Regan, R. Steven; Markstrom, Steven L.; Hay, Lauren E.; Viger, Roland J.; Norton, Parker A.; Driscoll, Jessica M.; LaFontaine, Jacob H.
2018-01-08
This report documents several components of the U.S. Geological Survey National Hydrologic Model of the conterminous United States for use with the Precipitation-Runoff Modeling System (PRMS). It provides descriptions of the (1) National Hydrologic Model, (2) Geospatial Fabric for National Hydrologic Modeling, (3) PRMS hydrologic simulation code, (4) parameters and estimation methods used to compute spatially and temporally distributed default values as required by PRMS, (5) National Hydrologic Model Parameter Database, and (6) model extraction tool named Bandit. The National Hydrologic Model Parameter Database contains values for all PRMS parameters used in the National Hydrologic Model. The methods and national datasets used to estimate all the PRMS parameters are described. Some parameter values are derived from characteristics of topography, land cover, soils, geology, and hydrography using traditional Geographic Information System methods. Other parameters are set to long-established default values and computation of initial values. Additionally, methods (statistical, sensitivity, calibration, and algebraic) were developed to compute parameter values on the basis of a variety of nationally-consistent datasets. Values in the National Hydrologic Model Parameter Database can periodically be updated on the basis of new parameter estimation methods and as additional national datasets become available. A companion ScienceBase resource provides a set of static parameter values as well as images of spatially-distributed parameters associated with PRMS states and fluxes for each Hydrologic Response Unit across the conterminuous United States.
NASA Astrophysics Data System (ADS)
Mizukami, N.; Clark, M. P.; Newman, A. J.; Wood, A.; Gutmann, E. D.
2017-12-01
Estimating spatially distributed model parameters is a grand challenge for large domain hydrologic modeling, especially in the context of hydrologic model applications such as streamflow forecasting. Multi-scale Parameter Regionalization (MPR) is a promising technique that accounts for the effects of fine-scale geophysical attributes (e.g., soil texture, land cover, topography, climate) on model parameters and nonlinear scaling effects on model parameters. MPR computes model parameters with transfer functions (TFs) that relate geophysical attributes to model parameters at the native input data resolution and then scales them using scaling functions to the spatial resolution of the model implementation. One of the biggest challenges in the use of MPR is identification of TFs for each model parameter: both functional forms and geophysical predictors. TFs used to estimate the parameters of hydrologic models typically rely on previous studies or were derived in an ad-hoc, heuristic manner, potentially not utilizing maximum information content contained in the geophysical attributes for optimal parameter identification. Thus, it is necessary to first uncover relationships among geophysical attributes, model parameters, and hydrologic processes (i.e., hydrologic signatures) to obtain insight into which and to what extent geophysical attributes are related to model parameters. We perform multivariate statistical analysis on a large-sample catchment data set including various geophysical attributes as well as constrained VIC model parameters at 671 unimpaired basins over the CONUS. We first calibrate VIC model at each catchment to obtain constrained parameter sets. Additionally, parameter sets sampled during the calibration process are used for sensitivity analysis using various hydrologic signatures as objectives to understand the relationships among geophysical attributes, parameters, and hydrologic processes.
An approach to measure parameter sensitivity in watershed ...
Hydrologic responses vary spatially and temporally according to watershed characteristics. In this study, the hydrologic models that we developed earlier for the Little Miami River (LMR) and Las Vegas Wash (LVW) watersheds were used for detail sensitivity analyses. To compare the relative sensitivities of the hydrologic parameters of these two models, we used Normalized Root Mean Square Error (NRMSE). By combining the NRMSE index with the flow duration curve analysis, we derived an approach to measure parameter sensitivities under different flow regimes. Results show that the parameters related to groundwater are highly sensitive in the LMR watershed, whereas the LVW watershed is primarily sensitive to near surface and impervious parameters. The high and medium flows are more impacted by most of the parameters. Low flow regime was highly sensitive to groundwater related parameters. Moreover, our approach is found to be useful in facilitating model development and calibration. This journal article describes hydrological modeling of climate change and land use changes on stream hydrology, and elucidates the importance of hydrological model construction in generating valid modeling results.
Simulated discharge trends indicate robustness of hydrological models in a changing climate
NASA Astrophysics Data System (ADS)
Addor, Nans; Nikolova, Silviya; Seibert, Jan
2016-04-01
Assessing the robustness of hydrological models under contrasted climatic conditions should be part any hydrological model evaluation. Robust models are particularly important for climate impact studies, as models performing well under current conditions are not necessarily capable of correctly simulating hydrological perturbations caused by climate change. A pressing issue is the usually assumed stationarity of parameter values over time. Modeling experiments using conceptual hydrological models revealed that assuming transposability of parameters values in changing climatic conditions can lead to significant biases in discharge simulations. This raises the question whether parameter values should to be modified over time to reflect changes in hydrological processes induced by climate change. Such a question denotes a focus on the contribution of internal processes (i.e., catchment processes) to discharge generation. Here we adopt a different perspective and explore the contribution of external forcing (i.e., changes in precipitation and temperature) to changes in discharge. We argue that in a robust hydrological model, discharge variability should be induced by changes in the boundary conditions, and not by changes in parameter values. In this study, we explore how well the conceptual hydrological model HBV captures transient changes in hydrological signatures over the period 1970-2009. Our analysis focuses on research catchments in Switzerland undisturbed by human activities. The precipitation and temperature forcing are extracted from recently released 2km gridded data sets. We use a genetic algorithm to calibrate HBV for the whole 40-year period and for the eight successive 5-year periods to assess eventual trends in parameter values. Model calibration is run multiple times to account for parameter uncertainty. We find that in alpine catchments showing a significant increase of winter discharge, this trend can be captured reasonably well with constant parameter values over the whole reference period. Further, preliminary results suggest that some trends in parameter values do not reflect changes in hydrological processes, as reported by others previously, but instead might stem from a modeling artifact related to the parameterization of evapotranspiration, which is overly sensitive to temperature increase. We adopt a trading-space-for-time approach to better understand whether robust relationships between parameter values and forcing can be established, and to critically explore the rationale behind time-dependent parameter values in conceptual hydrological models.
NASA Astrophysics Data System (ADS)
Patnaik, S.; Biswal, B.; Sharma, V. C.
2017-12-01
River flow varies greatly in space and time, and the single biggest challenge for hydrologists and ecologists around the world is the fact that most rivers are either ungauged or poorly gauged. Although it is relatively easier to predict long-term average flow of a river using the `universal' zero-parameter Budyko model, lack of data hinders short-term flow prediction at ungauged locations using traditional hydrological models as they require observed flow data for model calibration. Flow prediction in ungauged basins thus requires a dynamic 'zero-parameter' hydrological model. One way to achieve this is to regionalize a dynamic hydrological model's parameters. However, a regionalization method based zero-parameter dynamic hydrological model is not `universal'. An alternative attempt was made recently to develop a zero-parameter dynamic model by defining an instantaneous dryness index as a function of antecedent rainfall and solar energy inputs with the help of a decay function and using the original Budyko function. The model was tested first in 63 US catchments and later in 50 Indian catchments. The median Nash-Sutcliffe efficiency (NSE) was found to be close to 0.4 in both the cases. Although improvements need to be incorporated in order to use the model for reliable prediction, the main aim of this study was to rather understand hydrological processes. The overall results here seem to suggest that the dynamic zero-parameter Budyko model is `universal.' In other words natural catchments around the world are strikingly similar to each other in the way they respond to hydrologic inputs; we thus need to focus more on utilizing catchment similarities in hydrological modelling instead of over parameterizing our models.
Towards simplification of hydrologic modeling: Identification of dominant processes
Markstrom, Steven; Hay, Lauren E.; Clark, Martyn P.
2016-01-01
The Precipitation–Runoff Modeling System (PRMS), a distributed-parameter hydrologic model, has been applied to the conterminous US (CONUS). Parameter sensitivity analysis was used to identify: (1) the sensitive input parameters and (2) particular model output variables that could be associated with the dominant hydrologic process(es). Sensitivity values of 35 PRMS calibration parameters were computed using the Fourier amplitude sensitivity test procedure on 110 000 independent hydrologically based spatial modeling units covering the CONUS and then summarized to process (snowmelt, surface runoff, infiltration, soil moisture, evapotranspiration, interflow, baseflow, and runoff) and model performance statistic (mean, coefficient of variation, and autoregressive lag 1). Identified parameters and processes provide insight into model performance at the location of each unit and allow the modeler to identify the most dominant process on the basis of which processes are associated with the most sensitive parameters. The results of this study indicate that: (1) the choice of performance statistic and output variables has a strong influence on parameter sensitivity, (2) the apparent model complexity to the modeler can be reduced by focusing on those processes that are associated with sensitive parameters and disregarding those that are not, (3) different processes require different numbers of parameters for simulation, and (4) some sensitive parameters influence only one hydrologic process, while others may influence many
NASA Astrophysics Data System (ADS)
Chen, Y.; Li, J.; Xu, H.
2015-10-01
Physically based distributed hydrological models discrete the terrain of the whole catchment into a number of grid cells at fine resolution, and assimilate different terrain data and precipitation to different cells, and are regarded to have the potential to improve the catchment hydrological processes simulation and prediction capability. In the early stage, physically based distributed hydrological models are assumed to derive model parameters from the terrain properties directly, so there is no need to calibrate model parameters, but unfortunately, the uncertanties associated with this model parameter deriving is very high, which impacted their application in flood forecasting, so parameter optimization may also be necessary. There are two main purposes for this study, the first is to propose a parameter optimization method for physically based distributed hydrological models in catchment flood forecasting by using PSO algorithm and to test its competence and to improve its performances, the second is to explore the possibility of improving physically based distributed hydrological models capability in cathcment flood forecasting by parameter optimization. In this paper, based on the scalar concept, a general framework for parameter optimization of the PBDHMs for catchment flood forecasting is first proposed that could be used for all PBDHMs. Then, with Liuxihe model as the study model, which is a physically based distributed hydrological model proposed for catchment flood forecasting, the improverd Particle Swarm Optimization (PSO) algorithm is developed for the parameter optimization of Liuxihe model in catchment flood forecasting, the improvements include to adopt the linear decreasing inertia weight strategy to change the inertia weight, and the arccosine function strategy to adjust the acceleration coefficients. This method has been tested in two catchments in southern China with different sizes, and the results show that the improved PSO algorithm could be used for Liuxihe model parameter optimization effectively, and could improve the model capability largely in catchment flood forecasting, thus proven that parameter optimization is necessary to improve the flood forecasting capability of physically based distributed hydrological model. It also has been found that the appropriate particle number and the maximum evolution number of PSO algorithm used for Liuxihe model catchment flood forcasting is 20 and 30, respectively.
A "total parameter estimation" method in the varification of distributed hydrological models
NASA Astrophysics Data System (ADS)
Wang, M.; Qin, D.; Wang, H.
2011-12-01
Conventionally hydrological models are used for runoff or flood forecasting, hence the determination of model parameters are common estimated based on discharge measurements at the catchment outlets. With the advancement in hydrological sciences and computer technology, distributed hydrological models based on the physical mechanism such as SWAT, MIKESHE, and WEP, have gradually become the mainstream models in hydrology sciences. However, the assessments of distributed hydrological models and model parameter determination still rely on runoff and occasionally, groundwater level measurements. It is essential in many countries, including China, to understand the local and regional water cycle: not only do we need to simulate the runoff generation process and for flood forecasting in wet areas, we also need to grasp the water cycle pathways and consumption process of transformation in arid and semi-arid regions for the conservation and integrated water resources management. As distributed hydrological model can simulate physical processes within a catchment, we can get a more realistic representation of the actual water cycle within the simulation model. Runoff is the combined result of various hydrological processes, using runoff for parameter estimation alone is inherits problematic and difficult to assess the accuracy. In particular, in the arid areas, such as the Haihe River Basin in China, runoff accounted for only 17% of the rainfall, and very concentrated during the rainy season from June to August each year. During other months, many of the perennial rivers within the river basin dry up. Thus using single runoff simulation does not fully utilize the distributed hydrological model in arid and semi-arid regions. This paper proposed a "total parameter estimation" method to verify the distributed hydrological models within various water cycle processes, including runoff, evapotranspiration, groundwater, and soil water; and apply it to the Haihe river basin in China. The application results demonstrate that this comprehensive testing method is very useful in the development of a distributed hydrological model and it provides a new way of thinking in hydrological sciences.
Model Calibration in Watershed Hydrology
NASA Technical Reports Server (NTRS)
Yilmaz, Koray K.; Vrugt, Jasper A.; Gupta, Hoshin V.; Sorooshian, Soroosh
2009-01-01
Hydrologic models use relatively simple mathematical equations to conceptualize and aggregate the complex, spatially distributed, and highly interrelated water, energy, and vegetation processes in a watershed. A consequence of process aggregation is that the model parameters often do not represent directly measurable entities and must, therefore, be estimated using measurements of the system inputs and outputs. During this process, known as model calibration, the parameters are adjusted so that the behavior of the model approximates, as closely and consistently as possible, the observed response of the hydrologic system over some historical period of time. This Chapter reviews the current state-of-the-art of model calibration in watershed hydrology with special emphasis on our own contributions in the last few decades. We discuss the historical background that has led to current perspectives, and review different approaches for manual and automatic single- and multi-objective parameter estimation. In particular, we highlight the recent developments in the calibration of distributed hydrologic models using parameter dimensionality reduction sampling, parameter regularization and parallel computing.
NASA Astrophysics Data System (ADS)
Hernández, Mario R.; Francés, Félix
2015-04-01
One phase of the hydrological models implementation process, significantly contributing to the hydrological predictions uncertainty, is the calibration phase in which values of the unknown model parameters are tuned by optimizing an objective function. An unsuitable error model (e.g. Standard Least Squares or SLS) introduces noise into the estimation of the parameters. The main sources of this noise are the input errors and the hydrological model structural deficiencies. Thus, the biased calibrated parameters cause the divergence model phenomenon, where the errors variance of the (spatially and temporally) forecasted flows far exceeds the errors variance in the fitting period, and provoke the loss of part or all of the physical meaning of the modeled processes. In other words, yielding a calibrated hydrological model which works well, but not for the right reasons. Besides, an unsuitable error model yields a non-reliable predictive uncertainty assessment. Hence, with the aim of prevent all these undesirable effects, this research focuses on the Bayesian joint inference (BJI) of both the hydrological and error model parameters, considering a general additive (GA) error model that allows for correlation, non-stationarity (in variance and bias) and non-normality of model residuals. As hydrological model, it has been used a conceptual distributed model called TETIS, with a particular split structure of the effective model parameters. Bayesian inference has been performed with the aid of a Markov Chain Monte Carlo (MCMC) algorithm called Dream-ZS. MCMC algorithm quantifies the uncertainty of the hydrological and error model parameters by getting the joint posterior probability distribution, conditioned on the observed flows. The BJI methodology is a very powerful and reliable tool, but it must be used correctly this is, if non-stationarity in errors variance and bias is modeled, the Total Laws must be taken into account. The results of this research show that the application of BJI with a GA error model outperforms the hydrological parameters robustness (diminishing the divergence model phenomenon) and improves the reliability of the streamflow predictive distribution, in respect of the results of a bad error model as SLS. Finally, the most likely prediction in a validation period, for both BJI+GA and SLS error models shows a similar performance.
NASA Astrophysics Data System (ADS)
Dunn, S. M.; Lilly, A.
2001-10-01
There are now many examples of hydrological models that utilise the capabilities of Geographic Information Systems to generate spatially distributed predictions of behaviour. However, the spatial variability of hydrological parameters relating to distributions of soils and vegetation can be hard to establish. In this paper, the relationship between a soil hydrological classification Hydrology of Soil Types (HOST) and the spatial parameters of a conceptual catchment-scale model is investigated. A procedure involving inverse modelling using Monte-Carlo simulations on two catchments is developed to identify relative values for soil related parameters of the DIY model. The relative values determine the internal variability of hydrological processes as a function of the soil type. For three out of the four soil parameters studied, the variability between HOST classes was found to be consistent across two catchments when tested independently. Problems in identifying values for the fourth 'fast response distance' parameter have highlighted a potential limitation with the present structure of the model. The present assumption that this parameter can be related simply to soil type rather than topography appears to be inadequate. With the exclusion of this parameter, calibrated parameter sets from one catchment can be converted into equivalent parameter sets for the alternate catchment on the basis of their HOST distributions, to give a reasonable simulation of flow. Following further testing on different catchments, and modifications to the definition of the fast response distance parameter, the technique provides a methodology whereby it is possible to directly derive spatial soil parameters for new catchments.
NASA Astrophysics Data System (ADS)
Chen, Y.; Li, J.; Xu, H.
2016-01-01
Physically based distributed hydrological models (hereafter referred to as PBDHMs) divide the terrain of the whole catchment into a number of grid cells at fine resolution and assimilate different terrain data and precipitation to different cells. They are regarded to have the potential to improve the catchment hydrological process simulation and prediction capability. In the early stage, physically based distributed hydrological models are assumed to derive model parameters from the terrain properties directly, so there is no need to calibrate model parameters. However, unfortunately the uncertainties associated with this model derivation are very high, which impacted their application in flood forecasting, so parameter optimization may also be necessary. There are two main purposes for this study: the first is to propose a parameter optimization method for physically based distributed hydrological models in catchment flood forecasting by using particle swarm optimization (PSO) algorithm and to test its competence and to improve its performances; the second is to explore the possibility of improving physically based distributed hydrological model capability in catchment flood forecasting by parameter optimization. In this paper, based on the scalar concept, a general framework for parameter optimization of the PBDHMs for catchment flood forecasting is first proposed that could be used for all PBDHMs. Then, with the Liuxihe model as the study model, which is a physically based distributed hydrological model proposed for catchment flood forecasting, the improved PSO algorithm is developed for the parameter optimization of the Liuxihe model in catchment flood forecasting. The improvements include adoption of the linearly decreasing inertia weight strategy to change the inertia weight and the arccosine function strategy to adjust the acceleration coefficients. This method has been tested in two catchments in southern China with different sizes, and the results show that the improved PSO algorithm could be used for the Liuxihe model parameter optimization effectively and could improve the model capability largely in catchment flood forecasting, thus proving that parameter optimization is necessary to improve the flood forecasting capability of physically based distributed hydrological models. It also has been found that the appropriate particle number and the maximum evolution number of PSO algorithm used for the Liuxihe model catchment flood forecasting are 20 and 30 respectively.
The application of remote sensing to the development and formulation of hydrologic planning models
NASA Technical Reports Server (NTRS)
Castruccio, P. A.; Loats, H. L., Jr.; Fowler, T. R.
1976-01-01
A hydrologic planning model is developed based on remotely sensed inputs. Data from LANDSAT 1 are used to supply the model's quantitative parameters and coefficients. The use of LANDSAT data as information input to all categories of hydrologic models requiring quantitative surface parameters for their effects functioning is also investigated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oubeidillah, Abdoul A; Kao, Shih-Chieh; Ashfaq, Moetasim
2014-01-01
To extend geographical coverage, refine spatial resolution, and improve modeling efficiency, a computation- and data-intensive effort was conducted to organize a comprehensive hydrologic dataset with post-calibrated model parameters for hydro-climate impact assessment. Several key inputs for hydrologic simulation including meteorologic forcings, soil, land class, vegetation, and elevation were collected from multiple best-available data sources and organized for 2107 hydrologic subbasins (8-digit hydrologic units, HUC8s) in the conterminous United States at refined 1/24 (~4 km) spatial resolution. Using high-performance computing for intensive model calibration, a high-resolution parameter dataset was prepared for the macro-scale Variable Infiltration Capacity (VIC) hydrologic model. The VICmore » simulation was driven by DAYMET daily meteorological forcing and was calibrated against USGS WaterWatch monthly runoff observations for each HUC8. The results showed that this new parameter dataset may help reasonably simulate runoff at most US HUC8 subbasins. Based on this exhaustive calibration effort, it is now possible to accurately estimate the resources required for further model improvement across the entire conterminous United States. We anticipate that through this hydrologic parameter dataset, the repeated effort of fundamental data processing can be lessened, so that research efforts can emphasize the more challenging task of assessing climate change impacts. The pre-organized model parameter dataset will be provided to interested parties to support further hydro-climate impact assessment.« less
Improving Hydrological Simulations by Incorporating GRACE Data for Parameter Calibration
NASA Astrophysics Data System (ADS)
Bai, P.
2017-12-01
Hydrological model parameters are commonly calibrated by observed streamflow data. This calibration strategy is questioned when the modeled hydrological variables of interest are not limited to streamflow. Well-performed streamflow simulations do not guarantee the reliable reproduction of other hydrological variables. One of the reasons is that hydrological model parameters are not reasonably identified. The Gravity Recovery and Climate Experiment (GRACE) satellite-derived total water storage change (TWSC) data provide an opportunity to constrain hydrological model parameterizations in combination with streamflow observations. We constructed a multi-objective calibration scheme based on GRACE-derived TWSC and streamflow observations, with the aim of improving the parameterizations of hydrological models. The multi-objective calibration scheme was compared with the traditional single-objective calibration scheme, which is based only on streamflow observations. Two monthly hydrological models were employed on 22 Chinese catchments with different hydroclimatic conditions. The model evaluation was performed using observed streamflows, GRACE-derived TWSC, and evapotranspiraiton (ET) estimates from flux towers and from the water balance approach. Results showed that the multi-objective calibration provided more reliable TWSC and ET simulations without significant deterioration in the accuracy of streamflow simulations than the single-objective calibration. In addition, the improvements of TWSC and ET simulations were more significant in relatively dry catchments than in relatively wet catchments. This study highlights the importance of including additional constraints besides streamflow observations in the parameter estimation to improve the performances of hydrological models.
NASA Astrophysics Data System (ADS)
Norton, P. A., II
2015-12-01
The U. S. Geological Survey is developing a National Hydrologic Model (NHM) to support consistent hydrologic modeling across the conterminous United States (CONUS). The Precipitation-Runoff Modeling System (PRMS) simulates daily hydrologic and energy processes in watersheds, and is used for the NHM application. For PRMS each watershed is divided into hydrologic response units (HRUs); by default each HRU is assumed to have a uniform hydrologic response. The Geospatial Fabric (GF) is a database containing initial parameter values for input to PRMS and was created for the NHM. The parameter values in the GF were derived from datasets that characterize the physical features of the entire CONUS. The NHM application is composed of more than 100,000 HRUs from the GF. Selected parameter values commonly are adjusted by basin in PRMS using an automated calibration process based on calibration targets, such as streamflow. Providing each HRU with distinct values that captures variability within the CONUS may improve simulation performance of the NHM. During calibration of the NHM by HRU, selected parameter values are adjusted for PRMS based on calibration targets, such as streamflow, snow water equivalent (SWE) and actual evapotranspiration (AET). Simulated SWE, AET, and runoff were compared to value ranges derived from multiple sources (e.g. the Snow Data Assimilation System, the Moderate Resolution Imaging Spectroradiometer (i.e. MODIS) Global Evapotranspiration Project, the Simplified Surface Energy Balance model, and the Monthly Water Balance Model). This provides each HRU with a distinct set of parameter values that captures the variability within the CONUS, leading to improved model performance. We present simulation results from the NHM after preliminary calibration, including the results of basin-level calibration for the NHM using: 1) default initial GF parameter values, and 2) parameter values calibrated by HRU.
NASA Astrophysics Data System (ADS)
Wang, Z.
2015-12-01
For decades, distributed and lumped hydrological models have furthered our understanding of hydrological system. The development of hydrological simulation in large scale and high precision elaborated the spatial descriptions and hydrological behaviors. Meanwhile, the new trend is also followed by the increment of model complexity and number of parameters, which brings new challenges of uncertainty quantification. Generalized Likelihood Uncertainty Estimation (GLUE) has been widely used in uncertainty analysis for hydrological models referring to Monte Carlo method coupled with Bayesian estimation. However, the stochastic sampling method of prior parameters adopted by GLUE appears inefficient, especially in high dimensional parameter space. The heuristic optimization algorithms utilizing iterative evolution show better convergence speed and optimality-searching performance. In light of the features of heuristic optimization algorithms, this study adopted genetic algorithm, differential evolution, shuffled complex evolving algorithm to search the parameter space and obtain the parameter sets of large likelihoods. Based on the multi-algorithm sampling, hydrological model uncertainty analysis is conducted by the typical GLUE framework. To demonstrate the superiority of the new method, two hydrological models of different complexity are examined. The results shows the adaptive method tends to be efficient in sampling and effective in uncertainty analysis, providing an alternative path for uncertainty quantilization.
NASA Astrophysics Data System (ADS)
McNamara, J. P.; Semenova, O.; Restrepo, P. J.
2011-12-01
Highly instrumented research watersheds provide excellent opportunities for investigating hydrologic processes. A danger, however, is that the processes observed at a particular research watershed are too specific to the watershed and not representative even of the larger scale watershed that contains that particular research watershed. Thus, models developed based on those partial observations may not be suitable for general hydrologic use. Therefore demonstrating the upscaling of hydrologic process from research watersheds to larger watersheds is essential to validate concepts and test model structure. The Hydrograph model has been developed as a general-purpose process-based hydrologic distributed system. In its applications and further development we evaluate the scaling of model concepts and parameters in a wide range of hydrologic landscapes. All models, either lumped or distributed, are based on a discretization concept. It is common practice that watersheds are discretized into so called hydrologic units or hydrologic landscapes possessing assumed homogeneous hydrologic functioning. If a model structure is fixed, the difference in hydrologic functioning (difference in hydrologic landscapes) should be reflected by a specific set of model parameters. Research watersheds provide the possibility for reasonable detailed combining of processes into some typical hydrologic concept such as hydrologic units, hydrologic forms, and runoff formation complexes in the Hydrograph model. And here by upscaling we imply not the upscaling of a single process but upscaling of such unified hydrologic functioning. The simulation of runoff processes for the Dry Creek research watershed, Idaho, USA (27 km2) was undertaken using the Hydrograph model. The information on the watershed was provided by Boise State University and included a GIS database of watershed characteristics and a detailed hydrometeorological observational dataset. The model provided good simulation results in terms of runoff and variable states of soil and snow over a simulation period 2000 - 2009. The parameters of the model were hand-adjusted based on rational sense, observational data and available understanding of underlying processes. For the first run some processes as riparian vegetation impact on runoff and streamflow/groundwater interaction were handled in a conceptual way. It was shown that the use of Hydrograph model which requires modest amount of parameter calibration may serve also as a quality control for observations. Based on the obtained parameters values and process understanding at the research watershed the model was applied to the larger scale watersheds located in similar environment - the Boise River at South Fork (1660 km2) and Twin Springs (2155 km2). The evaluation of the results of such upscaling will be presented.
Uncertainty analysis of hydrological modeling in a tropical area using different algorithms
NASA Astrophysics Data System (ADS)
Rafiei Emam, Ammar; Kappas, Martin; Fassnacht, Steven; Linh, Nguyen Hoang Khanh
2018-01-01
Hydrological modeling outputs are subject to uncertainty resulting from different sources of errors (e.g., error in input data, model structure, and model parameters), making quantification of uncertainty in hydrological modeling imperative and meant to improve reliability of modeling results. The uncertainty analysis must solve difficulties in calibration of hydrological models, which further increase in areas with data scarcity. The purpose of this study is to apply four uncertainty analysis algorithms to a semi-distributed hydrological model, quantifying different source of uncertainties (especially parameter uncertainty) and evaluate their performance. In this study, the Soil and Water Assessment Tools (SWAT) eco-hydrological model was implemented for the watershed in the center of Vietnam. The sensitivity of parameters was analyzed, and the model was calibrated. The uncertainty analysis for the hydrological model was conducted based on four algorithms: Generalized Likelihood Uncertainty Estimation (GLUE), Sequential Uncertainty Fitting (SUFI), Parameter Solution method (ParaSol) and Particle Swarm Optimization (PSO). The performance of the algorithms was compared using P-factor and Rfactor, coefficient of determination (R 2), the Nash Sutcliffe coefficient of efficiency (NSE) and Percent Bias (PBIAS). The results showed the high performance of SUFI and PSO with P-factor>0.83, R-factor <0.56 and R 2>0.91, NSE>0.89, and 0.18
The critical role of uncertainty in projections of hydrological extremes
NASA Astrophysics Data System (ADS)
Meresa, Hadush K.; Romanowicz, Renata J.
2017-08-01
This paper aims to quantify the uncertainty in projections of future hydrological extremes in the Biala Tarnowska River at Koszyce gauging station, south Poland. The approach followed is based on several climate projections obtained from the EURO-CORDEX initiative, raw and bias-corrected realizations of catchment precipitation, and flow simulations derived using multiple hydrological model parameter sets. The projections cover the 21st century. Three sources of uncertainty are considered: one related to climate projection ensemble spread, the second related to the uncertainty in hydrological model parameters and the third related to the error in fitting theoretical distribution models to annual extreme flow series. The uncertainty of projected extreme indices related to hydrological model parameters was conditioned on flow observations from the reference period using the generalized likelihood uncertainty estimation (GLUE) approach, with separate criteria for high- and low-flow extremes. Extreme (low and high) flow quantiles were estimated using the generalized extreme value (GEV) distribution at different return periods and were based on two different lengths of the flow time series. A sensitivity analysis based on the analysis of variance (ANOVA) shows that the uncertainty introduced by the hydrological model parameters can be larger than the climate model variability and the distribution fit uncertainty for the low-flow extremes whilst for the high-flow extremes higher uncertainty is observed from climate models than from hydrological parameter and distribution fit uncertainties. This implies that ignoring one of the three uncertainty sources may cause great risk to future hydrological extreme adaptations and water resource planning and management.
Characterization of uncertainty and sensitivity of model parameters is an essential and often overlooked facet of hydrological modeling. This paper introduces an algorithm called MOESHA that combines input parameter sensitivity analyses with a genetic algorithm calibration routin...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Huiying; Hou, Zhangshuan; Huang, Maoyi
The Community Land Model (CLM) represents physical, chemical, and biological processes of the terrestrial ecosystems that interact with climate across a range of spatial and temporal scales. As CLM includes numerous sub-models and associated parameters, the high-dimensional parameter space presents a formidable challenge for quantifying uncertainty and improving Earth system predictions needed to assess environmental changes and risks. This study aims to evaluate the potential of transferring hydrologic model parameters in CLM through sensitivity analyses and classification across watersheds from the Model Parameter Estimation Experiment (MOPEX) in the United States. The sensitivity of CLM-simulated water and energy fluxes to hydrologicalmore » parameters across 431 MOPEX basins are first examined using an efficient stochastic sampling-based sensitivity analysis approach. Linear, interaction, and high-order nonlinear impacts are all identified via statistical tests and stepwise backward removal parameter screening. The basins are then classified accordingly to their parameter sensitivity patterns (internal attributes), as well as their hydrologic indices/attributes (external hydrologic factors) separately, using a Principal component analyses (PCA) and expectation-maximization (EM) –based clustering approach. Similarities and differences among the parameter sensitivity-based classification system (S-Class), the hydrologic indices-based classification (H-Class), and the Koppen climate classification systems (K-Class) are discussed. Within each S-class with similar parameter sensitivity characteristics, similar inversion modeling setups can be used for parameter calibration, and the parameters and their contribution or significance to water and energy cycling may also be more transferrable. This classification study provides guidance on identifiable parameters, and on parameterization and inverse model design for CLM but the methodology is applicable to other models. Inverting parameters at representative sites belonging to the same class can significantly reduce parameter calibration efforts.« less
NASA Astrophysics Data System (ADS)
Wang, S.; Huang, G. H.; Baetz, B. W.; Huang, W.
2015-11-01
This paper presents a polynomial chaos ensemble hydrologic prediction system (PCEHPS) for an efficient and robust uncertainty assessment of model parameters and predictions, in which possibilistic reasoning is infused into probabilistic parameter inference with simultaneous consideration of randomness and fuzziness. The PCEHPS is developed through a two-stage factorial polynomial chaos expansion (PCE) framework, which consists of an ensemble of PCEs to approximate the behavior of the hydrologic model, significantly speeding up the exhaustive sampling of the parameter space. Multiple hypothesis testing is then conducted to construct an ensemble of reduced-dimensionality PCEs with only the most influential terms, which is meaningful for achieving uncertainty reduction and further acceleration of parameter inference. The PCEHPS is applied to the Xiangxi River watershed in China to demonstrate its validity and applicability. A detailed comparison between the HYMOD hydrologic model, the ensemble of PCEs, and the ensemble of reduced PCEs is performed in terms of accuracy and efficiency. Results reveal temporal and spatial variations in parameter sensitivities due to the dynamic behavior of hydrologic systems, and the effects (magnitude and direction) of parametric interactions depending on different hydrological metrics. The case study demonstrates that the PCEHPS is capable not only of capturing both expert knowledge and probabilistic information in the calibration process, but also of implementing an acceleration of more than 10 times faster than the hydrologic model without compromising the predictive accuracy.
Typecasting catchments: Classification, directionality, and the pursuit of universality
NASA Astrophysics Data System (ADS)
Smith, Tyler; Marshall, Lucy; McGlynn, Brian
2018-02-01
Catchment classification poses a significant challenge to hydrology and hydrologic modeling, restricting widespread transfer of knowledge from well-studied sites. The identification of important physical, climatological, or hydrologic attributes (to varying degrees depending on application/data availability) has traditionally been the focus for catchment classification. Classification approaches are regularly assessed with regard to their ability to provide suitable hydrologic predictions - commonly by transferring fitted hydrologic parameters at a data-rich catchment to a data-poor catchment deemed similar by the classification. While such approaches to hydrology's grand challenges are intuitive, they often ignore the most uncertain aspect of the process - the model itself. We explore catchment classification and parameter transferability and the concept of universal donor/acceptor catchments. We identify the implications of the assumption that the transfer of parameters between "similar" catchments is reciprocal (i.e., non-directional). These concepts are considered through three case studies situated across multiple gradients that include model complexity, process description, and site characteristics. Case study results highlight that some catchments are more successfully used as donor catchments and others are better suited as acceptor catchments. These results were observed for both black-box and process consistent hydrologic models, as well as for differing levels of catchment similarity. Therefore, we suggest that similarity does not adequately satisfy the underlying assumptions being made in parameter regionalization approaches regardless of model appropriateness. Furthermore, we suggest that the directionality of parameter transfer is an important factor in determining the success of parameter regionalization approaches.
Evaluation of Potential Evapotranspiration from a Hydrologic Model on a National Scale
NASA Astrophysics Data System (ADS)
Hakala, K. A.; Hay, L.; Markstrom, S. L.
2014-12-01
The US Geological Survey has developed a National Hydrologic Model (NHM) to support coordinated, comprehensive and consistent hydrologic model development and facilitate the application of simulations on the scale of the continental US. The NHM has a consistent geospatial fabric for modeling, consisting of over 100,000 hydrologic response units (HRUs). Each HRU requires accurate parameter estimates, some of which are attained from automated calibration. However, improved calibration can be achieved by initially utilizing as many parameters as possible from national data sets. This presentation investigates the effectiveness of calculating potential evapotranspiration (PET) parameters based on mean monthly values from the NOAA PET Atlas. Additional PET products are then used to evaluate the PET parameters. Effectively utilizing existing national-scale data sets can simplify the effort in establishing a robust NHM.
Using aerial images for establishing a workflow for the quantification of water management measures
NASA Astrophysics Data System (ADS)
Leuschner, Annette; Merz, Christoph; van Gasselt, Stephan; Steidl, Jörg
2017-04-01
Quantified landscape characteristics, such as morphology, land use or hydrological conditions, play an important role for hydrological investigations as landscape parameters directly control the overall water balance. A powerful assimilation and geospatial analysis of remote sensing datasets in combination with hydrological modeling allows to quantify landscape parameters and water balances efficiently. This study focuses on the development of a workflow to extract hydrologically relevant data from aerial image datasets and derived products in order to allow an effective parametrization of a hydrological model. Consistent and self-contained data source are indispensable for achieving reasonable modeling results. In order to minimize uncertainties and inconsistencies, input parameters for modeling should be extracted from one remote-sensing dataset mainly if possbile. Here, aerial images have been chosen because of their high spatial and spectral resolution that permits the extraction of various model relevant parameters, like morphology, land-use or artificial drainage-systems. The methodological repertoire to extract environmental parameters range from analyses of digital terrain models, multispectral classification and segmentation of land use distribution maps and mapping of artificial drainage-systems based on spectral and visual inspection. The workflow has been tested for a mesoscale catchment area which forms a characteristic hydrological system of a young moraine landscape located in the state of Brandenburg, Germany. These dataset were used as input-dataset for multi-temporal hydrological modelling of water balances to detect and quantify anthropogenic and meteorological impacts. ArcSWAT, as a GIS-implemented extension and graphical user input interface for the Soil Water Assessment Tool (SWAT) was chosen. The results of this modeling approach provide the basis for anticipating future development of the hydrological system, and regarding system changes for the adaption of water resource management decisions.
NASA Astrophysics Data System (ADS)
Nossent, Jiri; Pereira, Fernando; Bauwens, Willy
2015-04-01
Precipitation is one of the key inputs for hydrological models. As long as the values of the hydrological model parameters are fixed, a variation of the rainfall input is expected to induce a change in the model output. Given the increased awareness of uncertainty on rainfall records, it becomes more important to understand the impact of this input - output dynamic. Yet, modellers often still have the intention to mimic the observed flow, whatever the deviation of the employed records from the actual rainfall might be, by recklessly adapting the model parameter values. But is it actually possible to vary the model parameter values in such a way that a certain (observed) model output can be generated based on inaccurate rainfall inputs? Thus, how important is the rainfall uncertainty for the model output with respect to the model parameter importance? To address this question, we apply the Sobol' sensitivity analysis method to assess and compare the importance of the rainfall uncertainty and the model parameters on the output of the hydrological model. In order to be able to treat the regular model parameters and input uncertainty in the same way, and to allow a comparison of their influence, a possible approach is to represent the rainfall uncertainty by a parameter. To tackle the latter issue, we apply so called rainfall multipliers on hydrological independent storm events, as a probabilistic parameter representation of the possible rainfall variation. As available rainfall records are very often point measurements at a discrete time step (hourly, daily, monthly,…), they contain uncertainty due to a latent lack of spatial and temporal variability. The influence of the latter variability can also be different for hydrological models with different spatial and temporal scale. Therefore, we perform the sensitivity analyses on a semi-distributed model (SWAT) and a lumped model (NAM). The assessment and comparison of the importance of the rainfall uncertainty and the model parameters is achieved by considering different scenarios for the included parameters and the state of the models.
NASA Astrophysics Data System (ADS)
Pomeroy, J. W.; Fang, X.
2014-12-01
The vast effort in hydrology devoted to parameter calibration as a means to improve model performance assumes that the models concerned are not fundamentally wrong. By focussing on finding optimal parameter sets and ascribing poor model performance to parameter or data uncertainty, these efforts may fail to consider the need to improve models with more intelligent descriptions of hydrological processes. To test this hypothesis, a flexible physically based hydrological model including a full suite of snow hydrology processes as well as warm season, hillslope and groundwater hydrology was applied to Marmot Creek Research Basin, Canadian Rocky Mountains where excellent driving meteorology and basin biophysical descriptions exist. Model parameters were set from values found in the basin or from similar environments; no parameters were calibrated. The model was tested against snow surveys and streamflow observations. The model used algorithms that describe snow redistribution, sublimation and forest canopy effects on snowmelt and evaporative processes that are rarely implemented in hydrological models. To investigate the contribution of these processes to model predictive capability, the model was "falsified" by deleting parameterisations for forest canopy snow mass and energy, blowing snow, intercepted rain evaporation, and sublimation. Model falsification by ignoring forest canopy processes contributed to a large increase in SWE errors for forested portions of the research basin with RMSE increasing from 19 to 55 mm and mean bias (MB) increasing from 0.004 to 0.62. In the alpine tundra portion, removing blowing processes resulted in an increase in model SWE MB from 0.04 to 2.55 on north-facing slopes and -0.006 to -0.48 on south-facing slopes. Eliminating these algorithms degraded streamflow prediction with the Nash Sutcliffe efficiency dropping from 0.58 to 0.22 and MB increasing from 0.01 to 0.09. These results show dramatic model improvements by including snow redistribution and melt processes associated with wind transport and forest canopies. As most hydrological models do not currently include these processes, it is suggested that modellers first improve the realism of model structures before trying to optimise what are inherently inadequate simulations of hydrology.
NASA Astrophysics Data System (ADS)
Wanders, N.; Bierkens, M. F. P.; de Jong, S. M.; de Roo, A.; Karssenberg, D.
2014-08-01
Large-scale hydrological models are nowadays mostly calibrated using observed discharge. As a result, a large part of the hydrological system, in particular the unsaturated zone, remains uncalibrated. Soil moisture observations from satellites have the potential to fill this gap. Here we evaluate the added value of remotely sensed soil moisture in calibration of large-scale hydrological models by addressing two research questions: (1) Which parameters of hydrological models can be identified by calibration with remotely sensed soil moisture? (2) Does calibration with remotely sensed soil moisture lead to an improved calibration of hydrological models compared to calibration based only on discharge observations, such that this leads to improved simulations of soil moisture content and discharge? A dual state and parameter Ensemble Kalman Filter is used to calibrate the hydrological model LISFLOOD for the Upper Danube. Calibration is done using discharge and remotely sensed soil moisture acquired by AMSR-E, SMOS, and ASCAT. Calibration with discharge data improves the estimation of groundwater and routing parameters. Calibration with only remotely sensed soil moisture results in an accurate identification of parameters related to land-surface processes. For the Upper Danube upstream area up to 40,000 km2, calibration on both discharge and soil moisture results in a reduction by 10-30% in the RMSE for discharge simulations, compared to calibration on discharge alone. The conclusion is that remotely sensed soil moisture holds potential for calibration of hydrological models, leading to a better simulation of soil moisture content throughout the catchment and a better simulation of discharge in upstream areas. This article was corrected on 15 SEP 2014. See the end of the full text for details.
ERM model analysis for adaptation to hydrological model errors
NASA Astrophysics Data System (ADS)
Baymani-Nezhad, M.; Han, D.
2018-05-01
Hydrological conditions are changed continuously and these phenomenons generate errors on flood forecasting models and will lead to get unrealistic results. Therefore, to overcome these difficulties, a concept called model updating is proposed in hydrological studies. Real-time model updating is one of the challenging processes in hydrological sciences and has not been entirely solved due to lack of knowledge about the future state of the catchment under study. Basically, in terms of flood forecasting process, errors propagated from the rainfall-runoff model are enumerated as the main source of uncertainty in the forecasting model. Hence, to dominate the exciting errors, several methods have been proposed by researchers to update the rainfall-runoff models such as parameter updating, model state updating, and correction on input data. The current study focuses on investigations about the ability of rainfall-runoff model parameters to cope with three types of existing errors, timing, shape and volume as the common errors in hydrological modelling. The new lumped model, the ERM model, has been selected for this study to evaluate its parameters for its use in model updating to cope with the stated errors. Investigation about ten events proves that the ERM model parameters can be updated to cope with the errors without the need to recalibrate the model.
Evaluation of Potential Evapotranspiration from a Hydrologic Model on a National Scale
NASA Astrophysics Data System (ADS)
Hakala, Kirsti; Markstrom, Steven; Hay, Lauren
2015-04-01
The U.S. Geological Survey has developed a National Hydrologic Model (NHM) to support coordinated, comprehensive and consistent hydrologic model development and facilitate the application of simulations on the scale of the continental U.S. The NHM has a consistent geospatial fabric for modeling, consisting of over 100,000 hydrologic response units HRUs). Each HRU requires accurate parameter estimates, some of which are attained from automated calibration. However, improved calibration can be achieved by initially utilizing as many parameters as possible from national data sets. This presentation investigates the effectiveness of calculating potential evapotranspiration (PET) parameters based on mean monthly values from the NOAA PET Atlas. Additional PET products are then used to evaluate the PET parameters. Effectively utilizing existing national-scale data sets can simplify the effort in establishing a robust NHM.
Estimating parameter values of a socio-hydrological flood model
NASA Astrophysics Data System (ADS)
Holkje Barendrecht, Marlies; Viglione, Alberto; Kreibich, Heidi; Vorogushyn, Sergiy; Merz, Bruno; Blöschl, Günter
2018-06-01
Socio-hydrological modelling studies that have been published so far show that dynamic coupled human-flood models are a promising tool to represent the phenomena and the feedbacks in human-flood systems. So far these models are mostly generic and have not been developed and calibrated to represent specific case studies. We believe that applying and calibrating these type of models to real world case studies can help us to further develop our understanding about the phenomena that occur in these systems. In this paper we propose a method to estimate the parameter values of a socio-hydrological model and we test it by applying it to an artificial case study. We postulate a model that describes the feedbacks between floods, awareness and preparedness. After simulating hypothetical time series with a given combination of parameters, we sample few data points for our variables and try to estimate the parameters given these data points using Bayesian Inference. The results show that, if we are able to collect data for our case study, we would, in theory, be able to estimate the parameter values for our socio-hydrological flood model.
Automatic Calibration of a Semi-Distributed Hydrologic Model Using Particle Swarm Optimization
NASA Astrophysics Data System (ADS)
Bekele, E. G.; Nicklow, J. W.
2005-12-01
Hydrologic simulation models need to be calibrated and validated before using them for operational predictions. Spatially-distributed hydrologic models generally have a large number of parameters to capture the various physical characteristics of a hydrologic system. Manual calibration of such models is a very tedious and daunting task, and its success depends on the subjective assessment of a particular modeler, which includes knowledge of the basic approaches and interactions in the model. In order to alleviate these shortcomings, an automatic calibration model, which employs an evolutionary optimization technique known as Particle Swarm Optimizer (PSO) for parameter estimation, is developed. PSO is a heuristic search algorithm that is inspired by social behavior of bird flocking or fish schooling. The newly-developed calibration model is integrated to the U.S. Department of Agriculture's Soil and Water Assessment Tool (SWAT). SWAT is a physically-based, semi-distributed hydrologic model that was developed to predict the long term impacts of land management practices on water, sediment and agricultural chemical yields in large complex watersheds with varying soils, land use, and management conditions. SWAT was calibrated for streamflow and sediment concentration. The calibration process involves parameter specification, whereby sensitive model parameters are identified, and parameter estimation. In order to reduce the number of parameters to be calibrated, parameterization was performed. The methodology is applied to a demonstration watershed known as Big Creek, which is located in southern Illinois. Application results show the effectiveness of the approach and model predictions are significantly improved.
Study of Parameters And Methods of LL-Ⅳ Distributed Hydrological Model in DMIP2
NASA Astrophysics Data System (ADS)
Li, L.; Wu, J.; Wang, X.; Yang, C.; Zhao, Y.; Zhou, H.
2008-05-01
: The Physics-based distributed hydrological model is considered as an important developing period from the traditional experience-hydrology to the physical hydrology. The Hydrology Laboratory of the NOAA National Weather Service proposes the first and second phase of the Distributed Model Intercomparison Project (DMIP),that it is a great epoch-making work. LL distributed hydrological model has been developed to the fourth generation since it was established in 1997 on the Fengman-I district reservoir area (11000 km2).The LL-I distributed hydrological model was born with the applications of flood control system in the Fengman-I in China. LL-II was developed under the DMIP-I support, it is combined with GIS, RS, GPS, radar rainfall measurement.LL-III was established along with Applications of LL Distributed Model on Water Resources which was supported by the 973-projects of The Ministry of Science and Technology of the People's Republic of China. LL-Ⅳ was developed to face China's water problem. Combined with Blue River and the Baron Fork River basin of DMIP-II, the convection-diffusion equation of non-saturated and saturated seepage was derived from the soil water dynamics and continuous equation. In view of the technical characteristics of the model, the advantage of using convection-diffusion equation to compute confluence overall is longer period of predictable, saving memory space, fast budgeting, clear physical concepts, etc. The determination of parameters of hydrological model is the key, including experience coefficients and parameters of physical parameters. There are methods of experience, inversion, and the optimization to determine the model parameters, and each has advantages and disadvantages. This paper briefly introduces the LL-Ⅳ distribution hydrological model equations, and particularly introduces methods of parameters determination and simulation results on Blue River and Baron Fork River basin for DMIP-II. The soil moisture diffusion coefficient and coefficient of hydraulic conductivity are involved all through the LL-Ⅳ distribution of runoff and slope convergence model, used mainly empirical formula to determine. It's used optimization methods to calculate the two parameters of evaporation capacity (coefficient of bare land and vegetation land), two parameters of interception and wave velocity of Overland Flow, interflow and groundwater. The approach of determining wave velocity of River Network confluence and diffusion coefficient is: 1. Estimate roughness based mainly on digital information such as land use, soil texture, etc. 2.Establish the empirical formula. Another method is called convection-diffusion numerical inversion.
NASA Astrophysics Data System (ADS)
Zhang, Junlong; Li, Yongping; Huang, Guohe; Chen, Xi; Bao, Anming
2016-07-01
Without a realistic assessment of parameter uncertainty, decision makers may encounter difficulties in accurately describing hydrologic processes and assessing relationships between model parameters and watershed characteristics. In this study, a Markov-Chain-Monte-Carlo-based multilevel-factorial-analysis (MCMC-MFA) method is developed, which can not only generate samples of parameters from a well constructed Markov chain and assess parameter uncertainties with straightforward Bayesian inference, but also investigate the individual and interactive effects of multiple parameters on model output through measuring the specific variations of hydrological responses. A case study is conducted for addressing parameter uncertainties in the Kaidu watershed of northwest China. Effects of multiple parameters and their interactions are quantitatively investigated using the MCMC-MFA with a three-level factorial experiment (totally 81 runs). A variance-based sensitivity analysis method is used to validate the results of parameters' effects. Results disclose that (i) soil conservation service runoff curve number for moisture condition II (CN2) and fraction of snow volume corresponding to 50% snow cover (SNO50COV) are the most significant factors to hydrological responses, implying that infiltration-excess overland flow and snow water equivalent represent important water input to the hydrological system of the Kaidu watershed; (ii) saturate hydraulic conductivity (SOL_K) and soil evaporation compensation factor (ESCO) have obvious effects on hydrological responses; this implies that the processes of percolation and evaporation would impact hydrological process in this watershed; (iii) the interactions of ESCO and SNO50COV as well as CN2 and SNO50COV have an obvious effect, implying that snow cover can impact the generation of runoff on land surface and the extraction of soil evaporative demand in lower soil layers. These findings can help enhance the hydrological model's capability for simulating/predicting water resources.
Parameter Set Cloning Based on Catchment Similarity for Large-scale Hydrologic Modeling
NASA Astrophysics Data System (ADS)
Liu, Z.; Kaheil, Y.; McCollum, J.
2016-12-01
Parameter calibration is a crucial step to ensure the accuracy of hydrological models. However, streamflow gauges are not available everywhere for calibrating a large-scale hydrologic model globally. Thus, assigning parameters appropriately for regions where the calibration cannot be performed directly has been a challenge for large-scale hydrologic modeling. Here we propose a method to estimate the model parameters in ungauged regions based on the values obtained through calibration in areas where gauge observations are available. This parameter set cloning is performed according to a catchment similarity index, a weighted sum index based on four catchment characteristic attributes. These attributes are IPCC Climate Zone, Soil Texture, Land Cover, and Topographic Index. The catchments with calibrated parameter values are donors, while the uncalibrated catchments are candidates. Catchment characteristic analyses are first conducted for both donors and candidates. For each attribute, we compute a characteristic distance between donors and candidates. Next, for each candidate, weights are assigned to the four attributes such that higher weights are given to properties that are more directly linked to the hydrologic dominant processes. This will ensure that the parameter set cloning emphasizes the dominant hydrologic process in the region where the candidate is located. The catchment similarity index for each donor - candidate couple is then created as the sum of the weighted distance of the four properties. Finally, parameters are assigned to each candidate from the donor that is "most similar" (i.e. with the shortest weighted distance sum). For validation, we applied the proposed method to catchments where gauge observations are available, and compared simulated streamflows using the parameters cloned by other catchments to the results obtained by calibrating the hydrologic model directly using gauge data. The comparison shows good agreement between the two models for different river basins as we show here. This method has been applied globally to the Hillslope River Routing (HRR) model using gauge observations obtained from the Global Runoff Data Center (GRDC). As next step, more catchment properties can be taken into account to further improve the representation of catchment similarity.
NASA Astrophysics Data System (ADS)
Chen, Y.
2017-12-01
Urbanization is the world development trend for the past century, and the developing countries have been experiencing much rapider urbanization in the past decades. Urbanization brings many benefits to human beings, but also causes negative impacts, such as increasing flood risk. Impact of urbanization on flood response has long been observed, but quantitatively studying this effect still faces great challenges. For example, setting up an appropriate hydrological model representing the changed flood responses and determining accurate model parameters are very difficult in the urbanized or urbanizing watershed. In the Pearl River Delta area, rapidest urbanization has been observed in China for the past decades, and dozens of highly urbanized watersheds have been appeared. In this study, a physically based distributed watershed hydrological model, the Liuxihe model is employed and revised to simulate the hydrological processes of the highly urbanized watershed flood in the Pearl River Delta area. A virtual soil type is then defined in the terrain properties dataset, and its runoff production and routing algorithms are added to the Liuxihe model. Based on a parameter sensitive analysis, the key hydrological processes of a highly urbanized watershed is proposed, that provides insight into the hydrological processes and for parameter optimization. Based on the above analysis, the model is set up in the Songmushan watershed where there is hydrological data observation. A model parameter optimization and updating strategy is proposed based on the remotely sensed LUC types, which optimizes model parameters with PSO algorithm and updates them based on the changed LUC types. The model parameters in Songmushan watershed are regionalized at the Pearl River Delta area watersheds based on the LUC types of the other watersheds. A dozen watersheds in the highly urbanized area of Dongguan City in the Pearl River Delta area were studied for the flood response changes due to urbanization, and the results show urbanization has big impact on the watershed flood responses. The peak flow increased a few times after urbanization which is much higher than previous reports.
Potential for Remotely Sensed Soil Moisture Data in Hydrologic Modeling
NASA Technical Reports Server (NTRS)
Engman, Edwin T.
1997-01-01
Many hydrologic processes display a unique signature that is detectable with microwave remote sensing. These signatures are in the form of the spatial and temporal distributions of surface soil moisture and portray the spatial heterogeneity of hydrologic processes and properties that one encounters in drainage basins. The hydrologic processes that may be detected include ground water recharge and discharge zones, storm runoff contributing areas, regions of potential and less than potential ET, and information about the hydrologic properties of soils and heterogeneity of hydrologic parameters. Microwave remote sensing has the potential to detect these signatures within a basin in the form of volumetric soil moisture measurements in the top few cm. These signatures should provide information on how and where to apply soil physical parameters in distributed and lumped parameter models and how to subdivide drainage basins into hydrologically similar sub-basins.
NASA Astrophysics Data System (ADS)
Zhu, Gaofeng; Li, Xin; Ma, Jinzhu; Wang, Yunquan; Liu, Shaomin; Huang, Chunlin; Zhang, Kun; Hu, Xiaoli
2018-04-01
Sequential Monte Carlo (SMC) samplers have become increasing popular for estimating the posterior parameter distribution with the non-linear dependency structures and multiple modes often present in hydrological models. However, the explorative capabilities and efficiency of the sampler depends strongly on the efficiency in the move step of SMC sampler. In this paper we presented a new SMC sampler entitled the Particle Evolution Metropolis Sequential Monte Carlo (PEM-SMC) algorithm, which is well suited to handle unknown static parameters of hydrologic model. The PEM-SMC sampler is inspired by the works of Liang and Wong (2001) and operates by incorporating the strengths of the genetic algorithm, differential evolution algorithm and Metropolis-Hasting algorithm into the framework of SMC. We also prove that the sampler admits the target distribution to be a stationary distribution. Two case studies including a multi-dimensional bimodal normal distribution and a conceptual rainfall-runoff hydrologic model by only considering parameter uncertainty and simultaneously considering parameter and input uncertainty show that PEM-SMC sampler is generally superior to other popular SMC algorithms in handling the high dimensional problems. The study also indicated that it may be important to account for model structural uncertainty by using multiplier different hydrological models in the SMC framework in future study.
NASA Astrophysics Data System (ADS)
Krogh, Sebastian A.; Pomeroy, John W.; Marsh, Philip
2017-07-01
A better understanding of cold regions hydrological processes and regimes in transitional environments is critical for predicting future Arctic freshwater fluxes under climate and vegetation change. A physically based hydrological model using the Cold Regions Hydrological Model platform was created for a small Arctic basin in the tundra-taiga transition region. The model represents snow redistribution and sublimation by wind and vegetation, snowmelt energy budget, evapotranspiration, subsurface flow through organic terrain, infiltration to frozen soils, freezing and thawing of soils, permafrost and streamflow routing. The model was used to reconstruct the basin water cycle over 28 years to understand and quantify the mass fluxes controlling its hydrological regime. Model structure and parameters were set from the current understanding of Arctic hydrology, remote sensing, field research in the basin and region, and calibration against streamflow observations. Calibration was restricted to subsurface hydraulic and storage parameters. Multi-objective evaluation of the model using observed streamflow, snow accumulation and ground freeze/thaw state showed adequate simulation. Significant spatial variability in the winter mass fluxes was found between tundra, shrubs and forested sites, particularly due to the substantial blowing snow redistribution and sublimation from the wind-swept upper basin, as well as sublimation of canopy intercepted snow from the forest (about 17% of snowfall). At the basin scale, the model showed that evapotranspiration is the largest loss of water (47%), followed by streamflow (39%) and sublimation (14%). The models streamflow performance sensitivity to a set of parameter was analysed, as well as the mean annual mass balance uncertainty associated with these parameters.
NASA Astrophysics Data System (ADS)
Jiang, Sanyuan; Jomaa, Seifeddine; Büttner, Olaf; Rode, Michael
2014-05-01
Hydrological water quality modeling is increasingly used for investigating runoff and nutrient transport processes as well as watershed management but it is mostly unclear how data availablity determins model identification. In this study, the HYPE (HYdrological Predictions for the Environment) model, which is a process-based, semi-distributed hydrological water quality model, was applied in two different mesoscale catchments (Selke (463 km2) and Weida (99 km2)) located in central Germany to simulate discharge and inorganic nitrogen (IN) transport. PEST and DREAM(ZS) were combined with the HYPE model to conduct parameter calibration and uncertainty analysis. Split-sample test was used for model calibration (1994-1999) and validation (1999-2004). IN concentration and daily IN load were found to be highly correlated with discharge, indicating that IN leaching is mainly controlled by runoff. Both dynamics and balances of water and IN load were well captured with NSE greater than 0.83 during validation period. Multi-objective calibration (calibrating hydrological and water quality parameters simultaneously) was found to outperform step-wise calibration in terms of model robustness. Multi-site calibration was able to improve model performance at internal sites, decrease parameter posterior uncertainty and prediction uncertainty. Nitrogen-process parameters calibrated using continuous daily averages of nitrate-N concentration observations produced better and more robust simulations of IN concentration and load, lower posterior parameter uncertainty and IN concentration prediction uncertainty compared to the calibration against uncontinuous biweekly nitrate-N concentration measurements. Both PEST and DREAM(ZS) are efficient in parameter calibration. However, DREAM(ZS) is more sound in terms of parameter identification and uncertainty analysis than PEST because of its capability to evolve parameter posterior distributions and estimate prediction uncertainty based on global search and Bayesian inference schemes.
Singh, R.; Archfield, S.A.; Wagener, T.
2014-01-01
Daily streamflow information is critical for solving various hydrologic problems, though observations of continuous streamflow for model calibration are available at only a small fraction of the world’s rivers. One approach to estimate daily streamflow at an ungauged location is to transfer rainfall–runoff model parameters calibrated at a gauged (donor) catchment to an ungauged (receiver) catchment of interest. Central to this approach is the selection of a hydrologically similar donor. No single metric or set of metrics of hydrologic similarity have been demonstrated to consistently select a suitable donor catchment. We design an experiment to diagnose the dominant controls on successful hydrologic model parameter transfer. We calibrate a lumped rainfall–runoff model to 83 stream gauges across the United States. All locations are USGS reference gauges with minimal human influence. Parameter sets from the calibrated models are then transferred to each of the other catchments and the performance of the transferred parameters is assessed. This transfer experiment is carried out both at the scale of the entire US and then for six geographic regions. We use classification and regression tree (CART) analysis to determine the relationship between catchment similarity and performance of transferred parameters. Similarity is defined using physical/climatic catchment characteristics, as well as streamflow response characteristics (signatures such as baseflow index and runoff ratio). Across the entire US, successful parameter transfer is governed by similarity in elevation and climate, and high similarity in streamflow signatures. Controls vary for different geographic regions though. Geology followed by drainage, topography and climate constitute the dominant similarity metrics in forested eastern mountains and plateaus, whereas agricultural land use relates most strongly with successful parameter transfer in the humid plains.
Runoff projection under climate change over Yarlung Zangbo River, Southwest China
NASA Astrophysics Data System (ADS)
Xuan, Weidong; Xu, Yue-Ping
2017-04-01
The Yarlung Zangbo River is located in southwest of China, one of the major source of "Asian water tower". The river has great hydropower potential and provides vital water resource for local and downstream agricultural production and livestock husbandry. Compared to its drainage area, gauge observation is sometimes not enough for good hydrological modeling in order to project future runoff. In this study, we employ a semi-distributed hydrologic model SWAT to simulate hydrological process of the river with rainfall observation and TRMM 3B4V7 respectively and the hydrological model performance is evaluated based on not only total runoff but snowmelt, precipitation and groundwater components. Firstly, calibration and validation of the hydrological model are executed to find behavioral parameter sets for both gauge observation and TRMM data respectively. Then, behavioral parameter sets with diverse efficiency coefficient (NS) values are selected and corresponding runoff components are analyzed. Robust parameter sets are further employed in SWAT coupled with CMIP5 GCMs to project future runoff. The final results show that precipitation is the dominating contributor nearly all year around, while snowmelt and groundwater are important in the summer and winter alternatively. Also sufficient robust parameter sets help reduce uncertainty in hydrological modeling. Finally, future possible runoff changes will have major consequences for water and flood security.
NASA Astrophysics Data System (ADS)
Noh, Seong Jin; Tachikawa, Yasuto; Shiiba, Michiharu; Kim, Sunmin
Applications of data assimilation techniques have been widely used to improve upon the predictability of hydrologic modeling. Among various data assimilation techniques, sequential Monte Carlo (SMC) filters, known as "particle filters" provide the capability to handle non-linear and non-Gaussian state-space models. This paper proposes a dual state-parameter updating scheme (DUS) based on SMC methods to estimate both state and parameter variables of a hydrologic model. We introduce a kernel smoothing method for the robust estimation of uncertain model parameters in the DUS. The applicability of the dual updating scheme is illustrated using the implementation of the storage function model on a middle-sized Japanese catchment. We also compare performance results of DUS combined with various SMC methods, such as SIR, ASIR and RPF.
The added value of remote sensing products in constraining hydrological models
NASA Astrophysics Data System (ADS)
Nijzink, Remko C.; Almeida, Susana; Pechlivanidis, Ilias; Capell, René; Gustafsson, David; Arheimer, Berit; Freer, Jim; Han, Dawei; Wagener, Thorsten; Sleziak, Patrik; Parajka, Juraj; Savenije, Hubert; Hrachowitz, Markus
2017-04-01
The calibration of a hydrological model still depends on the availability of streamflow data, even though more additional sources of information (i.e. remote sensed data products) have become more widely available. In this research, the model parameters of four different conceptual hydrological models (HYPE, HYMOD, TUW, FLEX) were constrained with remotely sensed products. The models were applied over 27 catchments across Europe to cover a wide range of climates, vegetation and landscapes. The fluxes and states of the models were correlated with the relevant products (e.g. MOD10A snow with modelled snow states), after which new a-posteriori parameter distributions were determined based on a weighting procedure using conditional probabilities. Briefly, each parameter was weighted with the coefficient of determination of the relevant regression between modelled states/fluxes and products. In this way, final feasible parameter sets were derived without the use of discharge time series. Initial results show that improvements in model performance, with regard to streamflow simulations, are obtained when the models are constrained with a set of remotely sensed products simultaneously. In addition, we present a more extensive analysis to assess a model's ability to reproduce a set of hydrological signatures, such as rising limb density or peak distribution. Eventually, this research will enhance our understanding and recommendations in the use of remotely sensed products for constraining conceptual hydrological modelling and improving predictive capability, especially for data sparse regions.
Improving the realism of hydrologic model through multivariate parameter estimation
NASA Astrophysics Data System (ADS)
Rakovec, Oldrich; Kumar, Rohini; Attinger, Sabine; Samaniego, Luis
2017-04-01
Increased availability and quality of near real-time observations should improve understanding of predictive skills of hydrological models. Recent studies have shown the limited capability of river discharge data alone to adequately constrain different components of distributed model parameterizations. In this study, the GRACE satellite-based total water storage (TWS) anomaly is used to complement the discharge data with an aim to improve the fidelity of mesoscale hydrologic model (mHM) through multivariate parameter estimation. The study is conducted in 83 European basins covering a wide range of hydro-climatic regimes. The model parameterization complemented with the TWS anomalies leads to statistically significant improvements in (1) discharge simulations during low-flow period, and (2) evapotranspiration estimates which are evaluated against independent (FLUXNET) data. Overall, there is no significant deterioration in model performance for the discharge simulations when complemented by information from the TWS anomalies. However, considerable changes in the partitioning of precipitation into runoff components are noticed by in-/exclusion of TWS during the parameter estimation. A cross-validation test carried out to assess the transferability and robustness of the calibrated parameters to other locations further confirms the benefit of complementary TWS data. In particular, the evapotranspiration estimates show more robust performance when TWS data are incorporated during the parameter estimation, in comparison with the benchmark model constrained against discharge only. This study highlights the value for incorporating multiple data sources during parameter estimation to improve the overall realism of hydrologic model and its applications over large domains. Rakovec, O., Kumar, R., Attinger, S. and Samaniego, L. (2016): Improving the realism of hydrologic model functioning through multivariate parameter estimation. Water Resour. Res., 52, http://dx.doi.org/10.1002/2016WR019430
NASA Astrophysics Data System (ADS)
Farzamian, Mohammad; Monteiro Santos, Fernando A.; Khalil, Mohamed A.
2017-12-01
The coupled hydrogeophysical approach has proved to be a valuable tool for improving the use of geoelectrical data for hydrological model parameterization. In the coupled approach, hydrological parameters are directly inferred from geoelectrical measurements in a forward manner to eliminate the uncertainty connected to the independent inversion of electrical resistivity data. Several numerical studies have been conducted to demonstrate the advantages of a coupled approach; however, only a few attempts have been made to apply the coupled approach to actual field data. In this study, we developed a 1D coupled hydrogeophysical code to estimate the van Genuchten-Mualem model parameters, K s, n, θ r and α, from time-lapse vertical electrical sounding data collected during a constant inflow infiltration experiment. van Genuchten-Mualem parameters were sampled using the Latin hypercube sampling method to provide a full coverage of the range of each parameter from their distributions. By applying the coupled approach, vertical electrical sounding data were coupled to hydrological models inferred from van Genuchten-Mualem parameter samples to investigate the feasibility of constraining the hydrological model. The key approaches taken in the study are to (1) integrate electrical resistivity and hydrological data and avoiding data inversion, (2) estimate the total water mass recovery of electrical resistivity data and consider it in van Genuchten-Mualem parameters evaluation and (3) correct the influence of subsurface temperature fluctuations during the infiltration experiment on electrical resistivity data. The results of the study revealed that the coupled hydrogeophysical approach can improve the value of geophysical measurements in hydrological model parameterization. However, the approach cannot overcome the technical limitations of the geoelectrical method associated with resolution and of water mass recovery.
NASA Astrophysics Data System (ADS)
Shafii, M.; Tolson, B.; Matott, L. S.
2012-04-01
Hydrologic modeling has benefited from significant developments over the past two decades. This has resulted in building of higher levels of complexity into hydrologic models, which eventually makes the model evaluation process (parameter estimation via calibration and uncertainty analysis) more challenging. In order to avoid unreasonable parameter estimates, many researchers have suggested implementation of multi-criteria calibration schemes. Furthermore, for predictive hydrologic models to be useful, proper consideration of uncertainty is essential. Consequently, recent research has emphasized comprehensive model assessment procedures in which multi-criteria parameter estimation is combined with statistically-based uncertainty analysis routines such as Bayesian inference using Markov Chain Monte Carlo (MCMC) sampling. Such a procedure relies on the use of formal likelihood functions based on statistical assumptions, and moreover, the Bayesian inference structured on MCMC samplers requires a considerably large number of simulations. Due to these issues, especially in complex non-linear hydrological models, a variety of alternative informal approaches have been proposed for uncertainty analysis in the multi-criteria context. This study aims at exploring a number of such informal uncertainty analysis techniques in multi-criteria calibration of hydrological models. The informal methods addressed in this study are (i) Pareto optimality which quantifies the parameter uncertainty using the Pareto solutions, (ii) DDS-AU which uses the weighted sum of objective functions to derive the prediction limits, and (iii) GLUE which describes the total uncertainty through identification of behavioral solutions. The main objective is to compare such methods with MCMC-based Bayesian inference with respect to factors such as computational burden, and predictive capacity, which are evaluated based on multiple comparative measures. The measures for comparison are calculated both for calibration and evaluation periods. The uncertainty analysis methodologies are applied to a simple 5-parameter rainfall-runoff model, called HYMOD.
Wagener, Thorsten; McGlynn, Brian
2015-01-01
Abstract Ungauged headwater basins are an abundant part of the river network, but dominant influences on headwater hydrologic response remain difficult to predict. To address this gap, we investigated the ability of a physically based watershed model (the Distributed Hydrology‐Soil‐Vegetation Model) to represent controls on metrics of hydrologic partitioning across five adjacent headwater subcatchments. The five study subcatchments, located in Tenderfoot Creek Experimental Forest in central Montana, have similar climate but variable topography and vegetation distribution. This facilitated a comparative hydrology approach to interpret how parameters that influence partitioning, detected via global sensitivity analysis, differ across catchments. Model parameters were constrained a priori using existing regional information and expert knowledge. Influential parameters were compared to perceptions of catchment functioning and its variability across subcatchments. Despite between‐catchment differences in topography and vegetation, hydrologic partitioning across all metrics and all subcatchments was sensitive to a similar subset of snow, vegetation, and soil parameters. Results also highlighted one subcatchment with low certainty in parameter sensitivity, indicating that the model poorly represented some complexities in this subcatchment likely because an important process is missing or poorly characterized in the mechanistic model. For use in other basins, this method can assess parameter sensitivities as a function of the specific ungauged system to which it is applied. Overall, this approach can be employed to identify dominant modeled controls on catchment response and their agreement with system understanding. PMID:27642197
Pursuing realistic hydrologic model under SUPERFLEX framework in a semi-humid catchment in China
NASA Astrophysics Data System (ADS)
Wei, Lingna; Savenije, Hubert H. G.; Gao, Hongkai; Chen, Xi
2016-04-01
Model realism is pursued perpetually by hydrologists for flood and drought prediction, integrated water resources management and decision support of water security. "Physical-based" distributed hydrologic models are speedily developed but they also encounter unneglectable challenges, for instance, computational time with low efficiency and parameters uncertainty. This study step-wisely tested four conceptual hydrologic models under the framework of SUPERFLEX in a small semi-humid catchment in southern Huai River basin of China. The original lumped FLEXL has hypothesized model structure of four reservoirs to represent canopy interception, unsaturated zone, subsurface flow of fast and slow components and base flow storage. Considering the uneven rainfall in space, the second model (FLEXD) is developed with same parameter set for different rain gauge controlling units. To reveal the effect of topography, terrain descriptor of height above the nearest drainage (HAND) combined with slope is applied to classify the experimental catchment into two landscapes. Then the third one (FLEXTOPO) builds different model blocks in consideration of the dominant hydrologic process corresponding to the topographical condition. The fourth one named FLEXTOPOD integrating the parallel framework of FLEXTOPO in four controlled units is designed to interpret spatial variability of rainfall patterns and topographic features. Through pairwise comparison, our results suggest that: (1) semi-distributed models (FLEXD and FLEXTOPOD) taking precipitation spatial heterogeneity into account has improved model performance with parsimonious parameter set, and (2) hydrologic model architecture with flexibility to reflect perceived dominant hydrologic processes can include the local terrain circumstances for each landscape. Hence, the modeling actions are coincided with the catchment behaviour and close to the "reality". The presented methodology is regarding hydrologic model as a tool to test our hypothesis and deepen our understanding of hydrologic processes, which will be helpful to improve modeling realism.
A two-step sensitivity analysis for hydrological signatures in Jinhua River Basin, East China
NASA Astrophysics Data System (ADS)
Pan, S.; Fu, G.; Chiang, Y. M.; Xu, Y. P.
2016-12-01
Owing to model complexity and large number of parameters, calibration and sensitivity analysis are difficult processes for distributed hydrological models. In this study, a two-step sensitivity analysis approach is proposed for analyzing the hydrological signatures in Jinhua River Basin, East China, using the Distributed Hydrology-Soil-Vegetation Model (DHSVM). A rough sensitivity analysis is firstly conducted to obtain preliminary influential parameters via Analysis of Variance. The number of parameters was greatly reduced from eighteen-three to sixteen. Afterwards, the sixteen parameters are further analyzed based on a variance-based global sensitivity analysis, i.e., Sobol's sensitivity analysis method, to achieve robust sensitivity rankings and parameter contributions. Parallel-Computing is applied to reduce computational burden in variance-based sensitivity analysis. The results reveal that only a few number of model parameters are significantly sensitive, including rain LAI multiplier, lateral conductivity, porosity, field capacity, wilting point of clay loam, understory monthly LAI, understory minimum resistance and root zone depths of croplands. Finally several hydrological signatures are used for investigating the performance of DHSVM. Results show that high value of efficiency criteria didn't indicate excellent performance of hydrological signatures. For most samples from Sobol's sensitivity analysis, water yield was simulated very well. However, lowest and maximum annual daily runoffs were underestimated. Most of seven-day minimum runoffs were overestimated. Nevertheless, good performances of the three signatures above still exist in a number of samples. Analysis of peak flow shows that small and medium floods are simulated perfectly while slight underestimations happen to large floods. The work in this study helps to further multi-objective calibration of DHSVM model and indicates where to improve the reliability and credibility of model simulation.
Hydrological model parameter dimensionality is a weak measure of prediction uncertainty
NASA Astrophysics Data System (ADS)
Pande, S.; Arkesteijn, L.; Savenije, H.; Bastidas, L. A.
2015-04-01
This paper shows that instability of hydrological system representation in response to different pieces of information and associated prediction uncertainty is a function of model complexity. After demonstrating the connection between unstable model representation and model complexity, complexity is analyzed in a step by step manner. This is done measuring differences between simulations of a model under different realizations of input forcings. Algorithms are then suggested to estimate model complexity. Model complexities of the two model structures, SAC-SMA (Sacramento Soil Moisture Accounting) and its simplified version SIXPAR (Six Parameter Model), are computed on resampled input data sets from basins that span across the continental US. The model complexities for SIXPAR are estimated for various parameter ranges. It is shown that complexity of SIXPAR increases with lower storage capacity and/or higher recession coefficients. Thus it is argued that a conceptually simple model structure, such as SIXPAR, can be more complex than an intuitively more complex model structure, such as SAC-SMA for certain parameter ranges. We therefore contend that magnitudes of feasible model parameters influence the complexity of the model selection problem just as parameter dimensionality (number of parameters) does and that parameter dimensionality is an incomplete indicator of stability of hydrological model selection and prediction problems.
Hydrologic Process-oriented Optimization of Electrical Resistivity Tomography
NASA Astrophysics Data System (ADS)
Hinnell, A.; Bechtold, M.; Ferre, T. A.; van der Kruk, J.
2010-12-01
Electrical resistivity tomography (ERT) is commonly used in hydrologic investigations. Advances in joint and coupled hydrogeophysical inversion have enhanced the quantitative use of ERT to construct and condition hydrologic models (i.e. identify hydrologic structure and estimate hydrologic parameters). However the selection of which electrical resistivity data to collect and use is often determined by a combination of data requirements for geophysical analysis, intuition on the part of the hydrogeophysicist and logistical constraints of the laboratory or field site. One of the advantages of coupled hydrogeophysical inversion is the direct link between the hydrologic model and the individual geophysical data used to condition the model. That is, there is no requirement to collect geophysical data suitable for independent geophysical inversion. The geophysical measurements collected can be optimized for estimation of hydrologic model parameters rather than to develop a geophysical model. Using a synthetic model of drip irrigation we evaluate the value of individual resistivity measurements to describe the soil hydraulic properties and then use this information to build a data set optimized for characterizing hydrologic processes. We then compare the information content in the optimized data set with the information content in a data set optimized using a Jacobian sensitivity analysis.
NASA Astrophysics Data System (ADS)
Volk, J. M.; Turner, M. A.; Huntington, J. L.; Gardner, M.; Tyler, S.; Sheneman, L.
2016-12-01
Many distributed models that simulate watershed hydrologic processes require a collection of multi-dimensional parameters as input, some of which need to be calibrated before the model can be applied. The Precipitation Runoff Modeling System (PRMS) is a physically-based and spatially distributed hydrologic model that contains a considerable number of parameters that often need to be calibrated. Modelers can also benefit from uncertainty analysis of these parameters. To meet these needs, we developed a modular framework in Python to conduct PRMS parameter optimization, uncertainty analysis, interactive visual inspection of parameters and outputs, and other common modeling tasks. Here we present results for multi-step calibration of sensitive parameters controlling solar radiation, potential evapo-transpiration, and streamflow in a PRMS model that we applied to the snow-dominated Dry Creek watershed in Idaho. We also demonstrate how our modular approach enables the user to use a variety of parameter optimization and uncertainty methods or easily define their own, such as Monte Carlo random sampling, uniform sampling, or even optimization methods such as the downhill simplex method or its commonly used, more robust counterpart, shuffled complex evolution.
The application of remote sensing to the development and formulation of hydrologic planning models
NASA Technical Reports Server (NTRS)
Fowler, T. R.; Castruccio, P. A.; Loats, H. L., Jr.
1977-01-01
The development of a remote sensing model and its efficiency in determining parameters of hydrologic models are reviewed. Procedures for extracting hydrologic data from LANDSAT imagery, and the visual analysis of composite imagery are presented. A hydrologic planning model is developed and applied to determine seasonal variations in watershed conditions. The transfer of this technology to a user community and contract arrangements are discussed.
NASA Astrophysics Data System (ADS)
Eisner, Stephanie; Huang, Shaochun; Majasalmi, Titta; Bright, Ryan; Astrup, Rasmus; Beldring, Stein
2017-04-01
Forests are recognized for their decisive effect on landscape water balance with structural forest characteristics as stand density or species composition determining energy partitioning and dominant flow paths. However, spatial and temporal variability in forest structure is often poorly represented in hydrological modeling frameworks, in particular in regional to large scale hydrological modeling and impact analysis. As a common practice, prescribed land cover classes (including different generic forest types) are linked to parameter values derived from literature, or parameters are determined by calibration. While national forest inventory (NFI) data provide comprehensive, detailed information on hydrologically relevant forest characteristics, their potential to inform hydrological simulation over larger spatial domains is rarely exploited. In this study we present a modeling framework that couples the distributed hydrological model HBV with forest structural information derived from the Norwegian NFI and multi-source remote sensing data. The modeling framework, set up for the entire of continental Norway at 1 km spatial resolution, is explicitly designed to study the combined and isolated impacts of climate change, forest management and land use change on hydrological fluxes. We use a forest classification system based on forest structure rather than biomes which allows to implicitly account for impacts of forest management on forest structural attributes. In the hydrological model, different forest classes are represented by three parameters: leaf area index (LAI), mean tree height and surface albedo. Seasonal cycles of LAI and surface albedo are dynamically simulated to make the framework applicable under climate change conditions. Based on a hindcast for the pilot regions Nord-Trøndelag and Sør-Trøndelag, we show how forest management has affected regional hydrological fluxes during the second half of the 20th century as contrasted to climate variability.
NASA Astrophysics Data System (ADS)
Jie, M.; Zhang, J.; Guo, B. B.
2017-12-01
As a typical distributed hydrological model, the SWAT model also has a challenge in calibrating parameters and analysis their uncertainty. This paper chooses the Chaohe River Basin China as the study area, through the establishment of the SWAT model, loading the DEM data of the Chaohe river basin, the watershed is automatically divided into several sub-basins. Analyzing the land use, soil and slope which are on the basis of the sub-basins and calculating the hydrological response unit (HRU) of the study area, after running SWAT model, the runoff simulation values in the watershed are obtained. On this basis, using weather data, known daily runoff of three hydrological stations, combined with the SWAT-CUP automatic program and the manual adjustment method are used to analyze the multi-site calibration of the model parameters. Furthermore, the GLUE algorithm is used to analyze the parameters uncertainty of the SWAT model. Through the sensitivity analysis, calibration and uncertainty study of SWAT, the results indicate that the parameterization of the hydrological characteristics of the Chaohe river is successful and feasible which can be used to simulate the Chaohe river basin.
NASA Astrophysics Data System (ADS)
Cuntz, Matthias; Mai, Juliane; Samaniego, Luis; Clark, Martyn; Wulfmeyer, Volker; Branch, Oliver; Attinger, Sabine; Thober, Stephan
2016-09-01
Land surface models incorporate a large number of process descriptions, containing a multitude of parameters. These parameters are typically read from tabulated input files. Some of these parameters might be fixed numbers in the computer code though, which hinder model agility during calibration. Here we identified 139 hard-coded parameters in the model code of the Noah land surface model with multiple process options (Noah-MP). We performed a Sobol' global sensitivity analysis of Noah-MP for a specific set of process options, which includes 42 out of the 71 standard parameters and 75 out of the 139 hard-coded parameters. The sensitivities of the hydrologic output fluxes latent heat and total runoff as well as their component fluxes were evaluated at 12 catchments within the United States with very different hydrometeorological regimes. Noah-MP's hydrologic output fluxes are sensitive to two thirds of its applicable standard parameters (i.e., Sobol' indexes above 1%). The most sensitive parameter is, however, a hard-coded value in the formulation of soil surface resistance for direct evaporation, which proved to be oversensitive in other land surface models as well. Surface runoff is sensitive to almost all hard-coded parameters of the snow processes and the meteorological inputs. These parameter sensitivities diminish in total runoff. Assessing these parameters in model calibration would require detailed snow observations or the calculation of hydrologic signatures of the runoff data. Latent heat and total runoff exhibit very similar sensitivities because of their tight coupling via the water balance. A calibration of Noah-MP against either of these fluxes should therefore give comparable results. Moreover, these fluxes are sensitive to both plant and soil parameters. Calibrating, for example, only soil parameters hence limit the ability to derive realistic model parameters. It is thus recommended to include the most sensitive hard-coded model parameters that were exposed in this study when calibrating Noah-MP.
Xi, Qing; Li, Zhao-Fu; Luo, Chuan
2014-05-01
Sensitivity analysis of hydrology and water quality parameters has a great significance for integrated model's construction and application. Based on AnnAGNPS model's mechanism, terrain, hydrology and meteorology, field management, soil and other four major categories of 31 parameters were selected for the sensitivity analysis in Zhongtian river watershed which is a typical small watershed of hilly region in the Taihu Lake, and then used the perturbation method to evaluate the sensitivity of the parameters to the model's simulation results. The results showed that: in the 11 terrain parameters, LS was sensitive to all the model results, RMN, RS and RVC were generally sensitive and less sensitive to the output of sediment but insensitive to the remaining results. For hydrometeorological parameters, CN was more sensitive to runoff and sediment and relatively sensitive for the rest results. In field management, fertilizer and vegetation parameters, CCC, CRM and RR were less sensitive to sediment and particulate pollutants, the six fertilizer parameters (FR, FD, FID, FOD, FIP, FOP) were particularly sensitive for nitrogen and phosphorus nutrients. For soil parameters, K is quite sensitive to all the results except the runoff, the four parameters of the soil's nitrogen and phosphorus ratio (SONR, SINR, SOPR, SIPR) were less sensitive to the corresponding results. The simulation and verification results of runoff in Zhongtian watershed show a good accuracy with the deviation less than 10% during 2005- 2010. Research results have a direct reference value on AnnAGNPS model's parameter selection and calibration adjustment. The runoff simulation results of the study area also proved that the sensitivity analysis was practicable to the parameter's adjustment and showed the adaptability to the hydrology simulation in the Taihu Lake basin's hilly region and provide reference for the model's promotion in China.
NASA Astrophysics Data System (ADS)
Karssenberg, D.; Wanders, N.; de Roo, A.; de Jong, S.; Bierkens, M. F.
2013-12-01
Large-scale hydrological models are nowadays mostly calibrated using observed discharge. As a result, a large part of the hydrological system that is not directly linked to discharge, in particular the unsaturated zone, remains uncalibrated, or might be modified unrealistically. Soil moisture observations from satellites have the potential to fill this gap, as these provide the closest thing to a direct measurement of the state of the unsaturated zone, and thus are potentially useful in calibrating unsaturated zone model parameters. This is expected to result in a better identification of the complete hydrological system, potentially leading to improved forecasts of the hydrograph as well. Here we evaluate this added value of remotely sensed soil moisture in calibration of large-scale hydrological models by addressing two research questions: 1) Which parameters of hydrological models can be identified by calibration with remotely sensed soil moisture? 2) Does calibration with remotely sensed soil moisture lead to an improved calibration of hydrological models compared to approaches that calibrate only with discharge, such that this leads to improved forecasts of soil moisture content and discharge as well? To answer these questions we use a dual state and parameter ensemble Kalman filter to calibrate the hydrological model LISFLOOD for the Upper Danube area. Calibration is done with discharge and remotely sensed soil moisture acquired by AMSR-E, SMOS and ASCAT. Four scenarios are studied: no calibration (expert knowledge), calibration on discharge, calibration on remote sensing data (three satellites) and calibration on both discharge and remote sensing data. Using a split-sample approach, the model is calibrated for a period of 2 years and validated for the calibrated model parameters on a validation period of 10 years. Results show that calibration with discharge data improves the estimation of groundwater parameters (e.g., groundwater reservoir constant) and routing parameters. Calibration with only remotely sensed soil moisture results in an accurate calibration of parameters related to land surface process (e.g., the saturated conductivity of the soil), which is not possible when calibrating on discharge alone. For the upstream area up to 40000 km2, calibration on both discharge and soil moisture results in a reduction by 10-30 % in the RMSE for discharge simulations, compared to calibration on discharge alone. For discharge in the downstream area, the model performance due to assimilation of remotely sensed soil moisture is not increased or slightly decreased, most probably due to the longer relative importance of the routing and contribution of groundwater in downstream areas. When microwave soil moisture is used for calibration the RMSE of soil moisture simulations decreases from 0.072 m3m-3 to 0.062 m3m-3. The conclusion is that remotely sensed soil moisture holds potential for calibration of hydrological models leading to a better simulation of soil moisture content throughout and a better simulation of discharge in upstream areas, particularly if discharge observations are sparse.
NASA Astrophysics Data System (ADS)
Skaugen, Thomas; Weltzien, Ingunn
2016-04-01
The traditional catchment hydrological model with its many free calibration parameters is not a well suited tool for prediction under conditions for which is has not been calibrated. Important tasks for hydrological modelling such as prediction in ungauged basins and assessing hydrological effects of climate change are hence not solved satisfactory. In order to reduce the number of calibration parameters in hydrological models we have introduced a new model which uses a dynamic gamma distribution as the spatial frequency distribution of snow water equivalent (SWE). The parameters are estimated from observed spatial variability of precipitation and the magnitude of accumulation and melting events and are hence not subject to calibration. The relationship between spatial mean and variance of precipitation is found to follow a pattern where decreasing temporal correlation with increasing accumulation or duration of the event leads to a levelling off or even a decrease of the spatial variance. The new model for snow distribution is implemented in the, already parameter parsimonious, DDD (Distance Distribution Dynamics) hydrological model and was tested for 71 Norwegian catchments. We compared the new snow distribution model with the current operational snow distribution model where a fixed, calibrated coefficient of variation parameterizes a log-normal model for snow distribution. Results show that the precision of runoff simulations is equal, but that the new snow distribution model better simulates snow covered area (SCA) when compared with MODIS satellite derived snow cover. In addition, SWE is simulated more realistically in that seasonal snow is melted out and the building up of "snow towers" is prevented and hence spurious trends in SWE.
Mapping (dis)agreement in hydrologic projections
NASA Astrophysics Data System (ADS)
Melsen, Lieke A.; Addor, Nans; Mizukami, Naoki; Newman, Andrew J.; Torfs, Paul J. J. F.; Clark, Martyn P.; Uijlenhoet, Remko; Teuling, Adriaan J.
2018-03-01
Hydrologic projections are of vital socio-economic importance. However, they are also prone to uncertainty. In order to establish a meaningful range of storylines to support water managers in decision making, we need to reveal the relevant sources of uncertainty. Here, we systematically and extensively investigate uncertainty in hydrologic projections for 605 basins throughout the contiguous US. We show that in the majority of the basins, the sign of change in average annual runoff and discharge timing for the period 2070-2100 compared to 1985-2008 differs among combinations of climate models, hydrologic models, and parameters. Mapping the results revealed that different sources of uncertainty dominate in different regions. Hydrologic model induced uncertainty in the sign of change in mean runoff was related to snow processes and aridity, whereas uncertainty in both mean runoff and discharge timing induced by the climate models was related to disagreement among the models regarding the change in precipitation. Overall, disagreement on the sign of change was more widespread for the mean runoff than for the discharge timing. The results demonstrate the need to define a wide range of quantitative hydrologic storylines, including parameter, hydrologic model, and climate model forcing uncertainty, to support water resource planning.
NASA Astrophysics Data System (ADS)
Wang, S.; Huang, G. H.; Huang, W.; Fan, Y. R.; Li, Z.
2015-10-01
In this study, a fractional factorial probabilistic collocation method is proposed to reveal statistical significance of hydrologic model parameters and their multi-level interactions affecting model outputs, facilitating uncertainty propagation in a reduced dimensional space. The proposed methodology is applied to the Xiangxi River watershed in China to demonstrate its validity and applicability, as well as its capability of revealing complex and dynamic parameter interactions. A set of reduced polynomial chaos expansions (PCEs) only with statistically significant terms can be obtained based on the results of factorial analysis of variance (ANOVA), achieving a reduction of uncertainty in hydrologic predictions. The predictive performance of reduced PCEs is verified by comparing against standard PCEs and the Monte Carlo with Latin hypercube sampling (MC-LHS) method in terms of reliability, sharpness, and Nash-Sutcliffe efficiency (NSE). Results reveal that the reduced PCEs are able to capture hydrologic behaviors of the Xiangxi River watershed, and they are efficient functional representations for propagating uncertainties in hydrologic predictions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Maoyi; Hou, Zhangshuan; Leung, Lai-Yung R.
2013-12-01
With the emergence of earth system models as important tools for understanding and predicting climate change and implications to mitigation and adaptation, it has become increasingly important to assess the fidelity of the land component within earth system models to capture realistic hydrological processes and their response to the changing climate and quantify the associated uncertainties. This study investigates the sensitivity of runoff simulations to major hydrologic parameters in version 4 of the Community Land Model (CLM4) by integrating CLM4 with a stochastic exploratory sensitivity analysis framework at 20 selected watersheds from the Model Parameter Estimation Experiment (MOPEX) spanning amore » wide range of climate and site conditions. We found that for runoff simulations, the most significant parameters are those related to the subsurface runoff parameterizations. Soil texture related parameters and surface runoff parameters are of secondary significance. Moreover, climate and soil conditions play important roles in the parameter sensitivity. In general, site conditions within water-limited hydrologic regimes and with finer soil texture result in stronger sensitivity of output variables, such as runoff and its surface and subsurface components, to the input parameters in CLM4. This study demonstrated the feasibility of parameter inversion for CLM4 using streamflow observations to improve runoff simulations. By ranking the significance of the input parameters, we showed that the parameter set dimensionality could be reduced for CLM4 parameter calibration under different hydrologic and climatic regimes so that the inverse problem is less ill posed.« less
Duan, Q.; Schaake, J.; Andreassian, V.; Franks, S.; Goteti, G.; Gupta, H.V.; Gusev, Y.M.; Habets, F.; Hall, A.; Hay, L.; Hogue, T.; Huang, M.; Leavesley, G.; Liang, X.; Nasonova, O.N.; Noilhan, J.; Oudin, L.; Sorooshian, S.; Wagener, T.; Wood, E.F.
