-based quantitative structure-property relationship approach improved the assessing quality and provided a basis for interpreting the solute-solvent interactions.

  3. Durable, superoleophobic polymer–nanoparticle composite surfaces with re-entrant geometry via solvent-induced phase transformation

    NASA Astrophysics Data System (ADS)

    Brown, Philip S.; Bhushan, Bharat

    2016-02-01

    Superoleophobic plastic surfaces are useful in a wide variety of applications including anti-fouling, self-cleaning, anti-smudge, and low-drag. Existing examples of superoleophobic surfaces typically rely on poorly adhered coatings or delicate surface structures, resulting in poor mechanical durability. Here, we report a facile method for creating re-entrant geometries desirable for superoleophobicity via entrapment of nanoparticles in polycarbonate surfaces. Nanoparticle incorporation occurs during solvent-induced swelling and subsequent crystallization of the polymer surface. The resulting surface was found to comprise of re-entrant structures, a result of the nanoparticle agglomerates acting as nucleation points for polymer crystallization. Examples of such surfaces were further functionalized with fluorosilane to result in a durable, super-repellent surface. This method of impregnating nanoparticles into polymer surfaces could prove useful in improving the anti-bacterial, mechanical, and liquid-repellent properties of plastic devices.

  4. Durable, superoleophobic polymer–nanoparticle composite surfaces with re-entrant geometry via solvent-induced phase transformation

    PubMed Central

    Brown, Philip S.; Bhushan, Bharat

    2016-01-01

    Superoleophobic plastic surfaces are useful in a wide variety of applications including anti-fouling, self-cleaning, anti-smudge, and low-drag. Existing examples of superoleophobic surfaces typically rely on poorly adhered coatings or delicate surface structures, resulting in poor mechanical durability. Here, we report a facile method for creating re-entrant geometries desirable for superoleophobicity via entrapment of nanoparticles in polycarbonate surfaces. Nanoparticle incorporation occurs during solvent-induced swelling and subsequent crystallization of the polymer surface. The resulting surface was found to comprise of re-entrant structures, a result of the nanoparticle agglomerates acting as nucleation points for polymer crystallization. Examples of such surfaces were further functionalized with fluorosilane to result in a durable, super-repellent surface. This method of impregnating nanoparticles into polymer surfaces could prove useful in improving the anti-bacterial, mechanical, and liquid-repellent properties of plastic devices. PMID:26876479

  5. Membrane budding and scission by the ESCRT machinery: it's all in the neck

    PubMed Central

    Hurley, James H.; Hanson, Phyllis I.

    2010-01-01

    The endosomal sorting complexes required for transport (ESCRTs) catalyze one of the most unusual membrane remodelling events in cell biology. ESCRT-I and ESCRT-II direct membrane budding away from the cytosol by stabilizing bud necks without coating the bud and without being consumed in the buds. ESCRT-III cleaves the bud necks from their cytosolic face. ESCRT-III-mediated membrane neck cleavage is crucial for many processes, including the biogenesis of multivesicular bodies, viral budding, cytokinesis, and probably autophagy. Recent studies of ultrastructures induced by ESCRT-III overexpression in cells and the in vitro reconstitution of the budding and scission reactions have led to breakthroughs in understanding these remarkable membrane reactions. PMID:20588296

  6. Compound nucleus decay: Comparison between saddle point and scission point barriers

    SciTech Connect

    Santos, T. J.; Carlson, B. V.

    2014-11-11

    One of the principal characteristics of nuclear multifragmentation is the emission of complex fragments of intermediate mass. An extension of the statistical multifragmentation model has been developed, in which the process can be interpreted as the near simultaneous limit of a series of sequential binary decays. In this extension, intermediate mass fragment emissions are described by expressions almost identical to those of light particle emission. At lower temperatures, similar expressions have been shown to furnish a good description of very light intermediate mass fragment emission but not of the emission of heavier fragments, which seems to be determined by the transition density at the saddle-point rather than at the scission point. Here, we wish to compare these different formulations of intermediate fragmment emission and analyze the extent to which they remain distinguishable at high excitation energy.

  7. Kinetics of the C-C bond beta scission reactions in alkyl radical reaction class.

    PubMed

    Ratkiewicz, Artur; Truong, Thanh N

    2012-06-28

    Kinetics of the β-scission in alkyl radical reaction class was studied using the reaction class transition state theory (RC-TST) combined with the linear energy relationship (LER) and the barrier height grouping (BHG) approach. All necessary parameters were derived from first-principle density functional calculations for a representative set of 21 reactions. Different error analyses and comparisons with available literature data were made. Direct comparison with available experimental data indicates that the RC-TST/LER, where only reaction energy is needed, can predict rate constants for any reaction in this reaction class with excellent accuracy. Specifically for this reaction class, the RC-TST/LER method has less than 60% systematic errors on average in the predicted rate constants when compared to explicit rate calculations.

  8. Kinetics of the C-C bond beta scission reactions in alkyl radicals.

    PubMed

    Ratkiewicz, Artur

    2011-09-07

    High pressure limits of thermal rate constants of four C-C bond beta scission reactions of propyl, 1-butyl, 2-butyl and isobutyl radicals were calculated using the canonical variational transition state theory (CVT) with a multi-dimensional small-curvature tunneling (SCT) correction over the temperature range of 300-3000 K. The CCSD(T)/cc-pVDZ//BH&HLYP/cc-pVDZ method was used to provide necessary potential energy surface information. Rate constants for these reactions were used to extrapolate rate constants for reactions in larger alkyls where experimental data are available using the Reaction Class Transition State Theory (RC-TST). Excellent agreement with experimental data confirms the validity of the RC-TST methodology and the accuracy of the calculated kinetic data in this study.

  9. Robust self-replication of combinatorial information via crystal growth and scission

    PubMed Central

    Schulman, Rebecca; Yurke, Bernard; Winfree, Erik

    2012-01-01

    Understanding how a simple chemical system can accurately replicate combinatorial information, such as a sequence, is an important question for both the study of life in the universe and for the development of evolutionary molecular design techniques. During biological sequence replication, a nucleic acid polymer serves as a template for the enzyme-catalyzed assembly of a complementary sequence. Enzymes then separate the template and complement before the next round of replication. Attempts to understand how replication could occur more simply, such as without enzymes, have largely focused on developing minimal versions of this replication process. Here we describe how a different mechanism, crystal growth and scission, can accurately replicate chemical sequences without enzymes. Crystal growth propagates a sequence of bits while mechanically-induced scission creates new growth fronts. Together, these processes exponentially increase the number of crystal sequences. In the system we describe, sequences are arrangements of DNA tile monomers within ribbon-shaped crystals. 99.98% of bits are copied correctly and 78% of 4-bit sequences are correct after two generations; roughly 40 sequence copies are made per growth front per generation. In principle, this process is accurate enough for 1,000-fold replication of 4-bit sequences with 50% yield, replication of longer sequences, and Darwinian evolution. We thus demonstrate that neither enzymes nor covalent bond formation are required for robust chemical sequence replication. The form of the replicated information is also compatible with the replication and evolution of a wide class of materials with precise nanoscale geometry such as plasmonic nanostructures or heterogeneous protein assemblies. PMID:22493232

  10. Amide Link Scission in the Polyamide Active Layers of Thin-Film Composite Membranes upon Exposure to Free Chlorine: Kinetics and Mechanisms.

    PubMed

    Powell, Joshua; Luh, Jeanne; Coronell, Orlando

    2015-10-20

    The volume-averaged amide link scission in the aromatic polyamide active layer of a reverse osmosis membrane upon exposure to free chlorine was quantified at a variety of free chlorine exposure times, concentrations, and pH and rinsing conditions. The results showed that (i) hydroxyl ions are needed for scission to occur, (ii) hydroxide-induced amide link scission is a strong function of exposure to hypochlorous acid, (iii) the ratio between amide links broken and chlorine atoms taken up increased with the chlorination pH and reached a maximum of ∼25%, (iv) polyamide disintegration occurs when high free chlorine concentrations, alkaline conditions, and high exposure times are combined, (v) amide link scission promotes further chlorine uptake, and (vi) scission at the membrane surface is unrepresentative of volume-averaged scission in the active layer. Our observations are consistent with previously proposed mechanisms describing amide link scission as a result of the hydrolysis of the N-chlorinated amidic N-C bond due to nucleophilic attack by hydroxyl ions. This study increases the understanding of the physicochemical changes that could occur for membranes in treatment plants using chlorine as an upstream disinfectant and the extent and rate at which those changes would occur.

  11. Hydrophobic solvent induced phase transition extraction to extract drugs from plasma for high performance liquid chromatography-mass spectrometric analysis.

    PubMed

    Liu, Guozhu; Zhou, Naiyuan; Zhang, Mingshan; Li, Shengjun; Tian, Qingqing; Chen, Jitao; Chen, Bo; Wu, Yongning; Yao, Shouzhuo

    2010-01-15

    Novel sample preparation approaches for HPLC bioanalysis based on the phenomenon that acetonitrile can be separated from water by adding salts or cooling at subzero temperatures have been reported. These two methods are superior to conventional liquid-liquid extraction since the separated acetonitrile phase can be directly injected to the RP-LC system. However, the salting-out method suffers from a potential problem that the remained salt in the acetonitrile phase may harm the MS detector, while the subzero-temperature method is troublesome to operate. Here, we have reported a similar phase separation phenomenon that the acetonitrile aqueous mixture can be separated by adding a hydrophobic solvent; and capitalising on this phase transition phenomenon, we have proposed an alternative approach, named solvent induced phase transition extraction (SIPTE), to extract drug from plasma for HPLC-MS analysis. The proposed SIPTE method is much simpler and avoids contaminating the MS detector. Three structurally diverse drugs were selected as test compounds to design the SIPTE method and to validate the efficiency of this method. The four goals of plasma sample pretreatment for HPLC-MS analysis, i.e. removal of proteins, removal of other low-molecular interferences, preconcentration of the analytes of interest, and matching the sample solvent with the HPLC-MS system, can be rapidly performed in a very simple step by using the SIPTE method. 2009 Elsevier B.V. All rights reserved.

  12. Cerebrospinal fluid proteins and free amino acids in patients with solvent induced chronic toxic encephalopathy and healthy controls.

    PubMed Central

    Moen, B E; Kyvik, K R; Engelsen, B A; Riise, T

    1990-01-01

    The concentrations of protein, albumin, IgG, and free amino acids in the cerebrospinal fluid of 16 patients with chronic toxic encephalopathy due to organic solvents were measured. The patient group consisted of all patients with this diagnosis in a neurological department in 1985. The diagnosis was based on neuraesthenic symptoms, pathological psychometric performance, and verified exposure to neurotoxic organic solvents. A control group of 16 patients with myalgias or backache, or both, and no signs of disease was used for comparison. The purpose was to study possible changes in the cerebrospinal fluid that might contribute to understanding the aetiology of solvent induced chronic toxic encephalopathy. A rise in protein, albumin, and IgG was found in the patient group compared with the control group, as well as reduced concentrations of phosphoethanolamine, taurine, homocarnosine, ethanolamine, alpha-aminobutyric acid, and leucine. Using a stepwise multiple regression analysis, taurine was negatively correlated to exposure to solvents. These findings may indicate membrane alterations in the central nervous system related to exposure to organic solvents. PMID:2337535

  13. Radiation crosslinking and scission of poly(vinyl methyl ether) in aqueous solution

    NASA Astrophysics Data System (ADS)

    Janik, Ireneusz; Rosiak, Janusz M.

    2002-03-01

    For a wide range of poly(vinyl methyl ether) (PMVE) concentrations (1-16 g dm -3), in anoxic conditions, polymer-derived radicals recombine in two major pathways: (i) crosslinking and (ii) disproportionation. Both these processes proceed inter- and intramolecularly. The radiation-chemical yields and kinetics of crosslinking have been studied by pulse radiolysis with light scattering intensity detection (LSI). In the absence of oxygen, G-values of intermolecular crosslinking were determined on the basis of LSI changes versus applied dose and compared with the results obtained previously for γ-irradiated samples. It has been found that the first half-life time of intermolecular crosslinking decreases with increasing dose per pulse. Addition of small amounts of macroradical scavenger (cysteamine hydrochloride) decreases, drastically, the increase of LSI signal. On increasing the PVME concentration, intermolecular crosslinking becomes more efficient. In the presence of oxygen, for diluted PVME solution (0.1 g dm -3), decrease of LSI signal consisting of the kinetic of a first-order reaction was observed. The rate constant of LSI decrease was found to be 1.1×10 3 s -1 and it was attributed to the main-chain scission.

  14. Catalytic strategy for carbon−carbon bond scission by the cytochrome P450 OleT

    PubMed Central

    Grant, Job L.; Mitchell, Megan E.; Makris, Thomas Michael

    2016-01-01

    OleT is a cytochrome P450 that catalyzes the hydrogen peroxide-dependent metabolism of Cn chain-length fatty acids to synthesize Cn-1 1-alkenes. The decarboxylation reaction provides a route for the production of drop-in hydrocarbon fuels from a renewable and abundant natural resource. This transformation is highly unusual for a P450, which typically uses an Fe4+−oxo intermediate known as compound I for the insertion of oxygen into organic substrates. OleT, previously shown to form compound I, catalyzes a different reaction. A large substrate kinetic isotope effect (≥8) for OleT compound I decay confirms that, like monooxygenation, alkene formation is initiated by substrate C−H bond abstraction. Rather than finalizing the reaction through rapid oxygen rebound, alkene synthesis proceeds through the formation of a reaction cycle intermediate with kinetics, optical properties, and reactivity indicative of an Fe4+−OH species, compound II. The direct observation of this intermediate, normally fleeting in hydroxylases, provides a rationale for the carbon−carbon scission reaction catalyzed by OleT. PMID:27555591

  15. Radiation crosslinking and scission parameters for poly(vinyl methyl ether) in aqueous solution

    NASA Astrophysics Data System (ADS)

    Janik, I.; Kasprzak, E.; Al-Zier, A.; Rosiak, J. M.

    2003-08-01

    In oxygen-free aqueous solutions, poly(vinyl methyl ether) (PVME) was subjected to gamma irradiation. In such conditions PVME radicals recombine by way of crosslinking. The major result of crosslinking is an increase in the average molecular weight of the polymer, which close to the gelation point tends to infinity. Further irradiation increases the amount of formed gel, while the soluble fraction - sol decreases. The basic parameters related to the radiation processing are gelation dose - Dg, as well as radiation yield of intermolecular crosslinking and scission, GX and GS, respectively. There are three general approaches for estimation of those parameters. The first method is based on the study of molecular weight changes before the gelation point. The second method combines the gel-sol as well as the swelling analysis results. The third one allows one to calculate the yield of crosslinking from the value of Dg. All of these methods of calculation were used in this work for determination of radiation parameters and results obtained are discussed.

  16. Cell Division by Longitudinal Scission in the Insect Endosymbiont Spiroplasma poulsonii

    PubMed Central

    Maclachlan, Catherine; Clerc-Rosset, Stéphanie; Knott, Graham W.

    2016-01-01

    ABSTRACT Spiroplasma bacteria are highly motile bacteria with no cell wall and a helical morphology. This clade includes many vertically transmitted insect endosymbionts, including Spiroplasma poulsonii, a natural endosymbiont of Drosophila melanogaster. S. poulsonii bacteria are mainly found in the hemolymph of infected female flies and exhibit efficient vertical transmission from mother to offspring. As is the case for many facultative endosymbionts, S. poulsonii can manipulate the reproduction of its host; in particular, S. poulsonii induces male killing in Drosophila melanogaster. Here, we analyze the morphology of S. poulsonii obtained from the hemolymph of infected Drosophila. This endosymbiont was not only found as long helical filaments, as previously described, but was also found in a Y-shaped form. The use of electron microscopy, immunogold staining of the FtsZ protein, and antibiotic treatment unambiguously linked the Y shape of S. poulsonii to cell division. Observation of the Y shape in another Spiroplasma, S. citri, and anecdotic observations from the literature suggest that cell division by longitudinal scission might be prevalent in the Spiroplasma clade. Our study is the first to report the Y-shape mode of cell division in an endosymbiotic bacterium and adds Spiroplasma to the so far limited group of bacteria known to utilize this cell division mode. PMID:27460796

  17. Dynamin recruitment and membrane scission at the neck of a clathrin-coated pit.

    PubMed

    Cocucci, Emanuele; Gaudin, Raphaël; Kirchhausen, Tom

    2014-11-05

    Dynamin, the GTPase required for clathrin-mediated endocytosis, is recruited to clathrin-coated pits in two sequential phases. The first is associated with coated pit maturation; the second, with fission of the membrane neck of a coated pit. Using gene-edited cells that express dynamin2-EGFP instead of dynamin2 and live-cell TIRF imaging with single-molecule EGFP sensitivity and high temporal resolution, we detected the arrival of dynamin at coated pits and defined dynamin dimers as the preferred assembly unit. We also used live-cell spinning-disk confocal microscopy calibrated by single-molecule EGFP detection to determine the number of dynamins recruited to the coated pits. A large fraction of budding coated pits recruit between 26 and 40 dynamins (between 1 and 1.5 helical turns of a dynamin collar) during the recruitment phase associated with neck fission; 26 are enough for coated vesicle release in cells partially depleted of dynamin by RNA interference. We discuss how these results restrict models for the mechanism of dynamin-mediated membrane scission.

  18. Protein-associated intercalator-induced DNA scission is enhanced by estrogen stimulation in human breast cancer cells.

    PubMed Central

    Zwelling, L A; Kerrigan, D; Lippman, M E

    1983-01-01

    Estrogen-responsive human breast cancer cells (MCF-7) displayed a higher frequency of intercalator-induced protein-associated DNA scission after treatment with 17 beta-estradiol (E2) than did cells that had not received estrogen treatment. This effect was dependent on estrogen concentration (maximum enhancement at approximately equal to 1 nM E2) and time (maximum effect seen approximately equal to 24 hr after E2 addition). Human breast cancer cells lacking estrogen receptors did not display the enhanced response. Antiestrogens produced a slight decrease in intercalator-induced DNA scission, whereas insulin produced an enhanced effect. The DNA breaks produced by the intercalators 5-iminodaunorubicin and 4'-(9-acridinylamino)methanesulfon-m-anisidide (m-AMSA) in these cells were undetectable without enzymatic deproteinization of cell lysates prior to quantification by alkaline elution. Intercalator-induced DNA-protein crosslinking also was enhanced in E2-treated MCF-7 cells. Studies with m-[14C]AMSA revealed no estrogen-associated increases in drug uptake. The data suggest that E2 treatment, either by specifically and directly increasing active transcription in chromatin or through secondary effects on DNA that accompany alterations in cell growth or cell cycle distribution, alters the susceptibility of DNA to intercalator-induced protein-associated DNA scission. If this enhanced protein-associated scission is selectively localized to transcriptionally active chromatin, the adsorption of the DNA-bound proteins to membrane filters (DNA-protein crosslinking) may allow identification and isolation of estrogen-regulated gene sequences. PMID:6353411

  19. Solvent-induced configuration mixing and triplet excited-state inversion: insights from transient absorption and transient dc photoconductivity measurements.

    PubMed

    She, Chunxing; Rachford, Aaron A; Wang, Xianghuai; Goeb, Sébastien; El-Ballouli, Ala'a O; Castellano, Felix N; Hupp, Joseph T

    2009-10-14

    Solvent-induced excited-state configuration mixing in a Pt(II) diimine chromophore with phenylene ethynylene containing acetylide ligands, [Pt((t)Bu2bpy)(PE3)2] (1), was characterized by nanosecond transient absorption spectroscopy and transient dc photoconductivity (TDCP). The mixing is a result of closely spaced triplet charge transfer (3CT) and intraligand-localized (3IL) triplet energy levels that are finely tuned with solvent polarity as ascertained by their parent model chromophores [Pt((t)Bu2bpy)(PE1)2] (2) and [Pt(P2)(PE3)2] (3), respectively. The absorption difference spectrum of the mixed triplet state is dramatically different from those of the 3CT and 3IL state model chromophores. The 3CT, 3IL and configuration-mixed triplet states led to distinct TDCP signals. The TDCP response is of negative polarity for 3CT excited states but of positive polarity for 3IL excited states. TDCP transients for 1 in mixed solvents are a combination of signals from the 3IL and 3CT states, with the signal magnitude depending on the polarity of solvent composition. The fraction of 3CT state character in the configurationally mixed excited state was quantified by TDCP to be approximately 0.24 in pure benzene, while it decreased to approximately 0.05 in 20 : 80 (v : v) benzene-CH2Cl2. The charge transfer fraction appears to increase slightly to approximately 0.11 in the lower polarity 20 : 80 n-hexane-CH2Cl2 medium. TDCP is shown to be a useful tool for the identification of the lowest excited state in electrically neutral metal-organic chromophores.

  20. Decomposition Pathways of Glycerol via C–H, O–H, and C–C Bond Scission on Pt(111): A Density Functional Theory Study

    SciTech Connect

    Liu, Bin; Greeley, Jeffrey P.

    2011-10-13

    Glycerol decomposition on Pt(111) via dehydrogenation or C–C bond scission is examined with periodic density functional theory (DFT) calculations. The thermochemistry of dehydrogenation intermediates is first estimated using an empirical correlation scheme with parameters fit to selected DFT calculations; the resulting estimates for the more stable intermediates are refined with full DFT calculations. Brønsted–Evans–Polanyi (BEP) relationships for dehydrogenation and C–C bond scission reactions are developed and used to estimate the kinetics of elementary dehydrogenation and C–C bond scission steps in the reaction network. The combined thermochemical and kinetic analysis implies that glycerol dehydrogenation products at intermediate levels of dehydrogenation are the most thermochemically stable. Additionally, although C–C bond scission transition state energies are high for glycerol and for intermediates at early stages of dehydrogenation, these energies decrease as the intermediates are successively dehydrogenated, reaching a minimum after the removal of several hydrogen atoms from glycerol. At these levels of dehydrogenation, the C–C scission transition state energies become comparable to those of O–H or C–H scission. These results suggest that C–C bonds are only broken after glycerol has been significantly dehydrogenated and demonstrate that DFT-based analyses, combined with simple correlation schemes, can be effective for elucidating general features of complex biomassic reaction networks.

  1. Decomposition Pathways of Glycerol via C–H, O–H, and C–C Bond Scission on Pt(111): A Density Functional Theory Study

    SciTech Connect

    Liu, Bin; Greeley, Jeffrey

    2011-09-01

    Glycerol decomposition on Pt(111) via dehydrogenation or C–C bond scission is examined with periodic density functional theory (DFT) calculations. The thermochemistry of dehydrogenation intermediates is first estimated using an empirical correlation scheme with parameters fit to selected DFT calculations; the resulting estimates for the more stable intermediates are refined with full DFT calculations. Brønsted–Evans–Polanyi (BEP) relationships for dehydrogenation and C–C bond scission reactions are developed and used to estimate the kinetics of elementary dehydrogenation and C–C bond scission steps in the reaction network. The combined thermochemical and kinetic analysis implies that glycerol dehydrogenation products at intermediate levels of dehydrogenation are the most thermochemically stable. Additionally, although C–C bond scission transition state energies are high for glycerol and for intermediates at early stages of dehydrogenation, these energies decrease as the intermediates are successively dehydrogenated, reaching a minimum after the removal of several hydrogen atoms from glycerol. At these levels of dehydrogenation, the C–C scission transition state energies become comparable to those of O–H or C–H scission. These results suggest that C–C bonds are only broken after glycerol has been significantly dehydrogenated and demonstrate that DFT-based analyses, combined with simple correlation schemes, can be effective for elucidating general features of complex biomassic reaction networks.

  2. Influenza virus A M2 protein generates negative Gaussian membrane curvature necessary for budding and scission

    PubMed Central

    Schmidt, Nathan W.; Mishra, Abhijit; Wang, Jun; DeGrado, William F.; Wong, Gerard C. L.

    2013-01-01

    The M2 protein is a multi-functional protein, which plays several roles in the replication cycle of the influenza A virus. Here we focus on its ability to promote budding of the mature virus from the cell surface. Using high resolution small angle X-ray scattering we show that M2 can restructure lipid membranes into bicontinuous cubic phases which are rich in negative Gaussian curvature (NGC). The active generation of negative Gaussian membrane curvature by M2 is essential to influenza virus budding. M2 has been observed to colocalize with the region of high NGC at the neck of a bud. The structural requirements for scission are even more stringent than those for budding, as the neck must be considerably smaller than the virus during ‘pinch off’. Consistent with this, the amount of NGC in the induced cubic phases suggests that M2 proteins can generate high curvatures comparable to those on a neck with size 10x smaller than a spherical influenza virus. Similar experiments on variant proteins containing different M2 domains show that the cytoplasmic amphipathic helix is necessary and sufficient for NGC generation. Mutations to the helix which reduce its amphiphilicity and are known to diminish budding attenuated NGC generation. An M2 construct comprising the membrane interactive domains, the transmembrane helix and the cytoplasmic helix, displayed enhanced ability to generate NGC, suggesting that other domains cooperatively promote membrane curvature. These studies establish the importance of M2-induced negative Gaussian curvature during budding and suggest that antagonizing this curvature is a viable anti-influenza strategy. PMID:23962302

  3. Density Functional Theory Study of Selectivity Considerations for C–C Versus C–O Bond Scission in Glycerol Decomposition on Pt(111)

    SciTech Connect

    Liu, Bin; Greeley, Jeffrey

    2012-05-01

    Glycerol decomposition via a combination of dehydrogenation, C–C bond scission, and C–O bond scission reactions is examined on Pt(111) with periodic Density Functional Theory (DFT) calculations. Building upon a previous study focused on C–C bond scission in glycerol, the current work presents a first analysis of the competition between C–O and C–C bond cleavage in this reaction network. The thermochemistry of various species produced from C–O bond breaking in glycerol dehydrogenation intermediates is estimated using an extension of a previously introduced empirical correlation scheme, with parameters fit to DFT calculations. Brønsted–Evans–Polanyi (BEP) relationships are then used to estimate the kinetics of C–O bond breaking. When combined with the previous results, the thermochemical and kinetic analyses imply that, while C–O bond scission may be competitive with C–C bond scission during the early stages of glycerol dehydrogenation, the overall rates are likely to be very low. Later in the dehydrogenation process, where rates will be much higher, transition states for C–C bond scission involving decarbonylation are much lower in energy than are the corresponding transition states for C–O bond breaking, implying that the selectivity for C–C scission will be high for glycerol decomposition on smooth platinum surfaces. Finally, it is anticipated that the correlation schemes described in this work will provide an efficient strategy for estimating thermochemical and kinetic energetics for a variety of elementary bond breaking processes on Pt(111) and may ultimately facilitate computational catalyst design for these and related catalytic processes.

  4. Deactivation of Ceria Supported Palladium through C–C Scission during Transfer Hydrogenation of Phenol with Alcohols

    SciTech Connect

    Nelson, Nicholas C.; Manzano, J. Sebastián; Slowing, Igor I.

    2016-11-21

    The stability of palladium supported on ceria (Pd/CeO2) was studied during liquid flow transfer hydrogenation using primary and secondary alcohols as hydrogen donors. For primary alcohols, the ceria support was reduced to cerium hydroxy carbonate within 14 h and was a contributing factor toward catalyst deactivation. For secondary alcohols, cerium hydroxy carbonate was not observed during the same time period and the catalyst was stable upon prolonged reaction. Regeneration through oxidation/reduction does not restore initial activity likely due to irreversible catalyst restructuring. Lastly, a deactivation mechanism involving C–C scission of acyl and carboxylate intermediates is proposed.

  5. Deactivation of Ceria Supported Palladium through C–C Scission during Transfer Hydrogenation of Phenol with Alcohols

    DOE PAGES

    Nelson, Nicholas C.; Manzano, J. Sebastián; Slowing, Igor I.

    2016-11-21

    The stability of palladium supported on ceria (Pd/CeO2) was studied during liquid flow transfer hydrogenation using primary and secondary alcohols as hydrogen donors. For primary alcohols, the ceria support was reduced to cerium hydroxy carbonate within 14 h and was a contributing factor toward catalyst deactivation. For secondary alcohols, cerium hydroxy carbonate was not observed during the same time period and the catalyst was stable upon prolonged reaction. Regeneration through oxidation/reduction does not restore initial activity likely due to irreversible catalyst restructuring. Lastly, a deactivation mechanism involving C–C scission of acyl and carboxylate intermediates is proposed.

  6. Alkoxy Radical Bond Scissions Explain the Anomalously Low Secondary Organic Aerosol and Organonitrate Yields From α-Pinene + NO3.

    PubMed

    Kurtén, Theo; Møller, Kristian H; Nguyen, Tran B; Schwantes, Rebecca H; Misztal, Pawel K; Su, Luping; Wennberg, Paul O; Fry, Juliane L; Kjaergaard, Henrik G

    2017-07-06

    Oxidation of monoterpenes (C10H16) by nitrate radicals (NO3) constitutes an important source of atmospheric secondary organic aerosol (SOA) and organonitrates. However, knowledge of the mechanisms of their formation is incomplete and differences in yields between similar monoterpenes are poorly understood. In particular, yields of SOA and organonitrates from α-pinene + NO3 are low, while those from Δ(3)-carene + NO3 are high. Using computational methods, we suggest that bond scission of the nitrooxy alkoxy radicals from Δ(3)-carene lead to the formation of reactive keto-nitrooxy-alkyl radicals, which retain the nitrooxy moiety and can undergo further reactions to form SOA. By contrast, bond scissions of the nitrooxy alkoxy radicals from α-pinene lead almost exclusively to the formation of the relatively unreactive and volatile product pinonaldehyde (C10H16O2), thereby limiting organonitrate and SOA formation. This hypothesis is supported by laboratory experiments that quantify products of the reaction of α-pinene + NO3 under atmospherically relevant conditions.

  7. Electron cryotomography of ESCRT assemblies and dividing Sulfolobus cells suggests that spiraling filaments are involved in membrane scission.

    PubMed

    Dobro, Megan J; Samson, Rachel Y; Yu, Zhiheng; McCullough, John; Ding, H Jane; Chong, Parkson Lee-Gau; Bell, Stephen D; Jensen, Grant J

    2013-08-01

    The endosomal-sorting complex required for transport (ESCRT) is evolutionarily conserved from Archaea to eukaryotes. The complex drives membrane scission events in a range of processes, including cytokinesis in Metazoa and some Archaea. CdvA is the protein in Archaea that recruits ESCRT-III to the membrane. Using electron cryotomography (ECT), we find that CdvA polymerizes into helical filaments wrapped around liposomes. ESCRT-III proteins are responsible for the cinching of membranes and have been shown to assemble into helical tubes in vitro, but here we show that they also can form nested tubes and nested cones, which reveal surprisingly numerous and versatile contacts. To observe the ESCRT-CdvA complex in a physiological context, we used ECT to image the archaeon Sulfolobus acidocaldarius and observed a distinct protein belt at the leading edge of constriction furrows in dividing cells. The known dimensions of ESCRT-III proteins constrain their possible orientations within each of these structures and point to the involvement of spiraling filaments in membrane scission.

  8. Electron cryotomography of ESCRT assemblies and dividing Sulfolobus cells suggests that spiraling filaments are involved in membrane scission

    PubMed Central

    Dobro, Megan J.; Samson, Rachel Y.; Yu, Zhiheng; McCullough, John; Ding, H. Jane; Chong, Parkson Lee-Gau; Bell, Stephen D.; Jensen, Grant J.

    2013-01-01

    The endosomal-sorting complex required for transport (ESCRT) is evolutionarily conserved from Archaea to eukaryotes. The complex drives membrane scission events in a range of processes, including cytokinesis in Metazoa and some Archaea. CdvA is the protein in Archaea that recruits ESCRT-III to the membrane. Using electron cryotomography (ECT), we find that CdvA polymerizes into helical filaments wrapped around liposomes. ESCRT-III proteins are responsible for the cinching of membranes and have been shown to assemble into helical tubes in vitro, but here we show that they also can form nested tubes and nested cones, which reveal surprisingly numerous and versatile contacts. To observe the ESCRT–CdvA complex in a physiological context, we used ECT to image the archaeon Sulfolobus acidocaldarius and observed a distinct protein belt at the leading edge of constriction furrows in dividing cells. The known dimensions of ESCRT-III proteins constrain their possible orientations within each of these structures and point to the involvement of spiraling filaments in membrane scission. PMID:23761076

  9. Dynamical description of the moments of the energy distribution of fission fragments and scission of a fissile nucleus

    SciTech Connect

    Borunov, M. V. Nadtochy, P. N.; Adeev, G. D.

    2007-11-15

    A multidimensional stochastic approach to fission dynamics on the basis of three-dimensional Langevin equations is applied systematically to calculating the first four moments of the energy distribution of fission fragments over a broad range of Coulomb parameter values (700 < Z{sup 2}/A{sup 1/3} < 1700). For the scission of a fissile nucleus into fragments, use was made of various criteria traditional in modern fission theory: the vanishing of the neck radius at the scission instant and the equality of the neck radius to about 0.3R{sub 0} at this instant. In calculating the energy distribution, both of the criteria used lead to a fairly good description of experimental data on the first two moments and to a satisfactory description of data on the third and fourth moments of the distribution. However, the quality of the description of available experimental data is insufficiently good for giving preference to any of these criteria. Within three-dimensional Langevin dynamics, it is shown that the vanishing-radius criterion leads to unexpectably good agreement with experimental data on the first four moments of the energy distribution. A modified version of one-body dissipation where the coefficient that takes into account the reduction of the wall-formula contribution was set to k{sub s} = 0.25 was used in the calculations.

  10. An atomic finite element model for biodegradable polymers. Part 2. A model for change in Young's modulus due to polymer chain scission.

    PubMed

    Gleadall, Andrew; Pan, Jingzhe; Kruft, Marc-Anton

    2015-11-01

    Atomic simulations were undertaken to analyse the effect of polymer chain scission on amorphous poly(lactide) during degradation. Many experimental studies have analysed mechanical properties degradation but relatively few computation studies have been conducted. Such studies are valuable for supporting the design of bioresorbable medical devices. Hence in this paper, an Effective Cavity Theory for the degradation of Young's modulus was developed. Atomic simulations indicated that a volume of reduced-stiffness polymer may exist around chain scissions. In the Effective Cavity Theory, each chain scission is considered to instantiate an effective cavity. Finite Element Analysis simulations were conducted to model the effect of the cavities on Young's modulus. Since polymer crystallinity affects mechanical properties, the effect of increases in crystallinity during degradation on Young's modulus is also considered. To demonstrate the ability of the Effective Cavity Theory, it was fitted to several sets of experimental data for Young's modulus in the literature.

  11. Organic solvent-induced controllable crystallization of the inorganic salt Na3[Au(SO3)2] into ultralong nanobelts and hierarchical microstructures of nanowires

    NASA Astrophysics Data System (ADS)

    Liu, Sen; Tian, Jingqi; Wang, Lei; Li, Hailong; Sun, Xuping

    2011-04-01

    The present paper reports an organic solvent-induced controllable crystallization of a water-soluble inorganic salt Na3[Au(SO3)2] into ultralong nanobelts and hierarchical microstructures of one-dimensional (1D) nanowires. It was found that the morphology of the resulting crystals can be fine tuned by simply varying the experimental parameters, such as the ratios of water to organic solvent and gold salt to organic solvent, as well as the type of organic solvent.The present paper reports an organic solvent-induced controllable crystallization of a water-soluble inorganic salt Na3[Au(SO3)2] into ultralong nanobelts and hierarchical microstructures of one-dimensional (1D) nanowires. It was found that the morphology of the resulting crystals can be fine tuned by simply varying the experimental parameters, such as the ratios of water to organic solvent and gold salt to organic solvent, as well as the type of organic solvent. Electronic supplementary information (ESI) available: EDS and XRD analysis of nanobelts. See DOI: 10.1039/c0nr00690d

  12. Transient bond scission of polytetrafluoroethylene under laser-induced shock compression studied by nanosecond time-resolved Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Nakamura, Kazutaka; Wakabayashi, Kunihiko; Konodo, Ken-Ichi

    2001-06-01

    Nanosecond time-resolved Raman spectroscopy has been performed to study polymer films, polytetrafluoroethylene (PTFE), under laser driven shock compression at laser power density of 4.0 GW/cm^2. The overtone-mode line of PTFE showed red shift (18 cm-1) at delay time of 9.3 ns due to the shock compression and corresponding pressure was estimated to be approximately 2.7 GPa by analyzing static and shock compression data. The estimated pressure was in good agreement with that estimated by ablation pressure in glass-confined geometry. A new vibrational line at 1900 cm-1 appeared only under shock compression and was assigned to the C=C streching in transient species such as a monomer (C_2F_4) produced by the shock-induced bond scission. Intensity of the new line increased with increasing delay time along propagation of the shock compression with a shock velocity of 2.5 km/s.

  13. Anisotropic pyrochemical microetching of poly(tetrafluoroethylene) initiated by synchrotron radiation-induced scission of molecule bonds

    SciTech Connect

    Yamaguchi, Akinobu E-mail: utsumi@lasti.u-hyogo.ac.jp; Kido, Hideki; Utsumi, Yuichi E-mail: utsumi@lasti.u-hyogo.ac.jp; Ukita, Yoshiaki; Kishihara, Mitsuyoshi

    2016-02-01

    We developed a process for micromachining polytetrafluoroethylene (PTFE): anisotropic pyrochemical microetching induced by synchrotron X-ray irradiation. X-ray irradiation was performed at room temperature. Upon heating, the irradiated PTFE substrates exhibited high-precision features. Both the X-ray diffraction peak and Raman signal from the irradiated areas of the substrate decreased with increasing irradiation dose. The etching mechanism is speculated as follows: X-ray irradiation caused chain scission, which decreased the number-average degree of polymerization. The melting temperature of irradiated PTFE decreased as the polymer chain length decreased, enabling the treated regions to melt at a lower temperature. The anisotropic pyrochemical etching process enabled the fabrication of PTFE microstructures with higher precision than simultaneously heating and irradiating the sample.

  14. A 3D MOF showing unprecedented solvent-induced single-crystal-to-single-crystal transformation and excellent CO2 adsorption selectivity at room temperature.

    PubMed

    Qin, Tao; Gong, Jun; Ma, Junhan; Wang, Xin; Wang, Yonghua; Xu, Yan; Shen, Xuan; Zhu, Dunru

    2014-12-28

    A water stable porous 3D metal-organic framework, [Cu3L2(μ3-OH)2(μ2-H2O)]·2DMA (1, mother crystal, H2L = 2,2'-dinitrobiphenyl-4,4'-dicarboxylic acid, DMA = N,N-dimethylacetamide), shows unprecedented irreversible solvent-induced substitutions of bridging aqua ligands and guest-exchanges in single-crystal-to-single-crystal (SCSC) transformations at room temperature (RT), producing quantitatively three daughter crystals, [Cu3L2(μ3-OH)2]·2S (2: 2A, S = acetone; 2B, S = 2-propanol; 2C, S = 2-butanol), which exhibit reversible interconversion by guest-exchanges at RT in SCSC transformations. MOF 1 shows excellent separation selectivity (128) of CO2/N2 at RT and is a better sorbent of micro-solid-phase extraction (μ-SPE) than currently known benchmark ZIF-8.

  15. Electrochemical impedance spectroscopy studies of organic-solvent-induced permeability changes in nanoporous films derived from a cylinder-forming diblock copolymer.

    PubMed

    Perera, D M Neluni T; Pandey, Bipin; Ito, Takashi

    2011-09-06

    In this paper we report electrochemical investigations of the influence of organic solvents dissolved in aqueous solution on the permeability of nanoporous films derived from a cylinder-forming polystyrene-poly(methyl methacrylate) diblock copolymer (CF-PS-b-PMMA). The nanoporous films (ca. 30 nm in pore diameter) were prepared on planar gold electrodes via UV-based degradation of the cylindrical PMMA domains of annealed CF-PS-b-PMMA films (30-45 nm thick). The permeability of the electrode-supported nanoporous films was assessed using cyclic voltammetry and electrochemical impedance spectroscopy (EIS). The faradic current of Fe(CN)(6)(3-/4-) decreased upon immersion in aqueous solutions saturated with toluene or methylene chloride (5.8 mM and 0.20 M, respectively). EIS data indicated that the decrease in faradic current mainly reflected an increase in the pore resistance (R(pore)). In contrast, R(pore) did not change in a saturated n-heptane solution, 0.17 M ethanol, or 5.8 mM aqueous solutions of methylene chloride, diethyl ether, methyl ethyl ketone, or ethanol. Atomic force microscopy images of a nanoporous film in aqueous solution with and without 5.8 mM toluene showed a reversible change in the surface morphology, which was consistent with a toluene-induced change in R(pore). The solvent-induced increase in R(pore) was attributed to the swelling of the nanoporous films by the organic solvents, which decreased the effective pore diameter. The reversible permeability changes suggest that the surface of CF-PS-b-PMMA-derived nanoporous films can be functionalized in organic environments without destroying the nanoporous structure. In addition, the solvent-induced swelling may provide a simple means for controlling the permeability of such nanoporous films.

  16. The Amphipathic Helix of Influenza A Virus M2 Protein Is Required for Filamentous Bud Formation and Scission of Filamentous and Spherical Particles

    PubMed Central

    Roberts, Kari L.; Leser, George P.; Ma, Chunlong

    2013-01-01

    Influenza virus assembles and buds at the infected-cell plasma membrane. This involves extrusion of the plasma membrane followed by scission of the bud, resulting in severing the nascent virion from its former host. The influenza virus M2 ion channel protein contains in its cytoplasmic tail a membrane-proximal amphipathic helix that facilitates the scission process and is also required for filamentous particle formation. Mutation of five conserved hydrophobic residues to alanines within the amphipathic helix (M2 five-point mutant, or 5PM) reduced scission and also filament formation, whereas single mutations had no apparent phenotype. Here, we show that any two of these five residues mutated together to alanines result in virus debilitated for growth and filament formation in a manner similar to 5PM. Growth kinetics of the M2 mutants are approximately 2 logs lower than the wild-type level, and plaque diameter was significantly reduced. When the 5PM and a representative double mutant (I51A-Y52A) were introduced into A/WSN/33 M2, a strain that produces spherical particles, similar debilitation in viral growth occurred. Electron microscopy showed that with the 5PM and the I51A-Y52A A/Udorn/72 and WSN viruses, scission failed, and emerging virus particles exhibited a “beads-on-a-string” morphology. The major spike glycoprotein hemagglutinin is localized within lipid rafts in virus-infected cells, whereas M2 is associated at the periphery of rafts. Mutant M2s were more widely dispersed, and their abundance at the raft periphery was reduced, suggesting that the M2 amphipathic helix is required for proper localization in the host membrane and that this has implications for budding and scission. PMID:23843641

  17. The amphipathic helix of influenza A virus M2 protein is required for filamentous bud formation and scission of filamentous and spherical particles.

    PubMed

    Roberts, Kari L; Leser, George P; Ma, Chunlong; Lamb, Robert A

    2013-09-01

    Influenza virus assembles and buds at the infected-cell plasma membrane. This involves extrusion of the plasma membrane followed by scission of the bud, resulting in severing the nascent virion from its former host. The influenza virus M2 ion channel protein contains in its cytoplasmic tail a membrane-proximal amphipathic helix that facilitates the scission process and is also required for filamentous particle formation. Mutation of five conserved hydrophobic residues to alanines within the amphipathic helix (M2 five-point mutant, or 5PM) reduced scission and also filament formation, whereas single mutations had no apparent phenotype. Here, we show that any two of these five residues mutated together to alanines result in virus debilitated for growth and filament formation in a manner similar to 5PM. Growth kinetics of the M2 mutants are approximately 2 logs lower than the wild-type level, and plaque diameter was significantly reduced. When the 5PM and a representative double mutant (I51A-Y52A) were introduced into A/WSN/33 M2, a strain that produces spherical particles, similar debilitation in viral growth occurred. Electron microscopy showed that with the 5PM and the I51A-Y52A A/Udorn/72 and WSN viruses, scission failed, and emerging virus particles exhibited a "beads-on-a-string" morphology. The major spike glycoprotein hemagglutinin is localized within lipid rafts in virus-infected cells, whereas M2 is associated at the periphery of rafts. Mutant M2s were more widely dispersed, and their abundance at the raft periphery was reduced, suggesting that the M2 amphipathic helix is required for proper localization in the host membrane and that this has implications for budding and scission.

  18. Reactions of the alkoxy radicals formed following OH-addition to alpha-pinene and beta-pinene. C-C bond scission reactions.

    PubMed

    Dibble, T S

    2001-05-09

    The atmospheric degradation pathways of the atmospherically important terpenes alpha-pinene and beta-pinene are studied using density functional theory. We employ the correlation functional of Lee, Yang, and Parr and the three-parameter HF exchange functional of Becke (B3LYP) together with the 6-31G(d) basis set. The C-C bond scission reactions of the beta-hydroxyalkoxy radicals that are formed after OH addition to alpha-pinene and beta-pinene are investigated. Both of the alkoxy radicals formed from the alpha-pinene-OH adduct possess a single favored C-C scission pathway with an extremely low barrier (approximately 3 kcal/mol) leading to the formation of pinonaldehyde. Neither of these pathways produces formaldehyde, and preliminary computational results offer some support for suggestions that 1,5 or 1,6 H-shift (isomerization) reactions of alkoxy radicals contribute to formaldehyde production. In the case of the alkoxy radical formed following OH addition to the methylene group of beta-pinene, there exists two C-C scission reactions with nearly identical barrier heights (approximately 7.5 kcal/mol); one leads to known products (nopinone and formaldehyde) but the ultimate products of the competing reaction are unknown. The single C-C scission pathway of the other alkoxy radical from beta-pinene possesses a very low (approximately 4 kcal/mol) barrier. The kinetically favored C-C scission reactions of all four alkoxy radicals appear to be far faster than expected rates of reaction with O2. The rearrangement of the alpha-pinene-OH adduct, a key step in the proposed mechanism of formation of acetone from alpha-pinene, is determined to possess a barrier of 11.6 kcal/mol. This value is consistent with another computational result and is broadly consistent with the modest acetone yields observed in product yield studies.

  19. Endonuclease-based logic gates and sensors using magnetic force-amplified readout of DNA scission on cantilevers.

    PubMed

    Weizmann, Yossi; Elnathan, Roey; Lioubashevski, Oleg; Willner, Itamar

    2005-09-14

    The endonuclease scission of magnetic particles functionalized with sequence-specific DNAs, which are associated on cantilevers, is followed by the magnetic force-amplified readout of the reactions by the nano-mechanical deflection/retraction of the cantilevers. The systems are employed to develop AND or OR logic gates and to detect single base mismatch specificity of the endonucleases. The two endonucleases EcoRI (E(A)) and AscI (E(B)) are used as inputs. The removal of magnetic particles linked to the cantilever by the duplexes 1/1a and 2/2a via the simultaneous cleavage of the DNAs by E(A) and E(B) leads to the retraction of the magnetically deflected cantilever and to the establishment of the "AND" gate. The removal of the magnetic particles linked to the cantilevers by the duplex 3/3a by either E(A) or E(B) leads to the retraction of the magnetically deflected cantilever and to the establishment of the "OR" gate. The magnetic force-amplified readout of endonuclease activities is also employed to reveal single base mismatch specificity of the biocatalysts.

  20. Role of nuclear dissipation and entrance channel mass asymmetry in pre-scission neutron multiplicity enhancement in fusion-fission reactions

    SciTech Connect

    Singh, Hardev; Sandal, Rohit; Behera, Bivash R.; Singh, Gulzar; Govil, I. M.; Golda, K. S.; Ranjeet,; Jhingan, Akhil; Singh, R. P.; Sugathan, P.; Chatterjee, M. B.; Datta, S. K.; Pal, Santanu; Viesti, G.

    2008-08-15

    Pre-scission neutron multiplicities are measured for {sup 12}C + {sup 204}Pb and {sup 19}F + {sup 197}Au reactions at laboratory energies of 75-95 MeV for the {sup 12}C beam and 98-118 MeV for the {sup 19}F beam. The chosen projectile-target combinations in the present study lie on either side of the Businaro-Gallone mass asymmetry ({alpha}{sub BG}) and populate the {sup 216}Ra compound nucleus. The dissipation strength is deduced after comparing the experimentally measured neutron yield with the statistical model predictions which contains the nuclear viscosity as a free parameter. Present results demonstrate the combined effects of entrance channel mass asymmetry and the dissipative property of nuclear matter on the pre-scission neutron multiplicity in fusion-fission reactions.

  1. Hydrogen radical additions to unsaturated hydrocarbons and the reverse beta-scission reactions: modeling of activation energies and pre-exponential factors.

    PubMed

    Sabbe, Maarten K; Reyniers, Marie-Françoise; Waroquier, Michel; Marin, Guy B

    2010-01-18

    The group additivity method for Arrhenius parameters is applied to hydrogen addition to alkenes and alkynes and the reverse beta-scission reactions, an important family of reactions in thermal processes based on radical chemistry. A consistent set of group additive values for 33 groups is derived to calculate the activation energy and pre-exponential factor for a broad range of hydrogen addition reactions. The group additive values are determined from CBS-QB3 ab-initio-calculated rate coefficients. A mean factor of deviation of only two between CBS-QB3 and experimental rate coefficients for seven reactions in the range 300-1000 K is found. Tunneling coefficients for these reactions were found to be significant below 400 K and a correlation accounting for tunneling is presented. Application of the obtained group additive values to predict the kinetics for a set of 11 additions and beta-scissions yields rate coefficients within a factor of 3.5 of the CBS-QB3 results except for two beta-scissions with severe steric effects. The mean factor of deviation with respect to experimental rate coefficients of 2.0 shows that the group additive method with tunneling corrections can accurately predict the kinetics and is at least as accurate as the most commonly used density functional methods. The constructed group additive model can hence be applied to predict the kinetics of hydrogen radical additions for a broad range of unsaturated compounds.

  2. Structural effects on the beta-scission reaction of tertiary arylcarbinyloxyl radicals. The role of alpha-cyclopropyl and alpha-cyclobutyl groups.

    PubMed

    Bietti, Massimo; Gente, Giacomo; Salamone, Michela

    2005-08-19

    A product and time-resolved kinetic study on the reactivity of tertiary arylcarbinyloxyl radicals bearing alpha-cyclopropyl and alpha-cyclobutyl groups has been carried out. Both the 1-cyclopropyl-1-phenylethoxyl (1.) and alpha,alpha-dicyclopropylphenylmethoxyl (2.) radicals undergo beta-scission to give cyclopropyl phenyl ketone as the major or exclusive product with rate constants higher than that measured for the cumyloxyl radical. It is proposed that in the transition state for beta-scission of 1. and 2., formation of the C=O double bond is assisted by overlap with the C-C bonding orbitals of the cyclopropane ring. With tertiary arylcarbinyloxyl radicals bearing alpha-cyclobutyl groups such as the 1-cyclobutyl-1-phenylethoxyl (4.) and 1-cyclobutyl-1-phenylpropoxyl (5.) radicals, the fragmentation regioselectivity is essentially governed by the stability of the radical formed by beta-scission. Accordingly, 4. undergoes exclusive C-cyclobutyl bond cleavage to give acetophenone, whereas with 5., competition between C-cyclobutyl and C-ethyl bond cleavage, leading to propiophenone and cyclobutylphenyl ketone in a 2:1 ratio, is observed.

  3. Insights into the Mechanisms of Membrane Curvature and Vesicle Scission by the Small GTPase Sar1 in the Early Secretory Pathway

    PubMed Central

    Hariri, Hanaa; Bhattacharya, Nilakshee; Johnson, Kerri; Noble, Alex J; Stagg, Scott M.

    2014-01-01

    The small GTPase protein Sar1 is known to be involved in both the initiation of COPII coated vesicle formation and scission of the nascent vesicle from the ER. The molecular details for the mechanism of membrane remodeling by Sar1 remain unresolved. Here we show that Sar1 transforms synthetic liposomes into structures of different morphologies including tubules and detached vesicles. We demonstrate that Sar1 alone is competent for vesicle scission in a manner that depends on the concentration of Sar1 molecules occupying the membrane. Sar1 molecules align on low curvature membranes to form an extended lattice. The continuity of this lattice breaks down as the curvature locally increases. The smallest repeating unit constituting the ordered lattice is a Sar1 dimer. The three dimensional structure of the Sar1 lattice was reconstructed by substituting spherical liposomes with galactoceramide lipid tubules of homogeneous diameter. These data suggest that Sar1 dimerization is responsible for the formation of constrictive membrane curvature. We propose a model whereby Sar1 dimers assemble into ordered arrays to promote membrane constriction and COPII-directed vesicle scission. PMID:25193674

  4. Supramolecular synthons in designing low molecular mass gelling agents: L-amino acid methyl ester cinnamate salts and their anti-solvent-induced instant gelation.

    PubMed

    Sahoo, Pathik; Kumar, D Krishna; Raghavan, Srinivasa R; Dastidar, Parthasarathi

    2011-04-04

    Easy access to a class of chiral gelators has been achieved by exploiting primary ammonium monocarboxylate (PAM), a supramolecular synthon. A combinatorial library comprising of 16 salts, derived from 5 L-amino acid methyl esters and 4 cinnamic acid derivatives, has been prepared and scanned for gelation. Remarkably, 14 out of 16 salts prepared (87.5 % of the salts) show moderate to good gelation abilities with various solvents, including commercial fuels, such as petrol. Anti-solvent induced instant gelation at room temperature has been achieved in all the gelator salts, indicating that the gelation process is indeed an aborted crystallization phenomenon. Rheology, optical and scanning electron microscopy, small angle neutron scattering, and X-ray powder diffraction have been used to characterize the gels. A structure-property correlation has been attempted, based on these data, in addition to the single-crystal structures of 5 gelator salts. Analysis of the FT-IR and (1)H NMR spectroscopy data reveals that some of these salts can be used as supramolecular containers for the slow release of certain pest sex pheromones. The present study clearly demonstrates the merit of crystal engineering and the supramolecular synthon approach in designing new materials with multiple properties.

  5. Controlling Solution Self-assembly and Non-Solvent Induced Microphase Separation of Triblock Terpolymers to Generate Nanofiltration Membranes with Chemically-Tailored Pore Walls

    NASA Astrophysics Data System (ADS)

    Boudouris, Bryan; Mulvenna, Ryan; Weidman, Jacob; Phillip, William

    2014-03-01

    Block polymer-based templates have been utilized in a number of membrane applications; however, there has yet to be a demonstration of a nanoporous block polymer thin film that can achieve high flux and high selectivity simultaneously while also allowing for the facile tuning of the pore wall chemistry. Here, we demonstrate that by synthesizing and controlling the solution self-assembly of a triblock terpolymer, polyisoprene- b-polystyrene- b-poly(N, N-dimethylacrylamide) (PI-PS-PDMA), and precisely inducing non-solvent induced phase separation during the self-assembly process allows for the creation of an asymmetric nanoporous membrane with PDMA-lined pore walls. This PDMA functionality is then converted to any number of side chain functionalities through simple chemistry in the solid state. In this way, we are able to show a highly selectivity membrane that can separate analytes of interest based both on size and chemical composition at a high solution flux. In fact, this high fidelity structure has a very narrow distribution of pore sizes (<10% variation in diameter) over large areas (>500 cm2) . This has allowed for the separation of particles with hydrodynamic radii as low as 0.8 nm, which is the smallest separation achieved using a block polymer-based membrane to date.

  6. A solvent induced crystallisation method to imbue bioactive ingredients of neem oil into the compact structure of poly (ethylene terephthalate) polyester.

    PubMed

    Ali, Wazed; Sultana, Parveen; Joshi, Mangala; Rajendran, Subbiyan

    2016-07-01

    Neem oil, a natural antibacterial agent from neem tree (Azadarichtaindica) has been used to impart antibacterial activity to polyester fabrics. Solvent induced polymer modification method was used and that facilitated the easy entry of neem molecules into the compact structure of polyethylene terephthalate (PET) polyester. The polyester fabric was treated with trichloroacetic acid-methylene chloride (TCAMC) solvent system at room temperature prior to treatment with neem oil. The concentration of TCAMC and the treatment time were optimised. XRD and SEM results showed that the TCAMC treatment causes polymer modification and morphological changes in the PET polyester. Antibacterial activity of TCAMC pre-treated and neem-oil-treated polyester fabric was tested using AATCC qualitative and quantitative methods. Both Gram-positive and Gram-negative organisms were used to determine the antimicrobial activity. It was observed that the treated fabric registers substantial antimicrobial activity against both the Staphylococcus aureus (Gram-positive) and the Escherichia coli (Gram-negative) and the effect increases with the increase in concentration of TCAMC treatment. The antibacterial effect remains substantial even after 25 launderings. A kinetic growth study involving the effect of antibacterial activity at various incubation times was carried out.

  7. Synthesis, Characterization, and Stoichiometric U-O Bond Scission in Uranyl Species Supported by Pyridine(diimine) Ligand Radicals.

    PubMed

    Kiernicki, John J; Cladis, Dennis P; Fanwick, Phillip E; Zeller, Matthias; Bart, Suzanne C

    2015-09-02

    Two uranium(VI) uranyl compounds, Cp*UO2((Mes)PDI(Me)) (3) and Cp*UO2((t)Bu-(Mes)PDI(Me)) (3-(t)Bu) (Cp* = 1,2,3,4,5-pentamethylcyclopentadienide; (Mes)PDI(Me) = 2,6-((Mes)N=CMe)2C5H3N; (t)Bu-(Mes)PDI(Me) = 2,6-((Mes)N=CMe)2-p-C(CH3)3C5H2N; Mes = 2,4,6-trimethylphenyl), have been synthesized by addition of N-methylmorpholine N-oxide to trianionic pyridine(diimine) uranium(IV) precursors, Cp*U((Mes)PDI(Me))(THF) (1), Cp*U((Mes)PDI(Me))(HMPA) (1-HMPA), and Cp*U((t)Bu-(Mes)PDI(Me))(THF) (1-(t)Bu). These uranyl complexes contain singly reduced pyridine(diimine) ligands suggesting formation occurs via cooperative ligand/metal oxidation. Treating 3 or 3-(t)Bu with stoichiometric equivalents of Me3SiI results in stepwise oxo silylation to form (Me3SiO)2UI2((Mes)PDI(Me)) (5) or (Me3SiO)UI2((t)Bu-(Mes)PDI(Me)) (5-(t)Bu), respectively. Additional equivalents result in full uranium-oxo bond scission and formation of UI4(1,4-dioxane)2 with extrusion of hexamethyldisiloxane. The uranium complexes have been characterized via multinuclear NMR, vibrational, and electronic absorption spectroscopies and, in some cases, X-ray crystallography.