2006-01-01
The Model Parameter Estimation Experiment (MOPEX) is an international project aimed at developing enhanced techniques for the a priori estimation of parameters in hydrologic models and in land surface parameterization schemes of atmospheric models. The MOPEX science strategy involves three major steps: data preparation, a priori parameter estimation methodology development, and demonstration of parameter transferability. A comprehensive MOPEX database has been developed that contains historical hydrometeorological data and land surface characteristics data for many hydrologic basins in the United States (US) and in other countries. This database is being continuously expanded to include more basins in all parts of the world. A number of international MOPEX workshops have been convened to bring together interested hydrologists and land surface modelers from all over world to exchange knowledge and experience in developing a priori parameter estimation techniques. This paper describes the results from the second and third MOPEX workshops. The specific objective of these workshops is to examine the state of a priori parameter estimation techniques and how they can be potentially improved with observations from well-monitored hydrologic basins. Participants of the second and third MOPEX workshops were provided with data from 12 basins in the southeastern US and were asked to carry out a series of numerical experiments using a priori parameters as well as calibrated parameters developed for their respective hydrologic models. Different modeling groups carried out all the required experiments independently using eight different models, and the results from these models have been assembled for analysis in this paper. This paper presents an overview of the MOPEX experiment and its design. The main experimental results are analyzed. A key finding is that existing a priori parameter estimation procedures are problematic and need improvement. Significant improvement of these procedures may be achieved through model calibration of well-monitored hydrologic basins. This paper concludes with a discussion of the lessons learned, and points out further work and future strategy. ?? 2005 Elsevier Ltd. All rights reserved.
An approach to measure parameter sensitivity in watershed hydrological modelling
Hydrologic responses vary spatially and temporally according to watershed characteristics. In this study, the hydrologic models that we developed earlier for the Little Miami River (LMR) and Las Vegas Wash (LVW) watersheds were used for detail sensitivity analyses. To compare the...
Hydrologic Model Selection using Markov chain Monte Carlo methods
NASA Astrophysics Data System (ADS)
Marshall, L.; Sharma, A.; Nott, D.
2002-12-01
Estimation of parameter uncertainty (and in turn model uncertainty) allows assessment of the risk in likely applications of hydrological models. Bayesian statistical inference provides an ideal means of assessing parameter uncertainty whereby prior knowledge about the parameter is combined with information from the available data to produce a probability distribution (the posterior distribution) that describes uncertainty about the parameter and serves as a basis for selecting appropriate values for use in modelling applications. Widespread use of Bayesian techniques in hydrology has been hindered by difficulties in summarizing and exploring the posterior distribution. These difficulties have been largely overcome by recent advances in Markov chain Monte Carlo (MCMC) methods that involve random sampling of the posterior distribution. This study presents an adaptive MCMC sampling algorithm which has characteristics that are well suited to model parameters with a high degree of correlation and interdependence, as is often evident in hydrological models. The MCMC sampling technique is used to compare six alternative configurations of a commonly used conceptual rainfall-runoff model, the Australian Water Balance Model (AWBM), using 11 years of daily rainfall runoff data from the Bass river catchment in Australia. The alternative configurations considered fall into two classes - those that consider model errors to be independent of prior values, and those that model the errors as an autoregressive process. Each such class consists of three formulations that represent increasing levels of complexity (and parameterisation) of the original model structure. The results from this study point both to the importance of using Bayesian approaches in evaluating model performance, as well as the simplicity of the MCMC sampling framework that has the ability to bring such approaches within the reach of the applied hydrological community.
NASA Astrophysics Data System (ADS)
Marsh, C.; Pomeroy, J. W.; Wheater, H. S.
2016-12-01
There is a need for hydrological land surface schemes that can link to atmospheric models, provide hydrological prediction at multiple scales and guide the development of multiple objective water predictive systems. Distributed raster-based models suffer from an overrepresentation of topography, leading to wasted computational effort that increases uncertainty due to greater numbers of parameters and initial conditions. The Canadian Hydrological Model (CHM) is a modular, multiphysics, spatially distributed modelling framework designed for representing hydrological processes, including those that operate in cold-regions. Unstructured meshes permit variable spatial resolution, allowing coarse resolutions at low spatial variability and fine resolutions as required. Model uncertainty is reduced by lessening the necessary computational elements relative to high-resolution rasters. CHM uses a novel multi-objective approach for unstructured triangular mesh generation that fulfills hydrologically important constraints (e.g., basin boundaries, water bodies, soil classification, land cover, elevation, and slope/aspect). This provides an efficient spatial representation of parameters and initial conditions, as well as well-formed and well-graded triangles that are suitable for numerical discretization. CHM uses high-quality open source libraries and high performance computing paradigms to provide a framework that allows for integrating current state-of-the-art process algorithms. The impact of changes to model structure, including individual algorithms, parameters, initial conditions, driving meteorology, and spatial/temporal discretization can be easily tested. Initial testing of CHM compared spatial scales and model complexity for a spring melt period at a sub-arctic mountain basin. The meshing algorithm reduced the total number of computational elements and preserved the spatial heterogeneity of predictions.
Accelerating advances in continental domain hydrologic modeling
Archfield, Stacey A.; Clark, Martyn; Arheimer, Berit; Hay, Lauren E.; McMillan, Hilary; Kiang, Julie E.; Seibert, Jan; Hakala, Kirsti; Bock, Andrew R.; Wagener, Thorsten; Farmer, William H.; Andreassian, Vazken; Attinger, Sabine; Viglione, Alberto; Knight, Rodney; Markstrom, Steven; Over, Thomas M.
2015-01-01
In the past, hydrologic modeling of surface water resources has mainly focused on simulating the hydrologic cycle at local to regional catchment modeling domains. There now exists a level of maturity among the catchment, global water security, and land surface modeling communities such that these communities are converging toward continental domain hydrologic models. This commentary, written from a catchment hydrology community perspective, provides a review of progress in each community toward this achievement, identifies common challenges the communities face, and details immediate and specific areas in which these communities can mutually benefit one another from the convergence of their research perspectives. Those include: (1) creating new incentives and infrastructure to report and share model inputs, outputs, and parameters in data services and open access, machine-independent formats for model replication or reanalysis; (2) ensuring that hydrologic models have: sufficient complexity to represent the dominant physical processes and adequate representation of anthropogenic impacts on the terrestrial water cycle, a process-based approach to model parameter estimation, and appropriate parameterizations to represent large-scale fluxes and scaling behavior; (3) maintaining a balance between model complexity and data availability as well as uncertainties; and (4) quantifying and communicating significant advancements toward these modeling goals.
NASA Astrophysics Data System (ADS)
van der Ent, R.; Van Beek, R.; Sutanudjaja, E.; Wang-Erlandsson, L.; Hessels, T.; Bastiaanssen, W.; Bierkens, M. F.
2017-12-01
The storage and dynamics of water in the root zone control many important hydrological processes such as saturation excess overland flow, interflow, recharge, capillary rise, soil evaporation and transpiration. These processes are parameterized in hydrological models or land-surface schemes and the effect on runoff prediction can be large. Root zone parameters in global hydrological models are very uncertain as they cannot be measured directly at the scale on which these models operate. In this paper we calibrate the global hydrological model PCR-GLOBWB using a state-of-the-art ensemble of evaporation fields derived by solving the energy balance for satellite observations. We focus our calibration on the root zone parameters of PCR-GLOBWB and derive spatial patterns of maximum root zone storage. We find these patterns to correspond well with previous research. The parameterization of our model allows for the conversion of maximum root zone storage to root zone depth and we find that these correspond quite well to the point observations where available. We conclude that climate and soil type should be taken into account when regionalizing measured root depth for a certain vegetation type. We equally find that using evaporation rather than discharge better allows for local adjustment of root zone parameters within a basin and thus provides orthogonal data to diagnose and optimize hydrological models and land surface schemes.
NASA Astrophysics Data System (ADS)
van der Ent, Ruud; van Beek, Rens; Sutanudjaja, Edwin; Wang-Erlandsson, Lan; Hessels, Tim; Bastiaanssen, Wim; Bierkens, Marc
2017-04-01
The storage and dynamics of water in the root zone control many important hydrological processes such as saturation excess overland flow, interflow, recharge, capillary rise, soil evaporation and transpiration. These processes are parameterized in hydrological models or land-surface schemes and the effect on runoff prediction can be large. For root zone parameters in global hydrological models are very uncertain as they cannot be measured directly at the scale on which these models operate. In this paper we calibrate the global hydrological model PCR-GLOBWB using a state-of-the-art ensemble of evaporation fields derived by solving the energy balance for satellite observations. We focus our calibration on the root zone parameters of PCR-GLOBWB and derive spatial patterns of maximum root zone storage. We find these patterns to correspond well with previous research. The parameterization of our model allows for the conversion of maximum root zone storage to root zone depth and we find that these correspond quite well to the point observations where available. We conclude that climate and soil type should be taken into account when regionalizing measured root depth for a certain vegetation type. We equally find that using evaporation rather than discharge better allows for local adjustment of root zone parameters within a basin and thus provides orthogonal data to diagnose and optimize hydrological models and land surface schemes.
Hydrologic Modeling in the Kenai River Watershed using Event Based Calibration
NASA Astrophysics Data System (ADS)
Wells, B.; Toniolo, H. A.; Stuefer, S. L.
2015-12-01
Understanding hydrologic changes is key for preparing for possible future scenarios. On the Kenai Peninsula in Alaska the yearly salmon runs provide a valuable stimulus to the economy. It is the focus of a large commercial fishing fleet, but also a prime tourist attraction. Modeling of anadromous waters provides a tool that assists in the prediction of future salmon run size. Beaver Creek, in Kenai, Alaska, is a lowlands stream that has been modeled using the Army Corps of Engineers event based modeling package HEC-HMS. With the use of historic precipitation and discharge data, the model was calibrated to observed discharge values. The hydrologic parameters were measured in the field or calculated, while soil parameters were estimated and adjusted during the calibration. With the calibrated parameter for HEC-HMS, discharge estimates can be used by other researches studying the area and help guide communities and officials to make better-educated decisions regarding the changing hydrology in the area and the tied economic drivers.
Hydrological Relevant Parameters from Remote Sensing - Spatial Modelling Input and Validation Basis
NASA Astrophysics Data System (ADS)
Hochschild, V.
2012-12-01
This keynote paper will demonstrate how multisensoral remote sensing data is used as spatial input for mesoscale hydrological modeling as well as for sophisticated validation purposes. The tasks of Water Resources Management are subject as well as the role of remote sensing in regional catchment modeling. Parameters derived from remote sensing discussed in this presentation will be land cover, topographical information from digital elevation models, biophysical vegetation parameters, surface soil moisture, evapotranspiration estimations, lake level measurements, determination of snow covered area, lake ice cycles, soil erosion type, mass wasting monitoring, sealed area, flash flood estimation. The actual possibilities of recent satellite and airborne systems are discussed, as well as the data integration into GIS and hydrological modeling, scaling issues and quality assessment will be mentioned. The presentation will provide an overview of own research examples from Germany, Tibet and Africa (Ethiopia, South Africa) as well as other international research activities. Finally the paper gives an outlook on upcoming sensors and concludes the possibilities of remote sensing in hydrology.
Comparison of global optimization approaches for robust calibration of hydrologic model parameters
NASA Astrophysics Data System (ADS)
Jung, I. W.
2015-12-01
Robustness of the calibrated parameters of hydrologic models is necessary to provide a reliable prediction of future performance of watershed behavior under varying climate conditions. This study investigated calibration performances according to the length of calibration period, objective functions, hydrologic model structures and optimization methods. To do this, the combination of three global optimization methods (i.e. SCE-UA, Micro-GA, and DREAM) and four hydrologic models (i.e. SAC-SMA, GR4J, HBV, and PRMS) was tested with different calibration periods and objective functions. Our results showed that three global optimization methods provided close calibration performances under different calibration periods, objective functions, and hydrologic models. However, using the agreement of index, normalized root mean square error, Nash-Sutcliffe efficiency as the objective function showed better performance than using correlation coefficient and percent bias. Calibration performances according to different calibration periods from one year to seven years were hard to generalize because four hydrologic models have different levels of complexity and different years have different information content of hydrological observation. Acknowledgements This research was supported by a grant (14AWMP-B082564-01) from Advanced Water Management Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government.
Segurado, Pedro; Branco, Paulo; Jauch, Eduardo; Neves, Ramiro; Ferreira, M Teresa
2016-08-15
Climate change will predictably change hydrological patterns and processes at the catchment scale, with impacts on habitat conditions for fish. The main goal of this study is to assess how shifts in fish habitat favourability under climate change scenarios are affected by hydrological stressors. The interplay between climate and hydrological stressors has important implications in river management under climate change because management actions to control hydrological parameters are more feasible than controlling climate. This study was carried out in the Tamega catchment of the Douro basin. A set of hydrological stressor variables were generated through a process-based modelling based on current climate data (2008-2014) and also considering a high-end future climate change scenario. The resulting parameters, along with climatic and site-descriptor variables were used as explanatory variables in empirical habitat models for nine fish species using boosted regression trees. Models were calibrated for the whole Douro basin using 254 fish sampling sites and predictions under future climate change scenarios were made for the Tamega catchment. Results show that models using climatic variables but not hydrological stressors produce more stringent predictions of future favourability, predicting more distribution contractions or stronger range shifts. The use of hydrological stressors strongly influences projections of habitat favourability shifts; the integration of these stressors in the models thinned shifts in range due to climate change. Hydrological stressors were retained in the models for most species and had a high importance, demonstrating that it is important to integrate hydrology in studies of impacts of climate change on freshwater fishes. This is a relevant result because it means that management actions to control hydrological parameters in rivers will have an impact on the effects of climate change and may potentially be helpful to mitigate its negative effects on fish populations and assemblages. Copyright © 2016 Elsevier B.V. All rights reserved.
A micro-hydrology computation ordering algorithm
NASA Astrophysics Data System (ADS)
Croley, Thomas E.
1980-11-01
Discrete-distributed-parameter models are essential for watershed modelling where practical consideration of spatial variations in watershed properties and inputs is desired. Such modelling is necessary for analysis of detailed hydrologic impacts from management strategies and land-use effects. Trade-offs between model validity and model complexity exist in resolution of the watershed. Once these are determined, the watershed is then broken into sub-areas which each have essentially spatially-uniform properties. Lumped-parameter (micro-hydrology) models are applied to these sub-areas and their outputs are combined through the use of a computation ordering technique, as illustrated by many discrete-distributed-parameter hydrology models. Manual ordering of these computations requires fore-thought, and is tedious, error prone, sometimes storage intensive and least adaptable to changes in watershed resolution. A programmable algorithm for ordering micro-hydrology computations is presented that enables automatic ordering of computations within the computer via an easily understood and easily implemented "node" definition, numbering and coding scheme. This scheme and the algorithm are detailed in logic flow-charts and an example application is presented. Extensions and modifications of the algorithm are easily made for complex geometries or differing microhydrology models. The algorithm is shown to be superior to manual ordering techniques and has potential use in high-resolution studies.
NASA Astrophysics Data System (ADS)
Noh, Seong Jin; Rakovec, Oldrich; Kumar, Rohini; Samaniego, Luis
2016-04-01
There have been tremendous improvements in distributed hydrologic modeling (DHM) which made a process-based simulation with a high spatiotemporal resolution applicable on a large spatial scale. Despite of increasing information on heterogeneous property of a catchment, DHM is still subject to uncertainties inherently coming from model structure, parameters and input forcing. Sequential data assimilation (DA) may facilitate improved streamflow prediction via DHM using real-time observations to correct internal model states. In conventional DA methods such as state updating, parametric uncertainty is, however, often ignored mainly due to practical limitations of methodology to specify modeling uncertainty with limited ensemble members. If parametric uncertainty related with routing and runoff components is not incorporated properly, predictive uncertainty by DHM may be insufficient to capture dynamics of observations, which may deteriorate predictability. Recently, a multi-scale parameter regionalization (MPR) method was proposed to make hydrologic predictions at different scales using a same set of model parameters without losing much of the model performance. The MPR method incorporated within the mesoscale hydrologic model (mHM, http://www.ufz.de/mhm) could effectively represent and control uncertainty of high-dimensional parameters in a distributed model using global parameters. In this study, we present a global multi-parametric ensemble approach to incorporate parametric uncertainty of DHM in DA to improve streamflow predictions. To effectively represent and control uncertainty of high-dimensional parameters with limited number of ensemble, MPR method is incorporated with DA. Lagged particle filtering is utilized to consider the response times and non-Gaussian characteristics of internal hydrologic processes. The hindcasting experiments are implemented to evaluate impacts of the proposed DA method on streamflow predictions in multiple European river basins having different climate and catchment characteristics. Because augmentation of parameters is not required within an assimilation window, the approach could be stable with limited ensemble members and viable for practical uses.
Toward seamless hydrologic predictions across spatial scales
NASA Astrophysics Data System (ADS)
Samaniego, Luis; Kumar, Rohini; Thober, Stephan; Rakovec, Oldrich; Zink, Matthias; Wanders, Niko; Eisner, Stephanie; Müller Schmied, Hannes; Sutanudjaja, Edwin H.; Warrach-Sagi, Kirsten; Attinger, Sabine
2017-09-01
Land surface and hydrologic models (LSMs/HMs) are used at diverse spatial resolutions ranging from catchment-scale (1-10 km) to global-scale (over 50 km) applications. Applying the same model structure at different spatial scales requires that the model estimates similar fluxes independent of the chosen resolution, i.e., fulfills a flux-matching condition across scales. An analysis of state-of-the-art LSMs and HMs reveals that most do not have consistent hydrologic parameter fields. Multiple experiments with the mHM, Noah-MP, PCR-GLOBWB, and WaterGAP models demonstrate the pitfalls of deficient parameterization practices currently used in most operational models, which are insufficient to satisfy the flux-matching condition. These examples demonstrate that J. Dooge's 1982 statement on the unsolved problem of parameterization in these models remains true. Based on a review of existing parameter regionalization techniques, we postulate that the multiscale parameter regionalization (MPR) technique offers a practical and robust method that provides consistent (seamless) parameter and flux fields across scales. Herein, we develop a general model protocol to describe how MPR can be applied to a particular model and present an example application using the PCR-GLOBWB model. Finally, we discuss potential advantages and limitations of MPR in obtaining the seamless prediction of hydrological fluxes and states across spatial scales.
Temporal variation and scaling of parameters for a monthly hydrologic model
NASA Astrophysics Data System (ADS)
Deng, Chao; Liu, Pan; Wang, Dingbao; Wang, Weiguang
2018-03-01
The temporal variation of model parameters is affected by the catchment conditions and has a significant impact on hydrological simulation. This study aims to evaluate the seasonality and downscaling of model parameter across time scales based on monthly and mean annual water balance models with a common model framework. Two parameters of the monthly model, i.e., k and m, are assumed to be time-variant at different months. Based on the hydrological data set from 121 MOPEX catchments in the United States, we firstly analyzed the correlation between parameters (k and m) and catchment properties (NDVI and frequency of rainfall events, α). The results show that parameter k is positively correlated with NDVI or α, while the correlation is opposite for parameter m, indicating that precipitation and vegetation affect monthly water balance by controlling temporal variation of parameters k and m. The multiple linear regression is then used to fit the relationship between ε and the means and coefficient of variations of parameters k and m. Based on the empirical equation and the correlations between the time-variant parameters and NDVI, the mean annual parameter ε is downscaled to monthly k and m. The results show that it has lower NSEs than these from model with time-variant k and m being calibrated through SCE-UA, while for several study catchments, it has higher NSEs than that of the model with constant parameters. The proposed method is feasible and provides a useful tool for temporal scaling of model parameter.
mRM - multiscale Routing Model for Land Surface and Hydrologic Models
NASA Astrophysics Data System (ADS)
Cuntz, M.; Thober, S.; Mai, J.; Samaniego, L. E.; Gochis, D. J.; Kumar, R.
2015-12-01
Routing streamflow through a river network is a basic step within any distributed hydrologic model. It integrates the generated runoff and allows comparison with observed discharge at the outlet of a catchment. The Muskingum routing is a textbook river routing scheme that has been implemented in Earth System Models (e.g., WRF-HYDRO), stand-alone routing schemes (e.g., RAPID), and hydrologic models (e.g., the mesoscale Hydrologic Model). Most implementations suffer from a high computational demand because the spatial routing resolution is fixed to that of the elevation model irrespective of the hydrologic modeling resolution. This is because the model parameters are scale-dependent and cannot be used at other resolutions without re-estimation. Here, we present the multiscale Routing Model (mRM) that allows for a flexible choice of the routing resolution. mRM exploits the Multiscale Parameter Regionalization (MPR) included in the open-source mesoscale Hydrologic Model (mHM, www.ufz.de/mhm) that relates model parameters to physiographic properties and allows to estimate scale-independent model parameters. mRM is currently coupled to mHM and is presented here as stand-alone Free and Open Source Software (FOSS). The mRM source code is highly modular and provides a subroutine for internal re-use in any land surface scheme. mRM is coupled in this work to the state-of-the-art land surface model Noah-MP. Simulation results using mRM are compared with those available in WRF-HYDRO for the Red River during the period 1990-2000. mRM allows to increase the routing resolution from 100m to more than 10km without deteriorating the model performance. Therefore, it speeds up model calculation by reducing the contribution of routing to total runtime from over 80% to less than 5% in the case of WRF-HYDRO. mRM thus makes discharge data available to land surface modeling with only little extra calculations.
Fallon, Nevada FORGE Thermal-Hydrological-Mechanical Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blankenship, Doug; Sonnenthal, Eric
Archive contains thermal-mechanical simulation input/output files. Included are files which fall into the following categories: ( 1 ) Spreadsheets with various input parameter calculations ( 2 ) Final Simulation Inputs ( 3 ) Native-State Thermal-Hydrological Model Input File Folders ( 4 ) Native-State Thermal-Hydrological-Mechanical Model Input Files ( 5 ) THM Model Stimulation Cases See 'File Descriptions.xlsx' resource below for additional information on individual files.
NASA Astrophysics Data System (ADS)
Kelleher, Christa A.; Shaw, Stephen B.
2018-02-01
Recent research has found that hydrologic modeling over decadal time periods often requires time variant model parameters. Most prior work has focused on assessing time variance in model parameters conceptualizing watershed features and functions. In this paper, we assess whether adding a time variant scalar to potential evapotranspiration (PET) can be used in place of time variant parameters. Using the HBV hydrologic model and four different simple but common PET methods (Hamon, Priestly-Taylor, Oudin, and Hargreaves), we simulated 60+ years of daily discharge on four rivers in New York state. Allowing all ten model parameters to vary in time achieved good model fits in terms of daily NSE and long-term water balance. However, allowing single model parameters to vary in time - including a scalar on PET - achieved nearly equivalent model fits across PET methods. Overall, varying a PET scalar in time is likely more physically consistent with known biophysical controls on PET as compared to varying parameters conceptualizing innate watershed properties related to soil properties such as wilting point and field capacity. This work suggests that the seeming need for time variance in innate watershed parameters may be due to overly simple evapotranspiration formulations that do not account for all factors controlling evapotranspiration over long time periods.
Identification of hydrological model parameter variation using ensemble Kalman filter
NASA Astrophysics Data System (ADS)
Deng, Chao; Liu, Pan; Guo, Shenglian; Li, Zejun; Wang, Dingbao
2016-12-01
Hydrological model parameters play an important role in the ability of model prediction. In a stationary context, parameters of hydrological models are treated as constants; however, model parameters may vary with time under climate change and anthropogenic activities. The technique of ensemble Kalman filter (EnKF) is proposed to identify the temporal variation of parameters for a two-parameter monthly water balance model (TWBM) by assimilating the runoff observations. Through a synthetic experiment, the proposed method is evaluated with time-invariant (i.e., constant) parameters and different types of parameter variations, including trend, abrupt change and periodicity. Various levels of observation uncertainty are designed to examine the performance of the EnKF. The results show that the EnKF can successfully capture the temporal variations of the model parameters. The application to the Wudinghe basin shows that the water storage capacity (SC) of the TWBM model has an apparent increasing trend during the period from 1958 to 2000. The identified temporal variation of SC is explained by land use and land cover changes due to soil and water conservation measures. In contrast, the application to the Tongtianhe basin shows that the estimated SC has no significant variation during the simulation period of 1982-2013, corresponding to the relatively stationary catchment properties. The evapotranspiration parameter (C) has temporal variations while no obvious change patterns exist. The proposed method provides an effective tool for quantifying the temporal variations of the model parameters, thereby improving the accuracy and reliability of model simulations and forecasts.
Detecting hydrological changes through conceptual model
NASA Astrophysics Data System (ADS)
Viola, Francesco; Caracciolo, Domenico; Pumo, Dario; Francipane, Antonio; Valerio Noto, Leonardo
2015-04-01
Natural changes and human modifications in hydrological systems coevolve and interact in a coupled and interlinked way. If, on one hand, climatic changes are stochastic, non-steady, and affect the hydrological systems, on the other hand, human-induced changes due to over-exploitation of soils and water resources modifies the natural landscape, water fluxes and its partitioning. Indeed, the traditional assumption of static systems in hydrological analysis, which has been adopted for long time, fails whenever transient climatic conditions and/or land use changes occur. Time series analysis is a way to explore environmental changes together with societal changes; unfortunately, the not distinguishability between causes restrict the scope of this method. In order to overcome this limitation, it is possible to couple time series analysis with an opportune hydrological model, such as a conceptual hydrological model, which offers a schematization of complex dynamics acting within a basin. Assuming that model parameters represent morphological basin characteristics and that calibration is a way to detect hydrological signature at a specific moment, it is possible to argue that calibrating the model over different time windows could be a method for detecting potential hydrological changes. In order to test the capabilities of a conceptual model in detecting hydrological changes, this work presents different "in silico" experiments. A synthetic-basin is forced with an ensemble of possible future scenarios generated with a stochastic weather generator able to simulate steady and non-steady climatic conditions. The experiments refer to Mediterranean climate, which is characterized by marked seasonality, and consider the outcomes of the IPCC 5th report for describing climate evolution in the next century. In particular, in order to generate future climate change scenarios, a stochastic downscaling in space and time is carried out using realizations of an ensemble of General Circulation Models (GCMs) for the future scenarios 2046-2065 and 2081-2100. Land use changes (i.e., changes in the fraction of impervious area due to increasing urbanization) are explicitly simulated, while the reference hydrological responses are assessed by the spatially distributed, process-based hydrological model tRIBS, the TIN-based Real-time Integrated Basin Simulator. Several scenarios have been created, describing hypothetical centuries with steady conditions, climate change conditions, land use change conditions and finally complex conditions involving both transient climatic modifications and gradual land use changes. A conceptual lumped model, the EHSM (EcoHydrological Streamflow Model) is calibrated for the above mentioned scenarios with regard to different time-windows. The calibrated parameters show high sensitivity to anthropic variations in land use and/or climatic variability. Land use changes are clearly visible from parameters evolution especially when steady climatic conditions are considered. When the increase in urbanization is coupled with rainfall reduction the ability to detect human interventions through the analysis of conceptual model parameters is weakened.
NASA Astrophysics Data System (ADS)
Lafontaine, J.; Hay, L.; Markstrom, S. L.
2016-12-01
The United States Geological Survey (USGS) has developed a National Hydrologic Model (NHM) to support coordinated, comprehensive and consistent hydrologic model development, and facilitate the application of hydrologic simulations within the conterminous United States (CONUS). As many stream reaches in the CONUS are either not gaged, or are substantially impacted by water use or flow regulation, ancillary information must be used to determine reasonable parameter estimations for streamflow simulations. Hydrologic models for 1,576 gaged watersheds across the CONUS were developed to test the feasibility of improving streamflow simulations linking physically-based hydrologic models with remotely-sensed data products (i.e. snow water equivalent). Initially, the physically-based models were calibrated to measured streamflow data to provide a baseline for comparison across multiple calibration strategy tests. In addition, not all ancillary datasets are appropriate for application to all parts of the CONUS (e.g. snow water equivalent in the southeastern U.S., where snow is a rarity). As it is not expected that any one data product or model simulation will be sufficient for representing hydrologic behavior across the entire CONUS, a systematic evaluation of which data products improve hydrologic simulations for various regions across the CONUS was performed. The resulting portfolio of calibration strategies can be used to guide selection of an appropriate combination of modeled and measured information for hydrologic model development and calibration. In addition, these calibration strategies have been developed to be flexible so that new data products can be assimilated. This analysis provides a foundation to understand how well models work when sufficient streamflow data are not available and could be used to further inform hydrologic model parameter development for ungaged areas.
NASA Astrophysics Data System (ADS)
Zhang, Jiangjiang; Lin, Guang; Li, Weixuan; Wu, Laosheng; Zeng, Lingzao
2018-03-01
Ensemble smoother (ES) has been widely used in inverse modeling of hydrologic systems. However, for problems where the distribution of model parameters is multimodal, using ES directly would be problematic. One popular solution is to use a clustering algorithm to identify each mode and update the clusters with ES separately. However, this strategy may not be very efficient when the dimension of parameter space is high or the number of modes is large. Alternatively, we propose in this paper a very simple and efficient algorithm, i.e., the iterative local updating ensemble smoother (ILUES), to explore multimodal distributions of model parameters in nonlinear hydrologic systems. The ILUES algorithm works by updating local ensembles of each sample with ES to explore possible multimodal distributions. To achieve satisfactory data matches in nonlinear problems, we adopt an iterative form of ES to assimilate the measurements multiple times. Numerical cases involving nonlinearity and multimodality are tested to illustrate the performance of the proposed method. It is shown that overall the ILUES algorithm can well quantify the parametric uncertainties of complex hydrologic models, no matter whether the multimodal distribution exists.
Simultaneous Semi-Distributed Model Calibration Guided by ...
Modelling approaches to transfer hydrologically-relevant information from locations with streamflow measurements to locations without such measurements continues to be an active field of research for hydrologists. The Pacific Northwest Hydrologic Landscapes (PNW HL) provide a solid conceptual classification framework based on our understanding of dominant processes. A Hydrologic Landscape code (5 letter descriptor based on physical and climatic properties) describes each assessment unit area, and these units average area 60km2. The core function of these HL codes is to relate and transfer hydrologically meaningful information between watersheds without the need for streamflow time series. We present a novel approach based on the HL framework to answer the question “How can we calibrate models across separate watersheds simultaneously, guided by our understanding of dominant processes?“. We should be able to apply the same parameterizations to assessment units of common HL codes if 1) the Hydrologic Landscapes contain hydrologic information transferable between watersheds at a sub-watershed-scale and 2) we use a conceptual hydrologic model and parameters that reflect the hydrologic behavior of a watershed. In this study, This work specifically tests the ability or inability to use HL-codes to inform and share model parameters across watersheds in the Pacific Northwest. EPA’s Western Ecology Division has published and is refining a framework for defining la
NASA Astrophysics Data System (ADS)
Norton, P. A., II; Haj, A. E., Jr.
2014-12-01
The United States Geological Survey is currently developing a National Hydrologic Model (NHM) to support and facilitate coordinated and consistent hydrologic modeling efforts at the scale of the continental United States. As part of this effort, the Geospatial Fabric (GF) for the NHM was created. The GF is a database that contains parameters derived from datasets that characterize the physical features of watersheds. The GF was used to aggregate catchments and flowlines defined in the National Hydrography Dataset Plus dataset for more than 100,000 hydrologic response units (HRUs), and to establish initial parameter values for input to the Precipitation-Runoff Modeling System (PRMS). Many parameter values are adjusted in PRMS using an automated calibration process. Using these adjusted parameter values, the PRMS model estimated variables such as evapotranspiration (ET), potential evapotranspiration (PET), snow-covered area (SCA), and snow water equivalent (SWE). In order to evaluate the effectiveness of parameter calibration, and model performance in general, several satellite-based Moderate Resolution Imaging Spectroradiometer (MODIS) and Snow Data Assimilation System (SNODAS) gridded datasets including ET, PET, SCA, and SWE were compared to PRMS-simulated values. The MODIS and SNODAS data were spatially averaged for each HRU, and compared to PRMS-simulated ET, PET, SCA, and SWE values for each HRU in the Upper Missouri River watershed. Default initial GF parameter values and PRMS calibration ranges were evaluated. Evaluation results, and the use of MODIS and SNODAS datasets to update GF parameter values and PRMS calibration ranges, are presented and discussed.
Jump-Diffusion models and structural changes for asset forecasting in hydrology
NASA Astrophysics Data System (ADS)
Tranquille Temgoua, André Guy; Martel, Richard; Chang, Philippe J. J.; Rivera, Alfonso
2017-04-01
Impacts of climate change on surface water and groundwater are of concern in many regions of the world since water is an essential natural resource. Jump-Diffusion models are generally used in economics and other related fields but not in hydrology. The potential application could be made for hydrologic data series analysis and forecast. The present study uses Jump-Diffusion models by adding structural changes to detect fluctuations in hydrologic processes in relationship with climate change. The model implicitly assumes that modifications in rivers' flowrates can be divided into three categories: (a) normal changes due to irregular precipitation events especially in tropical regions causing major disturbance in hydrologic processes (this component is modelled by a discrete Brownian motion); (b) abnormal, sudden and non-persistent modifications in hydrologic proceedings are handled by Poisson processes; (c) the persistence of hydrologic fluctuations characterized by structural changes in hydrological data related to climate variability. The objective of this paper is to add structural changes in diffusion models with jumps, in order to capture the persistence of hydrologic fluctuations. Indirectly, the idea is to observe if there are structural changes of discharge/recharge over the study area, and to find an efficient and flexible model able of capturing a wide variety of hydrologic processes. Structural changes in hydrological data are estimated using the method of nonlinear discrete filters via Method of Simulated Moments (MSM). An application is given using sensitive parameters such as baseflow index and recession coefficient to capture discharge/recharge. Historical dataset are examined by the Volume Spread Analysis (VSA) to detect real time and random perturbations in hydrologic processes. The application of the method allows establishing more accurate hydrologic parameters. The impact of this study is perceptible in forecasting floods and groundwater recession. Keywords: hydrologic processes, Jump-Diffusion models, structural changes, forecast, climate change
NASA Astrophysics Data System (ADS)
Bassam, S.; Ren, J.
2017-12-01
Predicting future water availability in watersheds is very important for proper water resources management, especially in semi-arid regions with scarce water resources. Hydrological models have been considered as powerful tools in predicting future hydrological conditions in watershed systems in the past two decades. Streamflow and evapotranspiration are the two important components in watershed water balance estimation as the former is the most commonly-used indicator of the overall water budget estimation, and the latter is the second biggest component of water budget (biggest outflow from the system). One of the main concerns in watershed scale hydrological modeling is the uncertainties associated with model prediction, which could arise from errors in model parameters and input meteorological data, or errors in model representation of the physics of hydrological processes. Understanding and quantifying these uncertainties are vital to water resources managers for proper decision making based on model predictions. In this study, we evaluated the impacts of different climate change scenarios on the future stream discharge and evapotranspiration, and their associated uncertainties, throughout a large semi-arid basin using a stochastically-calibrated, physically-based, semi-distributed hydrological model. The results of this study could provide valuable insights in applying hydrological models in large scale watersheds, understanding the associated sensitivity and uncertainties in model parameters, and estimating the corresponding impacts on interested hydrological process variables under different climate change scenarios.
Reducing calibration parameters to increase insight in catchment organization and similarity
NASA Astrophysics Data System (ADS)
Skaugen, Thomas; Onof, Christian
2013-04-01
Ideally, hydrological models should be built from equations parameterised from observed catchment characteristics and data. This state of affairs may never be reached, but a governing principle in hydrological modelling should be to keep the number of calibration parameters to a minimum. A reduced number of parameters to be calibrated, while maintaining the accuracy and detail required by modern hydrological models, will reduce parameter and model structure uncertainty and improve model diagnostics. The dynamics of runoff for small catchments are derived from the distribution of distances from points in the catchments to the nearest stream in a catchment. This distribution is unique for each catchment and can be determined from a geographical information system (GIS). The distribution of distances, will, when a celerity of (subsurface) flow is introduced, provide a distribution of travel times, or a unit hydrograph (UH). For spatially varying levels of saturation deficit we have different celerities and, hence, different UHs. Runoff is derived from the super-positioning of the different UHs. This study shows how celerities can be estimated if we assume that recession events represent the superpositioned UH for different levels of saturation deficit. The performance of the DDD (Distance Distribution Dynamics) model is compared to that of the Swedish HBV model and is found to perform equally well for eight Norwegian catchments although the number of parameters to be calibrated in the module concerning soil moisture and runoff dynamics is reduced from 7 in the HBV model to 1 in the DDD model. It is also shown that the DDD model has a more realistic representation of the subsurface hydrology. The transparency of the DDD model makes model diagnostics more easy and experience with DDD shows that differences in model performance may be related to differences in catchment characteristics. More specifically, it appears that the hydrological dynamics of bogs have to be taken especially into account when modelling Norwegian catchments.
NASA Astrophysics Data System (ADS)
Garavaglia, F.; Seyve, E.; Gottardi, F.; Le Lay, M.; Gailhard, J.; Garçon, R.
2014-12-01
MORDOR is a conceptual hydrological model extensively used in Électricité de France (EDF, French electric utility company) operational applications: (i) hydrological forecasting, (ii) flood risk assessment, (iii) water balance and (iv) climate change studies. MORDOR is a lumped, reservoir, elevation based model with hourly or daily areal rainfall and air temperature as the driving input data. The principal hydrological processes represented are evapotranspiration, direct and indirect runoff, ground water, snow accumulation and melt and routing. The model has been intensively used at EDF for more than 20 years, in particular for modeling French mountainous watersheds. In the matter of parameters calibration we propose and test alternative multi-criteria techniques based on two specific approaches: automatic calibration using single-objective functions and a priori parameter calibration founded on hydrological watershed features. The automatic calibration approach uses single-objective functions, based on Kling-Gupta efficiency, to quantify the good agreement between the simulated and observed runoff focusing on four different runoff samples: (i) time-series sample, (I) annual hydrological regime, (iii) monthly cumulative distribution functions and (iv) recession sequences.The primary purpose of this study is to analyze the definition and sensitivity of MORDOR parameters testing different calibration techniques in order to: (i) simplify the model structure, (ii) increase the calibration-validation performance of the model and (iii) reduce the equifinality problem of calibration process. We propose an alternative calibration strategy that reaches these goals. The analysis is illustrated by calibrating MORDOR model to daily data for 50 watersheds located in French mountainous regions.
Parameterization guidelines and considerations for hydrologic models
R. W. Malone; G. Yagow; C. Baffaut; M.W Gitau; Z. Qi; Devendra Amatya; P.B. Parajuli; J.V. Bonta; T.R. Green
2015-01-01
 Imparting knowledge of the physical processes of a system to a model and determining a set of parameter values for a hydrologic or water quality model application (i.e., parameterization) are important and difficult tasks. An exponential...
NASA Astrophysics Data System (ADS)
Scharnagl, Benedikt; Durner, Wolfgang
2013-04-01
Models are inherently imperfect because they simplify processes that are themselves imperfectly known and understood. Moreover, the input variables and parameters needed to run a model are typically subject to various sources of error. As a consequence of these imperfections, model predictions will always deviate from corresponding observations. In most applications in soil hydrology, these deviations are clearly not random but rather show a systematic structure. From a statistical point of view, this systematic mismatch may be a reason for concern because it violates one of the basic assumptions made in inverse parameter estimation: the assumption of independence of the residuals. But what are the consequences of simply ignoring the autocorrelation in the residuals, as it is current practice in soil hydrology? Are the parameter estimates still valid even though the statistical foundation they are based on is partially collapsed? Theory and practical experience from other fields of science have shown that violation of the independence assumption will result in overconfident uncertainty bounds and that in some cases it may lead to significantly different optimal parameter values. In our contribution, we present three soil hydrological case studies, in which the effect of autocorrelated residuals on the estimated parameters was investigated in detail. We explicitly accounted for autocorrelated residuals using a formal likelihood function that incorporates an autoregressive model. The inverse problem was posed in a Bayesian framework, and the posterior probability density function of the parameters was estimated using Markov chain Monte Carlo simulation. In contrast to many other studies in related fields of science, and quite surprisingly, we found that the first-order autoregressive model, often abbreviated as AR(1), did not work well in the soil hydrological setting. We showed that a second-order autoregressive, or AR(2), model performs much better in these applications, leading to parameter and uncertainty estimates that satisfy all the underlying statistical assumptions. For theoretical reasons, these estimates are deemed more reliable than those estimates based on the neglect of autocorrelation in the residuals. In compliance with theory and results reported in the literature, our results showed that parameter uncertainty bounds were substantially wider if autocorrelation in the residuals was explicitly accounted for, and also the optimal parameter vales were slightly different in this case. We argue that the autoregressive model presented here should be used as a matter of routine in inverse modeling of soil hydrological processes.
Critical zone evolution and the origins of organised complexity in watersheds
NASA Astrophysics Data System (ADS)
Harman, C.; Troch, P. A.; Pelletier, J.; Rasmussen, C.; Chorover, J.
2012-04-01
The capacity of the landscape to store and transmit water is the result of a historical trajectory of landscape, soil and vegetation development, much of which is driven by hydrology itself. Progress in geomorphology and pedology has produced models of surface and sub-surface evolution in soil-mantled uplands. These dissected, denuding modeled landscapes are emblematic of the kinds of dissipative self-organized flow structures whose hydrologic organization may also be understood by low-dimensional hydrologic models. They offer an exciting starting-point for examining the mapping between the long-term controls on landscape evolution and the high-frequency hydrologic dynamics. Here we build on recent theoretical developments in geomorphology and pedology to try to understand how the relative rates of erosion, sediment transport and soil development in a landscape determine catchment storage capacity and the relative dominance of runoff process, flow pathways and storage-discharge relationships. We do so by using a combination of landscape evolution models, hydrologic process models and data from a variety of sources, including the University of Arizona Critical Zone Observatory. A challenge to linking the landscape evolution and hydrologic model representations is the vast differences in the timescales implicit in the process representations. Furthermore the vast array of processes involved makes parameterization of such models an enormous challenge. The best data-constrained geomorphic transport and soil development laws only represent hydrologic processes implicitly, through the transport and weathering rate parameters. In this work we propose to avoid this problem by identifying the relationship between the landscape and soil evolution parameters and macroscopic climate and geological controls. These macroscopic controls (such as the aridity index) have two roles: 1) they express the water and energy constraints on the long-term evolution of the landscape system, and 2) they bound the range of plausible short-term hydroclimatic regimes that may drive a particular landscape's hydrologic dynamics. To ensure that the hydrologic dynamics implicit in the evolutionary parameters are compatible with the dynamics observed in the hydrologic modeling, a set of consistency checks based on flow process dominance are developed.
Distributed Evaluation of Local Sensitivity Analysis (DELSA), with application to hydrologic models
Rakovec, O.; Hill, Mary C.; Clark, M.P.; Weerts, A. H.; Teuling, A. J.; Uijlenhoet, R.
2014-01-01
This paper presents a hybrid local-global sensitivity analysis method termed the Distributed Evaluation of Local Sensitivity Analysis (DELSA), which is used here to identify important and unimportant parameters and evaluate how model parameter importance changes as parameter values change. DELSA uses derivative-based “local” methods to obtain the distribution of parameter sensitivity across the parameter space, which promotes consideration of sensitivity analysis results in the context of simulated dynamics. This work presents DELSA, discusses how it relates to existing methods, and uses two hydrologic test cases to compare its performance with the popular global, variance-based Sobol' method. The first test case is a simple nonlinear reservoir model with two parameters. The second test case involves five alternative “bucket-style” hydrologic models with up to 14 parameters applied to a medium-sized catchment (200 km2) in the Belgian Ardennes. Results show that in both examples, Sobol' and DELSA identify similar important and unimportant parameters, with DELSA enabling more detailed insight at much lower computational cost. For example, in the real-world problem the time delay in runoff is the most important parameter in all models, but DELSA shows that for about 20% of parameter sets it is not important at all and alternative mechanisms and parameters dominate. Moreover, the time delay was identified as important in regions producing poor model fits, whereas other parameters were identified as more important in regions of the parameter space producing better model fits. The ability to understand how parameter importance varies through parameter space is critical to inform decisions about, for example, additional data collection and model development. The ability to perform such analyses with modest computational requirements provides exciting opportunities to evaluate complicated models as well as many alternative models.
NASA Astrophysics Data System (ADS)
Fan, Y. R.; Huang, G. H.; Baetz, B. W.; Li, Y. P.; Huang, K.
2017-06-01
In this study, a copula-based particle filter (CopPF) approach was developed for sequential hydrological data assimilation by considering parameter correlation structures. In CopPF, multivariate copulas are proposed to reflect parameter interdependence before the resampling procedure with new particles then being sampled from the obtained copulas. Such a process can overcome both particle degeneration and sample impoverishment. The applicability of CopPF is illustrated with three case studies using a two-parameter simplified model and two conceptual hydrologic models. The results for the simplified model indicate that model parameters are highly correlated in the data assimilation process, suggesting a demand for full description of their dependence structure. Synthetic experiments on hydrologic data assimilation indicate that CopPF can rejuvenate particle evolution in large spaces and thus achieve good performances with low sample size scenarios. The applicability of CopPF is further illustrated through two real-case studies. It is shown that, compared with traditional particle filter (PF) and particle Markov chain Monte Carlo (PMCMC) approaches, the proposed method can provide more accurate results for both deterministic and probabilistic prediction with a sample size of 100. Furthermore, the sample size would not significantly influence the performance of CopPF. Also, the copula resampling approach dominates parameter evolution in CopPF, with more than 50% of particles sampled by copulas in most sample size scenarios.
NASA Astrophysics Data System (ADS)
Hernández-López, Mario R.; Romero-Cuéllar, Jonathan; Camilo Múnera-Estrada, Juan; Coccia, Gabriele; Francés, Félix
2017-04-01
It is noticeably important to emphasize the role of uncertainty particularly when the model forecasts are used to support decision-making and water management. This research compares two approaches for the evaluation of the predictive uncertainty in hydrological modeling. First approach is the Bayesian Joint Inference of hydrological and error models. Second approach is carried out through the Model Conditional Processor using the Truncated Normal Distribution in the transformed space. This comparison is focused on the predictive distribution reliability. The case study is applied to two basins included in the Model Parameter Estimation Experiment (MOPEX). These two basins, which have different hydrological complexity, are the French Broad River (North Carolina) and the Guadalupe River (Texas). The results indicate that generally, both approaches are able to provide similar predictive performances. However, the differences between them can arise in basins with complex hydrology (e.g. ephemeral basins). This is because obtained results with Bayesian Joint Inference are strongly dependent on the suitability of the hypothesized error model. Similarly, the results in the case of the Model Conditional Processor are mainly influenced by the selected model of tails or even by the selected full probability distribution model of the data in the real space, and by the definition of the Truncated Normal Distribution in the transformed space. In summary, the different hypotheses that the modeler choose on each of the two approaches are the main cause of the different results. This research also explores a proper combination of both methodologies which could be useful to achieve less biased hydrological parameter estimation. For this approach, firstly the predictive distribution is obtained through the Model Conditional Processor. Secondly, this predictive distribution is used to derive the corresponding additive error model which is employed for the hydrological parameter estimation with the Bayesian Joint Inference methodology.
Calibration process of highly parameterized semi-distributed hydrological model
NASA Astrophysics Data System (ADS)
Vidmar, Andrej; Brilly, Mitja
2017-04-01
Hydrological phenomena take place in the hydrological system, which is governed by nature, and are essentially stochastic. These phenomena are unique, non-recurring, and changeable across space and time. Since any river basin with its own natural characteristics and any hydrological event therein, are unique, this is a complex process that is not researched enough. Calibration is a procedure of determining the parameters of a model that are not known well enough. Input and output variables and mathematical model expressions are known, while only some parameters are unknown, which are determined by calibrating the model. The software used for hydrological modelling nowadays is equipped with sophisticated algorithms for calibration purposes without possibility to manage process by modeler. The results are not the best. We develop procedure for expert driven process of calibration. We use HBV-light-CLI hydrological model which has command line interface and coupling it with PEST. PEST is parameter estimation tool which is used widely in ground water modeling and can be used also on surface waters. Process of calibration managed by expert directly, and proportionally to the expert knowledge, affects the outcome of the inversion procedure and achieves better results than if the procedure had been left to the selected optimization algorithm. First step is to properly define spatial characteristic and structural design of semi-distributed model including all morphological and hydrological phenomena, like karstic area, alluvial area and forest area. This step includes and requires geological, meteorological, hydraulic and hydrological knowledge of modeler. Second step is to set initial parameter values at their preferred values based on expert knowledge. In this step we also define all parameter and observation groups. Peak data are essential in process of calibration if we are mainly interested in flood events. Each Sub Catchment in the model has own observations group. Third step is to set appropriate bounds to parameters in their range of realistic values. Fourth step is to use of singular value decomposition (SVD) ensures that PEST maintains numerical stability, regardless of how ill-posed is the inverse problem Fifth step is to run PWTADJ1. This creates a new PEST control file in which weights are adjusted such that the contribution made to the total objective function by each observation group is the same. This prevents the information content of any group from being invisible to the inversion process. Sixth step is to add Tikhonov regularization to the PEST control file by running the ADDREG1 utility (Doherty, J, 2013). In adding regularization to the PEST control file ADDREG1 automatically provides a prior information equation for each parameter in which the preferred value of that parameter is equated to its initial value. Last step is to run PEST. We run BeoPEST which a parallel version of PEST and can be run on multiple computers in parallel in same time on TCP communications and this speedup process of calibrations. The case study with results of calibration and validation of the model will be presented.
NASA Astrophysics Data System (ADS)
Becker, M. W.; Bursik, M. I.; Schuetz, J. W.
2001-05-01
The Hubbard Brook Experimental Forest (HBEF) of Central New Hampshire has been a focal point for collaborative hydrologic research for over 40 years. A tremendous amount of data from this area is available through the internet and other sources, but is not organized in a manner that facilitates teaching of hydrologic concepts. The Mirror Lake Watershed Interactive Teaching Database is making hydrologic data from the HBEF and associated interactive problem sets available to upper-level and post-graduate university students through a web-based resource. Hydrologic data are offered via a three-dimensional VRML (Virtual Reality Modeling Language) interface, that facilitates viewing and retrieval in a spatially meaningful manner. Available data are mapped onto a topographic base, and hot spots representing data collection points (e.g. weirs) lead to time-series displays (e.g. hydrographs) that provide a temporal link to the spatially organized data. Associated instructional exercises are designed to increase understanding of both hydrologic data and hydrologic methods. A pedagogical module concerning numerical ground-water modeling will be presented as an example. Numerical modeling of ground-water flow involves choosing the combination of hydrogeologic parameters (e.g. hydraulic conductivity, recharge) that cause model-predicted heads to best match measured heads in the aquifer. Choosing the right combination of parameters requires careful judgment based upon knowledge of the hydrogeologic system and the physics of ground-water flow. Unfortunately, students often get caught up in the technical aspects and lose sight of the fundamentals when working with real ground-water software. This module provides exercises in which a student chooses model parameters and immediately sees the predicted results as a 3-D VRML object. VRML objects are based upon actual Modflow model results corresponding to the range of model input parameters available to the student. This way, the student can have a hands-on experience with a numerical model without getting bogged down in the details. Connecting model input directly to 3-D model output better allows students to test their intuition about ground-water behavior in an interactive and entertaining way.
NASA Astrophysics Data System (ADS)
Arsenault, Richard; Poissant, Dominique; Brissette, François
2015-11-01
This paper evaluated the effects of parametric reduction of a hydrological model on five regionalization methods and 267 catchments in the province of Quebec, Canada. The Sobol' variance-based sensitivity analysis was used to rank the model parameters by their influence on the model results and sequential parameter fixing was performed. The reduction in parameter correlations improved parameter identifiability, however this improvement was found to be minimal and was not transposed in the regionalization mode. It was shown that 11 of the HSAMI models' 23 parameters could be fixed with little or no loss in regionalization skill. The main conclusions were that (1) the conceptual lumped models used in this study did not represent physical processes sufficiently well to warrant parameter reduction for physics-based regionalization methods for the Canadian basins examined and (2) catchment descriptors did not adequately represent the relevant hydrological processes, namely snow accumulation and melt.
Inference of soil hydrologic parameters from electronic soil moisture records
USDA-ARS?s Scientific Manuscript database
Soil moisture is an important control on hydrologic function, as it governs vertical fluxes from and to the atmosphere, groundwater recharge, and lateral fluxes through the soil. Historically, the traditional model parameters of saturation, field capacity, and permanent wilting point have been deter...
How much expert knowledge is it worth to put in conceptual hydrological models?
NASA Astrophysics Data System (ADS)
Antonetti, Manuel; Zappa, Massimiliano
2017-04-01
Both modellers and experimentalists agree on using expert knowledge to improve our conceptual hydrological simulations on ungauged basins. However, they use expert knowledge differently for both hydrologically mapping the landscape and parameterising a given hydrological model. Modellers use generally very simplified (e.g. topography-based) mapping approaches and put most of the knowledge for constraining the model by defining parameter and process relational rules. In contrast, experimentalists tend to invest all their detailed and qualitative knowledge about processes to obtain a spatial distribution of areas with different dominant runoff generation processes (DRPs) as realistic as possible, and for defining plausible narrow value ranges for each model parameter. Since, most of the times, the modelling goal is exclusively to simulate runoff at a specific site, even strongly simplified hydrological classifications can lead to satisfying results due to equifinality of hydrological models, overfitting problems and the numerous uncertainty sources affecting runoff simulations. Therefore, to test to which extent expert knowledge can improve simulation results under uncertainty, we applied a typical modellers' modelling framework relying on parameter and process constraints defined based on expert knowledge to several catchments on the Swiss Plateau. To map the spatial distribution of the DRPs, mapping approaches with increasing involvement of expert knowledge were used. Simulation results highlighted the potential added value of using all the expert knowledge available on a catchment. Also, combinations of event types and landscapes, where even a simplified mapping approach can lead to satisfying results, were identified. Finally, the uncertainty originated by the different mapping approaches was compared with the one linked to meteorological input data and catchment initial conditions.
NASA Technical Reports Server (NTRS)
Duong, N.; Winn, C. B.; Johnson, G. R.
1975-01-01
Two approaches to an identification problem in hydrology are presented, based upon concepts from modern control and estimation theory. The first approach treats the identification of unknown parameters in a hydrologic system subject to noisy inputs as an adaptive linear stochastic control problem; the second approach alters the model equation to account for the random part in the inputs, and then uses a nonlinear estimation scheme to estimate the unknown parameters. Both approaches use state-space concepts. The identification schemes are sequential and adaptive and can handle either time-invariant or time-dependent parameters. They are used to identify parameters in the Prasad model of rainfall-runoff. The results obtained are encouraging and confirm the results from two previous studies; the first using numerical integration of the model equation along with a trial-and-error procedure, and the second using a quasi-linearization technique. The proposed approaches offer a systematic way of analyzing the rainfall-runoff process when the input data are imbedded in noise.
Significant uncertainty in global scale hydrological modeling from precipitation data errors
NASA Astrophysics Data System (ADS)
Sperna Weiland, Frederiek C.; Vrugt, Jasper A.; van Beek, Rens (L.) P. H.; Weerts, Albrecht H.; Bierkens, Marc F. P.
2015-10-01
In the past decades significant progress has been made in the fitting of hydrologic models to data. Most of this work has focused on simple, CPU-efficient, lumped hydrologic models using discharge, water table depth, soil moisture, or tracer data from relatively small river basins. In this paper, we focus on large-scale hydrologic modeling and analyze the effect of parameter and rainfall data uncertainty on simulated discharge dynamics with the global hydrologic model PCR-GLOBWB. We use three rainfall data products; the CFSR reanalysis, the ERA-Interim reanalysis, and a combined ERA-40 reanalysis and CRU dataset. Parameter uncertainty is derived from Latin Hypercube Sampling (LHS) using monthly discharge data from five of the largest river systems in the world. Our results demonstrate that the default parameterization of PCR-GLOBWB, derived from global datasets, can be improved by calibrating the model against monthly discharge observations. Yet, it is difficult to find a single parameterization of PCR-GLOBWB that works well for all of the five river basins considered herein and shows consistent performance during both the calibration and evaluation period. Still there may be possibilities for regionalization based on catchment similarities. Our simulations illustrate that parameter uncertainty constitutes only a minor part of predictive uncertainty. Thus, the apparent dichotomy between simulations of global-scale hydrologic behavior and actual data cannot be resolved by simply increasing the model complexity of PCR-GLOBWB and resolving sub-grid processes. Instead, it would be more productive to improve the characterization of global rainfall amounts at spatial resolutions of 0.5° and smaller.
Prognostic characteristics of the lowest-mode internal waves in the Sea of Okhotsk
NASA Astrophysics Data System (ADS)
Kurkin, Andrey; Kurkina, Oxana; Zaytsev, Andrey; Rybin, Artem; Talipova, Tatiana
2017-04-01
The nonlinear dynamics of short-period internal waves on ocean shelves is well described by generalized nonlinear evolutionary models of Korteweg - de Vries type. Parameters of these models such as long wave propagation speed, nonlinear and dispersive coefficients can be calculated using hydrological data (sea water density stratification), and therefore have geographical and seasonal variations. The internal wave parameters for the basin of the Sea of Okhotsk are computed on a base of recent version of hydrological data source GDEM V3.0. Geographical and seasonal variability of internal wave characteristics is investigated. It is shown that annually or seasonally averaged data can be used for linear parameters. The nonlinear parameters are more sensitive to temporal averaging of hydrological data and detailed data are preferable to use. The zones for nonlinear parameters to change their signs (so-called "turning points") are selected. Possible internal waveforms appearing in the process of internal tide transformation including the solitary waves changing polarities are simulated for the hydrological conditions in the Sea of Okhotsk shelf to demonstrate different scenarios of internal wave adjustment, transformation, refraction and cylindrical divergence.
Mizukami, Naoki; Clark, Martyn P.; Gutmann, Ethan D.; Mendoza, Pablo A.; Newman, Andrew J.; Nijssen, Bart; Livneh, Ben; Hay, Lauren E.; Arnold, Jeffrey R.; Brekke, Levi D.
2016-01-01
Continental-domain assessments of climate change impacts on water resources typically rely on statistically downscaled climate model outputs to force hydrologic models at a finer spatial resolution. This study examines the effects of four statistical downscaling methods [bias-corrected constructed analog (BCCA), bias-corrected spatial disaggregation applied at daily (BCSDd) and monthly scales (BCSDm), and asynchronous regression (AR)] on retrospective hydrologic simulations using three hydrologic models with their default parameters (the Community Land Model, version 4.0; the Variable Infiltration Capacity model, version 4.1.2; and the Precipitation–Runoff Modeling System, version 3.0.4) over the contiguous United States (CONUS). Biases of hydrologic simulations forced by statistically downscaled climate data relative to the simulation with observation-based gridded data are presented. Each statistical downscaling method produces different meteorological portrayals including precipitation amount, wet-day frequency, and the energy input (i.e., shortwave radiation), and their interplay affects estimations of precipitation partitioning between evapotranspiration and runoff, extreme runoff, and hydrologic states (i.e., snow and soil moisture). The analyses show that BCCA underestimates annual precipitation by as much as −250 mm, leading to unreasonable hydrologic portrayals over the CONUS for all models. Although the other three statistical downscaling methods produce a comparable precipitation bias ranging from −10 to 8 mm across the CONUS, BCSDd severely overestimates the wet-day fraction by up to 0.25, leading to different precipitation partitioning compared to the simulations with other downscaled data. Overall, the choice of downscaling method contributes to less spread in runoff estimates (by a factor of 1.5–3) than the choice of hydrologic model with use of the default parameters if BCCA is excluded.
NASA Astrophysics Data System (ADS)
Abramopoulos, F.; Rosenzweig, C.; Choudhury, B.
1988-09-01
A physically based ground hydrology model is developed to improve the land-surface sensible and latent heat calculations in global climate models (GCMs). The processes of transpiration, evaporation from intercepted precipitation and dew, evaporation from bare soil, infiltration, soil water flow, and runoff are explicitly included in the model. The amount of detail in the hydrologic calculations is restricted to a level appropriate for use in a GCM, but each of the aforementioned processes is modeled on the basis of the underlying physical principles. Data from the Goddard Institute for Space Studies (GISS) GCM are used as inputs for off-line tests of the ground hydrology model in four 8° × 10° regions (Brazil, Sahel, Sahara, and India). Soil and vegetation input parameters are calculated as area-weighted means over the 8° × 10° gridhox. This compositing procedure is tested by comparing resulting hydrological quantities to ground hydrology model calculations performed on the 1° × 1° cells which comprise the 8° × 10° gridbox. Results show that the compositing procedure works well except in the Sahel where lower soil water levels and a heterogeneous land surface produce more variability in hydrological quantities, indicating that a resolution better than 8° × 10° is needed for that region. Modeled annual and diurnal hydrological cycles compare well with observations for Brazil, where real world data are available. The sensitivity of the ground hydrology model to several of its input parameters was tested; it was found to be most sensitive to the fraction of land covered by vegetation and least sensitive to the soil hydraulic conductivity and matric potential.
Overall uncertainty study of the hydrological impacts of climate change for a Canadian watershed
NASA Astrophysics Data System (ADS)
Chen, Jie; Brissette, FrançOis P.; Poulin, Annie; Leconte, Robert
2011-12-01
General circulation models (GCMs) and greenhouse gas emissions scenarios (GGES) are generally considered to be the two major sources of uncertainty in quantifying the climate change impacts on hydrology. Other sources of uncertainty have been given less attention. This study considers overall uncertainty by combining results from an ensemble of two GGES, six GCMs, five GCM initial conditions, four downscaling techniques, three hydrological model structures, and 10 sets of hydrological model parameters. Each climate projection is equally weighted to predict the hydrology on a Canadian watershed for the 2081-2100 horizon. The results show that the choice of GCM is consistently a major contributor to uncertainty. However, other sources of uncertainty, such as the choice of a downscaling method and the GCM initial conditions, also have a comparable or even larger uncertainty for some hydrological variables. Uncertainties linked to GGES and the hydrological model structure are somewhat less than those related to GCMs and downscaling techniques. Uncertainty due to the hydrological model parameter selection has the least important contribution among all the variables considered. Overall, this research underlines the importance of adequately covering all sources of uncertainty. A failure to do so may result in moderately to severely biased climate change impact studies. Results further indicate that the major contributors to uncertainty vary depending on the hydrological variables selected, and that the methodology presented in this paper is successful at identifying the key sources of uncertainty to consider for a climate change impact study.
NASA Astrophysics Data System (ADS)
Chou, H. K.; Ochoa-Tocachi, B. F.; Buytaert, W.
2017-12-01
Community land surface models such as JULES are increasingly used for hydrological assessment because of their state-of-the-art representation of land-surface processes. However, a major weakness of JULES and other land surface models is the limited number of land surface parameterizations that is available. Therefore, this study explores the use of data from a network of catchments under homogeneous land-use to generate parameter "libraries" to extent the land surface parameterizations of JULES. The network (called iMHEA) is part of a grassroots initiative to characterise the hydrological response of different Andean ecosystems, and collects data on streamflow, precipitation, and several weather variables at a high temporal resolution. The tropical Andes are a useful case study because of the complexity of meteorological and geographical conditions combined with extremely heterogeneous land-use that result in a wide range of hydrological responses. We then calibrated JULES for each land-use represented in the iMHEA dataset. For the individual land-use types, the results show improved simulations of streamflow when using the calibrated parameters with respect to default values. In particular, the partitioning between surface and subsurface flows can be improved. But also, on a regional scale, hydrological modelling was greatly benefitted from constraining parameters using such distributed citizen-science generated streamflow data. This study demonstrates the modelling and prediction on regional hydrology by integrating citizen science and land surface model. In the context of hydrological study, the limitation of data scarcity could be solved indeed by using this framework. Improved predictions of such impacts could be leveraged by catchment managers to guide watershed interventions, to evaluate their effectiveness, and to minimize risks.
NASA Astrophysics Data System (ADS)
Koch, J.; Jensen, K. H.; Stisen, S.
2017-12-01
Hydrological models that integrate numerical process descriptions across compartments of the water cycle are typically required to undergo thorough model calibration in order to estimate suitable effective model parameters. In this study, we apply a spatially distributed hydrological model code which couples the saturated zone with the unsaturated zone and the energy portioning at the land surface. We conduct a comprehensive multi-constraint model calibration against nine independent observational datasets which reflect both the temporal and the spatial behavior of hydrological response of a 1000km2 large catchment in Denmark. The datasets are obtained from satellite remote sensing and in-situ measurements and cover five keystone hydrological variables: discharge, evapotranspiration, groundwater head, soil moisture and land surface temperature. Results indicate that a balanced optimization can be achieved where errors on objective functions for all nine observational datasets can be reduced simultaneously. The applied calibration framework was tailored with focus on improving the spatial pattern performance; however results suggest that the optimization is still more prone to improve the temporal dimension of model performance. This study features a post-calibration linear uncertainty analysis. This allows quantifying parameter identifiability which is the worth of a specific observational dataset to infer values to model parameters through calibration. Furthermore the ability of an observation to reduce predictive uncertainty is assessed as well. Such findings determine concrete implications on the design of model calibration frameworks and, in more general terms, the acquisition of data in hydrological observatories.
APPLICATION OF THE HSPF MODEL TO THE SOUTH FORK OF THE BROAD RIVER WATERSHED IN NORTHEASTERN GEORGIA
The Hydrological Simulation Program-Fortran (HSPF) is a comprehensive watershed model which simulates hydrology and water quality at user-specified temporal and spatial scales. Well-established model calibration and validation procedures are followed when adjusting model paramete...
NASA Astrophysics Data System (ADS)
Wi, S.; Ray, P. A.; Brown, C.
2015-12-01
A software package developed to facilitate building distributed hydrologic models in a modular modeling system is presented. The software package provides a user-friendly graphical user interface that eases its practical use in water resources-related research and practice. The modular modeling system organizes the options available to users when assembling models according to the stages of hydrological cycle, such as potential evapotranspiration, soil moisture accounting, and snow/glacier melting processes. The software is intended to be a comprehensive tool that simplifies the task of developing, calibrating, validating, and using hydrologic models through the inclusion of intelligent automation to minimize user effort, and reduce opportunities for error. Processes so far automated include the definition of system boundaries (i.e., watershed delineation), climate and geographical input generation, and parameter calibration. Built-in post-processing toolkits greatly improve the functionality of the software as a decision support tool for water resources system management and planning. Example post-processing toolkits enable streamflow simulation at ungauged sites with predefined model parameters, and perform climate change risk assessment by means of the decision scaling approach. The software is validated through application to watersheds representing a variety of hydrologic regimes.
A Bayesian Alternative for Multi-objective Ecohydrological Model Specification
NASA Astrophysics Data System (ADS)
Tang, Y.; Marshall, L. A.; Sharma, A.; Ajami, H.
2015-12-01
Process-based ecohydrological models combine the study of hydrological, physical, biogeochemical and ecological processes of the catchments, which are usually more complex and parametric than conceptual hydrological models. Thus, appropriate calibration objectives and model uncertainty analysis are essential for ecohydrological modeling. In recent years, Bayesian inference has become one of the most popular tools for quantifying the uncertainties in hydrological modeling with the development of Markov Chain Monte Carlo (MCMC) techniques. Our study aims to develop appropriate prior distributions and likelihood functions that minimize the model uncertainties and bias within a Bayesian ecohydrological framework. In our study, a formal Bayesian approach is implemented in an ecohydrological model which combines a hydrological model (HyMOD) and a dynamic vegetation model (DVM). Simulations focused on one objective likelihood (Streamflow/LAI) and multi-objective likelihoods (Streamflow and LAI) with different weights are compared. Uniform, weakly informative and strongly informative prior distributions are used in different simulations. The Kullback-leibler divergence (KLD) is used to measure the dis(similarity) between different priors and corresponding posterior distributions to examine the parameter sensitivity. Results show that different prior distributions can strongly influence posterior distributions for parameters, especially when the available data is limited or parameters are insensitive to the available data. We demonstrate differences in optimized parameters and uncertainty limits in different cases based on multi-objective likelihoods vs. single objective likelihoods. We also demonstrate the importance of appropriately defining the weights of objectives in multi-objective calibration according to different data types.
Testing the robustness of management decisions to uncertainty: Everglades restoration scenarios.
Fuller, Michael M; Gross, Louis J; Duke-Sylvester, Scott M; Palmer, Mark
2008-04-01
To effectively manage large natural reserves, resource managers must prepare for future contingencies while balancing the often conflicting priorities of different stakeholders. To deal with these issues, managers routinely employ models to project the response of ecosystems to different scenarios that represent alternative management plans or environmental forecasts. Scenario analysis is often used to rank such alternatives to aid the decision making process. However, model projections are subject to uncertainty in assumptions about model structure, parameter values, environmental inputs, and subcomponent interactions. We introduce an approach for testing the robustness of model-based management decisions to the uncertainty inherent in complex ecological models and their inputs. We use relative assessment to quantify the relative impacts of uncertainty on scenario ranking. To illustrate our approach we consider uncertainty in parameter values and uncertainty in input data, with specific examples drawn from the Florida Everglades restoration project. Our examples focus on two alternative 30-year hydrologic management plans that were ranked according to their overall impacts on wildlife habitat potential. We tested the assumption that varying the parameter settings and inputs of habitat index models does not change the rank order of the hydrologic plans. We compared the average projected index of habitat potential for four endemic species and two wading-bird guilds to rank the plans, accounting for variations in parameter settings and water level inputs associated with hypothetical future climates. Indices of habitat potential were based on projections from spatially explicit models that are closely tied to hydrology. For the American alligator, the rank order of the hydrologic plans was unaffected by substantial variation in model parameters. By contrast, simulated major shifts in water levels led to reversals in the ranks of the hydrologic plans in 24.1-30.6% of the projections for the wading bird guilds and several individual species. By exposing the differential effects of uncertainty, relative assessment can help resource managers assess the robustness of scenario choice in model-based policy decisions.
NASA Astrophysics Data System (ADS)
Hutton, C.; Wagener, T.; Freer, J. E.; Duffy, C.; Han, D.
2015-12-01
Distributed models offer the potential to resolve catchment systems in more detail, and therefore simulate the hydrological impacts of spatial changes in catchment forcing (e.g. landscape change). Such models may contain a large number of model parameters which are computationally expensive to calibrate. Even when calibration is possible, insufficient data can result in model parameter and structural equifinality. In order to help reduce the space of feasible models and supplement traditional outlet discharge calibration data, semi-quantitative information (e.g. knowledge of relative groundwater levels), may also be used to identify behavioural models when applied to constrain spatially distributed predictions of states and fluxes. The challenge is to combine these different sources of information together to identify a behavioural region of state-space, and efficiently search a large, complex parameter space to identify behavioural parameter sets that produce predictions that fall within this behavioural region. Here we present a methodology to incorporate different sources of data to efficiently calibrate distributed catchment models. Metrics of model performance may be derived from multiple sources of data (e.g. perceptual understanding and measured or regionalised hydrologic signatures). For each metric, an interval or inequality is used to define the behaviour of the catchment system, accounting for data uncertainties. These intervals are then combined to produce a hyper-volume in state space. The state space is then recast as a multi-objective optimisation problem, and the Borg MOEA is applied to first find, and then populate the hyper-volume, thereby identifying acceptable model parameter sets. We apply the methodology to calibrate the PIHM model at Plynlimon, UK by incorporating perceptual and hydrologic data into the calibration problem. Furthermore, we explore how to improve calibration efficiency through search initialisation from shorter model runs.
Jarrett, G. Lynn; Downs, Aimee C.; Grace-Jarrett, Patricia A.
1998-01-01
The Hydrological Simulation Pro-gram-FORTRAN (HSPF) was applied to an urban drainage basin in Jefferson County, Ky to integrate the large amounts of information being collected on water quantity and quality into an analytical framework that could be used as a management and planning tool. Hydrologic response units were developed using geographic data and a K-means analysis to characterize important hydrologic and physical factors in the basin. The Hydrological Simulation Program FORTRAN Expert System (HSPEXP) was used to calibrate the model parameters for the Middle Fork Beargrass Creek Basin for 3 years (June 1, 1991, to May 31, 1994) of 5-minute streamflow and precipitation time series, and 3 years of hourly pan-evaporation time series. The calibrated model parameters were applied to the South Fork Beargrass Creek Basin for confirmation. The model confirmation results indicated that the model simulated the system within acceptable tolerances. The coefficient of determination and coefficient of model-fit efficiency between simulated and observed daily flows were 0.91 and 0.82, respectively, for model calibration and 0.88 and 0.77, respectively, for model confirmation. The model is most sensitive to estimates of the area of effective impervious land in the basin; the spatial distribution of rain-fall; and the lower-zone evapotranspiration, lower-zone nominal storage, and infiltration-capacity parameters during recession and low-flow periods. The error contribution from these sources varies with season and antecedent conditions.
A back-fitting algorithm to improve real-time flood forecasting
NASA Astrophysics Data System (ADS)
Zhang, Xiaojing; Liu, Pan; Cheng, Lei; Liu, Zhangjun; Zhao, Yan
2018-07-01
Real-time flood forecasting is important for decision-making with regards to flood control and disaster reduction. The conventional approach involves a postprocessor calibration strategy that first calibrates the hydrological model and then estimates errors. This procedure can simulate streamflow consistent with observations, but obtained parameters are not optimal. Joint calibration strategies address this issue by refining hydrological model parameters jointly with the autoregressive (AR) model. In this study, five alternative schemes are used to forecast floods. Scheme I uses only the hydrological model, while scheme II includes an AR model for error correction. In scheme III, differencing is used to remove non-stationarity in the error series. A joint inference strategy employed in scheme IV calibrates the hydrological and AR models simultaneously. The back-fitting algorithm, a basic approach for training an additive model, is adopted in scheme V to alternately recalibrate hydrological and AR model parameters. The performance of the five schemes is compared with a case study of 15 recorded flood events from China's Baiyunshan reservoir basin. Our results show that (1) schemes IV and V outperform scheme III during the calibration and validation periods and (2) scheme V is inferior to scheme IV in the calibration period, but provides better results in the validation period. Joint calibration strategies can therefore improve the accuracy of flood forecasting. Additionally, the back-fitting recalibration strategy produces weaker overcorrection and a more robust performance compared with the joint inference strategy.
The Rangeland Hydrology and Erosion Model: A dynamic approach for predicting soil loss on rangelands
USDA-ARS?s Scientific Manuscript database
In this study we present the improved Rangeland Hydrology and Erosion Model (RHEM V2.3), a process-based erosion prediction tool specific for rangeland application. The article provides the mathematical formulation of the model and parameter estimation equations. Model performance is assessed agains...
USDA-ARS?s Scientific Manuscript database
The complexity of the hydrologic system challenges the development of models. One issue faced during the model development stage is the uncertainty involved in model parameterization. Using a single optimized set of parameters (one snapshot) to represent baseline conditions of the system limits the ...
NASA Astrophysics Data System (ADS)
Kavetski, Dmitri; Clark, Martyn P.
2010-10-01
Despite the widespread use of conceptual hydrological models in environmental research and operations, they remain frequently implemented using numerically unreliable methods. This paper considers the impact of the time stepping scheme on model analysis (sensitivity analysis, parameter optimization, and Markov chain Monte Carlo-based uncertainty estimation) and prediction. It builds on the companion paper (Clark and Kavetski, 2010), which focused on numerical accuracy, fidelity, and computational efficiency. Empirical and theoretical analysis of eight distinct time stepping schemes for six different hydrological models in 13 diverse basins demonstrates several critical conclusions. (1) Unreliable time stepping schemes, in particular, fixed-step explicit methods, suffer from troublesome numerical artifacts that severely deform the objective function of the model. These deformations are not rare isolated instances but can arise in any model structure, in any catchment, and under common hydroclimatic conditions. (2) Sensitivity analysis can be severely contaminated by numerical errors, often to the extent that it becomes dominated by the sensitivity of truncation errors rather than the model equations. (3) Robust time stepping schemes generally produce "better behaved" objective functions, free of spurious local optima, and with sufficient numerical continuity to permit parameter optimization using efficient quasi Newton methods. When implemented within a multistart framework, modern Newton-type optimizers are robust even when started far from the optima and provide valuable diagnostic insights not directly available from evolutionary global optimizers. (4) Unreliable time stepping schemes lead to inconsistent and biased inferences of the model parameters and internal states. (5) Even when interactions between hydrological parameters and numerical errors provide "the right result for the wrong reason" and the calibrated model performance appears adequate, unreliable time stepping schemes make the model unnecessarily fragile in predictive mode, undermining validation assessments and operational use. Erroneous or misleading conclusions of model analysis and prediction arising from numerical artifacts in hydrological models are intolerable, especially given that robust numerics are accepted as mainstream in other areas of science and engineering. We hope that the vivid empirical findings will encourage the conceptual hydrological community to close its Pandora's box of numerical problems, paving the way for more meaningful model application and interpretation.
A stepwise, multi-objective, multi-variable parameter optimization method for the APEX model
USDA-ARS?s Scientific Manuscript database
Proper parameterization enables hydrological models to make reliable estimates of non-point source pollution for effective control measures. The automatic calibration of hydrologic models requires significant computational power limiting its application. The study objective was to develop and eval...
NASA Astrophysics Data System (ADS)
Steinschneider, S.; Wi, S.; Brown, C. M.
2013-12-01
Flood risk management performance is investigated within the context of integrated climate and hydrologic modeling uncertainty to explore system robustness. The research question investigated is whether structural and hydrologic parameterization uncertainties are significant relative to other uncertainties such as climate change when considering water resources system performance. Two hydrologic models are considered, a conceptual, lumped parameter model that preserves the water balance and a physically-based model that preserves both water and energy balances. In the conceptual model, parameter and structural uncertainties are quantified and propagated through the analysis using a Bayesian modeling framework with an innovative error model. Mean climate changes and internal climate variability are explored using an ensemble of simulations from a stochastic weather generator. The approach presented can be used to quantify the sensitivity of flood protection adequacy to different sources of uncertainty in the climate and hydrologic system, enabling the identification of robust projects that maintain adequate performance despite the uncertainties. The method is demonstrated in a case study for the Coralville Reservoir on the Iowa River, where increased flooding over the past several decades has raised questions about potential impacts of climate change on flood protection adequacy.
NASA Astrophysics Data System (ADS)
Wang, S.; Huang, G. H.; Baetz, B. W.; Ancell, B. C.
2017-05-01
The particle filtering techniques have been receiving increasing attention from the hydrologic community due to its ability to properly estimate model parameters and states of nonlinear and non-Gaussian systems. To facilitate a robust quantification of uncertainty in hydrologic predictions, it is necessary to explicitly examine the forward propagation and evolution of parameter uncertainties and their interactions that affect the predictive performance. This paper presents a unified probabilistic framework that merges the strengths of particle Markov chain Monte Carlo (PMCMC) and factorial polynomial chaos expansion (FPCE) algorithms to robustly quantify and reduce uncertainties in hydrologic predictions. A Gaussian anamorphosis technique is used to establish a seamless bridge between the data assimilation using the PMCMC and the uncertainty propagation using the FPCE through a straightforward transformation of posterior distributions of model parameters. The unified probabilistic framework is applied to the Xiangxi River watershed of the Three Gorges Reservoir (TGR) region in China to demonstrate its validity and applicability. Results reveal that the degree of spatial variability of soil moisture capacity is the most identifiable model parameter with the fastest convergence through the streamflow assimilation process. The potential interaction between the spatial variability in soil moisture conditions and the maximum soil moisture capacity has the most significant effect on the performance of streamflow predictions. In addition, parameter sensitivities and interactions vary in magnitude and direction over time due to temporal and spatial dynamics of hydrologic processes.
NASA Astrophysics Data System (ADS)
Nesti, Alice; Mediero, Luis; Garrote, Luis; Caporali, Enrica
2010-05-01
An automatic probabilistic calibration method for distributed rainfall-runoff models is presented. The high number of parameters in hydrologic distributed models makes special demands on the optimization procedure to estimate model parameters. With the proposed technique it is possible to reduce the complexity of calibration while maintaining adequate model predictions. The first step of the calibration procedure of the main model parameters is done manually with the aim to identify their variation range. Afterwards a Monte-Carlo technique is applied, which consists on repetitive model simulations with randomly generated parameters. The Monte Carlo Analysis Toolbox (MCAT) includes a number of analysis methods to evaluate the results of these Monte Carlo parameter sampling experiments. The study investigates the use of a global sensitivity analysis as a screening tool to reduce the parametric dimensionality of multi-objective hydrological model calibration problems, while maximizing the information extracted from hydrological response data. The method is applied to the calibration of the RIBS flood forecasting model in the Harod river basin, placed on Israel. The Harod basin has an extension of 180 km2. The catchment has a Mediterranean climate and it is mainly characterized by a desert landscape, with a soil that is able to absorb large quantities of rainfall and at the same time is capable to generate high peaks of discharge. Radar rainfall data with 6 minute temporal resolution are available as input to the model. The aim of the study is the validation of the model for real-time flood forecasting, in order to evaluate the benefits of improved precipitation forecasting within the FLASH European project.
NASA Astrophysics Data System (ADS)
Becker, R.; Usman, M.
2017-12-01
A SWAT (Soil Water Assessment Tool) model is applied in the semi-arid Punjab region in Pakistan. The physically based hydrological model is set up to simulate hydrological processes and water resources demands under future land use, climate change and irrigation management scenarios. In order to successfully run the model, detailed focus is laid on the calibration procedure of the model. The study deals with the following calibration issues:i. lack of reliable calibration/validation data, ii. difficulty to accurately model a highly managed system with a physically based hydrological model and iii. use of alternative and spatially distributed data sets for model calibration. In our study area field observations are rare and the entirely human controlled irrigation system renders central calibration parameters (e.g. runoff/curve number) unsuitable, as it can't be assumed that they represent the natural behavior of the hydrological system. From evapotranspiration (ET) however principal hydrological processes can still be inferred. Usman et al. (2015) derived satellite based monthly ET data for our study area based on SEBAL (Surface Energy Balance Algorithm) and created a reliable ET data set which we use in this study to calibrate our SWAT model. The initial SWAT model performance is evaluated with respect to the SEBAL results using correlation coefficients, RMSE, Nash-Sutcliffe efficiencies and mean differences. Particular focus is laid on the spatial patters, investigating the potential of a spatially differentiated parameterization instead of just using spatially uniform calibration data. A sensitivity analysis reveals the most sensitive parameters with respect to changes in ET, which are then selected for the calibration process.Using the SEBAL-ET product we calibrate the SWAT model for the time period 2005-2006 using a dynamically dimensioned global search algorithm to minimize RMSE. The model improvement after the calibration procedure is finally evaluated based on the previously chosen evaluation criteria for the time period 2007-2008. The study reveals the sensitivity of SWAT model parameters to changes in ET in a semi-arid and human controlled system and the potential of calibrating those parameters using satellite derived ET data.
NASA Astrophysics Data System (ADS)
Kikuchi, C.; Ferre, P. A.; Vrugt, J. A.
2011-12-01
Hydrologic models are developed, tested, and refined based on the ability of those models to explain available hydrologic data. The optimization of model performance based upon mismatch between model outputs and real world observations has been extensively studied. However, identification of plausible models is sensitive not only to the models themselves - including model structure and model parameters - but also to the location, timing, type, and number of observations used in model calibration. Therefore, careful selection of hydrologic observations has the potential to significantly improve the performance of hydrologic models. In this research, we seek to reduce prediction uncertainty through optimization of the data collection process. A new tool - multiple model analysis with discriminatory data collection (MMA-DDC) - was developed to address this challenge. In this approach, multiple hydrologic models are developed and treated as competing hypotheses. Potential new data are then evaluated on their ability to discriminate between competing hypotheses. MMA-DDC is well-suited for use in recursive mode, in which new observations are continuously used in the optimization of subsequent observations. This new approach was applied to a synthetic solute transport experiment, in which ranges of parameter values constitute the multiple hydrologic models, and model predictions are calculated using likelihood-weighted model averaging. MMA-DDC was used to determine the optimal location, timing, number, and type of new observations. From comparison with an exhaustive search of all possible observation sequences, we find that MMA-DDC consistently selects observations which lead to the highest reduction in model prediction uncertainty. We conclude that using MMA-DDC to evaluate potential observations may significantly improve the performance of hydrologic models while reducing the cost associated with collecting new data.
NASA Technical Reports Server (NTRS)
Castruccio, P. A.; Loats, H. L., Jr.; Fowler, T. R.
1977-01-01
Methods for the reduction of remotely sensed data and its application in hydrologic land use assessment, surface water inventory, and soil property studies are presented. LANDSAT data is used to provide quantitative parameters and coefficients to construct watershed transfer functions for a hydrologic planning model aimed at estimating peak outflow from rainfall inputs.
Mentzafou, A; Wagner, S; Dimitriou, E
2018-04-29
Identifying the historical hydrometeorological trends in a river basin is necessary for understanding the dominant interactions between climate, human activities and local hydromorphological conditions. Estimating the hydrological reference conditions in a river is also crucial for estimating accurately the impacts from human water related activities and design appropriate water management schemes. In this effort, the output of a regional past climate model was used, covering the period from 1660 to 1990, in combination with a dynamic, spatially distributed, hydrologic model to estimate the past and recent trends in the main hydrologic parameters such as overland flow, water storages and evapotranspiration, in a Mediterranean river basin. The simulated past hydrologic conditions (1660-1960) were compared with the current hydrologic regime (1960-1990), to assess the magnitude of human and natural impacts on the identified hydrologic trends. The hydrological components of the recent period of 2008-2016 were also examined in relation to the impact of human activities. The estimated long-term trends of the hydrologic parameters were partially assigned to varying atmospheric forcing due to volcanic activity combined with spontaneous meteorological fluctuations. Copyright © 2018. Published by Elsevier B.V.
Balancing the stochastic description of uncertainties as a function of hydrologic model complexity
NASA Astrophysics Data System (ADS)
Del Giudice, D.; Reichert, P.; Albert, C.; Kalcic, M.; Logsdon Muenich, R.; Scavia, D.; Bosch, N. S.; Michalak, A. M.
2016-12-01
Uncertainty analysis is becoming an important component of forecasting water and pollutant fluxes in urban and rural environments. Properly accounting for errors in the modeling process can help to robustly assess the uncertainties associated with the inputs (e.g. precipitation) and outputs (e.g. runoff) of hydrological models. In recent years we have investigated several Bayesian methods to infer the parameters of a mechanistic hydrological model along with those of the stochastic error component. The latter describes the uncertainties of model outputs and possibly inputs. We have adapted our framework to a variety of applications, ranging from predicting floods in small stormwater systems to nutrient loads in large agricultural watersheds. Given practical constraints, we discuss how in general the number of quantities to infer probabilistically varies inversely with the complexity of the mechanistic model. Most often, when evaluating a hydrological model of intermediate complexity, we can infer the parameters of the model as well as of the output error model. Describing the output errors as a first order autoregressive process can realistically capture the "downstream" effect of inaccurate inputs and structure. With simpler runoff models we can additionally quantify input uncertainty by using a stochastic rainfall process. For complex hydrologic transport models, instead, we show that keeping model parameters fixed and just estimating time-dependent output uncertainties could be a viable option. The common goal across all these applications is to create time-dependent prediction intervals which are both reliable (cover the nominal amount of validation data) and precise (are as narrow as possible). In conclusion, we recommend focusing both on the choice of the hydrological model and of the probabilistic error description. The latter can include output uncertainty only, if the model is computationally-expensive, or, with simpler models, it can separately account for different sources of errors like in the inputs and the structure of the model.
USDA-ARS?s Scientific Manuscript database
Hydrologic models are essential tools for environmental assessment of agricultural non-point source pollution. The automatic calibration of hydrologic models, though efficient, demands significant computational power, which can limit its application. The study objective was to investigate a cost e...
NASA Astrophysics Data System (ADS)
Gan, Y.; Liang, X. Z.; Duan, Q.; Xu, J.; Zhao, P.; Hong, Y.
2017-12-01
The uncertainties associated with the parameters of a hydrological model need to be quantified and reduced for it to be useful for operational hydrological forecasting and decision support. An uncertainty quantification framework is presented to facilitate practical assessment and reduction of model parametric uncertainties. A case study, using the distributed hydrological model CREST for daily streamflow simulation during the period 2008-2010 over ten watershed, was used to demonstrate the performance of this new framework. Model behaviors across watersheds were analyzed by a two-stage stepwise sensitivity analysis procedure, using LH-OAT method for screening out insensitive parameters, followed by MARS-based Sobol' sensitivity indices for quantifying each parameter's contribution to the response variance due to its first-order and higher-order effects. Pareto optimal sets of the influential parameters were then found by the adaptive surrogate-based multi-objective optimization procedure, using MARS model for approximating the parameter-response relationship and SCE-UA algorithm for searching the optimal parameter sets of the adaptively updated surrogate model. The final optimal parameter sets were validated against the daily streamflow simulation of the same watersheds during the period 2011-2012. The stepwise sensitivity analysis procedure efficiently reduced the number of parameters that need to be calibrated from twelve to seven, which helps to limit the dimensionality of calibration problem and serves to enhance the efficiency of parameter calibration. The adaptive MARS-based multi-objective calibration exercise provided satisfactory solutions to the reproduction of the observed streamflow for all watersheds. The final optimal solutions showed significant improvement when compared to the default solutions, with about 65-90% reduction in 1-NSE and 60-95% reduction in |RB|. The validation exercise indicated a large improvement in model performance with about 40-85% reduction in 1-NSE, and 35-90% reduction in |RB|. Overall, this uncertainty quantification framework is robust, effective and efficient for parametric uncertainty analysis, the results of which provide useful information that helps to understand the model behaviors and improve the model simulations.
NASA Astrophysics Data System (ADS)
Li, Ning; McLaughlin, Dennis; Kinzelbach, Wolfgang; Li, WenPeng; Dong, XinGuang
2015-10-01
Model uncertainty needs to be quantified to provide objective assessments of the reliability of model predictions and of the risk associated with management decisions that rely on these predictions. This is particularly true in water resource studies that depend on model-based assessments of alternative management strategies. In recent decades, Bayesian data assimilation methods have been widely used in hydrology to assess uncertain model parameters and predictions. In this case study, a particular data assimilation algorithm, the Ensemble Smoother with Multiple Data Assimilation (ESMDA) (Emerick and Reynolds, 2012), is used to derive posterior samples of uncertain model parameters and forecasts for a distributed hydrological model of Yanqi basin, China. This model is constructed using MIKESHE/MIKE11software, which provides for coupling between surface and subsurface processes (DHI, 2011a-d). The random samples in the posterior parameter ensemble are obtained by using measurements to update 50 prior parameter samples generated with a Latin Hypercube Sampling (LHS) procedure. The posterior forecast samples are obtained from model runs that use the corresponding posterior parameter samples. Two iterative sample update methods are considered: one based on an a perturbed observation Kalman filter update and one based on a square root Kalman filter update. These alternatives give nearly the same results and converge in only two iterations. The uncertain parameters considered include hydraulic conductivities, drainage and river leakage factors, van Genuchten soil property parameters, and dispersion coefficients. The results show that the uncertainty in many of the parameters is reduced during the smoother updating process, reflecting information obtained from the observations. Some of the parameters are insensitive and do not benefit from measurement information. The correlation coefficients among certain parameters increase in each iteration, although they generally stay below 0.50.
NASA Astrophysics Data System (ADS)
Shi, Y.; Davis, K. J.; Zhang, F.; Duffy, C.; Yu, X.