  8. Reductive beta-scission of the hydroperoxides of fatty acids and xenobiotics: role of alcohol-inducible cytochrome P-450.

    PubMed Central

    Vaz, A D; Roberts, E S; Coon, M J

    1990-01-01

    As shown previously in this laboratory, purified rabbit liver microsomal cytochrome P-450 form 2 (P-450 IIB4) catalyzes the reductive cleavage of hydroperoxides to yield hydrocarbons and either aldehydes or ketones. We have proposed that lipid hydroperoxides are the physiological substrates for the cleavage reaction and have shown that with 13-hydroperoxy-9,11-octadecadienoic acid the formation of pentane is roughly equimolar with respect to the NADPH consumed. In the present study, the other product was isolated and identified as 13-oxo-9,11-tridecadienoic acid. Of particular interest, the alcohol-inducible form of liver microsomal cytochrome P-450 form 3a (P-450 IIE1) is the most active of the isozymes examined in the reductive beta-scission of the 13-hydroperoxide derived from linoleic acid and the 15-hydroperoxide derived from arachidonic acid as well as the model compounds cumyl hydroperoxide (alpha, alpha-dimethylbenzyl hydroperoxide) and t-butyl hydroperoxide. In general, the forms of P-450 with lower activity, as judged by the rate of NADPH oxidation in the reconstituted system, give less of the cleavage products (hydrocarbon and oxo compound) and catalyze direct reduction of the hydroperoxides to the corresponding hydroxy compounds. The occurrence of the reductive cleavage reaction in liver microsomal membranes was demonstrated, and microsomes from animals treated with ethanol or acetone (P-450 IIE1 inducers) or phenobarbital (a P-450 IIB4 inducer) were more active than those from untreated animals. We suggest that the alcohol-inducible P-450, in addition to its known deleterious effects in chemical toxicity and chemical carcinogenesis, may enhance the reductive cleavage of lipid hydroperoxides with a resultant loss in membrane integrity. Images PMID:2371285

  9. Solvent induced synthesis, structure and properties of coordination polymers based on 5-hydroxyisophthalic acid as linker and 1,10-phenanthroline as auxiliary ligand

    SciTech Connect

    Kariem, Mukaddus; Yawer, Mohd; Sheikh, Haq Nawaz

    2015-11-15

    Three new coordination polymers [Mn(hip)(phen) (H{sub 2}O)]{sub n} (1), [Co(hip)(phen) (H{sub 2}O)]{sub n} (2), and [Cd(hip) (phen) (H{sub 2}O)]{sub n} (3) (H{sub 2}hip=5-hydroxyisophthalic acid; phen=1,10-phenanthroline) have been synthesized by solvo-hydrothermal method using diethyl formamide-water (DEF-H{sub 2}O) as solvent system. Single-crystal X-ray diffraction analysis reveals that all three coordination polymers 1, 2 and 3 crystallize in monoclinic space group P2/n. Metal ions are inter-connected by hydroxyisophthalate anions forming zig-zag 1D chain. 1D chains are further inter-connected by hydrogen bonding and π–π stacking interactions leading to 3D supramolecular architecture. Hydrogen-bonding and π–π stacking provide thermal stability to polymers. Compounds 1 and 2 are paramagnetic at room temperature and variable temperature magnetic moment measurements revealed weak ferromagnetic interactions between metal ions at low temperature. Compound 3 exhibits excellent photoluminescence with large Stokes shift. - Graphical abstract: 1D helical chains of coordination polymers were synthesized by solvo-hydrothermal reaction of 5-hydroxyisopthalic acid and 1,10-phenanthroline with MnCl{sub 2}·4H{sub 2}O / CoCl{sub 2}·6H{sub 2}O / Cd(NO{sub 3}){sub 2}·6H{sub 2}O. - Highlights: • Solvent induced synthesis of three coordination polymers with 1D zig-zag structure. • Crystal structures of coordination polymers are reported and discussed. • 1,10-Phenanthroline influences magnetic and luminescent properties of polymers. • Coordination polymer of Cd is luminescent exhibiting large Stokes shift.

  10. Scission gamma rays

    SciTech Connect

    Danilyan, G. V.; Klenke, J.; Krakhotin, V. A.; Kuznetsov, V. L.; Novitsky, V. V.; Pavlov, V. S.; Shatalov, P. B.

    2009-11-15

    Gamma rays probably emitted by the fissioning nucleus {sup 236}U* at the instant of the break of the neck or within the time of about 10{sup -21} s after or before this were discovered in the experiment devoted to searches for the effect of rotation of the fissioning nucleus in the process {sup 235}U(n,{gamma}f) and performed in a polarized beam of cold neutrons from the MEPHISTO Guideline at the FRM II Munich reactor. Detailed investigations revealed that the angular distribution of these gamma rays is compatible with the assumption of the dipole character of the radiation and that their energy spectrum differs substantially from the spectrum of prompt fission gamma rays. In the measured interval 250-600 keV, this spectrum can be described by an exponential function at the exponent value of {alpha} = -5 x 10{sup -3} keV{sup -1}. The mechanism of radiation of such gamma rays is not known at the present time. Theoretical models based on the phenomenon of the electric giant dipole resonance in a strongly deformed fissioning nucleus or in a fission fragment predict harder radiation whose spectrum differs substantially from the spectrum measured in the present study.

  11. A toxicological study of inhalable particulates in an industrial region of Lanzhou City, northwestern China: Results from plasmid scission assay

    NASA Astrophysics Data System (ADS)

    Xiao, Zhenghui; Shao, Longyi; Zhang, Ning; Wang, Jing; Chuang, Hsiao-Chi; Deng, Zhenzhen; Wang, Zhen; BéruBé, Kelly

    2014-09-01

    The city of Lanzhou in northwestern China experiences serious air pollution episodes in the form of PM10 that is characterized by having high levels of heavy metals. The Xigu District represents the industrial core area of Lanzhou City and is denoted by having the largest petrochemical bases in western China. This study investigates heavy metal compositions and oxidative potential of airborne PM10 (particulate matter with aerodynamic diameter of 10 μm or less) collected in Xigu District in the summer and winter of 2010. An in vitro plasmid scission assay (PSA) was employed to study the oxidative potential of airborne PM10 and inductively coupled plasma-mass spectrometry (ICP-MS) was used to examine heavy metal compositions. Transmission electron microscopy coupled with energy-dispersive X-ray spectrometry (TEM/EDX) was used to investigate elemental compositions and mixing states of PM10. The average mass concentrations of PM10 collected in Xigu District were generally higher than the national standard for daily PM10 (150 μg/m3). Cr, Zn, Pb and Mn were the most abundant metals in the intact whole particles of PM10. Zn, Mn and As was the most abundant metal in the water-soluble fraction, while Cr, Pb, and V existed primarily in insoluble forms. TD20 values (i.e. toxic dosage of PM10 causing 20% of plasmid DNA damage) varied considerably in both winter and summer (from 19 μg/mL to >1000 μg/mL) but were typically higher in summer, suggesting that the winter PM10 exhibited greater bioreactivity. In addition, the PM10 collected during a dust storm episode had a highest TD20 value and thus the least oxidative damage to supercoiled plasmid DNA, while the particles collected on a hazy day had a lowest TD20 value and thus the highest oxidative damage to supercoiled plasmid DNA. The particles collected on the first day after snow fall and on a day of cold air intrusion exhibited minor oxidative potential (i.e. caused limited DNA damage). The water-soluble Zn, Mn, As, and

  12. Pre-Scission Model Calculation of Fission Fragment Mass and Total Kinetic Energy Distributions for Even-Even Fm, No and Rf Isotopes

    NASA Astrophysics Data System (ADS)

    Carjan, N.; Ivanyuk, F. A.; Oganessian, Yu Ts

    2017-06-01

    The main properties of the fission fragments in spontaneous fission of even-even isotopes of Fm (Z=100), No (Z=102) and Rf (Z=104) are estimated using a pre-scission point model. The underlying potential energy surfaces are calculated with Strutinsky’s shell correction procedure. The parametrization of the nuclear shapes is based on Cassini ovals generalized by the inclusion of three additional shape parameters: α 1, α 4 and α 6. It represents a natural way to describe scission configurations. The corresponding fragment-mass distributions are estimated supposing they are due to thermal fluctuations in the mass asymmetry degree of freedom. A detailed comparison with all existing data for Fm, No and Rf isotopes is presented. For these three series of isotopes the experimentally observed transition from asymmetric to symmetric fission, that happens with increasing mass number A, is well reproduced. In lighter isotopes (e.g. 254 Fm and 254 Rf) two mass-asymmetric fission modes are predicted to occur with comparable yields: one having relatively compact and the other relatively elongated scission configurations. On the other hand, in heavier isotopes (e.g. 264 Fm and 264 Rf) the fragment-mass distributions are predicted to be narrow single-peaked around A/2 corresponding to essentially one compact fission mode. We call this type of fission ”super-symmetric”. The corresponding distributions of the total kinetic energy of the fragments are also calculated (in the point-charge approximation) and compared with measurements. Despite the fact that the dynamical effects were neglected, we have obtained a quantitative agreement with the experimental data.

  13. Structural effects on the beta-scission reaction of alkoxyl radicals. Direct measurement of the absolute rate constants for ring opening of benzocycloalken-1-oxyl radicals.

    PubMed

    Bietti, Massimo; Lanzalunga, Osvaldo; Salamone, Michela

    2005-02-18

    [reaction: see text] The absolute rate constants for beta-scission of a series of benzocycloalken-1-oxyl radicals and of the 2-(4-methylphenyl)-2-butoxyl radical have been measured directly by laser flash photolysis. The benzocycloalken-1-oxyl radicals undergo ring opening with rates which parallel the ring strain of the corresponding cycloalkanes. In the 1-X-indan-1-oxyl radical series, ring opening is observed when X = H, Me, whereas exclusive C-X bond cleavage occurs when X = Et. The factors governing the fragmentation regioselectivity are discussed.

  14. DNA strand scission by polycyclic aromatic hydrocarbon o-quinones: role of reactive oxygen species, Cu(II)/Cu(I) redox cycling, and o-semiquinone anion radicals,.

    PubMed

    Flowers, L; Ohnishi, S T; Penning, T M

    1997-07-15

    In previous studies, benzo[a]pyrene-7,8-dione (BPQ), a polycyclic aromatic hydrocarbon (PAH) o-quinone, was found to be 200-fold more potent as a nuclease than (+/-)-anti-7,8-dihydroxy-9,10-epoxy-7,8,9, 10-tetrahydrobenzo[a]pyrene, a suspect human carcinogen. The mechanism of strand scission mediated by naphthalene-1,2-dione (NPQ) and BPQ was further characterized using either phiX174 DNA or poly(dG).poly(dC) as the target DNA. Strand scission was extensive, dependent on the concentration of o-quinone (0-10 microM), and required the presence of NADPH (1 mM) and CuCl2 (10 microM). The production of reactive species, i.e., superoxide anion radical, o-semiquinone anion (SQ) radical, hydrogen peroxide (H2O2), hydroxyl radical (OH.), and Cu(I), was measured in the incubation mixtures. The formation of SQ radicals was measured by EPR spectroscopy under anaerobic conditions in the presence of NADPH. A Cu(II)/Cu(I) redox cycle was found to be critical for DNA cleavage. No strand scission occurred in the absence of Cu(II) or when Cu(I) was substituted, yet Cu(I) was required for OH* production. Both DNA strand scisson and OH. formation were decreased to an equal extent, albeit not completely, by the inclusion of OH. scavengers (mannitol, soduim benzoate, and formic acid) or Cu(I) chelators (bathocuproine and neocuproine). In contrast, although the SQ radical signals of NPQ and BPQ were quenched by DNA, no strand scission was observed. When calf thymus DNA was treated with PAH o-quinones, malondialdehyde (MDA) was released by acid hydrolysis. The formation of MDA was inhibited by OH. scavengers suggesting that OH* cleaved the 2'-deoxyribose moiety in the DNA to produce base propenals. These studies indicate that for PAH o-quinones to act as nucleases, NADPH, Cu(II), Cu(I), H2O2, and OH*, were necessary and that the primary species responsible for DNA fragmentation was OH., generated by a Cu(I)-catalyzed Fenton reaction. The genotoxicity of PAH o-quinones may play a role in

  15. On the simulation and theory of polymer dynamics in sieving media: Friction, molecular pulleys, Brownian ratchets and polymer scission

    NASA Astrophysics Data System (ADS)

    Kenward, Martin

    and predictably reduce the polydispersity (PDI) of polymer solutions. The experimental investigation, carried out by the Barron group illustrated that a dilute polymer solution, when passed through a narrow constriction at high pressure can systematically reduce the PDI of the polymer solution. My contribution to this work was to develop a statistical model which calculates polymer molecular weight distributions and which can predict the resulting degraded polymer distribution. Two key things resulted from this investigation, the first is that polymers can break multiple times during a single scission event (i.e., one pass through the experimental system). Secondly we showed that it is possible to predictably reproduce polymer distributions after multiple scission events.

  16. Mass asymmetry dependence of scission times in the reactions of 18.5A MeV 136Xe+48Ti

    NASA Astrophysics Data System (ADS)

    Gui, M.; Hagel, K.; Wada, R.; Lou, Y.; Utley, D.; Xiao, B.; Li, J.; Natowitz, J. B.; Enders, G.; Kühn, W.; Metag, V.; Novotny, R.; Schwalb, O.; Charity, R. J.; Freifelder, R.; Gobbi, A.; Henning, W.; Hildenbrand, K. D.; Mayer, R.; Simon, R. S.; Wessels, J. P.; Casini, G.; Olmi, A.; Stefanini, A. A.

    1993-10-01

    The multiplicities of p and α particles detected in coincidence with fragments emitted in fully relaxed collisions in the reactions of 18.5A MeV 136Xe+48Ti have been measured for different exit channel mass asymmetries. A kinematic source analysis of the spectra and angular distributions of the light particles has been used to separate the total multiplicities into prescission and postscission contributions. From these results, the excitation energies at scission are determined using an empirical technique based upon previous measurements of light charged particle multiplicities observed in coincidence with evaporation residues. These excitation energies are found to decrease from ~400 MeV to 110 MeV as the fragment mass asymmetry, AH/AL, varies from 4.8 to 1.0. A corresponding increase of the mean lifetime of the scissioning nucleus from ~5×10-22 s to ~1×10-20 s is derived using calculated statistical model decay widths. The extent to which this variation of lifetime with mass asymmetry may be attributed to completely damped deep inelastic collisions or to dynamic delays in the decay of a compound nucleus is discussed as is the need for inclusion of dynamics in the deexcitation calculations for hot nuclei. Observed three fragment events are also discussed.

  17. Remote Control of the Planar Chirality in Peptide-Bound Metallomacrocycles and Dynamic-to-Static Planar Chirality Control Triggered by Solvent-Induced 3(10)-to-α-Helix Transitions.

    PubMed

    Mamiya, Fumihiko; Ousaka, Naoki; Yashima, Eiji

    2015-11-23

    The dynamic planar chirality in a peptide-bound Ni(II)-salphen-based macrocycle can be remotely controlled. First, a right-handed (P)-3(10)-helix is induced in the dynamic helical oligopeptides by a chiral amino acid residue far from the macrocyclic framework. The induced planar chirality remains dynamic in chloroform and acetonitrile, but is almost completely locked in fluoroalcohols as a result of the solvent-induced transition of the peptide chains from a 3(10)-helix to a wider α-helix, which freezes the rotation of the pendant peptide units around the macrocycle.

  18. Scission-point model predictions of fission-fragment mass and total kinetic energy distributions for 236U and 252Cf

    NASA Astrophysics Data System (ADS)

    Ivanyuk, Fedor; Hambsch, Franz-Josef; Carjan, Nicolae

    2017-09-01

    The total deformation energy at the moment of the neck rupture for 236U and 252Cf is calculated using the Strutinsky's prescription and nuclear shapes described in terms of Cassinian ovals generalized by the inclusion of four additional shape parameters: α1, α2, α3, and α4. The corresponding fragment-mass distributions are estimated supposing that each point in the deformation space is occupied according to a canonical distribution. The energy distributions of fission fragments are calculated assuming the point-charge approximation for the Coulomb interaction of fission fragments. Finally, an alternative definition of the nuclear scission point configuration relying on the minimization of liquid drop energy (optimal shape method) is used. Both definitions lead, for these two nuclei, to a reasonably good agreement with the experimental data.

  19. 7,8- and 5,8-Linoleate diol synthases support the heterolytic scission of oxygen-oxygen bonds by different amide residues.

    PubMed

    Hoffmann, Inga; Oliw, Ernst H

    2013-11-01

    Linoleate diol synthases (LDS) are fungal dioxygenase-cytochrome P450 fusion enzymes. They oxidize 18:2n-6 sequentially to 8R-hydroperoxylinoleic acid (8R-HPODE) and 7S,8S- or 5S,8R-dihydroxylinoleic acids (DiHODE) by intramolecular oxygen transfer. The P450 domains contain a conserved sequence, Ala-Asn-Gln-Xaa-Gln, presumably located in the I-helices. The Asn938Leu replacement of 7,8-LDS of Gaeumannomyces graminis virtually abolished and the Asn938Asp and Asn938Gln replacements reduced the hydroperoxide isomerase activity. Gln941Leu and Gln941Glu substitutions had little effects. Replacements of the homologous Asn(887) and Gln(890) residues of 5,8-LDS of Aspergillus fumigatus yielded the opposite results. Asn887Leu and Asn887Gln of 5,8-LDS retained 5,8-DiHODE as the main metabolite with an increased formation of 6,8- and 8,11-DiHODE, whereas Gln890Leu almost abolished the 5,8-LDS activity. Replacement of Gln(890) with Glu also retained 5,8-DiHODE as the main product, but shifted oxygenation from C-5 to C-7 and C-11 and to formation of epoxyalcohols by homolytic scission of 8R-HPODE. P450 hydroxylases usually contain an "acid-alcohol" pair in the I-helices for the heterolytic scission of O2 and formation of compound I (Por(+) Fe(IV)=O) and water. The function of the acid-alcohol pair appears to be replaced by two different amide residues, Asn(938) of 7,8-LDS and Gln(890) of 5,8-LDS, for heterolysis of 8R-HPODE to generate compound I.

  20. Novel symmetric and asymmetric DNA scission determinants for Streptococcus pneumoniae topoisomerase IV and gyrase are clustered at the DNA breakage site.

    PubMed

    Leo, Elisabetta; Gould, Katherine A; Pan, Xiao-Su; Capranico, Giovanni; Sanderson, Mark R; Palumbo, Manlio; Fisher, L Mark

    2005-04-08

    Topoisomerase (topo) IV and gyrase are bacterial type IIA DNA topoisomerases essential for DNA replication and chromosome segregation that act via a transient double-stranded DNA break involving a covalent enzyme-DNA "cleavage complex." Despite their mechanistic importance, the DNA breakage determinants are not understood for any bacterial type II enzyme. We investigated DNA cleavage by Streptococcus pneumoniae topo IV and gyrase stabilized by gemifloxacin and other antipneumococcal fluoroquinolones. Topo IV and gyrase induce distinct but overlapping repertoires of double-strand DNA breakage sites that were essentially identical for seven different quinolones and were augmented (in intensity) by positive or negative supercoiling. Sequence analysis of 180 topo IV and 126 gyrase sites promoted by gemifloxacin on pneumococcal DNA revealed the respective consensus sequences: G(G/c)(A/t)A*GNNCt(T/a)N(C/a) and GN4G(G/c)(A/c)G*GNNCtTN(C/a) (preferred bases are underlined; disfavored bases are in small capitals; N indicates no preference; and asterisk indicates DNA scission between -1 and +1 positions). Both enzymes show strong preferences for bases clustered symmetrically around the DNA scission site, i.e. +1G/+4C, -4G/+8C, and particularly the novel -2A/+6T, but with no preference at +2/+3 within the staggered 4-bp overhang. Asymmetric elements include -3G and several unfavored bases. These cleavage preferences, the first for Gram-positive type IIA topoisomerases, differ markedly from those reported for Escherichia coli topo IV (consensus (A/G)*T/A) and gyrase, which are based on fewer sites. However, both pneumococcal enzymes cleaved an E. coli gyrase site suggesting overlap in gyrase determinants. We propose a model for the cleavage complex of topo IV/gyrase that accommodates the unique -2A/+6T and other preferences.

  1. Scission of carbon monoxide using TaR3, R=(N(tBu)Ph) or OSi(tBu)3: a DFT investigation.

    PubMed

    Brookes, Nigel J; Ariafard, Alireza; Stranger, Robert; Yates, Brian F

    2010-07-19

    The experimentally known reduction of carbon monoxide using a 3-coordinate [Ta(silox)(3)] (silox=OSi(tBu)(3)) complex initially forms a ketenylidene [(silox)(3)Ta-CCO], followed by a dicarbide [(silox)(3)Ta-CC-Ta(silox)(3)] structure. The mechanism for this intricate reaction has finally been revealed by using density functional theory, and importantly a likely structure for the previously unknown intermediate [(silox)(3)Ta-CO](2) has been identified. The analysis of the reaction pathway and the numerous intermediates has also uncovered an interesting pattern that results in CO cleavage, that being scission from a structure of the general form [(silox)(3)Ta-C(n)O] in which n is even. When n is odd, cleavage cannot occur. The mechanism has been extended to consider the effect of altering both the metal species and the ligand environment. Specifically, we predict that introducing electron-rich metals to the right of Ta in the periodic table to create mixed-metal dinuclear intermediates shows great promise, as does the ligand environment of the Cummins-style 3-coordinate amide structure. This latter environment has the added complexity of improved electron donation from amide rotation that can significantly increase the reaction exothermicity.

  2. Tailoring the properties of thermoplastic starch by blending with cinnamyl alcohol and radiation processing: An insight into the competitive grafting and scission reactions

    NASA Astrophysics Data System (ADS)

    Khandal, Dhriti; Mikus, Pierre-Yves; Dole, Patrice; Bliard, Christophe; Soulestin, Jérémie; Lacrampe, Marie-France; Baumberger, Stéphanie; Coqueret, Xavier

    2012-08-01

    The present paper focuses on the effects of electron beam (EB) irradiation on thermoplastic materials based on destructurized starch including glycerol and water as plasticizers to assess the potentiality of cinnamyl alcohol as reactive additive capable of counterbalancing the degradation of the polysaccharide by inducing interchain covalent linkages. The tensile properties at break of test specimens of controlled composition submitted to EB irradiation at doses ranging from 50 to 200 kGy revealed the presence of competitive chain scission and bridging in samples containing cinnamyl alcohol at a relative concentration of 2.5% with regard to dry starch. The occurrence of crosslinking under particular conditions was evidenced by gel fraction measurements. The treatment under radiation was also applied to model blends including maltodextrin as a model for starch and the other ingredients to gain an insight into the radiation induced mechanisms at the molecular level. The presence of cinnamyl alcohol is found to limit degradation. Size exclusion chromatography and gel fraction allowed to monitor the effects and confirmed unambiguously the attachment of UV-absorbing chromophores onto the maltodextrin main chain. The combination of the obtained results demonstrates the possibility of altering in a favorable way the tensile properties of plasticized starch by applying high energy radiation to properly formulated blends including aromatic compounds like cinnamyl alcohol.

  3. Selective scission of C-O and C-C bonds in ethanol using bimetal catalysts for the preferential growth of semiconducting SWNT arrays.

    PubMed

    Zhang, Shuchen; Hu, Yue; Wu, Juanxia; Liu, Dan; Kang, Lixing; Zhao, Qiuchen; Zhang, Jin

    2015-01-28

    For the application of single-walled carbon nanotubes (SWNTs) to electronic and optoelectronic devices, techniques to obtain semiconducting SWNT (s-SWNT) arrays are still in their infancy. We have developed herein a rational approach for the preferential growth of horizontally aligned s-SWNT arrays on a ST-cut quartz surface through the selective scission of C-O and C-C bonds of ethanol using bimetal catalysts, such as Cu/Ru, Cu/Pd, and Au/Pd. For a common carbon source, ethanol, a reforming reaction occurs on Cu or Au upon C-C bond breakage and produces C(ads) and CO, while a deoxygenating reaction occurs on Ru or Pd through C-O bond breaking resulting in the production of O(ads) and C2H4. The produced C2H4 by Ru or Pd can weaken the oxidative environment through decomposition and the neutralization of O(ads). When the bimetal catalysts with an appropriate ratio were used, the produced C(ads) and C2H4 can be used as carbon source for SWNT growth, and O(ads) promotes a suitable and durable oxidative environment to inhibit the formation of metallic SWNTs (m-SWNTs). Finally, we successfully obtained horizontally aligned SWNTs on a ST-cut quartz surface with a density of 4-8 tubes/μm and an s-SWNT ratio of about 93% using an Au/Pd (1:1) catalyst. The synergistic effects in bimetallic catalysts provide a new mechanism to control the growth of s-SWNTs.

  4. Chemical composition and inhibitory effects of water extract of Henna leaves on reactive oxygen species, DNA scission and proliferation of cancer cells

    PubMed Central

    Kumar, Manish; Chandel, Madhu; Kaur, Paramjeet; Pandit, Kritika; Kaur, Varinder; Kaur, Sandeep; Kaur, Satwinderjeet

    2016-01-01

    From the centuries, Lawsonia inermis L. (Henna) is utilized in traditional health care system as a medicinal and cosmetic agent. The present study was intended to assess antiradical, DNA protective and antiproliferative activity of water extract of Lawsonia inermis L. leaves (W-LI). Antioxidant activity was estimated using various in vitro assays such as DPPH, ABTS, superoxide anion radical scavenging, FRAP, deoxyribose degradation and DNA protection assay. Growth inhibitory effects of W-LI were assessed using MTT assay against different cancer cell lines viz. HeLa, MCF-7, A549, C6 and COLO-205. From the results of antioxidant assays, it was found that W-LI quenched DPPH and ABTS cation radicals with IC50 value of 352.77 µg/ml and 380.87 µg/ml respectively. It demonstrated hydroxyl radical scavenging potential of 59.75 % at highest test dose of 1000 µg/ml in deoxyribose degradation assay. The results of FRAP assay showed that W-LI also possesses significant reducing activity. Extract inhibited hydroxyl radical induced pBR322 plasmid DNA strand scission, thus conferring DNA protection. Growth inhibition of various cancer cell lines was achieved to the varying extent on treatment with W-LI. Further, it was observed that activity was quite promising against colon cancer COLO-205 cells (GI50 121.03 µg/ml). HPLC profiling of W-LI revealed the presence of different polyphenolic compounds such as ellagic acid, catechin, quercetin, kaempferol etc. which might be contributing towards antioxidant and cytotoxic activity. The present study demonstrated that polyphenols rich W-LI extract from leaves of L. inermis possesses ability to inhibit oxidative radicals and cancer cells proliferation. PMID:28337113

  5. Conformation-sensitive gel electrophoresis for rapid detection of single-base differences in double-stranded PCR products and DNA fragments: evidence for solvent-induced bends in DNA heteroduplexes.

    PubMed Central

    Ganguly, A; Rock, M J; Prockop, D J

    1993-01-01

    Several techniques have recently been developed to detect single-base mismatches in DNA heteroduplexes that contain one strand of wild-type and one strand of mutated DNA. Here we tested the hypothesis that an appropriate system of mildly denaturing solvents can amplify the tendency of single-base mismatches to produce conformational changes, such as bends in the double helix, and thereby increase the differential migration of DNA heteroduplexes and homoduplexes during gel electrophoresis. The best separations of heteroduplexes and homoduplexes were obtained with a standard 6% polyacrylamide gel polymerized in 10% ethylene glycol/15% formamide/Tris-taurine buffer. As predicted by the hypothesis of solvent-induced bends, when the concentration of either ethylene glycol or formamide was increased, the differential migration decreased. Also, single-base mismatches within 50 bp of one end of a heteroduplex did not produce differential migration. Sixty of 68 single-base mismatches in a series of PCR products were detected in some 59 different sequence contexts. The eight mismatches not detected were either within 50 bp of the nearest end of the PCR product or in isolated high-melting-temperature domains. Therefore, it was possible to predict in advance the end regions and sequence contexts in which mismatches may be difficult to detect. The procedure can be applied to any PCR products of 200-800 bp and requires no special equipment or preparation of samples. Images Fig. 2 Fig. 3 Fig. 4 PMID:8234293

  6. Fabrication of PVDF-based blend membrane with a thin hydrophilic deposition layer and a network structure supporting layer via the thermally induced phase separation followed by non-solvent induced phase separation process

    NASA Astrophysics Data System (ADS)

    Wu, Zhiguo; Cui, Zhenyu; Li, Tianyu; Qin, Shuhao; He, Benqiao; Han, Na; Li, Jianxin

    2017-10-01

    A simple strategy of thermally induced phase separation followed by non-solvent induced phase separation (TIPS-NIPS) is reported to fabricate poly (vinylidene fluoride) (PVDF)-based blend membrane. The dissolved poly (styrene-co-maleic anhydride) (SMA) in diluent prevents the crystallization of PVDF during the cooling process and deposites on the established PVDF matrix in the later extraction. Compared with traditional coating technique, this one-step TIPS-NIPS method can not only fabricate a supporting layer with an interconnected network structure even via solid-liquid phase separation of TIPS, but also form a uniform SMA skin layer approximately as thin as 200 nm via surface deposition of NIPS. Besides the better hydrophilicity, what's interesting is that the BSA rejection ratio increases from 48% to 94% with the increase of SMA, which indicates that the separation performance has improved. This strategy can be conveniently extended to the creation of firmly thin layer, surface functionalization and structure controllability of the membrane.

  7. Hydroliquefaction of coal with supported catalysts: 1980 status review

    SciTech Connect

    Polinski, Leon M.; Stiegel, Gary J.; Tischer, Richard E.

    1981-06-01

    The objectives of the program have been to determine catalyst deactivation kinetic models and catalyst deactivation modes for supported Co-Mo and Ni-Mo catalysts used primarily in coal liquefaction via the H-COAL process. Emphasis has been on developing methods to increase catalyst usage by determining how to decrease catalyst replacement rates in the process and how to decrease catalyst poisoning. An important conclusion reached via model analysis and verified by experiment is that larger diameter (1/16 in.) catalysts resist poisoning deactivation much more than smaller (1/32 in.) catalysts over extended periods (60 to 110 hours) of time. If this trend can be verified, it gives a powerful tool for reducing catalyst replacement rate in the H-COAL ebullated bed system by factors of 2 or more. A second conclusion is that poisoning of catalysts occurs by several possible mechanisms or modes. Indirect or direct evidence of all these modes can be presented, though the relative importance of each mechanism has not been established. The modes include (a) poisoning by coking - with gradual increase in C/H ratio (more refractory coke) with time, (b) poisoning by metallization (selective/non-selective adsorption of inorganics such as Ti and Fe on the catalyst), (c) sintering - increase in larger pores/decrease in surface area, and (d) parallel poisoning by irreversible nitrogen compound adsorption.

  8. Solvent induced conformer specific photochemistry of guaiacol.

    PubMed

    Greenough, Simon E; Horbury, Michael D; Thompson, James O F; Roberts, Gareth M; Karsili, Tolga N V; Marchetti, Barbara; Townsend, Dave; Stavros, Vasilios G

    2014-08-14

    Using a combination of ultrafast solution- and gas-phase spectroscopies, together with high-level theory calculations, we demonstrate that we are able to track conformer-specific photodissociation dynamics in solution through solvent choice. We reveal this phenomenon in guaiacol (2-methoxyphenol), a key subunit of the natural biopolymer lignin. In cyclohexane, the first electronically excited (1)ππ* (S1) state in guaiacol relaxes with a time-constant of τ = 4.5 ± 0.2 ns, mediated through intersystem crossing to lower lying triplet (Tn) states and internal conversion and fluorescence back to the ground state (S0). In contrast, in methanol, a further relaxation channel is also present; the S1 state relaxes with a time-constant of τ = 2.9 ± 0.1 ns, which is now additionally mediated through coupling onto a dissociative (1)πσ* (S2) state and subsequent O-H bond fission, evidenced through the appearance of a spectral signature for the guaiacoxyl radical after ∼250 ps. With the aid of complementary calculations, we attribute this to the now absent intramolecular H-bond between OH and OMe moieties, which now favours intermolecular H-bonding to methanol, lowering the barrier to O-H dissociation and facilitating H-atom loss via tunnelling.

  9. A Green Solvent Induced DNA Package

    NASA Astrophysics Data System (ADS)

    Satpathi, Sagar; Sengupta, Abhigyan; Hridya, V. M.; Gavvala, Krishna; Koninti, Raj Kumar; Roy, Bibhisan; Hazra, Partha

    2015-03-01

    Mechanistic details of DNA compaction is essential blue print for gene regulation in living organisms. Many in vitro studies have been implemented using several compaction agents. However, these compacting agents may have some kinds of cytotoxic effects to the cells. To minimize this aspect, several research works had been performed, but people have never focused green solvent, i.e. room temperature ionic liquid as DNA compaction agent. To the best of our knowledge, this is the first ever report where we have shown that guanidinium tris(pentafluoroethyl)trifluorophosphate (Gua-IL) acts as a DNA compacting agent. The compaction ability of Gua-IL has been verified by different spectroscopic techniques, like steady state emission, circular dichroism, dynamic light scattering and UV melting. Notably, we have extensively probed this compaction by Gua-IL through field emission scanning electron microscopy (FE-SEM) and fluorescence microscopy images. We also have discussed the plausible compaction mechanism process of DNA by Gua-IL. Our results suggest that Gua-IL forms a micellar kind of self aggregation above a certain concentration (>=1 mM), which instigates this compaction process. This study divulges the specific details of DNA compaction mechanism by a new class of compaction agent, which is highly biodegradable and eco friendly in nature.

  10. Reaction of cytochrome P450 with cumene hydroperoxide: ESR spin-trapping evidence for the homolytic scission of the peroxide O-O bond by ferric cytochrome P450 1A2.

    PubMed

    Barr, D P; Martin, M V; Guengerich, F P; Mason, R P

    1996-01-01

    ESR spin trapping was used to investigate the reaction of rabbit cytochrome P450 (P450) 1A2 with cumene hydroperoxide. Cumene hydroperoxide-derived peroxyl, alkoxyl, and carbon-centered radicals were formed and trapped during the reaction. The relative contributions of each radical adduct to the composite ESR spectrum were influenced by the concentration of the spin trap. Computer simulation of the experimental data obtained at various 5,5-dimethyl-1-pyrroline N-oxide (DMPO) concentrations was used to quantitate the contributions of each radical adduct to the composite ESR spectrum. The alkoxyl radical was the initial radical produced during the reaction. Experiments with 2-methyl-2-nitrosopropane identified the carbon-centered adducts as those of the methyl radical, hydroxymethyl radical, and a secondary carbon-centered radical. The reaction did not require NADPH-cytochrome P450 reductase or NADPH. It is concluded that the reaction involves the initial homolytic scission of the peroxide O-O bond to produce the cumoxyl radical. Methyl radicals were produced from the beta-scission of the cumoxyl radical. The peroxyl adduct was not observed in the absence of molecular oxygen. We conclude that the DMPO peroxyl radical adduct detected in the presence of oxygen was due to the methylperoxyl radical formed by the reaction of the methyl radical with oxygen. At a higher P450 concentration, a protein-derived radical adduct was also detected.

  11. Shock tube measurements of the tert-butanol + OH reaction rate and the tert-C4H8OH radical β-scission branching ratio using isotopic labeling.

    PubMed

    Stranic, Ivo; Pang, Genny A; Hanson, Ronald K; Golden, David M; Bowman, Craig T

    2013-06-13

    The overall rate constant for the reaction tert-butanol + OH → products was determined experimentally behind reflected shock waves by using (18)O-substituted tert-butanol (tert-butan(18)ol) and tert-butyl hydroperoxide (TBHP) as a fast source of (16)OH. The data were acquired from 900 to 1200 K near 1.1 atm and are best fit by the Arrhenius expression 1.24 × 10(-10) exp(-2501/T [K]) cm(3) molecule(-1) s(-1). The products of the title reaction include the tert-C4H8OH radical that is known to have two major β-scission decomposition channels, one of which produces OH radicals. Experiments with the isotopically labeled tert-butan(18)ol also lead to an experimental determination of the branching ratio for the β-scission pathways of the tert-C4H8OH radical by comparing the measured pseudo-first-order decay rate of (16)OH in the presence of excess tert-butan(16)ol with the respective decay rate of (16)OH in the presence of excess tert-butan(18)ol. The two decay rates of (16)OH as a result of reactions with the two forms of tert-butanol differ by approximately a factor of 5 due to the absence of (16)OH-producing pathways in experiments with tert-butan(18)ol. This indicates that 80% of the (16)OH molecules that react with tert-butan(16)ol will reproduce another (16)OH molecule through β-scission of the resulting tert-C4H8(16)OH radical. (16)OH mole fraction time histories were measured using narrow-line-width laser absorption near 307 nm. Measurements were performed at the line center of the R22(5.5) transition in the A-X(0,0) band of (16)OH, a transition that does not overlap with any absorption features of (18)OH, hence yielding a measurement of (16)OH mole fraction that is insensitive to any production of (18)OH.

  12. Dual single-scission event analysis of constitutive transferrin receptor (TfR) endocytosis and ligand-triggered β2-adrenergic receptor (β2AR) or Mu-opioid receptor (MOR) endocytosis

    PubMed Central

    Lampe, Marko; Pierre, Fabienne; Al-Sabah, Suleiman; Krasel, Cornelius; Merrifield, Christien J.

    2014-01-01

    The dynamic relationship between constitutive and ligand-triggered clathrin-mediated endocytosis is only poorly characterized, and it remains controversial whether clathrin-coated pits specialize to internalize particular receptor cargo. Here we analyzed the ligand-triggered endocytosis of the model G-protein–coupled receptors (GPCRs) β2-adrenergic receptor (β2AR) and Mu-opioid receptor (MOR) at the level of individual endocytic events using a total internal reflection fluorescence microscopy (TIRFM)–based assay. Similar to the constitutive endocytosis of transferrin receptor (TfR), ligand- triggered endocytosis of β2AR occurs via quantized scission events hosted by clathrin spots and plaques of variable size and persistence. To address whether clathrin-coated structures (CCSs) specialize to internalize particular GPCRs, we adapted the TIRFM imaging assay to simultaneously quantify the internalization of TfR and the ligand- triggered endocytosis of the β2AR or MOR. Agonist-triggered β2AR or MOR endocytosis extended the maturation time of CCSs, as shown previously, but did not affect the rate of constitutive TfR endocytosis or loading of TfR into individual endocytic vesicles. Both the β2AR and the MOR receptors entered cells in the same vesicles as TfR, and the overall evidence for CCS specialization was weak. These data support a simple model in which different cargoes internalize through common CCSs. PMID:25079691

  13. Oxygen acidity of ring methoxylated 1,1-diarylalkanol radical cations bearing alpha-cyclopropyl groups. The competition between O-neophyl shift and C-cyclopropyl beta-scission in the intermediate 1,1-diarylalkoxyl radicals.

    PubMed

    Bietti, Massimo; Fiorentini, Simone; Pato, Iria Pèrez; Salamone, Michela

    2006-04-14

    A product and time-resolved kinetic study on the reactivity of the radical cations generated from cyclopropyl(4-methoxyphenyl)phenylmethanol (1) and cyclopropyl[bis(4-methoxyphenyl)]methanol (2) has been carried out in aqueous solution. In acidic solution, 1*+ and 2*+ display very low reactivities toward fragmentation, consistent with the presence of groups at Calpha (aryl and cyclopropyl) that after Calpha-Cbeta bond cleavage would produce relatively unstable carbon-centered radicals. In basic solution, 1*+ and 2*+ display oxygen acidity, undergoing -OH-induced deprotonation from the alpha-OH group, leading to the corresponding 1,1-diarylalkoxyl radicals 1r* and 2r*, respectively, as directly observed by time-resolved spectroscopy. The product distributions observed in the reactions of 1*+ and 2*+ under these conditions (cyclopropyl phenyl ketone, cyclopropyl(4-methoxyphenyl) ketone, and 4-methoxybenzophenone from 1*+; cyclopropyl(4-methoxyphenyl) ketone and 4,4'-dimethoxybenzophenone from 2*+) have been rationalized in terms of a water-induced competition between O-neophyl shift and C-cyclopropyl beta-scission in the intermediate 1,1-diarylalkoxyl radicals 1r* and 2r*.

  14. Selective bond scission in forming NO/sub 2/ from NO/sub 3//sup -/ in. gamma. -irradiated crystals of urea nitrate, diglycine nitrate, and monoglycine nitrate as studied by electron spin resonance

    SciTech Connect

    Eda, B.; Iwasaki, M.

    1982-05-27

    The controlling factors of selective bond breakage in forming NO/sub 2/ from NO/sub 3//sup -/ in irradiated crystals of the title compounds have been studied by using a single-crystal ESR technique. The results indicate that the NO/sub 2/ radical with one particular orientation is formed in any of these crystals as a result of scission of a particular N-O bond of NO/sub 3//sup -/. From a comparison of the hyperfine coupling and g tensors with the crystallographic data, it was clarified that the oxygen atom participating in the strongest hydrogen bond is preferentially detached to form NO/sub 2/. Such a selective formation of NO/sub 2/ is interpreted in terms of the reaction scheme in which NO/sub 2/ is formed by protonation of the primary anion radical NO/sub 3//sup 2 -/ followed by dissociation of OH/sup -/, where the proton transfer across the strongest hydrogen-bonding path triggers the selective reaction.

  15. Dual single-scission event analysis of constitutive transferrin receptor (TfR) endocytosis and ligand-triggered β2-adrenergic receptor (β2AR) or Mu-opioid receptor (MOR) endocytosis.

    PubMed

    Lampe, Marko; Pierre, Fabienne; Al-Sabah, Suleiman; Krasel, Cornelius; Merrifield, Christien J

    2014-10-01

    The dynamic relationship between constitutive and ligand-triggered clathrin-mediated endocytosis is only poorly characterized, and it remains controversial whether clathrin-coated pits specialize to internalize particular receptor cargo. Here we analyzed the ligand-triggered endocytosis of the model G-protein-coupled receptors (GPCRs) β2-adrenergic receptor (β2AR) and Mu-opioid receptor (MOR) at the level of individual endocytic events using a total internal reflection fluorescence microscopy (TIRFM)-based assay. Similar to the constitutive endocytosis of transferrin receptor (TfR), ligand- triggered endocytosis of β2AR occurs via quantized scission events hosted by clathrin spots and plaques of variable size and persistence. To address whether clathrin-coated structures (CCSs) specialize to internalize particular GPCRs, we adapted the TIRFM imaging assay to simultaneously quantify the internalization of TfR and the ligand- triggered endocytosis of the β2AR or MOR. Agonist-triggered β2AR or MOR endocytosis extended the maturation time of CCSs, as shown previously, but did not affect the rate of constitutive TfR endocytosis or loading of TfR into individual endocytic vesicles. Both the β2AR and the MOR receptors entered cells in the same vesicles as TfR, and the overall evidence for CCS specialization was weak. These data support a simple model in which different cargoes internalize through common CCSs.

  16. Background Noise Contributes to Organic Solvent Induced Brain Dysfunction

    PubMed Central

    Guthrie, O'neil W.; Wong, Brian A.; McInturf, Shawn M.; Reboulet, James E.; Ortiz, Pedro A.; Mattie, David R.

    2016-01-01

    Occupational exposure to complex blends of organic solvents is believed to alter brain functions among workers. However, work environments that contain organic solvents are also polluted with background noise which raises the issue of whether or not the noise contributed to brain alterations. The purpose of the current study was to determine whether or not repeated exposure to low intensity noise with and without exposure to a complex blend of organic solvents would alter brain activity. Female Fischer344 rats served as subjects in these experiments. Asynchronous volume conductance between the midbrain and cortex was evaluated with a slow vertex recording technique. Subtoxic solvent exposure, by itself, had no statistically significant effects. However, background noise significantly suppressed brain activity and this suppression was exacerbated with solvent exposure. Furthermore, combined exposure produced significantly slow neurotransmission. These abnormal neurophysiologic findings occurred in the absence of hearing loss and detectable damage to sensory cells. The observations from the current experiment raise concern for all occupations where workers are repeatedly exposed to background noise or noise combined with organic solvents. Noise levels and solvent concentrations that are currently considered safe may not actually be safe and existing safety regulations have failed to recognize the neurotoxic potential of combined exposures. PMID:26885406

  17. Study of Elastin Sequences with Solvent Induced Force Field

    NASA Astrophysics Data System (ADS)

    Arkin, Handan

    Conformational structures of two common repeat motifs Val1-Pro2-Gly3-Val4-Gly5 and Gly1-Leu2-Gly3-Gly4 of tropoelastin are investigated by using the multicanonical simulation procedure with solvation effects included energy force field. The effects of solvation energy term on the conformations are determined by analyzing Ramachandran plots. By minimizing the energy structures along the trajectory, the thermodynamically most stable low-energy microstates of the molecule in aqueous solution are determined and the root mean square deviations of these structures with respect to the global minimum are calculated.

  18. Solvent-induced collapse of a helical semiflexible polymer

    NASA Astrophysics Data System (ADS)

    Varshney, Vikas

    2005-03-01

    It has been stated that ``the class of materials richest in the occurrence of phase transitions are polymers'' (E. A. Di Marzio, Prog. Polym. Sci. 24, 329 (1999)). This wealth of phase transitions is unique to polymers and is a consequence of the myriad of possible ways of coupling the basic ten classes of polymeric phase transitions into pairs, triplets and so forth. Two of these transitions are the helix-coil and coil-globule transitions. In this talk we explore the coupling of these two transitions, its molecular origins and physical consequences. For this purpose, we extend a recently developed model of helical polymers to describe the effect of solvent quality and solve it using Monte Carlo simulations based on the Wang and Landau algorithm. We find a very rich phase diagram consisting of 6 phases characterized by very specific conformations of the chain, i.e., a perfect helix, a random coil, a globule or other globular states with residual helical strands. We study the phase boundaries and provide further insight into the physics of the problem with a detailed analysis of the conformational and thermodynamic properties of the polymer chain.

  19. Solvent-induced high fidelity switching between two discrete supramolecules.

    PubMed

    Betancourt, José E; Martín-Hidalgo, Mariana; Gubala, Vladimir; Rivera, José M

    2009-03-11

    Here we show the reversible high fidelity switching between two discrete self-assembled supramolecules made from a lipophilic 8-phenyl-2'-deoxyguanosine derivative induced by an indirect solvent effect. A hexadecameric supramolecule containing four stacked tetramers is formed in acetonitrile aided by higher potassium concentrations. When the amount of weakly solvated potassium decreases, due the lower activity of potassium iodide in chloroform, an octamer is formed after the dissociation of the two outer tetramers in the hexadecamer. The switching process results from an unprecedented subtle interplay between the activity of potassium iodide and the steric crowding within the self-assembled structure. Besides the possible applications in nanoconstruction, this phenomenon sheds light into the mechanism of formation of self-assembled supramolecules made from guanosine derivatives.

  20. Mixed Organic Solvents Induce Renal Injury in Rats

    PubMed Central

    Qin, Weisong; Xu, Zhongxiu; Lu, Yizhou; Zeng, Caihong; Zheng, Chunxia; Wang, Shengyu; Liu, Zhihong

    2012-01-01

    To investigate the injury effects of organic solvents on kidney, an animal model of Sprague-Dawley (SD) rats treated with mixed organic solvents via inhalation was generated and characterized. The mixed organic solvents consisted of gasoline, dimethylbenzene and formaldehyde (GDF) in the ratio of 2∶2:1, and were used at 12,000 PPM to treat the rats twice a day, each for 3 hours. Proteinuria appeared in the rats after exposure for 5–6 weeks. The incidences of proteinuria in male and female rats after exposure for 12 weeks were 43.8% (7/16) and 25% (4/16), respectively. Urinary N-Acetyl-β-(D)-Glucosaminidase (NAG) activity was increased significantly after exposure for 4 weeks. Histological examination revealed remarkable injuries in the proximal renal tubules, including tubular epithelial cell detachment, cloud swelling and vacuole formation in the proximal tubular cells, as well as proliferation of parietal epithelium and tubular reflux in glomeruli. Ultrastructural examination found that brush border and cytoplasm of tubular epithelial cell were dropped, that tubular epithelial cells were partially disintegrated, and that the mitochondria of tubular epithelial cells were degenerated and lost. In addition to tubular lesions, glomerular damages were also observed, including segmental foot process fusion and loss of foot process covering on glomerular basement membrane (GBM). Immunofluorescence staining indicated that the expression of nephrin and podocin were both decreased after exposure of GDF. In contrast, increased expression of desmin, a marker of podocyte injury, was found in some areas of a glomerulus. TUNEL staining showed that GDF induced apoptosis in tubular cells and glomerular cells. These studies demonstrate that GDF can induce both severe proximal tubular damage and podocyte injury in rats, and the tubular lesions appear earlier than that of glomeruli. PMID:23029287

  1. Anion and solvent induced chirality inversion in macrocyclic lanthanide complexes.

    PubMed

    Gerus, Aleksandra; Slepokura, Katarzyna; Lisowski, Jerzy

    2013-11-04

    A series of the lanthanide(III) or yttrium(III) complexes of the type [LnL(NO3)(H2O)2](NO3)2, [LnL(NO3)(H2O)](NO3)2, [LnL(H2O)2](NO3)3, and [LnLCl(H2O)2]Cl2 where L is an all-R or all-S enantiomer (L(R) or L(S)) of the chiral hexaaza macrocycle, 2(R),7(R),18(R),23(R)- or 2(S),7(S),18(S),23(S)-1,8,15,17,24,31-hexaazatricyclo[25.3.1.1.0.0]-dotriaconta-10,12,14,26,28,30-hexaene, and Ln(III) = Sm(III), Tb(III), Ho(III), Er(III), Tm(III), Yb(III), Lu(III), or Y(III), have been synthesized and structurally characterized. The crystal structure of the free macrocycle shows a highly twisted molecule, preorganized for the formation of helical complexes. The crystal structures of the lanthanide(III) complexes show two different diastereomeric forms of the macrocycle with different configurations at the stereogenic amine nitrogen atoms: (RRRR) or (RSRS) (denoted as L(RI) and L(RII), respectively). The L(RI) diastereomeric form of the nitrate derivatives [LnL(NO3)(H2O)](NO3)2 (Ln = Ho, Er) and [LnL(H2O)2](NO3)3 (Ln = Tm, Yb, Lu) convert slowly to the L(RII) form in methanol or acetonitrile solutions, while this process is not observed for the L(RI) diastereomers of analogous chloride derivatives [LnL(H2O)2]Cl3 (Ln = Tm, Yb, Lu). On the other hand, the L(RI) → L(RII) conversion for these Tm(III), Yb(III), and Lu(III) chloride derivatives can be triggered by the addition of external nitrate anions. The circular dichroism (CD) and (1)H NMR data indicate initial fast exchange of axial chloride for axial nitrate ligand, followed by slow chirality inversion of the equatorial macrocyclic ligand.

  2. Bio oil synthesis by coupling biological biomass pretreatment and catalytic hydroliquefaction process.

    PubMed

    Hamieh, S; Beauchet, R; Lemee, L; Toufaily, J; Koubaissy, B; Hamieh, T; Pouilloux, Y; Pinard, L

    2014-03-01

    The bio-oil synthesis from a mixture of wastes (7wt.% straw, 38wt.% wood, and 45wt.% grass) was carried out by direct liquefaction reaction using Raney Nickel as catalyst and tetralin as solvent. The green wastes were biologically degraded during 3 months. Longer the destructuration time; higher the yield into oil is. Biological pretreatment of green wastes promotes the liquefaction process. Among the components of degraded biomass, Humin, the major fraction (60-80wt.%) that was favored by the biological treatment, yields to a bio oil extremely energetic with a HHV close to biopetroleum (40MJ kg(-1)), contrariwise, Fulvic acids (2-12wt.%), the minor fraction is refractory to liquefaction reaction.

  3. Effects of the components of coal hydro-liquefaction residue on its rheological characteristics

    SciTech Connect

    Ren, Y.; Jin, S.; Xu, Y.; Wei, A.; Zhang, D.; Gao, J.

    2009-07-01

    Four kinds of typical coal liquefaction residue samples, coming from Shenhua coal liquefaction pilot plant, were used to investigate the effects of components of residue, separation time, and temperature on its rheological characteristics. Coal liquefaction residue is a non-Newtonian pseudoplastic fluid whose apparent viscosity decreases with increasing shear rate. Moreover, the residue has high viscosity at the initial softening temperature, and its viscosity drops greatly with increasing temperature. The oil content in residue has a great effect on the decline of the apparent viscosity of residue. The asphaltene can increase the apparent viscosity at lower temperatures but decrease it at higher temperatures. However, the solid only increases the apparent viscosity as it can be neither softened nor dissolved to become fluid. After simulating the separation condition, it is found that prolonging the separation time and enhancing the separation temperature will increase the apparent viscosity of residue, which is bad for preventing pipes from being blocked. So choosing the right separation time and separation temperature is necessary to actual industrial production.

  4. Direct hydro-liquefaction of sawdust in petroleum ether and comprehensive bio-oil products analysis.

    PubMed

    Liu, Dong; Song, Linhua; Wu, Pingping; Liu, Yan; Li, Qingyin; Yan, Zifeng

    2014-03-01

    The effect of temperature, time, hydrogen pressure and amount of catalyst on production distribution and the bio-oil yield obtained from the direct liquefaction of sawdust in the petroleum ether (60-90°C) are investigated. The highest sawdust conversion obtained was 72.32% with a bio-oil yield of 47.69% were obtained at 370°C, 40min and 5wt.% catalyst content with the initial H2 pressure of 3.0MPa. Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) approach was utilized to analyze the non-volatile fraction. In this study, the composition of bio-oil could be analyzed in an unprecedented detail through a combination of GC-MS and FT-ICR MS techniques. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. 57Fe NGR studies on three-stage hydroliquefaction of coals

    NASA Astrophysics Data System (ADS)

    Jamond, M.; Bacaud, R.; Bussiere, P.; Charcosset, H.; Nickel-Pepin-Donat, B.

    1990-06-01

    Iron Mössbauer spectroscopy has been performed on liquefaction residues of two different French coals. In a three-stage liquefaction of high volatile bituminous coal (Freyming), without an added catalyst, the coal pyrite is not entirely converted into pyrrhotites, whereas in the presence of an added catalyst, coal pyrite is totally transformed into more dispersed pyrrhotites than those from the sample without an added catalyst; furthermore, the whole added catalyst precursor is reduced into pyrrhotites. In the case of liquefaction of subbituminous coal (Gardanne), full conversion of coal pyrite into pyrrhotites (even without an added catalyst) occurs. In addition, in the presence of the added catalyst, besides pyrrhotites, FeS is evidenced. When molybdenum-iron oxide is added as a catalyst precursor, no mixed Fe-Mo phase is detected.

  6. New resist materials based on polyacetal main chain scission

    NASA Astrophysics Data System (ADS)

    Manouras, Theodoros; Olziersky, Antonis; Argitis, Panagiotis

    2016-03-01

    The main target of the current work was to develop new polymeric materials for lithographic applications, the main chain of which is cleaved under the influence of photogenerated acid. Acetals have been chosen as functional groups in the main polymer chain since they can be cleaved in the presence of an acid while they remain untouched in alkaline ambient. The synthesized polymers were designed to bear in addition suitable functional groups for the achievement of desirable lithographic characteristics (thermal stability, acceptable glass transition temperature, etch resistance, proper dissolution behaviour). The synthesis was carried out via polyaddition of a vinyloxyl compound and a diol compound to produce novel polymers with acetal repeating units in their backbone. We chose polyaromatic hydrocarbons as diol units to achieve increased etch resistance. In addition, the polyaromatic units allow exposure at 193 nm as well, where the absorption of simple aromatics is prohibitively high. Good solubility and increased surface adhesion were achieved by choosing cycloaliphatic vinyloxyl ethers as the second component for the polyaddition. In addition, the same route can be followed to incorporate chromophores that can tune the resist absorbance in different spectral regions. Furthermore, single component systems can be designed following this approach by the incorporation of suitable PAGs in the main chain.

  7. Entrance channel systematics of pre-scission neutron multiplicities

    NASA Astrophysics Data System (ADS)

    Shareef, M.; Chatterjee, A.; Prasad, E.

    2016-11-01

    Statistical model analysis has been performed for the available neutron multiplicity ( ν_{pre} data in the literature. Larger ν_{pre} values for more symmetric reactions have been observed in comparison with asymmetric reactions forming the same compound nucleus, in most cases. A reverse trend has also been noticed in a few cases. A systematic entrance channel dependence of fission timescale is brought out in this work. Fission timescales calculated using the experimental ν_{pre} values fall into two distinct groups according to the entrance channel mass asymmetry of the reaction with respect to the Businaro-Gallone critical mass asymmetry. The difference in the delay between these two groups ranges between 20 and 100zs, which is larger than that reported in some cases.

  8. Deuteration-induced scission of C{sub 58} oligomers

    SciTech Connect

    Loeffler, Daniel; Jester, Stefan-S.; Weis, Patrick; Boettcher, Artur; Kappes, Manfred M.

    2006-12-14

    The reaction of solid C{sub 58} films with atomic deuterium to yield deuterofullerenes, C{sub 58}D{sub x}, has been investigated by thermal desorption spectroscopy coupled with mass spectrometric detection, ultraviolet photoionization spectroscopy (21.2 eV), and atomic force microscopy (AFM). The average composition of the deuterofullerenes created depends on deuterium dose, beam flux, and surface temperature. Low deuterium exposures at room temperature yield predominantly C{sub 58}D{sub 6-8} cages. Saturation exposures at room temperature yield mass spectra peaked at C{sub 58}D{sub 26}. After saturation exposures at elevated surface temperatures ({approx}500 K), the (subsequently) desorbed material reveals a comparatively narrow mass spectral distribution centered at C{sub 58}D{sub 30}. Deuteration is associated with cleavage of covalent cage-cage bonds in the starting C{sub 58} oligomer material, as evidenced by a considerable lowering of the sublimation energies of C{sub 58}D{sub x} compared to desorption of C{sub 58} desorbed from pure oligomer films. Correspondingly, AFM images reveal a D-induced, thermally activated transition from dendritic C{sub 58} oligomer islands into smooth-rimmed islands composed of deuterated cages. Deuterated films exhibit a significantly lower work function than bare C{sub 58} films. Progressing deuteration also gradually raises the surface ionization potential.

  9. Excitation-energy influence at the scission configuration

    NASA Astrophysics Data System (ADS)

    Ramos, D.; Rodríguez-Tajes, C.; Caamaño, M.; Farget, F.; Audouin, L.; Benlliure, J.; Casarejos, E.; Clement, E.; Cortina, D.; Delaune, O.; Derkx, X.; Dijon, A.; Doré, D.; Fernández-Domínguez, B.; de France, G.; Heinz, A.; Jacquot, B.; Navin, A.; Paradela, C.; Rejmund, M.; Roger, T.; Salsac, M.-D.; Schmitt, C.

    2017-09-01

    Transfer- and fusion-induced fission in inverse kinematics was proven to be a powerful tool to investigate nuclear fission, widening the information of the fission fragments and the access to unstable fissioning systems with respect to other experimental approaches. An experimental campaign for fission investigation has being carried out at GANIL with this technique since 2008. In these experiments, a beam of 238U, accelerated to 6.1 MeV/u, impinges on a 12C target. Fissioning systems from U to Cf are populated through transfer and fusion reactions, with excitation energies that range from few MeV up to 46 MeV. The use of inverse kinematics, the SPIDER telescope, and the VAMOS spectrometer permitted the characterization of the fissioning system in terms of mass, nuclear charge, and excitation energy, and the isotopic identification of the full fragment distribution. The neutron excess, the total neutron multiplicity, and the even-odd staggering in the nuclear charge of fission fragments are presented as a function of the excitation energy of the fissioning system. Structure effects are observed at Z˜50 and Z˜55, where their impact evolves with the excitation energy.

  10. DNA strand scission by the novel antitumor antibiotic leinamycin

    SciTech Connect

    Hara, Mitsunobu; Saitoh, Yutaka; Nakano, Hirofumi )

    1990-06-19

    Leinamycin is a recently discovered antitumor antibiotic with an unusual 1,3-dioxo-1,2-dithiolane structure. It preferentially inhibits the incorporation of ({sup 3}H)thymidine into the acid-insoluble fraction of Bacillus subtilis. In vitro, leinamycin causes single-strand cleavage of supercoiled double-helical pBR322 DNA in the presence of thiol cofactors. Scavengers of oxygen radical did not suppress the DNA-cleaving activity. Thiol-activated leinamycin binds calf thymus DNA at 4{degree}C and thermal treatment of the leinamycin-DNA adduct released a chemically modified leinamycin from the complex. The lack of cytotoxicity and DNA-cleaving activity for S-deoxyleinamycin indicates that the 1,3-dioxo-1,2-dithiolane moiety is essential for the activity of leinamycin. Thus, the primary cellular target of leinamycin appears to be DNA. It binds DNA and causes single-strand break at low concentrations, which may account for the potent antitumor activity.

  11. Novel Reagents for N-NO2 Scission.

    DTIC Science & Technology

    1997-02-01

    certain dihydropyridine derivatives, which was demonstrated on both tetryl and HMX as model aromatic and heterocyclic nitramines, respectively; and... dihydropyridine derivative, resulting in N-methylpicramide as the major product. In the HMX-BNAH system, HMX was definitively shown to be denitrated, and

  12. Solvent-Induced Reductive Activation in Gas Phase [Bi(CO2)n]- Clusters

    NASA Astrophysics Data System (ADS)

    Thompson, Michael C.; Ramsay, Jacob Sondergaard; Weber, J. Mathias

    2016-06-01

    We report infrared photodissociation spectra of [Bi(CO2)n]- (n=2-9) cluster anions. We determine the charge carrier geometry by comparing calculated vibrational frequencies based on density functional theory to the experimental spectra. The vibrational frequencies and the charge carrier geometry depend strongly on the solvation environment present in the cluster. We discuss the interaction of bismuth and CO_2 in the presence of an excess electron in the context of heterogeneous catalytic reduction of CO_2.

  13. Direct solvent induced microphase separation, ordering and nano-particles infusion of block copolymer thin films

    NASA Astrophysics Data System (ADS)

    Modi, Arvind; Sharma, Ashutosh; Karim, Alamgir

    2013-03-01

    Kinetics of block copolymer (BCP) microphase separation by thermal annealing is often a challenge to low-cost and faster fabrication of devices because of the slow ordering. Towards the objective of rapid processing and accessing desired nanostructures, we are developing methods that enable a high degree of mobility of BCP phases while maintaining phase separation conditions via control of effective interaction parameter between the blocks in BCP thin films. We study the self-assembly of PS-P2VP thin films in various solvent mixtures. While non-solvent prevents dissolution of film into the bulk solution, the good solvent penetrates the film and makes polymer chains mobile. As a result of controlled swelling and mobility of BCP blocks, solvent annealing of pre-cast BCP thin films in liquid mixture of good solvent and non-solvent is a promising method for rapid patterning of nanostructures. Interestingly, we demonstrate simultaneous BCP microphase separation and infusion of gold nano-particles into selective phase offering a wide range of application from plasmonics to nanoelectronics. University of Akron Research Foundation (UARF)

  14. Evolution of amorphous selenium nanoballs in silicone oil and their solvent induced morphological transformation.

    PubMed

    Sinha, Arun Kumar; Sasmal, Anup Kumar; Mehetor, Shyamal Kumar; Pradhan, Mukul; Pal, Tarasankar

    2014-12-25

    Selenium generally exhibits preferential habitual 1D growth as a result of redox reactions of selenium compounds. Commercial Se powder melts in silicone oil under refluxing conditions and upon subsequent cooling evolve amorphous Se nanoballs (SNBs). Further ultrapure crystalline 1D Se grows from SNBs due to solvent mediated oriented attachment.

  15. Solvent-induced changes in the structure and rheology of polyelectrolyte solutions.

    NASA Astrophysics Data System (ADS)

    Breedveld, Victor

    2006-03-01

    By integrating microfluidics and particle tracking microrheology, we have constructed a dialysis cell for microrheology, which provides unique opportunities for studying the dynamics of microstructural changes induced by changes in solvent composition. Such experiments are virtually impossible with mechanical rheometers. The concept and design of the microdialysis cell will be discussed, and data will be presented on the structural and rheological response of polyelectrolyte solutions to changes in ionic strength. Sulphonated polystyrene is a water-soluble polymer and its molecular conformation in solution strongly depends on ionic strength of the solution. It will be shown that quantitative measurements of transient solution viscosity during solvent exchange can be performed with the new dialysis cell. Experiments were also performed on amphiphilic block copolypeptide (BCP) hydrogels, which self-assemble into fibrillar structures due to a subtle balance between attractive and repulsive intermolecular forces. Electrostatic repulsion between the hydrophilic L-lysine blocks plays a key role. Therefore, changes in ionic strength have a significant effect on the self-assembled local structure and mechanical properties of the BCP gels, as was previously observed in rheometer experiments. Microrheology in the dialysis cell provided a much more complete picture, revealing the occurrence of microscopic phase separation upon the addition of salt. For example, in a K160L40 lysine-leucine block copolypeptide, the motion of tracer particles in the hydrogel is homogeneous in DI water. After the addition of salt, microrheology reveals the co-existence of populations of freely moving and immobilized particles. The changes in local microstructure were found to be reversible when the ionic strength of the solution was lowered again. Data will be presented on the dynamics of the morphological and rheological changes of various block copolypeptide hydrogels.

  16. Solvent-induced lysozyme gels: rheology, fractal analysis, and sol-gel kinetics.

    PubMed

    da Silva, Marcelo A; Arêas, Elizabeth P G

    2005-09-15

    In this work, the gelation kinetics and fractal character of lysozyme gel matrices developed in tetramethylurea (TMU)-water media were investigated. Gelation times were determined from the temporal crossover point between the storage, G', and loss, G'', moduli, as a function of the binary solvent composition and of protein concentration. The inverse dependence of the upper limit of the linear viscoelastic region (gamma0) on protein concentration indicate that the lysozyme gels belong to the "strong link" kind, a gel category where interparticle links are stronger than intraparticle ones. Lysozyme gel fractal dimensions (Df) were determined from the analysis of rheological data according to a scaling theory by Shih et al. [Phys. Rev. A 42 (1990) 4772-4779] and were found to be compatible with a diffusion-limited cluster-aggregation kinetics (DLCA) for lysozyme gels formed at the TMU mass fraction in the binary organic-aqueous solvent, wTMU=0.9, and with a reaction-limited cluster aggregation kinetics (RLCA) for wTMU in the 0.6< or =wTMU< or =0.8 range.

  17. Solvent induced reactivity of 3,5-dimethylpyrazole towards zinc (II) carboxylates.

    PubMed

    Sarma, Rupam; Kalita, Dipjyoti; Baruah, Jubaraj B

    2009-09-28

    The reactions of 3,5-dimethylpyrazole with zinc(II)acetate dihydrate and varieties of aromatic carboxylic acids led to formation of mono-nuclear zinc complexes of composition [Zn(HDMP)2(RCO2)2] (R = C6H5, p-CH3-C6H4, p-NO2-C6H4 etc. HDMP = 3,5-dimethylpyrazole) in methanol, whereas the same reactants in dimethylformamide (DMF) gave binuclear 3,5-dimethylpyrazolato bridged zinc carboxylate complexes containing monodentate 3,5-dimethylpyraozole ligands with composition [Zn2(mu-DMP)2(HDMP)2(RCO2)2]. The mononuclear complexes can be converted to the corresponding binuclear complexes by simply dissolving in DMF. The reaction of zinc(II)acetate dihydrate with p-nitrobenzoic acid and 3,5-dimethylpyrazole in different solvents gave solvated mononuclear complexes of the corresponding solvent. All these solvated complexes having the core [Zn(HDMP)2(p-NO2-C6H4CO2)2] contain two structurally independent molecules in the asymmetric unit (Z' = 2).

  18. Improved siRNA delivery efficiency via solvent-induced condensation of micellar nanoparticles

    NASA Astrophysics Data System (ADS)

    Wu, Juan; Qu, Wei; Williford, John-Michael; Ren, Yong; Jiang, Xuesong; Jiang, Xuan; Pan, Deng; Mao, Hai-Quan; Luijten, Erik

    2017-05-01

    Efficient delivery of short interfering RNA (siRNA) remains one of the primary challenges of RNA interference therapy. Polyethylene glycol (PEG)ylated polycationic carriers have been widely used for the condensation of DNA and RNA molecules into complex-core micelles. The PEG corona of such nanoparticles can significantly improve their colloidal stability in serum, but PEGylation of the carriers also reduces their condensation capacity, hindering the generation of micellar particles with sufficient complex stability. This presents a particularly significant challenge for packaging siRNA into complex micelles, as it has a much smaller size and more rigid chain structure than DNA plasmids. Here, we report a new method to enhance the condensation of siRNA with PEGylated linear polyethylenimine using organic solvent and to prepare smaller siRNA nanoparticles with a more extended PEG corona and consequently higher stability. As a proof of principle, we have demonstrated the improved gene knockdown efficiency resulting from the reduced siRNA micelle size in mice livers following intravenous administration.

  19. Solvent-Induced Proton Hopping at a Water–Oxide Interface

    PubMed Central

    2014-01-01

    Despite widespread interest, a detailed understanding of the dynamics of proton transfer at interfaces is lacking. Here, we use ab initio molecular dynamics to unravel the connection between interfacial water structure and proton transfer for the widely studied and experimentally well-characterized water–ZnO(101̅0) interface. We find that upon going from a single layer of adsorbed water to a liquid multilayer, changes in the structure are accompanied by a dramatic increase in the proton-transfer rate at the surface. We show how hydrogen bonding and rather specific hydrogen-bond fluctuations at the interface are responsible for the change in the structure and proton-transfer dynamics. The implications of this for the chemical reactivity and for the modeling of complex wet oxide interfaces in general are also discussed. PMID:24920998

  20. Solvent-induced helix superstructure in achiral dumbbell-shaped hydrazine derivatives.

    PubMed

    Ran, Xia; Zhang, Peng; Qu, Songnan; Wang, Haitao; Bai, Binglian; Liu, Huimin; Zhao, Chengxiao; Li, Min

    2011-04-05

    We studied hydrogen-bonding assemblies in a series of dumbbell-shaped hydrazine derivatives, namely oxalyl N',N'-bis(3,4-dialkoxybenzoyl)-hydrazide (BFH-n, n = 4, 6, 8, 10) and oxalyl N',N'-dibenzoyl-hydrazide (FH-0). It has been demonstrated that NH-1 protons of BFH-n precipitated from tetrahydrofuran (THF) or dimethylformamide (DMF) were involved in intramolecular H-bonding to form 6-membered rings. Meanwhile, NH-2 protons of BFH-n precipitated from THF formed intermolecular hydrogen bonds with C═O groups of neighboring molecules, while NH-2 protons of BFH-n precipitated from DMF formed intermolecular hydrogen bonds with C═O group of neighboring DMF molecules. C═O, -CH(3), and -CH groups of DMF molecules participated in multiple intermolecular hydrogen bonds with the -N-H and -C═O groups of FH-0 molecules in single-crystals formed in DMF, leading to a double helix morphology with a pitch of 24.2 Å along the c direction. Both left- and right-handed helical micrometer-length ribbons with nonuniform helical pitches were observed in an achiral BFH-10 xerogel precipitated from DMF.

  1. Organic solvents induce the formation of oil-in-ionic liquid microemulsion aggregations.

    PubMed

    Gao, Yanan; Li, Na; Zhang, Shaohua; Zheng, Liqiang; Li, Xinwei; Dong, Bin; Yu, Li

    2009-02-05

    The role of four organic solvents in the formation process of 1-butyl-3-methylimidazolium tetrafluoroborate (bmimBF4) based ionic liquid (IL) microemulsions is investigated. The results showed that the addition of Triton X-100 remarkably decreased the conductivity of bmimBF4. The added organic solvents provided a strong apolar environment for the hydrophobic tails of Triton X-100 and caused the surfactant molecules to aggregate into the interfacial film of oil-in-bmimBF4 (O/IL) microemulsions. As a result, the conductivities of the solutions were initially increased because the insulative Triton X-100 molecules were assembled, which corresponded to increasing the concentration of continuous bmimBF4 solutions. The hydrophobic interaction between the dispersed organic solvents and the hydrophobic tails of Triton X-100 may be the driving force for the formation of O/IL microemulsions. The droplets of O/IL microemulsions were successively swollen by organic solvents, and a bicontinuous IL-containing microemulsion was observed by freeze-fracture transmission electron microscopy for the first time. The current study can help in further understanding the ILs-containing microemulsions and thereby improve microemulsion theory.

  2. Purification, characterization, and solvent-induced thermal stabilization of ficin from Ficus carica.

    PubMed

    Devaraj, Kamsagara Basavarajappa; Kumar, Parigi Ramesh; Prakash, Vishweshwaraiah

    2008-12-10

    Ficin (EC 3.4.22.3), a cysteine proteinase isolated from the latex of a Ficus tree, is known to occur in multiple forms. Although crude ficin is of considerable commercial importance, ficin as such has not been fully characterized. A major ficin from the commercial crude proteinase mixture preparation of Ficus carica was purified and characterized. The purified enzyme was homogeneous in both sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and gel-filtration chromatography and is a single polypeptide chain protein with a molecular mass of 23 100 +/- 300 Da as determined by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF). The enzyme was active in the pH range of 6.5-8.5, and maximum activity was observed at pH 7.0. The N-terminal core sequence of ficin has homology with N-terminal sequences of plant cysteine proteinases. The enzyme contains three disulfide bonds and a single free cysteine residue at the active site. The effect of co-solvents, such as sorbitol, trehalose, sucrose, and xylitol, on the thermal stability of ficin was determined by activity measurements, fluorescence, and thermal denaturation studies. The apparent thermal denaturation temperature (T(m)) of ficin was significantly increased from the control value of 72 +/- 1 degrees C in the presence of all co-solvents. However, the maximum stabilization effect was observed in terms of thermal stabilization by the co-solvent trehalose.

  3. Solvent-induced changes in PEDOT:PSS films for organic electrochemical transistors

    SciTech Connect

    Zhang, Shiming; Kumar, Prajwal; Nouas, Amel Sarah; Fontaine, Laurie; Tang, Hao; Cicoira, Fabio

    2015-01-01

    Organic electrochemical transistors based on the conducting polymer poly(3,4-ethylenedioxythiophene) doped with poly(styrenesulfonate) (PEDOT:PSS) are of interest for several bioelectronic applications. In this letter, we investigate the changes induced by immersion of PEDOT:PSS films, processed by spin coating from different mixtures, in water and other solvents of different polarities. We found that the film thickness decreases upon immersion in polar solvents, while the electrical conductivity remains unchanged. The decrease in film thickness is minimized via the addition of a cross-linking agent to the mixture used for the spin coating of the films.

  4. Computing solvent-induced forces in the solvation approach called Semi Explicit Assembly

    NASA Astrophysics Data System (ADS)

    Brini, Emiliano; Hummel, Michelle H.; Coutsias, Evangelos A.; Fennell, Christopher J.; Dill, Ken A.

    2014-03-01

    Many biologically relevant processes (e.g. protein folding) are often too big and slow to be simulated by computer methods that model atomically detailed water. Faster physical models of water are needed. We have developed an approach called Semi Explicit Assembly (SEA) [C.J. Fennell, C.W. Kehoe, K.A. Dill, PNAS, 108, 3234 (2011)]. It is physical because it uses pre-simulations of explicit-solvent models, and it is fast because at runtime, we just combine the pre-simulated results in rapid computations. SEA has also now been proven physically accurate in two blind tests called SAMPL. Here, we describe the computation of solvation forces in SEA, so that this solvation procedure can be incorporated into standard molecular dynamics codes. We describe experimental tests.

  5. Solvents induced ZnO nanoparticles aggregation associated with their interfacial effect on organic solar cells.

    PubMed

    Li, Pandeng; Jiu, Tonggang; Tang, Gang; Wang, Guojie; Li, Jun; Li, Xiaofang; Fang, Junfeng

    2014-10-22

    ZnO nanofilm as a cathode buffer layer has surface defects due to the aggregations of ZnO nanoparticles, leading to poor device performance of organic solar cells. In this paper, we report the ZnO nanoparticles aggregations in solution can be controlled by adjusting the solvents ratios (chloroform vs methanol). These aggregations could influence the morphology of ZnO film. Therefore, compact and homogeneous ZnO film can be obtained to help achieve a preferable power conversion efficiency of 8.54% in inverted organic solar cells. This improvement is attributed to the decreased leakage current and the increased electron-collecting efficiency as well as the improved interface contact with the active layer. In addition, we find the enhanced maximum exciton generation rate and exciton dissociation probability lead to the improvement of device performance due to the preferable ZnO dispersion. Compared to other methods of ZnO nanofilm fabrication, it is the more convenient, moderate, and effective to get a preferable ZnO buffer layer for high-efficiency organic solar cells.

  6. Solvent-Induced Reversal of Activities between Two Closely Related Heterogeneous Catalysts in the Aldol Reaction

    SciTech Connect

    Kandel, Kapil; Althaus, Stacey M; Peeraphatdit, Chorthip; Kobayashi, Takeshi; Trewyn, Brian G; Pruski, Marek; Slowing, Igor I

    2013-01-11

    The relative rates of the aldol reaction catalyzed by supported primary and secondary amines can be inverted by 2 orders of magnitude, depending on the use of hexane or water as a solvent. Our analyses suggest that this dramatic shift in the catalytic behavior of the supported amines does not involve differences in reaction mechanism, but is caused by activation of imine to enamine equilibria and stabilization of iminium species. The effects of solvent polarity and acidity were found to be important to the performance of the catalytic reaction. This study highlights the critical role of solvent in multicomponent heterogeneous catalytic processes.

  7. Unprecedented solvent induced inter-conversion between monomeric and dimeric silylene-zinc iodide adducts.

    PubMed

    Yadav, Sandeep; Sangtani, Ekta; Dhawan, Diksha; Gonnade, Rajesh G; Ghosh, Debashree; Sen, Sakya S

    2017-08-29

    Usually, when a silylene reacts with a transition metal Lewis acid, it forms an adduct which could be either monomeric or dimeric. However, we present here that a silylene, [PhC(NtBu)2SiN(SiMe3)2] can form both monomeric [PhC(NtBu)2Si{N(SiMe3)2} → ZnI2]·THF (1) and dimeric [{PhC(NtBu)2}(N(SiMe3)2)SiZnI,(μ-I)]2 (2) adducts upon reaction with ZnI2. The formation of 1 and 2 relies upon the solvent used for the reaction or crystallization. When the crystallization is carried out in THF complex 1 is formed, however, when the reaction and crystallization are performed in acetonitrile complex 2 is obtained. Both 1 and 2 were structurally authenticated and the nature of the Si-Zn bond in these complexes was determined by quantum chemical calculations. In addition, a spontaneous inter-conversion between 1 and 2 just by changing the solvents has been also observed; a feature presently not known for silylene-transition metal Lewis adducts.

  8. Improved siRNA Delivery Efficiency via Solvent-Induced Condensation of Micellar Nanoparticles.

    PubMed

    Wu, Juan; Qu, Wei; Williford, John-Michael; Ren, Yong; Jiang, Xuesong; Jiang, Xuan; Pan, Deng; Mao, Hai-Quan; Luijten, Erik

    2017-03-07

    Efficient delivery of siRNA remains one of the primary challenges of RNA interference therapy. PEGylated polycationic carriers have been widely used for the condensation of DNA and RNA molecules into complex-core micelles. The PEG corona of such nanoparticles can significantly improve their colloidal stability in serum, but PEGylation of the carriers also reduces their condensation capacity, hindering the generation of micellar particles with sufficient complex stability. This presents a particularly significant challenge for packaging siRNA into complex micelles, as it has a much smaller size and more rigid chain structure than DNA plasmids. Here, we report a new method to enhance the condensation of siRNA with PEGylated linear polyethylenimine (lPEI) using organic solvent and to prepare smaller siRNA nanoparticles with a more extended PEG corona and consequently higher stability. As a proof of principle, we have demonstrated the improved gene knockdown efficiency resulting from the reduced siRNA micelle size in mouse liver following intravenous administration.

  9. Solvent-induced lid opening in lipases: a molecular dynamics study.

    PubMed

    Rehm, Sascha; Trodler, Peter; Pleiss, Jürgen

    2010-11-01

    In most lipases, a mobile lid covers the substrate binding site. In this closed structure, the lipase is assumed to be inactive. Upon activation of the lipase by contact with a hydrophobic solvent or at a hydrophobic interface, the lid opens. In its open structure, the substrate binding site is accessible and the lipase is active. The molecular mechanism of this interfacial activation was studied for three lipases (from Candida rugosa, Rhizomucor miehei, and Thermomyces lanuginosa) by multiple molecular dynamics simulations for 25 ns without applying restraints or external forces. As initial structures of the simulations, the closed and open structures of the lipases were used. Both the closed and the open structure were simulated in water and in an organic solvent, toluene. In simulations of the closed lipases in water, no conformational transition was observed. However, in three independent simulations of the closed lipases in toluene the lid gradually opened. Thus, pathways of the conformational transitions were investigated and possible kinetic bottlenecks were suggested. The open structures in toluene were stable, but in water the lid of all three lipases moved towards the closed structure and partially unfolded. Thus, in all three lipases opening and closing was driven by the solvent and independent of a bound substrate molecule.

  10. Solvent-induced size reduction of self-assembled siRNA/copolymer nanoparticles

    NASA Astrophysics Data System (ADS)

    Qu, Wei; Wu, Juan; Mao, Hai-Quan; Luijten, Erik

    2013-03-01

    Small interfering RNA (siRNA) therapeutics has a demonstrated potential for treating numerous liver diseases. However, traditional polycation vectors used for siRNA delivery typically produce siRNA-containing particles of large size (> 100 nm), along with high cytotoxicity and low colloidal stability. Inspired by earlier work on nanoparticles for plasmid DNA delivery, we graft hydrophilic and biocompatible polyethylene glycol (PEG) blocks to the polycation vector to overcome these limitations. We find that the PEG-grafted polycations result in slightly larger particle size, even though the hydrophilic PEG blocks are expected to hinder the formation of larger aggregates. To explain this observation, we investigate siRNA/copolymer self-assembly via computer simulations of coarse-grained polymer and siRNA models. Our calculations suggest that hydrogen bonding between PEG and the polycation leads to the increased particle size, and that smaller particles can be obtained by inhibiting hydrogen bonding in such system. Subsequent experiments employing solvents of lower polarity indeed lead to particles with smaller size.

  11. Prediction of solvent-induced morphological changes of polyelectrolyte diblock copolymer micelles.

    PubMed

    Li, Nan K; Fuss, William H; Tang, Lei; Gu, Renpeng; Chilkoti, Ashutosh; Zauscher, Stefan; Yingling, Yaroslava G

    2015-11-14

    Self-assembly processes of polyelectrolyte block copolymers are ubiquitous in industrial and biological processes; understanding their physical properties can also provide insights into the design of polyelectrolyte materials with novel and tailored properties. Here, we report systematic analysis on how the ionic strength of the solvent and the length of the polyelectrolyte block affect the self-assembly and morphology of the polyelectrolyte block copolymer materials by constructing a salt-dependent morphological phase diagram using an implicit solvent ionic strength (ISIS) method for dissipative particle dynamics (DPD) simulations. This diagram permits the determination of the conditions for the morphological transition into a specific shape, namely vesicles or lamellar aggregates, wormlike/cylindrical micelles, and spherical micelles. The scaling behavior for the size of spherical micelles is predicted, in terms of radius of gyration (R(g,m)) and thickness of corona (Hcorona), as a function of solvent ionic strength (c(s)) and polyelectrolyte length (NA), which are R(g,m) ∼ c(s)(-0.06)N(A)(0.54) and Hcorona ∼ c(s)(-0.11)N(A)(0.75). The simulation results were corroborated through AFM and static light scattering measurements on the example of the self-assembly of monodisperse, single-stranded DNA block-copolynucleotides (polyT50-b-F-dUTP). Overall, we were able to predict the salt-responsive morphology of polyelectrolyte materials in aqueous solution and show that a spherical-cylindrical-lamellar change in morphology can be obtained through an increase in solvent ionic strength or a decrease of polyelectrolyte length.

  12. Retinoic acid reduces solvent-induced neuropathy and promotes neural regeneration in mice.

    PubMed

    Palencia, Guadalupe; Hernández-Pedro, Norma; Saavedra-Perez, David; Peña-Curiel, Omar; Ortiz-Plata, Alma; Ordoñez, Graciela; Flores-Estrada, Diana; Sotelo, Julio; Arrieta, Oscar

    2014-08-01

    In humans, exposure to organic solvents (OS) is frequent in work activities or as a recreational inhalant, inducing severe neuropathy (secondary to demyelization of peripheral nerves). We have previously shown that all-trans retinoic acid (ATRA) increases local content of neural growth factor (NGF), improving peripheral neuropathy of diverse origins. In this study, we evaluated the effect of ATRA on OS-induced peripheral neuropathy in experimental mice. Two simultaneous experiments were performed. The first one aimed to evaluate ATRA for the prevention of damage induced by OS, the second to test ATRA as an OS-induced neuropathy treatment. Nociceptive threshold latency and NGF concentration in serum and in peripheral nerves were determined. Morphological changes and evidence of sciatic nerve regeneration were evaluated. Mice exposed to OS developed neuropathy and axonal degeneration. ATRA diminished the effects of OS inhalation on sensorial changes and nerve morphology. Treatment with ATRA reversed sensorial and nerve morphological changes of OS-induced neuropathy, and this was associated with increased contents of NGF. Similar to previous experiences on diabetic and toxic neuropathy, ATRA reduced and partially reversed the peripheral neuropathy caused by OS exposure. These favorable effects apparently are due to local production of NGF induced by neural regeneration in response to the administration of retinoic acid. © 2014 Wiley Periodicals, Inc.

  13. Cation or Solvent-Induced Supermolecular Phthalocyanine Formation: Crown Ether Substituted Phthalocyanines.

    DTIC Science & Technology

    1987-06-01

    DISTRIBUTION LIST, 051A Dr. M. A. El-Sayed Dr. Carmen Ortiz Department of Chemistry Consejo Superior de University of California Investigaciones ... Cientificas Los Angeles, California 90024 Serrano 121 Madrid 6, SPAIN Dr. E. R. Bernstein Department of Chemistry Dr. Kent R. Wilson Colorado State

  14. SOP-GPU: influence of solvent-induced hydrodynamic interactions on dynamic structural transitions in protein assemblies.

    PubMed

    Alekseenko, Andrey; Kononova, Olga; Kholodov, Yaroslav; Marx, Kenneth A; Barsegov, Valeri

    2016-06-30

    Hydrodynamic interactions (HI) are incorporated into Langevin dynamics of the Cα -based protein model using the Truncated Expansion approximation (TEA) to the Rotne-Prager-Yamakawa diffusion tensor. Computational performance of the obtained GPU realization demonstrates the model's capability for describing protein systems of varying complexity (10(2) -10(5) residues), including biological particles (filaments, virus shells). Comparison of numerical accuracy of the TEA versus exact description of HI reveals similar results for the kinetics and thermodynamics of protein unfolding. The HI speed up and couple biomolecular transitions through cross-communication among protein domains, which result in more collective displacements of structure elements governed by more deterministic (less variable) dynamics. The force-extension/deformation spectra from nanomanipulations in silico exhibit sharper force signals that match well the experimental profiles. Hence, biomolecular simulations without HI overestimate the role of tension/stress fluctuations. Our findings establish the importance of incorporating implicit water-mediated many-body effects into theoretical modeling of dynamic processes involving biomolecules. © 2016 Wiley Periodicals, Inc.

  15. Responsive polymer/gold nanoparticle composite thin films fabricated by solvent-induced self-assembly and spin-coating.

    PubMed

    Li, Dongxiang; Lee, Ji Yong; Kim, Dong Ha

    2011-02-15

    Self-assembled poly(4-vinylpyridine)-grafted gold (Au) nanoparticles (NPs) and polystyrene-b-poly(4-vinylpyridine) block copolymers were fabricated by the introduction of a selective solvent to a common solution. The assembled mixtures were spin-coated onto solid substrates to fabricate composite gold/polymer thin films composed of copolymer-hybridized Au NPs and independent copolymer micelles. The obtained composite Au thin films had variable localized surface plasmon resonance (LSPR) bands and microscopic morphologies upon vapor annealing with selective solvents because the adsorption and dissolving of solvent molecules into the films could rearrange the copolymer block. The hybrid nanostructured Au thin films may have potential in vapor sensing and organic assays.

  16. Solvent induced rapid modulation of micro/nano structures of metal carboxylates coordination polymers: mechanism and morphology dependent magnetism

    PubMed Central

    Liu, Kun; Shen, Zhu-Rui; Li, Yue; Han, Song-De; Hu, Tong-Liang; Zhang, Da-Shuai; Bu, Xian-He; Ruan, Wen-Juan

    2014-01-01

    Rational modulation of morphology is very important for functional coordination polymers (CPs) micro/nanostructures, and new strategies are still desired to achieve this challenging target. Herein, organic solvents have been established as the capping agents for rapid modulating the growth of metal-carboxylates CPs in organic solvent/water mixtures at ambient conditions. Co-3,5-pyridinedicarboxylate (pydc) CPs was studied here as the example. During the reaction, the organic solvents exhibited three types of modulation effect: anisotropic growth, anisotropic growth/formation of new crystalline phase and the formation of new crystalline phase solely, which was due to the variation of their binding ability with metal cations. The following study revealed that the binding ability was critically affected by their functional groups and molecular size. Moreover, their modulation effect could be finely tuned by changing volume ratios of solvent mixtures. Furthermore, they could be applied for modulating other metal-carboxylates CPs: Co-1,3,5-benzenetricarboxylic (BTC), Zn-pydc and Eu-pydc etc. Additionally, the as-prepared Co-pydc CPs showed a fascinating morphology-dependent antiferromagnetic behavior. PMID:25113225

  17. A 2D Semiquinone Radical-Containing Microporous Magnet with Solvent-Induced Switching from Tc = 26 to 80 K.

    PubMed

    Jeon, Ie-Rang; Negru, Bogdan; Van Duyne, Richard P; Harris, T David

    2015-12-23

    The incorporation of tetraoxolene radical bridging ligands into a microporous magnetic solid is demonstrated. Metalation of the redox-active bridging ligand 2,5-dichloro-3,6-dihydroxy-1,4-benzoquinone (LH2) with Fe(II) affords the solid (Me2NH2)2[Fe2L3]·2H2O·6DMF. Analysis of X-ray diffraction, Raman spectra, and Mössbauer spectra confirm the presence of Fe(III) centers with mixed-valence ligands of the form (L3)(8-) that result from a spontaneous electron transfer from Fe(II) to L(2-). Upon removal of DMF and H2O solvent molecules, the compound undergoes a slight structural distortion to give the desolvated phase (Me2NH2)2[Fe2L3], and a fit to N2 adsorption data of this activated compound gives a BET surface area of 885(105) m(2)/g. Dc magnetic susceptibility measurements reveal a spontaneous magnetization below 80 and 26 K for the solvated and the activated solids, respectively, with magnetic hysteresis up to 60 and 20 K. These results highlight the ability of redox-active tetraoxolene ligands to support the formation of a microporous magnet and provide the first example of a structurally characterized extended solid that contains tetraoxolene radical ligands.

  18. Solvent-induced infrared frequency shifts in aromatic nitriles are quantitatively described by the vibrational Stark effect.

    PubMed

    Levinson, Nicholas M; Fried, Stephen D; Boxer, Steven G

    2012-09-06

    The physical properties of solvents strongly affect the spectra of dissolved solutes, and this phenomenon can be exploited to gain insight into the solvent-solute interaction. The large solvatochromic shifts observed for many dye molecules in polar solvents are due to variations in the solvent reaction field, and these shifts are widely used to estimate the change in the dye's dipole moment upon photoexcitation, which is typically on the order of ∼1-10 D. In contrast, the change in dipole moment for vibrational transitions is approximately 2 orders of magnitude smaller. Nonetheless, vibrational chromophores display significant solvatochromism, and the relative contributions of specific chemical interactions and electrostatic interactions are debated, complicating the interpretation of vibrational frequency shifts in complex systems such as proteins. Here we present a series of substituted benzonitriles that display widely varying degrees of vibrational solvatochromism. In most cases, this variation can be quantitatively described by the experimentally determined Stark tuning rate, coupled with a simple Onsager-like model of solvation, reinforcing the view that vibrational frequency shifts are largely caused by electrostatic interactions. In addition, we discuss specific cases where continuum solvation models fail to predict solvatochromic shifts, revealing the necessity for more advanced theoretical models that capture local aspects of solute-solvent interactions.

  19. Hydroxylic solvent-induced ring opening of the dehydropyrrolizidine alkaloids riddelliine and seneciphylline: implications for toxicity and analytical studies

    USDA-ARS?s Scientific Manuscript database

    etabolites that can also cause various cancers in animal models. Riddelliine and seneciphylline are closely-related, macrocyclic diester dehydropyrrolizidine alkaloids produced by various species in the Asteraceae. Despite the evidence of carcinogenicity in animal models, and the increasing concerns...

  20. Controlled structures of a 1D chiral metallosalen polymer by photo- and solvent-induced partial depolymerization.

    PubMed

    Xi, Xiaobing; Dong, Taiwei; Li, Gao; Cui, Yong

    2011-04-07

    A 1D chiral metallosalen polymer with free pyridine groups is self-assembled and its molecular weight, conformation, architecture and optical property are controlled by depolymerization through sunlight irradiation or alcohol inclusions.

  1. Phthalocyanine supported dinuclear Ln(III) complexes: the solvent-induced change of magnetic properties in dysprosium(iii) analogues.

    PubMed

    Ge, Jing-Yuan; Wang, Hai-Ying; Li, Jing; Xie, Jia-Ze; Song, You; Zuo, Jing-Lin

    2017-02-24

    Three dinuclear lanthanide complexes, [Ln2(thd)4Pc]·2C6H6 (Hthd = 2,2,6,6-tetramethylheptanedione, Ln = Sm (1), Tb (2), Dy (3)), have been synthesized based on phthalocyanine (Pc). They can be reversibly transformed into [Ln2(thd)4Pc] (Ln = Sm (1'), Tb (2'), Dy (3')) via desolvation and resolvation of the lattice benzene molecules. This change generates dramatic influences on the structural and magnetic properties of the dysprosium analogue. In complex 3, one crystallographically independent metal center is observed, and it exhibits a single relaxation process of magnetization with an energy barrier of 55.7 K. Upon desolvation, the resulting complex 3' contains two types of metal centers, and shows the field-induced single-molecule magnetic behavior with two thermally activated magnetic relaxation processes. The anisotropy barriers for 3' are as high as 63.3 K and 109.6 K, respectively. This work confirms that the solvated molecules can finely tune the magnetic relaxation mechanisms.

  2. Single-stranded DNA detection by solvent-induced assemblies of a metallo-peptide-based complex

    NASA Astrophysics Data System (ADS)

    Das, Priyadip; Reches, Meital

    2016-05-01

    DNA detection is highly important for the sensitive sensing of different pathogenic bacteria and viruses. The major challenge is to create a sensor that can selectively detect very small concentrations of DNA without the need for amplification or complicated equipment. Different technologies such as optical, electrochemical and microgravimetric approaches can detect DNA fragments. Here we show, for the first time, the use of self-assembled nanostructures generated by a metallo-peptide as an optical sensing platform for DNA detection. The system can selectively detect single stranded DNA fragments by fluorescence measurements as it can discriminate even one base mismatch and can perform in the presence of other interfering proteins. This system may be useful in lab-on-a-chip applications.DNA detection is highly important for the sensitive sensing of different pathogenic bacteria and viruses. The major challenge is to create a sensor that can selectively detect very small concentrations of DNA without the need for amplification or complicated equipment. Different technologies such as optical, electrochemical and microgravimetric approaches can detect DNA fragments. Here we show, for the first time, the use of self-assembled nanostructures generated by a metallo-peptide as an optical sensing platform for DNA detection. The system can selectively detect single stranded DNA fragments by fluorescence measurements as it can discriminate even one base mismatch and can perform in the presence of other interfering proteins. This system may be useful in lab-on-a-chip applications. Electronic supplementary information (ESI) available: Peptide and receptor synthesis, characterization of the final and intermediate products, experimental details and additional figures including SEM, TEM, DLS, XRD, UV analysis and AFM topographic analysis. See DOI: 10.1039/c5nr07714a

  3. Surface treatment by binary solvents induces the crystallization of a small molecular donor for enhanced photovoltaic performance.

    PubMed

    Zhou, Weihua; Xie, Yuanpeng; Hu, Xiaotian; Zhang, Lin; Meng, Xiangchuan; Zhang, Yong; Ma, Wei; Chen, Yiwang

    2016-01-14

    The surface treatment of the active layer with binary solvents composed of methanol (MeOH) and 1-chloronaphthalene (CN), was demonstrated to effectively improve the power conversion efficiency (PCE) from 2.4% to 6.5% for p-DTS(FBTTh2)2:PC71BM based small molecular solar cells. The optical properties and morphology of the p-DTS(FBTTh2)2:PC71BM films were carefully investigated. The results indicate that treatment with MeOH:CN binary solvents could significantly enhance the absorption of the active layer, due to the formation of more p-DTS(FBTTh2)2 nanofibrils associated with higher crystallinity as revealed by atomic force microscopy (AFM) and transmission electron microscopy (TEM). The two-dimensional grazing incidence wide-angle X-ray scattering (GIWAXS) results further demonstrate that the molecular packing of p-DTS(FBTTh2)2 molecules could be strongly enhanced after treatment with the binary solvents. In contrast, pristine methanol shows no significant influence on the crystalline structure, phase separation or the photovoltaic properties of the p-DTS(FBTTh2)2:PC71BM system, showing that the CN solvent plays the main role in inducing the crystallization of p-DTS(FBTTh2)2 molecules.

  4. Interrogating surface state of isolated and agglomerated PbS quantum dots with solvent-induced stress.

    PubMed

    Sher, Pin-Hao; Wang, Juen-Kai

    2017-04-21

    Applications of quantum dots (QDs) are often obstructed by the associated surface electronic states that quench photoluminescence (PL) and hinder charge transport. Preventing this is still largely being stymied owing to the lack of means to regulate their presence. Dispersing PbS QDs in toluene, we show that varying the solvent temperature offers a way of modulating their surface electronic state. A comprehensive energy-transfer model explains all the anomalous temperature-dependent behavior of the absorption and PL, explicitly revealing the PL quenching dynamics of isolated QDs due to the induced surface state by imposing solvent stress on their surface ligands. This study demonstrates that the local stress induced by a solvent can serve as a 'switch' for the surface electronic states of QDs, which is enabled by the well-studied thermo-physical properties of a liquid solvent.

  5. Interrogating surface state of isolated and agglomerated PbS quantum dots with solvent-induced stress

    NASA Astrophysics Data System (ADS)

    Sher, Pin-Hao; Wang, Juen-Kai

    2017-04-01

    Applications of quantum dots (QDs) are often obstructed by the associated surface electronic states that quench photoluminescence (PL) and hinder charge transport. Preventing this is still largely being stymied owing to the lack of means to regulate their presence. Dispersing PbS QDs in toluene, we show that varying the solvent temperature offers a way of modulating their surface electronic state. A comprehensive energy-transfer model explains all the anomalous temperature-dependent behavior of the absorption and PL, explicitly revealing the PL quenching dynamics of isolated QDs due to the induced surface state by imposing solvent stress on their surface ligands. This study demonstrates that the local stress induced by a solvent can serve as a ‘switch’ for the surface electronic states of QDs, which is enabled by the well-studied thermo-physical properties of a liquid solvent.

  6. Gas/solvent-induced transformation and expansion of a nonporous solid to 1:1 host guest form

    SciTech Connect

    Thallapally, Praveen K.; McGrail, B. Peter; Dalgarno, Scott J.; Atwood, Jerry L.

    2008-07-01

    Herein we report the gas (CO2, N2O and propane) and solvent (CS2 and acetone) induced transformation and expansion of guest free thermodynamic form of a p-tert-butylcalix [4]arene to 1:1 host guest form.

  7. Cracking cavitands: metal-directed scission of phosphinyl-substituted resorcinarenes.

    PubMed

    Chavagnan, Thierry; Sémeril, David; Matt, Dominique; Harrowfield, Jack; Toupet, Loïc

    2015-04-27

    Resorcinarene-derived tetramethylene cavitands bearing a diphenylphosphino group grafted to their wider rim undergo facile, directed C-O bond breaking upon reaction with transition-metal ions in the presence of nucleophiles. One possible reaction mechanism involves formation of a P,O-chelate complex, which weakens the adjacent O-CH2 bond, leading to the formation of an oxacarbenium intermediate. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Competing mechanisms and scaling laws for carbon nanotube scission by ultrasonication.

    PubMed

    Pagani, Guido; Green, Micah J; Poulin, Philippe; Pasquali, Matteo

    2012-07-17

    Dispersion of carbon nanotubes (CNTs) into liquids typically requires ultrasonication to exfoliate individuals CNTs from bundles. Experiments show that CNT length drops with sonication time (or energy) as a power law t(-m). Yet the breakage mechanism is not well understood, and the experimentally reported power law exponent m ranges from approximately 0.2 to 0.5. Here we simulate the motion of CNTs around cavitating bubbles by coupling brownian dynamics with the Rayleigh-Plesset equation. We observe that, during bubble growth, CNTs align tangentially to the bubble surface. Surprisingly, we find two dynamical regimes during the collapse: shorter CNTs align radially, longer ones buckle. We compute the phase diagram for CNT collapse dynamics as a function of CNT length, stiffness, and initial distance from the bubble nuclei and determine the transition from aligning to buckling. We conclude that, depending on their length, CNTs can break due to either buckling or stretching. These two mechanisms yield different power laws for the length decay (0.25 and 0.5, respectively), reconciling the apparent discrepancy in the experimental data.

  9. DNA strand scission induced by a non-thermal atmospheric pressure plasma jet.

    PubMed

    Ptasińska, Sylwia; Bahnev, Blagovest; Stypczyńska, Agnieszka; Bowden, Mark; Mason, Nigel J; Braithwaite, Nicholas St J

    2010-07-28

    The DNA molecule is observed to be very susceptible to short-term exposures to an atmospheric pressure plasma jet. The DNA damage induced by plasma-generated species, i.e. excited atoms, charged particles, electrons and UV light is determined.

  10. A generalization of the Boltzmann superposition principle to polymer networks undergoing scission

    NASA Technical Reports Server (NTRS)

    Moacanin, J.; Landel, R. F.; Aklonis, J. J.

    1976-01-01

    Methods reported by Moacanin et al. (1975) and Moacanin and Aklonis (1971) are generalized with the objective to include strains (or stress) applied in an arbitrary manner to linearly viscoelastic materials. An imposition of changes in both the strain and the density of elastically effective chains in discrete increments is considered. In accordance with the Boltzmann superposition principle, each strain increment may be treated as a new independent experiment which adds linearly to the total response of the system.

  11. Microbial scission of sulfide linkages in vulcanized natural rubber by a white rot basidiomycete, Ceriporiopsis subvermispora.

    PubMed

    Sato, Shin; Honda, Yoichi; Kuwahara, Masaaki; Kishimoto, Hiroyuki; Yagi, Noriko; Muraoka, Kiyoshige; Watanabe, Takashi

    2004-01-01

    A white rot basidiomycete, Ceriporiopsis subvermispora, degraded vulcanized natural rubber (NR) sheets on a wood medium. The fungus decreased the total sulfur content of the rubber by 29% in 200 days, accompanied by the cleavage of sulfide bonds between polyisoprene chains. X-ray photoelectron spectroscopy (XPS) demonstrated that C. subvermispora reduced the frequency of S-C bonds by 69% with a concomitant formation of S-O bonds during the culture period. Dipolar decoupling/magic angle spinning (DD/MAS) solid state 13C NMR revealed that the fungus preferentially decomposed monosulfide bonds linked to a cis- and trans-1,4-isoprene backbone but the cleavage of polysulfide bonds was also observed. In contrast, no decrease in weight or devulcanization of rubber was observed in cultures of a white rot fungus, Dichomitus squalens. The oxidative cleavage of sulfide bonds by C. subvermispora demonstrates that ligninolytic basidiomycetes are potential microbes for the biological devulcanization of rubber products.

  12. Metal-mediated diradical tuning for DNA replication arrest via template strand scission.

    PubMed

    Porter, Meghan R; Lindahl, Sarah E; Lietzke, Anne; Metzger, Erin M; Wang, Quan; Henck, Erik; Chen, Chun-Hsing; Niu, Hengyao; Zaleski, Jeffrey M

    2017-09-05

    A series of M(PyED)·X (X = 2Cl(-), SO4(2-)) pyridine-metalloenediyne complexes [M = Cu(II), Fe(II), or Zn(II)] and their independently synthesized, cyclized analogs have been prepared to investigate their potential as radical-generating DNA-damaging agents. All complexes possess a 1:1 metal-to-ligand stoichiometry as determined by electronic absorption spectroscopy and X-ray diffraction. Solution structural analysis reveals a pπ Cl [Formula: see text] Cu(II) LMCT (22,026 cm(-1)) for Cu(PyED)·2Cl, indicating three nitrogens and a chloride in the psuedo-equatorial plane with the remaining pyridine nitrogen and solvent in axial positions. EPR spectra of the Cu(II) complexes exhibit an axially elongated octahedron. This spectroscopic evidence, together with density functional theory computed geometries, suggest six-coordinate structures for Cu(II) and Fe(II) complexes and a five-coordinate environment for Zn(II) analogs. Bergman cyclization via thermal activation of these constructs yields benzannulated product indicative of diradical generation in all complexes within 3 h at 37 °C. A significant metal dependence on the rate of the reaction is observed [Cu(II) > Fe(II) > Zn(II)], which is mirrored in in vitro DNA-damaging outcomes. Whereas in situ chelation of PyED leads to considerable degradation in the presence of all metals within 1 h under hyperthermia conditions, Cu(II) activation produces >50% compromised DNA within 5 min. Additionally, Cu(II) chelated PyED outcompetes DNA polymerase I to successfully inhibit template strand extension. Exposure of HeLa cells to Cu(PyBD)·SO4 (IC50 = 10 μM) results in a G2/M arrest compared with untreated samples, indicating significant DNA damage. These results demonstrate metal-controlled radical generation for degradation of biopolymers under physiologically relevant temperatures on short timescales.

  13. Competing mechanisms and scaling laws for carbon nanotube scission by ultrasonication

    PubMed Central

    Pagani, Guido; Green, Micah J.; Poulin, Philippe; Pasquali, Matteo

    2012-01-01

    Dispersion of carbon nanotubes (CNTs) into liquids typically requires ultrasonication to exfoliate individuals CNTs from bundles. Experiments show that CNT length drops with sonication time (or energy) as a power law t-m. Yet the breakage mechanism is not well understood, and the experimentally reported power law exponent m ranges from approximately 0.2 to 0.5. Here we simulate the motion of CNTs around cavitating bubbles by coupling Brownian dynamics with the Rayleigh–Plesset equation. We observe that, during bubble growth, CNTs align tangentially to the bubble surface. Surprisingly, we find two dynamical regimes during the collapse: shorter CNTs align radially, longer ones buckle. We compute the phase diagram for CNT collapse dynamics as a function of CNT length, stiffness, and initial distance from the bubble nuclei and determine the transition from aligning to buckling. We conclude that, depending on their length, CNTs can break due to either buckling or stretching. These two mechanisms yield different power laws for the length decay (0.25 and 0.5, respectively), reconciling the apparent discrepancy in the experimental data. PMID:22752305

  14. Coal liquefaction process using pretreatment with a binary solvent mixture

    DOEpatents

    Miller, Robert N.

    1986-01-01

    An improved process for thermal solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a hydrogen donor solvent comprises pretreating the coal with a binary mixture of an aromatic hydrocarbon and an aliphatic alcohol at a temperature below 300.degree. C. before the hydroliquefaction step. This treatment generally increases both conversion of coal and yields of oil.

  15. The ultrasound-assisted oxidative scission of monoenic fatty acids by ruthenium tetroxide catalysis: influence of the mixture of solvents.

    PubMed

    Rup, Sandrine; Zimmermann, François; Meux, Eric; Schneider, Michel; Sindt, Michele; Oget, Nicolas

    2009-02-01

    Carboxylic acids and diacids were synthesized from monoenic fatty acids by using RuO4 catalysis, under ultrasonic irradiation, in various mixtures of solvents. Ultrasound associated with Aliquat 336 have promoted in water, the quantitative oxidative cleavage of the CH=CH bond of oleic acid. A design of experiment (DOE) shows that the optimal mixture of solvents (H2O/MeCN, ratio 1/1, 2.2% RuCl3/4.1 eq. NaIO4) gives 81% azelaic acid and 97% pelargonic acid. With the binary heterogeneous mixture H2O/AcOEt, the oxidation of the oleic acid leads to a third product, the alpha-dione 9,10-dioxostearic acid.

  16. Bond Formation and Bond Scission Dynamics in Polyatomic Molecules Revealed by Momentum Imaging Experiments and Electron Scattering Calculations

    NASA Astrophysics Data System (ADS)

    Slaughter, Daniel; Trevisan, Cynthia; Weyland, Marvin; Dorn, Alexander; Douguet, Nicolas; Orel, Ann; Adaniya, Hidehito; McCurdy, Bill; Belkacem, Ali; Rescigno, Tom

    2016-05-01

    We present combined experimental and theoretical studies of dissociative electron attachment (DEA) dynamics in methane and ammonia. DEA in each of these systems proceeds through electronic Feshbach resonances, where a valence electron is excited and captured with the incident electron in the lowest unoccupied orbital. In methane, one triply-degenerate resonance undergoes Jahn-Teller splitting through molecular distortions, leading to four observed final states, each having a 2-body and a 3-body dissociation with anionic products H- and CH2-and neutrals CH3, CH2, H2 or H. In ammonia, one resonance leads to H- + NH2 and NH2-+ H, the latter resulting from non-adiabatic charge transfer. A higher energy resonance leads directly to H- + NH2* and indirectly to NH2-+ H. We examine the dynamics of the transient anion in each of these processes. work supported by Chemical Sciences, Geosciences and Biosciences division of BES/DOE.

  17. DNA strand-scission by phloroglucinols and lignans from heartwood of Garcinia subelliptica Merr. and Justicia plants.

    PubMed

    Lu, Yi-Huang; Wei, Bai-Luh; Ko, Horng-Huey; Lin, Chun-Nan

    2008-01-01

    Five 2,4,6-prenylated phloroglucinols, garcinielliptones HA (1), HB (2), HC (3), HD (4) and HE (5), were isolated from the heartwood of Garcinia subelliptica Merr. Their structures, including relative configurations, were elucidated by means of spectroscopic data analysis. The ability of phloroglucinols, 1-5 and lignans, tuberculatin (8), justicidin A (9), procumbenoside A (10) and ciliatosides A (11) and B (12), isolated from Justicia ciliata and Justicia procumbens, to induce DNA-cleavage activity was examined using pBR322, a supercoiled, covalently closed circular DNA, and it was analyzed by agarose gel electrophoresis. In the presence of Cu (II), compounds 3, 8, 10 and 11 caused significant breakage of supercoiled plasmid pBR322. The products were relaxed circles with no detectable linear forms. In the Cu(II)-mediated DNA damage of 3 and selective compound 8, Cu(I) was shown not to be an essential intermediate by using the Cu(I)-specific sequestering reagent neocuproine.

  18. Nucleotide-resolution mapping of topoisomerase-mediated and apoptotic DNA strand scissions at or near an MLL translocation hotspot.

    PubMed

    Mirault, Marc-Edouard; Boucher, Patrick; Tremblay, Alain

    2006-11-01

    The emergence of therapy-related acute myeloid leukemia (t-AML) has been associated with DNA topoisomerase II (TOP2)-targeted drug treatments and chromosomal translocations frequently involving the MLL, or ALL-1, gene. Two distinct mechanisms have been implicated as potential triggers of t-AML translocations: TOP2-mediated DNA cleavage and apoptotic higher-order chromatin fragmentation. Assessment of the role of TOP2 in this process has been hampered by a lack of techniques allowing in vivo mapping of TOP2-mediated DNA cleavage at nucleotide resolution in single-copy genes. A novel method, extension ligation-mediated polymerase chain reaction (ELMPCR), was used here for mapping topoisomerase-mediated DNA strand breaks and apoptotic DNA cleavage across a translocation-prone region of MLL in human cells. We report the first genomic map integrating translocation breakpoints and topoisomerase I, TOP2, and apoptotic DNA cleavage sites at nucleotide resolution across an MLL region harboring a t-AML translocation hotspot. This hotspot is flanked by a TOP2 cleavage site and is localized at one extremity of a minor apoptotic cleavage region, where multiple single- and double-strand breaks were induced by caspase-activated apoptotic nucleases. This cleavage pattern was in sharp contrast to that observed approximately 200 bp downstream in the exon 12 region, which displayed much stronger apoptotic cleavage but where no double-strand breaks were detected and no t-AML-associated breakpoints were reported. The localization and remarkable clustering of the t-AML breakpoints cannot be explained simply by the DNA cleavage patterns but might result from potential interactions between TOP2 poisoning, apoptotic DNA cleavage, and DNA repair attempts at specific sites of higher-order chromatin structure in apoptosis-evading cells. ELMPCR provides a new tool for investigating the role of DNA topoisomerases in fundamental genetic processes and translocations associated with cancer treatments involving topoisomerase-targeted drugs.

  19. Solvent-induced transition of hollow sphere to giant-tube from amphiphilic rod-coil-rod triblock copolymers of 2-vinylpyridine and n-hexyl isocyanate.

    PubMed

    Rahman, M Shahinur; Changez, M; Samal, Shashadhar; Lee, Jae-Suk

    2007-11-01

    The effect of solvent compositions on the micellization behaviors of amphiphilic poly(n-hexyl isocyanate)-b-poly(2-vinylpyridine)-b-poly(n-hexyl isocyanate) (PHIC-b-P2VP-b-PHIC) rod-coil-rod triblock copolymer was studied. In absolute methanol the block copolymer formed hollow spherical micelles. These micelles transformed into giant-tubes by simply changing the solvent composition. With 20% THF in CH3OH hollow spheres got interconnected and formed species that are precursors of the giant tubes. When the composition of THF reached 50-70%, long giant tubes are formed. Further increasing THF content in the mixed solvent, fragmentation of the wall of the tubes was observed. In absolute THF, which is the common solvent for both the blocks, the usual phase separation occurred. TEM image of the giant tubes stained with iodine showed that the core of the tubes is made from PHIC rod block.

  20. Solvent-induced luminescence quenching: static and time-resolved X-ray absorption spectroscopy of a copper(I) phenanthroline complex.

    PubMed

    Penfold, T J; Karlsson, S; Capano, G; Lima, F A; Rittmann, J; Reinhard, M; Rittmann-Frank, M H; Braem, O; Baranoff, E; Abela, R; Tavernelli, I; Rothlisberger, U; Milne, C J; Chergui, M

    2013-06-06

    We present a static and picosecond X-ray absorption study at the Cu K-edge of bis(2,9-dimethyl-1,10-phenanthroline)copper(I) ([Cu(dmp)2](+); dmp = 2,9-dimethyl-1,10-phenanthroline) dissolved in acetonitrile and dichloromethane. The steady-state photoluminescence spectra in dichloromethane and acetonitrile are also presented and show a shift to longer wavelengths for the latter, which points to a stronger stabilization of the excited complex. The fine structure features of the static and transient X-ray spectra allow an unambiguous assignment of the electronic and geometric structure of the molecule in both its ground and excited (3)MLCT states. Importantly, the transient spectra are remarkably similar for both solvents, and the spectral changes can be rationalized using the optimized ground- and excited-state structures of the complex. The proposed assignment of the lifetime shortening of the excited state in donor solvents (acetonitrile) to a metal-centered exciplex is not corroborated here. Molecular dynamics simulations confirm the lack of complexation; however, in both solvents the molecules come close to the metal but undergo rapid exchange with the bulk. The shortening of the lifetime of the title complex and nine additional related complexes can be rationalized by the decrease in the (3)MLCT energy. Deviations from this trend may be explained by means of the effects of the dihedral angle between the ligand planes, the solvent, and the (3)MLCT-(1)MLCT energy gap.

  1. Effects of solvent induced modulation of energy gaps on electronic relaxation of excited hydrogen bonded complexes of some aromatic carbonyl compounds

    NASA Astrophysics Data System (ADS)

    van der Burgt, M. J.; Jansen, L. M. G.; Huizer, A. H.; Varma, C. A. G. O.