2014-12-01
A coupled physically based land surface hydrologic model, Flux-PIHM, has been developed by incorporating a land surface scheme into the Penn State Integrated Hydrologic Model (PIHM). The land surface scheme is adapted from the Noah land surface model. Flux-PIHM has been implemented and manually calibrated at the Shale Hills watershed (0.08 km2) in central Pennsylvania. Model predictions of discharge, point soil moisture, point water table depth, sensible and latent heat fluxes, and soil temperature show good agreement with observations. When calibrated only using discharge, and soil moisture and water table depth at one point, Flux-PIHM is able to resolve the observed 101 m scale soil moisture pattern at the Shale Hills watershed when an appropriate map of soil hydraulic properties is provided. A Flux-PIHM data assimilation system has been developed by incorporating EnKF for model parameter and state estimation. Both synthetic and real data assimilation experiments have been performed at the Shale Hills watershed. Synthetic experiment results show that the data assimilation system is able to simultaneously provide accurate estimates of multiple parameters. In the real data experiment, the EnKF estimated parameters and manually calibrated parameters yield similar model performances, but the EnKF method significantly decreases the time and labor required for calibration. The data requirements for accurate Flux-PIHM parameter estimation via data assimilation using synthetic observations have been tested. Results show that by assimilating only in situ outlet discharge, soil water content at one point, and the land surface temperature averaged over the whole watershed, the data assimilation system can provide an accurate representation of watershed hydrology. Observations of these key variables are available with national and even global spatial coverage (e.g., MODIS surface temperature, SMAP soil moisture, and the USGS gauging stations). National atmospheric reanalysis products, soil databases and land cover databases (e.g., NLDAS-2, SSURGO, NLCD) can provide high resolution forcing and input data. Therefore the Flux-PIHM data assimilation system could be readily expanded to other watersheds to provide regional scale land surface and hydrologic reanalysis with high spatial temporal resolution.
Equifinality and process-based modelling
NASA Astrophysics Data System (ADS)
Khatami, S.; Peel, M. C.; Peterson, T. J.; Western, A. W.
2017-12-01
Equifinality is understood as one of the fundamental difficulties in the study of open complex systems, including catchment hydrology. A review of the hydrologic literature reveals that the term equifinality has been widely used, but in many cases inconsistently and without coherent recognition of the various facets of equifinality, which can lead to ambiguity but also methodological fallacies. Therefore, in this study we first characterise the term equifinality within the context of hydrological modelling by reviewing the genesis of the concept of equifinality and then presenting a theoretical framework. During past decades, equifinality has mainly been studied as a subset of aleatory (arising due to randomness) uncertainty and for the assessment of model parameter uncertainty. Although the connection between parameter uncertainty and equifinality is undeniable, we argue there is more to equifinality than just aleatory parameter uncertainty. That is, the importance of equifinality and epistemic uncertainty (arising due to lack of knowledge) and their implications is overlooked in our current practice of model evaluation. Equifinality and epistemic uncertainty in studying, modelling, and evaluating hydrologic processes are treated as if they can be simply discussed in (or often reduced to) probabilistic terms (as for aleatory uncertainty). The deficiencies of this approach to conceptual rainfall-runoff modelling are demonstrated for selected Australian catchments by examination of parameter and internal flux distributions and interactions within SIMHYD. On this basis, we present a new approach that expands equifinality concept beyond model parameters to inform epistemic uncertainty. The new approach potentially facilitates the identification and development of more physically plausible models and model evaluation schemes particularly within the multiple working hypotheses framework, and is generalisable to other fields of environmental modelling as well.
Impact of the hard-coded parameters on the hydrologic fluxes of the land surface model Noah-MP
NASA Astrophysics Data System (ADS)
Cuntz, Matthias; Mai, Juliane; Samaniego, Luis; Clark, Martyn; Wulfmeyer, Volker; Attinger, Sabine; Thober, Stephan
2016-04-01
Land surface models incorporate a large number of processes, described by physical, chemical and empirical equations. The process descriptions contain a number of parameters that can be soil or plant type dependent and are typically read from tabulated input files. Land surface models may have, however, process descriptions that contain fixed, hard-coded numbers in the computer code, which are not identified as model parameters. Here we searched for hard-coded parameters in the computer code of the land surface model Noah with multiple process options (Noah-MP) to assess the importance of the fixed values on restricting the model's agility during parameter estimation. We found 139 hard-coded values in all Noah-MP process options, which are mostly spatially constant values. This is in addition to the 71 standard parameters of Noah-MP, which mostly get distributed spatially by given vegetation and soil input maps. We performed a Sobol' global sensitivity analysis of Noah-MP to variations of the standard and hard-coded parameters for a specific set of process options. 42 standard parameters and 75 hard-coded parameters were active with the chosen process options. The sensitivities of the hydrologic output fluxes latent heat and total runoff as well as their component fluxes were evaluated. These sensitivities were evaluated at twelve catchments of the Eastern United States with very different hydro-meteorological regimes. Noah-MP's hydrologic output fluxes are sensitive to two thirds of its standard parameters. The most sensitive parameter is, however, a hard-coded value in the formulation of soil surface resistance for evaporation, which proved to be oversensitive in other land surface models as well. Surface runoff is sensitive to almost all hard-coded parameters of the snow processes and the meteorological inputs. These parameter sensitivities diminish in total runoff. Assessing these parameters in model calibration would require detailed snow observations or the calculation of hydrologic signatures of the runoff data. Latent heat and total runoff exhibit very similar sensitivities towards standard and hard-coded parameters in Noah-MP because of their tight coupling via the water balance. It should therefore be comparable to calibrate Noah-MP either against latent heat observations or against river runoff data. Latent heat and total runoff are sensitive to both, plant and soil parameters. Calibrating only a parameter sub-set of only soil parameters, for example, thus limits the ability to derive realistic model parameters. It is thus recommended to include the most sensitive hard-coded model parameters that were exposed in this study when calibrating Noah-MP.
Sensitivity analysis for the coupling of a subglacial hydrology model with a 3D ice-sheet model.
NASA Astrophysics Data System (ADS)
Bertagna, L.; Perego, M.; Gunzburger, M.; Hoffman, M. J.; Price, S. F.
2017-12-01
When studying the movement of ice sheets, one of the most important factors that influence the velocity of the ice is the amount of friction against the bedrock. Usually, this is modeled by a friction coefficient that may depend on the bed geometry and other quantities, such as the temperature and/or water pressure at the ice-bedrock interface. These quantities are often assumed to be known (either by indirect measurements or by means of parameter estimation) and constant in time. Here, we present a 3D computational model for the simulation of the ice dynamics which incorporates a 2D model proposed by Hewitt (2011) for the subglacial water pressure. The hydrology model is fully coupled with the Blatter-Pattyn model for the ice sheet flow, as the subglacial water pressure appears in the expression for the ice friction coefficient, and the ice velocity appears as a source term in the hydrology model. We will present results on real geometries, and perform a sensitivity analysis with respect to the hydrology model parameters.
Bao, Jie; Hou, Zhangshuan; Huang, Maoyi; ...
2015-12-04
Here, effective sensitivity analysis approaches are needed to identify important parameters or factors and their uncertainties in complex Earth system models composed of multi-phase multi-component phenomena and multiple biogeophysical-biogeochemical processes. In this study, the impacts of 10 hydrologic parameters in the Community Land Model on simulations of runoff and latent heat flux are evaluated using data from a watershed. Different metrics, including residual statistics, the Nash-Sutcliffe coefficient, and log mean square error, are used as alternative measures of the deviations between the simulated and field observed values. Four sensitivity analysis (SA) approaches, including analysis of variance based on the generalizedmore » linear model, generalized cross validation based on the multivariate adaptive regression splines model, standardized regression coefficients based on a linear regression model, and analysis of variance based on support vector machine, are investigated. Results suggest that these approaches show consistent measurement of the impacts of major hydrologic parameters on response variables, but with differences in the relative contributions, particularly for the secondary parameters. The convergence behaviors of the SA with respect to the number of sampling points are also examined with different combinations of input parameter sets and output response variables and their alternative metrics. This study helps identify the optimal SA approach, provides guidance for the calibration of the Community Land Model parameters to improve the model simulations of land surface fluxes, and approximates the magnitudes to be adjusted in the parameter values during parametric model optimization.« less
NASA Astrophysics Data System (ADS)
Sun, Y.; Hou, Z.; Huang, M.; Tian, F.; Leung, L. Ruby
2013-12-01
This study demonstrates the possibility of inverting hydrologic parameters using surface flux and runoff observations in version 4 of the Community Land Model (CLM4). Previous studies showed that surface flux and runoff calculations are sensitive to major hydrologic parameters in CLM4 over different watersheds, and illustrated the necessity and possibility of parameter calibration. Both deterministic least-square fitting and stochastic Markov-chain Monte Carlo (MCMC)-Bayesian inversion approaches are evaluated by applying them to CLM4 at selected sites with different climate and soil conditions. The unknowns to be estimated include surface and subsurface runoff generation parameters and vadose zone soil water parameters. We find that using model parameters calibrated by the sampling-based stochastic inversion approaches provides significant improvements in the model simulations compared to using default CLM4 parameter values, and that as more information comes in, the predictive intervals (ranges of posterior distributions) of the calibrated parameters become narrower. In general, parameters that are identified to be significant through sensitivity analyses and statistical tests are better calibrated than those with weak or nonlinear impacts on flux or runoff observations. Temporal resolution of observations has larger impacts on the results of inverse modeling using heat flux data than runoff data. Soil and vegetation cover have important impacts on parameter sensitivities, leading to different patterns of posterior distributions of parameters at different sites. Overall, the MCMC-Bayesian inversion approach effectively and reliably improves the simulation of CLM under different climates and environmental conditions. Bayesian model averaging of the posterior estimates with different reference acceptance probabilities can smooth the posterior distribution and provide more reliable parameter estimates, but at the expense of wider uncertainty bounds.
NASA Astrophysics Data System (ADS)
Rivera, Diego; Rivas, Yessica; Godoy, Alex
2015-02-01
Hydrological models are simplified representations of natural processes and subject to errors. Uncertainty bounds are a commonly used way to assess the impact of an input or model architecture uncertainty in model outputs. Different sets of parameters could have equally robust goodness-of-fit indicators, which is known as Equifinality. We assessed the outputs from a lumped conceptual hydrological model to an agricultural watershed in central Chile under strong interannual variability (coefficient of variability of 25%) by using the Equifinality concept and uncertainty bounds. The simulation period ran from January 1999 to December 2006. Equifinality and uncertainty bounds from GLUE methodology (Generalized Likelihood Uncertainty Estimation) were used to identify parameter sets as potential representations of the system. The aim of this paper is to exploit the use of uncertainty bounds to differentiate behavioural parameter sets in a simple hydrological model. Then, we analyze the presence of equifinality in order to improve the identification of relevant hydrological processes. The water balance model for Chillan River exhibits, at a first stage, equifinality. However, it was possible to narrow the range for the parameters and eventually identify a set of parameters representing the behaviour of the watershed (a behavioural model) in agreement with observational and soft data (calculation of areal precipitation over the watershed using an isohyetal map). The mean width of the uncertainty bound around the predicted runoff for the simulation period decreased from 50 to 20 m3s-1 after fixing the parameter controlling the areal precipitation over the watershed. This decrement is equivalent to decreasing the ratio between simulated and observed discharge from 5.2 to 2.5. Despite the criticisms against the GLUE methodology, such as the lack of statistical formality, it is identified as a useful tool assisting the modeller with the identification of critical parameters.
NASA Astrophysics Data System (ADS)
Wright, David; Thyer, Mark; Westra, Seth
2015-04-01
Highly influential data points are those that have a disproportionately large impact on model performance, parameters and predictions. However, in current hydrological modelling practice the relative influence of individual data points on hydrological model calibration is not commonly evaluated. This presentation illustrates and evaluates several influence diagnostics tools that hydrological modellers can use to assess the relative influence of data. The feasibility and importance of including influence detection diagnostics as a standard tool in hydrological model calibration is discussed. Two classes of influence diagnostics are evaluated: (1) computationally demanding numerical "case deletion" diagnostics; and (2) computationally efficient analytical diagnostics, based on Cook's distance. These diagnostics are compared against hydrologically orientated diagnostics that describe changes in the model parameters (measured through the Mahalanobis distance), performance (objective function displacement) and predictions (mean and maximum streamflow). These influence diagnostics are applied to two case studies: a stage/discharge rating curve model, and a conceptual rainfall-runoff model (GR4J). Removing a single data point from the calibration resulted in differences to mean flow predictions of up to 6% for the rating curve model, and differences to mean and maximum flow predictions of up to 10% and 17%, respectively, for the hydrological model. When using the Nash-Sutcliffe efficiency in calibration, the computationally cheaper Cook's distance metrics produce similar results to the case-deletion metrics at a fraction of the computational cost. However, Cooks distance is adapted from linear regression with inherit assumptions on the data and is therefore less flexible than case deletion. Influential point detection diagnostics show great potential to improve current hydrological modelling practices by identifying highly influential data points. The findings of this study establish the feasibility and importance of including influential point detection diagnostics as a standard tool in hydrological model calibration. They provide the hydrologist with important information on whether model calibration is susceptible to a small number of highly influent data points. This enables the hydrologist to make a more informed decision of whether to (1) remove/retain the calibration data; (2) adjust the calibration strategy and/or hydrological model to reduce the susceptibility of model predictions to a small number of influential observations.
NASA Astrophysics Data System (ADS)
Liu, Y. R.; Li, Y. P.; Huang, G. H.; Zhang, J. L.; Fan, Y. R.
2017-10-01
In this study, a Bayesian-based multilevel factorial analysis (BMFA) method is developed to assess parameter uncertainties and their effects on hydrological model responses. In BMFA, Differential Evolution Adaptive Metropolis (DREAM) algorithm is employed to approximate the posterior distributions of model parameters with Bayesian inference; factorial analysis (FA) technique is used for measuring the specific variations of hydrological responses in terms of posterior distributions to investigate the individual and interactive effects of parameters on model outputs. BMFA is then applied to a case study of the Jinghe River watershed in the Loess Plateau of China to display its validity and applicability. The uncertainties of four sensitive parameters, including soil conservation service runoff curve number to moisture condition II (CN2), soil hydraulic conductivity (SOL_K), plant available water capacity (SOL_AWC), and soil depth (SOL_Z), are investigated. Results reveal that (i) CN2 has positive effect on peak flow, implying that the concentrated rainfall during rainy season can cause infiltration-excess surface flow, which is an considerable contributor to peak flow in this watershed; (ii) SOL_K has positive effect on average flow, implying that the widely distributed cambisols can lead to medium percolation capacity; (iii) the interaction between SOL_AWC and SOL_Z has noticeable effect on the peak flow and their effects are dependent upon each other, which discloses that soil depth can significant influence the processes of plant uptake of soil water in this watershed. Based on the above findings, the significant parameters and the relationship among uncertain parameters can be specified, such that hydrological model's capability for simulating/predicting water resources of the Jinghe River watershed can be improved.
Synthesis of streamflow recession curves in dry environments
NASA Astrophysics Data System (ADS)
Arciniega, Saul; Breña-Naranjo, Agustín; Pedrozo-Acuña, Adrían
2015-04-01
The elucidation and predictability of hydrological systems can largely benefit by extracting observed patterns in processes, data and models. Such type of research framework in hydrology, also known as synthesis has gained significant attention over the last decade. For instance, hydrological synthesis implies that the identification of patterns in catchment behavior can enhance the extrapolation of hydrological signatures over large spatial and temporal scales. Hydrological signatures during dry periods such as streamflow recession curves (SRC) are of special interest in regions coping with water scarcity. Indeed, the study of SRCs from observed hydrographs allows to extract information about the storage-discharge relationship of a specific catchment and some of their groundwater hydraulic properties. This work aims at performing a synthesis work of SRCs in semi-arid & arid environments across Northern Mexico. Our dataset consisted in observed daily SRCs in 63 catchments with minima human interferences. Three streamflow recession extraction methods (Vogel, Brutsaert and Aksoy-Wittenberg) along with four recession models (Maillet, Boussinesq, Coutagne y Wittenberg) and three parameter estimation techniques (regressions, lower envelope y data binning) were used to determine the combination among different possible methods, processes and models that better describes SRCs in our study sites. Our results show that the extraction method proposed by Aksoy-Wittenberg along with Coutagne's nonlinear recession model provides a better approximation of SRCs across Northern Mexico, whereas regression was found to be the most adequate parameter estimation method. This study suggests that hydrological synthesis turned out to be an useful framework to identify similar patterns and model parameters during dry periods across Mexico's water-limited environments.
NASA Astrophysics Data System (ADS)
Edouard, Simon; Vincendon, Béatrice; Ducrocq, Véronique
2018-05-01
Intense precipitation events in the Mediterranean often lead to devastating flash floods (FF). FF modelling is affected by several kinds of uncertainties and Hydrological Ensemble Prediction Systems (HEPS) are designed to take those uncertainties into account. The major source of uncertainty comes from rainfall forcing and convective-scale meteorological ensemble prediction systems can manage it for forecasting purpose. But other sources are related to the hydrological modelling part of the HEPS. This study focuses on the uncertainties arising from the hydrological model parameters and initial soil moisture with aim to design an ensemble-based version of an hydrological model dedicated to Mediterranean fast responding rivers simulations, the ISBA-TOP coupled system. The first step consists in identifying the parameters that have the strongest influence on FF simulations by assuming perfect precipitation. A sensitivity study is carried out first using a synthetic framework and then for several real events and several catchments. Perturbation methods varying the most sensitive parameters as well as initial soil moisture allow designing an ensemble-based version of ISBA-TOP. The first results of this system on some real events are presented. The direct perspective of this work will be to drive this ensemble-based version with the members of a convective-scale meteorological ensemble prediction system to design a complete HEPS for FF forecasting.
Performance of a distributed semi-conceptual hydrological model under tropical watershed conditions
USDA-ARS?s Scientific Manuscript database
Many hydrologic models have been developed to help manage natural resources all over the world. Nevertheless, most models have presented a high complexity in terms of data base requirements, as well as, many calibration parameters. This has resulted in serious difficulties to application in catchmen...
Parameterization guidelines and considerations for hydrologic models
USDA-ARS?s Scientific Manuscript database
Imparting knowledge of the physical processes of a system to a model and determining a set of parameter values for a hydrologic or water quality model application (i.e., parameterization) is an important and difficult task. An exponential increase in literature has been devoted to the use and develo...
Modern control concepts in hydrology
NASA Technical Reports Server (NTRS)
Duong, N.; Johnson, G. R.; Winn, C. B.
1974-01-01
Two approaches to an identification problem in hydrology are presented based upon concepts from modern control and estimation theory. The first approach treats the identification of unknown parameters in a hydrologic system subject to noisy inputs as an adaptive linear stochastic control problem; the second approach alters the model equation to account for the random part in the inputs, and then uses a nonlinear estimation scheme to estimate the unknown parameters. Both approaches use state-space concepts. The identification schemes are sequential and adaptive and can handle either time invariant or time dependent parameters. They are used to identify parameters in the Prasad model of rainfall-runoff. The results obtained are encouraging and conform with results from two previous studies; the first using numerical integration of the model equation along with a trial-and-error procedure, and the second, by using a quasi-linearization technique. The proposed approaches offer a systematic way of analyzing the rainfall-runoff process when the input data are imbedded in noise.
NASA Astrophysics Data System (ADS)
Alexander, R. B.; Boyer, E. W.; Schwarz, G. E.; Smith, R. A.
2013-12-01
Estimating water and material stores and fluxes in watershed studies is frequently complicated by uncertainties in quantifying hydrological and biogeochemical effects of factors such as land use, soils, and climate. Although these process-related effects are commonly measured and modeled in separate catchments, researchers are especially challenged by their complexity across catchments and diverse environmental settings, leading to a poor understanding of how model parameters and prediction uncertainties vary spatially. To address these concerns, we illustrate the use of Bayesian hierarchical modeling techniques with a dynamic version of the spatially referenced watershed model SPARROW (SPAtially Referenced Regression On Watershed attributes). The dynamic SPARROW model is designed to predict streamflow and other water cycle components (e.g., evapotranspiration, soil and groundwater storage) for monthly varying hydrological regimes, using mechanistic functions, mass conservation constraints, and statistically estimated parameters. In this application, the model domain includes nearly 30,000 NHD (National Hydrologic Data) stream reaches and their associated catchments in the Susquehanna River Basin. We report the results of our comparisons of alternative models of varying complexity, including models with different explanatory variables as well as hierarchical models that account for spatial and temporal variability in model parameters and variance (error) components. The model errors are evaluated for changes with season and catchment size and correlations in time and space. The hierarchical models consist of a two-tiered structure in which climate forcing parameters are modeled as random variables, conditioned on watershed properties. Quantification of spatial and temporal variations in the hydrological parameters and model uncertainties in this approach leads to more efficient (lower variance) and less biased model predictions throughout the river network. Moreover, predictions of water-balance components are reported according to probabilistic metrics (e.g., percentiles, prediction intervals) that include both parameter and model uncertainties. These improvements in predictions of streamflow dynamics can inform the development of more accurate predictions of spatial and temporal variations in biogeochemical stores and fluxes (e.g., nutrients and carbon) in watersheds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Yu; Hou, Zhangshuan; Huang, Maoyi
2013-12-10
This study demonstrates the possibility of inverting hydrologic parameters using surface flux and runoff observations in version 4 of the Community Land Model (CLM4). Previous studies showed that surface flux and runoff calculations are sensitive to major hydrologic parameters in CLM4 over different watersheds, and illustrated the necessity and possibility of parameter calibration. Two inversion strategies, the deterministic least-square fitting and stochastic Markov-Chain Monte-Carlo (MCMC) - Bayesian inversion approaches, are evaluated by applying them to CLM4 at selected sites. The unknowns to be estimated include surface and subsurface runoff generation parameters and vadose zone soil water parameters. We find thatmore » using model parameters calibrated by the least-square fitting provides little improvements in the model simulations but the sampling-based stochastic inversion approaches are consistent - as more information comes in, the predictive intervals of the calibrated parameters become narrower and the misfits between the calculated and observed responses decrease. In general, parameters that are identified to be significant through sensitivity analyses and statistical tests are better calibrated than those with weak or nonlinear impacts on flux or runoff observations. Temporal resolution of observations has larger impacts on the results of inverse modeling using heat flux data than runoff data. Soil and vegetation cover have important impacts on parameter sensitivities, leading to the different patterns of posterior distributions of parameters at different sites. Overall, the MCMC-Bayesian inversion approach effectively and reliably improves the simulation of CLM under different climates and environmental conditions. Bayesian model averaging of the posterior estimates with different reference acceptance probabilities can smooth the posterior distribution and provide more reliable parameter estimates, but at the expense of wider uncertainty bounds.« less
NASA Astrophysics Data System (ADS)
Sahoo, Ramendra; Jain, Vikrant
2018-02-01
Drainage network pattern and its associated morphometric ratios are some of the important plan form attributes of a drainage basin. Extraction of these attributes for any basin is usually done by spatial analysis of the elevation data of that basin. These planform attributes are further used as input data for studying numerous process-response interactions inside the physical premise of the basin. One of the important uses of the morphometric ratios is its usage in the derivation of hydrologic response of a basin using GIUH concept. Hence, accuracy of the basin hydrological response to any storm event depends upon the accuracy with which, the morphometric ratios can be estimated. This in turn, is affected by the spatial resolution of the source data, i.e. the digital elevation model (DEM). We have estimated the sensitivity of the morphometric ratios and the GIUH derived hydrograph parameters, to the resolution of source data using a 30 meter and a 90 meter DEM. The analysis has been carried out for 50 drainage basins in a mountainous catchment. A simple and comprehensive algorithm has been developed for estimation of the morphometric indices from a stream network. We have calculated all the morphometric parameters and the hydrograph parameters for each of these basins extracted from two different DEMs, with different spatial resolutions. Paired t-test and Sign test were used for the comparison. Our results didn't show any statistically significant difference among any of the parameters calculated from the two source data. Along with the comparative study, a first-hand empirical analysis about the frequency distribution of the morphometric and hydrologic response parameters has also been communicated. Further, a comparison with other hydrological models suggests that plan form morphometry based GIUH model is more consistent with resolution variability in comparison to topographic based hydrological model.
Modelling Seasonally Freezing Ground Conditions
1989-05-01
used as the ’snow input’ in the larger hydrological models, e.g. Pangburn (1987). The most advanced index model is Anderson’s (1973) model. This bases...source as the soils) is shown in figures 32 and 33. Table 10 shows the percentage areas of Hydrologic Soil Groups, Land Use and Slope Distribution for...C") z c~cu CYa) 65 table 10: Percentage areas of Hydrologic Soil Grouos, Land Use and Slope Distribution over W3 (?Pn!ke e: al., 1978) Parameter
Hydrologic Modeling and Parameter Estimation under Data Scarcity for Java Island, Indonesia
NASA Astrophysics Data System (ADS)
Yanto, M.; Livneh, B.; Rajagopalan, B.; Kasprzyk, J. R.
2015-12-01
The Indonesian island of Java is routinely subjected to intense flooding, drought and related natural hazards, resulting in severe social and economic impacts. Although an improved understanding of the island's hydrology would help mitigate these risks, data scarcity issues make the modeling challenging. To this end, we developed a hydrological representation of Java using the Variable Infiltration Capacity (VIC) model, to simulate the hydrologic processes of several watersheds across the island. We measured the model performance using Nash-Sutcliffe Efficiency (NSE) at monthly time step. Data scarcity and quality issues for precipitation and streamflow warranted the application of a quality control procedure to data ensure consistency among watersheds resulting in 7 watersheds. To optimize the model performance, the calibration parameters were estimated using Borg Multi Objective Evolutionary Algorithm (Borg MOEA), which offers efficient searching of the parameter space, adaptive population sizing and local optima escape facility. The result shows that calibration performance is best (NSE ~ 0.6 - 0.9) in the eastern part of the domain and moderate (NSE ~ 0.3 - 0.5) in the western part of the island. The validation results are lower (NSE ~ 0.1 - 0.5) and (NSE ~ 0.1 - 0.4) in the east and west, respectively. We surmise that the presence of outliers and stark differences in the climate between calibration and validation periods in the western watersheds are responsible for low NSE in this region. In addition, we found that approximately 70% of total errors were contributed by less than 20% of total data. The spatial variability of model performance suggests the influence of both topographical and hydroclimatic controls on the hydrological processes. Most watersheds in eastern part perform better in wet season and vice versa for the western part. This modeling framework is one of the first attempts at comprehensively simulating the hydrology in this maritime, tropical continent and, offers insights for skillful hydrologic projections crucial for natural hazard mitigation.
NASA Astrophysics Data System (ADS)
Mockler, E. M.; Chun, K. P.; Sapriza-Azuri, G.; Bruen, M.; Wheater, H. S.
2016-11-01
Predictions of river flow dynamics provide vital information for many aspects of water management including water resource planning, climate adaptation, and flood and drought assessments. Many of the subjective choices that modellers make including model and criteria selection can have a significant impact on the magnitude and distribution of the output uncertainty. Hydrological modellers are tasked with understanding and minimising the uncertainty surrounding streamflow predictions before communicating the overall uncertainty to decision makers. Parameter uncertainty in conceptual rainfall-runoff models has been widely investigated, and model structural uncertainty and forcing data have been receiving increasing attention. This study aimed to assess uncertainties in streamflow predictions due to forcing data and the identification of behavioural parameter sets in 31 Irish catchments. By combining stochastic rainfall ensembles and multiple parameter sets for three conceptual rainfall-runoff models, an analysis of variance model was used to decompose the total uncertainty in streamflow simulations into contributions from (i) forcing data, (ii) identification of model parameters and (iii) interactions between the two. The analysis illustrates that, for our subjective choices, hydrological model selection had a greater contribution to overall uncertainty, while performance criteria selection influenced the relative intra-annual uncertainties in streamflow predictions. Uncertainties in streamflow predictions due to the method of determining parameters were relatively lower for wetter catchments, and more evenly distributed throughout the year when the Nash-Sutcliffe Efficiency of logarithmic values of flow (lnNSE) was the evaluation criterion.
Holistic uncertainty analysis in river basin modeling for climate vulnerability assessment
NASA Astrophysics Data System (ADS)
Taner, M. U.; Wi, S.; Brown, C.
2017-12-01
The challenges posed by uncertain future climate are a prominent concern for water resources managers. A number of frameworks exist for assessing the impacts of climate-related uncertainty, including internal climate variability and anthropogenic climate change, such as scenario-based approaches and vulnerability-based approaches. While in many cases climate uncertainty may be dominant, other factors such as future evolution of the river basin, hydrologic response and reservoir operations are potentially significant sources of uncertainty. While uncertainty associated with modeling hydrologic response has received attention, very little attention has focused on the range of uncertainty and possible effects of the water resources infrastructure and management. This work presents a holistic framework that allows analysis of climate, hydrologic and water management uncertainty in water resources systems analysis with the aid of a water system model designed to integrate component models for hydrology processes and water management activities. The uncertainties explored include those associated with climate variability and change, hydrologic model parameters, and water system operation rules. A Bayesian framework is used to quantify and model the uncertainties at each modeling steps in integrated fashion, including prior and the likelihood information about model parameters. The framework is demonstrated in a case study for the St. Croix Basin located at border of United States and Canada.
Ebel, B.A.; Mirus, B.B.; Heppner, C.S.; VanderKwaak, J.E.; Loague, K.
2009-01-01
Distributed hydrologic models capable of simulating fully-coupled surface water and groundwater flow are increasingly used to examine problems in the hydrologic sciences. Several techniques are currently available to couple the surface and subsurface; the two most frequently employed approaches are first-order exchange coefficients (a.k.a., the surface conductance method) and enforced continuity of pressure and flux at the surface-subsurface boundary condition. The effort reported here examines the parameter sensitivity of simulated hydrologic response for the first-order exchange coefficients at a well-characterized field site using the fully coupled Integrated Hydrology Model (InHM). This investigation demonstrates that the first-order exchange coefficients can be selected such that the simulated hydrologic response is insensitive to the parameter choice, while simulation time is considerably reduced. Alternatively, the ability to choose a first-order exchange coefficient that intentionally decouples the surface and subsurface facilitates concept-development simulations to examine real-world situations where the surface-subsurface exchange is impaired. While the parameters comprising the first-order exchange coefficient cannot be directly estimated or measured, the insensitivity of the simulated flow system to these parameters (when chosen appropriately) combined with the ability to mimic actual physical processes suggests that the first-order exchange coefficient approach can be consistent with a physics-based framework. Copyright ?? 2009 John Wiley & Sons, Ltd.
The impacts of precipitation amount simulation on hydrological modeling in Nordic watersheds
NASA Astrophysics Data System (ADS)
Li, Zhi; Brissette, Fancois; Chen, Jie
2013-04-01
Stochastic modeling of daily precipitation is very important for hydrological modeling, especially when no observed data are available. Precipitation is usually modeled by two component model: occurrence generation and amount simulation. For occurrence simulation, the most common method is the first-order two-state Markov chain due to its simplification and good performance. However, various probability distributions have been reported to simulate precipitation amount, and spatiotemporal differences exist in the applicability of different distribution models. Therefore, assessing the applicability of different distribution models is necessary in order to provide more accurate precipitation information. Six precipitation probability distributions (exponential, Gamma, Weibull, skewed normal, mixed exponential, and hybrid exponential/Pareto distributions) are directly and indirectly evaluated on their ability to reproduce the original observed time series of precipitation amount. Data from 24 weather stations and two watersheds (Chute-du-Diable and Yamaska watersheds) in the province of Quebec (Canada) are used for this assessment. Various indices or statistics, such as the mean, variance, frequency distribution and extreme values are used to quantify the performance in simulating the precipitation and discharge. Performance in reproducing key statistics of the precipitation time series is well correlated to the number of parameters of the distribution function, and the three-parameter precipitation models outperform the other models, with the mixed exponential distribution being the best at simulating daily precipitation. The advantage of using more complex precipitation distributions is not as clear-cut when the simulated time series are used to drive a hydrological model. While the advantage of using functions with more parameters is not nearly as obvious, the mixed exponential distribution appears nonetheless as the best candidate for hydrological modeling. The implications of choosing a distribution function with respect to hydrological modeling and climate change impact studies are also discussed.
NASA Astrophysics Data System (ADS)
Gao, S.; Fang, N. Z.
2017-12-01
A previously developed Dynamic Moving Storm (DMS) generator is a multivariate rainfall model simulating the complex nature of precipitation field: spatial variability, temporal variability, and storm movement. Previous effort by the authors has investigated the sensitivity of DMS parameters on corresponding hydrologic responses by using synthetic storms. In this study, the DMS generator has been upgraded to generate more realistic precipitation field. The dependence of hydrologic responses on rainfall features was investigated by dissecting the precipitation field into rain cells and modifying their spatio-temporal specification individually. To retrieve DMS parameters from radar rainfall data, rain cell segmentation and tracking algorithms were respectively developed and applied on high resolution radar rainfall data (1) to spatially determine the rain cells within individual radar image and (2) to temporally analyze their dynamic behavior. Statistics of DMS parameters were established by processing a long record of rainfall data (10 years) to keep the modification on real storms within the limit of regional climatology. Empirical distributions of the DMS parameters were calculated to reveal any preferential pattern and seasonality. Subsequently, the WRF-Hydro model forced by the remodeled and modified precipitation was used for hydrologic simulation. The study area was the Upper Trinity River Basin (UTRB) watershed, Texas; and two kinds of high resolution radar data i.e. the Next-Generation Radar (NEXRAD) level III Digital Hybrid Reflectivity (DHR) product and Multi-Radar Multi-Sensor (MRMS) precipitation rate product, were utilized to establish parameter statistics and to recreate/remodel historical events respectively. The results demonstrated that rainfall duration is a significant linkage between DMS parameters and their hydrologic impacts—any combination of spatiotemporal characteristics that keep rain cells longer over the catchment will produce higher peak discharge.
NASA Astrophysics Data System (ADS)
Choi, H.; Kim, S.
2012-12-01
Most of hydrologic models have generally been used to describe and represent the spatio-temporal variability of hydrological processes in the watershed scale. Though it is an obvious fact that hydrological responses have the time varying nature, optimal values of model parameters were normally considered as time invariants or constants in most cases. The recent paper of Choi and Beven (2007) presents a multi-period and multi-criteria model conditioning approach. The approach is based on the equifinality thesis within the Generalised Likelihood Uncertainty Estimation (GLUE) framework. In their application, the behavioural TOPMODEL parameter sets are determined by several performance measures for global (annual) and short (30-days) periods, clustered using a Fuzzy C-means algorithm, into 15 types representing different hydrological conditions. Their study shows a good performance on the calibration of a rainfall-runoff model in a forest catchment, and also gives strong indications that it is uncommon to find model realizations that were behavioural over all multi-periods and all performance measures, and multi-period model conditioning approach may become new effective tool for predictions of hydrological processes in ungauged catchments. This study is a follow-up study on the Choi and Beven's (2007) model conditioning approach to test how the approach is effective for the prediction of rainfall-runoff responses in ungauged catchments. To achieve this purpose, 6 small forest catchments are selected among the several hydrological experimental catchments operated by Korea Forest Research Institute. In each catchment, long-term hydrological time series data varying from 10 to 30 years were available. The areas of the selected catchments range from 13.6 to 37.8 ha, and all areas are covered by coniferous or broad-leaves forests. The selected catchments locate in the southern coastal area to the northern part of South Korea. The bed rocks are Granite gneiss, Granite or Limestone. The study is progressed based on the followings. Firstly, hydrological time series of each catchment are sampled and clustered into multi-period having distinctly different temporal characteristics, and secondly, behavioural parameter distributions are determined in each multi-period based on the specification of multi-criteria model performance measures. Finally, behavioural parameter sets of each multi-period of single catchment are applied on the corresponding period of other catchments, and the cross-validations are conducted in this manner for all catchments The multi-period model conditioning approach is clearly effective to reduce the width of prediction limits, giving better model performance against the temporal variability of hydrological characteristics, and has enough potential to be the effective prediction tool for ungauged catchments. However, more advanced and continuous studies are needed to expand the application of this approach in prediction of hydrological responses in ungauged catchments,
NASA Astrophysics Data System (ADS)
Lim, Kyoung Jae; Park, Youn Shik; Kim, Jonggun; Shin, Yong-Chul; Kim, Nam Won; Kim, Seong Joon; Jeon, Ji-Hong; Engel, Bernard A.
2010-07-01
Many hydrologic and water quality computer models have been developed and applied to assess hydrologic and water quality impacts of land use changes. These models are typically calibrated and validated prior to their application. The Long-Term Hydrologic Impact Assessment (L-THIA) model was applied to the Little Eagle Creek (LEC) watershed and compared with the filtered direct runoff using BFLOW and the Eckhardt digital filter (with a default BFI max value of 0.80 and filter parameter value of 0.98), both available in the Web GIS-based Hydrograph Analysis Tool, called WHAT. The R2 value and the Nash-Sutcliffe coefficient values were 0.68 and 0.64 with BFLOW, and 0.66 and 0.63 with the Eckhardt digital filter. Although these results indicate that the L-THIA model estimates direct runoff reasonably well, the filtered direct runoff values using BFLOW and Eckhardt digital filter with the default BFI max and filter parameter values do not reflect hydrological and hydrogeological situations in the LEC watershed. Thus, a BFI max GA-Analyzer module (BFI max Genetic Algorithm-Analyzer module) was developed and integrated into the WHAT system for determination of the optimum BFI max parameter and filter parameter of the Eckhardt digital filter. With the automated recession curve analysis method and BFI max GA-Analyzer module of the WHAT system, the optimum BFI max value of 0.491 and filter parameter value of 0.987 were determined for the LEC watershed. The comparison of L-THIA estimates with filtered direct runoff using an optimized BFI max and filter parameter resulted in an R2 value of 0.66 and the Nash-Sutcliffe coefficient value of 0.63. However, L-THIA estimates calibrated with the optimized BFI max and filter parameter increased by 33% and estimated NPS pollutant loadings increased by more than 20%. This indicates L-THIA model direct runoff estimates can be incorrect by 33% and NPS pollutant loading estimation by more than 20%, if the accuracy of the baseflow separation method is not validated for the study watershed prior to model comparison. This study shows the importance of baseflow separation in hydrologic and water quality modeling using the L-THIA model.
NASA Astrophysics Data System (ADS)
Baroni, G.; Gräff, T.; Reinstorf, F.; Oswald, S. E.
2012-04-01
Nowadays uncertainty and sensitivity analysis are considered basic tools for the assessment of hydrological models and the evaluation of the most important sources of uncertainty. In this context, in the last decades several methods have been developed and applied in different hydrological conditions. However, in most of the cases, the studies have been done by investigating mainly the influence of the parameter uncertainty on the simulated outputs and few approaches tried to consider also other sources of uncertainty i.e. input and model structure. Moreover, several constrains arise when spatially distributed parameters are involved. To overcome these limitations a general probabilistic framework based on Monte Carlo simulations and the Sobol method has been proposed. In this study, the general probabilistic framework was applied at field scale using a 1D physical-based hydrological model (SWAP). Furthermore, the framework was extended at catchment scale in combination with a spatially distributed hydrological model (SHETRAN). The models are applied in two different experimental sites in Germany: a relatively flat cropped field close to Potsdam (Brandenburg) and a small mountainous catchment with agricultural land use (Schaefertal, Harz Mountains). For both cases, input and parameters are considered as major sources of uncertainty. Evaluation of the models was based on soil moisture detected at plot scale in different depths and, for the catchment site, also with daily discharge values. The study shows how the framework can take into account all the various sources of uncertainty i.e. input data, parameters (either in scalar or spatially distributed form) and model structures. The framework can be used in a loop in order to optimize further monitoring activities used to improve the performance of the model. In the particular applications, the results show how the sources of uncertainty are specific for each process considered. The influence of the input data as well as the presence of compensating errors become clear by the different processes simulated.
Diagnosing the impact of alternative calibration strategies on coupled hydrologic models
NASA Astrophysics Data System (ADS)
Smith, T. J.; Perera, C.; Corrigan, C.
2017-12-01
Hydrologic models represent a significant tool for understanding, predicting, and responding to the impacts of water on society and society on water resources and, as such, are used extensively in water resources planning and management. Given this important role, the validity and fidelity of hydrologic models is imperative. While extensive focus has been paid to improving hydrologic models through better process representation, better parameter estimation, and better uncertainty quantification, significant challenges remain. In this study, we explore a number of competing model calibration scenarios for simple, coupled snowmelt-runoff models to better understand the sensitivity / variability of parameterizations and its impact on model performance, robustness, fidelity, and transferability. Our analysis highlights the sensitivity of coupled snowmelt-runoff model parameterizations to alterations in calibration approach, underscores the concept of information content in hydrologic modeling, and provides insight into potential strategies for improving model robustness / fidelity.
Improved hydrological-model design by integrating nutrient and water flow
NASA Astrophysics Data System (ADS)
Arheimer, B.; Lindstrom, G.
2013-12-01
The potential of integrating hydrologic and nutrient concentration data to better understand patterns of catchment response and to better design hydrological modeling was explored using a national multi-basin model system for Sweden, called ';S-HYPE'. The model system covers more than 450 000 km2 and produce daily values of nutrient concentration and water discharge in 37 000 catchments from 1961 and onwards. It is based on the processed-based and semi-distributed HYdrological Predictions for the Environment (HYPE) code. The model is used operationally for assessments of water status or climate change impacts and for forecasts by the national warning service of floods, droughts and fire. The first model was launched in 2008, but S-HYPE is continuously improved and released in new versions every second year. Observations are available in 400 sites for daily water discharge and some 900 sites for monthly grab samples of nutrient concentrations. The latest version (2012) has an average NSE for water discharge of 0.7 and an average relative error of 5%, including both regulated and unregulated rivers with catchments from ten to several thousands of km2 and various landuse. The daily relative errors of nutrient concentrations are on average 20% for total Nitrogen and 35% for total Phosphorus. This presentation will give practical examples of how the nutrient data has been used to trace errors or inadequate parameter values in the hydrological model. Since 2008 several parts of the model structure has been reconsidered both in the source code, parameter values and input data of catchment characteristics. In this process water quality has been guiding much of the overall model design of catchment hydrological functions and routing along the river network. The model structure has thus been developed iteratively when evaluating results and checking time-series. Examples of water quality driven improvements will be given for estimation of vertical flow paths, such as separation of the hydrograph in surface flow, snow melt and baseflow, as well as horizontal flow paths in the landscape, such as mixing from various land use, impact from lakes and river channel volume. Overall, the S-HYPE model performance of water discharge increased from NSE 0.55 to 0.69 as an average for 400 gauges between the version 2010 and 2012. Most of this improvement, however, can be referred to improved regulations routines, rating curves for major lakes and parameters correcting ET and precipitation. Nevertheless, integrated water and nutrient modeling put constraints on the hydrological parameter values, which reduce equifinality for the hydrological part without reducing the model performance. The examples illustrates that the credibility of the hydrological model structure is thus improved by integrating water and nutrient flow. This lead to improved understanding of flow paths and water-nutrient process interactions in Sweden, which in turn will be very useful in further model analysis on impact of climate change or measures to reduce nutrient load from rivers to the Baltic Sea.
Rainfall or parameter uncertainty? The power of sensitivity analysis on grouped factors
NASA Astrophysics Data System (ADS)
Nossent, Jiri; Pereira, Fernando; Bauwens, Willy
2017-04-01
Hydrological models are typically used to study and represent (a part of) the hydrological cycle. In general, the output of these models mostly depends on their input rainfall and parameter values. Both model parameters and input precipitation however, are characterized by uncertainties and, therefore, lead to uncertainty on the model output. Sensitivity analysis (SA) allows to assess and compare the importance of the different factors for this output uncertainty. Hereto, the rainfall uncertainty can be incorporated in the SA by representing it as a probabilistic multiplier. Such multiplier can be defined for the entire time series, or several of these factors can be determined for every recorded rainfall pulse or for hydrological independent storm events. As a consequence, the number of parameters included in the SA related to the rainfall uncertainty can be (much) lower or (much) higher than the number of model parameters. Although such analyses can yield interesting results, it remains challenging to determine which type of uncertainty will affect the model output most due to the different weight both types will have within the SA. In this study, we apply the variance based Sobol' sensitivity analysis method to two different hydrological simulators (NAM and HyMod) for four diverse watersheds. Besides the different number of model parameters (NAM: 11 parameters; HyMod: 5 parameters), the setup of our sensitivity and uncertainty analysis-combination is also varied by defining a variety of scenarios including diverse numbers of rainfall multipliers. To overcome the issue of the different number of factors and, thus, the different weights of the two types of uncertainty, we build on one of the advantageous properties of the Sobol' SA, i.e. treating grouped parameters as a single parameter. The latter results in a setup with a single factor for each uncertainty type and allows for a straightforward comparison of their importance. In general, the results show a clear influence of the weights in the different SA scenarios. However, working with grouped factors resolves this issue and leads to clear importance results.
NASA Astrophysics Data System (ADS)
Thober, S.; Cuntz, M.; Mai, J.; Samaniego, L. E.; Clark, M. P.; Branch, O.; Wulfmeyer, V.; Attinger, S.
2016-12-01
Land surface models incorporate a large number of processes, described by physical, chemical and empirical equations. The agility of the models to react to different meteorological conditions is artificially constrained by having hard-coded parameters in their equations. Here we searched for hard-coded parameters in the computer code of the land surface model Noah with multiple process options (Noah-MP) to assess the model's agility during parameter estimation. We found 139 hard-coded values in all Noah-MP process options in addition to the 71 standard parameters. We performed a Sobol' global sensitivity analysis to variations of the standard and hard-coded parameters. The sensitivities of the hydrologic output fluxes latent heat and total runoff, their component fluxes, as well as photosynthesis and sensible heat were evaluated at twelve catchments of the Eastern United States with very different hydro-meteorological regimes. Noah-MP's output fluxes are sensitive to two thirds of its standard parameters. The most sensitive parameter is, however, a hard-coded value in the formulation of soil surface resistance for evaporation, which proved to be oversensitive in other land surface models as well. Latent heat and total runoff show very similar sensitivities towards standard and hard-coded parameters. They are sensitive to both soil and plant parameters, which means that model calibrations of hydrologic or land surface models should take both soil and plant parameters into account. Sensible and latent heat exhibit almost the same sensitivities so that calibration or sensitivity analysis can be performed with either of the two. Photosynthesis has almost the same sensitivities as transpiration, which are different from the sensitivities of latent heat. Including photosynthesis and latent heat in model calibration might therefore be beneficial. Surface runoff is sensitive to almost all hard-coded snow parameters. These sensitivities get, however, diminished in total runoff. It is thus recommended to include the most sensitive hard-coded model parameters that were exposed in this study when calibrating Noah-MP.
NASA Astrophysics Data System (ADS)
Lei, Xiaohui; Wang, Yuhui; Liao, Weihong; Jiang, Yunzhong; Tian, Yu; Wang, Hao
2011-09-01
Many regions are still threatened with frequent floods and water resource shortage problems in China. Consequently, the task of reproducing and predicting the hydrological process in watersheds is hard and unavoidable for reducing the risks of damage and loss. Thus, it is necessary to develop an efficient and cost-effective hydrological tool in China as many areas should be modeled. Currently, developed hydrological tools such as Mike SHE and ArcSWAT (soil and water assessment tool based on ArcGIS) show significant power in improving the precision of hydrological modeling in China by considering spatial variability both in land cover and in soil type. However, adopting developed commercial tools in such a large developing country comes at a high cost. Commercial modeling tools usually contain large numbers of formulas, complicated data formats, and many preprocessing or postprocessing steps that may make it difficult for the user to carry out simulation, thus lowering the efficiency of the modeling process. Besides, commercial hydrological models usually cannot be modified or improved to be suitable for some special hydrological conditions in China. Some other hydrological models are open source, but integrated into commercial GIS systems. Therefore, by integrating hydrological simulation code EasyDHM, a hydrological simulation tool named MWEasyDHM was developed based on open-source MapWindow GIS, the purpose of which is to establish the first open-source GIS-based distributed hydrological model tool in China by integrating modules of preprocessing, model computation, parameter estimation, result display, and analysis. MWEasyDHM provides users with a friendly manipulating MapWindow GIS interface, selectable multifunctional hydrological processing modules, and, more importantly, an efficient and cost-effective hydrological simulation tool. The general construction of MWEasyDHM consists of four major parts: (1) a general GIS module for hydrological analysis, (2) a preprocessing module for modeling inputs, (3) a model calibration module, and (4) a postprocessing module. The general GIS module for hydrological analysis is developed on the basis of totally open-source GIS software, MapWindow, which contains basic GIS functions. The preprocessing module is made up of three submodules including a DEM-based submodule for hydrological analysis, a submodule for default parameter calculation, and a submodule for the spatial interpolation of meteorological data. The calibration module contains parallel computation, real-time computation, and visualization. The postprocessing module includes model calibration and model results spatial visualization using tabular form and spatial grids. MWEasyDHM makes it possible for efficient modeling and calibration of EasyDHM, and promises further development of cost-effective applications in various watersheds.
Satellite Remote Sensing is Key to Water Cycle Integrator
NASA Astrophysics Data System (ADS)
Koike, T.
2016-12-01
To promote effective multi-sectoral, interdisciplinary collaboration based on coordinated and integrated efforts, the Global Earth Observation System of Systems (GEOSS) is now developing a "GEOSS Water Cycle Integrator (WCI)", which integrates "Earth observations", "modeling", "data and information", "management systems" and "education systems". GEOSS/WCI sets up "work benches" by which partners can share data, information and applications in an interoperable way, exchange knowledge and experiences, deepen mutual understanding and work together effectively to ultimately respond to issues of both mitigation and adaptation. (A work bench is a virtual geographical or phenomenological space where experts and managers collaborate to use information to address a problem within that space). GEOSS/WCI enhances the coordination of efforts to strengthen individual, institutional and infrastructure capacities, especially for effective interdisciplinary coordination and integration. GEOSS/WCI archives various satellite data to provide various hydrological information such as cloud, rainfall, soil moisture, or land-surface snow. These satellite products were validated using land observation in-situ data. Water cycle models can be developed by coupling in-situ and satellite data. River flows and other hydrological parameters can be simulated and validated by in-situ data. Model outputs from weather-prediction, seasonal-prediction, and climate-prediction models are archived. Some of these model outputs are archived on an online basis, but other models, e.g., climate-prediction models are archived on an offline basis. After models are evaluated and biases corrected, the outputs can be used as inputs into the hydrological models for predicting the hydrological parameters. Additionally, we have already developed a data-assimilation system by combining satellite data and the models. This system can improve our capability to predict hydrological phenomena. The WCI can provide better predictions of the hydrological parameters for integrated water resources management (IWRM) and also assess the impact of climate change and calculate adaptation needs.
Precipitation-runoff modeling system; user's manual
Leavesley, G.H.; Lichty, R.W.; Troutman, B.M.; Saindon, L.G.
1983-01-01
The concepts, structure, theoretical development, and data requirements of the precipitation-runoff modeling system (PRMS) are described. The precipitation-runoff modeling system is a modular-design, deterministic, distributed-parameter modeling system developed to evaluate the impacts of various combinations of precipitation, climate, and land use on streamflow, sediment yields, and general basin hydrology. Basin response to normal and extreme rainfall and snowmelt can be simulated to evaluate changes in water balance relationships, flow regimes, flood peaks and volumes, soil-water relationships, sediment yields, and groundwater recharge. Parameter-optimization and sensitivity analysis capabilites are provided to fit selected model parameters and evaluate their individual and joint effects on model output. The modular design provides a flexible framework for continued model system enhancement and hydrologic modeling research and development. (Author 's abstract)
Scaling, Similarity, and the Fourth Paradigm for Hydrology
NASA Technical Reports Server (NTRS)
Peters-Lidard, Christa D.; Clark, Martyn; Samaniego, Luis; Verhoest, Niko E. C.; van Emmerik, Tim; Uijlenhoet, Remko; Achieng, Kevin; Franz, Trenton E.; Woods, Ross
2017-01-01
In this synthesis paper addressing hydrologic scaling and similarity, we posit that roadblocks in the search for universal laws of hydrology are hindered by our focus on computational simulation (the third paradigm), and assert that it is time for hydrology to embrace a fourth paradigm of data-intensive science. Advances in information-based hydrologic science, coupled with an explosion of hydrologic data and advances in parameter estimation and modelling, have laid the foundation for a data-driven framework for scrutinizing hydrological scaling and similarity hypotheses. We summarize important scaling and similarity concepts (hypotheses) that require testing, describe a mutual information framework for testing these hypotheses, describe boundary condition, state flux, and parameter data requirements across scales to support testing these hypotheses, and discuss some challenges to overcome while pursuing the fourth hydrological paradigm. We call upon the hydrologic sciences community to develop a focused effort towards adopting the fourth paradigm and apply this to outstanding challenges in scaling and similarity.
NASA Astrophysics Data System (ADS)
Chegwidden, O.; Nijssen, B.; Mao, Y.; Rupp, D. E.
2016-12-01
The Columbia River Basin (CRB) in the United States' Pacific Northwest (PNW) is highly regulated for hydropower generation, flood control, fish survival, irrigation and navigation. Historically it has had a hydrologic regime characterized by winter precipitation in the form of snow, followed by a spring peak in streamflow from snowmelt. Anthropogenic climate change is expected to significantly alter this regime, causing changes to streamflow timing and volume. While numerous hydrologic studies have been conducted across the CRB, the impact of methodological choices in hydrologic modeling has not been as heavily investigated. To better understand their impact on the spread in modeled projections of hydrological change, we ran simulations involving permutations of a variety of methodological choices. We used outputs from ten global climate models (GCMs) and two representative concentration pathways from the Intergovernmental Panel on Climate Change's Fifth Assessment Report. After downscaling the GCM output using three different techniques we forced the Variable Infiltration Capacity (VIC) model and the Precipitation Runoff Modeling System (PRMS), both implemented at 1/16th degree ( 5 km) for the period 1950-2099. For the VIC model, we used three independently-derived parameter sets. We will show results from the range of simulations, both in the form of basin-wide spatial analyses of hydrologic variables and through analyses of changes in streamflow at selected sites throughout the CRB. We will then discuss the differences in sensitivities to climate change seen among the projections, paying particular attention to differences in projections from the hydrologic models and different parameter sets.
METHODOLOGIES FOR CALIBRATION AND PREDICTIVE ANALYSIS OF A WATERSHED MODEL
The use of a fitted-parameter watershed model to address water quantity and quality management issues requires that it be calibrated under a wide range of hydrologic conditions. However, rarely does model calibration result in a unique parameter set. Parameter nonuniqueness can l...
Quantitative predictions of streamflow variability in the Susquehanna River Basin
NASA Astrophysics Data System (ADS)
Alexander, R.; Boyer, E. W.; Leonard, L. N.; Duffy, C.; Schwarz, G. E.; Smith, R. A.
2012-12-01
Hydrologic researchers and water managers have increasingly sought an improved understanding of the major processes that control fluxes of water and solutes across diverse environmental settings and large spatial scales. Regional analyses of observed streamflow data have led to advances in our knowledge of relations among land use, climate, and streamflow, with methodologies ranging from statistical assessments of multiple monitoring sites to the regionalization of the parameters of catchment-scale mechanistic simulation models. However, gaps remain in our understanding of the best ways to transfer the knowledge of hydrologic response and governing processes among locations, including methods for regionalizing streamflow measurements and model predictions. We developed an approach to predict variations in streamflow using the SPARROW (SPAtially Referenced Regression On Watershed attributes) modeling infrastructure, with mechanistic functions, mass conservation constraints, and statistical estimation of regional and sub-regional parameters. We used the model to predict discharge in the Susquehanna River Basin (SRB) under varying hydrological regimes that are representative of contemporary flow conditions. The resulting basin-scale water balance describes mean monthly flows in stream reaches throughout the entire SRB (represented at a 1:100,000 scale using the National Hydrologic Data network), with water supply and demand components that are inclusive of a range of hydrologic, climatic, and cultural properties (e.g., precipitation, evapotranspiration, soil and groundwater storage, runoff, baseflow, water use). We compare alternative models of varying complexity that reflect differences in the number and types of explanatory variables and functional expressions as well as spatial and temporal variability in the model parameters. Statistical estimation of the models reveals the levels of complexity that can be uniquely identified, subject to the information content and uncertainties of the hydrologic and climate measurements. Assessment of spatial variations in the model parameters and predictions provides an improved understanding of how much of the hydrologic response to land use, climate, and other properties is unique to specific locations versus more universally observed across catchments of the SRB. This approach advances understanding of water cycle variability at any location throughout the stream network, as a function of both landscape characteristics (e.g., soils, vegetation, land use) and external forcings (e.g., precipitation quantity and frequency). These improvements in predictions of streamflow dynamics will advance the ability to predict spatial and temporal variability in key solutes, such as nutrients, and their delivery to the Chesapeake Bay.
USDA-ARS?s Scientific Manuscript database
Successful hydrological model predictions depend on appropriate framing of scale and the spatial-temporal accuracy of input parameters describing soil hydraulic properties. Saturated soil hydraulic conductivity (Ksat) is one of the most important properties influencing water movement through soil un...
Asare, Ernest Ohene; Tompkins, Adrian Mark; Bomblies, Arne
2016-01-01
Dynamical malaria models can relate precipitation to the availability of vector breeding sites using simple models of surface hydrology. Here, a revised scheme is developed for the VECTRI malaria model, which is evaluated alongside the default scheme using a two year simulation by HYDREMATS, a 10 metre resolution, village-scale model that explicitly simulates individual ponds. Despite the simplicity of the two VECTRI surface hydrology parametrization schemes, they can reproduce the sub-seasonal evolution of fractional water coverage. Calibration of the model parameters is required to simulate the mean pond fraction correctly. The default VECTRI model tended to overestimate water fraction in periods subject to light rainfall events and underestimate it during periods of intense rainfall. This systematic error was improved in the revised scheme by including the a parametrization for surface run-off, such that light rainfall below the initial abstraction threshold does not contribute to ponds. After calibration of the pond model, the VECTRI model was able to simulate vector densities that compared well to the detailed agent based model contained in HYDREMATS without further parameter adjustment. Substituting local rain-gauge data with satellite-retrieved precipitation gave a reasonable approximation, raising the prospects for regional malaria simulations even in data sparse regions. However, further improvements could be made if a method can be derived to calibrate the key hydrology parameters of the pond model in each grid cell location, possibly also incorporating slope and soil texture.
Asare, Ernest Ohene; Tompkins, Adrian Mark; Bomblies, Arne
2016-01-01
Dynamical malaria models can relate precipitation to the availability of vector breeding sites using simple models of surface hydrology. Here, a revised scheme is developed for the VECTRI malaria model, which is evaluated alongside the default scheme using a two year simulation by HYDREMATS, a 10 metre resolution, village-scale model that explicitly simulates individual ponds. Despite the simplicity of the two VECTRI surface hydrology parametrization schemes, they can reproduce the sub-seasonal evolution of fractional water coverage. Calibration of the model parameters is required to simulate the mean pond fraction correctly. The default VECTRI model tended to overestimate water fraction in periods subject to light rainfall events and underestimate it during periods of intense rainfall. This systematic error was improved in the revised scheme by including the a parametrization for surface run-off, such that light rainfall below the initial abstraction threshold does not contribute to ponds. After calibration of the pond model, the VECTRI model was able to simulate vector densities that compared well to the detailed agent based model contained in HYDREMATS without further parameter adjustment. Substituting local rain-gauge data with satellite-retrieved precipitation gave a reasonable approximation, raising the prospects for regional malaria simulations even in data sparse regions. However, further improvements could be made if a method can be derived to calibrate the key hydrology parameters of the pond model in each grid cell location, possibly also incorporating slope and soil texture. PMID:27003834
NASA Astrophysics Data System (ADS)
Munyaneza, O.; Mukubwa, A.; Maskey, S.; Uhlenbrook, S.; Wenninger, J.
2014-12-01
In the present study, we developed a catchment hydrological model which can be used to inform water resources planning and decision making for better management of the Migina Catchment (257.4 km2). The semi-distributed hydrological model HEC-HMS (Hydrologic Engineering Center - the Hydrologic Modelling System) (version 3.5) was used with its soil moisture accounting, unit hydrograph, liner reservoir (for baseflow) and Muskingum-Cunge (river routing) methods. We used rainfall data from 12 stations and streamflow data from 5 stations, which were collected as part of this study over a period of 2 years (May 2009 and June 2011). The catchment was divided into five sub-catchments. The model parameters were calibrated separately for each sub-catchment using the observed streamflow data. Calibration results obtained were found acceptable at four stations with a Nash-Sutcliffe model efficiency index (NS) of 0.65 on daily runoff at the catchment outlet. Due to the lack of sufficient and reliable data for longer periods, a model validation was not undertaken. However, we used results from tracer-based hydrograph separation from a previous study to compare our model results in terms of the runoff components. The model performed reasonably well in simulating the total flow volume, peak flow and timing as well as the portion of direct runoff and baseflow. We observed considerable disparities in the parameters (e.g. groundwater storage) and runoff components across the five sub-catchments, which provided insights into the different hydrological processes on a sub-catchment scale. We conclude that such disparities justify the need to consider catchment subdivisions if such parameters and components of the water cycle are to form the base for decision making in water resources planning in the catchment.
NASA Technical Reports Server (NTRS)
Entekhabi, D.; Eagleson, P. S.
1989-01-01
Parameterizations are developed for the representation of subgrid hydrologic processes in atmospheric general circulation models. Reasonable a priori probability density functions of the spatial variability of soil moisture and of precipitation are introduced. These are used in conjunction with the deterministic equations describing basic soil moisture physics to derive expressions for the hydrologic processes that include subgrid scale variation in parameters. The major model sensitivities to soil type and to climatic forcing are explored.
NASA Astrophysics Data System (ADS)
Paul, M.; Negahban-Azar, M.
2017-12-01
The hydrologic models usually need to be calibrated against observed streamflow at the outlet of a particular drainage area through a careful model calibration. However, a large number of parameters are required to fit in the model due to their unavailability of the field measurement. Therefore, it is difficult to calibrate the model for a large number of potential uncertain model parameters. This even becomes more challenging if the model is for a large watershed with multiple land uses and various geophysical characteristics. Sensitivity analysis (SA) can be used as a tool to identify most sensitive model parameters which affect the calibrated model performance. There are many different calibration and uncertainty analysis algorithms which can be performed with different objective functions. By incorporating sensitive parameters in streamflow simulation, effects of the suitable algorithm in improving model performance can be demonstrated by the Soil and Water Assessment Tool (SWAT) modeling. In this study, the SWAT was applied in the San Joaquin Watershed in California covering 19704 km2 to calibrate the daily streamflow. Recently, sever water stress escalating due to intensified climate variability, prolonged drought and depleting groundwater for agricultural irrigation in this watershed. Therefore it is important to perform a proper uncertainty analysis given the uncertainties inherent in hydrologic modeling to predict the spatial and temporal variation of the hydrologic process to evaluate the impacts of different hydrologic variables. The purpose of this study was to evaluate the sensitivity and uncertainty of the calibrated parameters for predicting streamflow. To evaluate the sensitivity of the calibrated parameters three different optimization algorithms (Sequential Uncertainty Fitting- SUFI-2, Generalized Likelihood Uncertainty Estimation- GLUE and Parameter Solution- ParaSol) were used with four different objective functions (coefficient of determination- r2, Nash-Sutcliffe efficiency- NSE, percent bias- PBIAS, and Kling-Gupta efficiency- KGE). The preliminary results showed that using the SUFI-2 algorithm with the objective function NSE and KGE has improved significantly the calibration (e.g. R2 and NSE is found 0.52 and 0.47 respectively for daily streamflow calibration).
NASA Astrophysics Data System (ADS)
Demirel, M. C.; Mai, J.; Stisen, S.; Mendiguren González, G.; Koch, J.; Samaniego, L. E.
2016-12-01
Distributed hydrologic models are traditionally calibrated and evaluated against observations of streamflow. Spatially distributed remote sensing observations offer a great opportunity to enhance spatial model calibration schemes. For that it is important to identify the model parameters that can change spatial patterns before the satellite based hydrologic model calibration. Our study is based on two main pillars: first we use spatial sensitivity analysis to identify the key parameters controlling the spatial distribution of actual evapotranspiration (AET). Second, we investigate the potential benefits of incorporating spatial patterns from MODIS data to calibrate the mesoscale Hydrologic Model (mHM). This distributed model is selected as it allows for a change in the spatial distribution of key soil parameters through the calibration of pedo-transfer function parameters and includes options for using fully distributed daily Leaf Area Index (LAI) directly as input. In addition the simulated AET can be estimated at the spatial resolution suitable for comparison to the spatial patterns observed using MODIS data. We introduce a new dynamic scaling function employing remotely sensed vegetation to downscale coarse reference evapotranspiration. In total, 17 parameters of 47 mHM parameters are identified using both sequential screening and Latin hypercube one-at-a-time sampling methods. The spatial patterns are found to be sensitive to the vegetation parameters whereas streamflow dynamics are sensitive to the PTF parameters. The results of multi-objective model calibration show that calibration of mHM against observed streamflow does not reduce the spatial errors in AET while they improve only the streamflow simulations. We will further examine the results of model calibration using only multi spatial objective functions measuring the association between observed AET and simulated AET maps and another case including spatial and streamflow metrics together.
AN INTEGRATED LANDSCAPE AND HYDROLOGICAL ASSESSMENT FOR THE YANTRA RIVER BASIN, BULGARIA
Geospatial data and relationships derived there from are the cornerstone of the landscape sciences. This information is also of fundamental importance in deriving parameter inputs to watershed hydrologic models.
NASA Astrophysics Data System (ADS)
Asadzadeh, M.; Maclean, A.; Tolson, B. A.; Burn, D. H.
2009-05-01
Hydrologic model calibration aims to find a set of parameters that adequately simulates observations of watershed behavior, such as streamflow, or a state variable, such as snow water equivalent (SWE). There are different metrics for evaluating calibration effectiveness that involve quantifying prediction errors, such as the Nash-Sutcliffe (NS) coefficient and bias evaluated for the entire calibration period, on a seasonal basis, for low flows, or for high flows. Many of these metrics are conflicting such that the set of parameters that maximizes the high flow NS differs from the set of parameters that maximizes the low flow NS. Conflicting objectives are very likely when different calibration objectives are based on different fluxes and/or state variables (e.g., NS based on streamflow versus SWE). One of the most popular ways to balance different metrics is to aggregate them based on their importance and find the set of parameters that optimizes a weighted sum of the efficiency metrics. Comparing alternative hydrologic models (e.g., assessing model improvement when a process or more detail is added to the model) based on the aggregated objective might be misleading since it represents one point on the tradeoff of desired error metrics. To derive a more comprehensive model comparison, we solved a bi-objective calibration problem to estimate the tradeoff between two error metrics for each model. Although this approach is computationally more expensive than the aggregation approach, it results in a better understanding of the effectiveness of selected models at each level of every error metric and therefore provides a better rationale for judging relative model quality. The two alternative models used in this study are two MESH hydrologic models (version 1.2) of the Wolf Creek Research basin that differ in their watershed spatial discretization (a single Grouped Response Unit, GRU, versus multiple GRUs). The MESH model, currently under development by Environment Canada, is a coupled land-surface and hydrologic model. Results will demonstrate the conclusions a modeller might make regarding the value of additional watershed spatial discretization under both an aggregated (single-objective) and multi-objective model comparison framework.
NASA Astrophysics Data System (ADS)
Xiao, D.; Shi, Y.; Li, L.
2016-12-01
Field measurements are important to understand the fluxes of water, energy, sediment, and solute in the Critical Zone however are expensive in time, money, and labor. This study aims to assess the model predictability of hydrological processes in a watershed using information from another intensively-measured watershed. We compare two watersheds of different lithology using national datasets, field measurements, and physics-based model, Flux-PIHM. We focus on two monolithological, forested watersheds under the same climate in the Shale Hills Susquehanna CZO in central Pennsylvania: the Shale-based Shale Hills (SSH, 0.08 km2) and the sandstone-based Garner Run (GR, 1.34 km2). We firstly tested the transferability of calibration coefficients from SSH to GR. We found that without any calibration the model can successfully predict seasonal average soil moisture and discharge which shows the advantage of a physics-based model, however, cannot precisely capture some peaks or the runoff in summer. The model reproduces the GR field data better after calibrating the soil hydrology parameters. In particular, the percentage of sand turns out to be a critical parameter in reproducing data. With sandstone being the dominant lithology, GR has much higher sand percentage than SSH (48.02% vs. 29.01%), leading to higher hydraulic conductivity, lower overall water storage capacity, and in general lower soil moisture. This is consistent with area averaged soil moisture observations using the cosmic-ray soil moisture observing system (COSMOS) at the two sites. This work indicates that some parameters, including evapotranspiration parameters, are transferrable due to similar climatic and land cover conditions. However, the key parameters that control soil moisture, including the sand percentage, need to be recalibrated, reflecting the key role of soil hydrological properties.
NASA Astrophysics Data System (ADS)
Smith, T.; Marshall, L.
2007-12-01
In many mountainous regions, the single most important parameter in forecasting the controls on regional water resources is snowpack (Williams et al., 1999). In an effort to bridge the gap between theoretical understanding and functional modeling of snow-driven watersheds, a flexible hydrologic modeling framework is being developed. The aim is to create a suite of models that move from parsimonious structures, concentrated on aggregated watershed response, to those focused on representing finer scale processes and distributed response. This framework will operate as a tool to investigate the link between hydrologic model predictive performance, uncertainty, model complexity, and observable hydrologic processes. Bayesian methods, and particularly Markov chain Monte Carlo (MCMC) techniques, are extremely useful in uncertainty assessment and parameter estimation of hydrologic models. However, these methods have some difficulties in implementation. In a traditional Bayesian setting, it can be difficult to reconcile multiple data types, particularly those offering different spatial and temporal coverage, depending on the model type. These difficulties are also exacerbated by sensitivity of MCMC algorithms to model initialization and complex parameter interdependencies. As a way of circumnavigating some of the computational complications, adaptive MCMC algorithms have been developed to take advantage of the information gained from each successive iteration. Two adaptive algorithms are compared is this study, the Adaptive Metropolis (AM) algorithm, developed by Haario et al (2001), and the Delayed Rejection Adaptive Metropolis (DRAM) algorithm, developed by Haario et al (2006). While neither algorithm is truly Markovian, it has been proven that each satisfies the desired ergodicity and stationarity properties of Markov chains. Both algorithms were implemented as the uncertainty and parameter estimation framework for a conceptual rainfall-runoff model based on the Probability Distributed Model (PDM), developed by Moore (1985). We implement the modeling framework in Stringer Creek watershed in the Tenderfoot Creek Experimental Forest (TCEF), Montana. The snowmelt-driven watershed offers that additional challenge of modeling snow accumulation and melt and current efforts are aimed at developing a temperature- and radiation-index snowmelt model. Auxiliary data available from within TCEF's watersheds are used to support in the understanding of information value as it relates to predictive performance. Because the model is based on lumped parameters, auxiliary data are hard to incorporate directly. However, these additional data offer benefits through the ability to inform prior distributions of the lumped, model parameters. By incorporating data offering different information into the uncertainty assessment process, a cross-validation technique is engaged to better ensure that modeled results reflect real process complexity.
NASA Astrophysics Data System (ADS)
Jomaa, Seifeddine; Jiang, Sanyuan; Yang, Xiaoqiang; Rode, Michael
2016-04-01
It is known that a good evaluation and prediction of surface water pollution is mainly limited by the monitoring strategy and the capability of the hydrological water quality model to reproduce the internal processes. To this end, a compromise sampling frequency, which can reflect the dynamical behaviour of leached nutrient fluxes responding to changes in land use, agriculture practices and point sources, and appropriate process-based water quality model are required. The objective of this study was to test the identification of hydrological water quality model parameters (nitrogen and phosphorus) under two different monitoring strategies: (1) regular grab-sampling approach and (2) regular grab-sampling with additional monitoring during the hydrological events using automatic samplers. First, the semi-distributed hydrological water quality HYPE (Hydrological Predictions for the Environment) model was successfully calibrated (1994-1998) for discharge (NSE = 0.86), nitrate-N (lowest NSE for nitrate-N load = 0.69), particulate phosphorus and soluble phosphorus in the Selke catchment (463 km2, central Germany) for the period 1994-1998 using regular grab-sampling approach (biweekly to monthly for nitrogen and phosphorus concentrations). Second, the model was successfully validated during the period 1999-2010 for discharge, nitrate-N, particulate-phosphorus and soluble-phosphorus (lowest NSE for soluble phosphorus load = 0.54). Results, showed that when additional sampling during the events with random grab-sampling approach was used (period 2011-2013), the hydrological model could reproduce only the nitrate-N and soluble phosphorus concentrations reasonably well. However, when additional sampling during the hydrological events was considered, the HYPE model could not represent the measured particulate phosphorus. This reflects the importance of suspended sediment during the hydrological events increasing the concentrations of particulate phosphorus. The HYPE model could reproduce the total phosphorus during the period 2011-2013 only when the sediment transport-related model parameters was re-identified again considering the automatic sampling during the high-flow conditions.
Subgrid spatial variability of soil hydraulic functions for hydrological modelling
NASA Astrophysics Data System (ADS)
Kreye, Phillip; Meon, Günter
2016-07-01
State-of-the-art hydrological applications require a process-based, spatially distributed hydrological model. Runoff characteristics are demanded to be well reproduced by the model. Despite that, the model should be able to describe the processes at a subcatchment scale in a physically credible way. The objective of this study is to present a robust procedure to generate various sets of parameterisations of soil hydraulic functions for the description of soil heterogeneity on a subgrid scale. Relations between Rosetta-generated values of saturated hydraulic conductivity (Ks) and van Genuchten's parameters of soil hydraulic functions were statistically analysed. An universal function that is valid for the complete bandwidth of Ks values could not be found. After concentrating on natural texture classes, strong correlations were identified for all parameters. The obtained regression results were used to parameterise sets of hydraulic functions for each soil class. The methodology presented in this study is applicable on a wide range of spatial scales and does not need input data from field studies. The developments were implemented into a hydrological modelling system.
A Bayesian alternative for multi-objective ecohydrological model specification
NASA Astrophysics Data System (ADS)
Tang, Yating; Marshall, Lucy; Sharma, Ashish; Ajami, Hoori
2018-01-01
Recent studies have identified the importance of vegetation processes in terrestrial hydrologic systems. Process-based ecohydrological models combine hydrological, physical, biochemical and ecological processes of the catchments, and as such are generally more complex and parametric than conceptual hydrological models. Thus, appropriate calibration objectives and model uncertainty analysis are essential for ecohydrological modeling. In recent years, Bayesian inference has become one of the most popular tools for quantifying the uncertainties in hydrological modeling with the development of Markov chain Monte Carlo (MCMC) techniques. The Bayesian approach offers an appealing alternative to traditional multi-objective hydrologic model calibrations by defining proper prior distributions that can be considered analogous to the ad-hoc weighting often prescribed in multi-objective calibration. Our study aims to develop appropriate prior distributions and likelihood functions that minimize the model uncertainties and bias within a Bayesian ecohydrological modeling framework based on a traditional Pareto-based model calibration technique. In our study, a Pareto-based multi-objective optimization and a formal Bayesian framework are implemented in a conceptual ecohydrological model that combines a hydrological model (HYMOD) and a modified Bucket Grassland Model (BGM). Simulations focused on one objective (streamflow/LAI) and multiple objectives (streamflow and LAI) with different emphasis defined via the prior distribution of the model error parameters. Results show more reliable outputs for both predicted streamflow and LAI using Bayesian multi-objective calibration with specified prior distributions for error parameters based on results from the Pareto front in the ecohydrological modeling. The methodology implemented here provides insight into the usefulness of multiobjective Bayesian calibration for ecohydrologic systems and the importance of appropriate prior distributions in such approaches.
NASA Astrophysics Data System (ADS)
Liu, Y.; Pau, G. S. H.; Finsterle, S.
2015-12-01
Parameter inversion involves inferring the model parameter values based on sparse observations of some observables. To infer the posterior probability distributions of the parameters, Markov chain Monte Carlo (MCMC) methods are typically used. However, the large number of forward simulations needed and limited computational resources limit the complexity of the hydrological model we can use in these methods. In view of this, we studied the implicit sampling (IS) method, an efficient importance sampling technique that generates samples in the high-probability region of the posterior distribution and thus reduces the number of forward simulations that we need to run. For a pilot-point inversion of a heterogeneous permeability field based on a synthetic ponded infiltration experiment simulated with TOUGH2 (a subsurface modeling code), we showed that IS with linear map provides an accurate Bayesian description of the parameterized permeability field at the pilot points with just approximately 500 forward simulations. We further studied the use of surrogate models to improve the computational efficiency of parameter inversion. We implemented two reduced-order models (ROMs) for the TOUGH2 forward model. One is based on polynomial chaos expansion (PCE), of which the coefficients are obtained using the sparse Bayesian learning technique to mitigate the "curse of dimensionality" of the PCE terms. The other model is Gaussian process regression (GPR) for which different covariance, likelihood and inference models are considered. Preliminary results indicate that ROMs constructed based on the prior parameter space perform poorly. It is thus impractical to replace this hydrological model by a ROM directly in a MCMC method. However, the IS method can work with a ROM constructed for parameters in the close vicinity of the maximum a posteriori probability (MAP) estimate. We will discuss the accuracy and computational efficiency of using ROMs in the implicit sampling procedure for the hydrological problem considered. This work was supported, in part, by the U.S. Dept. of Energy under Contract No. DE-AC02-05CH11231
NASA Astrophysics Data System (ADS)
Balin Talamba, D.; Higy, C.; Joerin, C.; Musy, A.
The paper presents an application concerning the hydrological modelling for the Haute-Mentue catchment, located in western Switzerland. A simplified version of Topmodel, developed in a Labview programming environment, was applied in the aim of modelling the hydrological processes on this catchment. Previous researches car- ried out in this region outlined the importance of the environmental tracers in studying the hydrological behaviour and an important knowledge has been accumulated dur- ing this period concerning the mechanisms responsible for runoff generation. In con- formity with the theoretical constraints, Topmodel was applied for an Haute-Mentue sub-catchment where tracing experiments showed constantly low contributions of the soil water during the flood events. The model was applied for two humid periods in 1998. First, the model calibration was done in order to provide the best estimations for the total runoff. Instead, the simulated components (groundwater and rapid flow) showed far deviations from the reality indicated by the tracing experiments. Thus, a new calibration was performed including additional information given by the environ- mental tracing. The calibration of the model was done by using simulated annealing (SA) techniques, which are easy to implement and statistically allow for converging to a global minimum. The only problem is that the method is time and computer consum- ing. To improve this, a version of SA was used which is known as very fast-simulated annealing (VFSA). The principles are the same as for the SA technique. The random search is guided by certain probability distribution and the acceptance criterion is the same as for SA but the VFSA allows for better taking into account the ranges of vari- ation of each parameter. Practice with Topmodel showed that the energy function has different sensitivities along different dimensions of the parameter space. The VFSA algorithm allows differentiated search in relation with the sensitivity of the param- eters. The environmental tracing was used in the aim of constraining the parameter space in order to better simulate the hydrological behaviour of the catchment. VFSA outlined issues for characterising the significance of Topmodel input parameters as well as their uncertainty for the hydrological modelling.
USDA-ARS?s Scientific Manuscript database
Hydrologic and water quality models are very sensitive to input parameter values, especially precipitation input data. With several different sources of precipitation data now available, it is quite difficult to determine which source is most appropriate under various circumstances. We used several ...
NASA Astrophysics Data System (ADS)
Stisen, S.; Højberg, A. L.; Troldborg, L.; Refsgaard, J. C.; Christensen, B. S. B.; Olsen, M.; Henriksen, H. J.
2012-11-01
Precipitation gauge catch correction is often given very little attention in hydrological modelling compared to model parameter calibration. This is critical because significant precipitation biases often make the calibration exercise pointless, especially when supposedly physically-based models are in play. This study addresses the general importance of appropriate precipitation catch correction through a detailed modelling exercise. An existing precipitation gauge catch correction method addressing solid and liquid precipitation is applied, both as national mean monthly correction factors based on a historic 30 yr record and as gridded daily correction factors based on local daily observations of wind speed and temperature. The two methods, named the historic mean monthly (HMM) and the time-space variable (TSV) correction, resulted in different winter precipitation rates for the period 1990-2010. The resulting precipitation datasets were evaluated through the comprehensive Danish National Water Resources model (DK-Model), revealing major differences in both model performance and optimised model parameter sets. Simulated stream discharge is improved significantly when introducing the TSV correction, whereas the simulated hydraulic heads and multi-annual water balances performed similarly due to recalibration adjusting model parameters to compensate for input biases. The resulting optimised model parameters are much more physically plausible for the model based on the TSV correction of precipitation. A proxy-basin test where calibrated DK-Model parameters were transferred to another region without site specific calibration showed better performance for parameter values based on the TSV correction. Similarly, the performances of the TSV correction method were superior when considering two single years with a much dryer and a much wetter winter, respectively, as compared to the winters in the calibration period (differential split-sample tests). We conclude that TSV precipitation correction should be carried out for studies requiring a sound dynamic description of hydrological processes, and it is of particular importance when using hydrological models to make predictions for future climates when the snow/rain composition will differ from the past climate. This conclusion is expected to be applicable for mid to high latitudes, especially in coastal climates where winter precipitation types (solid/liquid) fluctuate significantly, causing climatological mean correction factors to be inadequate.
NASA Astrophysics Data System (ADS)
Clark, Martyn P.; Bierkens, Marc F. P.; Samaniego, Luis; Woods, Ross A.; Uijlenhoet, Remko; Bennett, Katrina E.; Pauwels, Valentijn R. N.; Cai, Xitian; Wood, Andrew W.; Peters-Lidard, Christa D.
2017-07-01
The diversity in hydrologic models has historically led to great controversy on the correct
approach to process-based hydrologic modeling, with debates centered on the adequacy of process parameterizations, data limitations and uncertainty, and computational constraints on model analysis. In this paper, we revisit key modeling challenges on requirements to (1) define suitable model equations, (2) define adequate model parameters, and (3) cope with limitations in computing power. We outline the historical modeling challenges, provide examples of modeling advances that address these challenges, and define outstanding research needs. We illustrate how modeling advances have been made by groups using models of different type and complexity, and we argue for the need to more effectively use our diversity of modeling approaches in order to advance our collective quest for physically realistic hydrologic models.
NASA Astrophysics Data System (ADS)
Clark, M. P.; Nijssen, B.; Wood, A.; Mizukami, N.; Newman, A. J.
2017-12-01
The diversity in hydrologic models has historically led to great controversy on the "correct" approach to process-based hydrologic modeling, with debates centered on the adequacy of process parameterizations, data limitations and uncertainty, and computational constraints on model analysis. In this paper, we revisit key modeling challenges on requirements to (1) define suitable model equations, (2) define adequate model parameters, and (3) cope with limitations in computing power. We outline the historical modeling challenges, provide examples of modeling advances that address these challenges, and define outstanding research needs. We illustrate how modeling advances have been made by groups using models of different type and complexity, and we argue for the need to more effectively use our diversity of modeling approaches in order to advance our collective quest for physically realistic hydrologic models.
NASA Astrophysics Data System (ADS)
Li, J.
2017-12-01
Large-watershed flood simulation and forecasting is very important for a distributed hydrological model in the application. There are some challenges including the model's spatial resolution effect, model performance and accuracy and so on. To cope with the challenge of the model's spatial resolution effect, different model resolution including 1000m*1000m, 600m*600m, 500m*500m, 400m*400m, 200m*200m were used to build the distributed hydrological model—Liuxihe model respectively. The purpose is to find which one is the best resolution for Liuxihe model in Large-watershed flood simulation and forecasting. This study sets up a physically based distributed hydrological model for flood forecasting of the Liujiang River basin in south China. Terrain data digital elevation model (DEM), soil type and land use type are downloaded from the website freely. The model parameters are optimized by using an improved Particle Swarm Optimization(PSO) algorithm; And parameter optimization could reduce the parameter uncertainty that exists for physically deriving model parameters. The different model resolution (200m*200m—1000m*1000m ) are proposed for modeling the Liujiang River basin flood with the Liuxihe model in this study. The best model's spatial resolution effect for flood simulation and forecasting is 200m*200m.And with the model's spatial resolution reduction, the model performance and accuracy also become worse and worse. When the model resolution is 1000m*1000m, the flood simulation and forecasting result is the worst, also the river channel divided based on this resolution is differs from the actual one. To keep the model with an acceptable performance, minimum model spatial resolution is needed. The suggested threshold model spatial resolution for modeling the Liujiang River basin flood is a 500m*500m grid cell, but the model spatial resolution with a 200m*200m grid cell is recommended in this study to keep the model at a best performance.
USDA-ARS?s Scientific Manuscript database
Classic rainfall-runoff models usually use historical data to estimate model parameters and mean values of parameters are considered for predictions. However, due to climate changes and human effects, the parameters of model change temporally. To overcome this problem, Normalized Difference Vegetati...
NASA Astrophysics Data System (ADS)
Li, Lu; Xu, Chong-Yu; Engeland, Kolbjørn
2013-04-01
SummaryWith respect to model calibration, parameter estimation and analysis of uncertainty sources, various regression and probabilistic approaches are used in hydrological modeling. A family of Bayesian methods, which incorporates different sources of information into a single analysis through Bayes' theorem, is widely used for uncertainty assessment. However, none of these approaches can well treat the impact of high flows in hydrological modeling. This study proposes a Bayesian modularization uncertainty assessment approach in which the highest streamflow observations are treated as suspect information that should not influence the inference of the main bulk of the model parameters. This study includes a comprehensive comparison and evaluation of uncertainty assessments by our new Bayesian modularization method and standard Bayesian methods using the Metropolis-Hastings (MH) algorithm with the daily hydrological model WASMOD. Three likelihood functions were used in combination with standard Bayesian method: the AR(1) plus Normal model independent of time (Model 1), the AR(1) plus Normal model dependent on time (Model 2) and the AR(1) plus Multi-normal model (Model 3). The results reveal that the Bayesian modularization method provides the most accurate streamflow estimates measured by the Nash-Sutcliffe efficiency and provide the best in uncertainty estimates for low, medium and entire flows compared to standard Bayesian methods. The study thus provides a new approach for reducing the impact of high flows on the discharge uncertainty assessment of hydrological models via Bayesian method.
Wei Wu; James Clark; James Vose
2010-01-01
Hierarchical Bayesian (HB) modeling allows for multiple sources of uncertainty by factoring complex relationships into conditional distributions that can be used to draw inference and make predictions. We applied an HB model to estimate the parameters and state variables of a parsimonious hydrological model â GR4J â by coherently assimilating the uncertainties from the...
NASA Astrophysics Data System (ADS)
Kunnath-Poovakka, A.; Ryu, D.; Renzullo, L. J.; George, B.
2016-04-01
Calibration of spatially distributed hydrologic models is frequently limited by the availability of ground observations. Remotely sensed (RS) hydrologic information provides an alternative source of observations to inform models and extend modelling capability beyond the limits of ground observations. This study examines the capability of RS evapotranspiration (ET) and soil moisture (SM) in calibrating a hydrologic model and its efficacy to improve streamflow predictions. SM retrievals from the Advanced Microwave Scanning Radiometer-EOS (AMSR-E) and daily ET estimates from the CSIRO MODIS ReScaled potential ET (CMRSET) are used to calibrate a simplified Australian Water Resource Assessment - Landscape model (AWRA-L) for a selection of parameters. The Shuffled Complex Evolution Uncertainty Algorithm (SCE-UA) is employed for parameter estimation at eleven catchments in eastern Australia. A subset of parameters for calibration is selected based on the variance-based Sobol' sensitivity analysis. The efficacy of 15 objective functions for calibration is assessed based on streamflow predictions relative to control cases, and relative merits of each are discussed. Synthetic experiments were conducted to examine the effect of bias in RS ET observations on calibration. The objective function containing the root mean square deviation (RMSD) of ET result in best streamflow predictions and the efficacy is superior for catchments with medium to high average runoff. Synthetic experiments revealed that accurate ET product can improve the streamflow predictions in catchments with low average runoff.
Wagener, T.; Hogue, T.; Schaake, J.; Duan, Q.; Gupta, H.; Andreassian, V.; Hall, A.; Leavesley, G.
2006-01-01
The Model Parameter Estimation Experiment (MOPEX) is an international project aimed at developing enhanced techniques for the a priori estimation of parameters in hydrological models and in land surface parameterization schemes connected to atmospheric models. The MOPEX science strategy involves: database creation, a priori parameter estimation methodology development, parameter refinement or calibration, and the demonstration of parameter transferability. A comprehensive MOPEX database has been developed that contains historical hydrometeorological data and land surface characteristics data for many hydrological basins in the United States (US) and in other countries. This database is being continuously expanded to include basins from various hydroclimatic regimes throughout the world. MOPEX research has largely been driven by a series of international workshops that have brought interested hydrologists and land surface modellers together to exchange knowledge and experience in developing and applying parameter estimation techniques. With its focus on parameter estimation, MOPEX plays an important role in the international context of other initiatives such as GEWEX, HEPEX, PUB and PILPS. This paper outlines the MOPEX initiative, discusses its role in the scientific community, and briefly states future directions.
Modeling non-linear growth responses to temperature and hydrology in wetland trees
NASA Astrophysics Data System (ADS)
Keim, R.; Allen, S. T.
2016-12-01
Growth responses of wetland trees to flooding and climate variations are difficult to model because they depend on multiple, apparently interacting factors, but are a critical link in hydrological control of wetland carbon budgets. To more generally understand tree growth to hydrological forcing, we modeled non-linear responses of tree ring growth to flooding and climate at sub-annual time steps, using Vaganov-Shashkin response functions. We calibrated the model to six baldcypress tree-ring chronologies from two hydrologically distinct sites in southern Louisiana, and tested several hypotheses of plasticity in wetlands tree responses to interacting environmental variables. The model outperformed traditional multiple linear regression. More importantly, optimized response parameters were generally similar among sites with varying hydrological conditions, suggesting generality to the functions. Model forms that included interacting responses to multiple forcing factors were more effective than were single response functions, indicating the principle of a single limiting factor is not correct in wetlands and both climatic and hydrological variables must be considered in predicting responses to hydrological or climate change.
A sensitivity analysis of regional and small watershed hydrologic models
NASA Technical Reports Server (NTRS)
Ambaruch, R.; Salomonson, V. V.; Simmons, J. W.
1975-01-01
Continuous simulation models of the hydrologic behavior of watersheds are important tools in several practical applications such as hydroelectric power planning, navigation, and flood control. Several recent studies have addressed the feasibility of using remote earth observations as sources of input data for hydrologic models. The objective of the study reported here was to determine how accurately remotely sensed measurements must be to provide inputs to hydrologic models of watersheds, within the tolerances needed for acceptably accurate synthesis of streamflow by the models. The study objective was achieved by performing a series of sensitivity analyses using continuous simulation models of three watersheds. The sensitivity analysis showed quantitatively how variations in each of 46 model inputs and parameters affect simulation accuracy with respect to five different performance indices.
NASA Astrophysics Data System (ADS)
Botto, Anna; Camporese, Matteo
2017-04-01
Hydrological models allow scientists to predict the response of water systems under varying forcing conditions. In particular, many physically-based integrated models were recently developed in order to understand the fundamental hydrological processes occurring at the catchment scale. However, the use of this class of hydrological models is still relatively limited, as their prediction skills heavily depend on reliable parameter estimation, an operation that is never trivial, being normally affected by large uncertainty and requiring huge computational effort. The objective of this work is to test the potential of data assimilation to be used as an inverse modeling procedure for the broad class of integrated hydrological models. To pursue this goal, a Bayesian data assimilation (DA) algorithm based on a Monte Carlo approach, namely the ensemble Kalman filter (EnKF), is combined with the CATchment HYdrology (CATHY) model. In this approach, input variables (atmospheric forcing, soil parameters, initial conditions) are statistically perturbed providing an ensemble of realizations aimed at taking into account the uncertainty involved in the process. Each realization is propagated forward by the CATHY hydrological model within a parallel R framework, developed to reduce the computational effort. When measurements are available, the EnKF is used to update both the system state and soil parameters. In particular, four different assimilation scenarios are applied to test the capability of the modeling framework: first only pressure head or water content are assimilated, then, the combination of both, and finally both pressure head and water content together with the subsurface outflow. To demonstrate the effectiveness of the approach in a real-world scenario, an artificial hillslope was designed and built to provide real measurements for the DA analyses. The experimental facility, located in the Department of Civil, Environmental and Architectural Engineering of the University of Padova (Italy), consists of a reinforced concrete box containing a soil prism with maximum height of 3.5 m, length of 6 m and width of 2 m. The hillslope is equipped with six pairs of tensiometers and water content reflectometers, to monitor the pressure head and soil moisture content, respectively. Moreover, two tipping bucket flow gages were used to measure the surface and subsurface discharges at the outlet. A 12-day long experiment was carried out, during which a series of four rainfall events with constant rainfall rate were generated, interspersed with phases of drainage. During the experiment, measurements were collected at a relatively high resolution of 0.5 Hz. We report here on the capability of the data assimilation framework to estimate sets of plausible parameters that are consistent with the experimental setup.
NASA Astrophysics Data System (ADS)
Noh, S. J.; Tachikawa, Y.; Shiiba, M.; Yorozu, K.; Kim, S.
2012-04-01
Data assimilation methods have received increased attention to accomplish uncertainty assessment and enhancement of forecasting capability in various areas. Despite of their potentials, applicable software frameworks to probabilistic approaches and data assimilation are still limited because the most of hydrologic modeling software are based on a deterministic approach. In this study, we developed a hydrological modeling framework for sequential data assimilation, so called MPI-OHyMoS. MPI-OHyMoS allows user to develop his/her own element models and to easily build a total simulation system model for hydrological simulations. Unlike process-based modeling framework, this software framework benefits from its object-oriented feature to flexibly represent hydrological processes without any change of the main library. Sequential data assimilation based on the particle filters is available for any hydrologic models based on MPI-OHyMoS considering various sources of uncertainty originated from input forcing, parameters and observations. The particle filters are a Bayesian learning process in which the propagation of all uncertainties is carried out by a suitable selection of randomly generated particles without any assumptions about the nature of the distributions. In MPI-OHyMoS, ensemble simulations are parallelized, which can take advantage of high performance computing (HPC) system. We applied this software framework for short-term streamflow forecasting of several catchments in Japan using a distributed hydrologic model. Uncertainty of model parameters and remotely-sensed rainfall data such as X-band or C-band radar is estimated and mitigated in the sequential data assimilation.
Curve Number Application in Continuous Runoff Models: An Exercise in Futility?
NASA Astrophysics Data System (ADS)
Lamont, S. J.; Eli, R. N.
2006-12-01
The suitability of applying the NRCS (Natural Resource Conservation Service) Curve Number (CN) to continuous runoff prediction is examined by studying the dependence of CN on several hydrologic variables in the context of a complex nonlinear hydrologic model. The continuous watershed model Hydrologic Simulation Program-FORTRAN (HSPF) was employed using a simple theoretical watershed in two numerical procedures designed to investigate the influence of soil type, soil depth, storm depth, storm distribution, and initial abstraction ratio value on the calculated CN value. This study stems from a concurrent project involving the design of a hydrologic modeling system to support the Cumulative Hydrologic Impact Assessments (CHIA) of over 230 coal-mined watersheds throughout West Virginia. Because of the large number of watersheds and limited availability of data necessary for HSPF calibration, it was initially proposed that predetermined CN values be used as a surrogate for those HSPF parameters controlling direct runoff. A soil physics model was developed to relate CN values to those HSPF parameters governing soil moisture content and infiltration behavior, with the remaining HSPF parameters being adopted from previous calibrations on real watersheds. A numerical procedure was then adopted to back-calculate CN values from the theoretical watershed using antecedent moisture conditions equivalent to the NRCS Antecedent Runoff Condition (ARC) II. This procedure used the direct runoff produced from a cyclic synthetic storm event time series input to HSPF. A second numerical method of CN determination, using real time series rainfall data, was used to provide a comparison to those CN values determined using the synthetic storm event time series. It was determined that the calculated CN values resulting from both numerical methods demonstrated a nonlinear dependence on all of the computational variables listed above. It was concluded that the use of the Curve Number as a surrogate for the selected subset of HPSF parameters could not be justified. These results suggest that use of the Curve Number in other complex continuous time series hydrologic models may not be appropriate, given the limitations inherent in the definition of the NRCS CN method.
A parallel calibration utility for WRF-Hydro on high performance computers
NASA Astrophysics Data System (ADS)
Wang, J.; Wang, C.; Kotamarthi, V. R.
2017-12-01
A successful modeling of complex hydrological processes comprises establishing an integrated hydrological model which simulates the hydrological processes in each water regime, calibrates and validates the model performance based on observation data, and estimates the uncertainties from different sources especially those associated with parameters. Such a model system requires large computing resources and often have to be run on High Performance Computers (HPC). The recently developed WRF-Hydro modeling system provides a significant advancement in the capability to simulate regional water cycles more completely. The WRF-Hydro model has a large range of parameters such as those in the input table files — GENPARM.TBL, SOILPARM.TBL and CHANPARM.TBL — and several distributed scaling factors such as OVROUGHRTFAC. These parameters affect the behavior and outputs of the model and thus may need to be calibrated against the observations in order to obtain a good modeling performance. Having a parameter calibration tool specifically for automate calibration and uncertainty estimates of WRF-Hydro model can provide significant convenience for the modeling community. In this study, we developed a customized tool using the parallel version of the model-independent parameter estimation and uncertainty analysis tool, PEST, to enabled it to run on HPC with PBS and SLURM workload manager and job scheduler. We also developed a series of PEST input file templates that are specifically for WRF-Hydro model calibration and uncertainty analysis. Here we will present a flood case study occurred in April 2013 over Midwest. The sensitivity and uncertainties are analyzed using the customized PEST tool we developed.
Chen, J.; Wu, Y.
2012-01-01
This paper presents a study of the integration of the Soil and Water Assessment Tool (SWAT) model and the TOPographic MODEL (TOPMODEL) features for enhancing the physical representation of hydrologic processes. In SWAT, four hydrologic processes, which are surface runoff, baseflow, groundwater re-evaporation and deep aquifer percolation, are modeled by using a group of empirical equations. The empirical equations usually constrain the simulation capability of relevant processes. To replace these equations and to model the influences of topography and water table variation on streamflow generation, the TOPMODEL features are integrated into SWAT, and a new model, the so-called SWAT-TOP, is developed. In the new model, the process of deep aquifer percolation is removed, the concept of groundwater re-evaporation is refined, and the processes of surface runoff and baseflow are remodeled. Consequently, three parameters in SWAT are discarded, and two new parameters to reflect the TOPMODEL features are introduced. SWAT-TOP and SWAT are applied to the East River basin in South China, and the results reveal that, compared with SWAT, the new model can provide a more reasonable simulation of the hydrologic processes of surface runoff, groundwater re-evaporation, and baseflow. This study evidences that an established hydrologic model can be further improved by integrating the features of another model, which is a possible way to enhance our understanding of the workings of catchments.
A Four-parameter Budyko Equation for Mean Annual Water Balance
NASA Astrophysics Data System (ADS)
Tang, Y.; Wang, D.
2016-12-01
In this study, a four-parameter Budyko equation for long-term water balance at watershed scale is derived based on the proportionality relationships of the two-stage partitioning of precipitation. The four-parameter Budyko equation provides a practical solution to balance model simplicity and representation of dominated hydrologic processes. Under the four-parameter Budyko framework, the key hydrologic processes related to the lower bound of Budyko curve are determined, that is, the lower bound is corresponding to the situation when surface runoff and initial evaporation not competing with base flow generation are zero. The derived model is applied to 166 MOPEX watersheds in United States, and the dominant controlling factors on each parameter are determined. Then, four statistical models are proposed to predict the four model parameters based on the dominant controlling factors, e.g., saturated hydraulic conductivity, fraction of sand, time period between two storms, watershed slope, and Normalized Difference Vegetation Index. This study shows a potential application of the four-parameter Budyko equation to constrain land-surface parameterizations in ungauged watersheds or general circulation models.
Development of Hydro-Informatic Modelling System and its Application
NASA Astrophysics Data System (ADS)
Wang, Z.; Liu, C.; Zheng, H.; Zhang, L.; Wu, X.
2009-12-01
The understanding of hydrological cycle is the core of hydrology and the scientific base of water resources management. Meanwhile, simulation of hydrological cycle has long been regarded as an important tool for the assessment, utilization and protection of water resources. In this paper, a new tool named Hydro-Informatic Modelling System (HIMS) has been developed and introduced with case studies in the Yellow River Basin in China and 331 catchments in Australia. The case studies showed that HIMS can be employed as an integrated platform for hydrological simulation in different regions. HIMS is a modular based framework of hydrological model designed for different utilization such as flood forecasting, water resources planning and evaluating hydrological impacts of climate change and human activities. The unique of HIMS is its flexibility in providing alternative modules in the simulation of hydrological cycle, which successfully overcome the difficulties in the availability of input data, the uncertainty of parameters, and the difference of rainfall-runoff processes. The modular based structure of HIMS makes it possible for developing new hydrological models by the users.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, Martyn P.; Bierkens, Marc F. P.; Samaniego, Luis
The diversity in hydrologic models has historically led to great controversy on the correct approach to process-based hydrologic modeling, with debates centered on the adequacy of process parameterizations, data limitations and uncertainty, and computational constraints on model analysis. Here, we revisit key modeling challenges on requirements to (1) define suitable model equations, (2) define adequate model parameters, and (3) cope with limitations in computing power. We outline the historical modeling challenges, provide examples of modeling advances that address these challenges, and define outstanding research needs. We also illustrate how modeling advances have been made by groups using models of different type and complexity,more » and we argue for the need to more effectively use our diversity of modeling approaches in order to advance our collective quest for physically realistic hydrologic models.« less
Clark, Martyn P.; Bierkens, Marc F. P.; Samaniego, Luis; ...
2017-07-11
The diversity in hydrologic models has historically led to great controversy on the correct approach to process-based hydrologic modeling, with debates centered on the adequacy of process parameterizations, data limitations and uncertainty, and computational constraints on model analysis. Here, we revisit key modeling challenges on requirements to (1) define suitable model equations, (2) define adequate model parameters, and (3) cope with limitations in computing power. We outline the historical modeling challenges, provide examples of modeling advances that address these challenges, and define outstanding research needs. We also illustrate how modeling advances have been made by groups using models of different type and complexity,more » and we argue for the need to more effectively use our diversity of modeling approaches in order to advance our collective quest for physically realistic hydrologic models.« less
Modelling surface-water depression storage in a Prairie Pothole Region
Hay, Lauren E.; Norton, Parker A.; Viger, Roland; Markstrom, Steven; Regan, R. Steven; Vanderhoof, Melanie
2018-01-01
In this study, the Precipitation-Runoff Modelling System (PRMS) was used to simulate changes in surface-water depression storage in the 1,126-km2 Upper Pipestem Creek basin located within the Prairie Pothole Region of North Dakota, USA. The Prairie Pothole Region is characterized by millions of small water bodies (or surface-water depressions) that provide numerous ecosystem services and are considered an important contribution to the hydrologic cycle. The Upper Pipestem PRMS model was extracted from the U.S. Geological Survey's (USGS) National Hydrologic Model (NHM), developed to support consistent hydrologic modelling across the conterminous United States. The Geospatial Fabric database, created for the USGS NHM, contains hydrologic model parameter values derived from datasets that characterize the physical features of the entire conterminous United States for 109,951 hydrologic response units. Each hydrologic response unit in the Geospatial Fabric was parameterized using aggregated surface-water depression area derived from the National Hydrography Dataset Plus, an integrated suite of application-ready geospatial datasets. This paper presents a calibration strategy for the Upper Pipestem PRMS model that uses normalized lake elevation measurements to calibrate the parameters influencing simulated fractional surface-water depression storage. Results indicate that inclusion of measurements that give an indication of the change in surface-water depression storage in the calibration procedure resulted in accurate changes in surface-water depression storage in the water balance. Regionalized parameterization of the USGS NHM will require a proxy for change in surface-storage to accurately parameterize surface-water depression storage within the USGS NHM.
Bayesian calibration of the Community Land Model using surrogates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ray, Jaideep; Hou, Zhangshuan; Huang, Maoyi
2014-02-01
We present results from the Bayesian calibration of hydrological parameters of the Community Land Model (CLM), which is often used in climate simulations and Earth system models. A statistical inverse problem is formulated for three hydrological parameters, conditional on observations of latent heat surface fluxes over 48 months. Our calibration method uses polynomial and Gaussian process surrogates of the CLM, and solves the parameter estimation problem using a Markov chain Monte Carlo sampler. Posterior probability densities for the parameters are developed for two sites with different soil and vegetation covers. Our method also allows us to examine the structural errormore » in CLM under two error models. We find that surrogate models can be created for CLM in most cases. The posterior distributions are more predictive than the default parameter values in CLM. Climatologically averaging the observations does not modify the parameters' distributions significantly. The structural error model reveals a correlation time-scale which can be used to identify the physical process that could be contributing to it. While the calibrated CLM has a higher predictive skill, the calibration is under-dispersive.« less
Partitioning uncertainty in streamflow projections under nonstationary model conditions
NASA Astrophysics Data System (ADS)
Chawla, Ila; Mujumdar, P. P.
2018-02-01
Assessing the impacts of Land Use (LU) and climate change on future streamflow projections is necessary for efficient management of water resources. However, model projections are burdened with significant uncertainty arising from various sources. Most of the previous studies have considered climate models and scenarios as major sources of uncertainty, but uncertainties introduced by land use change and hydrologic model assumptions are rarely investigated. In this paper an attempt is made to segregate the contribution from (i) general circulation models (GCMs), (ii) emission scenarios, (iii) land use scenarios, (iv) stationarity assumption of the hydrologic model, and (v) internal variability of the processes, to overall uncertainty in streamflow projections using analysis of variance (ANOVA) approach. Generally, most of the impact assessment studies are carried out with unchanging hydrologic model parameters in future. It is, however, necessary to address the nonstationarity in model parameters with changing land use and climate. In this paper, a regression based methodology is presented to obtain the hydrologic model parameters with changing land use and climate scenarios in future. The Upper Ganga Basin (UGB) in India is used as a case study to demonstrate the methodology. The semi-distributed Variable Infiltration Capacity (VIC) model is set-up over the basin, under nonstationary conditions. Results indicate that model parameters vary with time, thereby invalidating the often-used assumption of model stationarity. The streamflow in UGB under the nonstationary model condition is found to reduce in future. The flows are also found to be sensitive to changes in land use. Segregation results suggest that model stationarity assumption and GCMs along with their interactions with emission scenarios, act as dominant sources of uncertainty. This paper provides a generalized framework for hydrologists to examine stationarity assumption of models before considering them for future streamflow projections and segregate the contribution of various sources to the uncertainty.
NASA Astrophysics Data System (ADS)
Dialynas, Y. G.; Arnone, E.; Noto, L. V.; Bras, R. L.
2013-12-01
Slope stability depends on geotechnical and hydrological factors that exhibit wide natural spatial variability, yet sufficient measurements of the related parameters are rarely available over entire study areas. The uncertainty associated with the inability to fully characterize hydrologic behavior has an impact on any attempt to model landslide hazards. This work suggests a way to systematically account for this uncertainty in coupled distributed hydrological-stability models for shallow landslide hazard assessment. A probabilistic approach for the prediction of rainfall-triggered landslide occurrence at basin scale was implemented in an existing distributed eco-hydrological and landslide model, tRIBS-VEGGIE -landslide (Triangulated Irregular Network (TIN)-based Real-time Integrated Basin Simulator - VEGetation Generator for Interactive Evolution). More precisely, we upgraded tRIBS-VEGGIE- landslide to assess the likelihood of shallow landslides by accounting for uncertainty related to geotechnical and hydrological factors that directly affect slope stability. Natural variability of geotechnical soil characteristics was considered by randomizing soil cohesion and friction angle. Hydrological uncertainty related to the estimation of matric suction was taken into account by considering soil retention parameters as correlated random variables. The probability of failure is estimated through an assumed theoretical Factor of Safety (FS) distribution, conditioned on soil moisture content. At each cell, the temporally variant FS statistics are approximated by the First Order Second Moment (FOSM) method, as a function of parameters statistical properties. The model was applied on the Rio Mameyes Basin, located in the Luquillo Experimental Forest in Puerto Rico, where previous landslide analyses have been carried out. At each time step, model outputs include the probability of landslide occurrence across the basin, and the most probable depth of failure at each soil column. The use of the proposed probabilistic approach for shallow landslide prediction is able to reveal and quantify landslide risk at slopes assessed as stable by simpler deterministic methods.
NASA Astrophysics Data System (ADS)
Frost, Andrew J.; Thyer, Mark A.; Srikanthan, R.; Kuczera, George
2007-07-01
SummaryMulti-site simulation of hydrological data are required for drought risk assessment of large multi-reservoir water supply systems. In this paper, a general Bayesian framework is presented for the calibration and evaluation of multi-site hydrological data at annual timescales. Models included within this framework are the hidden Markov model (HMM) and the widely used lag-1 autoregressive (AR(1)) model. These models are extended by the inclusion of a Box-Cox transformation and a spatial correlation function in a multi-site setting. Parameter uncertainty is evaluated using Markov chain Monte Carlo techniques. Models are evaluated by their ability to reproduce a range of important extreme statistics and compared using Bayesian model selection techniques which evaluate model probabilities. The case study, using multi-site annual rainfall data situated within catchments which contribute to Sydney's main water supply, provided the following results: Firstly, in terms of model probabilities and diagnostics, the inclusion of the Box-Cox transformation was preferred. Secondly the AR(1) and HMM performed similarly, while some other proposed AR(1)/HMM models with regionally pooled parameters had greater posterior probability than these two models. The practical significance of parameter and model uncertainty was illustrated using a case study involving drought security analysis for urban water supply. It was shown that ignoring parameter uncertainty resulted in a significant overestimate of reservoir yield and an underestimation of system vulnerability to severe drought.
Foglia, L.; Hill, Mary C.; Mehl, Steffen W.; Burlando, P.
2009-01-01
We evaluate the utility of three interrelated means of using data to calibrate the fully distributed rainfall‐runoff model TOPKAPI as applied to the Maggia Valley drainage area in Switzerland. The use of error‐based weighting of observation and prior information data, local sensitivity analysis, and single‐objective function nonlinear regression provides quantitative evaluation of sensitivity of the 35 model parameters to the data, identification of data types most important to the calibration, and identification of correlations among parameters that contribute to nonuniqueness. Sensitivity analysis required only 71 model runs, and regression required about 50 model runs. The approach presented appears to be ideal for evaluation of models with long run times or as a preliminary step to more computationally demanding methods. The statistics used include composite scaled sensitivities, parameter correlation coefficients, leverage, Cook's D, and DFBETAS. Tests suggest predictive ability of the calibrated model typical of hydrologic models.
NASA Astrophysics Data System (ADS)
Mai, J.; Cuntz, M.; Zink, M.; Schaefer, D.; Thober, S.; Samaniego, L. E.; Shafii, M.; Tolson, B.
2015-12-01
Hydrologic models are traditionally calibrated against discharge. Recent studies have shown however, that only a few global model parameters are constrained using the integral discharge measurements. It is therefore advisable to use additional information to calibrate those models. Snow pack data, for example, could improve the parametrization of snow-related processes, which might be underrepresented when using only discharge. One common approach is to combine these multiple objectives into one single objective function and allow the use of a single-objective algorithm. Another strategy is to consider the different objectives separately and apply a Pareto-optimizing algorithm. Both methods are challenging in the choice of appropriate multiple objectives with either conflicting interests or the focus on different model processes. A first aim of this study is to compare the two approaches employing the mesoscale Hydrologic Model mHM at several distinct river basins over Europe and North America. This comparison will allow the identification of the single-objective solution on the Pareto front. It is elucidated if this position is determined by the weighting and scaling of the multiple objectives when combing them to the single objective. The principal second aim is to guide the selection of proper objectives employing sensitivity analyses. These analyses are used to determine if an additional information would help to constrain additional model parameters. The additional information are either multiple data sources or multiple signatures of one measurement. It is evaluated if specific discharge signatures can inform different parts of the hydrologic model. The results show that an appropriate selection of discharge signatures increased the number of constrained parameters by more than 50% compared to using only NSE of the discharge time series. It is further assessed if the use of these signatures impose conflicting objectives on the hydrologic model. The usage of signatures is furthermore contrasted to the use of additional observations such as soil moisture or snow height. The gain of using an auxiliary dataset is determined using the parametric sensitivity on the respective modeled variable.
NASA Astrophysics Data System (ADS)
Lewis, Elizabeth; Kilsby, Chris; Fowler, Hayley
2014-05-01
The impact of climate change on hydrological systems requires further quantification in order to inform water management. This study intends to conduct such analysis using hydrological models. Such models are of varying forms, of which conceptual, lumped parameter models and physically-based models are two important types. The majority of hydrological studies use conceptual models calibrated against measured river flow time series in order to represent catchment behaviour. This method often shows impressive results for specific problems in gauged catchments. However, the results may not be robust under non-stationary conditions such as climate change, as physical processes and relationships amenable to change are not accounted for explicitly. Moreover, conceptual models are less readily applicable to ungauged catchments, in which hydrological predictions are also required. As such, the physically based, spatially distributed model SHETRAN is used in this study to develop a robust and reliable framework for modelling historic and future behaviour of gauged and ungauged catchments across the whole of Great Britain. In order to achieve this, a large array of data completely covering Great Britain for the period 1960-2006 has been collated and efficiently stored ready for model input. The data processed include a DEM, rainfall, PE and maps of geology, soil and land cover. A desire to make the modelling system easy for others to work with led to the development of a user-friendly graphical interface. This allows non-experts to set up and run a catchment model in a few seconds, a process that can normally take weeks or months. The quality and reliability of the extensive dataset for modelling hydrological processes has also been evaluated. One aspect of this has been an assessment of error and uncertainty in rainfall input data, as well as the effects of temporal resolution in precipitation inputs on model calibration. SHETRAN has been updated to accept gridded rainfall inputs, and UKCP09 gridded daily rainfall data has been disaggregated using hourly records to analyse the implications of using realistic sub-daily variability. Furthermore, the development of a comprehensive dataset and computationally efficient means of setting up and running catchment models has allowed for examination of how a robust parameter scheme may be derived. This analysis has been based on collective parameterisation of multiple catchments in contrasting hydrological settings and subject to varied processes. 350 gauged catchments all over the UK have been simulated, and a robust set of parameters is being sought by examining the full range of hydrological processes and calibrating to a highly diverse flow data series. The modelling system will be used to generate flow time series based on historical input data and also downscaled Regional Climate Model (RCM) forecasts using the UKCP09 Weather Generator. This will allow for analysis of flow frequency and associated future changes, which cannot be determined from the instrumental record or from lumped parameter model outputs calibrated only to historical catchment behaviour. This work will be based on the existing and functional modelling system described following some further improvements to calibration, particularly regarding simulation of groundwater-dominated catchments.
NASA Astrophysics Data System (ADS)
Vithanage, J.; Miller, S. N.; Paige, G. B.; Liu, T.
2017-12-01
We present a novel way to simulate the effects of rangeland management decisions in a GIS-based hydrologic modeling toolkit. We have implemented updates to the Automated Geospatial Watershed Assessment tool (AGWA) in which a landscape can be broken into management units (e.g., high intensity grazing, low intensity grazing, fire management, and unmanaged), each of which is assigned a different hydraulic conductivity (Ks) parameter in KINEmatic Runoff and EROSion model (KINEROS2). These updates are designed to provide modeling support to land managers tasked with rangeland watershed management planning and/or monitoring, and evaluation of water resources management. Changes to hydrologic processes and resulting hydrographs and sedigraphs are simulated within the AGWA framework. Case studies are presented in which a user selects various management scenarios and design storms, and the model identifies areas that become susceptible to change as a consequence of management decisions. The baseline (unmanaged) scenario is built using commonly available GIS data, after which the watershed is subdivided into management units. We used an array of design storms with various return periods and frequencies to evaluate the impact of management practices while changing the scale of watershed. Watershed parameters governing interception, infiltration, and surface runoff were determined with the aid of literature published on research studies carried out in the Walnut Gulch Experimental Watershed in southeast Arizona. We observed varied, but significant changes in hydrological responses (runoff) with different management practices as well with varied scales of watersheds. Results show that the toolkit can be used to quantify potential hydrologic change as a result of unitized land use decision-making.
A Hydrological Modeling Framework for Flood Risk Assessment for Japan
NASA Astrophysics Data System (ADS)
Ashouri, H.; Chinnayakanahalli, K.; Chowdhary, H.; Sen Gupta, A.
2016-12-01
Flooding has been the most frequent natural disaster that claims lives and imposes significant economic losses to human societies worldwide. Japan, with an annual rainfall of up to approximately 4000 mm is extremely vulnerable to flooding. The focus of this research is to develop a macroscale hydrologic model for simulating flooding toward an improved understanding and assessment of flood risk across Japan. The framework employs a conceptual hydrological model, known as the Probability Distributed Model (PDM), as well as the Muskingum-Cunge flood routing procedure for simulating streamflow. In addition, a Temperature-Index model is incorporated to account for snowmelt and its contribution to streamflow. For an efficient calibration of the model, in terms of computational timing and convergence of the parameters, a set of A Priori parameters is obtained based on the relationships between the model parameters and the physical properties of watersheds. In this regard, we have implemented a particle tracking algorithm and a statistical model which use high resolution Digital Terrain Models to estimate different time related parameters of the model such as time to peak of the unit hydrograph. In addition, global soil moisture and depth data are used to generate A Priori estimation of maximum soil moisture capacity, an important parameter of the PDM model. Once the model is calibrated, its performance is examined during the Typhoon Nabi which struck Japan in September 2005 and caused severe flooding throughout the country. The model is also validated for the extreme precipitation event in 2012 which affected Kyushu. In both cases, quantitative measures show that simulated streamflow depicts good agreement with gauge-based observations. The model is employed to simulate thousands of possible flood events for the entire Japan which makes a basis for a comprehensive flood risk assessment and loss estimation for the flood insurance industry.
NASA Astrophysics Data System (ADS)
Li, L.; Xu, C.-Y.; Engeland, K.
2012-04-01
With respect to model calibration, parameter estimation and analysis of uncertainty sources, different approaches have been used in hydrological models. Bayesian method is one of the most widely used methods for uncertainty assessment of hydrological models, which incorporates different sources of information into a single analysis through Bayesian theorem. However, none of these applications can well treat the uncertainty in extreme flows of hydrological models' simulations. This study proposes a Bayesian modularization method approach in uncertainty assessment of conceptual hydrological models by considering the extreme flows. It includes a comprehensive comparison and evaluation of uncertainty assessments by a new Bayesian modularization method approach and traditional Bayesian models using the Metropolis Hasting (MH) algorithm with the daily hydrological model WASMOD. Three likelihood functions are used in combination with traditional Bayesian: the AR (1) plus Normal and time period independent model (Model 1), the AR (1) plus Normal and time period dependent model (Model 2) and the AR (1) plus multi-normal model (Model 3). The results reveal that (1) the simulations derived from Bayesian modularization method are more accurate with the highest Nash-Sutcliffe efficiency value, and (2) the Bayesian modularization method performs best in uncertainty estimates of entire flows and in terms of the application and computational efficiency. The study thus introduces a new approach for reducing the extreme flow's effect on the discharge uncertainty assessment of hydrological models via Bayesian. Keywords: extreme flow, uncertainty assessment, Bayesian modularization, hydrological model, WASMOD
Numerical modeling techniques for flood analysis
NASA Astrophysics Data System (ADS)
Anees, Mohd Talha; Abdullah, K.; Nawawi, M. N. M.; Ab Rahman, Nik Norulaini Nik; Piah, Abd. Rahni Mt.; Zakaria, Nor Azazi; Syakir, M. I.; Mohd. Omar, A. K.
2016-12-01
Topographic and climatic changes are the main causes of abrupt flooding in tropical areas. It is the need to find out exact causes and effects of these changes. Numerical modeling techniques plays a vital role for such studies due to their use of hydrological parameters which are strongly linked with topographic changes. In this review, some of the widely used models utilizing hydrological and river modeling parameters and their estimation in data sparse region are discussed. Shortcomings of 1D and 2D numerical models and the possible improvements over these models through 3D modeling are also discussed. It is found that the HEC-RAS and FLO 2D model are best in terms of economical and accurate flood analysis for river and floodplain modeling respectively. Limitations of FLO 2D in floodplain modeling mainly such as floodplain elevation differences and its vertical roughness in grids were found which can be improve through 3D model. Therefore, 3D model was found to be more suitable than 1D and 2D models in terms of vertical accuracy in grid cells. It was also found that 3D models for open channel flows already developed recently but not for floodplain. Hence, it was suggested that a 3D model for floodplain should be developed by considering all hydrological and high resolution topographic parameter's models, discussed in this review, to enhance the findings of causes and effects of flooding.
NASA Astrophysics Data System (ADS)
Mai, Juliane; Cuntz, Matthias; Shafii, Mahyar; Zink, Matthias; Schäfer, David; Thober, Stephan; Samaniego, Luis; Tolson, Bryan
2016-04-01
Hydrologic models are traditionally calibrated against observed streamflow. Recent studies have shown however, that only a few global model parameters are constrained using this kind of integral signal. They can be identified using prior screening techniques. Since different objectives might constrain different parameters, it is advisable to use multiple information to calibrate those models. One common approach is to combine these multiple objectives (MO) into one single objective (SO) function and allow the use of a SO optimization algorithm. Another strategy is to consider the different objectives separately and apply a MO Pareto optimization algorithm. In this study, two major research questions will be addressed: 1) How do multi-objective calibrations compare with corresponding single-objective calibrations? 2) How much do calibration results deteriorate when the number of calibrated parameters is reduced by a prior screening technique? The hydrologic model employed in this study is a distributed hydrologic model (mHM) with 52 model parameters, i.e. transfer coefficients. The model uses grid cells as a primary hydrologic unit, and accounts for processes like snow accumulation and melting, soil moisture dynamics, infiltration, surface runoff, evapotranspiration, subsurface storage and discharge generation. The model is applied in three distinct catchments over Europe. The SO calibrations are performed using the Dynamically Dimensioned Search (DDS) algorithm with a fixed budget while the MO calibrations are achieved using the Pareto Dynamically Dimensioned Search (PA-DDS) algorithm allowing for the same budget. The two objectives used here are the Nash Sutcliffe Efficiency (NSE) of the simulated streamflow and the NSE of the logarithmic transformation. It is shown that the SO DDS results are located close to the edges of the Pareto fronts of the PA-DDS. The MO calibrations are hence preferable due to their supply of multiple equivalent solutions from which the user can choose at the end due to the specific needs. The sequential single-objective parameter screening was employed prior to the calibrations reducing the number of parameters by at least 50% in the different catchments and for the different single objectives. The single-objective calibrations led to a faster convergence of the objectives and are hence beneficial when using a DDS on single-objectives. The above mentioned parameter screening technique is generalized for multi-objectives and applied before calibration using the PA-DDS algorithm. Two different alternatives of this MO-screening are tested. The comparison of the calibration results using all parameters and using only screened parameters shows for both alternatives that the PA-DDS algorithm does not profit in terms of trade-off size and function evaluations required to achieve converged pareto fronts. This is because the PA-DDS algorithm automatically reduces search space with progress of the calibration run. This automatic reduction should be different for other search algorithms. It is therefore hypothesized that prior screening can but must not be beneficial for parameter estimation dependent on the chosen optimization algorithm.
NASA Astrophysics Data System (ADS)
Pilz, Tobias; Francke, Till; Bronstert, Axel
2017-08-01
The characteristics of a landscape pose essential factors for hydrological processes. Therefore, an adequate representation of the landscape of a catchment in hydrological models is vital. However, many of such models exist differing, amongst others, in spatial concept and discretisation. The latter constitutes an essential pre-processing step, for which many different algorithms along with numerous software implementations exist. In that context, existing solutions are often model specific, commercial, or depend on commercial back-end software, and allow only a limited or no workflow automation at all. Consequently, a new package for the scientific software and scripting environment R, called lumpR, was developed. lumpR employs an algorithm for hillslope-based landscape discretisation directed to large-scale application via a hierarchical multi-scale approach. The package addresses existing limitations as it is free and open source, easily extendible to other hydrological models, and the workflow can be fully automated. Moreover, it is user-friendly as the direct coupling to a GIS allows for immediate visual inspection and manual adjustment. Sufficient control is furthermore retained via parameter specification and the option to include expert knowledge. Conversely, completely automatic operation also allows for extensive analysis of aspects related to landscape discretisation. In a case study, the application of the package is presented. A sensitivity analysis of the most important discretisation parameters demonstrates its efficient workflow automation. Considering multiple streamflow metrics, the employed model proved reasonably robust to the discretisation parameters. However, parameters determining the sizes of subbasins and hillslopes proved to be more important than the others, including the number of representative hillslopes, the number of attributes employed for the lumping algorithm, and the number of sub-discretisations of the representative hillslopes.
NASA Astrophysics Data System (ADS)
Yang, Jing; Reichert, Peter; Abbaspour, Karim C.; Yang, Hong
2007-07-01
SummaryCalibration of hydrologic models is very difficult because of measurement errors in input and response, errors in model structure, and the large number of non-identifiable parameters of distributed models. The difficulties even increase in arid regions with high seasonal variation of precipitation, where the modelled residuals often exhibit high heteroscedasticity and autocorrelation. On the other hand, support of water management by hydrologic models is important in arid regions, particularly if there is increasing water demand due to urbanization. The use and assessment of model results for this purpose require a careful calibration and uncertainty analysis. Extending earlier work in this field, we developed a procedure to overcome (i) the problem of non-identifiability of distributed parameters by introducing aggregate parameters and using Bayesian inference, (ii) the problem of heteroscedasticity of errors by combining a Box-Cox transformation of results and data with seasonally dependent error variances, (iii) the problems of autocorrelated errors, missing data and outlier omission with a continuous-time autoregressive error model, and (iv) the problem of the seasonal variation of error correlations with seasonally dependent characteristic correlation times. The technique was tested with the calibration of the hydrologic sub-model of the Soil and Water Assessment Tool (SWAT) in the Chaohe Basin in North China. The results demonstrated the good performance of this approach to uncertainty analysis, particularly with respect to the fulfilment of statistical assumptions of the error model. A comparison with an independent error model and with error models that only considered a subset of the suggested techniques clearly showed the superiority of the approach based on all the features (i)-(iv) mentioned above.
Imposing constraints on parameter values of a conceptual hydrological model using baseflow response
NASA Astrophysics Data System (ADS)
Dunn, S. M.
Calibration of conceptual hydrological models is frequently limited by a lack of data about the area that is being studied. The result is that a broad range of parameter values can be identified that will give an equally good calibration to the available observations, usually of stream flow. The use of total stream flow can bias analyses towards interpretation of rapid runoff, whereas water quality issues are more frequently associated with low flow condition. This paper demonstrates how model distinctions between surface an sub-surface runoff can be used to define a likelihood measure based on the sub-surface (or baseflow) response. This helps to provide more information about the model behaviour, constrain the acceptable parameter sets and reduce uncertainty in streamflow prediction. A conceptual model, DIY, is applied to two contrasting catchments in Scotland, the Ythan and the Carron Valley. Parameter ranges and envelopes of prediction are identified using criteria based on total flow efficiency, baseflow efficiency and combined efficiencies. The individual parameter ranges derived using the combined efficiency measures still cover relatively wide bands, but are better constrained for the Carron than the Ythan. This reflects the fact that hydrological behaviour in the Carron is dominated by a much flashier surface response than in the Ythan. Hence, the total flow efficiency is more strongly controlled by surface runoff in the Carron and there is a greater contrast with the baseflow efficiency. Comparisons of the predictions using different efficiency measures for the Ythan also suggest that there is a danger of confusing parameter uncertainties with data and model error, if inadequate likelihood measures are defined.
NASA Astrophysics Data System (ADS)
Camporese, M.; Botto, A.
2017-12-01
Data assimilation is becoming increasingly popular in hydrological and earth system modeling, as it allows for direct integration of multisource observation data in modeling predictions and uncertainty reduction. For this reason, data assimilation has been recently the focus of much attention also for integrated surface-subsurface hydrological models, whereby multiple terrestrial compartments (e.g., snow cover, surface water, groundwater) are solved simultaneously, in an attempt to tackle environmental problems in a holistic approach. Recent examples include the joint assimilation of water table, soil moisture, and river discharge measurements in catchment models of coupled surface-subsurface flow using the ensemble Kalman filter (EnKF). Although the EnKF has been specifically developed to deal with nonlinear models, integrated hydrological models based on the Richards equation still represent a challenge, due to strong nonlinearities that may significantly affect the filter performance. Thus, more studies are needed to investigate the capabilities of EnKF to correct the system state and identify parameters in cases where the unsaturated zone dynamics are dominant. Here, the model CATHY (CATchment HYdrology) is applied to reproduce the hydrological dynamics observed in an experimental hillslope, equipped with tensiometers, water content reflectometer probes, and tipping bucket flow gages to monitor the hillslope response to a series of artificial rainfall events. We assimilate pressure head, soil moisture, and subsurface outflow with EnKF in a number of assimilation scenarios and discuss the challenges, issues, and tradeoffs arising from the assimilation of multisource data in a real-world test case, with particular focus on the capability of DA to update the subsurface parameters.
NASA Astrophysics Data System (ADS)
Garousi Nejad, I.; He, S.; Tang, Q.; Ogden, F. L.; Steinke, R. C.; Frazier, N.; Tarboton, D. G.; Ohara, N.; Lin, H.
2017-12-01
Spatial scale is one of the main considerations in hydrological modeling of snowmelt in mountainous areas. The size of model elements controls the degree to which variability can be explicitly represented versus what needs to be parameterized using effective properties such as averages or other subgrid variability parameterizations that may degrade the quality of model simulations. For snowmelt modeling terrain parameters such as slope, aspect, vegetation and elevation play an important role in the timing and quantity of snowmelt that serves as an input to hydrologic runoff generation processes. In general, higher resolution enhances the accuracy of the simulation since fine meshes represent and preserve the spatial variability of atmospheric and surface characteristics better than coarse resolution. However, this increases computational cost and there may be a scale beyond which the model response does not improve due to diminishing sensitivity to variability and irreducible uncertainty associated with the spatial interpolation of inputs. This paper examines the influence of spatial resolution on the snowmelt process using simulations of and data from the Animas River watershed, an alpine mountainous area in Colorado, USA, using an unstructured distributed physically based hydrological model developed for a parallel computing environment, ADHydro. Five spatial resolutions (30 m, 100 m, 250 m, 500 m, and 1 km) were used to investigate the variations in hydrologic response. This study demonstrated the importance of choosing the appropriate spatial scale in the implementation of ADHydro to obtain a balance between representing spatial variability and the computational cost. According to the results, variation in the input variables and parameters due to using different spatial resolution resulted in changes in the obtained hydrological variables, especially snowmelt, both at the basin-scale and distributed across the model mesh.
Seeking parsimony in hydrology and water resources technology
NASA Astrophysics Data System (ADS)
Koutsoyiannis, D.
2009-04-01
The principle of parsimony, also known as the principle of simplicity, the principle of economy and Ockham's razor, advises scientists to prefer the simplest theory among those that fit the data equally well. In this, it is an epistemic principle but reflects an ontological characterization that the universe is ultimately parsimonious. Is this principle useful and can it really be reconciled with, and implemented to, our modelling approaches of complex hydrological systems, whose elements and events are extraordinarily numerous, different and unique? The answer underlying the mainstream hydrological research of the last two decades seems to be negative. Hopes were invested to the power of computers that would enable faithful and detailed representation of the diverse system elements and the hydrological processes, based on merely "first principles" and resulting in "physically-based" models that tend to approach in complexity the real world systems. Today the account of such research endeavour seems not positive, as it did not improve model predictive capacity and processes comprehension. A return to parsimonious modelling seems to be again the promising route. The experience from recent research and from comparisons of parsimonious and complicated models indicates that the former can facilitate insight and comprehension, improve accuracy and predictive capacity, and increase efficiency. In addition - and despite aspiration that "physically based" models will have lower data requirements and, even, they ultimately become "data-free" - parsimonious models require fewer data to achieve the same accuracy with more complicated models. Naturally, the concepts that reconcile the simplicity of parsimonious models with the complexity of hydrological systems are probability theory and statistics. Probability theory provides the theoretical basis for moving from a microscopic to a macroscopic view of phenomena, by mapping sets of diverse elements and events of hydrological systems to single numbers (a probability or an expected value), and statistics provides the empirical basis of summarizing data, making inference from them, and supporting decision making in water resource management. Unfortunately, the current state of the art in probability, statistics and their union, often called stochastics, is not fully satisfactory for the needs of modelling of hydrological and water resource systems. A first problem is that stochastic modelling has traditionally relied on classical statistics, which is based on the independent "coin-tossing" prototype, rather than on the study of real-world systems whose behaviour is very different from the classical prototype. A second problem is that the stochastic models (particularly the multivariate ones) are often not parsimonious themselves. Therefore, substantial advancement of stochastics is necessary in a new paradigm of parsimonious hydrological modelling. These ideas are illustrated using several examples, namely: (a) hydrological modelling of a karst system in Bosnia and Herzegovina using three different approaches ranging from parsimonious to detailed "physically-based"; (b) parsimonious modelling of a peculiar modified catchment in Greece; (c) a stochastic approach that can replace parameter-excessive ARMA-type models with a generalized algorithm that produces any shape of autocorrelation function (consistent with the accuracy provided by the data) using a couple of parameters; (d) a multivariate stochastic approach which replaces a huge number of parameters estimated from data with coefficients estimated by the principle of maximum entropy; and (e) a parsimonious approach for decision making in multi-reservoir systems using a handful of parameters instead of thousands of decision variables.
NASA Astrophysics Data System (ADS)
Longuevergne, Laurent; Florsch, Nicolas; Boudin, Frédéric; Oudin, Ludovic; Camerlynck, Christian
2009-08-01
We investigate the deformation induced by water pressure variations in hydrologically active natural fractures, and recorded by tiltmeters and strainmeters. The deformation associated with a single fracture is derived using finite-element modelling (FEM). A range in fracture geometries is explored, first to highlight the sensitivity of each geometrical parameter to the deformation, and secondly to allow transfer to observation sites. Water level variations in the fracture are then derived from a hydrological model, driven by observed rainfall, and calibrated on fracture water flow measurements. The modelling results are explicitly applied to constrain the local hydrological contribution to observations with the 100-m-long hydrostatic tiltmeter installed at Sainte-Croix-aux-Mines (France). Our study shows that well-founded physical modelling of local hydrological effect allows a substantial correction of records in observatories.
NASA Technical Reports Server (NTRS)
Abramopoulos, F.; Rosenzweig, C.; Choudhury, B.
1988-01-01
A physically based ground hydrology model is presented that includes the processes of transpiration, evaporation from intercepted precipitation and dew, evaporation from bare soil, infiltration, soil water flow, and runoff. Data from the Goddard Institute for Space Studies GCM were used as inputs for off-line tests of the model in four 8 x 10 deg regions, including Brazil, Sahel, Sahara, and India. Soil and vegetation input parameters were caculated as area-weighted means over the 8 x 10 deg gridbox; the resulting hydrological quantities were compared to ground hydrology model calculations performed on the 1 x 1 deg cells which comprise the 8 x 10 deg gridbox. Results show that the compositing procedure worked well except in the Sahel, where low soil water levels and a heterogeneous land surface produce high variability in hydrological quantities; for that region, a resolution better than 8 x 10 deg is needed.
Payn, Robert A.; Hall, Robert O Jr.; Kennedy, Theodore A.; Poole, Geoff C; Marshall, Lucy A.
2017-01-01
Conventional methods for estimating whole-stream metabolic rates from measured dissolved oxygen dynamics do not account for the variation in solute transport times created by dynamic flow conditions. Changes in flow at hourly time scales are common downstream of hydroelectric dams (i.e. hydropeaking), and hydrologic limitations of conventional metabolic models have resulted in a poor understanding of the controls on biological production in these highly managed river ecosystems. To overcome these limitations, we coupled a two-station metabolic model of dissolved oxygen dynamics with a hydrologic river routing model. We designed calibration and parameter estimation tools to infer values for hydrologic and metabolic parameters based on time series of water quality data, achieving the ultimate goal of estimating whole-river gross primary production and ecosystem respiration during dynamic flow conditions. Our case study data for model design and calibration were collected in the tailwater of Glen Canyon Dam (Arizona, USA), a large hydropower facility where the mean discharge was 325 m3 s 1 and the average daily coefficient of variation of flow was 0.17 (i.e. the hydropeaking index averaged from 2006 to 2016). We demonstrate the coupled model’s conceptual consistency with conventional models during steady flow conditions, and illustrate the potential bias in metabolism estimates with conventional models during unsteady flow conditions. This effort contributes an approach to solute transport modeling and parameter estimation that allows study of whole-ecosystem metabolic regimes across a more diverse range of hydrologic conditions commonly encountered in streams and rivers.
Markstrom, Steven L.
2012-01-01
A software program, called P2S, has been developed which couples the daily stream temperature simulation capabilities of the U.S. Geological Survey Stream Network Temperature model with the watershed hydrology simulation capabilities of the U.S. Geological Survey Precipitation-Runoff Modeling System. The Precipitation-Runoff Modeling System is a modular, deterministic, distributed-parameter, physical-process watershed model that simulates hydrologic response to various combinations of climate and land use. Stream Network Temperature was developed to help aquatic biologists and engineers predict the effects of changes that hydrology and energy have on water temperatures. P2S will allow scientists and watershed managers to evaluate the effects of historical climate and projected climate change, landscape evolution, and resource management scenarios on watershed hydrology and in-stream water temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
N.D. Francis
The objective of this calculation is to develop a time dependent in-drift effective thermal conductivity parameter that will approximate heat conduction, thermal radiation, and natural convection heat transfer using a single mode of heat transfer (heat conduction). In order to reduce the physical and numerical complexity of the heat transfer processes that occur (and must be modeled) as a result of the emplacement of heat generating wastes, a single parameter will be developed that approximates all forms of heat transfer from the waste package surface to the drift wall (or from one surface exchanging heat with another). Subsequently, with thismore » single parameter, one heat transfer mechanism (e.g., conduction heat transfer) can be used in the models. The resulting parameter is to be used as input in the drift-scale process-level models applied in total system performance assessments for the site recommendation (TSPA-SR). The format of this parameter will be a time-dependent table for direct input into the thermal-hydrologic (TH) and the thermal-hydrologic-chemical (THC) models.« less
NASA Astrophysics Data System (ADS)
Rödiger, T.; Geyer, S.; Mallast, U.; Merz, R.; Krause, P.; Fischer, C.; Siebert, C.
2014-02-01
A key factor for sustainable management of groundwater systems is the accurate estimation of groundwater recharge. Hydrological models are common tools for such estimations and widely used. As such models need to be calibrated against measured values, the absence of adequate data can be problematic. We present a nested multi-response calibration approach for a semi-distributed hydrological model in the semi-arid catchment of Wadi al Arab in Jordan, with sparsely available runoff data. The basic idea of the calibration approach is to use diverse observations in a nested strategy, in which sub-parts of the model are calibrated to various observation data types in a consecutive manner. First, the available different data sources have to be screened for information content of processes, e.g. if data sources contain information on mean values, spatial or temporal variability etc. for the entire catchment or only sub-catchments. In a second step, the information content has to be mapped to relevant model components, which represent these processes. Then the data source is used to calibrate the respective subset of model parameters, while the remaining model parameters remain unchanged. This mapping is repeated for other available data sources. In that study the gauged spring discharge (GSD) method, flash flood observations and data from the chloride mass balance (CMB) are used to derive plausible parameter ranges for the conceptual hydrological model J2000g. The water table fluctuation (WTF) method is used to validate the model. Results from modelling using a priori parameter values from literature as a benchmark are compared. The estimated recharge rates of the calibrated model deviate less than ±10% from the estimates derived from WTF method. Larger differences are visible in the years with high uncertainties in rainfall input data. The performance of the calibrated model during validation produces better results than applying the model with only a priori parameter values. The model with a priori parameter values from literature tends to overestimate recharge rates with up to 30%, particular in the wet winter of 1991/1992. An overestimation of groundwater recharge and hence available water resources clearly endangers reliable water resource managing in water scarce region. The proposed nested multi-response approach may help to better predict water resources despite data scarcity.
NASA Astrophysics Data System (ADS)
Prucha, R. H.; Dayton, C. S.; Hawley, C. M.
2002-12-01
The Rocky Flats Environmental Technology Site (RFETS) in Golden, Colorado, a former Department of Energy nuclear weapons manufacturing facility, is currently undergoing closure. The natural semi-arid interaction between surface and subsurface flow at RFETS is complex and complicated by the industrial modifications to the flow system. Using a substantial site data set, a distributed parameter, fully-integrated hydrologic model was developed to assess the hydrologic impact of different hypothetical site closure configurations on the current flow system and to better understand the integrated hydrologic behavior of the system. An integrated model with this level of detail has not been previously developed in a semi-arid area, and a unique, but comprehensive, approach was required to calibrate and validate the model. Several hypothetical scenarios were developed to simulate hydrologic effects of modifying different aspects of the site. For example, some of the simulated modifications included regrading the current land surface, changing the existing surface channel network, removing subsurface trenches and gravity drain flow systems, installing a slurry wall and geotechnical cover, changing the current vegetative cover, and converting existing buildings and pavement to permeable soil areas. The integrated flow model was developed using a rigorous physically-based code so that realistic design parameters can simulate these changes. This code also permitted evaluation of changes to complex integrated hydrologic system responses that included channelized and overland flow, pond levels, unsaturated zone storage, groundwater heads and flow directions, and integrated water balances for key areas. Results generally show that channel flow offsite decreases substantially for different scenarios, while groundwater heads generally increase within the reconfigured industrial area most of which is then discharged as evapotranspiration. These changes have significant implications to site closure and operation.
A physically based catchment partitioning method for hydrological analysis
NASA Astrophysics Data System (ADS)
Menduni, Giovanni; Riboni, Vittoria
2000-07-01
We propose a partitioning method for the topographic surface, which is particularly suitable for hydrological distributed modelling and shallow-landslide distributed modelling. The model provides variable mesh size and appears to be a natural evolution of contour-based digital terrain models. The proposed method allows the drainage network to be derived from the contour lines. The single channels are calculated via a search for the steepest downslope lines. Then, for each network node, the contributing area is determined by means of a search for both steepest upslope and downslope lines. This leads to the basin being partitioned into physically based finite elements delimited by irregular polygons. In particular, the distributed computation of local geomorphological parameters (i.e. aspect, average slope and elevation, main stream length, concentration time, etc.) can be performed easily for each single element. The contributing area system, together with the information on the distribution of geomorphological parameters provide a useful tool for distributed hydrological modelling and simulation of environmental processes such as erosion, sediment transport and shallow landslides.
NASA Technical Reports Server (NTRS)
Ragan, R. M.; Jackson, T. J.; Fitch, W. N.; Shubinski, R. P.
1976-01-01
Models designed to support the hydrologic studies associated with urban water resources planning require input parameters that are defined in terms of land cover. Estimating the land cover is a difficult and expensive task when drainage areas larger than a few sq. km are involved. Conventional and LANDSAT based methods for estimating the land cover based input parameters required by hydrologic planning models were compared in a case study of the 50.5 sq. km (19.5 sq. mi) Four Mile Run Watershed in Virginia. Results of the study indicate that the LANDSAT based approach is highly cost effective for planning model studies. The conventional approach to define inputs was based on 1:3600 aerial photos, required 110 man-days and a total cost of $14,000. The LANDSAT based approach required 6.9 man-days and cost $2,350. The conventional and LANDSAT based models gave similar results relative to discharges and estimated annual damages expected from no flood control, channelization, and detention storage alternatives.
NASA Astrophysics Data System (ADS)
Nijzink, Remko C.; Hutton, Christopher; Pechlivanidis, Ilias; Capell, René; Arheimer, Berit; Freer, Jim; Han, Dawei; Wagener, Thorsten; McGuire, Kevin; Savenije, Hubert; Hrachowitz, Markus
2017-04-01
The moisture storage available to vegetation is a key parameter in the hydrological functioning of ecosystems. This parameter, the root zone storage capacity, determines the partitioning between runoff and transpiration, but is impossible to observe at the catchment scale. In this research, data from the experimental forests of HJ Andrews (Oregon, USA) and Hubbard Brook (New Hampshire, USA) was used to test the hypotheses that: (1) the root zone storage capacity significantly changes after deforestation, (2) changes in the root zone storage capacity can to a large extent explain post-treatment changes to the hydrological regimes and that (3) a time-dynamic formulation of the root zone storage can improve the performance of a hydrological model. At first, root zone storage capacities were estimated based on a simple, water-balance based method. Briefly, the maximum difference between cumulative rainfall and estimated transpiration was determined, which could be considered a proxy for root zone storage capacity. These values were compared with root zone storage capacities obtained from four conceptual models (HYPE, HYMOD, FLEX, TUW), calibrated for consecutive 2-year windows. Both methods showed a sharp decline in root zone storage capacity after deforestation, which was followed by a gradual recovery signal. It was found in a trend analysis that these recovery periods took between 5 and 13 years for the different catchments. Eventually, one of the models was adjusted to allow for a time-dynamic formulation of root zone storage capacity. This adjusted model showed improvements in model performance as evaluated by 28 hydrological signatures, such as rising limb density or peak flows. Thus, this research clearly shows the time-dynamic character of a crucial parameter, which is often considered to remain constant in time. Root zone storage capacities are strongly affected by deforestation, leading to changes in hydrological regimes, and time-dynamic formulations of root zone storage are therefore necessary in systems under change.
NASA Astrophysics Data System (ADS)
Nijssen, B.; Chiao, T. H.; Lettenmaier, D. P.; Vano, J. A.
2016-12-01
Hydrologic models with varying complexities and structures are commonly used to evaluate the impact of climate change on future hydrology. While the uncertainties in future climate projections are well documented, uncertainties in streamflow projections associated with hydrologic model structure and parameter estimation have received less attention. In this study, we implemented and calibrated three hydrologic models (the Distributed Hydrology Soil Vegetation Model (DHSVM), the Precipitation-Runoff Modeling System (PRMS), and the Variable Infiltration Capacity model (VIC)) for the Bull Run watershed in northern Oregon using consistent data sources and best practice calibration protocols. The project was part of a Piloting Utility Modeling Applications (PUMA) project with the Portland Water Bureau (PWB) under the umbrella of the Water Utility Climate Alliance (WUCA). Ultimately PWB would use the model evaluation to select a model to perform in-house climate change analysis for Bull Run Watershed. This presentation focuses on the experimental design of the comparison project, project findings and the collaboration between the team at the University of Washington and at PWB. After calibration, the three models showed similar capability to reproduce seasonal and inter-annual variations in streamflow, but differed in their ability to capture extreme events. Furthermore, the annual and seasonal hydrologic sensitivities to changes in climate forcings differed among models, potentially attributable to different model representations of snow and vegetation processes.
Parameter interdependence and uncertainty induced by lumping in a hydrologic model
NASA Astrophysics Data System (ADS)
Gallagher, Mark R.; Doherty, John
2007-05-01
Throughout the world, watershed modeling is undertaken using lumped parameter hydrologic models that represent real-world processes in a manner that is at once abstract, but nevertheless relies on algorithms that reflect real-world processes and parameters that reflect real-world hydraulic properties. In most cases, values are assigned to the parameters of such models through calibration against flows at watershed outlets. One criterion by which the utility of the model and the success of the calibration process are judged is that realistic values are assigned to parameters through this process. This study employs regularization theory to examine the relationship between lumped parameters and corresponding real-world hydraulic properties. It demonstrates that any kind of parameter lumping or averaging can induce a substantial amount of "structural noise," which devices such as Box-Cox transformation of flows and autoregressive moving average (ARMA) modeling of residuals are unlikely to render homoscedastic and uncorrelated. Furthermore, values estimated for lumped parameters are unlikely to represent average values of the hydraulic properties after which they are named and are often contaminated to a greater or lesser degree by the values of hydraulic properties which they do not purport to represent at all. As a result, the question of how rigidly they should be bounded during the parameter estimation process is still an open one.
NASA Astrophysics Data System (ADS)
Clark, Martyn P.; Kavetski, Dmitri
2010-10-01
A major neglected weakness of many current hydrological models is the numerical method used to solve the governing model equations. This paper thoroughly evaluates several classes of time stepping schemes in terms of numerical reliability and computational efficiency in the context of conceptual hydrological modeling. Numerical experiments are carried out using 8 distinct time stepping algorithms and 6 different conceptual rainfall-runoff models, applied in a densely gauged experimental catchment, as well as in 12 basins with diverse physical and hydroclimatic characteristics. Results show that, over vast regions of the parameter space, the numerical errors of fixed-step explicit schemes commonly used in hydrology routinely dwarf the structural errors of the model conceptualization. This substantially degrades model predictions, but also, disturbingly, generates fortuitously adequate performance for parameter sets where numerical errors compensate for model structural errors. Simply running fixed-step explicit schemes with shorter time steps provides a poor balance between accuracy and efficiency: in some cases daily-step adaptive explicit schemes with moderate error tolerances achieved comparable or higher accuracy than 15 min fixed-step explicit approximations but were nearly 10 times more efficient. From the range of simple time stepping schemes investigated in this work, the fixed-step implicit Euler method and the adaptive explicit Heun method emerge as good practical choices for the majority of simulation scenarios. In combination with the companion paper, where impacts on model analysis, interpretation, and prediction are assessed, this two-part study vividly highlights the impact of numerical errors on critical performance aspects of conceptual hydrological models and provides practical guidelines for robust numerical implementation.
NASA Astrophysics Data System (ADS)
Mouffe, M.; Getirana, A.; Ricci, S. M.; Lion, C.; Biancamaria, S.; Boone, A.; Mognard, N. M.; Rogel, P.
2011-12-01
The Surface Water and Ocean Topography (SWOT) mission is a swath mapping radar interferometer that will provide global measurements of water surface elevation (WSE). The revisit time depends upon latitude and varies from two (low latitudes) to ten (high latitudes) per 22-day orbit repeat period. The high resolution and the global coverage of the SWOT data open the way for new hydrology studies. Here, the aim is to investigate the use of virtually generated SWOT data to improve discharge simulation using data assimilation techniques. In the framework of the SWOT virtual mission (VM), this study presents the first results of the automatic calibration of a global flow routing (GFR) scheme using SWOT VM measurements for the Amazon basin. The Hydrological Modeling and Analysis Platform (HyMAP) is used along with the MOCOM-UA multi-criteria global optimization algorithm. HyMAP has a 0.25-degree spatial resolution and runs at the daily time step to simulate discharge, water levels and floodplains. The surface runoff and baseflow drainage derived from the Interactions Sol-Biosphère-Atmosphère (ISBA) model are used as inputs for HyMAP. Previous works showed that the use of ENVISAT data enables the reduction of the uncertainty on some of the hydrological model parameters, such as river width and depth, Manning roughness coefficient and groundwater time delay. In the framework of the SWOT preparation work, the automatic calibration procedure was applied using SWOT VM measurements. For this Observing System Experiment (OSE), the synthetical data were obtained applying an instrument simulator (representing realistic SWOT errors) for one hydrological year to HYMAP simulated WSE using a "true" set of parameters. Only pixels representing rivers larger than 100 meters within the Amazon basin are considered to produce SWOT VM measurements. The automatic calibration procedure leads to the estimation of optimal parametersminimizing objective functions that formulate the difference between SWOT observations and modeled WSE using a perturbed set of parameters. Different formulations of the objective function were used, especially to account for SWOT observation errors, as well as various sets of calibration parameters.
Climatic and hydrologic influences on wading bird foraging patterns in Everglades National Park
NASA Astrophysics Data System (ADS)
Kwon, H.; Lall, U.; Engel, V.
2008-05-01
The ability to map the relationship between ecological outcomes and hydrologic conditions in the Everglades National Park is a key building block for the restoration program, a primary goal of which is to improve habitat for wading bird species and to promote nesting. This paper reports on a model linking wading bird foraging numbers to hydrologic conditions in the Park We demonstrate that seasonal hydrologic statistics derived from a single water level recording site are a) well correlated with water depths throughout most areas of the Park, and b) are effective as predictors of Great Egret and White Ibis foraging numbers at the end of the nesting season when using a nonlinear Bayesian Hierarchical model that permits the estimation of a conditional distribution of bird populations given the seasonal statistics of stage at the index location. Model parameters are estimated using a Markov Chain Monte Carlo procedure. Parameter and model uncertainty are both assessed as a byproduct of the estimation process. Water depths at the beginning of the nesting season, the recession rate, and the numbers of reversals in the recession are identified as significant predictors, consistent with the hydrologic conditions considered important in the seasonal production and concentration of prey organisms in this system. Long-term hydrologic records at the index location allow for a retrospective analysis (1952-2006) of wading bird foraging numbers showing low frequency oscillations in response to decadal and multi-decadal fluctuations in hydroclimatic conditions.
NASA Astrophysics Data System (ADS)
Kirchner, James W.
2006-03-01
The science of hydrology is on the threshold of major advances, driven by new hydrologic measurements, new methods for analyzing hydrologic data, and new approaches to modeling hydrologic systems. Here I suggest several promising directions forward, including (1) designing new data networks, field observations, and field experiments, with explicit recognition of the spatial and temporal heterogeneity of hydrologic processes, (2) replacing linear, additive "black box" models with "gray box" approaches that better capture the nonlinear and non-additive character of hydrologic systems, (3) developing physically based governing equations for hydrologic behavior at the catchment or hillslope scale, recognizing that they may look different from the equations that describe the small-scale physics, (4) developing models that are minimally parameterized and therefore stand some chance of failing the tests that they are subjected to, and (5) developing ways to test models more comprehensively and incisively. I argue that scientific progress will mostly be achieved through the collision of theory and data, rather than through increasingly elaborate and parameter-rich models that may succeed as mathematical marionettes, dancing to match the calibration data even if their underlying premises are unrealistic. Thus advancing the science of hydrology will require not only developing theories that get the right answers but also testing whether they get the right answers for the right reasons.
Improving Long-term Post-wildfire hydrologic simulations using ParFlow
NASA Astrophysics Data System (ADS)
Lopez, S. R.; Kinoshita, A. M.
2015-12-01
Wildfires alter the natural hydrologic processes within a watershed. After vegetation is burned, the combustion of organic material and debris settles into the soil creating a hydrophobic layer beneath the soil surface with varying degree of thickness and depth. Vegetation regrowth rates vary as a function of radiative exposure, burn severity, and precipitation patterns. Hydrologic models used by the Burned Area Emergency Response (BAER) teams use input data and model calibration constraints that are generally either one-dimensional, empirically-based models, or two-dimensional, conceptually-based models with lumped parameter distributions. These models estimate runoff measurements at the watershed outlet; however, do not provide a distributed hydrologic simulation at each point within the watershed. This work uses ParFlow, a three-dimensional, distributed hydrologic model to (1) correlate burn severity with hydrophobicity, (2) evaluate vegetation recovery rate on water components, and (3) improve flood prediction for managers to help with resource allocation and management operations in burned watersheds. ParFlow is applied to Devil Canyon (43 km2) in San Bernardino, California, which was 97% burned in the 2003 Old Fire. The model set-up uses a 30m-cell size resolution over a 6.7 km by 6.4 km lateral extent. The subsurface reaches 30 m and is assigned a variable cell thickness. Variable subsurface thickness allows users to explicitly consider the degree of recovery throughout the stages of regrowth. Burn severity maps from remotely sensed imagery are used to assign initial hydrophobic layer parameters and thickness. Vegetation regrowth is represented with satellite an Enhanced Vegetation Index. Pre and post-fire hydrologic response is evaluated using runoff measurements at the watershed outlet, and using water component (overland flow, lateral flow, baseflow) measurements.
NASA Astrophysics Data System (ADS)
Frey, M. P.; Stamm, C.; Schneider, M. K.; Reichert, P.
2011-12-01
A distributed hydrological model was used to simulate the distribution of fast runoff formation as a proxy for critical source areas for herbicide pollution in a small agricultural catchment in Switzerland. We tested to what degree predictions based on prior knowledge without local measurements could be improved upon relying on observed discharge. This learning process consisted of five steps: For the prior prediction (step 1), knowledge of the model parameters was coarse and predictions were fairly uncertain. In the second step, discharge data were used to update the prior parameter distribution. Effects of uncertainty in input data and model structure were accounted for by an autoregressive error model. This step decreased the width of the marginal distributions of parameters describing the lower boundary (percolation rates) but hardly affected soil hydraulic parameters. Residual analysis (step 3) revealed model structure deficits. We modified the model, and in the subsequent Bayesian updating (step 4) the widths of the posterior marginal distributions were reduced for most parameters compared to those of the prior. This incremental procedure led to a strong reduction in the uncertainty of the spatial prediction. Thus, despite only using spatially integrated data (discharge), the spatially distributed effect of the improved model structure can be expected to improve the spatially distributed predictions also. The fifth step consisted of a test with independent spatial data on herbicide losses and revealed ambiguous results. The comparison depended critically on the ratio of event to preevent water that was discharged. This ratio cannot be estimated from hydrological data only. The results demonstrate that the value of local data is strongly dependent on a correct model structure. An iterative procedure of Bayesian updating, model testing, and model modification is suggested.
NASA Astrophysics Data System (ADS)
Li, Y.; Chang, J.; Luo, L.
2017-12-01
It is of great importance for water resources management to model the truly hydrological process under changing environment, especially under significant changes of underlying surfaces like the Wei River Bain (WRB) where the subsurface hydrology is highly influenced by human activities, and to systematically investigate the interactions among LULC change, streamflow variation and changes in runoff generation process. Therefore, we proposed the idea of evolving parameters in hydrological model (SWAT) to reflect the changes in physical environment with different LULC conditions. Then with these evolving parameters, the spatiotemporal impacts of LULC changes on streamflow were quantified, and qualitative analysis was conducted to further explore how LULC changes affect the streamflow from the perspective of runoff generation mechanism. Results indicate the following: 1) evolving parameter calibration is not only effective but necessary to ensure the validity of the model when dealing with significant changes in underlying surfaces due to human activities. 2) compared to the baseline period, the streamflow in wet seasons increased in the 1990s but decreased in the 2000s. While at yearly and dry seasonal scales, the streamflow decreased in both two decades; 3) the expansion of cropland is the major contributor to the reduction of surface water component, thus causing the decline in streamflow at yearly and dry seasonal scales. While compared to the 1990s, the expansions of woodland in the middle stream and grassland in the downstream are the main stressors that increased the soil water component, thus leading to the more decline of the streamflow in the 2000s.
NASA Astrophysics Data System (ADS)
Chang, Yong; Wu, Jichun; Jiang, Guanghui; Kang, Zhiqiang
2017-05-01
Conceptual models often suffer from the over-parameterization problem due to limited available data for the calibration. This leads to the problem of parameter nonuniqueness and equifinality, which may bring much uncertainty of the simulation result. How to find out the appropriate model structure supported by the available data to simulate the catchment is still a big challenge in the hydrological research. In this paper, we adopt a multi-model framework to identify the dominant hydrological process and appropriate model structure of a karst spring, located in Guilin city, China. For this catchment, the spring discharge is the only available data for the model calibration. This framework starts with a relative complex conceptual model according to the perception of the catchment and then this complex is simplified into several different models by gradually removing the model component. The multi-objective approach is used to compare the performance of these different models and the regional sensitivity analysis (RSA) is used to investigate the parameter identifiability. The results show this karst spring is mainly controlled by two different hydrological processes and one of the processes is threshold-driven which is consistent with the fieldwork investigation. However, the appropriate model structure to simulate the discharge of this spring is much simpler than the actual aquifer structure and hydrological processes understanding from the fieldwork investigation. A simple linear reservoir with two different outlets is enough to simulate this spring discharge. The detail runoff process in the catchment is not needed in the conceptual model to simulate the spring discharge. More complex model should need more other additional data to avoid serious deterioration of model predictions.
NASA Astrophysics Data System (ADS)
Nijzink, Remko; Hutton, Christopher; Pechlivanidis, Ilias; Capell, René; Arheimer, Berit; Freer, Jim; Han, Dawei; Wagener, Thorsten; McGuire, Kevin; Savenije, Hubert; Hrachowitz, Markus
2016-12-01
The core component of many hydrological systems, the moisture storage capacity available to vegetation, is impossible to observe directly at the catchment scale and is typically treated as a calibration parameter or obtained from a priori available soil characteristics combined with estimates of rooting depth. Often this parameter is considered to remain constant in time. Using long-term data (30-40 years) from three experimental catchments that underwent significant land cover change, we tested the hypotheses that: (1) the root-zone storage capacity significantly changes after deforestation, (2) changes in the root-zone storage capacity can to a large extent explain post-treatment changes to the hydrological regimes and that (3) a time-dynamic formulation of the root-zone storage can improve the performance of a hydrological model.A recently introduced method to estimate catchment-scale root-zone storage capacities based on climate data (i.e. observed rainfall and an estimate of transpiration) was used to reproduce the temporal evolution of root-zone storage capacity under change. Briefly, the maximum deficit that arises from the difference between cumulative daily precipitation and transpiration can be considered as a proxy for root-zone storage capacity. This value was compared to the value obtained from four different conceptual hydrological models that were calibrated for consecutive 2-year windows.It was found that water-balance-derived root-zone storage capacities were similar to the values obtained from calibration of the hydrological models. A sharp decline in root-zone storage capacity was observed after deforestation, followed by a gradual recovery, for two of the three catchments. Trend analysis suggested hydrological recovery periods between 5 and 13 years after deforestation. In a proof-of-concept analysis, one of the hydrological models was adapted to allow dynamically changing root-zone storage capacities, following the observed changes due to deforestation. Although the overall performance of the modified model did not considerably change, in 51 % of all the evaluated hydrological signatures, considering all three catchments, improvements were observed when adding a time-variant representation of the root-zone storage to the model.In summary, it is shown that root-zone moisture storage capacities can be highly affected by deforestation and climatic influences and that a simple method exclusively based on climate data can not only provide robust, catchment-scale estimates of this critical parameter, but also reflect its time-dynamic behaviour after deforestation.
Publishing and sharing of hydrologic models through WaterHUB
NASA Astrophysics Data System (ADS)
Merwade, V.; Ruddell, B. L.; Song, C.; Zhao, L.; Kim, J.; Assi, A.
2011-12-01
Most hydrologists use hydrologic models to simulate the hydrologic processes to understand hydrologic pathways and fluxes for research, decision making and engineering design. Once these tasks are complete including publication of results, the models generally are not published or made available to the public for further use and improvement. Although publication or sharing of models is not required for journal publications, sharing of models may open doors for new collaborations, and avoids duplication of efforts if other researchers are interested in simulating a particular watershed for which a model already exists. For researchers, who are interested in sharing models, there are limited avenues to publishing their models to the wider community. Towards filling this gap, a prototype cyberinfrastructure (CI), called WaterHUB, is developed for sharing hydrologic data and modeling tools in an interactive environment. To test the utility of WaterHUB for sharing hydrologic models, a system to publish and share SWAT (Soil Water Assessment Tool) is developed. Users can utilize WaterHUB to search and download existing SWAT models, and also upload new SWAT models. Metadata such as the name of the watershed, name of the person or agency who developed the model, simulation period, time step, and list of calibrated parameters also published with individual model.
NASA Astrophysics Data System (ADS)
Kwon, Hyun-Han; Lall, Upmanu; Engel, Vic
2011-09-01
The ability to map relationships between ecological outcomes and hydrologic conditions in the Everglades National Park (ENP) is a key building block for their restoration program, a primary goal of which is to improve conditions for wading birds. This paper presents a model linking wading bird foraging numbers to hydrologic conditions in the ENP. Seasonal hydrologic statistics derived from a single water level recorder are well correlated with water depths throughout most areas of the ENP, and are effective as predictors of wading bird numbers when using a nonlinear hierarchical Bayesian model to estimate the conditional distribution of bird populations. Model parameters are estimated using a Markov chain Monte Carlo (MCMC) procedure. Parameter and model uncertainty is assessed as a byproduct of the estimation process. Water depths at the beginning of the nesting season, the average dry season water level, and the numbers of reversals from the dry season recession are identified as significant predictors, consistent with the hydrologic conditions considered important in the production and concentration of prey organisms in this system. Long-term hydrologic records at the index location allow for a retrospective analysis (1952-2006) of foraging bird numbers showing low frequency oscillations in response to decadal fluctuations in hydroclimatic conditions. Simulations of water levels at the index location used in the Bayesian model under alternative water management scenarios allow the posterior probability distributions of the number of foraging birds to be compared, thus providing a mechanism for linking management schemes to seasonal rainfall forecasts.
Mapping model behaviour using Self-Organizing Maps
NASA Astrophysics Data System (ADS)
Herbst, M.; Gupta, H. V.; Casper, M. C.
2009-03-01
Hydrological model evaluation and identification essentially involves extracting and processing information from model time series. However, the type of information extracted by statistical measures has only very limited meaning because it does not relate to the hydrological context of the data. To overcome this inadequacy we exploit the diagnostic evaluation concept of Signature Indices, in which model performance is measured using theoretically relevant characteristics of system behaviour. In our study, a Self-Organizing Map (SOM) is used to process the Signatures extracted from Monte-Carlo simulations generated by the distributed conceptual watershed model NASIM. The SOM creates a hydrologically interpretable mapping of overall model behaviour, which immediately reveals deficits and trade-offs in the ability of the model to represent the different functional behaviours of the watershed. Further, it facilitates interpretation of the hydrological functions of the model parameters and provides preliminary information regarding their sensitivities. Most notably, we use this mapping to identify the set of model realizations (among the Monte-Carlo data) that most closely approximate the observed discharge time series in terms of the hydrologically relevant characteristics, and to confine the parameter space accordingly. Our results suggest that Signature Index based SOMs could potentially serve as tools for decision makers inasmuch as model realizations with specific Signature properties can be selected according to the purpose of the model application. Moreover, given that the approach helps to represent and analyze multi-dimensional distributions, it could be used to form the basis of an optimization framework that uses SOMs to characterize the model performance response surface. As such it provides a powerful and useful way to conduct model identification and model uncertainty analyses.
Mapping model behaviour using Self-Organizing Maps
NASA Astrophysics Data System (ADS)
Herbst, M.; Gupta, H. V.; Casper, M. C.
2008-12-01
Hydrological model evaluation and identification essentially depends on the extraction of information from model time series and its processing. However, the type of information extracted by statistical measures has only very limited meaning because it does not relate to the hydrological context of the data. To overcome this inadequacy we exploit the diagnostic evaluation concept of Signature Indices, in which model performance is measured using theoretically relevant characteristics of system behaviour. In our study, a Self-Organizing Map (SOM) is used to process the Signatures extracted from Monte-Carlo simulations generated by a distributed conceptual watershed model. The SOM creates a hydrologically interpretable mapping of overall model behaviour, which immediately reveals deficits and trade-offs in the ability of the model to represent the different functional behaviours of the watershed. Further, it facilitates interpretation of the hydrological functions of the model parameters and provides preliminary information regarding their sensitivities. Most notably, we use this mapping to identify the set of model realizations (among the Monte-Carlo data) that most closely approximate the observed discharge time series in terms of the hydrologically relevant characteristics, and to confine the parameter space accordingly. Our results suggest that Signature Index based SOMs could potentially serve as tools for decision makers inasmuch as model realizations with specific Signature properties can be selected according to the purpose of the model application. Moreover, given that the approach helps to represent and analyze multi-dimensional distributions, it could be used to form the basis of an optimization framework that uses SOMs to characterize the model performance response surface. As such it provides a powerful and useful way to conduct model identification and model uncertainty analyses.
NASA Astrophysics Data System (ADS)
Noh, S. J.; Rakovec, O.; Kumar, R.; Samaniego, L. E.
2015-12-01
Accurate and reliable streamflow prediction is essential to mitigate social and economic damage coming from water-related disasters such as flood and drought. Sequential data assimilation (DA) may facilitate improved streamflow prediction using real-time observations to correct internal model states. In conventional DA methods such as state updating, parametric uncertainty is often ignored mainly due to practical limitations of methodology to specify modeling uncertainty with limited ensemble members. However, if parametric uncertainty related with routing and runoff components is not incorporated properly, predictive uncertainty by model ensemble may be insufficient to capture dynamics of observations, which may deteriorate predictability. Recently, a multi-scale parameter regionalization (MPR) method was proposed to make hydrologic predictions at different scales using a same set of model parameters without losing much of the model performance. The MPR method incorporated within the mesoscale hydrologic model (mHM, http://www.ufz.de/mhm) could effectively represent and control uncertainty of high-dimensional parameters in a distributed model using global parameters. In this study, we evaluate impacts of streamflow data assimilation over European river basins. Especially, a multi-parametric ensemble approach is tested to consider the effects of parametric uncertainty in DA. Because augmentation of parameters is not required within an assimilation window, the approach could be more stable with limited ensemble members and have potential for operational uses. To consider the response times and non-Gaussian characteristics of internal hydrologic processes, lagged particle filtering is utilized. The presentation will be focused on gains and limitations of streamflow data assimilation and multi-parametric ensemble method over large-scale basins.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xuesong; Liang, Faming; Yu, Beibei
2011-11-09
Estimating uncertainty of hydrologic forecasting is valuable to water resources and other relevant decision making processes. Recently, Bayesian Neural Networks (BNNs) have been proved powerful tools for quantifying uncertainty of streamflow forecasting. In this study, we propose a Markov Chain Monte Carlo (MCMC) framework to incorporate the uncertainties associated with input, model structure, and parameter into BNNs. This framework allows the structure of the neural networks to change by removing or adding connections between neurons and enables scaling of input data by using rainfall multipliers. The results show that the new BNNs outperform the BNNs that only consider uncertainties associatedmore » with parameter and model structure. Critical evaluation of posterior distribution of neural network weights, number of effective connections, rainfall multipliers, and hyper-parameters show that the assumptions held in our BNNs are not well supported. Further understanding of characteristics of different uncertainty sources and including output error into the MCMC framework are expected to enhance the application of neural networks for uncertainty analysis of hydrologic forecasting.« less
The application of remote sensing to the development and formulation of hydrologic planning models
NASA Technical Reports Server (NTRS)
Castruccio, P. A.; Loats, H. L., Jr.; Fowler, T. R.; Frech, S. L.
1975-01-01
Regional hydrologic planning models built upon remote sensing capabilities and suited for ungaged watersheds are developed. The effectiveness of such models is determined along with which parameters impact most the minimization of errors associated with the prediction of peak flow events (floods). Emphasis is placed on peak flood prediction because of its significance to users for the purpose of planning, sizing, and designing waterworks.
Calibration of a distributed hydrologic model for six European catchments using remote sensing data
NASA Astrophysics Data System (ADS)
Stisen, S.; Demirel, M. C.; Mendiguren González, G.; Kumar, R.; Rakovec, O.; Samaniego, L. E.
2017-12-01
While observed streamflow has been the single reference for most conventional hydrologic model calibration exercises, the availability of spatially distributed remote sensing observations provide new possibilities for multi-variable calibration assessing both spatial and temporal variability of different hydrologic processes. In this study, we first identify the key transfer parameters of the mesoscale Hydrologic Model (mHM) controlling both the discharge and the spatial distribution of actual evapotranspiration (AET) across six central European catchments (Elbe, Main, Meuse, Moselle, Neckar and Vienne). These catchments are selected based on their limited topographical and climatic variability which enables to evaluate the effect of spatial parameterization on the simulated evapotranspiration patterns. We develop a European scale remote sensing based actual evapotranspiration dataset at a 1 km grid scale driven primarily by land surface temperature observations from MODIS using the TSEB approach. Using the observed AET maps we analyze the potential benefits of incorporating spatial patterns from MODIS data to calibrate the mHM model. This model allows calibrating one-basin-at-a-time or all-basins-together using its unique structure and multi-parameter regionalization approach. Results will indicate any tradeoffs between spatial pattern and discharge simulation during model calibration and through validation against independent internal discharge locations. Moreover, added value on internal water balances will be analyzed.
Xue, Lianqing; Yang, Fan; Yang, Changbing; Wei, Guanghui; Li, Wenqian; He, Xinlin
2018-01-11
Understanding the mechanism of complicated hydrological processes is important for sustainable management of water resources in an arid area. This paper carried out the simulations of water movement for the Manas River Basin (MRB) using the improved semi-distributed Topographic hydrologic model (TOPMODEL) with a snowmelt model and topographic index algorithm. A new algorithm is proposed to calculate the curve of topographic index using internal tangent circle on a conical surface. Based on the traditional model, the improved indicator of temperature considered solar radiation is used to calculate the amount of snowmelt. The uncertainty of parameters for the TOPMODEL model was analyzed using the generalized likelihood uncertainty estimation (GLUE) method. The proposed model shows that the distribution of the topographic index is concentrated in high mountains, and the accuracy of runoff simulation has certain enhancement by considering radiation. Our results revealed that the performance of the improved TOPMODEL is acceptable and comparable to runoff simulation in the MRB. The uncertainty of the simulations resulted from the parameters and structures of model, climatic and anthropogenic factors. This study is expected to serve as a valuable complement for widely application of TOPMODEL and identify the mechanism of hydrological processes in arid area.
NASA Astrophysics Data System (ADS)
Huning, L. S.; Margulis, S. A.
2013-12-01
Concepts in introductory hydrology courses are often taught in the context of process-based modeling that ultimately is integrated into a watershed model. In an effort to reduce the learning curve associated with applying hydrologic concepts to real-world applications, we developed and incorporated a 'hydrology toolbox' that complements a new, companion textbook into introductory undergraduate hydrology courses. The hydrology toolbox contains the basic building blocks (functions coded in MATLAB) for an integrated spatially-distributed watershed model that makes hydrologic topics (e.g. precipitation, snow, radiation, evaporation, unsaturated flow, infiltration, groundwater, and runoff) more user-friendly and accessible for students. The toolbox functions can be used in a modular format so that students can study individual hydrologic processes and become familiar with the hydrology toolbox. This approach allows such courses to emphasize understanding and application of hydrologic concepts rather than computer coding or programming. While topics in introductory hydrology courses are often introduced and taught independently or semi-independently, they are inherently interconnected. These toolbox functions are therefore linked together at the end of the course to reinforce a holistic understanding of how these hydrologic processes are measured, interconnected, and modeled. They are integrated into a spatially-distributed watershed model or numerical laboratory where students can explore a range of topics such as rainfall-runoff modeling, urbanization, deforestation, watershed response to changes in parameters or forcings, etc. Model output can readily be visualized and analyzed by students to understand watershed response in a real river basin or a simple 'toy' basin. These tools complement the textbook, each of which has been well received by students in multiple hydrology courses with various disciplinary backgrounds. The same governing equations that students have studied in the textbook and used in the toolbox have been encapsulated in the watershed model. Therefore, the combination of the hydrology toolbox, integrated watershed model, and textbook tends to eliminate the potential disconnect between process-based modeling and an 'off-the-shelf' watershed model.
DRAINMOD-GIS: a lumped parameter watershed scale drainage and water quality model
G.P. Fernandez; G.M. Chescheir; R.W. Skaggs; D.M. Amatya
2006-01-01
A watershed scale lumped parameter hydrology and water quality model that includes an uncertainty analysis component was developed and tested on a lower coastal plain watershed in North Carolina. Uncertainty analysis was used to determine the impacts of uncertainty in field and network parameters of the model on the predicted outflows and nitrate-nitrogen loads at the...
NASA Astrophysics Data System (ADS)
Tobin, K. J.; Bennett, M. E.
2008-05-01
The Cimarron River Basin (3110 sq km) between Dodge and Guthrie, Oklahoma is located in northern Oklahoma and was used as a test bed to compare the hydrological model performance associated with different methods of precipitation quantification. The Soil and Water Assessment Tool (SWAT) was selected for this project, which is a comprehensive model that, besides quantifying watershed hydrology, can simulate water quality as well as nutrient and sediment loading within stream reaches. An advantage of this location is the extensive monitoring of MET parameters (precipitation, temperature, relative humidity, wind speed, solar radiation) afforded by the Oklahoma Mesonet, which has been documented to improve the performance of SWAT. The utility of TRMM 3B42 and NEXRAD Stage III data in supporting the hydrologic modeling of Cimarron River Basin is demonstrated. Minor adjustments to selected model parameters were made to make parameter values more realistic based on results from previous studies and information and to more realistically simulate base flow. Significantly, no ad hoc adjustments to major parameters such as Curve Number or Available Soil Water were made and robust simulations were obtained. TRMM and NEXRAD data are aggregated into an average daily estimate of precipitation for each TRMM grid cell (0.25 degree X 0.25 degree). Preliminary simulation of stream flow (year 2004 to 2006) in the Cimarron River Basin yields acceptable monthly results with very little adjustment of model parameters using TRMM 3B42 precipitation data (mass balance error = 3 percent; Monthly Nash-Sutcliffe efficiency coefficients (NS) = 0.77). However, both Oklahoma Mesonet rain gauge (mass balance error = 13 percent; Monthly NS = 0.91; Daily NS = 0.64) and NEXRAD Stage III data (mass balance error = -5 percent; Monthly NS = 0.95; Daily NS = 0.69) produces superior simulations even at a sub-monthly time scale; daily results are time averaged over a three day period. Note that all types of precipitation data perform better than a synthetic precipitation dataset generated using a weather simulator (mass balance error = 12 percent; Monthly NS = 0.40). Our study again documents that merged precipitation satellite products, such as TRMM 3B42, can support semi-distributed hydrologic modeling at the watershed scale. However, apparently additional work is required to improve TRMM precipitation retrievals over land to generate a product that yields more robust hydrological simulations especially at finer time scales. Additionally, ongoing work in this basin will compare TRMM results with stream flow model results generated using CMORPH precipitation estimates. Finally, in the future we plan to use simulated, semi-distributed soil moisture values determined by SWAT for comparison with gridded soil moisture estimates from TRMM-TMI that should provide further validation of our modeling efforts.
NASA Astrophysics Data System (ADS)
Ou, G.; Nijssen, B.; Nearing, G. S.; Newman, A. J.; Mizukami, N.; Clark, M. P.
2016-12-01
The Structure for Unifying Multiple Modeling Alternatives (SUMMA) provides a unifying modeling framework for process-based hydrologic modeling by defining a general set of conservation equations for mass and energy, with the capability to incorporate multiple choices for spatial discretizations and flux parameterizations. In this study, we provide a first demonstration of large-scale hydrologic simulations using SUMMA through an application to the Columbia River Basin (CRB) in the northwestern United States and Canada for a multi-decadal simulation period. The CRB is discretized into 11,723 hydrologic response units (HRUs) according to the United States Geologic Service Geospatial Fabric. The soil parameters are derived from the Natural Resources Conservation Service Soil Survey Geographic (SSURGO) Database. The land cover parameters are based on the National Land Cover Database from the year 2001 created by the Multi-Resolution Land Characteristics (MRLC) Consortium. The forcing data, including hourly air pressure, temperature, specific humidity, wind speed, precipitation, shortwave and longwave radiations, are based on Phase 2 of the North American Land Data Assimilation System (NLDAS-2) and averaged for each HRU. The simulation results are compared to simulations with the Variable Infiltration Capacity (VIC) model and the Precipitation Runoff Modeling System (PRMS). We are particularly interested in SUMMA's capability to mimic model behaviors of the other two models through the selection of appropriate model parameterizations in SUMMA.
NASA Astrophysics Data System (ADS)
Houska, T.; Multsch, S.; Kraft, P.; Frede, H.-G.; Breuer, L.
2014-04-01
Computer simulations are widely used to support decision making and planning in the agriculture sector. On the one hand, many plant growth models use simplified hydrological processes and structures - for example, by the use of a small number of soil layers or by the application of simple water flow approaches. On the other hand, in many hydrological models plant growth processes are poorly represented. Hence, fully coupled models with a high degree of process representation would allow for a more detailed analysis of the dynamic behaviour of the soil-plant interface. We coupled two of such high-process-oriented independent models and calibrated both models simultaneously. The catchment modelling framework (CMF) simulated soil hydrology based on the Richards equation and the van Genuchten-Mualem model of the soil hydraulic properties. CMF was coupled with the plant growth modelling framework (PMF), which predicts plant growth on the basis of radiation use efficiency, degree days, water shortage and dynamic root biomass allocation. The Monte Carlo-based generalized likelihood uncertainty estimation (GLUE) method was applied to parameterize the coupled model and to investigate the related uncertainty of model predictions. Overall, 19 model parameters (4 for CMF and 15 for PMF) were analysed through 2 × 106 model runs randomly drawn from a uniform distribution. The model was applied to three sites with different management in Müncheberg (Germany) for the simulation of winter wheat (Triticum aestivum L.) in a cross-validation experiment. Field observations for model evaluation included soil water content and the dry matter of roots, storages, stems and leaves. The shape parameter of the retention curve n was highly constrained, whereas other parameters of the retention curve showed a large equifinality. We attribute this slightly poorer model performance to missing leaf senescence, which is currently not implemented in PMF. The most constrained parameters for the plant growth model were the radiation-use efficiency and the base temperature. Cross validation helped to identify deficits in the model structure, pointing out the need for including agricultural management options in the coupled model.
Using dry and wet year hydroclimatic extremes to guide future hydrologic projections
NASA Astrophysics Data System (ADS)
Oni, Stephen; Futter, Martyn; Ledesma, Jose; Teutschbein, Claudia; Buttle, Jim; Laudon, Hjalmar
2016-07-01
There are growing numbers of studies on climate change impacts on forest hydrology, but limited attempts have been made to use current hydroclimatic variabilities to constrain projections of future climatic conditions. Here we used historical wet and dry years as a proxy for expected future extreme conditions in a boreal catchment. We showed that runoff could be underestimated by at least 35 % when dry year parameterizations were used for wet year conditions. Uncertainty analysis showed that behavioural parameter sets from wet and dry years separated mainly on precipitation-related parameters and to a lesser extent on parameters related to landscape processes, while uncertainties inherent in climate models (as opposed to differences in calibration or performance metrics) appeared to drive the overall uncertainty in runoff projections under dry and wet hydroclimatic conditions. Hydrologic model calibration for climate impact studies could be based on years that closely approximate anticipated conditions to better constrain uncertainty in projecting extreme conditions in boreal and temperate regions.
NASA Astrophysics Data System (ADS)
Phuong Tran, Anh; Dafflon, Baptiste; Hubbard, Susan S.
2017-09-01
Quantitative characterization of soil organic carbon (OC) content is essential due to its significant impacts on surface-subsurface hydrological-thermal processes and microbial decomposition of OC, which both in turn are important for predicting carbon-climate feedbacks. While such quantification is particularly important in the vulnerable organic-rich Arctic region, it is challenging to achieve due to the general limitations of conventional core sampling and analysis methods, and to the extremely dynamic nature of hydrological-thermal processes associated with annual freeze-thaw events. In this study, we develop and test an inversion scheme that can flexibly use single or multiple datasets - including soil liquid water content, temperature and electrical resistivity tomography (ERT) data - to estimate the vertical distribution of OC content. Our approach relies on the fact that OC content strongly influences soil hydrological-thermal parameters and, therefore, indirectly controls the spatiotemporal dynamics of soil liquid water content, temperature and their correlated electrical resistivity. We employ the Community Land Model to simulate nonisothermal surface-subsurface hydrological dynamics from the bedrock to the top of canopy, with consideration of land surface processes (e.g., solar radiation balance, evapotranspiration, snow accumulation and melting) and ice-liquid water phase transitions. For inversion, we combine a deterministic and an adaptive Markov chain Monte Carlo (MCMC) optimization algorithm to estimate a posteriori distributions of desired model parameters. For hydrological-thermal-to-geophysical variable transformation, the simulated subsurface temperature, liquid water content and ice content are explicitly linked to soil electrical resistivity via petrophysical and geophysical models. We validate the developed scheme using different numerical experiments and evaluate the influence of measurement errors and benefit of joint inversion on the estimation of OC and other parameters. We also quantify the propagation of uncertainty from the estimated parameters to prediction of hydrological-thermal responses. We find that, compared to inversion of single dataset (temperature, liquid water content or apparent resistivity), joint inversion of these datasets significantly reduces parameter uncertainty. We find that the joint inversion approach is able to estimate OC and sand content within the shallow active layer (top 0.3 m of soil) with high reliability. Due to the small variations of temperature and moisture within the shallow permafrost (here at about 0.6 m depth), the approach is unable to estimate OC with confidence. However, if the soil porosity is functionally related to the OC and mineral content, which is often observed in organic-rich Arctic soil, the uncertainty of OC estimate at this depth remarkably decreases. Our study documents the value of the new surface-subsurface, deterministic-stochastic inversion approach, as well as the benefit of including multiple types of data to estimate OC and associated hydrological-thermal dynamics.