    1995-12-01

    A detailed study of the influence of solvent polarity and temperature dependence ( T ≤ 300 K) on the radiationless transitions of hydrogen bonded complexes of 2-naphthaldehyde ( 1), 2-acetonaphthone ( 2), methyl 2-naphthoate ( 3) and 1,2-dihydro-3H-benz[ e]inden-3-one ( 4) is presented. The hydrogen bonded complexes are strongly fluorescent. The energy gaps between S 1 and S 0 and between S 1 and T 1 could be varied by using various 1,4-dioxane/water mixtures as the solvent. In the case of the complex of 1 intersystem crossing and internal conversion from S 1 have both been found to proceed through a direct process as well as by way of a proces involving thermal excitation to S 2. The conversion of S 1 to T 1 proceeds only through thermal excitation to S 2 in the case of 2 and 4, whereas in the case of 3 a contribution from a thermally activated process could not be detected. An inverse exponential energy gap law has been found for the temperature independent intersystem crossing from S 1 in the case of the complexes of 1 and 3. This is shown theoretically to be in accordance with a nuclear tunneling process. The tunneling appears to proceed along the C-O stretching mode. The internal conversion from the state S 1 of the complex of 3 satisfies the regular exponential energy gap law.

  2. Analysis of solvent induced porous PMMA-Bioglass monoliths by the phase separation method--mechanical and in vitro biocompatible studies.

    PubMed

    Durgalakshmi, D; Balakumar, S

    2015-01-14

    Mimicking three dimensional microstructural scaffolds with their requisite mechanical properties in relation to human bone is highly needed for implant applications. Various biocompatible polymers and bioactive glasses were synthesized to achieve these properties. In the present study, we have fabricated highly porous and bioactive PMMA-Bioglass scaffolds by the phase separation method. Chloroform, acetone and an ethanol-water mixture were used as the different solvent phases in preparing the scaffolds. Large interconnecting pores of sizes ∼100 to 250 μm were observed in the scaffolds and a porosity percentage up to 54% was also achieved by this method. All samples showed a brittle fracture with the highest modulus of 91 MPa for the ethanol-water prepared scaffolds. The bioactivities of the scaffolds were further studied by immersing them in simulated body fluid for 28 days. Scanning electron microscopy, X-ray diffraction and Raman spectra confirmed the formation of bioactive hydroxyl calcium apatite on the surfaces of the scaffolds.

  3. Solvent-induced assembly of two helical Eu(III) metal-organic frameworks and fluorescence sensing activities towards nitrobenzene and Cu2+ ions

    NASA Astrophysics Data System (ADS)

    Ma, Ranran; Chen, Zhiwei; Wang, Suna; Yao, Qingxia; Li, Yunwu; Lu, Jing; Li, Dacheng; Dou, Jianmin

    2017-08-01

    Two helical Eu(III) metal-organic frameworks, namely, {[Eu(L)(DMF)(H2O)]·0.5DMF}n (1) and [Eu(L)(DEF)(H2O)]n (2) (H3L=3,5-bis(2-carboxylphenoxy)benzoic acid, DMF=N,N-dimethylformamide, DEF=N,N-diethylformamide), have been solvothermally synthesized in different solvents, respectively. Both complexes possess helical structures through the connectivity of Eu atoms and phenolic-oxygen containing branches of the flexible multicarboxylate ligand. Based on different helices, these two complexes exhibited hexagonal and tetragonal channels, respectively. Both complexes possess (3,6)-connected (4.62)2(42.610.83) topology but with different long Schlafli symbol. The solvent plays an important role in the formation of the final frameworks. Both complexes can sensitively and selectively detect nitrobenzene and Cu2+ ions.

  4. Effects of isomer coexistence and solvent-induced core switching in the photodissociation of bare and solvated (CS{sub 2}){sub 2}{sup -} anions

    SciTech Connect

    Habteyes, Terefe; Velarde, Luis; Sanov, Andrei

    2009-03-28

    The photodissociation of the (CS{sub 2}){sub 2}{sup -} dimer anion, known to exist in the form of several electronic and structural isomers, has been investigated at 532, 355, and 266 nm. The observed anionic fragments are CS{sub 2}{sup -} and C{sub 2}S{sub 2}{sup -} at 532 nm, and C{sub 2}S{sub 2}{sup -}, CS{sub 2}{sup -}, CS{sub 3}{sup -}, S{sub 2}{sup -}, and S{sup -} at 355 and 266 nm. In addition to the photon energy, the fractional yields of the photofragments depend on the ion source conditions and solvation of the dimer anion. Specifically, the (C{sub 2}S{sub 2}{sup -}+S{sub 2}{sup -})/CS{sub 2}{sup -} product ratio is significantly higher when (CS{sub 2}){sub 2}{sup -} is formed in the presence of water in the precursor gas mixture, even though the parent anion itself does not include H{sub 2}O. On the other hand, an abrupt decrease in the above product ratio is observed upon the addition of solvent molecules (CS{sub 2} or H{sub 2}O) to the (CS{sub 2}){sub 2}{sup -} anion. Since the variation of this product ratio exhibits positive correlation with the relative intensity of the photoelectron band assigned to the C{sub 2v}({sup 2}B{sub 1}) covalent structure of C{sub 2}S{sub 4}{sup -} by Habteyes et al.[J. Phys. Chem. A 112, 10134 (2008)], this structure is suggested as the primary origin of the C{sub 2}S{sub 2}{sup -} and S{sub 2}{sup -} photoproducts. The switching of the fragmentation yield from C{sub 2}S{sub 2}{sup -} and S{sub 2}{sup -} to other products upon solvation is ascribed to the diminished presence of the C{sub 2v}({sup 2}B{sub 1}) dimer-anion structure relative to the CS{sub 2}{sup -} based clusters. This population shift is attributed to the more effective solvation of the latter. The CS{sub 2}{sup -} based clusters are suggested as the origin of the S{sup -} photoproduct, while CS{sub 3}{sup -} is formed through the secondary S{sup -}+CS{sub 2} intracluster association reaction.

  5. Additives and solvents-induced phase and morphology modification of NaYF{sub 4} for improving up-conversion emission

    SciTech Connect

    Zhuang, Jianle; Yang, Xianfeng; Wang, Jing; Lei, Bingfu; Liu, Yingliang; Wu, Mingmei

    2016-01-15

    Both cubic and hexagonal NaYF{sub 4} were synthesized in different reaction systems via hydro/solvo-thermal route. The effects of reaction temperature, solvents, and additives on the synthesis of NaYF{sub 4} have been studied in detail. It has been shown that phase transformation from cubic NaYF{sub 4} to hexagonal NaYF{sub 4} always occurred. The sequence of the ability for inducing the phase transformation was ethanol>H{sub 2}O>acetic acid. It is found that ethanol can not only facilitate the formation of hexagonal NaYF{sub 4} but also control the growth of the crystal. This is quite unusual for the growth of H-NaYF{sub 4}. The up-conversion emission properties of Yb/Er co-doped NaYF{sub 4} have also been investigated and the results demonstrated some general principles for improving up-conversion emission. - Graphical abstract: Additives and solvents can induce the phase transformation of NaYF{sub 4}, typically the use of organic sodium salt and ethanol. - Highlights: • The effect of additives and solvents on the synthesis of NaYF{sub 4} was studied in detail. • Ethanol can facilitate the formation of H-NaYF{sub 4} while acetic acid restrain it. • Three general principles for improving up-conversion emission were summarized.

  6. Time phased alternate blending of feed coals for liquefaction

    DOEpatents

    Schweigharett, Frank; Hoover, David S.; Garg, Diwaker

    1985-01-01

    The present invention is directed to a method for reducing process performance excursions during feed coal or process solvent changeover in a coal hydroliquefaction process by blending of feedstocks or solvents over time. ,

  7. Coal liquefaction process using pretreatment with a binary solvent mixture

    DOEpatents

    Miller, R.N.

    1986-10-14

    An improved process for thermal solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a hydrogen donor solvent comprises pretreating the coal with a binary mixture of an aromatic hydrocarbon and an aliphatic alcohol at a temperature below 300 C before the hydroliquefaction step. This treatment generally increases both conversion of coal and yields of oil. 1 fig.

  8. The evaluation of bond dissociation energies for NO2 scission in nitro compounds using density functional and complete basis set methods

    NASA Astrophysics Data System (ADS)

    Shao, Ju-Xiang; Cheng, Xin-Lu; Yang, Xiang-Dong; He, Bi

    2006-02-01

    By using the density functional theory (B3LYP) and four highly accurate complete basis set (CBS-Q, CBS-QB3, CBS-Lq and CBS-4M) ab initio methods, the X(C, N, O)-NO2 bond dissociation energies (BDEs) for CH3NO2, C2H3NO2, C2H5NO2, HONO2, CH3ONO2, C2H5ONO2, NH2NO2 (CH3)2NNO2 are computed. By comparing the computed BDEs and experimental results, it is found that the B3LYP method is unable to predict satisfactorily the results of bond dissociation energy (BDE); however, all four CBS models are generally able to give reliable predication of the X(C, N, O)-NO2 BDEs for these nitro compounds. Moreover, the CBS-4M calculation is the least computationally demanding among the four CBS methods considered. Therefore, we recommend CBS-4M method as a reliable method of computing the BDEs for this nitro compound system.

  9. Parallel theoretical study of the two components of the prompt fission neutrons: Dynamically released at scission and evaporated from fully accelerated fragments

    NASA Astrophysics Data System (ADS)

    Carjan, Nicolae; Rizea, Margarit; Talou, Patrick

    2017-09-01

    Prompt fission neutrons (PFN) angular and energy distributions for the reaction 235U(nth,f) are calculated as a function of the mass asymmetry of the fission fragments using two extreme assumptions: 1) PFN are released during the neck rupture due to the diabatic coupling between the neutron degree of freedom and the rapidly changing neutron-nucleus potential. These unbound neutrons are faster than the separation of the nascent fragments and most of them leave the fissioning system in few 10-21 sec. i.e., at the begining of the acceleration phase. Surrounding the fissioning nucleus by a sphere one can calculate the radial component of the neutron current density. Its time integral gives the angular distribution with respect to the fission axis. The average energy of each emitted neutron is also calculated using the unbound part of each neutron wave packet. The distribution of these average energies gives the general trends of the PFN spectrum: the slope, the range and the average value. 2) PFN are evaporated from fully accelerated, fully equilibrated fission fragments. To follow the de-excitation of these fragments via neutron and γ-ray sequential emissions, a Monte Carlo sampling of the initial conditions and a Hauser-Feshbach statistical approach is used. Recording at each step the emission probability, the energy and the angle of each evaporated neutron one can construct the PFN energy and the PFN angular distribution in the laboratory system. The predictions of these two methods are finally compared with recent experimental results obtained for a given fragment mass ratio.

  10. Homolytic C-S bond scission in the desulfurization of aromatic and aliphatic thiols mediated by a Mo/Co/S cluster: Mechanistic aspects relevant to HDS catalysis

    SciTech Connect

    Curtis, M.D.; Druker, S.H.

    1997-02-05

    The kinetics of the reaction of a series of aromatic and aliphatic thiols with cluster 1 were determined. These reactions form cluster 2 and the arene alkane corresponding to the thiol: Cp`{sub 2}Mo{sub 2}Co{sub 2}S{sub 3}(CO){sub 4} (1) + RSH {yields} Cp`{sub 2}Mo{sub 2}Co{sub 2}S{sub 4}(CO){sub 2} (2) + RH + 2CO. These reactions are first order in thiol and first order in cluster 1 with appreciable negative entropies of activation. These data suggest that the rate determining step of the desulfurization reaction is the initial association of the thiol to the cluster. The more nucleophilic thiolate anions react with 1 at -40{degree}C to form an adduct in which the thiolate anion is bound {eta}{sup 1} to the Co atom. At -25{degree}C, the initial adduct rearranges to a fluxional {mu}{sub 2},{eta}{sup 1}-bound thiolate. The fluxional process is proposed to involve a concerted `walking` of the thiolate and a {mu}{sub 2}-bound sulfide ligand on the surface of the cluster. Near 35 {degree}C, the thiolate-cluster adduct undergoes C-S bond homolysis to give the paramagnetic anion of cluster 1 and the phenyl or alkyl radical. The radical nature of the C-S bond cleavage was confirmed by the desulfurization of the radical clock reagents, cyclopropylmethanethiol and -thiolate anion, that form the cyclopropylmethyl radical which rearranged to the butenyl radical. 42 refs., 5 figs., 3 tabs.

  11. DNA strand scission by the nephrotoxin [2,2'-bipyridine]-3,3',4,4'-tetrol-1,1'-dioxide and related compounds in the presence of iron.

    PubMed

    Cantin-Esnault, D; Oubrahim, H; Richard, J M

    2000-08-01

    The capacity of non-illuminated nephrotoxin orellanine ([2,2'-bipyridine]-3,3',4,4'-tetrol-1,1'-dioxide) to induce DNA damage in the presence of ferrous iron and dioxygen has been evaluated. Maximal single-strand breaks in plasmid DNA were obtained with a metal to ligand ratio 1:3. Instantaneous oxidation of Fe2+ in presence of orellanine under air was responsible for oxy-radical production concomitant to a stable ferric complex Fe(III)Or3 formation, leading to oxidative DNA breakage at physiological pH. DNA damage was lowered in the presence of SOD and catalase or DMSO, indicating a set of reactions that leads to oxy-radical generation. Iron chelators such as DTPA and EDTA had no protecting effect, Desferal slightly protected. GSH acted as an oxy-radical scavenger, whereas cysteine induced stronger damage. Closely related bipyridine compounds were also studied in presence of Fe2+ and O2 using a combination of spin-trapping and DNA-nicking experiments, none of which were able to chelate iron and induce damage at pH 7. Both catecholic moieties and aminoxide groups are required for observing breakage at physiological pH.

  12. Dynamin self-assembly and the vesicle scission mechanism: how dynamin oligomers cleave the membrane neck of clathrin-coated pits during endocytosis.

    PubMed

    Pawlowski, Nikolaus

    2010-12-01

    Recently, Gao et al. and Chappie et al. elucidated the crystal structures of the polytetrameric stalk domain of the dynamin-like virus resistance protein, MxA, and of the G-domain dimer of the large, membrane-deforming GTPase, dynamin, respectively. Combined, they provide a hypothetical oligomeric structure for the complete dynamin protein. Here, it is discussed how the oligomers are expected to form and how they participate in dynamin mediated vesicle fission during the process of endocytosis. The proposed oligomeric structure is compared with the novel mechanochemical model of dynamin function recently proposed by Bashkirov et al. and Pucadyil and Schmid. In conclusion, the new model of the dynamin oligomer has the potential to explain how short self-limiting fissogenic dynamin assemblies are formed and how concerted GTP hydrolysis is achieved. The oligomerisation of two other dynamin superfamily proteins, the guanylate binding proteins (GBPs) and the immunity-related GTPases (IRGs), is addressed briefly.

  13. Evidence for involvement of multiple iron species in DNA single-strand scission by H2O2 in HL-60 cells.

    PubMed

    Byrnes, R W

    1996-01-01

    Some of the properties of cellular iron species which react with H2O2 to cause DNA single-strand breaks in HL-60 cells were characterized in control cells and in cells made deficient of iron using 4,7-phenylsulfonyl-1,10-phenanthroline (bathophenanthroline disulfonic acid or BPS) and ascorbate. Single-strand breaks were measured using alkaline elution of DNA of cells treated at 4 degrees to minimize repair during treatment. Strand breakage in the presence of 10% serum was only 40% of that in the absence of serum. This effect was traced to reaction of H2O2 with metals, most likely iron, in serum. Dimethyl sulfoxide (Me2SO) inhibited a maximum of 65% of breaks in control cells. The diffusion distance from the site of generation of hydroxyl radicals to the site of reaction with DNA for the Me2SO-inhibitable fraction was 6.9 nm. There was no significant alteration in the fraction of Me2SO-inhibitable strand breaks or in diffusion distance in iron-deficient cells, though total strand breaks decreased by 70%. When the effect of extracellular iron in serum was taken into account, 60 microM orthophenanthroline (OP) inhibited a maximum of 85% of strand breaks. In cells pretreated with 60 microM OP, the Me2SO-inhibitable fraction of the remaining strand breaks decreased to 32%, while the diffusion distance decreased to 4.1 nm. These data indicate the existence of a number of different iron species, as characterized by overlapping but not coincidental inhibition by OP and Me2SO, and by differing diffusion distances.

  14. Solvent-Induced Cadmium(II) Metal-Organic Frameworks with Adjustable Guest-Evacuated Porosity: Application in the Controllable Assembly of MOF-Derived Porous Carbon Materials for Supercapacitors.

    PubMed

    Yue, Man-Li; Jiang, Yi-Fan; Zhang, Lin; Yu, Cheng-Yan; Zou, Kang-Yu; Li, Zuo-Xi

    2017-08-07

    In this work, five new cadmium metal-organic frameworks (Cd-MOFs 1-5) have been synthesized from solvothermal reactions of Cd(NO3 )2 ⋅4 H2 O with isophthalic acid and 1,4-bis(imidazol-1-yl)-benzene under different solvent systems of CH3 OH, C2 H5 OH, (CH3 )2 CHOH, DMF, and N-methyl-2-pyrrolidone (NMP), respectively. Cd-MOF 1 shows a 3D diamondoid framework with 1D rhombic and hexagonal channels, and the porosity is 12.9 %. Cd-MOF 2 exhibits a 2D (4,4) layer with a 1D parallelogram channel and porosity of 23.6 %. Cd-MOF 3 has an 8-connected dense network with the Schäfli symbol of [4(24) ⋅6(4) ] based on the Cd6 cluster. Cd-MOFs 4-5 are isomorphous, and display an absolutely double-bridging 2D (4,4) layer with 1D tetragonal channels and porosities of 29.2 and 28.2 %, which are occupied by DMF and NMP molecules, respectively. Followed by the calcination-thermolysis procedure, Cd-MOFs 1-5 are employed as precursors to prepare MOF-derived porous carbon materials (labeled as PC-me, PC-eth, PC-ipr, PC-dmf and PC-nmp), which have the BET specific surface area of 23, 51, 10, 122, and 96 m(2)  g(-1) , respectively. The results demonstrate that the specific surface area of PCs is tuned by the porosity of Cd-MOFs, where the later is highly dependent on the solvent. Thereby, the specific surface area of PCs could be adjusted by the solvent used in the synthese of MOF precusors. Significantly, PCs have been further activated by KOH to obtain activated carbon materials (APCs), which possess even higher specific surface area and larger porosity. After a series of characterization and electrochemical investigations, the APC-dmf electrode exhibits the best porous properties and largest specific capacitances (153 F g(-1) at 5 mV s(-1) and 156 F g(-1) at 0.5 Ag(-1) ). Meanwhile, the APC-dmf electrode shows excellent cycling stability (ca. 84.2 % after 5000 cycles at 1 Ag(-1) ), which can be applied as a suitable electrode material for supercapacitors. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. A frontier orbital study with ab initio molecular dynamics of the effects of solvation on chemical reactivity: solvent-induced orbital control in FeO-activated hydroxylation reactions.

    PubMed

    Bernasconi, Leonardo; Baerends, Evert Jan

    2013-06-19

    Solvation effects on chemical reactivity are often rationalized using electrostatic considerations: the reduced stabilization of the transition state results in higher reaction barriers and lower reactivity in solution. We demonstrate that the effect of solvation on the relative energies of the frontier orbitals is equally important and may even reverse the trend expected from purely electrostatic arguments. We consider the H abstraction reaction from methane by quintet [EDTAH(n)·FeO]((n-2)+), (n = 0-4) complexes in the gas phase and in aqueous solution, which we examine using ab initio thermodynamic integration. The variation of the charge of the complex with the protonation of the EDTA ligand reveals that the free energy barrier in gas phase increases with the negative charge, varying from 16 kJ mol(-1) for [EDTAH4·FeO](2+) to 57 kJ mol(-1) for [EDTAHn·FeO](2-). In aqueous solution, the barrier for the +2 complex (38 kJ mol(-1)) is higher than in gas phase, as predicted by purely electrostatic arguments. For the negative complexes, however, the barrier is lower than in gas phase (e.g., 45 kJ mol(-1) for the -2 complex). We explain this increase in reactivity in terms of a stabilization of the virtual 3σ* orbital of FeO(2+), which acts as the dominant electron acceptor in the H-atom transfer from CH4. This stabilization originates from the dielectric screening caused by the reorientation of the water dipoles in the first solvation shell of the charged solute, which stabilizes the acceptor orbital energy for the -2 complex sufficiently to outweigh the unfavorable electrostatic destabilization of the transition-state relative to the reactants in solution.

  16. Solvent-induced structural diversity in tetranuclear Ni(ii) Schiff-base complexes: the first Ni4 single-molecule magnet with a defective dicubane-like topology.

    PubMed

    Herchel, Radovan; Nemec, Ivan; Machata, Marek; Trávníček, Zdeněk

    2016-11-22

    Two tetranuclear Ni(II) complexes, namely [Ni4(L)4(CH3OH)3(H2O)]·CH3OH (1) and (Pr3NH)2[Ni4(L)4(CH3COO)2] (2, Pr3N = tripropylamine), were synthesized from a tridentate Schiff base ligand H2L (2-[(E)-(2-hydroxybenzylidene)amino]phenol) and Ni(CH3COO)2·4H2O, using different solvents and their ratios (CH3OH and/or CH2Cl2). The prepared Ni4 complexes are of different structural types, involving an Ni4O4 cubane-like core (1) and Ni4O6 defective dicubane-like core (2), with all the Ni atoms hexacoordinated. The complexes were characterized by elemental analysis, FT-IR spectroscopy, variable temperature and field magnetic measurements, and single crystal X-ray analysis. The DFT and CASSCF/NEVPT2 theoretical calculations were utilized to reveal information about the isotropic exchange parameters (Jij) and single-ion zero-field splitting parameters (Di, Ei). The variable temperature magnetic data suggested the competition of the antiferromagnetic and ferromagnetic intracluster interactions in compound 1, which is in contrast to compound 2, where all intracluster interactions are ferromagnetic resulting in the ground spin state S = 4 with an easy-axis type of anisotropy quantified by the axial zero-field splitting parameter D = -0.81 cm(-1). This resulted in the observation of a field-induced slow-relaxation of magnetization (U = 3.3-6.7 K), which means that the complex 2 represents the first Ni4 single-molecule magnet with the defective dicubane-like topology.

  17. Ambient pressure XPS and IRRAS investigation of ethanol steam reforming on Ni–CeO2(111) catalysts: An in situ study of C–C and O–H bond scission

    DOE PAGES

    Liu, Zongyuan; Duchon, Tomas; Wang, Huanru; ...

    2016-03-31

    Ambient-Pressure X-ray Photoelectron Spectroscopy (AP-XPS) and Infrared Reflection Absorption Spectroscopy (AP-IRRAS) have been used to elucidate the active sites and mechanistic steps associated with the ethanol steam reforming reaction (ESR) over Ni–CeO2(111) model catalysts. Our results reveal that surface layers of the ceria substrate are both highly reduced and hydroxylated under reaction conditions while the small supported Ni nanoparticles are present as Ni0/NixC. A multifunctional, synergistic role is highlighted in which Ni, CeOx and the interface provide an ensemble effect in the active chemistry that leads to H2. Ni0 is the active phase leading to both C–C and C–H bondmore » cleavage in ethanol and it is also responsible for carbon accumulation. On the other hand, CeOx is important for the deprotonation of ethanol/water to ethoxy and OH intermediates. The active state of CeOx is a Ce3+(OH)x compound that results from extensive reduction by ethanol and the efficient dissociation of water. Additionally, we gain an important insight into the stability and selectivity of the catalyst by its effective water dissociation, where the accumulation of surface carbon can be mitigated by the increased presence of surface OH groups. As a result, the co-existence and cooperative interplay of Ni0 and Ce3+(OH)x through a metal–support interaction facilitate oxygen transfer, activation of ethanol/water as well as the removal of coke.« less

  18. Ambient pressure XPS and IRRAS investigation of ethanol steam reforming on Ni–CeO2(111) catalysts: An in situ study of C–C and O–H bond scission

    SciTech Connect

    Liu, Zongyuan; Duchon, Tomas; Wang, Huanru; Grinter, David C.; Waluyo, Iradwikanari; Zhou, Jing; Liu, Qiang; Jeong, Beomgyun; Crumlin, Ethan J.; Matolin, Vladimir; Stacchiola, Dario J.; Rodriguez, Jose A.; Senanayake, Sanjaya D.

    2016-03-31

    Ambient-Pressure X-ray Photoelectron Spectroscopy (AP-XPS) and Infrared Reflection Absorption Spectroscopy (AP-IRRAS) have been used to elucidate the active sites and mechanistic steps associated with the ethanol steam reforming reaction (ESR) over Ni–CeO2(111) model catalysts. Our results reveal that surface layers of the ceria substrate are both highly reduced and hydroxylated under reaction conditions while the small supported Ni nanoparticles are present as Ni0/NixC. A multifunctional, synergistic role is highlighted in which Ni, CeOx and the interface provide an ensemble effect in the active chemistry that leads to H2. Ni0 is the active phase leading to both C–C and C–H bond cleavage in ethanol and it is also responsible for carbon accumulation. On the other hand, CeOx is important for the deprotonation of ethanol/water to ethoxy and OH intermediates. The active state of CeOx is a Ce3+(OH)x compound that results from extensive reduction by ethanol and the efficient dissociation of water. Additionally, we gain an important insight into the stability and selectivity of the catalyst by its effective water dissociation, where the accumulation of surface carbon can be mitigated by the increased presence of surface OH groups. As a result, the co-existence and cooperative interplay of Ni0 and Ce3+(OH)x through a metal–support interaction facilitate oxygen transfer, activation of ethanol/water as well as the removal of coke.

  19. Catalysts for coal liquefaction processes

    DOEpatents

    Garg, D.

    1986-10-14

    Improved catalysts for catalytic solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a hydrogen donor solvent comprise a combination of zinc or copper, or a compound thereof, and a Group VI or non-ferrous Group VIII metal, or a compound thereof.

  20. Catalysts for coal liquefaction processes

    DOEpatents

    Garg, Diwakar

    1986-01-01

    Improved catalysts for catalytic solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a hydrogen donor solvent comprise a combination of zinc or copper, or a compound thereof, and a Group VI or non-ferrous Group VIII metal, or a compound thereof.

  1. Catalytic coal liquefaction process

    DOEpatents

    Garg, D.; Sunder, S.

    1986-12-02

    An improved process for catalytic solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a solvent comprises using as catalyst a mixture of a 1,2- or 1,4-quinone and an alkaline compound, selected from ammonium, alkali metal, and alkaline earth metal oxides, hydroxides or salts of weak acids. 1 fig.

  2. Catalytic coal liquefaction process

    DOEpatents

    Garg, Diwakar; Sunder, Swaminathan

    1986-01-01

    An improved process for catalytic solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a solvent comprises using as catalyst a mixture of a 1,2- or 1,4-quinone and an alkaline compound, selected from ammonium, alkali metal, and alkaline earth metal oxides, hydroxides or salts of weak acids.

  3. Reactivity of coal in direct hydrogenation processes: Final report

    SciTech Connect

    Baldwin, R. M.; Miller, R. L.

    1989-07-01

    This research program consisted of two facets dealing with fundamental and applied studies on coal reactivity under direct hydroliquefaction conditions. The first facet was concerned with an investigation of the relationship between coal reactivity and coal properties. Data on the rate and extent of direct coal hydroliquefaction for 5 bituminous coals from the Argonne Premium Sample Bank were measured. Data on rate of conversion of coal to THF and toluene solubles were modeled with a simple reversible rate expression, and activation energies for conversion to each solvent solubility class determined. Data on carbon and proton distribution in the coals were obtained by /sup 1/H-NMR and /sup 13/C-NMR. A strong correlation of activation energy with the aliphatic hydrogen content of the coal was found for conversion to THF solubles. The second facet of the program dealt with a mechanistic study of the effect of hydrogen on the rate and extent of coal liquefaction. The objective was to investigate the effect of radical quenching by aromatic and hydroaromatic vehicles on the activity and selectivity of hydrogen under conditions relevant to direct coal hydroliquefaction. The experimental portion of the program consisted of a series of runs on a model compound system, followed by experiments utilizing 5 bituminous coals from the Argonne Premium Coal sample bank. 45 refs., 14 figs., 17 tabs.

  4. A Feedback Loop between Dynamin and Actin Recruitment during Clathrin-Mediated Endocytosis

    PubMed Central

    Taylor, Marcus J.; Lampe, Marko; Merrifield, Christien J.

    2012-01-01

    Clathrin-mediated endocytosis proceeds by a sequential series of reactions catalyzed by discrete sets of protein machinery. The final reaction in clathrin-mediated endocytosis is membrane scission, which is mediated by the large guanosine triophosphate hydrolase (GTPase) dynamin and which may involve the actin-dependent recruitment of N-terminal containing BIN/Amphiphysin/RVS domain containing (N-BAR) proteins. Optical microscopy has revealed a detailed picture of when and where particular protein types are recruited in the ∼20–30 s preceding scission. Nevertheless, the regulatory mechanisms and functions that underpin protein recruitment are not well understood. Here we used an optical assay to investigate the coordination and interdependencies between the recruitment of dynamin, the actin cytoskeleton, and N-BAR proteins to individual clathrin-mediated endocytic scission events. These measurements revealed that a feedback loop exists between dynamin and actin at sites of membrane scission. The kinetics of dynamin, actin, and N-BAR protein recruitment were modulated by dynamin GTPase activity. Conversely, acute ablation of actin dynamics using latrunculin-B led to a ∼50% decrease in the incidence of scission, an ∼50% decrease in the amplitude of dynamin recruitment, and abolished actin and N-BAR recruitment to scission events. Collectively these data suggest that dynamin, actin, and N-BAR proteins work cooperatively to efficiently catalyze membrane scission. Dynamin controls its own recruitment to scission events by modulating the kinetics of actin and N-BAR recruitment to sites of scission. Conversely actin serves as a dynamic scaffold that concentrates dynamin and N-BAR proteins at sites of scission. PMID:22505844

  5. Experimental laboratory measurement of thermophysical properties of selected coal types

    NASA Technical Reports Server (NTRS)

    Lloyd, W. G.

    1979-01-01

    A number of bituminous coals of moderate to high plasticity were examined, along with portions of their extrudates from the JPL 1.5-inch 850 F screw extruder. Portions of the condensed pyrolysis liquids released during extrusion, and of the gaseous products formed during extrusion were also analyzed. In addition to the traditional determinations, the coals and extrudates were examined in terms of microstructure (especially extractable fractions), thermal analysis (especially that associated with the plastic state), and reactivity towards thermal and catalyzed hydroliquefaction. The process of extrusion increases the fixed carbon content of coals by about 5% and tends to increase the surface area. Coals contaning 25% or more DMF-extractable material show an increase in extractables as a result of extrusion; those initially containing less than 20% extractables show a decrease as a result of extrusion. Both the raw and extruded samples of Kentucky #9 coal are highly reactive towards hydroliquefaction, undergoing conversions of 75 to 80% in 15 min and 85-94% in 60 min in a stirred clave.

  6. Liquefaction of Elbitsan and Yatagan lignites in carbon monoxide/hydrogen gas mixtures

    SciTech Connect

    Bolat, E.; Oner, M.; Yalin, G.; Dincer, S. )

    1992-01-01

    This paper reports on the effects of experimental parameters on the liquefaction yields of Elbistan and Yatagan lignites that were investigated by using different solvents, gases and catalysts. In hydroliquefaction of Elbistan lignite with anthracene and creosote oils, higher oil yields were obtained with anthracene oil. Based on this result, anthracene oil was chosen as solvent for further work done with Elbistan lignite. First, the effect of moisture in lignite samples was observed with synthesis gas as medium gas; then, the effect of carbon monoxide/hydrogen ratio in liquefaction gas mixture was determined using moist lignite samples. The highest oil yield was obtained with most lignite sample in 3CO/1H{sub 2} gas moisture and it was 57.3% (daf.) The hydroliquefaction oil yields of Yatagan lignite obtained with creosote oil were higher than those obtained in anthracene oil. On further work done with Yatagan lignite, creosote oil was chosen as solvent. First, the effects of CoMo and red mud catalysts, then in catalyzed medium, the effects of moisture in lignite samples and at last, using most lignite samples and red mud catalyst, the effects of carbon monoxide/hydrogen ratio in gas moisture, were investigated.

  7. Structure properties of {sup 226}Th and {sup 256,258,260}Fm fission fragments: Mean-field analysis with the Gogny force

    SciTech Connect

    Dubray, N.; Goutte, H.; Delaroche, J.-P.

    2008-01-15

    The constrained Hartree-Fock-Bogoliubov method is used with the Gogny interaction D1S to calculate potential energy surfaces of fissioning nuclei {sup 226}Th and {sup 256,258,260}Fm up to very large deformations. The constraints employed are the mass quadrupole and octupole moments. In this subspace of collective coordinates, many scission configurations are identified ranging from symmetric to highly asymmetric fragmentations. Corresponding fragment properties at scission are derived yielding fragment deformations, deformation energies, energy partitioning, neutron binding energies at scission, neutron multiplicities, charge polarization, and total fragment kinetic energies.

  8. Dynamical simulation of energy dissipation in asymmetric heavy-ion induced fission of {sup 200}Pb, {sup 213}Fr, and {sup 251}Es

    SciTech Connect

    Mirfathi, S. M.; Pahlavani, M. R.

    2008-12-15

    The dynamical model based on the asymmetric mass division has been applied to calculate pre-scission neutron multiplicity from heavy-ion induced fusion-fission reactions. Links between the pre-scission neutron multiplicity, excitation energy, and asymmetric mass distribution are clarified based on the Monte Carlo simulation and Langevin dynamics. The pre-scission neutron multiplicity is calculated and compared with the respective experimental data over a wide range of excitation energy and nonconstant viscosity. The analysis indicates a different effect for the application of asymmetric mass division in different energy regions of such processes.

  9. Study of nuclear fusion-fission dynamics in 16O+194Pt reaction

    NASA Astrophysics Data System (ADS)

    Kapoor, K.; Verma, S.; Sharma, P.; Mahajan, R.; Kaur, N.; Kaur, G.; Behera, B. R.; Singh, K. P.; Singh, H.; Dubey, R.; Saneesh, N.; Jhingan, A.; Sugathan, P.; Mohanto, G.; Nayak, B. K.; Saxena, A.; Sharma, H. P.; Chamoli, S. K.; Mukul, I.; Kumar, A.

    2017-06-01

    Pre- and post-scission α-particle multiplicities have been measured for the reaction 16O + 194Pt at 98.4 MeV forming compound nucleus 210Rn. The α-particle's yield has been measured in coincidence with the fission fragments at various angles. The moving source analysis was performed to extract the alpha particle multiplicity which yielded the contribution of pre- and post- scission components. The pre-scission α-particle multiplicity has been compared with JOANNE2 statistical model code predictions to extract fission time scale and which is observed to be around 55zs (1zs=10-21s).

  10. Viscoelastic behavior of polymers undergoing crosslinking reactions.

    NASA Technical Reports Server (NTRS)

    Moacanin, J.; Aklonis, J. J.

    1971-01-01

    Previously a method was developed for predicting the viscoelastic response of polymers undergoing scission reactions. These results are now extended to include crosslinking reactions. As for scission, at any given time the character of the network chains is determined by the instantaneous crosslink density. For scission all chains were assumed to carry the same stress; for crosslinking, however, the stress is distributed between the 'new' and 'old' chains. Equations for calculating the creep response of a system which experiences a step increase in crosslink density are derived.

  11. Fission Fragment Properties from a Microscopic Approach

    SciTech Connect

    Dubray, N.; Goutte, H.; Delaroche, J.-P.

    2008-04-17

    We calculate potential energy surfaces in the elongation-asymmetry plane, up to very large deformations, with the Hartree-Fock-Bogoliubov method and the Gogny nucleon-nucleon effective interaction DIS, for the {sup 226}Th and {sup 256,258,260}Fm fissioning systems. We then define a criterion based on the nuclear density, in order to discriminate between pre- and post-scission configurations. Using this criterion, many scission configurations are identified, and are used for the calculation of several fragment properties, like fragment deformations, deformation energies, energy partitioning, neutron binding energies at scission, charge polarization, total fragment kinetic energies and neutron multiplicities.

  12. Degradation Analysis of NBR and Epichlorohydrin Rubber by New Micro Analysis Method

    NASA Astrophysics Data System (ADS)

    Katoh, Hisao; Kamoto, Ritsu; Murata, Jun

    The degradation analysis of NBR and Epichlorohydrin rubber was carried out by infrared micro spectroscopy (μ-IR) and micro sampling mass spectrometry (μ-MS) which gives information on the scission and crosslinking of rubber molecules. Samples were prepared by three different treatments, heat as well as ultra violet (UV) and electron beam (EB) irradiations. It was found for NBR vulcanizates that the heat treatment induced the oxidation, scission and crosslinking of rubber molecules. By the UV treatment, chain scission and crosslinking accompanied by a slight oxidation were induced. The EB treatment enhanced the crosslinking, however, the extent of oxidation was negligible. For Epichlorohydrin rubber vulcanizates, the heat treatment accelerated chain scission rather than crosslinking. On the other hand, the oxidation and crosslinking were induced by the UV and EB treatments.

  13. Alloying effect via comparative studies of ethanol dehydrogenation on Cu(1 1 1), Cu3Pd(1 1 1), and Cu3Pt(1 1 1)

    NASA Astrophysics Data System (ADS)

    Wu, Ruitao; Wang, Lichang

    2017-06-01

    Ethanol dehydrogenations on Cu(1 1 1), Cu3Pd(1 1 1), and Cu3Pt(1 1 1) were studied using density functional theory with a PBE functional. The α-C-H and β-C-H scissions are endothermic on all surfaces while the O-H scission is exothermic on Cu(1 1 1) and Cu3Pt(1 1 1) but endothermic on Cu3Pd(1 1 1). The ethanol dehydrogenation occurs on Cu(1 1 1) through both α-C-H and O-H scissions but on Cu3Pd(1 1 1) and Cu3Pt(1 1 1) through only α-C-H scission. Furthermore, alloying Pt or Pd with Cu shows an increase in reaction rate at 493 K by more than 3 orders of magnitude, thus illustrating the promise of alloying Pt or Pd in Cu catalysts for ethanol dehydrogenation.

  14. Microscopic Calculations of 240Pu Fission

    SciTech Connect

    Younes, W; Gogny, D

    2007-09-11

    Hartree-Fock-Bogoliubov calculations have been performed with the Gogny finite-range effective interaction for {sup 240}Pu out to scission, using a new code developed at LLNL. A first set of calculations was performed with constrained quadrupole moment along the path of most probable fission, assuming axial symmetry but allowing for the spontaneous breaking of reflection symmetry of the nucleus. At a quadrupole moment of 345 b, the nucleus was found to spontaneously scission into two fragments. A second set of calculations, with all nuclear moments up to hexadecapole constrained, was performed to approach the scission configuration in a controlled manner. Calculated energies, moments, and representative plots of the total nuclear density are shown. The present calculations serve as a proof-of-principle, a blueprint, and starting-point solutions for a planned series of more comprehensive calculations to map out a large set of scission configurations, and the associated fission-fragment properties.

  15. Measurement of neutron multiplicity from fission of {sup 228}U and nuclear dissipation

    SciTech Connect

    Singh, Hardev; Behera, B. R.; Singh, Gulzar; Govil, I. M.; Golda, K. S.; Jhingan, Akhil; Singh, R. P.; Sugathan, P.; Chatterjee, M. B.; Datta, S. K.; Pal, Santanu; Ranjeet; Mandal, S.; Shidling, P. D.; Viesti, G.

    2009-12-15

    Pre- and post-scission neutron multiplicities are measured at different excitation energies of the compound nucleus {sup 228}U populated using the {sup 19}F+{sup 209}Bi reaction. The measured yield of pre-scission and total neutrons are compared with the statistical model calculation for the decay of a compound nucleus. The statistical model calculations are performed using the Bohr-Wheeler transition state fission width as well as the dissipative dynamical fission width due to Kramers. Comparison between the measured and the calculated values shows that, while the Bohr-Wheeler fission width grossly underestimates the pre-scission neutron yield, a large amount of dissipation is required in the Kramers width to fit the experimental pre-scission multiplicities. Various factors contributing to the large excitation energy dependence of the fitted values of the dissipation coefficient are discussed.

  16. Chemical Stress Cracking of Acrylic Fibers.

    DTIC Science & Technology

    1982-05-01

    nitrile groups (similar to the "prefatory reaction" in pyrolysis of acrylic fibers), followed immediately by N- chlorination and7 chain scission...cyclization of nitrile groups (similar to the "prefatory reaction" in pyrolysis of acrylic fibers), followed immediately by N- chlorination and chain scission...present experiments were conducted at the boil, slightly greater than 100 C. The decomposition products-- chlorine , chlorate, plus oxygen originating

  17. Synthesis of unnatural amino acids from serine derivatives by beta-fragmentation of primary alkoxyl radicals.

    PubMed

    Boto, Alicia; Gallardo, Juan A; Hernández, Dacil; Hernández, Rosendo

    2007-09-14

    The fragmentation of primary alkoxyl radicals has been scarcely used in synthesis since other competing processes (such as oxidation or hydrogen abstraction) usually predominate. However, when serine derivatives were used as substrates, the scission took place in excellent yields. Tandem scission-allylation, -alkylation, or -arylation reactions were subsequently developed. This one-pot methodology was applied to the synthesis of unnatural amino acids, which are useful synthetic blocks or amino acid surrogates in peptidomimetics.

  18. Catalytic conversion of polycyclic aromatic hydrocarbons: Mechanistic investigations of hydrogen transfer from an iron-based catalyst to alkylarenes

    SciTech Connect

    Autrey, T.; Linehan, J.C.; Camaioni, D.M.; Powers, T.R.; McMillan, E.F.; Franz, J.A.

    1995-08-01

    Results of our model compound studies suggest that free radical hydrogen transfer pathways from the catalyst to the alkylarene are responsible for the scission of strong carbon-carbon bonds. There are two requisites for the observed selective bond scission. First is the stability of the ipso adduct precursor leading to displacement, the more stable the adduct the more probable bond scission. This explains why benzyl radical displacement > phenoxy radical displacement in benzyldiphenyl ether and explains why PhCH{sub 2}CH{sub 2}PhCH{sub 2} radical > naphthylmethyl radical from NMBB. Second, given equal ipso adduct precursor stabilities, e.g. methyldiphenylmethane, the stability of the departing radical determines the selectivity. this explains benzyl radical > methyl radical in the methylated diphenylmethanes and explains why {alpha}-hydroxyphenethyl radical > methyl radical in 1,2-ditolylethanol. We have assumed little physical interaction between the molecules and the catalytic surface and have been able to satisfactorily explain most of the observed selectivity. However, for NMBB we expect a higher selectivity for -A- bond scission relative to -B- bond scission, given the ca. 6 kcal/mol difference between the radical adduct formed by the hydrogen atom addition to 1-methylnaphthalene and p-xylene. It is possible that physical properties play a role in lowering the selectivity in -B- bond scission. Also, catalysts prepared by other methods may contain different activity sites and operate by different mechanisms.

  19. Discussion of the Separation of Chemical and Relaxational Kinetics of Chemically Activated Intermediates in Master Equation Simulations.

    PubMed

    Döntgen, Malte; Leonhard, Kai

    2017-03-02

    Chemical activation of intermediates, such as hydrogen abstraction products, is emerging as a basis for a fully new reaction type: hot β-scission. While for thermally equilibrated intermediates chemical kinetics are typically orders of magnitude slower than relaxational kinetics, chemically activated intermediates raise the issue of inseparable chemical and relaxational kinetics. Here, this separation problem is discussed in the framework of master equation simulations, proposing three cases often encountered in chemistry: insignificant chemical activation, predominant chemical activation, and the transition between these two limits. These three cases are illustrated via three example systems: methoxy (CH3Ȯ), diazenyl (ṄNH), and methyl formate radicals (CH3OĊO). For diazenyl, it is found that hot β-scission fully replaces the sequence of hydrogen abstraction and β-scission of thermally equilibrated diazenyl. Building on the example systems, a rule of thumb is proposed that can be used to intuitively judge the significance of hot β-scission: if the reverse hydrogen abstraction barrier height is comparable to or larger than the β-scission barrier height, hot β-scission should be considered in more detail.

  20. Process and analytical studies of enhanced low severity co-processing using selective coal pretreatment. Final technical report

    SciTech Connect

    Baldwin, R.M.; Miller, R.L.

    1991-12-01

    The findings in the first phase were as follows: 1. Both reductive (non-selective) alkylation and selective oxygen alkylation brought about an increase in liquefaction reactivity for both coals. 2. Selective oxygen alkylation is more effective in enhancing the reactivity of low rank coals. In the second phase of studies, the major findings were as follows: 1. Liquefaction reactivity increases with increasing level of alkylation for both hydroliquefaction and co-processing reaction conditions. 2. the increase in reactivity found for O-alkylated Wyodak subbituminous coal is caused by chemical changes at phenolic and carboxylic functional sites. 3. O-methylation of Wyodak subbituminous coal reduced the apparent activation energy for liquefaction of this coal.

  1. Process and analytical studies of enhanced low severity co-processing using selective coal pretreatment

    SciTech Connect

    Baldwin, R.M.; Miller, R.L.

    1991-12-01

    The findings in the first phase were as follows: 1. Both reductive (non-selective) alkylation and selective oxygen alkylation brought about an increase in liquefaction reactivity for both coals. 2. Selective oxygen alkylation is more effective in enhancing the reactivity of low rank coals. In the second phase of studies, the major findings were as follows: 1. Liquefaction reactivity increases with increasing level of alkylation for both hydroliquefaction and co-processing reaction conditions. 2. the increase in reactivity found for O-alkylated Wyodak subbituminous coal is caused by chemical changes at phenolic and carboxylic functional sites. 3. O-methylation of Wyodak subbituminous coal reduced the apparent activation energy for liquefaction of this coal.

  2. New apparatus for simultaneous determination of phase equilibria and rheological properties of fluids at high pressures: Its application to coal pastes studies up to 773 K and 30 MPa

    SciTech Connect

    Cohen, A.; Richon, D.

    1986-06-01

    In this article, we present a new apparatus based on a static method to simultaneously measure rheological properties of a dense (liquid or liquid+solid) medium and sample phases (dense and gaseous) for analysis purposes. It was especially designed to study coal pastes in the working conditions of hydroliquefaction processes. It can also be used to study other mediums such as asphalts and polymers. The rheometer part of the apparatus was already tested and results published in a previous paper. The ability of the new apparatus to get reliable vapor--liquid equilibrium data in the range of thermal stability of chemical materials is shown as a result of measurements on the nitrogen-n-heptane system at 497.1 K and the methane-n-hexadecane system at 623.1 K and comparison to literature's data. Reproducibility tests have displayed very small data dispersion.

  3. [Fluorescence spectroscopy characterization of asphaltene liquefied from coal and study of its association structure].

    PubMed

    Wang, Zhi-Cai; Cui, Xue-Ping; Shui, Heng-Fu; Wang, Zu-Shan; Lei, Zhi-Ping; Kang, Shi-Gang

    2010-06-01

    Structure and association of asphaltenes from coal direct hydroliquefaction were studied by fluorescence spectrometry and UV-Vis absorption spectrometry in this paper. The results indicate that asphaltene is aromatic mixtures mainly containing naphthalene nucleus and shows strong fluorescent characteristic. The forming of exciplex between asphaltene and solvent results in the red shift of fluorescence peak and fluorescence quenching of asphaltene that increases with the polarity and electron acceptability. The self-aggregation of asphaltene is formed by non-covalent bond interaction, so that the asphaltene liquefied at higher temperture that shows high aromaticity has stronger association than that liquefied at lower temperature. Aggregation of asphaltene has been found to be a gradual process, in which there is no critical aggregation constant observed, and the inflection point of the plot of apparent fluorescence intensity as a function of asphaltene concentration varies with the excitation wavelength.

  4. Novel bimetallic dispersed catalysts for temperature-programmed coal liquefaction. Technical progress report, October--December 1992

    SciTech Connect

    Song, Chunshan; Schobert, H.H.

    1993-02-01

    Development of new catalysts is a promising approach to more efficient coal liquefaction. It has been recognized that catalysts are superior to supported catalysts for primary liquefaction of coals, because the control of initial coal dissolution or depolymerization requires intimate contact between the catalyst and coal. This research is a fundamental and exploratory study on catalytic coal liquefaction, with the emphasis on the development of novel bimetallic dispersed catalysts for temperature-programmed liquefaction. The ultimate goal of the present research is to develop novel catalytic hydroliquefaction process using highly active dispersed catalysts. The primary objective of this research is to develop novel bimetallic dispersed catalysts from organometallic molecular that can be used in low precursors concentrations (< 1 %) but exhibit high activity for efficient hydroliquefaction of coals under temperature-programmed conditions. The major technical approaches are, first, to prepare the desired heteronuclear organometallic molecules as catalyst precursors that contain covalently bound, two different metal atoms and sulfur in a single molecule. Such precursors will generate finely dispersed bimetallic catalysts such as Fe-Mo, Co-Mo and Ni-Mo binary sulfides upon thermal decomposition. The second major technical approach is to perform the liquefaction of coals unpregnated with the organometallic precursors under temperature-programmed conditions, where the programmed heat-up serves as a step for both catalyst activation and coal pretreatment or preconversion. Two to three different complexes for each of the Fe-Mo, Co-Mo, and Ni-Mo combinations will be prepared. Initial catalyst screening tests will be conducted using a subbituminous coal and a bituminous coal. Effects of coal rank and solvents will be examined with the selected bimetallic catalysts which showed much higher activity than the dispersed catalysts from conventional precursors.

  5. Novel bimetallic dispersed catalysts for temperature-programmed coal liquefaction

    SciTech Connect

    Song, Chunshan; Schobert, H.H.

    1993-02-01

    Development of new catalysts is a promising approach to more efficient coal liquefaction. It has been recognized that catalysts are superior to supported catalysts for primary liquefaction of coals, because the control of initial coal dissolution or depolymerization requires intimate contact between the catalyst and coal. This research is a fundamental and exploratory study on catalytic coal liquefaction, with the emphasis on the development of novel bimetallic dispersed catalysts for temperature-programmed liquefaction. The ultimate goal of the present research is to develop novel catalytic hydroliquefaction process using highly active dispersed catalysts. The primary objective of this research is to develop novel bimetallic dispersed catalysts from organometallic molecular that can be used in low precursors concentrations (< 1 %) but exhibit high activity for efficient hydroliquefaction of coals under temperature-programmed conditions. The major technical approaches are, first, to prepare the desired heteronuclear organometallic molecules as catalyst precursors that contain covalently bound, two different metal atoms and sulfur in a single molecule. Such precursors will generate finely dispersed bimetallic catalysts such as Fe-Mo, Co-Mo and Ni-Mo binary sulfides upon thermal decomposition. The second major technical approach is to perform the liquefaction of coals unpregnated with the organometallic precursors under temperature-programmed conditions, where the programmed heat-up serves as a step for both catalyst activation and coal pretreatment or preconversion. Two to three different complexes for each of the Fe-Mo, Co-Mo, and Ni-Mo combinations will be prepared. Initial catalyst screening tests will be conducted using a subbituminous coal and a bituminous coal. Effects of coal rank and solvents will be examined with the selected bimetallic catalysts which showed much higher activity than the dispersed catalysts from conventional precursors.

  6. Fabrication of nanochannels on polystyrene surface

    PubMed Central

    Li, Dongqing

    2015-01-01

    Solvent-induced nanocrack formation on polystyrene surface is investigated experimentally. Solubility parameter and diffusion coefficient of alcohols are employed to elucidate the swelling and cracking processes as well as the crack size. Experimental results show that the crack size increases with the heating temperature, heating time, and the concentration and volume of the alcohols. A guideline on fabricating single smaller nanocracks on polymers by solvent-induced method is provided. Nanocracks of approximately 64 nm in width and 17.4 nm in depth were created and replicated onto PDMS (polydimethylsiloxane) slabs to form nanochannels. PMID:25945143

  7. Gamma-induced modifications of polycarbonate polymer

    NASA Astrophysics Data System (ADS)

    Sinha, D.; Sahoo, K. L.; Sinha, U. B.; Swu, T.; Chemseddine, A.; Fink, D.

    2004-10-01

    Gamma-induced modifications in polycarbonate polymer have been studied in the dose range of 10(1)-10(6) Gy. Thin films of polycarbonate have been irradiated with different gamma doses from a Co-60 source. To monitor the modifications caused by gamma radiation, FT-IR, differential scanning calorimetry and X-ray diffraction studies have been performed. The studies have indicated that at the dose of 10(6) Gy, phenolic group forms through scissioning of ester linkage. Though the effect of radiation is most significant at the highest dose, the process of modifications starts at 10(3) Gy. Scissioning of the polymeric chain initiates a different morphological zone within the polymer matrix, and the polymer becomes more crystalline with increasing dose. Owing to chain scissioning, the mobility of the polymer increases, which in turn reduces the glass transition temperature of the polymer.

  8. Radiochemical Ageing of Aromatic Polymers PEEK, PSU and Kapton registered

    SciTech Connect

    Richaud, E.; Audouin, L.; Colin, X.; Verdu, J.; Monchy-Leroy, C.

    2010-06-02

    This article deals with degradation mechanism of three aromatic polymers submitted to gamma-rays in air at 60 deg. C. T{sub g} measurements and GPC results indicated that thin samples (thickness lower than 200 mum) undergo mostly chain scission whereas sol gel analysis and rheometric measurements showed that thicker ones undergo mainly crosslinking. Both results are explained by oxygen diffusion control of oxidation resulting in the formation of a superficial oxidized layer experimentally observed by muATR InfraRed in which oxidative processes orientate rather to chain scission than crosslinking. Experimental results also allowed discussing relative oxidative stability, sensitivity of T{sub g} to chain scission concentration, and crosslinking mechanism (Y or H).

  9. Mechanoluminescent Imaging of Osmotic Stress-Induced Damage in a Glassy Polymer Network

    PubMed Central

    2017-01-01

    A chemiluminescent mechanophore, bis(adamantyl-1,2-dioxetane), is used to investigate the covalent bond scission resulting from the sorption of chloroform by glassy poly(methyl methacrylate) (PMMA) networks. Bis(adamantyl)-1,2-dioxetane units incorporated as cross-linkers underwent mechanoluminescent scission, demonstrating that solvent ingress caused covalent bond scission. At higher cross-linking densities, the light emission took the form of hundreds of discrete bursts, widely varying in intensity, with each burst composed of 107–109 photons. Camera imaging indicated a relatively slow propagation of bursts through the material and permitted analysis of the spatial correlation between the discrete bond-breaking events. The implications of these observations for the mechanism of sorption and fracture are discussed. PMID:28316344

  10. Photoresponsive polyesters by incorporation of alkoxyphenacyl or coumarin chromophores along the backbone.

    PubMed

    Chamsaz, Elaheh A; Sun, Shuangyi; Maddipatla, Murthy V S N; Joy, Abraham

    2014-02-01

    The synthesis and photochemical characterization of two classes of photoresponsive polyesters are described. These polyesters contain either alkoxyphenacyl or coumarin chromophores embedded along the polymer chain. The alkoxyphenacyl polyesters undergo efficient photoinduced chain scission upon irradiation at 300 nm in solution or as a nanoparticle suspension. At 254 nm the coumarin polyesters undergo polymer chain scission. Irradiation of the coumarin polyesters in solution at 350 nm results in both chain crosslinking and chain scission behavior, while irradiation of the coumarin polyesters as nanoparticles results in chain crosslinking. The properties of the alkoxyphenacyl and coumarin polyesters are influenced by the choice of diacid as seen from their thermal behavior. The use of glutamic acid enabled surface or bulk functionalization of the photoresponsive polymers. In addition, controlled release of Nile Red from coumarin polyester nanoparticles is demonstrated by modulation of the wavelength and intensity of irradiation.

  11. Molecular weight changes induced in an anionic polydimethylsiloxane by gamma irradiation in vacuum

    NASA Astrophysics Data System (ADS)

    Satti, Angel J.; Andreucetti, Noemí A.; Ciolino, Andrés E.; Vitale, Cristian; Sarmoria, Claudia; Vallés, Enrique M.

    2010-11-01

    An anionic almost monodisperse linear polydimethylsiloxane (PDMS) was subjected to gamma irradiation under vacuum at room temperature. The molecular weight changes induced by the radiation process have been investigated using size exclusion chromatography (SEC) with refraction index (RI) and multi angle laser light scattering (MALLS) detectors, to obtain the number and weight average molecular weights of the irradiated samples. The analysis of the data indicates that crosslinking reactions predominated over scission reactions. The results obtained by an SEC-RI have confirmed the presence of small, but measurable amounts of scission. A previously developed mathematical model of the irradiation process that accounts for simultaneous scission and crosslinking and allows for both H- and Y-crosslinks, fitted well the measured molecular weight data. This prediction is in accordance with the experimental data obtained by 29Si-Nuclear Magnetic Resonance spectroscopy (NMR) and previously reported data for commercial linear PDMS ( Satti et al., 2008).

  12. Microscopic Calculation of Fission Fragment Energies for the 239Pu(nth,f) Reaction

    SciTech Connect

    Younes, W; Gogny, D

    2011-10-03

    We calculate the total kinetic and excitation energies of fragments produced in the thermal-induced fission of {sup 239}Pu. This result is a proof-of-principle demonstration for a microscopic approach to the calculation of fission-fragment observables for applied data needs. In addition, the calculations highlight the application of a fully quantum mechanical description of scission, and the importance of exploring scission configurations as a function of the moments of the fragments, rather than through global constraints on the moments of the fissioning nucleus. Using a static microscopic calculation of configurations at and near scission, we have identified fission fragments for the {sup 239}Pu (n{sub th}, f) reaction and extracted their total kinetic and excitation energies. Comparison with data shows very good overall agreement between theory and experiment. Beyond their success as a proof of principle, these calculations also highlight the importance of local constraints on the fragments themselves in microscopic calculations.

  13. Quantum Approach to One-body Dissipation

    NASA Astrophysics Data System (ADS)

    Rizea, M.; Carjan, N.

    The nuclear dissipation, i.e. the conversion of collective energy into intrinsic energy is investigated in the frame of quantum mechanics. Using appropiate numerical procedures, we follow the motion of individual nucleons according to the time-dependent Schr̈odinger equation with time-dependent potential. In particular we study the transition from the saddle to the scission point during the low energy fission of 236U. Different rates T of change of the nuclear shape along this path were considered. The overlap integrals between the static solutions of the bi-dimensional Schr̈odinger equation and the time-dependent wave packets yield the transition probabilities and hence the singleparticle excitations during the saddle-to-scission descent. Using the numerical solutions other relevant pre-scission properties have been evaluated as well.

  14. Viscoelastic properties of vis-breaking polypropylenes

    NASA Astrophysics Data System (ADS)

    Nobile, Maria Rossella; Moad, Graeme; Habsuda, Jana; Li, Guoxin; Nichols, Lance; Dagley, Ian; Simon, George P.