Hay, L.E.; McCabe, G.J.; Clark, M.P.; Risley, J.C.
2009-01-01
The accuracy of streamflow forecasts depends on the uncertainty associated with future weather and the accuracy of the hydrologic model that is used to produce the forecasts. We present a method for streamflow forecasting where hydrologic model parameters are selected based on the climate state. Parameter sets for a hydrologic model are conditioned on an atmospheric pressure index defined using mean November through February (NDJF) 700-hectoPascal geopotential heights over northwestern North America [Pressure Index from Geopotential heights (PIG)]. The hydrologic model is applied in the Sprague River basin (SRB), a snowmelt-dominated basin located in the Upper Klamath basin in Oregon. In the SRB, the majority of streamflow occurs during March through May (MAM). Water years (WYs) 1980-2004 were divided into three groups based on their respective PIG values (high, medium, and low PIG). Low (high) PIG years tend to have higher (lower) than average MAM streamflow. Four parameter sets were calibrated for the SRB, each using a different set of WYs. The initial set used WYs 1995-2004 and the remaining three used WYs defined as high-, medium-, and low-PIG years. Two sets of March, April, and May streamflow volume forecasts were made using Ensemble Streamflow Prediction (ESP). The first set of ESP simulations used the initial parameter set. Because the PIG is defined using NDJF pressure heights, forecasts starting in March can be made using the PIG parameter set that corresponds with the year being forecasted. The second set of ESP simulations used the parameter set associated with the given PIG year. Comparison of the ESP sets indicates that more accuracy and less variability in volume forecasts may be possible when the ESP is conditioned using the PIG. This is especially true during the high-PIG years (low-flow years). ?? 2009 American Water Resources Association.
Temporal diagnostic analysis of the SWAT model to detect dominant periods of poor model performance
NASA Astrophysics Data System (ADS)
Guse, Björn; Reusser, Dominik E.; Fohrer, Nicola
2013-04-01
Hydrological models generally include thresholds and non-linearities, such as snow-rain-temperature thresholds, non-linear reservoirs, infiltration thresholds and the like. When relating observed variables to modelling results, formal methods often calculate performance metrics over long periods, reporting model performance with only few numbers. Such approaches are not well suited to compare dominating processes between reality and model and to better understand when thresholds and non-linearities are driving model results. We present a combination of two temporally resolved model diagnostic tools to answer when a model is performing (not so) well and what the dominant processes are during these periods. We look at the temporal dynamics of parameter sensitivities and model performance to answer this question. For this, the eco-hydrological SWAT model is applied in the Treene lowland catchment in Northern Germany. As a first step, temporal dynamics of parameter sensitivities are analyzed using the Fourier Amplitude Sensitivity test (FAST). The sensitivities of the eight model parameters investigated show strong temporal variations. High sensitivities were detected for two groundwater (GW_DELAY, ALPHA_BF) and one evaporation parameters (ESCO) most of the time. The periods of high parameter sensitivity can be related to different phases of the hydrograph with dominances of the groundwater parameters in the recession phases and of ESCO in baseflow and resaturation periods. Surface runoff parameters show high parameter sensitivities in phases of a precipitation event in combination with high soil water contents. The dominant parameters give indication for the controlling processes during a given period for the hydrological catchment. The second step included the temporal analysis of model performance. For each time step, model performance was characterized with a "finger print" consisting of a large set of performance measures. These finger prints were clustered into four reoccurring patterns of typical model performance, which can be related to different phases of the hydrograph. Overall, the baseflow cluster has the lowest performance. By combining the periods with poor model performance with the dominant model components during these phases, the groundwater module was detected as the model part with the highest potential for model improvements. The detection of dominant processes in periods of poor model performance enhances the understanding of the SWAT model. Based on this, concepts how to improve the SWAT model structure for the application in German lowland catchment are derived.
airGRteaching: an R-package designed for teaching hydrology with lumped hydrological models
NASA Astrophysics Data System (ADS)
Thirel, Guillaume; Delaigue, Olivier; Coron, Laurent; Andréassian, Vazken; Brigode, Pierre
2017-04-01
Lumped hydrological models are useful and convenient tools for research, engineering and educational purposes. They propose catchment-scale representations of the precipitation-discharge relationship. Thanks to their limited data requirements, they can be easily implemented and run. With such models, it is possible to simulate a number of hydrological key processes over the catchment with limited structural and parametric complexity, typically evapotranspiration, runoff, underground losses, etc. The Hydrology Group at Irstea (Antony) has been developing a suite of rainfall-runoff models over the past 30 years. This resulted in a suite of models running at different time steps (from hourly to annual) applicable for various issues including water balance estimation, forecasting, simulation of impacts and scenario testing. Recently, Irstea has developed an easy-to-use R-package (R Core Team, 2016), called airGR (Coron et al., 2016, 2017), to make these models widely available. Although its initial target public was hydrological modellers, the package is already used for educational purposes. Indeed, simple models allow for rapidly visualising the effects of parameterizations and model components on flows hydrographs. In order to avoid the difficulties that students may have when manipulating R and datasets, we developed (Delaigue and Coron, 2016): - Three simplified functions to prepare data, calibrate a model and run a simulation - Simplified and dynamic plot functions - A shiny (Chang et al., 2016) interface that connects this R-package to a browser-based visualisation tool. On this interface, the students can use different hydrological models (including the possibility to use a snow-accounting model), manually modify their parameters and automatically calibrate their parameters with diverse objective functions. One of the visualisation tabs of the interface includes observed precipitation and temperature, simulated snowpack (if any), observed and simulated discharges, which are updated immediately (a calibration only needs a couple of seconds or less, a simulation is almost immediate). In addition, time series of internal variables, live-visualisation of internal variables evolution and performance statistics are provided. This interface allows for hands-on exercises that can include for instance the analysis by students of: - The effects of each parameter and model components on simulated discharge - The effects of objective functions based on high flows- or low flows-focused criteria on simulated discharge - The seasonality of the model components. References Winston Chang, Joe Cheng, JJ Allaire, Yihui Xie and Jonathan McPherson (2016). shiny: Web Application Framework for R. R package version 0.13.2. https://CRAN.R-project.org/package=shiny Coron L., Thirel G., Perrin C., Delaigue O., Andréassian V., airGR: a suite of lumped hydrological models in an R-package, Environmental Modelling and software, 2017, submitted. Coron, L., Perrin, C. and Michel, C. (2016). airGR: Suite of GR hydrological models for precipitation-runoff modelling. R package version 1.0.3. https://webgr.irstea.fr/airGR/?lang=en. Olivier Delaigue and Laurent Coron (2016). airGRteaching: Tools to simplify the use of the airGR hydrological package by students. R package version 0.0.1. https://webgr.irstea.fr/airGR/?lang=en R Core Team (2016). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moges, Edom; Demissie, Yonas; Li, Hong-Yi
2016-04-01
In most water resources applications, a single model structure might be inadequate to capture the dynamic multi-scale interactions among different hydrological processes. Calibrating single models for dynamic catchments, where multiple dominant processes exist, can result in displacement of errors from structure to parameters, which in turn leads to over-correction and biased predictions. An alternative to a single model structure is to develop local expert structures that are effective in representing the dominant components of the hydrologic process and adaptively integrate them based on an indicator variable. In this study, the Hierarchical Mixture of Experts (HME) framework is applied to integratemore » expert model structures representing the different components of the hydrologic process. Various signature diagnostic analyses are used to assess the presence of multiple dominant processes and the adequacy of a single model, as well as to identify the structures of the expert models. The approaches are applied for two distinct catchments, the Guadalupe River (Texas) and the French Broad River (North Carolina) from the Model Parameter Estimation Experiment (MOPEX), using different structures of the HBV model. The results show that the HME approach has a better performance over the single model for the Guadalupe catchment, where multiple dominant processes are witnessed through diagnostic measures. Whereas, the diagnostics and aggregated performance measures prove that French Broad has a homogeneous catchment response, making the single model adequate to capture the response.« less
Impact of multicollinearity on small sample hydrologic regression models
NASA Astrophysics Data System (ADS)
Kroll, Charles N.; Song, Peter
2013-06-01
Often hydrologic regression models are developed with ordinary least squares (OLS) procedures. The use of OLS with highly correlated explanatory variables produces multicollinearity, which creates highly sensitive parameter estimators with inflated variances and improper model selection. It is not clear how to best address multicollinearity in hydrologic regression models. Here a Monte Carlo simulation is developed to compare four techniques to address multicollinearity: OLS, OLS with variance inflation factor screening (VIF), principal component regression (PCR), and partial least squares regression (PLS). The performance of these four techniques was observed for varying sample sizes, correlation coefficients between the explanatory variables, and model error variances consistent with hydrologic regional regression models. The negative effects of multicollinearity are magnified at smaller sample sizes, higher correlations between the variables, and larger model error variances (smaller R2). The Monte Carlo simulation indicates that if the true model is known, multicollinearity is present, and the estimation and statistical testing of regression parameters are of interest, then PCR or PLS should be employed. If the model is unknown, or if the interest is solely on model predictions, is it recommended that OLS be employed since using more complicated techniques did not produce any improvement in model performance. A leave-one-out cross-validation case study was also performed using low-streamflow data sets from the eastern United States. Results indicate that OLS with stepwise selection generally produces models across study regions with varying levels of multicollinearity that are as good as biased regression techniques such as PCR and PLS.
NASA Astrophysics Data System (ADS)
Cuntz, Matthias; Mai, Juliane; Zink, Matthias; Thober, Stephan; Kumar, Rohini; Schäfer, David; Schrön, Martin; Craven, John; Rakovec, Oldrich; Spieler, Diana; Prykhodko, Vladyslav; Dalmasso, Giovanni; Musuuza, Jude; Langenberg, Ben; Attinger, Sabine; Samaniego, Luis
2015-08-01
Environmental models tend to require increasing computational time and resources as physical process descriptions are improved or new descriptions are incorporated. Many-query applications such as sensitivity analysis or model calibration usually require a large number of model evaluations leading to high computational demand. This often limits the feasibility of rigorous analyses. Here we present a fully automated sequential screening method that selects only informative parameters for a given model output. The method requires a number of model evaluations that is approximately 10 times the number of model parameters. It was tested using the mesoscale hydrologic model mHM in three hydrologically unique European river catchments. It identified around 20 informative parameters out of 52, with different informative parameters in each catchment. The screening method was evaluated with subsequent analyses using all 52 as well as only the informative parameters. Subsequent Sobol's global sensitivity analysis led to almost identical results yet required 40% fewer model evaluations after screening. mHM was calibrated with all and with only informative parameters in the three catchments. Model performances for daily discharge were equally high in both cases with Nash-Sutcliffe efficiencies above 0.82. Calibration using only the informative parameters needed just one third of the number of model evaluations. The universality of the sequential screening method was demonstrated using several general test functions from the literature. We therefore recommend the use of the computationally inexpensive sequential screening method prior to rigorous analyses on complex environmental models.
NASA Astrophysics Data System (ADS)
Mai, Juliane; Cuntz, Matthias; Zink, Matthias; Thober, Stephan; Kumar, Rohini; Schäfer, David; Schrön, Martin; Craven, John; Rakovec, Oldrich; Spieler, Diana; Prykhodko, Vladyslav; Dalmasso, Giovanni; Musuuza, Jude; Langenberg, Ben; Attinger, Sabine; Samaniego, Luis
2016-04-01
Environmental models tend to require increasing computational time and resources as physical process descriptions are improved or new descriptions are incorporated. Many-query applications such as sensitivity analysis or model calibration usually require a large number of model evaluations leading to high computational demand. This often limits the feasibility of rigorous analyses. Here we present a fully automated sequential screening method that selects only informative parameters for a given model output. The method requires a number of model evaluations that is approximately 10 times the number of model parameters. It was tested using the mesoscale hydrologic model mHM in three hydrologically unique European river catchments. It identified around 20 informative parameters out of 52, with different informative parameters in each catchment. The screening method was evaluated with subsequent analyses using all 52 as well as only the informative parameters. Subsequent Sobol's global sensitivity analysis led to almost identical results yet required 40% fewer model evaluations after screening. mHM was calibrated with all and with only informative parameters in the three catchments. Model performances for daily discharge were equally high in both cases with Nash-Sutcliffe efficiencies above 0.82. Calibration using only the informative parameters needed just one third of the number of model evaluations. The universality of the sequential screening method was demonstrated using several general test functions from the literature. We therefore recommend the use of the computationally inexpensive sequential screening method prior to rigorous analyses on complex environmental models.
NASA Astrophysics Data System (ADS)
Lafontaine, J.; Hay, L.
2015-12-01
The United States Geological Survey (USGS) has developed a National Hydrologic Model (NHM) to support coordinated, comprehensive and consistent hydrologic model development, and facilitate the application of hydrologic simulations within the conterminous United States (CONUS). More than 1,700 gaged watersheds across the CONUS were modeled to test the feasibility of improving streamflow simulations in gaged and ungaged watersheds by linking statistically- and physically-based hydrologic models with remotely-sensed data products (i.e. - snow water equivalent) and estimates of uncertainty. Initially, the physically-based models were calibrated to measured streamflow data to provide a baseline for comparison. As many stream reaches in the CONUS are either not gaged, or are substantially impacted by water use or flow regulation, ancillary information must be used to determine reasonable parameter estimations for streamflow simulations. In addition, not all ancillary datasets are appropriate for application to all parts of the CONUS (e.g. - snow water equivalent in the southeastern U.S., where snow is a rarity). As it is not expected that any one data product or model simulation will be sufficient for representing hydrologic behavior across the entire CONUS, a systematic evaluation of which data products improve simulations of streamflow for various regions across the CONUS was performed. The resulting portfolio of calibration strategies can be used to guide selection of an appropriate combination of simulated and measured information for model development and calibration at a given location of interest. In addition, these calibration strategies have been developed to be flexible so that new data products or simulated information can be assimilated. This analysis provides a foundation to understand how well models work when streamflow data is either not available or is limited and could be used to further inform hydrologic model parameter development for ungaged areas.
Regionalization of response routine parameters
NASA Astrophysics Data System (ADS)
Tøfte, Lena S.; Sultan, Yisak A.
2013-04-01
When area distributed hydrological models are to be calibrated or updated, fewer calibration parameters is of a considerable advantage. Based on, among others, Kirchner, we have developed a simple non-threshold response model for drainage in natural catchments, to be used in the gridded hydrological model ENKI. The new response model takes only the hydrogram into account, it has one state and two parameters, and is adapted to catchments that are dominated by terrain drainage. The method is based on the assumption that in catchments where precipitation, evaporation and snowmelt is neglect able, the discharge is entirely determined by the amount of stored water. It can then be characterized as a simple first-order nonlinear dynamical system, where the governing equations can be found directly from measured stream flow fluctuations. This means that the response in the catchment can be modelled by using hydrogram data where all data from periods with rain, snowmelt or evaporation is left out, and adjust these series to a two or three parameter equation. A large number of discharge series from catchments in different regions in Norway are analyzed, and parameters found for all the series. By combining the computed parameters and known catchments characteristics, we try to regionalize the parameters. Then the parameters in the response routine can easily be found also for ungauged catchments, from maps or data bases.
The PCR-GLOBWB global hydrological reanalysis product
NASA Astrophysics Data System (ADS)
Bierkens, M. F.; Wanders, N.; Sutanudjaja, E.; Van Beek, L. P.
2013-12-01
Accurate and long time series of hydrological data are important for understanding land surface water and energy budgets in many parts of the world, as well as for improving real-time hydrological monitoring and climate change anticipation. The ultimate goal of the present work is to produce a multi-decadal land surface hydrological reanalysis with retrospective and updated hydrological states and fluxes that are constrained to available in-situ river discharge measurements. Here we used PCR-GLOBWB (van Beek et al., 2011), which is a large-scale hydrological model intended for global to regional studies. PCR-GLOBWB provides a grid-based representation of terrestrial hydrology with a typical spatial resolution of approximately 50×50 km (currently 0.5° globally) on a daily basis. For each grid cell, PCR-GLOBWB is basically a leaky bucket type of water balance model with a process-based simulation of moisture storage in two vertically stacked soil layers as well as the water exchange between the soil and the atmosphere and the underlying groundwater reservoir. Exchange to the atmosphere comprises precipitation, evaporation and transpiration, as well as snow accumulation and melt, which are all simulated by considering vegetation phenology and sub-grid distributions of elevation, land cover and soil saturation distribution. The model thus includes detailed schemes for runoff-infiltration partitioning, interflow, groundwater recharge and baseflow, as well as river routing of discharge. . By embedding the PCR-GLOBWB model in an Ensemble Kalman Filter framework, we calibrated the model parameters based on the discharge observations from the Global Runoff Data Centre. The parameters calibrated are related to snow module, runoff-infiltration partitioning, groundwater recharge, channel discharge and baseflow processes, as well as pre-factors to correct forcing precipitation fields due to local topographic and orographic effects. Results show that the model parameters can be calibrated and forcing precipitation fields were successfully corrected. The calibrated model output was compared to the reference run of PCR-GLOBWB before calibration. Here we found significant improvement in simulation of the global terrestrial water cycle, specifically discharge simulation for major river basins in the world. The main outcome of this work is a 1960-2010 global reanalysis dataset that includes extensive daily hydrological components, such as precipitation, evaporation and transpiration, snow, soil moisture, groundwater storage and discharge. This reanalysis product may be used for understanding land surface memory processes, initializing regional studies and operational forecasts, as well as evaluating and improving our understanding of spatio-temporal variation of meteorological and hydrological processes. Moreover, The PCR-GLOBWB data assimilation framework developed in this work can also be extended by including more observational data, including remotely sensed data reflecting the distribution of energy and water (e.g., heat fluxes and soil moisture storage).
Large scale modelling of catastrophic floods in Italy
NASA Astrophysics Data System (ADS)
Azemar, Frédéric; Nicótina, Ludovico; Sassi, Maximiliano; Savina, Maurizio; Hilberts, Arno
2017-04-01
The RMS European Flood HD model® is a suite of country scale flood catastrophe models covering 13 countries throughout continental Europe and the UK. The models are developed with the goal of supporting risk assessment analyses for the insurance industry. Within this framework RMS is developing a hydrologic and inundation model for Italy. The model aims at reproducing the hydrologic and hydraulic properties across the domain through a modeling chain. A semi-distributed hydrologic model that allows capturing the spatial variability of the runoff formation processes is coupled with a one-dimensional river routing algorithm and a two-dimensional (depth averaged) inundation model. This model setup allows capturing the flood risk from both pluvial (overland flow) and fluvial flooding. Here we describe the calibration and validation methodologies for this modelling suite applied to the Italian river basins. The variability that characterizes the domain (in terms of meteorology, topography and hydrologic regimes) requires a modeling approach able to represent a broad range of meteo-hydrologic regimes. The calibration of the rainfall-runoff and river routing models is performed by means of a genetic algorithm that identifies the set of best performing parameters within the search space over the last 50 years. We first establish the quality of the calibration parameters on the full hydrologic balance and on individual discharge peaks by comparing extreme statistics to observations over the calibration period on several stations. The model is then used to analyze the major floods in the country; we discuss the different meteorological setup leading to the historical events and the physical mechanisms that induced these floods. We can thus assess the performance of RMS' hydrological model in view of the physical mechanisms leading to flood and highlight the main controls on flood risk modelling throughout the country. The model's ability to accurately simulate antecedent conditions and discharge hydrographs over the affected area is also assessed, showing that spatio-temporal correlation is retained through the modelling chain. Results show that our modelling approach can capture a wide range of conditions leading to major floods in the Italian peninsula. Under the umbrella of the RMS European Flood HD models this constitutes, to our knowledge, the only operational flood risk model to be applied at continental scale with a coherent model methodology and a domain wide MonteCarlo stochastic set.
Integrated hydrologic and hydrodynamic modeling to assess water exchange in a data-scarce reservoir
NASA Astrophysics Data System (ADS)
Wu, Binbin; Wang, Guoqiang; Wang, Zhonggen; Liu, Changming; Ma, Jianming
2017-12-01
Integrated hydrologic and hydrodynamic modeling is useful in evaluating hydrodynamic characteristics (e.g. water exchange processes) in data-scarce water bodies, however, most studies lack verification of the hydrologic model. Here, water exchange (represented by water age) was investigated through integrated hydrologic and hydrodynamic modeling of the Hongfeng Reservoir, a poorly gauged reservoir in southwest China. The performance of the hydrologic model and parameter replacement among sub-basins with hydrological similarity was verified by historical data. Results showed that hydrological similarity based on the hierarchical cluster analysis and topographic index probability density distribution was reliable with satisfactory performance of parameter replacement. The hydrodynamic model was verified using daily water levels and water temperatures from 2009 and 2010. The water exchange processes in the Hongfeng Reservoir are very complex with temporal, vertical, and spatial variations. The temporal water age was primarily controlled by the variable inflow and outflow, and the maximum and minimum ages for the site near the dam were 406.10 d (15th June) and 90.74 d (3rd August), respectively, in 2010. Distinct vertical differences in water age showed that surface flow, interflow, and underflow appeared alternately, depending on the season and water depth. The worst water exchange situation was found in the central areas of the North Lake with the highest water ages in the bottom on both 15th June and 3rd August, in 2010. Comparison of the spatial water ages revealed that the more favorable hydraulic conditions on 3rd August mainly improved the water exchange in the dam areas and most areas of the South Lake, but had little effect on the bottom layers of the other deepest areas in the South and North Lakes. The presented framework can be applied in other data-scarce waterbodies worldwide to provide better understanding of water exchange processes.
NASA Astrophysics Data System (ADS)
Baatz, D.; Kurtz, W.; Hendricks Franssen, H. J.; Vereecken, H.; Kollet, S. J.
2017-12-01
Parameter estimation for physically based, distributed hydrological models becomes increasingly challenging with increasing model complexity. The number of parameters is usually large and the number of observations relatively small, which results in large uncertainties. A moving transmitter - receiver concept to estimate spatially distributed hydrological parameters is presented by catchment tomography. In this concept, precipitation, highly variable in time and space, serves as a moving transmitter. As response to precipitation, runoff and stream discharge are generated along different paths and time scales, depending on surface and subsurface flow properties. Stream water levels are thus an integrated signal of upstream parameters, measured by stream gauges which serve as the receivers. These stream water level observations are assimilated into a distributed hydrological model, which is forced with high resolution, radar based precipitation estimates. Applying a joint state-parameter update with the Ensemble Kalman Filter, the spatially distributed Manning's roughness coefficient and saturated hydraulic conductivity are estimated jointly. The sequential data assimilation continuously integrates new information into the parameter estimation problem, especially during precipitation events. Every precipitation event constrains the possible parameter space. In the approach, forward simulations are performed with ParFlow, a variable saturated subsurface and overland flow model. ParFlow is coupled to the Parallel Data Assimilation Framework for the data assimilation and the joint state-parameter update. In synthetic, 3-dimensional experiments including surface and subsurface flow, hydraulic conductivity and the Manning's coefficient are efficiently estimated with the catchment tomography approach. A joint update of the Manning's coefficient and hydraulic conductivity tends to improve the parameter estimation compared to a single parameter update, especially in cases of biased initial parameter ensembles. The computational experiments additionally show to which degree of spatial heterogeneity and to which degree of uncertainty of subsurface flow parameters the Manning's coefficient and hydraulic conductivity can be estimated efficiently.
Sensitivity analysis of machine-learning models of hydrologic time series
NASA Astrophysics Data System (ADS)
O'Reilly, A. M.
2017-12-01
Sensitivity analysis traditionally has been applied to assessing model response to perturbations in model parameters, where the parameters are those model input variables adjusted during calibration. Unlike physics-based models where parameters represent real phenomena, the equivalent of parameters for machine-learning models are simply mathematical "knobs" that are automatically adjusted during training/testing/verification procedures. Thus the challenge of extracting knowledge of hydrologic system functionality from machine-learning models lies in their very nature, leading to the label "black box." Sensitivity analysis of the forcing-response behavior of machine-learning models, however, can provide understanding of how the physical phenomena represented by model inputs affect the physical phenomena represented by model outputs.As part of a previous study, hybrid spectral-decomposition artificial neural network (ANN) models were developed to simulate the observed behavior of hydrologic response contained in multidecadal datasets of lake water level, groundwater level, and spring flow. Model inputs used moving window averages (MWA) to represent various frequencies and frequency-band components of time series of rainfall and groundwater use. Using these forcing time series, the MWA-ANN models were trained to predict time series of lake water level, groundwater level, and spring flow at 51 sites in central Florida, USA. A time series of sensitivities for each MWA-ANN model was produced by perturbing forcing time-series and computing the change in response time-series per unit change in perturbation. Variations in forcing-response sensitivities are evident between types (lake, groundwater level, or spring), spatially (among sites of the same type), and temporally. Two generally common characteristics among sites are more uniform sensitivities to rainfall over time and notable increases in sensitivities to groundwater usage during significant drought periods.
NASA Astrophysics Data System (ADS)
Ravazzani, G.; Montaldo, N.; Mancini, M.; Rosso, R.
2003-04-01
Event-based hydrologic models need the antecedent soil moisture condition, as critical boundary initial condition for flood simulation. Land-surface models (LSMs) have been developed to simulate mass and energy transfers, and to update the soil moisture condition through time from the solution of water and energy balance equations. They are recently used in distributed hydrologic modeling for flood prediction systems. Recent developments have made LSMs more complex by inclusion of more processes and controlling variables, increasing parameter number and uncertainty of their estimates. This also led to increasing of computational burden and parameterization of the distributed hydrologic models. In this study we investigate: 1) the role of soil moisture initial conditions in the modeling of Alpine basin floods; 2) the adequate complexity level of LSMs for the distributed hydrologic modeling of Alpine basin floods. The Toce basin is the case study; it is located in the North Piedmont (Italian Alps), and it has a total drainage area of 1534 km2 at Candoglia section. Three distributed hydrologic models of different level of complexity are developed and compared: two (TDLSM and SDLSM) are continuous models, one (FEST02) is an event model based on the simplified SCS-CN method for rainfall abstractions. In the TDLSM model a two-layer LSM computes both saturation and infiltration excess runoff, and simulates the evolution of the water table spatial distribution using the topographic index; in the SDLSM model a simplified one-layer distributed LSM only computes hortonian runoff, and doesn’t simulate the water table dynamic. All the three hydrologic models simulate the surface runoff propagation through the Muskingum-Cunge method. TDLSM and SDLSM models have been applied for the two-year (1996 and 1997) simulation period, during which two major floods occurred in the November 1996 and in the June 1997. The models have been calibrated and tested comparing simulated and observed hydrographs at Candoglia. Sensitivity analysis of the models to significant LSM parameters were also performed. The performances of the three models in the simulation of the two major floods are compared. Interestingly, the results indicate that the SDLSM model is able to sufficiently well predict the major floods of this Alpine basin; indeed, this model is a good compromise between the over-parameterized and too complex TDLSM model and the over-simplified FEST02 model.
NASA Astrophysics Data System (ADS)
Nesterova, Natalia; Semenova, Olga; Lebedeva, Luidmila
2015-04-01
Large territories of Siberia and Russian Far East are the subject to frequent forest fires. Often there is no information available about fire impact except its timing, areal distribution and qualitative characteristics of fire severity. Observed changes of hydrological response in burnt watersheds can be considered as indirect evidence of soil and vegetation transformation due to fire impact. In our study we used MODIS Fire products to detect spatial distribution of fires in Transbaikal and Far East regions of Russia in 2000 - 2012 period. Small and middle-size watersheds (with area up to 10000 km2) affected by extensive (burn area not less than 20 %) fires were chosen. We analyzed available hydrological data (measured discharges in watersheds outlets) for chosen basins. In several cases apparent hydrological response to fire was detected. To investigate main factors causing the change of hydrologic regime after fire several scenarios of soil and vegetation transformation were developed for each watershed under consideration. Corresponding sets of hydrological model parameters describing those transformations were elaborated based on data analysis and post-fire landscape changes as derived from a literature review. We implied different factors such as removal of organic layer, albedo changes, intensification of soil thaw (in presence of permafrost and seasonal soil freezing), reduction of infiltration rate and evapotranspiration, increase of upper subsurface flow fraction in summer flood events following the fire and others. We applied Hydrograph model (Russia) to conduct simulation experiments aiming to reveal which landscape changes scenarios were more plausible. The advantages of chosen hydrological model for this study are 1) that it takes into consideration thermal processes in soils which in case of permafrost and seasonal soil freezing presence can play leading role in runoff formation and 2) that observable vegetation and soil properties are used as its parameters allowing minimal resort to calibration. The model can use dynamic set of parameters performing preassigned abrupt and/or gradual changes of landscape characteristics. Interestingly, based on modelling results it can be concluded that depending on dominant landscape different aspects of soil and vegetation cover changes may influence runoff formation in contrasting way. The results of the study will be reported.
Experimental analysis of green roof substrate detention characteristics.
Yio, Marcus H N; Stovin, Virginia; Werdin, Jörg; Vesuviano, Gianni
2013-01-01
Green roofs may make an important contribution to urban stormwater management. Rainfall-runoff models are required to evaluate green roof responses to specific rainfall inputs. The roof's hydrological response is a function of its configuration, with the substrate - or growing media - providing both retention and detention of rainfall. The objective of the research described here is to quantify the detention effects due to green roof substrates, and to propose a suitable hydrological modelling approach. Laboratory results from experimental detention tests on green roof substrates are presented. It is shown that detention increases with substrate depth and as a result of increasing substrate organic content. Model structures based on reservoir routing are evaluated, and it is found that a one-parameter reservoir routing model coupled with a parameter that describes the delay to start of runoff best fits the observed data. Preliminary findings support the hypothesis that the reservoir routing parameter values can be defined from the substrate's physical characteristics.
NASA Technical Reports Server (NTRS)
Arya, L. M. (Principal Investigator)
1980-01-01
Predictive procedures for developing soil hydrologic properties (i.e., relationships of soil water pressure and hydraulic conductivity to soil water content) are presented. Three models of the soil water pressure-water content relationship and one model of the hydraulic conductivity-water content relationship are discussed. Input requirements for the models are indicated, and computational procedures are outlined. Computed hydrologic properties for Keith silt loam, a soil typer near Colby, Kansas, on which the 1978 Agricultural Soil Moisture Experiment was conducted, are presented. A comparison of computed results with experimental data in the dry range shows that analytical models utilizing a few basic hydrophysical parameters can produce satisfactory data for large-scale applications.
NASA Astrophysics Data System (ADS)
Xiao, D.; Shi, Y.; Hoagland, B.; Del Vecchio, J.; Russo, T. A.; DiBiase, R. A.; Li, L.
2017-12-01
How do watershed hydrologic processes differ in catchments derived from different lithology? This study compares two first order, deciduous forest watersheds in Pennsylvania, a sandstone watershed, Garner Run (GR, 1.34 km2), and a shale-derived watershed, Shale Hills (SH, 0.08 km2). Both watersheds are simulated using a combination of national datasets and field measurements, and a physics-based land surface hydrologic model, Flux-PIHM. We aim to evaluate the effects of lithology on watershed hydrology and assess if we can simulate a new watershed without intensive measurements, i.e., directly use calibration information from one watershed (SH) to reproduce hydrologic dynamics of another watershed (GR). Without any calibration, the model at GR based on national datasets and calibration inforamtion from SH cannot capture some discharge peaks or the baseflow during dry periods. The model prediction agrees well with the GR field discharge and soil moisture after calibrating the soil hydraulic parameters using the uncertainty based Hornberger-Spear-Young algorithm and the Latin Hypercube Sampling method. Agreeing with the field observation and national datasets, the difference in parameter values shows that the sandstone watershed has a larger averaged soil pore diameter, greater water storage created by porosity, lower water retention ability, and greater preferential flow. The water budget calculation shows that the riparian zone and the colluvial valley serves as buffer zones that stores water at GR. Using the same procedure, we compared Flux-PIHM simulations with and without a field measured surface boulder map at GR. When the boulder map is used, the prediction of areal averaged soil moisture is improved, without performing extra calibration. When calibrated separately, the cases with or without boulder map yield different calibration values, but their hydrologic predictions are similar, showing equifinality. The calibrated soil hydraulic parameter values in the with boulder map case is more physically plausible than the without boulder map case. We switched the topography and soil properties between GR and SH, and results indicate that the hydrologic processes are more sensitive to changes in domain topography than to changes in the soil properties.
Clark, Martyn P.; Slater, Andrew G.; Rupp, David E.; Woods, Ross A.; Vrugt, Jasper A.; Gupta, Hoshin V.; Wagener, Thorsten; Hay, Lauren E.
2008-01-01
The problems of identifying the most appropriate model structure for a given problem and quantifying the uncertainty in model structure remain outstanding research challenges for the discipline of hydrology. Progress on these problems requires understanding of the nature of differences between models. This paper presents a methodology to diagnose differences in hydrological model structures: the Framework for Understanding Structural Errors (FUSE). FUSE was used to construct 79 unique model structures by combining components of 4 existing hydrological models. These new models were used to simulate streamflow in two of the basins used in the Model Parameter Estimation Experiment (MOPEX): the Guadalupe River (Texas) and the French Broad River (North Carolina). Results show that the new models produced simulations of streamflow that were at least as good as the simulations produced by the models that participated in the MOPEX experiment. Our initial application of the FUSE method for the Guadalupe River exposed relationships between model structure and model performance, suggesting that the choice of model structure is just as important as the choice of model parameters. However, further work is needed to evaluate model simulations using multiple criteria to diagnose the relative importance of model structural differences in various climate regimes and to assess the amount of independent information in each of the models. This work will be crucial to both identifying the most appropriate model structure for a given problem and quantifying the uncertainty in model structure. To facilitate research on these problems, the FORTRAN‐90 source code for FUSE is available upon request from the lead author.
NASA Astrophysics Data System (ADS)
Demaria, Eleonora M.; Nijssen, Bart; Wagener, Thorsten
2007-06-01
Current land surface models use increasingly complex descriptions of the processes that they represent. Increase in complexity is accompanied by an increase in the number of model parameters, many of which cannot be measured directly at large spatial scales. A Monte Carlo framework was used to evaluate the sensitivity and identifiability of ten parameters controlling surface and subsurface runoff generation in the Variable Infiltration Capacity model (VIC). Using the Monte Carlo Analysis Toolbox (MCAT), parameter sensitivities were studied for four U.S. watersheds along a hydroclimatic gradient, based on a 20-year data set developed for the Model Parameter Estimation Experiment (MOPEX). Results showed that simulated streamflows are sensitive to three parameters when evaluated with different objective functions. Sensitivity of the infiltration parameter (b) and the drainage parameter (exp) were strongly related to the hydroclimatic gradient. The placement of vegetation roots played an important role in the sensitivity of model simulations to the thickness of the second soil layer (thick2). Overparameterization was found in the base flow formulation indicating that a simplified version could be implemented. Parameter sensitivity was more strongly dictated by climatic gradients than by changes in soil properties. Results showed how a complex model can be reduced to a more parsimonious form, leading to a more identifiable model with an increased chance of successful regionalization to ungauged basins. Although parameter sensitivities are strictly valid for VIC, this model is representative of a wider class of macroscale hydrological models. Consequently, the results and methodology will have applicability to other hydrological models.
NASA Astrophysics Data System (ADS)
Abdo Yassin, Fuad; Wheater, Howard; Razavi, Saman; Sapriza, Gonzalo; Davison, Bruce; Pietroniro, Alain
2015-04-01
The credible identification of vertical and horizontal hydrological components and their associated parameters is very challenging (if not impossible) by only constraining the model to streamflow data, especially in regions where the vertical processes significantly dominate the horizontal processes. The prairie areas of the Saskatchewan River basin, a major water system in Canada, demonstrate such behavior, where the hydrologic connectivity and vertical fluxes are mainly controlled by the amount of surface and sub-surface water storages. In this study, we develop a framework for distributed hydrologic model identification and calibration that jointly constrains the model response (i.e., streamflows) as well as a set of model state variables (i.e., water storages) to observations. This framework is set up in the form of multi-objective optimization, where multiple performance criteria are defined and used to simultaneously evaluate the fidelity of the model to streamflow observations and observed (estimated) changes of water storage in the gridded landscape over daily and monthly time scales. The time series of estimated changes in total water storage (including soil, canopy, snow and pond storages) used in this study were derived from an experimental study enhanced by the information obtained from the GRACE satellite. We test this framework on the calibration of a Land Surface Scheme-Hydrology model, called MESH (Modélisation Environmentale Communautaire - Surface and Hydrology), for the Saskatchewan River basin. Pareto Archived Dynamically Dimensioned Search (PA-DDS) is used as the multi-objective optimization engine. The significance of using the developed framework is demonstrated in comparison with the results obtained through a conventional calibration approach to streamflow observations. The approach of incorporating water storage data into the model identification process can more potentially constrain the posterior parameter space, more comprehensively evaluate the model fidelity, and yield more credible predictions.
Tsai, V.C.
2011-01-01
It is known that GPS time series contain a seasonal variation that is not due to tectonic motions, and it has recently been shown that crustal seismic velocities may also vary seasonally. In order to explain these changes, a number of hypotheses have been given, among which thermoelastic and hydrology-induced stresses and strains are leading candidates. Unfortunately, though, since a general framework does not exist for understanding such seasonal variations, it is currently not possible to quickly evaluate the plausibility of these hypotheses. To fill this gap in the literature, I generalize a two-dimensional thermoelastic strain model to provide an analytic solution for the displacements and wave speed changes due to either thermoelastic stresses or hydrologic loading, which consists of poroelastic stresses and purely elastic stresses. The thermoelastic model assumes a periodic surface temperature, and the hydrologic models similarly assume a periodic near-surface water load. Since all three models are two-dimensional and periodic, they are expected to only approximate any realistic scenario; but the models nonetheless provide a quantitative framework for estimating the effects of thermoelastic and hydrologic variations. Quantitative comparison between the models and observations is further complicated by the large uncertainty in some of the relevant parameters. Despite this uncertainty, though, I find that maximum realistic thermoelastic effects are unlikely to explain a large fraction of the observed annual variation in a typical GPS displacement time series or of the observed annual variations in seismic wave speeds in southern California. Hydrologic loading, on the other hand, may be able to explain a larger fraction of both the annual variations in displacements and seismic wave speeds. Neither model is likely to explain all of the seismic wave speed variations inferred from observations. However, more definitive conclusions cannot be made until the model parameters are better constrained. Copyright ?? 2011 by the American Geophysical Union.
The SMAP Level-4 ECO Project: Linking the Terrestrial Water and Carbon Cycles
NASA Technical Reports Server (NTRS)
Kolassa, J.; Reichle, R. H.; Liu, Qing; Koster, Randal D.
2017-01-01
The SMAP (Soil Moisture Active Passive) Level-4 projects aims to develop a fully coupled hydrology-vegetation data assimilation algorithm to generate improved estimates of modeled hydrological fields and carbon fluxes. This includes using the new NASA Catchment-CN (Catchment-Carbon-Nitrogen) model, which combines the Catchment land surface hydrology model with dynamic vegetation components from the Community Land Model version 4 (CLM4). As such, Catchment-CN allows a more realistic, fully coupled feedback between the land hydrology and the biosphere. The L4 ECO project further aims to inform the model through the assimilation of Soil Moisture Active Passive (SMAP) brightness temperature observations as well as observations of Moderate Resolution Imaging Spectroradiometer (MODIS) fraction of absorbed photosynthetically active radiation (FPAR). Preliminary results show that the assimilation of SMAP observations leads to consistent improvements in the model soil moisture skill. An evaluation of the Catchment-CN modeled vegetation characteristics showed that a calibration of the model's vegetation parameters is required before an assimilation of MODIS FPAR observations is feasible.
Global Sensitivity Analysis for Large-scale Socio-hydrological Models using the Cloud
NASA Astrophysics Data System (ADS)
Hu, Y.; Garcia-Cabrejo, O.; Cai, X.; Valocchi, A. J.; Dupont, B.
2014-12-01
In the context of coupled human and natural system (CHNS), incorporating human factors into water resource management provides us with the opportunity to understand the interactions between human and environmental systems. A multi-agent system (MAS) model is designed to couple with the physically-based Republican River Compact Administration (RRCA) groundwater model, in an attempt to understand the declining water table and base flow in the heavily irrigated Republican River basin. For MAS modelling, we defined five behavioral parameters (κ_pr, ν_pr, κ_prep, ν_prep and λ) to characterize the agent's pumping behavior given the uncertainties of the future crop prices and precipitation. κ and ν describe agent's beliefs in their prior knowledge of the mean and variance of crop prices (κ_pr, ν_pr) and precipitation (κ_prep, ν_prep), and λ is used to describe the agent's attitude towards the fluctuation of crop profits. Notice that these human behavioral parameters as inputs to the MAS model are highly uncertain and even not measurable. Thus, we estimate the influences of these behavioral parameters on the coupled models using Global Sensitivity Analysis (GSA). In this paper, we address two main challenges arising from GSA with such a large-scale socio-hydrological model by using Hadoop-based Cloud Computing techniques and Polynomial Chaos Expansion (PCE) based variance decomposition approach. As a result, 1,000 scenarios of the coupled models are completed within two hours with the Hadoop framework, rather than about 28days if we run those scenarios sequentially. Based on the model results, GSA using PCE is able to measure the impacts of the spatial and temporal variations of these behavioral parameters on crop profits and water table, and thus identifies two influential parameters, κ_pr and λ. The major contribution of this work is a methodological framework for the application of GSA in large-scale socio-hydrological models. This framework attempts to find a balance between the heavy computational burden regarding model execution and the number of model evaluations required in the GSA analysis, particularly through an organic combination of Hadoop-based Cloud Computing to efficiently evaluate the socio-hydrological model and PCE where the sensitivity indices are efficiently estimated from its coefficients.
The Rangeland Hydrology and Erosion Model: A Dynamic Approach for Predicting Soil Loss on Rangelands
NASA Astrophysics Data System (ADS)
Hernandez, Mariano; Nearing, Mark A.; Al-Hamdan, Osama Z.; Pierson, Frederick B.; Armendariz, Gerardo; Weltz, Mark A.; Spaeth, Kenneth E.; Williams, C. Jason; Nouwakpo, Sayjro K.; Goodrich, David C.; Unkrich, Carl L.; Nichols, Mary H.; Holifield Collins, Chandra D.
2017-11-01
In this study, we present the improved Rangeland Hydrology and Erosion Model (RHEM V2.3), a process-based erosion prediction tool specific for rangeland application. The article provides the mathematical formulation of the model and parameter estimation equations. Model performance is assessed against data collected from 23 runoff and sediment events in a shrub-dominated semiarid watershed in Arizona, USA. To evaluate the model, two sets of primary model parameters were determined using the RHEM V2.3 and RHEM V1.0 parameter estimation equations. Testing of the parameters indicated that RHEM V2.3 parameter estimation equations provided a 76% improvement over RHEM V1.0 parameter estimation equations. Second, the RHEM V2.3 model was calibrated to measurements from the watershed. The parameters estimated by the new equations were within the lowest and highest values of the calibrated parameter set. These results suggest that the new parameter estimation equations can be applied for this environment to predict sediment yield at the hillslope scale. Furthermore, we also applied the RHEM V2.3 to demonstrate the response of the model as a function of foliar cover and ground cover for 124 data points across Arizona and New Mexico. The dependence of average sediment yield on surface ground cover was moderately stronger than that on foliar cover. These results demonstrate that RHEM V2.3 predicts runoff volume, peak runoff, and sediment yield with sufficient accuracy for broad application to assess and manage rangeland systems.
NASA Astrophysics Data System (ADS)
Gregory, A. E.; Benedict, K. K.; Zhang, S.; Savickas, J.
2017-12-01
Large scale, high severity wildfires in forests have become increasingly prevalent in the western United States due to fire exclusion. Although past work has focused on the immediate consequences of wildfire (ie. runoff magnitude and debris flow), little has been done to understand the post wildfire hydrologic consequences of vegetation regrowth. Furthermore, vegetation is often characterized by static parameterizations within hydrological models. In order to understand the temporal relationship between hydrologic processes and revegetation, we modularized and partially automated the hydrologic modeling process to increase connectivity between remotely sensed data, the Virtual Watershed Platform (a data management resource, called the VWP), input meteorological data, and the Precipitation-Runoff Modeling System (PRMS). This process was used to run simulations in the Valles Caldera of NM, an area impacted by the 2011 Las Conchas Fire, in PRMS before and after the Las Conchas to evaluate hydrologic process changes. The modeling environment addressed some of the existing challenges faced by hydrological modelers. At present, modelers are somewhat limited in their ability to push the boundaries of hydrologic understanding. Specific issues faced by modelers include limited computational resources to model processes at large spatial and temporal scales, data storage capacity and accessibility from the modeling platform, computational and time contraints for experimental modeling, and the skills to integrate modeling software in ways that have not been explored. By taking an interdisciplinary approach, we were able to address some of these challenges by leveraging the skills of hydrologic, data, and computer scientists; and the technical capabilities provided by a combination of on-demand/high-performance computing, distributed data, and cloud services. The hydrologic modeling process was modularized to include options for distributing meteorological data, parameter space experimentation, data format transformation, looping, validation of models and containerization for enabling new analytic scenarios. The user interacts with the modules through Jupyter Notebooks which can be connected to an on-demand computing and HPC environment, and data services built as part of the VWP.
On the importance of methods in hydrological modelling. Perspectives from a case study
NASA Astrophysics Data System (ADS)
Fenicia, Fabrizio; Kavetski, Dmitri
2017-04-01
The hydrological community generally appreciates that developing any non-trivial hydrological model requires a multitude of modelling choices. These choices may range from a (seemingly) straightforward application of mass conservation, to the (often) guesswork-like selection of constitutive functions, parameter values, etc. The application of a model itself requires a myriad of methodological choices - the selection of numerical solvers, objective functions for model calibration, validation approaches, performance metrics, etc. Not unreasonably, hydrologists embarking on ever ambitious projects prioritize hydrological insight over the morass of methodological choices. Perhaps to emphasize "ideas" over "methods", some journals have even reduced the fontsize of the methodology sections of its articles. However, the very nature of modelling is that seemingly routine methodological choices can significantly affect the conclusions of case studies and investigations - making it dangerous to skimp over methodological details in an enthusiastic rush towards the next great hydrological idea. This talk shares modelling insights from a hydrological study of a 300 km2 catchment in Luxembourg, where the diversity of hydrograph dynamics observed at 10 locations begs the question of whether external forcings or internal catchment properties act as dominant controls on streamflow generation. The hydrological insights are fascinating (at least to us), but in this talk we emphasize the impact of modelling methodology on case study conclusions and recommendations. How did we construct our prior set of hydrological model hypotheses? What numerical solver was implemented and why was an objective function based on Bayesian theory deployed? And what would have happened had we omitted model cross-validation, or not used a systematic hypothesis testing approach?
Li, Zhaofu; Liu, Hongyu; Luo, Chuan; Li, Yan; Li, Hengpeng; Pan, Jianjun; Jiang, Xiaosan; Zhou, Quansuo; Xiong, Zhengqin
2015-05-01
The Hydrological Simulation Program-Fortran (HSPF), which is a hydrological and water-quality computer model that was developed by the United States Environmental Protection Agency, was employed to simulate runoff and nutrient export from a typical small watershed in a hilly eastern monsoon region of China. First, a parameter sensitivity analysis was performed to assess how changes in the model parameters affect runoff and nutrient export. Next, the model was calibrated and validated using measured runoff and nutrient concentration data. The Nash-Sutcliffe efficiency (E NS ) values of the yearly runoff were 0.87 and 0.69 for the calibration and validation periods, respectively. For storms runoff events, the E NS values were 0.93 for the calibration period and 0.47 for the validation period. Antecedent precipitation and soil moisture conditions can affect the simulation accuracy of storm event flow. The E NS values for the total nitrogen (TN) export were 0.58 for the calibration period and 0.51 for the validation period. In addition, the correlation coefficients between the observed and simulated TN concentrations were 0.84 for the calibration period and 0.74 for the validation period. For phosphorus export, the E NS values were 0.89 for the calibration period and 0.88 for the validation period. In addition, the correlation coefficients between the observed and simulated orthophosphate concentrations were 0.96 and 0.94 for the calibration and validation periods, respectively. The nutrient simulation results are generally satisfactory even though the parameter-lumped HSPF model cannot represent the effects of the spatial pattern of land cover on nutrient export. The model parameters obtained in this study could serve as reference values for applying the model to similar regions. In addition, HSPF can properly describe the characteristics of water quantity and quality processes in this area. After adjustment, calibration, and validation of the parameters, the HSPF model is suitable for hydrological and water-quality simulations in watershed planning and management and for designing best management practices.
Atkins, John T.; Wiley, Jeffrey B.; Paybins, Katherine S.
2005-01-01
This report presents the Hydrologic Simulation Program-FORTRAN Model (HSPF) parameters for eight basins in the coal-mining region of West Virginia. The magnitude and characteristics of model parameters from this study will assist users of HSPF in simulating streamflow at other basins in the coal-mining region of West Virginia. The parameter for nominal capacity of the upper-zone storage, UZSN, increased from south to north. The increase in UZSN with the increase in basin latitude could be due to decreasing slopes, decreasing rockiness of the soils, and increasing soil depths from south to north. A special action was given to the parameter for fraction of ground-water inflow that flows to inactive ground water, DEEPFR. The basis for this special action was related to the seasonal movement of the water table and transpiration from trees. The models were most sensitive to DEEPFR and the parameter for interception storage capacity, CEPSC. The models were also fairly sensitive to the parameter for an index representing the infiltration capacity of the soil, INFILT; the parameter for indicating the behavior of the ground-water recession flow, KVARY; the parameter for the basic ground-water recession rate, AGWRC; the parameter for nominal capacity of the upper zone storage, UZSN; the parameter for the interflow inflow, INTFW; the parameter for the interflow recession constant, IRC; and the parameter for lower zone evapotranspiration, LZETP.
NASA Astrophysics Data System (ADS)
Pathiraja, S.; Anghileri, D.; Burlando, P.; Sharma, A.; Marshall, L.; Moradkhani, H.
2018-03-01
The global prevalence of rapid and extensive land use change necessitates hydrologic modelling methodologies capable of handling non-stationarity. This is particularly true in the context of Hydrologic Forecasting using Data Assimilation. Data Assimilation has been shown to dramatically improve forecast skill in hydrologic and meteorological applications, although such improvements are conditional on using bias-free observations and model simulations. A hydrologic model calibrated to a particular set of land cover conditions has the potential to produce biased simulations when the catchment is disturbed. This paper sheds new light on the impacts of bias or systematic errors in hydrologic data assimilation, in the context of forecasting in catchments with changing land surface conditions and a model calibrated to pre-change conditions. We posit that in such cases, the impact of systematic model errors on assimilation or forecast quality is dependent on the inherent prediction uncertainty that persists even in pre-change conditions. Through experiments on a range of catchments, we develop a conceptual relationship between total prediction uncertainty and the impacts of land cover changes on the hydrologic regime to demonstrate how forecast quality is affected when using state estimation Data Assimilation with no modifications to account for land cover changes. This work shows that systematic model errors as a result of changing or changed catchment conditions do not always necessitate adjustments to the modelling or assimilation methodology, for instance through re-calibration of the hydrologic model, time varying model parameters or revised offline/online bias estimation.
Legacy model integration for enhancing hydrologic interdisciplinary research
NASA Astrophysics Data System (ADS)
Dozier, A.; Arabi, M.; David, O.
2013-12-01
Many challenges are introduced to interdisciplinary research in and around the hydrologic science community due to advances in computing technology and modeling capabilities in different programming languages, across different platforms and frameworks by researchers in a variety of fields with a variety of experience in computer programming. Many new hydrologic models as well as optimization, parameter estimation, and uncertainty characterization techniques are developed in scripting languages such as Matlab, R, Python, or in newer languages such as Java and the .Net languages, whereas many legacy models have been written in FORTRAN and C, which complicates inter-model communication for two-way feedbacks. However, most hydrologic researchers and industry personnel have little knowledge of the computing technologies that are available to address the model integration process. Therefore, the goal of this study is to address these new challenges by utilizing a novel approach based on a publish-subscribe-type system to enhance modeling capabilities of legacy socio-economic, hydrologic, and ecologic software. Enhancements include massive parallelization of executions and access to legacy model variables at any point during the simulation process by another program without having to compile all the models together into an inseparable 'super-model'. Thus, this study provides two-way feedback mechanisms between multiple different process models that can be written in various programming languages and can run on different machines and operating systems. Additionally, a level of abstraction is given to the model integration process that allows researchers and other technical personnel to perform more detailed and interactive modeling, visualization, optimization, calibration, and uncertainty analysis without requiring deep understanding of inter-process communication. To be compatible, a program must be written in a programming language with bindings to a common implementation of the message passing interface (MPI), which includes FORTRAN, C, Java, the .NET languages, Python, R, Matlab, and many others. The system is tested on a longstanding legacy hydrologic model, the Soil and Water Assessment Tool (SWAT), to observe and enhance speed-up capabilities for various optimization, parameter estimation, and model uncertainty characterization techniques, which is particularly important for computationally intensive hydrologic simulations. Initial results indicate that the legacy extension system significantly decreases developer time, computation time, and the cost of purchasing commercial parallel processing licenses, while enhancing interdisciplinary research by providing detailed two-way feedback mechanisms between various process models with minimal changes to legacy code.
NASA Astrophysics Data System (ADS)
Arnaud, Patrick; Cantet, Philippe; Odry, Jean
2017-11-01
Flood frequency analyses (FFAs) are needed for flood risk management. Many methods exist ranging from classical purely statistical approaches to more complex approaches based on process simulation. The results of these methods are associated with uncertainties that are sometimes difficult to estimate due to the complexity of the approaches or the number of parameters, especially for process simulation. This is the case of the simulation-based FFA approach called SHYREG presented in this paper, in which a rainfall generator is coupled with a simple rainfall-runoff model in an attempt to estimate the uncertainties due to the estimation of the seven parameters needed to estimate flood frequencies. The six parameters of the rainfall generator are mean values, so their theoretical distribution is known and can be used to estimate the generator uncertainties. In contrast, the theoretical distribution of the single hydrological model parameter is unknown; consequently, a bootstrap method is applied to estimate the calibration uncertainties. The propagation of uncertainty from the rainfall generator to the hydrological model is also taken into account. This method is applied to 1112 basins throughout France. Uncertainties coming from the SHYREG method and from purely statistical approaches are compared, and the results are discussed according to the length of the recorded observations, basin size and basin location. Uncertainties of the SHYREG method decrease as the basin size increases or as the length of the recorded flow increases. Moreover, the results show that the confidence intervals of the SHYREG method are relatively small despite the complexity of the method and the number of parameters (seven). This is due to the stability of the parameters and takes into account the dependence of uncertainties due to the rainfall model and the hydrological calibration. Indeed, the uncertainties on the flow quantiles are on the same order of magnitude as those associated with the use of a statistical law with two parameters (here generalised extreme value Type I distribution) and clearly lower than those associated with the use of a three-parameter law (here generalised extreme value Type II distribution). For extreme flood quantiles, the uncertainties are mostly due to the rainfall generator because of the progressive saturation of the hydrological model.
Better Insight Into Water Resources Management With Integrated Hydrodynamic And Water Quality Models
NASA Astrophysics Data System (ADS)
Debele, B.; Srinivasan, R.; Parlange, J.
2004-12-01
Models have long been used in water resources management to guide decision making and improve understanding of the system. Numerous models of different scales -spatial and temporal - are available. Yet, very few models manage to bridge simulations of hydrological and water quality parameters from both upland watershed and riverine system. Most water quality models, such as QUAL2E and EPD-RIV1 concentrate on the riverine system while CE-QUAL-W2 and WASP models focus on larger waterbodies, such as lakes and reservoirs. On the other hand, the original SWAT model, HSPF and other upland watershed hydrological models simulate agricultural (diffuse) pollution sources with limited number of processes incorporated to handle point source pollutions that emanate from industrial sectors. Such limitations, which are common in most hydrodynamic and water quality models undermine better understanding that otherwise could be uncovered by employing integrated hydrological and water quality models for both upland watershed and riverine system. The SWAT model is a well documented and verified hydrological and water quality model that has been developed to simulate the effects of various management scenarios on the health of the environment in terms of water quantity and quality. Recently, the SWAT model has been extended to include the simulation of hydrodynamic and water quality parameters in the river system. The extended SWAT model (ESWAT) has been further extended to run using diurnally varying (hourly) weather data and produce outputs at hourly timescales. This and other improvements in the ESWAT model have been documented in the current work. Besides, the results from two case studies in Texas will be reported.
NASA Astrophysics Data System (ADS)
Martinez, Guillermo F.; Gupta, Hoshin V.
2011-12-01
Methods to select parsimonious and hydrologically consistent model structures are useful for evaluating dominance of hydrologic processes and representativeness of data. While information criteria (appropriately constrained to obey underlying statistical assumptions) can provide a basis for evaluating appropriate model complexity, it is not sufficient to rely upon the principle of maximum likelihood (ML) alone. We suggest that one must also call upon a "principle of hydrologic consistency," meaning that selected ML structures and parameter estimates must be constrained (as well as possible) to reproduce desired hydrological characteristics of the processes under investigation. This argument is demonstrated in the context of evaluating the suitability of candidate model structures for lumped water balance modeling across the continental United States, using data from 307 snow-free catchments. The models are constrained to satisfy several tests of hydrologic consistency, a flow space transformation is used to ensure better consistency with underlying statistical assumptions, and information criteria are used to evaluate model complexity relative to the data. The results clearly demonstrate that the principle of consistency provides a sensible basis for guiding selection of model structures and indicate strong spatial persistence of certain model structures across the continental United States. Further work to untangle reasons for model structure predominance can help to relate conceptual model structures to physical characteristics of the catchments, facilitating the task of prediction in ungaged basins.
NASA Astrophysics Data System (ADS)
Quesada-Montano, Beatriz; Westerberg, Ida K.; Fuentes-Andino, Diana; Hidalgo-Leon, Hugo; Halldin, Sven
2017-04-01
Long-term hydrological data are key to understanding catchment behaviour and for decision making within water management and planning. Given the lack of observed data in many regions worldwide, hydrological models are an alternative for reproducing historical streamflow series. Additional types of information - to locally observed discharge - can be used to constrain model parameter uncertainty for ungauged catchments. Climate variability exerts a strong influence on streamflow variability on long and short time scales, in particular in the Central-American region. We therefore explored the use of climate variability knowledge to constrain the simulated discharge uncertainty of a conceptual hydrological model applied to a Costa Rican catchment, assumed to be ungauged. To reduce model uncertainty we first rejected parameter relationships that disagreed with our understanding of the system. We then assessed how well climate-based constraints applied at long-term, inter-annual and intra-annual time scales could constrain model uncertainty. Finally, we compared the climate-based constraints to a constraint on low-flow statistics based on information obtained from global maps. We evaluated our method in terms of the ability of the model to reproduce the observed hydrograph and the active catchment processes in terms of two efficiency measures, a statistical consistency measure, a spread measure and 17 hydrological signatures. We found that climate variability knowledge was useful for reducing model uncertainty, in particular, unrealistic representation of deep groundwater processes. The constraints based on global maps of low-flow statistics provided more constraining information than those based on climate variability, but the latter rejected slow rainfall-runoff representations that the low flow statistics did not reject. The use of such knowledge, together with information on low-flow statistics and constraints on parameter relationships showed to be useful to constrain model uncertainty for an - assumed to be - ungauged basin. This shows that our method is promising for reconstructing long-term flow data for ungauged catchments on the Pacific side of Central America, and that similar methods can be developed for ungauged basins in other regions where climate variability exerts a strong control on streamflow variability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vrugt, Jasper A; Robinson, Bruce A; Ter Braak, Cajo J F
In recent years, a strong debate has emerged in the hydrologic literature regarding what constitutes an appropriate framework for uncertainty estimation. Particularly, there is strong disagreement whether an uncertainty framework should have its roots within a proper statistical (Bayesian) context, or whether such a framework should be based on a different philosophy and implement informal measures and weaker inference to summarize parameter and predictive distributions. In this paper, we compare a formal Bayesian approach using Markov Chain Monte Carlo (MCMC) with generalized likelihood uncertainty estimation (GLUE) for assessing uncertainty in conceptual watershed modeling. Our formal Bayesian approach is implemented usingmore » the recently developed differential evolution adaptive metropolis (DREAM) MCMC scheme with a likelihood function that explicitly considers model structural, input and parameter uncertainty. Our results demonstrate that DREAM and GLUE can generate very similar estimates of total streamflow uncertainty. This suggests that formal and informal Bayesian approaches have more common ground than the hydrologic literature and ongoing debate might suggest. The main advantage of formal approaches is, however, that they attempt to disentangle the effect of forcing, parameter and model structural error on total predictive uncertainty. This is key to improving hydrologic theory and to better understand and predict the flow of water through catchments.« less
Identifying Hydrologic Processes in Agricultural Watersheds Using Precipitation-Runoff Models
Linard, Joshua I.; Wolock, David M.; Webb, Richard M.T.; Wieczorek, Michael
2009-01-01
Understanding the fate and transport of agricultural chemicals applied to agricultural fields will assist in designing the most effective strategies to prevent water-quality impairments. At a watershed scale, the processes controlling the fate and transport of agricultural chemicals are generally understood only conceptually. To examine the applicability of conceptual models to the processes actually occurring, two precipitation-runoff models - the Soil and Water Assessment Tool (SWAT) and the Water, Energy, and Biogeochemical Model (WEBMOD) - were applied in different agricultural settings of the contiguous United States. Each model, through different physical processes, simulated the transport of water to a stream from the surface, the unsaturated zone, and the saturated zone. Models were calibrated for watersheds in Maryland, Indiana, and Nebraska. The calibrated sets of input parameters for each model at each watershed are discussed, and the criteria used to validate the models are explained. The SWAT and WEBMOD model results at each watershed conformed to each other and to the processes identified in each watershed's conceptual hydrology. In Maryland the conceptual understanding of the hydrology indicated groundwater flow was the largest annual source of streamflow; the simulation results for the validation period confirm this. The dominant source of water to the Indiana watershed was thought to be tile drains. Although tile drains were not explicitly simulated in the SWAT model, a large component of streamflow was received from lateral flow, which could be attributed to tile drains. Being able to explicitly account for tile drains, WEBMOD indicated water from tile drains constituted most of the annual streamflow in the Indiana watershed. The Nebraska models indicated annual streamflow was composed primarily of perennial groundwater flow and infiltration-excess runoff, which conformed to the conceptual hydrology developed for that watershed. The hydrologic processes represented in the parameter sets resulting from each model were comparable at individual watersheds, but varied between watersheds. The models were unable to show, however, whether hydrologic processes other than those included in the original conceptual models were major contributors to streamflow. Supplemental simulations of agricultural chemical transport could improve the ability to assess conceptual models.
2012-02-01
parameter estimation method, but rather to carefully describe how to use the ERDC software implementation of MLSL that accommodates the PEST model...model independent LM method based parameter estimation software PEST (Doherty, 2004, 2007a, 2007b), which quantifies model to measure- ment misfit...et al. (2011) focused on one drawback associated with LM-based model independent parameter estimation as implemented in PEST ; viz., that it requires
The impact of lake and reservoir parameterization on global streamflow simulation.
Zajac, Zuzanna; Revilla-Romero, Beatriz; Salamon, Peter; Burek, Peter; Hirpa, Feyera A; Beck, Hylke
2017-05-01
Lakes and reservoirs affect the timing and magnitude of streamflow, and are therefore essential hydrological model components, especially in the context of global flood forecasting. However, the parameterization of lake and reservoir routines on a global scale is subject to considerable uncertainty due to lack of information on lake hydrographic characteristics and reservoir operating rules. In this study we estimated the effect of lakes and reservoirs on global daily streamflow simulations of a spatially-distributed LISFLOOD hydrological model. We applied state-of-the-art global sensitivity and uncertainty analyses for selected catchments to examine the effect of uncertain lake and reservoir parameterization on model performance. Streamflow observations from 390 catchments around the globe and multiple performance measures were used to assess model performance. Results indicate a considerable geographical variability in the lake and reservoir effects on the streamflow simulation. Nash-Sutcliffe Efficiency (NSE) and Kling-Gupta Efficiency (KGE) metrics improved for 65% and 38% of catchments respectively, with median skill score values of 0.16 and 0.2 while scores deteriorated for 28% and 52% of the catchments, with median values -0.09 and -0.16, respectively. The effect of reservoirs on extreme high flows was substantial and widespread in the global domain, while the effect of lakes was spatially limited to a few catchments. As indicated by global sensitivity analysis, parameter uncertainty substantially affected uncertainty of model performance. Reservoir parameters often contributed to this uncertainty, although the effect varied widely among catchments. The effect of reservoir parameters on model performance diminished with distance downstream of reservoirs in favor of other parameters, notably groundwater-related parameters and channel Manning's roughness coefficient. This study underscores the importance of accounting for lakes and, especially, reservoirs and using appropriate parameterization in large-scale hydrological simulations.
A Skylab program for the International Hydrological Decade (IHD). [Lake Ontario Basin
NASA Technical Reports Server (NTRS)
Polcyn, F. C. (Principal Investigator); Rebel, D. L.
1975-01-01
The author has identified the following significant results. Demonstration of the procedure for utilizing the model relating red and IR reflectance to surface soil moisture over regions of variable vegetation cover indicates that remote sensing may be able to make direct inputs into determination of this hydrologic parameter.
Modelling exploration of non-stationary hydrological system
NASA Astrophysics Data System (ADS)
Kim, Kue Bum; Kwon, Hyun-Han; Han, Dawei
2015-04-01
Traditional hydrological modelling assumes that the catchment does not change with time (i.e., stationary conditions) which means the model calibrated for the historical period is valid for the future period. However, in reality, due to change of climate and catchment conditions this stationarity assumption may not be valid in the future. It is a challenge to make the hydrological model adaptive to the future climate and catchment conditions that are not observable at the present time. In this study a lumped conceptual rainfall-runoff model called IHACRES was applied to a catchment in southwest England. Long observation data from 1961 to 2008 were used and seasonal calibration (in this study only summer period is further explored because it is more sensitive to climate and land cover change than the other three seasons) has been done since there are significant seasonal rainfall patterns. We expect that the model performance can be improved by calibrating the model based on individual seasons. The data is split into calibration and validation periods with the intention of using the validation period to represent the future unobserved situations. The success of the non-stationary model will depend not only on good performance during the calibration period but also the validation period. Initially, the calibration is based on changing the model parameters with time. Methodology is proposed to adapt the parameters using the step forward and backward selection schemes. However, in the validation both the forward and backward multiple parameter changing models failed. One problem is that the regression with time is not reliable since the trend may not be in a monotonic linear relationship with time. The second issue is that changing multiple parameters makes the selection process very complex which is time consuming and not effective in the validation period. As a result, two new concepts are explored. First, only one parameter is selected for adjustment while the other parameters are set as constant. Secondly, regression is made against climate condition instead of against time. It has been found that such a new approach is very effective and this non-stationary model worked very well both in the calibration and validation period. Although the catchment is specific in southwest England and the data are for only the summer period, the methodology proposed in this study is general and applicable to other catchments. We hope this study will stimulate the hydrological community to explore a variety of sites so that valuable experiences and knowledge could be gained to improve our understanding of such a complex modelling issue in climate change impact assessment.
Models and parameters for environmental radiological assessments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, C W
1984-01-01
This book presents a unified compilation of models and parameters appropriate for assessing the impact of radioactive discharges to the environment. Models examined include those developed for the prediction of atmospheric and hydrologic transport and deposition, for terrestrial and aquatic food-chain bioaccumulation, and for internal and external dosimetry. Chapters have been entered separately into the data base. (ACR)
NASA Astrophysics Data System (ADS)
Klotz, Daniel; Herrnegger, Mathew; Schulz, Karsten
2015-04-01
A multi-scale parameter-estimation method, as presented by Samaniego et al. (2010), is implemented and extended for the conceptual hydrological model COSERO. COSERO is a HBV-type model that is specialized for alpine-environments, but has been applied over a wide range of basins all over the world (see: Kling et al., 2014 for an overview). Within the methodology available small-scale information (DEM, soil texture, land cover, etc.) is used to estimate the coarse-scale model parameters by applying a set of transfer-functions (TFs) and subsequent averaging methods, whereby only TF hyper-parameters are optimized against available observations (e.g. runoff data). The parameter regionalisation approach was extended in order to allow for a more meta-heuristical handling of the transfer-functions. The two main novelties are: 1. An explicit introduction of constrains into parameter estimation scheme: The constraint scheme replaces invalid parts of the transfer-function-solution space with valid solutions. It is inspired by applications in evolutionary algorithms and related to the combination of learning and evolution. This allows the consideration of physical and numerical constraints as well as the incorporation of a priori modeller-experience into the parameter estimation. 2. Spline-based transfer-functions: Spline-based functions enable arbitrary forms of transfer-functions: This is of importance since in many cases the general relationship between sub-grid information and parameters are known, but not the form of the transfer-function itself. The contribution presents the results and experiences with the adopted method and the introduced extensions. Simulation are performed for the pre-alpine/alpine Traisen catchment in Lower Austria. References: Samaniego, L., Kumar, R., Attinger, S. (2010): Multiscale parameter regionalization of a grid-based hydrologic model at the mesoscale, Water Resour. Res., doi: 10.1029/2008WR007327 Kling, H., Stanzel, P., Fuchs, M., and Nachtnebel, H. P. (2014): Performance of the COSERO precipitation-runoff model under non-stationary conditions in basins with different climates, Hydrolog. Sci. J., doi: 10.1080/02626667.2014.959956.
Gsflow-py: An integrated hydrologic model development tool
NASA Astrophysics Data System (ADS)
Gardner, M.; Niswonger, R. G.; Morton, C.; Henson, W.; Huntington, J. L.
2017-12-01
Integrated hydrologic modeling encompasses a vast number of processes and specifications, variable in time and space, and development of model datasets can be arduous. Model input construction techniques have not been formalized or made easily reproducible. Creating the input files for integrated hydrologic models (IHM) requires complex GIS processing of raster and vector datasets from various sources. Developing stream network topology that is consistent with the model resolution digital elevation model is important for robust simulation of surface water and groundwater exchanges. Distribution of meteorologic parameters over the model domain is difficult in complex terrain at the model resolution scale, but is necessary to drive realistic simulations. Historically, development of input data for IHM models has required extensive GIS and computer programming expertise which has restricted the use of IHMs to research groups with available financial, human, and technical resources. Here we present a series of Python scripts that provide a formalized technique for the parameterization and development of integrated hydrologic model inputs for GSFLOW. With some modifications, this process could be applied to any regular grid hydrologic model. This Python toolkit automates many of the necessary and laborious processes of parameterization, including stream network development and cascade routing, land coverages, and meteorological distribution over the model domain.
Reducing equifinality of hydrological models by integrating Functional Streamflow Disaggregation
NASA Astrophysics Data System (ADS)
Lüdtke, Stefan; Apel, Heiko; Nied, Manuela; Carl, Peter; Merz, Bruno
2014-05-01
A universal problem of the calibration of hydrological models is the equifinality of different parameter sets derived from the calibration of models against total runoff values. This is an intrinsic problem stemming from the quality of the calibration data and the simplified process representation by the model. However, discharge data contains additional information which can be extracted by signal processing methods. An analysis specifically developed for the disaggregation of runoff time series into flow components is the Functional Streamflow Disaggregation (FSD; Carl & Behrendt, 2008). This method is used in the calibration of an implementation of the hydrological model SWIM in a medium sized watershed in Thailand. FSD is applied to disaggregate the discharge time series into three flow components which are interpreted as base flow, inter-flow and surface runoff. In addition to total runoff, the model is calibrated against these three components in a modified GLUE analysis, with the aim to identify structural model deficiencies, assess the internal process representation and to tackle equifinality. We developed a model dependent (MDA) approach calibrating the model runoff components against the FSD components, and a model independent (MIA) approach comparing the FSD of the model results and the FSD of calibration data. The results indicate, that the decomposition provides valuable information for the calibration. Particularly MDA highlights and discards a number of standard GLUE behavioural models underestimating the contribution of soil water to river discharge. Both, MDA and MIA yield to a reduction of the parameter ranges by a factor up to 3 in comparison to standard GLUE. Based on these results, we conclude that the developed calibration approach is able to reduce the equifinality of hydrological model parameterizations. The effect on the uncertainty of the model predictions is strongest by applying MDA and shows only minor reductions for MIA. Besides further validation of FSD, the next steps include an extension of the study to different catchments and other hydrological models with a similar structure.
Testing the Joint UK Land Environment Simulator (JULES) for flood forecasting
NASA Astrophysics Data System (ADS)
Batelis, Stamatios-Christos; Rosolem, Rafael; Han, Dawei; Rahman, Mostaquimur
2017-04-01
Land Surface Models (LSM) are based on physics principles and simulate the exchanges of energy, water and biogeochemical cycles between the land surface and lower atmosphere. Such models are typically applied for climate studies or effects of land use changes but as the resolution of LSMs and supporting observations are continuously increasing, its representation of hydrological processes need to be addressed adequately. For example, changes in climate and land use can alter the hydrology of a region, for instance, by altering its flooding regime. LSMs can be a powerful tool because of their ability to spatially represent a region with much finer resolution. However, despite such advantages, its performance has not been extensively assessed for flood forecasting simply because its representation of typical hydrological processes, such as overland flow and river routing, are still either ignored or roughly represented. In this study, we initially test the Joint UK Land Environment Simulator (JULES) as a flood forecast tool focusing on its river routing scheme. In particular, JULES river routing parameterization is based on the Rapid Flow Model (RFM) which relies on six prescribed parameters (two surface and two subsurface wave celerities, and two return flow fractions). Although this routing scheme is simple, the prescription of its six default parameters is still too generalized. Our aim is to understand the importance of each RFM parameter in a series of JULES simulations at a number of catchments in the UK for the 2006-2015 period. This is carried out, for instance, by making a number of assumptions of parameter behaviour (e.g., spatially uniform versus varying and/or temporally constant or time-varying parameters within each catchment). Hourly rainfall radar in combination with the CHESS (Climate, Hydrological and Ecological research Support System) meteorological daily data both at 1 km2 resolution are used. The evaluation of the model is based on hourly runoff data provided by the National River Flood Archive using a number of model performance metrics. We use a calibrated conceptually-based lumped model, more typically applied in flood studies, as a benchmark for our analysis.
NASA Astrophysics Data System (ADS)
Jiang, Sanyuan; Zhang, Qi
2017-04-01
Phosphorus losses from excessive fertilizer application and improper land exploitation were found to be the limiting factor for freshwater quality deterioration and eutrophication. Phosphorus transport from uplands to river is related to hydrological, soil erosion and sediment transport processes, which is impacted by several physiographic and meteorological factors. The objective of this study was to investigate the spatiotemporal variation of phosphorus losses and response to climate change at a typical upstream tributary (Le'An river) of Poyang Lake. To this end, a process-oriented hydrological and nutrient transport model HYPE (Hydrological Predictions for the Environment) was set up for discharge and phosphorus transport simulation at Le'An catchment. Parameter ESTimator (PEST) was combined with HYPE model for parameter sensitivity analysis and optimisation. In runoff modelling, potential evapotranspiration rate of the dominant land use (forest) is most sensitive; parameters of surface runoff rate and percolation capacity for the red soil are also very sensitive. In phosphorus transport modelling, the exponent of equation for soil erosion processes induced by surface runoff is most sensitive, coefficient of adsorption/desorption processes for red soil is also very sensitive. Flow dynamics and water balance were simulated well at all sites for the whole period (1978-1986) with NSE≥0.80 and PBIAS≤14.53%. The optimized hydrological parameter set were transferable for the independent period (2009-2010) with NSE≥0.90 and highest PBIAS of -7.44% in stream flow simulation. Seasonal dynamics and balance of stream water TP (Total Phosphorus ) concentrations were captured satisfactorily indicated by NSE≥0.53 and highest PBIAS of 16.67%. In annual scale, most phosphorus is transported via surface runoff during heavy storm flow events, which may account for about 70% of annual TP loads. Based on future climate change analysis under three different emission scenarios (RCP 2.6, RCP 4.5 and RCP 8.5), there is no considerable change in average annual rainfall amount in 2020-2035 while increasing occurrence frequency and intensity of extreme rainfall events were predicted. The validated HYPE model was run on the three emission scenarios. Overall increase of TP loads was found in future with the largest increase of annual TP loads under the high emission scenario (RCP 8.5). The outcomes of this study (i) verified the transferability of HYPE model at humid subtropical and heterogeneous catchment; (ii) revealed the sensitive hydrological and phosphorus transport processes and relevant parameters; (iii) implied more TP losses in future in response to increasing extreme rainfall events.
NASA Astrophysics Data System (ADS)
Oni, S. K.; Futter, M. N.; Buttle, J. M.; Dillon, P.
2014-12-01
Urban sprawl and regional climate variability are major stresses on surface water resources in many places. The Lake Simcoe watershed (LSW) Ontario, Canada, is no exception. The LSW is predominantly agricultural but is experiencing rapid population growth due to its proximity to the greater Toronto area. This has led to extensive land use changes which have impacted its water resources and altered runoff patterns in some rivers draining to the lake. Here, we use a paired-catchment approach, hydrological change detection modelling and remote sensing analysis of satellite images to evaluate the impacts of land use change on the hydrology of the LSW (1994 to 2008). Results show that urbanization increased up to 16% in Lovers Creek, the most-urban impacted catchment. Annual runoff from Lovers Creek increased from 239 to 442 mm/yr in contrast to the reference catchment (Black River at Washago) where runoff was relatively stable with an annual mean of 474 mm/yr. Increased annual runoff from Lovers Creek was not accompanied by an increase in annual precipitation. Discriminant function analysis suggests that early (1992-1997; pre-major development) and late (2004-2009; fully urbanized) periods for Lovers Creek separated mainly based on model parameter sets related to runoff flashiness and evapotranspiration. As a result, parameterization in either period cannot be used interchangeably to produce credible runoff simulations in Lovers Creek due to greater scatter between the parameters in canonical space. Separation of early and late period parameter sets for the reference catchment was based on climate and snowmelt related processes. This suggests that regional climatic variability could be influencing hydrologic change in the reference catchment whereas urbanization amplified the regional natural hydrologic changes in urbanizing catchments of the LSW.
NASA Astrophysics Data System (ADS)
Nepal, S.
2016-12-01
The spatial transferability of the model parameters of the process-oriented distributed J2000 hydrological model was investigated in two glaciated sub-catchments of the Koshi river basin in eastern Nepal. The basins had a high degree of similarity with respect to their static landscape features. The model was first calibrated (1986-1991) and validated (1992-1997) in the Dudh Koshi sub-catchment. The calibrated and validated model parameters were then transferred to the nearby Tamor catchment (2001-2009). A sensitivity and uncertainty analysis was carried out for both sub-catchments to discover the sensitivity range of the parameters in the two catchments. The model represented the overall hydrograph well in both sub-catchments, including baseflow and medium range flows (rising and recession limbs). The efficiency results according to both Nash-Sutcliffe and the coefficient of determination was above 0.84 in both cases. The sensitivity analysis showed that the same parameter was most sensitive for Nash-Sutcliffe (ENS) and Log Nash-Sutcliffe (LNS) efficiencies in both catchments. However, there were some differences in sensitivity to ENS and LNS for moderate and low sensitive parameters, although the majority (13 out of 16 for ENS and 16 out of 16 for LNS) had a sensitivity response in a similar range. A generalized likelihood uncertainty estimation (GLUE) result suggest that most of the time the observed runoff is within the parameter uncertainty range, although occasionally the values lie outside the uncertainty range, especially during flood peaks and more in the Tamor. This may be due to the limited input data resulting from the small number of precipitation stations and lack of representative stations in high-altitude areas, as well as to model structural uncertainty. The results indicate that transfer of the J2000 parameters to a neighboring catchment in the Himalayan region with similar physiographic landscape characteristics is viable. This indicates the possibility of applying process-based J2000 model be to the ungauged catchments in the Himalayan region, which could provide important insights into the hydrological system dynamics and provide much needed information to support water resources planning and management.
NASA Astrophysics Data System (ADS)
Munyaneza, O.; Mukubwa, A.; Maskey, S.; Wenninger, J.; Uhlenbrook, S.
2013-12-01
In the last couple of years, different hydrological research projects were undertaken in the Migina catchment (243.2 km2), a tributary of the Kagera river in Southern Rwanda. These projects were aimed to understand hydrological processes of the catchment using analytical and experimental approaches and to build a pilot case whose experience can be extended to other catchments in Rwanda. In the present study, we developed a hydrological model of the catchment, which can be used to inform water resources planning and decision making. The semi-distributed hydrological model HEC-HMS (version 3.5) was used with its soil moisture accounting, unit hydrograph, liner reservoir (for base flow) and Muskingum-Cunge (river routing) methods. We used rainfall data from 12 stations and streamflow data from 5 stations, which were collected as part of this study over a period of two years (May 2009 and June 2011). The catchment was divided into five sub-catchments each represented by one of the five observed streamflow gauges. The model parameters were calibrated separately for each sub-catchment using the observed streamflow data. Calibration results obtained were found acceptable at four stations with a Nash-Sutcliffe Model Efficiency of 0.65 on daily runoff at the catchment outlet. Due to the lack of sufficient and reliable data for longer periods, a model validation (split sample test) was not undertaken. However, we used results from tracer based hydrograph separation from a previous study to compare our model results in terms of the runoff components. It was shown that the model performed well in simulating the total flow volume, peak flow and timing as well as the portion of direct runoff and base flow. We observed considerable disparities in the parameters (e.g. groundwater storage) and runoff components across the five sub-catchments, that provided insights into the different hydrological processes at sub-catchment scale. We conclude that such disparities justify the need to consider catchment subdivisions, if such parameters and components of the water cycle are to form the base for decision making in water resources planning in the Migina catchment.
Conditional parametric models for storm sewer runoff
NASA Astrophysics Data System (ADS)
Jonsdottir, H.; Nielsen, H. Aa; Madsen, H.; Eliasson, J.; Palsson, O. P.; Nielsen, M. K.
2007-05-01
The method of conditional parametric modeling is introduced for flow prediction in a sewage system. It is a well-known fact that in hydrological modeling the response (runoff) to input (precipitation) varies depending on soil moisture and several other factors. Consequently, nonlinear input-output models are needed. The model formulation described in this paper is similar to the traditional linear models like final impulse response (FIR) and autoregressive exogenous (ARX) except that the parameters vary as a function of some external variables. The parameter variation is modeled by local lines, using kernels for local linear regression. As such, the method might be referred to as a nearest neighbor method. The results achieved in this study were compared to results from the conventional linear methods, FIR and ARX. The increase in the coefficient of determination is substantial. Furthermore, the new approach conserves the mass balance better. Hence this new approach looks promising for various hydrological models and analysis.
Wolf Creek Research Basin Cold REgion Process Studies - 1992-2003
NASA Astrophysics Data System (ADS)
Janowicz, R.; Hedstrom, N.; Pomeroy, J.; Granger, R.; Carey, S.
2004-12-01
The development of hydrological models in northern regions are complicated by cold region processes. Sparse vegetation influences snowpack accumulation, redistribution and melt, frozen ground effects infiltration and runoff and cold soils in the summer effect evapotranspiration rates. Situated in the upper Yukon River watershed, the 195 km2 Wolf Creek Research Basin was instrumented in 1992 to calibrate hydrologic flow models, and has since evolved into a comprehensive study of cold region processes and linkages, contributing significantly to hydrological and climate change modelling. Studies include those of precipitation distribution, snowpack accumulation and redistribution, energy balance, snowmelt infiltration, and water balance. Studies of the spatial variability of hydrometeorological data demonstrate the importance of physical parameters on their distribution and control on runoff processes. Many studies have also identified the complex interaction of several of the physical parameters, including topography, vegetation and frozen ground (seasonal or permafrost) as important. They also show that there is a fundamental, underlying spatial structure to the watershed that must be adequately represented in parameterization schemes for scaling and watershed modelling. The specific results of numerous studies are presented.
Urban Soil Hydrology: bridging the data gap with a nationwide field study
NASA Astrophysics Data System (ADS)
Schifman, L. A.; Shuster, W.
2016-12-01
Urban communities generally rely on hydrologic models or tools for assessing suitable sites for green infrastructure. These rainfall-runoff models, e.g. National Stormwater Calculator (NSWC), query soil hydrologic information from national databases, e.g. Soil Survey Geographic Database (SSURGO), or are estimated via pedotransfer-based algorithms like USDA Rosetta. As part of urban soil hydrologic assessments we have collected soil textural and hydrologic data in 12 cities throughout the United States and compared these measurements to NSWC and SSURGO queried infiltration rates (Kunsat) and Rosetta-estimated drainage rates (Ksat and Kunsat). We found that soil hydrologic parameters obtained through pedotransfer functions and queries to soil databases are not representative of field-measured values (RMSE range from 6.2 to 15.2 for infiltration and from 13.2 to 16.3 for drainage). Although the NSWC queries SSURGO, we found that SSURGO overestimates infiltration and NSWC underestimates with MEs of 4.9, and -1.4, respectively. In Rosetta, we found that pedotransfer functions overestimated drainage rates (MEs 1.8 to 3.8). In an attempt to improve drainage estimates using Rosetta the soil texture was adjusted in soils with an apparent portion of finer sands. Here, sand included: very coarse, coarse, and medium sand, whereas silt included fine, and very fine sand and silt, with the justification that fine sands behave similarly to silt. These adjusted estimates resulted in generally underestimating drainage and still not suitable for use in planning for stormwater detention (e.g., infiltrative green infrastructure). With this work we highlight the importance of obtaining field measured values when assessing sites for green infrastructure planning instead of relying on estimates, as the discrepancies in sensitive parameters such as Kunsat and Ksat, implications for parameter selection in error propagation through rainfall-runoff models, and consequences for over- or under-design of stormwater control measures for detention.
Utilization of Expert Knowledge in a Multi-Objective Hydrologic Model Automatic Calibration Process
NASA Astrophysics Data System (ADS)
Quebbeman, J.; Park, G. H.; Carney, S.; Day, G. N.; Micheletty, P. D.
2016-12-01
Spatially distributed continuous simulation hydrologic models have a large number of parameters for potential adjustment during the calibration process. Traditional manual calibration approaches of such a modeling system is extremely laborious, which has historically motivated the use of automatic calibration procedures. With a large selection of model parameters, achieving high degrees of objective space fitness - measured with typical metrics such as Nash-Sutcliffe, Kling-Gupta, RMSE, etc. - can easily be achieved using a range of evolutionary algorithms. A concern with this approach is the high degree of compensatory calibration, with many similarly performing solutions, and yet grossly varying parameter set solutions. To help alleviate this concern, and mimic manual calibration processes, expert knowledge is proposed for inclusion within the multi-objective functions, which evaluates the parameter decision space. As a result, Pareto solutions are identified with high degrees of fitness, but also create parameter sets that maintain and utilize available expert knowledge resulting in more realistic and consistent solutions. This process was tested using the joint SNOW-17 and Sacramento Soil Moisture Accounting method (SAC-SMA) within the Animas River basin in Colorado. Three different elevation zones, each with a range of parameters, resulted in over 35 model parameters simultaneously calibrated. As a result, high degrees of fitness were achieved, in addition to the development of more realistic and consistent parameter sets such as those typically achieved during manual calibration procedures.
Healy, Richard W.; Scanlon, Bridget R.
2010-01-01
Simulation models are widely used in all types of hydrologic studies, and many of these models can be used to estimate recharge. Models can provide important insight into the functioning of hydrologic systems by identifying factors that influence recharge. The predictive capability of models can be used to evaluate how changes in climate, water use, land use, and other factors may affect recharge rates. Most hydrological simulation models, including watershed models and groundwater-flow models, are based on some form of water-budget equation, so the material in this chapter is closely linked to that in Chapter 2. Empirical models that are not based on a water-budget equation have also been used for estimating recharge; these models generally take the form of simple estimation equations that define annual recharge as a function of precipitation and possibly other climatic data or watershed characteristics.Model complexity varies greatly. Some models are simple accounting models; others attempt to accurately represent the physics of water movement through each compartment of the hydrologic system. Some models provide estimates of recharge explicitly; for example, a model based on the Richards equation can simulate water movement from the soil surface through the unsaturated zone to the water table. Recharge estimates can be obtained indirectly from other models. For example, recharge is a parameter in groundwater-flow models that solve for hydraulic head (i.e. groundwater level). Recharge estimates can be obtained through a model calibration process in which recharge and other model parameter values are adjusted so that simulated water levels agree with measured water levels. The simulation that provides the closest agreement is called the best fit, and the recharge value used in that simulation is the model-generated estimate of recharge.
NASA Astrophysics Data System (ADS)
Houska, Tobias; Multsch, Sebastian; Kraft, Philipp; Frede, Hans-Georg; Breuer, Lutz
2014-05-01
Computer simulations are widely used to support decision making and planning in the agriculture sector. On the one hand, many plant growth models use simplified hydrological processes and structures, e.g. by the use of a small number of soil layers or by the application of simple water flow approaches. On the other hand, in many hydrological models plant growth processes are poorly represented. Hence, fully coupled models with a high degree of process representation would allow a more detailed analysis of the dynamic behaviour of the soil-plant interface. We used the Python programming language to couple two of such high process oriented independent models and to calibrate both models simultaneously. The Catchment Modelling Framework (CMF) simulated soil hydrology based on the Richards equation and the Van-Genuchten-Mualem retention curve. CMF was coupled with the Plant growth Modelling Framework (PMF), which predicts plant growth on the basis of radiation use efficiency, degree days, water shortage and dynamic root biomass allocation. The Monte Carlo based Generalised Likelihood Uncertainty Estimation (GLUE) method was applied to parameterize the coupled model and to investigate the related uncertainty of model predictions to it. Overall, 19 model parameters (4 for CMF and 15 for PMF) were analysed through 2 x 106 model runs randomly drawn from an equally distributed parameter space. Three objective functions were used to evaluate the model performance, i.e. coefficient of determination (R2), bias and model efficiency according to Nash Sutcliffe (NSE). The model was applied to three sites with different management in Muencheberg (Germany) for the simulation of winter wheat (Triticum aestivum L.) in a cross-validation experiment. Field observations for model evaluation included soil water content and the dry matters of roots, storages, stems and leaves. Best parameter sets resulted in NSE of 0.57 for the simulation of soil moisture across all three sites. The shape parameter of the retention curve n was highly constrained whilst other parameters of the retention curve showed a large equifinality. The root and storage dry matter observations were predicted with a NSE of 0.94, a low bias of 58.2 kg ha-1 and a high R2 of 0.98. Dry matters of stem and leaves were predicted with less, but still high accuracy (NSE=0.79, bias=221.7 kg ha-1, R2=0.87). We attribute this slightly poorer model performance to missing leaf senescence which is currently not implemented in PMF. The most constrained parameters for the plant growth model were the radiation-use-efficiency and the base temperature. Cross validation helped to identify deficits in the model structure, pointing out the need of including agricultural management options in the coupled model.
NASA Astrophysics Data System (ADS)
Houska, T.; Multsch, S.; Kraft, P.; Frede, H.-G.; Breuer, L.
2013-12-01
Computer simulations are widely used to support decision making and planning in the agriculture sector. On the one hand, many plant growth models use simplified hydrological processes and structures, e.g. by the use of a small number of soil layers or by the application of simple water flow approaches. On the other hand, in many hydrological models plant growth processes are poorly represented. Hence, fully coupled models with a high degree of process representation would allow a more detailed analysis of the dynamic behaviour of the soil-plant interface. We used the Python programming language to couple two of such high process oriented independent models and to calibrate both models simultaneously. The Catchment Modelling Framework (CMF) simulated soil hydrology based on the Richards equation and the van-Genuchten-Mualem retention curve. CMF was coupled with the Plant growth Modelling Framework (PMF), which predicts plant growth on the basis of radiation use efficiency, degree days, water shortage and dynamic root biomass allocation. The Monte Carlo based Generalised Likelihood Uncertainty Estimation (GLUE) method was applied to parameterize the coupled model and to investigate the related uncertainty of model predictions to it. Overall, 19 model parameters (4 for CMF and 15 for PMF) were analysed through 2 × 106 model runs randomly drawn from an equally distributed parameter space. Three objective functions were used to evaluate the model performance, i.e. coefficient of determination (R2), bias and model efficiency according to Nash Sutcliffe (NSE). The model was applied to three sites with different management in Muencheberg (Germany) for the simulation of winter wheat (Triticum aestivum L.) in a cross-validation experiment. Field observations for model evaluation included soil water content and the dry matters of roots, storages, stems and leaves. Best parameter sets resulted in NSE of 0.57 for the simulation of soil moisture across all three sites. The shape parameter of the retention curve n was highly constrained whilst other parameters of the retention curve showed a large equifinality. The root and storage dry matter observations were predicted with a NSE of 0.94, a low bias of -58.2 kg ha-1 and a high R2 of 0.98. Dry matters of stem and leaves were predicted with less, but still high accuracy (NSE = 0.79, bias = 221.7 kg ha-1, R2 = 0.87). We attribute this slightly poorer model performance to missing leaf senescence which is currently not implemented in PMF. The most constrained parameters for the plant growth model were the radiation-use-efficiency and the base temperature. Cross validation helped to identify deficits in the model structure, pointing out the need of including agricultural management options in the coupled model.
NASA Astrophysics Data System (ADS)
Brunner, Philip; Doherty, J.; Simmons, Craig T.
2012-07-01
The data set used for calibration of regional numerical models which simulate groundwater flow and vadose zone processes is often dominated by head observations. It is to be expected therefore, that parameters describing vadose zone processes are poorly constrained. A number of studies on small spatial scales explored how additional data types used in calibration constrain vadose zone parameters or reduce predictive uncertainty. However, available studies focused on subsets of observation types and did not jointly account for different measurement accuracies or different hydrologic conditions. In this study, parameter identifiability and predictive uncertainty are quantified in simulation of a 1-D vadose zone soil system driven by infiltration, evaporation and transpiration. The worth of different types of observation data (employed individually, in combination, and with different measurement accuracies) is evaluated by using a linear methodology and a nonlinear Pareto-based methodology under different hydrological conditions. Our main conclusions are (1) Linear analysis provides valuable information on comparative parameter and predictive uncertainty reduction accrued through acquisition of different data types. Its use can be supplemented by nonlinear methods. (2) Measurements of water table elevation can support future water table predictions, even if such measurements inform the individual parameters of vadose zone models to only a small degree. (3) The benefits of including ET and soil moisture observations in the calibration data set are heavily dependent on depth to groundwater. (4) Measurements of groundwater levels, measurements of vadose ET or soil moisture poorly constrain regional groundwater system forcing functions.
Tran, Anh Phuong; Dafflon, Baptiste; Hubbard, Susan S.; ...
2016-04-25
Improving our ability to estimate the parameters that control water and heat fluxes in the shallow subsurface is particularly important due to their strong control on recharge, evaporation and biogeochemical processes. The objectives of this study are to develop and test a new inversion scheme to simultaneously estimate subsurface hydrological, thermal and petrophysical parameters using hydrological, thermal and electrical resistivity tomography (ERT) data. The inversion scheme-which is based on a nonisothermal, multiphase hydrological model-provides the desired subsurface property estimates in high spatiotemporal resolution. A particularly novel aspect of the inversion scheme is the explicit incorporation of the dependence of themore » subsurface electrical resistivity on both moisture and temperature. The scheme was applied to synthetic case studies, as well as to real datasets that were autonomously collected at a biogeochemical field study site in Rifle, Colorado. At the Rifle site, the coupled hydrological-thermal-geophysical inversion approach well predicted the matric potential, temperature and apparent resistivity with the Nash-Sutcliffe efficiency criterion greater than 0.92. Synthetic studies found that neglecting the subsurface temperature variability, and its effect on the electrical resistivity in the hydrogeophysical inversion, may lead to an incorrect estimation of the hydrological parameters. The approach is expected to be especially useful for the increasing number of studies that are taking advantage of autonomously collected ERT and soil measurements to explore complex terrestrial system dynamics.« less
Stochastic Simulation and Forecast of Hydrologic Time Series Based on Probabilistic Chaos Expansion
NASA Astrophysics Data System (ADS)
Li, Z.; Ghaith, M.
2017-12-01
Hydrological processes are characterized by many complex features, such as nonlinearity, dynamics and uncertainty. How to quantify and address such complexities and uncertainties has been a challenging task for water engineers and managers for decades. To support robust uncertainty analysis, an innovative approach for the stochastic simulation and forecast of hydrologic time series is developed is this study. Probabilistic Chaos Expansions (PCEs) are established through probabilistic collocation to tackle uncertainties associated with the parameters of traditional hydrological models. The uncertainties are quantified in model outputs as Hermite polynomials with regard to standard normal random variables. Sequentially, multivariate analysis techniques are used to analyze the complex nonlinear relationships between meteorological inputs (e.g., temperature, precipitation, evapotranspiration, etc.) and the coefficients of the Hermite polynomials. With the established relationships between model inputs and PCE coefficients, forecasts of hydrologic time series can be generated and the uncertainties in the future time series can be further tackled. The proposed approach is demonstrated using a case study in China and is compared to a traditional stochastic simulation technique, the Markov-Chain Monte-Carlo (MCMC) method. Results show that the proposed approach can serve as a reliable proxy to complicated hydrological models. It can provide probabilistic forecasting in a more computationally efficient manner, compared to the traditional MCMC method. This work provides technical support for addressing uncertainties associated with hydrological modeling and for enhancing the reliability of hydrological modeling results. Applications of the developed approach can be extended to many other complicated geophysical and environmental modeling systems to support the associated uncertainty quantification and risk analysis.
NASA Astrophysics Data System (ADS)
Green, T. R.; Erksine, R. H.; David, O.; Ascough, J. C., II; Kipka, H.; Lloyd, W. J.; McMaster, G. S.
2015-12-01
Water movement and storage within a watershed may be simulated at different spatial resolutions of land areas or hydrological response units (HRUs). Here, effects of HRU size on simulated soil water and surface runoff are tested using the AgroEcoSystem-Watershed (AgES-W) model with three different resolutions of HRUs. We studied a 56-ha agricultural watershed in northern Colorado, USA farmed primarily under a wheat-fallow rotation. The delineation algorithm was based upon topography (surface flow paths), land use (crop management strips and native grass), and mapped soil units (three types), which produced HRUs that follow the land use and soil boundaries. AgES-W model parameters that control surface and subsurface hydrology were calibrated using simulated daily soil moisture at different landscape positions and depths where soil moisture was measured hourly and averaged up to daily values. Parameter sets were both uniform and spatially variable with depth and across the watershed (5 different calibration approaches). Although forward simulations were computationally efficient (less than 1 minute each), each calibration required thousands of model runs. Execution of such large jobs was facilitated by using the Object Modeling System with the Cloud Services Innovation Platform to manage four virtual machines on a commercial web service configured with a total of 64 computational cores and 120 GB of memory. Results show how spatially distributed and averaged soil moisture and runoff at the outlet vary with different HRU delineations. The results will help guide HRU delineation, spatial resolution and parameter estimation methods for improved hydrological simulations in this and other semi-arid agricultural watersheds.
Five Guidelines for Selecting Hydrological Signatures
NASA Astrophysics Data System (ADS)
McMillan, H. K.; Westerberg, I.; Branger, F.
2017-12-01
Hydrological signatures are index values derived from observed or modeled series of hydrological data such as rainfall, flow or soil moisture. They are designed to extract relevant information about hydrological behavior, such as to identify dominant processes, and to determine the strength, speed and spatiotemporal variability of the rainfall-runoff response. Hydrological signatures play an important role in model evaluation. They allow us to test whether particular model structures or parameter sets accurately reproduce the runoff generation processes within the watershed of interest. Most modeling studies use a selection of different signatures to capture different aspects of the catchment response, for example evaluating overall flow distribution as well as high and low flow extremes and flow timing. Such studies often choose their own set of signatures, or may borrow subsets of signatures used in multiple other works. The link between signature values and hydrological processes is not always straightforward, leading to uncertainty and variability in hydrologists' signature choices. In this presentation, we aim to encourage a more rigorous approach to hydrological signature selection, which considers the ability of signatures to represent hydrological behavior and underlying processes for the catchment and application in question. To this end, we propose a set of guidelines for selecting hydrological signatures. We describe five criteria that any hydrological signature should conform to: Identifiability, Robustness, Consistency, Representativeness, and Discriminatory Power. We describe an example of the design process for a signature, assessing possible signature designs against the guidelines above. Due to their ubiquity, we chose a signature related to the Flow Duration Curve, selecting the FDC mid-section slope as a proposed signature to quantify catchment overall behavior and flashiness. We demonstrate how assessment against each guideline could be used to compare or choose between alternative signature definitions. We believe that reaching a consensus on selection criteria for hydrological signatures will assist modelers to choose between competing signatures, facilitate comparison between hydrological studies, and help hydrologists to fully evaluate their models.
NASA Astrophysics Data System (ADS)
Engeland, Kolbjørn; Steinsland, Ingelin; Johansen, Stian Solvang; Petersen-Øverleir, Asgeir; Kolberg, Sjur
2016-05-01
In this study, we explore the effect of uncertainty and poor observation quality on hydrological model calibration and predictions. The Osali catchment in Western Norway was selected as case study and an elevation distributed HBV-model was used. We systematically evaluated the effect of accounting for uncertainty in parameters, precipitation input, temperature input and streamflow observations. For precipitation and temperature we accounted for the interpolation uncertainty, and for streamflow we accounted for rating curve uncertainty. Further, the effects of poorer quality of precipitation input and streamflow observations were explored. Less information about precipitation was obtained by excluding the nearest precipitation station from the analysis, while reduced information about the streamflow was obtained by omitting the highest and lowest streamflow observations when estimating the rating curve. The results showed that including uncertainty in the precipitation and temperature inputs has a negligible effect on the posterior distribution of parameters and for the Nash-Sutcliffe (NS) efficiency for the predicted flows, while the reliability and the continuous rank probability score (CRPS) improves. Less information in precipitation input resulted in a shift in the water balance parameter Pcorr, a model producing smoother streamflow predictions, giving poorer NS and CRPS, but higher reliability. The effect of calibrating the hydrological model using streamflow observations based on different rating curves is mainly seen as variability in the water balance parameter Pcorr. When evaluating predictions, the best evaluation scores were not achieved for the rating curve used for calibration, but for rating curves giving smoother streamflow observations. Less information in streamflow influenced the water balance parameter Pcorr, and increased the spread in evaluation scores by giving both better and worse scores.
NASA Astrophysics Data System (ADS)
Liu, Gang; Zhao, Rong; Liu, Jiping; Zhang, Qingpu
2007-06-01
The Lancang River Basin is so narrow and its hydrological and meteorological information are so flexible. The Rainfall, evaporation, glacial melt water and groundwater affect the runoff whose replenishment forms changing notable with the season in different areas at the basin. Characters of different kind of distributed model and conceptual hydrological model are analyzed. A semi-distributed hydrological model of relation between monthly runoff and rainfall, temperate and soil type has been built in Changdu County based on Visual Basic and ArcObject. The way of discretization of distributed hydrological model was used in the model, and principles of conceptual model are taken into account. The sub-catchment of Changdu is divided into regular cells, and all kinds of hydrological and meteorological information and land use classes and slope extracted from 1:250000 digital elevation models are distributed in each cell. The model does not think of the rainfall-runoff hydro-physical process but use the conceptual model to simulate the whole contributes to the runoff of the area. The affection of evapotranspiration loss and underground water is taken into account at the same time. The spatial distribute characteristics of the monthly runoff in the area are simulated and analyzed with a few parameters.
Choices Matter, but How Do We Model Them?
NASA Astrophysics Data System (ADS)
Brelsford, C.; Dumas, M.
2017-12-01
Quantifying interactions between social systems and the physical environment we live within has long been a major scientific challenge. Humans have had such a large influence on our environment that it is no longer reasonable to consider the behavior of an ecological or hydrological system from a purely `physical' perspective: imagining a system that excludes the influence of human choices and behavior. Understanding the role that human social choices play in the energy water nexus is crucial for developing accurate models in that space. The relatively new field of socio-hydrology is making progress towards understanding the role humans play in hydrological systems. While this fact is now widely recognized across the many academic fields that study water systems, we have yet to develop a coherent set of theories for how to model the behavior of these complex and highly interdependent socio-hydrological systems. How should we conceptualize hydrological systems as socio-ecological systems (i.e. system with variables, states, parameters, actors who can control certain variables and a sense of the desirability of states) within which the rigorous study of feedbacks becomes possible? This talk reviews the state of knowledge of how social decisions around water consumption, allocation, and transport influence and are influenced by the physical hydrology that water also moves within. We cover recent papers in socio-hydrology, engineering, water law, and institutional analysis. There have been several calls within socio-hydrology to model human social behavior endogenously along with the hydrology. These improvements are needed across a range of spatial and temporal scales. We suggest two potential strategies for coupled models that allow endogenous water consumption behavior: a social first model which looks for empirical relationships between water consumption and allocation choices and the hydrological state, and a hydrology first model in which we look for regularities in how water regimes influence behavior, regional economies, or allocation institutions.
NASA Astrophysics Data System (ADS)
Bastola, S.; Dialynas, Y. G.; Bras, R. L.; Arnone, E.; Noto, L. V.
2015-12-01
The dynamics of carbon and nitrogen cycles, increasingly influenced by human activities, are the key to the functioning of ecosystems. These cycles are influenced by the composition of the substrate, availability of nitrogen, the population of microorganisms, and by environmental factors. Therefore, land management and use, climate change, and nitrogen deposition patterns influence the dynamics of these macronutrients at the landscape scale. In this work a physically based distributed hydrological model, the tRIBS model, is coupled with a process-based multi-compartment model of the biogeochemical cycle to simulate the dynamics of carbon and nitrogen (CN) in the Mameyes River basin, Puerto Rico. The model includes a wide range of processes that influence the movement, production, alteration of nutrients in the landscape and factors that affect the CN cycling. The tRIBS integrates geomorphological and climatic factors that influence the cycling of CN in soil. Implementing the decomposition module into tRIBS makes the model a powerful complement to a biogeochemical observation system and a forecast tool able to analyze the influences of future changes on ecosystem services. The soil hydrologic parameters of the model were obtained using ranges of published parameters and observed streamflow data at the outlet. The parameters of the decomposition module are based on previously published data from studies conducted in the Luquillio CZO (budgets of soil organic matter and CN ratio for each of the dominant vegetation types across the landscape). Hydrological fluxes, wet depositon of nitrogen, litter fall and its corresponding CN ratio drive the decomposition model. The simulation results demonstrate a strong influence of soil moisture dynamics on the spatiotemporal distribution of nutrients at the landscape level. The carbon in the litter pool and the nitrate and ammonia pool respond quickly to soil moisture content. Moreover, the CN ratios of the plant litter have significant influence in the dynamics of CN cycling.
Modeling the Hydrologic Processes of a Permeable Pavement ...
A permeable pavement system can capture stormwater to reduce runoff volume and flow rate, improve onsite groundwater recharge, and enhance pollutant controls within the site. A new unit process model for evaluating the hydrologic performance of a permeable pavement system has been developed in this study. The developed model can continuously simulate infiltration through the permeable pavement surface, exfiltration from the storage to the surrounding in situ soils, and clogging impacts on infiltration/exfiltration capacity at the pavement surface and the bottom of the subsurface storage unit. The exfiltration modeling component simulates vertical and horizontal exfiltration independently based on Darcy’s formula with the Green-Ampt approximation. The developed model can be arranged with physically-based modeling parameters, such as hydraulic conductivity, Manning’s friction flow parameters, saturated and field capacity volumetric water contents, porosity, density, etc. The developed model was calibrated using high-frequency observed data. The modeled water depths are well matched with the observed values (R2 = 0.90). The modeling results show that horizontal exfiltration through the side walls of the subsurface storage unit is a prevailing factor in determining the hydrologic performance of the system, especially where the storage unit is developed in a long, narrow shape; or with a high risk of bottom compaction and clogging. This paper presents unit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, Heng; Ye, Ming; Walker, Anthony P.
Hydrological models are always composed of multiple components that represent processes key to intended model applications. When a process can be simulated by multiple conceptual-mathematical models (process models), model uncertainty in representing the process arises. While global sensitivity analysis methods have been widely used for identifying important processes in hydrologic modeling, the existing methods consider only parametric uncertainty but ignore the model uncertainty for process representation. To address this problem, this study develops a new method to probe multimodel process sensitivity by integrating the model averaging methods into the framework of variance-based global sensitivity analysis, given that the model averagingmore » methods quantify both parametric and model uncertainty. A new process sensitivity index is derived as a metric of relative process importance, and the index includes variance in model outputs caused by uncertainty in both process models and model parameters. For demonstration, the new index is used to evaluate the processes of recharge and geology in a synthetic study of groundwater reactive transport modeling. The recharge process is simulated by two models that converting precipitation to recharge, and the geology process is also simulated by two models of different parameterizations of hydraulic conductivity; each process model has its own random parameters. The new process sensitivity index is mathematically general, and can be applied to a wide range of problems in hydrology and beyond.« less
USGS Geospatial Fabric and Geo Data Portal for Continental Scale Hydrology Simulations
NASA Astrophysics Data System (ADS)
Sampson, K. M.; Newman, A. J.; Blodgett, D. L.; Viger, R.; Hay, L.; Clark, M. P.
2013-12-01
This presentation describes use of United States Geological Survey (USGS) data products and server-based resources for continental-scale hydrologic simulations. The USGS Modeling of Watershed Systems (MoWS) group provides a consistent national geospatial fabric built on NHDPlus. They have defined more than 100,000 hydrologic response units (HRUs) over the continental United States based on points of interest (POIs) and split into left and right bank based on the corresponding stream segment. Geophysical attributes are calculated for each HRU that can be used to define parameters in hydrologic and land-surface models. The Geo Data Portal (GDP) project at the USGS Center for Integrated Data Analytics (CIDA) provides access to downscaled climate datasets and processing services via web-interface and python modules for creating forcing datasets for any polygon (such as an HRU). These resources greatly reduce the labor required for creating model-ready data in-house, contributing to efficient and effective modeling applications. We will present an application of this USGS cyber-infrastructure for assessments of impacts of climate change on hydrology over the continental United States.
Scaling up watershed model parameters--Flow and load simulations of the Edisto River Basin
Feaster, Toby D.; Benedict, Stephen T.; Clark, Jimmy M.; Bradley, Paul M.; Conrads, Paul
2014-01-01
The Edisto River is the longest and largest river system completely contained in South Carolina and is one of the longest free flowing blackwater rivers in the United States. The Edisto River basin also has fish-tissue mercury concentrations that are some of the highest recorded in the United States. As part of an effort by the U.S. Geological Survey to expand the understanding of relations among hydrologic, geochemical, and ecological processes that affect fish-tissue mercury concentrations within the Edisto River basin, analyses and simulations of the hydrology of the Edisto River basin were made with the topography-based hydrological model (TOPMODEL). The potential for scaling up a previous application of TOPMODEL for the McTier Creek watershed, which is a small headwater catchment to the Edisto River basin, was assessed. Scaling up was done in a step-wise process beginning with applying the calibration parameters, meteorological data, and topographic wetness index data from the McTier Creek TOPMODEL to the Edisto River TOPMODEL. Additional changes were made with subsequent simulations culminating in the best simulation, which included meteorological and topographic wetness index data from the Edisto River basin and updated calibration parameters for some of the TOPMODEL calibration parameters. Comparison of goodness-of-fit statistics between measured and simulated daily mean streamflow for the two models showed that with calibration, the Edisto River TOPMODEL produced slightly better results than the McTier Creek model, despite the significant difference in the drainage-area size at the outlet locations for the two models (30.7 and 2,725 square miles, respectively). Along with the TOPMODEL hydrologic simulations, a visualization tool (the Edisto River Data Viewer) was developed to help assess trends and influencing variables in the stream ecosystem. Incorporated into the visualization tool were the water-quality load models TOPLOAD, TOPLOAD-H, and LOADEST. Because the focus of this investigation was on scaling up the models from McTier Creek, water-quality concentrations that were previously collected in the McTier Creek basin were used in the water-quality load models.
NASA Astrophysics Data System (ADS)
Chaney, N.; Wood, E. F.
2014-12-01
The increasing accessibility of high-resolution land data (< 100 m) and high performance computing allows improved parameterizations of subgrid hydrologic processes in macroscale land surface models. Continental scale fully distributed modeling at these spatial scales is possible; however, its practicality for operational use is still unknown due to uncertainties in input data, model parameters, and storage requirements. To address these concerns, we propose a modeling framework that provides the spatial detail of a fully distributed model yet maintains the benefits of a semi-distributed model. In this presentation we will introduce DTOPLATS-MP, a coupling between the NOAH-MP land surface model and the Dynamic TOPMODEL hydrologic model. This new model captures a catchment's spatial heterogeneity by clustering high-resolution land datasets (soil, topography, and land cover) into hundreds of hydrologic similar units (HSUs). A prior DEM analysis defines the connections between each HSU. At each time step, the 1D land surface model updates each HSU; the HSUs then interact laterally via the subsurface and surface. When compared to the fully distributed form of the model, this framework allows a significant decrease in computation and storage while providing most of the same information and enabling parameter transferability. As a proof of concept, we will show how this new modeling framework can be run over CONUS at a 30-meter spatial resolution. For each catchment in the WBD HUC-12 dataset, the model is run between 2002 and 2012 using available high-resolution continental scale land and meteorological datasets over CONUS (dSSURGO, NLCD, NED, and NCEP Stage IV). For each catchment, the model is run with 1000 model parameter sets obtained from a Latin hypercube sample. This exercise will illustrate the feasibility of running the model operationally at continental scales while accounting for model parameter uncertainty.
USDA-ARS?s Scientific Manuscript database
This study provides new parameterizations for applying the Rangeland Hydrology and Erosion Model (RHEM) on the highly erosive, rangeland saline soils of the Mancos Shale formation in the Price-San Rafael River Basin in east central Utah. Calibrated hydrologic parameters (Kss and K') values are gener...
NASA Astrophysics Data System (ADS)
Bennett, K. E.; Schnorbus, M.; Werner, A. T.; Music, B.; Caya, D.; Rodenhuis, D. R.
2009-12-01
Uncertainties in the projections of future hydrologic change can be assessed using a suite of tools, thereby allowing researchers to focus on improvement to identifiable sources of uncertainty. A pareto set of optimal hydrologic parameterizations was run for three BC watersheds (Fraser, Peace and Columbia) for a range of downscaled Global Climate Model (GCM) emission scenarios to illustrate the uncertainty in hydrologic response to climate change. Results show varying responses of hydrologic regimes across geographic landscapes. Uncertainties in streamflow and water balance (runoff, evapo-transpiration, snow water equivalent, soil moisture) were analysed by forcing the Variable Infiltration Capacity (VIC) hydrologic model, run under twenty-five optimal parameter solution sets using six Bias-Corrected Statistically Downscaled (BCSD) GCM emission scenario projections for the 2050s and the 2080s. Projected changes by the 2050s include increased winter flows, increases and decreases in freshet magnitude depending on the scenario, and decreases in summer flows persisting until September. Winter runoff had the greatest range between GCM emission scenarios, while the hydrologic parameters within individual GCM emission scenarios had a winter runoff range an order of magnitude smaller. Evapo-transpiration, snow water equivalent and soil moisture exhibited a spread of ~10% or less. Streamflow changes by the 2080s lie outside the natural range of historic variability over the winter and spring. Results indicate that the changes projected between GCM emission scenarios are greater than the differences between the hydrologic model parameterizations. An alternate tool, the Canadian Regional Climate Model (CRCM) has been set up for these watersheds and various runs have been analysed to determine the range and variability present and to examine these results in comparison to the hydrologic model projections. The CRCM range and variability is an improvement over the Canadian GCM and thus requires less bias correction. However, without downscaling the CRCM results are still coarser than what is required to drive macroscale hydrologic models, such as VIC. Applying these tools has illustrated the importance of focusing on improved downscaling efforts, including downscaling CRCM results rather than CGCM data. Tools for decision-making in the face of uncertainty are emerging as a priority for the climate change impacts community, and there is a need to focus on incorporating uncertainty information along with the projection of impacts. Assessing uncertainty across a range of regimes and geographic regions can assist to identify the main sources of uncertainty and allow researchers to focus on improving those sources using more robust methodological approaches and tools.
NASA Astrophysics Data System (ADS)
Wei, Zhen-lei; Xu, Yue-Ping; Sun, Hong-yue; Xie, Wei; Wu, Gang
2018-05-01
Excessive water in a channel is an important factor that triggers channelized debris flows. Floods and debris flows often occur in a cascading manner, and thus, calculating the amount of runoff accurately is important for predicting the occurrence of debris flows. In order to explore the runoff-rainfall relationship, we placed two measuring facilities at the outlet of a small, debris flow-prone headwater catchment to explore the hydrological response of the catchment. The runoff responses generally consisted of a rapid increase in runoff followed by a slower decrease. The peak runoff often occurred after the rainfall ended. The runoff discharge data were simulated by two different modeling approaches, i.e., the NAM model and the Hydrologic Engineering Center-Hydrologic Modeling System (HEC-HMS) model. The results showed that the NAM model performed better than the HEC-HMS model. The NAM model provided acceptable simulations, while the HEC-HMS model did not. Then, we coupled the calculated results of the NAM model with an empirically based debris flow initiation model to obtain a new integrated cascading disaster modeling system to provide improved disaster preparedness and hazard management. In this case study, we found that the coupled model could correctly predict the occurrence of debris flows. Furthermore, we evaluated the effect of the range of input parameter values on the hydrographical shape of the runoff. We also used the grey relational analysis to conduct a sensitivity analysis of the parameters of the model. This study highlighted the important connections between rainfall, hydrological processes, and debris flow, and it provides a useful prototype model system for operational forecasting of debris flows.
Hydrology and phosphorus transport simulation in a lowland polder by a coupled modeling system.
Yan, Renhua; Huang, Jiacong; Li, Lingling; Gao, Junfeng
2017-08-01
Modeling the rain-runoff processes and phosphorus transport processes in lowland polders is critical in finding reasonable measures to alleviate the eutrophication problem of downstream rivers and lakes. This study develops a lowland Polder Hydrology and Phosphorus modeling System (PHPS) by coupling the WALRUS-paddy model and an improved phosphorus module of a Phosphorus Dynamic model for lowland Polder systems (PDP). It considers some important hydrological characteristics, such as groundwater-unsaturated zone coupling, groundwater-surface water feedback, human-controlled irrigation and discharge, and detailed physical and biochemical cycles of phosphorus in surface water. The application of the model in the Jianwei polder shows that the simulated phosphorus matches well with the measured values. The high precision of this model combined with its low input data requirement and efficient computation make it practical and easy to the water resources management of Chinese polders. Parameter sensitivity analysis demonstrates that K uptake , c Q2 , c W1 , and c Q1 exert a significant effect on the modeled results, whereas K resuspensionMax , K settling , and K mineralization have little effect on the modeled total phosphorus. Among the three types of uncertainties (i.e., parameter, initial condition, and forcing uncertainties), forcing uncertainty produces the strongest effect on the simulated phosphorus. Based on the analysis result of annual phosphorus balance when considering the high import from irrigation and fertilization, lowland polder is capable of retaining phosphorus and reducing phosphorus export to surrounding aquatic ecosystems because of their special hydrological regulation regime. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Prakoso, W. G.; Murtilaksono, K.; Tarigan, S. D.; Purwanto, Y. J.
2018-05-01
An approach on flow duration and flood design estimation on the ungauged catchment with no rainfall and discharge data availability was been being develop with hydrological modelling including rainfall run off model implemented with watershed characteristic dataset. Near real time Rainfall data from multi satellite platform e.g. TRMM can be utilized for regionalization approach on the ungauged catchment. Watershed hydrologically similarity analysis were conducted including all of the major watershed in Borneo which was predicted to be similar with the Nanga Raun Watershed. It was found that a satisfactory hydrological model calibration could be achieved using catchment weighted time series of TRMM daily rainfall data, performed on nearby catchment deemed to be sufficiently similar to Nanga Raun catchment in hydrological terms. Based on this calibration, rainfall runoff parameters were then transferred to a model. Relatively reliable flow duration curve and extreme discharge value estimation were produced with reasonable several limitation. Further approach may be performed in order to deal with the primary limitations inherent in the hydrological and statistical analysis, especially to give prolongation to the availability of the rainfall and climate data with some novel approach like downscaling of global climate model.
A Regionalization Approach to select the final watershed parameter set among the Pareto solutions
NASA Astrophysics Data System (ADS)
Park, G. H.; Micheletty, P. D.; Carney, S.; Quebbeman, J.; Day, G. N.
2017-12-01
The calibration of hydrological models often results in model parameters that are inconsistent with those from neighboring basins. Considering that physical similarity exists within neighboring basins some of the physically related parameters should be consistent among them. Traditional manual calibration techniques require an iterative process to make the parameters consistent, which takes additional effort in model calibration. We developed a multi-objective optimization procedure to calibrate the National Weather Service (NWS) Research Distributed Hydrological Model (RDHM), using the Nondominant Sorting Genetic Algorithm (NSGA-II) with expert knowledge of the model parameter interrelationships one objective function. The multi-objective algorithm enables us to obtain diverse parameter sets that are equally acceptable with respect to the objective functions and to choose one from the pool of the parameter sets during a subsequent regionalization step. Although all Pareto solutions are non-inferior, we exclude some of the parameter sets that show extremely values for any of the objective functions to expedite the selection process. We use an apriori model parameter set derived from the physical properties of the watershed (Koren et al., 2000) to assess the similarity for a given parameter across basins. Each parameter is assigned a weight based on its assumed similarity, such that parameters that are similar across basins are given higher weights. The parameter weights are useful to compute a closeness measure between Pareto sets of nearby basins. The regionalization approach chooses the Pareto parameter sets that minimize the closeness measure of the basin being regionalized. The presentation will describe the results of applying the regionalization approach to a set of pilot basins in the Upper Colorado basin as part of a NASA-funded project.
NASA Astrophysics Data System (ADS)
Pechlivanidis, Ilias; McIntyre, Neil; Wheater, Howard
2017-04-01
Rainfall, one of the main inputs in hydrological modeling, is a highly heterogeneous process over a wide range of scales in space, and hence the ignorance of the spatial rainfall information could affect the simulated streamflow. Calibration of hydrological model parameters is rarely a straightforward task due to parameter equifinality and parameters' 'nature' to compensate for other uncertainties, i.e. structural and forcing input. In here, we analyse the significance of spatial variability of rainfall on streamflow as a function of catchment scale and type, and antecedent conditions using the continuous time, semi-distributed PDM hydrological model at the Upper Lee catchment, UK. The impact of catchment scale and type is assessed using 11 nested catchments ranging in scale from 25 to 1040 km2, and further assessed by artificially changing the catchment characteristics and translating these to model parameters with uncertainty using model regionalisation. Synthetic rainfall events are introduced to directly relate the change in simulated streamflow to the spatial variability of rainfall. Overall, we conclude that the antecedent catchment wetness and catchment type play an important role in controlling the significance of the spatial distribution of rainfall on streamflow. Results show a relationship between hydrograph characteristics (streamflow peak and volume) and the degree of spatial variability of rainfall for the impermeable catchments under dry antecedent conditions, although this decreases at larger scales; however this sensitivity is significantly undermined under wet antecedent conditions. Although there is indication that the impact of spatial rainfall on streamflow varies as a function of catchment scale, the variability of antecedent conditions between the synthetic catchments seems to mask this significance. Finally, hydrograph responses to different spatial patterns in rainfall depend on assumptions used for model parameter estimation and also the spatial variation in parameters indicating the need of an uncertainty framework in such investigation.
Combining Empirical and Stochastic Models for Extreme Floods Estimation
NASA Astrophysics Data System (ADS)
Zemzami, M.; Benaabidate, L.
2013-12-01
Hydrological models can be defined as physical, mathematical or empirical. The latter class uses mathematical equations independent of the physical processes involved in the hydrological system. The linear regression and Gradex (Gradient of Extreme values) are classic examples of empirical models. However, conventional empirical models are still used as a tool for hydrological analysis by probabilistic approaches. In many regions in the world, watersheds are not gauged. This is true even in developed countries where the gauging network has continued to decline as a result of the lack of human and financial resources. Indeed, the obvious lack of data in these watersheds makes it impossible to apply some basic empirical models for daily forecast. So we had to find a combination of rainfall-runoff models in which it would be possible to create our own data and use them to estimate the flow. The estimated design floods would be a good choice to illustrate the difficulties facing the hydrologist for the construction of a standard empirical model in basins where hydrological information is rare. The construction of the climate-hydrological model, which is based on frequency analysis, was established to estimate the design flood in the Anseghmir catchments, Morocco. The choice of using this complex model returns to its ability to be applied in watersheds where hydrological information is not sufficient. It was found that this method is a powerful tool for estimating the design flood of the watershed and also other hydrological elements (runoff, volumes of water...).The hydrographic characteristics and climatic parameters were used to estimate the runoff, water volumes and design flood for different return periods.
Using field observations to inform thermal hydrology models of permafrost dynamics with ATS (v0.83)
Atchley, Adam L.; Painter, Scott L.; Harp, Dylan R.; ...
2015-09-01
Climate change is profoundly transforming the carbon-rich Arctic tundra landscape, potentially moving it from a carbon sink to a carbon source by increasing the thickness of soil that thaws on a seasonal basis. Thus, the modeling capability and precise parameterizations of the physical characteristics needed to estimate projected active layer thickness (ALT) are limited in Earth system models (ESMs). In particular, discrepancies in spatial scale between field measurements and Earth system models challenge validation and parameterization of hydrothermal models. A recently developed surface–subsurface model for permafrost thermal hydrology, the Advanced Terrestrial Simulator (ATS), is used in combination with field measurementsmore » to achieve the goals of constructing a process-rich model based on plausible parameters and to identify fine-scale controls of ALT in ice-wedge polygon tundra in Barrow, Alaska. An iterative model refinement procedure that cycles between borehole temperature and snow cover measurements and simulations functions to evaluate and parameterize different model processes necessary to simulate freeze–thaw processes and ALT formation. After model refinement and calibration, reasonable matches between simulated and measured soil temperatures are obtained, with the largest errors occurring during early summer above ice wedges (e.g., troughs). The results suggest that properly constructed and calibrated one-dimensional thermal hydrology models have the potential to provide reasonable representation of the subsurface thermal response and can be used to infer model input parameters and process representations. The models for soil thermal conductivity and snow distribution were found to be the most sensitive process representations. However, information on lateral flow and snowpack evolution might be needed to constrain model representations of surface hydrology and snow depth.« less
NASA Astrophysics Data System (ADS)
Marie, S.; Irving, J. D.; Looms, M. C.; Nielsen, L.; Holliger, K.
2011-12-01
Geophysical methods such as ground-penetrating radar (GPR) can provide valuable information on the hydrological properties of the vadose zone. In particular, there is evidence to suggest that the stochastic inversion of such data may allow for significant reductions in uncertainty regarding subsurface van-Genuchten-Mualem (VGM) parameters, which characterize unsaturated hydrodynamic behaviour as defined by the combination of the water retention and hydraulic conductivity functions. A significant challenge associated with the use of geophysical methods in a hydrological context is that they generally exhibit an indirect and/or weak sensitivity to the hydraulic parameters of interest. A novel and increasingly popular means of addressing this issue involves the acquisition of geophysical data in a time-lapse fashion while changes occur in the hydrological condition of the probed subsurface region. Another significant challenge when attempting to use geophysical data for the estimation of subsurface hydrological properties is the inherent non-linearity and non-uniqueness of the corresponding inverse problems. Stochastic inversion approaches have the advantage of providing a comprehensive exploration of the model space, which makes them ideally suited for addressing such issues. In this work, we present the stochastic inversion of time-lapse zero-offset-profile (ZOP) crosshole GPR traveltime data, collected during a forced infiltration experiment at the Arreneas field site in Denmark, in order to estimate subsurface VGM parameters and their corresponding uncertainties. We do this using a Bayesian Markov-chain-Monte-Carlo (MCMC) inversion approach. We find that the Bayesian-MCMC methodology indeed allows for a substantial refinement in the inferred posterior parameter distributions of the VGM parameters as compared to the corresponding priors. To further understand the potential impact on capturing the underlying hydrological behaviour, we also explore how the posterior VGM parameter distributions affect the hydrodynamic characteristics. In doing so, we find clear evidence that the approach pursued in this study allows for effective characterization of the hydrological behaviour of the probed subsurface region.
A dam-reservoir module for a semi-distributed hydrological model
NASA Astrophysics Data System (ADS)
de Lavenne, Alban; Thirel, Guillaume; Andréassian, Vazken; Perrin, Charles; Ramos, Maria-Helena
2017-04-01
Developing modeling tools that help to assess the spatial distribution of water resources is a key issue to achieve better solutions for the optimal management of water availability among users in a river basin. Streamflow dynamics depends on (i) the spatial variability of rainfall, (ii) the heterogeneity of catchment behavior and response, and (iii) local human regulations (e.g., reservoirs) that store and control surface water. These aspects can be successfully handled by distributed or semi-distributed hydrological models. In this study, we develop a dam-reservoir module within a semi-distributed rainfall-runoff model (de Lavenne et al. 2016). The model runs at the daily time step, and has five parameters for each sub-catchment as well as a streamflow velocity parameter for flow routing. Its structure is based on two stores, one for runoff production and one for routing. The calibration of the model is performed from upstream to downstream sub-catchments, which efficiently uses spatially-distributed streamflow measurements. In a previous study, Payan et al. (2008) described a strategy to implement a dam module within a lumped rainfall-runoff model. Here we propose to adapt this strategy to a semi-distributed hydrological modelling framework. In this way, the specific location of existing reservoirs inside a river basin is explicitly accounted for. Our goal is to develop a tool that can provide answers to the different issues involved in spatial water management in human-influenced contexts and at large modelling scales. The approach is tested for the Seine basin in France. Results are shown for model performance with and without the dam module. Also, a comparison with the lumped GR5J model highlights the improvements obtained in model performance by considering human influences more explicitly, and by facilitating parameter identifiability. This work opens up new perspectives for streamflow naturalization analyses and scenario-based spatial assessment of water resources under global change. References de Lavenne, A.; Thirel, G.; Andréassian, V.; Perrin, C. & Ramos, M.-H. (2016), 'Spatial variability of the parameters of a semi-distributed hydrological model', PIAHS 373, 87-94. Payan, J.-L.; Perrin, C.; Andréassian, V. & Michel, C. (2008), 'How can man-made water reservoirs be accounted for in a lumped rainfall-runoff model?', Water Resour. Res. 44(3), W03420.
NASA Astrophysics Data System (ADS)
Elshafei, Y.; Sivapalan, M.; Tonts, M.; Hipsey, M. R.
2014-06-01
It is increasingly acknowledged that, in order to sustainably manage global freshwater resources, it is critical that we better understand the nature of human-hydrology interactions at the broader catchment system scale. Yet to date, a generic conceptual framework for building models of catchment systems that include adequate representation of socioeconomic systems - and the dynamic feedbacks between human and natural systems - has remained elusive. In an attempt to work towards such a model, this paper outlines a generic framework for models of socio-hydrology applicable to agricultural catchments, made up of six key components that combine to form the coupled system dynamics: namely, catchment hydrology, population, economics, environment, socioeconomic sensitivity and collective response. The conceptual framework posits two novel constructs: (i) a composite socioeconomic driving variable, termed the Community Sensitivity state variable, which seeks to capture the perceived level of threat to a community's quality of life, and acts as a key link tying together one of the fundamental feedback loops of the coupled system, and (ii) a Behavioural Response variable as the observable feedback mechanism, which reflects land and water management decisions relevant to the hydrological context. The framework makes a further contribution through the introduction of three macro-scale parameters that enable it to normalise for differences in climate, socioeconomic and political gradients across study sites. In this way, the framework provides for both macro-scale contextual parameters, which allow for comparative studies to be undertaken, and catchment-specific conditions, by way of tailored "closure relationships", in order to ensure that site-specific and application-specific contexts of socio-hydrologic problems can be accommodated. To demonstrate how such a framework would be applied, two socio-hydrological case studies, taken from the Australian experience, are presented and the parameterisation approach that would be taken in each case is discussed. Preliminary findings in the case studies lend support to the conceptual theories outlined in the framework. It is envisioned that the application of this framework across study sites and gradients will aid in developing our understanding of the fundamental interactions and feedbacks in such complex human-hydrology systems, and allow hydrologists to improve social-ecological systems modelling through better representation of human feedbacks on hydrological processes.
NASA Astrophysics Data System (ADS)
Lall, U.
2010-12-01
To honor the passing this year of eminent hydrologists, Dooge, Klemes and Shiklomanov, I offer an irreverent look at the issues of uncertainty and stationarity as the hydrologic industry prepares climate change products. In an AGU keynote, Dooge said that the principle of mass balance was the only hydrologic law. It was not clear how one should apply it. Klemes observed that Rippl’s 1872 mass curve analyses could essentially subsume many of the advances in stochastic modeling and reservoir optimization. Shiklomanov tackled data challenges to present a comprehensive view of the world’s water supply and demand highlighting the imbalance and sustainability challenge we face. He did not characterize the associated uncertainties. It is remarkable how little data can provide insights, while at times much information from models and data hihglights uncertainty. Hydrologists have focused on parameter uncertainties in hydrologic models. The indeterminacy of the typical situation offered Beven the opportunity to coin the term equifinality. However, this ignores the fact that the traditional continuum model fails us across scales if we don’t re-derive the correct averaged equations accounting for subscale heterogeneity. Nevertheless, the operating paradigm here has been a stimulus response model y = f(x,P), where y are the observations of the state variables, x are observations of hydrologic drivers, P are model parameters, and f(.,.) is an appropriate differential or integral transform. The uncertainty analyses then focuses on P, such that the resulting field of y is approximately unbiased and has minimum variance or maximum likelihood. The parameters P are usually time invariant, and x and/or f(.,.) are expected to account for changes in the boundary conditions. Thus the dynamics is stationary, while the time series of either x or y may not be. Given the lack of clarity as to whether the dynamical system or the trajectory is stationary it is amusing that the paper ”Stationarity is Dead” that implicitly uses changes in time series properties and boundary conditions as its basis gets much press. To avoid the stationarity dilemma, hydrologists are willing to take climate model outputs, rather than an analysis based on historical climate. Uncertainty analysis is viewed as the appropriate shrinkage of the spread across models and ensembles by clever averaging after bias corrections of the model output - a process I liken to transforming elephants into mice. Since it is someone else’s model, we abandon the seemingly good sense of seeking the best parameters P that reproduce the data y. We now seek to fit a model y = T{f1(x,P1),f2(x,P2)…}, where we don’t question the parameter or model but simply fudge the outputs to what was observed. Clearly, we can’t become climate modelers and must work with what we are dealt. By the way, doesn’t this uncertainty analysis and reduction process involve an assumption of stationarity? So, how should hydrologists navigate this muddle of uncertainty and stationarity? I offer some ideas tying to modeling purpose, and advocate a greater effort on diagnostic analyses that provide insights into how hydrologic dynamics co-evolve with climate at a variety of space and time scales. Are there natural bounds or structure to systemic uncertainty and predictability, and what are the key carriers of hydrologic information?
NASA Astrophysics Data System (ADS)
Li, Ming; Wang, Q. J.; Bennett, James C.; Robertson, David E.
2016-09-01
This study develops a new error modelling method for ensemble short-term and real-time streamflow forecasting, called error reduction and representation in stages (ERRIS). The novelty of ERRIS is that it does not rely on a single complex error model but runs a sequence of simple error models through four stages. At each stage, an error model attempts to incrementally improve over the previous stage. Stage 1 establishes parameters of a hydrological model and parameters of a transformation function for data normalization, Stage 2 applies a bias correction, Stage 3 applies autoregressive (AR) updating, and Stage 4 applies a Gaussian mixture distribution to represent model residuals. In a case study, we apply ERRIS for one-step-ahead forecasting at a range of catchments. The forecasts at the end of Stage 4 are shown to be much more accurate than at Stage 1 and to be highly reliable in representing forecast uncertainty. Specifically, the forecasts become more accurate by applying the AR updating at Stage 3, and more reliable in uncertainty spread by using a mixture of two Gaussian distributions to represent the residuals at Stage 4. ERRIS can be applied to any existing calibrated hydrological models, including those calibrated to deterministic (e.g. least-squares) objectives.
NASA Astrophysics Data System (ADS)
Suryoputro, Nugroho; Suhardjono, Soetopo, Widandi; Suhartanto, Ery
2017-09-01
In calibrating hydrological models, there are generally two stages of activity: 1) determining realistic model initial parameters in representing natural component physical processes, 2) entering initial parameter values which are then processed by trial error or automatically to obtain optimal values. To determine a realistic initial value, it takes experience and user knowledge of the model. This is a problem for beginner model users. This paper will present another approach to estimate the infiltration parameters in the tank model. The parameters will be approximated by the runoff coefficient of rational method. The value approach of infiltration parameter is simply described as the result of the difference in the percentage of total rainfall minus the percentage of runoff. It is expected that the results of this research will accelerate the calibration process of tank model parameters. The research was conducted on the sub-watershed Kali Bango in Malang Regency with an area of 239,71 km2. Infiltration measurements were carried out in January 2017 to March 2017. Analysis of soil samples at Soil Physics Laboratory, Department of Soil Science, Faculty of Agriculture, Universitas Brawijaya. Rainfall and discharge data were obtained from UPT PSAWS Bango Gedangan in Malang. Temperature, evaporation, relative humidity, wind speed data was obtained from BMKG station of Karang Ploso, Malang. The results showed that the infiltration coefficient at the top tank outlet can be determined its initial value by using the approach of the coefficient of runoff rational method with good result.
NASA Astrophysics Data System (ADS)
Velázquez, Juan Alberto; Anctil, François; Ramos, Maria-Helena; Perrin, Charles
2010-05-01
An ensemble forecasting system seeks to assess and to communicate the uncertainty of hydrological predictions by proposing, at each time step, an ensemble of forecasts from which one can estimate the probability distribution of the predictant (the probabilistic forecast), in contrast with a single estimate of the flow, for which no distribution is obtainable (the deterministic forecast). In the past years, efforts towards the development of probabilistic hydrological prediction systems were made with the adoption of ensembles of numerical weather predictions (NWPs). The additional information provided by the different available Ensemble Prediction Systems (EPS) was evaluated in a hydrological context on various case studies (see the review by Cloke and Pappenberger, 2009). For example, the European ECMWF-EPS was explored in case studies by Roulin et al. (2005), Bartholmes et al. (2005), Jaun et al. (2008), and Renner et al. (2009). The Canadian EC-EPS was also evaluated by Velázquez et al. (2009). Most of these case studies investigate the ensemble predictions of a given hydrological model, set up over a limited number of catchments. Uncertainty from weather predictions is assessed through the use of meteorological ensembles. However, uncertainty from the tested hydrological model and statistical robustness of the forecasting system when coping with different hydro-meteorological conditions are less frequently evaluated. The aim of this study is to evaluate and compare the performance and the reliability of 18 lumped hydrological models applied to a large number of catchments in an operational ensemble forecasting context. Some of these models were evaluated in a previous study (Perrin et al. 2001) for their ability to simulate streamflow. Results demonstrated that very simple models can achieve a level of performance almost as high (sometimes higher) as models with more parameters. In the present study, we focus on the ability of the hydrological models to provide reliable probabilistic forecasts of streamflow, based on ensemble weather predictions. The models were therefore adapted to run in a forecasting mode, i.e., to update initial conditions according to the last observed discharge at the time of the forecast, and to cope with ensemble weather scenarios. All models are lumped, i.e., the hydrological behavior is integrated over the spatial scale of the catchment, and run at daily time steps. The complexity of tested models varies between 3 and 13 parameters. The models are tested on 29 French catchments. Daily streamflow time series extend over 17 months, from March 2005 to July 2006. Catchment areas range between 1470 km2 and 9390 km2, and represent a variety of hydrological and meteorological conditions. The 12 UTC 10-day ECMWF rainfall ensemble (51 members) was used, which led to daily streamflow forecasts for a 9-day lead time. In order to assess the performance and reliability of the hydrological ensemble predictions, we computed the Continuous Ranked probability Score (CRPS) (Matheson and Winkler, 1976), as well as the reliability diagram (e.g. Wilks, 1995) and the rank histogram (Talagrand et al., 1999). Since the ECMWF deterministic forecasts are also available, the performance of the hydrological forecasting systems was also evaluated by comparing the deterministic score (MAE) with the probabilistic score (CRPS). The results obtained for the 18 hydrological models and the 29 studied catchments are discussed in the perspective of improving the operational use of ensemble forecasting in hydrology. References Bartholmes, J. and Todini, E.: Coupling meteorological and hydrological models for flood forecasting, Hydrol. Earth Syst. Sci., 9, 333-346, 2005. Cloke, H. and Pappenberger, F.: Ensemble Flood Forecasting: A Review. Journal of Hydrology 375 (3-4): 613-626, 2009. Jaun, S., Ahrens, B., Walser, A., Ewen, T., and Schär, C.: A probabilistic view on the August 2005 floods in the upper Rhine catchment, Nat. Hazards Earth Syst. Sci., 8, 281-291, 2008. Matheson, J. E. and Winkler, R. L.: Scoring rules for continuous probability distributions, Manage Sci., 22, 1087-1096, 1976. Perrin, C., Michel C. and Andréassian,V. Does a large number of parameters enhance model performance? Comparative assessment of common catchment model structures on 429 catchments, J. Hydrol., 242, 275-301, 2001. Renner, M., Werner, M. G. F., Rademacher, S., and Sprokkereef, E.: Verification of ensemble flow forecast for the River Rhine, J. Hydrol., 376, 463-475, 2009. Roulin, E. and Vannitsem, S.: Skill of medium-range hydrological ensemble predictions, J. Hydrometeorol., 6, 729-744, 2005. Talagrand, O., Vautard, R., and Strauss, B.: Evaluation of the probabilistic prediction systems, in: Proceedings, ECMWF Workshop on Predictability, Shinfield Park, Reading, Berkshire, ECMWF, 1-25, 1999. Velázquez, J.A., Petit, T., Lavoie, A., Boucher M.-A., Turcotte R., Fortin V., and Anctil, F. : An evaluation of the Canadian global meteorological ensemble prediction system for short-term hydrological forecasting, Hydrol. Earth Syst. Sci., 13, 2221-2231, 2009. Wilks, D. S.: Statistical Methods in the Atmospheric Sciences, Academic Press, San Diego, CA, 465 pp., 1995.
NASA Astrophysics Data System (ADS)
Ryken, A.; Gochis, D.; Carroll, R. W. H.; Bearup, L. A.; Williams, K. H.; Maxwell, R. M.
2017-12-01
The hydrology of high-elevation, mountainous regions is poorly represented in Earth Systems Models (ESMs). In addition to regulating downstream water delivery, these ecosystems play an important role in the storage and land-atmosphere exchange of carbon and water. Water balances are sensitive to the amount of water stored in the snowpack (SWE) and the amount of water leaving the system in the form of evapotranspiration—two pieces of the hydrologic cycle that are difficult to observe and model in heterogeneous mountainous regions due to spatially variant weather patterns. In an effort to resolve this hydrologic gap in ESMs, this study seeks to better understand the interactions between groundwater, carbon flux, and the lower atmosphere in these high-altitude environments through integration of field observations and model simulations. We compare model simulations to field observations to elucidate process performance combined with a sensitivity analysis to better understand parameter uncertainty. Observations from a meteorological station in the East River Basin are used to force an integrated single-column hydrologic model, ParFlow-CLM. This met station is co-located with an eddy covariance tower, which, along with snow surveys, is used to better constrain the water, carbon, and energy fluxes in the coupled land-atmosphere model to increase our understanding of high-altitude headwaters. Preliminary results suggest the model compares well to the eddy covariance tower and field observations, shown through both correct magnitude and timing of peak SWE along with similar magnitudes and diurnal patterns of heat and water fluxes. Initial sensitivity analysis results show that an increase in temperature leads to a decrease in peak SWE as well as an increase in latent heat revealing a sensitivity of the model to air temperature. Further sensitivity analysis will help us understand more parameter uncertainty. Through obtaining more accurate and higher resolution meteorological data and applying it to a coupled hydrologic model, this study can lead to better representation of mountainous environments in all ESMs.
NASA Astrophysics Data System (ADS)
Holzmann, Hubert; Massmann, Carolina
2015-04-01
A plenty of hydrological model types have been developed during the past decades. Most of them used a fixed design to describe the variable hydrological processes assuming to be representative for the whole range of spatial and temporal scales. This assumption is questionable as it is evident, that the runoff formation process is driven by dominant processes which can vary among different basins. Furthermore the model application and the interpretation of results is limited by data availability to identify the particular sub-processes, since most models were calibrated and validated only with discharge data. Therefore it can be hypothesized, that simpler model designs, focusing only on the dominant processes, can achieve comparable results with the benefit of less parameters. In the current contribution a modular model concept will be introduced, which allows the integration and neglection of hydrological sub-processes depending on the catchment characteristics and data availability. Key elements of the process modules refer to (1) storage effects (interception, soil), (2) transfer processes (routing), (3) threshold processes (percolation, saturation overland flow) and (4) split processes (rainfall excess). Based on hydro-meteorological observations in an experimental catchment in the Slovak region of the Carpathian mountains a comparison of several model realizations with different degrees of complexity will be discussed. A special focus is given on model parameter sensitivity estimated by Markov Chain Monte Carlo approach. Furthermore the identification of dominant processes by means of Sobol's method is introduced. It could be shown that a flexible model design - and even the simple concept - can reach comparable and equivalent performance than the standard model type (HBV-type). The main benefit of the modular concept is the individual adaptation of the model structure with respect to data and process availability and the option for parsimonious model design.
Yin, Yunxing; Jiang, Sanyuan; Pers, Charlotta; Yang, Xiaoying; Liu, Qun; Yuan, Jin; Yao, Mingxing; He, Yi; Luo, Xingzhang; Zheng, Zheng
2016-01-01
Many water quality models have been successfully used worldwide to predict nutrient losses from anthropogenically impacted catchments, but hydrological and nutrient simulations with limited data are difficult considering the transfer of model parameters and complication of model calibration and validation. This study aims: (i) to assess the performance capabilities of a new and relatively more advantageous model, namely, Hydrological Predictions for the Environment (HYPE), that simulates stream flow and nutrient load in agricultural areas by using a multi-site and multi-objective parameter calibration method and (ii) to investigate the temporal and spatial variations of total nitrogen (TN) and total phosphorous (TP) concentrations and loads with crop rotation by using the model for the first time. A parameter estimation tool (PEST) was used to calibrate parameters. Results show that the parameters related to the effective soil porosity were highly sensitive to hydrological modeling. N balance was largely controlled by soil denitrification processes. P balance was influenced by the sedimentation rate and production/decay of P in rivers and lakes. The model reproduced the temporal and spatial variations of discharge and TN/TP relatively well in both calibration (2006–2008) and validation (2009–2010) periods. Among the obtained data, the lowest Nash-Suttclife efficiency of discharge, daily TN load, and daily TP load were 0.74, 0.51, and 0.54, respectively. The seasonal variations of daily TN concentrations in the entire simulation period were insufficient, indicated that crop rotation changed the timing and amount of N output. Monthly TN and TP simulation yields revealed that nutrient outputs were abundant in summer in terms of the corresponding discharge. The area-weighted TN and TP load annual yields in five years showed that nutrient loads were extremely high along Hong and Ru rivers, especially in agricultural lands. PMID:26999184
NASA Astrophysics Data System (ADS)
Ryu, Young; Lim, Yoon-Jin; Ji, Hee-Sook; Park, Hyun-Hee; Chang, Eun-Chul; Kim, Baek-Jo
2017-11-01
In flash flood forecasting, it is necessary to consider not only traditional meteorological variables such as precipitation, evapotranspiration, and soil moisture, but also hydrological components such as streamflow. To address this challenge, the application of high resolution coupled atmospheric-hydrological models is emerging as a promising alternative. This study demonstrates the feasibility of linking a coupled atmospheric-hydrological model (WRF/WRFHydro) with 150-m horizontal grid spacing for flash flood forecasting in Korea. The study area is the Namgang Dam basin in Southern Korea, a mountainous area located downstream of Jiri Mountain (1915 m in height). Under flash flood conditions, the simulated precipitation over the entire basin is comparable to the domain-averaged precipitation, but discharge data from WRF-Hydro shows some differences in the total available water and the temporal distribution of streamflow (given by the timing of the streamflow peak following precipitation), compared to observations. On the basis of sensitivity tests, the parameters controlling the infiltration of excess precipitation and channel roughness depending on stream order are refined and their influence on temporal distribution of streamflow is addressed with intent to apply WRF-Hydro to flash flood forecasting in the Namgang Dam basin. The simulation results from the WRF-Hydro model with optimized parameters demonstrate the potential utility of a coupled atmospheric-hydrological model for forecasting heavy rain-induced flash flooding over the Korean Peninsula.
NASA Astrophysics Data System (ADS)
Masood, M.; Yeh, P. J.-F.; Hanasaki, N.; Takeuchi, K.
2014-06-01
The intensity, duration, and geographic extent of floods in Bangladesh mostly depend on the combined influences of three river systems, Ganges, Brahmaputra and Meghna (GBM). In addition, climate change is likely to have significant effects on the hydrology and water resources of the GBM basins and might ultimately lead to more serious floods in Bangladesh. However, the assessment of climate change impacts on basin-scale hydrology by using well-constrained hydrologic modelling has rarely been conducted for GBM basins due to the lack of data for model calibration and validation. In this study, a macro-scale hydrologic model H08 has been applied regionally over the basin at a relatively fine grid resolution (10 km) by integrating the fine-resolution (~0.5 km) DEM data for accurate river networks delineation. The model has been calibrated via analyzing model parameter sensitivity and validated based on a long-term observed daily streamflow data. The impact of climate change on not only the runoff, but also the basin-scale hydrology including evapotranspiration, soil moisture and net radiation have been assessed in this study through three time-slice experiments; present-day (1979-2003), near-future (2015-2039) and far-future (2075-2099) periods. Results shows that, by the end of 21st century (a) the entire GBM basin is projected to be warmed by ~3°C (b) the changes of mean precipitation are projected to be +14.0, +10.4, and +15.2%, and the changes of mean runoff to be +14, +15, and +18% in the Brahmaputra, Ganges and Meghna basin respectively (c) evapotranspiration is predicted to increase significantly for the entire GBM basins (Brahmaputra: +14.4%, Ganges: +9.4%, Meghna: +8.8%) due to increased net radiation (Brahmaputra: +6%, Ganges: +5.9%, Meghna: +3.3%) as well as warmer air temperature. Changes of hydrologic variables will be larger in dry season (November-April) than that in wet season (May-October). Amongst three basins, Meghna shows the largest hydrological response which indicates higher possibility of flood occurrence in this basin. The uncertainty due to the specification of key model parameters in predicting hydrologic quantities, has also been analysed explicitly in this study and found that the uncertainty in estimation of runoff, evapotranspiration and net radiation is relatively less. However, the uncertainty in estimation of soil moisture is quite large (coefficient of variation ranges from 11 to 33% for three basins). It is significant in land use management, agriculture in particular and highlights the necessity of physical observation of soil moisture.
The PCR-GLOBWB global hydrological reanalysis product
NASA Astrophysics Data System (ADS)
Wanders, Niko; Bierkens, Marc; Sutanudjaja, Edwin; van Beek, Rens
2014-05-01
Accurate and long time series of hydrological data are important for understanding land surface water and energy budgets in many parts of the world, as well as for improving real-time hydrological monitoring and climate change anticipation. The ultimate goal of the present work is to produce a multi-decadal "land surface hydrological reanalysis" dataset with retrospective and updated hydrological states and fluxes that are constrained to available in-situ river discharge measurements. Here we use PCR-GLOBWB (van Beek et al., 2011), which is a large-scale hydrological model intended for global to regional studies. PCR-GLOBWB provides a grid-based representation of terrestrial hydrology with a typical spatial resolution of approximately 50×50 km (currently 0.5° globally) on a daily basis. For each grid cell, PCR-GLOBWB simulates moisture storage in two vertically stacked soil layers as well as the water exchange between the soil and the atmosphere and the underlying groundwater reservoir. Exchange to the atmosphere comprises precipitation, evaporation and transpiration, as well as snow accumulation and melt, which are all simulated by considering vegetation phenology and sub-grid variations of elevation, land cover and soil saturation distribution. The model includes improved schemes for runoff-infiltration partitioning, interflow, groundwater recharge and baseflow, as well as river routing of discharge. It also dynamically simulates water storage in reservoirs, water demand and the withdrawal, allocation and consumptive use of surface water and groundwater resources. By embedding the PCR-GLOBWB model in an Ensemble Kalman Filter framework, we calibrate the model parameters based on the discharge observations from the Global Runoff Data Centre. The parameters calibrated are related to snow accumulation and melt, runoff-infiltration partitioning, groundwater recharge, channel discharge and baseflow processes, as well as pre-factors to correct forcing precipitation fields with consideration of local topographic and orographic effects. Results show that the model parameters can be successfully calibrated, while corrections to the forcing precipitation fields are substantial. Topography has the largest impact on the corrected precipitation and globally the precipitation is reduced by 3%. The calibrated model output is compared to the reference run of PCR-GLOBWB before calibration showing significant improvement in simulation of the global terrestrial water cycle. The RMSE is reduced by 10% on average, leading to improved discharge simulations, especially under base flow situations. The main outcome of this work is a 1960-2010 global reanalysis dataset that includes extensive daily hydrological components, such as precipitation, evaporation and transpiration, snow, soil moisture, groundwater storage and discharge. This reanalysis product may be used for understanding land surface memory processes, initializing regional studies and operational forecasts, as well as evaluating and improving our understanding of spatio-temporal variation of meteorological and hydrological processes. Moreover, The PCR-GLOBWB data assimilation framework developed in this work can also be extended by including more observational data, including remotely sensed data reflecting the distribution of energy and water (e.g., heat fluxes and soil moisture storage).
Time-varying parameter models for catchments with land use change: the importance of model structure
NASA Astrophysics Data System (ADS)
Pathiraja, Sahani; Anghileri, Daniela; Burlando, Paolo; Sharma, Ashish; Marshall, Lucy; Moradkhani, Hamid
2018-05-01
Rapid population and economic growth in Southeast Asia has been accompanied by extensive land use change with consequent impacts on catchment hydrology. Modeling methodologies capable of handling changing land use conditions are therefore becoming ever more important and are receiving increasing attention from hydrologists. A recently developed data-assimilation-based framework that allows model parameters to vary through time in response to signals of change in observations is considered for a medium-sized catchment (2880 km2) in northern Vietnam experiencing substantial but gradual land cover change. We investigate the efficacy of the method as well as the importance of the chosen model structure in ensuring the success of a time-varying parameter method. The method was used with two lumped daily conceptual models (HBV and HyMOD) that gave good-quality streamflow predictions during pre-change conditions. Although both time-varying parameter models gave improved streamflow predictions under changed conditions compared to the time-invariant parameter model, persistent biases for low flows were apparent in the HyMOD case. It was found that HyMOD was not suited to representing the modified baseflow conditions, resulting in extreme and unrealistic time-varying parameter estimates. This work shows that the chosen model can be critical for ensuring the time-varying parameter framework successfully models streamflow under changing land cover conditions. It can also be used to determine whether land cover changes (and not just meteorological factors) contribute to the observed hydrologic changes in retrospective studies where the lack of a paired control catchment precludes such an assessment.
NASA Astrophysics Data System (ADS)
Silva, F. E. O. E.; Naghettini, M. D. C.; Fernandes, W.
2014-12-01
This paper evaluated the uncertainties associated with the estimation of the parameters of a conceptual rainfall-runoff model, through the use of Bayesian inference techniques by Monte Carlo simulation. The Pará River sub-basin, located in the upper São Francisco river basin, in southeastern Brazil, was selected for developing the studies. In this paper, we used the Rio Grande conceptual hydrologic model (EHR/UFMG, 2001) and the Markov Chain Monte Carlo simulation method named DREAM (VRUGT, 2008a). Two probabilistic models for the residues were analyzed: (i) the classic [Normal likelihood - r ≈ N (0, σ²)]; and (ii) a generalized likelihood (SCHOUPS & VRUGT, 2010), in which it is assumed that the differences between observed and simulated flows are correlated, non-stationary, and distributed as a Skew Exponential Power density. The assumptions made for both models were checked to ensure that the estimation of uncertainties in the parameters was not biased. The results showed that the Bayesian approach proved to be adequate to the proposed objectives, enabling and reinforcing the importance of assessing the uncertainties associated with hydrological modeling.
NASA Astrophysics Data System (ADS)
Garcia Galiano, S. G.; Olmos, P.; Giraldo Osorio, J. D.
2015-12-01
In the Mediterranean area, significant changes on temperature and precipitation are expected throughout the century. These trends could exacerbate the existing conditions in regions already vulnerable to climatic variability, reducing the water availability. Improving knowledge about plausible impacts of climate change on water cycle processes at basin scale, is an important step for building adaptive capacity to the impacts in this region, where severe water shortages are expected for the next decades. RCMs ensemble in combination with distributed hydrological models with few parameters, constitutes a valid and robust methodology to increase the reliability of climate and hydrological projections. For reaching this objective, a novel methodology for building Regional Climate Models (RCMs) ensembles of meteorological variables (rainfall an temperatures), was applied. RCMs ensembles are justified for increasing the reliability of climate and hydrological projections. The evaluation of RCMs goodness-of-fit to build the ensemble is based on empirical probability density functions (PDF) extracted from both RCMs dataset and a highly resolution gridded observational dataset, for the time period 1961-1990. The applied method is considering the seasonal and annual variability of the rainfall and temperatures. The RCMs ensembles constitute the input to a distributed hydrological model at basin scale, for assessing the runoff projections. The selected hydrological model is presenting few parameters in order to reduce the uncertainties involved. The study basin corresponds to a head basin of Segura River Basin, located in the South East of Spain. The impacts on runoff and its trend from observational dataset and climate projections, were assessed. Considering the control period 1961-1990, plausible significant decreases in runoff for the time period 2021-2050, were identified.
Green roof hydrologic performance and modeling: a review.
Li, Yanling; Babcock, Roger W
2014-01-01
Green roofs reduce runoff from impervious surfaces in urban development. This paper reviews the technical literature on green roof hydrology. Laboratory experiments and field measurements have shown that green roofs can reduce stormwater runoff volume by 30 to 86%, reduce peak flow rate by 22 to 93% and delay the peak flow by 0 to 30 min and thereby decrease pollution, flooding and erosion during precipitation events. However, the effectiveness can vary substantially due to design characteristics making performance predictions difficult. Evaluation of the most recently published study findings indicates that the major factors affecting green roof hydrology are precipitation volume, precipitation dynamics, antecedent conditions, growth medium, plant species, and roof slope. This paper also evaluates the computer models commonly used to simulate hydrologic processes for green roofs, including stormwater management model, soil water atmosphere and plant, SWMS-2D, HYDRUS, and other models that are shown to be effective for predicting precipitation response and economic benefits. The review findings indicate that green roofs are effective for reduction of runoff volume and peak flow, and delay of peak flow, however, no tool or model is available to predict expected performance for any given anticipated system based on design parameters that directly affect green roof hydrology.
NASA Astrophysics Data System (ADS)
Kuras, P. K.; Weiler, M.; Alila, Y.; Spittlehouse, D.; Winkler, R.
2006-12-01
Hydrologic models have been increasingly used in forest hydrology to overcome the limitations of paired watershed experiments, where vegetative recovery and natural variability obscure the inferences and conclusions that can be drawn from such studies. Models, however, are also plagued by uncertainty stemming from a limited understanding of hydrological processes in forested catchments and parameter equifinality is a common concern. This has created the necessity to improve our understanding of how hydrological systems work, through the development of hydrological measures, analyses and models that address the question: are we getting the right answers for the right reasons? Hence, physically-based, spatially-distributed hydrologic models should be validated with high-quality experimental data describing multiple concurrent internal catchment processes under a range of hydrologic regimes. The distributed hydrology soil vegetation model (DHSVM) frequently used in forest management applications is an example of a process-based model used to address the aforementioned circumstances, and this study takes a novel approach at collectively examining the ability of a pre-calibrated model application to realistically simulate outlet flows along with the spatial-temporal variation of internal catchment processes including: continuous groundwater dynamics at 9 locations, stream and road network flow at 67 locations for six individual days throughout the freshet, and pre-melt season snow distribution. Model efficiency was improved over prior evaluations due to continuous efforts in improving the quality of meteorological data in the watershed. Road and stream network flows were very well simulated for a range of hydrological conditions, and the spatial distribution of the pre-melt season snowpack was in general agreement with observed values. The model was effective in simulating the spatial variability of subsurface flow generation, except at locations where strong stream-groundwater interactions existed, as the model is not capable of simulating such processes and subsurface flows always drain to the stream network. The model has proven overall to be quite capable in realistically simulating internal catchment processes in the watershed, which creates more confidence in future model applications exploring the effects of various forest management scenarios on the watershed's hydrological processes.
NASA Astrophysics Data System (ADS)
Hutton, Christopher; Wagener, Thorsten; Freer, Jim; Han, Dawei
2016-04-01
Distributed models offer the potential to resolve catchment systems in more detail, and therefore simulate the hydrological impacts of spatial changes in catchment forcing (e.g. landscape change). Such models tend to contain a large number of poorly defined and spatially varying model parameters which are therefore computationally expensive to calibrate. Insufficient data can result in model parameter and structural equifinality, particularly when calibration is reliant on catchment outlet discharge behaviour alone. Evaluating spatial patterns of internal hydrological behaviour has the potential to reveal simulations that, whilst consistent with measured outlet discharge, are qualitatively dissimilar to our perceptual understanding of how the system should behave. We argue that such understanding, which may be derived from stakeholder knowledge across different catchments for certain process dynamics, is a valuable source of information to help reject non-behavioural models, and therefore identify feasible model structures and parameters. The challenge, however, is to convert different sources of often qualitative and/or semi-qualitative information into robust quantitative constraints of model states and fluxes, and combine these sources of information together to reject models within an efficient calibration framework. Here we present the development of a framework to incorporate different sources of data to efficiently calibrate distributed catchment models. For each source of information, an interval or inequality is used to define the behaviour of the catchment system. These intervals are then combined to produce a hyper-volume in state space, which is used to identify behavioural models. We apply the methodology to calibrate the Penn State Integrated Hydrological Model (PIHM) at the Wye catchment, Plynlimon, UK. Outlet discharge behaviour is successfully simulated when perceptual understanding of relative groundwater levels between lowland peat, upland peat and valley slopes within the catchment are used to identify behavioural models. The process of converting qualitative information into quantitative constraints forces us to evaluate the assumptions behind our perceptual understanding in order to derive robust constraints, and therefore fairly reject models and avoid type II errors. Likewise, consideration needs to be given to the commensurability problem when mapping perceptual understanding to constrain model states.
NASA Astrophysics Data System (ADS)
Flores, A. N.; Pathak, C. S.; Senarath, S. U.; Bras, R. L.
2009-12-01
Robust hydrologic monitoring networks represent a critical element of decision support systems for effective water resource planning and management. Moreover, process representation within hydrologic simulation models is steadily improving, while at the same time computational costs are decreasing due to, for instance, readily available high performance computing resources. The ability to leverage these increasingly complex models together with the data from these monitoring networks to provide accurate and timely estimates of relevant hydrologic variables within a multiple-use, managed water resources system would substantially enhance the information available to resource decision makers. Numerical data assimilation techniques provide mathematical frameworks through which uncertain model predictions can be constrained to observational data to compensate for uncertainties in the model forcings and parameters. In ensemble-based data assimilation techniques such as the ensemble Kalman Filter (EnKF), information in observed variables such as canal, marsh and groundwater stages are propagated back to the model states in a manner related to: (1) the degree of certainty in the model state estimates and observations, and (2) the cross-correlation between the model states and the observable outputs of the model. However, the ultimate degree to which hydrologic conditions can be accurately predicted in an area of interest is controlled, in part, by the configuration of the monitoring network itself. In this proof-of-concept study we developed an approach by which the design of an existing hydrologic monitoring network is adapted to iteratively improve the predictions of hydrologic conditions within an area of the South Florida Water Management District (SFWMD). The objective of the network design is to minimize prediction errors of key hydrologic states and fluxes produced by the spatially distributed Regional Simulation Model (RSM), developed specifically to simulate the hydrologic conditions in several intensively managed and hydrologically complex watersheds within the SFWMD system. In a series of synthetic experiments RSM is used to generate the notionally true hydrologic state and the relevant observational data. The EnKF is then used as the mechanism to fuse RSM hydrologic estimates with data from the candidate network. The performance of the candidate network is measured by the prediction errors of the EnKF estimates of hydrologic states, relative to the notionally true scenario. The candidate network is then adapted by relocating existing observational sites to unobserved areas where predictions of local hydrologic conditions are most uncertain and the EnKF procedure repeated. Iteration of the monitoring network continues until further improvements in EnKF-based predictions of hydrologic conditions are negligible.
Seasonal and Surface Hydrologic Loading Signals at GPS Stations Processed by the GAGE Facility
NASA Astrophysics Data System (ADS)
Puskas, C. M.; Meertens, C. M.; Phillips, D.
2017-12-01
UNAVCO is now producing hydrologic displacement model time series at GPS station coordinates in the Geodesy Advancing Geosciences and EarthScope (GAGE) Facility, including the Plate Boundary Observatory (PBO). The surface loads are obtained from global and national land data assimilation systems (GLDAS and NLDAS, respectively) land surface models produced by the Goddard Earth Sciences Data and Information Services Center (GES DISC). The land surface models are available as monthly files of environmental parameters documenting water, pressure, temperature, and other measures mass/energy transfer on a grid at the Earth's surface. Grids are 1º for the global GLDAS models and 0.125º for the NLDAS models in the conterminous US. UNAVCO extracts the soil moisture, snowpack, and water stored in vegetation parameters and calculates displacements in an elastic half-space at selected points, i.e., GPS station locations. UNAVCO has recently upgraded its hydrologic data products from GLDAS version 1 to version 2 and added NLDAS-based models, and the new data products are now available from the UNAVCO ftp server (ftp://data-out.unavco.org/pub/products/hydro) and will soon be available through web services. The GLDAS v2 models supersede those based on v1, which will no longer be updated. UNAVCO updates its hydrologic products on a quarterly basis. Seasonal signals in the GAGE GPS position time series have amplitudes on the order of several millimeters, which vary across the PBO network depending on local climate and geology. The signals are thought to be a combination of elastic displacement from surface loading and poroelastic displacement from groundwater depletion and recharge. We present a description of the hydrologic displacement modeling and provide examples of loading and resulting displacement. The GLDAS and NLDAS models are compared with each other and with GPS position time series at selected stations in different geographic regions.
NASA Astrophysics Data System (ADS)
Schumann, Andreas; Oppel, Henning
2017-04-01
To represent the hydrological behaviour of catchments a model should reproduce/reflect the hydrologically most relevant catchment characteristics. These are heterogeneously distributed within a watershed but often interrelated and subject of a certain spatial organisation. Since common models are mostly based on fundamental assumptions about hydrological processes, the reduction of variance of catchment properties as well as the incorporation of the spatial organisation of the catchment is desirable. We have developed a method that combines the idea of the width-function used for determination of the geomorphologic unit hydrograph with information about soil or topography. With this method we are able to assess the spatial organisation of selected catchment characteristics. An algorithm was developed that structures a watershed into sub-basins and other spatial units to minimise its heterogeneity. The outcomes of this algorithm are used for the spatial setup of a semi-distributed model. Since the spatial organisation of a catchment is not bound to a single characteristic, we have to embed information of multiple catchment properties. For this purpose we applied a fuzzy-based method to combine the spatial setup for multiple single characteristics into a union, optimal spatial differentiation. Utilizing this method, we are able to propose a spatial structure for a semi-distributed hydrological model, comprising the definition of sub-basins and a zonal classification within each sub-basin. Besides the improved spatial structuring, the performed analysis ameliorates modelling in another way. The spatial variability of catchment characteristics, which is considered by a minimum of heterogeneity in the zones, can be considered in a parameter constrained calibration scheme in a case study both options were used to explore the benefits of incorporating the spatial organisation and derived parameter constraints for the parametrisation of a HBV-96 model. We use two benchmark model setups (lumped and semi-distributed by common approaches) to address the benefits for different time and spatial scales. Moreover, the benefits for calibration effort, model performance in validation periods and process extrapolation are shown.
Constructing an everywhere and locally relevant predictive model of the West-African critical zone
NASA Astrophysics Data System (ADS)
Hector, B.; Cohard, J. M.; Pellarin, T.; Maxwell, R. M.; Cappelaere, B.; Demarty, J.; Grippa, M.; Kergoat, L.; Lebel, T.; Mamadou, O.; Mougin, E.; Panthou, G.; Peugeot, C.; Vandervaere, J. P.; Vischel, T.; Vouillamoz, J. M.
2017-12-01
Considering water resources and hydrologic hazards, West Africa is among the most vulnerable regions to face both climatic (e.g. with the observed intensification of precipitation) and anthropogenic changes. With +3% of demographic rate, the region experiences rapid land use changes and increased pressure on surface and groundwater resources with observed consequences on the hydrological cycle (water table rise result of the sahelian paradox, increase in flood occurrence, etc.) Managing large hydrosystems (such as transboundary aquifers or rivers basins as the Niger river) requires anticipation of such changes. However, the region significantly lacks observations, for constructing and validating critical zone (CZ) models able to predict future hydrologic regime, but also comprises hydrosystems which encompass strong environmental gradients (e.g. geological, climatic, ecological) with highly different dominating hydrological processes. We address these issues by constructing a high resolution (1 km²) regional scale physically-based model using ParFlow-CLM which allows modeling a wide range of processes without prior knowledge on their relative dominance. Our approach combines multiple scale modeling from local to meso and regional scales within the same theoretical framework. Local and meso-scale models are evaluated thanks to the rich AMMA-CATCH CZ observation database which covers 3 supersites with contrasted environments in Benin (Lat.: 9.8°N), Niger (Lat.: 13.3°N) and Mali (Lat.: 15.3°N). At the regional scale the lack of relevant map of soil hydrodynamic parameters is addressed using remote sensing data assimilation. Our first results show the model's ability to reproduce the known dominant hydrological processes (runoff generation, ET, groundwater recharge…) across the major West-African regions and allow us to conduct virtual experiments to explore the impact of global changes on the hydrosystems. This approach is a first step toward the construction of a reference model to study regional CZ sensitivity to global changes and will help to identify prior parameters required and to construct meta-models for deeper investigations of interactions within the CZ.
NASA Astrophysics Data System (ADS)
Zhu, Honglei; Li, Ying; Huang, Yanwei; Li, Yingchen; Hou, Cuicui; Shi, Xiaoliang
2018-07-01
Satellite-based precipitation estimates with high spatial and temporal resolution and large areal coverage have provided hydrologists a potential alternative source for hydrological applications since the last few years, especially for ungauged regions. This study evaluates five satellite-based precipitation datasets, namely, Fengyun, TRMM 3B42, TRMM 3B42RT, CMORPH_BLD and CMORPH_RAW, against gauge observations for streamflow simulation with a distributed hydrological model (SWAT) over the Huifa river basin, Northeast China. Results show that, by comparing the statistical indices (MA, M5P, STDE, ME, BIAS and CC) and inter-annual precipitation, it is demonstrated that Fengyun TRMM 3B42 and CMORPH_BLD show better agreement with gauge precipitation data than CMORPH_RAW and TRMM 3B42RT. When the SWAT model for each dataset calibrated and validated individually, satisfactory model performances (defined as: NS > 0.5) are achieved at daily scale for Fengyun, TRMM 3B42 and gauge-driven model, and very good performances (defined as: NS > 0.75) are achieved at monthly scale for Fengyun and gauge-driven model, respectively. The CMORPH_BLD forced daily simulations also yield higher values of NS and R2 than CMORPH_RAW and TRMM 3B42RT at daily and monthly step. From the uncertainty results, variations of P-factor values and frequency distribution curves of NS suggest that the simulation uncertainty increase when operating the Fengyun, 3B42RT, CMORPH_BLD and CMORPH_RAW-driven model with best fitted parameters for rain gauge SWAT model. The results also indicate that the influence of parameter uncertainty on model simulation results may be greater than the effect of input data accuracy. It is noted that uncertainty analysis is necessary to evaluate the hydrological applications of satellite-based precipitation datasets.
NASA Astrophysics Data System (ADS)
Bachmann-Machnik, Anna; Meyer, Daniel; Waldhoff, Axel; Fuchs, Stephan; Dittmer, Ulrich
2018-04-01
Retention Soil Filters (RSFs), a form of vertical flow constructed wetlands specifically designed for combined sewer overflow (CSO) treatment, have proven to be an effective tool to mitigate negative impacts of CSOs on receiving water bodies. Long-term hydrologic simulations are used to predict the emissions from urban drainage systems during planning of stormwater management measures. So far no universally accepted model for RSF simulation exists. When simulating hydraulics and water quality in RSFs, an appropriate level of detail must be chosen for reasonable balancing between model complexity and model handling, considering the model input's level of uncertainty. The most crucial parameters determining the resultant uncertainties of the integrated sewer system and filter bed model were identified by evaluating a virtual drainage system with a Retention Soil Filter for CSO treatment. To determine reasonable parameter ranges for RSF simulations, data of 207 events from six full-scale RSF plants in Germany were analyzed. Data evaluation shows that even though different plants with varying loading and operation modes were examined, a simple model is sufficient to assess relevant suspended solids (SS), chemical oxygen demand (COD) and NH4 emissions from RSFs. Two conceptual RSF models with different degrees of complexity were assessed. These models were developed based on evaluation of data from full scale RSF plants and column experiments. Incorporated model processes are ammonium adsorption in the filter layer and degradation during subsequent dry weather period, filtration of SS and particulate COD (XCOD) to a constant background concentration and removal of solute COD (SCOD) by a constant removal rate during filter passage as well as sedimentation of SS and XCOD in the filter overflow. XCOD, SS and ammonium loads as well as ammonium concentration peaks are discharged primarily via RSF overflow not passing through the filter bed. Uncertainties of the integrated simulation of the sewer system and RSF model mainly originate from the model parameters of the hydrologic sewer system model.
On the information content of hydrological signatures and their relationship to catchment attributes
NASA Astrophysics Data System (ADS)
Addor, Nans; Clark, Martyn P.; Prieto, Cristina; Newman, Andrew J.; Mizukami, Naoki; Nearing, Grey; Le Vine, Nataliya
2017-04-01
Hydrological signatures, which are indices characterizing hydrologic behavior, are increasingly used for the evaluation, calibration and selection of hydrological models. Their key advantage is to provide more direct insights into specific hydrological processes than aggregated metrics (e.g., the Nash-Sutcliffe efficiency). A plethora of signatures now exists, which enable characterizing a variety of hydrograph features, but also makes the selection of signatures for new studies challenging. Here we propose that the selection of signatures should be based on their information content, which we estimated using several approaches, all leading to similar conclusions. To explore the relationship between hydrological signatures and the landscape, we extended a previously published data set of hydrometeorological time series for 671 catchments in the contiguous United States, by characterizing the climatic conditions, topography, soil, vegetation and stream network of each catchment. This new catchment attributes data set will soon be in open access, and we are looking forward to introducing it to the community. We used this data set in a data-learning algorithm (random forests) to explore whether hydrological signatures could be inferred from catchment attributes alone. We find that some signatures can be predicted remarkably well by random forests and, interestingly, the same signatures are well captured when simulating discharge using a conceptual hydrological model. We discuss what this result reveals about our understanding of hydrological processes shaping hydrological signatures. We also identify which catchment attributes exert the strongest control on catchment behavior, in particular during extreme hydrological events. Overall, climatic attributes have the most significant influence, and strongly condition how well hydrological signatures can be predicted by random forests and simulated by the hydrological model. In contrast, soil characteristics at the catchment scale are not found to be significant predictors by random forests, which raises questions on how to best use soil data for hydrological modeling, for instance for parameter estimation. We finally demonstrate that signatures with high spatial variability are poorly captured by random forests and model simulations, which makes their regionalization delicate. We conclude with a ranking of signatures based on their information content, and propose that the signatures with high information content are best suited for model calibration, model selection and understanding hydrologic similarity.
Hydrometeorological Analysis of Flooding Events in San Antonio, TX
NASA Astrophysics Data System (ADS)
Chintalapudi, S.; Sharif, H.; Elhassan, A.
2008-12-01
South Central Texas is particularly vulnerable to floods due to: proximity to a moist air source (the Gulf of Mexico); the Balcones Escarpment, which concentrates rainfall runoff; a tendency for synoptic scale features to become cut-off and stall over the area; and decaying tropical cyclones stalling over the area. The San Antonio Metropolitan Area is the 7th largest city in the nation, one of the most flash-flood prone regions in North America, and has experienced a number of flooding events in the last decade (1998, 2002, 2004, and 2007). Research is being conducted to characterize the meteorological conditions that lead to these events and apply the rainfall and watershed characteristics data to recreate the runoff events using a two- dimensional, physically-based, distributed-parameter hydrologic model. The physically based, distributed-parameter Gridded Surface Subsurface Hydrologic Analysis (GSSHA) hydrological model was used for simulating the watershed response to these storm events. Finally observed discharges were compared to GSSHA model discharges for these storm events. Analysis of the some of these events will be presented.
Assessment of parameter regionalization methods for modeling flash floods in China
NASA Astrophysics Data System (ADS)
Ragettli, Silvan; Zhou, Jian; Wang, Haijing
2017-04-01
Rainstorm flash floods are a common and serious phenomenon during the summer months in many hilly and mountainous regions of China. For this study, we develop a modeling strategy for simulating flood events in small river basins of four Chinese provinces (Shanxi, Henan, Beijing, Fujian). The presented research is part of preliminary investigations for the development of a national operational model for predicting and forecasting hydrological extremes in basins of size 10 - 2000 km2, whereas most of these basins are ungauged or poorly gauged. The project is supported by the China Institute of Water Resources and Hydropower Research within the framework of the national initiative for flood prediction and early warning system for mountainous regions in China (research project SHZH-IWHR-73). We use the USGS Precipitation-Runoff Modeling System (PRMS) as implemented in the Java modeling framework Object Modeling System (OMS). PRMS can operate at both daily and storm timescales, switching between the two using a precipitation threshold. This functionality allows the model to perform continuous simulations over several years and to switch to the storm mode to simulate storm response in greater detail. The model was set up for fifteen watersheds for which hourly precipitation and runoff data were available. First, automatic calibration based on the Shuffled Complex Evolution method was applied to different hydrological response unit (HRU) configurations. The Nash-Sutcliffe efficiency (NSE) was used as assessment criteria, whereas only runoff data from storm events were considered. HRU configurations reflect the drainage-basin characteristics and depend on assumptions regarding drainage density and minimum HRU size. We then assessed the sensitivity of optimal parameters to different HRU configurations. Finally, the transferability to other watersheds of optimal model parameters that were not sensitive to HRU configurations was evaluated. Model calibration for the 15 catchments resulted in good model performance (NSE > 0.5) in 10 and medium performance (NSE > 0.2) in 3 catchments. Optimal model parameters proofed to be relatively insensitive to different HRU configurations. This suggests that dominant controls on hydrologic parameter transfer can potentially be identified based on catchment attributes describing meteorological, geological or landscape characteristics. Parameter regionalization based on a principal component analysis (PCA) nearest neighbor search (using all available catchment attributes) resulted in a 54% success rate in transferring optimal parameter sets and still yielding acceptable model performance. Data from more catchments are required to further increase the parameter transferability success rate or to develop regionalization strategies for individual parameters.
Calibration of an agricultural-hydrological model (RZWQM2) using surrogate global optimization
Xi, Maolong; Lu, Dan; Gui, Dongwei; ...
2016-11-27
Robust calibration of an agricultural-hydrological model is critical for simulating crop yield and water quality and making reasonable agricultural management. However, calibration of the agricultural-hydrological system models is challenging because of model complexity, the existence of strong parameter correlation, and significant computational requirements. Therefore, only a limited number of simulations can be allowed in any attempt to find a near-optimal solution within an affordable time, which greatly restricts the successful application of the model. The goal of this study is to locate the optimal solution of the Root Zone Water Quality Model (RZWQM2) given a limited simulation time, so asmore » to improve the model simulation and help make rational and effective agricultural-hydrological decisions. To this end, we propose a computationally efficient global optimization procedure using sparse-grid based surrogates. We first used advanced sparse grid (SG) interpolation to construct a surrogate system of the actual RZWQM2, and then we calibrate the surrogate model using the global optimization algorithm, Quantum-behaved Particle Swarm Optimization (QPSO). As the surrogate model is a polynomial with fast evaluation, it can be efficiently evaluated with a sufficiently large number of times during the optimization, which facilitates the global search. We calibrate seven model parameters against five years of yield, drain flow, and NO 3-N loss data from a subsurface-drained corn-soybean field in Iowa. Results indicate that an accurate surrogate model can be created for the RZWQM2 with a relatively small number of SG points (i.e., RZWQM2 runs). Compared to the conventional QPSO algorithm, our surrogate-based optimization method can achieve a smaller objective function value and better calibration performance using a fewer number of expensive RZWQM2 executions, which greatly improves computational efficiency.« less
Calibration of an agricultural-hydrological model (RZWQM2) using surrogate global optimization
NASA Astrophysics Data System (ADS)
Xi, Maolong; Lu, Dan; Gui, Dongwei; Qi, Zhiming; Zhang, Guannan
2017-01-01
Robust calibration of an agricultural-hydrological model is critical for simulating crop yield and water quality and making reasonable agricultural management. However, calibration of the agricultural-hydrological system models is challenging because of model complexity, the existence of strong parameter correlation, and significant computational requirements. Therefore, only a limited number of simulations can be allowed in any attempt to find a near-optimal solution within an affordable time, which greatly restricts the successful application of the model. The goal of this study is to locate the optimal solution of the Root Zone Water Quality Model (RZWQM2) given a limited simulation time, so as to improve the model simulation and help make rational and effective agricultural-hydrological decisions. To this end, we propose a computationally efficient global optimization procedure using sparse-grid based surrogates. We first used advanced sparse grid (SG) interpolation to construct a surrogate system of the actual RZWQM2, and then we calibrate the surrogate model using the global optimization algorithm, Quantum-behaved Particle Swarm Optimization (QPSO). As the surrogate model is a polynomial with fast evaluation, it can be efficiently evaluated with a sufficiently large number of times during the optimization, which facilitates the global search. We calibrate seven model parameters against five years of yield, drain flow, and NO3-N loss data from a subsurface-drained corn-soybean field in Iowa. Results indicate that an accurate surrogate model can be created for the RZWQM2 with a relatively small number of SG points (i.e., RZWQM2 runs). Compared to the conventional QPSO algorithm, our surrogate-based optimization method can achieve a smaller objective function value and better calibration performance using a fewer number of expensive RZWQM2 executions, which greatly improves computational efficiency.