    2015-12-01

    In this work hydrogen peroxide is used as a green initiator to cause scissioning of polypropylene (PP) with water as the only by-product replacing the organic peroxides that are usually used. The rheological properties of a commercial polypropylene and of the scissioned samples are determined by dynamic rheology and an inversion procedure for converting the linear viscoelastic data into molar mass distribution has been adopted. The results presented show that the molar mass distribution of the PP polymer is narrowed on scissioning. The process is found to produce polymers similar in molecular architecture and behavior to organic peroxide cleaved materials, the results of which are given as a comparison in this work.

  15. Electron beam irradiation of maltodextrin and cinnamyl alcohol mixtures: influence of glycerol on cross-linking.

    PubMed

    Khandal, Dhriti; Aggarwal, Manjeet; Suri, Gunjan; Coqueret, Xavier

    2015-03-06

    The influence of glycerol on the electron beam-induced changes in maltodextrins-cinnamyl alcohol (CA) blends is examined with respect to its influence on the degree of chain scission, grafting, and cross-linking. The study is relevant to radiation-induced polysaccharide modification, specifically in the perspective of using blended starch as a thermoplastic material, where glycerol is commonly used as a plasticizer. In the absence of CA, glycerol protects maltodextrin from chromophore formation onto the main chain, but also induces more chain scission. The presence of CA provides efficient radiation-protection against scission. Glycerol is shown to affect the interaction between maltodextrin and CA, most likely in the form of an inclusion complex when glycerol is absent. The global behavior under radiation is therefore governed by the physical interactions between the blend constituents rather than on the role of glycerol role as a plasticizer, or as an OH˙ radical scavenger.

  16. A High Precision Survey of the Molecular Dynamics of Mammalian Clathrin-Mediated Endocytosis

    PubMed Central

    Taylor, Marcus J.; Perrais, David; Merrifield, Christien J.

    2011-01-01

    Dual colour total internal reflection fluorescence microscopy is a powerful tool for decoding the molecular dynamics of clathrin-mediated endocytosis (CME). Typically, the recruitment of a fluorescent protein–tagged endocytic protein was referenced to the disappearance of spot-like clathrin-coated structure (CCS), but the precision of spot-like CCS disappearance as a marker for canonical CME remained unknown. Here we have used an imaging assay based on total internal reflection fluorescence microscopy to detect scission events with a resolution of ∼2 s. We found that scission events engulfed comparable amounts of transferrin receptor cargo at CCSs of different sizes and CCS did not always disappear following scission. We measured the recruitment dynamics of 34 types of endocytic protein to scission events: Abp1, ACK1, amphiphysin1, APPL1, Arp3, BIN1, CALM, CIP4, clathrin light chain (Clc), cofilin, coronin1B, cortactin, dynamin1/2, endophilin2, Eps15, Eps8, epsin2, FBP17, FCHo1/2, GAK, Hip1R, lifeAct, mu2 subunit of the AP2 complex, myosin1E, myosin6, NECAP, N-WASP, OCRL1, Rab5, SNX9, synaptojanin2β1, and syndapin2. For each protein we aligned ∼1,000 recruitment profiles to their respective scission events and constructed characteristic “recruitment signatures” that were grouped, as for yeast, to reveal the modular organization of mammalian CME. A detailed analysis revealed the unanticipated recruitment dynamics of SNX9, FBP17, and CIP4 and showed that the same set of proteins was recruited, in the same order, to scission events at CCSs of different sizes and lifetimes. Collectively these data reveal the fine-grained temporal structure of CME and suggest a simplified canonical model of mammalian CME in which the same core mechanism of CME, involving actin, operates at CCSs of diverse sizes and lifetimes. PMID:21445324

  17. Condensed-phase decomposition in thermally-aged explosives

    SciTech Connect

    Erickson, K.L.; Trott, W.M.; Renlund, A.M.

    1995-12-01

    In previous work, the isothermal decomposition of nitrocellulose (NC) was examined using two substantially different experimental techniques that are being developed to investigate condensed-phase chemistry occurring during the thermal decomposition of a variety of explosives. The confined isothermal aging technique involved confined thin-film samples heated to temperatures of 150 to 170{degrees}C, for 1 to 72 hours. Condensed-phase chemistry was monitored real-time using FTIR. Results indicated that the first step in decomposition was scission of the O-NO{sub 2} bond and subsequent formation of carbonyl and hydroxyl products. Scission of the O-NO{sub 2} bond appeared to occur by a first-order reaction. Additional unconfined rapid isothermal decomposition experiments with NC have been completed and are described in this paper. Those additional experiments extended the previous work and investigated the effect of varying film thickness (from about 0.2 to 0.6 microns), varying temperature (from about 420 to 640{degrees}C), and using {sup 15}NO{sub 2}-labled NC. The results indicated that decomposition of NC appears to involve at least two principal mechanisms: (1) O-NO{sub 2} bond scission, which is accompanied by carbonyl or hydroxyl formation, and (2) polymer fragmentation. These two mechanisms occur simultaneously. At temperatures of 170{degrees}C, or lower, polymer fragmentation appears negligible, but at temperatures of 420{degrees}C, or higher, polymer fragmentation is appreciable and occurs at rates comparable to those for O-NO{sub 2} bond scission. While polymer fragmentation may be associated with O-NO{sub 2} bond scission, at higher temperatures, additional steps must be involved in the fragmentation mechanism. At each end of the temperatures range from about 150 to 420{degrees}C, the rate of O-NO{sub 2} bond scission appears reasonably consistent with a mechanism dominated by a first-order decomposition step.

  18. Radiolytic stabilization of poly(hydroxybutyrate)

    NASA Astrophysics Data System (ADS)

    Santos, Renata F. S.; Araujo, Elmo S.; Ferreira, Carlas R. C.; Ribeiro, Abene S.

    2009-02-01

    Stabilization against gamma irradiation effects on Brazilian poly(hydroxybutyrate) (PHB) films was investigated by using commercial additives. With the most effective additive the G value of main chain scissions decreased from 8.6 to 1.5 scissions/100 eV in the absorbed dose range up to 35 kGy. Irradiation increased the biodegradability of the samples, whereas the additives-induced reduction in biodegradability. Irradiation treatment did not influence the degree of crystallinity. Protonic nuclear magnetic resonance (NMR- 1H) analysis revealed formation of hydroxyl-terminal groups upon irradiation.

  19. Spatial and temporal association of Bax with mitochondrial fission sites, Drp1, and Mfn2 during apoptosis

    PubMed Central

    Karbowski, Mariusz; Lee, Yang-Ja; Gaume, Brigitte; Jeong, Seon-Yong; Frank, Stephan; Nechushtan, Amotz; Santel, Ansgar; Fuller, Margaret; Smith, Carolyn L.; Youle, Richard J.

    2002-01-01

    We find that Bax, a proapoptotic member of the Bcl-2 family, translocates to discrete foci on mitochondria during the initial stages of apoptosis, which subsequently become mitochondrial scission sites. A dominant negative mutant of Drp1, Drp1K38A, inhibits apoptotic scission of mitochondria, but does not inhibit Bax translocation or coalescence into foci. However, Drp1K38A causes the accumulation of mitochondrial fission intermediates that are associated with clusters of Bax. Surprisingly, Drp1 and Mfn2, but not other proteins implicated in the regulation of mitochondrial morphology, colocalize with Bax in these foci. We suggest that Bax participates in apoptotic fragmentation of mitochondria. PMID:12499352

  20. Irradiation of linear polyethylene - Partitioning between sol and gel.

    NASA Technical Reports Server (NTRS)

    Rijke, A. M.; Mandelkern, L.

    1971-01-01

    Investigation of the importance of chain-scission processes and of the applicability of the general theory of network formation to polyethylene with respect to critical conditions for gelation, using molecular weight fractions of linear polyethylene irradiated at 133 C. The partitioning between sol and gel was found to adhere to the theory just beyond the gel point. Deviations from theory occurred as the irradiation dosage was increased. It was concluded that main-chain scission at the temperatures concerned is not a significant process.

  1. Poly(arylsulfone imide) as E-beam resist: synthesis and radiolysis. Technical report

    SciTech Connect

    Chien, J.C.; Cheng, Z.S.

    1989-01-01

    Aromatic diamines containing -SO/sub 2/-and-S- moieties were used to prepare soluble polyimides with ditrifluoromethyl methane bis(phthalic anhydride) (F-series polyimides) and polyamic acid with pyromellitic dianhydride (P-series). Gamma radiolysis gave G(S) values for scission between 1 to 2 with no crosslinking. Significant weight loss occurred with radiolysis is attributable to efficient -SO/sub 2/-bond scission for the R-series polyimides, as well as imidization in the cases of P-series polyamic acids.

  2. Damage by Visible Light to the Acridine Orange-DNA Complex

    PubMed Central

    Freifelder, David; Davison, Peter F.; Geiduschek, E. Peter

    1961-01-01

    Salmon DNA has been irradiated with visible light in the presence of acridine orange. If the dye is bound to the DNA, there results: (a) a decrease in sedimentation coefficient, (b) a lowering of viscosity, and (c) a decrease in the thermal denaturation temperature. CsCl banding experiments show that the first two effects reflect depolymerization of the DNA. Depolymerization apparently occurs by single-strand scission although some double-strand scission is not excluded. The destabilization of secondary structure results probably from chemical attack on the components of the individual strands. PMID:13701685

  3. Irradiation of linear polyethylene - Partitioning between sol and gel.

    NASA Technical Reports Server (NTRS)

    Rijke, A. M.; Mandelkern, L.

    1971-01-01

    Investigation of the importance of chain-scission processes and of the applicability of the general theory of network formation to polyethylene with respect to critical conditions for gelation, using molecular weight fractions of linear polyethylene irradiated at 133 C. The partitioning between sol and gel was found to adhere to the theory just beyond the gel point. Deviations from theory occurred as the irradiation dosage was increased. It was concluded that main-chain scission at the temperatures concerned is not a significant process.

  4. Thermochemistry of C-O, (CO)-O, and (CO)-C bond breaking in fatty acid methyl esters

    SciTech Connect

    Osmont, Antoine; Yahyaoui, Mohammed; Catoire, Laurent; Goekalp, Iskender; Swihart, Mark T.

    2008-10-15

    Density functional theory quantum chemical calculations corrected with empirical atomic increments have been used to examine C-O, (CO)-O, and (CO)-C bond scission enthalpies in gas-phase fatty acid methyl esters (FAMEs) present in biodiesel derived from rapeseed oil methyl ester and soybean oil methyl ester. Mechanistic information, currently not available elsewhere for these large species, is obtained based on thermochemical considerations and compared to thermochemical considerations reported for methyl butanoate, a small methyl ester sometimes used as a model for FAMEs. These results are compared to previously reported C-C and C-H bond scissions in these FAMEs, derived using this same protocol. (author)

  5. Pre-fission neutron emission in {sup 19}F+{sup 209}Bi reaction

    SciTech Connect

    Singh, Hardev; Sugathan, P.; Shidling, P. D.; Behera, B. R.; Singh, Gulzar; Govil, I. M.; Golda, K. S.; Jhingan, Akhil; Singh, R. P.; Chatterjee, M. B.; Datta, S. K.; Pal, Santanu; Viesti, G.

    2009-03-04

    The pre- and post-scission neutron multiplicities are measured for {sup 19}F+{sup 209}Bi reaction at E{sub lab} = 100, 104, 108, 112 and 116 MeV. The measured value of pre-scission neutron multiplicity was found to be increasing with the excitation energy. The comparison of experimental values with the statistical model calculations shows that the measured values are much larger than the model predictions. This difference in excess yield over the model predictions amounts to the survival time of 80{+-}5x10{sup -21} s for the {sup 228}U compound nucleus before it undergoes fission.

  6. Mesoporous W₁₈O₄₉ hollow spheres as highly active photocatalysts.

    PubMed

    Huang, Zhen-Feng; Song, Jiajia; Pan, Lun; Lv, Fenglei; Wang, Qingfa; Zou, Ji-Jun; Zhang, Xiangwen; Wang, Li

    2014-09-28

    Mesoporous hollow W18O49 spheres were fabricated by a facile solvent-induced assembly method using anhydrous WCl6 as a precursor and CH3COOH as a solvent. This unique structure exhibited remarkably enhanced photocatalytic and photoelectrocatalytic performance than other morphologies like urchin and nanowire due to the simultaneous enhancement in light harvesting, surface area and adsorption capability.

  7. A (001) dominated conjugated polymer with high-performance of hydrogen evolution under solar light irradiation.

    PubMed

    Zhou, Jun; Lei, Yanhua; Ma, Chenghai; Lv, Wenhua; Li, Na; Wang, Ying; Xu, Hu; Zou, Zhigang

    2017-09-21

    A two-dimensional imide-based conjugated polymer with a preferred (001) orientation was constructed by solvent-induced assembly. A high performance of 1640 μmol h(-1) g(-1) for solar-driven photocatalytic hydrogen evolution and an excellent stability were achieved due to tunnelling charge transport between the neighbouring molecular sheets.

  8. A theoretical study on the role of water and its derivatives in acetic acid steam reforming on Ni(111)

    NASA Astrophysics Data System (ADS)

    Du, Zhen-Yi; Ran, Yan-Xiong; Guo, Yun-Peng; Feng, Jie; Li, Wen-Ying

    2017-10-01

    Catalytic steam reforming of acetic acid can be divided into two steps, i.e. acetic acid decomposition followed by water gas shift. While theoretical studies have been devoted to these two individual reactions, the role of water and its derivatives in the reforming process, especially in CH3COOH decomposition, remains largely unknown. In this study, a thorough investigation of the effects of the solvent water and its derived O*/OH* species on some key dehydrogenation steps on Ni(111) is carried out using density functional theory. The involved dehydrogenation species include O-H bond scission species H2O*, CH3COOH*, trans-COOH* and C-H bond scission species CH3CO*, CH3C*, CH2C*. The results show that the pre-adsorbed O*, OH*, and H2O* species not only affect the adsorption stability of these species, but also influence their dehydrogenation reactivity. O* and OH* species can both enhance the O-H bond scission, and the promotional effect of O* is superior to OH*. Nevertheless, H-abstraction from C-H bond by O* and OH* are both hindered except for CH3CO* dehydrogenation in the presence of OH*. Furthermore, the solvent water notably weakens O-H bonds, yet exhibits negligible effect on the C-H bond breakage. Analogously, the solvent effect of CH3COOH* on O-H bond scission is also investigated.

  9. ENDONUCLEASE II OF E. coli, I. ISOLATION AND PURIFICATION*

    PubMed Central

    Friedberg, Errol C.; Goldthwait, David A.

    1969-01-01

    The isolation and purification of a new endonuclease of E. coli is described. This enzyme degrades alkylated DNA as assayed by a technique that requires double-strand scission. The enzyme also makes a limited number of single-strand breaks in native nonalkylated DNA. PMID:4895219

  10. Radical [1,3]-Rearrangements of Breslow Intermediates

    PubMed Central

    Alwarsh, Sefat; Xu, Yi; Qian, Steven

    2015-01-01

    Breslow intermediates that bear radical stabilizing N-substituents including benzyl, cinnamyl, and diarylmethyl undergo facile homolytic C-N bond scission under mild conditions to give products of formal [1,3]-rearrangement rather than benzoin condensation. EPR experiments and computational analysis support a radical mechanism. Implications for thiamine based enzymes are discussed. PMID:26553753

  11. Degradation mechanisms of bioresorbable polyesters. Part 2. Effects of initial molecular weight and residual monomer.

    PubMed

    Gleadall, Andrew; Pan, Jingzhe; Kruft, Marc-Anton; Kellomäki, Minna

    2014-05-01

    This paper presents an understanding of how initial molecular weight and initial monomer fraction affect the degradation of bioresorbable polymers in terms of the underlying hydrolysis mechanisms. A mathematical model was used to analyse the effects of initial molecular weight for various hydrolysis mechanisms including noncatalytic random scission, autocatalytic random scission, noncatalytic end scission or autocatalytic end scission. Different behaviours were identified to relate initial molecular weight to the molecular weight half-life and to the time until the onset of mass loss. The behaviours were validated by fitting the model to experimental data for molecular weight reduction and mass loss of samples with different initial molecular weights. Several publications that consider initial molecular weight were reviewed. The effect of residual monomer on degradation was also analysed, and shown to accelerate the reduction of molecular weight and mass loss. An inverse square root law relationship was found between molecular weight half-life and initial monomer fraction for autocatalytic hydrolysis. The relationship was tested by fitting the model to experimental data with various residual monomer contents. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. ACCELERATED DETERIORATION OF ELASTOMERS

    DTIC Science & Technology

    soluble metal salts , hydrazines, and thiols on the rates of oxidation and chain scission of polyisoprene and polybutadiene in chlorobenzene as solvent. A...number of complex cobalt compounds have been compared in oxidations of polyisoprene. A combination of t-butyl hydroperoxide and a cobaltous compound

  13. On the degelation of networks – Case of the radiochemical degradation of methyl methacrylate – ethylene glycol dimethacrylate copolymers

    SciTech Connect

    Richaud, Emmanuel; Gilormini, Pierre; Verdu, Jacques

    2016-05-18

    Methyl methacrylate networks were synthetized and submitted to radiochemical degradation. Ageing was monitored by means of sol-gel analysis and glass transition temperature measurements. Networks were shown to undergo exclusively chain scission process leading to the degelation of network. The critical conversion degree corresponding to degelation (loss of all elastically active chains) is discussed regarding a statistical theory.

  14. Molecular weight distributions of irradiated siloxane-based elastomers: A complementary study by statistical modeling and multiple quantum nuclear magnetic resonance

    SciTech Connect

    Dinh, L. N.; Mayer, B. P.; Maiti, A.; Chinn, S. C.; Maxwell, R. S.

    2011-05-01

    The statistical methodology of population balance (PB) has been applied in order to predict the effects of cross-linking and chain-scissioning induced by ionizing radiation on the distribution of molecular weight between cross-links (MWBC) of a siloxane-based elastomer. Effective molecular weight distributions were extracted from the quantification of residual dipolar couplings via multiple quantum nuclear magnetic resonance (MQ-NMR) measurements and are taken to reflect actual MWBC distributions. The PB methodology is then applied to the unirradiated MWBC distribution and considers both chain-scissioning and the possibility of the formation of three types of cross-links: random recombination of scissioned-chain ends (end-linking), random covalent bonds of free radicals on scissioned-chain ends (Y-cross-linking), and the formation of random cross-links from free radicals on side groups (H-cross-linking). The qualitative agreement between the statistical modeling approach and the NMR data confirms that it is possible to predict trends for the evolution of the distribution of MWBC of polymers under irradiation. The approach described herein can also discern heterogeneities in radiation effects in different structural motifs in the polymer network.

  15. Desulfurization chemistry on tungsten surfaces

    SciTech Connect

    Benziger, J.B.; Preston, R.E.

    1985-01-01

    Desulfurization on tungsten surfaces was studied by Auger spectroscopy, temperature programmed desorption, and infrared spectroscopy. Aliphatic compounds reacted by electrophilic interaction of sulfur with the surface. On sulfided surfaces adsorption occurred by disulfide linkages, but C-S bond scission required vacant metal sites. Thiophene underwent electrophilic attack on the ring at the ..cap alpha..-carbon by metal sites.

  16. Neutron-induced fission of even- and odd-mass plutonium isotopes within a four-dimensional Langevin framework

    NASA Astrophysics Data System (ADS)

    Pahlavani, M. R.; Mirfathi, S. M.

    2017-07-01

    Neutron multiplicity prior to scission and evaluation of mass distribution of fission fragments with the fission time scale for neutron induced fission of plutonium isotopes are investigated using a dynamical Langevin approach. Also, mass yield of fragments and prompt neutron multiplicity in different time scales of the fission process are compared with experimental data. Reasonable agreement is achieved between calculated and available experimental data.

  17. THE EFFECT OF MOLECULAR SIZE ON HUMIC ACID ASSOCIATIONS (R822832)

    EPA Science Inventory

    Abstract

    Aqueous solutions of two humic acids were subjected to UV photolysis, resulting in chain scission of the solute. The molecular fragments were found to have diminished detergent properties, indicated by a reduced tendency to associate with small hydrophobic spe...

  18. Multi angle laser light scattering evaluation of field exposed thermoplastic photovoltaic encapsulant materials

    DOE PAGES

    Kempe, Michael D.; Miller, David C.; Wohlgemuth, John H.; ...

    2016-01-08

    As creep of polymeric materials is potentially a safety concern for photovoltaic modules, the potential for module creep has become a significant topic of discussion in the development of IEC 61730 and IEC 61215. To investigate the possibility of creep, modules were constructed, using several thermoplastic encapsulant materials, into thin-film mock modules and deployed in Mesa, Arizona. The materials examined included poly(ethylene)-co-vinyl acetate (EVA, including formulations both cross-linked and with no curing agent), polyethylene/polyoctene copolymer (PO), poly(dimethylsiloxane) (PDMS), polyvinyl butyral (PVB), and thermoplastic polyurethane (TPU). The absence of creep in this experiment is attributable to several factors of which themore » most notable one was the unexpected cross-linking of an EVA formulation without a cross-linking agent. It was also found that some materials experienced both chain scission and cross-linking reactions, sometimes with a significant dependence on location within a module. The TPU and EVA samples were found to degrade with cross-linking reactions dominating over chain scission. In contrast, the PO materials degraded with chain scission dominating over cross-linking reactions. Furthermore, we found no significant indications that viscous creep is likely to occur in fielded modules capable of passing the qualification tests, we note that one should consider how a polymer degrades, chain scission or cross-linking, in assessing the suitability of a thermoplastic polymer in terrestrial photovoltaic applications.« less

  19. THE EFFECT OF MOLECULAR SIZE ON HUMIC ACID ASSOCIATIONS (R822832)

    EPA Science Inventory

    Abstract

    Aqueous solutions of two humic acids were subjected to UV photolysis, resulting in chain scission of the solute. The molecular fragments were found to have diminished detergent properties, indicated by a reduced tendency to associate with small hydrophobic spe...

  20. Laser irradiation of SV40 DNA. Technical report

    SciTech Connect

    Johnson-Thompson, M.; Halpern, J.B.; Jackson, W.M.; George, J.

    1982-09-17

    Simian virus 40 DNA was irradiated by a high intensity ArF excimer laser. Analysis by gel electrophoresis, neutral sucrose gradient analysis, and alkaline sucrose gradient analysis showed that the laser irradiation leads to breaking of the sugar phosphate backbone in a sequential manner at random sites. The causitive process is either attack by laser generated free radicals or two photon direct scission.

  1. Methanol Oxidation on Pt3Sn(111) for Direct Methanol Fuel Cells: Methanol Decomposition.

    PubMed

    Lu, Xiaoqing; Deng, Zhigang; Guo, Chen; Wang, Weili; Wei, Shuxian; Ng, Siu-Pang; Chen, Xiangfeng; Ding, Ning; Guo, Wenyue; Wu, Chi-Man Lawrence

    2016-05-18

    PtSn alloy, which is a potential material for use in direct methanol fuel cells, can efficiently promote methanol oxidation and alleviate the CO poisoning problem. Herein, methanol decomposition on Pt3Sn(111) was systematically investigated using periodic density functional theory and microkinetic modeling. The geometries and energies of all of the involved species were analyzed, and the decomposition network was mapped out to elaborate the reaction mechanisms. Our results indicated that methanol and formaldehyde were weakly adsorbed, and the other derivatives (CHxOHy, x = 1-3, y = 0-1) were strongly adsorbed and preferred decomposition rather than desorption on Pt3Sn(111). The competitive methanol decomposition started with the initial O-H bond scission followed by successive C-H bond scissions, (i.e., CH3OH → CH3O → CH2O → CHO → CO). The Brønsted-Evans-Polanyi relations and energy barrier decomposition analyses identified the C-H and O-H bond scissions as being more competitive than the C-O bond scission. Microkinetic modeling confirmed that the vast majority of the intermediates and products from methanol decomposition would escape from the Pt3Sn(111) surface at a relatively low temperature, and the coverage of the CO residue decreased with an increase in the temperature and decrease in partial methanol pressure.

  2. Intramolecular homolytic displacements. 30. Functional decarbonylative transformations of aldehydes via homolytically induced decomposition of unsaturated peroxyacetals

    PubMed

    Degueil-Castaing; Moutet; Maillard

    2000-06-30

    Homolytically induced decompositions of unsaturated peroxyacetals, synthesized from aldehydes, gave alkoxyalkoxyl radicals that yielded alkyl radicals by rapid beta-scission. The latter radicals could react with several types of "transfer agents" to smoothly bring about homolytic decarbonylative functional group transformations of aldehydes into halides, hydrocarbons, xanthates, alkanenitriles, 2-alkyl-3-chloromaleic anhydrides, 1-phenylalk-1-ynes, and ethyl 2-alkylpropenoates.

  3. Aqueous-phase hydrogenation of acetic acid over transition metal catalysts

    SciTech Connect

    Olcay, Hakan; Xu, Lijun; Xu, Ye; Huber, George

    2010-01-01

    Catalytic hydrogenation of acetic acid to ethanol has been carried out in aqueous phase on several metals, with ruthenium being the most active and selective. DFT calculations suggest that the initial CO bond scission yielding acetyl is the key step and that the intrinsic reactivity of the metals accounts for the observed activity.

  4. Entrance channel effects in fission of {sup 197}Tl

    SciTech Connect

    Singh, Hardev; Kumar, Ajay; Behera, Bivash R.; Govil, I. M.; Golda, K. S.; Kumar, Pankaj; Jhingan, Akhil; Singh, R. P.; Sugathan, P.; Chatterjee, M. B.; Datta, S. K.; Ranjeet,; Pal, Santanu; Viesti, G.

    2007-10-15

    The pre- and post-scission neutron multiplicities are measured for {sup 16}O+{sup 181}Ta and {sup 19}F+{sup 178}Hf systems where the same compound nucleus {sup 197}Tl is formed at the same excitation energies (E*=72, 76, and 81 MeV). The measured pre-scission neutron multiplicities are found to be different for the two reactions and this difference in neutron yield increases with the excitation energy of the compound nucleus. The experimental pre-scission neutron yield is compared with predictions from the statistical model of compound nuclear decay containing the strength of nuclear viscosity as a free parameter. The magnitude of nuclear viscosity required to fit the experimental yield is found to be different for the two reactions. Because the two systems under consideration lie on the two sides of the Businaro-Gallone point, this observation indicates that the entrance channel mass asymmetry plays an important role in determining the number of neutrons emitted prior to scission in fusion-fission reactions.

  5. Extraction of potential energy in charge asymmetry coordinate from experimental fission data

    NASA Astrophysics Data System (ADS)

    Paşca, H.; Andreev, A. V.; Adamian, G. G.; Antonenko, N. V.

    2016-12-01

    For fissioning isotopes of Ra, Ac, Th, Pa, and U, the potential energies as a function of the charge asymmetry coordinate are extracted from the experimental charge distributions of the fission fragment and compared with the calculated scission-point driving potentials. The role of the potential energy surfaces in the description of the fission charge distribution is discussed.

  6. Site-selective hydrolysis of tRNA by lanthanide metal complexes

    SciTech Connect

    Hayashi, Nobuhiro ); Takeda, Naoya; Yashiro, Morio; Watanabe, Kimitsuna; Komiyama, Makoto ); Shiiba, Tetsuro )

    1993-12-22

    tRNA[sup Phe] is site-selectively hydrolyzed by lanthanide metal complexes (Ce(III), Eu(III), La(III)) of hexaimine macrocyclic ligands. The selectivities of the complexes are much higher than those of the metal ions and are strongly dependent on the ligand structure. The tertiary structure of tRNA is essential for the site-selective scission.

  7. Protection effects of condensed bromoacenaphthylene on radiation deterioration of ethylene-propylene-diene rubber. [Gamma radiation

    SciTech Connect

    Morita, Y.; Hagiwara, M.; Kasai, N.

    1982-09-01

    As a continuation of a series of the studies on the flame and ..gamma..-radiation resistant modification of ethylene-propylene-diene rubber (EPDM), condensed bromoacenaphthylene (con-BACN) as a newly developed flame retardant was synthesized and its effects on the radiation resistance of EPDM were investigated. The radiation resistance evaluated by measuring tensile properties of irradiated sheets of 2 mm thick was found improved greatly by adding con-BACN together with ordinary rubber ingredients but decreased by decabromodiphenylether (DBDPE) that has bromins in aromatic rings as con-BACN. When EPDM sheets of 1 mm thick were irradiated in oxygen at a dose rate of 1 X 10/sup 5/ rad/h, the weight swelling ratio increased with increasing dose, indicating that oxidative main chain scission is predominant under the irradiation conditions. On the other hand, crosslinking was shown to be predominant in nitrogen. From the results of the swelling experiments with different additives, it was concluded that DBDPE accelerates both the main chain scission in oxygen and the crosslinking in nitrogen. In contrast to this, con-BACN reduced the chain scission in oxygen. This observation was accounted by the assumption that the influence of the oxidative chain scission is partly compensated by the concurrent crosslinking which takes place through additions of con-BACN to substrate polymers even in the presence of oxygen.

  8. On the degelation of networks - Case of the radiochemical degradation of methyl methacrylate - ethylene glycol dimethacrylate copolymers

    NASA Astrophysics Data System (ADS)

    Richaud, Emmanuel; Gilormini, Pierre; Verdu, Jacques

    2016-05-01

    Methyl methacrylate networks were synthetized and submitted to radiochemical degradation. Ageing was monitored by means of sol-gel analysis and glass transition temperature measurements. Networks were shown to undergo exclusively chain scission process leading to the degelation of network. The critical conversion degree corresponding to degelation (loss of all elastically active chains) is discussed regarding a statistical theory.

  9. Multilevel fitting of {sup 235}U resonance data sensitive to Bohr-and Brosa-fission channels

    SciTech Connect

    Moore, M.S.

    1995-05-01

    The recent determination of the K, J dependence of the neutron induced fission cross section of {sup 235}U by the Dubna group has led to a renewed interest in the mechanism of fission from saddle to scission. The K quantum numbers designate the so-called Bohr fission channels, which describe the fission properties at the saddle point. Certain other fission properties, e.g., the fragment mass and kinetic-energy distribution, are related to the properties of the scission point. The neutron energy dependence of the fragment kinetic energies has been measured by Hambsch et al., who analyzed their data according to a channel description of Brosa et al. How these two channel descriptions, the saddle-point Bohr channels and the scission-point Brosa channels, relate to one another is an open question, and is the subject matter of the present paper. We use the correlation coefficient between various data sets, in which variations are reported from resonance to resonance, as a measure of both-the statistical reliability of the data and of the degree to which different scission variables relate to different Bohr channels. We have carried out an adjustment of the ENDF/B-VI multilevel evaluation of the fission cross section of {sup 235}U, one that provides a reasonably good fit to the energy dependence of the fission, capture, and total cross sections below 100 eV, and to the Bohr-channel structure deduced from an earlier measurement by Pattenden and Postma. We have also further explored the possibility of describing the data of Hambsch et al. in the Brosa-channel framework with the same set of fission-width vectors, only in a different reference system. While this approach shows promise, it is clear that better data are also needed for the neutron energy variation of the scission-point variables.

  10. Chemistry and reactivity of micronized coals. Technical progress report No. 3

    SciTech Connect

    Lloyd, W.G.; Riley, J.T.; Kuehn, K.W.

    1986-05-15

    This project examines the effect of reduction of the mean particle size of bituminous coals (to less than 10 microns) upon the coals' physical and chemical properties. The second part of a survey of the Hardgrove Grindability Index (HGI) is presented. Forty-two coals from the WKU/DOT base, for which HGI data have been obtained, were examined petrographically. Regression analyses show little correlation with HGI. The ambient apparent viscosities of four aqueous slurries of micronized coals are found to show sharply pseudoplastic character. Over the range of shear rates studied, all four show good power law conformity. Slurry attrition is very fast down to mean sizes of the order of 10 microns, then much slower in approaching the 2 to 4 micron range. A micronized high-ash coal shows anomalously strong retention of moisture and (from extractions) of dimethylformamide, both polar solvents. Classification of pulverized coals by size fraction continues to show sharp variations in mineral matter distribution. Our best preliminary demineralizations are attained with lightly milled coals. Optimal deep cleaning may involve alternate cycles of milling and separation steps. At 350/sup 0/C a 20-minute hydroliquefaction of a hvBb coal affords the expected low conversion (7% daf by toluene). Parallel runs with the micronized coal essentially double this conversion. 15 refs., 12 figs., 10 tabs.

  11. Novel bimetallic dispersed catalysts for temperature-programmed coal liquefaction. Final report

    SciTech Connect

    Chunshan Song; Schobert, H.H.; Parfitt, D.P.

    1997-11-01

    Development of new catalysts is a promising approach to more efficient coal liquefaction. It has been recognized that dispersed catalysts are superior to supported catalysts for primary liquefaction of coals, because the control of initial coal dissolution or depolymerization requires intimate contact between the catalyst and coal. This research is a fundamental and exploratory study on catalytic coal liquefaction, with the emphasis on exploring novel bimetallic dispersed catalysts for coal liquefaction and the effectiveness of temperature-programmed liquefaction using dispersed catalysts. The primary objective of this research was to explore novel bimetallic dispersed catalysts from organometallic molecular precursors, that could be used in low concentrations but exhibit relatively high activity for efficient hydroliquefaction of coals under temperature-programmed conditions. We have synthesized and tested various catalyst precursors in liquefaction of subbituminous and bituminous coals and in model compound studies to examine how do the composition and structure of the catalytic precursors affect their effectiveness for coal liquefaction under different reaction conditions, and how do these factors affect their catalytic functions for hydrogenation of polyaromatic hydrocarbons, for cleavage of C-C bonds in polycyclic systems such as 4-(1-naphthylmethyl)bibenzyl, for hydrogenolysis of C-O bond such as that in dinaphthylether, for hydrodeoxygenation of phenolic compounds and other oxygen-containing compounds such as xanthene, and for hydrodesulfurization of polycyclic sulfur compounds such as dibenzothiophene. The novel bimetallic and monometallic precursors synthesized and tested in this project include various Mo- and Fe-based compounds.

  12. Effect of pretreating of host oil on coprocessing

    SciTech Connect

    Hajdu, P.E.; Tierney, J.W.; Wender, I.

    1995-12-31

    The principal objective of this research was to determine if coprocessing performance (i.e., coal conversion and oil yield) could be significantly improved by pretreating the heavy resid prior to reacting it with coal. For this purpose, two petroleum vacuum resids (1000{degrees}F+), one from the Amoco Co. and another from the Citgo Co., were used as such and after they had been pretreated by catalytic hydrogenation and hydrocracking reactions. The pretreatments were aimed at improving the host oil by; (1) converting any aromatic structures in the petroleum to hydroaromatic compounds capable of donating hydrogen, (2) cracking the heavy oil to lower molecular weight material that might serve as a better solvent, (3) reducing the coking propensity of the heavy oil through the hydrogenation of polynuclear aromatic compounds, and (4) removing metals and heteroatoms that might poison a coprocessing catalyst. Highly dispersed catalysts, including fine particle Fe- and Mo-based, and dicobalt octacarbonyl, Co{sub 2}(CO){sub 8}, were used in this study. The untreated and pretreated resids were extensively characterized in order to determine chemical changes brought about by the pretreatments. The modified heavy oils were then coprocessed with an Illinois No. 6 coal as well as with a Wyodak coal, and compared to coprocessing with untreated resids under the same hydroliquefaction conditions. The amount of oil derived from coal was estimated by measuring the level of phenolic oxygen (derived mainly from coal) present in the oil products. Results are presented and discussed.

  13. Comparative Investigation of Benzene Steam Reforming over Spinel Supported Rh and Ir Catalysts

    SciTech Connect

    Mei, Donghai; Lebarbier, Vanessa M.; Rousseau, Roger; Glezakou, Vassiliki-Alexandra; Albrecht, Karl O.; Kovarik, Libor; Flake, Matt; Dagle, Robert A.

    2013-06-07

    In a combined experimental and first-principles density functional theory (DFT) study, benzene steam reforming (BSR) over MgAl2O4 supported Rh and Ir catalysts was investigated. Experimentally, it has been found that both highly dispersed Rh and Ir clusters (1-2 nm) on the MgAl2O4 spinel support are stable during the BSR in the temperature range of 700-850°C. Compared to the Ir/MgAl2O4 catalyst, the Rh/MgAl2O4 catalyst is more active with higher benzene turnover frequency and conversion. At typical steam conditions with the steam-to-carbon ratio > 12, the benzene conversion is only a weak function of the H2O concentration in the feed. This suggests that the initial benzene decomposition step rather than the benzene adsorption is most likely the rate-determined step in BSR over supported Rh and Ir catalysts. In order to understand the differences between the two catalysts, we followed with a comparative DFT study of initial benzene decomposition pathways over two representative model systems for each supported metal (Rh and Ir) catalysts. A periodic terrace (111) surface and an amorphous 50-atom metal cluster with a diameter of 1.0 nm were used to represent the two supported model catalysts under low and high dispersion conditions. Our DFT results show that the decreasing catalyst particle size enhances the benzene decomposition on supported Rh catalysts by lowering both C-C and C-H bond scission. The activation barriers of the C-C and the C-H bond scission decrease from 1.60 and 1.61 eV on the Rh(111) surface to 1.34 and 1.26 eV on the Rh50 cluster. For supported Ir catalysts, the decreasing particle size only affects the C-C scission. The activation barrier of the C-C scission of benzene decreases from 1.60 eV on the Ir(111) surface to 1.35 eV on the Ir50 cluster while the barriers of the C-H scission are practically the same. The experimentally measured higher BSR

  14. Effects of angiotensin, vasopressin and atrial natriuretic peptide on intraocular pressure in anesthetized rats

    NASA Technical Reports Server (NTRS)

    Palm, D. E.; Shue, S. G.; Keil, L. C.; Balaban, C. D.; Severs, W. B.

    1995-01-01

    The effects of atrial natriuretic peptide (ANP), vasopressin (AVP) and angiotensin (ANG) on blood and intraocular pressures of pentobarbital anesthetized rats were evaluated following intravenous, intracerebroventricular or anterior chamber routes of administration. Central injections did not affect intraocular pressure. Equipressor intravenous infusions of ANG raised, whereas AVP decreased, intraocular pressure. Direct infusions of a balanced salt solution (0.175 microliter/min) raised intraocular pressure between 30 and 60 min. Adding ANG or ANP slightly reduced this solvent effect but AVP was markedly inhibitory. An AVP-V1 receptor antagonist reversed the blunting of the solvent-induced rise by the peptide, indicating receptor specificity. Acetazolamide pretreatment lowered intraocular pressure, but the solvent-induced rise in intraocular pressure and inhibition by AVP still occurred without altering the temporal pattern. Thus, these effects appear unrelated to aqueous humor synthesis rate. The data support the possibility of intraocular pressure regulation by peptides acting from the blood and aqueous humor.

  15. Hydrophobic hydrophilic phenomena in biochemical processes.

    PubMed

    Ben-Naim, Arieh

    2003-09-01

    The evolution of concepts developed in the study of the hydrophobic affect is surveyed, within the more general context of solvent-induced effects. A systematic analysis of the solvent-induced contribution to the driving force for the process of protein folding has led to two important modifications in our understanding of these effects. First, the conventional concepts of hydrophobic solvation and hydrophobic interactions had to be replaced by their respective conditional effects. Second, each of the hydrophobic effects has also a corresponding hydrophilic counterpart. Some of the latter effects could contribute significantly to the total driving force for the process of protein folding, and perhaps even dominate the driving force for biochemical processes.

  16. Effects of angiotensin, vasopressin and atrial natriuretic peptide on intraocular pressure in anesthetized rats

    NASA Technical Reports Server (NTRS)

    Palm, D. E.; Shue, S. G.; Keil, L. C.; Balaban, C. D.; Severs, W. B.

    1995-01-01

    The effects of atrial natriuretic peptide (ANP), vasopressin (AVP) and angiotensin (ANG) on blood and intraocular pressures of pentobarbital anesthetized rats were evaluated following intravenous, intracerebroventricular or anterior chamber routes of administration. Central injections did not affect intraocular pressure. Equipressor intravenous infusions of ANG raised, whereas AVP decreased, intraocular pressure. Direct infusions of a balanced salt solution (0.175 microliter/min) raised intraocular pressure between 30 and 60 min. Adding ANG or ANP slightly reduced this solvent effect but AVP was markedly inhibitory. An AVP-V1 receptor antagonist reversed the blunting of the solvent-induced rise by the peptide, indicating receptor specificity. Acetazolamide pretreatment lowered intraocular pressure, but the solvent-induced rise in intraocular pressure and inhibition by AVP still occurred without altering the temporal pattern. Thus, these effects appear unrelated to aqueous humor synthesis rate. The data support the possibility of intraocular pressure regulation by peptides acting from the blood and aqueous humor.

  17. Simple, benign, aqueous-based amination of polycarbonate surfaces

    DOE PAGES

    VanDelinder, Virginia; Wheeler, David R.; Small, Leo J.; ...

    2015-03-18

    Here we report a simple, safe, environmentally-friendly aqueous method that uses diamines to functionalize a polycarbonate surface with amino groups. We demonstrate the ability of this facile method to serve as a foundation upon which other functionalities may be attached, including anti-fouling coatings and oriented membrane proteins. The use of water as the solvent for the functionalization ensures that solvent induced swelling does not affect the optical or mechanical properties of the polycarbonate.

  18. Three-Dimensional Molecular Theory of Solvation Coupled with Molecular Dynamics in Amber

    SciTech Connect

    Luchko, T.; Simmerling, C.; Gusarov, S.; Roe, D.R., Case, D.A.; Tuszynski, J.; Kovalenko, A.

    2010-02-01

    We present the three-dimensional molecular theory of solvation (also known as 3D-RISM) coupled with molecular dynamics (MD) simulation by contracting solvent degrees of freedom, accelerated by extrapolating solvent-induced forces and applying them in large multiple time steps (up to 20 fs) to enable simulation of large biomolecules. The method has been implemented in the Amber molecular modeling package and is illustrated here on alanine-dipeptide and protein-G.

  19. Solvent-Responsive Molecularly Imprinted Nanogels for Targeted Protein Analysis in MALDI-TOF Mass Spectrometry.

    PubMed

    Bertolla, Maddalena; Cenci, Lucia; Anesi, Andrea; Ambrosi, Emmanuele; Tagliaro, Franco; Vanzetti, Lia; Guella, Graziano; Bossi, Alessandra Maria

    2017-03-01

    Molecular imprinted poly(acrylamido)-derivative nanogels have shown their selectivity to bind the protein human serum transferrin (HTR) and also showed their capability for instantaneous solvent-induced modification upon the addition of acetonitrile. Integrated to matrix-assisted laser desorption/ionization time-of-flight mass analysis the HTR-imprinted solvent-responsive nanogels permitted the determination of HTR straight from serum and offered novel perspectives in targeted protein analysis.

  20. Fragmentation of Chitosan by Acids

    PubMed Central

    Arul, Joseph; Charlet, Gérard

    2013-01-01

    Fragmentation of chitosan in aqueous solution by hydrochloric acid was investigated. The kinetics of fragmentation, the number of chain scissions, and polydispersity of the fragments were followed by viscometry and size exclusion chromatography. The chemical structure and the degree of N-acetylation (DA) of the original chitosan and its fragments were examined by 1H NMR spectroscopy and elemental analysis. The kinetic data indicates that the reaction was of first order. The results of polydispersity and the DA suggest that the selected experimental conditions (temperature and concentration of acid) were appropriate to obtain the fragments having the polydispersity and the DA similar to or slightly different from those of the original one. A procedure to estimate molecular weight of fragments as well as the number of chain scissions of the fragments under the experimental conditions was also proposed. PMID:24302858

  1. Extreme ultraviolet (EUV) degradation of poly(olefin sulfone)s: Towards applications as EUV photoresists

    NASA Astrophysics Data System (ADS)

    Lawrie, Kirsten; Blakey, Idriss; Blinco, James; Gronheid, Roel; Jack, Kevin; Pollentier, Ivan; Leeson, Michael J.; Younkin, Todd R.; Whittaker, Andrew K.

    2011-02-01

    Poly(olefin sulfone)s, formed by the reaction of sulfur dioxide (SO 2) and an olefin, are known to be highly susceptible to degradation by radiation and thus have been identified as candidate materials for chain scission-based extreme ultraviolet lithography (EUVL) resist materials. In order to investigate this further, the synthesis and characterisation of two poly(olefin sulfone)s namely poly(1-pentene sulfone) (PPS) and poly(2-methyl-1-pentene sulfone) (PMPS), was achieved and the two materials were evaluated for possible chain scission EUVL resist applications. It was found that both materials possess high sensitivities to EUV photons; however; the rates of outgassing were extremely high. The only observed degradation products were found to be SO 2 and the respective olefin suggesting that depolymerisation takes place under irradiation in a vacuum environment. In addition to depolymerisation, a concurrent conversion of SO 2 moieties to a sulfide phase was observed using XPS.

  2. Irradiation of linear polyethylene - Partitioning between sol and gel.

    NASA Technical Reports Server (NTRS)

    Rijke, A. M.; Mandelkern, L.

    1971-01-01

    Molecular weight fractions of linear polyethylene were irradiated at 133 C, in the completely molten and highly crystalline states, for the purpose of assessing the importance of chain-scission processes and establishing the critical conditions for gelation. The partitioning between sol and gel in either state was found to adhere to the theory for the intermolecular cross-linking of monodisperse species for dosages just beyond the gel point. Deviations from theory occurred as the dosage was increased further. It was concluded that main-chain scission, at these temperatures, is not a significant process. High molecular weight samples in the completely molten state obeyed the Flory-Stockmayer condition for critical gelation.

  3. Evaporation residue cross sections for the {sup 64}Ni + {sup 144,154}Sm reaction -- Energy dissipation in hot nuclei

    SciTech Connect

    Back, B.B.; Blumenthal, D.J.; Davids, C.N.

    1995-08-01

    The fission hindrance of hot nuclei was deduced recently from an enhanced emission of GDR {gamma} rays, neutrons and charged particles prior to scission of heavy nuclei. In the most recent experiments addressing this topic, namely new measurements of the pre-scission {gamma} rays and evaporation residues from the {sup 32}S + {sup 184}W reaction, a rather sharp transition from negligible to full one-body dissipation occurs over the excitation energy region E{sub exc} = 60-100 MeV. However, the cross section does not appear to level out or start to decline again at the upper end of the energy range as expected in this interpretation. It is therefore clearly desirable to extend the excitation energy range to look for such an effect in order to either corroborate or refute this interpretation.

  4. Artificial restriction DNA cutters to promote homologous recombination in human cells.

    PubMed

    Katada, Hitoshi; Komiyama, Makoto

    2011-02-01

    Homologous recombination is almost the only way to modify the genome in a predetermined fashion, despite its quite low frequency in mammalian cells. It has been already reported that the frequency of this biological process can be notably increased by inducing a double strand break (DSB) at target site. This article presents completely chemistry-based artificial restriction DNA cutter (ARCUT) for the promotion of homologous recombination in human cells. This cutter is composed of Ce(IV)/EDTA complex (molecular scissors) and two strands of peptide nucleic acid (PNA), and contains no proteins. Its scission site in the genome is determined simply by Watson-Crick rule so that ARCUT for desired homologous recombination is easily and straightforwardly designed and synthesized. The site-specificity of the scission is high enough to cut human genome at one target site. The DSB induced by this cutter is satisfactorily recognized by the repair system in human cells and promotes the targeted homologous recombination.

  5. Modeling Initial Stage of Ablation Material Pyrolysis: Graphitic Precursor Formation and Interfacial Effects

    NASA Technical Reports Server (NTRS)

    Desai, Tapan G.; Lawson, John W.; Keblinski, Pawel

    2010-01-01

    Reactive molecular dynamics simulations are used to study initial stage of pyrolysis of ablation materials and their composites with carbon nanotubes and carbon fibers. The products formed during pyrolysis are characterized and water is found as the primary product in all cases. The water formation mechanisms are analyzed and the value of the activation energy for water formation is estimated. A detailed study on graphitic precursor formation reveals the presence of two temperature zones. In the lower temperature zone (less than 2000 K) polymerization occurs resulting in formation of large, stable graphitic precursors, and in the high temperature zone (greater than 2000 K) polymer scission results in formation of short polymer chains/molecules. Simulations performed in the high temperature zone on the phenolic resin composites (with carbon nanotubes and carbon fibers) shows that the presence of interfaces had no substantial effect on the chain scission rate or the activation energy value for water formation.

  6. A density functional theory study on the adsorption and decomposition of methanol on B12N12 fullerene-like nanocage

    NASA Astrophysics Data System (ADS)

    Esrafili, Mehdi D.; Nurazar, Roghaye

    2014-03-01

    The adsorption and dissociative reaction of methanol on B12N12 fullerene-like nanocage is investigated by using density functional calculations. Equilibrium geometries, adsorption energies, and electronic properties of CH3OH adsorption on the surface of the B12N12 were identified. The calculated adsorption energies range from -1.3 to -34.9 kcal/mol. It is found that the electrical conductivity of the nanocage can be modified upon the adsorption of CH3OH. The mechanism of methanol decomposition via CO and OH bond scissions is also studied. The results indicate that OH bond scission is the most favorable pathway on the B12N12 surface.

  7. A Density Functional Theory Analysis of Trends in Glycerol Decomposition on Close-Packed Transition Metal Surfaces

    SciTech Connect

    Liu, Bin; Greeley, Jeffrey P.

    2013-05-07

    We describe an accelerated density functional theory (DFT)-based computational strategy to determine trends in the decomposition of glycerol via elementary dehydrogenation, C–C, and C–O bond scission reactions on close-packed transition metal surfaces. Beginning with periodic DFT calculations on Pt(111), the thermochemistry of glycerol dehydrogenation on Pd(111), Rh(111), Cu(111) and Ni(111) is determined using a parameter-free, bond order-based scaling relationship. By combining the results with Brønsted–Evans–Polanyi (BEP) relationships to estimate elementary reaction barriers, free energy diagrams are developed on the respective metal surfaces, and trends concerning the relative selectivity and activity for C–C and C–O bond scission in glycerol on the various metals are obtained. The results are consistent with available theoretical and experimental literature and demonstrate that scaling relationships are capable of providing powerful insights into the catalytic chemistry of complex biomolecules.

  8. Shear and elongational rheology of photo-oxidative degraded HDPE and LLDPE

    NASA Astrophysics Data System (ADS)

    Wagner, Manfred Hermann; Zheng, Wang; Wang, Peng; Talamante, Sebastián Ramos; Narimissa, Esmaeil

    2017-05-01

    The effect of photo-oxidative degradation of high-density polyethylene (HDPE) and linear low-density polyethylene (LLDPE) was investigated by linear and non-linear rheological measurements. The linear-viscoelastic rheological measurements were performed at different temperatures, while the elongational viscosity was measured at 170°C and at different strain rates. The rheological data are indicative of structural changes caused by photo-oxidative degradation including formation of long-chain branches (LCB), cross-linking, and chain scission, and they revealed a cyclic and continuing competition between chain scission and LCB/gel formation. These findings are supported by additional FTIR measurements and direct measurements of the gel content of the degraded samples.

  9. Interplay between theory and experiment for fission-fragment angular distributions from nuclei near the limits of stability

    NASA Astrophysics Data System (ADS)

    Freifelder, R.; Prakash, M.; Alexander, John M.

    1986-02-01

    We examine the application of transition-state theory for fission-fragment angular distributions to composite nuclei near the limits of stability. The possible roles of saddle-point and scission-point configurations are explored. For many heavy-ion reactions that involve large angular momenta, the observed anisotropies are between the predictions of the saddle-point and scisson-point models. Empirical correlations are shown between the effective moments of inertia and the spin and {Z 2}/{A} of the compound nucleus. These correlations provide evidence for a class of transition-state nuclei intermediate between saddle- and scission-point configurations. An important indication of these patterns is that the speed of collective deformation toward fission may well be slow enough to allow for statistical equilibrium in the tilting mode even for configurations well beyond the saddle point.

  10. Symmetric splitting for the system 32S+238U at energies near and below the barrier

    NASA Astrophysics Data System (ADS)

    Freifelder, R.; Braun-Munzinger, P.; Deyoung, P.; Schicker, R.; Sen, S.; Stachel, J.

    1987-06-01

    The total capture cross section for the system 32S+238U has been measured at energies from 0.93 to 1.08 times the s-wave interaction barrier by detecting coincident fission fragments following full momentum transfer reactions. The subbarrier cross section cannot be reproduced by a one-dimensional barrier penetration model. Using a quantum mechanical coupled channels model, good agreement is obtained. The measured angular distributions of fission fragments were compared to the predictions of saddle and scission point transition state theory. Saddle point transition state model calculations fail to reproduce the data, while scission point transition state calculations are in agreement with their qualitative trend. Evidence for nonequilibrium processes is presented.

  11. From membranes to organelles: emerging roles for dynamin-like proteins in diverse cellular processes.

    PubMed

    Williams, Michelle; Kim, Kyoungtae

    2014-07-01

    Dynamin is a GTPase mechanoenzyme most noted for its role in vesicle scission during endocytosis, and belongs to the dynamin family proteins. The dynamin family consists of classical dynamins and dynamin-like proteins (DLPs). Due to structural and functional similarities DLPs are thought to carry out membrane tubulation and scission in a similar manner to dynamin. Here, we discuss the newly emerging roles for DLPs, which include vacuole fission and fusion, peroxisome maintenance, endocytosis and intracellular trafficking. Specific focus is given to the role of DLPs in the budding yeast Saccharomyces cerevisiae because the diverse function of DLPs has been well characterized in this organism. Recent insights into DLPs may provide a better understanding of mammalian dynamin and its associated diseases.

  12. Stability of a salicylate-based poly(anhydride-ester) to electron beam and gamma radiation

    PubMed Central

    Rosario-Meléndez, Roselin; Lavelle, Linda; Bodnar, Stanko; Halperin, Frederick; Harper, Ike; Griffin, Jeremy; Uhrich, Kathryn E.

    2011-01-01

    The effect of electron beam and gamma radiation on the physicochemical properties of a salicylate-based poly(anhydride-ester) was studied by exposing polymers to 0 (control), 25 and 50 kGy. After radiation exposure, salicylic acid release in vitro was monitored to assess any changes in drug release profiles. Molecular weight, glass transition temperature and decomposition temperature were evaluated for polymer chain scission and/or crosslinking as well as changes in thermal properties. Proton nuclear magnetic resonance and infrared spectroscopies were also used to determine polymer degradation and/or chain scission. In vitro cell studies were performed to identify cytocompatibility following radiation exposure. These studies demonstrate that the physicochemical properties of the polymer are not substantially affected by exposure to electron beam and gamma radiation. PMID:21909173

  13. p-Nitrobenzenesulfenate esters as precursors for laser flash photolysis studies of alkyl radicals.

    PubMed

    Newcomb, Martin; Daublain, Pierre; Horner, John H

    2002-11-29

    A series of p-nitrobenzenesulfenate esters was used in laser flash photolysis (LFP) studies to generate alkoxyl radicals that fragmented to give the (2,2-diphenylcyclopropyl)methyl radical. Rate constants for the beta-scission reactions increased as a function of the carbonyl compound produced in the fragmentation reaction in the order CH2O < MeCHO < Me2CO < PhCHO < Ph2CO and increased with increasing solvent polarity. For alkoxyl radicals that fragment to produce benzaldehyde and benzophenone, the beta-scission reactions are faster than 1,5-hydrogen atom abstractions when the incipient carbon radical is as stable as a secondary alkyl radical, and this entry to carbon radicals can be used in LFP kinetic studies.

  14. EB radiation crosslinking of elastomers [rapid communication

    NASA Astrophysics Data System (ADS)

    Bik, J.; Głuszewski, W.; Rzymski, W. M.; Zagórski, Z. P.

    2003-06-01

    Radiation-induced crosslinking is proposed as successful alternative to conventional, chemical methods of crosslinking of elastomers. Hydrogenated acrylonitrile-butadiene rubber was irradiated with 10 MeV electron beam to doses up to 300 kGy. Irradiated samples were investigated for the extent of crosslinking and for properties important for understanding of mechanisms. It follows from sol-gel analysis, that for 100 crosslinking acts there are 6-9 acts of chain scission. It is less than expected from the 20% participation of multi-ionization spurs, also in the solid state, as announced during the previous 9th Tihany Conference (Radiat. Phys. Chem. 56 (1999) 559). However, the apparent too low yield of multi-ionization spurs could be explained by partial conversion of scission products into crosslinks of specific trifunctional Y type. Our investigations confirm the usefulness of consideration of different radiation spurs in polymers, as well as in all, low LET irradiated media.

  15. The mechanism of gamma-radiolysis of polymethylene, polypropylene and poly-n-butylene oxides: An ESR investigation

    NASA Astrophysics Data System (ADS)

    Faucitano, A.; Buttafava, A.; Martinotti, F.; Ferloni, P.; Magistris, A.

    The basic features of the mechanism of the solid state radiolysis of the title polyethers have been elucidated with an ESR study using the matrix isolation and spin-trapping techniques. The species identified at 77 K are α-alkoxy radicals arising from hydrogen abstractions probably involving the primary ether cation-radicals; chain scission radicals are formed on warming as a consequence of the thermal decomposition of the α-alkoxy radical precursors. The formation of acyl and α-keto radicals, which is observed on warming near room temperature, is identified with cage hydrogen abstraction reactions taking place between the products of the β-scission of the α-alkoxy radicals. Direct information on the stability and ESR properties of the polymeric ether cation-radicals, which are thought to be important intermediates in the radiolysis mechanism, have been obtained by irradiation in the CFCl 3 matrix.

  16. New experimental approaches to investigate the fission dynamics

    SciTech Connect

    Benlliure, J. Rodríguez-Sánchez, J. L.; Alvarez-Pol, H.; Ayyad, Y.; Cortina-Gil, D.; Paradela, C.; Pietras, B.; Ramos, D.; Vargas, J.; Audouin, L.; Boutoux, G.; Bélier, G.; Chatillon, A.; Gorbinet, T.; Laurent, B.; Martin, J.-F.; Pellereau, E.; Taïeb, J.; Casarejos, E.; Heinz, A.; and others

    2016-07-07

    The first ever achieved full identification of both fission fragments, in atomic and mass number, made it possible to define new observables sensitive to the fission dynamics along the fission path up to the scission point. Moreover, proton-induced fission of {sup 208}Pb at high energies offers optimal conditions for the investigation of dissipative, and transient effects, because of the high-excitation energy of the fissioning nuclei, its low angular momentum, and limited shape distortion by the reaction. In this work we show that the charge distribution of the final fission fragments can constrain the ground-to-saddle dynamics while the mass distribution is sensitive to the dynamics until the scission point.