Calibration of an agricultural-hydrological model (RZWQM2) using surrogate global optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xi, Maolong; Lu, Dan; Gui, Dongwei
Robust calibration of an agricultural-hydrological model is critical for simulating crop yield and water quality and making reasonable agricultural management. However, calibration of the agricultural-hydrological system models is challenging because of model complexity, the existence of strong parameter correlation, and significant computational requirements. Therefore, only a limited number of simulations can be allowed in any attempt to find a near-optimal solution within an affordable time, which greatly restricts the successful application of the model. The goal of this study is to locate the optimal solution of the Root Zone Water Quality Model (RZWQM2) given a limited simulation time, so asmore » to improve the model simulation and help make rational and effective agricultural-hydrological decisions. To this end, we propose a computationally efficient global optimization procedure using sparse-grid based surrogates. We first used advanced sparse grid (SG) interpolation to construct a surrogate system of the actual RZWQM2, and then we calibrate the surrogate model using the global optimization algorithm, Quantum-behaved Particle Swarm Optimization (QPSO). As the surrogate model is a polynomial with fast evaluation, it can be efficiently evaluated with a sufficiently large number of times during the optimization, which facilitates the global search. We calibrate seven model parameters against five years of yield, drain flow, and NO 3-N loss data from a subsurface-drained corn-soybean field in Iowa. Results indicate that an accurate surrogate model can be created for the RZWQM2 with a relatively small number of SG points (i.e., RZWQM2 runs). Compared to the conventional QPSO algorithm, our surrogate-based optimization method can achieve a smaller objective function value and better calibration performance using a fewer number of expensive RZWQM2 executions, which greatly improves computational efficiency.« less
Brine evolution and mineral deposition in hydrologically open evaporite basins
Sanford, W.E.; Wood, W.W.
1991-01-01
A lumped-parameter, solute mass-balance model is developed to define the role of water outflow from a well-mixed basin. A mass-balance model is analyzed with a geochemical model designed for waters with high ionic strengths. Two typical waters, seawater and a Na-HCO3 ground water, are analyzed to illustrate the control that the leakage ratio (or hydrologic openness of the basin) has on brine evolution and the suite and thicknesses of evaporite minerals deposited. The analysis suggests that brines evolve differently under different leakage conditions. -from Authors
NASA Astrophysics Data System (ADS)
Cheng, Y.; Ogden, F. L.; Zhu, J.
2017-12-01
The hydrologic behavior of steep catchments with saprolitic soils in the humid seasonal tropics varies with land use and cover, even when they have identical topographic index and slope distributions, underlying geology and soils textures. Forested catchments can produce more baseflow during the dry season compared to catchments containing substantial amount of pasture, the so-called "sponge effect". During rainfall events, forested catchments can also exhibit lower peak runoff rates and runoff efficiencies compared to pasture catchments. We hypothesize that hydrologic effects of land use arise from differences in preferential flow paths (PFPs) formed by biotic and abiotic factors in the upper one to two meters of soil and that land use effects on hydrological response are described by the relative amounts of forest and pasture within a catchment. Furthermore, we hypothesize that infiltration measurements at different scales allow estimation of PFP-related parameters. These hypotheses are tested by a model that explicitly simulates PFPs using distinct input parameter sets for forest and pasture. Runoff observations from three catchments with pasture, forest, and a mosaic of subsistence agricultural land covers allow model evaluation. Multiple objective criteria indicate that field measurements of infiltration enable PFP-relevant parameter identification and that pasture and forest end member parameter sets describe much of the observed difference. Analysis of water balance components and comparison between average transient water table depth and vertical PFP flow capacity demonstrate that the interplay of lateral and vertical PFPs contribute to the sponge-effect and can explain differences in peak runoff and runoff efficiency.
Advances in Applications of Hierarchical Bayesian Methods with Hydrological Models
NASA Astrophysics Data System (ADS)
Alexander, R. B.; Schwarz, G. E.; Boyer, E. W.
2017-12-01
Mechanistic and empirical watershed models are increasingly used to inform water resource decisions. Growing access to historical stream measurements and data from in-situ sensor technologies has increased the need for improved techniques for coupling models with hydrological measurements. Techniques that account for the intrinsic uncertainties of both models and measurements are especially needed. Hierarchical Bayesian methods provide an efficient modeling tool for quantifying model and prediction uncertainties, including those associated with measurements. Hierarchical methods can also be used to explore spatial and temporal variations in model parameters and uncertainties that are informed by hydrological measurements. We used hierarchical Bayesian methods to develop a hybrid (statistical-mechanistic) SPARROW (SPAtially Referenced Regression On Watershed attributes) model of long-term mean annual streamflow across diverse environmental and climatic drainages in 18 U.S. hydrological regions. Our application illustrates the use of a new generation of Bayesian methods that offer more advanced computational efficiencies than the prior generation. Evaluations of the effects of hierarchical (regional) variations in model coefficients and uncertainties on model accuracy indicates improved prediction accuracies (median of 10-50%) but primarily in humid eastern regions, where model uncertainties are one-third of those in arid western regions. Generally moderate regional variability is observed for most hierarchical coefficients. Accounting for measurement and structural uncertainties, using hierarchical state-space techniques, revealed the effects of spatially-heterogeneous, latent hydrological processes in the "localized" drainages between calibration sites; this improved model precision, with only minor changes in regional coefficients. Our study can inform advances in the use of hierarchical methods with hydrological models to improve their integration with stream measurements.
Regional estimation of response routine parameters
NASA Astrophysics Data System (ADS)
Tøfte, Lena S.
2015-04-01
Reducing the number of calibration parameters is of a considerable advantage when area distributed hydrological models are to be calibrated, both due to equifinality and over-parameterization of the model in general, and for making the calibration process more efficient. A simple non-threshold response model for drainage in natural catchments based on among others Kirchner's article in WRR 2009 is implemented in the gridded hydrological model in the ENKI framework. This response model takes only the hydrogram into account; it has one state and two parameters, and is adapted to catchments that are dominated by terrain drainage. In former analyses of natural discharge series from a large number of catchments in different regions of Norway, we found that these response model parameters can be calculated from some known catchment characteristics, as catchment area and lake percentage, found in maps or data bases, meaning that the parameters can easily be found also for ungauged catchments. In the presented work from the EU project COMPLEX a large region in Mid-Norway containing 27 simulated catchments of different sizes and characteristics is calibrated. Results from two different calibration strategies are compared: 1) removing the response parameters from the calibration by calculating them in advance, based on the results from our former studies, and 2) including the response parameters in the calibration, both as maps with different values for each catchment, and as a constant number for the total region. The resulting simulation performances are compared and discussed.
NASA Astrophysics Data System (ADS)
Braud, Isabelle; Desprats, Jean-François; Ayral, Pierre-Alain; Bouvier, Christophe; Vandervaere, Jean-Pierre
2017-04-01
Topsoil field-saturated hydraulic conductivity, Kfs, is a parameter that controls the partition of rainfall between infiltration and runoff. It is a key parameter in most distributed hydrological models. However, there is a mismatch between the scale of local in situ measurements and the scale at which the parameter is required in models. Therefore it is necessary to design methods to regionally map this parameter at the model scale. The paper propose a method for mapping Kfs in the Cévennes-Vivarais region, south-east France, using more easily available GIS data: geology and land cover. The mapping is based on a data set gathering infiltration tests performed in the area or close to it for more than ten years. The data set is composed of infiltration tests performed using various techniques: Guelph permeameter, double ring and single ring infiltration tests, infiltrometers with multiple suctions. The different methods lead to different orders of magnitude for Kfs rendering the pooling of all the data challenging. Therefore, a method is first proposed to pool the data from the different infiltration methods, leading to a homogenized set of Kfs, based on an equivalent double ring/tension disk infiltration value. Statistical tests showed significant differences in distributions among different geologies and land covers. Thus those variables were retained as proxy for mapping Kfs at the regional scale. This map was compared to a map based on the Rawls and Brakensiek (RB) pedo-transfer function (Manus et al., 2009, Vannier et al., 2016), showing very different patterns between both maps. In addition, RB values did not fit observed values at the plot scale, highlighting that soil texture only is not a good predictor of Kfs. References Manus, C., Anquetin, S., Braud, I., Vandervaere, J.P., Viallet, P., Creutin, J.D., Gaume, E., 2009. A modelling approach to assess the hydrological response of small Mediterranean catchments to the variability of soil characteristics in a context of extreme events. Hydrology and Earth System Sciences, 13: 79-87. Vannier, O., Anquetin, S., Braud, I., 2016. Investigating the role of geology in the hydrological response of Mediterranean catchments prone to flash-floods: regional modelling study and process understanding. Journal of Hydrology, 541 Part A, 158-172.
Using satellite-based rainfall estimates for streamflow modelling: Bagmati Basin
Shrestha, M.S.; Artan, Guleid A.; Bajracharya, S.R.; Sharma, R. R.
2008-01-01
In this study, we have described a hydrologic modelling system that uses satellite-based rainfall estimates and weather forecast data for the Bagmati River Basin of Nepal. The hydrologic model described is the US Geological Survey (USGS) Geospatial Stream Flow Model (GeoSFM). The GeoSFM is a spatially semidistributed, physically based hydrologic model. We have used the GeoSFM to estimate the streamflow of the Bagmati Basin at Pandhera Dovan hydrometric station. To determine the hydrologic connectivity, we have used the USGS Hydro1k DEM dataset. The model was forced by daily estimates of rainfall and evapotranspiration derived from weather model data. The rainfall estimates used for the modelling are those produced by the National Oceanic and Atmospheric Administration Climate Prediction Centre and observed at ground rain gauge stations. The model parameters were estimated from globally available soil and land cover datasets – the Digital Soil Map of the World by FAO and the USGS Global Land Cover dataset. The model predicted the daily streamflow at Pandhera Dovan gauging station. The comparison of the simulated and observed flows at Pandhera Dovan showed that the GeoSFM model performed well in simulating the flows of the Bagmati Basin.
A Multialgorithm Approach to Land Surface Modeling of Suspended Sediment in the Colorado Front Range
Stewart, J. R.; Kasprzyk, J. R.; Rajagopalan, B.; Minear, J. T.; Raseman, W. J.
2017-01-01
Abstract A new paradigm of simulating suspended sediment load (SSL) with a Land Surface Model (LSM) is presented here. Five erosion and SSL algorithms were applied within a common LSM framework to quantify uncertainties and evaluate predictability in two steep, forested catchments (>1,000 km2). The algorithms were chosen from among widely used sediment models, including empirically based: monovariate rating curve (MRC) and the Modified Universal Soil Loss Equation (MUSLE); stochastically based: the Load Estimator (LOADEST); conceptually based: the Hydrologic Simulation Program—Fortran (HSPF); and physically based: the Distributed Hydrology Soil Vegetation Model (DHSVM). The algorithms were driven by the hydrologic fluxes and meteorological inputs generated from the Variable Infiltration Capacity (VIC) LSM. A multiobjective calibration was applied to each algorithm and optimized parameter sets were validated over an excluded period, as well as in a transfer experiment to a nearby catchment to explore parameter robustness. Algorithm performance showed consistent decreases when parameter sets were applied to periods with greatly differing SSL variability relative to the calibration period. Of interest was a joint calibration of all sediment algorithm and streamflow parameters simultaneously, from which trade‐offs between streamflow performance and partitioning of runoff and base flow to optimize SSL timing were noted, decreasing the flexibility and robustness of the streamflow to adapt to different time periods. Parameter transferability to another catchment was most successful in more process‐oriented algorithms, the HSPF and the DHSVM. This first‐of‐its‐kind multialgorithm sediment scheme offers a unique capability to portray acute episodic loading while quantifying trade‐offs and uncertainties across a range of algorithm structures. PMID:29399268
NASA Astrophysics Data System (ADS)
Knoben, Wouter; Woods, Ross; Freer, Jim
2016-04-01
Conceptual hydrologic models consist of a certain arrangement of spatial and temporal dynamics consisting of stores, fluxes and transformation functions, depending on the modeller's choices and intended use. They have the advantages of being computationally efficient, being relatively easy model structures to reconfigure and having relatively low input data demands. This makes them well-suited for large-scale and large-sample hydrology, where appropriately representing the dominant hydrologic functions of a catchment is a main concern. Given these requirements, the number of parameters in the model cannot be too high, to avoid equifinality and identifiability issues. This limits the number and level of complexity of dominant hydrologic processes the model can represent. Specific purposes and places thus require a specific model and this has led to an abundance of conceptual hydrologic models. No structured overview of these models exists and there is no clear method to select appropriate model structures for different catchments. This study is a first step towards creating an overview of the elements that make up conceptual models, which may later assist a modeller in finding an appropriate model structure for a given catchment. To this end, this study brings together over 30 past and present conceptual models. The reviewed model structures are simply different configurations of three basic model elements (stores, fluxes and transformation functions), depending on the hydrologic processes the models are intended to represent. Differences also exist in the inner workings of the stores, fluxes and transformations, i.e. the mathematical formulations that describe each model element's intended behaviour. We investigate the hypothesis that different model structures can produce similar behavioural simulations. This can clarify the overview of model elements by grouping elements which are similar, which can improve model structure selection.
Hydrological model uncertainty due to spatial evapotranspiration estimation methods
NASA Astrophysics Data System (ADS)
Yu, Xuan; Lamačová, Anna; Duffy, Christopher; Krám, Pavel; Hruška, Jakub
2016-05-01
Evapotranspiration (ET) continues to be a difficult process to estimate in seasonal and long-term water balances in catchment models. Approaches to estimate ET typically use vegetation parameters (e.g., leaf area index [LAI], interception capacity) obtained from field observation, remote sensing data, national or global land cover products, and/or simulated by ecosystem models. In this study we attempt to quantify the uncertainty that spatial evapotranspiration estimation introduces into hydrological simulations when the age of the forest is not precisely known. The Penn State Integrated Hydrologic Model (PIHM) was implemented for the Lysina headwater catchment, located 50°03‧N, 12°40‧E in the western part of the Czech Republic. The spatial forest patterns were digitized from forest age maps made available by the Czech Forest Administration. Two ET methods were implemented in the catchment model: the Biome-BGC forest growth sub-model (1-way coupled to PIHM) and with the fixed-seasonal LAI method. From these two approaches simulation scenarios were developed. We combined the estimated spatial forest age maps and two ET estimation methods to drive PIHM. A set of spatial hydrologic regime and streamflow regime indices were calculated from the modeling results for each method. Intercomparison of the hydrological responses to the spatial vegetation patterns suggested considerable variation in soil moisture and recharge and a small uncertainty in the groundwater table elevation and streamflow. The hydrologic modeling with ET estimated by Biome-BGC generated less uncertainty due to the plant physiology-based method. The implication of this research is that overall hydrologic variability induced by uncertain management practices was reduced by implementing vegetation models in the catchment models.
Sams, J. I.; Witt, E. C.
1995-01-01
The Hydrological Simulation Program - Fortran (HSPF) was used to simulate streamflow and sediment transport in two surface-mined basins of Fayette County, Pa. Hydrologic data from the Stony Fork Basin (0.93 square miles) was used to calibrate HSPF parameters. The calibrated parameters were applied to an HSPF model of the Poplar Run Basin (8.83 square miles) to evaluate the transfer value of model parameters. The results of this investigation provide information to the Pennsylvania Department of Environmental Resources, Bureau of Mining and Reclamation, regarding the value of the simulated hydrologic data for use in cumulative hydrologic-impact assessments of surface-mined basins. The calibration period was October 1, 1985, through September 30, 1988 (water years 1986-88). The simulated data were representative of the observed data from the Stony Fork Basin. Mean simulated streamflow was 1.64 cubic feet per second compared to measured streamflow of 1.58 cubic feet per second for the 3-year period. The difference between the observed and simulated peak stormflow ranged from 4.0 to 59.7 percent for 12 storms. The simulated sediment load for the 1987 water year was 127.14 tons (0.21 ton per acre), which compares to a measured sediment load of 147.09 tons (0.25 ton per acre). The total simulated suspended-sediment load for the 3-year period was 538.2 tons (0.30 ton per acre per year), which compares to a measured sediment load of 467.61 tons (0.26 ton per acre per year). The model was verified by comparing observed and simulated data from October 1, 1988, through September 30, 1989. The results obtained were comparable to those from the calibration period. The simulated mean daily discharge was representative of the range of data observed from the basin and of the frequency with which specific discharges were equalled or exceeded. The calibrated and verified parameters from the Stony Fork model were applied to an HSPF model of the Poplar Run Basin. The two basins are in a similar physical setting. Data from October 1, 1987, through September 30, 1989, were used to evaluate the Poplar Run model. In general, the results from the Poplar Run model were comparable to those obtained from the Stony Fork model. The difference between observed and simulated total streamflow was 1.1 percent for the 2-year period. The mean annual streamflow simulated by the Poplar Run model was 18.3 cubic feet per second. This compares to an observed streamflow of 18.15 cubic feet per second. For the 2-year period, the simulated sediment load was 2,754 tons (0.24 ton per acre per year), which compares to a measured sediment load of 3,051.2 tons (0.27 ton per acre per year) for the Poplar Run Basin. Cumulative frequency-distribution curves of the observed and simulated streamflow compared well. The comparison between observed and simulated data improved as the time span increased. Simulated annual means and totals were more representative of the observed data than hourly data used in comparing storm events. The structure and organization of the HSPF model facilitated the simulation of a wide range of hydrologic processes. The simulation results from this investigation indicate that model parameters may be transferred to ungaged basins to generate representative hydrologic data through modeling techniques.
NASA Astrophysics Data System (ADS)
Pan, S.; Liu, L.; Xu, Y. P.
2017-12-01
Abstract: In physically based distributed hydrological model, large number of parameters, representing spatial heterogeneity of watershed and various processes in hydrologic cycle, are involved. For lack of calibration module in Distributed Hydrology Soil Vegetation Model, this study developed a multi-objective calibration module using Epsilon-Dominance Non-Dominated Sorted Genetic Algorithm II (ɛ-NSGAII) and based on parallel computing of Linux cluster for DHSVM (ɛP-DHSVM). In this study, two hydrologic key elements (i.e., runoff and evapotranspiration) are used as objectives in multi-objective calibration of model. MODIS evapotranspiration obtained by SEBAL is adopted to fill the gap of lack of observation for evapotranspiration. The results show that good performance of runoff simulation in single objective calibration cannot ensure good simulation performance of other hydrologic key elements. Self-developed ɛP-DHSVM model can make multi-objective calibration more efficiently and effectively. The running speed can be increased by more than 20-30 times via applying ɛP-DHSVM. In addition, runoff and evapotranspiration can be simulated very well simultaneously by ɛP-DHSVM, with superior values for two efficiency coefficients (0.74 for NS of runoff and 0.79 for NS of evapotranspiration, -10.5% and -8.6% for PBIAS of runoff and evapotranspiration respectively).
NASA Astrophysics Data System (ADS)
Tran, Quoc Quan; Willems, Patrick; Pannemans, Bart; Blanckaert, Joris; Pereira, Fernando; Nossent, Jiri; Cauwenberghs, Kris; Vansteenkiste, Thomas
2015-04-01
Based on an international literature review on model structures of existing rainfall-runoff and hydrological models, a generalized model structure is proposed. It consists of different types of meteorological components, storage components, splitting components and routing components. They can be spatially organized in a lumped way, or on a grid, spatially interlinked by source-to-sink or grid-to-grid (cell-to-cell) routing. The grid size of the model can be chosen depending on the application. The user can select/change the spatial resolution depending on the needs and/or the evaluation of the accuracy of the model results, or use different spatial resolutions in parallel for different applications. Major research questions addressed during the study are: How can we assure consistent results of the model at any spatial detail? How can we avoid strong or sudden changes in model parameters and corresponding simulation results, when one moves from one level of spatial detail to another? How can we limit the problem of overparameterization/equifinality when we move from the lumped model to the spatially distributed model? The proposed approach is a step-wise one, where first the lumped conceptual model is calibrated using a systematic, data-based approach, followed by a disaggregation step where the lumped parameters are disaggregated based on spatial catchment characteristics (topography, land use, soil characteristics). In this way, disaggregation can be done down to any spatial scale, and consistently among scales. Only few additional calibration parameters are introduced to scale the absolute spatial differences in model parameters, but keeping the relative differences as obtained from the spatial catchment characteristics. After calibration of the spatial model, the accuracies of the lumped and spatial models were compared for peak, low and cumulative runoff total and sub-flows (at downstream and internal gauging stations). For the distributed models, additional validation on spatial results was done for the groundwater head values at observation wells. To ensure that the lumped model can produce results as accurate as the spatially distributed models or close regardless to the number of parameters and implemented physical processes, it was checked whether the structure of the lumped models had to be adjusted. The concept has been implemented in a PCRaster - Python platform and tested for two Belgian case studies (catchments of the rivers Dijle and Grote Nete). So far, use is made of existing model structures (NAM, PDM, VHM and HBV). Acknowledgement: These results were obtained within the scope of research activities for the Flemish Environment Agency (VMM) - division Operational Water Management on "Next Generation hydrological modeling", in cooperation with IMDC consultants, and for Flanders Hydraulics Research (Waterbouwkundig Laboratorium) on "Effect of climate change on the hydrological regime of navigable watercourses in Belgium".
NASA Astrophysics Data System (ADS)
Noh, Seong Jin; An, Hyunuk; Kim, Sanghyun
2015-04-01
Soil moisture, a critical factor in hydrologic systems, plays a key role in synthesizing interactions among soil, climate, hydrological response, solute transport and ecosystem dynamics. The spatial and temporal distribution of soil moisture at a hillslope scale is essential for understanding hillslope runoff generation processes. In this study, we implement Monte Carlo simulations in the hillslope scale using a three-dimensional surface-subsurface integrated model (3D model). Numerical simulations are compared with multiple soil moistures which had been measured using TDR(Mini_TRASE) for 22 locations in 2 or 3 depths during a whole year at a hillslope (area: 2100 square meters) located in Bongsunsa Watershed, South Korea. In stochastic simulations via Monte Carlo, uncertainty of the soil parameters and input forcing are considered and model ensembles showing good performance are selected separately for several seasonal periods. The presentation will be focused on the characterization of seasonal variations of model parameters based on simulations with field measurements. In addition, structural limitations of the contemporary modeling method will be discussed.
NASA Technical Reports Server (NTRS)
Markert, Kel N.; Griffin, Robert; Limaye, Ashutosh S.; McNider, Richard T.; Anderson, Eric R.
2016-01-01
The Lower Mekong Basin (LMB) is an economically and ecologically important region that experiences hydrologic hazards such as floods and droughts, which can directly affect human well-being and limit economic growth and development. To effectively develop long-term plans for addressing hydrologic hazards, the regional hydrological response to climate variability and land cover change needs to be evaluated. This research aims to investigate how climate variability, specifically variations in the precipitation regime, and land cover change will affect hydrologic parameters both spatially and temporally within the LMB. The research goal is achieved by (1) modeling land cover change for a baseline land cover change scenario as well as changes in land cover with increases in forest or agriculture and (2) using projected climate variables and modeled land cover data as inputs into the Variable Infiltration Capacity (VIC) hydrologic model to simulate the changes to the hydrologic system. The VIC model outputs were analyzed against historic values to understand the relative contribution of climate variability and land cover to change, where these changes occur, and to what degree these changes affect the hydrology. This study found that the LMB hydrologic system is more sensitive to climate variability than land cover change. On average, climate variability was found to increase discharge and evapotranspiration (ET) while decreasing water storage. The change in land cover show that increasing forest area will slightly decrease discharge and increase ET while increasing agriculture area increases discharge and decreases ET. These findings will help the LMB by supporting individual country policy to plan for future hydrologic changes as well as policy for the basin as a whole.
Satellite-derived potential evapotranspiration for distributed hydrologic runoff modeling
NASA Astrophysics Data System (ADS)
Spies, R. R.; Franz, K. J.; Bowman, A.; Hogue, T. S.; Kim, J.
2012-12-01
Distributed models have the ability of incorporating spatially variable data, especially high resolution forcing inputs such as precipitation, temperature and evapotranspiration in hydrologic modeling. Use of distributed hydrologic models for operational streamflow prediction has been partially hindered by a lack of readily available, spatially explicit input observations. Potential evapotranspiration (PET), for example, is currently accounted for through PET input grids that are based on monthly climatological values. The goal of this study is to assess the use of satellite-based PET estimates that represent the temporal and spatial variability, as input to the National Weather Service (NWS) Hydrology Laboratory Research Distributed Hydrologic Model (HL-RDHM). Daily PET grids are generated for six watersheds in the upper Mississippi River basin using a method that applies only MODIS satellite-based observations and the Priestly Taylor formula (MODIS-PET). The use of MODIS-PET grids will be tested against the use of the current climatological PET grids for simulating basin discharge. Gridded surface temperature forcing data are derived by applying the inverse distance weighting spatial prediction method to point-based station observations from the Automated Surface Observing System (ASOS) and Automated Weather Observing System (AWOS). Precipitation data are obtained from the Climate Prediction Center's (CPC) Climatology-Calibrated Precipitation Analysis (CCPA). A-priori gridded parameters for the Sacramento Soil Moisture Accounting Model (SAC-SMA), Snow-17 model, and routing model are initially obtained from the Office of Hydrologic Development and further calibrated using an automated approach. The potential of the MODIS-PET to be used in an operational distributed modeling system will be assessed with the long-term goal of promoting research to operations transfers and advancing the science of hydrologic forecasting.
Stochastic modeling of wetland-groundwater systems
NASA Astrophysics Data System (ADS)
Bertassello, Leonardo Enrico; Rao, P. Suresh C.; Park, Jeryang; Jawitz, James W.; Botter, Gianluca
2018-02-01
Modeling and data analyses were used in this study to examine the temporal hydrological variability in geographically isolated wetlands (GIWs), as influenced by hydrologic connectivity to shallow groundwater, wetland bathymetry, and subject to stochastic hydro-climatic forcing. We examined the general case of GIWs coupled to shallow groundwater through exfiltration or infiltration across wetland bottom. We also examined limiting case with the wetland stage as the local expression of the shallow groundwater. We derive analytical expressions for the steady-state probability density functions (pdfs) for wetland water storage and stage using few, scaled, physically-based parameters. In addition, we analyze the hydrologic crossing time properties of wetland stage, and the dependence of the mean hydroperiod on climatic and wetland morphologic attributes. Our analyses show that it is crucial to account for shallow groundwater connectivity to fully understand the hydrologic dynamics in wetlands. The application of the model to two different case studies in Florida, jointly with a detailed sensitivity analysis, allowed us to identify the main drivers of hydrologic dynamics in GIWs under different climate and morphologic conditions.
Inter-model variability in hydrological extremes projections for Amazonian sub-basins
NASA Astrophysics Data System (ADS)
Andres Rodriguez, Daniel; Garofolo, Lucas; Lázaro de Siqueira Júnior, José; Samprogna Mohor, Guilherme; Tomasella, Javier
2014-05-01
Irreducible uncertainties due to knowledge's limitations, chaotic nature of climate system and human decision-making process drive uncertainties in Climate Change projections. Such uncertainties affect the impact studies, mainly when associated to extreme events, and difficult the decision-making process aimed at mitigation and adaptation. However, these uncertainties allow the possibility to develop exploratory analyses on system's vulnerability to different sceneries. The use of different climate model's projections allows to aboard uncertainties issues allowing the use of multiple runs to explore a wide range of potential impacts and its implications for potential vulnerabilities. Statistical approaches for analyses of extreme values are usually based on stationarity assumptions. However, nonstationarity is relevant at the time scales considered for extreme value analyses and could have great implications in dynamic complex systems, mainly under climate change transformations. Because this, it is required to consider the nonstationarity in the statistical distribution parameters. We carried out a study of the dispersion in hydrological extremes projections using climate change projections from several climate models to feed the Distributed Hydrological Model of the National Institute for Spatial Research, MHD-INPE, applied in Amazonian sub-basins. This model is a large-scale hydrological model that uses a TopModel approach to solve runoff generation processes at the grid-cell scale. MHD-INPE model was calibrated for 1970-1990 using observed meteorological data and comparing observed and simulated discharges by using several performance coeficients. Hydrological Model integrations were performed for present historical time (1970-1990) and for future period (2010-2100). Because climate models simulate the variability of the climate system in statistical terms rather than reproduce the historical behavior of climate variables, the performances of the model's runs during the historical period, when feed with climate model data, were tested using descriptors of the Flow Duration Curves. The analyses of projected extreme values were carried out considering the nonstationarity of the GEV distribution parameters and compared with extremes events in present time. Results show inter-model variability in a broad dispersion on projected extreme's values. Such dispersion implies different degrees of socio-economic impacts associated to extreme hydrological events. Despite the no existence of one optimum result, this variability allows the analyses of adaptation strategies and its potential vulnerabilities.
Benchmarking hydrological model predictive capability for UK River flows and flood peaks.
NASA Astrophysics Data System (ADS)
Lane, Rosanna; Coxon, Gemma; Freer, Jim; Wagener, Thorsten
2017-04-01
Data and hydrological models are now available for national hydrological analyses. However, hydrological model performance varies between catchments, and lumped, conceptual models are not able to produce adequate simulations everywhere. This study aims to benchmark hydrological model performance for catchments across the United Kingdom within an uncertainty analysis framework. We have applied four hydrological models from the FUSE framework to 1128 catchments across the UK. These models are all lumped models and run at a daily timestep, but differ in the model structural architecture and process parameterisations, therefore producing different but equally plausible simulations. We apply FUSE over a 20 year period from 1988-2008, within a GLUE Monte Carlo uncertainty analyses framework. Model performance was evaluated for each catchment, model structure and parameter set using standard performance metrics. These were calculated both for the whole time series and to assess seasonal differences in model performance. The GLUE uncertainty analysis framework was then applied to produce simulated 5th and 95th percentile uncertainty bounds for the daily flow time-series and additionally the annual maximum prediction bounds for each catchment. The results show that the model performance varies significantly in space and time depending on catchment characteristics including climate, geology and human impact. We identify regions where models are systematically failing to produce good results, and present reasons why this could be the case. We also identify regions or catchment characteristics where one model performs better than others, and have explored what structural component or parameterisation enables certain models to produce better simulations in these catchments. Model predictive capability was assessed for each catchment, through looking at the ability of the models to produce discharge prediction bounds which successfully bound the observed discharge. These results improve our understanding of the predictive capability of simple conceptual hydrological models across the UK and help us to identify where further effort is needed to develop modelling approaches to better represent different catchment and climate typologies.
Parallelization of a hydrological model using the message passing interface
Wu, Yiping; Li, Tiejian; Sun, Liqun; Chen, Ji
2013-01-01
With the increasing knowledge about the natural processes, hydrological models such as the Soil and Water Assessment Tool (SWAT) are becoming larger and more complex with increasing computation time. Additionally, other procedures such as model calibration, which may require thousands of model iterations, can increase running time and thus further reduce rapid modeling and analysis. Using the widely-applied SWAT as an example, this study demonstrates how to parallelize a serial hydrological model in a Windows® environment using a parallel programing technology—Message Passing Interface (MPI). With a case study, we derived the optimal values for the two parameters (the number of processes and the corresponding percentage of work to be distributed to the master process) of the parallel SWAT (P-SWAT) on an ordinary personal computer and a work station. Our study indicates that model execution time can be reduced by 42%–70% (or a speedup of 1.74–3.36) using multiple processes (two to five) with a proper task-distribution scheme (between the master and slave processes). Although the computation time cost becomes lower with an increasing number of processes (from two to five), this enhancement becomes less due to the accompanied increase in demand for message passing procedures between the master and all slave processes. Our case study demonstrates that the P-SWAT with a five-process run may reach the maximum speedup, and the performance can be quite stable (fairly independent of a project size). Overall, the P-SWAT can help reduce the computation time substantially for an individual model run, manual and automatic calibration procedures, and optimization of best management practices. In particular, the parallelization method we used and the scheme for deriving the optimal parameters in this study can be valuable and easily applied to other hydrological or environmental models.
Picturing and modelling catchments by representative hillslopes
NASA Astrophysics Data System (ADS)
Loritz, Ralf; Hassler, Sibylle; Jackisch, Conrad; Zehe, Erwin
2016-04-01
Hydrological modelling studies often start with a qualitative sketch of the hydrological processes of a catchment. These so-called perceptual models are often pictured as hillslopes and are generalizations displaying only the dominant and relevant processes of a catchment or hillslope. The problem with these models is that they are prone to become too much predetermined by the designer's background and experience. Moreover it is difficult to know if that picture is correct and contains enough complexity to represent the system under study. Nevertheless, because of their qualitative form, perceptual models are easy to understand and can be an excellent tool for multidisciplinary exchange between researchers with different backgrounds, helping to identify the dominant structures and processes in a catchment. In our study we explore whether a perceptual model built upon an intensive field campaign may serve as a blueprint for setting up representative hillslopes in a hydrological model to reproduce the functioning of two distinctly different catchments. We use a physically-based 2D hillslope model which has proven capable to be driven by measured soil-hydrological parameters. A key asset of our approach is that the model structure itself remains a picture of the perceptual model, which is benchmarked against a) geo-physical images of the subsurface and b) observed dynamics of discharge, distributed state variables and fluxes (soil moisture, matric potential and sap flow). Within this approach we are able to set up two behavioral model structures which allow the simulation of the most important hydrological fluxes and state variables in good accordance with available observations within the 19.4 km2 large Colpach catchment and the 4.5 km2 large Wollefsbach catchment in Luxembourg without the necessity of calibration. This corroborates, contrary to the widespread opinion, that a) lower mesoscale catchments may be modelled by representative hillslopes and b) physically-based models can be parametrized based on comprehensive field data and a good perceptual model. Our results particularly indicate that the main challenge in understanding and modelling the seasonal water balance of a catchment is a proper representation of the phenological cycle of vegetation, not exclusively the structure of the subsurface and spatial variability of soil hydraulic parameters.
A Fresh Start for Flood Estimation in Ungauged Basins
NASA Astrophysics Data System (ADS)
Woods, R. A.
2017-12-01
The two standard methods for flood estimation in ungauged basins, regression-based statistical models and rainfall-runoff models using a design rainfall event, have survived relatively unchanged as the methods of choice for more than 40 years. Their technical implementation has developed greatly, but the models' representation of hydrological processes has not, despite a large volume of hydrological research. I suggest it is time to introduce more hydrology into flood estimation. The reliability of the current methods can be unsatisfactory. For example, despite the UK's relatively straightforward hydrology, regression estimates of the index flood are uncertain by +/- a factor of two (for a 95% confidence interval), an impractically large uncertainty for design. The standard error of rainfall-runoff model estimates is not usually known, but available assessments indicate poorer reliability than statistical methods. There is a practical need for improved reliability in flood estimation. Two promising candidates to supersede the existing methods are (i) continuous simulation by rainfall-runoff modelling and (ii) event-based derived distribution methods. The main challenge with continuous simulation methods in ungauged basins is to specify the model structure and parameter values, when calibration data are not available. This has been an active area of research for more than a decade, and this activity is likely to continue. The major challenges for the derived distribution method in ungauged catchments include not only the correct specification of model structure and parameter values, but also antecedent conditions (e.g. seasonal soil water balance). However, a much smaller community of researchers are active in developing or applying the derived distribution approach, and as a result slower progress is being made. A change in needed: surely we have learned enough about hydrology in the last 40 years that we can make a practical hydrological advance on our methods for flood estimation! A shift to new methods for flood estimation will not be taken lightly by practitioners. However, the standard for change is clear - can we develop new methods which give significant improvements in reliability over those existing methods which are demonstrably unsatisfactory?
NASA Astrophysics Data System (ADS)
Gan, Yanjun; Liang, Xin-Zhong; Duan, Qingyun; Choi, Hyun Il; Dai, Yongjiu; Wu, Huan
2015-06-01
An uncertainty quantification framework was employed to examine the sensitivities of 24 model parameters from a newly developed Conjunctive Surface-Subsurface Process (CSSP) land surface model (LSM). The sensitivity analysis (SA) was performed over 18 representative watersheds in the contiguous United States to examine the influence of model parameters in the simulation of terrestrial hydrological processes. Two normalized metrics, relative bias (RB) and Nash-Sutcliffe efficiency (NSE), were adopted to assess the fit between simulated and observed streamflow discharge (SD) and evapotranspiration (ET) for a 14 year period. SA was conducted using a multiobjective two-stage approach, in which the first stage was a qualitative SA using the Latin Hypercube-based One-At-a-Time (LH-OAT) screening, and the second stage was a quantitative SA using the Multivariate Adaptive Regression Splines (MARS)-based Sobol' sensitivity indices. This approach combines the merits of qualitative and quantitative global SA methods, and is effective and efficient for understanding and simplifying large, complex system models. Ten of the 24 parameters were identified as important across different watersheds. The contribution of each parameter to the total response variance was then quantified by Sobol' sensitivity indices. Generally, parameter interactions contribute the most to the response variance of the CSSP, and only 5 out of 24 parameters dominate model behavior. Four photosynthetic and respiratory parameters are shown to be influential to ET, whereas reference depth for saturated hydraulic conductivity is the most influential parameter for SD in most watersheds. Parameter sensitivity patterns mainly depend on hydroclimatic regime, as well as vegetation type and soil texture. This article was corrected on 26 JUN 2015. See the end of the full text for details.
NASA Astrophysics Data System (ADS)
Mohaideen, M. M. Diwan; Varija, K.
2018-05-01
This study investigates the potential and applicability of variable infiltration capacity (VIC) hydrological model to simulate different hydrological components of the Upper Bhima basin under two different Land Use Land Cover (LULC) (the year 2000 and 2010) conditions. The total drainage area of the basin was discretized into 1694 grids of about 5.5 km by 5.5 km: accordingly the model parameters were calibrated at each grid level. Vegetation parameters for the model were prepared using temporal profile of Leaf Area Index (LAI) from Moderate-Resolution Imaging Spectroradiometer and LULC. This practice provides a methodological framework for the improved vegetation parameterization along with region-specific condition for the model simulation. The calibrated and validated model was run using the two LULC conditions separately with the same observed meteorological forcing (1996-2001) and soil data. The change in LULC has resulted to an increase in the average annual evapotranspiration over the basin by 7.8%, while the average annual surface runoff and baseflow decreased by 18.86 and 5.83%, respectively. The variability in hydrological components and the spatial variation of each component attributed to LULC were assessed at the basin grid level. It was observed that 80% of the basin grids showed an increase in evapotranspiration (ET) (maximum of 292 mm). While the majority of the grids showed a decrease in surface runoff and baseflow, some of the grids showed an increase (i.e. 21 and 15% of total grids—surface runoff and baseflow, respectively).
Using a Virtual Experiment to Analyze Infiltration Process from Point to Grid-cell Size Scale
NASA Astrophysics Data System (ADS)
Barrios, M. I.
2013-12-01
The hydrological science requires the emergence of a consistent theoretical corpus driving the relationships between dominant physical processes at different spatial and temporal scales. However, the strong spatial heterogeneities and non-linearities of these processes make difficult the development of multiscale conceptualizations. Therefore, scaling understanding is a key issue to advance this science. This work is focused on the use of virtual experiments to address the scaling of vertical infiltration from a physically based model at point scale to a simplified physically meaningful modeling approach at grid-cell scale. Numerical simulations have the advantage of deal with a wide range of boundary and initial conditions against field experimentation. The aim of the work was to show the utility of numerical simulations to discover relationships between the hydrological parameters at both scales, and to use this synthetic experience as a media to teach the complex nature of this hydrological process. The Green-Ampt model was used to represent vertical infiltration at point scale; and a conceptual storage model was employed to simulate the infiltration process at the grid-cell scale. Lognormal and beta probability distribution functions were assumed to represent the heterogeneity of soil hydraulic parameters at point scale. The linkages between point scale parameters and the grid-cell scale parameters were established by inverse simulations based on the mass balance equation and the averaging of the flow at the point scale. Results have shown numerical stability issues for particular conditions and have revealed the complex nature of the non-linear relationships between models' parameters at both scales and indicate that the parameterization of point scale processes at the coarser scale is governed by the amplification of non-linear effects. The findings of these simulations have been used by the students to identify potential research questions on scale issues. Moreover, the implementation of this virtual lab improved the ability to understand the rationale of these process and how to transfer the mathematical models to computational representations.
Wu, Yiping; Chen, Ji
2013-01-01
Hydrological models have been increasingly used by hydrologists and water resource managers to understand natural processes and human activities that affect watersheds. In this study, we use the physically based model, Soil and Water Assessment Tool (SWAT), to investigate the hydrological processes in the East River Basin in South China, a coastal area dominated by monsoonal climate. The SWAT model was calibrated using 8-year (1973–1980) record of the daily streamflow at the basin outlet (Boluo station), and then validated using data collected during the subsequent 8 years (1981–1988). Statistical evaluation shows that SWAT can consistently simulate the streamflow of the East River with monthly Nash–Sutcliffe efficiencies of 0.93 for calibration and 0.90 for validation at the Boluo station. We analyzed the model simulations with calibrated parameters, presented the spatiotemporal distribution of the key hydrological components, and quantified their responses to different land uses. Watershed managers can use the results of this study to understand hydrological features and evaluate water resources of the East River in terms of sustainable development and effective management.
NASA Technical Reports Server (NTRS)
Tsang, Leung; Hwang, Jenq-Neng
1996-01-01
A method to incorporate passive microwave remote sensing measurements within a spatially distributed snow hydrology model to provide estimates of the spatial distribution of Snow Water Equivalent (SWE) as a function of time is implemented. The passive microwave remote sensing measurements are at 25 km resolution. However, in mountain regions the spatial variability of SWE over a 25 km footprint is large due to topographic influences. On the other hand, the snow hydrology model has built-in topographic information and the capability to estimate SWE at a 1 km resolution. In our work, the snow hydrology SWE estimates are updated and corrected using SSM/I passive microwave remote sensing measurements. The method is applied to the Upper Rio Grande River Basin in the mountains of Colorado. The change in prediction of SWE from hydrology modeling with and without updating is compared with measurements from two SNOTEL sites in and near the basin. The results indicate that the method incorporating the remote sensing measurements into the hydrology model is able to more closely estimate the temporal evolution of the measured values of SWE as a function of time.
NASA Astrophysics Data System (ADS)
Beck, Hylke; de Roo, Ad; van Dijk, Albert; McVicar, Tim; Miralles, Diego; Schellekens, Jaap; Bruijnzeel, Sampurno; de Jeu, Richard
2015-04-01
Motivated by the lack of large-scale model parameter regionalization studies, a large set of 3328 small catchments (< 10000 km2) around the globe was used to set up and evaluate five model parameterization schemes at global scale. The HBV-light model was chosen because of its parsimony and flexibility to test the schemes. The catchments were calibrated against observed streamflow (Q) using an objective function incorporating both behavioral and goodness-of-fit measures, after which the catchment set was split into subsets of 1215 donor and 2113 evaluation catchments based on the calibration performance. The donor catchments were subsequently used to derive parameter sets that were transferred to similar grid cells based on a similarity measure incorporating climatic and physiographic characteristics, thereby producing parameter maps with global coverage. Overall, there was a lack of suitable donor catchments for mountainous and tropical environments. The schemes with spatially-uniform parameter sets (EXP2 and EXP3) achieved the worst Q estimation performance in the evaluation catchments, emphasizing the importance of parameter regionalization. The direct transfer of calibrated parameter sets from donor catchments to similar grid cells (scheme EXP1) performed best, although there was still a large performance gap between EXP1 and HBV-light calibrated against observed Q. The schemes with parameter sets obtained by simultaneously calibrating clusters of similar donor catchments (NC10 and NC58) performed worse than EXP1. The relatively poor Q estimation performance achieved by two (uncalibrated) macro-scale hydrological models suggests there is considerable merit in regionalizing the parameters of such models. The global HBV-light parameter maps and ancillary data are freely available via http://water.jrc.ec.europa.eu.
NASA Astrophysics Data System (ADS)
Mouri, Goro; Kanae, Shinjiro; Oki, Taikan
2011-07-01
This article describes the principal control parameters of flood events and precipitation and the relationships between corresponding hydrologic and climatologic parameters. The long-term generation of runoff and associated processes is important in understanding floods and droughts under changes in climate and land use. This study presents detailed analyses of flood events in a coastal amphitheatre catchment with a total area of 445 km 2 in western Japan, followed by analyses of flood events in both urban and forest areas. Using long-term (1962 to 2002) hydrological and climatological data from the Ministry of Land, Infrastructure and Transport, Japan, the contributions of precipitation, river discharge, temperature, and relative humidity to flood events were analysed. Flood events could be divided into three types with respect to hydrologic and climatologic principal control parameters: the long-term tendency; medium-term changes as revealed by hydrographs and hyetographs of high-intensity events such as the relative precipitation, river discharge, and temperature; and large events, as shown by the flow-duration curve, with each cluster having particular characteristics. River discharge showed a decreasing tendency of flow quantity during small rainfall events of less than 100 mm/event from the 1980s to the present. An approximately 7% decrease from 44.8 to 37.3% occurred in the percentage of river water supplied by precipitation in the years after the 1980s. For the medium-term changes, no marked change occurred in the flow quantity of the peak point over time in event hydrographs. However, flow quantities before and after the peak tended to decrease by 1 to 2 m 3/s after the 1980s. Theoretical considerations with regard to the influence of hydrologic and climatologic parameters on flood discharge are discussed and examined in terms of observational data. These findings provide a sound foundation for use in hydrological catchment modelling.
NASA Astrophysics Data System (ADS)
Winska, M.
2016-12-01
The hydrological contribution to decadal, inter-annual and multi-annual suppress polar motion derived from climate model as well as from GRACE (Gravity Recovery and Climate Experiment) data is discussed here for the period 2002.3-2016.0. The data set used here are Earth Orientation Parameters Combined 04 (EOP C04), Flexible Global Ocean-Atmosphere-Land System Model: Grid-point Version 2 (FGOAL-g2) and Global Land Data Assimilation System (GLDAS) climate models and GRACE CSR RL05 data for polar motion, hydrological and gravimetric excitation, respectively. Several Hydrological Angular Momentum (HAM) functions are calculated here from the selected variables: precipitation, evaporation, runoff, soil moisture, accumulated snow of the FGOALS and GLDAS climate models as well as from the global mass change fields from GRACE data provided by the International Earth Rotation and Reference System Service (IERS) Global Geophysical Fluids Center (GGFC). The contribution of different HAM excitation functions to achieve the full agreement between geodetic observations and geophysical excitation functions of polar motion is studied here.
Two-Layer Variable Infiltration Capacity Land Surface Representation for General Circulation Models
NASA Technical Reports Server (NTRS)
Xu, L.
1994-01-01
A simple two-layer variable infiltration capacity (VIC-2L) land surface model suitable for incorporation in general circulation models (GCMs) is described. The model consists of a two-layer characterization of the soil within a GCM grid cell, and uses an aerodynamic representation of latent and sensible heat fluxes at the land surface. The effects of GCM spatial subgrid variability of soil moisture and a hydrologically realistic runoff mechanism are represented in the soil layers. The model was tested using long-term hydrologic and climatalogical data for Kings Creek, Kansas to estimate and validate the hydrological parameters. Surface flux data from three First International Satellite Land Surface Climatology Project Field Experiments (FIFE) intensive field compaigns in the summer and fall of 1987 in central Kansas, and from the Anglo-Brazilian Amazonian Climate Observation Study (ABRACOS) in Brazil were used to validate the mode-simulated surface energy fluxes and surface temperature.
NASA Astrophysics Data System (ADS)
Kelleher, Christa; McGlynn, Brian; Wagener, Thorsten
2017-07-01
Distributed catchment models are widely used tools for predicting hydrologic behavior. While distributed models require many parameters to describe a system, they are expected to simulate behavior that is more consistent with observed processes. However, obtaining a single set of acceptable parameters can be problematic, as parameter equifinality often results in several behavioral
sets that fit observations (typically streamflow). In this study, we investigate the extent to which equifinality impacts a typical distributed modeling application. We outline a hierarchical approach to reduce the number of behavioral sets based on regional, observation-driven, and expert-knowledge-based constraints. For our application, we explore how each of these constraint classes reduced the number of behavioral
parameter sets and altered distributions of spatiotemporal simulations, simulating a well-studied headwater catchment, Stringer Creek, Montana, using the distributed hydrology-soil-vegetation model (DHSVM). As a demonstrative exercise, we investigated model performance across 10 000 parameter sets. Constraints on regional signatures, the hydrograph, and two internal measurements of snow water equivalent time series reduced the number of behavioral parameter sets but still left a small number with similar goodness of fit. This subset was ultimately further reduced by incorporating pattern expectations of groundwater table depth across the catchment. Our results suggest that utilizing a hierarchical approach based on regional datasets, observations, and expert knowledge to identify behavioral parameter sets can reduce equifinality and bolster more careful application and simulation of spatiotemporal processes via distributed modeling at the catchment scale.
Feaster, Toby D.; Benedict, Stephen T.; Clark, Jimmy M.; Bradley, Paul M.; Conrads, Paul
2014-01-01
As part of an ongoing effort by the U.S. Geological Survey to expand the understanding of relations among hydrologic, geochemical, and ecological processes that affect fish-tissue mercury concentrations within the Edisto River Basin, analyses and simulations of the hydrology of the Edisto River Basin were made using the topography-based hydrological model (TOPMODEL). A primary focus of the investigation was to assess the potential for scaling up a previous application of TOPMODEL for the McTier Creek watershed, which is a small headwater catchment to the Edisto River Basin. Scaling up was done in a step-wise manner, beginning with applying the calibration parameters, meteorological data, and topographic-wetness-index data from the McTier Creek TOPMODEL to the Edisto River TOPMODEL. Additional changes were made for subsequent simulations, culminating in the best simulation, which included meteorological and topographic wetness index data from the Edisto River Basin and updated calibration parameters for some of the TOPMODEL calibration parameters. The scaling-up process resulted in nine simulations being made. Simulation 7 best matched the streamflows at station 02175000, Edisto River near Givhans, SC, which was the downstream limit for the TOPMODEL setup, and was obtained by adjusting the scaling factor, including streamflow routing, and using NEXRAD precipitation data for the Edisto River Basin. The Nash-Sutcliffe coefficient of model-fit efficiency and Pearson’s correlation coefficient for simulation 7 were 0.78 and 0.89, respectively. Comparison of goodness-of-fit statistics between measured and simulated daily mean streamflow for the McTier Creek and Edisto River models showed that with calibration, the Edisto River TOPMODEL produced slightly better results than the McTier Creek model, despite the substantial difference in the drainage-area size at the outlet locations for the two models (30.7 and 2,725 square miles, respectively). Along with the TOPMODEL hydrologic simulations, a visualization tool (the Edisto River Data Viewer) was developed to help assess trends and influencing variable in the stream ecosystem. Incorporated into the visualization tool were the water-quality load models TOPLOAD, TOPLOAD–H, and LOADEST. Because the focus of this investigation was on scaling up the models from McTier Creek, water-quality concentrations that were previously collected in the McTier Creek Basin were used in the water-quality load models.
Development, sensitivity and uncertainty analysis of LASH model
USDA-ARS?s Scientific Manuscript database
Many hydrologic models have been developed to help manage natural resources all over the world. Nevertheless, most models have presented a high complexity regarding data base requirements, as well as, many calibration parameters. This has brought serious difficulties for applying them in watersheds ...
Long-term hydrology and water quality of a drained pine plantation in North Carolina
D.M. Amatya; R.W. Skaggs
2011-01-01
Long-term data provide a basis for understanding natural variability, reducing uncertainty in model inputs and parameter estimation, and developing new hypotheses. This article evaluates 21 years (1988-2008) of hydrologic data and 17 years (1988-2005) of water quality data from a drained pine plantation in eastern North Carolina. The plantation age was 14 years at the...
Application of SAC88 to estimating hydrologic effects of fire on a watersheds
R. Larry Ferral
1989-01-01
SAC88 is a major revision of the Sacramento Model, which was developed in 1969 with minor revisions through 1973. Two of many 1988 changes make it possible to estimate hydrologic effects of a fire in a watershed where pre-fire parameters can be calibrated or estimated: (1) Evapotranspiration, treated as extracted from six root-zone layers under pre-fire conditions, may...
Mathematical modeling of synthetic unit hydrograph case study: Citarum watershed
NASA Astrophysics Data System (ADS)
Islahuddin, Muhammad; Sukrainingtyas, Adiska L. A.; Kusuma, M. Syahril B.; Soewono, Edy
2015-09-01
Deriving unit hydrograph is very important in analyzing watershed's hydrologic response of a rainfall event. In most cases, hourly measures of stream flow data needed in deriving unit hydrograph are not always available. Hence, one needs to develop methods for deriving unit hydrograph for ungagged watershed. Methods that have evolved are based on theoretical or empirical formulas relating hydrograph peak discharge and timing to watershed characteristics. These are usually referred to Synthetic Unit Hydrograph. In this paper, a gamma probability density function and its variant are used as mathematical approximations of a unit hydrograph for Citarum Watershed. The model is adjusted with real field condition by translation and scaling. Optimal parameters are determined by using Particle Swarm Optimization method with weighted objective function. With these models, a synthetic unit hydrograph can be developed and hydrologic parameters can be well predicted.
User's Guide for the Agricultural Non-Point Source (AGNPS) Pollution Model Data Generator
Finn, Michael P.; Scheidt, Douglas J.; Jaromack, Gregory M.
2003-01-01
BACKGROUND Throughout this user guide, we refer to datasets that we used in conjunction with developing of this software for supporting cartographic research and producing the datasets to conduct research. However, this software can be used with these datasets or with more 'generic' versions of data of the appropriate type. For example, throughout the guide, we refer to national land cover data (NLCD) and digital elevation model (DEM) data from the U.S. Geological Survey (USGS) at a 30-m resolution, but any digital terrain model or land cover data at any appropriate resolution will produce results. Another key point to keep in mind is to use a consistent data resolution for all the datasets per model run. The U.S. Department of Agriculture (USDA) developed the Agricultural Nonpoint Source (AGNPS) pollution model of watershed hydrology in response to the complex problem of managing nonpoint sources of pollution. AGNPS simulates the behavior of runoff, sediment, and nutrient transport from watersheds that have agriculture as their prime use. The model operates on a cell basis and is a distributed parameter, event-based model. The model requires 22 input parameters. Output parameters are grouped primarily by hydrology, sediment, and chemical output (Young and others, 1995.) Elevation, land cover, and soil are the base data from which to extract the 22 input parameters required by the AGNPS. For automatic parameter extraction, follow the general process described in this guide of extraction from the geospatial data through the AGNPS Data Generator to generate input parameters required by the pollution model (Finn and others, 2002.)
NASA Astrophysics Data System (ADS)
Bertram, Sascha; Bechtold, Michel; Hendriks, Rob; Piayda, Arndt; Regina, Kristiina; Myllys, Merja; Tiemeyer, Bärbel
2017-04-01
Peat soils form a major share of soil suitable for agriculture in northern Europe. Successful agricultural production depends on hydrological and pedological conditions, local climate and agricultural management. Climate change impact assessment on food production and development of mitigation and adaptation strategies require reliable yield forecasts under given emission scenarios. Coupled soil hydrology - crop growth models, driven by regionalized future climate scenarios are a valuable tool and widely used for this purpose. Parameterization on local peat soil conditions and crop breed or grassland specie performance, however, remains a major challenge. The subject of this study is to evaluate the performance and sensitivity of the SWAP-WOFOST coupled soil hydrology and plant growth model with respect to the application on peat soils under different regional conditions across northern Europe. Further, the parameterization of region-specific crop and grass species is discussed. First results of the model application and parameterization at deep peat sites in southern Finland are presented. The model performed very well in reproducing two years of observed, daily ground water level data on four hydrologically contrasting sites. Naturally dry and wet sites could be modelled with the same performance as sites with active water table management by regulated drains in order to improve peat conservation. A simultaneous multi-site calibration scheme was used to estimate plant growth parameters of the local oat breed. Cross-site validation of the modelled yields against two years of observations proved the robustness of the chosen parameter set and gave no indication of possible overparameterization. This study proves the suitability of the coupled SWAP-WOFOST model for the prediction of crop yields and water table dynamics of peat soils in agricultural use under given climate conditions.
Hydrologic and hydraulic flood forecasting constrained by remote sensing data
NASA Astrophysics Data System (ADS)
Li, Y.; Grimaldi, S.; Pauwels, V. R. N.; Walker, J. P.; Wright, A. J.
2017-12-01
Flooding is one of the most destructive natural disasters, resulting in many deaths and billions of dollars of damages each year. An indispensable tool to mitigate the effect of floods is to provide accurate and timely forecasts. An operational flood forecasting system typically consists of a hydrologic model, converting rainfall data into flood volumes entering the river system, and a hydraulic model, converting these flood volumes into water levels and flood extents. Such a system is prone to various sources of uncertainties from the initial conditions, meteorological forcing, topographic data, model parameters and model structure. To reduce those uncertainties, current forecasting systems are typically calibrated and/or updated using ground-based streamflow measurements, and such applications are limited to well-gauged areas. The recent increasing availability of spatially distributed remote sensing (RS) data offers new opportunities to improve flood forecasting skill. Based on an Australian case study, this presentation will discuss the use of 1) RS soil moisture to constrain a hydrologic model, and 2) RS flood extent and level to constrain a hydraulic model.The GRKAL hydrological model is calibrated through a joint calibration scheme using both ground-based streamflow and RS soil moisture observations. A lag-aware data assimilation approach is tested through a set of synthetic experiments to integrate RS soil moisture to constrain the streamflow forecasting in real-time.The hydraulic model is LISFLOOD-FP which solves the 2-dimensional inertial approximation of the Shallow Water Equations. Gauged water level time series and RS-derived flood extent and levels are used to apply a multi-objective calibration protocol. The effectiveness with which each data source or combination of data sources constrained the parameter space will be discussed.
Indigenous Waters: Applying the SWAT Hydrological Model to the Lumbee River Watershed
NASA Astrophysics Data System (ADS)
Painter, J.; Singh, N.; Martin, K. L.; Vose, J. M.; Wear, D. N.; Emanuel, R. E.
2016-12-01
Hydrological modeling can reveal insight about how rainfall becomes streamflow in a watershed comprising heterogeneous soils, terrain and land cover. Modeling can also help disentangle predicted impacts of climate and land use change on hydrological processes. We applied a hydrological model to the Lumbee River watershed, also known as the Lumber River Watershed, in the coastal plain of North Carolina (USA) to better understand how streamflow may be impacted by predicted climate and land use change in the mid-21st century. The Lumbee River flows through a predominantly Native American community, which may be affected by changing water resources during this period. The long-term goal of our project is to predict the effects of climate and land use change on the Lumbee River watershed and on the Native community that relies upon the river. We applied the Soil & Water Assessment Tool for ArcGIS (ArcSWAT), which was calibrated to historical climate and USGS streamflow data during the late 20th century, and we determined frequency distributions for key model parameters that best predicted streamflow during this time period. After calibrating and validating the model during the historical period, we identified land use and climate projections to represent a range of future conditions in the watershed. Specifically, we selected downscaled climate forcing data from four general circulation models running the RCP8.5 scenario. We also selected land use projections from a cornerstone scenario of the USDA Forest Service's Southern Forest Futures Project. This presentation reports on our methods for propagating parameter and climatic uncertainty through model predictions, and it reports on spatial patterns of land use change predicted by the cornerstone scenario.
Hydrological response in catchments whit debris covered glaciers in the semi-arid Andes, Chile
NASA Astrophysics Data System (ADS)
Caro, A.; McPhee, J.; MacDonell, S.; Pellicciotti, F.; Ayala, A.
2016-12-01
Glaciers in the semi-arid Andes Cordillera in Chile have shrank rapidly during the 20th century. Negative mass balance contributes to increase the surface area of debris-covered glaciers. Recent research in Chile suggests that contributions from glaciers to summer season river flow in dry years is very important, however hydrological processes determining the glacier contribution are still poorly understood in the region. This work seeks to determine appropriate parameters for the simulation of melt volume in two watersheds dominated by debris-covered glaciers, in order to understand its variability in time and space, in the area with the largest population in Chile. The hydrological simulation is performed for the Tapado (30°S) and Pirámide (33ºS) glaciers, which can be defined as cold and temperate respectively. To simulate the hydrological behaviour we adopt the physically-based TOPographic Kinematic wave APproximation model (TOPKAPI-ETH). The hydrometeorological records necessary model runs have been collected through fieldwork from 2013 to 2015. Regarding the calibration of the model parameters melting ETI, its observed that the value for TF in Pirámide is a third of the value for Tapado glacier, while SRF is half in Tapado regarding to Pirámide. The runoff in the glaciers, the constant snow and ice storage are higher in Tapado regarding Pirámide. Results show a contribution of glacial outflow to runoff during 2015 of 55% in Tapado and 77% in Pirámide, with maximum contributions between January and March in Tapado and Pirámide between November and March, presenting the relevance of the permanence of snow cover during spring and shelter that provides debris-covered in reducing the melting glacier. The results have allowed to know the relevance of the glacier contribution to mountain streams, allowing to know the calibration parameters most relevant in the hydrology balance of glacier basins in the Andes.
NASA Astrophysics Data System (ADS)
Gupta, Manika; Bolten, John; Lakshmi, Venkat
2015-04-01
This work addresses the improvement of available water capacity by developing a technique for estimating soil hydraulic parameters through the utilization of satellite-retrieved near surface soil moisture. The prototype involves the usage of Monte Carlo analysis to assimilate historical remote sensing soil moisture data available from the Advanced Microwave Scanning Radiometer (AMSR-E) within the hydrological model. The main hypothesis used in this study is that near-surface soil moisture data contain useful information that can describe the effective hydrological conditions of the basin such that when appropriately In the method followed in this study the hydraulic parameters are derived directly from information on the soil moisture state at the AMSR-E footprint scale and the available water capacity is derived for the root zone by coupling of AMSR-E soil moisture with the physically-based hydrological model. The available capacity water, which refers to difference between the field capacity and wilting point of the soil and represent the soil moisture content at 0.33 bar and 15 bar respectively is estimated from the soil hydraulic parameters using the van Genuchten equation. The initial ranges of soil hydraulic parameters are taken in correspondence with the values available from the literature based on Soil Survey Geographic (SSURGO) database within the particular AMSR-E footprint. Using the Monte Carlo simulation, the ranges are narrowed in the region where simulation shows a good match between predicted and near-surface soil moisture from AMSR-E. In this study, the uncertainties in accurately determining the parameters of the nonlinear soil water retention function for large-scale hydrological modeling is the focus of the development of the Bayesian framework. Thus, the model forecasting has been combined with the observational information to optimize the model state and the soil hydraulic parameters simultaneously. The optimization process is divided into two steps during one time interval: the state variable is optimized through the state filter and the optimal parameter values are then transferred for retrieving soil moisture. However, soil moisture from sensors such as AMSR-E can only be retrieved for the top few centimeters of soil. So, for the present study, a homogeneous soil system has been considered. By assimilating this information into the model, the accuracy of model structure in relating surface moisture dynamics to deeper soil profiles can be ascertained. To evaluate the performance of the system in helping improve simulation accuracy and whether they can be used to obtain soil moisture profiles at poorly gauged catchments alongwith the available water capacity, the root mean square error (RMSE) and Mean Bias error (MBE) are used to measure the performance of the soil moisture simulations. The optimized parameters as compared to the pedo-transfer based parameters were found to reduce the RMSE from 0.14 to 0.04 and 0.15 to 0.07 in surface layer and root zone respectively.
Wicklein, Shaun M.; Schiffer, Donna M.
2002-01-01
Hydrologic and water-quality data have been collected within the 177-square-mile Reedy Creek, Florida, watershed, beginning as early as 1939, but the data have not been used to evaluate relations among land use, hydrology, and water quality. A model of the Reedy Creek watershed was developed and applied to the period January 1990 to December 1995 to provide a computational foundation for evaluating the effects of future land-use changes on hydrology and water quality in the watershed. The Hydrological Simulation Program-Fortran (HSPF) model was used to simulate hydrology and water quality of runoff for pervious land areas, impervious land areas, and stream reaches. Six land-use types were used to characterize the hydrology and water quality of pervious and impervious land areas in the Reedy Creek watershed: agriculture, rangeland, forest, wetlands, rapid infiltration basins, and urban areas. Hydrologic routing and water-quality reactions were simulated to characterize hydrologic and water-quality processes and the movement of runoff and its constituents through the main stream channels and their tributaries. Because of the complexity of the stream system within the Reedy Creek Improvement District (RCID) (hydraulic structures, retention ponds) and the anticipated difficulty of modeling the system, an approach of calibrating the model parameters for a subset of the gaged watersheds and confirming the usefulness of the parameters by simulating the remainder of the gaged sites was selected for this study. Two sub-watersheds (Whittenhorse Creek and Davenport Creek) were selected for calibration because both have similar land use to watersheds within the RCID (with the exception of urban areas). Given the lack of available rainfall data, the hydrologic calibration of the Whittenhorse Creek and Davenport Creek sub-watersheds was considered acceptable (for monthly data, correlation coefficients, 0.86 and 0.88, and coefficients of model-fit efficiency, 0.72 and 0.74, respectively). The hydrologic model was tested by applying the parameter sets developed for Whittenhorse Creek and Davenport Creek to other land areas within the Reedy Creek watershed, and by comparing the simulated results to observed data sets for Reedy Creek near Vineland, Bonnet Creek near Vineland, and Reedy Creek near Loughman. The hydrologic model confirmation for Reedy Creek near Vineland (correlation coefficient, 0.91, and coefficient of model fit efficiency, 0.78, for monthly flows) was acceptable. Flows for Bonnet Creek near Vineland were substantially under simulated. Consideration of the ground-water contribution to Bonnet Creek could improve the water balance simulation for Bonnet Creek near Vineland. On longer time scales (monthly or over the 72-month simulation period), simulated discharges for Reedy Creek near Loughman agreed well with observed data (correlation coefficient, 0.88). For monthly flows the coefficient of model-fit efficiency was 0.77. On a shorter time scale (less than a month), however, storm volumes were greatly over simulated and low flows (less than 8 cubic feet per second) were greatly under simulated. A primary reason for the poor results at low flows is the diversion of an unknown amount of water from the RCID at the Bonnet Creek near Kissimmee site. Selection of water-quality constituents for simulation was based primarily on the availability of water-quality data. Dissolved oxygen, nitrogen, and phosphorus species were simulated. Representation of nutrient cycling in HSPF also required simulation of biochemical oxygen demand and phytoplankton populations. The correlation coefficient for simulated and observed daily mean dissolved oxygen concentration values at Reedy Creek near Vineland was 0.633. Simulated time series of total phosphorus, phosphate, ammonia nitrogen, and nitrate nitrogen generally agreed well with periodically observed values for the Whittenhorse Creek and Davenport Creek sites. Simulated water-quality c
Quantifying the effects of climate and post-fire landscape change on hydrologic processes
NASA Astrophysics Data System (ADS)
Steimke, A.; Han, B.; Brandt, J.; Som Castellano, R.; Leonard, A.; Flores, A. N.
2016-12-01
Seasonally snow-dominated, forested mountain watersheds supply water to many human populations globally. However, the timing and magnitude of water delivery from these watersheds has already and will continue to change as the climate warms. Changes in vegetation also affect the runoff response of watersheds. The largest driver of vegetation change in many mountainous regions is wildfire, whose occurrence is affected by both climate and land management decisions. Here, we quantify how direct (i.e. changes in precipitation and temperature) and indirect (i.e. changing fire regimes) effects of climate change influence hydrologic parameters such as dates of peak streamflow, annual discharge, and snowpack levels. We used the Boise River Basin, ID as a model laboratory to calculate the relative magnitude of change stemming from direct and indirect effects of climate change. This basin is relevant to study as it is well-instrumented and major drainages have experienced burning at different spatial and temporal intervals, aiding in model calibration. We built a hydrology-based integrated model of the region using a multiagent simulation framework, Envision. We used a modified HBV (Hydrologiska Byråns Vattenbalansavdelning) rainfall-runoff model and calibrated it to historic streamflow and snowpack observations. We combined a diverse set of climate projections with wildfire scenarios (low vs. high) representing two distinct intervals in the regional historic fire record. In fire simulations, we altered land cover coefficients to reflect a burned state post-fire, which decreased overall evapotranspiration rates and increased water yields. However, direct climate effects had a larger signal on annual variations of hydrologic parameters. By comparing and analyzing scenario outputs, we identified links and sensitivities between land cover and regional hydrology in the context of a changing climate, with potential implications for local land and water managers. In future research, this framework will support investigations of climate-aware land management actions on basin hydrologic response.
Modeling Land Use Change In A Tropical Environment Using Similar Hydrologic Response Units
NASA Astrophysics Data System (ADS)
Guardiola-Claramonte, M.; Troch, P.
2006-12-01
Montane mainland South East Asia comprises areas of great biological and cultural diversity. Over the last decades the region has overcome an important conversion from traditional agriculture to cash crop agriculture driven by regional and global markets. Our study aims at understanding the hydrological implications of these land use changes at the catchment scale. In 2004, networks of hydro-meteorological stations observing water and energy fluxes were installed in two 70 km2 catchments in Northern Thailand (Chiang Mai Province) and Southern China (Yunnan Province). In addition, a detailed soil surveying campaign was done at the moment of instrument installation. Land use is monitored periodically using satellite data. The Thai catchment is switching from small agricultural fields to large extensions of cash crops. The Chinese catchment is replacing the traditional forest for rubber plantations. A first comparative study based on catchments' geomorphologic characteristics, field observations and rainfall-runoff response revealed the dominant hydrologic processes in the catchments. Land use information is then translated into three different Hydrologic Response Units (HRU): rice paddies, pervious and impervious surfaces. The pervious HRU include different land uses such as different stages of forest development, rubber plantations, and agricultural fields; the impervious ones are urban areas, roads and outcrops. For each HRU a water and energy balance model is developed incorporating field observed hydrologic processes, measured field parameters, and literature-based vegetation and soil parameters to better describe the root zone, surface and subsurface flow characteristics without the need of further calibration. The HRU water and energy balance models are applied to single hillslopes and their integrated hydrologic response are compared for different land covers. Finally, the response of individual hillslopes is routed through the channel network to represent each of the basins. Results from the model are compared to measured catchment-scale water and energy fluxes.
NASA Astrophysics Data System (ADS)
Newman, A. J.; Sampson, K. M.; Wood, A. W.; Hopson, T. M.; Brekke, L. D.; Arnold, J.; Raff, D. A.; Clark, M. P.
2013-12-01
Skill in model-based hydrologic forecasting depends on the ability to estimate a watershed's initial moisture and energy conditions, to forecast future weather and climate inputs, and on the quality of the hydrologic model's representation of watershed processes. The impact of these factors on prediction skill varies regionally, seasonally, and by model. We are investigating these influences using a watershed simulation platform that spans the continental US (CONUS), encompassing a broad range of hydroclimatic variation, and that uses the current simulation models of National Weather Service streamflow forecasting operations. The first phase of this effort centered on the implementation and calibration of the SNOW-17 and Sacramento soil moisture accounting (SAC-SMA) based hydrologic modeling system for a range of watersheds. The base configuration includes 630 basins in the United States Geological Survey's Hydro-Climatic Data Network 2009 (HCDN-2009, Lins 2012) conterminous U.S. basin subset. Retrospective model forcings were derived from Daymet (http://daymet.ornl.gov/), and where available, a priori parameter estimates were based on or compared with the operational NWS model parameters. Model calibration was accomplished by several objective, automated strategies, including the shuffled complex evolution (SCE) optimization approach developed within the NWS in the early 1990s (Duan et al. 1993). This presentation describes outcomes from this effort, including insights about measuring simulation skill, and on relationships between simulation skill and model parameters, basin characteristics (climate, topography, vegetation, soils), and the quality of forcing inputs. References: %Z Thornton, P.; Thornton, M.; Mayer, B.; Wilhelmi, N.; Wei, Y.; Devarakonda, R; Cook, R. Daymet: Daily Surface Weather on a 1 km Grid for North America. 1980-2008; Oak Ridge National Laboratory Distributed Active Archive Center: Oak Ridge, TN, USA, 2012; Volume 10.
NASA Astrophysics Data System (ADS)
Naz, Bibi; Kurtz, Wolfgang; Kollet, Stefan; Hendricks Franssen, Harrie-Jan; Sharples, Wendy; Görgen, Klaus; Keune, Jessica; Kulkarni, Ketan
2017-04-01
More accurate and reliable hydrologic simulations are important for many applications such as water resource management, future water availability projections and predictions of extreme events. However, simulation of spatial and temporal variations in the critical water budget components such as precipitation, snow, evaporation and runoff is highly uncertain, due to errors in e.g. model structure and inputs (hydrologic parameters and forcings). In this study, we use data assimilation techniques to improve the predictability of continental-scale water fluxes using in-situ measurements along with remotely sensed information to improve hydrologic predications for water resource systems. The Community Land Model, version 3.5 (CLM) integrated with the Parallel Data Assimilation Framework (PDAF) was implemented at spatial resolution of 1/36 degree (3 km) over the European CORDEX domain. The modeling system was forced with a high-resolution reanalysis system COSMO-REA6 from Hans-Ertel Centre for Weather Research (HErZ) and ERA-Interim datasets for time period of 1994-2014. A series of data assimilation experiments were conducted to assess the efficiency of assimilation of various observations, such as river discharge data, remotely sensed soil moisture, terrestrial water storage and snow measurements into the CLM-PDAF at regional to continental scales. This setup not only allows to quantify uncertainties, but also improves streamflow predictions by updating simultaneously model states and parameters utilizing observational information. The results from different regions, watershed sizes, spatial resolutions and timescales are compared and discussed in this study.
NASA Astrophysics Data System (ADS)
Hosseini, Mohammadreza; Nunes, João Pedro; González Pelayo, Oscar; Keizer, Jan Jacob; Ritsema, Coen; Geissen, Violette
2017-04-01
Models can be valuable for foreseeing the hydrological effects of fires and to plan and execute post-fire management alternatives. In this study, the revised Morgan-Morgan-Finney (MMF) model was utilized to simulate runoff and soil erosion in recently burned maritime pine plantations with different fire regimes, in a wet Mediterranean area of north-central Portugal. The MMF model was adjusted for burned zones in order to accommodate seasonal patterns in runoff and soil erosion, attributed to changes in soil water repellency and vegetation recovery. The model was then assessed by applying it for a sum of 18 experimental micro-plots (0.25 m2) at 9 1x-burnt and 9 4x-burnt slopes, using both literature-based and calibrated parameters, with the collected data used to assess the robustness of each parameterization. The estimate of erosion was more exact than that of runoff, with a general Nash-Sutcliffe efficiency of 0.54. Slope angle and the soil's effective hydrological depth (which relies on upon vegetation and additionally crop cover) were found to be the primary parameters enhancing model results, and different hydrological depths were expected to separate between the two differentiating fire regimes. This relative analysis demonstrated that most existing benchmark parameters can be utilized to apply MMF in burnt pine regions with moderate severity to support post-fire management; however it also showed that further endeavours ought to concentrate on mapping soil depth and vegetation cover to enhance these simulations.
Open source data assimilation framework for hydrological modeling
NASA Astrophysics Data System (ADS)
Ridler, Marc; Hummel, Stef; van Velzen, Nils; Katrine Falk, Anne; Madsen, Henrik
2013-04-01
An open-source data assimilation framework is proposed for hydrological modeling. Data assimilation (DA) in hydrodynamic and hydrological forecasting systems has great potential to improve predictions and improve model result. The basic principle is to incorporate measurement information into a model with the aim to improve model results by error minimization. Great strides have been made to assimilate traditional in-situ measurements such as discharge, soil moisture, hydraulic head and snowpack into hydrologic models. More recently, remotely sensed data retrievals of soil moisture, snow water equivalent or snow cover area, surface water elevation, terrestrial water storage and land surface temperature have been successfully assimilated in hydrological models. The assimilation algorithms have become increasingly sophisticated to manage measurement and model bias, non-linear systems, data sparsity (time & space) and undetermined system uncertainty. It is therefore useful to use a pre-existing DA toolbox such as OpenDA. OpenDA is an open interface standard for (and free implementation of) a set of tools to quickly implement DA and calibration for arbitrary numerical models. The basic design philosophy of OpenDA is to breakdown DA into a set of building blocks programmed in object oriented languages. To implement DA, a model must interact with OpenDA to create model instances, propagate the model, get/set variables (or parameters) and free the model once DA is completed. An open-source interface for hydrological models exists capable of all these tasks: OpenMI. OpenMI is an open source standard interface already adopted by key hydrological model providers. It defines a universal approach to interact with hydrological models during simulation to exchange data during runtime, thus facilitating the interactions between models and data sources. The interface is flexible enough so that models can interact even if the model is coded in a different language, represent processes from a different domain or have different spatial and temporal resolutions. An open source framework that bridges OpenMI and OpenDA is presented. The framework provides a generic and easy means for any OpenMI compliant model to assimilate observation measurements. An example test case will be presented using MikeSHE, and OpenMI compliant fully coupled integrated hydrological model that can accurately simulate the feedback dynamics of overland flow, unsaturated zone and saturated zone.
Watershed scale response to climate change--Trout Lake Basin, Wisconsin
Walker, John F.; Hunt, Randall J.; Hay, Lauren E.; Markstrom, Steven L.
2012-01-01
Fourteen basins for which the Precipitation Runoff Modeling System has been calibrated and evaluated were selected as study sites. Precipitation Runoff Modeling System is a deterministic, distributed parameter watershed model developed to evaluate the effects of various combinations of precipitation, temperature, and land use on streamflow and general basin hydrology. Output from five General Circulation Model simulations and four emission scenarios were used to develop an ensemble of climate-change scenarios for each basin. These ensembles were simulated with the corresponding Precipitation Runoff Modeling System model. This fact sheet summarizes the hydrologic effect and sensitivity of the Precipitation Runoff Modeling System simulations to climate change for the Trout River Basin at Trout Lake in northern Wisconsin.
Watershed scale response to climate change--Clear Creek Basin, Iowa
Christiansen, Daniel E.; Hay, Lauren E.; Markstrom, Steven L.
2012-01-01
Fourteen basins for which the Precipitation Runoff Modeling System has been calibrated and evaluated were selected as study sites. Precipitation Runoff Modeling System is a deterministic, distributed parameter watershed model developed to evaluate the effects of various combinations of precipitation, temperature, and land use on streamflow and general basin hydrology. Output from five General Circulation Model simulations and four emission scenarios were used to develop an ensemble of climate-change scenarios for each basin. These ensembles were simulated with the corresponding Precipitation Runoff Modeling System model. This fact sheet summarizes the hydrologic effect and sensitivity of the Precipitation Runoff Modeling System simulations to climate change for the Clear Creek Basin, near Coralville, Iowa.
Watershed scale response to climate change--Feather River Basin, California
Koczot, Kathryn M.; Markstrom, Steven L.; Hay, Lauren E.
2012-01-01
Fourteen basins for which the Precipitation Runoff Modeling System has been calibrated and evaluated were selected as study sites. Precipitation Runoff Modeling System is a deterministic, distributed parameter watershed model developed to evaluate the effects of various combinations of precipitation, temperature, and land use on streamflow and general basin hydrology. Output from five General Circulation Model simulations and four emission scenarios were used to develop an ensemble of climate-change scenarios for each basin. These ensembles were simulated with the corresponding Precipitation Runoff Modeling System model. This fact sheet summarizes the hydrologic effect and sensitivity of the Precipitation Runoff Modeling System simulations to climate change for the Feather River Basin, California.
Watershed scale response to climate change--South Fork Flathead River Basin, Montana
Chase, Katherine J.; Hay, Lauren E.; Markstrom, Steven L.
2012-01-01
Fourteen basins for which the Precipitation Runoff Modeling System has been calibrated and evaluated were selected as study sites. Precipitation Runoff Modeling System is a deterministic, distributed parameter watershed model developed to evaluate the effects of various combinations of precipitation, temperature, and land use on streamflow and general basin hydrology. Output from five General Circulation Model simulations and four emission scenarios were used to develop an ensemble of climate-change scenarios for each basin. These ensembles were simulated with the corresponding Precipitation Runoff Modeling System model. This fact sheet summarizes the hydrologic effect and sensitivity of the Precipitation Runoff Modeling System simulations to climate change for the South Fork Flathead River Basin, Montana.
Watershed scale response to climate change--Cathance Stream Basin, Maine
Dudley, Robert W.; Hay, Lauren E.; Markstrom, Steven L.; Hodgkins, Glenn A.
2012-01-01
Fourteen basins for which the Precipitation Runoff Modeling System has been calibrated and evaluated were selected as study sites. Precipitation Runoff Modeling System is a deterministic, distributed parameter watershed model developed to evaluate the effects of various combinations of precipitation, temperature, and land use on streamflow and general basin hydrology. Output from five General Circulation Model simulations and four emission scenarios were used to develop an ensemble of climate-change scenarios for each basin. These ensembles were simulated with the corresponding Precipitation Runoff Modeling System model. This fact sheet summarizes the hydrologic effect and sensitivity of the Precipitation Runoff Modeling System simulations to climate change for the Cathance Stream Basin, Maine.
Watershed scale response to climate change--Pomperaug River Watershed, Connecticut
Bjerklie, David M.; Hay, Lauren E.; Markstrom, Steven L.
2012-01-01
Fourteen basins for which the Precipitation Runoff Modeling System has been calibrated and evaluated were selected as study sites. Precipitation Runoff Modeling System is a deterministic, distributed parameter watershed model developed to evaluate the effects of various combinations of precipitation, temperature, and land use on streamflow and general basin hydrology. Output from five General Circulation Model simulations and four emission scenarios were used to develop an ensemble of climate-change scenarios for each basin. These ensembles were simulated with the corresponding Precipitation Runoff Modeling System model. This fact sheet summarizes the hydrologic effect and sensitivity of the Precipitation Runoff Modeling System simulations to climate change for the Pomperaug River Basin at Southbury, Connecticut.
Watershed scale response to climate change--Starkweather Coulee Basin, North Dakota
Vining, Kevin C.; Hay, Lauren E.; Markstrom, Steven L.
2012-01-01
Fourteen basins for which the Precipitation Runoff Modeling System has been calibrated and evaluated were selected as study sites. Precipitation Runoff Modeling System is a deterministic, distributed parameter watershed model developed to evaluate the effects of various combinations of precipitation, temperature, and land use on streamflow and general basin hydrology. Output from five General Circulation Model simulations and four emission scenarios were used to develop an ensemble of climate-change scenarios for each basin. These ensembles were simulated with the corresponding Precipitation Runoff Modeling System model. This fact sheet summarizes the hydrologic effect and sensitivity of the Precipitation Runoff Modeling System simulations to climate change for the Starkweather Coulee Basin near Webster, North Dakota.
Watershed scale response to climate change--Sagehen Creek Basin, California
Markstrom, Steven L.; Hay, Lauren E.; Regan, R. Steven
2012-01-01
Fourteen basins for which the Precipitation Runoff Modeling System has been calibrated and evaluated were selected as study sites. Precipitation Runoff Modeling System is a deterministic, distributed parameter watershed model developed to evaluate the effects of various combinations of precipitation, temperature, and land use on streamflow and general basin hydrology. Output from five General Circulation Model simulations and four emission scenarios were used to develop an ensemble of climate-change scenarios for each basin. These ensembles were simulated with the corresponding Precipitation Runoff Modeling System model. This fact sheet summarizes the hydrologic effect and sensitivity of the Precipitation Runoff Modeling System simulations to climate change for the Sagehen Creek Basin near Truckee, California.
Watershed scale response to climate change--Sprague River Basin, Oregon
Risley, John; Hay, Lauren E.; Markstrom, Steven L.
2012-01-01
Fourteen basins for which the Precipitation Runoff Modeling System has been calibrated and evaluated were selected as study sites. Precipitation Runoff Modeling System is a deterministic, distributed parameter watershed model developed to evaluate the effects of various combinations of precipitation, temperature, and land use on streamflow and general basin hydrology. Output from five General Circulation Model simulations and four emission scenarios were used to develop an ensemble of climate-change scenarios for each basin. These ensembles were simulated with the corresponding Precipitation Runoff Modeling System model. This fact sheet summarizes the hydrologic effect and sensitivity of the Precipitation Runoff Modeling System simulations to climate change for the Sprague River Basin near Chiloquin, Oregon.
Watershed scale response to climate change--Black Earth Creek Basin, Wisconsin
Hunt, Randall J.; Walker, John F.; Westenbroek, Steven M.; Hay, Lauren E.; Markstrom, Steven L.
2012-01-01
Fourteen basins for which the Precipitation Runoff Modeling System has been calibrated and evaluated were selected as study sites. Precipitation Runoff Modeling System is a deterministic, distributed parameter watershed model developed to evaluate the effects of various combinations of precipitation, temperature, and land use on streamflow and general basin hydrology. Output from five General Circulation Model simulations and four emission scenarios were used to develop an ensemble of climate-change scenarios for each basin. These ensembles were simulated with the corresponding Precipitation Runoff Modeling System model. This fact sheet summarizes the hydrologic effect and sensitivity of the Precipitation Runoff Modeling System simulations to climate change for the Black Earth Creek Basin, Wisconsin.
Watershed scale response to climate change--East River Basin, Colorado
Battaglin, William A.; Hay, Lauren E.; Markstrom, Steven L.
2012-01-01
Fourteen basins for which the Precipitation Runoff Modeling System has been calibrated and evaluated were selected as study sites. Precipitation Runoff Modeling System is a deterministic, distributed parameter watershed model developed to evaluate the effects of various combinations of precipitation, temperature, and land use on streamflow and general basin hydrology. Output from five General Circulation Model simulations and four emission scenarios were used to develop an ensemble of climate-change scenarios for each basin. These ensembles were simulated with the corresponding Precipitation Runoff Modeling System model. This fact sheet summarizes the hydrologic effect and sensitivity of the Precipitation Runoff Modeling System simulations to climate change for the East River Basin, Colorado.
Watershed scale response to climate change--Naches River Basin, Washington
Mastin, Mark C.; Hay, Lauren E.; Markstrom, Steven L.
2012-01-01
Fourteen basins for which the Precipitation Runoff Modeling System has been calibrated and evaluated were selected as study sites. Precipitation Runoff Modeling System is a deterministic, distributed parameter watershed model developed to evaluate the effects of various combinations of precipitation, temperature, and land use on streamflow and general basin hydrology. Output from five General Circulation Model simulations and four emission scenarios were used to develop an ensemble of climate-change scenarios for each basin. These ensembles were simulated with the corresponding Precipitation Runoff Modeling System model. This fact sheet summarizes the hydrologic effect and sensitivity of the Precipitation Runoff Modeling System simulations to climate change for the Naches River Basin below Tieton River in Washington.
Watershed scale response to climate change--Flint River Basin, Georgia
Hay, Lauren E.; Markstrom, Steven L.
2012-01-01
Fourteen basins for which the Precipitation Runoff Modeling System has been calibrated and evaluated were selected as study sites. Precipitation Runoff Modeling System is a deterministic, distributed parameter watershed model developed to evaluate the effects of various combinations of precipitation, temperature, and land use on streamflow and general basin hydrology. Output from five General Circulation Model simulations and four emission scenarios were used to develop an ensemble of climate-change scenarios for each basin. These ensembles were simulated with the corresponding Precipitation Runoff Modeling System model. This fact sheet summarizes the hydrologic effect and sensitivity of the Precipitation Runoff Modeling System simulations to climate change for the Flint River Basin at Montezuma, Georgia.
NASA Astrophysics Data System (ADS)
White, Jeremy; Stengel, Victoria; Rendon, Samuel; Banta, John
2017-08-01
Computer models of hydrologic systems are frequently used to investigate the hydrologic response of land-cover change. If the modeling results are used to inform resource-management decisions, then providing robust estimates of uncertainty in the simulated response is an important consideration. Here we examine the importance of parameterization, a necessarily subjective process, on uncertainty estimates of the simulated hydrologic response of land-cover change. Specifically, we applied the soil water assessment tool (SWAT) model to a 1.4 km2 watershed in southern Texas to investigate the simulated hydrologic response of brush management (the mechanical removal of woody plants), a discrete land-cover change. The watershed was instrumented before and after brush-management activities were undertaken, and estimates of precipitation, streamflow, and evapotranspiration (ET) are available; these data were used to condition and verify the model. The role of parameterization in brush-management simulation was evaluated by constructing two models, one with 12 adjustable parameters (reduced parameterization) and one with 1305 adjustable parameters (full parameterization). Both models were subjected to global sensitivity analysis as well as Monte Carlo and generalized likelihood uncertainty estimation (GLUE) conditioning to identify important model inputs and to estimate uncertainty in several quantities of interest related to brush management. Many realizations from both parameterizations were identified as behavioral
in that they reproduce daily mean streamflow acceptably well according to Nash-Sutcliffe model efficiency coefficient, percent bias, and coefficient of determination. However, the total volumetric ET difference resulting from simulated brush management remains highly uncertain after conditioning to daily mean streamflow, indicating that streamflow data alone are not sufficient to inform the model inputs that influence the simulated outcomes of brush management the most. Additionally, the reduced-parameterization model grossly underestimates uncertainty in the total volumetric ET difference compared to the full-parameterization model; total volumetric ET difference is a primary metric for evaluating the outcomes of brush management. The failure of the reduced-parameterization model to provide robust uncertainty estimates demonstrates the importance of parameterization when attempting to quantify uncertainty in land-cover change simulations.
White, Jeremy; Stengel, Victoria G.; Rendon, Samuel H.; Banta, John
2017-01-01
Computer models of hydrologic systems are frequently used to investigate the hydrologic response of land-cover change. If the modeling results are used to inform resource-management decisions, then providing robust estimates of uncertainty in the simulated response is an important consideration. Here we examine the importance of parameterization, a necessarily subjective process, on uncertainty estimates of the simulated hydrologic response of land-cover change. Specifically, we applied the soil water assessment tool (SWAT) model to a 1.4 km2 watershed in southern Texas to investigate the simulated hydrologic response of brush management (the mechanical removal of woody plants), a discrete land-cover change. The watershed was instrumented before and after brush-management activities were undertaken, and estimates of precipitation, streamflow, and evapotranspiration (ET) are available; these data were used to condition and verify the model. The role of parameterization in brush-management simulation was evaluated by constructing two models, one with 12 adjustable parameters (reduced parameterization) and one with 1305 adjustable parameters (full parameterization). Both models were subjected to global sensitivity analysis as well as Monte Carlo and generalized likelihood uncertainty estimation (GLUE) conditioning to identify important model inputs and to estimate uncertainty in several quantities of interest related to brush management. Many realizations from both parameterizations were identified as behavioral in that they reproduce daily mean streamflow acceptably well according to Nash–Sutcliffe model efficiency coefficient, percent bias, and coefficient of determination. However, the total volumetric ET difference resulting from simulated brush management remains highly uncertain after conditioning to daily mean streamflow, indicating that streamflow data alone are not sufficient to inform the model inputs that influence the simulated outcomes of brush management the most. Additionally, the reduced-parameterization model grossly underestimates uncertainty in the total volumetric ET difference compared to the full-parameterization model; total volumetric ET difference is a primary metric for evaluating the outcomes of brush management. The failure of the reduced-parameterization model to provide robust uncertainty estimates demonstrates the importance of parameterization when attempting to quantify uncertainty in land-cover change simulations.
NASA Astrophysics Data System (ADS)
Salgado, F., II; Vélez, J.
2014-12-01
The catchment area is considered as the planning unit of natural resources where multiple factors as biotic, abiotic and human interact in a web of relationships making this unit a complex system. It is also considered by several authors as the most suitable unit for studying the water movement in nature and a tool for the understanding of natural processes. This research implements several hydrological models commonly used in water resources management and planning. It is the case of Témez, abcd, T, P, ARMA (1,1), and the lumped conceptual model TETIS. This latest model has been implemented in its distributed version for comparison purposes and it has been the basis for obtaining information, either through the reconstruction of natural flow series, filling missing data, forecasting or simulation. Hydrological models make use of lumped data of precipitation and potential evapotranspiration, as well as the following parameters for each one of the models which are related to soil properties as capillary storage capacity; the hydraulic saturated conductivity of the upper and lower layers of the soil, and residence times in the flow surface, subsurface layers and base flow. The calibration and the validation process of the models were performed making adjustments to the parameters listed above, taking into account the consistency in the efficiency indexes and the adjustment between the observed and simulated flows using the flow duration curve. The Nash index gave good results for the TETIS model and acceptable values were obtained to the other models. The calibration of the distributed model was complex and its results were similar to those obtained with the aggregated model. This comparison allows planners to use the hydrological multimodel techniques to reduce the uncertainty associated with planning processes in developing countries. Moreover, taking into account the information limitations required to implement a hydrological models, this application can be a good approach to water resources management. This project can be an important tool for decision making of different actors, such as local government, environmental agencies (CORTOLIMA), risk management office. Finally, the establishment of an improved network of hydro-meteorological stations that allow acquiring a better quality information.
Development of a new IHA method for impact assessment of climate change on flow regime
NASA Astrophysics Data System (ADS)
Yang, Tao; Cui, Tong; Xu, Chong-Yu; Ciais, Philippe; Shi, Pengfei
2017-09-01
The Indicators of Hydrologic Alteration (IHA) based on 33 parameters in five dimensions (flow magnitude, timing, duration, frequency and change rate) have been widely used in evaluation of hydrologic alteration in river systems. Yet, inter-correlation seriously exists amongst those parameters, therefore constantly underestimates or overestimates actual hydrological changes. Toward the end, a new method (Representative-IHA, RIHA) is developed by removing repetitions based on Criteria Importance Through Intercriteria Correlation (CRITIC) algorithm. RIHA is testified in evaluating effects of future climate change on hydro-ecology in the Niger River of Africa. Future flows are projected using three watershed hydrological models forced by five general circulation models (GCMs) under three Representative Concentration Pathways (RCPs) scenarios. Results show that: (1) RIHA is able to eliminate self-correlations amongst IHA indicators and identify the dominant characteristics of hydrological alteration in the Upper Niger River, (2) March streamflow, September streamflow, December streamflow, 30-day annual maximum, low pluses duration and fall rates tends to increase over the period 2010-2099, while July streamflow and 90-day annual minimum streamflow shows decrease, (3) the Niger River will undergo moderate flow alteration under RCP8.5 in 2050s and 2080s and low alteration other scenarios, (4) future flow alteration may induce increase water temperatures, reduction dissolved oxygen and food resources. Consequently, aquatic biodiversity and fish community of Upper Niger River would become more vulnerable in the future. The new method enables more scientific evaluation for multi-dimensional hydrologic alteration under the context of climate change.
Tradeoffs among watershed model calibration targets for parameter estimation
Hydrologic models are commonly calibrated by optimizing a single objective function target to compare simulated and observed flows, although individual targets are influenced by specific flow modes. Nash-Sutcliffe efficiency (NSE) emphasizes flood peaks in evaluating simulation f...
NASA Astrophysics Data System (ADS)
Fenicia, Fabrizio; Kavetski, Dmitri; Savenije, Hubert H. G.; Pfister, Laurent
2016-02-01
This paper explores the development and application of distributed hydrological models, focusing on the key decisions of how to discretize the landscape, which model structures to use in each landscape element, and how to link model parameters across multiple landscape elements. The case study considers the Attert catchment in Luxembourg—a 300 km2 mesoscale catchment with 10 nested subcatchments that exhibit clearly different streamflow dynamics. The research questions are investigated using conceptual models applied at hydrologic response unit (HRU) scales (1-4 HRUs) on 6 hourly time steps. Multiple model structures are hypothesized and implemented using the SUPERFLEX framework. Following calibration, space/time model transferability is tested using a split-sample approach, with evaluation criteria including streamflow prediction error metrics and hydrological signatures. Our results suggest that: (1) models using geology-based HRUs are more robust and capture the spatial variability of streamflow time series and signatures better than models using topography-based HRUs; this finding supports the hypothesis that, in the Attert, geology exerts a stronger control than topography on streamflow generation, (2) streamflow dynamics of different HRUs can be represented using distinct and remarkably simple model structures, which can be interpreted in terms of the perceived dominant hydrologic processes in each geology type, and (3) the same maximum root zone storage can be used across the three dominant geological units with no loss in model transferability; this finding suggests that the partitioning of water between streamflow and evaporation in the study area is largely independent of geology and can be used to improve model parsimony. The modeling methodology introduced in this study is general and can be used to advance our broader understanding and prediction of hydrological behavior, including the landscape characteristics that control hydrologic response, the dominant processes associated with different landscape types, and the spatial relations of catchment processes. This article was corrected on 14 MAR 2016. See the end of the full text for details.
Construction of a Distributed-network Digital Watershed Management System with B/S Techniques
NASA Astrophysics Data System (ADS)
Zhang, W. C.; Liu, Y. M.; Fang, J.
2017-07-01
Integrated watershed assessment tools for supporting land management and hydrologic research are becoming established tools in both basic and applied research. The core of these tools are mainly spatially distributed hydrologic models as they can provide a mechanism for investigating interactions among climate, topography, vegetation, and soil. However, the extensive data requirements and the difficult task of building input parameter files for driving these distributed models, have long been an obstacle to the timely and cost-effective use of such complex models by watershed managers and policy-makers. Recently, a web based geographic information system (GIS) tool to facilitate this process has been developed for a large watersheds of Jinghe and Weihe catchments located in the loess plateau of the Huanghe River basin in north-western China. A web-based GIS provides the framework within which spatially distributed data are collected and used to prepare model input files of these two watersheds and evaluate model results as well as to provide the various clients for watershed information inquiring, visualizing and assessment analysis. This Web-based Automated Geospatial Watershed Assessment GIS (WAGWA-GIS) tool uses widely available standardized spatial datasets that can be obtained via the internet oracle databank designed with association of Map Guide platform to develop input parameter files for online simulation at different spatial and temporal scales with Xing’anjiang and TOPMODEL that integrated with web-based digital watershed. WAGWA-GIS automates the process of transforming both digital data including remote sensing data, DEM, Land use/cover, soil digital maps and meteorological and hydrological station geo-location digital maps and text files containing meteorological and hydrological data obtained from stations of the watershed into hydrological models for online simulation and geo-spatial analysis and provides a visualization tool to help the user interpret results. The utility of WAGWA-GIS in jointing hydrologic and ecological investigations has been demonstrated on such diverse landscapes as Jinhe and Weihe watersheds, and will be extended to be utilized in the other watersheds in China step by step in coming years
Toward improved simulation of river operations through integration with a hydrologic model
Morway, Eric D.; Niswonger, Richard G.; Triana, Enrique
2016-01-01
Advanced modeling tools are needed for informed water resources planning and management. Two classes of modeling tools are often used to this end–(1) distributed-parameter hydrologic models for quantifying supply and (2) river-operation models for sorting out demands under rule-based systems such as the prior-appropriation doctrine. Within each of these two broad classes of models, there are many software tools that excel at simulating the processes specific to each discipline, but have historically over-simplified, or at worse completely neglected, aspects of the other. As a result, water managers reliant on river-operation models for administering water resources need improved tools for representing spatially and temporally varying groundwater resources in conjunctive-use systems. A new tool is described that improves the representation of groundwater/surface-water (GW-SW) interaction within a river-operations modeling context and, in so doing, advances evaluation of system-wide hydrologic consequences of new or altered management regimes.
NASA Astrophysics Data System (ADS)
Lana-Renault, Noemí; Karssenberg, Derek; Latron, Jérôme; Serrano, Mā Pilar; Regüés, David; Bierkens, Marc F. P.
2010-05-01
Mediterranean mountains have been largely affected by land abandonment and subsequent vegetation recovery, with a general expansion of shrubs and forests. Such a large scale land-cover change has modified the hydrological behavior of these areas, with significant impact on runoff production. Forecasting the trend of water resources under future re-vegetation scenarios is of paramount importance in Mediterranean basins, where water management relies on runoff generated in these areas. With this purpose, a modelling experiment was designed based on the information collected in two neighbouring research catchments with a different history of land use in the central Spanish Pyrenees. One (2.84 km2) is an abandoned agricultural catchment subjected to plant colonization and at present mainly covered by shrubs. The other (0.92 km2) is a catchment covered by dense natural forest, representative of undisturbed environments. Here we present the results of the analysis of the hydrological differences between the two catchments, and a description of the approach and results of the modelling experiment. In a statistical analysis of the field data, significant differences were observed in the streamflow response of the two catchments. The forested catchment recorded fewer floods per year compared to the old agricultural catchment, and its hydrological response was characterised by a marked seasonality, with autumn and spring as the only high flow periods. Stormflow was generally higher in the old agricultural catchment, especially for low to intermediate size events; only for large events the stormflow in the forested catchment was sometimes greater. Under drier conditions, the relative differences in the stormflow between the two catchments tended to increase whereas under wet conditions they tended to be similar. The forested catchment always reacted more slowly to rainfall, with lower peakflows (generally one order of magnitude lower) and longer recession limbs. The modelling experiment aims at separating the effect of land cover from other differences (e.g. catchment area, morphology) between the two catchments. This approach allows us to make general statements on effects of land cover, required for future predictions for larger areas. In our modelling experiment, a process-based distributed hydrological model is used for the two catchments. First, we calibrate the model using data from the two catchments until a single set of parameters valid for both is found. With this set of parameters and considering a given meteorological driver (due to their proximity, it can be considered the same for both catchments), runoff at the outlet of each catchment is simulated. Land cover is then swapped between catchments and a new runoff simulation is performed for each "swapped" catchment, using the same set of parameters and the same meteorological driver. The effects of the land cover change are determined by analysing the differences between the first and the "swapped" simulations. This study is based on an analysis of the hydrological differences of two catchments with different history of land use, and a comparative modelling experiment applied to them. Following this approach, we attempt to advance our understanding of the effects of land-use/land-cover changes in catchment hydrology and, ultimately, anticipate their hydrological consequences under a future re-vegetation scenario.
NASA Astrophysics Data System (ADS)
Chegwidden, O.; Nijssen, B.; Rupp, D. E.; Kao, S. C.; Clark, M. P.
2017-12-01
We describe results from a large hydrologic climate change dataset developed across the Pacific Northwestern United States and discuss how the analysis of those results can be seen as a framework for other large hydrologic ensemble investigations. This investigation will better inform future modeling efforts and large ensemble analyses across domains within and beyond the Pacific Northwest. Using outputs from the Coupled Model Intercomparison Project Phase 5 (CMIP5), we provide projections of hydrologic change for the domain through the end of the 21st century. The dataset is based upon permutations of four methodological choices: (1) ten global climate models (2) two representative concentration pathways (3) three meteorological downscaling methods and (4) four unique hydrologic model set-ups (three of which entail the same hydrologic model using independently calibrated parameter sets). All simulations were conducted across the Columbia River Basin and Pacific coastal drainages at a 1/16th ( 6 km) resolution and at a daily timestep. In total, the 172 distinct simulations offer an updated, comprehensive view of climate change projections through the end of the 21st century. The results consist of routed streamflow at 400 sites throughout the domain as well as distributed spatial fields of relevant hydrologic variables like snow water equivalent and soil moisture. In this presentation, we discuss the level of agreement with previous hydrologic projections for the study area and how these projections differ with specific methodological choices. By controlling for some methodological choices we can show how each choice affects key climatic change metrics. We discuss how the spread in results varies across hydroclimatic regimes. We will use this large dataset as a case study for distilling a wide range of hydroclimatological projections into useful climate change assessments.
Ensuring the consistancy of Flow Direction Curve reconstructions: the 'quantile solidarity' approach
NASA Astrophysics Data System (ADS)
Poncelet, Carine; Andreassian, Vazken; Oudin, Ludovic
2015-04-01
Flow Duration Curves (FDCs) are a hydrologic tool describing the distribution of streamflows at a catchment outlet. FDCs are usually used for calibration of hydrological models, managing water quality and classifying catchments, among others. For gauged catchments, empirical FDCs can be computed from streamflow records. For ungauged catchments, on the other hand, FDCs cannot be obtained from streamflow records and must therefore be obtained in another manner, for example through reconstructions. Regression-based reconstructions are methods relying on the evaluation of quantiles separately from catchments' attributes (climatic or physical features).The advantage of this category of methods is that it is informative about the processes and it is non-parametric. However, the large number of parameters required can cause unwanted artifacts, typically reconstructions that do not always produce increasing quantiles. In this paper we propose a new approach named Quantile Solidarity (QS), which is applied under strict proxy-basin test conditions (Klemes, 1986) to a set of 600 French catchments. Half of the catchments are considered as gauged and used to calibrate the regression and compute residuals of the regression. The QS approach consists in a three-step regionalization scheme, which first links quantile values to physical descriptors, then reduces the number of regression parameters and finally exploits the spatial correlation of the residuals. The innovation is the utilisation of the parameters continuity across the quantiles to dramatically reduce the number of parameters. The second half of catchment is used as an independent validation set over which we show that the QS approach ensures strictly growing FDC reconstructions in ungauged conditions. Reference: V. KLEMEŠ (1986) Operational testing of hydrological simulation models, Hydrological Sciences Journal, 31:1, 13-24
Constraining uncertainties in water supply reliability in a tropical data scarce basin
NASA Astrophysics Data System (ADS)
Kaune, Alexander; Werner, Micha; Rodriguez, Erasmo; de Fraiture, Charlotte
2015-04-01
Assessing the water supply reliability in river basins is essential for adequate planning and development of irrigated agriculture and urban water systems. In many cases hydrological models are applied to determine the surface water availability in river basins. However, surface water availability and variability is often not appropriately quantified due to epistemic uncertainties, leading to water supply insecurity. The objective of this research is to determine the water supply reliability in order to support planning and development of irrigated agriculture in a tropical, data scarce environment. The approach proposed uses a simple hydrological model, but explicitly includes model parameter uncertainty. A transboundary river basin in the tropical region of Colombia and Venezuela with an approximately area of 2100 km² was selected as a case study. The Budyko hydrological framework was extended to consider climatological input variability and model parameter uncertainty, and through this the surface water reliability to satisfy the irrigation and urban demand was estimated. This provides a spatial estimate of the water supply reliability across the basin. For the middle basin the reliability was found to be less than 30% for most of the months when the water is extracted from an upstream source. Conversely, the monthly water supply reliability was high (r>98%) in the lower basin irrigation areas when water was withdrawn from a source located further downstream. Including model parameter uncertainty provides a complete estimate of the water supply reliability, but that estimate is influenced by the uncertainty in the model. Reducing the uncertainty in the model through improved data and perhaps improved model structure will improve the estimate of the water supply reliability allowing better planning of irrigated agriculture and dependable water allocation decisions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manoli, Gabriele, E-mail: manoli@dmsa.unipd.it; Nicholas School of the Environment, Duke University, Durham, NC 27708; Rossi, Matteo
The modeling of unsaturated groundwater flow is affected by a high degree of uncertainty related to both measurement and model errors. Geophysical methods such as Electrical Resistivity Tomography (ERT) can provide useful indirect information on the hydrological processes occurring in the vadose zone. In this paper, we propose and test an iterated particle filter method to solve the coupled hydrogeophysical inverse problem. We focus on an infiltration test monitored by time-lapse ERT and modeled using Richards equation. The goal is to identify hydrological model parameters from ERT electrical potential measurements. Traditional uncoupled inversion relies on the solution of two sequentialmore » inverse problems, the first one applied to the ERT measurements, the second one to Richards equation. This approach does not ensure an accurate quantitative description of the physical state, typically violating mass balance. To avoid one of these two inversions and incorporate in the process more physical simulation constraints, we cast the problem within the framework of a SIR (Sequential Importance Resampling) data assimilation approach that uses a Richards equation solver to model the hydrological dynamics and a forward ERT simulator combined with Archie's law to serve as measurement model. ERT observations are then used to update the state of the system as well as to estimate the model parameters and their posterior distribution. The limitations of the traditional sequential Bayesian approach are investigated and an innovative iterative approach is proposed to estimate the model parameters with high accuracy. The numerical properties of the developed algorithm are verified on both homogeneous and heterogeneous synthetic test cases based on a real-world field experiment.« less
Integrated Site Investigation Methods and Modeling: Recent Developments at the BHRS (Invited)
NASA Astrophysics Data System (ADS)
Barrash, W.; Bradford, J. H.; Cardiff, M. A.; Dafflon, B.; Johnson, B. A.; Malama, B.; Thoma, M. J.
2010-12-01
The Boise Hydrogeophysical Research Site (BHRS) is a field-scale test facility in an unconfined aquifer with the goals of: developing cost-effective, non-invasive methods for quantitative characterization of heterogeneous aquifers using hydrologic and geophysical techniques; understanding fundamental relations and processes at multiple scales; and testing theories and models for groundwater flow and solute transport. The design of the BHRS supports a wide range of single-well, cross-hole, multiwell and multilevel hydrologic, geophysical, and combined hydrogeophysical experiments. New installations support direct and geophysical monitoring of hydrologic fluxes and states from the aquifer through the vadose zone to the atmosphere, including ET and river boundary behavior. Efforts to date have largely focused on establishing the 1D, 2D, and 3D distributions of geologic, hydrologic, and geophysical parameters which can then be used as the basis for testing methods to integrate direct and indirect data and invert for “known” parameter distributions, material boundaries, and tracer test or other system state behavior. Aquifer structure at the BHRS is hierarchical and includes layers and lenses that are recognized with geologic, hydrologic, radar, electrical, and seismic methods. Recent advances extend findings and method developments, but also highlight the need to examine assumptions and understand secular influences when designing and modeling field tests. Examples of advances and caveats include: New high-resolution 1D K profiles obtained from multi-level slug tests (inversion improves with priors for aquifer K, wellbore skin, and local presence of roots) show variable correlation with porosity and bring into question a Kozeny-Carman-type relation for much of the system. Modeling of 2D conservative tracer transport through a synthetic BHRS-like heterogeneous system shows the importance of including porosity heterogeneity (rather than assuming constant porosity for an aquifer) in addition to K heterogeneity. Similarly, 3D transient modeling of a conservative tracer test at the BHRS improves significantly with the use of prior geophysical information for layering and parameter structure and with use of both variable porosity and K. Joint inversion of multiple intersecting 2D radar tomograms gives well-resolved and consistent 3D distributions of porosity and unit boundaries that are largely correlated with neutron-porosity log and other site data, but the classic porosity-dielectric relation does not hold for one stratigraphic unit that also is recognized as anomalous with capacitive resistivity logs (i.e., cannot assume one petrophysical relation holds through a given aquifer system). Advances are being made in the new method of hydraulic tomography (2D with coincident electrical geophysics; 3D will be supplemented with priors); caveats here include the importance of boundary conditions and even ET effects. Also integrated data collection and modeling with multiple geophysical and hydrologic methods show promise for high-resolution quantification of vadose zone moisture and parameter distributions to improve variably saturated process models.
Spatial Estimation of Soil Moisture Using Synthetic Aperture Radar in Alaska
NASA Astrophysics Data System (ADS)
Meade, N. G.; Hinzman, L. D.; Kane, D. L.
1999-01-01
A spatially distributed Model of Arctic Thermal and Hydrologic processes (MATH) has been developed. One of the attributes of this model is the spatial and temporal prediction of soil moisture in the active layer. The spatially distributed output from this model required verification data obtained through remote sensing to assess performance at the watershed scale independently. Therefore, a neural network was trained to predict soil moisture contents near the ground surface. The input to train the neural network is synthetic aperture radar (SAR) pixel value, and field measurements of soil moisture, and vegetation, which were used as a surrogate for surface roughness. Once the network was trained, soil moisture predictions were made based on SAR pixel value and vegetation. These results were then used for comparison with results from the hydrologic model. The quality of neural network input was less than anticipated. Our digital elevation model (DEM) was not of high enough resolution to allow exact co-registration with soil moisture measurements; therefore, the statistical correlations were not as good as hoped. However, the spatial pattern of the SAR derived soil moisture contents compares favorably with the hydrologic MATH model results. Primary surface parameters that effect SAR include topography, surface roughness, vegetation cover and soil texture. Single parameters that are considered to influence SAR include incident angle of the radar, polarization of the radiation, signal strength and returning signal integration, to name a few. These factors influence the reflectance, but if one adequately quantifies the influences of terrain and roughness, it is considered possible to extract information on soil moisture from SAR imagery analysis and in turn use SAR imagery to validate hydrologic models
Validation of Storm Water Management Model Storm Control Measures Modules
NASA Astrophysics Data System (ADS)
Simon, M. A.; Platz, M. C.
2017-12-01
EPA's Storm Water Management Model (SWMM) is a computational code heavily relied upon by industry for the simulation of wastewater and stormwater infrastructure performance. Many municipalities are relying on SWMM results to design multi-billion-dollar, multi-decade infrastructure upgrades. Since the 1970's, EPA and others have developed five major releases, the most recent ones containing storm control measures modules for green infrastructure. The main objective of this study was to quantify the accuracy with which SWMM v5.1.10 simulates the hydrologic activity of previously monitored low impact developments. Model performance was evaluated with a mathematical comparison of outflow hydrographs and total outflow volumes, using empirical data and a multi-event, multi-objective calibration method. The calibration methodology utilized PEST++ Version 3, a parameter estimation tool, which aided in the selection of unmeasured hydrologic parameters. From the validation study and sensitivity analysis, several model improvements were identified to advance SWMM LID Module performance for permeable pavements, infiltration units and green roofs, and these were performed and reported herein. Overall, it was determined that SWMM can successfully simulate low impact development controls given accurate model confirmation, parameter measurement, and model calibration.
JAMS - a software platform for modular hydrological modelling
NASA Astrophysics Data System (ADS)
Kralisch, Sven; Fischer, Christian
2015-04-01
Current challenges of understanding and assessing the impacts of climate and land use changes on environmental systems demand for an ever-increasing integration of data and process knowledge in corresponding simulation models. Software frameworks that allow for a seamless creation of integrated models based on less complex components (domain models, process simulation routines) have therefore gained increasing attention during the last decade. JAMS is an Open-Source software framework that has been especially designed to cope with the challenges of eco-hydrological modelling. This is reflected by (i) its flexible approach for representing time and space, (ii) a strong separation of process simulation components from the declarative description of more complex models using domain specific XML, (iii) powerful analysis and visualization functions for spatial and temporal input and output data, and (iv) parameter optimization and uncertainty analysis functions commonly used in environmental modelling. Based on JAMS, different hydrological and nutrient-transport simulation models were implemented and successfully applied during the last years. We will present the JAMS core concepts and give an overview of models, simulation components and support tools available for that framework. Sample applications will be used to underline the advantages of component-based model designs and to show how JAMS can be used to address the challenges of integrated hydrological modelling.
NASA Astrophysics Data System (ADS)
Chung, Sang Yong; Senapathi, Venkatramanan; Sekar, Selvam; Kim, Tae Hyung
2018-02-01
Monitoring and time-series analysis of the hydrological parameters electrical conductivity (EC), water pressure, precipitation and tide were carried out, to understand the characteristics of the parameter variations and their correlations at a coastal area in Busan, South Korea. The monitoring data were collected at a sharp interface between freshwater and saline water at the depth of 25 m below ground. Two well-logging profiles showed that seawater intrusion has largely expanded (progressed inland), and has greatly affected the groundwater quality in a coastal aquifer of tuffaceous sedimentary rock over a 9-year period. According to the time series analyses, the periodograms of the hydrological parameters present very similar trends to the power spectral densities (PSD) of the hydrological parameters. Autocorrelation functions (ACF) and partial autocorrelation functions (PACF) of the hydrological parameters were produced to evaluate their self-correlations. The ACFs of all hydrologic parameters showed very good correlation over the entire time lag, but the PACF revealed that the correlations were good only at time lag 1. Crosscorrelation functions (CCF) were used to evaluate the correlations between the hydrological parameters and the characteristics of seawater intrusion in the coastal aquifer system. The CCFs showed that EC had a close relationship with water pressure and precipitation rather than tide. The CCFs of water pressure with tide and precipitation were in inverse proportion, and the CCF of water pressure with precipitation was larger than that with tide.
Information-Theoretic Benchmarking of Land Surface Models
NASA Astrophysics Data System (ADS)
Nearing, Grey; Mocko, David; Kumar, Sujay; Peters-Lidard, Christa; Xia, Youlong
2016-04-01
Benchmarking is a type of model evaluation that compares model performance against a baseline metric that is derived, typically, from a different existing model. Statistical benchmarking was used to qualitatively show that land surface models do not fully utilize information in boundary conditions [1] several years before Gong et al [2] discovered the particular type of benchmark that makes it possible to *quantify* the amount of information lost by an incorrect or imperfect model structure. This theoretical development laid the foundation for a formal theory of model benchmarking [3]. We here extend that theory to separate uncertainty contributions from the three major components of dynamical systems models [4]: model structures, model parameters, and boundary conditions describe time-dependent details of each prediction scenario. The key to this new development is the use of large-sample [5] data sets that span multiple soil types, climates, and biomes, which allows us to segregate uncertainty due to parameters from the two other sources. The benefit of this approach for uncertainty quantification and segregation is that it does not rely on Bayesian priors (although it is strictly coherent with Bayes' theorem and with probability theory), and therefore the partitioning of uncertainty into different components is *not* dependent on any a priori assumptions. We apply this methodology to assess the information use efficiency of the four land surface models that comprise the North American Land Data Assimilation System (Noah, Mosaic, SAC-SMA, and VIC). Specifically, we looked at the ability of these models to estimate soil moisture and latent heat fluxes. We found that in the case of soil moisture, about 25% of net information loss was from boundary conditions, around 45% was from model parameters, and 30-40% was from the model structures. In the case of latent heat flux, boundary conditions contributed about 50% of net uncertainty, and model structures contributed about 40%. There was relatively little difference between the different models. 1. G. Abramowitz, R. Leuning, M. Clark, A. Pitman, Evaluating the performance of land surface models. Journal of Climate 21, (2008). 2. W. Gong, H. V. Gupta, D. Yang, K. Sricharan, A. O. Hero, Estimating Epistemic & Aleatory Uncertainties During Hydrologic Modeling: An Information Theoretic Approach. Water Resources Research 49, 2253-2273 (2013). 3. G. S. Nearing, H. V. Gupta, The quantity and quality of information in hydrologic models. Water Resources Research 51, 524-538 (2015). 4. H. V. Gupta, G. S. Nearing, Using models and data to learn: A systems theoretic perspective on the future of hydrological science. Water Resources Research 50(6), 5351-5359 (2014). 5. H. V. Gupta et al., Large-sample hydrology: a need to balance depth with breadth. Hydrology and Earth System Sciences Discussions 10, 9147-9189 (2013).
USDA-ARS?s Scientific Manuscript database
Runoff travel time, which is a function of watershed and storm characteristics, is an important parameter affecting the prediction accuracy of hydrologic models. Although, time of concentration (tc) is a most widely used time parameter, it has multiple conceptual and computational definitions. Most ...
NASA Astrophysics Data System (ADS)
Brannan, K. M.; Somor, A.
2016-12-01
A variety of statistics are used to assess watershed model performance but these statistics do not directly answer the question: what is the uncertainty of my prediction. Understanding predictive uncertainty is important when using a watershed model to develop a Total Maximum Daily Load (TMDL). TMDLs are a key component of the US Clean Water Act and specify the amount of a pollutant that can enter a waterbody when the waterbody meets water quality criteria. TMDL developers use watershed models to estimate pollutant loads from nonpoint sources of pollution. We are developing a TMDL for bacteria impairments in a watershed in the Coastal Range of Oregon. We setup an HSPF model of the watershed and used the calibration software PEST to estimate HSPF hydrologic parameters and then perform predictive uncertainty analysis of stream flow. We used Monte-Carlo simulation to run the model with 1,000 different parameter sets and assess predictive uncertainty. In order to reduce the chance of specious parameter sets, we accounted for the relationships among parameter values by using mathematically-based regularization techniques and an estimate of the parameter covariance when generating random parameter sets. We used a novel approach to select flow data for predictive uncertainty analysis. We set aside flow data that occurred on days that bacteria samples were collected. We did not use these flows in the estimation of the model parameters. We calculated a percent uncertainty for each flow observation based 1,000 model runs. We also used several methods to visualize results with an emphasis on making the data accessible to both technical and general audiences. We will use the predictive uncertainty estimates in the next phase of our work, simulating bacteria fate and transport in the watershed.
Optimizing Use of Water Management Systems during Changes of Hydrological Conditions
NASA Astrophysics Data System (ADS)
Výleta, Roman; Škrinár, Andrej; Danáčová, Michaela; Valent, Peter
2017-10-01
When designing the water management systems and their components, there is a need of more detail research on hydrological conditions of the river basin, runoff of which creates the main source of water in the reservoir. Over the lifetime of the water management systems the hydrological time series are never repeated in the same form which served as the input for the design of the system components. The design assumes the observed time series to be representative at the time of the system use. However, it is rather unrealistic assumption, because the hydrological past will not be exactly repeated over the design lifetime. When designing the water management systems, the specialists may occasionally face the insufficient or oversized capacity design, possibly wrong specification of the management rules which may lead to their non-optimal use. It is therefore necessary to establish a comprehensive approach to simulate the fluctuations in the interannual runoff (taking into account the current dry and wet periods) in the form of stochastic modelling techniques in water management practice. The paper deals with the methodological procedure of modelling the mean monthly flows using the stochastic Thomas-Fiering model, while modification of this model by Wilson-Hilferty transformation of independent random number has been applied. This transformation usually applies in the event of significant asymmetry in the observed time series. The methodological procedure was applied on the data acquired at the gauging station of Horné Orešany in the Parná Stream. Observed mean monthly flows for the period of 1.11.1980 - 31.10.2012 served as the model input information. After extrapolation the model parameters and Wilson-Hilferty transformation parameters the synthetic time series of mean monthly flows were simulated. Those have been compared with the observed hydrological time series using basic statistical characteristics (e. g. mean, standard deviation and skewness) for testing the quality of the model simulation. The synthetic hydrological series of monthly flows were created having the same statistical properties as the time series observed in the past. The compiled model was able to take into account the diversity of extreme hydrological situations in a form of synthetic series of mean monthly flows, while the occurrence of a set of flows was confirmed, which could and may occur in the future. The results of stochastic modelling in the form of synthetic time series of mean monthly flows, which takes into account the seasonal fluctuations of runoff within the year, could be applicable in engineering hydrology (e. g. for optimum use of the existing water management system that is related to reassessment of economic risks of the system).
Hydrologic modeling of Guinale River Basin using HEC-HMS and synthetic aperture radar
NASA Astrophysics Data System (ADS)
Bien, Ferdinand E.; Plopenio, Joanaviva C.
2017-09-01
This paper presents the methods and results of hydrologic modeling of Guinale river basin through the use of HEC-HMS software and Synthetic Aperture Radar Digital Elevation Model (SAR DEM). Guinale River Basin is located in the province of Albay, Philippines which is one of the river basins covered by the Ateneo de Naga University (ADNU) Phil-LiDAR 1. This research project was funded by the Department of Science and Technology (DOST) through the Philippine Council for Industry, Energy and Emerging Technology Research and Development (PCIEERD). Its objectives are to simulate the hydrologic model of Guinale River basin using HEC-HMS software and SAR DEM. Its basin covers an area of 165.395 sq.km. and the hydrologic model was calibrated using the storm event typhoon Nona (international name Melor). Its parameter had undergone a series of optimization processes of HEC-HMS software in order to produce an acceptable level of model efficiency. The Nash-Sutcliffe (E), Percent Bias and Standard Deviation Ratio were used to measure the model efficiency, giving values of 0.880, 0.260 and 0.346 respectively which resulted to a "very good" performance rating of the model. The flood inundation model was simulated using Legazpi Rainfall Intensity Duration Frequency Curves (RIDF) and HEC-RAS software developed by the US Army corps of Engineers (USACE). This hydrologic model will provide the Municipal Disaster Risk Reduction Management Office (MDRRMO), Local Government units (LGUs) and the community a tool for the prediction of runoff in the area.
Modeling Hydrological Processes in New Mexico-Texas-Mexico Border Region
NASA Astrophysics Data System (ADS)
Samimi, M.; Jahan, N. T.; Mirchi, A.
2017-12-01
Efficient allocation of limited water resources to competing use sectors is becoming increasingly critical for water-scarce regions. Understanding natural and anthropogenic processes affecting hydrological processes is key for efficient water management. We used Soil and Water Assessment Tool (SWAT) to model governing hydrologic processes in New Mexico-Texas-Mexico border region. Our study area includes the Elephant Butte Irrigation District (EBID), which manages water resources to support irrigated agriculture. The region is facing water resources challenges associated with chronic water scarcity, over-allocation, diminishing water supply, and growing water demand. Agricultural activities rely on conjunctive use of Rio Grande River water supply and groundwater withdrawal. The model is calibrated and validated under baseline conditions in the arid and semi-arid climate in order to evaluate potential impacts of climate change on the agricultural sector and regional water availability. We highlight the importance of calibrating the crop growth parameters, evapotranspiration, and groundwater recharge to provide a realistic representation of the hydrological processes and water availability in the region. Furthermore, limitations of the model and its utility to inform stakeholders will be discussed.
Modelling hydrology of a single bioretention system with HYDRUS-1D.
Meng, Yingying; Wang, Huixiao; Chen, Jiangang; Zhang, Shuhan
2014-01-01
A study was carried out on the effectiveness of bioretention systems to abate stormwater using computer simulation. The hydrologic performance was simulated for two bioretention cells using HYDRUS-1D, and the simulation results were verified by field data of nearly four years. Using the validated model, the optimization of design parameters of rainfall return period, filter media depth and type, and surface area was discussed. And the annual hydrologic performance of bioretention systems was further analyzed under the optimized parameters. The study reveals that bioretention systems with underdrains and impervious boundaries do have some detention capability, while their total water retention capability is extremely limited. Better detention capability is noted for smaller rainfall events, deeper filter media, and design storms with a return period smaller than 2 years, and a cost-effective filter media depth is recommended in bioretention design. Better hydrologic effectiveness is achieved with a higher hydraulic conductivity and ratio of the bioretention surface area to the catchment area, and filter media whose conductivity is between the conductivity of loamy sand and sandy loam, and a surface area of 10% of the catchment area is recommended. In the long-term simulation, both infiltration volume and evapotranspiration are critical for the total rainfall treatment in bioretention systems.
Parameter estimation of variable-parameter nonlinear Muskingum model using excel solver
NASA Astrophysics Data System (ADS)
Kang, Ling; Zhou, Liwei
2018-02-01
Abstract . The Muskingum model is an effective flood routing technology in hydrology and water resources Engineering. With the development of optimization technology, more and more variable-parameter Muskingum models were presented to improve effectiveness of the Muskingum model in recent decades. A variable-parameter nonlinear Muskingum model (NVPNLMM) was proposed in this paper. According to the results of two real and frequently-used case studies by various models, the NVPNLMM could obtain better values of evaluation criteria, which are used to describe the superiority of the estimated outflows and compare the accuracies of flood routing using various models, and the optimal estimated outflows by the NVPNLMM were closer to the observed outflows than the ones by other models.
NASA Astrophysics Data System (ADS)
Sinha, Sumit; Rode, Michael; Kumar, Rohini; Yang, Xiaoqiang; Samaniego, Luis; Borchardt, Dietrich
2016-04-01
Precise measurements of where, when and how much denitrification occurs on the basis of measurements alone persist to be vexing and intractable research problem at all spatial and temporal scales. As a result, models have become essential and vital tools for furthering our current understanding of the processes that control denitrification on catchment scale. Emplacement of Water Framework Directive (WFD) and continued efforts in improving water treatment facilities has resulted in alleviating the problems associated with point sources of pollution. However, the problem of eutrophication still persists and is primarily associated with the diffused sources of pollution originating from agricultural area. In this study, the nitrate transport and reaction (NTR) routines are developed inside the distributed mesoscale Hydrological Model (mHM www.ufz.de/mhm) which is a fully distributed hydrological model with a novel parameter regionalization scheme (Samaniego et al. 2010; Kumar et al. 2013) and has been applied to whole Europe (Rakovec et al. 2016) and numerous catchments worldwide. The aforementioned NTR model is applied to a mesoscale river basin, Selke (463 km2) located in central Germany. The NTR model takes in account the critical and pertinent processes like transformation in vadose zone, atmospheric deposition, plant uptake, instream denitrification and also simulates the process of manure and fertilizer application. Both streamflow routines and the NTR model are run on daily time steps. The split-sample approach was used for model calibration (1994-1999) and validation (2000-2004). Flow dynamics at three gauging stations located inside this catchment are successfully captured by the model with consistently high Nash-Sutcliffe Efficiency (NSE) of at least 0.8. Regarding nitrate estimates, the NSE values are greater than 0.7 for both validation and calibration periods. Finally, the NTR model is used for identifying the critical source areas (CSAs) that contribute significantly to nutrient pollution due to different local hydrological and topographical conditions. Postulations for a comprehensive sensitivity analysis and further regionalization of key parameters of the NTR model are also investigated. References: Kumar, R., L. Samaniego, and S. Attinger (2013a), Implications of distributed hydrologic model parameterization on water fluxes at multiple scales and locations, Water Resour. Res., 49, 360-379, doi:10.1029/2012WR012195. Samaniego, L., R. Kumar, and S. Attinger (2010), Multiscale parameter regionalization of a grid-based hydrologic model at the mesoscale, Water Resour. Res., 46, W05523, doi:10.1029/2008WR007327. Rakovec, O., Kumar, R., Mai, J., Cuntz, M., Thober, S., Zink, M., Attinger, S., Schäfer, D., Schrön, M., Samaniego, L. (2016): Multiscale and multivariate evaluation of water fluxes and states over European river basins, J. Hydrometeorol., 17, 287-307, doi: 10.1175/JHM-D-15-0054.1.
NASA Astrophysics Data System (ADS)
Hulsman, P.; Bogaard, T.; Savenije, H. H. G.
2016-12-01
In hydrology and water resources management, discharge is the main time series for model calibration. Rating curves are needed to derive discharge from continuously measured water levels. However, assuring their quality is demanding due to dynamic changes and problems in accurately deriving discharge at high flows. This is valid everywhere, but even more in African socio-economic context. To cope with these uncertainties, this study proposes to use water levels instead of discharge data for calibration. Also uncertainties in rainfall measurements, especially the spatial heterogeneity needs to be considered. In this study, the semi-distributed rainfall runoff model FLEX-Topo was applied to the Mara River Basin. In this model seven sub-basins were distinguished and four hydrological response units with each a unique model structure based on the expected dominant flow processes. Parameter and process constrains were applied to exclude unrealistic results. To calibrate the model, the water levels were back-calculated from modelled discharges, using cross-section data and the Strickler formula calibrating parameter `k•s1/2', and compared to measured water levels. The model simulated the water depths well for the entire basin and the Nyangores sub-basin in the north. However, the calibrated and observed rating curves differed significantly at the basin outlet, probably due to uncertainties in the measured discharge, but at Nyangores they were almost identical. To assess the effect of rainfall uncertainties on the hydrological model, the representative rainfall in each sub-basin was estimated with three different methods: 1) single station, 2) average precipitation, 3) areal sub-division using Thiessen polygons. All three methods gave on average similar results, but method 1 resulted in more flashy responses, method 2 dampened the water levels due to averaging the rainfall and method 3 was a combination of both. In conclusion, in the case of unreliable rating curves, water level data can be used instead and a new rating curve can be calibrated. The effect of rainfall uncertainties on the hydrological model was insignificant.
Hydrological Modeling of the Jiaoyi Watershed (China) Using HSPF Model
Yan, Chang-An; Zhang, Wanchang; Zhang, Zhijie
2014-01-01
A watershed hydrological model, hydrological simulation program-Fortran (HSPF), was applied to simulate the spatial and temporal variation of hydrological processes in the Jiaoyi watershed of Huaihe River Basin, the heaviest shortage of water resources and polluted area in China. The model was calibrated using the years 2001–2004 and validated with data from 2005 to 2006. Calibration and validation results showed that the model generally simulated mean monthly and daily runoff precisely due to the close matching hydrographs between simulated and observed runoff, as well as the excellent evaluation indicators such as Nash-Sutcliffe efficiency (NSE), coefficient of correlation (R 2), and the relative error (RE). The similar simulation results between calibration and validation period showed that all the calibrated parameters had a certain representation in Jiaoyi watershed. Additionally, the simulation in rainy months was more accurate than the drought months. Another result in this paper was that HSPF was also capable of estimating the water balance components reasonably and realistically in space through the whole watershed. The calibrated model can be used to explore the effects of climate change scenarios and various watershed management practices on the water resources and water environment in the basin. PMID:25013863
Modelling runoff in the northern boreal forest using SLURP with snow ripening and frozen ground
NASA Astrophysics Data System (ADS)
St. Laurent, M. E.; Valeo, C.
2003-04-01
Northern Manitoba is rich in water resources and the management of this water resource is affected by the hydrological processes taking place in the primarily Boreal forested, flat landscape of the region. This work provides insight into large-scale hydrological modelling in this area using the SLURP hydrological model while incorporating the effects of ripening snow and frozen ground. SLURP was applied to two large watersheds in northern Manitoba. The Taylor River watershed (800 square-km) and the Burntwood River watershed (7000 square-km) were used as study boundaries for the calibration and validation of the original SLURP model (version 12.2) and a modified version that incorporated frozen ground and ripening snow. Digital Elevation Models were derived with ARC/INFO's TOPOGRID function, and in conjunction with digital land cover data, ASAs and their associated physiographic data were derived using SLURPView. A thorough literature review of boreal forest hydrology provided initial parameter estimates. Daily data from 1984 to 1998 were used to calibrate and verify the original model under a variety of meteorological conditions. Calibration on the Taylor River watershed produced respectable results, and model verification efficiencies over the 15 year period were quite good. Verification performance of the Taylor parameter set on the Burntwood River watershed was not acceptable, but only modifications to the evapotranspiration parameters were required to bring model performance up to acceptable levels. Comparisons between observed and computed hydrographs identified problems with spring snowmelt timing, peak and volume prediction. This may be attributed to a lack of consideration for frozen ground in the model, and the use of the temperature index method for snowmelt. Simulations that incorporated a widely used frozen ground infiltration model into SLURP did not improve model performance. However, when SLURP's snowmelt routine was modified to consider the effects of snow ripening in the snowmelt process, model predictions of spring freshet volume and timing were greatly improved. The modified SLURP model depleted the snowpack over shorter periods of time and thus, significantly raised model efficiencies in the snowmelt period for 12 of the 15 years. Snowmelt accumulation curves developed for the original and modified model were found to be landcover dependent. The Muskeg and Coniferous landcovers were found to have the smallest changes in snow depletion periods between the original and modified SLURP models.
NASA Astrophysics Data System (ADS)
Hulsman, Petra; Savenije, Hubert; Bogaard, Thom
2017-04-01
In hydrology and water resources management, precipitation and discharge are the main time series for hydrological modelling. However, in African river catchments, the quantity and quality of the available precipitation stations and discharge measurements are unfortunately often inadequate for reliable hydrological modelling. To cope with these uncertainties, this study proposes to calibrate on water levels and to constrain the model using the Normalised Difference Infrared Index (NDII) as a proxy for root zone moisture stress. With the NDII, the leaf water content can be monitored. Previous studies related the NDII to the equivalent water thickness (EWT) of leaves, which is used to determine the vegetation water content (VWC). As the water content in the leaves is related to the water content in the root zone, the NDII can also be used as indicator of the soil moisture content in the root zone. In previous studies it was found that the root zone moisture content is exponentially correlated to the NDII during periods of moisture stress. In this study, the semi-distributed rainfall runoff model FLEX-Topo has been applied to the Mara River Basin. In this model seven sub-basins are distinguished and four hydrological response units with each a unique model structure based on the expected dominant flow processes. To calibrate the model, the water levels have been back-calculated from modelled discharges, using cross-section data and the Strickler formula calibrating parameter 'k•s1/2', and compared to measured water levels. In addition, the correlation between the NDII and root zone moisture content has been analysed for this river basin for each sub-catchment and hydrological response unit. Also, the application of the NDII as model constraint or for calibration has been analysed.
NASA Astrophysics Data System (ADS)
Seiller, G.; Roy, R.; Anctil, F.
2017-04-01
Uncertainties associated to the evaluation of the impacts of climate change on water resources are broad, from multiple sources, and lead to diagnoses sometimes difficult to interpret. Quantification of these uncertainties is a key element to yield confidence in the analyses and to provide water managers with valuable information. This work specifically evaluates the influence of hydrological modeling calibration metrics on future water resources projections, on thirty-seven watersheds in the Province of Québec, Canada. Twelve lumped hydrologic models, representing a wide range of operational options, are calibrated with three common objective functions derived from the Nash-Sutcliffe efficiency. The hydrologic models are forced with climate simulations corresponding to two RCP, twenty-nine GCM from CMIP5 (Coupled Model Intercomparison Project phase 5) and two post-treatment techniques, leading to future projections in the 2041-2070 period. Results show that the diagnosis of the impacts of climate change on water resources are quite affected by the hydrologic models selection and calibration metrics. Indeed, for the four selected hydrological indicators, dedicated to water management, parameters from the three objective functions can provide different interpretations in terms of absolute and relative changes, as well as projected changes direction and climatic ensemble consensus. The GR4J model and a multimodel approach offer the best modeling options, based on calibration performance and robustness. Overall, these results illustrate the need to provide water managers with detailed information on relative changes analysis, but also absolute change values, especially for hydrological indicators acting as security policy thresholds.
Multi-metric calibration of hydrological model to capture overall flow regimes
NASA Astrophysics Data System (ADS)
Zhang, Yongyong; Shao, Quanxi; Zhang, Shifeng; Zhai, Xiaoyan; She, Dunxian
2016-08-01
Flow regimes (e.g., magnitude, frequency, variation, duration, timing and rating of change) play a critical role in water supply and flood control, environmental processes, as well as biodiversity and life history patterns in the aquatic ecosystem. The traditional flow magnitude-oriented calibration of hydrological model was usually inadequate to well capture all the characteristics of observed flow regimes. In this study, we simulated multiple flow regime metrics simultaneously by coupling a distributed hydrological model with an equally weighted multi-objective optimization algorithm. Two headwater watersheds in the arid Hexi Corridor were selected for the case study. Sixteen metrics were selected as optimization objectives, which could represent the major characteristics of flow regimes. Model performance was compared with that of the single objective calibration. Results showed that most metrics were better simulated by the multi-objective approach than those of the single objective calibration, especially the low and high flow magnitudes, frequency and variation, duration, maximum flow timing and rating. However, the model performance of middle flow magnitude was not significantly improved because this metric was usually well captured by single objective calibration. The timing of minimum flow was poorly predicted by both the multi-metric and single calibrations due to the uncertainties in model structure and input data. The sensitive parameter values of the hydrological model changed remarkably and the simulated hydrological processes by the multi-metric calibration became more reliable, because more flow characteristics were considered. The study is expected to provide more detailed flow information by hydrological simulation for the integrated water resources management, and to improve the simulation performances of overall flow regimes.
Global operational hydrological forecasts through eWaterCycle
NASA Astrophysics Data System (ADS)
van de Giesen, Nick; Bierkens, Marc; Donchyts, Gennadii; Drost, Niels; Hut, Rolf; Sutanudjaja, Edwin
2015-04-01
Central goal of the eWaterCycle project (www.ewatercycle.org) is the development of an operational hyper-resolution hydrological global model. This model is able to produce 14 day ensemble forecasts based on a hydrological model and operational weather data (presently NOAA's Global Ensemble Forecast System). Special attention is paid to prediction of situations in which water related issues are relevant, such as floods, droughts, navigation, hydropower generation, and irrigation stress. Near-real time satellite data will be assimilated in the hydrological simulations, which is a feature that will be presented for the first time at EGU 2015. First, we address challenges that are mainly computer science oriented but have direct practical hydrological implications. An important feature in this is the use of existing standards and open-source software to the maximum extent possible. For example, we use the Community Surface Dynamics Modeling System (CSDMS) approach to coupling models (Basic Model Interface (BMI)). The hydrological model underlying the project is PCR-GLOBWB, built by Utrecht University. This is the motor behind the predictions and state estimations. Parts of PCR-GLOBWB have been re-engineered to facilitate running it in a High Performance Computing (HPC) environment, run parallel on multiple nodes, as well as to use BMI. Hydrological models are not very CPU intensive compared to, say, atmospheric models. They are, however, memory hungry due to the localized processes and associated effective parameters. To accommodate this memory need, especially in an ensemble setting, a variation on the traditional Ensemble Kalman Filter was developed that needs much less on-chip memory. Due to the operational nature, the coupling of the hydrological model with hydraulic models is very important. The idea is not to run detailed hydraulic routing schemes over the complete globe but to have on-demand simulation prepared off-line with respect to topography and parameterizations. This allows for very detailed simulations at hectare to meter scales, where and when this is needed. At EGU 2015, the operational global eWaterCycle model will be presented for the first time, including forecasts at high resolution, the innovative data assimilation approach, and on-demand coupling with hydraulic models.
R-HyMOD: an R-package for the hydrological model HyMOD
NASA Astrophysics Data System (ADS)
Baratti, Emanuele; Montanari, Alberto
2015-04-01
A software code for the implementation of the HyMOD hydrological model [1] is presented. HyMOD is a conceptual lumped rainfall-runoff model that is based on the probability-distributed soil storage capacity principle introduced by R. J. Moore 1985 [2]. The general idea behind this model is to describe the spatial variability of some process parameters as, for instance, the soil structure or the water storage capacities, through probability distribution functions. In HyMOD, the rainfall-runoff process is represented through a nonlinear tank connected with three identical linear tanks in parallel representing the surface flow and a slow-flow tank representing groundwater flow. The model requires the optimization of five parameters: Cmax (the maximum storage capacity within the watershed), β (the degree of spatial variability of the soil moisture capacity within the watershed), α (a factor for partitioning the flow between two series of tanks) and the two residence time parameters of quick-flow and slow-flow tanks, kquick and kslow respectively. Given its relatively simplicity but robustness, the model is widely used in the literature. The input data consist of precipitation and potential evapotranspiration at the given time scale. The R-HyMOD package is composed by a 'canonical' R-function of HyMOD and a fast FORTRAN implementation. The first one can be easily modified and can be used, for instance, for educational purposes; the second part combines the R user friendly interface with a fast processing unit. [1] Boyle D.P. (2000), Multicriteria calibration of hydrological models, Ph.D. dissertation, Dep. of Hydrol. and Water Resour., Univ of Arizona, Tucson. [2] Moore, R.J., (1985), The probability-distributed principle and runoff production at point and basin scale, Hydrol. Sci. J., 30(2), 273-297.
Jódar, J; Carpintero, E; Martos-Rosillo, S; Ruiz-Constán, A; Marín-Lechado, C; Cabrera-Arrabal, J A; Navarrete-Mazariegos, E; González-Ramón, A; Lambán, L J; Herrera, C; González-Dugo, M P
2018-06-01
Assessing water resources in high mountain semi-arid zones is essential to be able to manage and plan the use of these resources downstream where they are used. However, it is not easy to manage an unknown resource, a situation that is common in the vast majority of high mountain hydrological basins. In the present work, the discharge flow in an ungauged basin is estimated using the hydrological parameters of an HBV (Hydrologiska Byråns Vattenbalansavdelning) model calibrated in a "neighboring gauged basin". The results of the hydrological simulation obtained in terms of average annual discharge are validated using the VI-ETo model. This model relates a simple hydrological balance to the discharge of the basin with the evaporation of the vegetal cover of the soil, and this to the SAVI index, which is obtained remotely by means of satellite images. The results of the modeling for both basins underscore the role of the underground discharge in the total discharge of the hydrological system. This is the result of the deglaciation process suffered by the high mountain areas of the Mediterranean arc. This process increases the infiltration capacity of the terrain, the recharge and therefore the discharge of the aquifers that make up the glacial and periglacial sediments that remain exposed on the surface as witnesses of what was the last glaciation. Copyright © 2017. Published by Elsevier B.V.
Boyce, Scott E.; Hanson, Randall T.
2015-01-01
The MODFLOW-2005 (MF) family of hydrologic simulators has diverged into multiple versions designed for specific needs, thus limiting their use to their respective designs. The One-Water Hydrologic Flow Model (MF-OWHM v1.0) is an integrated hydrologic flow model that is an enhanced fusion of multiple MF versions. While maintaining compatibility with existing MF versions, MF-OWHM includes: linkages for coupled heads, flows, and deformation; facilitation of self-updating models, additional observation and parameter options for higher-order calibrations; and redesigned code for faster simulations. This first release of MF-OWHM incorporates MODFLOW-2005 and the Farm Process (MF-FMP2), with new features (FMP3), combined with Local Grid Refinement (MF-LGR), Streamflow Routing (SFR), Surfacewater Routing Process (SWR), Seawater Intrusion (SWI), Riparian Evapotranspiration (RIP-ET), the Newton Formulation (MF-NWT), and more. MF-OWHM represents a complete integrated hydrologic model that fully links the movement and use of groundwater, surface water, and imported water for consumption by agriculture and natural vegetation on the landscape, and for potable and other uses. By retaining and keeping track of the water during simulation of the hydrosphere, MF-OWHM accounts for “all of the water everywhere and all of the time.” This provides the foundation needed to address integrated hydrologic problems such as evaluation of conjunctive-use alternatives and sustainability analysis, including potential adaptation and mitigation strategies, and best management practices.
Hydrological analysis in R: Topmodel and beyond
NASA Astrophysics Data System (ADS)
Buytaert, W.; Reusser, D.
2011-12-01
R is quickly gaining popularity in the hydrological sciences community. The wide range of statistical and mathematical functionality makes it an excellent tool for data analysis, modelling and uncertainty analysis. Topmodel was one of the first hydrological models being implemented as an R package and distributed through R's own distribution network CRAN. This facilitated pre- and postprocessing of data such as parameter sampling, calculation of prediction bounds, and advanced visualisation. However, apart from these basic functionalities, the package did not use many of the more advanced features of the R environment, especially from R's object oriented functionality. With R's increasing expansion in arenas such as high performance computing, big data analysis, and cloud services, we revisit the topmodel package, and use it as an example of how to build and deploy the next generation of hydrological models. R provides a convenient environment and attractive features to build and couple hydrological - and in extension other environmental - models, to develop flexible and effective data assimilation strategies, and to take the model beyond the individual computer by linking into cloud services for both data provision and computing. However, in order to maximise the benefit of these approaches, it will be necessary to adopt standards and ontologies for model interaction and information exchange. Some of those are currently being developed, such as the OGC web processing standards, while other will need to be developed.
Xanthos – A Global Hydrologic Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Xinya; Vernon, Chris R.; Hejazi, Mohamad I.
Xanthos is an open-source hydrologic model, written in Python, designed to quantify and analyse global water availability. Xanthos simulates historical and future global water availability on a monthly time step at a spatial resolution of 0.5 geographic degrees. Xanthos was designed to be extensible and used by scientists that study global water supply and work with the Global Change Assessment Model (GCAM). Xanthos uses a user-defined configuration file to specify model inputs, outputs and parameters. Xanthos has been tested using actual global data sets and the model is able to provide historical observations and future estimates of renewable freshwater resourcesmore » in the form of total runoff.« less
Xanthos – A Global Hydrologic Model
Li, Xinya; Vernon, Chris R.; Hejazi, Mohamad I.; ...
2017-09-11
Xanthos is an open-source hydrologic model, written in Python, designed to quantify and analyse global water availability. Xanthos simulates historical and future global water availability on a monthly time step at a spatial resolution of 0.5 geographic degrees. Xanthos was designed to be extensible and used by scientists that study global water supply and work with the Global Change Assessment Model (GCAM). Xanthos uses a user-defined configuration file to specify model inputs, outputs and parameters. Xanthos has been tested using actual global data sets and the model is able to provide historical observations and future estimates of renewable freshwater resourcesmore » in the form of total runoff.« less
NASA Astrophysics Data System (ADS)
Santos, Léonard; Thirel, Guillaume; Perrin, Charles
2017-04-01
Errors made by hydrological models may come from a problem in parameter estimation, uncertainty on observed measurements, numerical problems and from the model conceptualization that simplifies the reality. Here we focus on this last issue of hydrological modeling. One of the solutions to reduce structural uncertainty is to use a multimodel method, taking advantage of the great number and the variability of existing hydrological models. In particular, because different models are not similarly good in all situations, using multimodel approaches can improve the robustness of modeled outputs. Traditionally, in hydrology, multimodel methods are based on the output of the model (the simulated flow series). The aim of this poster is to introduce a different approach based on the internal variables of the models. The method is inspired by the SUper MOdel (SUMO, van den Berge et al., 2011) developed for climatology. The idea of the SUMO method is to correct the internal variables of a model taking into account the values of the internal variables of (an)other model(s). This correction is made bilaterally between the different models. The ensemble of the different models constitutes a super model in which all the models exchange information on their internal variables with each other at each time step. Due to this continuity in the exchanges, this multimodel algorithm is more dynamic than traditional multimodel methods. The method will be first tested using two GR4J models (in a state-space representation) with different parameterizations. The results will be presented and compared to traditional multimodel methods that will serve as benchmarks. In the future, other rainfall-runoff models will be used in the super model. References van den Berge, L. A., Selten, F. M., Wiegerinck, W., and Duane, G. S. (2011). A multi-model ensemble method that combines imperfect models through learning. Earth System Dynamics, 2(1) :161-177.
Geographic information system/watershed model interface
Fisher, Gary T.
1989-01-01
Geographic information systems allow for the interactive analysis of spatial data related to water-resources investigations. A conceptual design for an interface between a geographic information system and a watershed model includes functions for the estimation of model parameter values. Design criteria include ease of use, minimal equipment requirements, a generic data-base management system, and use of a macro language. An application is demonstrated for a 90.1-square-kilometer subbasin of the Patuxent River near Unity, Maryland, that performs automated derivation of watershed parameters for hydrologic modeling.
Residence time revisited: The role of radiocarbon in reactive transport modeling
NASA Astrophysics Data System (ADS)
Lawrence, C. R.; Druhan, J. L.; Schulz, M. S.
2016-12-01
In recent years, our changing understanding of the dominant controls on soil carbon (C) storage and stability has cast a greater emphasis on the importance of physical and hydrological processes. These shifts in our understanding of C cycling have fostered increasingly commonplace measurements of soil physical and hydrological parameters in soil C studies (e.g. specific surface area, quantitative mineralogy, porosity) that reflect the importance of microbial accessibility to soil C. As a result, we are now poised to reassess the applicability of our approaches for conceptualizing and modeling soil C dynamics, particularly with regard to our representation of soil C pools. The goal of this work is to explore how the quantity and turnover of C, as approximated by radiocarbon measurements, is mechanistically linked to the physical and hydrologic parameters of soils. We utilize a reactive transport (RT) approach to link hydrologic transport, geochemical transformations and microbial activity influencing the magnitude and residence time of different carbon pools under variably saturated conditions. A newly developed version of the CrunchTope software is used to explicitly simulate the coupled transport, transformation, fractionation and decay of the three isotopes of carbon (12C, 13C and 14C) through a mechanistic framework. We constrain this model with a high-resolution dataset of soil carbon content, stable isotope composition and radiocarbon ages as well as physical and hydrologic data measured from a chronosequence of soils located near Santa Cruz, California. The Santa Cruz dataset is highly amenable to this task in that it demonstrates both seasonal and millennial variations in soil C distributions and associated soil properties. We present data from a series of simulations examining the sensitivity of C stocks, fluxes and mean residence times to transient processes spanning a range of temporal scales, including redox conditions, fluid flow and the distribution of reactive mineral surfaces. The results of these efforts show the promise of a modeling approach where the varied residence time of soil C emerges from the dynamic physical and hydrologic properties of the model rather than from an a priori assignment of operationally defined pools.
CalSimHydro Tool - A Web-based interactive tool for the CalSim 3.0 Hydrology Prepropessor
NASA Astrophysics Data System (ADS)
Li, P.; Stough, T.; Vu, Q.; Granger, S. L.; Jones, D. J.; Ferreira, I.; Chen, Z.
2011-12-01
CalSimHydro, the CalSim 3.0 Hydrology Preprocessor, is an application designed to automate the various steps in the computation of hydrologic inputs for CalSim 3.0, a water resources planning model developed jointly by California State Department of Water Resources and United States Bureau of Reclamation, Mid-Pacific Region. CalSimHydro consists of a five-step FORTRAN based program that runs the individual models in succession passing information from one model to the next and aggregating data as required by each model. The final product of CalSimHydro is an updated CalSim 3.0 state variable (SV) DSS input file. CalSimHydro consists of (1) a Rainfall-Runoff Model to compute monthly infiltration, (2) a Soil moisture and demand calculator (IDC) that estimates surface runoff, deep percolation, and water demands for natural vegetation cover and various crops other than rice, (3) a Rice Water Use Model to compute the water demands, deep percolation, irrigation return flow, and runoff from precipitation for the rice fields, (4) a Refuge Water Use Model that simulates the ponding operations for managed wetlands, and (5) a Data Aggregation and Transfer Module to aggregate the outputs from the above modules and transfer them to the CalSim SV input file. In this presentation, we describe a web-based user interface for CalSimHydro using Google Earth Plug-In. The CalSimHydro tool allows users to - interact with geo-referenced layers of the Water Budget Areas (WBA) and Demand Units (DU) displayed over the Sacramento Valley, - view the input parameters of the hydrology preprocessor for a selected WBA or DU in a time series plot or a tabular form, - edit the values of the input parameters in the table or by downloading a spreadsheet of the selected parameter in a selected time range, - run the CalSimHydro modules in the backend server and notify the user when the job is done, - visualize the model output and compare it with a base run result, - download the output SV file to be used to run CalSim 3.0. The CalSimHydro tool streamlines the complicated steps to configure and run the hydrology preprocessor by providing a user-friendly visual interface and back-end services to validate user inputs and manage the model execution. It is a powerful addition to the new CalSim 3.0 system.
Evaluation of a hydrological model based on Bidirectional Reach (BReach)
NASA Astrophysics Data System (ADS)
Van Eerdenbrugh, Katrien; Van Hoey, Stijn; Verhoest, Niko E. C.
2016-04-01
Evaluation and discrimination of model structures is crucial to ensure an appropriate use of hydrological models. When evaluating model results by aggregating their quality in (a subset of) individual observations, overall results of this analysis sometimes conceal important detailed information about model structural deficiencies. Analyzing model results within their local (time) context can uncover this detailed information. In this research, a methodology called Bidirectional Reach (BReach) is proposed to evaluate and analyze results of a hydrological model by assessing the maximum left and right reach in each observation point that is used for model evaluation. These maximum reaches express the capability of the model to describe a subset of the evaluation data both in the direction of the previous (left) and of the following data (right). This capability is evaluated on two levels. First, on the level of individual observations, the combination of a parameter set and an observation is classified as non-acceptable if the deviation between the accompanying model result and the measurement exceeds observational uncertainty. Second, the behavior in a sequence of observations is evaluated by means of a tolerance degree. This tolerance degree expresses the condition for satisfactory model behavior in a data series and is defined by the percentage of observations within this series that can have non-acceptable model results. Based on both criteria, the maximum left and right reaches of a model in an observation represent the data points in the direction of the previous respectively the following observations beyond which none of the sampled parameter sets both are satisfactory and result in an acceptable deviation. After assessing these reaches for a variety of tolerance degrees, results can be plotted in a combined BReach plot that show temporal changes in the behavior of model results. The methodology is applied on a Probability Distributed Model (PDM) of the river Grote Nete upstream of Geel-Zammel with 1 106 randomly sampled parameter sets for three separate years. Acceptable model results must fit in the 95 % uncertainty bounds of observed discharges and tolerance degrees of 0 %, 5 %, 10 %, 20 % and 40 % are applied. An evaluation of BReach results with regard to other variables, such as the magnitude and the rate of change of the observed discharges enables to detect recurring patterns in model errors. This results in an augmented understanding of the model's structural deficiencies, revealing the incapability of the PDM model to simulate both high and low flow simulations with a single parameter set for this catchment. As the methodology can be applied for different hydrological model structures, it is a useful tool to gain understanding of the difference in behavior of competing models.
Evaluating the spatial distribution of water balance in a small watershed, Pennsylvania
NASA Astrophysics Data System (ADS)
Yu, Zhongbo; Gburek, W. J.; Schwartz, F. W.
2000-04-01
A conceptual water-balance model was modified from a point application to be distributed for evaluating the spatial distribution of watershed water balance based on daily precipitation, temperature and other hydrological parameters. The model was calibrated by comparing simulated daily variation in soil moisture with field observed data and results of another model that simulates the vertical soil moisture flow by numerically solving Richards' equation. The impacts of soil and land use on the hydrological components of the water balance, such as evapotranspiration, soil moisture deficit, runoff and subsurface drainage, were evaluated with the calibrated model in this study. Given the same meteorological conditions and land use, the soil moisture deficit, evapotranspiration and surface runoff increase, and subsurface drainage decreases, as the available water capacity of soil increases. Among various land uses, alfalfa produced high soil moisture deficit and evapotranspiration and lower surface runoff and subsurface drainage, whereas soybeans produced an opposite trend. The simulated distribution of various hydrological components shows the combined effect of soil and land use. Simulated hydrological components compare well with observed data. The study demonstrated that the distributed water balance approach is efficient and has advantages over the use of single average value of hydrological variables and the application at a single point in the traditional practice.
NASA Astrophysics Data System (ADS)
Nytch, C. J.; Meléndez-Ackerman, E. J.
2014-12-01
There is a pressing need to generate spatially-explicit models of rainfall-runoff dynamics in the urban humid tropics that can characterize flow pathways and flood magnitudes in response to erratic precipitation events. To effectively simulate stormwater runoff processes at multiple scales, complex spatio-temporal parameters such as rainfall, evapotranspiration, and antecedent soil moisture conditions must be accurately represented, in addition to uniquely urban factors including stormwater conveyance structures and connectivity between green and gray infrastructure elements. In heavily urbanized San Juan, Puerto Rico, stream flashiness and frequent flooding are major issues, yet still lacking is a hydrological analysis that models the generation and movement of fluvial and pluvial stormwater through the watershed. Our research employs a novel and multifaceted approach to dealing with this problem that integrates 1) field-based rainfall interception and infiltration methodologies to quantify the hydrologic functions of natural and built infrastructure in San Juan; 2) remote sensing analysis to produce a fine-scale typology of green and gray cover types in the city and determine patterns of spatial distribution and connectivity; 3) assessment of precipitation and streamflow variability at local and basin-wide scales using satellite and radar precipitation estimates in concert with rainfall and stream gauge point data and participatory flood mapping; 4) simulation of historical, present-day, and future stormwater runoff scenarios with a fully distributed hydrologic model that couples diverse components of urban socio-hydrological systems from formal and informal knowledge sources; and 5) bias and uncertainty analysis of parameters and model structure within a Bayesian hierarchical framework. Preliminary results from the rainfall interception study suggest that canopy structure and leaf area index of different tree species contribute to variable throughfall and stemflow responses. Additional investigations are pending. The findings from this work will help inform urban planning and design, and build adaptive capacity to reduce flood vulnerability in the context of a changing climate.
NASA Astrophysics Data System (ADS)
Klotz, Daniel; Herrnegger, Mathew; Schulz, Karsten
2016-04-01
This contribution presents a framework, which enables the use of an Evolutionary Algorithm (EA) for the calibration and regionalization of the hydrological model COSEROreg. COSEROreg uses an updated version of the HBV-type model COSERO (Kling et al. 2014) for the modelling of hydrological processes and is embedded in a parameter regionalization scheme based on Samaniego et al. (2010). The latter uses subscale-information to estimate model via a-priori chosen transfer functions (often derived from pedotransfer functions). However, the transferability of the regionalization scheme to different model-concepts and the integration of new forms of subscale information is not straightforward. (i) The usefulness of (new) single sub-scale information layers is unknown beforehand. (ii) Additionally, the establishment of functional relationships between these (possibly meaningless) sub-scale information layers and the distributed model parameters remain a central challenge in the implementation of a regionalization procedure. The proposed method theoretically provides a framework to overcome this challenge. The implementation of the EA encompasses the following procedure: First, a formal grammar is specified (Ryan et al., 1998). The construction of the grammar thereby defines the set of possible transfer functions and also allows to incorporate hydrological domain knowledge into the search itself. The EA iterates over the given space by combining parameterized basic functions (e.g. linear- or exponential functions) and sub-scale information layers into transfer functions, which are then used in COSEROreg. However, a pre-selection model is applied beforehand to sort out unfeasible proposals by the EA and to reduce the necessary model runs. A second optimization routine is used to optimize the parameters of the transfer functions proposed by the EA. This concept, namely using two nested optimization loops, is inspired by the idea of Lamarckian Evolution and Baldwin Effect (Whitley et al., 1994), which might be understood as the idea that acquired characteristics during the lifetime of an individual can be transferred between generations. A hierarchical objective function is used for the model evaluation. This enables model preemption (Tolson et al., 2010) and reduces the amount of model evaluations in the early stages of optimization. References: • Samaniego, L., Kumar, R., Attinger, S. (2010): Multiscale parameter regionalization of a grid-based hydrologic model at the mesoscale, Water Resour. Res., doi: 10.1029/2008WR007327 • Kling, H., Stanzel, P., Fuchs, M., and Nachtnebel, H. P. (2014): Performance of the COSERO precipitation-runoff model under non-stationary conditions in basins with different climates, Hydrolog. Sci. J., doi:10.1080/02626667.2014.959956. • C. Ryan, J.J. Collins, Ji, Collins, M. O'Neil (1998): Evolving Programs for an Arbitrary Language, Lecture Notes in Computer Science 1391, Proceedings of the First European Workshop on Genetic Programming. • B.A. Tolson, S. Razavi, L.S. Matott, N.R. Thomson, A. MacLean, F.R. Seglenieks (2010): Reducing the computational cost of automatic calibration through model preemption, Water Resour. Res., 46, W11523, doi:10.1029/2009WR008957. • D. Whitley, S. Gordon, K. Mathias (1994): Lamarckian evolution, the Baldwin effect, and function optimization, in Parallel Problem Solving from Nature (PPSN) III, Y. Davidor, H.-P. Schwefel, and R. Manner, Eds. Berlin: Springer-Verlag, pp. 6-15.
Evaluation TRMM Rainfall Data In Hydrological Modeling For An Ungaged In Lhasa River Basin
NASA Astrophysics Data System (ADS)
Ji, H. J.; Liu, J.
2017-12-01
Evaluation TRMM Rainfall Data In Hydrological Modeling For An Ungaged In Lhasa River BasinHaijuan Ji1* Jintao Liu1,2 Shanshan Xu1___________________ 1College of Hydrology and Water Resources, Hohai University, Nanjing 210098, People's Republic of China 2State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, People's Republic of China ___________________ * Corresponding author. Tel.: +86-025-83786973; Fax: +86-025-83786606. E-mail address: Hhu201510@163.com (H.J. Ji). Abstract: The Tibetan Plateau plays an important role in regulating the regional hydrological processes due to its high elevations and being the headwaters of many major Asian river basins. If familiar with the distribution of hydrological characteristics, will help us improve the level of development and utilization the water resources. However, there exist glaciers and snow with few sites. It is significance for us to understand the glacier and snow hydrological process in order to recognize the evolution of water resources in the Tibetan. This manuscript takes Lhasa River as the study area, taking use of ground, remote sensing and assimilation data, taking advantage of high precision TRMM precipitation data and MODIS snow cover data, first, according to the data from ground station evaluation of TRMM data in the application of the accuracy of the Lhasa River, and based on MODIS data fusion of multi source microwave snow making cloudless snow products, which are used for discriminant and analysis glacier and snow regulation mechanism on day scale, add snow and glacier unit into xinanjing model, this model can simulate the study region's runoff evolution, parameter sensitivity even spatial variation of hydrological characteristics the next ten years on region grid scale. The results of hydrological model in Lhasa River can simulate the glacier and snow runoff variation in high cold region better, to enhance the predictive ability of the spring snow disaster.
LaFontaine, Jacob H.; Hay, Lauren E.; Viger, Roland J.; Markstrom, Steve L.; Regan, R. Steve; Elliott, Caroline M.; Jones, John W.
2013-01-01
A hydrologic model of the Apalachicola–Chattahoochee–Flint River Basin (ACFB) has been developed as part of a U.S. Geological Survey (USGS) National Climate Change and Wildlife Science Center effort to provide integrated science that helps resource managers understand the effect of climate change on a range of ecosystem responses. The hydrologic model was developed as part of the Southeast Regional Assessment Project using the Precipitation Runoff Modeling System (PRMS), a deterministic, distributed-parameter, process-based system that simulates the effects of precipitation, temperature, and land use on basin hydrology. The ACFB PRMS model simulates streamflow throughout the approximately 50,700 square-kilometer basin on a daily time step for the period 1950–99 using gridded climate forcings of air temperature and precipitation, and parameters derived from spatial data layers of altitude, land cover, soils, surficial geology, depression storage (small water bodies), and data from 56 USGS streamgages. Measured streamflow data from 35 of the 56 USGS streamgages were used to calibrate and evaluate simulated basin streamflow; the remaining gage locations were used for model delineation only. The model matched measured daily streamflow at 31 of the 35 calibration gages with Nash-Sutcliffe Model Efficiency Index (NS) greater than 0.6. Streamflow data for some calibration gages were augmented for regulation and water use effects to represent more natural flow volumes. Time-static parameters describing land cover limited the ability of the simulation to match historical runoff in the more developed subbasins. Overall, the PRMS simulation of the ACFB provides a good representation of basin hydrology on annual and monthly time steps. Calibration subbasins were analyzed by separating the 35 subbasins into five classes based on physiography, land use, and stream type (tributary or mainstem). The lowest NS values were rarely below 0.6, whereas the median NS for all five classes was within 0.74 to 0.96 for annual mean streamflow, 0.89 to 0.98 for mean monthly streamflow, and 0.82 to 0.98 for monthly mean streamflow. The median bias for all five classes was within –4.3 to 0.8 percent for annual mean streamflow, –6.3 to 0.5 percent for mean monthly streamflow, and –9.3 to 1.3 percent for monthly mean streamflow. The NS results combined with the percent bias results indicated a good to very good streamflow volume simulation for all subbasins. This simulation of the ACFB provides a foundation for future modeling and interpretive studies. Streamflow and other components of the hydrologic cycle simulated by PRMS can be used to inform other types of simulations; water-temperature, hydrodynamic, and ecosystem-dynamics simulations are three examples. In addition, possible future hydrologic conditions could be studied using this model in combination with land cover projections and downscaled general circulation model results.
NASA Astrophysics Data System (ADS)
Reder, Alfredo; Rianna, Guido; Pagano, Luca
2018-02-01
In the field of rainfall-induced landslides on sloping covers, models for early warning predictions require an adequate trade-off between two aspects: prediction accuracy and timeliness. When a cover's initial hydrological state is a determining factor in triggering landslides, taking evaporative losses into account (or not) could significantly affect both aspects. This study evaluates the performance of three physically based predictive models, converting precipitation and evaporative fluxes into hydrological variables useful in assessing slope safety conditions. Two of the models incorporate evaporation, with one representing evaporation as both a boundary and internal phenomenon, and the other only a boundary phenomenon. The third model totally disregards evaporation. Model performances are assessed by analysing a well-documented case study involving a 2 m thick sloping volcanic cover. The large amount of monitoring data collected for the soil involved in the case study, reconstituted in a suitably equipped lysimeter, makes it possible to propose procedures for calibrating and validating the parameters of the models. All predictions indicate a hydrological singularity at the landslide time (alarm). A comparison of the models' predictions also indicates that the greater the complexity and completeness of the model, the lower the number of predicted hydrological singularities when no landslides occur (false alarms).
How much complexity is warranted in a rainfall-runoff model?
A.J. Jakeman; G.M. Hornberger
1993-01-01
Development of mathmatical models relating the precipitation incident upon a catchment to the streamflow emanating from the catchment has been a major focus af surface water hydrology for decades. Generally, values for parameters in such models must be selected so that runoff calculated from the model "matches" recorded runoff from some historical period....
NASA Astrophysics Data System (ADS)
McInerney, David; Thyer, Mark; Kavetski, Dmitri; Kuczera, George
2016-04-01
Appropriate representation of residual errors in hydrological modelling is essential for accurate and reliable probabilistic streamflow predictions. In particular, residual errors of hydrological predictions are often heteroscedastic, with large errors associated with high runoff events. Although multiple approaches exist for representing this heteroscedasticity, few if any studies have undertaken a comprehensive evaluation and comparison of these approaches. This study fills this research gap by evaluating a range of approaches for representing heteroscedasticity in residual errors. These approaches include the 'direct' weighted least squares approach and 'transformational' approaches, such as logarithmic, Box-Cox (with and without fitting the transformation parameter), logsinh and the inverse transformation. The study reports (1) theoretical comparison of heteroscedasticity approaches, (2) empirical evaluation of heteroscedasticity approaches using a range of multiple catchments / hydrological models / performance metrics and (3) interpretation of empirical results using theory to provide practical guidance on the selection of heteroscedasticity approaches. Importantly, for hydrological practitioners, the results will simplify the choice of approaches to represent heteroscedasticity. This will enhance their ability to provide hydrological probabilistic predictions with the best reliability and precision for different catchment types (e.g. high/low degree of ephemerality).
Swain, Eric D.; Wolfert, Melinda A.; Bales, Jerad D.; Goodwin, Carl R.
2004-01-01
Successful restoration of the southern Florida ecosystem requires extensive knowledge of the physical characteristics and hydrologic processes controlling water flow and transport of constituents through extremely low-gradient freshwater marshes, shallow mangrove-fringed coastal creeks and tidal embayments, and near-shore marine waters. A sound, physically based numerical model can provide simulations of the differing hydrologic conditions that might result from various ecosystem restoration scenarios. Because hydrology and ecology are closely linked in southern Florida, hydrologic model results also can be used by ecologists to evaluate the degree of ecosystem restoration that could be achieved for various hydrologic conditions. A robust proven model, SWIFT2D, (Surface-Water Integrated Flow and Transport in Two Dimensions), was modified to simulate Southern Inland and Coastal Systems (SICS) hydrodynamics and transport conditions. Modifications include improvements to evapotranspiration and rainfall calculation and to the algorithms that describe flow through coastal creeks. Techniques used in this model should be applicable to other similar low-gradient marsh settings in southern Florida and elsewhere. Numerous investigations were conducted within the SICS area of southeastern Everglades National Park and northeastern Florida Bay to provide data and parameter values for model development and testing. The U.S. Geological Survey and the National Park Service supported investigations for quantification of evapotranspiration, vegetative resistance to flow, wind-induced flow, land elevations, vegetation classifications, salinity conditions, exchange of ground and surface waters, and flow and transport in coastal creeks and embayments. The good agreement that was achieved between measured and simulated water levels, flows, and salinities through minimal adjustment of empirical coefficients indicates that hydrologic processes within the SICS area are represented properly in the SWIFT2D model, and that the spatial and temporal resolution of these processes in the model is adequate. Sensitivity analyses were conducted to determine the effect of changes in boundary conditions and parameter values on simulation results, which aided in identifying areas of greatest uncertainty in the model. The parameter having the most uncertainty (most in need of further field study) was the flow coefficient for coastal creeks. Smaller uncertainties existed for wetlands frictional resistance and wind. Evapotranspiration and boundary inflows indicated the least uncertainty as determined by varying parameters used in their formulation and definition. Model results indicated that wind was important in reversing coastal creek flows. At Trout Creek (the major tributary connecting Taylor Slough wetlands with Florida Bay), flow in the landward direction was not simulated properly unless wind forcing was included in the simulation. Simulations also provided insight into the major influence that wind has on salinity mixing along the coast, the varying distribution of wetland flows at differing water levels, and the importance of topography in controlling flows to the coast. Slight topographic variations were shown to highly influence the routing of water. A multiple regression analysis was performed to relate inflows at the northern boundary of Taylor Slough bridge to a major pump station (S-332) north of the SICS model area. This analysis allows Taylor Slough bridge boundary conditions to be defined for the model from operating scenarios at S-332, which should facilitate use of the SICS model as an operational tool.
Lumb, A.M.; McCammon, R.B.; Kittle, J.L.
1994-01-01
Expert system software was developed to assist less experienced modelers with calibration of a watershed model and to facilitate the interaction between the modeler and the modeling process not provided by mathematical optimization. A prototype was developed with artificial intelligence software tools, a knowledge engineer, and two domain experts. The manual procedures used by the domain experts were identified and the prototype was then coded by the knowledge engineer. The expert system consists of a set of hierarchical rules designed to guide the calibration of the model through a systematic evaluation of model parameters. When the prototype was completed and tested, it was rewritten for portability and operational use and was named HSPEXP. The watershed model Hydrological Simulation Program--Fortran (HSPF) is used in the expert system. This report is the users manual for HSPEXP and contains a discussion of the concepts and detailed steps and examples for using the software. The system has been tested on watersheds in the States of Washington and Maryland, and the system correctly identified the model parameters to be adjusted and the adjustments led to improved calibration.
NASA Astrophysics Data System (ADS)
Versini, Pierre-Antoine; Tchiguirinskaia, Ioulia; Schertzer, Daniel
2017-04-01
Green roofs are commonly considered as efficient tools to mitigate urban runoff as they can store precipitation, and consequently provide retention and detention performances. Designed as a compromise between water holding capacity, weight and hydraulic conductivity, their substrate is usually an artificial media differentiating significantly from a traditional soil. In order to assess green roofs hydrological performances, many models have been developed. Classified into two categories (conceptual and physically based), they are usually applied to reproduce the discharge of a particular monitored green roof considered as homogeneous. Although the resulted simulations could be satisfactory, the question of robustness and consistency of the calibrated parameters is often not addressed. Here, a modeling framework has been developed to assess the efficiency and the robustness of both modelling approaches (conceptual and physically based) in reproducing green roof hydrological behaviour. SWMM and VS2DT models have been used for this purpose. This work also benefits from an experimental setup where several green roofs differentiated by their substrate thickness and vegetation cover are monitored. Based on the data collected for several rainfall events, it has been studied how the calibrated parameters are effectively linked to their physical properties and how they can vary from one green roof configuration to another. Although both models reproduce correctly the observed discharges in most of the cases, their calibrated parameters exhibit a high inconsistency. For a same green roof configuration, these parameters can vary significantly from one rainfall event to another, even if they are supposed to be linked to the green roof characteristics (roughness, residual moisture content for instance). They can also be different from one green roof configuration to another although the implemented substrate is the same. Finally, it appears very difficult to find any relationship between the calibrated parameters supposed to represent similar characteristics in both models (porosity, hydraulic conductivity). These results illustrate the difficulty to reproduce the hydrological behaviour of such an artificial media constituting green roof substrate. They justify the development of new methods able to take to into account the spatial heterogeneity of the substrate for instance.
How does modifying a DEM to reflect known hydrology affect subsequent terrain analysis?
NASA Astrophysics Data System (ADS)
Callow, John Nikolaus; Van Niel, Kimberly P.; Boggs, Guy S.
2007-01-01
SummaryMany digital elevation models (DEMs) have difficulty replicating hydrological patterns in flat landscapes. Efforts to improve DEM performance in replicating known hydrology have included a variety of soft (i.e. algorithm-based approaches) and hard techniques, such as " Stream burning" or "surface reconditioning" (e.g. Agree or ANUDEM). Using a representation of the known stream network, these methods trench or mathematically warp the original DEM to improve how accurately stream position, stream length and catchment boundaries replicate known hydrological conditions. However, these techniques permanently alter the DEM and may affect further analyses (e.g. slope). This paper explores the impact that commonly used hydrological correction methods ( Stream burning, Agree.aml and ANUDEM v4.6.3 and ANUDEM v5.1) have on the overall nature of a DEM, finding that different methods produce non-convergent outcomes for catchment parameters (such as catchment boundaries, stream position and length), and differentially compromise secondary terrain analysis. All hydrological correction methods successfully improved calculation of catchment area, stream position and length as compared to using the DEM without any modification, but they all increased catchment slope. No single method performing best across all categories. Different hydrological correction methods changed elevation and slope in different spatial patterns and magnitudes, compromising the ability to derive catchment parameters and conduct secondary terrain analysis from a single DEM. Modification of a DEM to better reflect known hydrology can be useful, however knowledge of the magnitude and spatial pattern of the changes are required before using a DEM for subsequent analyses.
Shuttle radar DEM hydrological correction for erosion modelling in small catchments
NASA Astrophysics Data System (ADS)
Jarihani, Ben; Sidle, Roy; Bartley, Rebecca
2016-04-01
Digital Elevation Models (DEMs) that accurately replicate both landscape form and processes are critical to support modelling of environmental processes. Catchment and hillslope scale runoff and sediment processes (i.e., patterns of overland flow, infiltration, subsurface stormflow and erosion) are all topographically mediated. In remote and data-scarce regions, high resolution DEMs (LiDAR) are often not available, and moderate to course resolution digital elevation models (e.g., SRTM) have difficulty replicating detailed hydrological patterns, especially in relatively flat landscapes. Several surface reconditioning algorithms (e.g., Smoothing) and "Stream burning" techniques (e.g., Agree or ANUDEM), in conjunction with representation of the known stream networks, have been used to improve DEM performance in replicating known hydrology. Detailed stream network data are not available at regional and national scales, but can be derived at local scales from remotely-sensed data. This research explores the implication of high resolution stream network data derived from Google Earth images for DEM hydrological correction, instead of using course resolution stream networks derived from topographic maps. The accuracy of implemented method in producing hydrological-efficient DEMs were assessed by comparing the hydrological parameters derived from modified DEMs and limited high-resolution airborne LiDAR DEMs. The degree of modification is dominated by the method used and availability of the stream network data. Although stream burning techniques improve DEMs hydrologically, these techniques alter DEM characteristics that may affect catchment boundaries, stream position and length, as well as secondary terrain derivatives (e.g., slope, aspect). Modification of a DEM to better reflect known hydrology can be useful, however, knowledge of the magnitude and spatial pattern of the changes are required before using a DEM for subsequent analyses.
Understanding seasonal variability of uncertainty in hydrological prediction
NASA Astrophysics Data System (ADS)
Li, M.; Wang, Q. J.
2012-04-01
Understanding uncertainty in hydrological prediction can be highly valuable for improving the reliability of streamflow prediction. In this study, a monthly water balance model, WAPABA, in a Bayesian joint probability with error models are presented to investigate the seasonal dependency of prediction error structure. A seasonal invariant error model, analogous to traditional time series analysis, uses constant parameters for model error and account for no seasonal variations. In contrast, a seasonal variant error model uses a different set of parameters for bias, variance and autocorrelation for each individual calendar month. Potential connection amongst model parameters from similar months is not considered within the seasonal variant model and could result in over-fitting and over-parameterization. A hierarchical error model further applies some distributional restrictions on model parameters within a Bayesian hierarchical framework. An iterative algorithm is implemented to expedite the maximum a posterior (MAP) estimation of a hierarchical error model. Three error models are applied to forecasting streamflow at a catchment in southeast Australia in a cross-validation analysis. This study also presents a number of statistical measures and graphical tools to compare the predictive skills of different error models. From probability integral transform histograms and other diagnostic graphs, the hierarchical error model conforms better to reliability when compared to the seasonal invariant error model. The hierarchical error model also generally provides the most accurate mean prediction in terms of the Nash-Sutcliffe model efficiency coefficient and the best probabilistic prediction in terms of the continuous ranked probability score (CRPS). The model parameters of the seasonal variant error model are very sensitive to each cross validation, while the hierarchical error model produces much more robust and reliable model parameters. Furthermore, the result of the hierarchical error model shows that most of model parameters are not seasonal variant except for error bias. The seasonal variant error model is likely to use more parameters than necessary to maximize the posterior likelihood. The model flexibility and robustness indicates that the hierarchical error model has great potential for future streamflow predictions.
NASA Astrophysics Data System (ADS)
Demirel, Mehmet C.; Mai, Juliane; Mendiguren, Gorka; Koch, Julian; Samaniego, Luis; Stisen, Simon
2018-02-01
Satellite-based earth observations offer great opportunities to improve spatial model predictions by means of spatial-pattern-oriented model evaluations. In this study, observed spatial patterns of actual evapotranspiration (AET) are utilised for spatial model calibration tailored to target the pattern performance of the model. The proposed calibration framework combines temporally aggregated observed spatial patterns with a new spatial performance metric and a flexible spatial parameterisation scheme. The mesoscale hydrologic model (mHM) is used to simulate streamflow and AET and has been selected due to its soil parameter distribution approach based on pedo-transfer functions and the build in multi-scale parameter regionalisation. In addition two new spatial parameter distribution options have been incorporated in the model in order to increase the flexibility of root fraction coefficient and potential evapotranspiration correction parameterisations, based on soil type and vegetation density. These parameterisations are utilised as they are most relevant for simulated AET patterns from the hydrologic model. Due to the fundamental challenges encountered when evaluating spatial pattern performance using standard metrics, we developed a simple but highly discriminative spatial metric, i.e. one comprised of three easily interpretable components measuring co-location, variation and distribution of the spatial data. The study shows that with flexible spatial model parameterisation used in combination with the appropriate objective functions, the simulated spatial patterns of actual evapotranspiration become substantially more similar to the satellite-based estimates. Overall 26 parameters are identified for calibration through a sequential screening approach based on a combination of streamflow and spatial pattern metrics. The robustness of the calibrations is tested using an ensemble of nine calibrations based on different seed numbers using the shuffled complex evolution optimiser. The calibration results reveal a limited trade-off between streamflow dynamics and spatial patterns illustrating the benefit of combining separate observation types and objective functions. At the same time, the simulated spatial patterns of AET significantly improved when an objective function based on observed AET patterns and a novel spatial performance metric compared to traditional streamflow-only calibration were included. Since the overall water balance is usually a crucial goal in hydrologic modelling, spatial-pattern-oriented optimisation should always be accompanied by traditional discharge measurements. In such a multi-objective framework, the current study promotes the use of a novel bias-insensitive spatial pattern metric, which exploits the key information contained in the observed patterns while allowing the water balance to be informed by discharge observations.
SUMMA and Model Mimicry: Understanding Differences Among Land Models
NASA Astrophysics Data System (ADS)
Nijssen, B.; Nearing, G. S.; Ou, G.; Clark, M. P.
2016-12-01
Model inter-comparison and model ensemble experiments suffer from an inability to explain the mechanisms behind differences in model outcomes. We can clearly demonstrate that the models are different, but we cannot necessarily identify the reasons why, because most models exhibit myriad differences in process representations, model parameterizations, model parameters and numerical solution methods. This inability to identify the reasons for differences in model performance hampers our understanding and limits model improvement, because we cannot easily identify the most promising paths forward. We have developed the Structure for Unifying Multiple Modeling Alternatives (SUMMA) to allow for controlled experimentation with model construction, numerical techniques, and parameter values and therefore isolate differences in model outcomes to specific choices during the model development process. In developing SUMMA, we recognized that hydrologic models can be thought of as individual instantiations of a master modeling template that is based on a common set of conservation equations for energy and water. Given this perspective, SUMMA provides a unified approach to hydrologic modeling that integrates different modeling methods into a consistent structure with the ability to instantiate alternative hydrologic models at runtime. Here we employ SUMMA to revisit a previous multi-model experiment and demonstrate its use for understanding differences in model performance. Specifically, we implement SUMMA to mimic the spread of behaviors exhibited by the land models that participated in the Protocol for the Analysis of Land Surface Models (PALS) Land Surface Model Benchmarking Evaluation Project (PLUMBER) and draw conclusions about the relative performance of specific model parameterizations for water and energy fluxes through the soil-vegetation continuum. SUMMA's ability to mimic the spread of model ensembles and the behavior of individual models can be an important tool in focusing model development and improvement efforts.
NASA Astrophysics Data System (ADS)
Piretzidis, Dimitrios; Sideris, Michael G.
2016-04-01
This study investigates the possibilities of local hydrology signal extraction using GRACE data and conventional filtering techniques. The impact of the basin shape has also been studied in order to derive empirical rules for tuning the GRACE filter parameters. GRACE CSR Release 05 monthly solutions were used from April 2002 to August 2015 (161 monthly solutions in total). SLR data were also used to replace the GRACE C2,0 coefficient, and a de-correlation filter with optimal parameters for CSR Release 05 data was applied to attenuate the correlation errors of monthly mass differences. For basins located at higher latitudes, the effect of Glacial Isostatic Adjustment (GIA) was taken into account using the ICE-6G model. The study focuses on three geometric properties, i.e., the area, the convexity and the width in the longitudinal direction, of 100 basins with global distribution. Two experiments have been performed. The first one deals with the determination of the Gaussian smoothing radius that minimizes the gaussianity of GRACE equivalent water height (EWH) over the selected basins. The EWH kurtosis was selected as a metric of gaussianity. The second experiment focuses on the derivation of the Gaussian smoothing radius that minimizes the RMS difference between GRACE data and a hydrology model. The GLDAS 1.0 Noah hydrology model was chosen, which shows good agreement with GRACE data according to previous studies. Early results show that there is an apparent relation between the geometric attributes of the basins examined and the Gaussian radius derived from the two experiments. The kurtosis analysis experiment tends to underestimate the optimal Gaussian radius, which is close to 200-300 km in many cases. Empirical rules for the selection of the Gaussian radius have been also developed for sub-regional scale basins.