  17. Irradiation of linear polyethylene - Partitioning between sol and gel.

    NASA Technical Reports Server (NTRS)

    Rijke, A. M.; Mandelkern, L.

    1971-01-01

    Molecular weight fractions of linear polyethylene were irradiated at 133 C, in the completely molten and highly crystalline states, for the purpose of assessing the importance of chain-scission processes and establishing the critical conditions for gelation. The partitioning between sol and gel in either state was found to adhere to the theory for the intermolecular cross-linking of monodisperse species for dosages just beyond the gel point. Deviations from theory occurred as the dosage was increased further. It was concluded that main-chain scission, at these temperatures, is not a significant process. High molecular weight samples in the completely molten state obeyed the Flory-Stockmayer condition for critical gelation.

  18. Membrane Fission Is Promoted by Insertion of Amphipathic Helices and Is Restricted by Crescent BAR Domains

    PubMed Central

    Boucrot, Emmanuel; Pick, Adi; Çamdere, Gamze; Liska, Nicole; Evergren, Emma; McMahon, Harvey T.; Kozlov, Michael M.

    2012-01-01

    Summary Shallow hydrophobic insertions and crescent-shaped BAR scaffolds promote membrane curvature. Here, we investigate membrane fission by shallow hydrophobic insertions quantitatively and mechanistically. We provide evidence that membrane insertion of the ENTH domain of epsin leads to liposome vesiculation, and that epsin is required for clathrin-coated vesicle budding in cells. We also show that BAR-domain scaffolds from endophilin, amphiphysin, GRAF, and β2-centaurin limit membrane fission driven by hydrophobic insertions. A quantitative assay for vesiculation reveals an antagonistic relationship between amphipathic helices and scaffolds of N-BAR domains in fission. The extent of vesiculation by these proteins and vesicle size depend on the number and length of amphipathic helices per BAR domain, in accord with theoretical considerations. This fission mechanism gives a new framework for understanding membrane scission in the absence of mechanoenzymes such as dynamin and suggests how Arf and Sar proteins work in vesicle scission. PMID:22464325

  19. Exploring postsaddle nuclear dissipation with light-particle multiplicity at high energy

    NASA Astrophysics Data System (ADS)

    Wang, N.; Ye, W.

    2013-05-01

    Based on the stochastic Langevin equation coupled with a statistical decay model, we study the effects of deformation on the accuracy of extracting saddle-to-scission friction (β) by analyzing prescission neutron yields measured in heavy compound nuclei 248Fm, 252Fm, 256Fm, and 251Es. It is shown that accounting for the effect can appreciably reduce the value of β needed to fit data, and a friction value of (11-13)×1021 s-1 is obtained. Furthermore, we find that at low energy the sensitivity of light charged particles (LCPs) to β almost disappears, but the sensitive dependence of neutrons and LCPs on friction is substantially enhanced with increasing excitation energy. Our findings suggest that to obtain precise information of saddle-to-scission nuclear dissipation with particle emission, besides taking into account deformation effects in theoretical calculations, in experiments it is best to populate heavy fissioning systems with high energy.

  20. Low-energy ion beam bombardment effect on the plant-cell-envelope mimetic membrane for DNA transfer

    NASA Astrophysics Data System (ADS)

    Prakrajang, K.; Sangwijit, K.; Anuntalabhochai, S.; Wanichapichart, P.; Yu, L. D.

    2012-09-01

    This study is a systematic analysis of the mechanisms involved in ion-beam induced DNA transfer, an important application of ion beam biotechnology. Cellulose membranes were used to mimic the plant cell envelope. Ion beams of argon (Ar) or nitrogen (N) at an energy of 25 keV bombarded the cellulose membranes at fluences ranging from 1015 to 1016 ions/cm2. The damage to the ion-beam-bombarded membranes was characterized using infrared spectroscopy, a micro tensile test and scanning electron microscopy (SEM). Chain scission was the dominant radiation damage type in the membrane. DNA diffusion across the membrane was significantly increased after ion beam bombardment. The increase in DNA transfer is therefore attributed to chain scission, which increases the permeability by increasing the number of pores in the membrane.

  1. Photocleavage of DNA and photofootprinting of E. coli RNA polymerase bound to promoter DNA by azido-9-acridinylamines.

    PubMed Central

    Jeppesen, C; Buchardt, O; Henriksen, U; Nielsen, P E

    1988-01-01

    The long-wavelength ultraviolet (lambda approximately 420 nm) radiation induced reaction between 6-azido-2-methoxy-9-acridinylamines and supercoiled plasmid DNA results in single strand scissions and formation of covalent adducts (ratio approximately 1:10). By treating azidoacridine-photomodified DNA with piperidine at 90 degrees C, additional strand scissions are observed in a complex sequence dependent manner with an overall preference for T greater than or equal to G greater than C much greater than A. The resulting DNA fragments migrate as 5'-phosphates in polyacrylamide gels. Photofootprinting of the binding site of RNA-polymerase on promoter DNA is demonstrated with an azido-9-acridinylamino-octamethylene-9-aminoacridine. Similar experiments using 9-amino-6-azido-2-methoxyacridine indicate that this reagent recognizes changes in the DNA conformation induced by RNA polymerase binding, in relation to open complex formation. Images PMID:3041368

  2. MMI (Michigan Molecular Institute) International Symposium on Polymer Melt Dynamics (18th) Held in Midland, Michigan on August 16-19, 1987

    DTIC Science & Technology

    1987-08-19

    chain-scission reactions on experimental time scales. The model should be relevant to the description of flexible surfactant micelles, end-linking...molecules, however, and the viscoelastic properties are influenced by the presence of small amounts of other molecules which are, or can behave as... viscoelastic response of a polymer chain bound by reversible crosslinks to a (phantom) network are considered in a mean field picture. Reversible

  3. Self-Assembly of Metal Nanoclusters in Block Co-Polymers

    DTIC Science & Technology

    2001-11-01

    nanostrings [9]. 37 examples include the formation of Fe nanorods via the decomposition of Fe(CO) 5 in the presence of poly(methyl methacrylate) (PMMA), and...the formation of nanostrings in the presence of poly(carbonate) (PC). This latter nanostructure is accompanied by extensive scission of the polymer...chains, which may be partly responsible for the formation of the small Fe particles organized as nanostrings [9]. These examples are comprised of

  4. a Microscopic Theory of Low Energy Fission:. Fragment Properties

    NASA Astrophysics Data System (ADS)

    Younes, W.; Gogny, D.; Schunck, N.

    2014-09-01

    We present fully microscopic time-dependent calculations of fission-fragment properties (mass distributions, pre-scission energies, total kinetic and excitation energies) for the 235U(n, f) and 239Pu (n, f) reactions. The mass distributions for both reactions have been obtained as a function of incident neutron energy from thermal to 5 MeV. The various energies have been calculated for the thermal 239Pu (n, f) reaction. We compare our calculations to experimental results, wherever possible.

  5. Abscission checkpoint control: stuck in the middle with Aurora B.

    PubMed

    Carmena, Mar

    2012-07-01

    At the end of cell division, the cytoplasmic bridge joining the daughter cells is severed through a process that involves scission of the plasma membrane. The presence of chromatin bridges 'stuck' in the division plane is sensed by the chromosomal passenger complex (CPC) component Aurora B kinase, triggering a checkpoint that delays abscission until the chromatin bridges have been resolved. Recent work has started to shed some light on the molecular mechanism by which the CPC controls the timing of abscission.

  6. Conjugation-Driven "Reverse Mars-van Krevelen"-Type Radical Mechanism for Low-Temperature C-O Bond Activation.

    PubMed

    Mironenko, Alexander V; Vlachos, Dionisios G

    2016-07-06

    C-O bond activation on monofunctional catalysts (metals, carbides, and oxides) is challenging due to activity constraints imposed by energy scaling relationships. Yet, contrary to predictions, recently discovered multifunctional metal/metal oxide catalysts (e.g., Rh/ReOx, Rh/MoOx, Ir/VOx) demonstrate unusually high C-O scission activity at moderate temperatures. Herein, we use extensive density functional theory calculations, first-principles microkinetic modeling, and electronic structure analysis to elucidate the metal/metal oxide synergy in the Ru/RuO2 catalyst, which enables up to 76% yield of the C-O scission product (2-methyl furan) in catalytic transfer hydrogenolysis of furfural at low temperatures. Our key mechanistic finding is a facile radical-mediated C-O bond activation on RuO2 oxygen vacancies, which directly leads to a weakly bound final product. This is the first time the radical reduction mechanism is reported in heterogeneous catalysis at temperatures <200 °C. We attribute the unique catalytic properties to the formation of a conjugation-stabilized furfuryl radical upon C-O bond scission, the strong hydroxyl affinity of oxygen vacancies due to the metallic character of RuO2, and the acid-base heterogeneity of the oxide surface. The conjugation-driven radical-assisted C-O bond scission applies to any catalytic surface that preserves the π-electron system of the reactant and leads to C-O selectivity enhancement, with notable examples including Cu, H-covered Pd, self-assembled monolayers on Pd, and oxygen-covered Mo2C. Furthermore, we reveal the cooperativity of active sites in multifunctional catalysts. The mechanism is fully consistent with kinetic studies and isotopic labeling experiments, and the insights gained might prove useful more broadly in overcoming activity constraints induced by energy scaling relationships.

  7. Low Density Materials

    DTIC Science & Technology

    2013-03-07

    Scission with Molecular Dynamics Chain backbone dihedral angle associated to uncoiling Free volume clusters in molecular system Strain Cu m ul at iv...High Performance Bonding A to m % Sputtering Depth, h (nm) Si HL Epoxy-Rich Zr-Rich Sputteringa.) SiO2 TiO2 SnO2 Al2O3 NiO ITO BMG tune

  8. Thermal rupture of linear alternate copolymers: a molecular dynamics study.

    PubMed

    Ghosh, A; Lee, Won Bo

    2011-08-28

    The thermal rupture of a linear alternating copolymer fixed at one end and pulled by a constant force at the other end has been studied using molecular dynamics simulation. The dependence of the first breakage time distribution on the mass ratio of the constituent beads has been studied. The Arrhenian nature of the scission process has been confirmed and an estimate of the effective energy barrier has been made. © 2011 American Institute of Physics

  9. Molecular Weight Dependence of E-Beam Resist Sensitivity

    DTIC Science & Technology

    1989-05-12

    reverse if necessary and identify by block number) FIELD GROUP SUB-GROUP \\-’,ficrolithography, Resist,-.4ossliking, Scissioning \\ Roly ( methyl...imiage formation) by selective dissolution. Poly ( methyl metha- crylate). a poular ct itiq;; -hain-scissoig ie s is developed by dissolving exposed...areas. Poly ( chloromethyl, styrene), a’-4aiv reit coslnk ne xs and is developed by dissolving the unexpo~sed polymer. In each case the equations relating

  10. Characterization of Acetylene Terminated Sulfone (ATS-G)

    DTIC Science & Technology

    1983-05-01

    probably produced by thermal isomerizations of the polyene chain to a most stable configuration. The cured Tg’s of fractions 2 - 7 are all between 200...scission process which partially volatilizes the sample leaving polyene centered aromatic clusters which fuze above 600’C to produce carbon monoxide...AFWAL-TS-83-4011 The stabilities of Fl - F3 with respect to Step 1 of degradation increase with polyene concentration (or cross link density) in the

  11. ACCELERATED DETERIORATION OF ELASTOMERS

    DTIC Science & Technology

    soluble metal salts , hydrazines and thiols on rates of oxidation and chain scission of polyisoprene. The metal compounds examined have no significant pro...pronounced pro oxidant effects. Most metal octanoates and naphthenates catalyze the decomposition of rubber hydroperoxides . The proportion of chain cleav...age and the rate of chain initiation vary with the metal. Thus, cobalt and manganese salts cause most rapid disappearance of peroxides but the former

  12. Economic efficiency and effectiveness of ways of separating materials electro diamond processing

    NASA Astrophysics Data System (ADS)

    Khafizov, I. I.

    2016-06-01

    Purveying operations on the division of all types of materials include a hand and machine scission on the equipment of the different setting. In an engineer there is reliable information about the mastered methods, their maximum possibilities and defects. With the increase of stake of expenses there was a problem of research of new types of division of materials on materials, especially it touched scarce and expensive alloys.

  13. Kinetic studies of the mechanism of direct chlorination of methane in the presence of porous fillers

    SciTech Connect

    Aglulin, A.G.; Bakshi, Yu.M.; Gel'bshtein, A.I.

    1983-05-01

    The kinetics of methane chlorination were studied in the gas phase and in the presence of various kinds of porous fillers. The rate of initiation by chlorine atoms on the filler surface was estimated, the activation energy of the heterogeneous dissociation of chlorine was calculated, and an initiation mechanism was proposed. It was concluded that homogeneous chain scission predominates. A kinetic equation that corresponds to the experimental data was obtained. 3 figures, 2 tables.

  14. Solubilisation of tomato fruit pectins by ascorbate: a possible non-enzymic mechanism of fruit softening.

    PubMed

    Dumville, Jo C; Fry, Stephen C

    2003-10-01

    The aim of this work was to test the hypothesis that endogenous ascorbate, released into the apoplast by membrane permeabilisation early in fruit ripening, could promote the solubilisation and depolymerisation of polysaccharides, and thus contribute to fruit softening. In vitro, ascorbate (1 mM), especially in the presence of traces of either Cu2+ or H2O2, solubilised up to 40% of the total pectin from the alcohol-insoluble residue of mature-green tomato (Lycopersicon esculentum Mill.) fruit. Solubilisation was due to the action of ascorbate-generated hydroxyl radicals (*OH), which can cause non-enzymic scission of polysaccharides. The pectins solubilised by ascorbate in vitro were polydisperse (4-1,000 kDa), partially esterified and galactose-rich. Excised pieces of living tomato fruit released ascorbate into the medium (apoplast); the ability of different tissues to do this increased in the order pericarp < placenta < locule. In all three tissues, but especially in the locule, the ability to release ascorbate increased during ripening. The Cu content of each tissue also increased during ripening, whereas neither Fe nor Mn showed a similar trend. We suggest that progressively increasing levels of Cu and ascorbate in the fruit apoplast would lead to elevated *OH production there and thus to non-enzymic scission of pectins during ripening. Such scission could contribute to the natural softening of the fruit. De-esterified citrus pectin was more susceptible to ascorbate-induced scission in vitro than methylesterified pectin, suggesting a possible new significance for pectin methylesterase activity in fruit ripening. In conclusion, non-enzymic mechanisms of fruit softening should be considered alongside the probable roles of hydrolases, xyloglucan endotransglucosylases and expansins.

  15. Explosive Residue Detection by Laser Surface Photo-Fragmentation-Fragment Detection Spectroscopy. 2. In Situ and Real-Time Monitoring of RDX. HMX, CL20, and TNT, by an Improved Ion Probe

    DTIC Science & Technology

    2005-04-01

    most likely mechanism is the homolysis of the nitro - functional group, which is weakly attached to the remainder of the molecule. NO2 may then react...that compete with R-NO2 bond scission. They include oxidation of –CH3 to form anthranil (21), nitro /nitrite isomerization (24), and catalysis. These...molecules is more complicated than the simple cleavage of a single nitro -functional group and may involve the loss of more than one nitro group from

  16. Metallotherapeutics - Novel Strategies in Drug Design

    PubMed Central

    Hocharoen, Lalintip; Cowan, J. A.

    2011-01-01

    A new paradigm for drug activity is presented, which includes both recognition and subsequent irreversible inactivation of therapeutic targets. Application to both RNA and enzyme biomolecules has been demonstrated. In contrast to RNA targets that are subject to strand scission chemistry mediated by ribose H-atom abstraction, proteins appear to be inactivated through oxidative damage to amino acid side chains around the enzyme active site. PMID:19685535

  17. Primary radiation defect production in polyethylene and cellulose.

    PubMed

    Polvi, Jussi; Luukkonen, Petri; Nordlund, Kai; Järvi, Tommi T; Kemper, Travis W; Sinnott, Susan B

    2012-11-29

    Irradiation effects in polyethylene and cellulose were examined using molecular dynamics simulations. The governing reactions in both materials were chain scissioning and generation of small hydrocarbon and peroxy radicals. Recombination of chain fragments and cross-linking between polymer chains were found to occur less frequently. Crystalline cellulose was found to be more resistant to radiation damage than crystalline polyethylene. Statistics on radical formation are presented and the dynamics of the formation of radiation damage discussed.

  18. Efficient conversion of carbohydrates into 1-C-alditols: application to the synthesis of chiral gamma-substituted butenolides and bicyclic alkaloid analogues.

    PubMed

    Boto, Alicia; Hernández, Dácil; Hernández, Rosendo

    2008-07-18

    Readily available sugar derivatives were transformed in a few steps into valuable, more complex products. The tandem radical scission of carbohydrates-oxidation reaction gave acetoxy acetals, which were converted into a variety of chiral C-alditols in good global yields and excellent 1,2-trans stereoselectivity. The reaction was the key step in the synthesis of hydroxylated gamma-substituted butenolides and bicyclic alkaloid analogues.

  19. A Scanning Electron Microscopic Study of Cell Attachment to Biodegradable Polymer Implants

    DTIC Science & Technology

    1988-08-15

    attachment ABSTRACT Y he biodegradable polymers, polylactic acid (PLA) and polyglycolic acid (PGA) are currently being studied as carriers for bioactive bone ...Research focuses on their use for sustained antibiotic delivery, bone fracture stabilization, moldable osseous repair materials and as vehicles for...hydrolytic scission which may be mediated by a variety of proteolytic enzymes. (1 ,7) Through this process, both lactic acid and glycolic acid , the respective

  20. Metal-free, direct conversion of α-amino acids into α-keto γ-amino esters for the synthesis of α,γ-peptides.

    PubMed

    Hernández, D; Boto, A; Guzmán, D; Alvarez, E

    2017-09-05

    An efficient, metal-free synthesis of unusual α-keto γ-amino esters from α-amino acids is achieved by a radical scission-oxidation-addition of silyloxy acrylates procedure, where no purification of the reaction intermediates is needed. This protocol can be applied to the selective modification of the C-terminal position in peptides to give α,γ-hybrids.

  1. The Microscopic Theory of Fission

    SciTech Connect

    Younes, W; Gogny, D

    2009-06-09

    Fission-fragment properties have been calculated for thermal neutron-induced fission on a {sup 239}Pu target, using constrained Hartree-Fock-Bogoliubov calculations with a finite-range effective interaction. A quantitative criterion based on the interaction energy between the nascent fragments is introduced to define the scission configurations. The validity of this criterion is benchmarked against experimental measurements of the kinetic energies and of multiplicities of neutrons emitted by the fragments.

  2. The study of ionizing radiation effects on polypropylene and rice husk ash composite

    NASA Astrophysics Data System (ADS)

    Alfaro, E. F.; Dias, D. B.; Silva, L. G. A.

    2013-03-01

    The aim of this work was to study the ionizing radiation effects on polypropylene/20% of rice husk ash composites. The composites were irradiated by electron beam at different doses and the mechanical and thermal properties were evaluated using tensile strength, Izod impact, hardness, softening temperature, differential scanning calorimetry (DSC) and thermogravimetry (TG). The results showed that the properties decreased by increasing irradiation dose due to chain scission.

  3. Radiolysis of Resist Polymers. III. Copolymers of Methyl-Alpha-Chloroacrylate and Trihaloethylmethacrylates.

    DTIC Science & Technology

    1983-08-01

    copolymerization reactivity ratios crosslinking scission radiolysis product analysis e 20. ABSTRACT (Continue on reverse side if necessary and identify by block...8217-chloroacrylate (MCA) of a range of composition were synthesized. Radiolysis of copolymers are initiated by Li dissociative electron capture by the...773 TECHNICAL REPORT NO. 3 Radiolysis of Resist Polymers. Ill. Copolymers of Methyl-a-Chloroacrylate and Trihaloethylmethacrylates P. By G.N. Babu, P.H

  4. Simulation of Fracture Nucleation in Cross-Linked Polymer Networks

    NASA Astrophysics Data System (ADS)

    Moller, J. C.; Barr, S. A.; Schultz, E. J.; Breitzman, T. D.; Berry, R. J.

    2013-02-01

    A novel atomistic simulation method is developed whereby polymer systems can undergo strain-rate-controlled deformation while bond scission is enabled. The aim is to provide insight into the nanoscale origins of fracture. Various highly cross-linked epoxy systems including various resin chain lengths and levels of nonreactive dilution were examined. Consistent with the results of physical experiments, cured resin strength increased and ductility decreased with increasing cross-link density. An analysis of dihedral angle activity shows the locations in the molecular network that are most absorptive of mechanical energy. Bond scission occurred principally at cross-link sites as well as between phenyl rings in the bisphenol moiety. Scissions typically occurred well after yield and were accompanied by steady increases in void size and dihedral angle motion between bisphenol moieties and at cross-link sites. The methods developed here could be more broadly applied to explore and compare the atomistic nature of deformation for various polymers such that mechanical and fracture properties could be tuned in a rational way. This method and its results could become part of a solution system that spans multiple length and time scales and that could more completely represent such mechanical events as fracture.

  5. Description of induced nuclear fission with Skyrme energy functionals: Static potential energy surfaces and fission fragment properties

    NASA Astrophysics Data System (ADS)

    Schunck, N.; Duke, D.; Carr, H.; Knoll, A.

    2014-11-01

    Eighty years after its experimental discovery, a description of induced nuclear fission based solely on the interactions between neutrons and protons and quantum many-body methods still poses formidable challenges. The goal of this paper is to contribute to the development of a predictive microscopic framework for the accurate calculation of static properties of fission fragments for hot fission and thermal or slow neutrons. To this end, we focus on the 239Pu(n ,f ) reaction and employ nuclear density functional theory with Skyrme energy densities. Potential energy surfaces are computed at the Hartree-Fock-Bogoliubov approximation with up to five collective variables. We find that the triaxial degree of freedom plays an important role, both near the fission barrier and at scission. The impact of the parametrization of the Skyrme energy density and the role of pairing correlations on deformation properties from the ground state up to scission are also quantified. We introduce a general template for the quantitative description of fission fragment properties. It is based on the careful analysis of scission configurations, using both advanced topological methods and recently proposed quantum many-body techniques. We conclude that an accurate prediction of fission fragment properties at low incident neutron energies, although technologically demanding, should be within the reach of current nuclear density functional theory.

  6. A multi-scale method for modeling degradation of bioresorbable polyesters.

    PubMed

    Zhang, Taohong; Zhou, Shaonan; Gao, Xiaohao; Yang, Zhiyong; Sun, Leran; Zhang, Dezheng

    2017-03-01

    A multi-scale model using the cellular automata (CA) and kinetic Monte Carlo (KMC) methods is presented to simulate the degradation process of bioresorbable polyesters such as polylactide (PLA), polyglycolide (PGA) and their copolymers. The model considers the underlying chemical and physical events such as polymer chain scission, oligomer production, crystallization induced by polymer chain scissions, oligomer diffusion and microstructure evolution due to erosion of the small chains. A macroscopic device is discretized into an array of mesoscopic cells. Each cellular lattice is assumed to be made of one polymer chain, which undergoes hydrolysis reaction. The polymer chain scission is modeled using a kinetic Monte Carlo method. Oligomer production, chain crystallization and formation of cavities due to polymer collapse are also modeled on the cellular lattice. Oligomer diffusion is modeled by using Fick's laws at the macroscopic scale. The diffusion coefficient is taken as dependent on the porosity caused by the formation of the cavities. The interactions among the microscopic hydrolysis reaction, mesoscopic formation of cavities and macroscopic diffusion are taken into account. The proposed method forms Multi Scale Cellular Monte Carlo Automata (MS-CMCA). The three-scale approach consists of continuous method and discrete method to deal with certainty problem with underlying stochastic phenomenon. Demonstration examples are provided which show that the model can fit with experimental data in the literature very well.

  7. Use of divalent metal ions in the DNA cleavage reaction of topoisomerase IV

    PubMed Central

    Pitts, Steven L.; Liou, Grace F.; Mitchenall, Lesley A.; Burgin, Alex B.; Maxwell, Anthony; Neuman, Keir C.; Osheroff, Neil

    2011-01-01

    It has long been known that type II topoisomerases require divalent metal ions in order to cleave DNA. Kinetic, mutagenesis and structural studies indicate that the eukaryotic enzymes utilize a novel variant of the canonical two-metal-ion mechanism to promote DNA scission. However, the role of metal ions in the cleavage reaction mediated by bacterial type II enzymes has been controversial. Therefore, to resolve this critical issue, this study characterized the DNA cleavage reaction of Escherichia coli topoisomerase IV. We utilized a series of divalent metal ions with varying thiophilicities in conjunction with oligonucleotides that replaced bridging and non-bridging oxygen atoms at (and near) the scissile bond with sulfur atoms. DNA scission was enhanced when thiophilic metal ions were used with substrates that contained bridging sulfur atoms. In addition, the metal-ion dependence of DNA cleavage was sigmoidal in nature, and rates and levels of DNA cleavage increased when metal ion mixtures were used in reactions. Based on these findings, we propose that topoisomerase IV cleaves DNA using a two-metal-ion mechanism in which one of the metal ions makes a critical interaction with the 3′-bridging atom of the scissile phosphate and facilitates DNA scission by the bacterial type II enzyme. PMID:21300644

  8. Aging studies of Kevlar 49 fibers

    SciTech Connect

    Morgan, R.J.; Pruneda, C.O.; Kong, F.M.

    1983-11-01

    The aging mechanisms in service environment of Kevlar 49 fibers, E.I. duPont, (poly(p-phenylene)terephthalamide) are reviewed. The principal aging mechanisms considered are (i) u.v.-, (ii) hydrolytic- and (iii) stress-induced macromolecular chain scission and microvoid growth. U.V.-induced strength degradation can be significant as a result of photo-oxidative and photodegradative radical formation but in Kevlar 49-epoxy composites only the exterior yarn layer is deteriorated. Hydrolytic chain scission of the amide linkage and corresponding fiber strength deterioration is considered in terms of R.H., time, temperature and stress level. The rates of hydrolytic degradation at 100% R.H. in the 100 to 200/sup 0/C range are reported. The estimated rates of fiber degradation in various service environment conditions are also reported and shown not to be serious. The stress-induced aging of Kevlar 49 fibers is considered in terms of the growth and coalescence of inherent microvoids along the fiber axis together with the generation of new microvoids. (These growth processes involve no detectable macromolecular chain scission or deterioration in fiber strength.) At a critical microvoid volume fraction catastrophic failure occurs by interconnection of such voids.

  9. Structure and dynamics of cylindrical micelles at equilibrium and under shear flow

    NASA Astrophysics Data System (ADS)

    Huang, C.-C.; Ryckaert, J.-P.; Xu, H.

    2009-04-01

    The dynamics and rheology of semidilute unentangled micellar solutions are investigated by Langevin dynamics mesoscopic simulations coupled to a microreversible kinetic model for scissions and recombinations. Two equilibrium state points, differing by the scission energy and therefore by the corresponding average micelle length, have been examined. The kinetic rates are tuned by an independent parameter of the model, whose range is chosen in such a way that the kinetics always strongly couple to the chain dynamics. Our results confirm, as predicted by Faivre and Gardissat, that the stress relaxation, as well as the monomer diffusion, is characterized by a time τΛ , defined by the lifetime of a segment Λ , whose Rouse relaxation time is equal to its lifetime. Moreover, the power-law dependence of the zero-shear viscosity versus τΛ was evidenced. Under stationary shear, the chains are deformed and their average bond length is increased, which enhances the overall scission frequency. In turn, this induces an overall shortening of the chains in order to increase the overall corresponding chain-end recombination frequency, as required by the stationary conditions. Nonequilibrium simulations show that the chain deformation and orientation, as well as the rheology of the system, can be expressed as universal functions of a single reduced shear rate βΛ=γ˙τΛ (with γ˙ the bare shear rate). Furthermore, local analysis of the kinetics under stationary shear gives insights on the variation of the average length with shear rate.

  10. Chemical modifications of artificial restriction DNA cutter (ARCUT) to promote its in vivo and in vitro applications

    PubMed Central

    Komiyama, Makoto

    2014-01-01

    ABSTRACT Recently, completely chemistry-based tools for site-selective scission of DNA (ARCUT) have been prepared by combining 2 strands of pseudo-complementary PNA (pcPNA: site-selective activator) and a Ce(IV)-EDTA complex (molecular scissors). Its site-specificity is sufficient to cut the whole human genome at one predetermined site. In this first-generation ARCUT, however, there still remain several problems to be solved for wider applications. This review presents recent approaches to solve these problems. They are divided into (i) covalent modification of pcPNA with other functional groups and (ii) new strategies using conventional PNA, in place of pcPNA, as site-selective activator. Among various chemical modifications, conjugation with positively-charged nuclear localization signal peptide is especially effective. Furthermore, unimolecular activators, a single strand of which successfully activates the target site in DNA for site-selective scission, have been also developed. As the result of these modifications, the site-selective scission by Ce(IV)-EDTA was achieved promptly even under high salt conditions which are otherwise unfavourable for double-duplex invasion. Furthermore, it has been shown that “molecular crowding effect,” which characterizes the inside of living cells, enormously promotes the invasion, and thus the invasion seems to proceed effectively and spontaneously in the cells. Strong potential of pcPNA for further applications in vivo and in vitro has been confirmed. PMID:26744220

  11. A new role for myosin II in vesicle fission.

    PubMed

    Flores, Juan A; Balseiro-Gomez, Santiago; Cabeza, Jose M; Acosta, Jorge; Ramirez-Ponce, Pilar; Ales, Eva

    2014-01-01

    An endocytic vesicle is formed from a flat plasma membrane patch by a sequential process of invagination, bud formation and fission. The scission step requires the formation of a tubular membrane neck (the fission pore) that connects the endocytic vesicle with the plasma membrane. Progress in vesicle fission can be measured by the formation and closure of the fission pore. Live-cell imaging and sensitive biophysical measurements have provided various glimpses into the structure and behaviour of the fission pore. In the present study, the role of non-muscle myosin II (NM-2) in vesicle fission was tested by analyzing the kinetics of the fission pore with perforated-patch clamp capacitance measurements to detect single vesicle endocytosis with millisecond time resolution in peritoneal mast cells. Blebbistatin, a specific inhibitor of NM-2, dramatically increased the duration of the fission pore and also prevented closure during large endocytic events. Using the fluorescent markers FM1-43 and pHrodo Green dextran, we found that NM-2 inhibition greatly arrested vesicle fission in a late phase of the scission event when the pore reached a final diameter of ∼ 5 nm. Our results indicate that loss of the ATPase activity of myosin II drastically reduces the efficiency of membrane scission by making vesicle closure incomplete and suggest that NM-2 might be especially relevant in vesicle fission during compound endocytosis.

  12. Clerocidin selectively modifies the gyrase-DNA gate to induce irreversible and reversible DNA damage

    PubMed Central

    Pan, Xiao Su; Dias, Miriam; Palumbo, Manlio; Fisher, L. Mark

    2008-01-01

    Clerocidin (CL), a microbial diterpenoid, reacts with DNA via its epoxide group and stimulates DNA cleavage by type II DNA topoisomerases. The molecular basis of CL action is poorly understood. We establish by genetic means that CL targets DNA gyrase in the Gram-positive bacterium Streptococcus pneumoniae, and promotes gyrase-dependent single- and double-stranded DNA cleavage in vitro. CL-stimulated DNA breakage exhibited a strong preference for guanine preceding the scission site (−1 position). Mutagenesis of −1 guanines to A, C or T abrogated CL cleavage at a strong pBR322 site. Surprisingly, for double-strand breaks, scission on one strand consistently involved a modified (piperidine-labile) guanine and was not reversed by heat, salt or EDTA, whereas complementary strand scission occurred at a piperidine-stable −1 nt and was reversed by EDTA. CL did not induce cleavage by a mutant gyrase (GyrA G79A) identified here in CL-resistant pneumococci. Indeed, mutations at G79 and at the neighbouring S81 residue in the GyrA breakage-reunion domain discriminated poisoning by CL from that of antibacterial quinolones. The results suggest a novel mechanism of enzyme inhibition in which the −1 nt at the gyrase-DNA gate exhibit different CL reactivities to produce both irreversible and reversible DNA damage. PMID:18723572

  13. The role of carbon-carbon phenyl migration in the pyrolysis mechanism of beta-O-4 lignin model compounds: phenethyl phenyl ether and alpha-hydroxy phenethyl phenyl ether

    SciTech Connect

    Beste, Ariana; Buchanan III, A C

    2012-01-01

    We investigate phenyl shift and subsequent beta-scission reactions for PhCHXCHOPh [X = H, OH], which are part of the pyrolysis mechanism of phenethyl phenyl ether (PPE) and alpha-hydroxy PPE. PPE and its derivatives are model compounds for the most common linkage in lignin, the beta-O-4 linkage. We use density functional theory to locate transition states and equilibrium structures, and kinetic Monte Carlo in combination with transition state theory for kinetic simulations. Oxygen-carbon and carbon-carbon phenyl shift reactions proceed through cyclic intermediates with similar barriers. But, while subsequent beta-scission of the oxygen-carbon shift products proceeds with virtually no barrier, the activation energy for beta-scission of the carbon-carbon shift products exceeds 15 kcal/mol. We found that about 15 % of beta-radical conversion can be attributed to carbon-carbon shift for PPE and alpha-hydroxy PPE at 618 K. Whereas the oxygen-carbon shift reaction has been established as an integral part of the pyrolysis mechanism of PPE and its derivatives, participation of the carbon-carbon shift reaction has not been shown previously.

  14. Coulomb and even-odd effects in cold and super-asymmetric fragmentation for thermal neutron induced fission of 235U

    NASA Astrophysics Data System (ADS)

    Montoya, M.

    2016-07-01

    Even-odd effects of the maximal total kinetic energy (Kmax) as a function of charge (Z) and mass (A) of fragments from thermal neutron induced fission of actinides are questioned by other authors. In this work, visiting old results on thermal neutron induced fission of 235U, those even-odd effects are reconfirmed. The cases seeming to contradict even-odd effects are interpreted with the Coulomb effect hypothesis. According to Coulomb effect hypothesis, Kmax is equal to the Coulomb interaction energy of the most compact scission configuration. As a consequence, between two isobaric charge splits with similar Q-values, the more asymmetrical one will get the more compact scission configuration and then it will reach the higher Kmax-value. In some cases, the more asymmetrical charge split corresponds, by coincidence, to an odd charge split; consequently its higher Kmax-value may be misinterpreted as anti-even-odd effect. Another experimental result reported in the literature is the increasing of even-odd effects on charge distribution on the more asymmetrical fragmentations region. In this region, the difference between Kmax and Q-values increases with asymmetry, which means that the corresponding scission configuration needs higher total deformation energy to occur. Higher deformation energy of the fragments implies lower free energy to break nucleon pairs. Consequently, in the asymmetric fragmentation region, the even-odd effects of the distribution of proton number and neutron number must increase with asymmetry.

  15. A New Role for Myosin II in Vesicle Fission

    PubMed Central

    Cabeza, Jose M.; Acosta, Jorge; Ramirez-Ponce, Pilar; Ales, Eva

    2014-01-01

    An endocytic vesicle is formed from a flat plasma membrane patch by a sequential process of invagination, bud formation and fission. The scission step requires the formation of a tubular membrane neck (the fission pore) that connects the endocytic vesicle with the plasma membrane. Progress in vesicle fission can be measured by the formation and closure of the fission pore. Live-cell imaging and sensitive biophysical measurements have provided various glimpses into the structure and behaviour of the fission pore. In the present study, the role of non-muscle myosin II (NM-2) in vesicle fission was tested by analyzing the kinetics of the fission pore with perforated-patch clamp capacitance measurements to detect single vesicle endocytosis with millisecond time resolution in peritoneal mast cells. Blebbistatin, a specific inhibitor of NM-2, dramatically increased the duration of the fission pore and also prevented closure during large endocytic events. Using the fluorescent markers FM1-43 and pHrodo Green dextran, we found that NM-2 inhibition greatly arrested vesicle fission in a late phase of the scission event when the pore reached a final diameter of ∼ 5 nm. Our results indicate that loss of the ATPase activity of myosin II drastically reduces the efficiency of membrane scission by making vesicle closure incomplete and suggest that NM-2 might be especially relevant in vesicle fission during compound endocytosis. PMID:24959909

  16. Phosphorylation Regulates the Endocytic Function of the Yeast Dynamin-Related Protein Vps1.

    PubMed

    Smaczynska-de Rooij, Iwona I; Marklew, Christopher J; Allwood, Ellen G; Palmer, Sarah E; Booth, Wesley I; Mishra, Ritu; Goldberg, Martin W; Ayscough, Kathryn R

    2015-12-28

    The family of dynamin proteins is known to function in many eukaryotic membrane fusion and fission events. The yeast dynamin-related protein Vps1 functions at several stages of membrane trafficking, including Golgi apparatus to endosome and vacuole, peroxisomal fission, and endocytic scission. We have previously shown that in its endocytic role, Vps1 functions with the amphiphysin heterodimer Rvs161/Rvs167 to facilitate scission and release of vesicles. Phosphoproteome studies of Saccharomyces cerevisiae have identified a phosphorylation site in Vps1 at serine 599. In this study, we confirmed this phosphorylation event, and we reveal that, like Rvs167, Vps1 can be phosphorylated by the yeast cyclin-associated kinase Pho85 in vivo and in vitro. The importance of this posttranslational modification was revealed when mutagenesis of S599 to a phosphomimetic or nonphosphorylatable form caused defects in endocytosis but not in other functions associated with Vps1. Mutation to nonphosphorylatable valine inhibited the Rvs167 interaction, while both S599V and S599D caused defects in vesicle scission, as shown by both live-cell imaging and electron microscopy of endocytic invaginations. Our data support a model in which phosphorylation and dephosphorylation of Vps1 promote distinct interactions and highlight the importance of such regulatory events in facilitating sequential progression of the endocytic process.

  17. The adsorption and reaction of ethylene glycol and 1,2-propanediol on Pd(111): A TPD and HREELS study

    NASA Astrophysics Data System (ADS)

    Griffin, Michael B.; Jorgensen, Erica L.; Medlin, J. Will

    2010-09-01

    The reactions of ethylene glycol and 1,2-propanediol have been studied on Pd(111) using temperature programmed desorption (TPD) and high resolution electron energy loss spectroscopy (HREELS). Both molecules initially decompose through O-H activation, forming ethylenedioxy (-OCH 2CH 2O-) and 1,2-propanedioxy (-OCH 2CH(CH 3)O-) surface intermediates. For ethylene glycol, increases in thermal energy lead to dehydrogenation and formation of carbonyl species at both oxygen atoms. The resulting glyoxal (O═CHCH═O) either desorbs molecularly or reacts through one of two competing pathways. The favored pathway proceeds via C-C bond scission, dehydrogenation, and decarbonylation to form carbon monoxide and hydrogen. In a minor pathway, small amounts of glyoxal undergo C-O bond scission and recombination with surface hydrogen to form ethylene and water. The same reaction mechanism occurs for 1,2-propanediol after methyl elimination and formation of glyoxal. However, this is accompanied by a minor pathway involving a methylglyoxal (O=CHC(CH 3)=O) intermediate. The prevalence of the dehydrogenation/decarbonylation pathway in the current work is consistent with the high selectivity for C-C scission in the aqueous phase reforming of polyols on supported Pd catalysts.

  18. Superacid catalyzed depolymerization and conversion of coals. Final technical report. [HF:BF/sub 2//H/sub 2/

    SciTech Connect

    Olah, G.

    1980-01-01

    We were interested in applying superacid catalyzed cleavage-depolymerization and ionic hydrogenation low temperature conversion of coal to liquid hydrocarbon, as well as obtaining information about the reactions involved and the structure of intermediates of the coal liquefaction process. In order to show the feasibility of our proposed research we have carried out preliminary investigation in these areas. Preceding our work there was no practical application of a superacid system to coal liquefaction. We carried out an extensive study of the potential of the HF:BF/sub 3//H/sub 2/ system for coal hydroliquefaction. Under varying conditions of reactant ratio, reaction time and temperature, we were able to obtain over 95% pyridine extractible product by treating coal in HF:BF/sub 3/:H/sub 2/ system at approx. 100/sup 0/C for 4 hours. The coal to acid ratio was 1:5 and FB/sub 3/ at 900 psi and H/sub 2/ at 500 psi were used. These are extremely encouraging results in that the conditions used are drastically milder than those used in any known process, such as Exxon donor solvent and related processes. The cyclohexane extractibility of the treated coal was as high as 27% and the yield of liquid distillate at 400/sup 0/C/5 x 10/sup -3//sup torr/ was approx. 30%. The infrared spectrum of product coal, extracts and distillates were distinctly different from the starting coal and show a significant increase in the amount of saturates. The /sup 1/H NMR spectrum of cyclohexane extract of the treated coal shows essentially all aliphatic photons. The spectra of other treated coal extracts show increased amounts and types of aliphatic protons as well as significant amounts of protons bound to unsaturated sites. This again indicattes that the HF-BF/sub 3/ system is depolymerizing the coal to small fragments which are soluble in non-polar solvents.

  19. Superacid Catalyzed Depolymerization and Conversion of Coals. Final Technical Report. [HF:BF{sub 2}/H{sub 2}

    DOE R&D Accomplishments Database

    Olah, G.

    1980-01-01

    We were interested in applying superacid catalyzed cleavage-depolymerization and ionic hydrogenation low temperature conversion of coal to liquid hydrocarbon, as well as obtaining information about the reactions involved and the structure of intermediates of the coal liquefaction process. In order to show the feasibility of our proposed research we have carried out preliminary investigation in these areas. Preceding our work there was no practical application of a superacid system to coal liquefaction. We carried out an extensive study of the potential of the HF:BF{sub 3}/H{sub 2} system for coal hydroliquefaction. Under varying conditions of reactant ratio, reaction time and temperature, we were able to obtain over 95% pyridine extractible product by treating coal in HF:BF{sub 3}:H{sub 2} system at approx. 100 degrees C for 4 hours. The coal to acid ratio was 1:5 and FB{sub 3} at 900 psi and H{sub 2} at 500 psi were used. These are extremely encouraging results in that the conditions used are drastically milder than those used in any known process, such as Exxon donor solvent and related processes. The cyclohexane extractibility of the treated coal was as high as 27% and the yield of liquid distillate at 400 degrees C/5 x 10{sup -3}/sup torr/ was approx. 30%. The infrared spectrum of product coal, extracts and distillates were distinctly different from the starting coal and show a significant increase in the amount of saturates. The {sup 1}H NMR spectrum of cyclohexane extract of the treated coal shows essentially all aliphatic photons. The spectra of other treated coal extracts show increased amounts and types of aliphatic protons as well as significant amounts of protons bound to unsaturated sites. This again indicates that the HF-BF{sub 3} system is depolymerizing the coal to small fragments which are soluble in non-polar solvents.

  20. Research and development of an advanced process for conversion of coal to synthetic gasoline and other distillate motor fuels. Final report

    SciTech Connect

    Succop, D.C.; Wynne, F.E.

    1980-03-01

    The intial objective of this project was to investigate an advanced process for the conversion of coal to synthetic gasoline and other distillate motor fuels, by delayed coking of a coal/petroleum resid slurry with an associated displacement of petroleum residual to the Fluid Catalytic Cracking Unit. The coking process met or exceeded technical and economic predictions. Ambient pressure coking experiments with two different coal slurries demonstrated synergistic increases in C/sub 3/+ distillate yield and product quality. Slurry viscosity measurements and heater fouling tests indicated only slightly pseudo-plastic slurry behavior and no unusual pumping resistance or pressure drop in slurry heaters. However, above 814/sup 0/F rapid coking and heater fouling was experienced. Laboratory hydrogen transfer mechanism studies led to the conclusion that no C-C transfer occurred during coking. The process appears to be that of general H-H scrambling, perhaps promoted by the presence of a metal reactor and/or coal mineral matter functioning as a catalyst. A profitable coal slurry coking process could be obtained under circumstances in which a high-sulfur (about 4%) fuel oil could be marketed, excess FCC and Alkylation unit capacities would be available due to feedstock shortages, or an improved metals-tolerant FCC catalyst (or a low metals FCC feedstock) would be available. Coking was experienced in only one of the original screening runs. Other runs at 2200 psig system pressure did not foul at inside wall temperatures as high as 988/sup 0/F with similar heat flux levels. However, plugging was seen at these temperature levels when the heat flux was increased to design levels. A DOE review of their needs indicated that the remainder of the contract time and money should be redirected to a study of hydroliquefaction slurry heating.

  1. Advancement of flash hydrogasification. Quarterly technical progress report, January-March 1984

    SciTech Connect

    Falk, A.Y.

    1984-06-25

    This first quarterly report documents technical progress during the period 31 December 1983 through 30 March 1984. The technical effort is 17 months in duration and is divided into two major technical tasks: Task VII, Hardware Fabrication and PDU Modifications, and Task VIII, Performance Testing. The design of test hardware and process development unit modifications had been previously completed as part of Task VI of the current contract. Task VII involves the fabrication of test hardware and modification of an existing 1-ton/h hydroliquefaction PDU at Rockwell's facilities for use as a hydrogasifier test facility. During this report period, fabrication of the test hardware and modifications to the PDU were initiated. Test hardware fabrication is now approximately 80% complete and should be completed by the end of May 1984. PDU modifications are progressing well and should be completed by the end of June 1984. The completed test hardware fabrication and PDU modifications will allow the conduct of short duration (1 to 2 h) hydrogasification tests along with preburner assembly performance evaluation tests in order to fulfill the test program objectives. Separate supplies of hydrogen, oxygen, methane, carbon monoxide, and water (for steam generation) are provided for this purpose. The modified facility is designed to accommodate both 10- and 20-ft-long hydrogasifier reactors so that residence times will be in the range of 2 to 6 s when coal is fed at a nominal 1/2 ton/h into reactors at 1000 psia pressure. Provisions are being made for real-time analysis of the product gases using an on-line gas chromatograph system. Test planning was the only Task VIII effort active during this report period. An initial (preliminary) test matrix has been defined. Preparation of a data analysis plan is underway, and data reduction programs are being programmed. 17 references, 25 figures, 6 tables.

  2. Fundamentals of coal depolymerization: an experimental and statistical correlative model of the effects of temperature and solvent on free radicals in coal. Quarterly report, October 1-December 31, 1980

    SciTech Connect

    Petrakis, L; Grandy, D W; Jones, G L

    1981-01-01

    In this project we are attempting to develop information as to the nature and possible role of free radicals in the depolymerization of coal under hydroliquefaction conditions. It is generally assumed that free radical chemistry plays an important role in the liquefaction of coal. Central in our work has been the use of a specially designed high pressure/high temperature electron spin resonance cavity that allows us to quantitatively monitor free radicals in coal 2 to 4 minutes after the heating cycle is initiated. The free radical concentration has been measured quantitatively and repetitively at these various sets of conditions. The heating time has been restricted to three minutes, gas pressure to 1600 psi and the gas used is hydrogen. The main conclusions from this work include the following: in general, the coal free radicals are quenched in the naphthalene < SRC-II heavy distillate < tetralin. The observed free radical concentration depends on the competing effects of free radical formation and free radical quenching, the latter being both temperature and solvent dependent. The free radical concentration of the liquefaction slurry generally increases with increasing temperature. The rate of quenching of free radicals by SRC-II heavy distillate is closer to that of tetralin at lower temperatures and approaches that of naphthalene at the higher temperature. From the results of the full correlative model, we find that temperature, solvent and residence time and their interactions account for about 90% of the effects noted in the free radical concentration. The correlative model represents the experimental results within the reproducibility of the data.

  3. Explicit solvent simulations of the aqueous oxidation potential and reorganization energy for neutral molecules: gas phase, linear solvent response, and non-linear response contributions.

    PubMed

    Guerard, Jennifer J; Tentscher, Peter R; Seijo, Marianne; Samuel Arey, J

    2015-06-14

    First principles simulations were used to predict aqueous one-electron oxidation potentials (Eox) and associated half-cell reorganization energies (λaq) for aniline, phenol, methoxybenzene, imidazole, and dimethylsulfide. We employed quantum mechanical/molecular mechanical (QM/MM) molecular dynamics (MD) simulations of the oxidized and reduced species in an explicit aqueous solvent, followed by EOM-IP-CCSD computations with effective fragment potentials for diabatic energy gaps of solvated clusters, and finally thermodynamic integration of the non-linear solvent response contribution using classical MD. A priori predicted Eox and λaq values exhibit mean absolute errors of 0.17 V and 0.06 eV, respectively, compared to experiment. We also disaggregate Eox into several well-defined free energy properties, including the gas phase adiabatic free energy of ionization (7.73 to 8.82 eV), the solvent-induced shift in the free energy of ionization due to linear solvent response (-2.01 to -2.73 eV), and the contribution from non-linear solvent response (-0.07 to -0.14 eV). The linear solvent response component is further apportioned into contributions from the solvent-induced shift in vertical ionization energy of the reduced species (ΔVIEaq) and the solvent-induced shift in negative vertical electron affinity of the ionized species (ΔNVEAaq). The simulated ΔVIEaq and ΔNVEAaq are found to contribute the principal sources of uncertainty in computational estimates of Eox and λaq. Trends in the magnitudes of disaggregated solvation properties are found to correlate with trends in structural and electronic features of the solute. Finally, conflicting approaches for evaluating the aqueous reorganization energy are contrasted and discussed, and concluding recommendations are given.

  4. Excited-state symmetry breaking of linear quadrupolar chromophores: A transient absorption study

    NASA Astrophysics Data System (ADS)

    Dozova, Nadia; Ventelon, Lionel; Clermont, Guillaume; Blanchard-Desce, Mireille; Plaza, Pascal

    2016-11-01

    The photophysical properties of two highly symmetrical quadrupolar chromophores were studied by both steady-state and transient absorption spectroscopy. Their excited-state behavior is dominated by the solvent-induced Stokes shift of the stimulated-emission band. The origin of this shift is attributed to symmetry breaking that confers a non-vanishing dipole moment to the excited state of both compounds. This dipole moment is large and constant in DMSO, whereas symmetry breaking appears significantly slower and leading to smaller excited-state dipole in toluene. Time-dependant increase of the excited-state dipole moment induced by weak solvation is proposed to explain the results in toluene.

  5. Thin Ag films. Influence of substrate and postdeposition treatment on morphology and optical properties

    SciTech Connect

    Roark, S.E.; Rowlen, K.L. )

    1994-01-15

    In an effort to understand the experimental parameters that influence thin metal film morphology and optical characteristics, thin Ag films are examined with a combination of atomic force microscopy (AFM), optical absorption, and surface-enhanced Raman spectroscopy (SERS). The morphology of 5 nm of Ag vapor deposited onto glass, derivatized glass, Formvar-coated glass, and mica is explored. The substrate is found to have a large effect on both Ag film surface morphology and optical properties. In addition, micrographs of a Ag film before and after exposure to solvent suggest solvent-induced morphological changes. 32 refs., 8 figs., 5 tabs.

  6. Solute-solvent interactions measured by allerhand and schleyer's g parameter. application of this parameter to predict ν(gas) from solution values.

    NASA Astrophysics Data System (ADS)

    Somolinos, C.; Rodriguez, I.; Redondo, M. I.; Garcia, M. V.

    1986-03-01

    Carbonyl stretching band in N,N-dimethylformamide and benzophenone and sulfonyl stretching band in dimethylsulfoxide have been measured in solution in 37 solvents. Solvents induced frequency shifts on these bands have been used to calculate G solvent parameter following Allerhand and Schleyer's method. G scale has been extended to include some alcohols in it. Following the Koppel-Palm treatment G values have been correlated with non-specific and specific interaction terms. Results show that the contribution of non-specific interaction terms is predominant. G values have been used to predict ν(gas) of C=O stretching band in ethyl-chloroacetates from solution data.

  7. Effect of the ortho alkylation of perylene bisimides on the alignment and self-assembly properties.

    PubMed

    Dasgupta, Debarshi; Kendhale, Amol M; Debije, Michael G; Ter Schiphorst, Jeroen; Shishmanova, Ivelina K; Portale, Giuseppe; Schenning, Albertus P H J

    2014-08-01

    The effect of the ortho alkylation of perylene bisimides on the alignment and self-assembly properties has been studied. It was found that the dichroic properties of perylene bisimides in a liquid crystal host can be reversed with a single synthetic step by ortho alkylation. Furthermore, a solvent-induced growth of ultralong organic n-type semiconducting fibrils from non-ortho-alkylated perylene bisimide was observed. Ortho substitution of the perylene bisimide core alters the mode of fibrillar growth, leading to isotropic crystallization.

  8. Solvent Dynamical Effects in Electron Transfer: Molecular Dynamics Simulations of Reactions in Methanol

    DTIC Science & Technology

    1993-04-01

    Lennard - Jones (LJ) spheres in contact, of varying diameter (4 or 5 A), and containing a univalent charge (cation or anion) on one site so to probe possible effects of the ionic charge sign. Following equilibration, the collective solvent response to a sudden charge transfer between the spherical sites is followed, and described in terms of the response function C(t), describing the difference in the solvent-induced electrostatic potential between the initial and final solute states. In all cases, the C(t) curves exhibit a very rapid (50-100 fs) initial decay component

  9. High-performance liquid chromatographic enantioseparation of 3,5-disubstituted hydantoins analogs and temperature-induced reversals of elution orders on a polysaccharide-based chiral stationary phase.

    PubMed

    Yang, Xinying; Su, Li; Hou, Xuben; Ding, Shengyong; Xu, Wenfang; Wang, Binghe; Fang, Hao

    2014-08-15

    Enantioseparations were achieved for eleven 3,5-disubstituted hydantoins in HPLC under the normal phase mode using Chiralpak IA. The effects of polar alcoholic modifier and column temperature on retention and enantioseparation were determined. Importantly, we found two kinds of enantiomer elution order (EEO) reversals, which include solvent-induced EEO reversal for compound 9 and temperature-induced EEO reversals for compound 3 and compound 6. The phenomena of these EEO reversals were described for the first time in present work, which is helpful to elucidate the chiral separation mechanism of these hydantoins. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Transfer Protein TraY of Plasmid R1 Stimulates TraI-Catalyzed oriT Cleavage In Vivo

    PubMed Central

    Karl, Wolfgang; Bamberger, Martina; Zechner, Ellen L.

    2001-01-01

    The effect of TraY protein on TraI-catalyzed strand scission at the R1 transfer origin (oriT) in vivo was investigated. As expected, the cleavage reaction was not detected in Escherichia coli cells expressing tral and the integration host factor (IHF) in the absence of other transfer proteins. The TraM dependence of strand scission was found to be inversely correlated with the presence of TraY. Thus, the TraY and TraM proteins could each enhance cleaving activity at oriT in the absence of the other. In contrast, no detectable intracellular cleaving activity was exhibited by TraI in an IHF mutant strain despite the additional presence of both TraM and TraY. An essential role for IHF in this reaction in vivo is, therefore, implied. Mobilization experiments employing recombinant R1 oriT constructions and a heterologous conjugative helper plasmid were used to investigate the independent contributions of TraY and TraM to the R1 relaxosome during bacterial conjugation. In accordance with earlier observations, traY was dispensable for mobilization in the presence of traM, but mobilization did not occur in the absence of both traM and traY. Interestingly, although the cleavage assays demonstrate that TraM and TraY independently promote strand scission in vivo, TraM remained essential for mobilization of the R1 origin even in the presence of TraY. These findings suggest that, whereas TraY and TraM function may overlap to a certain extent in the R1 relaxosome, TraM additionally performs a second function that is essential for successful conjugative transmission of plasmid DNA. PMID:11208788

  11. Thermochemistry and Kinetic Analysis of the Unimolecular Oxiranyl Radical Dissociation Reaction: A Theoretical Study.

    PubMed

    Wang, Heng; Bozzelli, Joseph W

    2016-07-04

    Oxirane structures are important in organic synthesis, and they are important initial products in the oxidation reactions of alkyl radicals. The thermochemical properties (enthalpy of formation, entropy, and heat capacity) for the reaction steps of the unimolecular oxiranyl radical dissociation reaction are determined and compared with the available literature. The overall ring opening and subsequent steps involve four types of reactions: β-scission ring opening, intramolecular hydrogen transfer, β-scission hydrogen elimination, and β-scission methyl radical elimination. The enthalpies of formation of the transition states are determined and evaluated using six popular Density Functional Theory (DFT) calculation methods (B3LYP, B2PLYP, M06, M06-2X, ωB97X, ωB97XD), each combined with three different basis sets. The DFT enthalpy values are compared with five composite calculation methods (G3, G4, CBS-QB3, CBS-APNO, W1U), and by CCSD(T)/aug-cc-pVTZ. Kinetic parameters are determined versus pressure and temperature for the unimolecular dissociation pathways of an oxiranyl radical, which include the chemical activation reactions of the ring-opened oxiranyl radical relative to the ring-opening barrier. Multifrequency quantum Rice Ramsperger Kassel (QRRK) analysis is used to determine k(E) with master equation analysis for falloff. The major overall reaction pathway at lower combustion temperatures is oxiranyl radical dissociation to a methyl radical and carbon monoxide. Oxiranyl radical dissociation to a ketene and hydrogen atom is the key reaction path above 700 K.

  12. A comparison of the characteristics of excimer and femtosecond laser ablation of acrylonitrile butadiene styrene (ABS)

    NASA Astrophysics Data System (ADS)

    See, Tian Long; Liu, Zhu; Li, Lin; Zhong, Xiang Li

    2016-02-01

    This paper presents an investigation on the ablation characteristics of excimer laser (λ = 248 nm, τ = 15 ns) and femtosecond laser (λ = 800 nm, τ = 100 fs) on ABS polymer sheets. The laser-material interaction parameters (ablation threshold, optical penetration depth and incubation factor) and the changes in material chemical properties were evaluated and compared between the two lasers. The work shows that the ablation threshold and effective optical penetration depth values are dependent on the wavelength of laser beam (photon energy) and the pulse width. The ablation threshold value is lower for the excimer laser ablation of ABS (Fth = 0.087 J/cm2) than that for the femtosecond laser ablation of ABS (Fth = 1.576 J/cm2), demonstrating a more dominating role of laser wavelength than the pulse width in influencing the ablation threshold. The ablation depth versus the logarithmic scale of laser fluence shows two linear regions for the fs laser ablation, not previously known for polymers. The effective optical penetration depth value is lower for excimer laser ablation (α-1 = 223 nm) than that for femtosecond laser ablation (α-1 = 2917 nm). The ablation threshold decreases with increasing number of pulses (NOP) due to the chain scission process that shortens the polymeric chains, resulting in a weaker polymeric configuration and the dependency is governed by the incubation factor. Excimer laser treatment of ABS eliminates the Cdbnd C bond completely through the chain scission process whereas Cdbnd C bond is partially eliminated through the femtosecond laser treatment due to the difference in photon energy of the two laser beams. A reduction in the Cdbnd C bond through the chain scission process creates free radical carbons which then form crosslinks with each other or react with oxygen, nitrogen and water in air producing oxygen-rich (Csbnd O and Cdbnd O bond) and nitrogen-rich (Csbnd N) functional groups.

  13. Chemistry of oxygenates on transition metal surfaces: Activation of C- H, C-C, and C-O bonds

    SciTech Connect

    Not Available

    1991-01-01

    Goal is to understand the requirements for and competition between activation of C-H, C-C, and C-O bonds in the synthesis and decomposition of oxygenates on transition metal surfaces. Efforts during the past year was devoted primarily to the role of activation of {beta}-CH bonds in decarbonylation of higher oxygenates on surfaces of metals such as Rh and Pd; studies were completed of more than a dozen C{sub 1}-C{sub 3} oxygenates on Rh(111), and progress was made with reagents for which {beta}-CH scission is blocked. It is shown that alcohols and aldehydes do not react via a common pathway on on Rh(111). Ethanol and acetaldehyde are formed from CO + H{sub 2} by parallel routes on Rh catalysts which do not contain interacting supports or oxide promoters; i.e., the two compounds result from CO insertion into different metal-hydrocarbon bonds. Aldehydes decarbonylate via {alpha}-CH scission to form acyl, followed by C-C scission to release an alkyl ligand; this ligand undergoes hydrogenation and dehydrogenation steps. Alcohols form surface alkoxides, but these do not dehydrogenate further to the aldehydes, they release CO + H{sub 2} but no volatile hydrocarbon. These results indicate that {beta}-CH scissors to form a surface oxametallacycle intermediate; supporting evidence is spresented for this intermediate. Chemistry of alcohols blocked to different extends at the {beta}-position was also studied; complete blocking (CF{sub 3}CH{sub 2}OH) forces the reaction to follow the aldehyde-acyl path, while partial substitution at the {beta} position (branched alcohols) favors the oxametallacycle pathway. (DLC)

  14. Chemistry of oxygenates on transition metal surfaces: Activation of C- H, C-C, and C-O bonds. Progress report, December 15, 1991

    SciTech Connect

    Not Available

    1991-12-31

    Goal is to understand the requirements for and competition between activation of C-H, C-C, and C-O bonds in the synthesis and decomposition of oxygenates on transition metal surfaces. Efforts during the past year was devoted primarily to the role of activation of {beta}-CH bonds in decarbonylation of higher oxygenates on surfaces of metals such as Rh and Pd; studies were completed of more than a dozen C{sub 1}-C{sub 3} oxygenates on Rh(111), and progress was made with reagents for which {beta}-CH scission is blocked. It is shown that alcohols and aldehydes do not react via a common pathway on on Rh(111). Ethanol and acetaldehyde are formed from CO + H{sub 2} by parallel routes on Rh catalysts which do not contain interacting supports or oxide promoters; i.e., the two compounds result from CO insertion into different metal-hydrocarbon bonds. Aldehydes decarbonylate via {alpha}-CH scission to form acyl, followed by C-C scission to release an alkyl ligand; this ligand undergoes hydrogenation and dehydrogenation steps. Alcohols form surface alkoxides, but these do not dehydrogenate further to the aldehydes, they release CO + H{sub 2} but no volatile hydrocarbon. These results indicate that {beta}-CH scissors to form a surface oxametallacycle intermediate; supporting evidence is spresented for this intermediate. Chemistry of alcohols blocked to different extends at the {beta}-position was also studied; complete blocking (CF{sub 3}CH{sub 2}OH) forces the reaction to follow the aldehyde-acyl path, while partial substitution at the {beta} position (branched alcohols) favors the oxametallacycle pathway. (DLC)

  15. Decomposition mechanisms in thermally-aged thin-film explosives

    SciTech Connect

    Erickson, K.L.; Trott, W.M.; Renlund, A.M.

    1994-10-01

    The isothermal decomposition of nitrocellulose (NC) has been examined using two substantially different experimental techniques, involving both confined and unconfined samples. The confined isothermal aging technique involved confined thin-film samples heated to temperatures of 150 to 170{degrees}C, for 1 to 72 hours. Condensed-phase chemistry was monitored real-time using FTIR. Results indicated that the first step in decomposition was scission of the O-NO{sub 2} bond and subsequent formation of carbonyl and hydroxyl products. Scission of the O-NO{sub 2} bond appeared to occur by a first-order reaction. The Arrhenius expression for the first-order reaction rate constant was evaluated from the experimental data. The unconfined rapid isothermal decomposition technique involved both high speed-photography and time-of-flight mass spectrometry (TOFMS). Mass spectra obtained from experiments at 420{degrees}C indicated that NO{sub 2} formation and, therefore, scission of the O-NO{sub 2} bond occurred by a first order reaction, the rate constant for which was evaluated from the experimental data. The rate constant for global pseudo-first order decomposition of NC at 450{degrees}C was also estimated from high speed photography results. Rate constants at 420 and 450{degrees}C were predicted using the Arrhenius expression developed from the confined isothermal aging results and were in good agreement with the rate constants obtained at those temperatures in the unconfined rapid decomposition experiments using TOFMS and high-speed photography. Results from these substantially different measurements gave consistent results over a temperature range of about 300{degrees}C, in which reaction rates vary by nine orders of magnitude, and indicate that the two experimental techniques being developed have good potential for studying condensed-phase decomposition of energetic materials.

  16. Anti-Arrhenius cleavage of covalent bonds in bottlebrush macromolecules on substrate.

    PubMed

    Lebedeva, Natalia V; Nese, Alper; Sun, Frank C; Matyjaszewski, Krzysztof; Sheiko, Sergei S

    2012-06-12

    Spontaneous degradation of bottlebrush macromolecules on aqueous substrates was monitored by atomic force microscopy. Scission of C ─ C covalent bonds in the brush backbone occurred due to steric repulsion between the adsorbed side chains, which generated bond tension on the order of several nano-Newtons. Unlike conventional chemical reactions, the rate of bond scission was shown to decrease with temperature. This apparent anti-Arrhenius behavior was caused by a decrease in the surface energy of the underlying substrate upon heating, which results in a corresponding decrease of bond tension in the adsorbed macromolecules. Even though the tension dropped minimally from 2.16 to 1.89 nN, this was sufficient to overpower the increase in the thermal energy (k(B)T) in the Arrhenius equation. The rate constant of the bond-scission reaction was measured as a function of temperature and surface energy. Fitting the experimental data by a perturbed Morse potential V = V(0)(1 - e(-βx))(2) - fx, we determined the depth and width of the potential to be V(0) = 141 ± 19 kJ/mol and β(-1) = 0.18 ± 0.03 Å, respectively. Whereas the V(0) value is in reasonable agreement with the activation energy E(a) = 80-220 kJ/mol of mechanical and thermal degradation of organic polymers, it is significantly lower than the dissociation energy of a C ─ C bond D(e) = 350 kJ/mol. Moreover, the force constant K(x) = 2β(2)V(0) = 1.45 ± 0.36 kN/m of a strained bottlebrush along its backbone is markedly larger than the force constant of a C ─ C bond K(l) = 0.44 kN/m, which is attributed to additional stiffness due to deformation of the side chains.

  17. Unusually low fragment energies in the symmetric fission of /sup 259/Md

    SciTech Connect

    Wild, J.F.; Hulet, E.K.; Lougheed, R.W.; Baisden, P.A.; Landrum, J.H.; Dougan, R.J.; Mustafa, M.G.

    1982-10-01

    The 103-min isotope /sup 259/Md has been identified as the daughter of an electron-capture decay branch of /sup 259/No produced via the /sup 248/Cm(/sup 18/O,..cap alpha..3n) reaction. Chemical separations were used to confirm the identity of /sup 259/Md, which decays by spontaneous fission. The kinetic energies of coincident fission fragments were measured, corresponding to a fragment mass which is highly symmetric, similar to those of /sup 258/Fm and /sup 259/Fm. However, the total kinetic energy distribution for /sup 259/Md is considerably broader (FWHM approx.60 MeV) than those of /sup 258/Fm and /sup 259/Fm, and peaks at 201 MeV, about 35--40 MeV lower in energy. Furthermore, the maximum total Kinetic energy of 215 MeV for mass-symmetric events is about 30 MeV lower than for similar events from the spontaneous fission of /sup 258/Fm and /sup 259/Fm. A hypothesis that this energy difference resulted from the emission of light, hydrogen-like particles at scission in a large fraction of /sup 259/Md spontaneous fission decays was shown to be unfounded. From experiments to observe such particles with counter telescopes, an upper limit of 5% was determined for the fraction of fission events accompanied by light-particle emission. The total kinetic energy deficit at mass symmetry must, therefore, be distributed between internal excitation energy and fragment deformation energy at scission. Although the presence of a large amount of fragment deformation energy seems incompatible with symmetric fission into spherical Sn-like fragments, we prefer this explanation because the low total kinetic energy suggests a lowered Coulomb energy resulting from greater separation of the charge centers of deformed fragments at scission.

  18. Role of the central metal ion and ligand charge in the DNA binding and modification by metallosalen complexes.

    PubMed

    Mandal, S S; Varshney, U; Bhattacharya, S

    1997-01-01

    Several metal complexes of three different functionalized salen derivatives have been synthesized. The salens differ in terms of the electrostatic character and the location of the charges. The interactions of such complexes with DNA were first investigated in detail by UV-vis absorption titrimetry. It appears that the DNA binding by most of these compounds is primarily due to a combination of electrostatic and other modes of interactions. The melting temperatures of DNA in the presence of various metal complexes were higher than that of the pure DNA. The presence of additional charge on the central metal ion core in the complex, however, alters the nature of binding. Bis-cationic salen complexes containing central Ni(II) or Mn(III) were found to induce DNA strand scission, especially in the presence of co-oxidant as revealed by plasmid DNA cleavage assay and also on the basis of the autoradiogram obtained from their respective high-resolution sequencing gels. Modest base selectivity was observed in the DNA cleavage reactions. Comparisons of the linearized and supercoiled forms of DNA in the metal complex-mediated cleavage reactions reveal that the supercoiled forms are more susceptible to DNA scission. Under suitable conditions, the DNA cleavage reactions can be induced either by preformed metal complexes or by in situ complexation of the ligand in the presence of the appropriate metal ion. Also revealed was the fact that the analogous complexes containing Cu(II) or Cr(III) did not effect any DNA strand scission under comparable conditions. Salens with pendant negative charges on either side of the precursor salicylaldehyde or ethylenediamine fragments did not bind with DNA. Similarly, metallosalen complexes with net anionic character also failed to induce any DNA modification activities.

  19. Drosophila Cip4/Toca-1 integrates membrane trafficking and actin dynamics through WASP and SCAR/WAVE.

    PubMed

    Fricke, Robert; Gohl, Christina; Dharmalingam, Elavarasi; Grevelhörster, Astrid; Zahedi, Baharak; Harden, Nicholas; Kessels, Michael; Qualmann, Britta; Bogdan, Sven

    2009-09-15

    Developmental processes are intimately tied to signaling events that integrate the dynamic reorganization of the actin cytoskeleton and membrane dynamics. The F-BAR-domain-containing proteins are prime candidates to couple actin dynamics and membrane trafficking in different morphogenetic processes. Here, we present the functional analysis of the Drosophila F-BAR protein Cip4/Toca1 (Cdc42-interacting protein 4/transducer of Cdc42-dependent actin assembly 1). Cip4 is able to form a complex with WASP and SCAR/WAVE and recruits both actin-nucleation-promoting factors to invaginating membranes and endocytic vesicles. Actin-comet-tail-based movement of these vesicles depends not only on WASP but largely on WAVE function. In vivo, loss of cip4 function causes multiple wing hairs. A similar phenotype is observed when vesicle scission is affected after Dynamin suppression. Gene dosage experiments show that Cip4 and WAVE functionally interact to restrict wing hair formation. Further rescue experiments confirm that Cip4 is able to act through WAVE and WASP in vivo. Biochemical and functional data support a model in which Cdc42 acts upstream of Cip4 and recruits not only WASP but also SCAR/WAVE via Abi to control Dynamin-dependent cell polarization in the wing. Cip4 integrates membrane trafficking and actin dynamics through WASP and WAVE. First, Cip4 promotes membrane invaginations and triggers the vesicle scission by recruiting Dynamin to the neck of nascent vesicles. Second, Cip4 recruits WASP and WAVE proteins to induce actin polymerization, supporting vesicle scission and providing the force for vesicle movement.

  20. Coulomb and even-odd effects in cold and super-asymmetric fragmentation for thermal neutron induced fission of {sup 235}U

    SciTech Connect

    Montoya, M.

    2016-07-07

    Even-odd effects of the maximal total kinetic energy (K{sub max}) as a function of charge (Z) and mass (A) of fragments from thermal neutron induced fission of actinides are questioned by other authors. In this work, visiting old results on thermal neutron induced fission of {sup 235}U, those even-odd effects are reconfirmed. The cases seeming to contradict even-odd effects are interpreted with the Coulomb effect hypothesis. According to Coulomb effect hypothesis, K{sub max} is equal to the Coulomb interaction energy of the most compact scission configuration. As a consequence, between two isobaric charge splits with similar Q-values, the more asymmetrical one will get the more compact scission configuration and then it will reach the higher K{sub max}-value. In some cases, the more asymmetrical charge split corresponds, by coincidence, to an odd charge split; consequently its higher K{sub max}-value may be misinterpreted as anti-even-odd effect. Another experimental result reported in the literature is the increasing of even-odd effects on charge distribution on the more asymmetrical fragmentations region. In this region, the difference between K{sub max} and Q-values increases with asymmetry, which means that the corresponding scission configuration needs higher total deformation energy to occur. Higher deformation energy of the fragments implies lower free energy to break nucleon pairs. Consequently, in the asymmetric fragmentation region, the even-odd effects of the distribution of proton number and neutron number must increase with asymmetry.

  1. Relationship between hydroperoxide concentration and average molar mass in thermo-oxidized polyethylene

    NASA Astrophysics Data System (ADS)

    Da Cruz, Manuela; Van Schoors, Laetitia; Colin, Xavier; Benzarti, Karim

    2014-05-01

    The aim of this research project is to investigate the oxidation mechanism of high density polyethylene (HDPE) used in outdoor applications, in order to establish in a near future, a non-empirical kinetic model for lifetime prediction. The present paper focuses on the changes in the hydroperoxide (POOH) concentration induced by thermo-oxidative ageing, and on their relationship with the evolution of the weight average molar mass (Mw) due both to chain scission and crosslinking processes. Thin HDPE films were aged at 110 and 140°C in air under atmospheric pressure. In a first part, changes in the POOH concentration versus ageing time were assessed by three different analytical methods previously reported in the literature: modulated differential scattering calorimetry (MDSC), Fourier transform Infra-Red spectrometry after chemical derivatization treatment with gaseous sulfur dioxide (SO2-FTIR), and iodometry. A comparison of experimental results revealed that these three methods provide very similar quantitative data on POOH accumulation, whereas iodometry tends to strongly underestimate the subsequent stage of POOH decomposition. It was thus suspected that iodometry does not only titrate POOH, but also other chemical species (presumably double bonds) formed when POOH decompose. Therefore, only MDSC and SO2-FTIR were considered as relevant methods for POOH titration. In a second part, changes in Mw versus ageing time were monitored by size exclusion chromatography (SEC). A sharp drop of Mw was first observed at the beginning of exposure, which was assigned to an intensive chain scission process. Then, in a second stage, a stabilization or even a substantial re-increase in Mw was observed, suggesting a competition between chain scission and crosslinking processes. As this second stage starts at the same time as POOH decomposition, it was concluded that there is a strong correlation between both phenomena, occurring respectively at the macromolecular and molecular

  2. Actin-cytoskeleton rearrangement modulates proton-induced uptake

    SciTech Connect

    Ben-Dov, Nadav; Korenstein, Rafi

    2013-04-15

    Recently it has been shown that elevating proton concentration at the cell surface stimulates the formation of membrane invaginations and vesicles accompanied by an enhanced uptake of macromolecules. While the initial induction of inward membrane curvature was rationalized in terms of proton-based increase of charge asymmetry across the membrane, the mechanisms underlying vesicle formation and its scission are still unknown. In light of the critical role of actin in vesicle formation during endocytosis, the present study addresses the involvement of cytoskeletal actin in proton-induced uptake (PIU). The uptake of dextran-FITC is used as a measure for the factual fraction of inward invaginations that undergo scission from the cell's plasma membrane. Our findings show that the rate of PIU in suspended cells is constant, whereas the rate of PIU in adherent cells is gradually increased in time, saturating at the level possessed by suspended cells. This is consistent with pH induced gradual degradation of stress-fibers in adherent cells. Wortmannin and calyculin-A are able to elevate PIU by 25% in adherent cells but not in suspended cells, while cytochalasin-D, rapamycin and latrunculin-A elevate PIU both in adherent and suspended cells. However, extensive actin depolymerization by high concentrations of latrunculin-A is able to inhibit PIU. We conclude that proton-induced membrane vesiculation is restricted by the actin structural resistance to the plasma membrane bending. Nevertheless, a certain degree of cortical actin restructuring is required for the completion of the scission process. - Highlights: ► Acidification of cells' exterior enhances uptake of macromolecules by the cells. ► Disruption of actin stress fibers leads to enhancement of proton induced uptake. ► Extensive depolymerization of cellular actin attenuates proton-induced uptake.

  3. Biofilm formation and extracellular polymeric substances (EPS) production by Bacillus subtilis depending on nutritional conditions in the presence of polyester film.

    PubMed

    Voběrková, Stanislava; Hermanová, Soňa; Hrubanová, Kamila; Krzyžánek, Vladislav

    2016-03-01

    The influence of biofilm formation as the mode of microorganism growth on degradation of synthetic polymers represents an important research topic. This study focuses on the effect of biofilm developed by Bacillus subtilis (BS) cultivated submerged under various nutrition conditions on biodeterioration of poly(ε-caprolactone) film. Polymer in the film form (thickness 0.7 mm) was incubated for 21 days either continuously or by regularly renewed system. The scission of polyester chain bonds took place in all biotic media and was enhanced by biofilm formation in nutrient-rich media.

  4. On the identity of the last known stable radical in X-irradiated sucrose

    NASA Astrophysics Data System (ADS)

    Kusakovskij, Jevgenij; De Cooman, Hendrik; Sagstuen, Einar; Callens, Freddy; Vrielinck, Henk

    2017-04-01

    Identification of radiation-induced radicals in relatively simple molecules is a prerequisite for the understanding of reaction pathways of the radiation chemistry of complex systems. Sucrose presents an additional practical interest as a versatile radiation dosimetric system. In this work, we present a periodic density functional theory study aimed to identify the fourth stable radical species in this carbohydrate. The proposed model is a fragment suspended in the lattice by hydrogen bonds with an unpaired electron at the original C5' carbon of the fructose unit. It requires a double scission of the ring accompanied by substantial chemical and geometric reorganization.

  5. Failure modes and durability of Kevlar/epoxy composites

    SciTech Connect

    Morgan, R.J.; Mones, E.T.; Steele, W.J.; Deutscher, S.B.

    1980-06-04

    The fracture topographies of Kevlar 49/epoxy composite strands and multilayer composites in the form of pressure vessels are discussed in terms of the microscopic deformation and failure processes of the composites. The effect of resin ductility and fiber-matrix interfacial bond strength on mechanisms of fiber damage are considered. The failure of the Kevlar 49 fibers by a splitting process and the parameters, such as fiber fibrillation and macromolecular chain scission, that control such a process, are discussed in relation to fiber and composite performance.

  6. Failure modes and durability of kevlar/epoxy composites

    SciTech Connect

    Morgan, R.J.; Mones, E.T.; Steele, W.J.; Deutscher, S.B.

    1981-04-01

    The fracture topographies of Kevlar 49/epoxy composite strands and multilayer composites in the form of pressure vessels are discussed in terms of the microscopic deformation and failure processes of the composites. The effect of resin ductility and fiber-matrix interfacial bond strength on mechanisms of fiber damage are considered. The failure of the Kevlar 49 fibers by a splitting process and the parameters, such as fiber fibrillation and macromolecular chain scission, that control such a process are discussed in relation to fiber and composite performance.

  7. Study on the Microscopic Figures of Power Transformer Insulation Paper Under Electrical and Thermal Stresses

    NASA Astrophysics Data System (ADS)

    Liao, Rui-Jin; Tang, Chao; Yang, Li-Jun

    In this paper, Atomic Force Microscope (AFM) was used to observe the microscopic figure of aged insulation paper in order to analyze the microscopic ageing mechanism of power transformer insulation paper under electrical and thermal stresses. The results indicate that there are obvious concaves and convexes on the surface of aged insulation paper, and the paper samples are punctured because of chain scission and the flow of discharge current, which destroyed the compact cellulose chains structures and the diameter of punctures is about 0.5 nm. In addition, this paper analyzed the influence to the physical chemistry characteristics of insulation paper caused by partial discharge and paper ageing.

  8. Photochemical behavior of the quadruply metal-metal bonded [Tc2Cl8]2– anion in acetonitrile

    DOE PAGES

    Burton-Pye, Benjamin P.; Poineau, Frederic; Bertoia, Julie; ...

    2016-09-23

    Here, the photochemical behavior of [Tc2Cl8]2– was investigated in acetonitrile. The speciation of Tc before and after irradiation at 254 nm was performed by UV-visible spectroscopy and electrospray ionization mass spectrometry (ESI-MS). Upon irradiation at 254 nm, [Tc2Cl8]2– was unstable, the scission of the Tc ≡ Tc unit occurred and the complex [TcCl4(CH3CN)2] was identified. The disappearance rate of [M2Cl8]2– (M = Tc, Re) under irradiation has been measured and was ~7.5 time faster for Tc than for Re.

  9. Effect of electron beam irradiation on PMMA films

    SciTech Connect

    Tiwari, Pragya; Srivastava, A. K.; Khattak, B. Q.; Verma, Suveer; Upadhyay, Anuj; Sinha, A. K.; Ganguli, Tapas; Lodha, G. S.; Deb, S. K.

    2012-06-05

    Polymethyl methacrylate (PMMA) is characterized for electron beam interactions in the resist layer in lithographic applications. PMMA thin films (free standing) were prepared by solvent casting method. These films were irradiated with 30keV electron beam at different doses. Structural and chemical properties of the films were studied by means of X-ray diffraction and Fourier transform infra-red (FTIR) spectroscopy The XRD results showed that the amorphization increases with electron beam irradiation dose. FTIR spectroscopic analysis reveals that electron beam irradiation promotes the scission of carbonyl group and depletes hydrogen and converts polymeric structure into hydrogen depleted carbon network.

  10. Colloid Coalescence with Focused X Rays

    SciTech Connect

    Weon, B. M.; Kim, J. T.; Je, J. H.; Yi, J. M.; Wang, S.; Lee, W.-K.

    2011-07-01

    We show direct evidence that focused x rays enable us to merge polymer colloidal particles at room temperature. This phenomenon is ascribed to the photochemical scission of colloids with x rays, reducing the molecular weight, glass transition temperature, surface tension, and viscosity of colloids. The observation of the neck bridge growth with time shows that the x-ray-induced colloid coalescence is analogous to viscoelastic coalescence. This finding suggests a feasible protocol of photonic nanofabrication by sintering or welding of polymers, without thermal damage, using x-ray photonics.

  11. Reactivity of aminophosphonic acids. Oxidative dephosphonylation of 1-aminoalkylphosphonic acids by aqueous halogens.

    PubMed

    Drabowicz, Józef; Jordan, Frank; Kudzin, Marcin H; Kudzin, Zbigniew H; Stevens, Christian V; Urbaniak, Paweł

    2016-02-07

    The reactions of 1-aminoalkylphosphonic acids with bromine-water, chlorine-water and iodine-water were investigated. The formation of phosphoric(v) acid, as a result of a halogen-promoted cleavage of the Cα-P bond, accompanied by nitrogen release, was observed. The dephosphonylation of 1-aminoalkylphosphonic acids was found to occur quantitatively. In the reactions of 1-aminoalkylphosphonic acids with other halogen-water reagents investigated by (31)P NMR, scission of the Cα-P bond was also observed, the reaction rates being comparable for bromine and chlorine, but much slower for iodine.

  12. Effect of gamma radiation on alkanethiolate-capped gold nanoparticles: Theoretical studies

    NASA Astrophysics Data System (ADS)

    Fernández-García, M. E.; Pérez-Alvarez, M.; Mendoza-Anaya, D.; Gutiérrez-Wing, C.

    2016-03-01

    Theoretical studies of the effect of gamma irradiation on alkanethiolate-capped gold nanoparticles are presented. Icosahedral, decahedral and fcc nanoparticles protected with 1-dodecanethiolate (SC12) were obtained by molecular mechanics simulations, analyzing the effect of gamma irradiation through MonteCarlo. The studied doses were 1, 10 and 20 kGy. It was observed that slight structural modifications of the metallic core might occur and these are dependent on the shape of the nanoparticle. However, the most significant effect was observed on the organic passivating layer, where torsions, bending and scission of the alkyl chains were detected.

  13. Free Volume Related Fluorescence Properties of Electron Irradiated Chalcone Doped PMMA Films

    SciTech Connect

    Ravindrachary, Ismayil V.; Bhajantri, R. F.; Harisha, A.; Praveena, S. D.

    2011-07-15

    Effect of electron irradiation on free volume related fluorescence properties of chalcone doped Poly(methyl methacrylate)(PMMA) composite films have been studied using Positron Annihilation and Fluorescence spectroscopic techniques. In this polymer composite, enhancement of fluorescence at lower doses and reduction at higher doses has been observed under electron irradiation. From Positron annihilation studies suggests that at lower doses of irradiation induced crosslinking which affect the free volume properties and inturn hinders the chalcone molecular rotation. At higher doses chain scission process affect matrix relaxation. Under the restricted condition the chromophore molecules likely to emit enhanced fluorescence and its mobility is directly related to the free volume around it.

  14. Novel ESCRT functions in cell biology: spiraling out of control?

    PubMed

    Campsteijn, Coen; Vietri, Marina; Stenmark, Harald

    2016-08-01

    The endosomal sorting complex required for transport (ESCRT), originally identified for its role in endosomal protein sorting and biogenesis of multivesicular endosomes (MVEs), has proven to be a versatile machinery for involution and scission of narrow membrane invaginations filled with cytosol. Budding of enveloped viruses and cytokinetic abscission were early described functions for the ESCRT machinery, and recently a number of new ESCRT functions have emerged. These include cytokinetic abscission checkpoint control, plasma membrane repair, exovesicle release, quality control of nuclear pore complexes, neuron pruning, and sealing of the newly formed nuclear envelope. Here we review these novel ESCRT mechanisms and discuss similarities and differences between the various ESCRT-dependent activities.

  15. Thermal degradation of polyketones. Vibrational spectroscopy studies

    NASA Astrophysics Data System (ADS)

    Conti, G.; Sommazzi, A.

    1993-03-01

    Thermal degradation studies of regular alternating polymers of carbon monoxide and olefin have been followed by FT-IR spectroscopy. The I.R spectra of solid samples, performed in inert atmosphere and in high vacuum, were recorded as a function of time at different temperatures. From the I.R. data it is possible to conclude that the reaction process, near the melting point of the polymers, could consist of intra or intermolecular hydrogen transfer yielding an enol and a small quantity of insaturations. The thermal degradation process, at temperatures higher than melting point, involves the scission of the polymer chain and produces fragments with a large number of insaturations.

  16. Effect of irradiation on crystallinity and mechanical properties of ultrahigh molecular weight polyethylene

    SciTech Connect

    Zhao, Yong; Luo, Yunxia; Jiang, Bingzheng . Changchun Inst. of Applied Chemistry)

    1993-12-10

    Ultrahigh molecular weight polyethylene (UHMWPE) has been irradiated (0--40 Mrad) with a Co[sup 60] source at room temperature under vacuum. The crystallinity has been investigated by differential scanning calorimetry (DSC) and small-angle X-ray scattering (SAXS). The mechanical properties have been determined at room temperature. A significant increase of heat of fusion can be seen at low irradiation doses, which is attributed to crystallization, caused by chain scission during the process of irradiation. It is also observed that the thickness of the lamellae changes with irradiation dose. The Young's modulus has been improved significantly after irradiation at low doses.

  17. Constitutive modeling of Radiation effects on the Permanent Set in a silicone elastomer

    SciTech Connect

    Maiti, A; Gee, R; Weisgraber, T; Chinn, S; Maxwell, R

    2008-03-10

    When a networked polymeric composite under high stress is subjected to irradiation, the resulting chemical changes like chain scissioning and cross-link formation can lead to permanent set and altered elastic modulus. Using a commercial silicone elastomer as a specific example we show that a simple 2-stage Tobolsky model in conjunction with Fricker's stress-transfer function can quantitatively reproduce all experimental data as a function of radiation dosage and the static strain at which radiation is turned on, including permanent set, stress-strain response, and net cross-linking density.

  18. Report on ASC project degradation of organic materials.

    SciTech Connect

    Thompson, Aidan Patrick; Curro, John G.; Rottach, Dana R.; Grest, Gary Stephen; Lo, Chi S; Budzien, Joanne L.

    2006-09-01

    Using molecular dynamics simulations, a constitutive model for the chemical aging of polymer networks was developed. This model incorporates the effects on the stress from the chemical crosslinks and the physical entanglements. The independent network hypothesis has been modified to account for the stress transfer between networks due to crosslinking and scission in strained states. This model was implemented in the finite element code Adagio and validated through comparison with experiment. Stress relaxation data was used to deduce crosslinking history and the resulting history was used to predict permanent set. The permanent set predictions agree quantitatively with experiment.

  19. Interplay between compound and fragments aspects of nuclear fission and heavy-ion reaction

    SciTech Connect

    Moller, Peter; Iwamoto, A; Ichikawa, I

    2010-09-10

    The scission point in nuclear fission plays a special role where one-body system changes to two-body system. Inverse of this situation is realized in heavy-ion fusion reaction where two-body system changes to one body system. Among several peculiar phenomena expected to occur during this change, we focus our attention to the behavior of compound and fragments shell effects. Some aspects of the interplay between compound and fragments shell effect are discussed related to the topics of the fission valleys in the potential energy surface of actinide nuclei and the fusion-like trajectory found in the cold fusion reaction leading to superheavy nuclei.

  20. Effect of G/M ratio on the radiation-induced degradation of sodium alginate

    NASA Astrophysics Data System (ADS)

    Şen, Murat; Rendevski, Stojan; Kavaklı, Pınar Akkaş; Sepehrianazar, Amir

    2010-03-01

    Radiation-induced degradation of sodium alginate (NaAlg) having different G/M ratios was investigated. NaAlg samples were irradiated with gamma rays in air at ambient temperature in the solid state at low dose rate. Change in their molecular weights was followed by size exclusion chromatography (SEC). Changes in their rheological properties and viscosity values as a function of temperature, shear rate and irradiation dose were also determined. Chain scission yields, G( S), and degradation rates were calculated. It was observed that G/M ratio was an important factor controlling the G( S) and degradation rate of sodium alginate.

  1. Induced Fission of Pu240 within a Real-Time Microscopic Framework

    SciTech Connect

    Bulgac, Aurel; Magierski, Piotr; Roche, Kenneth J.; Stetcu, Ionel

    2016-03-01

    We describe the fissioning dynamics of 240Pu from a configuration in the proximity of the outer fission barrier to full scission and the formation of the fragments within an implementation of the Density Functional theory extended to superfluid systems and real-time dynamics. While the fission products emerge with properties very similar to those determined experimentally, the fission dynamics appears to be quite complex, with various shape and pairing modes being excited during the evolution. Consequently the time scale of the evolution turned out to be much slower than previously expected.

  2. Structure of adsorbed organometallic rhodium: model single atom catalysts.

    PubMed

    Bennett, R A; McCavish, N D; Basham, M; Dhanak, V R; Newton, M A

    2007-02-02

    We have determined the structure of a complex rhodium carbonyl chloride [Rh(CO)2Cl] molecule adsorbed on the TiO2(110) surface by the normal incidence x-ray standing wave technique. The data show that the technique is applicable to reducible oxide systems and that the dominant adsorbed species is undissociated with Rh binding atop bridging oxygen and to the Cl found close to the fivefold coordinated Ti ions in the surface. A minority geminal dicarbonyl species, where Rh-Cl bond scission has occurred, is found bridging the bridging oxygen ions forming a high-symmetry site.

  3. Experimental analysis of stabilizing effects of carbon nanotubes (CNTs) on thermal oxidation of poly(ethylene glycol)-CNT composites

    NASA Astrophysics Data System (ADS)

    Yamane, Shogo; Ata, Seisuke; Chen, Liang; Sato, Hiroaki; Yamada, Takeo; Hata, Kenji; Mizukado, Junji

    2017-02-01

    In this work, the thermal stabilization of poly(ethylene glycol) (PEG) by super-growth carbon nanotubes (SGCNTs) is studied by analyzing degraded compounds via high-resolution matrix-assisted laser diffusion ionization time-of-flight mass spectroscopy and IR techniques. SGCNTs successfully suppress the thermal oxidation of PEG, and the components of the degraded compounds change upon addition of SGCNTs to PEG. The SGCNTs quench mainly the RO radical generated by the initial chain scission of the Csbnd O bond of PEG, resulting in the suppression of the intermolecular proton abstraction.

  4. Electron Induced Fracture of Polymeric Materials

    NASA Astrophysics Data System (ADS)

    Klakken, Michael Lee

    The application of high energy electrons onto a polymeric sample is known to induce electronic excitations which cause many reactions including dissociation, bond scissions and chemical reactions. Dissociation and bond scission tend to "weaken" the material while the chemical reactions tend to "strengthen" the material. It is hypothesized that the introduction of energetic electrons onto a stressed sample causes a decrease in the effective bond energy of the polymers main chains. The effect of electron bombardment was studied on the following materials: polyisoprene, polybutadiene, polyethylene, BAMO/THF (an energetic elastomer), butyl rubber, Kapton-H and Teflon. The techniques used in the study are: (1) measurement of the mechanical response of a sample mounted in a tension mode due to the electron application, (2) measurement of the change in the tear energy of an elastic material due to the electron beam and (3) generating the observed responses using a molecular dynamics computer simulation method. It was found that the force required to cause crack propagation in a sample mounted in tension decreased when the applied electron current was increased. Periodic patterns were also observed on the fracture surfaces of many of the materials which indicates that both crosslinking and chain scissions occurred in the induced fracture process. The tear energy was also observed to change with the application of the electron beam. The tear energy of polybutadiene was found to first increase (i.e. predominantly crosslinking) and then decrease (i.e. predominantly chain scissions) with increasing current while the tear energy of butyl rubber was found to steadily decrease as the current was increased. The decrease of the butyl rubber was modeled using a kinetic rate process theory that gave results that agreed well with the data. A molecular dynamics computer program was also used to model the electron induced fracture event and the failure event itself. The results obtained

  5. The effects of metals and inhibitors on thermal oxidative degradation reactions of unbranched perfluoroalkyl ethers

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.; Paciorek, K. J. L.; Harris, D. H.; Smythe, M. E.; Nakahara, J. H.; Kratzer, R. H.

    1985-01-01

    Thermal oxidative degradation studies were performed on unbranched perfluoroalkylethers at 288 C in oxygen. Metals and alloys studied included Ti, Al, and Ti (4 Al, 4 Mn). The mechanism of degradation was by chain scission. Ti and Al promoted less degradation than Ti (4 Al, 4 Mn). The two inhibitors investigated (a perfluorophenyl phosphine and a phosphatriazine) reduced degradation rates by several orders of magnitude. Both inhibitors were effective for the same duration (75 to 100 hours). The phosphatriazine appeared to provide more surface protection.

  6. Predicting radiation sensitivity of polymers

    NASA Technical Reports Server (NTRS)

    Osullivan, D.; Price, P. B.; Kinoshita, K.; Willson, C. G.

    1982-01-01

    Recently two independent applications have emerged for highly radiation-sensitive polymers: as resists for production of microelectronic circuitry and as materials to record the tracks of energetic nuclear particles. The relief images used for masking in resist materials are generated by radiation-induced differential dissolution rates, whereas the techniques used in recording nuclear particle tracks employ differential etching processes, that is, development by a chemical etchant that actually degrades the polymer. It is found that the sensitivity of materials to these very different processes is related to their gamma-ray scission efficiency. This correlation provides a predictive capability.

  7. The Elementary Pragmatic Model: a new perspective in psychotherapy.

    PubMed

    De Giacomo, Piero; L'Abate, Luciano; Margari, Francesco; Santamato, Wanda; Belgiovine, Maria Teresa; Craig, Francesco; De Giacomo, Andrea

    2012-01-01

    This article describes the Elementary Pragmatic Model (EPM), that focuses on the interactions and changes that can occur between two parties. The model has undergone experimentation using the "Synthesis and Scission Sentences" procedure (SISCI Sentences) described in this work. To develop a new psychotherapy method firstly it was assessed whether the SISCI Sentences revealed differences between normal and disturbed subjects, and then whether some sentences derived from the SISCI procedure - using a specific automated program - really do have an impact even on non clinical subjects. Finally, we report some examples of clinical use of the sentences obtained with the described procedure.

  8. Neon colour spreading with and without its figural prerequisites.

    PubMed

    Bressan, P

    1993-01-01

    Neon colour spreading has been shown to disappear if certain figural conditions are not met. Evidence is presented which suggests that these conditions are only incidentally related to the neon spreading effect; in particular, that they can be violated as long as the structure remains compatible with the interpretation of a transparent surface. It is proposed that neon spreading and classical colour assimilation share the same basic mechanism, and that the peculiar perceptual attributes of the former derive from the perceptual scissioning of ordinary assimilation colour. This process is identical to that occurring with nonillusory colours in phenomenal transparency.

  9. GTPases in intracellular trafficking: an overview.

    PubMed

    Segev, Nava

    2011-02-01

    Small GTPases that belong to the ras sub-families of Rab, Arf, and Rho, and the large GTPase dynamin, regulate intracellular trafficking. This issue of Seminars of Cell and Developmental Biology highlights topics regarding mechanisms by which these GTPases regulate the different steps of vesicular transport: vesicle formation, scission, targeting and fusion. In addition, the emerging roles of GTPases in coordination of individual transport steps as well as coordination of intracellular trafficking with other cellular processes are reviewed. Finally, common structures and mechanisms underlying the function of the ras-like GTPases and the importance of their function to human health and disease are discussed.

  10. Improved Mechanical Properties and Ozone Resistance of Radiation Cured SBR

    DTIC Science & Technology

    1991-08-01

    in an electrophilic attack, a carbonium in (I) or a complex (TT) can be 6 the first intermediate : o4-/ >0 02C C Cr) (It) This was first proposed by...the formation of five-membered cyclic intermediates (I&II) 0-0 \\ \\ \\c II and he concluded that (I) decomposes into a carbonyl and biradical: 0.0 0 0...0 [--_ - -C. O=C / \\ / This scission reaction produces a ketone as ori( ui its products. 7 Another well known mechanism is the one proposed by Criegee

  11. Chemo-physical properties of renal capsules under ultraviolet-c exposure

    NASA Astrophysics Data System (ADS)

    Baghapour, Sh.; Parvin, P.; Reyhani, A.; Mortazavi, S. Z.; Mokhtari, S.; Amjadi, A.

    2014-08-01

    The renal capsule tissue of lamb was irradiated with ultraviolet-C light and the treated samples were analyzed by uniaxial tensile test, dynamic mechanical analysis, attenuated total reflectance Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and contact angle measurements. It was shown that the skin cross-linking is dominant in low doses in accordance with the contact angle assessment. Conversely, the strong bulk degradation takes place at high doses. Similarly, the bulk cross-linking affects the mechanical tests as to enhance the stiffness at low doses, whereas strong degradation occurs at high doses that mainly arises from the strong bulk chain scission.

  12. Constitutive equations of ageing polymeric materials

    NASA Technical Reports Server (NTRS)

    Peng, S. T. J.

    1985-01-01

    The constitutive equation for the relaxation behavior of time-dependent, chemically unstable materials developed by Valanis and Peng (1983), which used the irreversible thermodynamics of internal variables in Eyring's absolute reaction theory and yielded a theoretical expression for the effect of chemical crosslink density on the relaxation rate, is presently applied to the creep behavior of a network polymer which is undergoing a scission process. In particular, two equations are derived which may for the first time show the relations between mechanical models and internal variables in the creep expressions, using a three-element model with a Maxwell element.

  13. Spectroscopy and Chemistry of Molecules with High Vibrational Energy Content.

    DTIC Science & Technology

    1982-10-15

    dissociation channels, viz., HC elimination, ring scission, and C=Cl homolysis. (Francisco and Steinfeld, 1981; Lawrance et al., 1981). The species CF300CF 3...Trifluoromethyl) peroxide", Intl. J. Chem. Kinetics, 13, 627 (1981). W.D. Lawrance , J. Silberstein, Zhang Fu-min, Zhu Qing-shi, J.S. Francisco, and J...75, 3153 (1981). J.S. Francisco, W.D. Lawrance , J.I. Steinfeld, and R.G. Gilbert, "Infrared Multiphoton Decomposition and Energy-Dependent

  14. Thermal decomposition pathway and desorption study of isopropanol and tert-butanol on Si(100)

    NASA Astrophysics Data System (ADS)

    Kim, Jaehyun; Kim, Kwansoo; Yong, Kijung

    2002-09-01

    Thermal decomposition pathway and desorption of isopropanol (IPA) and tert-butanol on Si(100) were studied using temperature programed desorption. Adsorbed alcohols studied were decomposed into atomic hydrogen and alkoxy on the surface. During heating the sample up to 1000 K, acetone, propylene, and hydrogen were desorbed as decomposition products of IPA on Si(100). Desorption pathways of IPA on Si(100) were largely consistent with those on metal surfaces: beta-hydride elimination reaction to acetone and C-O scission to propylene. For tert-butanol, which has no beta-hydrogen, isobutene and hydrogen were observed as main desorption products. copyright 2002 American Vacuum Society.

  15. The effects of metals and inhibitors on thermal oxidative degradation reactions of unbranched perfluoroalkylethers

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.; Paciorek, K. J. L.; Harris, D. H. L.; Smythe, M. E.; Kratzer, R. H.

    1983-01-01

    Thermal oxidative degradation studies were performed on unbranched perfluoroalkylethers at 288 C in oxygen. Metals and alloys studied included Ti, Al, and Ti (4 Al, 4 Mn). The mechanism of degradation was by chain scission. Ti and Al promoted less degradation than Ti (4 Al, 4 Mn). The two inhibitors investigated (a perfluorophenyl phosphine and a phosphatriazine) reduced degradation rates by several orders of magnitude. Both inhibitors were effective for the same duration (75 to 100 hours). The phosphatriazine appeared to provide more surface protection.

  16. Site-Specific Imaging of Elemental Steps in Dehydration of Diols on TiO2(110)

    SciTech Connect

    Acharya, Danda P.; Yoon, Yeohoon; Li, Zhenjun; Zhang, Zhenrong; Lin, Xiao; Mu, Rentao; Chen, Long; Kay, Bruce D.; Rousseau, Roger J.; Dohnalek, Zdenek

    2013-11-26

    The conversion of diols on partially reduced TiO2(110) at low coverage was studied using variable-temperature scanning tunneling microscopy, temperature programmed desorption and density functional theory calculations. We find, that below ~230 K, ethane-1,2-diol and propane-1,3-diol molecules adsorb predominantly on five-fold coordinated Ti5c atoms. The dynamic equilibrium between molecularly bound and dissociated species resulting from O-H bond scission and reformation is observed. As the diols start to diffuse on the Ti5c rows above ~230 K, they dissociate irreversibly upon encountering bridging oxygen (Ob) vacancy (VO’s) defects. Two dissociation pathways, one via O-H and the other via C-O bond scission leading to identical surface intermediates, hydroxyalkoxy, Ob-(CH2)n-OH (n = 2, 3) and bridging hydroxyl, HOb, are seen. For O-H bond scission, the Ob-(CH2)n-OH is found on the position of the original VO, while for C-O scission it is found on the adjacent Ob site. Theoretical calculations suggest that the observed mixture of C-O/O-H bond breaking processes are a result of the steric factors enforced upon the diols by the second OH group that is bound to a Ti5c site. At room temperature, rich dissociation/reformation dynamics of the second, Ti5c-bound O-H leads to the formation of dioxo, Ob-(CH2)n-OTi, species. Above ~400 K, both Ob-(CH2)n-OH and Ob-(CH2)n-OTi species convert into a new intermediate, that is centered on Ob row. Combined experimental and theoretical evidence shows that this intermediate is most likely a new dioxo, Ob-(CH2)2-Ob, species. Further annealing leads to sequential C-Ob bond cleavage and alkene desorption above ~ 500 K. Simulations find that the sequential C-O bond breaking process follows a homolytic diradical pathway with the first C-O bond breaking event accompanied by a non

  17. First Principles Simulations of Hydrocarbon Conversion Processes in Functionalized Zeolitic Materials

    NASA Astrophysics Data System (ADS)

    Mazar, Mark Nickolaus

    is responsible for the largest activation energy of the catalytic cycle. This assessment is similar to the findings of alkane metathesis studies on alumina/silica supports and indicates that the entire AM cycle can be performed in zeolites by isolated single-atom transition metal hydrides. Performed over acid form zeolites, MTH is used in the conversion of methanol into a broad range of hydrocarbons, including alkenes, alkanes, and aromatics. For reasons that are not yet rigorously quantified, product selectivities vary dramatically based on the choice of catalyst and reaction conditions. The methylation of species containing double bonds (i.e., co-catalysts) is central to the overall process. Distinct structure-function relationships were found with respect to the elementary steps in the methylation and beta-scission of olefins. In Chapter 4, the role of zeolite topology in the step-wise methylation of ethene by surface methoxides is investigated. Elementary steps are studied across multiple frameworks (i.e., BEA, CHA, FER, MFI, and MOR) constituting a wide variety of confinement environments. The reaction of surface methoxides with ethene is found to require a transition state containing a primary carbocation. The barrier height is found to decrease nearly monotonically with respect to the degree of dispersion interactions stabilizing the primary carbocationic species in the transition state. In addition, quantification of the ``local'' dispersion energy indicates that confinement effects can not be simply correlated to pore size. The beta-scission of olefins plays an important role in the product selectivities of many important chemical processes, including MTH. In Chapter 5, beta-scission modes involving C6 and C8 isomers are investigated at a single, isolated Bronsted acid site within H-ZSM-5. We find that the relative enthalpic barriers of beta-scission elementary steps can be rationalized by the substitution order of the two different carbocationic carbon

  18. Energy dependence of mass, charge, isotopic, and energy distributions in neutron-induced fission of 235U and 239Pu

    NASA Astrophysics Data System (ADS)

    Pasca, H.; Andreev, A. V.; Adamian, G. G.; Antonenko, N. V.; Kim, Y.

    2016-05-01

    The mass, charge, isotopic, and kinetic-energy distributions of fission fragments are studied within an improved scission-point statistical model in the reactions 235U+n and 239Pu+n at different energies of the incident neutron. The charge and mass distributions of the electromagnetic- and neutron-induced fission of 214,218Ra, 230,232,238U are also shown. The available experimental data are well reproduced and the energy-dependencies of the observable characteristics of fission are predicted for future experiments.

  19. New Discoveries Bring us Closer to a Predictive Theory of Fission

    SciTech Connect

    Younes, W.

    2011-08-29

    LLNL fission theorists Younes et al. have taken an important step in quantifying a part of the fission process known as scission: the point at which one fissioning nucleus becomes two fission fragments. In doing so, they are now determining how the total energy release during fission is partitioned to individual fission fragments. Coupled with HPC, these calculations represent a key first step in understanding the properties of fission fragments and their impact on program metrics, and ultimately lead to a predictive theory of fission.

  20. Effect of transverse vibrations of fissile nuclei on the angular and spin distributions of low-energy fission fragments

    SciTech Connect

    Bunakov, V. E.; Kadmensky, S. G.; Lyubashevsky, D. E.

    2016-05-15

    It is shown that A. Bohr’s classic theory of angular distributions of fragments originating from low-energy fission should be supplemented with quantum corrections based on the involvement of a superposition of a very large number of angular momenta L{sub m} in the description of the relative motion of fragments flying apart along the straight line coincidentwith the symmetry axis. It is revealed that quantum zero-point wriggling-type vibrations of the fissile system in the vicinity of its scission point are a source of these angular momenta and of high fragment spins observed experimentally.

  1. Fourier expansion of deformed nuclear shapes expressed as the deviation from a spheroid

    NASA Astrophysics Data System (ADS)

    Pomorski, K.; Nerlo-Pomorska, B.; Bartel, J.

    2017-06-01

    A Fourier decomposition of nuclear shapes is proposed and shown to be able to cover a very wide range of nuclear deformations up to the scission point. This Fourier shape parametrization is applied to the deviations of a nuclear liquid-drop profile from a spheroidal shape. It is shown that such a shape profile expansion is not only very rapidly converging, but also gives an excellent description of nuclear shapes all along the path to fission. Some examples of the liquid-drop and the macroscopic-microscopic potential energy surfaces in this new shape parametrization are presented and the connection with Bohr (β ,γ ) deformation parameters is given.

  2. Crosslinking of metallocenic α-olefin propylene copolymers by vacuum gamma irradiation

    NASA Astrophysics Data System (ADS)

    Satti, A. J.; Andreucetti, N. A.; Quijada, R.; Vallés, E. M.

    2012-12-01

    Metallocenic polypropylene and copolymers with 3.7, and 9.2 mol% of hexene and 3.0 mol% of octadecene comonomer content were synthesized without the presence of additives and irradiated with 60Co gamma radiation under vacuum at room temperature. Size Exclusion Cromatography and gel extraction data showed that scission reactions predominate over crosslinking in the homopolymer and that there is a dose from where crosslinking started to increase considerably, in the irradiated copolymers. Rheology also showed evidence of chain-enlargements on the copolymers by means of an increase in the viscoelastic properties of the irradiated material.

  3. Collinear Cluster Tripartition:. First Steps in Physical Treating

    NASA Astrophysics Data System (ADS)

    Kamanin, D. V.; Alexandrov, A. A.; Alexandrova, I. A.; Kondtatyev, N. A.; Kuznetsova, E. A.; Strekalovsky, O. V.; Zhuchko, V. E.; Pyatkov, Yu. V.; von Oertzen, W.

    2013-06-01

    Preliminary results of the analysis of the rectangular structures in the mass correlation distributions of the fission fragments from 252Cf (sf) are presented. The structures lie in the region of big missing mass and are connected with the multi-body decay of the mother system. The ternary chain-like prescission configuration seems to be too compact and could decay due to tunneling only. More elongated four-body configuration leading to the quaternary decay let meet energy conservation law in the scission point.

  4. Chemo-physical properties of renal capsules under ultraviolet-c exposure

    SciTech Connect

    Baghapour, Sh.; Parvin, P. Mokhtari, S.; Reyhani, A.; Mortazavi, S. Z.; Amjadi, A.

    2014-08-07

    The renal capsule tissue of lamb was irradiated with ultraviolet-C light and the treated samples were analyzed by uniaxial tensile test, dynamic mechanical analysis, attenuated total reflectance Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and contact angle measurements. It was shown that the skin cross-linking is dominant in low doses in accordance with the contact angle assessment. Conversely, the strong bulk degradation takes place at high doses. Similarly, the bulk cross-linking affects the mechanical tests as to enhance the stiffness at low doses, whereas strong degradation occurs at high doses that mainly arises from the strong bulk chain scission.

  5. Nuclear-deformation energies according to a liquid-drop model with a sharp surface

    SciTech Connect

    Blocki, J.; Swiatecki, W.J.

    1982-05-01

    We present an atlas of 665 deformation-energy maps and 150 maps of other properties of interest, relevant for nuclear systems idealized as uniformly charged drops endowed with a surface tension. The nuclear shapes are parametrized in terms of two spheres modified by a smoothly fitted quadratic surface of revolution and are specified by three variables: asymmetry, sphere separation, and a neck variable (that goes over into a fragment-deformation variable after scission). The maps and related tables should be useful for the study of macroscopic aspects of nuclear fission and of collisions between any two nuclei in the periodic table.

  6. Angular distributions of evaporated particles, fission and intermediate-mass fragments : on the search for consistent models

    NASA Astrophysics Data System (ADS)

    Alexander, J. M.

    During the last two years there has been a true cacophony concerning the meaning of experimental angular distributions for fission and fission-like fragments. The heavily used, saddle-point, transition-state model has been shown to be of limited value for high-spin systems, and a wide variety of proposals has appeared often with mutual inconsistencies and conflicting views. Even though equilibrium statistical models for fragment emission and particle evaporation must have a very close kinship, this relationship, often left as murky, has now come onto center stage for understanding reactions at ≽ 100 MeV. Basic questions concern the nature of the decision-point configurations, their degrees of freedom, the role of deformation and the relevant moments of inertia. This paper points out serious inconsistencies in several recent scission-point models and discusses conditions for applicability of saddle-point and scission-point approaches. Au cours des deux dernières années, l'interprétation des distributions angulaires de fragments a donné lieu à une véritable cacophonie. Les limitations du modèle courant considérant le point selle comme un état de transition sont apparues clairement pour les systèmes à haut spin, et une grande variété de remèdes prescntant souvent des incohérences mutuelles et des points de vue conflictuels ont été proposés. Même si les modèles décrivant l'émission de fragments ou de particules légères doivent nécessairement posséder une parente naturelle, cette relation, souvent laissée dans l'ombre, se trouve maintenant au centre de la compréhension des mécanismes de réactions lorsque les énergies d'excitation dépassent 100 MeV. Les questions primordiales concernent la nature des configurations critiques du point de vue de l'évolution ultérieure du système, de leurs degrés de liberté, du rôle de la déformation, et des moments d'inertie concernés. Cet article met en évidence de sérieuses incohérences dans

  7. Between complexity of modelling and modelling of complexity: An essay on econophysics

    NASA Astrophysics Data System (ADS)

    Schinckus, C.

    2013-09-01

    Econophysics is an emerging field dealing with complex systems and emergent properties. A deeper analysis of themes studied by econophysicists shows that research conducted in this field can be decomposed into two different computational approaches: “statistical econophysics” and “agent-based econophysics”. This methodological scission complicates the definition of the complexity used in econophysics. Therefore, this article aims to clarify what kind of emergences and complexities we can find in econophysics in order to better understand, on one hand, the current scientific modes of reasoning this new field provides; and on the other hand, the future methodological evolution of the field.

  8. Effect of thermal treatment and radiation on ( N, N-dimethylaminopropyl) acrylamide copolymers in the solid state

    NASA Astrophysics Data System (ADS)

    López, D.; Plata, P.; Burillo, G.

    1996-02-01

    The effect of various types of radiation (gamma radiation, electron-beam, and UV) exposure on ( N, N-dimethylaminopropyl) acrylamide copolymers in the solid state has been investigated. The influence of methyl methacrylate and styrene as comonomers in the copolymer chain has also been studied. Radiation leads to crosslinking rather than chain-scission on poly(DMAPAM-co-MMA). Poly(DMA-PAM-co-St) were more resistant to crosslinking by radiation. It was found that the crosslinking reaction is due to the DMAPAM units. Thermal treatment of these copolymers in the solid state also leads to crosslinking through DMAPAM units.

  9. Chemical kinetic modeling of the oxidation of large alkane fuels: n-octane and iso-octane

    SciTech Connect

    Axelsson, E.I.; Brezinsky, K.; Dryer, F.L.; Pitz, W.J.; Westbrook, C.K.

    1986-01-13

    The development of detailed chemical kinetic reaction mechanisms for oxidation of n-octane and iso-octane is described, with emphasis on the factors which are specific to many large hydrocarbon fuel molecules. Elements which are of particular importance are found to include site-specific abstraction of H atoms, radical isomerization of alkyl radicals by internal H atom abstraction, and rapid ..beta..-scission of the alkyl radicals. These features, combined with distinctions in the types of intermediate olefin species produced, are used to explain the significant differences in the rate of oxidation between n-octane and iso-octane. 24 refs., 3 figs., 1 tab.

  10. Combined Experimental and Computational Study on the Unimolecular Decomposition of JP-8 Jet Fuel Surrogates. I. n-Decane (n-C10H22).

    PubMed

    Zhao, Long; Yang, Tao; Kaiser, Ralf I; Troy, Tyler P; Ahmed, Musahid; Belisario-Lara, Daniel; Ribeiro, Joao Marcelo; Mebel, Alexander M

    2017-02-16

    Exploiting a high temperature chemical reactor, we explored the pyrolysis of helium-seeded n-decane as a surrogate of the n-alkane fraction of Jet Propellant-8 (JP-8) over a temperature range of 1100-1600 K at a pressure of 600 Torr. The nascent products were identified in situ in a supersonic molecular beam via single photon vacuum ultraviolet (VUV) photoionization coupled with a mass spectroscopic analysis of the ions in a reflectron time-of-flight mass spectrometer (ReTOF). Our studies probe, for the first time, the initial reaction products formed in the decomposition of n-decane-including radicals and thermally labile closed-shell species effectively excluding mass growth processes. The present study identified 18 products: molecular hydrogen (H2), C2 to C7 1-alkenes [ethylene (C2H4) to 1-heptene (C7H14)], C1-C3 radicals [methyl (CH3), vinyl (C2H3), ethyl (C2H5), propargyl (C3H3), allyl (C3H5)], small C1-C3 hydrocarbons [methane (CH4), acetylene (C2H2), allene (C3H4), methylacetylene (C3H4)], along with higher-order reaction products [1,3-butadiene (C4H6), 2-butene (C4H8)]. On the basis of electronic structure calculations, n-decane decomposes initially by C-C bond cleavage (excluding the terminal C-C bonds) producing a mixture of alkyl radicals from ethyl to octyl. These alkyl radicals are unstable under the experimental conditions and rapidly dissociate by C-C bond β-scission to split ethylene (C2H4) plus a 1-alkyl radical with the number of carbon atoms reduced by two and 1,4-, 1,5-, 1,6-, or 1,7-H shifts followed by C-C β-scission producing alkenes from propene to 1-octene in combination with smaller 1-alkyl radicals. The higher alkenes become increasingly unstable with rising temperature. When the C-C β-scission continues all the way to the propyl radical (C3H7), it dissociates producing methyl (CH3) plus ethylene (C2H4). Also, at higher temperatures, hydrogen atoms can abstract hydrogen from C10H22 to yield n-decyl radicals, while methyl (CH3) can

  11. A transfection reporter for the prevention of false-negative results in molecular beacon experiments.

    PubMed

    Toga, Tatsuya; Kuraoka, Isao; Yasui, Akira; Iwai, Shigenori

    2013-09-01

    We previously developed a molecular beacon-type probe to detect the strand scission in cellular base excision repair and found that the phosphodiester linkages in the fluorophore/quencher linkers were cleaved. This reaction was applied to a transfection reporter, which contained the unmodified phosphodiester in the linker to another type of fluorophore. After cotransfection of cells with the probe and the reporter, the signals were used to detect the incision and to confirm the proper transfection, respectively. This method will contribute to the prevention of false-negative results in experiments using molecular beacon-type probes. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Direct observations of transition dynamics from macro- to micro-phase separation in asymmetric lipid bilayers induced by externally added glycolipids

    NASA Astrophysics Data System (ADS)

    Shimobayashi, Shunsuke F.; Ichikawa, Masatoshi; Taniguchi, Takashi

    2016-03-01

    We present the first direct observations of morphological transitions from macro- to micro-phase separation using micrometer-sized asymmetric lipid vesicles exposed to externally added glycolipids (GM1:monosialotetrahexosylganglioside). The transition occurs via an intermediate stripe morphology state. During the transition, monodisperse micro-domains emerge through repeated scission events of the stripe domains. Moreover, we numerically confirmed such transitions using a time-dependent Ginzburg-Landau model, which describes both the intramembrane phase separation and the bending elastic membrane. The experimental and simulation results are in quantitative agreement.

  13. The effects of metals and inhibitors on thermal oxidative degradation reactions of unbranched perfluoroalkyl ethers

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.; Paciorek, K. J. L.; Harris, D. H.; Smythe, M. E.; Nakahara, J. H.; Kratzer, R. H.

    1985-01-01

    Thermal oxidative degradation studies were performed on unbranched perfluoroalkylethers at 288 C in oxygen. Metals and alloys studied included Ti, Al, and Ti (4 Al, 4 Mn). The mechanism of degradation was by chain scission. Ti and Al promoted less degradation than Ti (4 Al, 4 Mn). The two inhibitors investigated (a perfluorophenyl phosphine and a phosphatriazine) reduced degradation rates by several orders of magnitude. Both inhibitors were effective for the same duration (75 to 100 hours). The phosphatriazine appeared to provide more surface protection.

  14. Initial Stages of Pyrolysis of Polyethylene

    NASA Astrophysics Data System (ADS)

    Popov, Konstantin V.

    Combustion and flammability of plastics are important topics of practical interest directly related to fire safety and recycling of polymeric materials; pyrolysis of the solid is the initial step of its combustion. One of the main ways to study such complicated processes is through detailed mechanistic modeling, in which the process is represented by a set of many elementary reactions. Mechanistic modeling of combustion of plastics is considerably hindered by the lack of necessary kinetic data. In virtually all existing models of polymer pyrolysis the majority of kinetic data used are derived from the corresponding gas phase values of smaller species. The use of gas phase rate constants is, generally, not justified without an experimental justification. In the first part of the work the influence of condensed phase on the rate of scission of a carbon-carbon bond (the reaction that initiates pyrolysis and combustion) in polyethylene (PE) was studied using the method of Reactive Molecular Dynamics (RMD). A method based on a two-step kinetic mechanism was developed to decouple the cage effect from the kinetics of the reaction under study. It was observed that under the conditions of condensed phase the rate constant of C-C bond scission in PE decreased by an order of magnitude compared to that obtained in vacuum. It was also shown that under the conditions of polymer melt the rate constant does not depend on the length of the polymer chain. In the second part of the work the kinetics of liquid phase and gas phase products of PE pyrolysis were studied experimentally using Gas Chromatography and Nuclear Magnetic Resonance. Based on the assumption of applicability of gas phase kinetic data for C-C scission reaction and beta-scission reaction under the conditions of polymer melt, rate constants of hydrogen transfer, radical addition to double bonds, and radical recombination were determined via kinetic modeling of the experimental results. The obtained values of the rate

  15. Thermally induced evolution of hydrogenated amorphous carbon

    NASA Astrophysics Data System (ADS)

    Mangolini, Filippo; Rose, Franck; Hilbert, James; Carpick, Robert W.

    2013-10-01

    The thermally induced structural evolution of hydrogenated amorphous carbon (a-C:H) films was investigated in situ by X-ray photoelectron spectroscopy for annealing temperatures up to 500 °C. A model for the conversion of sp3- to sp2-hybridized carbon in a-C:H vs. temperature and time was developed and applied to determine the ranges of activation energies for the thermally activated processes occurring. The energies are consistent with ordering and clustering of sp2 carbon, scission of sp3 carbon-hydrogen bonds and formation of sp2 carbon, and direct transformation of sp3- to sp2-hybridized carbon.

  16. Radiation resistance of electro-optic polymer-based modulators

    NASA Astrophysics Data System (ADS)

    Taylor, Edward W.; Nichter, James E.; Nash, Fazio D.; Haas, Franz; Szep, Attila A.; Michalak, Richard J.; Flusche, Brian M.; Cook, Paul R.; McEwen, Tom A.; McKeon, Brian F.; Payson, Paul M.; Brost, George A.; Pirich, Andrew R.; Castaneda, Carlos; Tsap, Boris; Fetterman, Harold R.

    2005-05-01

    Mach-Zehnder interferometric electro-optic polymer modulators composed of highly nonlinear phenyltetraene bridge-type chromophores within an amorphous polycarbonate host matrix were investigated for their resistance to gamma rays and 25.6 MeV protons. No device failures were observed and the majority of irradiated modulators exhibited decreases in half-wave voltage and optical insertion losses compared to nonirradiated control samples undergoing aging processes. Irradiated device responses were attributed to scission, cross-linking, and free volume processes. The data suggests that strongly poled devices are less likely to de-pole under the influence of ionizing radiation.

  17. Desorption of Hydrogen from Si(111) by Resonant Excitation of the Si-H Vibrational Stretch Mode

    SciTech Connect

    Liu, Zhiheng; Feldman, Leonard C.; Tolk, Norman; Zhang, Zhenyu; Cohen, Philip I

    2006-01-01

    Past efforts to achieve selective bond scission by vibrational excitation have been thwarted by energy thermalization. Here we report resonant photodesorption of hydrogen from a Si(111) surface using tunable infrared radiation. The wavelength dependence of the desorption yield peaks at 0.26 electron volt: the energy of the Si-H vibrational stretch mode. The desorption yield is quadratic in the infrared intensity. A strong H/D isotope effect rules out thermal desorption mechanisms, and electronic effects are not applicable in this low-energy regime. A molecular mechanism accounting for the desorption event remains elusive.

  18. Surface hardness increasing of iron alloys by nitrogen-deuterium ion implanting

    NASA Astrophysics Data System (ADS)

    Figueroa, C. A.; Alvarez, F.

    2004-12-01

    In situ x-ray photoemission spectroscopy is used to study the deuterium and hydrogen oxygen etching effect in nitrogen-implanted iron alloys. A suitable deuterium-nitrogen mixture can increase the surface original steel hardness up to ˜40%. In similar conditions, hydrogen-nitrogen mixtures improves the hardness by ˜10%. On deuteration, the main change is the reduction of the zero-point energy of the hydrides bond. Due to this, the lower scission energy of hydrogen-metal bonds as compared with deuterium-metal bonds determines the favorable effect of deuterium on the nitriding process.

  19. The ubiquitous hammerhead ribozyme

    PubMed Central

    Hammann, Christian; Luptak, Andrej; Perreault, Jonathan; de la Peña, Marcos

    2012-01-01

    The hammerhead ribozyme is a small catalytic RNA motif capable of endonucleolytic (self-) cleavage. It is composed of a catalytic core of conserved nucleotides flanked by three helices, two of which form essential tertiary interactions for fast self-scission under physiological conditions. Originally discovered in subviral plant pathogens, its presence in several eukaryotic genomes has been reported since. More recently, this catalytic RNA motif has been shown to reside in a large number of genomes. We review the different approaches in discovering these new hammerhead ribozyme sequences and discuss possible biological functions of the genomic motifs. PMID:22454536

  20. Study of asymmetric fission yield behavior from neutron-deficient Hg isotope

    SciTech Connect

    Perkasa, Y. S.; Waris, A. Kurniadi, R. Su'ud, Z.

    2014-09-30

    A study of asymmetric fission yield behavior from a neutron-deficient Hg isotope has been conducted. The fission yield calculation of the neutron-deficient Hg isotope using Brownian Metropolis shape had showed unusual result at decreasing energy. In this paper, this interesting feature will be validated by using nine degree of scission shapes parameterization from Brosa model that had been implemented in TALYS nuclear reaction code. This validation is intended to show agreement between both model and the experiment result. The expected result from these models considered to be different due to dynamical properties that implemented in both models.

  1. Radiation effects on four polysulfone films

    NASA Technical Reports Server (NTRS)

    Santos, B.; Sykes, G. F.

    1981-01-01

    The response of polysulfones to proton and electron radiation is evaluated by assessing the radiation durability of four selected sulfones, establishing radiation interaction mechanisms with the polymer chain, and determining the dependence of radiation durability on chemical structure. Chain scission appears to predominate at lower doses up to about 10 to the 9th rad, and past this threshold the second mechanism, crosslinking, seems to predominate. This is evidenced by the increase in modulus, glass transition temperature, and increased quantity of thermally stable residue at high temperatures. The variations of chemical structure of the polysulfones appear to have little effect on the response to radiation.

  2. Unexpected asymmetry of the charge distribution in the fission of Th,224222 at high excitation energies

    NASA Astrophysics Data System (ADS)

    Paşca, H.; Andreev, A. V.; Adamian, G. G.; Antonenko, N. V.

    2016-12-01

    Using the improved scission-point model, the isotopic trends of the charge distribution of fission fragments are studied in induced fission of even-even Th isotopes. The calculated results are in good agreement with available experimental data. With increasing neutron number the transition from symmetric to asymmetric fission mode is shown to be related to the change of the potential energy surface. The change of the shape of mass distribution with increasing excitation energy is discussed for fissioning ATh nuclei. At high excitation energies, there are unexpected large asymmetric modes in the fission of neutron-deficient Th isotopes considered.

  3. Radical telomerization of vinyltrimethylsilane by bromoform and partial chain-transfer constants

    SciTech Connect

    Vasil'eva, T.T.; Kochetkova, V.A.; Nelyubin, B.V.; Freidlina, R.Kh.

    1986-12-20

    The telomerization of vinyltrimethylsilane by bromoform initiated by benzoyl peroxide occurs because of scission of the C-Br bond in bromoform and gives telomers of structure CHBr/sub 2/(CH/sub 2/CHSiMe/sub 3/)/sub n/Br, where n = 1, 2. The first partial chain-transfer constant C/sub 1/ approx. = 120. When the vinyltrimethylsilane/bromoform ratio is less than or equal to 5, by-product tetrabromo derivatives CBr/sub 3/CH/sub 2/CHBrSiMe/sub 3/ and CBr/sub 2/(CH/sub 2/CHBrSiMe/sub 3/)/sub 2/ are formed.

  4. Radiation effects of ion and electron beams on poly(methylphenylsilane)

    NASA Astrophysics Data System (ADS)

    Seki, Shu; Shibata, Hiromi; Ban, Hiroshi; Ishigure, Kenkichi; Tagawa, Seiichi

    1996-11-01

    Radiation effects of ion beams on poly(methylphenylsilane), PMPS are described in the present paper. PMPS solid films irradiated by high energy H +, He +, N + ion beams and electron beams show changes of solubility with a large LET effects. Ion (2 MeV) and electron (20 and 30 keV) beams induce mainly crosslinking of PMPS, while it was reported that UV light and γ-rays caused predominantly main chain scission on PMPS. The G-values of crosslinking increase with the values of LET of incident beams.

  5. Applications of Real-Time FTIR Spectroscopy to the Elucidation of Complex Electroorganic Pathways: Electrooxidation of Ethylene Glycol on Platinum, Gold, and Nickel in Alkaline Solution

    DTIC Science & Technology

    1991-10-01

    carboxylates along with carbonate. Two other vicinal diol compounds, 2,3-butanediol and 1,2- propanediol , were also studied on nickel in order to ascertain the...indicating that bond scission occurs only at the central, diol, position. As expected on this basis, 1,2- propanediol [CH 3(CHOH)CH20H] yields equal amounts...be present on adjacent carbons, i.e., a vicinal diol. For example, electrooxidation of 1,3- propanediol yields a complex SPAIR spectrum not consistent

  6. Constitutive equations of ageing polymeric materials

    NASA Technical Reports Server (NTRS)

    Peng, S. T. J.

    1985-01-01

    The constitutive equation for the relaxation behavior of time-dependent, chemically unstable materials developed by Valanis and Peng (1983), which used the irreversible thermodynamics of internal variables in Eyring's absolute reaction theory and yielded a theoretical expression for the effect of chemical crosslink density on the relaxation rate, is presently applied to the creep behavior of a network polymer which is undergoing a scission process. In particular, two equations are derived which may for the first time show the relations between mechanical models and internal variables in the creep expressions, using a three-element model with a Maxwell element.

  7. Hydrophobic-hydrophilic forces in protein folding.

    PubMed

    Durell, Stewart R; Ben-Naim, Arieh

    2017-08-01

    The process of protein folding is obviously driven by forces exerted on the atoms of the amino-acid chain. These forces arise from interactions with other parts of the protein itself (direct forces), as well as from interactions with the solvent (solvent-induced forces). We present a statistical-mechanical formalism that describes both these direct and indirect, solvent-induced thermodynamic forces on groups of the protein. We focus on 2 kinds of protein groups, commonly referred to as hydrophobic and hydrophilic. Analysis of this result leads to the conclusion that the forces on hydrophilic groups are in general stronger than on hydrophobic groups. This is then tested and verified by a series of molecular dynamics simulations, examining both hydrophobic alkanes of different sizes and hydrophilic moieties represented by polar-neutral hydroxyl groups. The magnitude of the force on assemblies of hydrophilic groups is dependent on their relative orientation: with 2 to 4 times larger forces on groups that are able to form one or more direct hydrogen bonds. © 2017 Wiley Periodicals, Inc.

  8. Solvent polarity and hydrogen-bonding effects on the nitrogen NMR shieldings of N-nitrosamines and DFT calculations of the shieldings of C-, N-, and O-nitroso systems

    NASA Astrophysics Data System (ADS)

    Witanowski, Michal; Biedrzycka, Zenobia; Sicinska, Wanda; Grabowski, Zbigniew

    2003-10-01

    High-precision nitrogen NMR shieldings, bulk susceptibility corrected, are reported for dimethyl- N-nitrosamine ( I) and diethyl- N-nitrosamine ( II) in a variety of solvents which represent a wide range of solvent properties from the point of view of polarity as well as hydrogen bond donor and acceptor strength. The observed range of solvent-induced nitrogen shielding variations of ( I) and ( II) is significant for the amino-type nitrogens, up to about 16 ppm, and originates essentially from the deshielding effect of the increasing polarity of solvent. On the other side, the nitroso nitrogen shieldings reveal an even stronger response to solvent effects, within about 20 ppm, but in this case the increasing polarity and hydrogen bond donor strength of solvent produce enhanced shielding. DFT quantum-mechanical calculations using the GIAO/B3PW91/6-311++G** approach and geometry optimizations employing the same basis set and hybrid density functionals show an excellent correlation with the experimental data on C-, N-, and O-nitroso moieties and reproduce not only major changes but also most of the subtle variations in the experimental nitrogen shieldings of the nitroso systems as a whole. A combination of the calculations involving the corresponding N and O-protonated species and the trends observed in the solvent-induced nitrogen shielding variations shows clearly that the prime acceptor site for hydrogen bonding is the nitroso oxygen atom.

  9. The role of weak hydrogen-bonds on the formation of short-lived molecular associations.

    PubMed

    Al-Shawabkeh, Ali F; Al-Wahab, Haitham A; Shahab, Yousif A

    2007-03-01

    Weak molecular homo- and hetero-associations among some ethene derivatives and several common solvents are studied using (1)H NMR spectroscopy. In connection with the aromatic-solvent induced shifts which is a special case of molecular association between aromatic solvents and polar molecules a model for association was suggested that involves the interaction of the positive end of the solute dipole with the aromatic pi-electrons. This model met with certain difficulties. An alternative model for configuration of associated molecules that explains the literature results and the results obtained in this paper is presented. The model is based on interaction of protons of the acceptor molecules with the lone-pair electrons or pi-electrons of the donor molecules. The present model removes the difficulties met with the former model and extends the concept of aromatic-solvent induced shifts to include non-polar molecules besides polar ones. In all cases, the interaction of protons of acceptor molecules with lone-pair electrons of donor molecules gives rise to a deshielding effect, while interaction with aromatic pi-electrons leads to shielding.

  10. Solvent-mediated conductance increase of dodecanethiol-stabilized gold nanoparticle monolayers.

    PubMed

    Reissner, Patrick A; Tisserant, Jean-Nicolas; Sánchez-Ferrer, Antoni; Mezzenga, Raffaele; Stemmer, Andreas

    2016-01-01

    Gold nanoparticle monolayers provide convenient templates to study charge transport in organic molecules beyond single junction techniques. Conductance is reported to increase by several orders of magnitude following immersion of alkanethiol-stabilized gold nanoparticle monolayers in a solution containing conjugated thiol-functionalized molecules. Typically, this observation is attributed to molecular exchange. Less attention has been paid to the role of the solvent alone. Here, we report on an increase in conductance of dodecanethiol-stabilized gold nanoparticle monolayers on Si/SiO2 by an average factor of 36 and 22 after immersion in pure ethanol (EtOH) and tetrahydrofuran (THF), respectively. Analysis by scanning electron microscopy (SEM) and small-angle X-ray scattering (SAXS) reveals a solvent-induced decrease in lattice constant of close-packed monolayers. We compare the conductance of the monolayer after molecular exchange with two different oligophenylenes to shed light on the respective contribution of the solvent-induced structural change and the molecular exchange itself on the conductance increase.

  11. Integral Equation Theory for the Conformation of Polyelectrolytes

    NASA Astrophysics Data System (ADS)

    Shew, C.-Y.; Yethiraj, A.

    1996-03-01

    The equilibrium conformation properties of polyelectrolyes are explored using the integral equation theory. The polymer molecules are modeled as freely-jointed beads that interact via a hard sphere plus screened Coulomb potential. To obtain the intramolecuar correlation function ( and hence the chain conformations) the many chain system is replaced by a single chain whose beads interact via the bare interaction plus a solvent-induced potential, which approximately accounts for the presence of the other molecules. Since this solvent induced potential is a functional of the intramolecular correlations it is obtained iteratively in a self-consistent fashion. The intramolecular correlation functions for a given solvation potential are obtained via Monte Carlo simulation of a single chain. A thread model of the polymer molecules is also investigated, in which case the single chain conformations are obtained using a variational method. The predictions of the theory for these two models are similar. For single chains ~ N^2 ( is the mean square end-to-end distance and N is the degree of polymerization) in salt free solutions, and ~ N^1.2 in high salt solutions. At high polymer concentration ~ N. The theory provides a means of interpolating between these limiting cases. An interesting feature is that there is a very sharp drop in polymer size at very low concentrations which happens because the overlap threshold concentration in polyelectrolytes solutions is very small.

  12. Solvent-mediated conductance increase of dodecanethiol-stabilized gold nanoparticle monolayers

    PubMed Central

    Tisserant, Jean-Nicolas; Sánchez-Ferrer, Antoni; Mezzenga, Raffaele

    2016-01-01

    Gold nanoparticle monolayers provide convenient templates to study charge transport in organic molecules beyond single junction techniques. Conductance is reported to increase by several orders of magnitude following immersion of alkanethiol-stabilized gold nanoparticle monolayers in a solution containing conjugated thiol-functionalized molecules. Typically, this observation is attributed to molecular exchange. Less attention has been paid to the role of the solvent alone. Here, we report on an increase in conductance of dodecanethiol-stabilized gold nanoparticle monolayers on Si/SiO2 by an average factor of 36 and 22 after immersion in pure ethanol (EtOH) and tetrahydrofuran (THF), respectively. Analysis by scanning electron microscopy (SEM) and small-angle X-ray scattering (SAXS) reveals a solvent-induced decrease in lattice constant of close-packed monolayers. We compare the conductance of the monolayer after molecular exchange with two different oligophenylenes to shed light on the respective contribution of the solvent-induced structural change and the molecular exchange itself on the conductance increase. PMID:28144553

  13. Modeling solvatochromism of a quinolinium betaine dye in water solvent using sequential hybrid QM/MM and semicontinuum approach.

    PubMed

    Murugan, N Arul

    2011-02-10

    We have investigated the ambient temperature structure of 1-methyl-8-oxyquinolinium betaine (MOQB) in water solvent and compared to its gas-phase structure. We have employed Car-Parrinello molecular dynamics (CPMD) simulations within hybrid quantum mechanics-molecular mechanics (QM/MM) framework to study MOQB in water while CPMD technique has been used for the gas phase. We report significant solvent-induced geometrical changes in MOQB. The dipole moment of MOQB in water is 2 times larger than the gas-phase value. The average absorption spectra calculated from gas-phase configurations using Coulomb attenuated-B3LYP (CAMB3LYP) level of theory is comparable with experimental spectra reported in benzene (λ(max) = 590 nm), a nonpolar solvent. We have also computed the absorption spectra of MOQB in water solvent using continuum and semicontinuum solvent models. Based on this, we have calculated contributions from solvent-induced geometrical changes, hydrogen bonding, and intermolecular charge transfer to the solvatochromic shift and absorption spectra of MOQB in water. Absorption spectra calculations for MOQB in water with a semicontinuum approach for solvents using CAMB3LYP level of theory excellently reproduce the experimental spectra in water, where the theoretical λ(max) is 433 nm and the experimental λ(max) is around 440 nm.

  14. Solvent and free-radical effects on the /sup 13/C NMR spectra of hydrocarbons

    SciTech Connect

    Abboud, J.M.; Auhmani, A.; Bitar, H.; El Mouhtadi, M.; Martin, J.; Rico, M.

    1987-03-04

    The proton-decoupled /sup 13/C NMR spectra of benzene, naphthalene, azulene, acenaphthylene, fluoranthene, phenanthrene, and 6,6-pentamethylenefulvene have been obtained in dilute solutions in cyclohexane, triethylamine, di-n-butyl ether, diisopropyl ether, diethyl carbon, tetrahydrofuran, butyronitrile, ..gamma..-butyrolactone, propylene carbonate, dimethyl sulfoxide, benzene, toluene, fluorobenzene, anisole, acetophenone, benzonitrile, and nitrobenzene. It has been found that (1) the chemical shifts (relative to an external reference) of both alternant and nonalternant hydrocarbons are sensitive to solvent dipolarity-polarizability effects. (2) In the case of select solvents (aliphatic, monofunctional compound with one single dominant bond moment) there is a generally good correlation between the solvent-induced chemical shifts (SICS) and the ..pi..* scale of solent dipolarity-polarizability. (3) Aromatic solvent induced shifts (ASIS) and specific interactions are significant in aromatic solvents, although dipolarity-polarizability contributions are still very important. (4) With very few exceptions, SICS (relative to cyclohexane solvent) are downfield, and the results are not in favor of the simple reaction field model. (5) For aromatic hydrocarbons, there is a clear proportionality between the SICS and the paramagnetic shifts induced by the stable free-radical 2,2,6,6-tetramethylpiperidinyl-1-oxy (TEMPO). (6) There is no simple relationship between the SICS and the calculated electronic charge distribution of the solute molecules.

  15. Probing Enhanced Double-Strand Break Formation at Abasic Sites within Clustered Lesions in Nucleosome Core Particles.

    PubMed

    Banerjee, Samya; Chakraborty, Supratim; Jacinto, Marco Paolo; Paul, Michael D; Balster, Morgan V; Greenberg, Marc M

    2017-01-10

    DNA is rapidly cleaved under mild alkaline conditions at apyrimidinic/apurinic sites, but the half-life is several weeks in phosphate buffer (pH 7.5). However, abasic sites are ∼100-fold more reactive within nucleosome core particles (NCPs). Histone proteins catalyze the strand scission, and at superhelical location 1.5, the histone H4 tail is largely responsible for the accelerated cleavage. The rate constant for strand scission at an abasic site is enhanced further in a nucleosome core particle when it is part of a bistranded lesion containing a proximal strand break. Cleavage of this form results in a highly deleterious double-strand break. This acceleration is dependent upon the position of the abasic lesion in the NCP and its structure. The enhancement in cleavage rate at an apurinic/apyrimidinic site rapidly drops off as the distance between the strand break and abasic site increases and is negligible once the two forms of damage are separated by 7 bp. However, the enhancement of the rate of double-strand break formation increases when the size of the gap is increased from one to two nucleotides. In contrast, the cleavage rate enhancement at 2-deoxyribonolactone within bistranded lesions is more modest, and it is similar in free DNA and nucleosome core particles. We postulate that the enhanced rate of double-strand break formation at bistranded lesions containing apurinic/apyrimidinic sites within nucleosome core particles is a general phenomenon and is due to increased DNA flexibility.

  16. Terahetz spectroscopy of molten sulfur using a tunable THz source

    NASA Astrophysics Data System (ADS)

    Mross, M.; Lowell, T.; Guertin, C.; O'Donnell, A.; Vezzoli, G. C.

    2006-10-01

    We have studied the liquid-liquid allotropic transitions in molten sulfur using terahertz (THz) spectroscopy. Liquid sulfur is selected as an initial choice of materials because its structure and properties are well established from previous in-situ studies by one of the current investigators (and by other researchers) using a variety of physical and chemical methodologies. It is known that sulfur melts to an equilibrium mixture of octameric (S 8) rings and short chains, with a small concentration of hexameric rings (S 6). As temperature is increased, thermal energy initiates ring scission and the resulting diradically-terminated short chains undergo covalent bonding to induce polymerization at 159-166°C. Further increase in temperature causes an increase in chain length and an increase in chain species concentration until a temperature of 188°C is reached at which the long chains (~10 6 atoms in length) undergo chain scission, and although the chains start to break up, the polymer concentration of the mixed phases still increases. We have experimentally mapped THz absorption, transmission, and reflection/scattering effects with these known transitions in liquid sulfur, as a function of temperature and wavelength.

  17. Degradation of sulfide linkages between isoprenes by lipid peroxidation catalyzed by manganese peroxidase.

    PubMed

    Sato, Shin; Ohashi, Yasunori; Kojima, Masaaki; Watanabe, Takahito; Honda, Yoichi; Watanabe, Takashi

    2009-10-01

    Scission of sulfide linkages in vulcanized rubber has been a major concern since the early 20th century, because devulcanization is a key process for recycling waste rubber products as polymer materials that pose low environmental risks. We herein demonstrate that lipid peroxidation (LPO) of linoleic acid by manganese peroxidase (MnP), a proposed lignin-degradation system in the early stage of selective white rot fungi, cleaves sulfide bond in a model rubber compound, di(2-methylpent-2-enyl) sulfide, to 2,4-dimethylthiophene and 2-methyl-2-pentenal. The major intermediate of the LPO process, 2,4-decadienal was directly oxidized by MnP to cleave the sulfur-carbon bond. We propose that electrophilic radicals from 2,4-decadienal abstract one electron from a sulfur atom of the model compound to produce the sulfur radical cation intermediate, which in turn reacts with molecular oxygen to cleave the sulfur-carbon bond. The discovery of free radical-mediated scission of sulfide bond coupled with Mn oxidation provides a novel strategy for recycling vulcanized rubber wastes.

  18. The effect of C-OH functionality on the surface chemistry of biomass-derived molecules: ethanol chemistry on Rh(100).

    PubMed

    Caglar, B; Olus Ozbek, M; Niemantsverdriet, J W Hans; Weststrate, C J Kees-Jan

    2016-11-21

    The adsorption and decomposition of ethanol on Rh(100) was studied as a model reaction to understand the role of C-OH functionalities in the surface chemistry of biomass-derived molecules. A combination of experimental surface science and computational techniques was used: (i) temperature programmed reaction spectroscopy (TPRS), reflection absorption infrared spectroscopy (RAIRS), work function measurements (Kelvin Probe - KP), and density functional theory (DFT). Ethanol produces ethoxy (CH3CH2O) species via O-H bond breaking upon adsorption at 100 K. Ethoxy decomposition proceeds differently depending on the surface coverage. At low coverage, the decomposition of ethoxy species occurs viaβ-C-H cleavage, which leads to an oxometallacycle (OMC) intermediate. Decomposition of the OMC scissions (at 180-320 K) ultimately produces CO, H2 and surface carbon. At high coverage, along with the pathway observed in the low coverage case, a second pathway occurs around 140-200 K, which produces an acetaldehyde intermediate viaα-C-H cleavage. Further decomposition of acetaldehyde produces CH4, CO, H2 and surface carbon. However, even at high coverage this is a minor pathway, and methane selectivity is 10% at saturation coverage. The results suggests that biomass-derived oxygenates, which contain an alkyl group, react on the Rh(100) surface to produce synthesis gas (CO and H2), surface carbon and small hydrocarbons due to the high dehydrogenation and C-C bond scission activity of Rh(100).

  19. Influence of γ-irradiation and temperature on the mechanical properties of EPDM cable insulation

    NASA Astrophysics Data System (ADS)

    Šarac, T.; Quiévy, N.; Gusarov, A.; Konstantinović, M. J.

    2016-08-01

    The mechanical properties of EPDM polymers, degraded as a result of extensive thermal and radiochemical aging treatment, are studied. The focus is given to dose rate effects in polymer insulation materials extracted from industrial cables in use in Belgian nuclear power plants. All studied mechanical characteristics such as the ultimate tensile stress, the Young's modulus, and the total elongation (or elongation at break) are found to be strongly affected by the irradiation dose. The ultimate tensile stress and Young's modulus are clearly exhibiting the dose rate effect, which originated from oxidation mediated interplay of polymer cross-linking and chain scission processes. The change of crossover between these two processes is found to be gradual, without critical dose rate or temperature values. On the contrary, the total elongation is observed not to be sensitive neither to irradiation temperature nor to the dose rate. Both cross-linking and chain scission seem to affect the total elongation in a similar way by reducing the average polymers chain length. This idea is confirmed by the model which shows that all total elongation data as a function of irradiation time can be reproduced by varying a single parameter, the pre-exponential factor of the irradiation rate constant.

  20. Effect of gamma radiation on chlorobutyl rubber vulcanized by three different crosslinking systems

    NASA Astrophysics Data System (ADS)

    Scagliusi, Sandra R.; Cardoso, Elisabeth L. C.; Lugao, Ademar B.

    2012-09-01

    The development of halogenated butyl rubber (chlorobutyl) in the 1950s and 1960s greatly extended the usefulness of butyl. Their properties allowed the development of more durable tubeless tires with the air retaining innerliner, chemically bonded to the body of the tire. Tire innerliners are by far the largest application for halobutyl. When polymers are subjected to high energy radiation, a number of chemical reactions may occur following the initial ionization and excitation events. These reactions lead to changes in the molecular weight of the polymer through scission (S) and crosslinking (X) of the molecules and affect the physical and mechanical properties. In the halobutyl rubbers the chain scission may predominate. This work aims to show effects of gamma radiation in properties of chlorobutyl rubbers vulcanized with sulfur, sulfur donor and phenolic resin. The butyl rubber has been already studied by us previously. The samples were characterized before and after irradiation. Gamma radiation doses used were: 25 kGy, 50 kGy, 100 kGy, 150 kGy and 200 kGy, in order to identify which cure system is the most stable under irradiation. In this study we observed that the properties of all samples were affected irrespective of the vulcanization system.

  1. Initial Reaction Steps in the Condensed-Phase Decomposition of Propellants

    SciTech Connect

    Melius, C F; Piqueras, M C

    2001-12-11

    Understanding the reaction mechanisms for the decomposition of energetic materials in the condensed phase is critical to our development of detailed kinetic models of propellant combustion. To date, the reaction mechanisms in the condensed phase have been represented by global, reactions. The detailed elementary reactions subsequent to the initial NO{sub 2} bond scissioning are not known. Using quantum chemical calculations, we have investigated the possible early steps in the decomposition of energetic materials that can occur in the condensed phase. We have used methylnitrate, methylnitramine, and nitroethane as prototypes for O-NO{sub 2}, N-NO{sub 2} and C-NO{sub 2} nitro compounds. We find the energetic radicals formed from the initial NO{sub 2} bond scissioning can be converted to unsaturated non-radical intermediates as an alternative to the unzipping of the energetic radical. We propose a new, prompt oxidation mechanism in which the trapped HONO can add back onto the energetic molecule. This produces oxidation products in the condensed phase that normally would not be produced until much later in the flame. We have shown that this prompt oxidation mechanism is a general feature of both nitramines and nitrate esters. The resulting HONO formed by the H-atom abstraction will be strongly influenced by the cage effect of the condensed phase. The applicability of this mechanism is demonstrated for decomposition of ethylnitrate, illustrating the importance of the cage effect in enabling this mechanism to occur at low temperatures.

  2. INTERACTION OF BENZO(A)PYRENE DIOL EPOXIDE WITH SVAO MINICHROMOSOMES

    SciTech Connect

    Gamper, Howard B.; Yokota, Hisao A.; Bartholomew, James C.

    1980-03-01

    SV40 minichromosomes were reacted with (+)7{beta},8{alpha}-dihydroxy-9{alpha},10{alpha}-epoxy- 7,8,9,10-tetrahydrobenzo[a]pyrene (BaP diol epoxide). Low levels of modification (< 5 DNA adducts/minichromosome) did not detectably alter the structure of the minichromosomes but high levels (> 200 DNA adducts/minichromosome) led to extensive fragmentation. Relative to naked SV40 DNA BaP diol epoxide induced alkylation and strand scission of minichromosomal DNA was reduced or enhanced by factors of 1.5 and 2.0, respectively. The reduction in covalent binding was attributed to the presence of histones, which competed with DNA for the hydrocarbon and reduced the probability of BaP diol epoxide intercalation by tightening the helix. The enhancement of strand scission was probably due to the catalytic effect of histones on the rate of S-elimination at apurinic sites, although an altered adduct profile or the presence of a repair endonuclease were not excluded. Staphylococcal nuclease digestion indicated that BaP dial epoxide randomly alkylated the minichromosomal DNA. This is in contrast to studies with cellular chromatin where internucleosomal DNA was preferentially modified. Differences in the minichromosomal protein complement were responsible for this altered susceptibility.

  3. Degradation kinetics of polymers in solution: Time-dependence of molecular weight distributions. [Quarterly report, January--March 1996

    SciTech Connect

    McCoy, B.J.; Madras, G.

    1996-02-27

    Polymer degradation occurs when polymer chains are broken under the influence of thermal, mechanical, or chemical energy. Chain-end depolymerization and random- and midpoint-chain scission are mechanisms that have been observed in liquid-phase polymer degradation. Here we develop mathematical models, unified by continuous-mixture kinetics, to show how these different mechanisms affect polymer degradation in solution. Rate expressions for the fragmentation of molecular-weight distributions (MWDs) govern the evolution of the MWDs. The governing integro-differential equations can be solved analytically for realistic conditions. Moment analysis for first-order continuous kinetics shows the temporal behavior of MWDs. Chain-end depolymerization yields monomer product and polymer molecular-weight moments that vary linearly with time. In contrast, random- and midpoint-chain scission models display exponential time behavior. The mathematical results reasonably portray experimental observations for polymer degradation. This approach, based on the time evolution of continuous distributions of chain length or molecular weight, provides a framework for interpreting several types of polymer degradation processes.

  4. Characterization of Kevlar 49 fibers by electron paramagnetic resonance. Final report, 20 May 1981-20 June 1982. [Radicals induced by ultraviolet or fracture

    SciTech Connect

    Brown, I.M.; Sandreczki, T.C.

    1982-06-20

    EPR was used to investigate the free radicals created in Kevlar 49 fibers by stress-induced and photo-induced macromolecular chain scissions. Mn/sup +2/ ions were identified from the EPR spectrum of frozen solutions of concentrated sulfuric acid containing Kevlar 49. Other ions present are Cu/sup +2/, and possibly Fe/sup +3/, Cr/sup +3/, and Ti/sup +3/. EPR lineshape anisotropy indicates that some of the metal ions and first coordinate spheres are oriented. The concentration of stress-induced radicals (2 x 10/sup 10/ per filament) suggest that chain scission occurs in more weak planes than are estimated to exist in the fracture surfaces of the fiber core. These radicals are unstable in air and have some aromatic character. Several different types of radicals were obtained following uv irradiations of the Kevlar 49 fibers in vacuum (photodegradative radicals) and in air (photo-oxidative radicals). The photodegradative radicals are identified with primary radicals involved in the photo-Fries rearrangement reaction, secondary radicals formed as a result of a hydrogen atom abstraction by the primary radical, and/or ketyl radicals produced as a result of uv irradiation of the photo-Fries rearrangement product. The photo-oxidative radicals are identified with the uv irradiation products of a peroxide intermediate. Lineshape anisotropy indicates that both radical types are oriented. 31 figures.

  5. Thermal stability of poly(ethylene-co-vinyl acetate) based materials

    DOE PAGES

    Patel, Mogon; Pitts, Simon; Beavis, Peter; ...

    2013-03-26

    The thermal stability properties of poly (ethylene-co-vinyl acetate) composites have been studied in support of our core programmes in materials qualification and life assessment. The material is used as a binder phase for boron particles in highly filled (70 wt %) composites. Our studies show that the uncured resin readily accumulates acetic acid through hydrolysis of the pendent acetate groups which alters the acidity (pH) of the material. Thermal desorption studies in combination with gas-chromatography-mass spectrometry show that the resin readily evolves acetic acid when thermally aged to temperatures up to 75°C. Gel Permeation Chromatography (GPC) suggests that thermal ageingmore » induces a gradual reduction in resin molecular weight and confirms the susceptibility of the material to chain scission. Heating at elevated temperatures in excess of 300oC is required to induce significant changes in the carbon skeleton through deacetylation and dehydration processes and the production of unsaturated main chain double bonds. Overall, the mechanical response of these filled composites are found to be relatively complex with the extent of polymer-filler interactions possibly playing an important role in determining key engineering properties. Mechanical property studies confirm a small but significant decrease in modulus presumably linked to thermally induced chain scission of the EVA binder.« less

  6. Endophilin, Lamellipodin, and Mena cooperate to regulate F-actin-dependent EGF-receptor endocytosis.

    PubMed

    Vehlow, Anne; Soong, Daniel; Vizcay-Barrena, Gema; Bodo, Cristian; Law, Ah-Lai; Perera, Upamali; Krause, Matthias

    2013-10-16

    The epidermal growth factor receptor (EGFR) plays an essential role during development and diseases including cancer. Lamellipodin (Lpd) is known to control lamellipodia protrusion by regulating actin filament elongation via Ena/VASP proteins. However, it is unknown whether this mechanism supports endocytosis of the EGFR. Here, we have identified a novel role for Lpd and Mena in clathrin-mediated endocytosis (CME) of the EGFR. We have discovered that endogenous Lpd is in a complex with the EGFR and Lpd and Mena knockdown impairs EGFR endocytosis. Conversely, overexpressing Lpd substantially increases the EGFR uptake in an F-actin-dependent manner, suggesting that F-actin polymerization is limiting for EGFR uptake. Furthermore, we found that Lpd directly interacts with endophilin, a BAR domain containing protein implicated in vesicle fission. We identified a role for endophilin in EGFR endocytosis, which is mediated by Lpd. Consistently, Lpd localizes to clathrin-coated pits (CCPs) just before vesicle scission and regulates vesicle scission. Our findings suggest a novel mechanism in which Lpd mediates EGFR endocytosis via Mena downstream of endophilin.

  7. Thermal stability of poly(ethylene-co-vinyl acetate) based materials

    SciTech Connect

    Patel, Mogon; Pitts, Simon; Beavis, Peter; Robinson, Mathew; Morrell, Paul; Khan, Niaz; Khan, Imran; Pockett, Nicola; Letant, Sonia; Von White, Gregory; Labouriau, Andrea

    2013-03-26

    The thermal stability properties of poly (ethylene-co-vinyl acetate) composites have been studied in support of our core programmes in materials qualification and life assessment. The material is used as a binder phase for boron particles in highly filled (70 wt %) composites. Our studies show that the uncured resin readily accumulates acetic acid through hydrolysis of the pendent acetate groups which alters the acidity (pH) of the material. Thermal desorption studies in combination with gas-chromatography-mass spectrometry show that the resin readily evolves acetic acid when thermally aged to temperatures up to 75°C. Gel Permeation Chromatography (GPC) suggests that thermal ageing induces a gradual reduction in resin molecular weight and confirms the susceptibility of the material to chain scission. Heating at elevated temperatures in excess of 300oC is required to induce significant changes in the carbon skeleton through deacetylation and dehydration processes and the production of unsaturated main chain double bonds. Overall, the mechanical response of these filled composites are found to be relatively complex with the extent of polymer-filler interactions possibly playing an important role in determining key engineering properties. Mechanical property studies confirm a small but significant decrease in modulus presumably linked to thermally induced chain scission of the EVA binder.

  8. Influence of ionizing radiation on physical properties of native and chemically modified starches

    NASA Astrophysics Data System (ADS)

    Henry, F.; Costa, L. C.; Aymes-Chodur, C.

    2010-01-01

    Cationic and anionic starches (chemically modified) and native starch (non-modified) were exposed to electron-beam irradiation at doses of 25, 75 and 150 kGy. The increasing solubility in water, due to chain scission and creation of polar groups as already mentioned in the literature, has been confirmed using several physical methodologies. Impedance Spectroscopy (IS) on water solutions was carried out in order to calculate the relaxation parameters of the Cole-Cole model and α and β parameters of the Jones-Dole equation, which show the influence of radiation dose on increasing polarity, decreasing of molecular mass and increasing of electrostatic attraction between chains. Infra-red spectroscopy (FTIR) and Differential Scanning Calorimetry (DSC) confirm the formation of polar groups that retain water. The aim of this work was to confirm that the control of chain scission and functionalization of starches with irradiation could then be used in a future work to create nanoparticles by complex coacervation in an aqueous base.

  9. Chemical degradation and morphological instabilities during focused ion beam prototyping of polymers.

    PubMed

    Orthacker, A; Schmied, R; Chernev, B; Fröch, J E; Winkler, R; Hobisch, J; Trimmel, G; Plank, H

    2014-01-28

    Focused ion beam processing of low melting materials, such as polymers or biological samples, often leads to chemical and morphological instabilities which prevent the straight-forward application of this versatile direct-write structuring method. In this study the behaviour of different polymer classes under ion beam exposure is investigated using different patterning parameters and strategies with the aim of (i) correlating local temperatures with the polymers' chemistry and its morphological consequences; and (ii) finding a way of processing sensitive polymers with lowest chemical degradation while maintaining structuring times. It is found that during processing of polymers three temperature regimes can be observed: (1) at low temperatures all polymers investigated show stable chemical and morphological behaviour; (2) very high temperatures lead to strong chemical degradation which entails unpredictable morphologies; and (3) in the intermediate temperature regime the behaviour is found to be strongly material dependent. A detailed look reveals that polymers which rather cross-link in the proximity of the beam show stable morphologies in this intermediate regime, while polymers that rather undergo chain scission show tendencies to develop a creeping phase, where material follows the ion beam movement leading to instable and unpredictable morphologies. Finally a simple, alternative patterning strategy is suggested, which allows stable processing conditions with lowest chemical damage even for challenging polymers undergoing chain scission.

  10. Fast kinetics of magnesium monochloride cations in interlayer-expanded titanium disulfide for magnesium rechargeable batteries

    DOE PAGES

    Yoo, Hyun Deog; Liang, Yanliang; Dong, Hui; ...

    2017-08-24

    Magnesium rechargeable batteries potentially offer high-energy density, safety, and low cost due to the ability to employ divalent, dendrite-free, and earth-abundant magnesium metal anode. Despite recent progress, further development remains stagnated mainly due to the sluggish scission of magnesium-chloride bond and slow diffusion of divalent magnesium cations in cathodes. Here in this paper we report a battery chemistry that utilizes magnesium monochloride cations in expanded titanium disulfide. Combined theoretical modeling, spectroscopic analysis, and electrochemical study reveal fast diffusion kinetics of magnesium monochloride cations without scission of magnesium-chloride bond. The battery demonstrates the reversible intercalation of 1 and 1.7 magnesium monochloridemore » cations per titanium at 25 and 60 °C, respectively, corresponding to up to 400 mAh g-1 capacity based on the mass of titanium disulfide. The large capacity accompanies with excellent rate and cycling performances even at room temperature, opening up possibilities for a variety of effective intercalation hosts for multivalent-ion batteries.« less

  11. a Viscoelastic Fracture Model for Simulation of Solid Propellant Impacts

    NASA Astrophysics Data System (ADS)

    Matheson, E. R.; Nguyen, D. Q.

    2007-12-01

    A viscoelastic kinetics (VEK) model for deformation and damage in solid rocket propellant has been previously developed and correlated to an extensive set of experiments to determine mechanical properties. Ultimately, VEK will be extended to perform coupled damage and reaction modeling of XDT during propellant impacts. There are two types of damage considered in VEK: 1) decohesion at particle/binder interfaces, and 2) scission of the binder. The first type of damage leads to formation of essentially spherical voids around the decohered particles, and development of a model for the surface area that supports combustion is rather straightforward. The second type of damage leads to formation of propellant rubble, and the fineness depends on the impact stresses. Thus, a kinetic fracture model describing surface area generation due to scission damage has been added to the VEK model. To obtain data on the surface area generated, 25 mm L/D = 1 propellant samples were fired into steel target plates at various velocities, and the resultant fragments were collected and burned in a combustion bomb. The total surface area generated was then estimated for each impacted sample. The upgraded VEK model is used to simulate the 25 mm impact experiments and is correlated to the combustion bomb data.

  12. The role of structural effects on the reactions of alkoxyl radicals with trialkyl and triaryl phosphites. A time-resolved kinetic study.

    PubMed

    Bietti, Massimo; Calcagni, Alessandra; Salamone, Michela

    2010-07-02

    A time-resolved kinetic study on the reactions of alkoxyl radicals with trialkyl and triaryl phosphites ((RO)(3)P: R = Me, Et, i-Pr, t-Bu; (ArO)(3)P: Ar = C(6)H(5), 2,4-(t-Bu)(2)C(6)H(3)) has been carried out. In the (RO)(3)P series, the alkoxyl radicals (cumyloxyl (CumO(*)) and benzyloxyl (BnO(*))) undergo addition to the phosphorus center with formation of intermediate tetraalkoxyphosphoranyl radicals (R'OP(*)(OR)(3): R = Me, Et, i-Pr, t-Bu; R' = Bn, Cum). The addition rate constants are influenced by steric effects, decreasing on going from R = Me to R = t-Bu and from BnO(*) to CumO(*). Rate constants for beta-scission of the phosphoranyl radicals R'OP(*)(OR)(3) have also been determined, increasing, for a given alkyl group R, in the order R' = tert-butyl < R' = benzyl < R' = cumyl and, for a given R' group, on going from R = Me to R = i-Pr. This behavior has been explained in terms of the relative stability of the radicals formed after beta-scission, suggesting moreover that steric effects play in this case a minor role. CumO(*) reacts with triaryl phosphites (ArO)(3)P to give phenoxyl radicals, with rate constants that are influenced to a limited extent by substitution of the aromatic rings. The radical scavenging ability of these substrates is briefly discussed.

  13. Coarse-grained molecular dynamics simulations of the tensile behavior of a thermosetting polymer.

    PubMed

    Yang, Shaorui; Qu, Jianmin

    2014-07-01

    Using a previously developed coarse-grained model, we conducted large-scale (∼ 85 × 85 × 85 nm(3)) molecular dynamics simulations of uniaxial-strain deformation to study the tensile behavior of an epoxy molding compound, epoxy phenol novolacs (EPN) bisphenol A (BPA). Under the uniaxial-strain deformation, the material is found to exhibit cavity nucleation and growth, followed by stretching of the ligaments separated by the cavities, until the ultimate failure through ligament scissions. The nucleation sites of cavities are rather random and the subsequent cavity growth accounts for much (87%) of the volumetric change during the uniaxial-strain deformation. Ultimate failure of the materials occurs when the cavity volume fraction reaches ∼ 60%. During the entire deformation process, polymer strands in the network are continuously extended to their linear states and broken in the postyielding strain hardening stage. When most of the strands are stretched to their taut configurations, rapid scission of a large number of strands occurs within a small strain increment, which eventually leads to fracture. Finally, through extensive numerical simulations of various loading conditions in addition to uniaxial strain, we find that yielding of the EPN-BPA can be described by the pressure-modified von Mises yield criterion.

  14. Association of the endosomal sorting complex ESCRT-II with the Vps20 subunit of ESCRT-III generates a curvature-sensitive complex capable of nucleating ESCRT-III filaments.

    PubMed

    Fyfe, Ian; Schuh, Amber L; Edwardson, J Michael; Audhya, Anjon

    2011-09-30

    The scission of membranes necessary for vesicle biogenesis and cytokinesis is mediated by cytoplasmic proteins, which include members of the ESCRT (endosomal sorting complex required for transport) machinery. During the formation of intralumenal vesicles that bud into multivesicular endosomes, the ESCRT-II complex initiates polymerization of ESCRT-III subunits essential for membrane fission. However, mechanisms underlying the spatial and temporal regulation of this process remain unclear. Here, we show that purified ESCRT-II binds to the ESCRT-III subunit Vps20 on chemically defined membranes in a curvature-dependent manner. Using a combination of liposome co-flotation assays, fluorescence-based liposome interaction studies, and high-resolution atomic force microscopy, we found that the interaction between ESCRT-II and Vps20 decreases the affinity of ESCRT-II for flat lipid bilayers. We additionally demonstrate that ESCRT-II and Vps20 nucleate flexible filaments of Vps32 that polymerize specifically along highly curved membranes as a single string of monomers. Strikingly, Vps32 filaments are shown to modulate membrane dynamics in vitro, a prerequisite for membrane scission events in cells. We propose that a curvature-dependent assembly pathway provides the spatial regulation of ESCRT-III to fuse juxtaposed bilayers of elevated curvature.

  15. Insights into dynamin-associated disorders through analysis of equivalent mutations in the yeast dynamin Vps1

    PubMed Central

    Moustaq, Laila; Smaczynska-de Rooij, Iwona I.; Palmer, Sarah E.; Marklew, Christopher J.; Ayscough, Kathryn R.

    2016-01-01

    The dynamins represent a superfamily of proteins that have been shown to function in a wide range of membrane fusion and fission events. An increasing number of mutations in the human classical dynamins, Dyn-1 and Dyn-2 has been reported, with diseases caused by these changes ranging from Charcot-Marie-Tooth disorder to epileptic encephalopathies. The budding yeast, Saccharomyces cerevisiae expresses a single dynamin-related protein that functions in membrane trafficking, and is considered to play a similar role to Dyn-1 and Dyn-2 during scission of endocytic vesicles at the plasma membrane. Large parts of the dynamin protein are highly conserved across species and this has enabled us in this study to select a number of disease causing mutations and to generate equivalent mutations in Vps1. We have then studied these mutants using both cellular and biochemical assays to ascertain functions of the protein that have been affected by the changes. Specifically, we demonstrate that the Vps1-G397R mutation (Dyn-2 G358R) disrupts protein oligomerization, Vps1-A447T (Dyn-1 A408T) affects the scission stage of endocytosis, while Vps1-R298L (Dyn-1 R256L) affects lipid binding specificity and possibly an early stage in endocytosis. Overall, we consider that the yeast model will potentially provide an avenue for rapid analysis of new dynamin mutations in order to understand the underlying mechanisms that they disrupt PMID:28357347

  16. Through-shell alkyllithium additions and borane reductions.

    PubMed

    Warmuth, Ralf; Maverick, Emily F; Knobler, Carolyn B; Cram, Donald J

    2003-03-21

    The through-shell borane reduction and methyllithium addition to benzaldehyde (1), benzocyclobutenone (2), and benzocyclobutenedione (3) incarcerated inside a hemicarcerand (4) with four tetramethylenedioxy bridges are reported. All guests could be reduced and methylated. Selective monoreduction and monomethylation were observed for 3. In the methyllithium addition to 4[symbol: see text]3, the initially formed lithium alcoholate underwent a Moore rearrangement. The reactivity of the incarcerated guests toward methyllithium increased in the order 1 < 2 < 3 and toward borane in the order 1 < 2 approximately equal 3. Guest reactivity was correlated with the inner-phase location of the reacting carbonyl group in the preferred guest inner-phase orientation. The latter was determined from the X-ray structures of 4[symbol: see text]1, 4[symbol: see text]2, and 4[symbol: see text]3, from molecular mechanical calculations, and from the hemicarcerand-induced upfield shift of the guest proton resonances. In the methyllithium and n-butyllithium addition to 4[symbol: see text]1 and 4[symbol: see text]3 at elevated temperatures, selective cleavage of a host's spanner or tetramethylenedioxy bridge, respectively, was observed. The cleavage of one spanner also took place in the methyllithium addition to the 1-methyl-2-pyrrolidinone hemicarceplex. These scission reactions are initiated by the initially formed lithium alcoholates, which show enhanced basicity and nucleophilicity in the inner phase as compared to the bulk phase. Mechanisms for the host scission reactions are discussed.

  17. Effects of electron irradiation in space environment on thermal and mechanical properties of carbon fiber/bismaleimide composite

    NASA Astrophysics Data System (ADS)

    Yu, Qi; Chen, Ping; Gao, Yu; Ma, Keming; Lu, Chun; Xiong, Xuhai

    2014-10-01

    The effects of electron irradiation in simulated space environment on thermal and mechanical properties of high performance carbon fiber/bismaleimide composites were investigated. The dynamic mechanical properties of the composites exposed to different fluences of electron irradiation were evaluated by Dynamic mechanical analysis (DMA). Thermogravimetric analysis was applied to investigate the changes in thermal stability of the resin matrix after exposure to electron irradiation. The changes in mechanical properties of the composites were evaluated by flexural strength and interlaminar shear strength (ILSS). The results indicated that electron irradiation in high vacuum had an impact on thermal and mechanical properties of CF/BMI composites, which depends on irradiation fluence. At lower irradiation fluences less than 5 × 1015 cm-2, the dynamic storage modulus, cross-linking degree, thermal stability and mechanical properties that were determined by a competing effect between chain scission and cross-linking process, decreased firstly and then increased. While at higher fluences beyond 5 × 1015 cm-2, the chain scission process was dominant and thus led to the degradation in thermal and mechanical properties of the composites.

  18. Synthesis of persulfate containing poly ( N-vinyl-2-pyrrolidone) (PVP) hydrogels in aqueous solutions by γ-induced radiation

    NASA Astrophysics Data System (ADS)

    Kaplan Can, Hatice

    2005-04-01

    The effect of 60Co γ-irradiation on aqueous solutions of poly( N-vinyl-2-pyrrolidone) (PVP) in the presence of persulfate anion has been investigated. The gelation dose of PVP and persulfate containing PVP aqueous solutions has been determined. At low concentrations of persulfate (1.00-3.50%), gelation percentages exhibited a decreasing trend by increasing persulfate content in aqueous solutions of the polymer. The gelation doses of persulfate containing polymer solutions were calculated by the Charlesby-Pinner equation. It was observed that the gelation dose values were shifted to higher values by increasing persulfate concentration in solution. The ratio of the chain scission and crosslinking yields ( G( s)/ G( x)) was also determined. The results showed that the G( s)/ G( x) ratios were smaller than one for PVP aqueous solution system, whereas those obtained for persulfate containing PVP aqueous solutions were higher than unity. The results implied that the chain scission of polymer is more effective than crosslinking in the presence of persulfate. Mechanism of the crosslinking and/or degradation and structure-property relationship of PVP and PVP/persulfate hydrogel systems were investigated by Fourier transformation infeared and thermal analysis (differential scanning calorimetry, thermal gravimetric analysis and differential thermai analysis) methods.

  19. Dimethyl ether electro-oxidation on platinum surfaces

    SciTech Connect

    Roling, Luke T.; Herron, Jeffrey A.; Budiman, Winny; Ferrin, Peter; Mavrikakis, Manos

    2016-11-01

    A first-principles density functional theory study was performed to elucidate the mechanism of dimethyl ether electro-oxidation on three low-index platinum surfaces (Pt(111), Pt(100), and Pt(211)). The goal of this study is to provide a fundamental explanation for the high activity observed experimentally on Pt(100) compared to Pt(111) and stepped surfaces. We determine that the enhanced activity of Pt(100) stems from more facile C–O bond breaking kinetics, as well as from easier removal of CO as a surface poison through activation of water. In general, the C–O bond (in CHxOCHy) becomes easier to break as dimethyl ether is dehydrogenated to a greater extent. In contrast, dehydrogenation becomes more difficult as more hydrogen atoms are removed. We perform two analyses of probable reaction pathways, which both identify CHOC and CO as the key reaction intermediates on these Pt surfaces. We show that the reaction mechanism on each surface is dependent on the cell operating potential, as increasing the potential facilitates C–H bond scission, in turn promoting the formation of intermediates for which C–O scission is more facile. We additionally demonstrate that CO oxidation determines the high overpotential required for electro-oxidation on Pt surfaces. At practical operating potentials (~0.60 VRHE), we determine that C–O bond breaking is most likely the most difficult step on all three Pt surfaces studied.

  20. Fundamental Kinetics of Supercritical Coal Liquefaction: Effect of Catalysts and Hydrogen-Donor Solvents.

    SciTech Connect

    McCoy, B.J.; Smith, J.M.

    1997-07-21

    Most research on polymer degradation is for single polymers, even though the thermal decomposition of polymer mixtures is of interest both practically and theoretically. Polymer degradation rates depend on the mixture type, and adding a polymer can increase, decrease, or leave unchanged the degradation rate of the first polymer. We show how distribution-kinetics theory, based on molecular-weight distributions (MWDs), provides expressions for degradation rates of binary polymer mixtures. The approach accounts for initiation, termination, hydrogen abstraction, and radical chain scission in the governing equations for MWDS. Molecular-weight moments yield expressions for molar and mass concentrations and rate coefficients for combinations of random and chain-end scission. Experimental data show the concentration effect of poly((x-methyl styrene)) (PAMS) on the degradation of polystyrene dissolved in mineral oil at 275 {degrees}C in a batch reactor. Samples analyzed by gel permeation chromatography yielded the time evolution of the MD. The results indicated that, owing to the interaction of mixed radicals with polymer by hydrogen abstraction, polystyrene degradation rate decreases with increasing PAMS concentration.